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ABSTRACT 

Piezo is a unique family of eukaryotic mechanosensitive (MS) channel. With over 2500 

amino acids per subunit, intact Piezo channel is one of the largest ion channels known to 

date. Two versions of Piezo can be found in vertebrates, namely PIEZO1 and PIEZO2. 

PIEZO1 appears to play roles in processes which control physiological homeostasis, 

whereas PIEZO2 assumes roles in mechanical somatosensation.  A number of mutations 

mapped onto PIEZO1 or PIEZO2 are found in several hereditary human diseases, such as 

Dehydrated Hereditary Stomatocytosis, Gordon syndrome, and Distal Arthrogryposis.  

Although biochemical and functional studies provided many insightful findings, structural 

study of Piezo was very minimal. Herein, I described the structural investigation of Piezo 

channel. In the first study, we isolated a conserved soluble domain of Piezo (C-terminal 

loop 2, CTL2) from the C. elegans homolog, and provided the first molecular glimpse into 

this enigmatic MS channel. Subsequently, I described challenges that are associated with 

the expression and protein preparation of the full length Piezo channel. Recently, the full 

length mouse PIEZO1 structure solved by single particle cryo-EM revealed trimeric 

arrangement of the intact channel. CTL2 domain forms an extracellular cap which makes 

up the central core in this Piezo model. Lastly, we isolated a stable C-terminal fragment of 

Piezo. This fragment corresponds to the entire central core of Piezo channel and a few 

upstream transmembrane helices. This fragment can be localized to the plasma membrane. 

Further investigation is needed to look at the functionality of this fragment. 
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C h a p t e r  1 :  M e c h a n o s e n s a t i o n  a n d  P i e z o  C h a n n e l s   

Mechanosensation 

Life does not exist in a vacuum. The interactions between cells and their 

surroundings are crucial for cells’ survival. To persist, cells must be able to detect changes 

in their environment and execute appropriate responses to adapt to these changes. Living 

organisms are continually experiencing dynamic mechanical forces, and the ability to 

detect these forces is essential for many biological processes [1]. Mechanosensation is one 

sensory modality which allows living organisms to detect mechanical force changes on 

their surroundings.  The mechanistic explanation of how these forces are detected by 

biological mechanosensors remains incompletely understood. One way cells can convert 

mechanical cues into intracellular signals is through mechanosensitive (MS) channels. MS 

channels form permeation pathways upon activation by mechanical stimulation. Typically, 

ions flow through the permeation pathway, which in turn provides signals that lead to 

further downstream intracellular signaling cascades.   

Challenges associated with studying MS channels, especially in multicellular 

eukaryotes, have been previously described [2]; this includes the scarcity of 

mechanosensory cells in multicellular eukaryotes, the minimal expression of MS channels 

even in the specialized mechanosensory cells, and the difficulty in developing an ideal 

assay to investigate the mechanosensory properties of the putative MS channels outside 

their native environment. Despite these challenges, several key advances have aided the 

quest to understand the underlying principle of mechanosensation. These include the 

development of various electrophysiological methods to assay putative MS channels, 



 

 

14 
bioinformatics tools to search for a putative MS channel in the available genomic data, 

and molecular cloning techniques which enable heterologous expression of a putative MS 

channel for further biochemical characterization.  

Currently, there are two prominent models to explain the mechanisms by which MS 

channels mediate mechanosensation. The first model, and arguably the more prominent 

model, is commonly referred to as the “force from lipid” model [3-5]. In this model, 

perturbation of lipid bilayer is sufficient to promote the opening of MS channels [6]. Great 

examples for this model are the bacterial mechanosensitive channels. These channels retain 

their mechanosensing ability upon purification and reconstitution in a lipid bilayer [7]. The 

second model is the “tethered trapdoor” model [8, 9]. Here, MS channels are attached to 

either external or internal structures by a molecular tether. Perturbation in these structures 

causes the molecular tether to pull on the MS channels, which drives them to adopt an open 

channel state. This model was inspired by the geometry of the mechanotransduction 

apparatus in the hair cells of the inner ear of vertebrates [10, 11]. Here, MS channels are 

localized to the tip of the hair cells’ stereocilia where they are tethered by an extracellular 

tip links to the adjacent stereocilia. Although there is evidence to support both proposed 

models, there has been the suggestion that the “tethered trapdoor” model is a reiteration of 

the “force from lipid” model [4, 5]. 
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Bacterial Mechanosensitive Channels 

The two best studied MS channels are the bacterial MS channels: the 

mechanosensitive channel of large conductance (MscL) and the mechanosensitive channel 

of small conductance (MscS). These MS channels, first described in 1987 [12] and 

subsequently cloned [13, 14], are thought to serve as safety valves which protect bacterial 

cells against osmotic downshock as well as intracellular pressure during cell growth [12, 

15-17]. Mycobacterium tuberculosis MscL gene codes for 151 amino acids with molecular 

weight of 16 kDa, consisting of two transmembrane helices (TM1 and TM2), a short 

cytoplasmic N-terminal helix, and a C-terminal bundle [18]. In the closed state, TM1 

segments from five MscL monomers form a constricted pore likely representing a non-

conducting state [18, 19]. The single channel conductance of MscL is measured to be 

around 3 nS [19], corresponding to a channel pore diameter in the open state estimated to 

be at least 25 Å wide by Electron Paramagnetic Resonance (EPR) studies [20] as well as 

molecular sieving experiments using large organic ions [21]. Unexpectedly, the crystal 

structure of truncated Staphylococcus aureus MscL revealed a homotetrameric 

arrangement [19], and the variation in oligomeric state between the two MscL structures 

may reflect unintended consequences of truncation and detergent solubilization [22].  

Escherichia coli MscS gene codes for a subunit of 286 amino acids with a 

molecular weight of almost 31 kDa. The MscS monomer consists of three N-terminal 

transmembrane segments (TM 1 - 3), a middle-β domain, and a cytoplasmic C-terminal 

domain [23]. Seven E. coli MscS monomers assemble together to form a channel with 

TM3 segments lining the permeation pathway. MscS exhibits a single-channel conductance 

of about 1 nS with an estimated open-state pore diameter of 11 Å [23, 24]. Despite the 
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availability of much biophysical and structural information on these channels, the gating 

mechanisms remain unclear. In addition to MscL and MscS, there are other bacterial MS 

channels, including five MscS homologs, such as MscK (potassium-dependent MS 

channel) and MscM (mini) [25]. The precise role of these MS channels, however, remains 

an active topic of investigation.  

 

Mechanosensation in Multicellular Eukaryotes 

 The ability to sense mechanical cues is notably important for multicellular eukaryotes.  

Many essential cell-to-cell communications in multicellular eukaryotes rely on mechanical 

cues, such as gravitropism in plants [26], proper formation of neural networks [27], 

biosynthesis of extracellular matrix (ECM) by chondrocytes in response to dynamic 

loading [28, 29], and many others. Dysregulation of mechanotransduction is linked to the 

abnormal cell proliferation that leads to the development of cancer [30]. Furthermore, 

sensing mechanical cues allows multicellular organisms to interact with their ecosystem, 

and perhaps to improve the likelihood of their survival. For example, many animals rely on 

their ability to detect sound waves as a way to avoid predators. Also, mechanical 

somatosensation and proprioception are crucial for the proper execution of locomotive 

action as well as the detection of pain and pleasure.  Moreover, actively climbing plants 

rely heavily on their ability to identify a solid surface through which they can climb to gain 

access to sunlight [31]. In addition, some plants and animals rely on the mechanical sensing 

to forage for food [32, 33]. 
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Role of Bacterial MS Channel Homologs in Plants: The MSL Channel Family 

In plants, a number of putative mechanosensitive (MS) channel families have been 

identified. Interestingly, ten homologs of the bacterial MscS channel have been found in 

the Arabidopsis thaliana genome [34]. They are named the MSL (MscS-Like) family, with 

the individual genes identified as MSL 1 – 10. The functional properties of these channels 

have been studied by the Haswell group. Knocking out the MSL2 gene causes aberrant leaf 

morphology [35]. Both MSL2 and MSL3 are localized to the plastid envelope, and msl2 

msl3 double mutants exhibit an abnormal plastid size and shape [36]. It is remarkable that 

MSL3 is able to rescue MJF456, an E. coli strain which lacks MS channels [36]. 

Furthermore, MSL9 and MSL10 are found on the plasma membrane of root cells, and are 

required for mechanosensitivity [37].  

With an exception of the highly conserved MscS domain, members of MSL family 

are topologically diverse. MSL 1 – 3 are predicted to have five transmembrane segments 

with a large C-terminal domain, whereas MSL 4 – 10 are predicted to have six 

transmembrane helices with both N-terminals and C-terminal ends facing the cytoplasmic 

compartment [37-39]. The single channel conductances of plant MSL9 and MSL10 are 

about one order of magnitude less than that of MscS. MSL9 and MSL10 have single 

channel conductance of 45 pS and 137 pS, respectively, in root protoplast [37], whereas,  

heterologously expressed MSL10 in Xenopus oocytes exhibit slightly lower conductance 

(100 pS) and a moderate preference for anions [40]. Currently, there is no structural 

information on any member of the MSL MS channel family. The gating mechanism and 

the oligomeric state of these channels have yet to be established.   

 



 

 

18 
Diverse Families of Ion Channel Mediating Mechanosensation in Eukaryotes  

 Beside plant MSLs, other eukaryotic channel families have been shown to play roles  

in mechanosensation, including the Degenerin/ Epithelial sodium (DEG/ENaC) channels, 

two-pore domain potassium (K2P) channels, Transient Receptor Potential (TRP) channels, 

Trans-Membrane Channel-like (TMC) protein, and Piezo channels.  

 The Degenerin (deg) genes were first identified in C. elegans mutants that showed  

constitutively active sodium currents, leading to the degeneration of mechanosensitive 

neurons [41]. The DEG/ENaC channel family can be activated by multiple stimuli, 

including mechanical force [42].  Members of this family are proposed to mediate gentle 

touch, as well as perform other physiological roles, in C. elegans and Drosophila [42, 43]. 

The structure of an evolutionarily related channel, Acid Sensing Ion Channel (ASIC), has 

been solved by x-ray crystallography [44]. This structure established that ASIC1 assembles 

as trimer where each monomer possesses two transmembrane helices connected by 

extensive extracellular domain.  

 Two-pore domains potassium (K2P) channels were originally identified in yeast [45].  

Among the 15 members of K2P channel family, only three of them have been shown to 

have mechanosensing capability: TREK-1, TREK-2, and TRAAK [2]. Interestingly, 

transmission of mechanical cues seems to be directly mediated by the surrounding 

membrane [46], indicative of the “force from lipid” model. Intact K2P channels are formed 

by two subunits, where each subunit possesses two ‘pore domains’, in contrast to the 

typical organization of potassium channel as tetramers where each subunit has one pore 

domain. Each pore domain consists of a pore helix that serves as a selectivity filter between 

two transmembrane helices [47]; parts of the first transmembrane helix makes up the 
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extracellular helical cap [46]. The channel gating mechanism of K2P family has been 

proposed based on several crystal structures of TREK-2 and TRAAK [48-51]. 

 The Transient Receptor Potential (TRP) channel family consists of ion channels that  

respond to a wide variety of stimulants, including chemical, temperature, and mechanical 

stimuli. Aside from the yeast TRPY, members of this family are classified into seven sub-

groups: TRPC, TRPV, TRPA, TRPM, TRPP, TRPN, and TRPML [52]. In general, TRP 

channels possess six transmembrane segments with varying accessory domains at their 

cytosolic N- and C-terminal ends [53]. A number of TRP channels are linked to 

mechanosensation [54]. Through previous biochemical and mutagenesis studies, TRP 

channels topologies are thought to resemble voltage-gated potassium channels [53, 55]. In 

fact, the six transmembrane segments of Kv1.2 fit nicely in the low resolution (19 Å) 

TRPV1 cryo-EM map [56]. Atomic structures of TRP channels have recently been solved 

by single particle cryo-electron microscopy (cryo-EM) [57-59]. Several members of TRP 

channel family possess Ankyrin Repeat Domains (ARD) at varying lengths; among them, 

TRPN and TRPA1 have unusually long ARDs. This domain has been proposed to serve as 

the gating spring which enables these channels to respond to mechanical cues. In fact, ARD 

was previously demonstrated to have nanospring behavior using atomic force microscopy 

[60]. Attaching ARD from NOMPC, a member of TRPN, into voltage-gated channels 

causes these channels to be mechanosensitive [61]. Previously, TRPA1 was suggested to be 

the primary mechanotransducer of the auditory system [62]. However, there is no sign of 

deafness in TRPA1 knock-out mice [63, 64].  

The Trans-Membrane Channel-like (TMC) family has also been proposed to be the 

primary mechanotransducer for hair cells. Members of the TMC family, TMC1 and TMC2, 
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are expressed in mice cochlea and vestibular organs during the early postnatal periods 

[65, 66]. TMC1 becomes a strong candidate for the mechanosensor of the auditory system 

because a mutation in this gene has been found in patients that have trouble hearing and in 

the Beethoven mice, which is a mouse model for deafness [65, 67]. There is currently 

limited structural information on this channel family. TMC1 is predicted to have six 

transmembrane segments with both N- and C- termini facing the cytosol [68]. Although the 

predicted topology for TMC1 suggests similarities to the topology of TRP channels, the 

identity of the putative pore domain is still unclear [4]. 

 

Piezo Family of Metazoan Mechanosensitive Channel – Initial Discovery 

 Despite the number of ion channel families implicated in mechanical sensory trans-  

duction, the role of these ion channels as the primary transducer of mechanical cues has not 

typically been established [2]. In 2010, the Patapoutian group performed an RNAi 

knockdown screen in a cell line with a consistent mechanically-activated (MA) current, 

mouse Neuroblastoma cells (Neuro2A), in a quest to find a novel family of eukaryotic MS 

channels [69]. From this screen, they found that knocking down the Fam38A (Family with 

sequence similarity 38) gene resulted in significant decrease of MA current; Fam38A was 

later renamed as Piezo. Vertebrates possess two different versions of Piezo: Fam38A 

(Piezo1) and Fam38B (Piezo2). They found that both Fam38A and Fam38B are expressed 

in putative mechanosensory organs, and the protein product of these genes can be localized 

to the plasma membrane [69]. MA currents can be detected on a cell line that is not 

naturally mechanosensitive (human embryonic kidney – HEK293T), upon heterologous 
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expression of PIEZO1 or PIEZO2 [69]. Therefore, Piezo satisfies the criteria for a 

transducer of mechanical signals [2, 70, 71]. 

 Subsequent investigation revealed that Piezo proteins are non-selective cation channel  

that can be efficiently blocked by 30 – 50 µM of ruthenium red and gadolinium ion [69, 72] 

that have been previously identified as general inhibitors of MS channels. Mouse PIEZO1 

has a subunit molecular weight of ~250 kDa, while the molecular weight of intact mouse 

PIEZO1 was estimated as 1.2 MDa, based on native PAGE as detected by western blot 

using custom polyclonal antibodies raised against a synthetic peptide that corresponds to 

the conserved region of mouse PIEZO1 [72]. Together with results from photobleaching 

experiments as well as crosslinking studies, PIEZO1 was proposed to form a tetrameric 

complex [72]. Mouse PIEZO1 exhibits a single channel conductance of 30 – 50 pS [72] 

which exceeds the typical conductance of shaker family potassium channel, 18 – 30 pS [73-

76], or typical eukaryotic ion channels in general (1 – 30 pS) [77]; it is, nevertheless, about 

one to two order of magnitude less compared to the bacterial MscS and MscL. Upon 

reconstitution into lipid bilayers, mouse PIEZO1 exhibited discrete channel opening that 

could be blocked by ruthenium red. However, the channel conductance of reconstituted 

mouse PIEZO1 is significantly higher (110 – 120 pS), and does not exhibit 

mechanosensing activity [72].  

 

Piezo Family of Metazoan Mechanosensitive Channel – Physiological Role 

Piezo is found in almost all eukaryotes, including vertebrates, invertebrates, plants, 

and pathogenic protozoa [69, 78, 79]. The Piezo knock out in Drosophila strain is viable 
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and shows no defects involving either locomotion coordination or the bristle 

mechanoreceptor; the mutant, however, does exhibit defects in detecting noxious 

mechanical stimulus at the larval stage [80]. Since the Drosophila mutant lacking Piezo 

does not exhibit any defects in locomotion, Piezo-dependent detection of noxious 

mechanical stimuli is thought to function in parallel with PPK26 (pickpocket), a member of 

DEG/ENac channel family that was previously shown to be essential for the detection of 

noxious mechanical stimuli [80-83]. 

 In general, PIEZO1 appears to play roles in processes which control physiological  

homeostasis of multicellular organisms. Before Piezo was established as a MS channel, 

PIEZO1 (previously known as Fam38a and Mib) was shown to be expressed in astrocytes 

which are positioned at the proximity of senile plaques in the Alzheimer’s disease mice 

model; indeed, PIEZO1 expression is significantly increased in rat astrocytes that have 

been treated with β-amyloid [84]. Also, Piezo is proposed to be involved in sensing the 

nano-roughness of a cell’s surrounding terrain in rat hippocampal primary neuron culture 

[85]. Later, PIEZO1 was shown to direct the differentiation of neuronal-glial progenitor 

cells by controlling cellular localization of Yap and Taz [86], transcriptional co-activators 

that were previously shown to change their cellular localization in response to the stiffness 

of the surrounding substrate [87, 88].  Furthermore, PIEZO1 is shown to activate integrin 

[89], and the loss of PIEZO1 increases 2D and 3D cell migration in matrigel matrix [90], a 

complex media formulation which mimics the extracellular matrix (ECM) of an organism 

[91, 92].  In fact, expression of PIEZO1 in multiple small cell lung cancer (SCLC) cell 
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lines is notably reduced compared to the normal lung epithelial cell line [90]. 

 Human Piezo1 mRNA in the periodontal ligament cells (hPDLC) is upregulated  

within 0.5 hr in response to the application of static compressive force, and the high mRNA 

level is maintained for the next 12 hours [93]. hPDLC cells were previously shown to 

induce differentiation of the progenitor into osteoclasts or osteoblasts in response to 

mechanical signals [94, 95]. Since GsMTx4, a general chemical inhibitor for MS channels 

[96], was shown to inhibit osteoclastogenesis, MS channels such as PIEZO1 are thought to 

direct the cellular differentiation events [93]. Also, live cell extrusion of epithelial cells in 

response to overcrowding requires PIEZO1; knocking down PIEZO1 in zebrafish prevents 

live cell extrusion, which leads to formation of epithelial cell aggregates [97]. In addition, 

PIEZO1 was shown to be essential for the proper vascular development in mice [98, 99] as 

well as for the maintenance of red blood cell volume in zebrafish [100]. 

 In contrast to vertebrate’s PIEZO1, PIEZO2 assumes roles in mechanical somato- 

sensation, which is also referred to as the discriminative touch. First, PIEZO2 is a putative 

downstream target of Epac [101], a guanine nucleotide exchange factor that changes pain 

threshold in a cAMP-dependent fashion [102, 103]. Activation of Epac sensitizes PIEZO2, 

which contributes to mechanical allodynia [101]. It is also shown that activation of the 

bradykinin receptor (BDKRB2) elevates PIEZO2-dependent current as well as slows the 

inactivation of mammalian PIEZO2 [104]; bradykinin is a potent inflammatory peptide 

which sensitizes peripheral mechanonociceptor causing acute mechanical hyperalgesia 

[105-107]. Furthermore, PIEZO2 has been demonstrated to be the primary mechanosensor 

for light touch in mouse Merkel cells [108-110], general low-threshold mechanoreceptors 

(LTMR) [111, 112], and zebrafish’s Rohon-Beard cells [113]. In tactile-foraging 
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waterfowls, such as ducks and mallards, PIEZO2 is expressed in trigeminal ganglia 

(TG), and it is thought to be the mechanosensor which enables them to forage for food 

without using their vision [33]. In addition, both PIEZO1 and PIEZO2 are shown to be the 

transduction channels for high-strain stimuli on the articular cartilage [114]. 

 In addition, Piezo mutations in human have been associated with multiple clinical  

disorders [115]. Multiple point mutations found in patients suffering from Dehydrated 

Hereditary Stomatocytosis (DHS) are mapped onto human PIEZO1 [116-118]. DHS is an 

autosomal dominant genetic disorder which is characterized by the inability of red blood 

cells to regulate their volume [119]. Patients suffering from this disorder exhibit clinical 

hemolytic anemia phenotype; a similar phenotype has also been described in zebrafish 

[100]. Furthermore, mutation of the human PIEZO2 at a conserved isoleucine residue 

(I802F) as well as a conserved glutamate residue located at the putative C-terminal 

cytoplasmic domain (E2727del) are associated with the Gordon syndrome (GS) and Distal 

Arthrogryposis (DA) type 5 [120, 121]. Both of these disorders are rare autosomal 

dominant genetic disorders that are characterized by multiple congenital contractures of the 

hands and feet [122-125].  

 

Piezo Family of Metazoan Mechanosensitive Channel – Current Puzzles 

  Despite the rapid progress that has been made to uncover Piezo’s role in cellular  

physiology, we’ve only scratched the surface on the quest to understand the mechanism by 

which this enigmatic MS channel works. Currently, channel electrophysiology 

characteristics of Piezo have been extensively explored [69, 72, 126-128]. From 

biochemical and electrophysiological studies, Piezo has been proposed to assemble as an 
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oligomer, potentially a tetramer, with no requirement for direct interaction with other 

proteins to function [72].  It is unclear whether the Piezo oligomer is assembled to form one 

permeation pathway or multiple independent pores. Considering that the single channel 

conductance of Drosophila Piezo is 9-fold less (3.3 pS) than the mouse PIEZOs [72], it is 

interesting to see whether fly Piezo also assembles in similar oligomeric assembly. Human 

PIEZO1 is suggested to have a pore diameter of at least 8Å since it is able to permeate 

organic cations TMA and TEA [128]. Furthermore, efforts to determine the channel 

topology are limited to bioinformatics predictions with minimal experimental results. Due 

to differences in the topology prediction algorithms for eukaryotic membrane proteins, 

different topology prediction algorithms predict that Piezo consists of between 30 to 40 

transmembrane segments (Fig 1). Generally, the Piezo protein sequence is conserved 

toward the C-terminal portion of the protein, especially in the regions which are predicted 

to be the transmembrane helices [129]; this may highlight the crucial role of Piezo’s C-

terminal region in the general function of the channel. In line with this idea, the first two 

clinically-relevant point mutations of human PIEZO1, M2225R and R2456H, are mapped 

onto predicted soluble domains at the conserved C-terminal region of the protein [116]. 

These mutant PIEZOs exhibit delayed inactivation [127, 130]; in fact, all clinically-relevant 

human PIEZO1 mutants exhibit similar phenotype [117]. In the absence of any structural 

information, however, it is difficult to propose any mechanistic models to explain how 

these mutations alter the gating kinetics of the channel. 

 There are several proteins that are known to modulate Piezo channel’s activity.  

Stomatin-like protein 3 (STOML3) protein is shown to lower the opening threshold for 

both PIEZO1 and PIEZO2 under the substrate deflection assay [131]. STOML3 is the 
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homolog of stomatin-domain family, MEC-2, which is required for mechanotransduction 

in C. elegans [132-134]. When overexpressed in HEK293 cells, STOML3 was shown to 

physically interact with both PIEZO1 and PIEZO2 [131]. The mechanism by which 

STOML3 binds to Piezo and sensitizes the channel awaits further investigation. 

Furthermore, wildtype Polycystin2 (PC2), a member of Transient Receptor Potential P 

(TRPP) subfamily, is shown to inhibit PIEZO1-dependent stretch-activated current in the 

proximal convoluted tubule cells; a mutant form of Polycystin2 (PC2-740X) is a stronger 

inhibitor of PIEZO1 compared to the wildtype Polycystin2  [135]. The two proteins were 

shown to physically interact via the N-terminal domain of Polycystin2  [135]. Polycystin2 

is responsible for sensing the deflection of primary cilia of the kidney tubular cells, and 

mutation of this channel causes polycystic kidney disease (PKD) [136-139]. The nature of 

the interaction, the interplay between these two channels, and the role of PIEZO1 in kidney 

pathology are still a mystery.   

 In addition, it is unclear why Piezo maintains its enormous size across the Piezo  

homologs. One may suggest that Piezo utilizes its large size to survey the lipid bilayer 

environment more efficiently since a significant portion of this channel is predicted to be 

transmembrane helices. Alternatively, it has been suggested that some parts of the Piezo 

channel play non-mechanosensory roles, such as protein network interactions and others 

[115]. This begs the question whether there are minimal Piezo variants which still maintain 

mechanosensing capabilities. Last but not least, the Patapoutian group has recently 

demonstrated that mouse PIEZO1 can also be modulated and mildly-activated by a 

chemical agonist, Yoda1; this raises the possibility for an endogenous chemical agonist for 

this channel [140]. 
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The Scope of the Thesis 

There are many interesting aspects of mechanosensitive (MS) channels that are yet 

to be explored. In this thesis, my focus will exclusively be on the structural characterization 

of the eukaryotic Piezo MS channel. When I started this project, there was no structural 

information on Piezo. My primary objective is to use a structural biology approach to 

investigate fundamental questions concerning the structure and mechanism of Piezo 

channels. The Patapoutian lab generously provided me with five Piezo constructs: mouse 

PIEZO1, mouse PIEZO2, human PIEZO1, Drosophila PIEZO, and C. elegans PIEZO. 

However, the sizes as well as the eukaryotic nature of these channels provide formidable 

challenges just to get the amount of protein suitable for structural characterization using x-

ray crystallography. Therefore, the first objective of my study was to isolate smaller Piezo 

constructs that would be more amenable for x-ray crystallography. In Chapter 2, I describe 

the isolation of a large-and-conserved soluble domain of Piezo and the structural 

determination of this domain. In the following chapter (Chapter 3), I will describe 

challenges that we encountered in our effort to optimize protein expression and purification 

of full length Piezo, as well as our journey to arrive at a low resolution single particle 

electron microscope (EM) structure of this protein. Recently, the medium resolution Piezo 

structure, solved by single particle cryo-EM, revealed that mouse PIEZO1 assembles as a 

trimer where its C-terminal region forms the central core of the channel [141]; CTL2 

domain was shown to make up the extracellular cap of the channel. In the last chapter of 

this thesis (Chapter 4), I will describe our most recent work on the isolation and 

characterization of a stable C-terminal fragment of mouse PIEZO1; this fragment 

corresponds to the central core of Piezo channel.  
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Figure 1. Topology diagram of mouse PIEZO1.  Due to differences in the current 

membrane topology prediction algorithms for mammalian membrane protein, Piezo is 

variably predicted to have between 30 to 40 transmembrane segments. Here, mouse Piezo1 

is predicted to have 40 putative membrane segments using the Topcons algorithm [142, 

143]. 
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C h a p t e r  2 :  T h e  S t r u c t u r e  o f  a  C o n s e r v e d  P i e z o  
C h a n n e l  D o m a i n  R e v e a l s  a  N o v e l  B e t a  S a n d w i c h  

F o l d  

Summary 

Piezo has recently been identified as a family of eukaryotic mechanosensitive channels 

composed of subunits containing over 2000 amino acids, without recognizable sequence 

similarity to other types of channels. Here, we present the crystal structure of a large, 

conserved extracellular domain located just before the last predicted transmembrane helix 

of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also 

determined of a point mutation located in this domain at the equivalent position to the 

mutation in human PIEZO1 found in the Dehydrated Hereditary Stomatocytosis (DHS) 

patients (M2225R). While the point mutation does not change the overall domain 

structure, it does alter the surface electrostatic potential, which may perturb the ability of 

this domain to interact with a yet-to-be identified ligand or protein. The lack of structural 

similarity between this domain and any previously characterized fold, including those of 

eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of 

eukaryotic mechanosensitive channels. 

Highlights 
 
• A conserved loop of the Piezo channel is identified that forms a stable domain. 

• The structure of this domain reveals a novel beta sandwich fold. 

• The novel fold highlights the distinctive nature of the Piezo channel family. 

• A disease related mutation in this domain has minimal structural consequences. 
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Introduction 

The ability to translate environmental cues (chemical, electrical, and mechanical) 

into intracellular signals is crucial to the functioning of all cells. Although membrane 

protein receptors for many of these environmental signals have been identified, our 

understanding of the receptors for mechanical signal transduction remains incomplete. The 

best characterized models of mechanotransduction are bacterial mechanosensitive (MS) 

channels that protect cells from osmotic downshock [1]. In multicellular eukaryotes, 

mechanosensitive channels are proposed to be involved in diverse physiological and 

developmental processes, such as somatosensory and auditory detection, change in blood 

osmolarity, muscle stretch, and others [2]. The identity of the MS channels involved in 

these physiological processes remains contentious, however. 

A notable exception to the unknown molecular identities of eukaryotic 

mechanosensors is provided by the Piezo family of mechanosensitive channels [3]. Piezo 

was first identified through an siRNA knock-down screen and was shown to be necessary 

and sufficient for mechanically-activated currents [4]. Piezos have been found in both 

multicellular and unicellular eukaryotes with the exception of yeast [4, 5]. A striking 

characteristic of Piezo is the significant size, with all characterized homologs (human, 

mice, and Drosophila) containing over 2000 amino acids; moreover, mouse PIEZO1 has 

been demonstrated to form a tetrameric complex corresponding to a total molecular weight 

for the channel of ~1 MDa [3].  No sequence similarities have been recognized between 

Piezo and other types of channels, nor have internal sequence repeats within the Piezo 

subunit been detected. PIEZO1 can be inhibited by a general blocker of mechanosensitive 

channels, GsMTx4 [6], and is shown to be sensitive to ruthenium red [3, 4].  Piezo 
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channels are involved in several physiological processes, such as maintaining normal cell 

density in zebrafish and mammalian epithelial tissue [7], mediating mechanical nociception 

in Drosophila larvae [8], and light touch in Rohon-Beard neurons in zebrafish [9]. In 

humans, point mutations in PIEZO1 have been identified in patients suffering from 

Dehydrated Hereditary Stomatocytosis (DHS), an autosomal dominant hemolytic anemia 

disease [10-12]. In addition, inactivation of PIEZO1 in lung epithelial cells causes integrin-

independent amoeboid cell migration [13].  

Understanding the gating mechanism of Piezo will enrich our current knowledge of 

how mechanical cues are converted into intracellular signals. A challenge in developing a 

gating model for Piezo arises from the absence of any structural information on the 

channel. Both the large size and the eukaryotic nature of Piezo create formidable technical 

challenges to the direct crystallographic analysis of the intact channel.  The substantial size 

suggests, however, that the channel likely consists of smaller domains that may be more 

amenable to study. Here, we present the crystal structure at 2.5 Å resolution of a Piezo 

channel soluble domain designated CTL2 (C-Terminal Loop 2), located just before the last 

transmembrane helix and the C-terminal tail. This loop is predicted to be the largest soluble 

domain that is conserved across Piezo homologs. Moreover, there is accumulating evidence 

that the C-terminal portion of Piezo, including the CTL2, is involved in the gating kinetics 

of the channel. One of the human PIEZO1 point mutants found in DHS patients (M2225R) 

maps onto this loop and is shown to exhibit a delayed activation as well as slower 

inactivation [14]. A combination of a naturally-occurring mutation (M2225R) and an 

artificial mutation (R2456K in the C-terminal loop following the last transmembrane helix) 

in a human PIEZO1 double mutant construct eliminates the inactivation of the channel 
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[15]. We also present the structure of C. elegans PIEZO CTL2 domain carrying a point 

mutation (M31R) at the equivalent position to the mutation found in DHS patients 

(M2225R).  

 

Results 

Construct Selection 

 As a starting point for structural analysis of the Piezo channel, we targeted large, well- 

conserved extramembrane loops. To gain a broad overview of the threading of Piezo 

protein through the membrane, we used multiple topology prediction webservers: 

TMHMM2 [16], Phobius [17], TOPCONS [18], TMPred [19], and SMART [20]. Although 

similar trends were evident, different algorithms predicted different numbers of 

transmembrane helices (between 30 and 40) for all characterized Piezos and there were 

differences in the predicted orientation of some of the extramembrane loops (Fig. 1). For 

our structural study, we selected a Piezo loop that satisfied the following criteria:  

1. it is consistently predicted by all the topology-prediction algorithms used,  

2. it is larger than 100 amino acid residues,  

3. it is highly conserved across the Piezo family.  

Under these constraints, we identified a predicted soluble domain corresponding to mouse 

PIEZO1 residues 2210 – 2453. These residues form an extramembrane loop preceding the 

last predicted transmembrane helix that we designate as the C-terminal loop 2 (CTL2) 

domain. 3 of the 4 topology prediction webservers predict that CTL2 is oriented in the 

extracellular environment (Fig. 1). An alignment of Piezo homologs using MAFFT (Fig 

S1; [21]) reveals that CTL2 contains over 200 amino acid residues with a calculated 
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molecular weight between 24 – 32 kDa, making CTL2 the largest conserved loop among 

the predicted loops of the Piezo channel. In addition, the Phyre2 webserver [22] predicts 

that CTL2 has well-defined secondary structure (Fig S2). Therefore, we selected CTL2 for 

crystallographic analysis. 

 

Architecture of the C. elegans CTL2 Domain 

Following a screen of various Piezo orthologues (see Materials and Methods), the 

C. elegans CTL2 domain was found to be amenable for crystallographic analysis.  The 

structure of wild type C. elegans CTL2 establishes that this domain is organized around a 

core of three beta sheets flanked by two pairs of helices with overall dimensions of ~60 Å x 

40 Å x 30 Å (Fig 2). The secondary structure observed in the crystal structure generally 

matches that predicted by the Phyre2 webserver (Fig S2). The three beta sheets are 

arranged such that sheet 1 (strands 1, 2, 5, 6, with strands numbered from the N-terminus) 

is nearly parallel to sheet 2 (strands 3, 4, 11, 8), and perpendicular to sheet 3 (strands 7, 9, 

10). Interestingly, analysis of residue conservation done with Profunc [23, 24] and Consurf 

[25] reveals that CTL2 possess conserved patch on one side but not the other (Fig 3). 

Analysis done by Profunc is more automated, such that residue conservation is calculated 

using 50 of the closest C. elegans CTL2 homologs as obtained by BLAST search against 

Uniprot database. Consequently, Profunc shows a higher residue conservation at this patch 

compared to calculation done by Consurf. 

To identify whether any protein of known structure shares a similar fold with 

CTL2, we used SSM [26] as well as the DALI server [27] to perform a structure-based 

alignment. None of the identified proteins exhibited close similarities to CTL2 (Max z-
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score: 2.8). Most of these candidate proteins possess a beta sandwich fold composed of 

two beta sheets; this is different than our Piezo soluble domain structure that consists of 

three beta sheets. However, if we consider sheet 1 and sheet 2 of CTL2 as the beta 

sandwich core with the rest of the protein as connectors, we obtain a two beta sheet 

sandwich core with a 2D connectivity diagram illustrated in (Fig S3a). A comparison 

between the Piezo loop structure and the identified proteins did not reveal any significant 

connectivity similarity (Fig S3b). Subsequently, we explored the structural classification 

database CATH [28] for two-sheet beta sandwich containing proteins (CATH ID: 2.60). 

Examination of the strand order in the beta sheets of these proteins failed to identify any 

close matches between CTL2 and previously solved structures. Therefore, we conclude that 

Piezo C-terminal soluble domain exhibits a novel beta sandwich fold. 

 

Structure of M31R C. elegans PIEZO CTL2 Domain Variant  

  The single substitution in human PIEZO1 of methionine 2225 to arginine has been  

linked to the disease Dehydration Hereditary Stomatocytosis (DHS) [10]. From the 

multiple sequence alignment of Piezo homologs, we determined that M31 of our C.elegans 

PIEZO CTL2 construct, located in strand 2 of sheet 1, is equivalent to residue M2225 in 

human PIEZO1 (Fig. S4).  This residue is located at the conserved patch of CTL2 domain 

(Fig. 3). The M31R C.elegans mutant CTL2 protein crystallized in a distinct crystal form 

from the WT domain and the structure was solved by molecular replacement.  Overall, the 

structure of the mutant CTL2 is similar to the WT structure with some minor 

rearrangements (RMSD Cα = 1.3 Å overall, with 0.7 Å for residues in alpha-helices and 

beta-strands (Fig. 4a)). In C.elegans PIEZO CTL2, M31 is spatially adjacent to a 
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neighboring arginine residue, R94 (Fig. 4b). The most significant change in the M31R 

mutant CTL2 structure is the shift of the R94 sidechain ~3 Å away from R31, presumably 

due to electrostatic repulsion (Fig. 4b,c, Fig S5).  However, R94 in C. elegans PIEZO loop 

is not conserved in the multiple sequence alignment (Fig. S4). R94 aligns to a glutamate 

residue that is primarily conserved in the vertebrate Piezo1 and Piezo2. Even though the C. 

elegans PIEZO CTL2 does not have a glutamate at this position, there are three glutamates 

in proximity to M31: E30, E32, and E98. This results in a net acidic local environment 

surrounding M31 in the C. elegans PIEZO.  

 

Discussion  

As a starting point for the structural analysis of Piezo, we have identified a 

predicted extracellular domain designated as CTL2 (C-terminal Loop 2) as a promising 

target for three reasons. (1) There is a moderate degree of sequence conservation in this 

region through all Piezo homologs, which may imply its significance in the general protein 

function. (2) We were looking for a target loop with at least 100 amino acids because larger 

domains are more likely to have a stable core structure.  With ~250 residues, CTL2 is the 

largest conserved extramembrane loop found among Piezo homologues. Moreover, the 

boundaries at which this loop starts and ends as defined by different topology prediction 

methods are similar, simplifying the design of our constructs. (3) A point mutation in the 

CTL2 domain of human PIEZO1 is found in DHS patients. Removal of this loop, together 

with the last transmembrane segment and the C-terminal tail, severely impaired the 

inactivation kinetics of the channel [14], leading to an increased ion influx that may 

contribute to the disease phenotype [10-12]. 
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The model of CTL2 establishes that the region forms a compact domain 

containing a beta sandwich with three sheets. The CTL2 fold is apparently unrelated to 

any other family of proteins, including the β sheet domains present in other eukaryotic 

channels, specifically the extracellular domains of the two eukaryotic ion channels of 

known structure [29, 30], ASIC (CATH ID: 2.60.470.10) and P2X4 (CATH ID: 

2.60.490.10). There is no evidence from either structure of the wild type or M31R mutant 

that this domain forms a tetramer that might help stabilize the oligomeric state of the 

intact channel.   Mutating the conserved methionine residue into arginine (M31R), 

corresponding to a human DHS mutation (M2225R), does not cause a significant 

conformational change in C. elegans PIEZO CTL2 domain, suggesting that the effect of 

this mutation may be to more subtly perturb conformational energetics through changes 

in electrostatics, or perhaps to interfere with the ability to interact with other domains by 

changing the interface region. 

 In conclusion, we have described the first structural characterization of a domain of a  

eukaryotic mechanosensitive channel, the CTL2 domain of C. elegans PIEZO. We have 

shown that this extramembrane region forms a stable domain that adopts a previously 

uncharacterized beta sandwich fold. The functional role of this domain in the context of the 

full length channel remains unclear. In view of the monomeric nature of the CTL2 domain, 

it is unlikely to mediate tetramerization of the full length channel. As this domain is 

generally conserved across Piezo homologs, it may have a universal role such as mediating 

proper intracellular trafficking, tethering the intact channel to an unknown extracellular 

protein, or binding of a ligand; the search for binding partners is currently under 
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investigation. The lack of structural similarity between this domain and any known 

protein fold, including those of eukaryotic and bacterial channels, reinforces the lack of 

recognizable sequence homology between Piezo and other channels, and highlights the 

distinctive nature of this enigmatic family of eukaryotic mechanosensitive channels. 

 

Experimental Procedures 

Protein cloning and expression 

 The CTL2 regions from the mouse PIEZO1, mouse PIEZO2, human PIEZO1,  

Drosophila PIEZO and C. elegans PIEZO orthologues were cloned into a pET21 vector 

between the NdeI and XhoI restriction sites, generating a construct with a C-terminal 6xHis 

tag. The plasmid DNA was transformed into BL-21 gold E. coli cells (Stratagene). Cells 

were grown in Terrific Broth medium until they reached an OD600 of 1.0, when 1 mM 

IPTG was added. Protein induction was carried on overnight at 20 oC. The CTL2 of C. 

elegans PIEZO (GenBank ID: 392900032) was found to be best suited for structural 

analysis; the protein and nucleotide sequences of the coding region for this construct are: 

MSLLNQIGTISMPEKVTLRISIEGYPPLYEMEAQGSNHDNAELGMIKPDQLASLNQ

ALTDSYTTRDTNSILRSRMSVSYLKGYTYEDILIVRFRPESEIYWPISQDSRNAMID

KLSRNTSVNFEVSLEFTRPYDPNENAALKHSKSWLVPISLDMTIRAKIQSALRGDP

GHPILIPQSIPAFIQVPNQGELTLPTSIGNTIINDGNPRINTTGMEKSDEARAWFDSLT

LNLEQGKSQNEKMWIATSEHPGDQNAKLWIKTANTTYSGRPYLQVVGFIDRAFPS

LEHHHHHH 

Protein residue numbers are assigned according to their position in this CTL2 

construct. 
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ATGTCGCTACTCAATCAAATCGGAACTATCAGTATGCCAGAAAAAGTTACGT

TGAGGATTTCGATTGAAGGATATCCACCACTTTACGAGATGGAGGCACAAGG

AAGTAATCACGATAACGCTGAACTTGGAATGATAAAACCTGATCAATTGGCAT

CTTTGAATCAAGCATTGACGGATAGTTACACGACACGAGACACTAATTCTATT

TTAAGATCAAGAATGTCTGTATCATATCTGAAAGGATACACATATGAGGATAT

TCTGATTGTGCGATTCCGTCCAGAATCTGAAATTTATTGGCCGATTTCACAGGA

TTCGAGAAATGCGATGATCGATAAATTGAGCCGAAACACGTCAGTCAATTTTG

AAGTATCTCTGGAATTCACTCGGCCATATGATCCAAATGAAAACGCTGCTTTA

AAACATTCGAAATCGTGGCTTGTTCCAATCTCCCTGGATATGACGATTCGAGC

AAAAATTCaaAGTGCTCTCCGAGGAGATCCAGGTCATCCGATTCTCATTCCACA

GTCAATTCCTGCGTTTATTCAAGTTCCAAATCAAGGAGAATTGACCCTTCCAAC

ATCAATCGGAAATACTATTATCAATGACGGAAATCCACGGATTAATACGACCG

GGATGGAAAAATCAGACGAAGCTCGGGCTTGGTTCGACTCGTTAACCTTGAAT

CTCGAACAAGGAAAATCGCAAAACGAGAAAATGTGGATCGCCACATCCGAAC

ATCCAGGAGACCAAAATGCGAAACTCTGGATAAAGACTGCAAATACGACGTA

TTCGGGAAGGCCGTACCTTCAAGTTGTCGGATTTATTGATAGAGCATTCCCATC

ACTCGAGCACCACCACCACCACCACTGA 
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Protein purification 

Cells were homogenized in lysis buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, lysozyme, 

DNAse, PMSF) at a ratio of 1 g cells / 10 mL of buffer. Cells were lysed using a 

microfluidizer (Microfluidics, Model M-110L), and the lysate was centrifuged to remove 

insoluble material. The protein was purified in three steps. First, lysate was run through a 

NiNTA column, washed with 40 mM imidazole for 15 column volumes, and eluted with 

250 mM imidazole. Next, the eluate from the NiNTA column was run through a Superdex-

200 16/60 column (GE Healthcare), and the corresponding peak fraction was collected. 

Finally, the resulting protein fraction was run through an anion exchange column, HiTrap 

Q Sepharose FF (GE Healthcare), to obtain the final protein preparation. The identities of 

the purified wild type (WT) and M31R variant proteins were confirmed by mass 

spectrometry.  

 

Crystallization & model refinement 

WT CTL2 was crystallized by the sitting drop vapor diffusion method against a reservoir 

containing 0.1 M phosphate-citrate buffer pH 4.0, 26% PEG1000, and 0.2 M Li2SO4 at 20 

oC in a 96-well plate, at a ratio 0.2 μL protein to 0.2 μL reservoir drop, using intelli sitting 

drop crystallization plates (ArtRobbins). The protein concentration was 10-12 mg/mL. WT 

CTL2 crystals appeared after 18 hrs and grew to maturation after 3 days to approximate 

dimensions of 50 µm x 50 µm x 150 µm. M31R CTL2 was crystallized against a reservoir 

containing 0.1 M phosphate-citrate buffer pH 4.8, 30% PEG3350, and 0.2 M Li2SO4 at 20 

oC using similar procedures. These crystals grew more slowly than the WT crystals.  
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A heavy atom derivative of the WT CTL2 crystals was prepared by soaking in 10 mM 

potassium tetranitroplatinate (II) for three days, followed by back-soaking in the mother 

liquor for 2 hrs. Protein crystals were flash frozen in the presence of Fomblin Y 16/6 oil 

(Sigma), and were sent to Stanford Synchrotron Radiation Lightsource (SSRL). Diffraction 

data were collected at SSRL beamline 12-2 equipped with a PILATUS 6M PAD detector. 

Diffraction patterns were indexed and integrated using iMOSFLM [31] from the CCP4 

software package [32] and XDS [33]. The integrated data was scaled using SCALA [34]. 

Phases for the WT CTL2 were obtained experimentally by Single-wavelength Anomalous 

Dispersion (SAD) phasing based on the platinum derivative. Five platinum sites were 

located, and electron density maps were generated using Autosol [35] from the PHENIX 

suite [36]. Phases for the M31R CTL2 structure were generated with PhaserMR [37] by 

molecular replacement using the WT structure. Model building was done in Coot [38], and 

the structure refinements were done using Refmac5 [39]. The final molecular structures 

were displayed using PyMOL [40].  
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Figure 1. Membrane topology of mouse PIEZO1 as predicted by various membrane 

topology prediction algorithms. Depending on the membrane topology prediction 

algorithm, mouse PIEZO1 is predicted to have 30 to 40 transmembrane segments. The 

numbers of amino acids (aa) for the larger predicted loops are indicated. The loop of 

interest, CTL2 (red box), is predicted to be an extracellular loop by 3 of the 4 topology 

prediction algorithms. Since mouse PIEZO1 is the most extensively characterized Piezo 

channel, it is used to illustrate the topology predictions; Diagrams are drawn using TOPO2 

[41] http://www.sacs.ucsf.edu/TOPO2/). 
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Figure 2. Structure of the wild type C. elegans CTL2 domain. The structure of the wild 

type Piezo CTL2 is colored in a rainbow scheme, progressing from the N-terminus (blue) 

to C-terminus (red). Front view (left): The loop is oriented so that the connections to the 

putative transmembrane helices are positioned toward the bottom. The β-strands are 

numbered sequentially from the N-terminus. Top view (right): the front view, rotated 90˚ 

around the horizontal axis.  
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Figure 3. Residue conservation analysis of CTL2 

(A) Surface representation of the WT CTL2 domain (marine blue) is oriented in similar 

fashion to the one displayed in Figure 2 (inside the black square). N and C terminus are 

colored in light gray. (B) The top panel displays surface conservation representation from 

the closest Piezo homologs as calculated by ProFunc using the pdb coordinate of the WT 

CTL2 domain structure, whereas the bottom panel display surface conservation from 

representative Piezo homologs taken from broad branches of eukaryotic kingdom as 

calculated by ConSurf. Left panel shows the surface of CTL2 upon 90 degree rotation 

along the y-axis, showing the right-side view of CTL2. Right panel shows the surface of 

CTL2 upon -90 degree rotation, showing the left-side view of CTL2. Surface conservation 

is colored in a rainbow gradient scheme in such a way that the least conserved region is 

colored in blue and the most conserved region is colored in red. M31R is located at the 

conserved patch of CTL2. 
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Figure 4. Superposition of wild type and M31R substituted CTL2 domains. (A) 

Superposition of the wild type (pink) and M31R substituted (blue) CTL2 structures.  The 

position of residue 31 is highlighted in yellow (circled). (B, C). The M31R mutant structure 

is displayed in blue and the WT structure is displayed in pink; this substitution is 

accompanied by a modest re-arrangement of the R94 side chain.  
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Table 1. Data collection and refinement statistics of the wild type and mutant  

a Values in parentheses represents the highest resolution shell 

 

 

 

 

Data set Wildtype CTL2 CTL2 M31R 
Protein Data Bank number 4PKE 4PKX 
Data collection statistics   
Space group H 3 2 P 1 21 1 
a, b, c (Å) 72.59, 72.59, 241.6 45.18, 37.25, 73.56 
α, β, γ (o) 90, 90, 120 90, 91.58, 90 
Wavelength (Å) 1.0716 1.0332 
Resolution (Å)a 33.09 – 2.45 (2.57 – 

2.45) 
38.97 – 2.54 (2.68 – 
2.54) 

No. of unique reflection a 9377 (1211) 7746 (887) 
Mean (I/sigma I) a 17.7 (3.0) 28.4 (11.2) 
Completeness a 99.9% (100%) 93.6% (75.4%) 
Average multiplicity a 10.1 (10.6) 3.1 (2.8) 
Anom. Completeness a 99.9% (99.9%)  
DelAnom. correlation between half-sets 
a 

0.915 (0.061)  

R-merge a 0.093 (0.810) 0.028 (0.085) 
Matthew Coefficient 1.951 1.92 
Refinement statistics   
Resolution 31.17 – 2.50 33.23 – 2.54 
Average B factor (Å2) 83.9 38.6 
Rwork/Rfree (%) 22.81 / 23.84 21.79 / 25.91 
Rmsd bonds (Å) 0.006 0.004 
Rmsd angles (o) 1.23 0.97 
Ramachandran plot (%)   
Favored 97.5 98.2 
Outliers 0 0 
Rotamer outliers (%) 5.9 2.9 
Molprobity clashscore 13.8 12.8 
Molprobity overall score 2.34 1.97 
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Figure S1. Multiple sequence alignment of Piezo homologs. Multiple sequence 

alignment was performed using representative Piezo homologs (listed below) from 

vertebrate Piezo1, vertebrate Piezo2, invertebrate Piezo, plant Piezo, and unicellular 

eukaryote Piezo. Protein sequence conservation is represented by the shading and height of 

the bar corresponding to each residue, with the tall yellow bar, short brown bar, and no bar 

representing high levels, low levels, and poor sequence conservation, respectively. The 

green bars highlight the transmembrane (TM) segment for mouse PIEZO1 as predicted by 

Topcons [18]. CTL2 (shaded in light blue) is the largest conserved Piezo soluble domain. 

The Piezo sequence conservation is relatively higher in the C-terminal region. The diagram 

was generated using the MAFFT multiple sequence alignment program [21], available at 

the EMBL-EBI web page.  

 

List of Piezo homologs used: 

H. sapiens 1 (NP_001136336.2), D. rerio 1 (XP_696355.4), R. norvegicus 1 

(NP_001070668.2), M. lucifugus 1 (XP_006097426.1), O. garnettii 1 (XP_003800876.1), 

B. Taurus 1 (XP_001256011.4), S. harrisii 1 (XP_003758542.1), G. gorilla 1 
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(XP_004058200.1), C. porcellus 1 (XP_003460961.1), E. caballus 1 (XP_005615040.1), 

P. alecto 1 (XP_006927190.1), M. domestica 1 (XP_007477361.1), L. Chalumnae 1 

(XP_006002160.1), T. rubripes 1 (XP_003978351.1), Anolis carolinensis 1 

(XP_008120472.1), C. lupus 1 (XP_005620631.1), M. gallopavo 1 (XP_003209947.1), S. 

partitus 1 (XP_008279724.1), X. tropicalis 1 (XP_002933721.2), C. simum 1 

(XP_004437180.1), H. glaber 1 (XP_004843264.1), O. rosmarus 1 (XP_004392217.1), M. 

musculus 1 (NP_001032375.1), O.orca 1 (XP_004280184.1), M. musculus 2 

(NP_001034574.4), G. Gallus 2 (XP_419138.4), H. sapiens 2 (NP_071351.2), B. Taurus 2 

(XP_003587835.2), C. porcelius 2 (XP_005001285.1), C. simum 2 (XP_004437180.1), H. 

glaber 2 (XP_004843264.1), M. lucifugus 2 (XP_006089356.1), C. millii 2 

(XP_007887509.1), O. orca 2 (XP_004276120.1), O. aries 2 (XP_004020692.1), G. gorilla 

2 (XP_004059237.1), O. rosmarus 2 (XP_004417033.1), M. lucifugus 2 

(XP_006089356.1), X. tropicalis 2 (XP_002937522.2), C. lupus 2 (XP_005623199.1), M. 

gallopavo 2 (XP_003205004.1), A. platyrhynchos 2 (XP_005013163.1), T. guttata 2 

(XP_002192627.2), S. harrisii 2 (XP_003760113.1), A. aegyptii (XP_001657818.1), B. 

impatiens (XP_003494661.1), H. saltator (EFN75267.1), C. elegans (CAA92491.3), C. 

sinensis (GAA51253.1), D. melanogaster (AFB77909.1), M occidentalis 

(XP_003747214.1), P. humanus (XP_002428649.1), N. vitripennis (XP_008202351.1), E. 

histolytica (XP_655549.2), P. tetraurelia (XP_001461126.1), O. trifallax (EJY84567.1), T. 

cruzi (EKG00857.1), S. lycopersicum (XP_004247483.1), G. max (XP_006605262.1), T. 

cacao (XP_007030785.1), A. thaliana (NP_182327.6), C rubella (XP_006293550.1), P. 

persica (XP_007200947.1), O. tauri (XP_003079754.1) 
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Figure S2. Comparison of the secondary structure of the WT C. elegans CTL2 from 

the crystal structure and from the Phyre2 prediction.  The observed secondary structure 

in the crystal structure of C. elegans CTL2 (drawn below the ‘Disorder’ row) generally 

resembles the secondary structure assignments predicted by Phyre2 [22] (drawn below the 

‘Sequence’ row). Amino acid residues that are not visible in the electron density of either 

the wild type or M31R mutant structures (shaded in purple) coincide with the predicted 

disordered region. The sequence conservation representation follows the convention used 

in Fig S1, with gaps in the multiple sequence alignment indicated by the magenta dotted 

lines. 
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Figure S3. Comparison of the beta strand connectivity of the Piezo CTL2 domain to 

potentially related domains. Each beta strand in the connectivity diagram is drawn as an 

arrow. Beta strands that are parallel to the first beta strand are colored blue, while those that 

are antiparallel are colored yellow (A). Connectivity diagrams for each of the 14 closest 

matches to the Piezo CTL2 loop identified by DALI [27] and SSM [26] are summarized in 

table (B). No exact matches in strand orientation are observed between CTL2 and these 

candidate structural homologs. 
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Figure S4. Multiple sequence alignment of Piezo homologs around the M31 mutation 

site. A methionine residue that is mutated into arginine in DHS patients (colored in red) is 

conserved across Piezo homologs. The position of this methionine (M31 in our C. elegans 

CTL2 construct) is in close proximity to an arginine residue (colored in blue) that is not 

conserved. There are three glutamate residues (colored in purple) around M31 that provide 

a net negative charge at this location. 
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Figure S5.  Substitution of M31 with Arg leads to repositioning of the R94 sidechain. 

The structure of the wild type C. elegans PIEZO CTL2 structure is displayed in magenta, 

while the M31R mutant structure is displayed in blue. A: the electron density of WT Piezo 

loop is displayed in magenta. B: the electron density of the M31R mutant CTL2 domain is 

displayed in blue. 
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C h a p t e r  3 :  T h e  P u r s u i t  T o w a r d  O b t a i n i n g  a  F u l l  

L e n g t h  P i e z o  S t r u c t u r e  

Historical Context and The Chapter Outline 

The notion of “a picture is worth a thousand words” is certainly true in the field of 

molecular biology. In the absence of images, it is difficult to deduce a detailed mechanism 

on how a particular molecular machine works. Consequently, there have been major efforts 

dedicated to elucidating the structure of biological macromolecules. However, these 

molecules are much too small for direct visualization by regular light microscopy 

techniques. Therefore, we have to utilize specialized imaging techniques which employ 

electromagnetic radiation of much smaller wavelength than visible light to obtain snapshots 

of these molecules at atomic resolution. 

 In the late 1895, Wilhelm Conrad Rontgen discovered a new kind of electromagnetic  

radiation which differentially penetrated objects that were made from different material; he 

named such radiation ‘x-rays’ [1]. Almost two decades later, x-ray diffraction of copper (II) 

sulfate crystal was observed by Max von Laue, suggesting that x-rays are waves and 

crystals can diffract the incoming x-rays. Subsequently, William Lawrence Bragg proposed 

that two x-ray waves will constructively interfere when the path length difference between 

these two waves is equal to an integer multiple of their wavelength [2]; this is known as 

Bragg’s Law. Using this relation, one can deduce the atomic structure of simple crystals 

from the x-ray diffraction pattern [3]. More generally, the x-ray diffraction pattern and the 

molecular structure are related by Fourier transformation. Elucidation of the molecular 

geometries of amino acids and peptides by x-ray crystallography paved the way for the 
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formulation of alpha helical model of protein secondary structure [4]. Then, another 

structural biology milestone took place when James Watson and Francis Crick deduced the 

structure of the DNA double helix from x-ray diffraction images obtained from DNA fibers 

by Rosalind Franklin [5].  

In a typical x-ray crystallography experiment, data is collected as the intensities of 

x-ray diffraction reflections, containing the amplitudes but missing the phase information. 

This is commonly referred to as the ‘phase problem’. In 1953, Max Perutz invented a way 

to solve this problem by utilizing the diffraction pattern difference between the native 

protein crystal and its heavy metal derivatized isomorphic crystal, a method that is known 

as isomorphous replacement [6]. Using this method, we can now obtain atomic structures 

of any well-diffracting protein crystals from which we can deduce detailed mechanisms on 

a variety of molecular processes; this gave rise to a new biological science field known as 

the Structural Biology.  

 X-ray crystallography has been the major tool for obtaining structures of biological  

macromolecules. As of March 2016, 89.4% of all the structures deposited in the Protein 

Data Bank (PDB) were obtained by x-ray crystallography. For this reason, we initially 

aimed to obtain the molecular structure of the full length Piezo by x-ray crystallography. 

One key requirement for obtaining a suitable protein crystal is to have an abundant amount 

of protein. Consequently, early efforts to solve protein structures were limited to those 

proteins which are found abundantly in nature, such as myoglobin [7], haemoglobin [6], 

hen egg lysozyme [8], ribonucleases [9, 10], chymotrypsin [11], papain [12], 

carboxypeptidase A [13], and substilisin [14].  
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With the advancement of recombinant DNA technology in the late 1970s, 

proteins that are not naturally abundant could finally be produced in cells that were 

engineered to overexpress the protein of interest [15]. Although progress in solving the 

structures of soluble proteins experienced a significant boost with the development of over-

expression methods, membrane protein structure determination has still trailed behind 

(Figure 1); the first structure of a membrane protein did not come out until 1985 [16]. This 

is partly because many membrane proteins failed to be expressed in sufficient amounts 

using commonly used recombinant systems; this is especially true for many eukaryotic 

membrane proteins [17].  

Furthermore, solubilization of membrane proteins by amphipathic reagents, such as 

detergents, can be problematic. For this reason, significant efforts have been dedicated to 

optimize the expression of membrane proteins using different expression systems and 

different purification conditions. Therefore, in the first part of this chapter, I will 

describe our efforts in exploring several different protein expression systems and detergent-

buffer conditions to improve the yield of full length Piezo protein for x-ray crystallographic 

study.   

 In December 2013, the first membrane protein structure, that of Transient Receptor  

Potential V1 (TRPV1), was solved using single particle cryo-electron microscopy (Cryo-

EM) by a collaborative effort of the David Julius and Yifan Cheng labs [18, 19]. The major 

advantage of single particle cryoEM over x-ray crystallography is that protein crystals are 

not required. Obtaining suitable protein crystals of a membrane protein can be difficult. 

Therefore, the technology advancements in the single particle cryo-EM field offer an 

attractive alternative method to obtain protein structures. In the second part of this 
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chapter, I will describe our attempt to look at the full length Piezo protein using single 

particle EM.    

 

 

Part 1: Exploring Various Protein Expression System for Maximizing the Production 

of Mammalian Membrane Protein 

 

Introduction 

Limitations on the availability of naturally-abundant proteins posed significant 

challenges to the structural biology field. The revolution in DNA manipulation technology 

circumvented this problem by providing approaches, in principle, to engineer the over-

expression of any protein. In the late 1960s and early 1970s, major breakthroughs came 

about with the isolation of enzymes that can specifically cut DNA molecules (restriction 

enzymes) [20, 21], and enzymes that can join two double stranded DNA molecules (DNA 

ligases) [22]. These discoveries enabled the foundational concept that DNA sequences 

from one species can be copied and inserted into a foreign host. This led the way for the 

construction of the first few DNA plasmid vectors with selective markers and screening 

tools to do molecular cloning [23, 24].   

In 1977, Sanger et al and Maxam et al independently presented ways to do DNA 

sequence analysis by the ‘chain-termination method’ and cleavage of partially modified 

nucleobases, respectively [25, 26]. This allows the resulting DNA product to be verified 

with single base-pair resolution to detect if there is unwanted incorporation of mutations 

during the molecular cloning process. In the early 1980s, Polymerase Chain Reaction 
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(PCR) was invented [27]. In combination with the preceding discovery of reverse 

transcriptase [28, 29], we are now able to clone eukaryotic protein coding sequences 

(exonic regions) into cloning vectors for heterologous protein expression using different 

host cells.   

 

Bacterial Protein Expression Systems as the Major Tool to Produce Large Quantities of 

Protein 

 Bacterial expression systems, particularly Escherichia coli, remain the major work 

force for recombinant protein expression, contributing to more than 96,000 out of 110,000 

total protein structures deposited at PDB as of February 2016. Factors that make E. coli the 

initial choice for most laboratories are the low cost and rapid time scale. The time it takes 

from the initial cell inoculation until the time for harvest is between two to five days, 

depending on the expression method being used. Protein production with 60 L E. coli 

culture costs less than $100; the biomass obtained from a 60 L culture of E. coli grown in a 

bioreactor can exceed 700 g of cells. In contrast, protein production in 1 L suspension-

adapted mammalian culture costs roughly $100, and yields only 10 g of biomass. These 

considerations, along with the ease-of-use, make E. coli the major workforce for large-scale 

protein synthesis for structural studies. Indeed, we used an E. coli expression system to 

express the Piezo soluble domain, CTL2 (discussed previously in Chapter 2).  

There is a concern, however, that bacterial protein expression system may not be 

suitable for the mass production of many eukaryotic proteins for several reasons. First, 

bacterial systems lack the sophisticated downstream post-translational protein modification 

machinery that may be required for the proper folding of many eukaryotic proteins. 
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Furthermore, lipid composition is crucial for the proper folding as well as for the 

function of membrane protein [17, 30]; difficulties in obtaining sufficient amounts of 

functional eukaryotic membrane proteins may be attributed to differences between the lipid 

compositions of the bacterial membrane and the membrane of the native species. Although 

several advances to mitigate these issues have been made [31], many labs and 

pharmaceutical companies have turned to eukaryotic protein expression system for the 

synthesis of eukaryotic membrane proteins.  

 

Pichia – Yeast Expression System 

 Pichia pastoris and Saccharomyces cerevisiae are the two most common yeast hosts  

used for the overexpression of recombinant proteins. Although S. cerevisiae has produced 

several successes, protein expression using the P. pastoris system offers two major 

advantages. First, Pichia is able to utilize simple alcohols, such as methanol, as the carbon 

source. This is relatively cheaper compared to sugars that are the required carbon source for 

S. cerevisiae. Further, Pichia can be grown to a very high density (up to 100g of cells/L) 

[32], which is scalable for a large-scale growth using a Bioreactor [33]. Unlike E. coli 

expression systems, with Pichia, the vector carrying the gene of interest is integrated into 

the genomic DNA through homologous recombination [34].  The genomic integration of 

the vector can produce either a single copy or multiple copies of the gene of interest. Since 

the gene of interest is placed under the alcohol oxidase (AOX1) promoter, protein synthesis 

can be initiated by the addition of methanol once the alternative carbon source has been 

depleted; initial growth was done using glycerol as a carbon source to repress the premature 

activation of the AOX1 promoter.  
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 During my first year in the Rees lab, I worked with the Pichia system to express  

mammalian ion channels of the Transient Receptor Potential (TRP) channel family. One of 

the challenges I encountered was to administer sufficient aeration to a high-density Pichia 

culture, since a minimum level of 20% of dissolved oxygen is required for optimal protein 

expression; 100% dissolved oxygen level is defined as a complete oxygen saturation 

condition. For medium scale protein expression, I assembled a 2 – 3 L bioreactor where 

temperature control was done by gentle heating of a water bath using a hot plate (Figure 

2b). Aeration was done by blowing sterile-filtered air into the growing culture with 

vigorous stirring. Typical yields were around 20 – 25 g of biomass per liter of culture, 

which was about twice as much as we obtained using culture flasks (albeit significantly 

lower than 100 g/L). Biomass yield could be improved by growing Pichia in a commercial 

bioreactor (Figure 2c). Under these conditions, Pichia could reach up to 80 g of cells per L 

of culture. Such a bioreactor provides precise monitoring of crucial parameters, such as 

temperature, pH, and dissolved oxygen (DO).  

 Despite the concern that Pichia only shares the core glycosylation step of (Man)8- 

(GlcNAc)2 with mammalian cells [35], there are several examples of membrane proteins 

expressed in Pichia that were crystallized and their structures solved by X-ray 

crystallography [36-40]. This makes Pichia an attractive alternative to the bacterial system 

for expressing eukaryotic membrane protein.  
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The Journey Begins – Exploring Various Eukaryotic Protein Expression Systems For Full 

Length Piezo 

 

The Decision to Switch to a Mammalian Protein Expression System 

 As promising the Pichia expression system is, there are concerns that differences in  

membrane composition [41] cause the final protein product to be improperly folded (i.e. 

non-functional or not in a physiologically relevant state) [17]. Furthermore, Coste et al 

were able to express full length Piezo using a mammalian expression system which yielded 

functional protein [42]. These considerations, along with the lack of appropriate 

infrastructure for Pichia expression in our lab, shifted our efforts to mammalian expression 

systems. However, we were concerned about the protein expression level. Thus, my first 

objective was to optimize Piezo expression level. 

 We decided to use a suspension-adapted HEK293 cell line to express full length Piezo  

for several reasons. First of all, suspension-adapted mammalian cells can be grown to a 

high culture density in a shaker flask. This can provide 10 gram of biomass from one 1 L 

shaker flask mammalian culture. Also, maintaining a suspension adapted culture requires 

less work compared to the maintenance of adherent mammalian cells. This greatly reduces 

the amount of labor required to maintain the cells as well as to do large scale (beyond 4L) 

protein expression. Furthermore, suspension adapted HEK293 cells are also compatible 

with several transfection methods. Finally, suspension adapted cell lines are available and 

have been regularly used at the Protein Expression Center (PEC) facility at Caltech to 
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express many soluble proteins. Thus, high density culture growth, ease of use, and the 

well-developed infrastructure drove us to use suspension-adapted HEK293 cell culture to 

express the full length Piezo.  

 

Construction of Fluorescence Size Exclusion Chromatography (FSEC) Piezo Constructs  

 Initially, we received six full length Piezo constructs from the Patapoutian lab: human  

PIEZO1, mouse PIEZO1, mouse PIEZO1-GST, mouse PIEZO2, Drosophila PIEZO, and 

C. elegans PIEZO. As a start, I expressed mouse PIEZO1-GST (MmP1-GST) in a 1L 

culture of suspension-adapted HEK293 cells in an attempt to look at the protein yield of 

this construct when expressed in suspension-adapted HEK cells. MmP1-GST was purified 

using glutathione sepharose beads in a detergent (CHAPS) – lipid (phosphatidyl choline / 

PC) buffer. This detergent-lipid buffer was chosen because mouse PIEZO1 had been 

shown to exhibit some channel activity when reconstituted into liposomes after being 

purified using this buffer condition [42]. From this, we were able to obtain 0.1 – 0.2 mg of 

pure protein from a 1L mammalian culture (Figure 3). This protein yield was still low for 

x-ray crystallography study. 

 Sample homogeneity is crucial to increase the likelihood for protein crystallization.  

For this reason, protein constructs are typically subjected to pre-crystallization screening to 

look at the monodispersity of the purified protein under several detergent buffer conditions. 

Two common methods to accomplish this task are Size Exclusion Chromatography (SEC) 

and Blue Native Poly Acrylamide Gel Electrophoresis (BN-PAGE). Traditionally, these 

methods require microgram to milligram amounts of pure protein. Since we could only 

obtain 100 – 200 microgram of mouse PIEZO1-GST protein from 1L suspension-adapted 
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mammalian culture, it would be difficult to obtain enough protein to test out different 

detergent-buffer conditions. Therefore, we were prompted to utilize Fluorescent Size 

Exclusion Chromatography (FSEC) [43], which is a method where we could screen the 

buffer condition using a low amount of protein. In this approach, a target protein is fused to 

Green Fluorescence Protein (GFP), and the behavior of the protein in different detergent-

buffer condition is investigated using SEC by looking at the GFP fluorescence signal 

instead of the protein UV absorption at 280nm. Using this approach, protein can be 

analyzed directly from the crude extract after detergent solubilization. As a proof of 

principle, we characterized crude extracts from cells expressing a GFP-fused membrane 

protein construct, MscL-GFP, on the SEC and observed that the GFP fluorescence peak 

exhibited similar characteristics as the absorbance 280nm for both peak shape and retention 

volume (data not shown).  

 For my FSEC studies, I made several Piezo GFP-fusion (FSEC-PIEZO) constructs  

where GFP is fused at either the N-terminal or the C-terminal for each Piezo homolog 

(Figure 4). Once the constructs had been successfully made and verified by DNA 

sequencing, we tested the level of protein expression and monitored the GFP fluorescence 

signal to determine the optimal protein expression time. HEK cells transfected with Piezo 

FSEC constructs using Lipofectamine 2000 (Life Technology Inc.) started to show GFP 

fluorescence by 12 hours. Expression of Piezo FSEC constructs beyond 30 hours, however, 

resulted in increased green background fluorescence (Figure 5). For this reason, we chose 

24 – 30 hours to express Piezo FSEC constructs when Lipofectamine 2000 was used. Then, 

we did small scale protein expression tests for these FSEC constructs to see their behavior 

in several mild detergents. However, most of these mild detergents showed no fluorescence 
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signal with the exception of C12E9-containing buffer (Figure 6). This indicates that the 

amount of Piezo FSEC protein that can be successfully solubilized by the set of detergents 

we used was very little.  

 To search for detergent(s) that can effectively solubilize Piezo and keep the protein  

from aggregating, we screened over 70 detergents. Briefly, a Piezo-containing membrane 

suspension was incubated at 4oC with constant shaking in the presence of 1% (w/v) of the 

detergent of interest. The mixture was then spun down to remove insoluble material before 

the supernatant was collected for analysis using SDS PAGE and BN PAGE. SDS PAGE 

results provided information on the extent of solubilization of Piezo by that detergent, 

whereas BN PAGE results showed whether the protein can migrate uniformly as a single 

band (monodisperse) in that detergent-buffer condition; although not all detergents are 

compatible with BNPAGE. Detergent screen results showed that most detergents are 

unable to efficiently extract full length Piezo from the membrane with the exception of 

sodium deoxycholate, sodium cholate, C12E8, C12E9, C12E10, and sodium dodecanoyl 

sarcosine (Figure 7). C12E9 and C12E8 were more effective than CHAPS used previously for 

membrane extraction. Between these six detergents, however, only in the polyoxyethylene 

detergent C12E8, and C12E9 did the full length Piezo migrate as a single band on BN PAGE 

(Figure 8). For this reason, we used C12E9 as detergent of choice in addition to the 

previously used detergent, CHAPS. 

 

Exploring Other Ways of Expressing Full Length Piezo 

 Although transient transfection by chemical reagents (Lipofectamine 2000) is relatively  
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easy to do, there is batch-to-batch variability on the amount of protein expression. 

Furthermore, the transfection efficiency for large plasmids, such as Piezo-containing 

plasmid (15 – 20 kbp), can be quite low [41]. Thus, we attempted to explore several other 

ways to express full length Piezo: construction of a stably-expressing Piezo cell line, as 

well as Baculoviral transduction of both mammalian and insect cells.  

 In collaboration with the Protein Expression Center (PEC), we established a stable  

mammalian cell line for expressing the mouse PIEZO1-GST construct. One major 

advantage of using stable cell lines is elimination of batch-to-batch variation in protein 

expression because all cells in the culture are genetically identical (i.e. the plasmid carrying 

PIEZO1-GST gene is integrated into the cellular genome). To do this, HEK293 cells were 

transfected with mouse PIEZO1-GST IRES EGFP plasmid using Lipofectamine 2000. 

Several Individual cells with GFP fluorescence were isolated into 384-well plates and 

supplemented with Geneticin antibiotics to select for cells that had integrated the plasmid 

into their genome; cells that failed to integrate the plasmid into their genome would not be 

able to propagate efficiently since any without the plasmid would be eliminated by 

Geneticin. After several months of selection, two cell lines, line 4-1 and line 4-7, were 

obtained that exhibited stable expression of GFP fluorescence; line 4-7 showed a stronger 

GFP fluorescence.  We then ran the cell lysate for both cell lines on SDS PAGE and 

analyzed the protein expression level by Western blots using anti-GST antibody. Overall, 

line 4-1 showed a stronger signal when blotted with anti-GST antibody, and the band was 

observed at the approximate molecular weight (Figure 9). Despite having a stronger GFP 

fluorescence signal, line 4-7 showed a much weaker signal and the band ran at a molecular 

weight smaller than expected for full length Piezo. For this reason, we attempted to do a 
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medium-scale protein expression and purification of Piezo protein from the line 4-1. 

However, it did not yield any usable amount of full length Piezo protein (data not shown).   

 We also tried a viral-based method of gene delivery to mammalian cells, the BacMam  

system. Here, the gene of interest is introduced into mammalian cells using Baculovirus 

although the precise viral entry mechanism is unclear [44]. This method has been used to 

produce sufficient recombinant soluble protein for crystallization trials [45]. We cloned full 

length mouse Piezo1-GST into the BacMam vector (pVLAD6) that was constructed and 

provided by the Garcia lab [46]. 250mL of viral titer was then produced in Sf9 insect cells, 

and the Ratio Of Infection (ROI), defined as the volumetric ratio between the viral particle 

suspension to the mammalian cells, for that viral titer was determined in a small scale test 

expression. A non-specific histone deacetylase, sodium butyrate, was added to enhance the 

expression level [47, 48]. We tested the expression levels of two different cell lines: 

HEK293F cells and the restricted N-glycosylation HEK293 GnTI- cells [49]. Overall, the 

two cell lines exhibited similar expression patterns for all tested ROI (Figure 10). The 

protein expression was comparable to 5ng of GST loading control at the highest viral titer 

(almost 50% of total volume of the culture); this translates to about 50 – 100 µg of 

unpurified total full length mouse Piezo1-GST protein in 1L of mammalian cell culture. 

The combination of high amount of viral titer usage and modest amount of final protein 

yield prompted us to put this pursuit on hold.   

 Although we focused primarily on mammalian protein expression systems, we could  

not ignore the fact that many labs have had great successes expressing eukaryotic proteins 

using the Baculoviral-insect cells system; proteins expressed using this system contribute 

the largest number of molecular structures deposited in the Protein Data Bank (PDB) 
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compared to all other eukaryotic protein expression systems (Figure 11). For this reason, 

we cloned the full length Drosophila PIEZO FSEC construct, which has been modified 

from the construct provided by the Patapoutian lab [50], into the pVL1393 Baculoviral 

vector. We then tested the expression of this construct in two insect cell lines: Sf9 and High 

Five (Hi-5) cells. Full length Drosophila PIEZO protein seems to be degraded quite readily 

in both Hi5 and Sf9 cell lines (Figure 12). Expression of Drosophila PIEZO was observed 

at 48 hours, but not 24 hours, in both Sf9 and Hi-5 insect cell lines. Interestingly, 

expression of Drosophila PIEZO in Sf9 cells was better at lower ROI, and it gradually 

decreased as we increased the viral titer; there was an increase in the intensity of the two 

lower bands (green arrows) starting at an ROI of 2. The expression level of Drosophila 

PIEZO in Hi-5 cells, on the other hand, exhibited positive correlation with the viral titer.  

Next, we performed a detergent screen to identify the detergents that efficiently 

extract the full length protein from insect cell membranes. Detergent screen results showed 

that most detergents we tested were not able to extract full length Drosophila PIEZO, with 

the exception of Fos Choline 16 and sodium dodecanoyl sarcosine (Figure 13). Therefore, 

we chose these detergents to perform an initial purification test with the full length 

Drosophila PIEZO FSEC protein (Figure 14a). Small scale purification of this protein was 

done in 100 mL insect cell culture in a batch method using 0.5 mL NiNTA column (GE 

healthcare). The sample was washed with fifteen column volumes of 40 mM imidazole 

wash buffer prior to elution using 250 mM imidazole.  

It appears that the full length Piezo was absent from the elution fraction (Figure 

14a); instead, we obtained more of the 75 kDa peptide fragment in both detergents. Full 

length Drosophila PIEZO protein binds poorly to the NiNTA beads (Figure 14a). 
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Curiously, the 75 kDa fragment was reactive to the anti-His antibody (Figure 14b). At 

the time, we did not attempt to investigate the identity of this fragment. However, if the 75 

kDa band was indeed a peptide fragment of the full length Drosophila PIEZO, it must be 

the C-terminal Piezo fragment since the His-tag is located at the C-terminal end of the 

protein. It is reasonable to suspect that overexpression of functional full length Piezo is 

toxic for cells. As a result, the survivor cells are the ones which are able to minimize the 

existence of full length Piezo protein in the plasma membrane. One strategy to achieve this 

is by proteolysis of full length Piezo into a form which is no longer functional. Further 

characterization of Piezo C-terminal fragment (mouse PIEZO1) will be discussed in the last 

chapter (Chapter 4) of this thesis. 

In addition to these efforts, we also set up a collaboration with the Stowell lab at the 

University of Colorado, at Boulder, to look at expression of mouse PIEZO1-GST using the 

Viral-Like Particles (VLP) expression system. In this expression system, sub-viral particles 

assemble to form vesicles from the lipid raft region of the host plasma membrane. Any 

membrane proteins present in that lipid raft will be packaged into vesicles which are 

subsequently released into the media. One major advantage of this system is that the 

population of protein that is packaged into the vesicles consists only of protein molecules 

that are folded properly and are able to localize to the plasma membrane. However, we 

found that VLP expression system also failed to produce full length Piezo protein in 

sufficient amounts for x-ray crystallography.  
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Part 2: Visualizing Full Length Mouse PIEZO1 Using Single Particle Electron 

Microscope  

 

Transition from X-Ray Crystallography to Single Particle EM 

 Obtaining well-diffracting crystals for the structure determination of biological macro- 

molecules is not trivial. Success requires a sufficient amount of good quality starting 

material. Proteins are typically concentrated to about 10 mg/mL for crystallization screens. 

For each crystallization condition, 0.5 µL of 10 mg/mL protein is mixed with an equal 

volume of precipitant in a hanging drop crystallization screen set-up. The typical 

crystallization screen kit consists of 96 different crystallization conditions. Thus, about 50 

µL of 10 mg/mL (0.5 mg) of protein is needed to set up one crystallization kit at one 

crystallization temperature. Typically, we set up screens using several crystallization kits at 

different temperatures (4oC, 10oC, or 20oC). Once we obtained an initial crystal hit, a grid 

screen was typically performed to optimize the crystallization conditions around the initial 

hit. Thus, it is common for crystallographers to go through 10 – 100 milligrams of well-

behaving protein from the inception to the acquisition of well-diffracting crystals. 

Automated liquid handlers, such as the Mosquito (TTP Labtech Inc.) and the Gryphon (Art 

Robbins Instruments Inc) robotic systems, enable us to set up smaller protein drops (0.2 

µL) for each crystallization condition in a 96-well plate format (Figure 15). Nevertheless, 

this still requires a significant amount of protein. Although there is always the possibility of 

success by simply scaling up protein expression to obtain the required amount of protein, 

we decided to put these efforts on hold considering that our typical protein yield was 0.2 - 
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0.3 mg per 1 L of mammalian culture; at this amount, I would need about 50 L of 

mammalian culture to obtain the necessary amount of protein for crystallization screen.   

 In late 2013, the first structure of a membrane protein, the TRPV1 ion channel, was  

solved at high resolution using single particle cryo-electron microscopy (cryo-EM) by the 

collaboration of David Julius’ and Yifan Cheng’s labs at UCSF [18, 19]. This milestone 

was made possible by several recent technological breakthroughs in the field, including the 

direct electron detector camera [51], motion-induced image blurring correction technology 

[51-53], and improved maximum likelihood-based particle classification [54, 55]. Cryo-

EM quickly became an attractive alternative to x-ray crystallography for obtaining the 

molecular structure of large proteins. One primary reason for this is that single particle 

cryo-EM eliminates a major bottleneck for solving protein structures by x-ray 

crystallography, namely the requirement of well-diffracting crystals. Thus, in principle, one 

needs a much smaller amount of purified protein for single particle EM imaging than for x-

ray crystallography. For this reason, the structure determinations of proteins that are poorly 

expressed, such as Piezo, can now be attempted. It is important to note, however, that a 

high quality of purified protein is still required to obtain a high-resolution structure using 

this method. 

 

Initial Observation of Full Length Piezo by Negative Stain EM 

 For electron microscopy imaging, we decided to use the mouse PIEZO1-GST construct  

since we had the most success with this construct in getting pure protein. Mouse PIEZO1-

GST was expressed in suspension-adapted HEK293T cells. These cells were lysed and 

protein was purified according to the protocol that was previously described [42]. Protein 
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was brought to a final concentration of 3 µg/mL and was stained using 1% uranyl acetate 

on a Formvar-Carbon supported copper EM grid (TED PELLA, Inc.). At this 

concentration, we were able to see distinct and uniform particles that adopt the shape of 

butterflies (Figure 16). We further optimized the staining procedure to improve the image 

quality by altering several parameters, such as the type of negative stain, concentration of 

the stain, and the type of EM grids. The significant improvement in the image quality was 

obtained by using a holey carbon EM grid. From here, we saw that there was a mix of 

butterfly and half-butterfly particles (Figure 17). However, we were not sure whether these 

particles were really half-sized particles or if they were different orientations of the same 

type of particle. Therefore, we used 2994 of half-butterfly and butterfly particles to create 

an initial 2D class averages (Figure 18). From the 2D class averages, we noticed limited 

density between the two butterfly wings. Moreover, the two butterfly wings look identical, 

which provides a hint that the butterfly particles may be a dimer of an intact Piezo (Figure 

18). A diameter of ~15 nm may be estimated for a spherical particle with the molecular 

weight of full length Piezo (1.2 MDa). Since the butterfly particle has rough dimensions of 

40 nm across the two butterfly wings and 20 nm spanning each wing, it is reasonable to 

hypothesize that our mouse PIEZO1-GST sample contained a mix between the intact 

mouse PIEZO1-GST molecules (the half-butterfly particles), and dimer of the intact mouse 

PIEZO1-GST (the butterfly particles).  
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Full Length Mouse PIEZO1 is a Trimer 

 Dimensional analysis of purified mouse PIEZO1-GST in solution using Dynamic Light  

Scattering/ DLS (DynaPro NanoStar, Wyatt technology Inc.) showed that the purified 

protein solution contains a distribution of particles with the average radius of 7 nm. We 

then ran the purified protein sample on blue native PAGE (BN-PAGE) and observed that 

purified mouse PIEZO1-GST sample yielded 2 bands: one ran at the same position as the 

1.2 MDa molecular weight marker, the other ran between the 1 MDa and the 720 kDa 

molecular weight marker (Figure 19a). This suggested that we had a mixed population of 

Piezo species, or that Piezo might partially dissociate under these conditions. These bands 

were also observed by Coste et al [42], although not discussed by them. We ran mouse 

PIEZO1-GST protein sample purified in CHAPS-PC (phosphatidyl choline) buffer on a 

Superose6 gel filtration column (GE Healthcare, Inc.). Here, we saw two peaks: one peak 

came out at the void volume (8 mL) while the other peak had retention volume of 11.3 mL 

(Figure 19d). Peak 1 and peak 2 were analyzed by BN-PAGE (Figure 19b). We noticed 

that the void peak (peak 1) contained the high molecular-weight protein smear, which is a 

common indicator for protein aggregates. Peak 2, on the other hand, was enriched in the 

band that ran between 720 kDa and 1 MDa molecular weight protein marker. Both peak 1 

and peak 2 consisted of mostly one protein band on the SDS PAGE, which eliminated a 

possibility that the lower molecular weight peak was contaminant or degradation product of 

full length Piezo protein (Figure 19c).  

Although the two protein bands were not completely separated, we were curious to 

see how the sample would look like under negative stain EM. Peak 1 looked identical to the 

total mouse Piezo1-GST sample directly after affinity purification procedure (Figure 20a); 
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it mostly contained butterfly particles. Non-specific protein aggregation could also be 

observed in this sample, which was consistent with the BN-PAGE result. Peak 2, on the 

other hand, consisted of mostly half-butterfly particle (Figure 20bc) with some butterflies. 

Our result suggested that the lower protein band on the BN-PAGE may correspond to the 

half-butterfly particles and the upper protein band is the dimer of these particles.  

After this analysis was conducted, a medium resolution structure of mouse 

PIEZO1, solved using cryo electron microscopy (cryo-EM) [56], revealed that mouse 

PIEZO1 forms a trimer. The authors demonstrated that the top protein band on the BN-

PAGE corresponds to the dimer of intact trimeric Piezo channel, while the lower band is a 

trimer. In retrospect, we should have considered a trimeric organization more carefully 

since the wild-type C. elegans CTL2 protein forms a three-fold symmetry in our crystals 

[57] (Figure 21). The three-fold arrangement observed in our wild-type CTL2 structure 

resembles the structure of the corresponding domain, C-terminal External Domain (CED), 

determined for the trimeric full length mouse PIEZO1 structure. CTL2 variant which 

contains a clinically-relevant mutation (M31R), corresponding to the M2225R mutation in 

human PIEZO1, did not adopt a three-fold arrangement in the crystal. This conserved 

methionine residue is located at the interface between the monomers and substitution of 

this residue into arginine may disrupt the crystal contact (Figure 21). We did not more 

seriously consider the possibility that CTL2 was a trimer since both the wild-type and 

mutant protein behaved like monomer on a Superdex S200 gel filtration column under our 

purification conditions (data not shown). 

We then attempted to generate a low resolution 3D model for the full length mouse 

PIEZO-GST using the negative stain EM images that we had collected from peak 2 
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fraction. From these images, we manually selected 2488 half-butterfly particles to 

construct an initial model using C3 symmetry (Figure 22a). Our initial model is at the same 

approximate dimension compared to the trimeric mouse PIEZO1 structure (Figure 23).  

 

Chapter Summary and Future Direction 

 In this chapter, I have described our quest to obtain the structure of full length Piezo  

channel. We first explored several eukaryotic protein expression methods, such as transient 

chemical transfection of suspension-adapted mammalian culture, Baculoviral transduction 

of mammalian culture, construction of mammalian stable cell line, Baculoviral transduction 

of insect cells, and the Viral-Like Particle (VLP) method. We then searched for the optimal 

detergent-buffer condition for the purification of these constructs. However, the maximum 

protein yield we obtained (0.2 mg of protein / 1 L of mammalian culture) was less than 

ideal for producing the amount of protein typically used for an x-ray crystallography study.  

I also described our short attempt to obtain the molecular structure of the full length 

mouse PIEZO1 using single particle electron microscopy. We were at the stage of 

analyzing our negative stain images when the structure of mouse PIEZO1 came out. The 

structure of mouse PIEZO1 is currently the only available model for the Piezo family. 

However, many of the molecular features are still missing from this model. Indeed, CED/ 

CTL2 is the only region resolvable in high resolution. Furthermore, among 1000 amino 

acids residues which were modelled into the medium-resolution Piezo structure, less than 

600 of them have reasonable connectivity. Thus, there is still need to obtain a higher 

resolution and a more complete molecular model of intact Piezo channel. Moreover, there 

are also other Piezo homologs that have different electrophysiological characteristics than 
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mouse PIEZO1, such as Piezo2 and invertebrate Piezo proteins. It would be interesting 

to see how the structures of these Piezo channels differ from mouse PIEZO1, and how 

these differences are manifested in electrophysiological differences among Piezo 

homologs. Last but not least, we have yet to see a compilation of Piezo structures 

illustrating how mechanical signals can activate these channels. Therefore, although we 

started our quest and explored a variety of promising routes to understand the gating 

mechanism of this enigmatic channel, there is still much to do to answer the fundamental 

question of how mechanosensing molecules, such as Piezo channel, work. 

 

 

Methods 

Cloning  

In general, the cloning was done using the In-Fusion cloning kit (Clontech Inc.) 

[58]. Briefly, vector DNA was linearized either by restriction digest or polymerase chain 

reaction (PCR). Next, Insert DNA was amplified by PCR using forward and reverse 

primers which contain an overhang sequence that is complementary to the DNA sequence 

of the linearized vector. Both insert and vector DNA were incubated together in the 

proprietary In-Fusion mix for 15 minutes at 55oC. The plasmid DNA mixture was 

transformed into Stellar E.coli (Clontech Inc.), and the sequence of the resulting plasmid 

DNA was verified by DNA sequencing.  

Fluorescence Size Exclusion Chromatography (FSEC) constructs were assembled 

in two steps. First, His-GFP- and -GFP-His were cloned into pcDNA3.1 mammalian vector 

to create a backbone vector for N-terminal and C-terminal FSEC constructs, respectively. 
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Each Piezo gene was then inserted behind the His-GFP- for the N-terminal FSEC 

constructs, and in front of the -GFP-His for the C-terminal FSEC constructs. BacMam 

constructs were created by inserting several full length Piezo genes into PVLAD6 vector 

provided by Christopher Garcia’s lab at Stanford University. Constructs for Piezo 

expression in insect cells were made by inserting a C-terminally fused Drosophila PIEZO 

FSEC construct into pVL1393 vector provided by the Protein Expression Center (PEC) at 

Caltech.    

 

Suspension Adapted Cell Culture Maintenance 

 Frozen stocks of Human Embryonic Kidney (HEK) 293 were provided by the Protein  

Expression Center (PEC) at Caltech: HEK293F, HEK293T, and HEK293 GnTI-. Cells 

were grown in FreestyleTM 293 expression medium (Gibco®) and maintained at roughly 1 

x 106 cells/ mL with at least 95% cell viability. Cells were diluted into 0.5 x 106 cells/ mL 

when it reached 2 – 2.5 x 106 cells/ mL. Media change / culture dilution was done every 

two days considering the typical doubling time for these cell lines is 24 hours. 

 

Small-Scale Test Expression 

 Cells were seeded at 4 mL of 5x105 cells/mL in 24-wells plates. Transfection was  

performed approximately 24 hours after cell seeding. Typical cell density was around 

1x106 cells/ mL. 4 µg of plasmid DNA was transfected into 4 mL of suspension-adapted 

HEK293 cells using Lipofectamine 2000 as transfection reagent (InvitrogenTM).  
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Immediately, 0.5 mL of cells were collected as time 0 hr. Subsequently, 0.5 mL 

samples were collected every 6 or 12 hours. 

 Collected samples were spun down, and resuspended in 100 µL PIPES buffer. 20 µL  

of 6x SDS loading buffer was added to the cell suspension, and the sample was loaded onto 

SDS PAGE (BioRad Inc.). Protein expression was analyzed by western blot using either 

anti-his or anti-GST antibodies primary antibody at 1:10,000 dilution (Rockland 

Immunochemicals Inc.) and secondary antibody at 1:5,000 dilution.  

 

Stable Cell Line Construction 

100 ml of suspension adapted HEK293-GnTI- Cells growing in FreeStyle™ 293 

Expression Medium were transfected with the mouse PIEZO1-GST IRES EGFP construct 

using Lipofectamine® 2000 Transfection Reagent (L2K) in a reduced serum medium. 

Cells were incubated at 37oC and 8% CO2 overnight. The next day, cells were 

supplemented with Geneticin to a final concentration of 100 µg/mL and 1% fetal bovine 

serum. Cells were plated on 15 cm tissue culture dishes (20 ml per plate) and were grown 

for 14 days. Dead cells were washed off using fresh media and cells were incubated for 

another week. GFP-positive cells were selected using a cloning cylinder (plastic ring cut 

from 1 ml pipette). The cloning cylinder was sealed against the plate bottom using silicone 

grease. Cells were collected in a well of a 96-well plate and were propagated by scaling up 

from 96-well to 24-well plates. Cells were sequentially transferred to T25 and to T75 tissue 

culture flask. Serum was gradually removed from the medium. Cells were scraped off the 
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bottom of the flask, transferred into a 125 mL shaker flask, and grown in FreeStyle™ 

293 Expression Medium. 

 

The BacMam System 

The BacMam protein expression method was performed according to the 

previously-described protocol [46]. Briefly, the mouse Piezo1-GST construct was cloned 

into the BacMam vector, pVLAD6.  Expression constructs were co-transfected with 

linearized Baculovirus backbone into sf9 insect cells. Virus particles were harvested around 

4 – 5 days, after sufficient GFP fluorescence signal was detected.  This virus suspension 

would be used to transduce suspension-adapted mammalian culture.  

HEK293 GnTI- Cells were grown in FreestyleTM 293 expression medium (Gibco®) at 

2x106 cells/ mL with at least 95% cell viability on the day of viral transduction. 

Appropriate amount of Baculovirus solution was added to 1 L mammalian culture, and a 

final concentration of 10 mM sodium butyrate was added to the culture. The culture was 

left shaking at mammalian cell culture incubator (37oC, humidified, and 5% CO2) for 42 

hours before harvest. 

 

Insect Cell Protein Expression  

 The full length Drosophila PIEZO FSEC construct was cloned into pVL1393 vector.  

Monolayer Sf9 insect cells were prepared at 106 cells in T25 tissue culture flasks on the day 

of transfection. 4 µg of Piezo in pVL1393 was mixed with 5 µg of ProGreen Baculovirus 

linearized DNA backbone in 250 µL Grace’s insect media for 15 minutes at room 
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temperature. This mix was combined and incubated for 15 minutes at room temperature 

with another mix containing 30 µL Lipofectin in 250 µL Grace’s insect media. DNA-lipid 

mixture was then added to the Sf9 cells in T25 flasks and incubated at 27oC for 18 hours. 

The following day, 2 – 3 mL of media was replaced with TNM-FH media, and the culture 

was further incubated for 5 days or until sufficient GFP fluorescence was observed. This is 

the P0 Baculovirus stage. One to two mL of P0 Baculovirus was used to transduce Sf9 cells 

in T75 tissue culture flasks at 106 cells. P1 Baculoviral stock was harvested after 5 days. 5 

mL of P1 Baculovirus stock was used to transduce 200 mL of Sf9 cells at 2 x 106 cells/ mL 

density. After day 5, the Baculoviral suspension was harvested as the P2 stock. Ratio of 

infection (ROI) for each P2 Baculoviral stock was experimentally determined on a small-

scale protein test expression in 24-well deep well blocks. Finally, the appropriate amount of 

Baculovirus was added into 1 L of insect cells grown in shaker flasks at a density of 2 X 

106 cells/ mL for large-scale protein expression. 

 

Large Scale Protein Expression in Mammalian (HEK 293) Cells  

 Suspension-adapted HEK293 cells were maintained at 1x106 cells/ mL with at least  

95% cell viability on the day of transfection. Polyethyleneimine (PEI) solution was 

prepared by dissolving 10 mg of branched PEI (average Mw ~ 25,000) in ~ 8mL of water 

with 1 – 2 drops of concentrated hydrochloric acid. The solution was vortexed until all PEI 

powder was dissolved. Sodium hydroxide was added slowly to bring the pH back to pH 7.4 

before additional water was added to bring the volume up to 10 mL. 

 2 mL of freshly-made PEI solution and one mg of DNA were mixed in sterile-filtered  
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20 mM HEPES buffer, pH 7.5, to make a complete transfection solution. This solution 

was gently mixed and incubated at room temperature for 5 – 10 minutes before it was 

slowly added to a 1 L mammalian culture. Based on the test protein expression, the 

optimum expression time for most Piezo constructs was determined to be between 48 to 60 

hours when transfected using PEI.  

 

Membrane Fraction Isolation 

 Cells were lysed in lysis buffer at a ratio of 10 mL buffer/ 1 g of cells for E. coli cells  

and 5 mL buffer/ 1 g of cells for mammalian cells. Cells were sonicated twice at 50% 

amplitude for 1 minute using the ‘1 sec pulse – 1 sec rest’ setting (Misonix, S 4000). Then, 

the sample was spun down using a tabletop centrifuge at 14,000 rpm for 15 minutes in the 

cold room. The supernatant was collected and spun down using an ultracentrifuge at 

150,000x g for one hour to collect membrane fraction.  

 

Fluorescence Size Exclusion Chromatography (FSEC) 

 Fluorescence Size Exclusion Chromatography (FSEC) was done according to a  

previously described protocol [43]. Briefly, the membrane fraction was collected and re-

suspended in 25 mM PIPES buffer, pH 7.2, containing the detergent of interest (DDM or 

C12E9). The sample was shaken gently at 4oC for one hour before it was spun down using 

an ultracentrifuge at 150,000x g for one hour to remove any insoluble material. 150 µL of 

the supernatant was injected into a pre-equilibrated sephacryl S400 gel filtration column, 

and GFP fluorescence was monitored.  
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Detergent Screen  

 The membrane fraction was collected and re-suspended in PIPES buffer (25 mM  

NaPIPES pH 7.2, 140 mM NaCl, and protease inhibitor cocktail) such that the membrane 

fraction collected from 10 g of mammalian cells was resuspended in 5 mL buffer (10x 

membrane suspension). The screen was performed in a 96-well plate allowing us to screen 

over 70 detergents plus controls. 10 µL of membrane suspension was mixed with 10 µL of 

10% detergent stocks and 80 µL of PIPES buffer in the cold room for one hour. Then, the 

reaction mix was spun down using a microultracentrifuge (Beckman Optima TLX, 

TLA100 rotor) at 150,000 xg for one hour. The supernatant was collected for analysis by 

SDS PAGE and BN PAGE.   

 

NiNTA Purification of DmPIEZO 

Insect cells were resuspended in PIPES buffer in a ratio of 1 g of insect cells in 5 

mL of buffer. Cells were lysed by sonication (Misonix, S 4000). The membrane fraction 

was isolated according to the protocol described above. Membranes were solubilized using 

1% Fos Choline 16, 1% Sodium Dodecanoyl Sarcosine, or 1% Triton X-100 by shaking in 

the cold room for one hour. Upon ultracentrifugation to remove insoluble material, samples 

were loaded onto 0.5 mL pre-equilibrated NiNTA column (GE healthcare). Beads were 

washed with fifteen column volume of 40 mM imidazole wash buffer prior to elution using 

4 column volume of 250 mM imidazole. 
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Purification of the Full Length Mouse PIEZO1-GST 

Purification was done according to the previously described protocol [42]. 

Mammalian cells were resuspended in 25 mM PIPES buffer, pH 7.2, in a ratio of 1 g of 

cells in 5 mL of buffer. Cells were lysed using a Dounce homogenizer. The cell lysate was 

spun down using a tabletop centrifuge at 14,000 rpm for 10 minutes in the cold room. The 

supernatant was collected and spun down using an ultracentrifuge at 150,000x g for one 

hour to collect the membrane fraction. Membranes were washed two more times with 

PIPES buffer. After the third wash, membranes were resuspended and solubilized in 

detergent-lipid PIPES buffer (25 mM NaPIPES pH 7.2, 140 mM NaCl, 0.6% CHAPS, 

0.14% PC, PIC, 2.5 mM DTT), and shaken for one hour in cold room. Insoluble material 

was removed by ultracentrifugation. Samples were incubated with 0.5 mL pre-equilibrated 

glutathione sepharose 4b (GE healthcare) beads overnight in the cold room. The following 

day, beads were washed with 30 column volume of detergent-lipid PIPES buffer prior to 

elution with 2 mL of 100 mM glutathione. Glutathione was removed by running the elution 

fraction on a desalting column that had been pre-equilibrated with detergent-lipid PIPES 

buffer. 

 

Amphipols Exchange 

 Purified mouse PIEZO1-GST protein was brought to a concentration of 0.1 mg/mL.   

Purified Piezo was supplemented with Amphipol A8-35 to a final concentration of 2.5 mg/ 

mL. Samples were mixed by gentle rotation for 4 hours at 4oC. Then, 40 mg/ mL of 

activated Biobeads SM-2 resin (Biorad, Inc.) was added. Amphipol-detergent exchange 

was allowed to occur over night at 4oC. The following day, samples were spun down to 
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remove the Biobeads. Supernatant was collected and loaded on a Superose 6 gel 

filtration column that had been pre-equilibrated with buffer without detergent to remove 

excess amphipols. Non-void protein peak was collected and used for the EM imaging. 

 

Negative Staining and Electron Microscopy Imaging 

Mouse PIEZO1-GST was brought to a concentration of 30 µg/ mL. 4 µL of protein 

sample was spotted onto a glow-discharged holey carbon TEM grid (TED PELLA, Inc.) 

for one minute. Excess liquid was removed by gently blotting it with a filter paper. 4 µL of 

1% uranyl acetate was applied to the EM grid and incubated at room temperature for one 

minute. Excess uranyl acetate was blotted using filter paper, and the TEM grid was allowed 

to dry out. Once dried, this TEM grid is ready for observation under the TEM. 

 

Data Collection and Image Processing 

 Three hundred negative stain images of full length mouse PIEZO1-GST were taken at  

26,000x (4.1 Å / pixel) using a 120kV Tecnai T12 electron microscope (FEI, Inc.) at 2µm 

defocus. From these images, 2488 half-butterfly particles were manually selected using 

EMAN2 [59], and an initial 2D classification was used to create an initial reference model.  
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Figure 1. Annual growth of unique protein structures deposited in the 
Protein Data Bank (PDB). Statistics as of March 3rd 2016. Notice that the number 

of membrane protein structure solved and deposited on the PDB is fewer than a 

thousand membrane proteins, whereas the total number of protein structures in 

the PDB is over one hundred thousand. 

Source: 

• PDB statistics (http://www.rcsb.org/pdb/static.do?p=general_information/ 

pdb_statistics/index.html) 

• (http://blanco.biomol.uci.edu/mpstruc/query) 
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Figure 2. Equipment set-ups for protein expression using the Pichia system: 
(a) Bead beater, an apparatus that we used to lyse Pichia cells for protein 

purification 

(b) Mini-bioreactor that we assembled for medium-scale (2 – 3 L) protein 

expression using the Pichia expression system 

(c) Bioreactor that was used for large scale (>30 L) protein expression in Pichia 
 

 

 

(c) 

(b) 

(a) 
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Figure 3. Representative SDS PAGE gel for the purification of mouse 
PIEZO1-GST. Two purification methods were compared: direct membrane protein 

extraction after cell lysis and protein extraction from the isolated membrane 

fraction. Elution fraction for direct membrane protein extraction method contains a 

25 kDa band (the endogenous free GST). This band is no longer present when an 

additional membrane isolation procedure was incorporated into the purification 

protocol. 
 

 

Figure 4. Fluorescence Size Exclusion Chromatography (FSEC) Piezo 
constructs. Two variants of FSEC constructs were made for each Piezo homolog: 

N-terminal GFP fusion construct and C-terminal GFP fusion construct. Both 

constructs contain poly-His affinity tag. 
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Figure 5. GFP fluorescence of HEK293 cells transfected with C-terminal GFP 
human PIEZO1 FSEC construct using Lipofectamine 2000. After 45 hours, 

there was prominent background GFP fluorescence. Presumably, it was due to a 

combination of cell lysis and degradation of the FSEC construct, which releases 

free GFP molecules. 
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Figure 6. Chromatogram of proteins on a Sephacryl S400 gel filtration 
column. (a) Chromatogram profile of MscL-GFP which served as control. DDM-

solubilized MscL GFP FSEC showed a peak at 20.3 mL, which coincided with the 

absorbance prole of the puried protein at 280 nm. (b) Chromatogram prole of C-

terminal human PIEZO1 FSEC construct which was solubilized in C12E9. Arrows 

indicate retention volume of molecular weight standard (GE Healthcare): 

Thyroglobulin (669 kDa), Ferritin (440 kDa), Aldolase (150 kDa), Conalbumin (75 

kDa), and Ovalbumin (44 kDa). 

(a) 

(b) 
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Figure 7. Representative western blots (from SDS-PAGE) of the detergent 
screen for Piezo expressed in suspension-adapted mammalian culture. This 

particular result is from the C-terminal FSEC full length human PIEZO1 construct. 

Sodium deoxycholate, sodium cholate, C12E8, C12E9, C13E10, and Sodium 

dodecanoyl sarcosine were the only detergents which could efficiently extract full 

length Piezo. CHAPS, which was used previously by Coste et al. [42], as well as 

commonly used mild detergents (red) did not seem to extract Piezo constructs. 
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Figure 8. Representative BN PAGE western blot images of the detergent 
screen for human PIEZO1 expressed in suspension-adapted mammalian 
culture. Among detergents which could efficiently extract full length Piezo, only 

C12E8, C12E9, and C13E10 kept the protein monodispersed. 
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Figure 9. Western blot result of protein test expression for the stable cell 
lines. Piezo 4-1 cell line showed a much stronger signal than Piezo 4-7 despite the 

weaker GFP fluorescence signal. Nevertheless, the Piezo signal was still very 

weak compared to a 10ng GST loading control. This data was obtained by Angela 

Ho (Protein Expression Center, PEC) and used under the permission of the PEC. 
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Figure 10. Western blot images of small scale test expression of mouse 
PIEZO1-GST in HEK293F and HEK293 GnTI- cells using the BacMam system. 
Both cell lines showed similar protein expression level at most ROI (ratio of 

infection). At ROI of 8, the viral titer is almost 50% of the total culture volume. 
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Figure 11. Counts of all structures deposited on PDB by host expression 
organisms. Statistics as of March 2016. The statistics only compare nonbacterial 

protein expression systems. As a comparison, total structures deposited on PDB 

obtained from the bacterial protein expression systems are more than 98,000 

entries.  

Source: 

PDB statistics (http://www.rcsb.org/pdb/static.do?p=general_information/ 

pdb_statistics/index.html) 
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Figure 12. Western blot result of Drosophila PIEZO FSEC test expression in 
Hi5 and Sf9 insect cell lines. Drosophila PIEZO expression was absent at 24 

hours. Protein expression was observed at 48 hours in both Sf9 and Hi-5 insect 

cell lines. 
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Figure 13. SDS-PAGE Western blot results for detergent extraction screen of 
full length Drosophila PIEZO in insect cells. Most detergents were not able to 

efficiently extract full length Drosophila PIEZO with the exception of Fos-Choline-

16 and sodium dodecanoyl sarcosine. Most detergents were able to extract the 75 

kDa peptide fragment. Comparing extraction efficiency among Fos-Choline 

detergents, the longer the hydrocarbon chain, the more efficient it is in extracting 

the larger full length Piezo protein; extraction efficiency for the 75kDa fragment, 

however, is comparable across all Fos-Choline detergents. 
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Figure 14. Medium scale purification of full length Drosophila PIEZO. (a) 

Western blot results for full length Drosophila PIEZO purified in different 

detergents. It appears that most of the extracted full length Piezo (Ext) failed to 

bind to the NiNTA beads under our purification conditions; most of them came out 

in the flow through (FT) fraction. (b) Coomassie and western blot images of the 

concentrated elution fraction of full length Drosophila PIEZO purified in Fos-

Choline-16 detergent. Elution was done by applying elution buffer twice as the 

following: Beads were incubated in two column-volume of elution buffer for 5 

minutes; this was collected as the elution fraction #1 (lane 1). This step was 

repeated one more time using fresh elution buffer; this was collected as elution 

fraction #2 (lane 2). 
 

 

 

 

 

(a) (b) 
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Figure 15. Crystallization screen set-up at the Molecular Observatory 
(MOLOBS). (a) Mosquito (TTP Labtech, Inc.) (b) Gryphon (ARI, Inc.) (c) intelli-

plate® 96 for sitting drop crystal screen set-up (ARI, Inc.) 
 

 

 

 

(a) (b) 

(c) 



 

 

130 

 

Figure 16. Initial observation of mouse PIEZO1-GST on Formvar-Carbon 
supported copper EM grid. Negative stain EM image of 1:100 dilution mouse 

PIEZO1-GST (3 μg/mL). Scale bar length is 100 nm. This was the first time we 

observed mouse PIEZO1-GST particle as butterfly particles (red circles). 
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Figure 17. Representative view of mouse PIEZO1-GST particles on holey 
carbon EM grid negatively stained with 1% uranyl acetate. These images 

show that most of mouse PIEZO1-GST molecules adopt buttery shape although 

some particles look like half-butterfly. (a) Image taken at lower magnification 

showing the overall distribution of Piezo particles at a larger field of view. Scale bar 

is 200 nm. (b) Images of the same field of view were taken at different defocus 

level at 42,000x magni-cation. Scale bar is 50 nm. (c) Representative images of 

the buttery particles (red and brown) and half-butterfly particles (green and blue). 
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Figure 18. 2D class average of the butterfly particles from negative stain EM 
images. 2994 of butterfly and half-butterfly particles were manually picked to 

generate this 2D class average. Out of a total 30 classes (the total number of 

particles divided by 100), 6 classes showed reasonable signals. From these 

classes the two butterfly wings look identical, which may suggest a dimeric 

arrangement. Furthermore, it appears that the relative spatial orientation of the two 

butterfly wings is not uniform, indicating that there is heterogeneity in the 

connection between the two subunits.  
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Figure 19. Purication of mouse PIEZO1-GST for EM imaging. (a) A 

representative BN-PAGE result of purified mouse PIEZO1-GST prior to the gel 

filtration analysis. (b) Mouse PIEZO1-GST on BN PAGE after being separated into 

two fractions (peak 1 and 2) using a Superose 6 gel filtration column. Peak 1 

mainly consisted of the higher molecular weight band and the aggregation, 

whereas peak 2 was enriched in the lower molecular weight species. (c) Mouse 

PIEZO1-GST on SDS PAGE for peak 1 and 2, showing that both fractions 

contained primarily full length Piezo protein. (d) Superose 6 gel filtration prole of 

mouse PIEZO1-GST. Peak 1 and peak 2 were collected separately for gel 

analysis. 

(a) (b) (c) 

(d) 
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Figure 20. Negative stain images of mouse PIEZO1-GST after separation 
using Superose 6 gel filtration. Purified mouse PIEZO1-GST was separated into 

two different fractions: peak 1 and peak 2. (a) Peak 1 mainly consisted of the 

butterfly particles. Scale bar is 50 nm (b) Peak 2 was enriched in the half-butterfly 

particles and some butterfly particles. Scale bar is 50 nm. (c) Negative stain image 

of peak 2 at lower magnification to show a larger field of view. Scale bar is 100 nm. 

(a) (b) 

(c) 
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Figure 21. Arrangement of C. elegans PIEZO soluble domain, CTL2, in the 
crystal lattice. The clinically relevant mutation in human PIEZO1 (M2225R) 

corresponds to M31R in the C. elegans CTL2 construct [57]. This methionine 

residue, displayed as red spheres, is located at the interface between two 

monomers. (a) Top view of C. elegans CTL2. (b) Side view of C. elegans CTL2. 

Trimeric CTL2 arrangement is similar to the CED trimer in the full length mouse 

PIEZO1 EM structure [56]. 

(a) 

(b) 
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Figure 22. 3D reconstruction of mouse PIEZO1-GST trimer from negative 
stain EM data. (a) The initial model was built with EMAN2 using a total of 2488 

half-buttery particles. (b) Structure of the full length mouse PIEZO1 trimer [56]. (c) 

Superposition of the mouse PIEZO1 structure into our low resolution initial model. 

Mouse PIEZO1 structure has similar approximate dimension as the initial model, 

which we generated from negative stain mouse PIEZO1-GST data. 
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C h a p t e r  4 :  I s o l a t i o n  o f  a  S t a b l e  C - t e r m i n a l  P i e z o  

F r a g m e n t  

Background and Motivation 

 One ideal goal that structural biologists strive to achieve is to provide mechanistic  

insights into complex biological processes through the acquisition of molecular snapshots. 

Typically, one would obtain molecular structures of biomolecules in different functional 

states, and from these snapshots, mechanistic model(s) can be generated to explain how 

structural changes of these molecules enable them to carry out their function. One great 

example to illustrate such a scientific feat is the alternating access model of substrate 

transport by the ATP Binding Cassette (ABC) transporter. The alternating access model of 

substrate transport has actually been around for half a century [1]. BtuCD-F, an ABC 

transporter which transports vitamin B12, has been extensively investigated structurally and 

biochemically. In addition to the individual structures of the transporter (BtuCD) and the 

binding protein (BtuF) [2, 3], the structures of the transporter-binding protein complex 

(BtuCD-F) have been solved in several different states, illustrating the full cycle of the 

alternating access model of substrate transport [4-6]; this was made possible by 

introducing a few key molecules to the protein mix prior to the crystallization step in order 

to trap the transporter molecules in a desired conformation. 

 Finding conditions to trap a mechanosensitive (MS) channel in different conform- 

ations for structural study is not trivial; currently, there is not a good way to apply a 

constant mechanical perturbation to MS channels during sample preparation or the image 

acquisition process. Several MS channels can be modulated by chemical ligands so that one 
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can use these ligands to trap these channels in different functional states. Such efforts 

are exemplified by the two pore-domain (K2P) potassium channels, TRAAK and TREK-2. 

These channels were crystallized in both their native states as well as with known 

modulators [7-10]. The question of whether chemical activation causes equivalent 

conformational changes as mechanical activation in these MS channels remains unclear, 

however. Alternatively, two different states of the bacterial MS channel, MscL, have been 

determined. The first MscL structure came from the Mycobacterium tuberculosis homolog 

(MtMscL) where this channel assembles as a homopentamer with a narrow pore opening 

diameter (~ 2 Å) [11]. Subsequently, the structure of the C-terminally truncated MscL 

homolog from Staphylococcus aureus (SaMscL) was determined.  Truncated SaMscL 

assembles as a homotetramer with a pore diameter of 6 Å [12]. The transmembrane helices 

on the SaMscL structure are more laterally tilted relative to the helices on the MtMscL 

structure. More recently, using different detergent combinations, structures of an archaeal 

MscL (Methanosarcina acetivorans MscL – MaMscL) were determined in two different 

conformations [13]; form 1 and form 2 of MaMscL resemble the close-state MtMscL and 

the expanded intermediate state- SaMscL, respectively. Two distinct conformations have 

also been observed for another bacterial MS channel, MscS [14, 15]. Together with 

functional studies, this structural information has been used to infer a general gating model 

for bacterial MS channels [16]. 

 Across its homologs, the Piezo polypeptide chain consists of at least 2000 amino acids,  

typically over 2500 amino acids. The Piezo family is an extreme outlier when it comes to 

the number of amino acids that it possesses compared to most transport proteins as well as 

most proteins in the known genomes (Figure 1) [17, 18]. At the beginning of my journey, 
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there was no structural information on Piezo beyond bioinformatics predictions and 

characterization of the oligomeric state [19, 20]. In 2014, I successfully generated a 

conserved soluble domain construct of Piezo (CTL2) from the C. elegans homolog and 

determined the first molecular glimpse of this mysterious channel (Chapter 2) [21]. A 

report appeared showing that removing the entire C-terminal end of this channel, including 

the CTL2 domain, produced functional channels with altered inactivation kinetics [22]. 

This suggested that the C-terminal segment of Piezo may function to modulate conductance 

properties rather than provide the permeation pathway. Multiple sequence alignment of 

Piezo homologs showed that there is a high degree of sequence conservation at the C-

terminal segment [21], suggesting an important role for this segment on the general channel 

function.  

 It is not uncommon for a large protein to have a modular construction where different  

domains have several specialized functions. One of many examples is the bacterial 

methionine ABC transporter, MetNIQ. MetNIQ is composed of several domains which 

handle different tasks required for function: the transmembrane domains (TMD), 

nucleotide binding domains (NBD), and C2 trans-inhibition domains, as well as the 

substrate binding protein (MetQ) [23, 24]. The C2 trans-inhibition domain provides 

feedback inhibition which regulates the methionine import process depending on the 

intracellular concentration of methionine [23, 25]. Furthermore, all members of the 

Transient Receptor Potential (TRP) super family possess six transmembrane segments with 

a pore domain located between helix 5 and helix 6 [26]. However, different types of TRP 

channels possess distinct domain(s) which allows each member to perform its unique 

function [27].  
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With a presumptive size of 1.2 MDa, Piezo would be the largest ion channel 

known to date. We reasoned that Piezo consists of multiple domains with specific functions 

and so we explored conditions for generating stable fragments of this channel. Here, I will 

discuss our attempt to isolate such a construct, and outline the potential next steps to further 

characterize this Piezo fragment.  

 

C-terminal Piezo Constructs Expression and Detergent Extraction Screen 

 The degree of sequence conservation across Piezo homologs was used as a guide in  

choosing the appropriate boundaries to create several C-terminal Piezo constructs. Initially, 

we made twelve different constructs (numbered #1 - #12) from the Piezo homologs 

available to us (human PIEZO1, mouse PIEZO1, mouse PIEZO2, Drosophila PIEZO, and 

C. elegans PIEZO). The approximate starting residues of each of these constructs are 

indicated by blue arrows in Figure 2a. In general, each construct differs from each other by 

approximately one predicted transmembrane segment; we made a few additional variants to 

either include or exclude regions that are predicted to be large or highly conserved soluble 

domains. The shortest C-terminal constructs contained the entire CTL2 domain, the only 

region with known structure at the time. The sizes of constructs we made are listed in Table 

1. Subsequently, the Patapoutian group reported a study of chimeric Piezo channel which 

suggested that the C-terminal segment of Piezo determines the pore properties of the 

channel [28]. This work took advantage of the differences in conductance properties 

between Drosophila PIEZO and mouse PIEZO1 [20]; mouse PIEZO1 has slower channel 

inactivation kinetics and is sensitive to inhibition by Ruthenium Red (RR), whereas 

Drosophila PIEZO has faster channel inactivation kinetics and is unaffected by RR. Fusing 
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the N-terminal region of mouse PIEZO1 up to residue 1973 with the Drosophila PIEZO 

starting at residue 1930 (mP11-1973/dP1930-2548) resulted in a chimeric channel with pore 

properties resembling the Drosophila PIEZO [28]. This suggests that the C-terminal 

residues (1930 – 2548) may possibly form the core ion permeation pathway. Interestingly, 

this region (dP1930) is very close to the site of our C-terminal construct #6 (starting at 

dP1928).  

 Initially, we looked at protein expression levels for constructs # 5 to # 8 of human  

PIEZO1, mouse PIEZO1, and mouse PIEZO2 constructs (Figure 3). In general, the longest 

of the four constructs (construct # 5) showed much less protein expression relative to the 

three shorter constructs. In the absence of construct #7 of mouse PIEZO2 (C7), Construct 

#6 of mouse PIEZO2 (C6) showed the highest protein expression level on a western blot; 

subsequent western blot analysis revealed that C7 showed comparable protein expression 

levels to C6. Next, we performed detergent screens using several mild detergents to find the 

detergent which could optimally solubilize the protein. However, it appeared that none of 

these detergents could efficiently solubilize the C-terminal constructs (Figure 4). We then 

tested several more detergents, including Fos-Cholines (Figure 5). These results showed 

that Fos-Choline-16 solubilized the C-terminal constructs from mouse PIEZO2 (C6 and 

C7) efficiently.  Effective solubilization by Fos-Choline-16 was also observed for other C-

terminal Piezo constructs (data not shown). Subsequently, we performed medium scale 

purification where purified C6 and C7 proteins from the elution fractions of an affinity 

column chromatography (NiNTA) were immediately analyzed on a gel filtration (Superdex 

S200) column. Overall, purification of C6 and C7 in Fos-Choline-16 detergent yielded 

polydisperse mixtures as seen by the gel filtration chromatogram (Figure 6ac). When Fos-
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Choline-16 was exchanged with DDM during the purification procedure, the protein 

yield is somewhat lower and the gel filtration chromatogram profile shifts to a slightly 

longer retention volume (Figure 6bd). Analysis of these chromatogram peaks revealed that 

there are multiple bands, which can be attributed to potential contamination or protein 

degradation (Figure 7a). Interestingly, purification of C7 resulted in a higher molecular 

weight band that did not yield a signal on the western blot (Figure 7b). 

 We also investigated the protein expression levels of the C-terminal constructs created  

from Drosophila PIEZO (D6, D7, D8) and C. elegans PIEZO (E7 and E8). The relative 

protein expression levels were assessed based on the relative signal intensity on the western 

blot in comparison to the expression levels of C6, C7, and C8. The expression level of one 

C. elegans C-terminal construct (E8) caught our attention immediately since it was much 

higher than any other constructs (Figure 8a). From the detergent screen results, we learned 

that E8 can also be extracted efficiently by Fos-Choline detergents (Figure 8b).  

 Overall, we learned that C-terminal Piezo constructs can be extracted efficiently from  

the E. coli membrane using Fos-Choline detergents, especially Fos-Choline-16. We also 

learned that extraction and purification of C-terminal Piezo constructs in Fos-Choline-16 

detergent does not drive the protein to large non-specific aggregates as evidenced by the 

absence of a peak at the void volume on the gel filtration chromatogram. However, 

purification of these constructs is still far from optimum since there are multiple bands on 

the gel. We have not systematically explored the identities of these bands to determine 

whether they are degradation products or non-Piezo contaminant.  
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Isolation of a Stable Fragment of Mouse PIEZO1 

 In one sample preparation of full length mouse PIEZO1-GST, we observed that the  

purified protein stored at 4 oC appeared to be proteolyzing as evidenced by the appearance 

by day 2 of fragments with reduced molecular weights (Figure 9a). We followed the 

degradation progress by taking small aliquots of protein each day and running these 

samples on SDS PAGE. By day 7, full length mouse PIEZO1-GST was completely cleaved 

into a peptide fragment with an approximate molecular mass of 95 kDa. This 95 kDa 

fragment was relatively stable even after another week of incubation at 4 oC. Western blot 

analysis using an anti-GST antibody suggested that this peptide fragment corresponded to 

the C-terminal Piezo region since the GST tag is attached to the C-terminal end of the 

protein (Figure 9b). After several attempts to replicate the natural degradation of mouse 

PIEZO1-GST, we were unable to get a consistent degradation results; we later noticed that 

the stock solution used to make the purification buffers was contaminated with what 

appeared to be biofilm-like material (picture not shown). We performed a limited tryptic 

digest to see if we could obtain a similar fragment under controlled conditions. At a molar 

ratio of 1:10 (trypsin:protein), a C-terminal fragment was generated with a comparable 

molecular weight to the one we obtained from the natural proteolysis (Figure 10). N-

terminal peptide sequencing of the isolated peptide fragment revealed that this fragment 

started at residue H1924, directly after an arginine (R1923) trypsin cleavage site. Without a 

GST tag, this peptide fragment alone consists of 623 amino acids with calculated molecular 

weight of 70 kDa. 
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C-terminal Fragment in the Context of the Full Length Mouse PIEZO1 Structure 

 The recently solved structure of mouse PIEZO1 revealed a trimeric assembly of Piezo  

subunits (Figure 11a) [29]. Overall, this medium (4.8 Å) resolution Piezo structure 

provided a general model for an intact Piezo channel molecule. However, the model is 

incomplete. Only ~1000 amino acid residues of mouse PIEZO1 could be modelled of the 

total ~2500 residues; the region corresponding to the CTL2 domain best fits the electron 

density (i.e. this region has the highest local resolution). Connectivity could be established 

for what is assigned as the last 600 amino acids of Piezo (less than 25% of total number of 

amino acids). This region includes the C-terminal domain, an inner helix, 250 residues of 

CTL2 domain (CED), an outer helix, anchor helix, and a few more helices in front of the 

anchor helix. The rest of the helices in the model were built into low resolution electron 

density without clear connection to each other (marked in black on Figure 11b). Whether 

these helices are connected to the C-terminal piece remains unclear.  The end of the 

connectivity for the mouse PIEZO1 model is located directly upstream of Tm 35 in our 

membrane topology prediction (Figure 11c). On the same membrane topology prediction, 

the stable C-terminal mouse PIEZO1 fragment that we isolated starts at approximately 37 

amino acids upstream of the F1961, the first residue where connection can be traced into 

the C-terminal end of the full length mouse PIEZO1 structure.  According to the full length 

Piezo model, our C-terminal Piezo fragment makes up the central core of an intact Piezo 

channel, which includes the ion permeation pathway. Given the presence of these regions, 

we asked the question of whether this C-terminal fragment alone is functional. 
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Mouse PIEZO1 C-terminal Fragment can be Expressed and Localized to the 

Plasma Membrane 

 Functional characterization of a putative mechanosensing molecule such as the mouse  

PIEZO1 C-terminal fragment necessitates benefits from localization in the plasma 

membrane. Accordingly, I designed Piezo constructs with a C-terminal GFP-6xHis tag 

under a CMV promoter for constitutive mammalian expression system.  In Human 

Embryonic Kidney (HEK293T) cells, expression of the GFP-fused C-terminal mouse 

PIEZO1 fragment showed a similar green fluorescence localization pattern to the full 

length mouse PIEZO1-GFP (Figure 12a). The GFP fluorescence forms a ‘crescent moon’ 

shape, which may indicate the cluster of fluorescence protein molecules that are trapped 

within the endomembrane due to the overexpression of this protein. GFP fluorescence can 

be seen around the cellular border of some cells. This resembles the localization pattern of 

a non-mechanosensitive membrane protein control, GFP-fused ATP Binding Cassette 

(ABC) exporter protein (Atm1). Meanwhile, expression of free GFP alone results in a 

green fluorescence signal uniformly distributed throughout the cell. Cellular fractionation 

experiments further revealed that both the C-terminal and full length mouse PIEZO1 are 

found in the membrane (mem) fraction, but not the cytosolic (cyt) fraction (Figure 12b). 

Together, these observations suggest that the C-terminal Piezo fragment is localized to a 

membrane. However, it is unclear whether this membrane localization includes the plasma 

membrane.  

 To further explore the possibility that our C-terminal construct can be localized to the  

plasma membrane, we performed live-cell immunocytochemistry (ICC) staining. For this 

purpose, we created Piezo constructs with an extracellular epitope tag created by inserting a 
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Myc tag directly after residue 2336 (Myc 2336), located in the CTL2 domain (Figure 

13a); the constructs also have a C-terminal His tag, which serves as an intracellular epitope 

control, and GFP. The Myc tag can be probed with an anti-Myc primary antibody, followed 

by a secondary antibody that is conjugated to the Alexa 647 (red) fluorescence dye, as 

previously described [28]. Thus, if the C-terminal Piezo fragment is localized to the plasma 

membrane, we expect to see a red signal after ICC staining, assuming that cellular 

permeability is not compromised during this procedure. To ensure that our assumption 

holds true, we also performed ICC staining against the intracellular His epitope to test 

whether cell membrane was compromised during the live-cells ICC staining procedure. In 

addition to the two Piezo constructs with both Myc 2336 and GFP, we also stained the 

wildtype Piezo-GFP-His construct which lacks the Myc epitope. In this experiment, cells 

were grown on cover slips that had been coated with gelatin in a 24-well plate, and the ICC 

staining was done in triplicate as indicated in Figure 13b.  

 As expected, cells that did not receive a Piezo plasmid (mock) failed to show either  

GFP or Alexa 647 fluorescence signals (Figure 14a). This indicates that the ICC staining 

does not produce an off-target red fluorescence signal on the membrane of native 

HEK293T cells. In cells expressing the wildtype full length mouse PIEZO1-GFP-His 

construct, no red fluorescence was observed after staining with an anti-Myc antibody since 

the protein construct does not have the Myc epitope. Probing with an anti-His antibody, 

however, showed a red signal that is comparable to the GFP signal only when the cells 

were permeabilized with 0.4% Triton X-100 (Figure 14b), consistent with the cytoplasmic 

localization of the His-tag.  Full length mouse PIEZO1 Myc 2336 showed a red 

fluorescence signal when probed with an anti-Myc antibody even without the 
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permeabilization procedure (Figure 14c). This confirms that full length Piezo can be 

localized to the plasma membrane as previously shown [28]. The red signal intensity is 

increased when cells were permeabilized prior to the ICC staining procedure because the 

antibody molecules can access the additional pool of Piezo molecules trapped within the 

endomembrane. Significantly, the C-terminal mouse PIEZO1 Myc 2336 construct shows 

red fluorescence signal even when cells were not permeabilized (Figure 14d). Considering 

that we did not see any red fluorescence signal in the live-cells (non-permeabilized) upon 

ICC staining with an anti-His antibody, it is unlikely that the cell membrane is 

compromised during the ICC staining procedure. Therefore, these results suggest that the 

C-terminal fragment of mouse PIEZO1 can be localized to the plasma membrane.   

 Additionally, through the Beckman Institute Biological Imaging Facility at Caltech,  

we used confocal microscopy to image cells after ICC staining. These studies revealed that 

full length Piezo Myc 2336 and C-terminal Piezo Myc 2336 were localized to the plasma 

membrane since red fluorescence signal is only found at the cellular border when non-

permeabilized cells were probed with the anti-Myc antibody (Figure 15). Cells 

permeabilized prior to the ICC staining procedure showed that the localization of red 

fluorescence signals is comparable to the GFP fluorescence signal in all of the z-stack 

images. Collectively, these observations indicate that the C-terminal Piezo fragment can be 

localized to the plasma membrane.  
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Future Directions 

 In this chapter, we have described the preparation of a C-terminal fragment from  

mouse PIEZO1. The cryoEM structure of mouse PIEZO1 indicates that this C-terminal 

Piezo fragment makes up the central core of the intact Piezo channel, which includes the 

ion permeation pathway. Cellular fractionation, GFP fluorescence localization, and 

immunocytochemistry staining results suggest that this fragment can be localized to the 

plasma membrane. Thus, we have a reason to suspect that the C-terminal fragment of 

mouse PIEZO1 is properly folded into the native 3D structure which makes up the central 

core of the intact Piezo channel. Consequently, a reasonable next step would be to 

investigate whether this C-terminal Piezo fragment is functional. Thus, it will be interesting 

to see if our C-terminal mouse PIEZO1 fragment can exhibit channel activity comparable 

to the full length mouse PIEZO1. A recent report concludes that the ‘propeller’ domains of 

Piezo channel serve as the mechanosensing module [30]. As this region is lacking in our C-

terminal fragment, it provides a useful system for further exploring the features of the Piezo 

channel required for mechanosensitivity.  

 Furthermore, it will be interesting to establish the oligomeric state of the C-terminal  

Piezo fragment to assess whether it forms a trimer like the full length Piezo channel. To 

address this question, we are working to optimize conditions for expression and 

purification of this fragment. Briefly, C-terminal mouse PIEZO1-GST construct was 

expressed in suspension adapted Human Embryonic Kidney (HEK293T) cells. After cell 

lysis and membrane isolation, we screened detergents to optimize extraction and 

purification of this construct. Again, we observed that Fos-Choline-16 detergent could 

efficiently extract the C-terminal Piezo protein from the membrane (Figure 16a). In 
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general, Fos-Choline detergents are considered a harsh detergent since they are often 

found to extract membrane protein at much higher levels than any other detergents [31-33]. 

Despite the concern that membrane protein solubilized in the Fos-Choline detergents may 

be partially denatured, Fos-Choline-12 and Fos-Choline-14 have been used in the structural 

study of Escherichia coli OmpF and MscS, respectively [14, 34]. Furthermore, recent 

structures of MscS from E. coli and H. pylori, solubilized in DDM, resemble the previous 

MscS structure [35].  

After extraction and purification using Fos-Choline-16, the C-terminal Piezo-GST 

construct forms a discrete band on a blue native PAGE (BN-PAGE) (Figure 16b). 

Purification of this construct resulted in a sample giving one major band at the appropriate 

molecular mass on a SDS PAGE with minor contaminant bands (Figure 17b). However, we 

were not able to obtain sufficient amounts of protein for more detailed characterization. As 

a result, we were not able to obtain unambiguous gel filtration chromatogram profile for 

this construct, which would help establish the oligomeric state (Figure 17a). When the two 

peaks were taken for analysis by BN-PAGE, we observed one major band that ran between 

the 720 and 480 kDa molecular weight markers, as well as one very faint band that ran just 

slightly below the 480 kDa molecular weight marker (Figure 17c). Considering that the full 

length mouse PIEZO1-GST protein was previously shown to form prominent dimers of the 

intact trimeric Piezo channel [29], one may suspect that the top major band may correspond 

to the dimer of the oligomeric C-terminal Piezo fragment; the single trimeric form of this 

construct and the dimer of this trimer are expected to have a molecular weight of 291 kDa 

and 583 kDa, respectively. This offers hope that our C-terminal construct can fold into the 

native conformation of Piezo central core.  
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 In conclusion, isolation of the stable C-terminal Piezo came to us serendipitously. We  

have evidence that this construct localizes to the plasma membrane and therefore may 

assemble into the native structure of the Piezo channel central core. Thus, it will be 

interesting if one can obtain the structure of this fragment and unequivocally show that this 

fragment can assemble into the native oligomeric form which resembles the arrangement of 

the full length Piezo channel. In the end, there is one burning question that awaits an 

answer: “is this fragment functional?” 

 

 

 

Methods: 

Bioinformatics and Cloning of the C-terminal Constructs 

 Multiple sequence alignment was done using MAFFT [37], and membrane topology of  

mouse PIEZO1 was predicted by TopCons [36]. Cloning was done using the In-Fusion 

cloning kit (Clontech Inc.) [38]. Briefly, vector DNA was linearized either by restriction 

digest method or polymerase chain reaction (PCR). Next, Insert DNA was amplified by 

PCR using the forward and reverse primers which contain the overhang sequence that are 

complementary to the DNA sequence of the linearized vector. Both insert and vector DNA 

were incubated together in the proprietary In-Fusion mix for 15 minutes at 55oC. The 

plasmid DNA mixture was transformed into Stellar E.coli strain (Clontech Inc.), and the 

sequence of the resulting plasmid DNA was verified by DNA sequencing. 
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Protein Expression Using E. coli System 

 Frozen cell stock was inoculated in a 0.5 mL starting culture one day prior to the  

induction in a 96-well plate (2 mL per well). 50 µL of the starter culture was transferred to 

4 mL TB in a 24-well plate. Cultures were grown for 4 – 5 hours or until the OD600 reached 

1.0 to 1.5. For 37oC induction, 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) was 

added and the plate was shaken at 37oC for 2 hours. For room temperature induction, cells 

were first put on wet ice for 10 minutes to bring the temperature down before 1 mM IPTG 

was added. Upon IPTG addition, the plate was shaken at room temperature overnight. Cells 

were then harvested at the appropriate time by centrifugation and stored at -80oC after 

being flash-frozen using liquid nitrogen. 

 

Medium Scale NiNTA Purification 

 Cells were resuspended in Tris lysis buffer (100 mM Tris-Cl pH 7.5, 25 mM NaCl,  

protease inhibitor, lysozyme, and DNAse) in a ratio of 10 mL buffer per 1 g of cells. Cells 

were sonicated twice at 50% amplitude for 1 minute using ‘1 sec pulse – 1 sec rest’ setting 

(Misonix, S 4000). Then, sample was spun down using tabletop centrifuge at 14,000 rpm 

for 15 minutes in the cold room. Supernatant was collected and was spun down using 

ultracentrifuge at 150,000x g for one hour to collect membrane fraction. Membrane was 

solubilized using the appropriate 1% detergent for 1 hour. Membrane detergent suspension 

was spun down to remove insoluble materials. The resulting supernatant was injected into 5 

mL NiNTA column (GE Healthcare, Inc.). Column was washed for 15 column volume 

with appropriate detergent-buffer containing 40 mM imidazole. Elution of this purification 
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was automatically collected and injected into a Superdex S-200 16/600 gel filtration 

column (GE Healthcare, Inc.). 

 The same type of detergent was used throughout extraction and purification procedure.  

In some purification, however, one detergent is replaced with another during the 

purification step. Briefly, membrane protein was extracted in 1% of detergent X. The 

protein extract was then incubated with the affinity beads that have been pre-equilibrated 

with detergent Y. Subsequent washes, elution, and gel filtration procedure were carried out 

in the presence of detergent Y.  

 

Limited Tryptic Digest and Sample Preparation for the N-terminal Sequencing 

 50 µg of Mouse PIEZO1-GST (160 pmole) was mixed with 10 pmole of trypsin in a  

75 µL volume. Reaction was incubated at 4oC and 10 µL samples were taken periodically. 

Reaction was stopped by mixing the collected samples with the SDS loading buffer which 

contains 2% SDS and 5% DTT. After the last time point at 4oC, reaction was driven to 

completion by incubating the reaction mix at 37oC for 25 minutes. Each 10 µL samples 

were loaded into SDS PAGE gel. Limited proteolysis product was shown as both stain-free 

gel image and the western blot results. 

 For N-terminal peptide sequencing, samples were mixed with SDS running buffer and  

were ran on NuPAGE Novex 3 - 8% Tris-Acetate gel (ThermoFisher). Gel was 

subsequently blotted on Immobilon-P PVDF membrane (Millipore). The resulting blot was 

stained using 0.2% Ponceau S (in 3% acetic acid) for one minute before it was rinsed with 
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water until the red band was apparent. The protein band on the PVDF membrane was 

sent to the PPMAL facility at Caltech for the N-terminal peptide sequencing.  

 

Cell Fractionation 

 The cell pellet was resuspended in PIPES lysis buffer (25 mM NaPIPES pH 7.2,  

140 mM NaCl, 1.0 mM EGTA, and protease inhibitor) in ratio of 5 mL buffer per 1 g of 

mammalian cell pellet. Cells were gently lysed using Dounce homogenizer. Cells were 

spun down using tabletop centrifuge at 14,000 rpm for 15 minutes in the cold room. Take 

the supernatant as the ‘total’ fraction (Tot). The total fraction was then spun down using 

ultracentrifuge at 150,000x g for one hour. The resulting supernatant was collected as the 

cytoplasmic fraction (Cyt). The resulting pellet was resuspended in 1 mL PIPES lysis 

buffer per 1 g of original cell pellet mass, resulting in 5x concentration. Then, samples were 

mixed with the SDS loading buffer, and were loaded onto SDS PAGE. Finally, gels were 

blotted onto a nitrocellulose membrane for Western blot using anti-His antibody. 

 

Immunocytochemistry (ICC) Staining 

HEK293T cells were plated on coverslips coated with 0.1% gelatin. When cells 

reached 70% confluency, they were transfected with the appropriate DNA plasmid using 

Lipofectamine 3000 (ThermoFisher). Thirty-six hours after transfection, live-cells ICC 

staining was performed by incubating the transfected cells with either Myc 9E11 antibody 

(Santa Cruz Biotechnology, at 1:100 dilution) or HIS.H8 antibody (Santa Cruz 

Biotechnology, at 1:200 dilution) for one hour at 37oC. Cells were then washed five times 

with warm media and incubated with the secondary antibodies conjugated to Alexa Fluor 
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647 (Life Technologies, at 1:500 dilutions) for one hour at room temperature. Finally, 

cells were washed five times with PBS buffer and fixed with 2% PFA in PBS for 20 

minutes.  

For ICC staining on permeabilized cells, fixation procedure with 4% PFA in PBS 

was carried out for 10 minutes followed by five washes with PBS. Next, cells were 

permeabilized with 0.4% Triton X-100 for 10 minutes at room temperature. Then, cells 

were washed three times with PBS and blocked with 5% FBS in PBS for one hour at room 

temperature. Following fixation and permeabilization, ICC staining procedure was done by 

incubating the permeabilized cells with either Myc 9E11 antibody (at 1:100 dilution) or 

HIS.H8 antibody (at 1:200 dilution) in blocking buffer followed for one hour at room 

temperature. Cells were then washed three times with PBS and secondary antibodies 

conjugated to Alexa Fluor 647 dye (at 1:500 dilution) was applied for one hour at room 

temperature. Cells were then washed with PBS three times. Mounting media ProLong Gold 

(Life Technologies) was then used to mount the coverslips on slides.  

Results were visualized by widefield fluorescence microscope provided by the 

Protein Expression Center at California Institute of Technology (Caltech). The ICC 

staining results were also visualized using confocal fluorescence microscope (Zeiss LSM 

710 NLO confocal microscope and Plan-Apochromatic f1.4 63x objective) provided by the 

Biological Imaging Center at Caltech. Confocal images were obtained for every 0.5 µm 

increment along the z-axis. 
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Figure 1. Average number of amino acids in known genomes across three 
domains of life. (a) Average number of amino acids composition for major 

classes of transporters and ion channels. Yellow shading represents carriers, blue 

shading represents channels, and green shading represents primary active 

transporters. This table is adapted from [18]. (b) Distribution of protein length in 

term of the number of amino acids from representative organisms from all three 

domains of life. Images are directly taken from [17], and are used under the 

permission of Rob Phillips and Ron Milo. 
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Figure 3. Representative Western blot results for the initial test expression of 
several C-terminal Piezo constructs. Test expression was done using E. coli 

expression system at small scale (4 mL culture) at two different expression 

conditions: 37oC for two hours or room temperature for overnight (RT ON). The 

alphabet represents different Piezo homologs: sample A is human PIEZO1, 

sample B is mouse PIEZO1, and sample C is mouse PIEZO2. The number 

represents different truncation sites as labelled on Table 1. Thus, lane A5 

corresponds to construct #5 of human PIEZO1, whereas lane C8 corresponds to 

construct #8 of mouse PIEZO2. Here, C6 shows the strongest signal at the 

appropriate location. Due to technical error, C7 was not included on this blot. On a 

separate session of test expression, however, expression level of C7 is 

comparable to C6 (data not shown). 
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Figure 4. Representative Western blot result from SDS PAGE of a detergent 
screen using several mild detergents. Here, two C-terminal Piezo constructs 

from mouse PIEZO2 were extracted using twelve detergents that are relatively 

mild. Overall, none of these detergents are able to extract the C-terminal Piezo 

construct efficiently. Expected molecular weights for C5 (left) and C6 (right) are 81 

kDa and 65 kDa, respectively. C5 expression level is much lower than C6. 
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Figure 5. Representative Western blot results of a detergent screen which 
include more detergents. Results show that Fos-Choline-16 is the most optimum 

detergent for both C6 (top) and C7 (bottom). In fact, Fos-Choline-16 shows 

comparable protein extraction to SDS for C7. Expected molecular weights for C6 

and C7 are 65 kDa and 60 kDa, respectively. 
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Figure 6. Gel filtration profile of two C-terminal Piezo construct: C6 and C7. 
Tandem purification was carried out such that the elution from the NiNTA colum is 

directly injected into Superdex S200 16/600 gel filtration column; imidazole peak is 

apparent as a large peak at the very end of the chromatogram. 
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Figure 7 Purification results of C6 and C7 visualized in a ‘stain-free’ gel 
image (a) and a Western blot (b). Overall, purification was not optimized as 

apparent from the presence of low molecular weight contaminant bands. C-

terminal Piezo construct band is indicated by green solid arrow. The 25 kDa and 

75 kDa molecular weight markers for the Western blot ladder (b) showed strong 

signals when visualized using ‘stain-free’ setting on the BioRad gel imager. Given 

that the stain-free gel image (a) is the same gel used for the Western blot (b), it is 

very likely that the two bands (red dotted arrows) represent the overflow signal 

from the 25 kDa and 75 kDa molecular weight markers.  
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Figure 8. Western blot result of the test expression and detergent screen.  (a) 

The level of protein expression of the C-terminal constructs from Drosophila 

PIEZO (D6, D7, and D8) and C.elegans PIEZO (E7 and E8) are compared to the 

expression level of C-terminal constructs from mouse PIEZO2 (C6, C7, and C8). 

Here, it appears that C-terminal construct #8 from the C. elegans PIEZO (E8) 

showed the highest protein expression level. (b) Detergent screen analysis shows 

that Fos-Choline-16 and Fos-Choline-12 (as well as DDMG to a lesser extend) can 

extract this construct from E. coli membrane efficiently. 
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(b) 
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Figure 9. Natural degradation of the full length mouse PIEZO1-GST resulted 
in a stable C-terminal Piezo fragment. (a) Purified full length mouse PIEZO1-

GST was degraded by day 2. The degradation was followed for seven days, and 

results from SDS PAGE was displayed as a Stain-free gel image (top). A separate 

gel was run for the same sample after 14 days (separated by black line). (b) This 

stable degradation product is the C-terminal fragment of Piezo as shown on the 

Western blot image; Western blot was done using anti-GST antibody, which 

recognizes the GST tag that is attached to the C-terminal end of the protein. 

(b) 

(a) 
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Figure 10. Limited proteolysis of mouse PIEZO1-GST. (a) Stain-free image of 

the limited tryptic digest of mouse PIEZO1 done at 4oC. Sample was taken at 

several time points. After 30 minutes digestion at 4oC, reaction was driven to 

completion by 25 minutes incubation at 37oC. (b) Western blot result shows that 

the resulting band is the C-terminal fragment of mouse PIEZO1.   

(b) 

(a) 
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Figure 11. Full length mouse PIEZO1 model. (a) Top view of the trimeric mouse 

PIEZO1 [29], showing the three-fold symmetry centered at its ion permeation 

pathway. This ion permeation pathway makes up the central core of Piezo 

channel. (b) Side view of mouse PIEZO1, showing each monomer in a different 

color (yellow, light gray, and blue). Part of the blue monomer is colored black to 

indicate the helices in the model where connection cannot be traced back to the 

central core of the channel. (c) Membrane topology prediction of mouse PIEZO1 

showing the approximate location of the starting residue of the stable C-terminal 

fragment of mouse PIEZO1 relative to the full length mouse PIEZO1 model. 
 

(b) (a) 

(c) 
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Figure 12 C-terminal mouse PIEZO1 localization to the membrane. (a) GFP 

fluorescence images of several GFP fusion constructs. Localization of the C-

terminal mouse PIEZO1 resembles the localization pattern of the full length mouse 

PIEZO; this localization pattern is also observed in another membrane protein 

construct, an ABC transporter Atm1. Soluble protein, such as free GFP alone, 

shows uniform green fluorescence throughout cellular space. (b) Western blot 

result of cellular fractionation. Both full length mouse PIEZO1 and C-terminal 

mouse PIEZO1 can be found in the membrane (mem) fraction but not the cytosolic 

(cyt) fraction. Conversely, GFP can only be found in the cytosolic fraction, but not 

the membrane fraction. 

(a) 

(b) 

FL mouse PIEZO1 
C-term mouse 

PIEZO1 GFP Atm1 
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Figure 13. Experimental design for the cellular localization of the C-terminal 
Piezo fragment. (a) Schematic model showing the approximate location of the 

Myc 2336 tag and 6xHis tag on the full length mouse PIEZO1 model. (b) 

Arrangement of each construct in a 24-well plate. Each construct is transfected 

into 6 wells: 3 wells for anti-Myc staining and 3 wells for anti-His staining. One 

complete set of Immunocytochemistry (ICC) staining require two plates: one plate 

is for the ‘live-cells’ ICC staining and another plate is for ICC staining after 

permeabilization with 0.4% Triton X-100. (c) Diagram of the three constructs that 

were used for the ICC staining. 

(a) 

(b) 

(c) 
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Figure 14. Immunocytochemistry (ICC) staining results on a wide field 
fluorescence microscope. (a) Mock transfected cells shows no fluorescence 

signal for both GFP and Alexa 647. (b,c,d) Results for wildtype full length mouse 

PIEZO1 (no Myc), full length mouse PIEZO1 Myc 2336, and C-terminal mouse 

PIEZO1 Myc 2336. Each construct is stained either with anti-Myc or anti-His 

antibodies in a ‘live-cells’ staining (non-permeabilized) or Triton X-100 

permeabilized ICC staining set up. All constructs are expected to show GFP 

signals. However, Alexa 647 (red) signal can be detected only when the antibody 

molecules gain access to their corresponding epitope. 
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Figure 15. Immunocytochemistry (ICC) staining results on confocal 
microscope. Green signal indicates GFP localization, whereas red signal is the 

resulting signal of the ICC staining using anti-Myc antibody. Top and middle panels 

show samples from the live-cells staining procedure (non-permeabilized). 

Examples of cells which shows Alexa 647 (red) signal on the plasma membrane 

can be found in both full length mouse PIEZO1 Myc 2336 (FL Myc2336) and C-

terminal mouse PIEZO1 Myc 2336 (Cterm Myc2336). These images shows one 

slice through the z-stack image sets which best illustrate the localization of the red 

signal surrounding cell membrane. Bottom panels show the samples from ICC 

staining using anti-Myc antibody after permeabilization with 0.4% Triton X-100. 

Here, red signal can be found at the same location where GFP signal is found in 

every image stack. 
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Figure 16. Detergent screen of the C-terminal fragment of mouse PIEZO1. (a) 

Western blot result from a SDS PAGE of detergent screen of the C-terminal 

mouse PIEZO1 construct. Fos-Choline-16 seems to be able to extract the C-

terminal mouse PIEZO1 construct efficiently. (b) Western blot result from a BN-

PAGE. C-terminal construct extracted in Fos-Choline-16 detergent-buffer condition 

shows a localized band, which may be an indication that the extracted protein is 

not completely unfolded. 

(a) 

(b) 
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Figure 17. Preliminary results of protein purification of C-terminal mouse 
PIEZO1 construct in Fos-Choline-16 detergent-buffer condition. (a) Purified 

protein was analyzed on a Superose 6 10/300 gel filtration column. Molecular 

weight standard is displayed in a dotted brown line: peak A is Thyroglobulin (660 

kDa), peak B is Ferritin (440 kDa), and peak C is Aldolase (150 kDa). (b) Purified 

C-terminal mouse PIEZO1 on a SDS PAGE. Sample was taken prior to the gel 

filtration analysis. (c) Two samples which correspond to the two peaks on the gel 

filtration chromatogram are analyzed by western blot on a BN-PAGE (blue arrows). 

Both peaks show one major band between 720 kDa and 480 kDa molecular 

weight marker and one minor band just below the 480 kDa molecular weight 

marker. 

(a) 

(b) (c) 

A: Thyroglobulin (660 kDa) 
B: Ferritin (440 kDa) 
C: Aldolase (150 kDa) 
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