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ABSTRACT 

A major challenge in global health care is a lack of portable and affordable quantitative 

diagnostic devices. This is because classic quantification of biomolecules is typically 

performed using kinetic assays that require strict control only found in controlled 

laboratory environments. By using the power of microfluidics, quantitative assays can be 

performed robustly in a “digital” format that is decoupled from precise kinetics through 

highly parallelized qualitative reactions. The benefits of performing quantitative assays in a 

digital format extend beyond just assay robustness to reduction of instrumental complexity, 

increase in quantitative precision, and an increase in the amount of information that can be 

gained from a single experiment. These microfluidic architectures, however, are not limited 

to usage in scenarios of quantification of biomolecules. These architectures can also 

potentially be extended to answering complex biological questions in single cells, such as 

determining the 3-dimensional organization of nuclear DNA and RNA. 
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Chapter 1: 

Summary Introduction and Theme of the Thesis 

Microfluidics as a tool have been used in a variety of different scenarios to investigate a 

wide multitude of problems. Two widely explored areas of microfluidics that will be 

discussed in this thesis are those of quantitative nucleic acid amplification tests (NAATs), 

and single cell studies. Microfluidics are uniquely suited to these two areas as both can be 

performed well through a process of compartmentalization whereby a solution is 

distributed evenly among thousands of smaller volumes typically in the picoliter to 

nanoliter range. 

Classically, NAATs have been performed by amplifying a specific sequence of a nucleic 

acid strand and monitoring its amplification rate as compared to a standard. While 

performing NAATs in this manner is highly effective, it is only suitable for first world 

scenarios where a tightly controlled environment and access to advanced instrumentation 

can be guaranteed. These conditions are required because different environmental factors 

can alter the kinetics of the amplification reaction which impedes the ability to perform 

direct and accurate quantitative tests. There are a variety of different situations in which 

these conditions cannot be guaranteed, such as diagnostic viral load testing outside of 

centralized laboratories. Therefore, a better alternative would be a NAAT which does not 

require any advanced instrumentation and is more robust to a wide variation in 

environmental conditions. 

 In chapter 2 of this thesis, previously published work on which I am co-first author is 

presented to directly address these issues by showing that a microfluidics-based digital 
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NAAT is able to be more robust to changes in environmental conditions through utilizing 

a process of limiting dilution wherein not all of the reactions get amplifiable nucleic 

acids. In this manner, only the proportion of total positive reactions and reaction volume 

is required to determine initial concentration as opposed to the rate at which those 

reactions proceeded. We also showed that the outcome of these reactions can be 

visualized and automatically interpreted using a modified smart phone based fluorescent 

reader. This dramatically reduces the assay requirements, and shows how quantitative 

NAATs could be transferred from the laboratory to the field. 

In chapter 3 of this thesis, previously published work on which I am a contributing author 

is presented which extends the work outlined in chapter 2. The work is extended by the 

development of a ratiometric color based readout which does not require any 

modifications to the cell phone being used. This was accomplished by adjusting the 

chemistry of the amplification reaction such that a distinct color change occurs if there 

was amplifiable DNA in the reaction well. The ratiometric nature of the readout is critical 

to the robustness of the assay as the color change is not dramatic, and as such depending 

on light levels and color during imaging different biases could be introduced in the 

analysis. We showed that using this type of readout method is potentially robust enough 

that it can be successfully applied to any phone or other imaging device as long as the 

quality of the images produced is sufficient. 

Chapter 4 of this thesis contains a previously published article on which I am a 

contributing author that details the usage of 3d printed attachments for microfluidic 

devices for reliable and equipment free fluid pumping. Typical microfluidic devices rely 

on complex equipment to introduce the fluids onto the device. This would inhibit their 
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usability in remote applications as access to that equipment and even electricity may be 

impeded. The 3d printed attachments outlined in the article can be rapidly manufactured 

with a tailored flow profile that matches what is required for a particular microfluidic 

device including positive and negative pressures. It is also shown in the article that the 

pumping lids are sufficiently fault tolerant and easy to use that loading of a microfluidic 

SlipChip device was demonstrated by a 6-year old untrained user. 

While performing NAATs in a digital format as described in chapter 2 and 3 provides for 

a robust and reliable method of quantification, optimization of the required assays can be 

difficult without the type of kinetic information that is provided in a traditional assay. 

Commercial instrumentation exists for monitoring the kinetics of NAATs on digital 

devices, however, the types of microfluidic devices which can be run are limited to those 

produced by the manufacturer. Therefore, if one wants to study unsupported chemistries 

or use custom microfluidic devices then settling for end-point readouts has usually been 

required. Chapter 5 details unpublished work of designing, constructing, and validating 

an instrument which is able to obtain kinetic traces of reactions on custom microfluidic 

devices with a multi-channel fluorescent readout and tight temperature control. This 

instrument also is supported by a full software suite which simplifies the collection and 

analysis of software through an easy to use application. 

Chapter 6 contains a previously published article on which I am a contributing author that 

uses the instrumentation outlined in chapter 5 to optimize a digital loop-mediated 

amplification (LAMP) assay of hepatitis C virus (HCV) RNA. We were able to show that 

optimization of this assay for the digital format greatly benefits from the individual 

reactions’ kinetic traces as the reaction rate is not tightly coupled with the reaction 
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efficiency. The reaction rate and overall reaction efficiency in LAMP can be decoupled 

due to a complex arrestable initiation step followed by a rapid and ungated amplification 

step. Optimization of these reactions for a digital format with information about both 

kinetics and statistics decouples these two problems as arrested one is able to observe the 

individual amplification profiles from hundreds to thousands of individual molecules. 

Chapter 7 contains a previously published article which used the technology detailed in 

chapter 5 to obtain detailed information about a method whereby quantification and 

genotyping of the HCV virus were performed at the same time. Both sets of information 

are important in treating HCV infections as both potentially impact drug choice. Certain 

genotypes of HCV respond differently to treatments, and higher concentrations of the 

virus may warrant a more aggressive course of medicine. Kinetic information was critical 

in truly understanding how these reactions performed in a digital format, as the 

genotyping reactions occurred via a competition reaction between universal amplification 

of HCV and targeted degradation of specific genotypes of HCV.  

Chapter 8 of this thesis contains unpublished progress towards using microfluidics to 

obtain information about chromatin conformation in single cells. Understanding the 

chromosomal structure of cells, and what part RNAs play in that structure is key in 

continuing to gain insights into cellular function. Currently there are methods whereby 

DNA-DNA contacts can be elucidated in single cells; however, they have a somewhat 

limited efficiency, and cannot provide information about DNA-RNA contacts. Through a 

collaboration with the Mitchell Guttman group at the California Institute of Technology 

we have made progress towards applying a high-efficiency method of globally mapping 

high order interactions between DNA and RNA from single cells using microfluidics. 
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Chapter 2: 

Single-Molecule Counting with Microfluidics, Digital Isothermal 

Amplification, and Mobile Phone Is Robust, Unlike Real-Time Kinetics* 

Abstract 

Quantitative bioanalytical measurements are commonly performed in a kinetic format, 

and are known to not be robust to perturbation that affects the kinetics itself, or the 

measurement of kinetics. We hypothesized that the same measurements performed in a 

“digital” (single-molecule) format would show increased robustness to such 

perturbations.  Here, we investigated the robustness of an amplification reaction (reverse-

transcription loop-mediated amplification, RT-LAMP) in the context of fluctuations in 

temperature and time when this reaction is used for quantitative measurements of HIV-1 

RNA molecules under limited-resource settings (LRS).  The digital format that counts 

molecules using dRT-LAMP chemistry detected a two-fold change in concentration of 

HIV-1 RNA despite a 6 °C temperature variation (p-value = 6.7x10-7), whereas the 

traditional kinetic (real-time) format did not (p-value = 0.25).  Digital analysis was also 

robust to a 20-minute change in reaction time, to poor imaging conditions obtained with a 

consumer cell-phone camera, and to automated cloud-based processing of these images 

(R2 = 0.9997 vs. true counts over a 100-fold dynamic range).  Fluorescent output of 

multiplexed PCR amplification could also be imaged with the cell phone camera using 

flash as the excitation source. Many nonlinear amplification schemes based on organic, 

inorganic, and biochemical reactions have been developed but their robustness is not well 

                                                           
* This chapter was first published in Analytical Chemistry with authorship belonging to David A. Selck, 
Mikhail A. Karymov, Bing Sun, and Rustem F. Ismagilov. The original manuscript can be found at: 
http://dx.doi.org/10.1021/ac4030413 
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understood.  This work implies that these chemistries may be significantly more robust in 

the digital, rather than kinetic, format.  It also calls for theoretical studies to predict 

robustness of these chemistries, and more generally to design robust reaction 

architectures. The SlipChip that we used here and other digital microfluidic technologies 

already exist to enable testing of these predictions. Such work may lead to identification 

or creation of robust amplification chemistries that enable rapid and precise quantitative 

molecular measurements under LRS. Furthermore, it may provide more general 

principles describing robustness of chemical and biological networks in digital formats.   

Introduction 

A wide range of nonlinear and especially autocatalytic chemical amplification schemes 

are being developed and studied using organic, inorganic, and biochemical reactions.1-12 

These studies are motivated both by understanding of signal transduction in natural 

systems, and by opportunities for rapid, ultrasensitive detection and quantification of 

analyte molecules.  In natural systems, networks of biochemical reactions crucial for the 

function of living organisms are robust to intrinsic and extrinsic fluctuations, to 

environmental changes, and even to some perturbations not likely to be previously 

encountered by the organism.13-16  However, robustness of synthetic nonlinear chemical 

amplification schemes is not yet fully understood: despite tremendous progress in 

experimental and theoretical studies of nonlinear chemical dynamics,11 it is not clear 

which specific reactions or general reaction architectures are robust to which 

perturbations. Robustness becomes an especially relevant property of a nonlinear 

chemical amplification scheme when the amplification is used for quantitative analytical 

measurements.  Quantitative measurements of biomolecules are essential for addressing a 
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range of societal problems in human health, food and water safety,17,18 environmental 

monitoring,19 and biosecurity.20  

Typically, kinetic assays are used for quantitative measurements.21 These assays are 

performed through monitoring the progress of a reaction at a single time point in an end-

point measurement, or at multiple time points in a real-time measurement.  Because both 

extent of reaction (e.g., a concentration measured by an optical imaging method) and time 

must be measured in kinetic assays, one would expect the results of such assays to be 

sensitive to changes in reaction conditions and to fluctuations in the performance of the 

readout instrument. For a linear amplification scheme in a kinetic format, a temperature 

change leading to a 50% change in the rate constant would lead to a 50% error in 

quantification.  One would expect an autocatalytic amplification scheme to be especially 

sensitive to these fluctuations because small kinetic perturbations would become 

exponentially compounded: a 50% change in the rate constant could lead to over a 

400,000% error in quantification (see Supplementary Information online).  This problem 

is avoided in real-time polymerase chain reactions (qPCR) because temperature cycling 

“gates” the amplification process: to a first approximation, as long as amplification 

kinetics remain fast enough to complete one doubling of the nucleic acid target within 

one PCR cycle, changes in the rate of this amplification should not affect the result.22,23 

The majority of biological and chemical amplification strategies are isothermal and 

therefore cannot take advantage of this “gating.”   

Any study of robustness must be defined within a particular context that sets the type and 

magnitude of perturbations that might affect the system being studied.  We chose the 

context of quantitative measurements performed under limited-resource settings (LRS). 
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These settings lack sophisticated equipment and expertise24 and span both the developing 

and the developed world (e.g., at-home or field testing). Under these settings, one may 

expect variation of temperature of several degrees Celsius, imaging performed with non-

quantitative consumer electronic devices such as cell phones, and variations in assay time 

due to operator error.  While a number of robust qualitative tests, such as home 

pregnancy tests, are already compatible with LRS, suitable quantitative assays are 

needed.  For instance, a high-quality, inexpensive, rapid HIV-1 viral load assay for LRS 

would enable infant diagnosis and monitoring of the emergence of drug resistance during 

therapy.25 While clinically used HIV-1 viral load assays measure HIV-1 RNA with 

relatively high precision (< 30% CV),26 at least 3-fold change in viral load is considered 

to be clinically significant.27  Autocatalytic amplification schemes1-12 are attractive for 

these settings; in principle they could convert the presence of a few molecules to a large 

signal observed and quantified by eye or an inexpensive optical setup.  In practice, among 

other factors, their use under LRS is hampered by the lack of robustness to experimental 

perturbations.   

We hypothesized that autocatalytic, exponential amplification would be more robust to 

variations in temperature, time, and imaging quality in a “digital” format rather than a 

kinetic, real-time format (Figure 2-1). In a typical digital analysis,28-31 a sample is 

separated into discrete volumes such that not all volumes contain a molecule of interest 

(Figure 2-1a). After amplification, only those volumes that contained one or more 

molecules of interest produce a fluorescent signal. This information can be used to 

calculate the concentration of the target molecule using Poisson statistics. We 

hypothesized that, since for quantification, these “digital” methods require simply 
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counting “positive” and “negative” reaction wells—and thus do not require knowledge of 

time, reaction kinetics, or precise measurement of reaction progress—the results obtained 

by digital methods would not be affected strongly by temperature fluctuations (Figure 2-

1b) or reaction time (Figure 2-1c) and should not require precise imaging instruments or 

very sophisticated analysis algorithms (Figure 2-1d). Therefore, we also hypothesized 

that as long as the amplification chemistry produces a specific and sufficiently bright 

optical signal, semi-quantitative imaging devices such as cell phone cameras32-34 should 

be able to detect positive signals and differentiate them from negative signals, thereby 

providing quantitative information. This hypothesis relies on a significant assumption: it 

can become true only if initiation of amplification reactions from single molecules is 

robust to these perturbations.  Digital PCR is now commercially available and is used for 

a number of research applications.  The limits of its robustness remain to be investigated; 

it is not obvious that it would be robust because results of digital PCR are known to be 

affected by experimental conditions.35  Such work is outside the scope of the present 

paper, as we are focusing on the more general question of robustness of isothermal 

amplification strategies, which also has not been investigated in this context.  
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Figure 2-1. Robustness of quantification in digital vs. kinetic formats. Cartoons for the 

curves in the kinetic format are drawn to resemble a specific case of real-time nucleic 

acid amplification. (a) An illustration comparing digital and kinetic formats under ideal 

conditions. In a digital format, individual molecules are separated into compartments and 

amplified, requiring only an end-point readout. The original concentration (C) of the 

analyte can be calculated by the equation on the left (where wp = the number of positive 

wells, vt = the total device volume, and vw = the volume of each well). In a kinetic format, 

the analyte is amplified in a bulk culture and the progress of amplification, measured as 

intensity, is monitored as a function of time. The original concentration is determined by 

comparing the reaction trace to standard curves from solutions of known concentration. 

(b) An illustration of the effects of kinetic variation (shown as differences in 

amplification temperature) in digital and real-time formats. In a digital format, we 

hypothesized that variance in the kinetic rate of amplification would not affect the end-

point readout.  In a real-time format, the kinetic rate determines the reaction curve and 

thus the relative concentration; therefore, it is known to be not robust. (c) An illustration 

of the effects of time variance (shown as readout time) in digital and real-time formats. 

Since digital requires only end-point readout, we hypothesized that exact knowledge of 
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time would not be required and the output should be robust to variation in reaction time 

beyond the optimal reaction time. In a real-time format, precise knowledge of time and 

sufficient time points are required in order to accurately quantify concentration; therefore, 

it is known to be not robust to variation in reaction time. (d) An illustration of the effects 

of imaging in digital and real-time formats. In a digital format, one only needs to be able 

to distinguish a positive from a negative signal, and therefore we hypothesized that 

imaging conditions with either increased noise or decreased sensitivity would not affect 

the measurement or data analysis. In a real-time format, imaging conditions with 

increased noise or decreased sensitivity can affect quantitative ability by producing 

reaction traces that cannot be compared to standards; therefore, it is known to be not 

robust to variation in imaging conditions.  

Experimental 

Real-time RT-LAMP amplification of HIV-1 RNA  

For two-step RT-LAMP amplification, a first solution (20 µL) containing 10 µL RM, 1 

µL BSA, 0.5 µL EXPRESS SYBR® GreenER™ RT module, 0.5 µL BIP primer (10 

µM), various amounts of template, and nuclease-free water, was first incubated at 50 °C 

for 10 min and then mixed with a second solution (20 µL), containing 10 µL RM, 1 µL 

BSA, 2 µL EM, 1 µL or 2 µL FD, 2 µL other primer mixture, 1 µL Hybridase™ 

Thermostable RNase H, and nuclease-free water. The 40 µL mixture was split into 4 

aliquots and loaded onto an Eco real-time PCR machine. For one-step RT-LAMP 

amplification, a 40 µL RT-LAMP mix contained the following: 20 µL RM, 2 µL BSA 

(20 mg/mL), 2 µL EM, 2 µL FD, 2 µL of primer mixture, various amount of template 

solution, and nuclease-free water. The mixture was split into 4 aliquots and loaded onto 

the Eco real-time PCR machine. Data analysis was performed using Eco software (See 

details in Supplementary Information online).  

Two-step dRT-LAMP amplification of HIV-1 RNA on SlipChip  
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The procedures used to perform two-step dRT-LAMP amplification on SlipChip were 

described in a previous publication.36 A first solution (equivalent to the one described 

above) was loaded onto a SlipChip device and incubated at 50 °C for 10 min, and then a 

second solution (equivalent to the one described above) was loaded onto the same device 

and mixed with the first solution. The entire filled device was incubated at various 

temperatures (57 °C, 60 °C, or 63 °C) for 60 min.  

Multiplexed PCR amplification on SlipChip  

The PCR mixture used for amplification of Staphylococcus aureus genomic DNA on a 

multiplexed SlipChip contained the following: 10 µL 2X SsoFast Evagreen SuperMix 

(BioRad, CA), 1 µL BSA (20 mg/mL), 1 µL of 1 ng/µL gDNA, 0.5 µL SYBR Green 

(10x) and 7.5 µL nuclease-free water. Primers were pre-loaded onto the chip using a 

previously described technique (See details in Supplementary Information online). The 

PCR amplification was performed with an initial 95 °C step for 5 min, and then followed 

by 40 cycles of (i) 1 min at 95 °C, (ii) 30 sec at 55 °C, and (iii) 45 sec at 72 °C. An 

additional 5 min at 72 °C was performed to allow thorough dsDNA extension. 

Cell phone camera setup and settings 

A Nokia 808 Pureview cell phone was used to image and count microwells containing the 

amplification product. The Nokia 808 features 41-megapixel sensor with a pixel size of 

1.4 µm. The camera uses pixel oversampling technology, which combines multiple pixels 

to increase the sensitivity of each individual pixel in the final image. Using a 

commercially available 0.67 x objective, we were able to obtain images at a distance of 

6.5 cm, thus further improving imaging sensitivity. A set of two filters was used both to 
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excite and detect fluorescence. Two excitation filters (FD1B) were stacked and attached 

in front of the camera flash. For fluorescence detection, two 5CGA-530 long-pass filters 

were inserted into magnetically mounted lens (See Supplementary Information online for 

more details).  

Cell phone imaging of dRT-LAMP devices was performed with the devices tilted at ~10 

degrees relative to the cell phone plane to prevent direct reflection of the flash into the 

lens. All images were taken using the standard cell phone camera application. The white 

balance was set to automatic, the ISO was set at 800, the exposure value was set at +2, 

the focus mode was set to “close-up,” and the resolution was adjusted to 8 MP. 

Cell phone imaging of multiplexed PCR devices was performed by imaging the devices 

in a shoebox painted black. The white balance was set to automatic, the ISO was set at 

1600, the exposure value was set at +4, the focus mode was set to “close-up,” and the 

resolution was adjusted to 8 MP. Images were processed using a free Fiji image 

processing package available on the Internet (See Supplementary Information online for 

details of the procedure).   

Cloud-based automatic analysis 

The Symbian software on which the Nokia 808 cell phone is based can access Skydrive, a 

cloud-based storage service. This service can automatically upload images to the cloud 

directly after imaging, without any user intervention. Here, we used a central computer 

with a custom Labview program to process all the uploaded files automatically. The 

process detailing the image analysis, as well as videos showing the process as seen by the 

user, can be found in the Supplementary Information online. 
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Results and Discussion 

To test these hypotheses, we selected HIV-1 RNA as a target molecule and selected 

isothermal digital reverse transcription-loop-mediated amplification (dRT-LAMP) as the 

amplification chemistry.  We chose LAMP amplification chemistry for three reasons: i) 

when performed with a qualitative readout, in at least one example it is known to tolerate 

a number of perturbations,37 so the question of robustness with a quantitative readout is a 

meaningful one; ii) while it is an autocatalytic, exponential amplification chemistry, its 

mechanism38 is sufficiently complex that it was not obvious whether its initiation phase 

or propagation phase, and therefore the digital or kinetic format, would be more affected 

by perturbations; and iii) digital LAMP has been recently demonstrated on various 

microfluidic platforms.36,39,40  We used a microfluidic SlipChip device41 because it is 

well-suited for simple confinement and amplification of single molecules,42 it is 

convenient for performing multi-step reactions on single molecules,36,43 and because it 

has been validated with dRT-LAMP.36 We used a two-step RT-LAMP protocol because 

it is more efficient36 than one-step RT-LAMP for the specific sequences used in this 

study. Also, RT-LAMP is an attractive amplification chemistry44 for LRS because it does 

not require thermocycling equipment and can be run using chemical heaters that do not 

require electricity.45,46 Furthermore, it is compatible with highly fluorescent calcein-based 

readout chemistry.47   

First, we asked whether quantitative measurements by real-time RT-LAMP assays are 

robust to changes in temperature. We tested the robustness of a two-step real-time RT-

LAMP assay to temperature fluctuations using a commercial instrument (Figure 2-2a). 

The precision of the assay for measuring two concentrations (1 x 105 copies/mL and 2 x 
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105 copies/mL) of HIV-1 RNA at three temperatures over a 6-degree temperature range 

(57 °C, 60 °C, 63 °C) was tested by comparing the reaction time (see Supplementary 

Information online) for these two concentrations measured on an Eco real-time PCR 

machine. At each individual temperature, the real-time RT-LAMP assay could 

successfully distinguish between the two concentrations (at 57 °C p = 0.007, at 60 °C p = 

0.01, at 63 °C p = 0.04, the null hypothesis being that the two concentrations were 

identical). Therefore, we concluded that the assay itself was performing properly. The 

assay, however, was not robust to temperature fluctuations: changes of 3 °C introduced a 

larger change in the assay readout (reaction time) than the 2-fold change in the input 

concentration.  Therefore, when temperature is not controlled precisely, this real-time 

RT-LAMP assay cannot resolve a 2-fold change in concentration of the input HIV-1 

RNA.  
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Figure 2-2. Evaluation of the robustness of real-time RT-LAMP versus digital RT-

LAMP with respect to changes in temperature, time, and imaging conditions. (a-b), 

Graphs showing the results of (a) real-time RT-LAMP experiments and (b) digital RT-

LAMP experiments for two concentrations across a 6-degree temperature range. Imaging 

was performed with a microscope. (c) A graph showing the number of positive counts 

from dRT-LAMP experiments for two concentrations at various reaction times.  (d) A 

plot comparing the data obtained from imaging with a microscope in part (b), data 

obtained from imaging dRT-LAMP with a cell phone in a shoebox, and data obtained 

from imaging dRT-LAMP in dim lighting (~3 lux) across a 6-degree temperature range. 

P-values denote statistical significance of all data for each concentration at a given 

imaging condition, irrespective of temperature (the null hypothesis being that the two 

concentrations were equivalent). (e-g) Top: Cropped and enlarged images of a dRT-

LAMP reaction imaged with a microscope (e), a cell phone and shoe box (f), and a cell 

phone in dim lighting (g). Bottom: A corresponding line scan indicates fluorescence 

output from the region marked in white in each image. False color has been added in (e). 

The number of positives in each dRT-LAMP experiment imaged with a cell phone was 

counted manually. Error bars represent the standard deviation of the distribution.  
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We then tested whether a digital format of this RT-LAMP assay performed on a chip was 

robust to the same changes in temperature as those tested in the real-time RT-LAMP 

experiments (Figure 2-2b). For the dRT-LAMP experiments, the concentrations of HIV-1 

RNA were determined by counting the number of positive wells on each chip after a 60-

min reaction and then using Poisson statistics (detailed in the Supplementary Information 

online). The dRT-LAMP assay could also distinguish between the two concentrations at 

each temperature (at 57 °C p = 0.03, at 60 °C p = 0.02, at 63 °C p = 0.02).  In contrast to 

the real-time assay, the dRT-LAMP assay was robust to these temperature changes and 

resolved a 2-fold change in concentration despite these fluctuations (p = 7 x 10−7). In 

these experiments, a Leica DMI-6000 microscope equipped with a Hamamatsu ORCA R-

2 cooled CCD camera was used to image the dRT-LAMP devices. This setup provides an 

even illumination field and, therefore, intensity of the positive well was not a function of 

position (see Supplementary Information online). 

Next, we tested whether the dRT-LAMP assay was robust to variance in reaction time. 

We performed dRT-LAMP reactions with concentrations of 1 x 105 and 2 x 

105 copies/mL at a reaction temperature of 63 °C and imaged the reaction every minute 

using a Leica MZFLIII fluorescent stereomicroscope (detailed in the Supplementary 

Information online). At each time point, the number of positive reactions was counted, 

and the results were averaged over three replicates (Figure 2-2c). For each of the two 

concentrations, we grouped together the raw counts at 40-, 50-, and 60 min-reaction 

times. Statistical analysis was used to reject the null hypothesis that these groups were the 
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same (p-value of 8.5 x 10-7). Therefore, we conclude that the dRT-LAMP assay is robust 

to variance in reaction time, and an exact reaction time is not needed in the digital assay.  

Next, we tested the robustness of the dRT-LAMP assay to poor imaging conditions using 

a Nokia 808 PureView cell phone with simple optical attachments (detailed in the 

Supplementary Information online). The flash function of the cell phone was used to 

excite fluorescence through an excitation filter attached to the phone, and the camera of 

the cell phone was used to image fluorescence through an emission filter also attached to 

the cell phone. The results obtained with the cell phone were compared with those 

obtained with a microscope (Figure 2-2d). We tested the cell phone’s imaging abilities 

under two lighting conditions: first, the dRT-LAMP assays were photographed in a shoe 

box, and second, in a dimly lit room with a single fluorescent task light in a corner. The 

light intensity at the point where the measurements were taken in the dimly lit room was 

~3 lux as measured by an AEMC Instruments Model 810 light meter.  

To evaluate whether imaging with a cell phone yields robust results, we performed 

statistical analysis of data obtained by cell phone imaging under each of the two lighting 

conditions. For imaging with a shoe box, we grouped all data obtained at the first 

concentration (1 x 105 copies/mL) across all three temperatures into a first set, and all 

data obtained at the second concentration (2 x 105 copies/mL) across all three 

temperatures into a second set.  We then calculated a p-value of 1.3 x 10−8 for the two 

sets (the null hypothesis being that the two concentrations were identical), which suggests 

that this imaging method could be used to differentiate between the two concentrations 

both at constant temperatures and even despite temperature changes.  When we repeated 

this procedure for imaging in a dimly lit room, we calculated a p-value of 1.9 x 10-8, 
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indicating that the two concentrations could be distinguished with statistical significance 

in this scenario as well. Therefore, this dRT-LAMP assay was robust to the double 

perturbation of non-ideal imaging conditions and temperature fluctuations.    

 

We then tested whether other digital assays, such as digital PCR (dPCR), were 

sufficiently robust to poor imaging conditions to be analyzed with a cell phone.  PCR 

amplification monitored with an intercalating dye such as Evagreen produces only a 2- to 

4-fold change in fluorescence intensity as the reaction transitions from negative to 

positive.42 In our devices the absolute intensity of fluorescence in the positive reaction in 

dPCR was approximately 8-15 times lower than that in dRT-LAMP monitored with the 

calcein dye. When we conducted a dRT-PCR experiment using the same reaction 

volumes as those in the dRT-LAMP assays, we could easily distinguish positive from 

negative counts when the chip was imaged using a microscope,36 as expected.42 While it 

was also possible to image some of the dPCR chips using the cell phone, the signal was 

not sufficiently bright and robust for unambiguous analysis, and therefore we did not 

pursue this direction further in this manuscript.  We also tested the cell phone’s ability to 

image the results on a spatially multiplexed PCR chip.48 This chip uses larger reaction 

volumes (78 nL as opposed to 6 nL), thus enabling more fluorescent light to be emitted 

and collected per well. In this chip (Figure 2-3a, b), multiple primer pairs are preloaded 

into one set of wells, a sample is loaded into the second set of wells, and a “slip” 

combines the two sets of wells, thus enabling subsequent PCR amplification. Here, we 

used a five-plexed assay, in which one primer set was specific to the S. aureus genome 

(Figure 2-3b, detailed in the Supplementary Information online). When S. aureus 
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genomic DNA was loaded onto the device and the PCR reaction was performed, no non-

specific amplification was observed and a positive result was indicated by the appearance 

of the pattern on the device, as designed. This pattern, formed by PCR amplification in 

these larger wells, could be also visualized by the cell phone (Figure 2-3c).   

 

 

Figure 2-3. Cell phone imaging of multiplexed PCR on a SlipChip device using five 

different primer sets and a single template. (a) A schematic drawing of a SlipChip device 

that has been pre-loaded with primers. (b) A schematic drawing showing the arrangement 

of the five primer sets on the device: 1 = E. coli nlp gene, 2 = P. aeruginosa vic gene, 3 = 

C. albicans calb gene, 4 = Pseudomonas 16S, 5 = S. aureus nuc gene; sequences are 

provided in Supplementary Table S1. (c) A cell phone image of a SlipChip after loading 

it with S. aureus genomic DNA and performing PCR amplification. Wells containing the 

primer for S. aureus (green) increased in fluorescence to form the designed pattern. The 

intensity levels of the image have been adjusted and the image has been smoothed to 

enhance printed visibility (details are included in the Supplementary Information). 

 

Finally, we tested whether this combination of dRT-LAMP amplification chemistry and 

cell phone imaging was robust to automated processing of images and data analysis. 

When high-quality images, such as those taken with a microscope, are available, image 



21 
 

processing and quantification of the positive signals can be performed simply by setting 

an intensity threshold and then counting the number of spots on the resulting image that 

exceed this threshold. For example, a threshold of 190 a.u. was set for the data obtained 

with the microscope, and similar results were obtained by adjusting that threshold by as 

much as 150 units (Figure 2-4).  

 

Figure 2-4. Robustness of digital dRT-LAMP amplification imaged with a microscope to 

thresholding used to differentiate positive and negative wells.  a) A graph showing the 

number of positive reactions observed when imaging the dRT-LAMP reactions with a 

microscope as a function of the threshold value used to calculate the number of positives. 

Separation of the two data sets is easily observed even when changing the threshold value 

by 150 fluorescence units. b) A plot of the p-values generated by comparing the two 

concentrations at threshold values between 90 and 240. The minimum p-value is 

observed at a threshold of 190. 
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This method is not, however, suitable for images taken with a cell phone for two reasons: 

(i) the short focal length (6 cm) creates significant variation in the illumination intensity 

of the flash, and (ii) the imaging sensor has a much lower signal-to-noise ratio than those 

typically found in scientific instrumentation. Therefore, to test whether accurate 

automatic analysis of assays was possible, we wrote a custom image processing 

algorithm and implemented it in Labview software (detailed in the Supplementary 

Information online). Once an image was taken, it was automatically transferred to a 

remote server in “the cloud” (Figure 2-5b). The uploaded file was automatically analyzed 

by the server, and then the results were reported via email (Figure 2-5c). Two videos 

showing the process as experienced by the user are available in the Supplementary 

Information online (Video S1 and S2). We included error detection in the custom 

algorithm to ensure that the image included the device in its entirety (Figure 2-5c and 

Supplementary Information online). This detection algorithm looked for four red circles 

on the device (Figure 2-5a), and if fewer than four were found, it generated an error 

message (Figure 2-5c, right).  We tested the robustness of this cell phone imaging 

procedure to automated processing by directly comparing microscope images results 

quantified with Metamorph to cell phone images quantified with Labview over more than 

a hundred-fold concentration range (Figure 2-5d). A line of best fit of the compared data 

was found to have a slope of 0.968 and an R2 value of 0.9997, suggesting that this digital 

assay is robust to automated image processing even under poor imaging conditions, and 

is suitable for use over a wide dynamic range. 
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Figure 2-5. The image analysis workflow used to count molecules via digital 

amplification with a SlipChip and a cell phone. (a) Left: A cell phone with objective for 

detecting fluorescence. Nokia logo has been redacted per Journal policy. Right: A device 

labeled with four red circles that the imaging processing algorithm uses to confirm that 

the entire device has been imaged. (b) A cartoon representing a cloud-based server that 

analyzes photographs taken by the user, archives the raw data, and sends the results to the 

appropriate party. (c) Top: Screenshots of a cell phone screen showing email messages 

received by a pre-specified recipient after analysis of successful (left) and unsuccessful 

(right) imaging. Bottom: the images that were analyzed in each case. (d) A graph 

comparing the raw positive counts from a cell phone processed automatically by Labview 
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software (y-axis) to imaging and thresholding performed with an epifluorescence 

microscope (x-axis) using a more than 100-fold concentration change.  

We emphasize that while we established robust automated counting of HIV-1 RNA 

molecules using digital amplification chemistry and a cell phone, this is only one part of 

the full diagnostic assay and several additional advances are needed for deployment 

under LRS. Simple chemical heaters45,46 that have been shown to work with RT-LAMP 

in qualitative assays would need to be incorporated into a digital platform. LRS-suitable 

techniques for sample preparation would need to be incorporated as well as standard 

laboratory procedures were used for these experiments. The robustness of dRT-LAMP to 

factors such as sequence diversity of viruses present in clinical samples, changes in 

activity of reagents during storage, and quality of sample preparation remains to be 

tested.  While offloading the analysis of images to “the cloud” provides a number of 

benefits, including traceability and archiving of raw data, global access, and compatibility 

with virtually all smartphone operating systems, it requires a wireless data connection of 

sufficiently high bandwidth; thus, direct on-phone analysis could be preferable in some 

scenarios.  As cell phone technology evolves at a rapid pace and smartphone operating 

systems converge with classic point-and-shoot cameras, advanced imaging sensors and 

excitations sources could offer additional opportunities for robust imaging of other 

amplification assays in LRS.  In addition, for this study we have used lab-produced glass 

microfluidic chips; under LRS, mass-produced variants of this device would need to be 

used. 
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Conclusions 

We have shown that HIV-1 RNA amplification using RT-LAMP assays in the traditional 

real-time format is, as expected, not robust to temperature fluctuations. In contrast, digital 

counting of HIV-1 RNA molecules using dRT-LAMP is robust not only to temperature 

fluctuations, but also to changes in reaction time, artifacts introduced by poor-quality cell 

phone imaging, and automatic analysis.  Bright fluorescent output with a high ratio of 

positive to negative signals of the digital LAMP chemistry was necessary to observe 

robustness to imaging and automated analysis.  Below, we point out several implications 

of these findings.    

Given the complexity of the mechanism of the LAMP amplification reaction,38 we were 

surprised to find it was robust, in the digital format, to changes in temperature and time.  

This result suggests that the probability of initiation of the amplification cascade from a 

single molecule does not significantly change and this initiation is not delayed with 

changes in temperature, despite temperature-dependent changes in the equilibria of DNA-

DNA hybridization, enzyme-DNA binding, and changes in the rates of the various 

enzymatic steps of the reaction.  We hypothesize that as long as the efficiency of the 

initiation step is high and is not strongly affected by the perturbation of interest, 

robustness to this perturbation should be a general property of digital amplification 

schemes.  We are interested in a future direct comparison of robustness of real-time and 

digital recombinase polymerase amplification (RPA)43 to temperature, time, and imaging 

perturbations.  Additional experimental studies are needed to test whether other nonlinear 

and autocatalytic amplification systems1-12 satisfy this criterion and show robustness in 

the digital format to changes in temperature, time, and other experimental perturbations.  
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SlipChip devices are attractive for such studies because they support multi-step 

manipulations of single molecules36,43 and can be made in glass to be compatible with a 

wide range of chemistries.  In general, such studies could be performed using any 

microfluidic platforms that support digital single-molecule manipulations.  Theoretical 

studies are also needed to predict the level of robustness of specific amplification 

reactions, and also to predict more generally which reaction architectures are likely to be 

robust to which perturbations, leading to the design of new amplification chemistries.  

Robustness of biological systems, e.g., robustness of circadian clocks to temperature 

fluctuations,16 may provide an inspiration for such studies.   

If these experimental and theoretical studies are successful, we may see an emergence of 

nonlinear amplification schemes that are especially suitable for quantitative 

measurements under LRS because they are ultra-rapid, specific, provide bright positive 

and dim negative signals, and are robust to experimental perturbations.  Finally, we share 

the analogy that motivates our work to explore the robustness of quantitative 

measurements and their applicability to LRS. Many countries in the developing world 

recently underwent a technological revolution. Their growth had been hindered by lack of 

a communication infrastructure, since replicating the land-line based model of the 

developed world would have been impractical and prohibitively expensive. The 

revolution happened when these countries bypassed the land-line paradigm and 

leapfrogged directly to wireless technologies. An analogous technological transformation 

may occur for quantitative molecular measurements under LRS without the need to create 

the infrastructure required to carefully control and analyze kinetic assays.  Instead, 

studies of robustness of chemical amplification and signal transduction schemes may 
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allow the quantitative molecular measurements and diagnostics in the developing world, 

the field, and the home to leapfrog directly to the more robust digital, single-molecule 

approaches.  
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Chapter 3: 

Reading out Single-Molecule Digital RNA and DNA Isothermal 

Amplification in Nanoliter Volumes with Unmodified Camera Phones* 

Abstract 

Digital single-molecule technologies are expanding diagnostic capabilities—enabling the 

ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C 

infections, by directly counting single molecules. Replacing fluorescent readout with a 

robust visual readout that can be captured by any unmodified cell phone camera will 

facilitate the global distribution of diagnostic tests, including into limited-resource 

settings where the need is greatest. This paper describes a methodology for developing a 

visual readout system for digital single-molecule amplification of RNA and DNA by (i) 

selecting colorimetric amplification-indicator dyes that are compatible with the spectral 

sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-

process for a selected dye to achieve a readout that is robust to lighting conditions and 

camera hardware and provides unambiguous quantitative results—even for colorblind 

users. We also include an analysis of the limitations of this methodology, and provide a 

microfluidic approach that can be applied to expand dynamic range and improve reaction 

performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 

nanoliters. We validate this methodology using SlipChip-based digital single-molecule 

isothermal amplification with lambda DNA as a model and hepatitis C viral RNA as a 

clinically relevant target. The innovative combination of isothermal amplification 

                                                           
* This chapter was originally published in ACS Nano with authorship belonging to Jesus Rodriguez-
Manzano, Mikhail A. Karymov, Stefano Begolo, David A. Selck, Dmitriy V. Zhukov, Erik Jue, and Rustem F. 
Ismagilov. The original manuscript can be found at: http://dx.doi.org/10.1021/acsnano.5b07338 
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chemistry in the presence of a judiciously chosen indicator dye and ratiometric image 

processing with SlipChip technology allowed the sequence-specific visual readout of 

single nucleic acid molecules in nanoliter volumes with an unmodified cell phone 

camera. When paired with devices that integrate sample preparation and nucleic acid 

amplification, this hardware-agnostic approach will increase the affordability and the 

distribution of quantitative diagnostic and environmental tests. 

Introduction 

This paper shows that single nucleic acid molecules confined in nanoliter volumes in 

microfluidic devices can be detected and counted by an unmodified cell phone camera, in 

combination with isothermal amplification chemistry, a judiciously chosen indicator dye 

and ratiometric image processing. We describe a novel methodology that can be used to 

develop a visual readout for digital single-molecule amplification of sequence-specific 

RNA and DNA that can be used with any camera phone—without modifications or 

attachments. Single-molecule visual readout has never been achieved before. Diagnostic 

tests that incorporate such a visual readout will greatly expand the applicability of 

emerging digital single-molecule technologies, including limited resource settings (LRS). 

Ultrasensitive and quantitative detection of nucleic acid molecules is of particular interest 

for infectious disease diagnosis in LRS, such as the quantification of viral load for human 

immunodeficiency virus (HIV) and hepatitis C virus (HCV),1-3 as many of these 

infections occur far from centralized laboratories where diagnostic tests are routine. 

Increasing diagnoses in these locations will lead to faster and more appropriate treatment 

and have a major impact on disease burden4,5 Most point of care (POC) tests are not 

amenable to LRS because they don’t meet the World Health Organization’s ASSURED 
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criteria of being affordable, sensitive, specific, user-friendly, rapid, robust, equipment-

free, and deliverable.5 The tests that do meet the requirements for LRS (e.g. 

immunochromatography to detect antigens or antibodies in a dipstick or lateral-flow 

format, or the visualization of antigen-antibody lattice formation) have poor reported 

sensitivities and thus are unable to detect and quantify analytes at low concentrations.4,6 

Nucleic acid amplification tests (NAATs), such as PCR, have the desired high sensitivity 

and target specificity, providing accurate quantification, but these technologies are costly, 

time-consuming, and require skilled technicians and laboratory settings.7  

Of the NAATs, isothermal amplification methods (e.g. loop-mediated isothermal 

amplification, LAMP) are among the most attractive for LRS because they do not require 

thermocycling or capital equipment and can be run in water baths, using simple heaters or 

with exothermic chemical heating that does not require electricity.8-11 Still, acquiring 

quantitative and ultrasensitive measurements outside of the lab remains challenging 

because the methods are not robust to variability in reaction conditions and readouts rely 

on precise measures of fluorescence intensity. Running isothermal amplification 

chemistries in a digital, single-molecule format maintains the high sensitivity and 

quantification capabilities typically achieved only in lab settings.12-15 In digital single-

molecule isothermal amplification, single, stochastically confined DNA or RNA 

molecules are randomly distributed among discrete nanoliter or picoliter volumes and 

amplified under controlled conditions.16-18 This creates relatively high local 

concentrations of target DNA or RNA, making digital amplification more efficient and 

robust compared to bulk reactions with the same number of starting target molecules. 

Nucleic acid amplification of even a single target molecule produces a clear fluorescent 
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signal and the results of digital amplification can be read by a modified cell phone (e.g. a 

phone camera with an optical filter) under dim lighting.14 

Microfluidic technology has been an instrumental tool in developing single nucleic acid 

molecule capabilities,19-27 and the integration of sample-preparation modules into 

portable microfluidic devices will further enable their use by untrained users in any 

setting.28-30 To bring these emerging technological capabilities to LRS, however, such 

devices capable of ultrasensitive, quantitative measurements should provide a rapid, 

visual readout that can be captured easily, e.g. by any mobile phone without 

modifications or attachments. Cell phone cameras provide a convenient, nearly universal 

tool to pair with emerging diagnostic technologies to transform global healthcare as ~7 

billion mobile cellular subscribers exist worldwide and 70% of users live in developing 

countries.31 Mobile devices are emerging as a powerful platform to create cost-effective 

alternatives for molecular diagnostics in LRS32-42 and colorimetric diagnostics based on 

unmodified cell phones have been used before,38,43-46 but not in a digital format, where 

the short path lengths and nanoliter volumes have constrained visual-based methods. 

Here, we describe an approach that enables visual readout of single nucleic acid molecule 

amplification by (i) selecting an appropriate colorimetric indicator dye based on spectral 

properties that align well with the RGB sensitivities of common cell phone camera 

sensors and (ii) identifying the optimal ratiometric image-processing for the selected dye 

to achieve a readout that is robust to lighting conditions and camera hardware. Using this 

approach, after sequence-specific single-molecule isothermal amplification, a visual 

readout is captured by an unmodified camera phone and the resulting image is analyzed 

using a ratiometric approach, wherein the measured intensities of two of the three RGB 
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color channels are divided to provide a binary result (a positive or negative reaction) for 

each well. The automation of this ratiometric analysis provides a clear, reliable digital 

readout without requiring the user to differentiate color change by eye or manipulate 

lighting (Figure 3-1a). We further show how limitations related to reaction inhibition by 

the readout dye can be solved with SlipChip microfluidics technology to decouple the 

amplification and readout steps. We validated our visual readout method with SlipChip-

based digital single-molecule isothermal amplification reactions using phage lambda 

DNA as a model and HCV RNA as a clinically relevant target, in reaction volumes as 

low as 5 nL, using a variety of common cell phones and a range of illumination 

conditions. 

Results and Discussion 

Selecting an indicator dye. To eliminate the need for a fluorescent readout in single-

molecule amplification and produce a readout that can be imaged by any cell phone 

camera under various illumination conditions, one can use a nucleic acid amplification-

indicator dye that changes color in response to amplification. A robust colorimetric 

readout balances two opposing requirements: the indicator dye must be sufficiently 

concentrated (or present in a large enough volume) to provide readable absorbance (i.e. 

smaller volumes and shorter path lengths require greater concentrations of dye for 

sufficient absorbance to be detected) but not so concentrated that the dye interferes with 

the amplification reaction. To optimize a visual readout system for single-molecule 

counting with an unmodified cell phone camera, we first identified the factors that 

contribute to hypothetical limitations of a visual readout system, including the range of 

reaction volumes (or path lengths) at which a particular indicator could be used to 
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monitor amplification and the range of indicator concentrations that would not interfere 

with the amplification reaction. Where these ranges overlap are the optimal volumes and 

dye concentrations at which a reaction is not inhibited and can provide a change in 

absorbance that is sufficient for readout with an unmodified camera phone (dotted green 

region of Figure 3-1b).  

 

Figure 3-1. A visual readout approach for digital single-molecule isothermal 

amplification for use with an unmodified cell phone camera. (a) A workflow for visual 

readout of digital single-molecule amplification. Single nucleic acid molecules and 

indicator dye are compartmentalized on a microfluidic device and followed by isothermal 

nucleic acid amplification. Positive reaction solutions are blue; negative reactions are 

purple. After ratiometric image processing, positive reactions become white and negative 

reactions become black—an unambiguous binary result. The number of positive wells is 

then used to quantify the concentration of the input target. (b) A diagram for delineating 

the optimal range of dye concentrations as a factor of path length (reaction volume) and 

the threshold for reaction inhibition. The green-shaded region indicates the range of 

acceptable dye concentrations for visualization with an unmodified cell phone camera. 

Concentrations to the left of the green region are too low for visualization; concentrations 

to the right of the green region are too high. Within this green region, the dotted area 
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indicates dye concentrations that both enable readout with an unmodified cell phone 

camera and do not inhibit the amplification reaction. The area to the right of the red line 

indicates dye concentrations that interfere with amplification making accurate 

quantification based on real-time data challenging. 

We validated this visual readout approach using loop-mediated isothermal amplification 

(LAMP)47,48 (Supporting Information Tables S1–S2) because this method has been well 

characterized and validated previously for single-molecule analyses.12,14-17,49 LAMP 

chemistry is based on an auto-cycling strand displacement reaction performed at a 

constant temperature to synthesize large amounts of amplified product; a LAMP reaction 

generate more than 109 copies of template within 1 h of incubation at 60–65 °C.48 We 

used a cubic reaction volume of 8 nL (200 x 200 x 200 µm3), which is in the range of 

volumes used in digital experiments.12,14,15,17,49 We assume that an appropriate indicator 

of an amplification reaction will have a change in absorbance that equates to a change of 

extinction coefficient of ~25,000 L mol-1 cm-1 upon reaction (this number approaches the 

maximum achievable change in absorbance for small-molecule dyes). We use the Beer-

Lambert law (A = Ɛ(A), which describes the relevant parameters to consider for 

visualization, wherein A = absorbance (the percentage of light absorbed); Ɛ = extinction 

coefficient (L mol-1 cm-1); L = length of the light's path through the solution (cm); c = 

concentration of absorbing species (mol/L). At a path length of 0.2 mm, an estimated ~2 

mM concentration of the dye is required to reach a change of absorbance of 1 unit. Given 

these parameters, to obtain a readout that can be captured by an unmodified mobile 

phone, we predicted that an appropriate indicator dye would be one that responds to each 

nucleotide incorporation (present in mM concentrations), as opposed to responding only 

to the number of produced molecules (amplicons), which would not exceed primer 

concentration (present in the µM range).  
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Colorimetric approaches to visual detection of nucleic acid amplification typically 

measure absolute changes in color intensity;50-54 however distinguishing color change—

e.g. purple vs. blue—is difficult and therefore not an appropriate way to quantify readout 

under variable conditions, such as in LRS. Ratiometric measurements, which take the 

ratio of two independent measurements under the same conditions, improve the 

robustness of a colorimetric approach, converting results to a yes/no binary outcome, 

eliminating the need for the user to differentiate colors. We hypothesized that a cell 

phone camera’s sensor, which reads in three color channels (red, green, and blue, RGB) 

could provide suitable information for using a ratiometric approach to read amplification 

reactions at the single molecule level. The example we considered here is the back-

illuminated Exmor R CMOS image sensor55 used on popular cell phones such as the 

Samsung Galaxy 4, iPhone 4S, and iPhone 5, which has a sensitivity maxima of ~520 nm 

(green), ~459 nm (blue) and ~597 nm (red) (Figure 3-2a).  

To illustrate our methodology for a hardware-agnostic visual readout with a ratiometric 

approach, we selected eriochrome black T (EBT), a magnesium ion indicator that meets 

the aforementioned dye specifications and has been used previously for visualization of 

LAMP products.56,57 During an isothermal amplification reaction, as nucleotides are 

incorporated, protons and bi-product pyrophosphate ions (P2O7
4−) are produced and these 

ions can strongly bind metal ions (e.g. Mg2+ ions) and form insoluble salts, decreasing the 

concentration of metal ions in the reaction solution. Before the amplification reaction, 

EBT is bound to magnesium ions and the reaction solution is purple. As a LAMP reaction 

proceeds in the presence of target nucleic acid, it is suggested that EBT is deprived of 

Mg2+ by newly generated pyrophosphate ions, and the reaction solution turns blue.  
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We hypothesized that EBT would be amenable to colorimetric analysis with a cell phone 

camera because, in RGB terms, in a positive LAMP reaction containing EBT dye, there is 

higher transmittance in the blue channel (blue LAMP reaction solution), while in a 

negative LAMP reaction transmittance remains high in the blue and red channels (purple 

LAMP reaction solution) (Figure 3-2a). These observed changes in transmittance 

between positive and negative reactions can be captured by the Exmor R optical sensor 

(Figure 3-2a), which matches well with the observed differences between positive and 

negative transmittance profiles of LAMP reactions containing EBT (Figure 3-2a). 

Selecting the optimal ratiometric approach. We tested whether the suitability of an 

indicator dye can be evaluated for a ratiometric approach prior to experimental validation 

by predicting the RGB values read by a cell phone camera for a positive and a negative 

reaction. First, we took the transmittance spectra for positive and negative amplification 

reactions containing EBT and convoluted them with the normalized spectral responses 

for each of the RGB channels in an Exmor R CMOS sensor58 providing six curves (a 

positive and negative for each of the three color channels). Next, we calculated the area 

under each curve and took its square root (to correct for the standard square-root scaling 

that occurs when an image data is compressed to be stored in the memory card of a cell 

phone), providing the predicted RGB values (Figure 3-2b) for positive (R=185, G=197 

and B=209) and negative (R=219, G=190 and B=212) RT-LAMP reaction solutions in 

the presence of EBT at this particular concentration. These values can then be evaluated 

to select the optimal ratiometric approach for this particular indicator dye. In an RGB 

color scheme, there are three possible combinations for ratiometric analysis: G/R, B/R, or 

G/B. The predicted RGB values for a positive and a negative reaction are used to 
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calculate the ratios for each channel combination (Figure 3-2d); the ratio with the greatest 

difference between positive and negative outcomes (G/R in this example) is predicted to 

be the most robust ratiometric analysis. 

Using the approach described above, we predicted the RGB ratios for a positive and 

negative RT-LAMP reaction in the presence of two additional indicator dyes: 

hydroxynaphthol blue (HNB) and calmagite. HNB is being reported increasingly in the 

literature for LAMP visualization50,59-62 and calmagite is an analogue of EBT dye with 

the nitro group absent (more stable version).63 A side-by-side comparison showed that the 

greatest predicted difference between positive and negative RT-LAMP reaction, as 

captured by an unmodified cell phone camera, would be achieved using EBT as the 

indicator dye and G/R as the ratiometric combination. Based on these predicted ratios, we 

decided to validate our methodology using EBT as the indicator dye. We confirmed the 

storage stability of the EBT dye stock solution in the dried state, as this is a critical 

requirement for the use of a dye in real point-of-need diagnostic applications. EBT serves 

as our validation dye in this paper; however, our methodology is designed to be 

applicable to alternative dyes. 

To experimentally validate this approach to predicting an optimal ratiometric 

combination, we performed an RT-LAMP reaction for HCV RNA containing EBT as the 

indicator dye and captured an image of the readout with an unmodified camera phone 

(iPhone 4S) (Figure 3-2c). We processed the readout image; color channels of the 

original image were split and all three channel ratios (G/R, B/R, G/B) were calculated to 

derive a ratiometric image for each ratiometric combination. These experimental ratios 

obtained with an unmodified cell phone camera (Figure 3-2e) matched well with the 
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predicted values (Figure 3-2d) for each of the three ratiometric combinations, confirming 

the predictive power of this approach. The G/B ratio was identified as less appropriate for 

distinguishing positive and negative reactions because the values for positive and 

negative reactions were similar; G/R and B/R ratios were identified as suitable because 

there was sufficient contrast between the values for positive and negative reactions. For 

the G/R combination, the ratio obtained after a negative reaction was 0.91 and the ratio 

from a positive reaction was 1.03—a difference of 0.12 (Figure 3-2e). For the B/R 

combination, the ratios for negative and positive reactions were 0.98 and 1.07—a 

difference of 0.09 (Figure 3-2e). Therefore, we selected the G/R combination for our 

subsequent validation experiments. Counting positives is a more intuitive approach, so 

the B/R ratio (where the positive ratio had the greatest difference from the background) 

can be a useful and attractive method. However, it is generally more desirable to select a 

ratio that includes the green channel because most single-chip digital image sensors used 

in digital cameras, including cell phones, utilize a Bayer filter mosaic pattern that is 

composed of 50% green, 25% red, and 25% blue pixels.64 
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Figure 3-2. Predicted values and experimental validation of the first step of the 

ratiometric approach. (a) Measured spectral transmittance (%) in the range of visible light 

(400–700 nm) for positive (solid purple line) and negative (solid blue line) RT-LAMP 

reaction solutions, each containing 0.7 mM of eriochrome black T (EBT) as the 

amplification indicator dye. Dashed lines correspond to normalized spectral responses for 

red (R), green (G) and blue (B) channels of an Exmor R CMOS sensor, a common sensor 

in cell phone cameras. (b–e) Analysis of the three possible RGB ratiometric combinations 

for positive and negative RT-LAMP reaction solutions. (b) The predicted RGB values 

and corresponding colors for positive and negative LAMP amplification reactions 

obtained by convoluting the transmittance spectrum and Exmor R spectral responses 

described in panel (a). (c) The cropped and enlarged color images collected with an 

Apple iPhone 4S for positive and negative RT-LAMP reaction solutions containing 90 

µM of EBT dye. (d) Predicted images and ratiometric values for positive and negative 
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amplification reactions processed for each ratiometric combination, G/R, B/R, and G/B. 

(e) Experimental images and ratiometric values for positive and negative amplification 

reactions for each combination: G/R, B/R, and G/B. All experiments were performed 

with HCV RNA as template. 

To test the robustness of our approach to different hardware and illumination conditions, 

we used HCV RNA amplified by RT-LAMP at two-fold increasing concentrations of 

indicator dye ranging from 10.9 µM to 1.4 mM (for a total of eight dye concentrations). 

After RT-LAMP amplification, 50 µL of each reaction solution were transferred to 96-

well plates (path length of ~1.5 mm) and the readout was imaged with cameras from four 

common cell phone models: Apple iPhone 4S (Figure 3-3a), HTC inspire 4G (Figure 3-

3b), Motorola Moto G (Figure 3-3c), and Nokia 808 PureView (Figure 3-3d). Under 

fluorescent light and using the G/R ratiometric process (green channel divided by red 

channel followed by a threshold adjustment to generate a binarized black and white 

image), we determined that EBT concentrations lower than 0.175 mM provided an 

insufficient color change for detection with a cell phone camera (Figure 3-3, region I, 

white background), while concentrations of 1.4 mM inhibited the amplification reaction 

(Figure 3-3, region III, red background). For this particular indicator dye, the range of 

concentrations at which color change could be detected by an unmodified cell phone 

camera and no inhibition was observed at the endpoint of the reaction was identified as 

0.175 mM to 0.7 mM (Figure 3-3, region II, green background). Some cell phone 

cameras were more sensitive (e.g. HTC inspire 4G was able to distinguish a positive 

result at EBT concentrations as low as 0.0875 mM) (Figure 3-3b), but all four cell phone 

models distinguished a positive reaction at concentrations between 0.175–0.7 mM 

(Figure 3-3, region II, green background). We then chose one cell phone with the most 

representative performance (Apple iPhone 4S) to test the robustness of the G/R approach 
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to different lighting conditions. Under all conditions tested (incandescent light (Figure 3-

3e), direct sunlight (Figure 3-3f), and indirect sunlight (Figure 3-3g)), the optimal EBT 

concentration range that we identified under fluorescent light (0.175–0.7 mM) could be 

read clearly, confirming the robustness of the ratiometric approach to variations in 

illumination.  

 

Figure 3-3. Validation of the robustness of the G/R ratiometric approach to different 

hardware (cell phone cameras) and lighting conditions. (a–g) Enlarged and cropped color 

images (top two rows of each individual panel) captured by an unmodified cell phone 
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camera from positive (+) and negative (-) RT-LAMP reactions at two-fold increases in 

EBT concentration from 10.9 µM to 1.4 mM (1 = 0.011 mM; 2 = 0.022 mM; 3 = 0.044 

mM, 4 = 0.088 mM, 5 = 0.175 mM; 6 = 0.35 mM; 7 = 0.7 mM; 8 = 1.4 mM). Positive 

wells are blue and negative wells are purple. After G/R ratiometric processing (bottom 

two rows of each individual panel) negative wells are black. Regions I, II, III in each 

panel indicate the effect of dye concentration: (II) Acceptable concentration range for 

visualization (green regions); (I) Concentrations too low for visualization (white regions); 

and (III) Concentrations too high for visualization (red regions). (a–d) Images captured 

by four common cell phones under fluorescent light: (a) Apple iPhone 4S, (b) HTC 

inspire 4G, (c) Motorola Moto G and (d) Nokia 808 PureView. (e–g) Images captured by 

an Apple iPhone 4S under three additional light conditions: (e) incandescent light, (f) 

direct sunlight and (g) indirect sunlight. All experiments were performed with HCV RNA 

as a clinically relevant target. All images were acquired with unmodified cell phone 

cameras. Detailed information for the G/R ratiometric process and additional cell phone 

camera images are provided in the supporting information. 

One-step method for digital visual readout. Microfluidic devices enable ultrasensitive 

digital quantification. Small well volumes are valuable because they enable faster 

reactions (because concentrations are high in single wells), minimize the effects of 

inhibitory materials (due to their isolation into wells) and expand the upper limit of the 

dynamic range (because single molecules can be confined from samples containing high 

template concentrations).18,65,66 However, as well volumes (and path lengths) decrease, 

color visualization becomes challenging for a mobile phone. To compensate, the 

concentration of the indicator dye can be increased; however, high concentrations of 

some dyes inhibit amplification reactions. Thus, there are inherent physical limits to a 

colorimetric approach. To validate that this visual readout approach could be applied to 

single-molecule amplification at nanoliter volumes, we used digital LAMP (dLAMP) and 

phage lambda DNA (λDNA) as a target. We specifically aimed to resolve three 

questions: (i) Can we obtain a visual readout for amplified single molecules that can be 

captured by an unmodified cell phone camera? (ii) Is volume a factor in achieving a 

digital visual readout? (iii) Does ratiometric processing work for small volumes? 
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To answer these questions, we designed a multivolume rotational SlipChip device 

containing 1,240 wells of eight volumes ranging from 15 nL to 50 nL. We loaded these 

devices with LAMP reaction solution containing an appropriate target concentration in 

the middle of the device’s dynamic range, a fluorescent DNA-detecting intercalation dye 

(Syto 9), and EBT dye at 0.7 mM (the highest non-inhibiting concentration identified in 

Figure 3-3). We imaged this device with a house-built real-time fluorescence imager, 

with a Leica stereoscope (optimal imaging conditions) and with an Apple iPhone 4S. The 

number of positive counts based on fluorescence was 261, while 260 positives were 

counted using the indicator dye and G/R process both with the stereoscope and the cell 

phone (Figure 3-4). This experiment showed that the G/R method could be used in place 

of fluorescence readout to count amplified single molecules and that the readout capture 

and G/R processing performed on an unmodified cell phone matched the results obtained 

under optimal lighting conditions (stereoscope). Additionally, using a device containing 

800 wells of 27 nL, we observed excellent correlation among positive counts obtained 

from the stereoscope, fluorescence imager, and cell phone camera. 
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Figure 3-4. Readout from single-molecule digital LAMP reactions performed with 

lambda DNA on a multivolume rotational SlipChip device imaged by (a) a stereoscope, 

(b) a fluorescence microscope and (c) an unmodified cell phone camera. (e–g) Callouts 

are magnified to show visual correlation among the three imaging methods. (d) The 

results of the ratiometric processing for the stereoscope G/R processed image and (h) the 

cell phone G/R-processed image. Colors were enhanced in these figures for clarity of 

publication; raw images were used in all ratiometric analyses. These devices contained 

1,240 wells of eight volumes ranging from 15 nL to 50 nL. 

While investigating the limits that reaction volume may impose on visual readout, we 

observed that the estimated template concentration determined from each of the eight 

well volumes produced similar Most Probable Numbers (MPN) of molecules (mean 

8,500  1,500 copies/mL) (Figure 3-5a) (estimated concentration from all volumes are 

within 95% confidence interval at each volume). In addition, all SlipChip devices, 

analyzed independently, gave similar target concentrations (8,400  500 copies/mL) 

(Figure 3-5b), suggesting that the selected indicator dye did not impair quantification of 

single molecules in well sizes 15–50 nL and that these well volumes can be imaged 

reliably with either a stereoscope or an unmodified cell phone camera. However, the cell 
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phone camera images of well volumes of 15 nL were less clear than those obtained from 

the stereoscope, suggesting that volumes of ~15 nL may approach the limit of 

colorimetric imaging with current camera phone sensors, although as higher quality 

sensors are integrated into commercial cell phones, this limit would change. 

 

Figure 3-5. Robustness of digital visual readout at different well volumes. Concentration 

of lambda DNA was estimated by digital LAMP using five multivolume rotational 

SlipChip devices, each of which contained eight well volumes ranging from 15–50 nL. 

(a) Measured template concentration for each well volume averaged over five devices. 

(b) Mean template concentration for each of five rotational SlipChip devices. 

Concentrations were calculated using MPN theory65 and error bars represent standard 

deviation. Images were captured by a stereoscope and processed with the ratiometric 

approach (G/R process). 

Two-step method for digital visual readout. We next developed a method to apply the 

visual readout approach to digital devices that contain smaller well volumes. To be able 

to image at small volumes (e.g. 5 nL) on a microfluidic device, one must balance the 
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need for greater indicator color intensity for visualization with the need to keep dye 

concentrations below the level of inhibition (Figure 3-3 region III) for an amplification 

reaction. High concentrations of indicator dye can completely halt an amplification 

reaction, and we knew from performing real-time bulk experiments that even when 

reactions are positive, an indicator dye can still interfere to some extent with isothermal 

nucleic acid amplification—for both RNA and DNA we observed delays in the time-to-

positive, and this delay increased at greater concentrations of the indicator dye, even 

though reactions were positive. We hypothesized that we could prevent inhibition 

completely by decoupling the amplification step from the readout step. To do this, we 

designed a two-step SlipChip device (based on previous SlipChip designs)13 in which the 

amplification solution and the detection solution are loaded into separate wells (Figure 3-

6a). We validated this two-step protocol with a clinically relevant target, purified HCV 

RNA, using digital reverse transcription-LAMP (dRT-LAMP). First, we performed 

digital isothermal amplification in the set of small (5 nL) amplification wells (in the 

absence of the indicator dye) (Figure 3-6a (i)). After amplification, a “slip” was 

performed and the amplification wells came into contact with a second set of larger (9.5 

nL) wells, which contained the indicator dye—for a total well volume of 14.5 nL (Figure 

3-6a (ii)). After mixing, negative wells lacking target molecules stayed purple and wells 

containing positive reactions turned blue (Figure 3-6a (iii)). Counts obtained by a house-

built real-time imaging instrument (to read fluorescence), and counts obtained by G/R 

processing from an image captured by an unmodified cell phone camera were 

significantly correlated (Pearson’s Corr = 0.9998; R2 = 0.9996) (Figure 3-6h), showing 
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that this two-step SlipChip-based protocol provides a suitable visual readout for digital 

single-molecule amplification for devices containing wells of small volumes. 

Devices shown in this manuscript were not designed to achieve clinically relevant 

concentrations in the lower detection limit of quantification (LDL) because larger well 

volumes do not represent a challenge when imaging with a mobile phone. Instead, we 

studied the performance of our approach with wells of small volumes to ensure that this 

method meets the ULQ required for clinical relevance. The upper limit of quantification 

(ULQ) is determined by the total number of wells with the smallest volume. As an 

example, for SlipChip devices with 800 wells of 5 nL the ULQ is 1,162,413 copies/mL, 

while a SlipChip device with 10,000 wells of 5 nL the ULQ is 1,622,660 (calculations 

performed according to Kruetz, et al. 2011).65 
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Figure 3-6. Experimental validation of two-step SlipChip devices for single molecule 

counting with an unmodified cell phone camera. (a) A flow-chart of detection of single 

molecules in two-step SlipChip: (i) 5 nL amplification wells are loaded with 

amplification reaction solution (RXN) and 9.5 nL detection wells are loaded with 

indicator dye (DYE). (ii) After amplification, a slip is performed and the RXN and DYE 

wells are combined. (iii) Immediately after mixing, positive reaction solutions become 

blue, while negative reactions remain purple. The readout is imaged by an unmodified 

cell phone camera. (iv) Ratiometric image processing (G/R process) provides a single 

binary result (positive or negative). (b) Stereoscope and (c) fluorescence images of the 

device before the amplification and readout wells are merged (arrow designates direction 

of slip). (d) Stereoscope and (f) cell phone camera images after the device is slipped and 

the wells are merged. (e) Stereoscope and (g) cell phone camera images after G/R image 

processing. (h) Correlation between fluorescence counts and cell phone (G/R processed) 

counts. Colors were enhanced in figure panels (b, c, d, and f) for clarity of publication; 

raw images were used in all ratiometric analyses. In these experiments HCV RNA was 

amplified by dRT-LAMP. 

Conclusions 

Here we show that single nucleic acid molecules can be detected and counted with an 

unmodified cell phone camera by employing microfluidic technology, sequence-specific 

isothermal amplification, and a judiciously chosen amplification-indicator dye. We 

further show that ratiometric processing of the cell phone image enables robust 

quantification without the need for a user to differentiate colors. The general 

methodology we developed can be used as a guideline to enable others to develop their 

own cell phone based single-molecule counting approach. The methodology includes the 

following steps: first, an appropriate amplification indicator should be selected. Indicators 

should respond optically to each nucleotide incorporation event (as opposed to 

responding to number of produced molecules), resulting in a change in the transmittance 

profile in the wavelength range of visible light (400–700 nm). The indicator dye should 

have a change in absorbance matched to the spectral sensitivity of the image sensor in an 

unmodified cell phone; for ratiometric processing, the solution should have a large 

relative change in transmittance in color channels for which the camera’s image sensor is 
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most sensitive. Second, the color ratio used in the ratiometric approach is chosen based 

on the spectral sensitivity of the image sensor in an unmodified cell phone. This step can 

be done in silico to identify the dye with the ratio that provides an unambiguous binary 

readout of positive and negative reactions that is robust to illumination and hardware 

conditions. We hope others will use this algorithm to identify even better dyes that will 

move this field forward. Third, the selected dye and ratiometric approach should be 

validated using the desired amplification chemistry. Experiments should be performed to 

establish the range of dye concentrations and well volumes at which an amplification 

reaction is not inhibited and at which imaging can be done with an unmodified cell 

phone. For some indicator dyes, the range of suitable well volumes and concentrations 

will be too narrow. In such situations, an alternative approach is to use a two-step device 

that separates the amplification and readout steps. Processing can be done directly on a 

cell phone or uploaded wirelessly to a cloud server to swiftly communicate results, as we 

have shown previously.14 We anticipate that the capabilities of visual readout for 

counting single molecules will extend further as cell phone camera technology advances, 

as additional indicators are available (e.g. metal ions, pH indicators) and as additional 

types of amplification reactions are developed. Devices that integrate sample preparation, 

nucleic acid amplification and a visual digital readout that can be captured easily will be 

a critical breakthrough toward bringing quantitative, ultrasensitive measurements outside 

of central laboratories—a key step for in vitro diagnostics, pandemic surveillance, and 

environmental monitoring. We hope this work will stimulate regulatory agencies such as 

the FDA to consider the use of cell phones as valuable diagnostic components. 
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Methods 

Chemicals and materials. All chemicals were purchased from commercial sources. The 

LoopAmp® RNA amplification kit (Eiken Chemical Co., Ltd., Japan) was purchased 

from SA Scientific (San Antonio, TX, USA). The LoopAmp® RNA amplification kit 

contains 2X Reaction Mix (RM) (40 mM Tris-HCl pH 8.8, 20 mM KCl, 16 mM MgSO4, 

20 mM (NH4)2SO4, 0.2% Tween20, 1.6 M Betaine and dNTPs 2.8 mM each), Enzyme 

Mix (EM) (mixture of Bst DNA polymerase and AMV reverse transcriptase), and 

distilled water (DW). Bovine serum albumin (BSA) was purchased from Roche 

Diagnostics (Indianapolis, IN, USA). Phage lambda DNA (500 µg), SUPERase In RNase 

Inhibitor (20 U/μL), Eriochrome Black T (EBT) dye, mineral oil (DNase, RNase, and 

Protease free), tetradecane, Costar™ Clear Polystyrene 96-Well Plates, Corning® 

Universal Optical Microplate Sealing Tape, and DEPC-treated nuclease-free water were 

purchased from Thermo Fisher Scientific (Hanover Park, IL, USA). Chelex® 100 resin 

was purchased from Bio-Rad (Hercules, CA, USA). Trehalose Solution (1 M) was 

purchased from Amersham Life Science (Cleveland, Ohio, USA). Tris-HCl buffer stock 

solution (1 M, pH 8.0) was purchased from Affymetrix (Santa Clara, CA, USA). All 

primers were produced by Integrated DNA Technologies (Coralville, IA, USA). 

Dichlorodimethylsilane was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

SYTO® 9 Stain and AcroMetrix® HCV High Control were purchased from Life 

Technologies (Grand Island, NY, USA). Nucleic acid extraction kit QIAamp Viral RNA 

Mini kit was purchased from QIAGEN Inc. (Valencia, CA, USA). Eppendorf 

Mastercycler Gradient PCR Themal Cycler was purchased from Eppendorf (Hamburg, 

Germany). POLARstar Omega microplate reader was purchased from BMG Labtech 
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(Durham, NC, USA). Leica MZ Fl III stereoscope with PLAN 0.5x lens was purchased 

from Leica Microsystems (Bannockburn, IL, USA). Photomasks were designed in 

AutoCAD 2013 and ordered from CAD/Art Services, Inc. (Bandon, OR, USA). Soda-

lime glass plates coated with layers of chromium and photoresist were ordered from the 

Telic Company (Valencia, CA, USA). 

SlipChip device design. The multivolume rotational SlipChip device design was used to 

demonstrate the one-step method for digital visual readout; this device was composed of 

1,240 microfluidic wells, with the following volumes: 160 wells x 15 nL, 160 x 17.5 nL, 

160 x 20 nL, 160 x 22.5 nL, 160 x 25 nL, 160 x 40 nL, 160 x 45 nL, 120 x 50. The total 

combined volume of all wells was 35.6 µL. For loading, one inlet hole (in the middle ring 

structure) and four oil escape holes (in the outer ring structure) were drilled in the top 

plate. The two-step SlipChip device was used to demonstrate a two-step method for 

digital visual readout; this device was based on previously published SlipChip designs.13 

For the two-step SlipChip design used in this study, the device was modified in the 

following ways: (i) the number of each type of well was reduced to 800; (ii) space was 

added between the arrays to allow for the incubation conformation; (iii) the sequence of 

well loading was reversed (the smaller 5 nL wells are loaded before the larger 9.5 nL 

wells). SlipChip multivolume designs for HCV and HIV viral load quantification at 

clinically relevant dynamic ranges67-69 are provided in the SI (Table S3). 

SlipChip device fabrication. The procedure for fabricating the multivolume rotational 

SlipChip and two-step SlipChip devices was based on previous work.70 The device 

features were etched to a depth of ~100 µm for the multivolume rotational SlipChip 

devices and ~67 µm for the two-step SlipChip devices. After etching and drilling access 
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holes, both devices were subjected to the same glass silanization process, previously 

described,66 where the glass plates were first thoroughly cleaned with piranha mix and 

dried sequentially with 200 proof ethanol and nitrogen gas, and then oxidized in a plasma 

cleaner for 2 min and immediately transferred into a vacuum desiccator for 1.5 h for 

silanization with dimethyldichlorosilane. After silanization, the devices were rinsed 

thoroughly with chloroform, acetone, and ethanol, and dried with nitrogen gas before use. 

When a glass SlipChip device needed to be reused, it was first cleaned with acid Piranha 

Solution and then subjected to the same silanization and rinsing procedure described 

above.  

Assembling and loading SlipChips. The SlipChips used for both the dLAMP and the 

dRT-LAMP reactions were assembled under degassed oil (mineral oil: tetradecane 1:4 

v/v). Both top and bottom plates were immersed in the oil phase and placed face to face. 

The two plates were aligned under a stereoscope (Leica, Germany) and stabilized using 

binder clips. Through-holes were drilled into the top plate to serve as fluid inlets and oil 

outlets in dead-end filling. The reagent solutions were loaded through the inlets by 

pipetting. 

HCV viral RNA purification from AcroMetrix® HCV High Control. 200 µL plasma 

containing HCV RNA (viral load estimate provided by the company: 1.1 IU/mL – 3.5 

IU/mL) was extracted using the QIAamp Viral RNA Mini Kit (QIAGEN Inc, Valencia, 

CA, USA) according to the manufacturer’s instructions. The elution volume was 60 μL. 

The purified HCV viral RNA was analyzed immediately or stored at -80 °C until further 

analysis. 
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Preparation of EBT solution. The EBT stock solutions were prepared by dissolving 

EBT dye in deionized water. The aqueous solution was sonicated for 10–20 min and the 

free volume was filled with argon gas and mixed on a rotator at 65 C for 1 h. To remove 

any potential impurities from the EBT dye, Chelex® 100 ion exchange resin was added 

to the resulting solution (5% w/v) and placed on rotator for 1 h. Resin was centrifuged at 

3,000 rpm for 5 min and the top fraction was collected in a Falcon tube, flushed with 

argon, and stored at room temperature for no more than 2 days. 

Storage stability of amplification indicator dyes by drying in the presence of 

stabilizer trehalose. EBT, HNB, and calmagite stock solutions at 0.7 mM were prepared 

by dissolving the dyes in 20 mM Tris-HCl buffer (pH 8.8) and adding 30 mM of 

trehalose. The solutions were sonicated for 10 min and mixed on a rotator at room 

temperature for 1 h. Chelex® 100 ion exchange resin was added (5% w/v) and placed on 

rotator for 1 h. Resin was centrifuged at 3,000 rpm for 5 min and the top fraction was 

collected in a Falcon tube. The resulting stock solutions were transferred to a Costar™ 

Clear Polystyrene 96-Well Plate (40 μL per well) and sealed with Corning® Universal 

Optical Microplate Sealing Tape before spectrophotometric analysis (time 0 h). 

Immediately after analysis, the sealing cover was removed and the plate was placed in a 

desiccator under vacuum overnight until the dye stock solutions were completely dry. 

Then, at 24-hour time points over the next 120 h (for a total of 5 time points), three wells 

of each dried amplification indicator solution were resuspended with 40 μL of deionized 

water and spectrophotometric analyses were performed. After each measurement, the 

plate was sealed again (to prevent hydration of the dried solutions in the other wells) and 

kept in the dark at room temperature. The absorption spectra analyses were performed by 
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using the POLARstar Omega microplate reader with Omega Data analysis software. 

Absorbance in the range of 400–700 nm was recorded at 2-nm intervals. Blank solutions 

(20 mM Tris-HCl buffer with 30 mM Trehalose) were also loaded at time 0 h, desiccated 

after the first measurement, and treated as the rest of the solutions. The measured spectral 

absorbance from these control solutions was subtracted at each time point from the 

plotted data. 

RT-LAMP amplification of HCV RNA in-tube. The purified HCV RNA described 

above was used for in-tube RT-LAMP amplification. The RT-LAMP mix contained the 

following: 20 μL of RM, 2μL of EM, 2 μL of SYTO® 9 Stain from a 40 μM stock, 4 μL 

of LAMP primer mixture (20 μM BIP/FIP, 10 μM LB/LF, and 2.5 μM B3/F3), 1 μL of 

SUPERase In RNase Inhibitor (20 U/L), EBT solutions of various concentrations and 

with various amounts of RNA template solution, and enough nuclease-free water to bring 

the volume to 40 μL. The solution was loaded into 0.2 mL PCR tubes and heated at 63 °C 

for 50 min and 85 °C for 5 min (heat inactivation) on an Eppendorf Mastercycler 

Gradient PCR Themal Cycler. 

Spectrophotometric analysis for positive and negative RT-LAMP reactions. Fifty-µL 

of positive and negative RT-LAMP reaction solutions containing 0.7 mM of EBT, HNB 

and calmagite dyes were transferred to a Costar™ Clear Polystyrene 96-Well Plates, the 

plate was sealed with a Corning® Universal Optical Microplate Sealing Tape and then 

used for spectrophotometric analysis. An absorption spectra analysis was performed by 

using the POLARstar Omega microplate reader with Omega Data analysis software. The 

instrument was first set to zero at 700 nm for distilled water, and absorbance in the range 
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of 400 nm to 700 nm was recorded at 2-nm intervals. Transmittance was calculated from 

absorbance values using the following equation: 𝑇 = 10(2−𝐴). 

Prediction of RGB values. Predicted RGB values for a positive and negative LAMP 

amplification reaction containing EBT were calculated as follows: (i) the spectral 

response curves for a Exmor R CMOS image sensor were available only in a graphical 

format, so data was extracted using Plot Digitizer (ver. 2.6.6) and new plots were 

generated. (ii) The area under the curve for each of the three color channel spectra was 

normalized (selecting 1,000 arbitrary values under each curve). Uniform white-balanced 

light source was assumed. (iii) Convolution of the spectral transmittance spectral profiles 

of the indicator dye for a positive and a negative LAMP reaction solution (experimentally 

obtained) with the normalized spectral responses from the Exmor R CMOS image sensor 

was performed. We ignored the light scattering caused by pyrophosphate release during 

the amplification reaction. As a result, six curves were generated (a positive and negative 

for each of the three color channels). (iv) The area under each curve was calculated and 

its square root taken, providing the predicted RGB values for positive and negative RT-

LAMP reaction solutions in the presence of EBT at this particular concentration. 

dLAMP amplification of phage lambda DNA on multivolume rotational SlipChip 

devices. To amplify lambda phage DNA using dLAMP method, the LAMP mix 

contained the following: 20 μL of RM, 2 μL of EM, 2 μL of SYTO® 9 Stain from 40 μM 

stock, 4 μL of primer mixture (20 μM BIP/FIP, 10 μM LB/LF, and 2.5 μM B3/F3), 2 μL 

of BSA (20 mg/mL), various amounts of DNA template solution, 4.7 µL of 6 mM EBT 

dye (0.7 mM final concentration) and enough nuclease-free water to bring the volume to 

40 μL. The solution was loaded onto a multivolume rotational SlipChip device and 
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heated at 63 °C for 50 min on flat block PCR machine (Eppendorf Mastercycler). Five 

minutes of heating at 85 °C was used to stop the reaction. 

Real-time dRT-LAMP of HCV RNA on two-step SlipChip devices. To amplify HCV 

viral RNA using dRT-LAMP method on house-built real-time instrument, the RT-LAMP 

mix contained the following: 20 μL of RM, 2 μL of EM, 2 μL of SYTO® 9 Stain from 40 

μM stock, 4 μL of primer mixture (20 μM BIP/FIP, 10 μM LB/LF, and 2.5 μM B3/F3), 2 

μL of BSA (20 mg/mL), 1 μL of SUPERase In RNAase inhibitor, various amounts of 

RNA template solution, and enough nuclease-free water to bring the volume to 40 μL. 

The solution was loaded into the 5 nL wells of two-step SlipChip devices. The other set 

of wells (9.5 nL) were loaded with 2.4 mM solution of EBT solution (1.57 mM final 

concentration). SlipChips were heated at 63 °C for 50 min on a house-built real-time 

instrument; reactions were stopped by heating to 85C for 5 min.  

House-built real-time instrument imaging. Experiments were performed on a Bio-Rad 

PTC-200 thermocycler with a custom machined block. The block contains a flat 3” x 3” 

portion onto which the devices are placed ensuring optimal thermal contact. The 

excitation light source used was a Philips Luxeon S (LXS8-PW30) 1315 lumen LED 

module with a Semrock filter (FF02-475). Image acquisition was performed with a VX-

29MG camera and a Zeiss Macro Planar T F2-100mm lens. A Semrock filter (FF01-540) 

was used as an emission filter. Images acquired were analyzed using LabVIEW software.  

House-built real-time instrument data analysis. Fluorescent images were analyzed 

using self-developed Labview software. The data were analyzed by first creating a binary 

mask that defined the location of each reaction volume within the image. The masked 

spots were then overlaid on the stack of images collected over the course of the 
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experiment and the average intensity of each individual masked spot was tracked over the 

course of the stack. Background subtraction of the real-time trace was performed by 

creating a least mean square fit of each individual trace. Threshold was then manually set 

at the half height of the averaged maximum intensity, and the time-to-positive of each 

reaction was then determined as the point at which the real-time curve crossed the 

defined threshold. 

Bright-field image acquisition. A mobile phone was used to capture the readout under 

standard fluorescent light, using the camera’s default autofocus and autoexposure 

settings. Photographs of the 96-well plate were also taken using alternate commercial cell 

phones and under different lighting conditions (Figure 3-3). Stereoscope imaging was 

done using Leica MZ Fl III stereoscope with a PLAN 0.5x lens. The stereoscope was 

equipped with a Diagnostic Instruments color mosaic model 11.2 megapixel camera and 

images were acquired using Spot imaging software. An automatic white-balance 

adjustment was done for each image using Spot software. Multiple images were acquired 

to capture all wells in the device, and assembled to form a complete image of the device 

to compare with the image acquired from the cell phone camera by using the freeware 

Image Composite Editor (ver. 2.0). 

Bright field image processing and data analysis. Images acquired with cell phone and 

stereoscope were processed using open source Image J software (ver.1.49) according to 

the standard procedure. Briefly: (i) white balance was corrected as needed, (ii) color 

channels of the original image were split and (iii) one channel was divided by a second 

channel (e.g., green channel divided by the red channel in the G/R approach) to derive a 

ratiometric image; and (iv) automatic thresholding was applied to make a binary (black 
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and white) image. Semi-automatic counting on the two-step Slipchip images was 

accomplished using a freeware Fiji image processing. Acquired bright field images for 

the multivolume rotational SlipChips were counted manually. 
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Chapter 4: 

The Pumping Lid: Investigating Multi-Material 3D Printing for Equipment-

Free, Programmable Generation of Positive and Negative Pressures for 

Microfluidic Applications* 

 

Abstract 

Equipment-free pumping is a challenging problem and an active area of research in 

microfluidics, with applications for both laboratory and limited-resource settings. This 

paper describes the pumping lid method, a strategy to achieve equipment-free pumping 

by controlled generation of pressure. Pressure was generated using portable, lightweight, 

and disposable parts that can be integrated with existing microfluidic devices to simplify 

workflow and eliminate the need for pumping equipment. The development of this 

method was enabled by multi-material 3D printing, which allows fast prototyping, 

including composite parts that combine materials with different mechanical properties 

(e.g. both rigid and elastic materials in the same part). The first type of pumping lids we 

describe was used to produce predictable positive or negative pressures via controlled 

compression or expansion of gases. A model was developed to describe the pressures and 

flow rates generated with this approach and it was validated experimentally. Pressures 

were pre-programmed by the geometry of the parts and could be tuned further even while 

the experiment was in progress. Using multiple lids or a composite lid with different 

inlets enabled several solutions to be pumped independently in a single device. The 

second type of pumping lids, which relied on vapor-liquid equilibrium to generate 

                                                           
* This chapter was first published in Lab on a Chip with authorship belonging to Stefano Begolo, Dmitriy V. 
Zhukov, David A. Selck, Liang Li, and Rustem F. Ismagilov. The original manuscript can be found at: 
http://dx.doi.org/10.1039/c4lc00910j 
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pressure, was designed, modeled, and experimentally characterized. The pumping lid 

method was validated by controlling flow in different types of microfluidic applications, 

including the production of droplets, control of laminar flow profiles, and loading of 

SlipChip devices. We believe that applying the pumping lid methodology to existing 

microfluidic devices will enhance their use as portable diagnostic tools in limited 

resource settings as well as accelerate adoption of microfluidics in laboratories. 

Introduction 

This paper describes an equipment-free method for generating positive and negative 

pressures in a microfluidic device using a pumping lid. Most of the microfluidic devices 

developed in the past two decades rely on external equipment for operation, including the 

use of pumps, gas cylinders, or other external controllers,1-5 for precise pumping and 

loading. Achieving the same degree of flow control without expensive or bulky 

equipment is necessary for making microfluidic devices more accessible. Currently, 

equipment-free pumping is both a challenging problem and an active area of research, 

with several proposed approaches.6-15 For applications in which the total sample volume 

is less than the internal volume of the device, the sample’s surface energy is known and 

stable flow rate isn’t required, capillary-based pumping (wicking) can be used.6-10 This 

has been done by flowing samples through microchannels9,10 or using fibrous materials, 

such as paper.6-8 For cases when the device can be pre-loaded with a solution, and the 

solution’s surface energy is known, the flow of the solution can be driven by the 

difference in capillary pressure between droplets of different sizes of this solution placed 

at the inlet and outlet of the device. For this method the pressure difference can be 

restored constantly by the addition of solution to the smaller droplet.11,12 When only small 
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sample volumes are used (a few microliters or less) and the application does not require 

flow rates greater than a few nanoliters per second, pre-degassed microfluidic devices can 

be used to generate flow.13,14 Finally, when the density and volume of the sample are 

known, and the device can be stabilized in a precisely horizontal position, gravity can 

generate predictable pressure drops and drive the flow in a microfluidic device. In this 

approach, the difference in height of fluid in separate reservoirs generates the desired 

pressure drop.15 These methods have a wide variety of applications, and some of them 

showed precision in the order of 10-20% of the measured values,10,14 and one 

demonstrated 10% accuracy.12 However, none of these methods can provide precise and 

predictable control of pumping while exhibiting all of the following features: absence of 

external equipment, capability of achieving a wide range of flow rates and achieving 

predictable flow rates that are independent of the sample’s volume, surface energy, and 

density. 

Here we describe the theory, characterize the method, and validate the design of a range 

of equipment-free pumping lids for controlled-pressure generation in microfluidic 

applications. This pressure generation approach is based on controlled gas expansion or 

compression, so it does not depend on the nature of the liquid being pumped, the 

geometry of the channels, or the device’s orientation. It can also be coupled with 

evaporation of a volatile liquid to generate pressure. Development and characterization of 

this method was enabled by multi-material 3D printing, which allows fast prototyping of 

composite parts that have sections with different mechanical properties. In addition, the 

pumping lid approach has the following beneficial features that have not been combined 

previously in a single method:  
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a) The same setup can pump liquids of different density and/or surface energy with no 

difference in the resulting flow rate. 

b) The pressure source is integrated with the device, so the method does not require the 

use of external connectors or tubing.  

c) A simple model can be used to predict the pressure/flow rate generated by a specific 

lid/cup combination, matching or improving the precision and accuracy demonstrated 

for other methods. 

d) Pumping lids are interchangeable, so the same microfluidic device can be used with 

different lids to generate different flow rates. Pressures can be tuned by choosing the 

pumping lid with the appropriate dimensions and/or by modifying the lid’s geometry. 

e) The user can alter the pressure by simply changing the position of the pumping lid, 

without interrupting the experiment.  

f) Flow rates can be tuned precisely, with values ranging from a few nanoliters to more 

than a microliter per second, and remain consistent for long periods (hours in some 

cases). 

g) The sample volume pumped can be larger than the internal volume of the device, 

making the method appropriate for handling samples that range from a few 

microliters to milliliters. 

h) Both positive and negative pressures can be produced in a predictable way and used 

to generate and control flow. 
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i) While pumping is in progress, the lid keeps the sample isolated from the external 

environment, preventing contamination and evaporation. 

j) The combined weight of all parts is less than 50 g, making it portable. 

k) The device can be made of low-cost, disposable/recyclable polymeric materials, 

making it adaptable to resource-limited settings. 

Results and discussion 

Principle of pumping lid operation 

The pumping lid method described in this paper is based on controlled compression or 

expansion of gas (Figure 4-1). To generate positive pressure, the user places the sample at 

the device inlet and then places the pumping lid on the cup integrated into the 

microfluidic device (Figure 4-1A). When the user pushes the lid down to its final 

position, the air in the lid’s cavity is isolated and compressed, creating positive-gauge 

pressure. The lid’s position is held by friction, but to increase robustness, guiding and 

locking structures can be integrated into the design (Figure 4-1A-1B). Conversely, to 

create negative pressure, a pumping lid is pre-placed on the cup (Figure 4-1B) and the 

user pulls up on the pumping lid, expanding the air in the cavity. The degree of expansion 

is controlled by guiding structures. 
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Figure 4-1. Principle of pumping lid operation. (A) Schematic of the method to generate 

positive pressure.  A device is equipped with a cup (black) and locks (green). A sample 

(red) is placed in the cup before pumping. The pumping lid (grey) contains a cavity as 

shown in the side view. Part of the pumping lid is composed of a soft, deformable 

material (blue). Placing the lid on the cup compresses the air in the cavity and generates 

the pressure used to pump the sample in the device. The locks hold the lid in place to 

maintain the pressure over time. (B) Schematic of the method to generate negative 

pressure. The pumping lid (grey) is placed on the inner cup (black, visible only in the side 

view) before the experiment, and is equipped with guiding pins (red). These pins slide on 

a guiding structure (black) to guide the movement of the lid. When the user pulls the lid, 

the air in the cavity expands, creating a negative gauge pressure that pumps the sample 

into the device. (C) Pressures obtained from 40 experimental cup-lid combinations (N=3) 

plotted against the pressure values obtained from the model (Eq. 2 and Eq. 6). The colors 

denote lids of different cavity volumes. The dashed black line indicates the linear fit of 
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the data and its parameters are reported in the graph. Standard deviations for all of these 

experiments were below 5% of the measured value. 

Theoretical model for prediction of the pressure generated with the pumping lid 

First, we analyze the initial pressure generated by the pumping lid and cup, prior to 

pumping. We use the Boyle law for isothermal gas compression: 𝑃0𝑉0  =  𝑃1𝑉1; 

assumptions of ideal gas behavior are appropriate in this case because the pressures are 

low (~ 1 atm) and the temperatures are sufficiently high (~ 300K).  

Positive pressures 

The positive pumping pressure depends on four main parameters: the volume of the 

cavity in the pumping lid (𝑉𝐿), the volume of the cup walls (𝑉𝑊), the volume of the empty 

space inside the cup (𝑉𝐶) and the volume of sample loaded in the cup (𝑉𝑆). When the lid 

is placed on the cup and first creates the seal, the volume of air enclosed is defined as 

𝑉0 =  𝑉𝐿 + 𝑉𝐶 − 𝑉𝑆, and the initial pressure is 𝑃0 ~1 atm. After the user pushes down the 

lid, the air is compressed and the final volume is given by 𝑉1 =  𝑉𝐿 − 𝑉𝑊 − 𝑉𝑆. Applying 

Boyle’s law, the pressure at this point is calculated as follows: 

𝑃1 =
𝑃𝑂 (𝑉𝐿 + 𝑉𝐶 − 𝑉𝑆)

(𝑉𝐿− 𝑉𝑆− 𝑉𝑊)
= 𝑃𝑂 +

𝑃𝑂  (𝑉𝑊+𝑉𝐶)

(𝑉𝐿 − 𝑉𝑆− 𝑉𝑊)
      (Eq. 1) 

A more generalized formula can be used for the case when the lid is already pre-placed 

on the cup, at a distance 𝑑 from the final position. The pressure is generated when the 

user pushes the lid to the final position. In this case, the pressure depends on the four 

volumes described above (𝑉𝐿 , 𝑉𝐶 and 𝑉𝑆, 𝑉𝑊) and on the ratio 𝑥, between 𝑑 and the total 

height of the cup (ℎ), defined as 𝑥 =  𝑑/ℎ. The initial volume in this case is given 

by 𝑉0  =  𝑉𝐿 – (1 − 𝑥) 𝑉𝑊 +  𝑥 𝑉𝐶   – 𝑉𝑆  and the initial pressure is again the atmospheric 



81 
 

pressure, 𝑃0 ~ 1 atm. After the lid has been pushed down by a distance 𝑑, the final 

volume is given by 𝑉1  =  𝑉𝐿 − 𝑉𝑊 − 𝑉𝑆. The pressure at this point is calculated by using 

the same relation, 𝑃0𝑉0  =  𝑃1𝑉1, and is defined as: 

𝑃1 =
𝑃𝑂 [𝑉𝐿+x 𝑉𝐶−(1−x )𝑉𝑊−𝑉𝑆

0]

𝑉𝐿− 𝑉𝑊−𝑉𝑆
0 = 𝑃𝑂 +

𝑃𝑂  x(𝑉𝑊+𝑉𝐶)

𝑉𝐿− 𝑉𝑊−𝑉𝑆
0      (Eq. 2)  

𝑉𝑆
0 defines the initial sample volume.  

Second, we analyzed changes in pressure due to pumping. The pressure as a function of 

time is expressed as: 

𝑃1(𝑡) =
𝑃𝑂 [𝑉𝐿+x 𝑉𝐶−(1−x )𝑉𝑊−𝑉𝑆

0]

𝑉𝐿− 𝑉𝑊−𝑉𝑆(𝑡)
       (Eq. 3) 

𝑉𝑆(𝑡) defines the volume of sample present in the cup at time 𝑡. When the sample volume 

is substantially smaller than the difference between the cavity and pumping cup volumes, 

𝑉𝐿 −  𝑉𝑊, the change in the only time-dependent term, 𝑉𝑆(𝑡), becomes negligible and the 

pressure can be considered constant, and Eq. 3 becomes identical to Eq. 2. This 

assumption was verified in all the experiments described in this paper, unless otherwise 

stated. Eq. 3 can be used to guide the design of pumping lids and cups, in order to predict 

the variation in pressure due to pumping and tune it if needed. Pumping lids and cups 

designed to produce gauge pressures up to 1.5 atm were successfully used to flush 

samples out of microfluidic devices. No problems were observed when these pressures 

were applied to the devices. 

When the sample volume is large enough to affect the pressure, the following set of 

equations can be used to describe the change in pressure. Given the hydraulic resistance 
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(𝑅𝐻) of the device, the time-resolved drop in positive pressure can be calculated as the 

sample is pumped out of the cup: 

𝑃1(𝑡) =  
𝑃0(𝑉𝐿−(1−𝑥)𝑉𝑊+𝑥𝑉𝐶−𝑉𝑆

0)

√(𝑉𝐿−𝑉𝑊)2+2(
𝑃0𝑡

𝑅𝐻
(𝑉𝐿−(1−𝑥)𝑉𝑊+𝑥𝑉𝐶−𝑉𝑆

0)−𝑉𝑆
0(𝑉𝐿−𝑉𝑊−

𝑉𝑆
0

2
))

   (Eq. 4) 

Eq. 4 is only valid for 𝑃1 ≥ 𝑃0 and while pumping is in progress. We assumed that the 

values of 𝑅𝐻 remained constant in our experiments, because we pre-filled the channels 

with the solution being pumped. If the channel is not pre-filled, the initial variation of 𝑅𝐻 

during filling would need to be accounted for. To calculate the time required to pump the 

whole sample volume, the following equation is used: 

𝑡∗ =  
(𝑉𝐿−𝑉𝑊−

𝑉𝑆
0

2
)𝑉𝑆

0

𝑃0
𝑅𝐻

(𝑉𝐿−(1−𝑥)𝑉𝑊+𝑥𝑉𝐶−𝑉𝑆
0)

        (Eq. 5) 

Eq. 5 relies on the same assumptions as Eq. 4. 

Negative pressures 

For generation of negative gauge pressures, the pumping lid is pre-placed onto the cup, 

and the user pulls it by a distance 𝑑. Assuming the cup is empty prior to pumping, the 

initial volume is given by 𝑉0  =  𝑉𝐿 − 𝑉𝑊. The initial pressure is the atmospheric 

pressure, 𝑃0 ~1 atm. If the channel is not pre-filled with solution prior to pumping, the 

channel volume needs to be accounted for in 𝑉0. After the lid has been pulled by a length 

𝑑, the final volume of air is given by 𝑉1  =  𝑉𝐿 +  𝑥 𝑉𝐶  – (1 − 𝑥) 𝑉𝑊. Using previously 

defined parameters and the relation 𝑃0𝑉0  =  𝑃1𝑉1, the pressure at this point is defined as: 

𝑃1 =
𝑃𝑂 (𝑉𝐿− 𝑉𝑊 )

𝑉𝐿+x 𝑉𝐶−(1−x )𝑉𝑊
= 𝑃𝑂 −

𝑃𝑂  x(𝑉𝑊+𝑉𝐶)

𝑉𝐿+x 𝑉𝐶−(1−x )𝑉𝑊
     (Eq. 6) 
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Similarly to the case of the positive pressure, once pumping commences, the time 

dependence of 𝑃1 is given by the expression: 

𝑃1(𝑡) =
𝑃𝑂 (𝑉𝐿− 𝑉𝑊)

𝑉𝐿+x 𝑉𝐶−(1−x )𝑉𝑊−𝑉𝑆(𝑡)
       (Eq. 7) 

𝑉𝑆(𝑡) represents the volume of sample pumped into the cup at a given time 𝑡. When the 

sample volume is much smaller than 𝑉𝐿 + x 𝑉𝐶 − (1 − x )𝑉𝑊, the only time dependent 

term in Eq. 7, 𝑉𝑆(𝑡), becomes negligible and the pressure can be considered constant. 

Whenever this assumption cannot be made, one can calculate the time-resolved drop in 

pressure as the sample is pumped into the cup, given the hydraulic resistance (𝑅𝐻) of the 

device: 

𝑃1(𝑡) =  
𝑃0(𝑉𝐿−𝑉𝑊)

√(𝑉𝐿−(1−𝑥)𝑉𝑊+𝑥𝑉𝐶)2−2
𝑃0𝑡

𝑅𝐻
(𝑉𝐿−𝑉𝑊)

      (Eq. 8) 

Eq. 8 is only valid for 𝑃1 ≤ 𝑃0 and while pumping is in progress. To calculate the time 

required to pump a given sample volume one should use the following equation: 

𝑡∗ =  
(𝑉𝐿+𝑥𝑉𝐶−(1−𝑥)𝑉𝑊−

𝑉𝑆
𝑓

2
)𝑉𝑆

𝑓

(𝑉𝐿−𝑉𝑊)
∙

𝑅𝐻

𝑃0
       (Eq. 9) 

𝑉𝑆
𝑓
 represents the total sample volume to be pumped into the cup.  

Generation of predictable positive and negative pressures 

We experimentally tested (Figure 4-1C) predictions of the model for generating both 

positive (Figure 4-1A) and negative (Figure 4-1B) gauge pressures. We report (Figure 4-

1C) the pressures obtained from 40 combinations of cups and pumping lids, plotted 

against the pressure value predicted by Eq. 2 and Eq. 6. Cups were 3D-printed directly on 
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a rigid support and not connected to a device. We used a 5 psi differential pressure sensor 

(PXCPC-005DV, Omega Engineering), which was connected to a power supply (Portrans 

FS-02512-1M, 12V, 2.1 Amp power supply, Jameco Electronics) and to a data 

acquisition board (OMB-DAQ-2408, Omega Engineering). A custom program was 

written in LabVIEW (National Instruments) to convert the signal collected by the sensor 

to gauge pressure. The sampling frequency was 2 Hz. Each condition varied in at least 

one model parameter (𝑉𝐿: 14.7 mL − 44.8 mL; 𝑉𝐶: 0 − 2.7 mL; 𝑉𝑊: 0.8 µL −

3.6 µL; 𝑥: 0.25 − 0.75). The pumping lids used for these experiments included a nozzle 

that could be connected to the positive side of the pressure sensor using a short piece of 

Tygon tubing (1 cm long). Lid volumes were calculated using CAD software, accounting 

for the extra volume introduced by the nozzle, tubing, and the sensor. The other side of 

the sensor was exposed to the external environment, so all data collected were in terms of 

gauge pressure. The results were a close match to the predicted outcome, with an R2 

value of 0.9995 and a slope of 0.96. The pressures produced in this experiment spanned 

more than an order of magnitude (Table S1). Furthermore, the model predicts that even 

higher pressure could be obtained by decreasing the volume of the empty parts (𝑉𝐿 , 𝑉𝐶) 

and/or by increasing the other volumes (𝑉𝑊 and 𝑉𝑆). 

Design guidelines for the pumping lid and cup 

We found three guidelines to be helpful in designing pumping lids and cups: (1) the 

model can be used to either predict the pressure generated by a particular lid/cup 

combination, or to determine the lid and cup dimensions needed to achieve a particular 

pressure. All parameters can be tuned and the resulting pressure for each combination can 

be predicted using the equations described in the previous section. (2) To ensure effective 
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sealing between the pumping lid and the cup, at least one of the two parts (lid or cup) 

should contain a deformable (soft) portion. The design requires a small overlap between 

the parts, so the soft portion is forced to deform when the lid is placed on the cup, thus 

creating a hermetic seal. Typical overlaps were in the order of 100 µm to 200 µm, which 

corresponds to ~ 1-2% of the cup diameter. We used multi-material 3D printing provided 

by Objet 260 system (Stratasys, Eden Prairie, MN, USA), which can produce parts 

composed of two different materials, and mixtures of these two materials. (3) 

Compression deforms the soft portion of the lid, and the material tends to be squeezed 

laterally. We observed that if this deformed material goes between the pumping lid and 

the base of the cup, the lid cannot be pushed to its final position and the obtained pressure 

will be lower than the one predicted by the model. This effect can be minimized by 

ensuring that the thickness of the soft layer is significantly larger than the overlap 

between the lid and cup, typically in the order of 1-1.5 mm. Another solution is to use 

soft layers with a tapered profile (Figure 4-1A). 

Controlled pressure variation during an experiment 

Next, we wished to test whether it would be possible to switch the pressure applied by the 

pumping lid without interrupting the flow or exposing the sample to the environment (to 

minimize contamination or evaporation). This capability is desired when several flow 

rates need to be tested in one continuous experiment. Pressure is changed by compressing 

or expanding air in the cavity. Therefore, here we investigated whether the level of 

compression or expansion, and therefore the pressure, can be controlled precisely by 

using the guiding structures (Figure 4-2). For example, for both positive- and negative-

gauge pressures, we designed lids that can be placed in three positions, labeled (i), (ii), 
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and (iii). Each position provides a defined, specific pressure, and the user can switch 

between the positions by rotating the lid on its axis (Figures 4-2D, 4-2H). The lids for 

these experiments were 3D-printed with a nozzle for the pressure sensor and pressure 

data was collected with the same setup as described in previous sections. For both 

positive- and negative-pressure devices, the starting position, (i), corresponds to zero 

gauge pressure (Figure 4-2). This adjustable design thus enables customized, “pre-

programmed” pressure control during an experiment (e.g. to initiate or stop flow, and to 

change the flow rate) and allows the fully assembled device to be stored without applying 

pressure before use. While the devices demonstrated here are able to produce three 

specific pressures, more lid positions can be designed to enable finer tuning. 

 

Figure 4-2. Strategies for producing multiple pressure values in a single device using a 

cup and pumping lid. (A-D) Positive pressures produced by turning a pumping lid (grey) 

using a cup (blue) fit with a guiding structure (black) (A). Turning the lid within the 

guiding structure yields three potential lid positions, which are shown in side (B) and top 
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(C) views, each of which produces a different pressure. In Position (i) the lid is not in 

contact with the cup, so no pressure is produced. In Position (ii) the lid is lowered and 

positive pressure is produced. In Position (iii) the lid is lowered further, and the pressure 

increases. The horizontal dashed lines show the level of the lid in the three positions. 

Panel D shows an experimental pressure profile obtained by turning the lid between the 

three positions. (E-H) Negative pressures produced by turning a pumping lid (grey), 

using an cup (blue) fit with a guiding structure (black) (E). Turning the guiding structure 

yields three potential lid positions, which are shown in side (F) and top (G) views, each 

of which produce a different pressure. The pumping lid and the cup have via-holes that 

align only in Position (i), so there is no gauge pressure in this configuration. In Position 

(ii) the lid is raised and negative pressure is produced. In Position (iii) the lid is raised 

further, and the pressure decreases. The horizontal dashed lines show the level of the lid 

in the three positions. Panel H shows an experimental pressure profile obtained by 

turning the lid between the three positions. 

Generation of flow using the pumping lid approach 

Next, we tested the prediction that for a given channel geometry, the pumping lid method 

would provide consistent flow rate that depends on viscosity, but not on surface energy or 

density of the fluid being pumped. We used Eq. 1 to predict the pressure applied by the 

pumping lid, and Eq. 10 to predict hydraulic resistance 𝑅𝐻 that depends on the viscosity 

and the dimensions of the channel16. 

𝑅𝐻 =  
12µ𝐿

ℎ3𝑤(1−0.63(
ℎ

𝑤
))

        (Eq. 10) 

𝐿 defines the channel length, ℎ the channel height, and 𝑤 the width of the channel. The 

volumetric flow rate can thus be predicted with Eq. 11: 

𝑄 =  
𝑃

𝑅𝐻
=

𝑃ℎ3𝑤(1−0.63(
ℎ

𝑤
))

12µ𝐿
       (Eq. 11) 

To test these predictions, we first characterized pumping of water through a microfluidic 

device using seven pumping lids, each providing a different pressure (Figure 4-3A). The 
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device consisted of glass-bonded PDMS layer17, pumping cup, PTFE tubing, and the 

pumping lid. A 30.8 cm long, 58 µm high, 110 µm wide serpentine was molded into the 

PDMS layer, and was pre-filled with each solution prior to pumping experiment, as 

described in SI. The slope of the fitting curve is the inverse of the hydraulic resistance 

(𝑅𝐻) for the experimental setup, as suggested by Eq. 11. 

The experimental value for 𝑅𝐻 obtained from the fit is 2.59*1014 Pa s /m3, which matched 

the theoretical value calculated for the microfluidic channel geometry: 2.58*1014 Pa s /m3 

16 . Thus, it was possible to predict the flow rate for a given pumping lid used with a 

given microfluidic device, and the design was robust enough to give reproducible results. 

The flow rates in this experiment were 1 – 5 µL/min, and this range was chosen to 

minimize the experimental errors when measuring flowing time. Higher flow rates could 

be produced by increasing the pressure generated by the pumping lid (as described in the 

previous sections), or by using a device with lower hydraulic resistance. For example, a 

device with a channel 150 µm tall x 150 µm wide x 20 mm long will have a hydraulic 

resistance almost 200 times less than the devices used for these experiments, so the flow 

rate generated with the same pumping lids would approach 1 mL/min. 
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Figure 4-3. Experimentally and quantitatively testing the model describing pumping with 

a pumping lid as a function of hydraulic resistance of the channel and properties of the 

fluid. (A) Flow rate of water in a microfluidic device using different pumping lids to 

generate different pressures. The dotted red line indicates the predicted flow rate based on 

the device geometry, while the dotted blue line shows the linear fit of the data and its 

parameters are reported on the graph (N=3; error bars smaller than the size of the 

marker). Standard deviations for all of these experiments were below 5% of the measured 

value. (B) A plot of experimental flow rates, multiplied by the viscosity, for different 

aqueous solutions. Flow rates were inversely proportional to viscosity and independent of 

the surface energy or density of the solutions. Schematics of the setup used for these 

experiments are provided in the supplementary material. 

Generation of flow rate independent of density and surface energy 

To verify that the flow rate in the pumping lid method is independent of solution density 

and surface energy, we pumped nine aqueous solutions of different properties using 

seven different lids to measure the flow rate at different inlet pressures. Solutions of 

viscosity similar to water, but with different surface energies (30 – 72 mN/m) and 
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different densities (1 – 1.9 g/mL), had flow rates comparable to those obtained for water. 

We experimentally measured viscosities of all nine solutions to confirm this result. Note 

that the viscosity-adjusted flow rate values (𝑄 ∙ 𝜇) were similar for all liquids (Figure 4-

3B), which is explained in the next section. 

Generation of flow for solutions of different viscosities 

We then tested whether the pumping lid is appropriate to produce flow in solutions with 

viscosities higher than that of water. In our experiments, solutions had viscosities 

between 1 mPa*s and 4 mPa*s (Figure 4-3B). The flow rates for high viscosity solutions 

were lower than those obtained for pure water, because the value of the hydraulic 

resistance 𝑅𝐻 described above is directly proportional to the viscosity of the liquid 

pumped (Eq. 10)16. Eq. 11 can be re-written as: 

𝑄 ∙ µ =  
𝑃ℎ3𝑤(1−0.63(

ℎ

𝑤
))

12𝐿
        (Eq. 

12) 

Eq. 12 predicts that if the same lid-cup combination is used on the same device, the 

product of the flow rate and the viscosity of the solution will be constant 16. Our 

experimental results (Figure 4-3B) corroborated this prediction, since the µ ∙ 𝑄 values for 

all the solutions analyzed were comparable to those obtained for water (Figure 4-3B). 

This means that the pressure generated by a pumping lid depended solely on the lid-cup 

dimensions, and not on the nature of the solution to be pumped. 

Use of multiple lids on the same device to achieve complex flow control over long 

timescales 
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Next, we tested the idea that using separate cups and lids at different inlets makes it 

possible to simultaneously pump more than one solution and to independently control the 

pressure imposed at each inlet (Figure 4-4A). First, we used multiple lids to produce 

nanoliter droplets (Figure 4-4B) 18-20. Immiscible fluids can be difficult to handle under 

pressure-driven flow because the applied pressure should be higher than capillary 

pressure but not so high to generate an excessive capillary number that would cause 

droplet deformation21. Also, when multiple inlets are controlled with different pressures, 

liquid could potentially flow from one cup to another. To avoid this, we designed devices 

with geometries that included a serpentine channel between the inlets and the junction 

used to produce the droplets. This serpentine channel had a fluidic resistance higher than 

that of the outlet channel, and ensured that liquids were not transferred from one cup to 

the other during experiments. This approach was used to generate nanoliter droplets 

(plugs) of water in fluorinated oil, using flow focusing and T-junction geometries (Figure 

4-4B), with volumes that ranged from 0.5 to 2.5 nL.  

Parallel laminar flow profiles can also be produced (Figure 4-4C). We achieved stable 

flow patterns for more than 2.5 h, with a total pumped amount of 0.9 mL. The predicted 

decrease of flow rate in this system over a 2.5 h period was 45% of the original value 

(Eq. 4), which was consistent with our experimental observations (Figure 4-4C). 

Increased diffusion between the dyes was observed, due to the longer residence time in 

the channel. Because we used lids of the same size and loaded samples of the same 

volume and viscosity, over time we observed a decrease in the absolute value of the flow 

rates, but not a decrease in their ratios. We emphasize that if the volumes of the lids, 
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cups, sample volumes and/or viscosities are different, the flow rates will drop at different 

rates (Eq. 4).  

 

Figure 4-4. Use of the pumping lid approach to control pumping of each of several fluids 

with different properties in a microfluidic device. (A) Schematic of the pumping 

approach using multiple solutions in the same device. Each sample was pumped in the 

device with a different pumping lid, each lid producing a different pressure. (B) Left: 

Experimental photographs illustrating production of nanoliter plugs (red) in fluorinated 

oil (transparent), using a microfluidic device with flow focusing geometry. Right: 

Production of multicomponent aqueous droplets in fluorinated oil using a T-junction. The 

solutions (red, transparent and green) were pumped independently and used to produce 

nanoliter plugs. (C) Experimental photographs illustrating that the parallel laminar flow 

profile of three separate streams of aqueous solution (red, transparent and light blue) was 

stable even after 165 min (2.75 h). A total volume of 0.9 mL (300 µL of each solution) 

was pumped in this experiment. 

Use of composite lids to produce different flow patterns in the same device 

A “composite lid,” a pumping lid with multiple cavities, was designed to simultaneously 

seal multiple cups (Figure 4-5). The cavities in the composite lid can be isolated or 

connected to one another. For example, if inlets require identical pressures, their 

corresponding cavities can be linked (Figure 4-5C). 
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Figure 4-5. Production of different flow profiles in the same device using composite 

pumping lids. (A) Schematics of the setup used for the experiments. The microfluidic 

device has three cups, each dedicated to a different aqueous solution (from left to right: 

green, transparent, and red). A composite lid controls the pressure at each of the three 

inlets, thus controlling the flow rate of each solution. (B) Micrograph of the junction at 

which the three inlet branches combine into a single channel and the streams from the 

three inlets produce parallel laminar flow. (C) Different composite lids can be used to 

produce different flow profiles. The top row shows the cross-section of five different lids, 

cut along the red dashed line in panel A. The middle row shows the experimental flow 

profiles obtained with these five lids in the same microfluidic device. The sketches 

(bottom row) show the expected flow profiles based on the pressures produced by the lids 

and the device geometry. For the channel used in these experiments the width (1.5 mm) 

was more than 35 times bigger than the channel height (40 µm), so the effect of parabolic 

flow near the lateral walls was negligible16  

To test these devices quantitatively, we measured the width of each solution stream in the 

three-stream aqueous laminar flow, (the Reynolds number was always less than 1 in our 

experiments). The gauge pressures at the three inlets are defined as 𝑃1, 𝑃2, and 𝑃3, while 
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the pressure at the device outlet is zero. Fluidic resistances for the three inlet branches 

(before the junction) are defined as 𝑅, while the resistance of the main channel (formed 

by the junction of the three inlet branches) is defined as 𝑟. In the experiments described 

in this paper, the fluidic resistance 𝑅 of the inlet branches was intentionally set larger 

than the outlet resistance 𝑟, to increase the range of pressures that could be applied to the 

three inlets without generating back-flow in the branch with the lowest pressure. Under 

these conditions, theory predicts that 𝑄𝑖 is proportional to 𝑃𝑖 and can be approximated by 

Eq. 11. Ignoring the effects of three-dimensional diffusion22,23 and ignoring the effect of 

the parabolic flow profile for these wide channels, we predicted the flow profiles as 

described in the supplementary material, and found them to be in good agreement with 

experiments. 

These lids were used to produce parallel laminar flow profiles in a microfluidic device 

(Figure 4-5B). Each composite lid had a different geometry (Figure 4-5C) and generated 

a different set of pressures at the three device inlets. These pressures were used to predict 

the flow profile in the microfluidic device, as described in the supplementary material, 

and experimental results matched the flow profiles predicted by the flow rate model 

(Figure 4-5C). Based on the geometries of the device and the composite pumping lid, 

flow profiles can be controlled and predicted. 

Use of pumping lids to load SlipChip devices by positive and negative pressures 

Next, we showed that the pumping lid could be used to reliably and easily load SlipChip 

devices24 using either positive or negative pressures. This is a good test because loading 

SlipChip devices requires control of the inlet pressure within a defined range,25 and 

SlipChips are intended to be used in limited resource settings (LRS) by untrained users.26-



95 
 

29 First, we tested the pumping lid on a SlipChip designed for a digital nucleic acid 

detection assay26 (Figure 4-6A), pumping a total of 5 µL of solution with 0.03 atm 

pressure (Eq. 1). We asked a 6-year-old volunteer to use the pumping lid to operate the 

device. We found that pumping proceeded to completion despite the variation of pressure 

applied to the pumping lid by the volunteer.30,31 We expect the simplicity of the pumping 

lid to be valuable in both LRS and laboratory settings, e.g. for digital single-molecule 

measurements.31 

In another experiment, we tested loading of a different SlipChip device by negative 

pressure. To further illustrate the applicability of the pumping lid method to complex 

tests, we used a SlipChip designed for multivolume digital nucleic acid amplification,32,33 

which presents challenges in filling due to variation of capillary pressure among wells of 

different sizes. Previously this type of device was filled by positive pressure and dead end 

filling.25 We modified the device for negative-pressure filling by adding a sealing ring 

filled with high-vacuum grease (sealing structure) around the active area containing the 

amplification wells (Figure 4-6B). We also added an outlet for oil to the device, over 

which the negative-pressure pumping lid was placed. The device was assembled such that 

the lubricating oil (5 cSt silicone oil) was filling the wells. For loading, sample (50 µL of 

0.5 M FeSCN aqueous solution) was placed onto the inlet, and the pumping lid was 

pulled up to create negative pressure of 0.1 atm, remove excess oil and draw the sample 

into all of the wells of the device (Figure 4-6B). This experiment demonstrated that 

bubble-free filling can be accomplished using the pumping lid, and that complex devices 

(a combination of immiscible fluids and wells with different capillary pressures) can be 

handled. 
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Figure 4-6 Use of the pumping lid for loading of SlipChip devices. (A) Photographs of a 

6-year-old volunteer with minimal training using the pumping lid to load a SlipChip 

device. The sample is placed in the cup at the device inlet (A1), the pumping lid is placed 

on the cup, and when the lid is pushed, positive pressure is generated and sample 

pumping starts (A2). Once the sample loading is complete, slipping two plates generates 

discrete compartments (A3). A video of this experiment is provided.30 (B) SlipChip 

sample loading by negative pressure. (B1) Schematic outline of the steps. The lid is pre-

placed on the cup, and the sample is placed at a separate inlet in the device. Pulling the 

lid creates negative gauge pressure and initiates loading. Dead-end filling ensures that the 

loading stops once the device is completely filled. (B2) Photograph of a multivolume 

SlipChip device for digital nucleic acid quantification loaded with negative pressure 

pumping lid method.  

Vapor-liquid equilibrium (VLE) method for pressure generation 

We then explored how vapor pressure of a volatile liquid can aid the pumping process by 

isolating its effect from compression, and investigated the potential to harness the vapor 

pressure for pumping a non-volatile sample. Our hypotheses were that (i) by taking 

advantage of vapor-liquid equilibrium (VLE), one would be able to pump large volumes 

of liquid over extended periods of time at a relatively constant pressure, without the need 

to compress a large volume of a gas inside the device; (ii) a single lid design could be 
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used to generate different pressures by using liquids of different vapor pressure; (iii) a 

single combination of a lid design and a volatile liquid could be used to generate different 

pressures by tuning the temperature. In this approach, a volatile liquid is stored in a 

sealed compartment inside a pre-assembled vapor pressure pump, comprised of a lid and 

cup (Figure 4-7A). The design of this lid and cup differ from those described previously, 

as turning this lid connects or disconnects the compartments in the cup, rather than 

compressing or expanding the gas enclosed in the cavity, as in a SlipChip device24. In 

addition, the cup is divided to contain the volatile liquid and one or more separate sample 

compartments. When the user turns the lid, the volatile liquid evaporates into the cavity 

(Figure 4-7B). The cavity in the pumping lid is isolated from the atmosphere, so 

evaporation of the volatile liquid increases the pressure in the cavity. Once the volatile 

liquid reaches equilibrium with its vapor, the pressure will be higher than the atmospheric 

pressure, and its value can be calculated using the thermodynamic VLE model. The user 

can initiate pumping by opening a valve or removing a plug. During pumping, 

evaporation of additional liquid provides additional pressure, although there is a drop in 

pressure, since the volume previously occupied by sample is now available to the gas 

phase, effectively causing expansion. Similarly to the pressure change observed in the 

pumping lid method, this pressure drop can often be neglected, if the sample volume 

being pumped is much smaller than the pump gas compartment volume. Once the entire 

sample has been pumped through the device, the vapor in the lid connects to the 

atmosphere and the gauge pressure drops to zero. This method of vapor pressure pumping 

can be used independently or in conjunction with compression. 
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Figure 4-7 Generation of pressure using vapor liquid equilibrium (VLE). (A) Schematics 

of the parts used for VLE pressure generation. (B) Schematics of the method used to 

generate pressure. The figures show the cross section of the lid and cup assembly along 

the red line shown in panel A. Prior to the experiment, a volatile liquid (FC-72, blue) and 

the sample (red) are placed in isolated compartments of the cup. At this stage, the 

pressure in the lid cavity is equilibrated with the atmosphere. When the lid is rotated, the 

volatile liquid is exposed to the air in the cavity and starts to evaporate to reach its 

equilibrium pressure. When the plug is removed from the device outlet, the sample starts 

flowing. After the entire sample has been pumped, the cavity is in contact with the 

external atmosphere and the pressure returns to zero. (C) An experimental pressure 

profile obtained by performing the steps described in panel B, for pumping 20 L of 

water. (D) Pressure profile obtained when pumping a 2 mL sample volume through a 

microfluidic device. (E) Equilibrium pressures obtained by using mixtures of liquids (FC-

72 and FC-40) at different molar fractions (N=3; error bars smaller than the size of the 

marker). The dashed line indicates the linear fit of the data and its parameters are reported 

in the graph. (F) Equilibrium pressure obtained using FC-72 at different temperatures. 

The dashed line shows the values predicted by the VLE model (Eq. 16). Each point 
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represents the average over at least 62 and up to 87811 pressure measurements after the 

system has equilibrated. 

Model for VLE pressure generation using perfluorohexane (FC-72) 

To find the predicted pressure at VLE, the fugacities of perfluorohexane in both liquid 

(right hand side in Eq. 13) and gas (left hand side in Eq. 13) phases are set equal. The 

general expression for VLE is: 

�̂�FC𝑦FCP =  𝛾FC𝑥FC𝜙FC
satPFC

satexp [
VFC

L (P−PFC
sat)

RT
]     (Eq. 

13) 

where: �̂�FC = fugacity coefficient of FC-72 in gas phase at T, P 

  𝑦FC = equilibrium mole fraction of FC-72 in the gas phase at T, P 

  P = equilibrium system pressure 

  𝛾FC = FC-72 activity coefficient in liquid phase 

  𝑥FC = equilibrium mole fraction of FC-72 in the liquid phase at T, P 

  𝜙FC
sat = fugacity coefficient for pure FC-72 at T, Psat 

  PFC
sat = FC-72 saturation pressure at T, oftained from Antoine equation  

  VFC
L  = FC-72 liquid molar volume 

  R = ideal gas constant 

  T = system temperature 

To simplify the calculation, we made the following assumptions: 
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 Liquid phase is pure FC-72 (ignoring air dissolving in FC-72), 𝑥FC = 1 

 Liquid phase behaves ideally, 𝛾FC = 1 

 Gas phase also behaves ideally, �̂�FC = 1 and 𝜙FC
sat = 1, and that Dalton’s law 

applies: 

o P =  ∑ 𝑝𝑖𝑖 = pair + pFC , where pFC = 𝑦FCP  

 T is constant 

 

After simplification, the equation becomes: 

𝑦FCP =  PFC
satexp [

VFC
L (P−PFC

sat)

RT
]       (Eq. 14a) 

Or, equivalently: 

VFC
L (P − PFC

sat) = RT ln (
P−pair

PFC
sat )       (Eq. 

14b) 

Because the Poynting factor (exponential term in Eq.14a) is close to unity, the 

equilibrium system pressure P is almost equal to the initial pressure plus FC-72 saturation 

pressure. This equation was analysed numerically to calculate the predicted total pressure 

in the system (equal to 𝑃). If vapor pressure pumping is used in combination with the 

pumping lid approach, the final pressure 𝑃1 should be used in place of pair. 

The values of PFC
sat were obtained with the Antoine equation: 

ln(PFC
sat [atm]) = 9.19734 −

2488.59

T [°C]+213.42
      (Eq. 15)34  

Model for temperature dependence of VLE pressure 
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Vapor pressure of the volatile liquid, and therefore the performance of this pumping 

approach, is affected by temperature. To make accurate predictions of the pressure 

generated by this vapor pressure pump, the ideal gas law was substituted for pair (the 

initial pressure), which allowed us to take into account both the change in vapor pressure 

and gas expansion as the temperature is changed: 

VFC
L (P − PFC

sat) = RT ln (
P−

nairRT

V

PFC
sat )      (Eq. 16) 

Eq. 16 was used to calculate the predicted value of P at different temperatures. The total 

volume available for gas in the device (𝑉) was calculated in CAD software. The initial 

number of moles of air in the gas compartment (nair) remains constant, and is dictated by 

the temperature at which the compartment was initially sealed from atmosphere (21.5° 

C). The device was designed specifically to avoid any compression during the turning of 

the lid, to isolate the effects of VLE on pressure. For VLE pumping, we neglected the 

vapor pressure of the aqueous sample, because the vapor pressure of water is much lower 

than that of perfluorohexane (0.025 atm vs. 0.248 atm) at 21.5° C.  

Pressure and flow generation using the VLE method 

The experimental behavior of pressure agreed with the theoretical predictions (Figure 4-

7C). The equilibrium pressure obtained experimentally approached the pressure predicted 

by the simplified VLE model (Eq. 14), and the system was used to pump 20 µL of water 

through a microfluidic device in ~ 280 s (4.7 min). The VLE method could be used for 

pumping volumes in the milliliter range, for example 2 mL of water was pumped in more 

than 7 h, showing less than 30% reduction in the input pressure using a lid with a 30 mL 

gas compartment (Figure 4-7D). This reduction was caused by the fact that the volume 
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previously occupied by sample became available to the gas phase to expand. As 

expected, larger lids took longer to equilibrate because more liquid needed to evaporate. 

However, the pressure remained stable when pumping was not in progress (Figure 4-7D), 

so equilibration can be done prior to the pumping experiment. Alternatively, if the 

pressure does not need to be controlled precisely, the pumping can be started as soon as 

evaporation is initiated. 

Tuning of VLE pressure by changing composition of the volatile liquid or 

temperature 

To test our second hypothesis, we investigated generating pumping pressures by liquids 

with different vapor pressures. The equilibrium gauge pressure reached by the VLE 

system is related (but not necessarily equal) to the vapor pressure of the volatile liquid, 

according to Eq. 13. For a mixture of liquids, vapor pressure depends on the molar 

fraction of each component, amongst other factors. We measured the equilibrium 

pressures for different mixtures of FC-40 (vapor pressure 0.003 atm at 21.5° C) and FC-

72 (vapor pressure 0.248 atm at 21.5° C). Equilibrium VLE pressure scaled linearly with 

the FC-72 molar fraction (R2 = 0.9999) and approached ~ 0.003 atm for pure FC-40 

(Figure 4-7E), as expected.  

To test our third hypothesis, we investigated pressure generated by this vapor pressure 

pump at different temperatures using FC-72 as the volatile liquid. Because vapor pressure 

is a function of temperature (Eq. 15 and Eq. 16), the equilibrium pressure of FC-72/air 

system increased with temperature, yielding values consistent with those predicted by the 

VLE model (Figure 4-7F). Note that the change in pressure with temperature far 

exceeded the one predicted for heating of an ideal gas in a closed volume. This presents 
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an opportunity to incorporate simple microfabricated heaters35,36 to precisely control the 

pressures provided by this pump, and emphasizes the importance of temperature control 

for the operation of the vapor pressure pump. As mentioned earlier, VLE pumping can 

potentially be used in combination with the pumping lid gas compression or expansion. 

When generating positive pressure, the compression can be used to increase the range of 

pressures that can be achieved with the VLE approach. In the case of gas expansion, the 

use of VLE sets a lower limit to the pressure that can be obtained to the vapor pressure of 

the volatile liquid. The long-term stability of volatile liquids in the acrylic-based resins 

used for 3D-printing was not characterized, but preliminary experiments with the same 

liquids pre-packed in blister packs showed that it is possible to obtain similar pressures. 

Conclusions  

Here we described a way of generating positive and negative pressures with an 

equipment-free pumping lid and demonstrated its utility to induce flow in microfluidic 

devices. We used multi-material 3D printing to produce the parts, allowing fast 

prototyping without reducing their quality. This fabrication process is attractive because 

it allows rapid design iterations, and can also be scaled up to mass production using 

overmolding techniques. Here, pumping cups were attached to the device post-

fabrication, but they can be included as part of the device during manufacturing. The first 

method described in this work relies on controlled compression or expansion of gas. 

While compression of gas has been demonstrated previously for pumping in microfluidic 

applications,37 this work extends the previous approach. It demonstrates new capabilities, 

including (i) enabling the generation of both positive and negative pressures, (ii) the 

capability to adjust pressure in a programmed way while pumping is in progress, (iii) the 
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use of multiple lids or a composite lid to control pressure at different inlets within the 

same device, and (iv) in addition to device loading applications, here we show more 

complex fluid manipulations, such as stable long-term laminar flow of multiple solutions 

and nanoliter droplet formation in two-phase flows. Furthermore, this work will enable 

others to use this approach more easily because (i) the method has been modeled and the 

model was quantitatively validated by experimentally measuring the pressures generated 

by the pumping lids, and (ii) the model was used to provide guidelines for the design of 

cups and pumping lids. We also demonstrated a complementary second method for 

generating pressure via evaporation of a volatile liquid in the pumping lid. The 

equilibrium pressure generated with this approach (before pumping starts) depends on the 

nature of the volatile liquid and on its temperature, but is not dependent on the geometry 

of the lid used for the experiment.  

The approaches described in this work address many of the fluid-handling challenges that 

are faced when working with microfluidic devices1-15 including those involving laminar 

flow,22,38 droplets,21,39-41 and cell culture experiments.42-44 The simplicity of this pumping 

method overall and the use of the guiding structures make it robust to differences in 

pushing/pulling force; the user simply places a sample at the inlet and then pushes/pulls 

the pumping lid to generate the flow. Even when the user is applying excessive force (see 

video30), the method still operates as programmed; this makes it suitable for even the 

most minimally trained users. The pumping lid approach is thus appropriate for a variety 

of applications in different settings. Experiments taking place in a research lab can 

benefit from this compact and equipment-free approach, reducing the need for external 

connectors and simplifying the workflow, especially when experiments are conducted in 
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the controlled environments of a cell culture incubator42-44 or an anaerobic chamber.45 

Additionally, contamination from the external environment and evaporation are 

minimized because the sample is contained in the pumping cup during the entire 

experiment. The pumping lid also allows flow rates to be tuned in real time while the 

experiment is in progress. The isolation and containment of samples is a characteristic 

that is highly desirable for cell culturing,42 particularly when dealing with biohazardous 

samples and “organs-on-chip” technologies.43,44 Such experiments are usually performed 

in controlled conditions (temperature, gas composition, etc.) and often require long 

pumping times.15 With this approach, the entire pumping lid setup can be placed inside an 

incubator, without the need for external controllers. The use of VLE pumping is 

particularly suitable for temperature-controlled environments. Due to its portability and 

programmability, the pumping lid can also benefit applications in resource-limited 

settings, specifically for portable diagnostic devices.6,7,24,26,28,46,47 
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Chapter 5: 

Instrument for Real-Time Digital Nucleic Acid Amplification on Custom 

Microfluidic Devices* 

Abstract 

Nucleic acid amplification tests that are coupled with a digital readout enable the absolute 

quantification of single molecules, even at ultralow concentrations. Digital methods are 

robust, versatile and compatible with many amplification chemistries including 

isothermal amplification, making them particularly invaluable to assays that require 

sensitive detection, such as the quantification of viral load in occult infections or 

detection of sparse amounts of DNA from forensic samples. A number of microfluidic 

platforms are being developed for carrying out digital amplification.  However, the 

mechanistic investigation and optimization of digital assays has been limited by the lack 

of real-time kinetic information about which factors affect the digital efficiency and 

analytical sensitivity of a reaction. Commercially available instruments that are capable 

of tracking digital reactions in real-time are restricted to only a small number of device 

types and sample-preparation strategies. Thus, most researchers who wish to develop, 

study, or optimize digital assays rely on the rate of the amplification reaction when 

performed in a bulk experiment, which is now recognized as an unreliable predictor of 

digital efficiency. To expand our ability to study how digital reactions proceed in real-

time and enable us to optimize both the digital efficiency and analytical sensitivity of 

digital assays, we built a custom large-format digital real-time amplification instrument 

that can accommodate a wide variety of devices, amplification chemistries, and sample-

                                                           
* This chapter is in submission for publication at PLOS One with authorship belonging to David A. Selck and 
Rustem F. Imsagilov. 
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handling conditions. Herein, we validate this instrument, we provide detailed schematics 

that will enable others to build their own custom instruments, and we include a complete 

custom software suite to collect and analyze the data retrieved from the instrument. We 

believe assay optimizations enabled by this instrument will improve the current limits of 

nucleic acid detection and quantification, improving our fundamental understanding of 

single molecule reactions and providing advancements in practical applications such as 

medical diagnostics, forensics and environmental sampling. 

Introduction 

This paper describes a custom-built instrument and accompanying software for real-time 

digital nucleic acid amplification studies that can be used to develop, study, or optimize a 

wide variety of digital assays for numerous applications in a device-agnostic manner. 

Digital nucleic acid amplification works by partitioning a sample into many parallel 

individual samples. Of these partitioned samples, some may contain a target nucleic acid 

molecule (positive) while others do not (negative). By comparing the number of positive 

amplifications to the total number of partitioned samples, the absolute concentration of a 

sample can be calculated based on a Poisson distribution. Some of the advantages 

provided by a digital readout are that it can provide absolute quantification without 

standard calibration curves,1–3 it is robust to environmental conditions, including 

temperature, reagent quality and sample purity,4 and it can provide high resolution (< 1.5 

fold change),5 sensitivity,5 and accuracy1 at low concentrations. Digital readouts enable 

precise counting of single molecules, including rare mutations and analyses of gene 

expression, which make them invaluable to assays that require detection at low 

concentrations, such as viral load in occult infections.3 The digital method is also 
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versatile; it can be coupled to many amplification technologies, including isothermal 

amplification chemistries, which in bulk reactions are limited in their ability to quantify 

very low concentrations of target molecules as a result of kinetic variations among 

samples.6 

Although reactions performed in a digital format provide these and many other 

advantages, few assay optimizations have been fully characterized. Thus, information on 

the quality of a reaction is confined to the end-point readout and little is known about 

how these reactions proceed in real time.2 Currently, most optimizations for digital assays 

are performed in bulk by using the rate of the reaction as a proxy for efficiency.7,8 

However, rate doesn’t necessarily correlate with efficiency in all digital reactions and 

both “fate” and “rate” of individual digital amplification reactions should be measured in 

digital format.9 Thus, to measure the digital efficiency of a reaction, optimization should 

be done in a digital format using real-time kinetic information for each 

compartmentalized reaction to determine the performance of and variation between all 

independent single molecule reactions. 

One commercial option for performing real-time digital analyses on microfluidic devices 

is the Fluidigm Biomark HD. This instrument can be used to optimize digital assays 

because for each digital reaction, it can collect real-time traces (to determine the kinetic 

rate of the amplification) and melt curves (to determine false from true positive samples). 

While these real-time digital instruments have been used in a number of applications,1,2,10 

they are limited to proprietary microfluidic devices with pre-established sample handling 

protocols. In addition to the commercial implementations, some laboratories have 

constructed real-time digital instrumentation for specific needs.11–17 Many 
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implementations of the digital format do not meet the requirements of commercially 

available real-time instruments; these include isothermal assays where the sample and 

amplification enzymes cannot be mixed until the sample has been partitioned18,19 and 

single devices that include compartments of different volumes to increase the assay 

dynamic range.20 

An ideal real-time digital instrument would be fully customizable to work under a broad 

range of conditions, yet be simple enough for the average user to fully leverage its 

capabilities. Specifically: 

 It should have accurate, precise and fully programmable temperature control to 

within 1 °C across the full range of relevant temperatures. 

 The imaging system should have sufficient resolution to accurately measure the 

kinetics of nanoliter amplification reaction volumes over a large field of view. 

 It should incorporate multiple fluorescent channels to enable the analysis of 

multiplex reactions and non-standard chemistries.  

 It should be compatible with collection and analysis software that is easy to use 

and capable of measuring the kinetics of reactions in any custom device. 

 It should be easily adaptable to work with a wide variety of devices and 

architectures of varied sizes and materials. 

 Its performance should be comparable with commercially available instruments 

that capture real-time performance in bulk reactions. 

 It should be suitable for use a wide variety of amplification chemistries. 
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To expand our ability to study how digital reactions proceed in real-time, including our 

capability to elucidate which factors affect the digital efficiency or analytical sensitivity 

of a reaction, we built a custom large-format digital real-time amplification instrument 

that can accommodate a wide variety of devices, assays and conditions. This instrument 

has been used previously to optimize a loop-mediated isothermal amplification (LAMP) 

assay for hepatitis C virus (HCV) quantification9 and to develop a method to both 

quantify and genotype HCV infections in a single step.21 In this paper, we provide the 

schematics of the instrument used in these previous studies and we validate its 

performance using well characterized chemistries (real-time digital reverse transcription 

PCR) and a previously validated microfluidic device (SlipChip). We compare instrument 

performance to an Illumina Eco real-time PCR system using HCV RNA as the template. 

We also provide the relevant calibration and performance characteristics of the 

instrument, and the complete custom software suite used to collect and analyze data 

retrieved from the instrument.  

Results and Discussion 

Temperature control design and calibration 

To obtain reliable real-time data from nucleic acid amplifications in either a bulk or 

digital format, temperature control must be precise and accurate. We have shown 

previously that while digital reactions can be robust to wide temperature changes 4 the 

kinetics of a reaction will vary as a function of temperature. Others have constructed 

thermal control units using Peltier elements;12–14 however, to increase reliability and 

accuracy we chose instead to modify an existing thermocycler. We used a PTC-200 

thermocycler with a stated temperature range of -5 °C to 105 °C and accuracy of ± 0.3 
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°C. This specific model was chosen because it can be fully controlled by third-party 

software through an ASCII control interface. Although it is no longer manufactured, it is 

widely available on the used-equipment market, and customization is simplified because 

the heated block is physically separated from the base instrument. 

The thermocycler in its standard state is incompatible with custom devices because they 

are standardized to the well-plate format; thus, we customized the thermocycler block. 

We designed and machined from aluminum an in situ thermal block with the same 

thermal mass as a standard 96-well block to retain the rated ramp rate of the PTC-200 

thermocycler (which is up to 3 °C/s). The thermal block assembly contains a set of four 

different Peltier elements: a heatsink, a circuit board, thermal transfer sheets, and 

thermistors. The thermal block is kept in electrical isolation and thermal contact through 

the use of a Tgard K52 polyimide sheet in conjunction with a Tgon 805 graphite sheet, 

and the temperature of the custom block is reported to the thermocycler with three 

different 20K ohm thermistors. We assembled the block this way to closely match the 

standard thermal assembly to maintain optimal performance and require only minimal 

calibration.  
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Figure 5-1. Temperature characterizations of the modified thermal block used in the 

PTC-200 thermocycler (A–B) and a Comsol-model to determine the on-device error (C). 

The deviation in the actual and reported temperatures are provided for the uncalibrated 

thermal block (A) and for the block after calibration (B). The Comsol-modeled deviation 

(C) provides the difference between the actual block temperatures and the theoretical 

reaction temperatures of the well volumes in a SlipChip microfluidic device. Error values 

are the difference between the thermocycler-reported thermal block temperature and 

either the actual thermal block temperatures (measured by a type K thermocouple) or the 

modeled device temperature; a positive number indicates that the thermal block 

temperature is higher than the device temperature. 

The temperature calibration experiments were performed over the range of 12–98 °C with 

a temperature interval of 0.5 °C. As expected, at room temperature the reported and 
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actual readings were in close agreement because this class of thermistors has a defined 

resistance of 20K ohms at 25 °C. As the temperature deviates from 25 °C, the difference 

between the actual and reported temperatures of the block can vary by as many as 3 °C 

(at a set temperature of 98 °C) (Fig. 5-1A). This is caused by a slight mismatch in the 

performance curves of the chosen thermistor as compared with the thermistor for which 

the thermocycler was originally calibrated. To compensate for this mismatch, a sixth-

order polynomial correction is performed in the custom GUI based software, which 

brings the actual and reported differences of the custom thermal block to within 0.15 °C 

(Fig. 5-1B). This correction makes the difference in actual and reported temperatures 

lower than the rated 0.3 °C variation of the thermocycler and thus falls well within 

desired performance characteristics; thus validating both the accuracy and precision of 

our custom in situ thermal block.  

Calibration of the block does not control for the temperature of a reaction done on a 

device in the instrument. The temperature of a device may differ from the block as a 

result of convective cooling because a device is heated only from one side. In our lab, we 

primarily use custom SlipChip devices, and no commercially available temperature-

sensing elements could be easily adapted; however, the sizes and geometries of SlipChip 

devices are well known and highly accurate, so can model the temperature error for 

SlipChip devices can be modeled using Comsol multiphysics (Fig. 5-1C). The model was 

a stationary experiment with the same resolution and range as the calibration experiments 

we performed with the block. The Comsol model was based on a 1” x 3” x 0.02” glass 

with a thermal conductivity of 1.38 W/(m*k) SlipChip device that was separated from the 

thermal block with a 50 µm gap filled with mineral oil having a thermal conductivity of 



120 
 

0.162 W/(m*k) and a convective cooling rate of 10 W/m2K. Using these parameters, the 

temperature difference between the block and the SlipChip device deviates -0.29 °C from 

the set temperature at maximum block temperature (98 °C). This offset is well within the 

required performance characteristics of our instrument.  

Optical design and validation 

 

Figure 5-2. A schematic showing a scale representation of the physical layout of the 

custom real-time digital nucleic acid amplification instrument. Colored lines indicate ray 

paths. 

The optical system of the instrument was designed to provide high illumination intensity 

over the full field of view (~5500 mm2) (Fig. 5-2). We chose to prioritize lighting 

intensity over lighting uniformity because uniformity deviations can be corrected after 

imaging with simple flat-field corrections. We chose a white LED spotlight module 

because it has a dense power delivery (rated 1175 lumens from a total area of 64 mm2), 

which allows us to use common and reasonably sized optics. Although there are light 

sources that can provide greater illumination intensities, these lights would have a larger 

surface area and thus would require the field optics that direct the light to be much larger 
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to compensate, which reduces the number of compatible standard lenses necessitating 

custom optics and much larger excitation fluorescence filters. In this custom real-time 

instrument, the largest cost in the optics is the fluorescence filters. Because filter cost is 

proportional to filter area, it is advantageous to keep the filters as small as possible.  

The standard illumination geometry has 0-degree angle of incidence (perpendicular to the 

surface of device) because this minimizes gradients in the illumination field. Because the 

bottom of the device in this system is inaccessible due to the presence of a thermocycler, 

to use an angle of incidence of 0 degrees, we would need to image and illuminate from 

the same lens. Although this is commonly done, it creates a strong specular reflection of 

the excitation beam, which requires better emission filter blocking, and there are no 

commercial lenses of this type that can image the full field of view at high numerical 

aperture. Thus, to allow us to use standard optics, we set the angle of incidence at 27.5 

degrees. To eliminate illumination gradients caused by the non-zero angle of incidence 

we added a beam splitter and mirror system (Fig. 5-2). This geometry provides added 

flexibility; if a single light source provides insufficient illumination intensity, a second 

optical source and optics can be set up in lieu of a beam splitter and mirrors for a 

maximum of four separate light sources possible. In our system, we found that a single 

source provided sufficient illumination intensities with power values of up to 1 mW/cm2 

of power with the 475 nm channel, 4.3 mW/cm2 with the 560 nm channel, and 4.6 

mW/cm2 with the 630 nm channel. At the time this instrument was constructed, there was 

only one color (white 3000K) available for the LED module; however, there are currently 

many additional colors available. Different colors may better suit certain applications by 

shifting the higher power to the 475 nm channel. 
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Figure 5-3. Results of the optical characterization of the real-time digital nucleic acid 

amplification instrument. Heat maps (left) and histograms (right) of custom fluorescence 

standards show the uniformity of illumination over the field of view as quantified in each 

of three fluorescent channels. Results from each channel were scaled to equalize each 

channel’s average gray value. The gray values from the heat maps and histograms are 

truncated to between 0 and 2000 as reported by the instrument’s built-in camera at each 

channel: (A) 475 nm, (B) 560 nm, and (C) 630 nm. Scale bars are 10 mm. 

To validate the illumination uniformity at different excitation wavelengths, full-field 

fluorescence standards were created and imaged. Results from each channel were scaled 

by a constant to equalize each channel’s average gray value. In this system, we used non-

apochromatic optics, so the focal ranges for each of the excitation wavelengths vary and 

illumination is not uniform over each of the channels. The 475 nm channel is both the 
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most used and the lowest power, so it was aligned to have the highest power density 

while still maintaining sufficient uniformity; this was achieved by focusing the channel 

down to slightly less than full field, which reduces the illuminated area. This is not a 

problem for imaging as long as the reactions being imaged do not extend past the 

illuminated area. With this alignment, all channels achieve sufficient uniformity (Fig. 5-

3). The best-fit Gaussian curves for each channel have full width at half max values of 

~228 units, or 17% of the average Gaussian value. A flat-field correction easily 

compensates for this variation while only minimally impacting noise. 

Software design and implementation 

The software we created for the instrument was written to be amenable to a wide variety 

of different amplifications, analyses, and device geometries. Temperature programs are 

established by mixing ramp, temperature, and cycle steps in any order or combination, 

and imaging parameters are fully adjustable to any combination of exposure times and 

fluorescent channels in one of three imaging modes: (i) cycle-based imaging as done in 

standard quantitative PCR, (ii) time-based imaging where images are taken at set 

intervals throughout an experiment, or (iii) combination imaging where images are taken 

at set intervals only during a certain temperature step. The timing of the images can be set 

in one of two ways. If either time-based or combination imaging is used, the timing is 

controlled by software and is based on the time since the start of the previous acquisition. 

Thus, if an imaging step is longer than an imaging interval, image acquisition is 

continuous throughout the experiment. If imaging is cycle-based, the timing of image 

acquisition is controlled by the thermocycler. The thermocycler is set on a program; when 

it reaches an imaging step, it is allowed to proceed until there are 2 seconds remaining, at 
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which time the running program is paused, the temperature is held, all defined images are 

acquired, and then the program resumes. If the imaging step occurs during a step which is 

cycled, an image is acquired during each cycle. Melt temperature data can be 

automatically collected after any experiment by defining a low temperature, high 

temperature, resolution, and relevant imaging parameters. As a quality assurance 

mechanism, we implemented an error-checking system into the software; if a required 

variable is either left undefined or improperly configured, the software will inform the 

user of the required changes before a run can be started. 

The software enables full control over all of the instrument components to tune the 

instrument settings to a specific application. The camera control and configuration are set 

up to be agnostic to equipment models. Any GigE-compliant camera can be used with the 

software and all functions that are defined by the GenICam specification are controllable. 

A simplified configuration is provided in the software for defining exposure time, camera 

gain, framerate, and region of interest. The thermocycler can be configured to maintain a 

set temperature for a period prior to the start of any program. This can accommodate 

devices that need to be maintained in a specific temperature range prior to the start of an 

experiment, such as isothermal reactions that are active at room temperature.18 Control 

over the positions and interactions of the filter wheels allows the user to define and name 

any combination of emission and excitation filters for imaging.  

The software also contains a full suite of tools for data analysis. Results from an analysis 

of digital multivolume real-time PCR experiments20 using lambda DNA as a template are 

shown in Fig. 5-4 with each graph (Fig. 5-4B-D) directly exported from the analysis 

software as line art and scaled. These results were obtained by first creating a mask of the 
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sections of the device containing reactions of interest (Fig. 5-4A). A mask-creation tool is 

used to define the locations of compartments in images collected during an experimental 

run by using several built-in functions, including: thresholding, edge detection, region 

selection, removal of features based on area, automated removal of features on the edge 

of the image, and the ability to both “paint in” and “paint out” features. To account for 

potential device shifting during the experiment, the software has built-in tracking that 

recreates the mask with each individual step of the amplification and correlates relocated 

spots among the images based on nearest-neighbor calculations. During an analysis, each 

compartmentalized reaction is tracked across all of the stages of amplification and a full 

suite of statistical data is collected at each step for each region defined by the mask. The 

average value of each compartmentalized reaction is then plotted as a function of assay 

progress producing real-time curves for each individual reaction with full correlation 

back to the mask region as shown in Fig. 5-4B. Additional software functions enable 

baseline correction, thresholding for determination of the quantification cycle (Cq), 

plotting the number of positive wells as a function of assay progress (Fig. 5-4C), plotting 

Cq frequency as a function of assay progress, the determination of the derivative of any 

dataset and the generation and export of reports and datasets. 

Melt curve data is initially processed in the same manner as amplification data, via 

creation of a mask and individually analyzing its corresponding regions (Fig. 5-4D). The 

data can then be processed using functions such as: data smoothing via algorithms, 

determination of the negative derivative of the dataset, configurable peak melt 

temperature detection, correlation of melt curves to amplification curves including only 
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showing melt curves from positive reactions, report generation, and ability to export any 

generated plot or dataset. 

 

Figure 5-4. Types of data output provided by the custom analysis software of the real-

time digital nucleic acid amplification instrument after a multivolume PCR reaction using 

lambda DNA on a multivolume SlipChip device. Each graph (B–D) was exported as line 

art and scaled. (A) An image depicting the mask created to define the locations of each 

compartmentalized reaction on a multivolume microfluidic device. (B) Baseline-

corrected amplification traces from each of the reaction wells on the microfluidic device. 

Two intensity groups result because in this multivolume microfluidic device there are two 

well depths (the two larger volumes are 100 µm deep and the two smaller volumes are 50 

µm deep).20 The arrow shows the correlation of a single compartmentalized reaction (A) 

to its real-time trace (B). (C) A graph depicting the number of positive reactions as a 

function of amplification cycle from the data generated in (B). (D) A graph depicting the 

negative derivative of the collected melt curve traces from each of the positive reactions. 

Digital real-time PCR validation 

We validated the overall performance of the instrument in a real-time digital reverse 

transcription PCR experiment using HCV RNA as the template. We used a previously 

validated microfluidic SlipChip device9 and well-characterized chemistry9,20,22 to isolate 

the performance of the instrument and compare it to an Illumina Eco real-time PCR 

system. The assay was run at three concentrations (each separated by a 100x difference) 

in parallel on microfluidic SlipChip devices. In the lowest concentration tested, the wells 

of the device were stochastically loaded with HCV RNA molecules; in the higher 

concentrations, all wells were fully loaded. The lowest concentration was calculated at 6 
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x 104 ± 8 x 103 molecules of HCV RNA per milliliter of reaction solution with a total of 

202 positive reactions out of a possible 1218 after 40 cycles of amplification. This 

concentration corresponds to 0.18, copies of HCV RNA loaded per 3 nL digital 

compartment.  The two concentrations which were 100x and 10,000x higher therefore 

correspond to 18, and 1800 copies of HCV RNA loaded per 3 nL digital compartment.  

Melt curve analysis was performed on each of the 202 positive reactions; all but five had 

a melt temperature indicative of the correctly amplified product. The error in the assay 

associated with false positive reactions accounted for 1 x 103 copies/mL, which is much 

smaller than the 8 x 103 error estimated by Poisson statistics, thus signifying suitable 

assay performance.  

 

Figure 5-5. Comparison of digital (A) and bulk (B) results of real-time reverse 

transcription PCR experiments of HCV RNA at three different concentrations. Digital 

and bulk experiments were run at the same three concentrations (each separated by a 
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100x difference). In (A), symbols show a histogram of the relative frequency of Cq 

values obtained in the experiment for the denoted concentration; solid lines depict the 

Gaussian fit for each concentration. Points denote the calculated histogram of Cq values 

at each concentration. Average Cq values are the maximum of the Gaussian fit and the 

errors are the full width at half maximum value of the Gaussian fit. (B) Bulk traces of 

reverse transcription PCR of HCV RNA. Average Cq values are shown; error denotes 

S.D. among the replicates (N = 3). 

Because we have a known change in concentration between the three tested 

concentrations, we can run a variety of checks to ensure that the assay performs as 

expected kinetically. The first analysis that can be run is to look for the variation among 

replicates at the same concentration. Each of the three different bulk concentrations were 

run in triplicate, and the standard deviation of the replicates was less than 1% of the Cq 

value (Fig. 5-5B) in each of those reactions indicating that the kinetic rate within each 

concentration was highly reproducible and the assay is suitable for deeper quantitative 

analysis. In addition to analyzing the kinetic reproducibility of replicates, we can also 

analyze the reproducibility between different concentrations by analyzing the Cq 

difference observed at each concentration change. Under ideal amplification conditions a 

doubling in concentration would be observed at each cycle. Using a perfect amplification 

assumption, an expected Cq difference between concentrations can be calculated based 

on the equation log2 𝑥, where x is the fold change in concentration between the two 

samples. Running this analysis on the bulk results at a 100-fold change results in an 

expected Cq difference of 6.6. When comparing the high and middle concentrations a Cq 

difference of 6.7 is observed, and when comparing the middle and low concentrations a 

Cq difference of 7.1 is observed (Fig. 5-5B). 

When the same comparative analyses are run on the real-time digital results, similar 

effects are observed as those in bulk. At each concentration due to that the experiments 
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were run on device many hundreds of reactions were run at each concentration, however, 

the standard deviation in the Gaussian fit of each concentration varies between 4% and 

6%. This variation is higher than that observed in bulk, however, each population can be 

uniquely identified and is well separated. The results also compare favorably to those in 

bulk on a commercial instrument. As at the high and middle concentrations the assay was 

run with the digital device full the Cq values in digital should match those in bulk. This is 

observed with a Cq difference of 0.3 at the high concentrations, and a Cq difference of 

0.4 at the middle concentrations when comparing the digital averages to the bulk 

averages. Where we would expect to see a deviation in Cq values compared to bulk is at 

the low concentration. As the low concentration is run in the digital regime on device, 

each compartment which contained a piece of HCV RNA did so at a concentration of 1 

copy/3 nL. In bulk, although the same concentration of RNA was used, the concentration 

in solution was 0.18 copies/3 nL. Therefore, we would expect the on-device 

concentration to be 5.6 times higher which would result in a Cq difference of 2.5 between 

the bulk and digital results at the low concentration. When the bulk and digital Cq values 

at the low concentration are compared a difference of 2.8 is observed which has a 

deviation of 0.3 from the expected value which is within the same range as the high and 

middle concentrations. When this same analysis is run comparing the results from 

different concentrations in digital, Cq difference of 6.6 and 4.2 are expected for 

comparisons of the high and middle concentrations and the middle and low 

concentrations, respectively, which compare well with the observed differences of 6 and 

4.7. From these results it is clear that the digital real-time instrument is able to provide 
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informative and reproducible results about the kinetics of amplification on digital 

microfluidic devices. 

Digital real-time isothermal validation 

Many amplification chemistries are compatible with digital assays and could benefit from 

knowledge of kinetic information and digital optimization. Loop-mediated isothermal 

amplification (LAMP) has been used extensively in a digital format; however, the 

amplification efficiency of many LAMP reactions is consistently less than 

expected.4,9,19,23 Because reaction efficiency is consistent, quantification can still be 

performed in the absence of optimization, however optimizing LAMP reactions 

performed in a digital format would both increase confidence in the final calculated 

concentrations and lower the current limits in detection and quantification. Such 

optimization is not possible using bulk reactions because changes in reaction rate do not 

necessarily correlate with changes in reaction efficiency.9 We have shown previously9 

using the real-time digital instrument described herein that the efficiency of a reverse 

transcription LAMP reaction targeting HCV RNA can be optimized quickly and 

effectively by using real-time information combined with digital information. The 

amplification efficiency of HCV RNA through the usage of real-time digital data was 

improved from ~20% to ~70%, significantly increasing the confidence of the calculated 

concentration and lowering the detection limit of the assay.9 
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Figure 5-6. Results of reverse transcription LAMP of HCV RNA reactions in the 

presence (A) and absence (B) of a competing restriction digestion enzyme, BsrBI. In (A) 

the reaction is allowed to proceed normally with high reaction efficiency and fast reaction 

rates. In (B) the reaction efficiency and rate are significantly lower because BsrBI 

degrades the template. 

We have also previously used this instrument to optimize and verify an assay to 

simultaneously quantify and genotype HCV RNA.21 This was done by performing a 

competition reaction between LAMP amplification and genotype-selective degradation of 

the template using restriction enzymes. In bulk assays, the restriction enzymes were 

shown to delay the reaction; however, in the digital format the competition reaction 

significantly decreased the number of positive digital reactions. Using the real-time 

digital instrument, we were able to show that the digital competition reactions on HCV 

genotype 1 (Fig. 5-6B) that amplified did so with a decreased reaction rate compared to a 

positive control (Fig. 5-6A). We further showed that the decrease in reaction rate in 
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digital format was similar to the decrease in reaction rate that was observed in bulk 

reactions. Having this detailed information about the kinetics of individual reaction 

volumes enabled us to establish that the so-called “fate” of a reaction (i.e. whether or not 

the reaction will proceed) is determined in the first steps of a reaction; and once that fate 

is determined, the competition reaction affects only the rate. This paper and our paper 

showing the lack of correlation between reaction speed and analytical sensitivity9 

wouldn’t have been possible without this instrument. We are continuing to use this 

instrument in our lab to develop and enable new analytical capabilities for a wide range 

of sample and device types. 

Conclusions 

We developed an instrument for real-time digital nucleic acid amplification studies and 

accompanying software that can be used to develop, study, or optimize a wide variety of 

digital assays for numerous applications, including medical diagnostics, forensics and 

environmental sampling. The instrument is device-agnostic and it is compatible with a 

variety of nucleic acid amplification chemistries, including PCR, reverse transcription 

PCR, LAMP, and reverse transcription LAMP in a competition reaction with restriction 

enzymes. We validated this real-time instrument using two types of microfluidic devices, 

one that contained a large number of reactions in compartments of the same size, and a 

second device that processes larger volumes with a range of different reaction sizes. We 

also presented a simple, intuitive, GUI-based software package that allows the user to 

easily set up, collect, and analyze digital experiments using real-time fluorescence 

information from a wide variety of possible devices with a total precision-heated and 

viewable area of ~5500 mm2.  
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The capabilities provided by this instrument will be invaluable for researchers who wish 

to track the progress of reactions at high resolution with a large field of view and its use 

will enable the study and optimization of a wider variety of digital reactions in real time. 

Although the error in the temperature control is well within our required performance, 

this and other device error can be corrected via in-software calibrations that can be 

customized for any specific device. The instrument was designed to be modular so that it 

is amenable to further customization, such as to increase illumination intensity, enable 

heating of non-flat devices, increase the field of view, or increase the resolution of the 

captured area as new technologies are introduced they can be easily incorporated without 

a significant engineering effort. We hope that by sharing the details of this instrument and 

software, others will be able to construct their own purpose-built custom instruments or 

modify existing commercial solutions to characterize and optimize digital reactions, 

making digital methods even more powerful.  

Materials and Methods 

Chemicals and materials 

All chemicals were purchased from commercial sources. The LoopAmp® RNA 

amplification kit (Eiken Chemical Co., Ltd., Japan) was purchased from SA Scientific 

(San Antonio, TX, USA). The LoopAmp® RNA amplification kit contains 2X Reaction 

Mix (RM) (40 mM Tris-HCl pH 8.8, 20 mM KCl, 16 mM MgSO4, 20 mM (NH4)2SO4, 

0.2% Tween20, 1.6 M Betaine and dNTPs 2.8 mM each), Enzyme Mix (EM) (mixture of 

Bst DNA polymerase and AMV reverse transcriptase), and distilled water (DW). Bovine 

serum albumin (BSA) was purchased from Roche Diagnostics (Indianapolis, IN, USA). 
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Bio-Rad (Hercules, CA, USA) SsoFast Evagreen Supermix, Phage lambda DNA (500 

µg), SUPERase In RNase Inhibitor (20 U/μL), mineral oil (DNase, RNase, and Protease 

free), and tetradecane were purchased from Thermo Fisher Scientific (Hanover Park, IL, 

USA). All primers were produced by Integrated DNA Technologies (Coralville, IA, 

USA). Dichlorodimethylsilane was purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Photomasks were designed in AutoCAD 2013 and ordered from CAD/Art 

Services, Inc. (Bandon, OR, USA). Soda-lime glass plates coated with layers of 

chromium and photoresist were ordered from the Nanofilm (Westlake Village, CA, 

USA). The PTC-200 thermocycler was purchased second-hand off of Ebay (San Jose, 

CA, USA) and was manufactured by MJ Research (Waltham, MA, USA). The Tgon 805, 

Tgard K52, and PR103J2 thermistors were purchased from Digikey (Thief River Falls, 

MN, USA). The illumination optics were purchased from Edmund Optics (Barrington, 

NJ, USA) (part numbers 46-685, 48-247, 48-372, 63-496, 48-904, 48-451, 48-453). The 

LED light source, power supply, and heat sink were purchased from Future Electronics 

(Montreal, Canada). The filter wheels were purchased from Finger Lakes Instrumentation 

(Lima, NY, USA). The camera for the instrument was purchased from Vision Systems 

Technology (Vista, CA, USA). The camera lens was purchased from Digitalrev.com 

(Kowloon, Hong Kong). The green fluorescent filter set was purchased from Semrock 

(Rochester, NY, USA). The other filter sets for Texas red and Cy5 dyes were purchased 

from Omega Optical (Brattleboro, VT, USA). The thermocouples and digital acquisition 

device were purchased from Omega Engineering (Stamford, CT, USA). The various 

aluminum extrusions, filter holders, lens holders, optical posts, and other ancillary 

equipment to construct the shell of the instrument were purchased from either Thorlabs 
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(Newton, NJ, USA), Edmund Optics (Barrington NJ, USA), Newport Corp. (Irvine, CA, 

USA), Grainger (Lake Forest, IL, USA), or 80/20 (Columbia City, IN, USA). Custom 

CNC milled parts were ordered from Protolabs (Maple Plain, MN, USA). 

Microfluidic device design 

A multivolume rotational SlipChip device was used as a model to illustrate some of the 

capabilities of the instrument for performing amplification reactions on custom 

microfluidic devices. Use of this particular multivolume device was first published in 

Shen et al. 20. Briefly, the device has four different sized wells of 1, 5, 25, and 125 nL. 

There are 160 different wells of each volume on the device; the two smaller wells have a 

depth of 50 µm and the two deeper wells have a volume of 100 µm.  

A single-volume microfluidic device was used to perform reverse-transcription PCR (RT-

PCR) and compare the performance of the instrument in different concentration regimes 

with traditional quantitative PCR. This particular single-volume device is a lightly 

modified version of the device used by Sun et al.19 It contains 1280 reaction wells each 

with a 3 nL volume. All wells and channels in the device are etched to a depth of 50 µm. 

Microfluidic device fabrication 

Microfluidic devices were fabricated using standard photolithography followed by wet 

chemical etching with hydrofluoric acid.24 After etching the devices to the proper depths 

and drilling access holes with a diamond-coated bit, devices were subjected to a 

previously described silanization process.25 

Assembling and loading microfluidic devices 
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The microfluidic devices were assembled under degassed oil consisting of a combination 

off 75% mineral oil and 25% tetradecane (v/v). Both the top and bottom sections of the 

microfluidic device were immersed in oil before being aligned under a stereoscope 

(Leica, Wetzlar, Germany). The devices were then clamped together using standard 1” 

binder clips. Solutions were introduced into the microfluidic devices by drawing the 

solution to be loaded on the device into a pipettor (Eppendorf, Hamburg, Germany), 

placing the end of the pipette tip into the pre-drilled access holes on the device to create a 

seal, and applying a pressure of 0.1 atm. 

Illumination setup 

The illumination setup of the instrument was designed to be composed of standard and 

easily obtainable illumination and optical components. A white LED module (LSX8-

PW30, Fig. 5-2A) was used as the optical source of the instrument and provides 1175 

lumens of flux from an 8mm x 8mm area. Five lenses were set up to direct the light to the 

imaging platform; these consisted of: a 40 mm aspheric lens (46-685, Fig. 5-2A), two 50 

x 125 mm plano-convex lenses (48-247, Fig. 5-2D), a 75x 200 mm plano-convex lens 

(48-372, Fig. 5-2F), and a 75x 500 mm plano-convex lens (63-496, Fig. 5-2G). The 

excitation wavelengths are chosen by a five-position filter wheel (CFW-1-5, Fig. 5-2C) 

that holds a selection of three 50.8 mm excitation filters: a 475 nm centered filter (FF02-

475/50-50.8-D), a 560 nm centered filter (560QM55), and a 630 nm centered filter 

(630QM50). After passing through the field lenses, the light is split by a 50-50 

beamsplitter (48-904, Fig. 5-2H) before either reflecting off of a 75 X 75 mm mirror 

(48451, Fig. 5-2I) or a 75 x 100 mm mirror (48-453, Fig. 5-2J). The optics are designed 

to provide demagnified and slightly defocused light to an imaging area of ~72 x 72 mm. 
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The light must be slightly defocused to attain a relatively constant illumination intensity 

over the full area as the source is a 3 x 3 grid of smaller light emitting diodes.  

Imaging setup 

The instrument uses a six-position filter wheel (CFW-6-6, Fig. 5-2L) that is equipped 

with a set of three 79 mm emission filters: a 540 nm centered filter (FF01-540/50-79-D), 

a 645 nm centered filter (645QM75), and a 695 nm centered filter (695QM55). With 

these filter sets, we are capable of imaging dyes such as fluorescein, Texas red, and Cy5. 

We used a VX-29MG-M2-A0-F-2 29-megapixel camera (Vieworks, Anyang, South 

Korea) that utilizes a KAI-29050 6576 x 4384 sensor (ON Semiconductor, Phoenix, AZ, 

USA). This camera has a 23 mm sensor with a pixel pitch of 5.5 x 5.5 µm, a 12-bit low 

noise amplifier, a GigE vision interface, and a standard Nikon F lens mount. The lens 

used is a Makro-Planar T* 100mm f/2 ZF.2lens (Ziess, Oberkochen, Germany) which has 

a wide f/2 aperture and the ability to focus on an area as small as 48 x 72 mm. The 

camera is triggered via an OMB-DAQ2408-2AO data acquisition board (Measurement 

Computing, Norton, MA, USA) through an analog output with millisecond accuracy. The 

data acquisition board is also used to control the shutter of the system and collect 

temperature data. This imaging setup enables us to image the full 72 x 72 mm field of 

view wherein each pixel is equivalent to 16 x 16 µm real-world resolution.  

Fluorescence standards 

Because the total viewable area on the custom-built instrument is rather large, no 

commercially available fluorescence standards were found that were large enough to 

encompass the full field of view in a single image. Fluorescence standards for the 475 nm 
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and 560 nm emission channels were created by coating one side of a 72 mm x 76.2 mm 

piece of soda-lime glass with Rust-Oleum 1932830 or 1959830 paint. A fluorescent 

standard for the 630 nm channel was created by gluing a Rosco Roscolux #2001 storaro 

red filter between two pieces of soda-lime glass cut to a size of 72 mm x 76.2 mm with 

Loctite® #349 optical adhesive. 

Temperature control 

Temperature control is provided by a PTC-200 thermocycler (Bio-Rad, Hercules, CA, 

USA). The thermocycler was chosen for its simple ASCII programming interface, which 

is via an RS-232 port, and because blocks are easy to interchange. The heating block used 

in the instrument is a heavily modified 96-well alpha block. This custom thermal block 

was designed and fabricated from aluminum and contains a raised flat section measuring 

72 x 76.2 mm that has the same thermal mass as the block included in the system. The 

block is in thermal contact with the Peltier elements of the alpha block using first a 

ceramic filled polyimide sheet (Tgard K52) and second a thermally conductive graphite 

sheet (Tgon 805). The block incorporates three 10K ohm at 25 °C thermistors (PR103J2) 

in the standard alpha block locations, which were soldered directly to the circuit board. 

All temperature measurements are recorded with type-K thermocouples (5TC-TT-K-40-

36).  

Temperature readout of thermal block 

Temperature readings of the thermal block are collected with a 5TC-TT-K-40-36 

thermocouple attached to an OMB-DAQ2408-2AO digital acquisition instrument. The 

thermocouple is in thermal contact with the heated block using Arctic MX-4 thermal 
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paste. Temperature readings for calibration and validation of the thermal block can be 

collected between a range of 4 °C and 98 °C with a resolution of 0.1 °C and a frequency 

of 1 kHz. In the validation experiments performed here, data was between 12 °C and 98 

°C at a resolution of 0.5 °C collected by setting the thermocycler to hold the desired 

temperature, and waiting until the temperature stabilized within a 0.1 °C for a total of 30 

s. The temperature readings collected over the 30 s period were then averaged and used 

for all calculations. 

Nucleic acid amplification reagents 

PCR experiments were carried out using 2x SsoFast EvaGreen supermix with a 1 µm 

concentration of primers and varied concentrations of template. The template used in the 

multivolume PCR experiments was lambda DNA with primer sequences (GAA TGC 

CCG TTC TGC GAG, TTC AGT TCC TGT GCG TCG). The temperature profile used in 

those experiments was a 5-minute melt at 95C followed by 40 cycles of 1 min at 95 °C, 

30 s at 58 °C, and 30 s at 72 °C. The PCR experiments done to compare reactions in 

digital to reactions in bulk used hepatitis C virus (HCV) RNA with primer sequences 

(GAG TAG TGT TGG GTC GCG AA, GTG CAC GGT CTA CGA GAC CTC).  The 

temperature profile used in those experiments was a 30-min 50 °C reverse transcription 

step followed by a 3-min melt at 94 °C followed by 40 cycles of 1 min at 94 °C, 30 s at 

62 °C, and 30 s at 72 °C. 

Collection software 

Simple and easy-to-use GUI based custom software was designed for the real-time digital 

instrument using the LabVIEW 2013 development suite with the vision acquisition, 
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OpenG, and System Controls 2.0 add-on packages. Control over the camera is achieved 

using the National Instruments IMAQdx driver to control any GIGE compliant camera. 

Control over the filter wheels is achieved using the FLI Software installation kit 

(4/14/2010 update) and version 1.104 of the FLI SDK. Control over the thermocycler is 

achieved using the ASCII commands outlined in the PTC-200 user manual and the RS-

232 driver in LabView. The data acquisition board is controlled through Omega DAQ 

software (v. 6.22) utilizing the ULx LabView drivers. The software includes a variety of 

different modules for the collection of amplification data, melt temperature data, and 

temperature calibration data, as well as acting as a generalized large-format fluorescence 

imager. The software also allows the user to save experimental programs and settings, 

including full experimental profiles, camera settings, and temperature calibration settings 

for individual assays. 

Analysis software 

Simple and easy-to-use GUI based custom software was designed for the analysis of 

collected data using the LabVIEW 2013 development suite with the vision acquisition, 

OpenG, System Controls 2.0, and the report generation toolkit for Microsoft Office add-

on packages. The software is able to open and analyze all generated data from the 

collection software including the ability to recall all temperature data, experimental 

conditions, and presets. The software includes a variety of different modules for analysis 

of the data including all amplification and melt temperature data, mask generation for 

defining digital reaction locations in custom microfluidic devices, and report generations 

and export to Microsoft Word and Excel. The analysis software is also able to export raw 

or analyzed data as well as any plot in a variety of formats. 
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The software is able to create independent amplification curves from each discreet digital 

reaction through the usage of a user created mask which defines the reaction location in 

space. Once a location is defined, full statistical information about that independent 

reaction is available for that point during the reaction. A full suite of tools is available for 

creating the mask including thresholding, edge detection, size discrimination, location 

selection and rejection, and manual editing. If during the course of the amplification 

some reaction volumes move outside of their masked area, tracking software can be 

activated in the software which rebuilds the mask at each point in the amplification based 

on the process defined by the user and correlates the reaction volumes between images 

based on nearest neighbor calculations. After amplification curves have been established, 

baseline correction, Cq calling, report generation, and correlation of each reaction trace to 

its discreet reaction volume can be performed. Melt curve analysis can be performed in 

much the same way, although added features such as peak calling, correlation to 

amplification reactions, and curve smoothing can be performed. 
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Chapter 6: 

Measuring the Fate and Rate of Single-Molecule Competition of 

Amplification and Restriction Digestion, and Its Use for Rapid Genotyping 

Tested with Hepatitis C Viral RNA* 

Abstract 

We experimentally monitored, at the single-molecule level, the competition among 

reverse transcription, exponential amplification (RT-LAMP), and linear degradation 

(restriction enzymes) starting with Hepatitis C viral RNA molecules. We found 

significant heterogeneity in the rate of single-molecule amplification; introduction of the 

restriction enzymes affected both the rate and the “fate” (the binary outcome) of single-

molecule amplification. While end-point digital measurements were primarily sensitive to 

changes in fate, the bulk real-time kinetic measurements were dominated by the rate of 

amplification of the earliest molecules, and not sensitive to fate of the rest of the 

molecules. We showed how this competition of reactions can be used for rapid HCV 

genotyping with either digital or bulk readout. This work advances our understanding of 

single-molecule dynamics in reaction networks and may help bring genotyping 

capabilities out of clinical labs and into limited-resource settings. 

Results Discussion and Conclusions 

This paper presents single-molecule kinetic measurements of how the competition 

between exponential amplification of RNA molecules and their linear degradation affects 

                                                           
* This chapter was first published in Angewandte Chemie with authorship belonging to Bing Sun, Jesus 
Rodriquez-Manzano, David A. Selck, Eugenia Khorosheva, Mikhail A. Karymov, and Rustem F. Ismagilov. 
The original manuscript can be found at: http://dx.doi.org/10.1002/anie.201403035 
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both the “rate” and “fate” of amplification, and shows how such competition can be used 

to design assays for rapid genotyping of the hepatitis C virus. 

A wide range of diagnostic solutions for global health are urgently needed,1,2 including 

for HCV, which infects 130-170 million people worldwide.3 These patients can now be 

treated with recently approved small-molecule drugs,4 which replace or reduce interferon 

therapy, but genotyping is still required to determine the treatment each patient should 

receive. However, most of these patients or their primary care doctors are located in 

limited-resource settings. High-complexity molecular tests such as commercially 

available HCV genotyping assays are not well suited for such settings (see SI).  

Therefore, a rapid (<1 hr), robust, and simple system for genotyping remains an unmet 

need. HCV genotypes differ by sets of mutations, with overlap between sequences of 

some but not all genotypes. Instead of attempting to design a separate detection reaction 

for each genotype, we wished to test whether we could design a competition reaction 

network (Figure 6-1): the detection for multiple HCV genotypes takes place in a single 

core amplification reaction, and the specificity for genotypes is achieved by the 

competing sequence-specific inhibition reactions. 
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Figure 6-1 Schematic of a network based on competition between amplification (solid 

black lines and arrow) and inhibition (solid red). Any one of four HCV genotypes could 

be independently amplified by one RT-LAMP reaction and inhibited specifically by 

different restriction digestion reactions. When the restriction enzyme (RE) is specific to 

that genotype, it produces an inhibition feedback to the amplification (solid red). When 

the RE is not specific to the genotype, there is no inhibition even in the presence of RE 

(dashed black). 

 

The use of competition among reactions to achieve regulation is common in biological 

systems; in our personal favorite example of the blood coagulation cascade,5,6 the core 

autocatalytic amplification cascade is held in check by multiple inhibitors. Here, we 

wished to use a competition system consisting of reverse transcription loop-mediated 

isothermal amplification (RT-LAMP) as the amplification reaction, and restriction 

enzyme (RE) digestion as the inhibition reaction. Single-molecule, or “digital”7,8 

LAMP9,10 is attractive for quantification under limited-resource settings due to its high 

intensity fluorescent output with calcein chemistry.11,12 Digital RT-LAMP for the 

quantification of human immunodeficiency virus RNA was shown to be robust to 

perturbations in reaction conditions, imaging, temperature, and automatic cloud-based 

analysis, enabling robust cell phone–based quantification.12 In this work, we used RT-

LAMP primers (see Table S1 in Supporting Information (SI)) modified from previous 
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work targeting the conserved 5’- untranslated region (5’UTR) of HCV.13 RE-based 

digestion is a reliable method to recognize specific nucleic acid sequences of multiple 

letters in length and cleave at specific sites.14 We hypothesized that RE digestion could 

be used to compete with RT-LAMP amplification in situ in both bulk and digital formats. 

Although the kinetics of single-molecule amplification has been studied for some 

reactions such as enzymatic turnover of a substrate8 or digital PCR,7 it has not been 

studied for sequence-specific isothermal amplification reactions, especially when 

competing reactions are involved. Therefore, before we could test this idea, we first had 

to answer three fundamental questions: i) How significant is the heterogeneity in the rate 

of digital RT-LAMP amplification? We expected some heterogeneity because LAMP 

itself has a complex mechanism, and RT-LAMP introduces an additional reverse 

transcription step from RNA molecules with heavy secondary structures. ii) Would 

introduction of RE affect the rate, or the fate, of digital RT-LAMP amplification (Figure 

6-2A)? For simplicity, here we defined “rate” as the inverse of the “time-to-positive,” or 

time it takes the amplification to produce a particular level of a signal; competition from 

RE could decrease the rate of amplification by consuming some of the amplification 

products. We defined “fate” as whether or not amplification ultimately succeeds to 

provide that level of signal from a single molecule. For example, in the RT-LAMP/RE 

mechanism (Figure 6-2B), one fate-determining step could occur once the first double-

stranded DNA (dsDNA) is formed (structure (1) in Figure 6-2B): either RE can bind to 

the strand and cleave it, or primer annealing followed by polymerase binding could lead 

to the formation of the double-looped template that can be further amplified. Such 

stochastic fate determination could also occur elsewhere during the early stages of the 
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reaction as long as the number of molecules remains small. iii) Would this competition 

affect the bulk reaction differently from the single-molecule reactions? Given that this 

reaction system has significant nonlinearity, it is predicted15 to be affected by the spatial 

distribution and compartmentalization. 

 

Figure 6-2 Schematic overview of the definition of “fate” and “rate” in general (a) and 
specifically for the competition between RT-LAMP and restriction digestion (b). See text 
for details. 
 

To answer the first two questions, we performed real-time digital RT-LAMP/RE 

experiments with HCV genotype 1 (GT1) RNA and BsrBI as the RE. HCV GT1 isolate 

was obtained commercially and sequenced after RNA purification to confirm the 

genotype assignment (Table S2 in SI). BsrBI cuts dsDNA at sequences CCGCTC, and 

this sequence exists in the RT-LAMP amplicon of GT1 RNA. With negative control 

experiments, we identified the highest possible BsrBI concentration that did not trigger 

ab initio DNA synthesis within the time of interest under reaction conditions.16 The 

concentration was determined by performing a RE dilution experiment in the presence of 

all RT-LAMP components except HCV RNA and choosing the concentration for which 

ab initio synthesis was not observed within 50 min. We used a SlipChip microfluidic 

device modified based on previous publication10 to compartmentalize the reaction 

mixture and monitored the progress of amplification for each single molecule using a 
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CCD-based imaging system (Figure 6-3). Even in the amplification reaction in the 

absence of the RE, we found significant heterogeneity among rates of amplification of 

different molecules (Figure 6-3A). Addition of BsrBI did not abolish this heterogeneity 

(Figure 6-3B). On average, even though the rates of the reactions decreased upon 

addition of BsrBI, the shift in reaction times (approximately 5 min, for the first well that 

turned positive) was small relative to the width of the distribution of the reaction times 

(over 30 min). On the other hand, the fate of single-molecule amplification did change 

significantly upon addition of BsrBI: ~10-fold fewer molecules gave rise to successful 

amplification (with a p-value of 0.00033), indicating that in digital RT-LAMP, BsrBI 

affects fate more than it affects rate. 
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Figure 6-3 Results of real-time, single-molecule digital RT-LAMP/RE experiments for 

HCV RNA. a, b) Graphs showing 1280 fluorescence traces for the RT-LAMP 

amplification process of all the wells on a SlipChip device (solid light blue) and 

normalized averaged fluorescence curve in bulk (dashed dark blue) in the absence of RE 

(a) and the traces for digital (solid light red) and for bulk (dashed dark red) in the 

presence of RE BsrBI (b). Horizontal solid lines indicate the threshold levels to consider 

a well positive. Vertical solid lines show the mean of the time-to-positive distribution. 

The intensity (I) scales in (a) and (b) are the same. c) Graph showing the change of 

cumulative counts over time for wells exceeding the threshold in (a), blue, and (b), red. 

The two bars below the x-axis show time-topositive for real-time bulk experiments, the 

widths of which stand for standard deviation for the bulk assay (n=5). 

 

To answer the third question, we performed the same competition experiments in the bulk 

real-time format using an RNA concentration of ~3.3×105 copies/mL (estimated based on 
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digital RT-LAMP results), equivalent to the concentration of a single molecule in a 3 nL 

well.  Without BsrBI, the reaction in this bulk experiment was approximately 5 min faster 

than the mean amplification time in the corresponding digital experiment (Figure 6-3A); 

it was closer to the time of the amplification of the first molecule (approximately 2 min 

slower) (Figure 6-3C). Upon addition of BsrBI, the bulk reaction showed increased 

variance and slowed down by ∆tb = 4.9 ±1.9 min (Figure 6-3C); this delay was similar to 

the delay of the time-to-positive of the first molecule in the digital format, ∆td = 4.2 ± 1.1 

min (Figure 6-3C). These data suggest that once exponential amplification of some 

molecules takes off, this process dominates the reaction mixture and is not affected by the 

amplification of the molecules that amplify later in the digital format—the bulk reaction 

has ended by then. In other words, the bulk experiment is dominated by the rate of 

amplification of the earliest molecules, and not sensitive to the fate of the rest of the 

molecules. We then tested if this concept could be applied to perform HCV genotyping.  

Our goal was not to validate a genotyping assay with a broad panel of clinical samples 

from across the globe. Instead, we wished to understand whether a proof-of-concept 

experiment was possible, and therefore we focused on HCV samples of the four most 

common genotypes in the USA17 which were readily available to us from commercial 

sources (see Experimental section in SI). Sequencing results of the 5’UTR of these 

samples confirmed their genotype assignment(Table S2 in SI).  

Based on consensus obtained by aligning sequences of each genotype obtained from 

LANL18, three REs thermostable under RT-LAMP conditions were chosen to target the 

sequence differences between these four genotypes within the RT-LAMP amplicon. 

NheI-HF (targeting GCTAGC) should recognize genotypes 1, 2, and 4; BsrBI (targeting 
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CCGCTC) should recognize genotypes 1, 3, and 4; and BstNI (targeting CCWGG) 

should recognize only GT1 (Figure 6-4A). We have confirmed that under LAMP 

conditions these three enzymes remained active and sequence specific; such tests should 

be performed if additional REs are included. Because one RE can probe multiple 

genotypes, in principle unambiguous genotyping panels can be designed with fewer 

reactions than genotypes (e.g., three REs to differentiate four genotypes here). We note 

that this approach is well-suited for probing multiple mutations within the same 

amplification region; alternatively, several amplification reactions can compete with 

several cleavage reactions for higher multiplicity.  
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Figure 6-4 a) Predicted HCV genotyping pattern based on REs used and b) photographs 

(inverted intensity) of end-point digital experimental genotyping results (only a part of 

each chip is shown). The first column in both sections represents the positive control in 

the absence of RE and the following three columns indicate experiments with different 

REs. Each row represents a genotype (GT) of HCV RNA. Red frame indicates predicted 

inhibition. 

For each genotype, we performed four digital experiments: one positive control without 

RE, and three experiments with one RE each. The positive control also provided a 

measurement of the viral load and validation for performing digital experiments (see 

Table S3 in SI). The experimental results (Figure 6-4B) agreed with the inhibition pattern 

predicted (Figure 6-4A). Amplification of GT1 was inhibited by all three REs; 

amplification of GT2 was inhibited by NheI-HF only; amplification of GT3 was inhibited 
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by BsrBI; and amplification of GT4 was inhibited by NheI-HF and BsrBI. The fate of 

molecules for each combination was dependent somewhat on the RE being used, but in 

all cases the inhibition was strong and statistically significant (Figure 6-5B). 

 

Figure 6-5 Graphs showing a comparison of HCV genotyping results using a) real-time 

bulk assay (ttp: time-to-positive) and b) end-point digital assay (n=3). 

We then compared the performance of this HCV genotyping approach in a digital format 

to that in a real-time bulk format (Figure 6-5). Experimental repeats were performed on 

different days to ensure these experiments were not merely technical replicates. Both 

formats agreed with the prediction shown in Figure 6-4A. In the digital format (Figure 6-

5B), reactions with RE specific to the genotype showed reduced counts by at least 10 
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fold, giving statistically significant results (p < 0.022). In the bulk format (Figure 6-5A), 

reactions with RE that are specific to the genotype were all delayed by a certain amount 

of time ranging from 2 min (~10% relative to time-to-positive of positive control) to 20 

min (~100% relative to time-to-positive of positive control). Acceptable p-values were 

obtained for three of the four genotypes (p = 0.079 for GT2 and p < 0.032 for others). As 

the strength of inhibition by the RE increased, (e.g., NheI-HF in Figure 6-5B), in digital, 

lower counts and smaller p-values were observed. Paradoxically, stronger inhibition by 

RE in real-time bulk experiments led to a larger variation of reaction times and therefore 

did not improve p-values. Presumably, strong inhibition brings bulk amplification into 

the stochastic regime; this connection between digital “fate” and bulk “rate” deserves to 

be investigated further. 

Here, we performed real-time kinetic measurements of competition between two 

reactions at the single-molecule level, and found that this competition affects both the 

rate and fate of single-molecule amplification. We observed significant heterogeneity in 

the rate of amplification of individual molecules, both in RT-LAMP amplification of 

HCV RNA, and in its competition with REs. We found that the introduction of the RE 

impacts both the rate and the fate of single-molecule amplification. We found a 

difference in how this competition is reflected in the readouts we used. Both fate and rate 

can be measured with real-time digital experiments. End-point digital experiments ignore 

the rate and measure fate, while bulk real-time experiments ignore the fate and rate of the 

majority of molecules and instead measure the rate and fate of the early amplification 

events. We demonstrated that both of these simplified measurements could in principle 

be used to derive genotype information from the competition of amplification and RE 
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digestion. The advantage of the real-time methodology is that it is well-established and 

does not require development of microfluidic devices. We, however, prefer the end-point 

digital format for limited-resource settings: it does not require complex instrumentation 

for performing kinetic measurements, it is expected to be robust to fluctuation in 

conditions (although this robustness remains to be studied for competition reactions),12,19 

and it can be read-out with a cell phone,12,20 which we confirmed here as well. Although 

not described here, research is underway to integrate this method with user-friendly 

sample preparation techniques to enable full deployment in limited-resource settings. 

Further, the end-point digital format gives viral load information directly in the control—

although, while digital amplification is often claimed to provide absolute concentration, 

determining the true concentration of molecules requires carefully measuring and 

adjusting for the efficiency of the processing and amplification, which we have not 

investigated in this manuscript. For genotyping, absolute measurements are not required, 

as only the magnitude of the decrease of digital counts upon introduction of the RE needs 

to be measured, which essentially sets the requirement for resolution of the platform 

used. For a specific digital device, resolution and dynamic range (i.e., the range of viral 

concentrations over which the genotyping measurement can be reliably performed on a 

given device) are in balance with one another—the lower the requirement for resolution, 

the larger dynamic range it has. For example, in a published multivolume SlipChip[15] 

device, the dynamic range for 5-fold resolution is 67 to 2×107 copies/ mL. In this RT-

LAMP/RE system, the requirement for resolution is only 10 fold and a better inhibition 

chemistry would further lower the required resolution and increase the dynamic range of 

the digital measurement. The results presented in this paper raise a number of additional 
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questions: What is the right theoretical framework within which to analyze both rate and 

fate in single-molecule competition reactions? What are the molecular details of the 

mechanisms responsible for fate and rate determination in such systems? Can robustness 

of output of these systems be predicted a priori? What are the best amplification and 

inhibition chemistries with which to implement such competition reactions for 

genotyping and other genetic analyses? 
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Chapter 7: 

Lack of Correlation between Reaction Speed and Analytical Sensitivity in 

Isothermal Amplification Reveals the Value of Digital Methods for 

Optimization: Validation Using Digital Real-Time RT-LAMP* 

Abstract 

In this paper, we asked if it is possible to identify the best primers and reaction conditions 

based on improvements in reaction speed when optimizing isothermal reactions. We used 

digital single-molecule, real-time analyses of both speed and efficiency of isothermal 

amplification reactions, which revealed that improvements in the speed of isothermal 

amplification reactions did not always correlate with improvements in digital efficiency 

(the fraction of molecules that amplify) or with analytical sensitivity. However, we 

observed that the speeds of amplification for single-molecule (in a digital device) and 

multi-molecule (e.g. in a PCR well plate) formats always correlated for the same 

conditions. Also, digital efficiency correlated with the analytical sensitivity of the same 

reaction performed in a multi-molecule format. Our finding was supported 

experimentally with examples of primer design, the use or exclusion of loop primers in 

different combinations, and the use of different enzyme mixtures in one-step reverse-

transcription loop-mediated amplification (RT-LAMP). Our results show that measuring 

the digital efficiency of amplification of single-template molecules allows quick, reliable 

comparisons of the analytical sensitivity of reactions under any two tested conditions, 

independent of the speeds of the isothermal amplification reactions. 

                                                           
* This chapter was first published in Nucleic Acids Research with authorship belonging to Eugenia M. 
Khorosheva, Mikhail A. Karymov, David A. Selck, and Rustem F. Ismagilov. The original manuscript can be 
found at: http://dx.doi/10.1093/nar/gkv877 
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Introduction 

The detection and quantification of nucleic acids using quantitative PCR (qPCR) 

amplification1,2 has been well established, with published guidelines for protocol 

optimization,3,4 interpretation of reaction kinetics, and accurate results reporting.5-9 

Isothermal amplification is an alternative approach for nucleic acid amplification that 

does not require temperature cycling.10-12 Many isothermal amplification techniques 

allow rapid amplification reactions,13,14 do not require expensive equipment for 

thermocycling, allow both simple visual and fluorescence-based multiplex read outs,15-18 

and have the potential to improve diagnostics in point-of-care and limited-resource 

settings.19 Nucleic acid quantification using real-time isothermal amplification has been 

described in many methods, including RPA,20 LAMP,18 NASBA,21 and RCA,22 by 

interpreting the standard dilution curves of exponential amplification profiles, an 

approach similar to the well-established one used in qPCR. 

Microfluidic methods have contributed to shorter amplification reaction times23 and 

reduced reaction volume, and enable digital quantification as an alternative to real time 

(kinetic) quantification.24-26 When the digital method is applied to PCR, absolute and 

reliable quantification can be achieved.27-30 Reliable quantification via digital methods 

has also been shown for some isothermal amplification reactions, such as RPA,31 RT-

LAMP and LAMP,32,33 and RCA.34  In the digital amplification-on-a-chip format, a 

solution containing templates is loaded into a device with multiple wells at a low enough 

volume that each well is likely to contain either 0 or 1 template molecule. Every 

individual template that amplifies gives rise to a fluorescent signal in its separate well.  

The number of positive wells can then be counted optically to deduce starting 
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concentration of the target nucleic acid. If all loaded template molecules amplify, 

absolute quantification is possible, but this only occurs in well-optimized amplification 

reactions.28 However, even if not all loaded template molecules amplify, digital 

quantification still provides precise comparisons of the relative template concentrations.35 

The key parameter for evaluating the performance of an amplification reaction is its 

“digital efficiency,” the percentage of templates that successfully amplify from the total 

template pool. Digital efficiency impacts assay accuracy (the ability to accurately 

quantify a loaded number of template molecules), and impacts analytical sensitivity (the 

ability to detect even a small number of template molecules in a reaction)—the standard 

parameters in the “Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments”.5 In this paper, we utilize the SlipChip digital platform,31,35,36 which allows 

both single-molecules amplification and real-time monitoring of amplification reactions 

for each template molecule36,37 (Figure 7-1).  
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Figure 7-1. A schematic comparison of isothermal amplification in a tube (A), and in a 

digital single-molecule microfluidic device (B), responding to a change in conditions 

during optimization.  (A)  Increased non-digital reaction speed may either indicate a 

faster amplification of a few successful molecules and their products, or suggest that 

more template molecules initially participated in exponential amplification—indicating 

therefore an improved analytical sensitivity. Each template molecule is shown as a blue 

wavy line, and the accumulation of the amplification product is indicated as the solid red 

curves on the graphs.  (B) The digital single-molecule method allows for independent 

measurements of reaction rate and analytical sensitivity during amplification of each 

template molecule (or lack thereof) within each well (squares in the grey device) to give 

rise to amplification product (blue-filled squares in the device and solid blue curves on 

the graphs).  

During optimization, primer variants and reaction conditions must be compared 

empirically to ensure the nucleic acid sequences of interest are being detected reliably 

through amplification. While PCR approaches for selecting the best conditions are well-

standardized,13 guidelines for optimizing isothermal amplification reactions are not as 

well developed. As a rule, in qPCR the best primer pair will yield the product with the 

lowest average cycle threshold (Ct) at equal template concentrations and under identical 

experimental conditions.38 In qPCR systems, the Ct value is dependent only on 

amplification efficiency, the number of starting template copies, and background 

fluorescence. The best primer pair also provides the highest possible analytical sensitivity 

in a multi-molecule format (e.g. in a PCR tube or well plate) and the highest possible 

digital efficiency in a digital format.  

Reaction speed would seem to be an attractive criterion of efficiency when estimating 

isothermal amplification reaction performance39 as well as when testing primers and 

conditions during optimization, as it is more convenient than performing dilutions and 

determining the limit of detection (LOD, the template concentration that can be detected 

with reasonable certainty, e.g. 95% confidence5) for each condition. However, this 
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approach, widely used in qPCR, had not been rigorously tested for isothermal reactions, 

and we predicted that it may not hold for isothermal reactions due to differences in the 

way isothermal reactions proceed. While isothermal amplification is “chained,” similar to 

PCR, and exhibits exponential kinetics, there are no cycles defined by temperature. In 

qPCR, all the steps of amplification are time-synchronized and the number of cycles is 

counted rather than the absolute time of the reaction being measured. Time is allotted for 

each process (denaturation, annealing, elongation) in each cycle; if this time is sufficient 

for each process to complete, one will often not detect any minor differences in the 

efficiency of each process for amplification of different copies of the template molecule. 

In contrast, in isothermal reactions all biochemical events take place in parallel and the 

total time of the reaction is measured rather than the number of cycles. Thus, we 

hypothesized that changes in kinetics of any of the processes will more noticeably affect 

the time to threshold in isothermal reactions, compared to qPCR.  

There are many factors that could theoretically affect speed and analytical sensitivity in 

isothermal amplification reactions. Consider these three examples.  First, sometimes 

more than one enzyme is used simultaneously (e.g. in NASBA,21 strand displacement 

amplification (SDA),40 helicase dependent amplification (HDA),41 and isothermal and 

chimeric primer-initiated amplification of nucleic acids (ICAN)42) and all reverse 

transcription isothermal amplifications are performed in one step, such as in one step RT-

LAMP43,44). Some of these co-occurring biochemical reactions could influence each other 

in isothermal reactions (similarly to how reverse transcriptase inhibits amplification in 

the non-isothermal reaction RT-PCR45). Second, sometimes numerous annealing events 

have to be coordinated to prevent them from competing with each other (e.g. in LAMP). 
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Some annealing events influence the speed of isothermal reactions dramatically, e.g. the 

annealing of turn back primers,46,47 which is required for amplification, and the optional 

annealing of loop primers13 and stem primers48 in LAMP. Although the products of 

amplification from the extensions of two additional loop primers in LAMP do not 

contribute to the pool of exponentially amplifying DNA sequences nor are they required 

for the basic amplification mechanism,43 their presence is known to improve reaction 

sensitivity.13 But stem primers’ effect on amplification reaction sensitivity has not been 

addressed in publications. Third, the absence of multiple denaturation steps in isothermal 

amplification reactions suggests that reaction speed would be dependent on the 

template’s innate secondary structures. Thus, an isothermal reaction’s speed and 

analytical sensitivity are related in a more complex way than in PCR and cannot be 

predicted a priori. 

We hypothesize that each component of an ongoing isothermal amplification reaction 

may potentially affect the reaction in one of the following ways: (i) it may limit the 

reaction’s speed (the time it takes for an amplification reaction to produce a threshold 

level of signal) (ii) it may influence each single template molecule’s “fate” (whether it is 

amplified giving rise to a detectable signal, or lost from the amplification chain) thus 

affecting the analytical sensitivity, or (iii) it may affect both the fate and the rate of 

amplification events.  

When isothermal amplification reactions take place in a multi-molecule format (e.g. in a 

PCR tube or well plate) it is difficult to identify whether a change in time to threshold 

observed upon a change in primers or reaction conditions is the result of a larger fraction 

of templates amplifying (improved “fates”) or a change in reaction rate only (Figure 7-
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1A). In contrast to a multi-molecule format, digital experiments would separately 

measure the “fate” (expressed as digital efficiency) of template molecules, allowing a 

more sensitive reaction design (Figure 7-1B). Real time imaging of singe-molecule 

amplification in each well measure both the change in “fates” and also changes in 

amplification “rates” (expressed as time to positive) as a result of a new primer or 

reaction condition. Here, we asked whether accelerating isothermal amplification 

reactions in a multi-molecule format in response to an introduced change in conditions 

always reflects improved analytical sensitivity and digital efficiency. This is an important 

question to answer in order to determine whether the standard qPCR approach using 

kinetics comparisons (speed of amplification) to find the best primers and conditions is 

also applicable to isothermal reactions. In this paper, we tracked amplification of single 

template molecules of HCV 5’UTR RNA in real time under several different RT-LAMP 

conditions, and compared these observations to data on real-time multi-molecule 

amplification reaction speeds performed in a well plate. 

Materials and Methods 

Chemicals and materials 

All common reagents were purchased from commercial sources with the exception of 

RTx Bst 2.0 enzyme mixture (provided by New England Biolabs, NEB). Commercial 

reagents used were the same as described in Sun et al. (31), with the exception of 

SUPERase-In RNAase Inhibitor (Ambion by Life Technologies, Carlsbad, CA, USA) 

and Ultra-Pure distilled DNAses and RNAses free water (Invitorgen by Life 

Technologies, Carlsbad, CA, USA).  
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RNA template 

AcroMetrix® HCV-S panel RNA was extracted either with the QIAamp Viral RNA Mini 

Kit (QIAGEN Inc., Valencia, CA, USA) or with Maxwell ® 16 Viral Total Nucleic Acid 

Purification Kit (Promega, Madison, WI, USA) according to the manufacturer’s 

instructions. Nucleic acid extractions were immediately diluted using Ultra-Pure distilled 

DNAses and RNAses free water (Invitorgen), partitioned into about 100 separate 10 µL 

aliquots and stored at -80° C. Each 10 µL aliquot was further diluted and re-aliquoted to 

use as a template in RT-amplification. RNA fragment sequence was determined using 

RT-PCR reaction and Laragen Inc sequencing services. RNA concentrations were 

estimated through RT-PCR as described below. 

Estimation of HCV RNA concentration using RT-PCR amplification on the 

SlipChip device 

HCV viral RNA was added to the RT-PCR mix contained the following: 20 μL of 2X 

SsoFast EvaGreen SuperMix, 1.0 μL of each primer (10 μM/L), 2.0 μL of BSA solution 

(20 mg/mL), 1.0 μL of SuperScript® III Reverse Transcriptase, 1.0 μL of SUPERase-

In RNAase Inhibitor, 13 μL of nuclease-free water, and 1 μL of template solution. RT-

PCR primers used for HCV RNA template quantification were described previously 36,49. 

The amplifications were performed using SlipChip devices and a custom built real-time 

instrument, using the following protocol: an initial 15 min at 50° C was applied for 

reverse transcription, then 2 min at 95° C for enzyme activation, followed by 40 cycles of 

1 min at 95° C, 30 sec at 55° C and 45 sec at 72° C. Images of all 1,280 wells on each 

device were acquired for each cycle at 72° C. After the final cycle, a final elongation step 

was applied for 5 min at 72° C. This thermal cycling program was applied to all real-time 
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digital experiments except for those done with end-point read-out on the PCR master 

cycler machine (Eppendorf) where 33 cycles were selected as a single end-point imaging 

cycle. End-point readout was done as described previously 36. At least six RT-PCR 

amplification reaction replicas on SlipChip devices were done to determine RNA 

concentration, and this concentration was used as a reference for all the future 

experiments. 

Real time and real time digital measurements  

To confirm that time to threshold values (Ct) in a digital format correlates with the Ct in a 

multi-molecule format, we used custom-built real-time instrument imaging and software 

that allowed us to observe the process of amplification in each well initially containing a 

single template molecule.  SlipChip devices have been used most often to see only the 

end-point amplification in each well. Here, we used  real-time imaging of the chip37 to 

track the amplification progress of each well in real time and record amplification curves, 

as described below. We used digital measurements of digital efficiency, real-time digital 

measurements of both digital efficiency and reaction rates, and then compared these 

results to real-time kinetic measurements performed in a well plate, done in parallel for 

each condition tested. Due to heterogeneity among the rates of amplification of different 

molecules the reported “time to positive” in the digital experiments was selected as the 

time to a fluorescent signal in a first positive SlipChip device well (or the first few wells 

when they show a positive signal simultaneously), which is immediately followed by the 

appearance of a subsequent series of signals from other positive wells.  

Fabrication and design of the SlipChip device 
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The SlipChip used was fabricated, cleaned, assembled, and loaded as described 

previously 32,50. The device contained a total of 1,280 wells etched to a depth of 55 μm 

for a loading well volume of 3 nL on each side (6 nL when device is loaded from both 

sides); however, devices were always loaded from one side and the second half was filled 

with oil and used for a thermo-expansion volume 51. 

Real-time digital imaging 

Real-time digital experiments were performed on a custom-built instrument that uses a 

Bio-Rad PTC-200 thermocycler with a custom machined block for thermal 

control/incubations at chosen temperatures. The block has a flat 3 in x 3 in area that 

accommodates microfluidic devices. The excitation light source was a Philips Luxeon S 

(LXS8-PW30) 1315 lumen LED module with a Semrock filter (FF02-475). Image 

Acquisition was performed with a VX-29MG camera, a Zeiss Macro Planar T F2-100mm 

lens, and a Semrock filter (FF01-540) for emission. 

Real-time digital analysis 

Acquired images were analyzed using custom LabVIEW software. The data were 

analyzed by first creating a mask that defined the location of each reaction volume in the 

device. The masked spots were then used to extract the average intensity information of 

each digital well over the course of the experiment. Threshold was then manually set as 

half the height of the averaged and background-corrected maximum intensity, and the 

time to positive of each reaction was determined as the interpolated point at which the 

real-time curve crossed the defined threshold. Poisson statistics were used in automated 
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software calculations of the loaded template concentrations, based on the percentage of 

wells that showed template presence. 

RT-LAMP primer design, and primer sets used 

For primer design we used Oligo 7.0 software (Cascade, CO, USA); alignment of 

available HCV 5’UTR  sequences was done using Geneious 6.1.6 software (Biomatters 

Ltd, Auckland, NZ) to select the most conserved fragments to position the 5’ and 3’ ends 

of FIP and BIP. HCV 5’UTR fragment of interest secondary structure has been evaluated 

at different temperatures using NuPack, as RNA and as both single strands DNA form 52.  

We followed recommendations on LAMP primer design from the Guide to LAMP Primer 

Designing on the EIKEN web site 53 and used the primers in recommended relative 

concentrations ranges 43. A few primer variants were experimentally tested via digital 

efficiency evaluation, and compared with HCV “best published primers” (BPP) from the 

literature 54. We designed back primers (BIP, loopB and B3) ourselves and we modified 

the BPP set forward primers (FIP, loopF and F3) to design our versions to place the 

important primer parts into the most conservative HCV sequence alignment fragments. 

We tested all planned primer alterations for forward and back primers independently, 

introduced them one by one, and measured the relative change in digital efficiency for at 

least three replicates, and used the BPP set performance in dRT-LAMP as a reference. 

We selected the primers with the highest digital efficiencies in dRT-LAMP amplification 

reactions and we named this set “digitally optimized primers” (DOP):  

BIP 5’-TTGGGCGTGCCCCCGCAAGTT 

TTCAGTACCACAAGGCCTTTCGCGACC-3’ 
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FIP 5’-TCCAAGAAAGGACCCGGTCTTTTT 

CTGCGGAACCGGTGAGTAC-3’ 

LoopB 5’-CTGCTAGCCGAGTAGTGTTG-3’ 

LoopF 5’-GTCCTGGCAATTCCGGT-3’ 

F3 5’-CCTCCCGGGAGAGCCATAG-3’ 

B3 5’-GCACTCGCAAGCACCCTATC-3’ 

The same DOP set, modified to determine four circulating HCV genotypes by 

incorporation inosine bases, was used previously 37.  

Four variants of DOP set were designed for testing the correlation of the speed and 

sensitivity of isothermal amplification. Through elongation of the F1c part of FIP, we 

designed “long FIP” (LFIP) primer 5’-

GGTTGATCCAAGAAAGGACCCGGTTTTTCTGCGGAACCGGTGAGTAC-3’ to use 

in a model DOP-LFIP primer set.  Through elongation of the B1c part of BIP primer we 

designed “long BIP” (LBIP) primer 5’-

GAGATTTGGGCGTGCCCCCGCAAGTTTTCAGTACCACAAGGCCTTTCGCGAC

C-3’ to use in a model DOP-LBIP set.  The variants of the DOP sets “no loop F” (DOP-

NLF) and “no loops” (DOP-NL) were used to test the effect of loop primer presence on 

the speed and sensitivity of amplification. The DOP-NLF set was the same as the DOP 

but the loopF primer was excluded (only loopB primer was present). The DOP-NL set 

was the same as the DOP set but lacked both loopB and loopF primers.  

RT LAMP primers and conditions 
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Digital RT-LAMP using SlipChip device, and RT-LAMP in a well plate were performed 

with all the primer set variants in one step as described previously 37, with the following 

modifications: We used 1.7 µL of enzyme in 40 µL of total reaction mixture instead of 2 

µL, and standard 3 µL of Acrometrix HCV-s RNA template solution (or nuclease-free 

water for negative controls). In all the primer sets, both the B3 and B2 parts of BIP 

served as gene-specific primers for reverse transcription. Enzymes tested were: 1) EM 

(EIKEN), used for all the experiments, and 2) A mix of Bst 2.0 (NEB) with an 

experimental lot of NEB RNaseH active thermostable reverse transcriptase Rtx used only 

for one experiment on comparison different enzymes (Fig. 7-5). Amplification products 

detection was performed with calcein (FD)(EIKEN). Real-time bulk RT-LAMP data 

analysis was done as described previously 37. 

Results 

To test whether reaction rate and digital efficiency always correlate in the case of 

isothermal reactions, we used digital amplification on SlipChip to reanalyze two common 

approaches believed to improve performance of LAMP: (i) selecting primers in the 

recommended melting temperature (Tm) ranges to ensure correct annealing order 43, and 

(ii) using loop primers to increase speed and sensitivity 13. First, we used the digital 

optimization process described in this paper to optimize a set of primers, which we call 

“digitally optimized primers” (DOP). In the comparisons of speed and efficiency, we 

compared this DOP set to four other primer set variants: DOP with an elongated BIP 

primer (DOP-LBIP), DOP with an elongated FIP primer (DOP-LFIP), DOP with no 

loopF primer (DOP-NLF), and DOP with no loops (DOP-NL). We also tested for a 
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correlation between digital efficiencies and rates of reactions performed with each of two 

variants of reverse-transcriptase/Bst polymerases enzymes mixtures. 

The effect of turn back primers (FIP and BIP) on amplification speed and 

sensitivity. 

We compared the reaction rates and digital efficiencies of reactions using DOP and those 

using either the DOP-LBIP primer set or the DOP-LFIP primer set. The rationale for this 

experiment is that we assumed that the order of the primer annealing in a LAMP reaction 

strongly affects digital efficiency (Figure 7-2). Ideally, F1c and B1c anneal first, F2 and 

B2 anneal second, and F3 and B3 anneal last. These considerations are in line with the 

recommendations listed in a Guide to LAMP Primer Designing 53. 
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Figure 7-2. Diagram of annealing events during RT-LAMP amplification. Synthesis of 

cDNA starts either from the B3 primer or from the BIP primer (which consists of B2 and 

B1c fragments). The RNA template is degraded through RNAseH activity of reverse 

transcriptase. Afterward, competition between different primers’ annealing occurs, 

affecting the “fate” of each cDNA molecule and its products (i.e. whether they will 

remain in or be excluded from the pool of amplifying molecules). F1 and B1 annealing 
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should occur before the F2 and B2 annealing, and B2 and F2 annealing should occur 

before B3 and F3 annealing for optimal amplification.  

Primer annealing to template depends on each primer’s Tm and the template’s secondary 

structure. The interplay of these two factors is addressed through the concept of net Tm, 

which is the temperature at which half of the template is bound by the oligonucleotide 

55,56. While we do not know the exact secondary structure of a LAMP amplicon under 

reaction conditions, we modeled the predicted secondary structure for our amplifying 

DNA fragment using NuPack software.52 This modeled secondary structure appears to be 

very similar to the published secondary structure for HCV 5’UTR RNA.57,58 It’s possible 

that making B1c and F1c longer in LBIP and LFIP not only increased the primers’ Tm 

(Table 7-1), but also affected their net Tm as a result of positioning the B1c and F1c ends 

into template regions that were richer in secondary structures. Additionally, making B1c 

and F1c longer may have affected the probability of non-paired state at the 5′-end regions 

of the turn back primers, which is known to influence amplification.46 If secondary 

structures are significantly more abundant in the template fragments, only empirical 

testing can verify that primers work better after optimization via increased calculated Tm. 

Table 7-1. Annealing sequences of the standard primer set and the elongated primer 

variants, the nucleotide sequence, and the melting temperatures (Tm) at a standardized 

concentration of primers. 

Annealing sequence Nucleotide sequence (5’ to 3’) Tm 

F1c of FIP  

(as in DOP) 

TCC AAG AAA GGA CCC GGT C 68.4º C 
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F1c elongated (of 

FIP) to use in DOP- 

LFIP 

GGT TGA TCC AAG AAA GGA CCC GG 70.7º C 

F2 (of FIP) T CTG CGG AAC CGG TGA GTA C 70.2º C 

F3 CCT CCC GGG AGA GCC ATA G 65.9º C 

B1c of BIP  

(as in DOP) 

TTGGGCGTGCCCCCGCAAG 73.7º C 

B1c elongated (of 

BIP) to use in DOP-

LBIP 

GAGATTTGGGCGTGCCCCCGCAAG 76.3º C 

B2 (of BIP) CAGTACCACAAGGCCTTTCGCGACC 73.7º C 

B3 GCACTCGCAAGCACCCTATC 66.0º C 

 

In our experiments, for both DOP-LFIP and DOP-LBIP primer sets, elongation of FIP or 

BIP primers led to a drop in digital efficiency compared to the DOP set. For DOP-LFIP, 

the digital efficiency dropped by 40%  6% (S.E.) of DOP (P = 2.4 x 10-4) and for DOP-

LBIP the digital efficiency dropped by 34%  5% (P = 3.7 x 10-3) (Figure 7-3B). 

However, the change in reaction speed was different for the two primer sets. In the case 

of elongated BIP, the drop in efficiency was accompanied by a decrease in speed (longer 

time to positive), as would be expected in analogy to qPCR. Here, time to positive 

increased from 18.6 min  0.1, to 21.4 min  0.2 (P = 1.7 x 10-11). Surprisingly, in the 
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amplification reaction using elongated FIP, the drop in efficiency was not accompanied 

by a change in time to positive; the DOP-LFIP time to positive was similar to DOP, 18.7 

min  0.2 (P = 0.585) (Figure 7-3A). Thus, reaction speed and digital efficiency do not 

always correlate in isothermal amplification reactions. 

 

Figure 7-3. Comparison of time to positive and RT-LAMP reaction efficiencies for the 

“digitally optimized primers” (DOP) set and the elongated BIP and FIP sets (DOP-LBIP 

and DOP-LFIP) through real-time measurements of reaction speeds (time to threshold 

values in min) and real-time digital measurements of the template molecules’ “fates” 

(expressed as normalized digital efficiencies).   (A) Plot comparing times to positive in 

multi-molecule experiments for standard and elongated BIP and FIP primers with 5’ ends 

placed into the secondary structures.  N = 9-24; (B) Plot of normalized relative digital 

efficiencies for single-molecule experiments using standard and elongated BIP and FIP 

primers. P-values are above brackets and error bars designate S.E.; N = 3-8. 

These results suggest that selecting primers for LAMP in the recommended Tm ranges 

isn’t enough to ensure better reaction performance, as in one case we observed a drop in 

reaction speed and in both cases we observed a decreased ability to determine template 

concentrations with high sensitivity (detected as a drop in a digital efficiency).  

Measurements of reaction speed alone did not allow a reliable comparison of the tested 

primers, whereas digital measurements of the cumulative fates of the template molecules 

(Figure 7-3B) provided a tool for a direct comparison of primers efficiencies. These 
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experiments specifically show that, in some cases, two isothermal reactions performing at 

the same speed may differ in their digital efficiencies. 

The effect of loop primer presence on amplification speed and sensitivity. 

We compared the effect of loop primers on digital amplification efficiency, as well as on 

the speed of the reaction in both digital and multi-molecule formats, using the DOP set 

and its two variants: the DOP set with no loops (DOP-NL) and the DOP set with no loop 

F (DOP-NLF). The DOP-NL set was significantly slower and about half as efficient 53% 

 2% (S.E.) as the DOP set. The average times to positive in the reaction with DOP were 

18.5 min  0.1 min, and those with DOP-NL were 37.4 min  0.7 (Figures 7-4A,7-4B). 

This result supports the published observation 13 that using loop primers improves 

primarily the speed of the reaction and also its sensitivity.  

When we compared the primer set with no loop F (DOP-NLF) to the DOP set, which 

contained both loops, we found that the speed of the reaction with DOP-NLF (23.2 min  

0.2) was about 4.7 min slower than the DOP set (18.5 min  0.1 min; P = 3.1 x 10-4) 

(Figure 7-4A). However, surprisingly, the digital efficiencies did not differ significantly 

between the DOP and DOP-NLF sets (P = 0.37). This comparison of the corresponding 

reaction efficiencies showed that the presence of only one loopB primer was sufficient to 

maintain the same ability to determine template concentrations with high sensitivity 

(detected as digital efficiency), as with both loop primers, despite the drop in reaction 

speed (Figure 7-4B).  
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Figure 7-4. Real-time measurements of reaction speeds (time to threshold values in min) 

and real-time measurements of single molecule amplification fates (expressed as 

normalized digital efficiencies).  (A) Plot comparing times to positive in a well plate for 

the “digitally optimized primers” set and the DOP set with no loop primers (DOP-NL) 

and the set with no loop F primer (DOP-NLF), N = 12-24. B) Normalized relative digital 

efficiencies with DOP and DOP-NL and DOP-NLF. Significant P-values are designated 

above the brackets; error bars are S.E.; N = 4-8. 

The lack of correlation between reaction speed and efficiency in the case of only loopB 

primer presence in the reaction mixture, may be partially explained by the fact that the 

products of loop primer amplification by design 13 cannot efficiently participate in 

subsequent exponential amplification. Despite having a primary “signal amplifying” 

function, loop primers still improve digital efficiency (Figure 7-4B), which is in 

agreement with previous work showing their positive effect on sensitivity 13. For the first 

time we show that despite a drop in reaction speed, having just one loop primer in a 

reaction mixture is sufficient to maintain the high digital efficiency seen in experiments 

containing both loop primers. Measurements of speed alone did not allow reliable 

detection of the changes in sensitivity that resulted from different loop primers being 

present, whereas digital measurements of the cumulative fates of the template molecules 

(Figures 7-4B) provided a tool for a direct detection of the changes. These experiments 
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specifically show that, in some cases, two isothermal reactions performing at the same 

digital efficiency may differ in their reaction speeds.  

The effect of using different enzyme mixtures on amplification speed and sensitivity. 

We also tested whether different enzyme mixtures affected reaction speeds and digital 

efficiencies in a correlating way. Reverse transcription adds a few uncertainties to 

subsequent amplification outcomes. First, its efficiency directly affects the fate of RNA 

molecules—whether they are reverse transcribed and used as cDNA copies in a 

subsequent amplification chain, or lost from the template pool. Second, the temperature 

at which different enzymes exhibit optimal activity affects the outcome of reverse 

transcription of the secondary structure-rich templates 59, especially when gene-specific 

primers are used, or when reaction is done as a one-step RT-LAMP performed at 63° C. 

Third, reverse transcriptase may interfere with polymerase performance 45, as reverse 

transcriptase binds to the primers/DNA complexes and may also exhibit some limited 

DNA/DNA polymerase activity. 

We used digital amplification to test an enzyme mixture of RNAseH active thermostable 

reverse transcriptase RTx and Bst 2.0 polymerase enzymes (from NEB). Our preliminary 

check of performance of this enzyme mixture showed later times to positive compared to 

an analogous reaction using a commercial enzyme mixture (EM, from EIKEN).  

However, when we tested how many HCV RNA templates were correctly detected from 

a known number of loaded RNA templates, we discovered that despite being slower than 

EM, the RTx Bst 2.0 enzyme provided higher digital efficiency (Figure 7-5). These data 

show once again that isothermal reaction speed and efficiency do not always correlate, 
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and could be untangled using digital measurements of the cumulative fates and rates of 

the template molecules (Figures 7-5A), but not using multi-molecule format alone.   

 

Figure 7-5. Comparison of the effect of two different RT-LAMP enzyme mixtures on 

amplification using (A) real time, digital single-molecule and (B) real time bulk 

approaches. (A) Real-time digital measurements of single-molecule amplification fates 

and rates in a microfluidic device shown as the number of wells that reached a signal 

threshold over time in each experiment (N=3). We compared a commercially available 

enzyme mixture (EM, blue dashed lines) and an experimental lot of RTx Bst 2.0 enzyme 

mixture (red solid lines). (B) Real-time measurements of reaction speeds (time to 

threshold in min) in a multi-molecule format.  In all enzyme experiments we used DOP 

primers with an FIP primer identical to the one from the BPP set. Error bars are S.E. and 

N=3.  

Characterizing “digitally optimized primers” (DOP) and “best published primers” 

(BPP) using digital experiments and experiments in a multi-molecule format. 

To address whether digital efficiency correlates with analytical sensitivity (measured 

using multi-molecule format), we compared the DOP set to a set of primers taken from 
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the literature for HCV 5’UTR RNA, which we refer to as “best published primers” (BPP) 

54. We used digital measurements of efficiency, and real-time digital measurements of 

both efficiency and reaction speed. We also did real-time kinetic measurements of 

reaction speed and determined analytical sensitivity (determined as the limit of detection, 

LOD) in a multi-molecule format using standard PCR well plates for each condition. We 

found good agreement between digital efficiency and LOD measured in well plates for 

both the DOP and BPP sets. The normalized BPP digital efficiency measured in a 

microfluidic device was 34% of the DOP digital efficiency (Figure 7-6A) (P = 1.05 x 10-

6). In the multi-molecule format, the LOD for the BPP set was determined to be 75 

template copies/10 µL, while the LOD for DOP set was found to be 18 copies/10 µL 

(Figure 7-6C). The LOD values in PCR tubes and digital efficiencies measured in 

microfluidic devices correlated well in this example. At a very low template 

concentration of ~1.2 copy/10 µL, the DOP set enabled detection of 44% of the wells in 

the well plates, whereas there were no positive signals detected at the same template 

concentration with the BPP set (Figure 7-6C), which is a result of the higher analytical 

sensitivity of the DOP set. 

To ensure that in all cases the results of the reactions in digital format were in accordance 

with those of reactions performed in a multi-molecule format, we measured the absolute 

time of the reaction in both formats (Figure 7-6D). The single-molecule enzymatic 

reaction start time was stochastic. Due to heterogeneity among the rates of amplification 

of different template molecules, the reported “time to positive” in the digital experiments 

was defined as the time to the first positive well (fluorescent signal) in a microfluidic 

device that was immediately followed by a subsequent series of signals from other 
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positive wells. We found that for all primers used in our experiments under similar 

conditions, the times to positive in a digital format in a microfluidic device correlated 

well with the times to positive in multi-molecule reactions performed in a PCR well plate 

(Figure 7-6D). Our data indicate that the digital format resulted in a faster readout (Figure 

7-6D), which is consistent with the higher concentration of template molecules in the 

digital reactions. While we started with identical solutions for multi-molecule and digital 

experiments, the effective concentration of single template molecules confined in 

microfluidic wells on a digital microfluidic device was ~5 times higher than the 

concentration of the templates in corresponding reactions performed in a PCR well plate, 

because ~ 80% of wells on the digital device lacked template molecules and therefore all 

of the template molecules were concentrated into the ~20% of the wells. This correlation 

(Figure 7-6D) between the times to positive of multi-molecule reactions and earliest 

amplification reactions in corresponding digital experiments 37 is consistent with the 

“winner takes all” dynamics in multi-molecule amplification: the products of the first few 

successful amplification events become the primary source of amplicons for subsequent 

exponential reactions.  We also plotted the average times to threshold values for BPP, 

DOP, and DOP-NLF sets to illustrate that the relative efficiency of a primer set cannot be 

deduced through reaction speed alone (Figure 7-6B). Time to positive signal was shorter 

for DOP (18.5 min  0.1) compared to BPP (21.9 min  0.2) sets, but the DOP NLF set 

had a longer times to positive (23.2 min  0.2), although the DOP NLF set had  the same 

efficiency as the DOP set (Figure 7-4B). 
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Figure 7-6. (A) The digital efficiency of the “best published primers” (BPP) set 

normalized to the “digitally optimized primers” (DOP) set, N = 6. (B) Normalized 

fluorescence intensity over time for amplification using the BPP (orange lines), DOP 
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(blue lines) and DOP-NLF (green dashed lines) sets, N = 3 (C) Percent of positive wells 

in a PCR well plate at different template concentrations with the DOP and BPP sets (N 

indicated above each bar). (D) Measured times to positive of LAMP reactions in a multi-

molecule format in PCR well plates (light grey) and in the digital format on a 

microfluidic device (dark grey) for all primer sets. Error bars indicate S.E., N = 4-8 in 

digital; N = 16-40 for well plates. 

Digitally optimized primers had better analytical sensitivity compared to the best 

published primers set. The LOD for the DOP set was 18 molecules in 10 µL, while the 

LOD for the BPP set was 75 template molecules in 10 µL. However, in our multi-

molecule format experiments, before we could determine these LOD values with 

statistical significance we had to test 104 PCR wells for the DOP set and 103 PCR well 

plate wells for the BPP set.  In contrast, in the digital experiments comparing DOP and 

BPP sets, just one device per condition was enough to observe clear differences in the 

sensitivity of detection of loaded templates, and additional replicates confirmed statistical 

significance. 

Discussion  

Isothermal reactions provide a useful tool for nucleic acid amplification tests, particularly 

in point-of-care settings. Designing reliable tests requires finding the best isothermal 

amplification primer variants and reaction conditions. The digital format provides an 

invaluable tool for assessing the efficiency of an isothermal amplification reaction by 

directly detecting the percentage of successfully amplified template molecules from the 

known number of loaded template molecules. Our results show that digital efficiency 

correlates with analytical sensitivity, and that amplification reaction speed in a digital 

format correlates with reaction speed in a multi-molecule format (e.g. in a PCR well plate 

or tube). Thus, observations made about digital efficiency and reaction speed in nanoliter-
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scale volumes are directly applicable to the same reactions performed in a large-volume, 

multi-molecule format.  

Applying the digital method to isothermal amplification experiments revealed a number 

of surprising results that contradict the intuition derived from qPCR experiments. First, 

and perhaps most interestingly, reaction speed does not correlate with digital efficiency 

(and analytical sensitivity) in isothermal amplification reactions. Specifically, testing FIP 

and BIP primer variants showed that the digital efficiency in one-step RT-LAMP 

reactions may be significantly higher for one of the tested primer variants, even without 

an observed change in the speed of the reaction (Figure 7-3). We also found a lack of 

correlation between speed and sensitivity (digital efficiency) in the experiments using 

different enzymes mixtures, where we observed reactions with higher digital efficiency 

having substantially longer times to positive (Figure 7-5). 

Digital experiments confirmed that the presence of two loop primers in the LAMP 

reaction mixture slightly improved sensitivity to determine template concentration, in 

addition to their primary function of accelerating the accumulation of amplification 

products 13.  However, an unexpected result was that having just one loop primer in a 

reaction mixture was sufficient to maintain the same improved digital efficiency, despite 

the expected partial drop in reaction speed compared to reactions containing both loops 

(Figure 7-4). 

We conclude that the well-known qPCR approach for selecting optimal primers and 

conditions based on earlier times to positive is not applicable to all isothermal 

amplification reactions. In all of the reaction conditions we tested, deriving conclusions 

about optimization based only on observed changes in reaction speed could have been 
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misleading.  As a consequence, a kinetic-based evaluation of an isothermal reaction’s 

performance (e.g. an evaluation based on the proposed isothermal doubling time (IDT) 

parameter 39, would not discriminate between a slow, sensitive reaction, and a less 

sensitive (e.g. inhibited) reaction. Therefore, faster reaction speed is not an appropriate 

way to determine better reaction conditions or primers in the case of isothermal 

amplification reactions. Detailed analyses of optimization process are typically not 

reported for new assays.  The final analytical sensitivities of newly developed isothermal 

assays are either reported through LOD 60 or more typically evaluated by using 10-fold 

serial template dilutions that are then compared to the sensitivities of a standard PCR 

method as a way to demonstrate the value of each developed isothermal test 61-63. 

An alternative approach to accurately evaluate different  primer variants or conditions 

used  in isothermal reaction is to perform experiments to estimate a limit of detection 

(LOD) 5 in a multi-molecule format for each introduced change in reaction conditions. 

However, this approach has a number of disadvantages: (i) sometimes a single introduced 

change in conditions may only slightly affect analytical sensitivity (ii) some introduced 

changes may have cumulative or interactive effects on analytical sensitivity, (iii) LOD 

experiments are not easy to perform at low dilutions especially for RNA due to its 

potential degradation, (iv) experiments must be done side-by-side for both tested 

conditions to exclude variation related to reagent freshness and reaction setups, and, as 

emphasized below (v) a large number of replicates is required to establish statistical 

power.  

Using digital methods during optimization can be a reliable tool for finding primers and 

conditions that allow the best analytical sensitivity in a standard multi-molecule format—



190 
 

providing faster results and requiring lower replication.  To further illustrate the 

advantage of digital measurements in optimization, we performed a back-of-envelope 

analysis of a question: How many experimental replicates are needed (i.e. what is the 

“sample size” necessary) to distinguish a change in digital efficiency (Target Difference, 

TD) between two reaction conditions in a digital format? We sought to answer this 

question in a way that would be applicable to both single-molecule amplification (e.g. 

digital formats) and multi-molecule amplification (e.g. in a PCR tube or well plate). In 

both cases, we calculated the minimum number of replicates (N) required to differentiate 

with statistical power which reaction had higher digital efficiency.  

First, in the context of digital experiments, we calculated the standard deviation for the 

number of positive wells in a single device 36,64,65. For a device with 1,280 wells of 3 nL 

and a concentration of 5 x 104 molecules/mL, the standard deviation  of ln() is 0.075 

(Eq. 1): 

 =
1

𝜆𝜈√
𝑛

𝑒𝜈𝜆−1

  (Eq. 1) 

Here,  is the concentration in molecules/mL,  is the well volume in mL, and n is the 

total number of wells in the digital device. We calculated TD as an absolute difference 

between the natural logarithms of two measured efficiencies (for this example a 20% 

difference in efficiency was selected), to match standard deviation. Next, we calculated 

the standardized difference, SD = 2.98, from: 

𝑆𝐷 =
𝑇𝐷

𝜎
   (Eq. 2) 



191 
 

Finally, we calculated the minimum number of experimental replicates (N) required to 

achieve the TD 66: 

𝑁 =
2

𝑆𝐷2 × 𝐶𝑝,𝑝𝑜𝑤𝑒𝑟 (Eq. 3) 

Here, Cp,power, a constant defined by the combination of P-value (typically set to 0.05) and 

statistical power (set to 95%), is equal to 13.0 66. Under these assumptions, N ~ 3 (2.93), 

or only three SlipChip devices for each of the two conditions being compared are 

necessary to establish a 20% difference in detection efficiency between these reactions 

with 95% confidence and a P-value of 0.05. To establish a 25% difference in efficiency 

with the same parameters, we would need only N ~2 (1.76) SlipChip devices. 

Next, using the same approach, we calculated the theoretical number of replicates needed 

to achieve this level of statistical power in a standard, multi-molecule reaction when 

using ~ 1 template copy per reaction (Eqs. 1-3). If one uses 10 wells (of 10 µL each in a 

well plate) per experiment, each loaded with 1 template molecule/well, 90 independent 

trials would be necessary, for a total of 900 reactions per condition (or 9 trials using 100 

tubes each) which is impractical. Pragmatically, experiments are not done on this scale 

and therefore it has not been possible to optimize reactions by directly measuring small 

differences in detection efficiency, whereas digital experiments open this possibility.  

The digital format provides accurate measurements of reaction efficiency, independent of 

reaction speed and we suggest that it provides an efficient tool for optimizing new assays 

based on isothermal amplification reactions. Isothermal amplifications chemistries 

beyond RT-LAMP should also be tested for the lack of correlation between reaction 

speeds and analytical sensitivities. We anticipate that the use of digital methods will be 
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useful both to understand mechanistic details of various isothermal amplification 

reactions and to improve these reactions for practical applications.  
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Chapter 8: 

Progress toward 3-Dimensional Mapping of Nuclear Compartments in 

Single-Cells Using a Novel Sequencing Based Method 

Introduction 

All cells within a multicellular organism contain the same genetic code, so cells need 

mechanisms to determine which of the encoded genes will be expressed in each cell type. 

One of the mechanisms that controls gene regulation is the 3-dimensional structure of the 

nucleus,1–3 which changes dynamically with cellular state and is often organized around 

cell function. However, it is yet unknown, how this 3-dimensional organization is 

established and how it is reorganized during cell reprogramming.4,5 There are a variety of 

modalities by which specific chromosomal arrangements can be interrogated including 

methods to determine: euchromatin distributions,6–8 protein-DNA interactions,9,10 DNA-

DNA interactions,11,12 and RNA-DNA interactions.13–15 Classically, these methods have 

been performed as averages over a large number of cells but this fails to capture the 

heterogeneity of a cell population,16 and may report chromatin arrangements that are 

either mutually inclusive or mutually exclusive.17,18 Recently, there has been a strong 

push to perform these types of studies at the single-cell level to mitigate these 

problems.8,9,18 

One of the least studied areas of chromosomal organization is RNA-DNA interactions. 

These interactions are clearly involved in organization of chromatin; for example, large 

concentrations of messenger RNA are retained by the nucleus and localized to nuclear 

speckles19 and other chromatin-associated regions,20,21 disruption of RNA transcription 

has shown nuclear rearrangement without disrupting protein translation,22 and the long 
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non-coding RNAs have been shown to exploit 3-dimensional organization to silence 

targets.23–29 One of the main reasons for the lack of detailed information about RNA-

DNA interactions is that current methods are highly specific and developed protocols are 

designed for single RNA targets, so they are unable to capture the entire set of RNA-

DNA interactions. In addition, the data provided by these methods do not include 

information about higher order interactions to determine whether a single RNA molecule 

interacts with multiple DNA sequences, or whether a population of RNA molecules 

interacts with a distinct set of DNA sequences.30 

Therefore, new technologies and methodologies must be developed to truly understand 3-

dimensional nuclear structure and the role of all nucleic acids involved. First, suitable 

technologies must be capable of determining structure at the single-cell level. Second, 

these technologies must address global RNA interactions in the context of DNA 

interactions. Third, new methods should capture information on distinct nuclear 

compartments of multiple interacting species, not be restricted to only contact pairs.18,31  

Here, progress towards developing a method to map the 3-dimenaional nuclear structure 

of nucleic acid interactions (DNA/RNA) in single cells is presented. First, I present a 

brief discussion of the proposed sequencing method for mapping nuclear nucleic acid 

interactions. Second, I present a microfluidics-based method for segregating and 

processing single cells based on the bulk mapping protocol. Third, I discuss a simplified 

method for preparing single cells for mapping in a format that is amenable to a wide 

variety of different segregation technologies. 
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Split-and-Pool Barcoding 

The method for mapping higher order 3-dimensional nucleic acid interactions in nuclei, 

as developed by Sofia Quinodoz in Prof Mitchell Guttman’s Caltech lab, starts by cross-

linking cells using a combination of formaldehyde and DSG. This crosslinking method 

has previously28,32 been shown to be effective at preserving RNA-DNA interactions 

through sequencing preparation. After the cells have been fixed, nuclei are isolated, and 

the DNA and RNA are fragmented using controlled enzymatic digestions with DNase 1 

and RNase 1 to bring the resultant nucleic acid fragments into a range of ~200–700 

nucleotides in length. After the nucleic acids are fragmented, they are isolated from the 

solution using a large excess of NHS-activated magnetic beads through a coupling 

reaction that targets proteins associated with nucleic acids. The coupling of the 

complexes to an excess of magnetic beads allows for the capture of unique complexes of 

interacting sequences to single beads, and the use of denaturing wash steps prevents the 

aggregation of non-crosslinked complexes. The beads also provide a convenient handle 

for manipulation throughout the procedure. After coupling, the fragmented ends are 

repaired (DNA ends are also dA-tailed) before ligation of a universal adapter that 

contains a “sticky end” (single-stranded overhang). This single-stranded overhang then 

provides a handle onto which a succession of barcodes can be added through a split-and-

pool barcoding method.  

The split-and-pool barcoding method is designed to identify compartments of nuclear 

DNA and RNA by assigning a unique barcode to each compartment. Since unique 

complexes are isolated on magnetic beads, if each bead can be uniquely barcoded for 

sequencing, then complexes can be determined by grouping together all sequences with 
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the same barcode. Complexes are barcoded by taking beads to which complexes have 

been bound and adapted with a universal adapter, and splitting these beads on a 96 well 

plate where unique sequences ligate to the universal adapter, effectively pooling together 

samples with the same complexes. There are two sets of adapters:  “A” adapters ligate 

only to “B” adapters and “B” adapters only ligate with “A” adapters. This prevents the 

creation of chimeras and polymers in any one step of the process. By subjecting a sample 

to n rounds of split-and-pool barcoding a possible 96n barcodes are generated. After five 

rounds of this procedure, a total of 8.15 x 109 unique barcodes are possible and therefore 

each bead should have a unique barcode, and nuclear compartments in a sample can be 

uniquely identified. 

After paired-end sequencing, interactions can be identified by aligning the genetic 

sequences from one end of the pair to barcodes on the other end. Once this relationship is 

established, all aligned sequences resulting from identical barcodes can be grouped 

together as a higher-order interacting complex. This approach to determining 3-

dimensional structure has a number of advantages over existing methods. Specifically, (i) 

the method provides information about all DNA associated RNA molecules within a 

genome in a single reaction as opposed to a single species. (ii) The method provides 

information about chromosome-associated RNA within the context of overall nuclear 

structure, effectively combining the output of two experiments into one.18,28,31 (iii) The 

method has a higher information content than that of existing experiments, which rely on 

contact pairs to identify interactions.18,31 In a Hi-C experiment, 10 reads have the 

potential to result in 10 contact pairs. In a split-and-pool experiment, however, the 

number of contact pairs resulting in a single experiment depends on the number of 



206 
 

sequences in a single complex and scales as ∑ 𝑛𝑛1 − 1. Therefore, if in a split-and-pool 

experiment all 10 reads belong to the same complex, that results in 45 contact pairs. In 

addition to the contact pairs, the split-and-pool method provides higher-order information 

about the relationships between contact pairs by preserving complexes, which existing 

methods can only achieve in the ensemble. 

Microfluidic Method for Single-Cell Mapping 

This split-and-pool barcoding approach is uniquely suited to single-cell analyses. The cell 

can be thought of as one dimension of a higher-order structure in a sequencing dataset. 

The deconvolution can be performed by ensuring that all of the complexes from a single 

cell receive an initial unique barcode. One simple way of manipulating single cells and 

providing unique barcodes to each is by using microfluidics.9,33–37 There are a number of 

different steps that all need to be performed on the microfluidic device (Fig 8-1) to 

prepare cells for the split-and-pool procedure including fragmentation, washing, bead 

coupling, and ligation.  

 

Figure 8-1 Schematic of required steps the microfluidic device must perform to prepare 

individual cells for split and pool mapping. 
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One microfluidic technology that is well suited for complex manipulations and multiple 

steps is the SlipChip technology.38–49 SlipChip microfluidic devices are ideal for complex 

procedures because they can be “programmed” to include numerous fluid handling steps, 

and have previously been validated for isolating single cells.38,50 A SlipChip device 

suitable for performing the steps outlined above is shown in Fig 8-2. This device 

incorporates four different positions: two are used for loading; two are used for mixing 

loaded solution. This type of device has a few unique advantages compared with 

alternative single-cell microfluidic techniques.9,33,34,36,37,51 On a SlipChip, the user is able 

to visually confirm and image the loading of single nuclei, and relate sequenced results 

back to a specific device and compartment. The ability to relate sequenced results back to 

a specific well on a specific device is due to the ability to robustly and deterministically 

spot a precise amount of adapters onto a SlipChip device prior to assembly. This can be 

beneficial when validating a sequencing dataset as cell loading is Poisson based, and 

results can be confirmed to come from a single cell as opposed to multiple.  

 

Figure 8-2 A SlipChip device suitable for preparing single nuclei for split and pool 

barcoding is shown. This device has four different programmed positions in which all 

required procedures can be completed. Unique adapters are spotted deterministically on 

the device prior to assembly. 

The first challenge that needed to be overcome in the development of a microfluidic 

technology for preparing cells for split-and-pool barcoding was a method to reliably 
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handle magnetic beads. It is critical that during all of the on-device steps, the magnetic 

beads do not shift to other compartments prior to tagging. Therefore, a magnetic setup 

can be used to exert a force strong enough to prevent the beads from transferring to 

accompanying wells under fluid flow during washing. The best geometry for magnets 

would be to have a point source field directly beneath each microfluidic well.52 With this 

geometry, magnetics beads would have a force applied drawing them toward the center of 

the well against fluid flow. Another easier to manufacture magnetic setup would be to 

have a line source magnetic field transverse to the flow in the system directly under the 

wells containing magnetic beads. Neither of these types of geometries, however, are 

practical because it would be difficult to align to the device due to precision requirements 

in the tens of micrometers. Misalignment would draw beads out of their respective 

separate wells and the protocol would fail. A simpler, and easier to implement, solution 

with a wide tolerance to misalignment would be to have line sources along the channels 

of the device. In this geometry, there would be no direct force keeping the beads from 

flowing through the channel, however, as long as the magnetic force can overcome the 

force induced by flow the beads would remain in the wells (depressions) on the device.  

The flow in the microfluidic device must be tightly controlled to not overpower the 

magnetic force on the beads. Flow control in SlipChip microfluidic devices is achieved 

using a constant pressure source. Constant pressure sources are easy and inexpensive to 

implement with a simple pipettor, and are ideal for SlipChip devices because the pressure 

used to drive the flow can be precisely controlled to avoid leakage.53 One problem with 

constant pressure sources, however, is that the flow rate is uncontrolled. For the split-and-

pool barcoding method, a constant flow rate source is needed and this can be 
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implemented with a syringe pump. Syringe pumps are slightly challenging to use on a 

SlipChip, however, due to the need to interface the syringe pump with the microfluidic 

device. To solve the interface problem, a piece of Teflon tubing was used to connect the 

pump’s syringe to a 3D-printed gasket. The gasket was designed to have an interference 

fit for the tubing and is successfully able to withstand flow rates of up to 10 mL/hr with 

no leakage. The gasket is printed from TangoPlus material on a Connex 3D printer and 

attached to the SlipChip using UV curable optical adhesive. When combining this 

pumping strategy with 2” x 0.25” x 0.1” neodymium magnets aligned to the SlipChip 

channels using a custom 3d printed holder we were able to maintain the position of the 

magnetic beads in the wells of the device at flow rates of up to 1 mL/hr which is 

sufficient for all processing steps. 

A second challenge that needed to be overcome for preparation of nuclei on device for 

split-and-pool barcoding was determining a way to keep the magnetic beads suspended in 

solution during enzymatic steps. Maintaining dispersion of the beads during enzymatic 

steps is critical to ensure that all of the complexes attached to the beads are exposed to 

the reaction solution and available for modification. In bulk reactions this is easily 

performed using a shaker, however, these methods are incompatible with microfluidic 

devices because there is no dead space in device wells. One option for dispersing the 

beads on the device would be through magnetic mixing.54 This option, while providing 

effective mixing for the solution the beads are in, keeps beads clumped together as 

opposed to dispersing them. A alternative option would be to rotate the microfluidic 

device at a frequency that would keep the majority of beads in solution based on settling 

times. The settling time of magnetic beads on device can be estimated based on terminal 
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velocity calculations using Eq. 8-1 where V is the terminal velocity of the beads, ρp is the 

bead density, ρf is the fluid density, µ is the dynamic viscosity, g is acceleration due to 

gravity, and R is the hydrodynamic radius of the beads. 

𝑉 =
2

9

(𝜌𝑝−𝜌𝑓)

µ
𝑔𝑅2                 (Eq. 8-1) 

Based on this formula, and using parameters of 2 g/mL bead density, 1 g/mL fluid 

density, 0.001 kg/(m*s) dynamic viscosity, and a bead radius of 50 µm, a terminal 

velocity of ~0.5 µm/sec was calculated. Because acceleration to terminal velocity is 

nearly instantaneous and the total depth of the chamber containing the beads is 100 µm, 

we expect complete settling of the beads in ~3 min. This mixing method was tested by 

taking controlled amounts of beads that were complexed to nuclear components that were 

digested, repaired, and dA-tailed and performing ligation of adapters on and off device. 

When ligation was performed on device without keeping the beads dispersed in solution, 

the difference in Cq was 2.9 which corresponds to a relative yield of ~14%. When 

maintaining dispersion of beads on device using a custom rotisserie, the difference in Cq 

was only 0.6 which corresponds to a yield of ~66% (Fig. 8-3). This shows that we can 

keep beads non-motile under changing conditions when required, and that we can 

disperse those beads when new conditions have been established to significantly increase 

yield. 
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Figure 8-3 The percentage difference in yield when ligation is performed on-device 

versus off-device, separated by whether or not mixing was performed on-device. In all 

experiments, the number of beads was controlled. The yield for on-device ligation 

without mixing was 14% as compared to off-device ligation. The yield for on-device 

ligation with mixing was 66% as compared to off-device ligation. Ligation was measured 

by qPCR. 

Simplified Single-Cell Preparation Technique 

Although it is feasible to perform all preparation steps on-device, to make the method 

easier to optimize, more accessible, and more transferrable, we perform as many steps as 

possible off-device. Optimization is simplified as moving steps off of device allows us to 

use existing chemistries where possible which have already been validated for bulk 

reactions. The method becomes more accessible when more steps are able to be 

performed off-device as more of the techniques will be familiar to standard molecular 

biology labs, and the resulting device is more simple to operate with less training. The 

method also becomes more transferrable as it is easier to make changes and optimizations 

where necessary as there is no need to redesign and validate a microfluidic device with 

each modification. 

A significant challenge to performing more processing steps off-device is the need to 

keep the nuclear contents separate during all processing steps. A method has been 

developed,18,55 to solve this problem, and involves porating nuclei and using the porated 

nucleus as a contained environment in which to perform all enzymatic processing steps. 
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This nuclear poration protocol has also already been validated as a way to maintain 

nuclear structure in single-cells via Hi-C analysis to determine DNA-DNA contact 

pairs18,55 and also as a way to increase the yield in the Hi-C protocol.31,56 The method 

takes cells that have been formaldehyde crosslinked, and performs a nuclear isolation, 

followed by a nuclear poration using sodium dodecyl sulfate. After the nuclear poration, 

the chromatin in the nuclei is digested using a restriction enzyme. In our modified 

protocol, the restriction enzyme used is HpyCH4V which cuts on the sequence TGCA 

leaving a blunt end. After digestion of the chromatin, the DNA ends are dA-tailed in-

nuclei prior to ligation of the universal adapters. After this point, the nuclei are lysed, and 

the split-and-pool protocol proceeds. In this nuclear poration protocol, all steps prior to 

ligation of the universal adapter can be performed in bulk with many cells. Ligation of 

the universal adapter would require separation of the nuclei to ensure that each nucleus 

received a uniquely barcoded adapter through isolation on a simplified microfluidic 

device or 96-well plate. Operation of a SlipChip device for this step would also be 

simpler than the previously described protocol. Because there is no need to handle 

magnetic beads on device, we can use simple constant pressure loading and we can 

significantly reduce the number of “programs” on-device. 

The first step in developing an in-nuclei processing approach is to determine the proper 

restriction enzyme or mixture of enzymes to fragment the chromatin into 300–700 bp 

fragments. A 4-base cutter would be preferable because given a random genome the 

enzyme would cut the DNA on average every 44 or 256 bases. One suitable enzyme is the 

HpyCH4V enzyme, which cuts on the recognition sequence TGCA and under 

experimental procedures is capable of digesting 1% formaldehyde PSM-33 mouse 
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embryonic stem cells (Fig 8-4A). The range of fragment sizes after cutting with the 

HpyCH4V restriction enzyme was lower than expected based on average cutting 

frequency, however, it is likely that some of the digestion sites are inaccessible due to 

either the formaldehyde crosslinking or because they are protected by bound proteins 

such as histones. After digestion, the nuclei were prepared for ligation using the 

NEBNext dA-tailing module, and as a bulk control had a universal adapter ligated. These 

nuclei were then lysed and the contents of the nuclei were coupled to beads. To confirm 

that the nuclei were processed correctly throughout the dA tailing, ligation, and coupling 

steps; a small portion of the beads were used to check for PCR amplification from the 

universal barcodes Fig 8-4b. The remainder of the beads were then processed using the 

split-and-pool barcoding method through five rounds of barcoding before PCR 

amplification Fig 8-4c. 

 

Figure 8-4 Gel images show the state of a sample of nuclei used for split-and-pool 

barcoding after in-nuclei ligation: (A) the distribution of fragments obtained after 

restriction digest; (B) the distribution of amplified product acquired from (A) after 

addition of a universal adapter by in-nuclei ligation followed by lysis and bead-coupling; 
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and (C) the distribution of amplified product acquired from (B) after in five rounds of 

split-and-pool barcoding. Products (B–C) were amplified using PCR. In the left side of 

each panel, an E-Gel 1kb plus ladder is shown. 

Upon successful split-and-pool barcoding, the amount of template attached to beads was 

quantified by amplifying the contents of 1% of the beads for 13 cycles, and checking the 

concentration of the resultant DNA using an Agilent Bioanalyzer. A 2.5% portion of the 

sample representing 20M unique fragments was then submitted for 200-cycle Hi-seq, 

aiming for 2x coverage. The resultant sequencing reads were analyzed by grouping 

together aligned sequences based on barcode, and preparing heat maps based on the 

frequency of interactions among the Mb regions of each chromomome (Fig 8-5a). As 

expected, the sequencing run showed most interactions occurred along the diagonal; 

however, there are a number of areas that have a higher density of interactions, and we 

also observed a number of off-diagonal structures. Overall, the sequencing results share 

many of the same features of the DNase nuclear preparation method described earlier 

(Fig 8-5b) but there is more noise with the in-nuclei results. One plausible explanation for 

the noise is that the lower depth at which the sample was sequenced may have resulted in 

a sparser dataset. 
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Figure 8-5 Heat maps comparing the observed interactions in chromosome 1 at the 

megabase scale between samples prepared using in-nuclei ligation (A) or using DNase 

treatment (B). The unpublished results shown in (B) were obtained from Sofia Quinodoz, 

Guttman Lab, Caltech. 

A different explanation for the noise in the sequencing dataset could lie in the number of 

fragments of DNA per sequenced complex. It is critical during the initial stages of the 

protocol to ensure that all complexes are separated onto separate beads. If many 

complexes end up on the same bead, this would add noise to the system by incorrectly 

calling interactions where none exist. As seen in Fig 8-6a, the largest complex size in the 

dataset analyzed contained 65,523 sequences, which equates to 2,146,599,003 contact 

pairs. In contrast, there are only 21,197 complexes that contain two sequences equating to 

21,197 contact pairs. Therefore, there are five orders of magnitude more pair-wise 

interactions identified in a complex of many fragments, compared with a large number of 

smaller complexes. While it is likely that the multi-component complexes contain real 

interactions, these interactions may be over much longer length scales leading to a greater 

number of interactions further off-diagonal which may appear as noise. One explanation 
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for these large complex sizes is that complexes are composed chiefly of sections of 

closed chromatin that may not be highly accessible to restriction enzymes, and therefore 

not sufficiently digested. This hypothesis can be tested by comparing the complex size to 

the percentage of open chromatin in a complex as defined by DNase hypersensitivity 

datasets. If the hypothesis is correct, we would expect that small complexes would be 

enriched in open chromatin and large complexes would be enriched in closed chromatin. 

This is not what we observed, however, when we compare the percentage of open 

chromatin in a complex against the number of components that the complex contained 

(Fig 8-6B). Other options for determining the identity of the large complexes could be 

that they are sections of chromatin which is not necessarily higher in percentage of closed 

chromatin, however, is much denser. These sections could be enriched in known 

compartments such as nucleoli, or, other fragments which could be chiefly composed of 

insoluble chromatin. 

 

Figure 8-6 The sizes of sequenced complexes as a factor of complex frequency and as a 

factor of the percentage of open chromatin. (A) Complex frequency (the number of times 

a complex of a specific size was observed by sequencing) compared to its size. (B) The 

percentage of open chromatin as a function of complex size. 

In order to test whether or not the large complexes observed above were known 

compartments such as the nucleolus, the coverage across each of the clusters can be 

determined of which chromosomes are represented. If these structures are nucleoli, it 
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would be expected that they would be enriched in chromosomes 12, 15, 16, 17, 18, and 

19.57 The analysis was first performed by taking all clusters which contained greater than 

10,000 fragments, determining the representative numbers of fragments from each 

chromosome, normalizing to the number of expected fragments based on that 

chromosome size, and calculating a percent representation (Fig 8-7A). This was then 

repeated on just the largest cluster (Fig 8-8A). As can be seen, there is no significant 

variation between the chromosomes which decreases the likelihood that these large 

clusters are representative of nucleoli, and are instead more likely to be noise associated 

with insoluble chromatin. 

 

Figure 8-7 The normalized percent coverage as a function of chromosome on different 

clusters. (A) An analysis of percent coverage as a function of chromosome on all clusters 

having greater than 10,000 fragments. (B) An analysis of percent coverage as a function 

of chromosome on the largest barcoded cluster (65,523 fragments). 

Based on the theory that the largest clusters (greater than 10,000 fragments) are more 

associated with noise than signal, and given that the amount of information contained in a 

given heatmap exponentially increases with cluster size, one may be able to significantly 

reduce noise by excluding the largest clusters from analysis. In order to test this 

hypothesis, all clusters which had greater than 10,000 fragments were excluded from 
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heatmap generation as based on Fig 8-6A which shows that these points are outsied the 

log-log linear distribution of sizes. When this analysis is performed on chromosome 1, 

(Fig 8-8) it appears that no features were lost, and qualitatively the data could be less 

noisy with the largest clusters excluded (Fig 8-8A) than when an analysis of all clusters is 

performed (Fig 8-8B).  This further reinforces the idea that the largest clusters are simply 

noise associated with things such as insoluble chromatin rather than real nuclear 

structures. Further analysis, however, of cross-chromosome correlations could reveal 

underlying macro structures associated with these clusters which cannot be captured in 

the correlation of a single chromosome. 

 

Figure 8-8 Heat maps comparing the observed interactions in chromosome 1 at the 

megabase scale between samples prepared using in-nuclei ligation and analyzed 

excluding clusters with greater than 10,000 fragments (A) or analyzing all fragments (B).  

One issue that may arise in the in-nuclei digestion protocol is the loss of chromosmal 

contents. As the nuclei are porated for a significant amount of time, it is possible that 

nucleic acid fragments can be lost through diffusion. To determine whether we are losing 
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sample during processing, we analyze read coverage. This allows us to detect regions of 

chromatin that are not represented and thus determine whether sample was lost. The 

coverage from in-nuclei ligation of chromosome 1 was determined to be suitable (Fig 8-

9). Hi-C is an alternative sequencing preparation method that has the potential to compare 

well with our results because both methods use restriction digest to fragment chromatin. 

The read coverage of these two methods showed some similar peaks and troughs across 

chromosome 1 (Fig 8-9A), however, there is a much stronger correlation to DNase 

hypersensitivity data (Fig 8-9B). This suggests that the cutting frequency of our 

restriction digest is limited mainly in regions of closed chromatin due to blockage of 

recognition sites, which is less likely to occur in sections of open chromatin. It should be 

noted, however, that even in the case of sections of chromatin with chiefly closed 

regions, a suitable read coverage is still observed. 

 

Figure 8-9 The sequencing coverage as denoted by the percentage of reads of total reads 

contained within Mb bins of chromosome 1 from in-nuclei ligation are compared to the 

sequencing coverage of Hi-C (A) and the percentage of open chromatin by DNase 

hypersensitivity (B) testing. 

Conclusions 

An unmet need in current molecular biology methods is the ability to determine the 3-

dimensional structure of nuclear organization, specifically in the context of nuclear-



220 
 

retained RNAs. Existing methods can determine the DNA binding sites of specific RNA 

molecules;13,28,58 however, many experiments are required to cover all nuclear retained 

RNAs and do not provide information about chromatin conformation. By performing 

these types analyses in single-cells as opposed to looking at ensemble measurements, 

more confidence can be given to the obtained results as population heterogeneity29 is 

captured and mutually exclusive structures18,59 are properly distinguished. To perform 

this analysis in single cells, Sofia Quinodoz in the lab of Prof Mitchell Guttman 

developed a split-and-pool barcoding method that determines 3-dimensional structure by 

attaching unique barcodes to interacting complexes that can then be determined by 

sequencing. We developed a microfluidic workflow that is compatible with preparing 

single cells for split-and-pool barcoding using the preparation techniques developed in 

the Guttman lab. We also developed a modified preparation technique based on single-

cell Hi-C work55 that simplifies the microfluidic workflow to a single step. This 

technique was verified in bulk by preparing a plurality of nuclei, barcoding the nuclear 

contents through split-and-pool barcoding, and then sequencing. The results of the 

preparation were compared to the results from the Guttman lab and found to match with 

both nuclear preparation methods providing meaningful interactions. 

Future work for this project involves determining proper ways to reduce the amount of 

the largest clusters (greater than 10,000 fragments) so as to reduce the total number of 

sequencing reads required to obtain high resolution data as the largest clusters are 

associated with a sizable proportion of the total number of collected reads. We also need 

to prepare new microfluidic devices that are compatible with the in-nuclei ligation 

protocol, and validating that we can perform ligation of universal adapters in-nuclei and 
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on-device. We also need to ensure that the nuclei prepared on device are compatible with 

bead coupling followed by split-and-pool barcoding and sequencing. We also need to 

include RNA within the preparation steps without impacting the overall method outlined 

above; we don’t perceive that this will be an issue because we don’t need to include a 

cell-specific adapter for RNA. We will be able to determine the cell from which a strand 

of RNA originated using the cell-specific adapter contained on the DNA within the same 

complex, as denoted by split-and-pool barcoding. Therefore, inclusion of RNA in the 

protocol could be as simple as adding an RNA-specific universal adapter after in-nuclei 

ligation and before split-and-pool barcoding. 
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Chapter 8 - Supplement: 

Intra-Chromosomal Interaction Matrices 

Shown below are the intra-chromosomal correlation heat maps for each of the mouse 

chromosomes excluding Y. Each of the heat-maps shows the same type of data which is 

shown in Fig 8-5. The data was generated using the in-nuclei digestion method, followed 

by split-and-pool barcoding. The total number of desired reads was 40M in this particular 

run. The data was binned at the megabase resolution, and the correlation score is 

normalized to the number of reads for a particular bin as to not bias called interactions 

towards those regions with higher sequencing coverage. The interaction score denotes the 

either enrichment (positive) or depletion (negative) of interactions as compared to if all 

interactions were random. Each page shows four different chromosomes with the 

interaction score shown beneath each figure.  

Fig 8S-1 – Chromosomes 1-4 

Fig 8S-2 – Chromosomes 5-8 

Fig 8S-3 – Chromosomes 9-12 

Fig 8S-4 – Chromosomes 13-16 

Fig 8S-5 – Chromosomes 17-X 
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Fig 8S-1 
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Fig 8S-2 
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Fig 8S-3 
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Fig 8S-4 
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Fig 8S-5 
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