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Abstract 

Three-pulse cyclotron echoes, 3PE, in rare gas afterglow 

plasmas are investigated. The experiments are performed with the 

magnetic field parallel to the discharge tube, which passes perpen­

dicularly through an S-band waveguide. The echo properties are 

experimentally shown to be incompatible with previous models. 

Experiments on 3PE are performed, which show that the elec­

tron density is the most important parameter, especially for the 

growth and decay of the echo following the first two pulses. The 

density is shown to have a qualitative as well as quantitative effect 

on the echo. Periodic modulation of both the emission and absorption 

of the plasma is observed following the first two pulses, and these 

additional methods of investigating echo processes will be helpful in 

formulating a satisfactory theory. 

A model containing the experimentally important parameters is 

developed, and it is based upon the relatively simple case of the 

generation of plasma waves following an impulsive excitation for times 

so small that the original transient response has lost negligible 

energy. Better agreement than with previous theories is obtained, 

especially in the qualitative dependence of the echo on the electron 

density. Electron velocity space instabilities are briefly examined 

and discarded as influences in echo experiments. 

The detection and qualitative theoretical explanation of slow 

wave pulses created inside the plasma by the applied microwave pulses 

supports the mode conversion echo model. 
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1. INTRODUCTION 

1.1 The Discovery of Cyclotron Echoes 

Echoes are macroscopically observable signals that are produced 

by a system at times and/or locations in space which are different from 

the exciting signals. For example, one can produce plasma wave echoes 

which appear in space at a third location following excitation at two 

discrete planes spaced along the magnetic field [1,3]. This thesis 

deals with cyclotron echoes which are characterized by the incident sig­

nal's wave vector and electric field and the static magnetic field being 

mutually perpendicular. The phenomenon occurs when the incident signal 

frequency is close to the electron gyrofrequency in a magnetic field 

eB/m. 

The discovery of cyclotron echoes in plasmas was by Hill and 

Kaplan in 1965 [2]. They used an RF afterglow discharge in which a 21 

MHz high power pulse repetitively ionized the working gas, which was 

either argon, neon, or nitrogen. During the intervals when the ionizing 

source was turned off they applied bursts of microwave energy in the 

X-band (8.2 -12.4 GHz). Following two pulses separated by T seconds 

there was a string of echo pulses at multiples of T following the sec­

ond pulse. After applying a third pulse at some variable time following 

the first two pulses, another string of pulses would appear at intervals 

of T following the third pulse. They noted that the effect only oc­

curred when the incident signals propagated perpendicular to the 

magnetic field in what is known as the extraordinary mode of propaga­

tion. If this mode propagates in an infinite plasma and the wave 

frequency approaches the upper hybrid resonance frequency [4], then the 

electric field becomes parallel to the direction of propagation and the 
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incident signal can couple to the longitudinal or electrostatic plasma 

waves [5]. 

Subsequent cyclotron echo work has been similar to Hill and 

Kaplan's, although the complexity of the phenomena prevents simple all­

inclusive explanation. One important difference between Hill and 

Kaplan's first experiments and the work of other investigators is the 

small rectangular plasma bottle which Hill and Kaplan used instead of 

a long cylindrical plasma tube. The latter has much better uniformity 

in one dimens ion and is preferred since the electron density gradient 

perpendicular to the magnetic field has been identified as the source 

of the spread of oscillator frequencies. 

1.2 Other Echo Systems 

Echoes were originally discovered in 1950 in paramagnetic samples 

in which the system response is a rotation of the net magnetization 

vector [6]. Echoes have also been reported in electron spin resonance 

[7]; optical transitions in atoms [8]; ferrimagnetic resonance [9]; 

type II superconductors [10]; and certain silver alloys [11]. These 

diverse types of echoes suggest that any resonance phenomenon involving 

a large group of oscillators may produce echoes. 

1.3 Gould Diagrams and Nonlinearity 

A crucial concept in understanding echo processes is phase 

mixing. This is the process by which microscopic signals caused by some 

group of sources become sufficiently scrambled in phase so tltnt tlw 

111'lCl"llSCopic sum of these signals becomes undetectablt•. The sit u;_il ion Ls 

;_inalogous to the problem of incoherent vs. coherent radiation from a 
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group of N sources. The power of an incoherent signal is propor­

tional to N but the coherent power is proportional to N2 • The 

important point is that the energy in the individual oscillators or 

signal sources has not been lost by collisions or any other mechanism 

and is still present in the system. 

In the case of two-pulse cyclotron echoes, R. W. Gould has 

illustrated the basic processes of echo formation [12]. Consider a 

group of independent electrons in a slightly inhomogeneous magnet ic 

field, so that there is a range of cyclotron resonant frequencies. 

Initially these electrons are at rest so that in a two-dimensional 

phase space diagram they would all be at the origin where v = v = 0 . 
x y 

If an impulse is applied to the system, then all the electrons will be 

given the same initial velocity and the situation will be as in Figure 

l.la. Because of their different resonant frequencies they will soon 

spread out in phase space and produce situation (b) in which there is 

no net displacement with respect to the origin. This spreading in 

phase space will occur in 2TI/6w seconds, where 6w is the spread of 

oscillator resonant frequencies, and this time can be used to de fine 

the maximum length of a signal burst that can be approximated by an 

impulse. The Fourier spectrum of the applied signal must be wider 

than the bandwidth of the resonant system. 

After the phases of the oscillators have scrambled as in (b), 

a second impulse is applied at time T after the first one. The 

response to this impulse soon phase mixes to zero and produces the 

s.i tuation in (d). At times 2T and 3T following the first impulse 
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the phase space pictures are (e) and (f) respectively. There is consi­

derable symmetry in the configuration, but the total displacement 

weighted by distance from the origin and number at that distance is 

zero. However, if the high speed particles are preferentially removed 

from the plasma by more frequent collisions, then there will be a net 

displacement or echo which is out of phase at (e) and in phase at (f) 

with the applied pulses. We see that this collisional echo alternates 

in phase. 

In general, any nonlinear process will spoil the phase mixing 

at times nT and produce an echo. A linear system obeys the principle 

of superposition and the response to a group of stimuli is the sum of 

the responses caused by each stimulus acting alone. 

To sunnnarize, echoes require a spread of oscillator frequencies 

which phase mix to zero macroscopic response after a single pulse, but 

which do not dissipate their microscopic energy for a sufficiently long 

time, and echoes also require a nonlinear process to modify the phase 

mixing. 

Several nonlinear mechanisms have been proposed for cyclotron 

echoes, including electron-neutral collisions in gases with a Ramsauer 

minimum and a strongly nonlinear collision frequency vs. electron speed 

curve; relativistic mass shifts; nonlinear oscillations due to sheath 

fields; and nonlinear oscillations due to electrostatic oscillations in 

3 density gradient. In this work another possible source of nonlinear­

ity is proposed: temperature dependent decay of ringing response by mode 

conversion into plasma waves. 
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1.4 Previous Cyclotron Echo Work 

L. O. Bauer and F. Bll.IDl have worked on a 2PE model in which the 

echoes are produced by nonlinear electrostatic oscillations of charge 

sheets in a one-dimensional model of the magnetized plasma [13]. The 

plasma is ass\.lllled to have a density gradient perpendicular to the 

plates of the exciting capacitor. As in other echo work, the dimen­

sions of the plasma are small compared to a free space wavelength, so 

there is no phase change of the exciting wave as it crosses the plasma. 

As a charge sheet moves in response to an applied electric field, the 

ions which are left behind by the rapidly moving electrons create a 

restoring force which is not proportional to displacement because of 

the gradient in electron density. When the responses from all the 

independent charge sheets are Sl..llllliled, the small nonlinear frequency 

shift can accumulate during the several hundred cycles of oscillat~on 

between the second pulse and the echo time. In this theory, electrons 

are not removed, but the higher energy oscillators rotate from the 

positions on Gould's diagrams which they would have in linear oscilla­

tion. Thus one might expect a strong echo. 

The experiments of Bauer and Blum clearly identified the spread 

of resonant frequencies caused by the density gradient, which is 

present in all laboratory plasmas, as an important source of echoes. 

This had been obscured in earlier x-band experiments because the range 

of upper hybrid frequencies was narrower relative to the cyclotron or 

signal frequency than it was in the S-band experiment of Bauer and Blum. 

Although the echo was found to be largest when the center fre-

quency of the applied pulses was near the maximum upper hybrid frequency 
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this did not prove anything about the nature of the nonlinearity 

because the echo will always peak where the density of oscillators in 

frequency space is largest. When they measured the power law of their 

echoes they obtained about 4 for the power laws of the first and second 

2PE, whereas their theory predicted 3 and 5 respectively [14]. 

But by far the most serious objection to their echo theory is 

that the predicted echoes are much smaller than the measured echoes. 

The opposite situation could be explained in terms of loss mechanisms 

not included in the theory, such as e-n or Coulomb collisions, drifts 

parallel to the tube axis, etc. From Blum and Gould's paper [15), we 

see that the voltage amplitude of the first echo pulse is proportional 

to ~Ji(z) + J~(z) , where z is approximately " /S V2/ 2 2 uWHT • W a , 
0 c 

T is the spacing of the first two pulses, V is the velocity 
0 

acquired by an electron as a result of either of the first two pulses, 

a 

w po 

If 

and 

is the density profile scale length, and 6.w.._ ={w2 + w2}1/2 _ w . 
H po c c 

is the maximum plasma frequency w po 
= 5. 64 x 104 {MAX Ne}1 / 2• 

-7 
T = 10 sec, a = 1 cm, 

7 -1 V = 6 x 10 cm sec (1 eV) , 
0 

8 
6.wH = 2rr x 10 , 

w 
c 

9 -1 = 2rr x2. 5 x 10 sec , then the parameter z is 1.15 Xl0-4 

1 i ( ) ~ .!._(~) n fi d h the Using the smal argument expans on Jn z n! 2 , we n t at 

first echo power is about 85 dB below the transient response. Since 

the echo is typically 20 dB down, the discrepancy is serious and indi-

cates that the oscillating charge sheet model may not include the 

major source of nonlinearity. 

Two-pulse echoes have been studied_ with considerable success by 

Henderson [16) who used the strongly varying electron-neutral collision 
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curve in argon to supply the nonlinearity, following the work of 

Crawford, Harp, and Bruce [20,21]. In his experiment Henderson was able 

to show agreement between theoretical and experimental echo phases. He 

operated at gas pressures of 20-200 microns, which were considerably 

higher than 1-20 microns considered by most other cyclotron echo 

experiments, including the one presented in this thesis. Thus e-n 

collision·s were much more frequent in his case and seem to have been 

the dominant nonlinearity. However, when he tried to operate at lower 

pressures the experimental echo phases no longer agreed with theory 

[17]. Thus there is still room for work in the regime where collective 

effects seem to dominate single particle collisional effects. 

None of the three previous investigators studied 3PE. The non-

linear oscillation model is ruled out because collisions would surely 

destroy electron phase memory over the time scale of microseconds on 

which 3PE exist. A thorough study of the e-n collisional nonlinearity 

has been made by R. L. Bruce [18,19], who had worked on echoes with 

Harp and Crawford [20,21]. His computed 2PE are quite strong, but his 

2PE vs. input power curves have sharp phase reverses which are not 

' experimentally observed. He assumed that his plasma density was low 

enough so that collective effects were negligible but the experiments 

described below show that this is not the case. Density ef f ects were 

not included explicitly in his calculations, i.e., the electron density 

only specified the number of electrons participating and did not qua li-

t a tively affect the response. 

Three mo dels we re cons i dered for 3PE: (a) the highly excited 

pa rticles lose phas e more rapi dl y; (b) t he fast particles di ffuse down 

t he di scharge tube a t a different r ate; (c ) the fast part i cles di ffus e 
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more rapidly in a plane perpendicular to the static field and cause 

perturbations in the density. These models are named the collisional, 

parallel diffusion, and perpendicular diffusion models, respectively. 

The parallel diffusion model resulted in extremely small echo strengths 

and was discarded. 

The perpendicular diffusion model involves accmnulations and 

rarefactions bf electrons in the plane perpendicular to the static 

magnetic field, thereby causing a perturbation in the nmnber of oscil­

lators experiencing a given local density and having a given upper 

hybrid resonance frequency. This would produce an echo linear with 

respect to the third pulse and would not require electron phase 

memory. This model was also discarded because it requires much higher 

input powers to make the theoretically predicted echoes as strong as 

the measured ones, i.e., the diffusion rate is too low. A further 

objection was the strong space charge which would be created if the 

necessary large fraction of electrons tried to move rapidly away from 

their neutralizing ion background. 

It was decided on the basis of echo strength vs. input power 

curves that the collisional model was the one which agreed best with 

theory. However, the collisional model is nonlinear with respect to 

the third pulse amplitude. In reality 3PE are linear in the third 

pulse strength, as shown in this thesis and by the recall of stored 

pulses [18,21]. To exhibit explicitly this nonlinearity, we will 

repeat Bruce's derivation but with an independent third pulse ampli­

tude. 
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Let the speeds which would be acquired by an electron if the 

first two impulses or the third impulse acted alone be denoted by 

V and V , respectively. The impulse response of an electron is 
0 p 

gyration at some local resonant frequency, so that in complex notation 

the velocity would be 

v = v + ·v x J y v 
0 

(1.1) 

The response to an arbitrary electric field is found by a con-

volution of the electric field and the impulse response 

t 

v = .9.. I E(u) exp[jw(t - u)] du 
m 

-co 

t 

.9.. ·wt I = eJ E(u) exp(-jwu) du (1.2) 
m 

-CO 

Since the electric field is assumed to exist only for times between 

zero and the observation times, the range of integration can be ex-

tended to make 

V(w) .9.. E(w) 
m 

(1. 3) 

where we have defined V(w) = V(t) exp(-jwt) 

If we use the current density 

J = nq V(w) exp(jwt)= J(t) (1.4) 

and the Green's function for the excitation of the dominant mode in a 

rectangular waveguide (22], and change to an integration over frequency 

space, we obtain Bruce's equation (2.9b) 

/ 
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J n(w) V(w) exp(jwt) dw 

The imaginary part of J has been manipulated, since it does not 

(1.5) 

excite the dominant mode of the waveguide. V is the waveguide phase 
g 

velocity, µ 
0 

is the permeability of free space, q is the electron 

charge, and a and b are the waveguide width and height, respec-

tively. 

At the time of the third pulse, the electron velocity vector 

is assumed to have been spread into a spherical shell by electron-

neutral collisions. The number of electrons at a given angle 9 with 

respect to the v x 
axis is proportional to sin 9 and the normalized 

fraction of electrons is 1 . " 2 sin 1::1 when integrating only over the 9 

coordinate in velocity space. The echo strength is evaluated from the 

V component of the velocity just before application of the third 
x 

impulse plus the third pulse speed v 
p 

where 

V (w) 
x 

V + V' cos 9 
p 

V' = 2V lcos(~T/2)1 
0 

At that time 

(1. 7) 

and due to the assumed wide bandwidth of the applied pulses it is only 

necessary to consider the difference 

upper hybrid frequency. 

w 
0 

is the mean 

The speed at which the collision frequency after the third 

pulse must be evaluated is 

2 . 2 1/2 
{(V + V'cos 9) + (V'sin 9) } 

p 
(1. 8) 
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Including an exponential collision factor for the particles which have 

lost their phase memory, the echo strength is 

E 
-v µ q 

g 0 

ab 

TI 

J 
sin 9 d9 J J·wt -v{v3}t 

2 dw n(w) e (VP+ V'cos 9)e 

0 

(1. 9) 

Now we normalize the echo to the transient response, which is 

-v µ q g 0 

ab I jwt 
dw n(w) VP e dw = 

-2TIV µ V N(O) 
g 0 p 

ab 

where we have used 

and 

n(w) I N( t I) 
-jwt' dt' - e 

N( t) 1 J n(w) 
jwt d 

- 2TI e w 

Thus the normalized echo amplitude is 

TI 
1 I sin 9 d9 

A= 2TIN(O) --2- dw n(w) eJ I ·wt 

0 

Now using the facts 

I dw ej w ( t - t ' ) 2TI O(t - t 1
) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

( 1.14) 

I 
·wt 

1 dw f(w) g(w) eJ 
2TI 

f dt'f(t') g(t-t') _ f*g (1.15) 

we obtain 

A = 

whe r e 

N(t) * G(t) 
N(O) 

(1.16) 
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TI 

G(w) I sin 9 d9 V' 
2 (1 + v cos 9) 

p 
0 

Now we must find G(t) from 

00 

-tv{v
3

} 
e (1.17) 

G(t) 
-tv{v } 

dw .!_ f sin 9 d9 (l+ V'cos 9)e 3 (1.lS) 
2TI 2 V 

0 p 

The integrand, except for the factor 
jwt 

e , is periodic with 

period 2TI/T , so the integral can be reduced to a sum of sub-integrals. 

Recall that Q - w - w 
0 

G(t) 

x 

1 
4TI 

00 
+TI fT + 2Tin 

G( t) l 1 f T dQ 
4TI n=-oo 27l'n -TI/T +--

T 

In each sub-integral, replace Q by Q + 2nn/T . 

TI/T 

00 f ~ l dQ 
4n n=-oo 

-TI/T 

jw t 
0 

e 

TI 

ej 27l'n t/T f 
0 

sin 9 d9 

2V Q J 2 2 
[l + Vo cos 9lcos 

2
Tll exp[-tv{ V +V' + 2V V'cos Q}] 

p p p 

00 

n=-oo 

TI/T 
ej 2Tin t/T] f 

-TI/T 

TI 
jw t ·~k f an e 0 eJ sin Q dQ 

0 

2V 
x [l + ___£ cos " cos Q-r] [ {V }] V " 2 exp -tv 3 

p 

(1.19) 

(1.20) 

By applying a convergence factor to the geometric series, one 

cHn show 

j 21rnt/T 
e = 

00 

l cf <f - n) := W (t/T) (1. 21) 
n=-"" n=-oo 



Let nl" qi , dn + d<fi/L" 

G(t) = 4~· W (~/L") e 
·w t J 0 

-14-

TI j cp~ TIJ 2V 
J d¢ e sin 9 d9 [l + ~V-0 

-TI 0 p 

(1.22) 

Because cos ¢ is an even function, the ¢ integration can be 

rewritten to give 

G(t) 
l_ W (t/T) 
2TI T 

TI TI 
·w t J 
J 0 J e d¢ 

0 0 

2V 
sin 9 d9 cos~ [l + Vo 

p 

x cos g cos 12] exp [-tv{/v2 + 4v2 cos
2 1

2 
+ 4V V cos 9 cos 12 } 

p 0 p 0 

(1. 23) 

Because of u...J(t/T), cos ¢t/T is equivalent to cos n¢ If 

\) 
0 

denotes the collision frequency at an electron speed of V , and 
0 

if we use a square law collision frequency curve, we obtain 

TI 
·w t J J 0 

e 

0 0 

v2 

2V 
sin 9 d9 cos n¢[1 + Vo 

p 

x cos g cos :£.] 
2 exp [ -tV <-I + 4 

0 v 
2 ¢ v ¢ 

cos - + 4 .....£. cos g cos - ) ] 
2 v 2 

where 

0 
0 

Thus the final answer for the echo amplitude is 

jw t 
0 

A= N(t) * {LU(t/T)e C (t)} 
N(O) T n 

(1. 24) 

(1.25) 
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7T ..,,. 
2V 

c (t) 
1 

f def> J 
sin 9 cos ncf> d9[1 +--0 cos 9 cos _:t] 

n 27T v 2 
0 0 p 

v2 
2 cp v 

9 cos ~)] x exp[-tv c-I + 4 cos - + 4 _£_ cos (1.26) 
0 v 2 v 

When V 
p 

0 
0 

V , this is equal to Bruce's result [23]. It is 
0 

quite obvious that the result is nonlinear with respect to the third 

pulse amplitude V , and thus the collisional 3PE model is in quali­
p 

tative disagreement with experiment. 

From this brief introduction we see that the quantitative and 

qualitative properties of cyclotron echoes are still unclear six 

years after their discovery. We will now discuss experimental results 

which make clearer the physical processes responsible for three-pulse 

echoes. 
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II. EXPERIMENTAL ECHO WORK 

2.1 Experimental Setup and Diagnostic Techniques 

Most of the experiments used argon, although helium and neon 

were occasionally used. Electrons have only elastic collisions in 

these gases under our experimental conditions. The gas was admitted 

to the discharge region by differential pumping. The end of the tube 

opposite the leak and gate valves was sealed. A simple finger style 

LN
2 

cold trap was installed between the experimental region and the 

vacuum pump. The gas pressure was measured by a Hastings thermocouple 

gauge about 25 cm from the gas inlet point, and the pressure readings 

were corrected for the different gases using the charts supplied with 

the gauge. 

The experimental geometry is typical of echo experiments (Fig. 

2.1). An S-band waveguide passed between two Helmholtz coils in a plane 

perpendicular to the static magnetic field which was uniform to at 

least .1% • The discharge tube was about one meter long and 2.6 cm in 

inside diameter. It passed through the short sides of the waveguide 

and was parallel to the magnetic field. A hybrid or magic tee was 

connected between the plasma arm of the waveguide system and a dummy 

arm which had an identical hole and a length of open glass tube to 

balance the plasma tube. Waveguide terminations closed the ends of 

the bridge arms for the echo experiments. The magic tee was adjusted 

by means of slide screw tuners to form a balanced bridge in which the 

reflection from the holes, glass tubes, and irregularities was 50 dB 

below the pulse amplitude caused by shorting one arm of the bridge. 
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The imbalance signal caused by the plasma went from the fourth 

arm of the bridge through a precision attenuator and a traveling wave 

tube amplifier. A filter with a bandpass of 100 MHz centered on 

2.5 GHz was used between the traveling wave tube and the crystal 

detector to reduce noise. The detected signals were displayed with 

either a Tektronix type 585 oscilloscope, a sampling plug-in unit, or 

a boxcar integrator. 

The master timer of the experiment was a Tektronix type 162 

pulse generator operated at about 50 Hz (Fig. 2.2). This triggered a 

Tektronix type 161 square wave generator which gated on the oscilla­

tor tube of an RF transmitter, and this produced the discharge by an 

electric field between two copper bands wrapped around the discharge 

tube. The negative-going trailing edge of the square wave pulse 

marked the beginning of the afterglow and triggered time base B of 

the type 585 oscilloscope, which operated in the "A delayed by B" mode. 

The delayed output triggered the two or three HP type 214A pulse 

generators which turned on a Litton lOW traveling wave tube. The tube 

was normally biased out of conduction and received a continuous 

S-band input signal from a Hewlett Packard type 616A generator. The 

pulsed microwave signals went through an isolator to the first arm of 

the microwave bridge. 

For some of the echo experiments a 1 KW Hughes traveling wave 

tube was used to produce the third pulse. This tube required a 1 watt 

continuous drive signal. The grid was biased too negatively to be 

driven by a transformer, so a blocking oscillator was used. The out­

put of the two pulsed traveling wave tubes was combined in a coaxial 
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hybrid. 

The average electron density was measured by a reflection 

technique developed by Bruce and Harp [l]. This method has the advan-

tage that the same bridge setup is used for both the echo experiment 

and the density measurement. The plasma column is modeled as a 

uniform dielectric cylinder with the cold plasma dielectric constant 

£ 
_E. 
£ 

0 

1 -

2 w p 
2 2 w - w 

c 

This method is valid when the signal frequency is far enough above 

the maximum upper hybrid frequency so that the reflection coefficient 

is small. The scattering from such a column in a waveguide was cal-

culated and a proportionality was found between the measured 

reflection coefficient I' and the susceptibility (£-1) of the 

plasma. The proportionality constant is evaluated for the particular 

waveguide system by measuring the reflection from a glass tube of the 

same sort as the plasma tube which is filled with styrofoam of known 

dielectric constant. The dielectric constant of the styrofoam was 

determined by filling a resonant cavity with it and measuring the 

shirt of the resonant frequency. The bridge was balanced for the 

density measuring frequency by a slide screw tuner which was only 

used for this purpose and could be conveniently removed for the echo 

experiments. The CW bridge balance was better than 60 dB, and the 

wide spectrum pulses could only be balanced to 50 dB. The frequency 

used for the density measurements was 2.95 GHz when the cyclotron 

frequency was 2.5 GHz. The density measurements used microwave pulses 

about 500 nsec long, so the method is capable of time-resolved density 
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determination. The reflected signals were measured with the HP 

precision attenuator to avoid the nonlinear crystal response. The 

calibration curve for average densities is shown in Fig. 2.3. 

It was also possible to measure the peak densities in a time­

resolved manner by sweeping the frequency of a low amplitude test 

pulse in an absorption setup. One method replaced the hybrid tee with 

a 20 dB waveguide dual directional coupler. A short was placed beyond 

the plasma so that the signal returned by the plasma-containing sec­

tion of waveguide would be equal in amplitude to the incident signal 

except for absorption by the plasma. Any leakage through the waveguide 

holes was ignored because the absolute magnitude of the absorption was 

of little significance. Also, cold plasma absorption experiments have 

been done in similar waveguide geometries with considerable success 

[2]. The test pulse did not perturb the plasma since it was 40 or 

50 dB lower in power than the typical echo producing pulses. The 

first 100 nsec of the 500 nsec test pulse was created by a Hewlett 

Packard S-band sweep generator and an HP PIN diode modulator. As the 

test pulse frequency is swept from below the cyclotron frequency, the 

signal abruptly begins to decrease at the cyclotron frequency, reaches 

a minimum, then rises to its original value at the maximum upper hybrid 

frequency. This is shown on an inverted scale by Fig. 2.17. 

There is a second method of obtaining peak densities at a 

given afterglow time which is simpler than the PIN diode modulated 

method. A CW signal of one microwatt or less is sent into the absorp­

tion microwave setup. The signal will be absorbed during the RF 

breakdown pulse, and the absorption will cease when there is no longer 
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an upper hybrid layer in the plasma for the signal frequency. For a 

fixed cyclotron frequency one can plot Ne vs. the signal frequency max 

for which the absorption ceases at the desired time [3]. Such a curve 

is shown in Fig. 2.4. 

2.2 3PE Linearity 

As noted above, one of the essential differences between 3PE 

and 2PE is that the former are linear wih respect to the third pulse 

and the latter are nonlinear with respect to the amplitudes of either 

of the first two pulses. This linearity was shown in an experiment 

using up to 1 KW peak power pulses for the third pulse [4]. The after-

glow time was adjusted at several different argon gas pressures so 

that the average density was held constant. As shown in Fig. 2.5, 

the three-pulse echo was quite linear over a wide range of input power. 

The maximtnn echo decreased as the gas pressure increased, and this was 

attributed to the effects of e-n collisions in the 50 nsec between the 

third pulse and the echo. 

For these experiments the spacing of the first two pulses was 

50 nsec, and the spacing of the first and third pulses was 800 nsec. 

The shorted input of the first two pulses was at 46.6 on the scale of 

Fig. 2.5, so the echo is 3 dB larger than the input pulse. The lOW 

9 -3 tube was attenuated by 20 dB and the average density was 3. 4 x 10 cm 

Figure 2.6 shows the results of another experiment as a superposition 

of three sampling scope traces: the first two pulses shorted with no 

plasma, the third input pulse shorted with no plasma and attenuated 

15 dB, and the echo. Since the transient response is typically 15 dB 
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below the input pulse amplitude, with better coupling to the plasma 

substantial amplification of these pulses should be possible. 

2.3 3PE vs. Density Gradient 

Although it is not known how to measure the profile of such small 

low density plasmas since they are too small for interferometry and 

too rarified to be probed, it was possible by the methods already men-

tioned to find the ratio of peak to average electron density and com-

pare it with the 3PE. Such an experiment produced the results of 

Fig. 2.7, which shows that the echo strength continues to grow even 

though the density is decreasing. For this experiment T = 100 nsec, 

the spacing of the second and third pulses was 500 nsec, and all pulse 

powers were equal. This echo is not normalized to the 3P transient. 

The results seem to show that a strong density gradient is important 

in the creation of echoes, and this was originally interpreted as sup-

port for the perpendicular diffusion model. 

2.4 Experimental Dependence on Pulse Power and Neutral Gas Pressure 

Because Bruce's 3PE model invokes e-n collisions as the non-

linearity, experiments in which the electron density was fixed and the 

backgrotmd gas pressure was changed were performed to determine whether 

the model is valid. The third pulse position reflects the number of 

collisions which an electron has experienced since the first two 

pulses, and the number of collisions is directly proportional to the 

g1.1s pressure. Figure 2.8 shows the results of an experiment in a rgon 

at an average electron density of 9 -3 2 x 10 cm . There was no consistent 

variation with pressure. That is, the optimum third pulse spacing T 
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3PE vs. PULSE RETENTION TIME AND GAS PRESSURE 
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was not inversely proportional to pressure, which one would expect if 

collisions created the conditions for three-pulse echoes. 

Pulse power was also investigated as a parameter in 3PE vs. T 

experiments. Here there was a significant effect: at the higher input 

powers the echo peaked at lower T , but at low to moderate powers 
max 

T did not change. The dominant factor in the decay of the echo was max 

later interpreted to be thermal free streaming and the loss of hot 

electrons. In Fig. 2.9 all three incident pulses are attenuated 

together, and the receiver attenuator is varied to keep the curve amp-

litudes similar. Because the echoes are linear with respect to the 

third pulse amplitude, T depends upon the first two pulses. Although max 

there is some dependence upon pulse power, it is clearly not the most 

important parameter in creating 3PE. 

2.5 3PE Dependence upon Electron Density 

The collisional model of 3PE is discredited by the insensitivity 

of the optimum third pulse position to the background gas pressure and 

thus to the e-n collision frequency. Because the third pulse acts as 

a linear readout of the echo-producing conditions, the most significant 

interval is that between the second and third pulses. Although e-n 

collisions do not seem to be important during that interval in creating 

echoes, the density of electrons has a simple and powerful influence on 

the growth and decay of three-pulse echoes. As the density decreases, 

it takes longer for the echo to peak after the first two pulses and the 

decuy is also slower. The density is changed by experimenti~g at dif-

ferent times in the afterglow at fixed gas pressure. We know from 
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R. Stenzel's work in essentially identical systems that the plasma 

temperature initially decreases rapidly in the afterglow [2], then 

levels off, hence as TA is varied we believe that the temperature is 

relatively constant. Figures 2.10 and 2.11 show the effects of elec­

tron density on the growth and decay of 3PE in helium and argon, 

respectively. There is a slight difference in the meanings of T in 

the two curves: in Fig. 2.10 T is measured between the first and 

third pulses, while in Fig. 2.11 it is measured between the second and 

third pulses. In Fig. 2.10 a cold trap was used, and the lowest curve 

was taken with 6 dB higher sensitivity than the other two curves. In 

this case the echo amplitude increased from .4 to 1.0 milliseconds even 

though the density decreased. In Fig. 2.11 TA is the afterglow time 

in milliseconds, RA is the receiver attenuation in dB, Nm is the measured 

maximum electron density, and dB is the power ratio in dB between the 

transient response and the echo strength at T = 1 µsec. From these 

results it is clear that the electron density is the dominant parameter 

in the echo processes between the second and third pulses. 

2.6 Similarities of 2PE and 3PE 

The electron density is a dominant parameter in the creation of 

2PE as well as 3PE. An experiment was performed to show this by 

measuring the amplitude of the 2PE as T was varied. The results are 

in Fig. 2.12 in which the second pulse is centered on zero of the time 

scale and the first pulse is moved successively further from the second 

pulse. For each T a boxcar integrator with a time window of 10 nsec 

scans the crystal detector output after the second pulse and records 

the first 2PE pulse. As T is varied, the echoes form an enve lope 
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with an optimum T which steadily increases as the density falls. 

Thus the nonlinear processes need more time to develop as the density 

decreases, which is not part of the collisional explanation for 2PE. 

These echoes were about 20 dB below the transient response. Similar 

results were obtained by Bauer [5]. 

This delay in echo formation with lower densities could not be 

due to electron-ion Coulomb collisions because if one varies the pulse 

power as a parameter in a 2PE vs. T experiment one obtains the re­

sults of Fig. 2.13. The echo takes longer to develop as the input 

power is decreased. Because Coulomb collisions decrease for higher 

electron speeds, this experiment shows that e-i collisions cannot be 

the cause of 2PE. 

2.7 Hot Layers of Electrons after the First Two Pulses 

The first two pulses have a frequency spectrum which is periodic 

and they excite the plasma into hot bands. These were experimentally 

observed by modifying R. Stenzel's radiometer which he built for meas­

uring afterglow plasma temperature decay so that shorter time scales 

could be observed and so that the high powered input pulses did not 

saturate the receiver. Both the instrumentation and the microwave set­

up were different from those of the echo experiments. The hybrid tee 

and dummy tube were replaced by a circulator which separated the heating 

pulses from the plasma signal. The signal frequency was changed to the 

center frequency of the circulator, 3.0 GHz, and a much longer stack of 

coils kept the magnetic field uniform over a length of about one meter. 

The n1dlomctt'J" wus 11 heterodyne receiver descdbed elsewhere [2]. A PlN 

di nJL' wn!'; usl'J before the fro11t end and n balanced mixer wns used as n 
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switch in the IF circuit to prevent overloading and excessive recovery 

time after the heating pulses. 

Figure 2.14 shows a typical emission record. The two pulses 

were spaced by 35 nsecs so that the wide bandwidth of the receiver 

(5 MHz on either side of the carrier) would not average out the 

periodic effect we sought. The flat tops are due to saturation, and 

the double peaks are due to the double side band response. The ver­

tical scale is proportional to emitted power, but the absolute 

magnitude is not indicated. The emission peaks are quite sharp com­

pared to spectrt.nn analyzer displays of the input spectrt.nn, and the 

peak spacing in frequency space is what one would expect from an 

impulse spacing of 35 nsecs. 

2.8 Modulated Absorption Spectrt.nn after the First Two Pulses 

As mentioned above, the perpendicular diffusion model produces 

a periodic perturbation in the nt.nnber of electrons with a given upper 

hybrid frequency. In order to obtain direct information on n(w), we 

have measured the absorption spectrt.nn following the application of 

two pulses of about 15 nsec full width at half power. As described 

above, a short was placed behind the plasma so that all the incident 

power would be reflected except for the amount that the plasma 

absorbed. The electronic equipment is shown in Fig. 2.15. 

Figure 2.16 shows absorption records with several locations of 

the observation window following the first two pulses. The time scale 

on which the absorption decayed was about the same as the decay time 

of 3PE, and when the absorption modulation did not extend uniformly 
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across the plasma bandwidth, the 3PE was very distorted as in Fig. 

2.17. In this figure the pressure is 15µ argon, and absorption is 

indicated by a lowering of the signal amplitude. This figure shows 

a definite connection between echoes and absorption experiments. 

Returning to the multiple-time Fig. 2.16, we see that the absorption 

50µ sec after the heating pulses is unmodulated, and it is in fact 

indistinguishable from the absorption spectrum with no pulses. (An 

instrtnnental effect caused an apparent lowering of the 3µ sec curve 

height.) Specifically, the two curves are the same width, indicating 

that the peak densities are the same. This implies that the excited 

electrons did not migrate from the waveguide region, or else that 

outside electrons filled in the vacancies if they left. 

To investigate the possibility of electron migration down the 

tube, we excited the plasma in one waveguide and looked for an effect 

in a second guide 16.9 cm from the first one. This was in a stack 

of magnet coils that kept the magnetic field uniform to one 

part in 104 Under conditions causing strongly modulated emission and 

absorption in the first guide, no modulation was detected in the 

second guide. It is possible that an effect would have been noticed 

at a smaller waveguide spacing, but this wasn't possible with our coil 

setup. We conclude that echoes are not produced by the collisions of 

electrons with neutrals and the subsequent rapid flight of the elec­

trons down the tube axis. If electrons were driven out of the waveguide 

region, one would expect electrostatic restoring forces to cause a den­

sity oscillation in time. Such oscillations did not appear in the 3PE 

vs. T experiments and seem unlikely in light of the two-waveguide 
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experiment. 

2.9 Absence of Excited Layer Interactions 

In his thesis, Bruce suggested that the hot layers might inter­

act in some way. Specifically, if transverse diffusion occurs in echo 

time scales, then one would expect regions of charge imbalance to 

occur and to interact with each other. If such layers existed they 

might impede single particle diffusion, or their space charge fields 

might help create some mysterious plasma turbulence or enhanced dif­

fusion by coupling different parts of the plasma. Such layers could 

not be detected with probes, but our absorption experiments could be 

used to test the interaction of the hot layers. 

We used an absorption setup at 3 GHz with a circulator and a 

short behind the plasma. No directional coupler was used. A heating 

pulse having two main frequency components was applied to the plasma 

and the subsequent absorption spectrum was observed. The frequency 

components were then varied to test for interaction. 

Two S-band generators fed through 3 dB pads and a coax hybrid 

into a traveling wave tube amplifier and thence into a Litton pulsed 

traveling wave tube. Its output was combined in a second coax hybrid 

with the absorption test pulse and they both went into the same arm 

of the circulator. The heating pulse was about 300 nsec wide at half 

power instead of the 10 or 15 nsec pulses used to create echoes. 

The amplitude of the long heating pulse was adjusted and compared with a 

typical short echo producing pulse on a spectrum analyzer. The spectrum 

amplitude over ~ 2 MHz bandwidth was comparable for the two pulses, so 

the dual frequency experiment is comparable in its effect on the plasma 
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with that of the echo experiments. The absorption test pulse was 

about 500 nsec long and we observed the last 200 nsec of it to avoid 

initial transient effects. It was created by an HP sweep generator 

slowly swept in the external FM mode and by a PIN diode modulator. 

The gas pressure was 2µ argon, the afterglow time was 1.2 msec, and 

the plasma bandwidth was about 100 MHz. 

Figure 2.18 shows the absorption spectrum following a heating 

pulse. In order to fit as many curves onto one piece of paper as pos­

sible, only fragments of the curves have been retained and the absolute 

magnitude of the absorption is not indicated. There are five sub­

curves. No normalizing procedure was used and (a) contains a spurious 

small dip marked by A , due to a distortion of the system's frequency 

response. This also appears in the other curves. In (a) both fre­

quency generators marked by t are on, and the observation time is 

1.7 µsec after the heating pulse. In (b) 16 µsec have elapsed and the 

effects of the heating pulses have almost completely vanished. In (c) 

both heating frequencies are turned off for comparison with (b). 

Figures (d) and (e) show the effects of turning off and of moving the 

higher frequency component, respectively. There is clearly no inter­

action between the excited regions of the plasma. 

2.10 Conclusions from the Experiments 

It is obvious that 3PE are very compl~cated phenomena wi t h many 

interacting parameters. The experiments described in this chapter 

grea tly restrict the range of acceptable theories. 

One of the most important properties of 3P echoes is their 

linearity with respect to the third pulse amplitude. This fact 
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excludes the collisional echo model, which is the three-pulse analog 

of the collisional phase scrambling process without diffusion. As a 

consequence of this linearity, the echo process must act between the 

second and third applied pulses. 

In order to satisfy the linearity requirements, the diffusion 

models were developed. Unfortunately, perpendicular diffusion is too 

slow and parallel diffusion, in Bruce's formulation, produces too small 

an echo. We can crudely estimate the perpendicular diffusion rate. At 

10 6 -1 Ne with 1 eV electrons, the collision frequency is about 3x 10 sec • 

The cyclotron radius at 2.5 GHz is 

-3 3.82 XlO cm, so if the particle can move no faster than one gyroradius 

per collision, the maximtnn possible speed would be 4 -1 1.15Xl0 cm/sec • 

An electron must move a distance on the order of 1 mm to experience a 

local resonant frequency differing by 1/10 the bandwidth from its un­

perturbed value. So one would expect T 
0 

-5 to be about 10 sec, which 

is an order of magnitude too long. The echo peaks at about 1 µsec even 

at lµ pressure. Of course, this diffusion is a random walk process, 

and the time needed for an average particle to move a certain distance 

would be longer than if it had moved steadily at the rate of one gyro-

radius per collision. Furthermore, the resulting space charge could 

slow the process considerably. Bruce was dissatisfied with the perpen-

dicular diffusion model because it needed a higher diffusion rate than 

he could justify in order to make experiment agree with theory [6]. 

Despite the slowness of perpendicular diffusion, the absorption 

experiments show a periodic effect after two pulses which could be 

interpreted as "hot" electrons piling up on either side of an excited 
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layer and leaving a hole in their previous location. However, if one 

tried to compute the absorption spectrum caused by a "bunched" coltnnn 

one would quickly become confused because there was no longer a 

unique relation between position and resonant frequency. The observed 

3PE are quite strong, and a large change in local electron density, 

even if it were possible, would necessarily change the local resonant 

frequency. The other objection to this simple interpretation of the 

absorption experiments is that large electric fields would be 

created if the electrons tried to move away from their neutralizing 

ions. It would seem difficult to create such an imbalance. The two­

frequency heating experiment implies that no layers of charge imbalance 

occur, because such layers would be expected to interact strongly. 

Perhaps the absorption experiments can be interpreted another 

way. The cold plasma absorption, without collisions, is due to the 

storage of energy in a resonant layer. As the applied pulse continues 

in time, the number of oscillators which are resonant or which have 

not slipped out of phase decreases linearly with time. The ones still 

resonant have quadratically increasing energy, so the total energy 

absorbed increases linearly with time [7]. This is how a cold colli­

sionless plasma can appear to have an absorption coefficient. 

But the pulses used in echo work are quite strong, and they can 

easily excite electrons to 1 eV or more, as directly verified by Bruce's 

collision frequency measurements. So cold plasma theory may not be 

sufficient to explain the experiments. The conversion of electromag­

netic waves into plasma waves in warm plasmas at an upper hybrid layer 

has recently received a great deal of attention [8,9,10,11]. We propose 

that the observed frequency periodic temperature after the first two 



-51-

pulses may cause a frequency periodic wave coupling effect which could 

look like modulated absorption. The warm plasma has extra modes to 

absorb energy which a cold plasma does not. There would be no standing 

wave effects in the echo plasma because traveling plasma waves would be 

stopped by the unexcited cold regions of plasma; see the discussion in 

the caption of Fig. 2, Ref. [8]. 

Because of the experiments with 3PE vs. T at different pressures 

and at different 1P-2P powers, it seems that electron-neutral colli­

sions cannot be the mechanism for 3PE. They could still have a 

destructive effect, as could electron-ion collisions. At the low 

pressures used, both 2PE and 3PE are dependent upon the electron den­

sity as the most significant parameter. This is not part of the 

previous 3PE models, and the collisional model does not provide an 

explanation for the observed periodic absorption modulation. 
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III. A DENSITY DEPENDENT 3PE MODEL 

3.1 Motivation for a Warm Plasma Approach 

The plan of this work was to form as complete an experimental 

picture as possible of 3PE and then to find a model to explain the 

facts. The experiments show that previous 3PE theories are inadequate 

because they do not predict the qualitative behavior of echo strengths 

on the experimental parameters. The most significant parameter is 

seen to be the electron density, which does not affect the echo 

process in a collisional theory, where the echo is proportional to Ne. 

While looking for a model to explain the experiments, we came 

across a section in a thesis by Henderson [l] which contained the 

relevant parameters. He discussed the response of an unmagnetized 

plasma to an impulsive electric field, and he showed that the time 

behavior was first governed by cold plasma theory. After a short while 

it was necessary to include temperature effects, and the response was 

perturbed by the growth of thermal modes which were driven by the 

residual cold plasma type ringing response. 

This hypothetical thermal mode growth is a possible mechanism 

for producing echoes. The effect increases with the density and 

the density gradient, and the effect can be independent of electron­

neutral collisions. Thus it inclu4es the correct dependence on the 

experimental parameters. The thermal modes predicted by the model seem 

to grow sufficiently rapidly to damp out the plasma ringing energy and 

if the plasma temperature is periodic from the effects of the first and 

second pulse, then the ringing response to the third pulse will have a 
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frequency periodic decay and will result in echoes. 

To clarify this last point we are considering the plasma response 

to be an integral over frequency of the number of electrons oscillating 

with a given frequency times the single particle response at that fre-

quency, similar to equation (1.5). 

I(t) ~ J dw n(w) R(w) 
iWt 

e (3.1) 

Now in the diffusion echo model n(w) = n (w) + £ cos WT , where n 
0 0 

is the unperturbed density distribution, cos WT represents the 

periodicity of the plasma heating by the first two pulses and £ repre-

sents the degree of perturbation caused by diffusion of the hot elec-

trons. R(w) is simply v , the speed imparted to all the electrons by 

the applied impulse. An echo will be produced at t = T by the 

interaction of the cos WT and iwt 
e factors. The present work con-

siders the case where n(w) is not frequency periodic but R(w) 

contains a frequency periodic damping caused by the production of 

thermal modes. 

We were not able to extend the small perturbation analysis of 

thermal mode growth into the times for which the thermal modes have 

consumed a large fraction of the ringing response to the initial tran-

sient. However, after extending Henderson's work to the case with a 

static magnetic field we could develop a crude model for the damping 

of the ringing response into thermal modes and for the creation of 3PE. 

This is a model, not a theoretically correct derivation from first 

principles, but it is intended to show the possibility that 3PE are 

due to thermal mode damping and that the qualitative dependence of 3PE 

on the experimental parametero can be e~plained. 
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3.2 Pearson's Equation for a One-Dimensional Plasma Slab 

In this section we will derive an equation for the electric 

field in a one-dimensional inhomogeneous plasma slab. The a.mbipolar 

electric field caused by the inhomogeneity will be included in the 

treatment. We will follow Pearson's derivation [2] closely. 

All quantities are assumed to be independent of y and z and 

the static magnetic field is given by B z 
0 

We assume that the scale 

length of the plasma in the x direction L is much greater than the 

cyclotron radius r and the Debye length. 
c 

The perturbation fields which we consider are uniform in z , 

have electric field E perpendicular to ~ , and have time dependence 

exp(-iwt) . The fields obey Maxwell's equations 

2 
£.- v x <v x E) 

2 w 

-+ 
B = c v x E 

iw 

Because of uniformity in z and because E = 0 we have 
z 

(3. 2) 

(3. 3) 

B = B z and J is perpendicular to z • For our frequency range ion 

motions are negligible. 

Because the problem is independent of z we need only a two-

-+ -+ -+ -+ 
dimensional distribution function f(r,v) + of(r,v,t), where all the 

vectors are two dimensional. The unperturbed distribution function 

satisfies the Boltzmann equation 

-+ 
-+ e A v A of 
v • 'Vf - -(E x + - x B z) • 

m a c 0 a~ 
(3.4) 
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where E is the ambipolar electric field. 
a 

The linearized Boltzmann equation for the perturbed distribution 

function is 

-+ -+ A -+ A "\!' 

of(ra~,t) + ~ • Vof - ~(E x + ~ x B z) ouf 
m a c 0 a~ 

(3.5) 

We will assume v << w so that the last term is negligible, 

and we will ignore the perturbed magnetic field by making the quasi­

static approximation V x E = 0 • This is only valid if AZ << c2/w2 

A formal solution for of can be found by integrating along 

unperturbed trajectories. The left side of (3.5) is the convective 

derivative D/Dt of Of , which is zero when evaluated along an un-

perturbed trajectory. The drift approximation will be used to provide 

explicit but approximate trajectories. With the approximations used 

above we have 

D -+ -+ -+ -+ -+ + e -+ -+ -+ -+ ()f 
~D of(r(r ,v ,t), v(r ,v ,t),t) = -[E(r(r ,v ,t),t))] 

t 0 0 0 0 m 0 0 a~ 
(3.6) 

-+ 
where define the unperturbed orbit. Assuming that E vanishes 

at t =-co, we find 

t 

e J -+-+-+ -+ ()f of= - E(r(r v t') t') ~ dt' 
m o' o' ' -+ av 

(3. 7) 

- co 

To transform from orbit coordinates to arbitrary ones, we multiply 

by 
-+ -+-+-+ -+ -+-+ + 

o(r - r(r ,v ,t)) o(v - v(r ,v ,t)) 
0 0 0 0 

and integrate. 
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t 
+ + e 

of(r,v,t) = 
m ff f 2 2 + ++ + 

d rd v o(r- r(r ,v ,t)) 
0 0 0 0 

-oo 

+ ++ + +++ + 
o(v - v(r ,v ,t)) E(r(r ,v ,t'),t') af 

0 0 0 0 
dt' 

+ av 
(3.8) 

On the unperturbed trajectory, if t 0 is the initial time, 

+ + + + + 
then r(r ,v ,0) = r 

0 0 0 
and v(r ,v ,0) = v 

0 0 0 
We must now express 

+ + + + + + 
r(r ,v ,t) 

0 0 
in terms of r(r ,v ,t') = r' so that we can perform the 

0 0 0 

integral. If we consider t' as the reference time on the path, then 

+ + + 
r(r ,v ,t) 

0 0 

+ + + 
v(r ,v ,t) 

0 0 

++ I ++ + I I r(r(r ,v ,t ), v(r ,v ,t ),t-t) -
0 0 0 0 

+++ + ++ + 
v(r(r ,v ,t'), v(r ,v ,t'),t-t') -

0 0 0 0 

r(r' v' t-t ') 
0' 0' 

+ + + 
v(r' v' t-t') 

0' 0' 

Substituting this transformation into (3.8), defining 

t- t I T , and assuming 

+ + 
of(r,v,t) 

00 

+ + + + -iwt 
E(r,t) = E(r) e , we have 

2 + + 
d V o(r-r(r',v',T)) 

0 0 0 

af 
+ av 

(3.9) 

(3.10) 

(3.11) 

- Since j = -e J d
3

v of and we assume 
+ + + + -iwt 
J(r,t) = J(r) e 

have 

+ + 
v(r ,v ,T) E(r ) 

0 0 0 

af(r ,v) 
0 0 

+ av 
0 

we 

(3.12) 

Now we will need explicit unperturbed orbits. The equation of 

motion of a single electron is 
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-+ -+ 
dv v 

m ___£ = -e[E + __£_ x B ;] 
dt a c o 

-+ -+ 
-+ 

cE 
a 

-+ 
If ~e let v

0 
w + u, where the drift velocity is 

-+ 
x B 

0 
u = -----

B2 
0 

-+ 
v (t) 

0 

-+ 
r (t) 

0 

, we obtain 

-+ -+ 
u+ w cos 

-+ 1 -+ 
= ut +-w w 

c 

-+ -+ w t - w x z sin w t 
c c 

1 -+ -+ 
sin w t +-w x z(cos w t - 1) 

c w c c 

-+ -+ 

(3.13) 

(3.14) 

(3.15) 

where w 
c 

eB 
me 

In the present case u = uy and E E 
x 

because 

of the uniformity in y and z . 

We will expand 

integrate by parts on 

-+ 
E f(x ,v ) 

x 0 0 
in a Taylor series about 

v to obtain 
ox 

x and 

J (x) 
x m

e
2 

00

J iwT dT e 00 J IL 
Q.=0 £! 

2 + at -+ 
d v f 0(x,v ,T)---o(f(x,v )E (x)J 

0 N 0 OXN 0 x 
0 (3.16) 

The tmperturbed trajectories are contained in 

-~J ox 

-+ £ 
dx v (x ,v ,T) o(x- x(x ,v ,T)) (x -x) 

0 x 0 0 0 0 0 

(3.17) 

The spatial derivatives can be taken outside the integral by using the 

identity 

00 1 ,/ l Iii ---o (B 0 fE ) 
£=0 N• OXN N x 

(3.18) 

This identity can be verified by expanding the RHS, reversing the 

order of summation, and comparing equal derivatives to obtain 
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(3.19) 

If the series is reverted by successively solving for higher 

derivatives of Bt in terms of derivatives of ft, then one finds 

(3. 20) 

Substituting into (3.16) we have 

00 
00 2 1 dR, 

J J 
e iWT 2 ~ ~ 

J (x) l F~{E(x) dT d v B (x,v ,T)f(x,v )} e 
x m R-=0 • dx x o e o o 

0 

In the present case, 

= a {v (x ,~ ,T)[x - x(x ,~ ,T)]£} 
av x x 0 0 0 0 0 

0 

Using the fact u = 0 and assuming 
x 

au/ax = 0 we find that 

Using the unperturbed trajectories from (3.14) we can write 

J d2
v0 B 

~ -t a f(x,v ) = (2wc) ~ AR,(x,¢) 
0 

where ¢ w t and c 

= J d
2v 

~ 

AR,(x,¢) f (x, v ) sin ¢ [ -2v sin ¢ + 2w (1 - cos 
0 0 0 . y 

If we introduce the definition 

~~1_,_ f d2v f(x,~ ) vr w8 
- n (x) o o x y 

0 

then we can write 

(3.21) 

(3.22) 

(3.23) 

¢)]£ 

(3. 24) 

(3.25) 
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A (x,¢) = n (x) sin ¢ 
0 0 

n (x) [-<v > (1- cos 2¢) + <w >(2 sin¢- sin 2¢)] 
0 x y 

A2 (x,¢) = n (x) [ <v2 >(3 sin ¢ - sin 3¢) + < v w > (-4 
0 x xx 

+ 2 cos <P + 4 cos 2¢ - 2 cos 3¢) +<w2>(5 sin 
y 

- 4 sin 2¢ +sin 3¢)] 

The integrals over T can be expressed in terms of 

00 

=LI iWT a sin nw T 
s dT c n e = 

n iw o(W T) 2 2 2 
0 c w - n w c 

(3.26) 

00 

=LI iWT d(cos nW T) nw 
c dT c c s e = 

n iw d (W T) iw n 
0 

0 

(3.27) 

From (3.2) we find E = ~7T J 
X l.W X 

Combined with (3.21) this 

E (x) 
x 

2 1 d { 2 w (x) S E +- dx w (x) [<v > c2+<w >(2S1- s2) ]E } p 1 x 2w p x y . x 

2 w 
p 

c 

1 d
2 

{ 2 2 + - -.- w [<v > (3S -
8w2 dx2 P x 1 

c 

. ( 2 47Tn x)e 
m 

(3.28) 

Now we will show that <v > can be ignored compared with <w > . 
x y 

Consider three planes at x and x +r -c Electrons will diffuse by 

moving their center of gyration approximately one gyroradius per colli-

sion. The number of electrons moving to the left per second is on the 
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order of 1 2 n(x+ re) and the number moving to the right across the 

plane at x is on the order of 1 
The average speed - n(x - r ) 2 c 

r v 
<v > is the order of 

\) c where L is the plasma scale length. on ---
x w L 

c 
<w > is on the order of the drift velocity u • The ambipolar elec-

y 

tric field is approximately [3] 

E e 1 vn ( 
D - D.) n 

a= - µi + µe ~ (3.29) 

For a Lorentzian gas the diffusion and mobility coefficients are ap-

proximately [4] 

Defining Cl 

1 - D. /D 
1 e 

D 
IVnl I.Eal 

e a. '\, 

).le n 

we have 

2 
1 mv 

a--
e L 

D 
e 

'\, 

2 
m <v > e-3- µe 

2 
av B 

0 

CL w c 
2 

2 a<v >B a.<v > 
Thus <w > '\, u '\, _£..._ 0 

'\, 

y Bo cL w Lw 
c c 

Since in our experiments T. < T a. is somewhat 
1 e 

Thus <v > 
x 

is smaller than <w > by a factor v/w 
y c 

smaller than 1. 

and will be 

ignored. Because u is small compared to v <w
2

> th, y is approximately 

equal to 
2 

<v > and 
x 

vw x y 
is negligible in comparison with 

With these simplifications and with the definitions 

2 w (x) 
~(x) = _P...___ 

2 2 
w - w 

c 

2 
<V > • x 
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3<V2> 
_2_x_2 ~(x) 
4w -w 

c 

E(x) = ~(x) E(x) + ~x {w <w > E(x) 
2 

J\ (x ) } + d\ {A(x) E(x)} (3. 30) 
c Y <v > dx 

x 

<w > 
y 

represents the balance between the electron pressure gradi-

ent, the Lorentz force, and the ambipolar electric field. Multiply 

(3.4) by v and integrate over 
x 

to obtain 

<v > 
~x [n (x) <v

2
>] + ~ n (x)[E (x) + __:]___ B] 

o o x m o a c o 

(3.31) 

Ignoring the collision term relative to the first term and defining 

u = -cE (x)/B we have 
a o 

<w > -
y 

<v > - u = - --
1-- d [n (x) <v2>] 

y n (x)w dx o x 
0 c 

= - 1 d [w2(x) <v2>] 
2 dx p x w w (x) 

c p 

Substituting this into (3.30) yields 

E(x) = ~(x) E(x) d 
dx 

{di\ E(x)} + ~ {J\E(x)} 
dx dx2 

E(x) ~(x) E(x) + i._ {J\ dE} 
dx dx 

(3.32) 

(3. 33) 
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This is the equation for the electric field in a one-dimensional 

plasma slab which was derived by Pearson and which will be used to find 

a finite temperature correction to the plasma ringing response. 

3.3 Growth of Thermal Modes for Small Times 

We start from Pearson's equation for the electric field in a 

one-dimensional plasma slab, Eq. (3.33), which has also been derived 

by Henderson using Baldwin's different method [l]. Pearson's equation 

did not include an external driving field. When that is included, or 

by using Henderson's method, one obtains 

[l - ~(x)] E(x,t) - ~x[A(x) dE~~,t)] = Eext(t) (3.34) 

We wish to consider the response to an impulse, so we wi l l set 

2 2 
p -w to convert the problem to a Laplace transform with zero 

initial conditions. 

The first term in the equation is the so-called cold plasma 

I 
term and gives the initial ringing or the transient response to the 

applied impulses. The cold plasma response will be used to compute a 

warm plasma correction by a perturbation approach. 

After expanding the equation, it is 

E + dE 3 1 E._[ w2 < v2> ] 
dx 4w

2 
+ 2 p2+ 2 dx p x 

c 
p wuH 

d
2

E 
p2+ 2 

3 1 w2<v2> 
w 

+ 
c E (3.35) --s: 

4w2 2 p2+ 2 p x dx
2 p2+ 2 ext + p wuH wuH c 
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Now examine the inverse transform, which will be expressed in 

terms of convolutions. 

Thus 

Several Laplace transforms will be needed. 

2 2 2 
p + w w 

2 2c =L{o(t)- w P sin wuHt} 
p + wuH uH 

1 

E(x,t) = Eext(t) * [o(t) 

1 

2 w 
p . ] - -- Sl.n WuHt 

wuH 

(3.36) 

d 2 2 
- -[w <v >] 

dx p x 
3 

2 3 2 w - w 

dE (x, t) 

dx 
[ l. 2 1. ] * 2W Sl.n W t - -- Sl.n WuHt 

c c wuH 
p c 

(3.38) 

For simplicity, assume E (t) = E t o(t) and 
ext p p 

let 

2 
<v > = 0 

x 
to obtain the cold plasma response E 

0 
The response is 

considered to be the difference of the cold plasma response E 
0 

and 

the warm plasma correction E1 , which is initially much smaller. 

Then the plasma response field (ignoring o(t)) is 

E 
0 

= -

2 
w 

____£. E t sin 
wuH P P 

(3.39) 

Now evaluate the correction due to the finite temperature of 

the plasma. We will always seek the dominant terms for simplicity. 

The phase wuHt will rapidly become large, so the only one of the 

thermal terms which we will keep will be the one of largest order in 
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E 
0 

to obtain the driving term for 

E1 we only consider derivatives of the trig factor. 

dE
0 

'V 

dx = 

d 2E 2 
o 'V WP dwuH 2 

-- = + -- E t ( t -dx ) sin wuHt 
dx2 wuH P P 

(3.40) 

(3.41) 

and the second derivative dominates the first. 

Now consider the convolution 

t 

J 
1 2 . I[ 1 . 2 ( ') 1 . ( ')]d I t sin wuHt 2w sin wc t-t - -- sin wuH t-t t 

c wuH 
0 (3.42) 

Only the second term needs to be considered, for only it is in reson-

ance with the driving term. The dominant term from the convolution is 

thus 

1 
--4-

wuH 

E
1
(x,t) 

Because 

2 
2 (w -

p 

wuH (w2 
p + 

dwuH dw 
--= _E_ 

dx dx 

w2)1/2 and B is uniform, we have c 0 

WP 

wuH 
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Thus the final expression for the dominant thermal mode correction is 

3 dw 2 2 3 
[w ---E.] E t <v >t 

p dx p p x 
El (x,t) = (3.43) 

When w = 0 this reduces to half of Henderson's result. 
c 

Theoretical problems arose when we tried to extend the method to large 

perturbations. One problem is that the equation changes to an x 

dependent one and no longer describes a local effect which can be 

simply summed throughout the plasma volume. Instead of theoretically 

extending this equation to more complicated regimes, a crude model was 

developed which was convenient for exhibiting echoes and which demon-

strates the qualitative features of the phenomenon. 

3.4 Damping of the Ringing Response by the Growth of Thermal Modes 

We start with the equation for the short term growth of 

thermal modes from the previous section. This equation is valid for 

times so short that the ringing response has not changed appreciably. 

In the model for thermal mode. damping it is .assumed that 

thermal modes are short wavelength plasma waves which propagate away 

from the upper hybrid resonance region with very low group velocity 

and are therefore quickly dissipated close to their source by even a 

small collision frequency. Only the time variation of the magnitude 

of the electric field will be considered. We will assume 

We will choose 

E f(t) = 
0 

E at 
0 

t = 0 (3.44) 
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and we will match the small time behavior of E1 

E [l - f(t)] ~ E S<v2
>t 3 

0 0 x 

if we choose 

s - (3.45) 

This decay factor has not been derived from first principles, 

but it approximates the small time perturbation result which was 

derived with the asstDnption of constant ringing response. In addition 

it is a reasonable model for the decay of the ringing response and is 

very convenient for calculating echo strength. The decay factor will 

be used to describe the decay of the velocity of one electron when it 

is excited by an impulse, since the velocity of a charged layer of 

plasma is proportional to the electric field created by the displace-

ment of that layer. 

3.5 Echo Amplitude for a Frequency Periodic Temperature 

The velocity of an electron following an impulsive excitation 

at upper hybrid resonance will be taken as 

(3.46) 

In the echo model we will multiply this single particle res-

ponse by the decay factor due to thermal mode generation to obtain 

v = v exp[-8t
3 

<v
2
>] cos wuHt 

p x 
( 3. 4 7) 
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The frequency periodic effect which is needed to produce echoes 

will be introduced through 
2 

<v > • 
x 

The first two pulses will gradually 

decay from ringing response into random thermal ene~gy, and it is 

assumed in the model that only the randomized fraction of the energy 

from the first two pulses will contribute to thermal mode growth. 

This will be expressed in a "degree of thermalization" parameter a , 

which ranges from zero inunediately following the second pulse to one 

at long times after it. Simultaneous with the thermalization process, 

the plasma cools off by the parallel free-streaming of the perpendic-

ularly heated electrons and by their replacement with cool electrons, 

as discussed in Section 3.7. With R representing the fraction of 

hot electrons remaining within the waveguide region, we set 

(3.48) 

where v is the speed acquired by a single electron after either of 
0 

the initial pulses acting alone, n is the upper hybrid frequency, 

vth is the thermal speed of the unperturbed plasma, and is the 

spacing of the first two pulses. After the first two impulses, an 

electron's speed is v (1 +cos Q-r). 
0 

This gives for the ringing response to the third pulse 

3 2 2 3 2 
v =VP exp[-Bt Ravo(l +cos n-r)] exp[-Bt (1-R)vx th} cos rlt 

(3.49) 

This can be written as the product of three factors using the 

definition 
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v = v exp[-Bt3 (1-R)v h] exp[-3z] exp[-4z cos QT p xt 

- Z cos 2QT) cos Qt (3.50) 

Now use the identity [5) 

00 

exp(x cos B) = I (x) + 2 E Ik(x) cos(kB) 
0 1 

(3.51) 

to yield 

V = V cos Qt exp(-Bt3(1-R)v2 h) exp(-3z) [I (-4z) 
p x t 0 

00 00 

+ 2 E Ik(-4z) cos(knT)] [I (-z) .+2 E 11 (-z) cos(2U"h)] 
1 ° . . 1 

We wish to find the terms in the series that will combine with 

the cos Qt factor to nullify phase mixing at t = T following the 

third impulse at t = 0 • Thus we must find the terms from the product 

of the two series which are proportional to cos QT . This requires 

that k = 21 ± 1 . 

Using the fact n 
I (-x) = (-) I (x) 
n n 

if n is an integer, we 

find that the final expression for the pulse induced speed after the 

third pulse, including only the first echo, is 
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The qualitative behavior of the first three pulse echoes will 

now be developed by evaluating the total current induced by the lD 

plasma slab in an external circuit, following the method of [6J. 

If the spacing of the electrode plates is 2a, then the current 

per electron which flows in the external circuit is 

I (t) =--~·qv(t) 
2a 

(3.53) 

since the charge induced on each plate is a linear function of posi-

tion. This result can be obtained by considering the displacement of 

layers of charge in a slab. 

exp [-St 3 
( 1-R) v 

2 
h ] . 

We will temporarily ignore the factor 

xt 

For the ensemble of electrons we have 

q 
I(t) = 2a 

a 

J dx n(x) v(x, t) • (plate area) 

-a 

(3.54) 

In this echo model the current after the third impulse is 

a 

I(t) = -9.! 
2a J dx n(x) v e-Jz cos nt{I (z) I (4z) 

p 0 0 

-a 

00 

L+l } + E (-) I 1 (z)(I21_1 (4z) + I 2L+l(4z))] 
L=l 

(3.55) 

where higher Fourier components have been dropped. 

The transient response is at t = 0 and is 

a 

I = s! J dx n(x) v trans 2a p 
(3.56) 

-a 
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The first echo is at t = T when there is a term with no 

rapidly changing phase factor. 

-a 
00 

+ L: (-)L+l I (z) [ (4) (4 )J} L 12L-l z + 12L+l z 
L=l 

where z is now evaluated at T 

1 3 2 
z = 2 B(x) T d(T) v

0 

a. = "degree of thermalization" 

v = pulse induced speed from lP and 2P 
0 

T = spacing of 2nd and 3rd pulses 

dw 
w4(x) <-/-)2 

B (x) = _ _,P.__ __ x __ 

2(3w2 - w2)w3 
c p uH 

3.6 Degree of Thermalization after the First Two Pulses 

(3. 5 7) 

The degree of thermalization will be obtained by analogy with 

the above work on temperature dependent decay. Late in the afterglow 

before any microwave pulses have been applied, the plasma is near 

room temperature. Returning to equation (3.34), we see that if 

<v2> = 0 the plasma responds as a cold plasma. We make a distinc­
x 

tion between random thermal motion represented by and the 

coherent (locally in phase) motion of the electrons following an 

exciting pulse. In a cold plasma the responses to impulses just add 

vectorially; the plasma must thermalize in order to show temperature 
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effects. The first two p.ulses will lose energy by thermal mode 

generation, since the model predicts that the thermal mode damping 

process will be much faster than electron-ion or electron-neutral 

energy transfer. 

Thus for the degree of thermalization parameter in this model 

we will use 

a = 1 - exp [-2°T3 < 
2 > 

µ vx th (3.58) 

where 
3kT 

e 
- -- 'T m e is the temperature of the electron gas in the 

afterglow, and T is the time between the second and third pulses. 

The changing decay rate due to the ongoing process of thermalization 

will be ignored. This form for a was chosen because if the speed in 

exp [-St 3 <v2>] 
x 

the coherent motion varies as then the energy in the 

coherent motion will vary as the square of the speed or as 

3 2 2 3 2 
exp[-2St <vxth>] =exp[- 3 St <vth>]. 

3.7 Loss of Hot Electrons by Free Streaming 

So far we have developed a model for three-pulse echoes which 

results from a temperature dependent response and a frequency periodic 

temperature caused by the first two pulses. Echoes could be produced 

as long as the hot layers persisted in the plasma. We must explain 

the experimental result that the echo strength first increases and 

then diminishes as the third pulse is moved further from the first two 

pulses. The large mass difference makes the energy transfer in 

electron-ion or electron neutral collisions too slow to explain the 

nbs •rvations. 
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One way to weaken 3PE in the present model is to replace hot 

electrons with cold electrons from outside the waveguide region. The 

loss of hot electrons must be balanced by an influx of cold electrons 

to maintain neutrality. This exchange of electrons occurs by free-

streaming down the discharge tube parallel to the magnetic field 

instead of a diffusion process, since the mean free path is much too 

long and there are no consistent pressure effects in the experimental 

data. 

Because the extraordinary mode only affects the perpendicular 

motion of the electrons, the electrons are asstDlled to retain their 

room temperature Maxwellian velocity distribution for motion parallel 

to the magnetic field. This would permit the hot layers to dissipate 

at approximately the correct rate. For example, at 300°K the rms 

value of V is (KT/m) 112 = .674 x107cm sec-1 . Thus the time needed 
z 

to cross a 7 cm wide waveguide would be 1.04 microseconds. Now we 

will follow Bruce's work on the damping of the transient response due 

to parallel free streaming [7]. 

The distribution of particles for t > 0 , R(z,t) may be found 

by a convolution of the initial distribution R (z) 
0 

with the propaga-

tion function R (z,t) for particles initially located at z = 0 . 
g 

We have 
00 

R(z,t) J R (t) R (z-t,t) dt = R (z) * R (z,t) 
0 g 0 g 

(3.59) 

In this expression the quantity R (t)dt 
0 

is the fraction of particles 

initially between t and t+dt . Of these particles, the fraction 

R (z-t,t) arrive at point z at time t . A sununation is then taken 
g 
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over all initial positions s • 

First consider only one value of v and a uniform spatial 
z 

distribution of particles from -L/2 to +L/2 . 

R (z) 
0 

1 
= -

L 

= 0 

if 
2- -2 _.!'._<z<.!'..l 

1 z 
= - 'IT(-) 

L L elsewhere 

00 

R (z, t) = o(vt-z) so that f Rg(z,t)dz 1 g 
-00 

Then 

R(z, t) 
1 z [o(vt-z)] = [- 'IT(-)] * L L 

where we have introduced the function 

'IT(x) 1 lxl <! 
-2 

= 0 !xi >! 
2 

Now performing the convolution, we have 

R(z,t) 1 
L 

L/2 

J ds 'IT(s/L) o(vt - z - s) 

-L/2 

R(z,t) = ! 'IT(z-vt) 
L L 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

The fraction of particles initially inside the waveguide which 

have not yet left is 
L/2 

R(t) = f J 'IT(z~vt) dz 

-L/2 

R(t) = ~ (L - vt) H(L- vt) if 

(3.64) 

v > 0 (3.65) 
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where H(Y) = 1 if Y > 0 

= 0 if y < 0 

This result is for only one electron speed. Now consider a 

Maxwell-Boltzmann distribution of parallel velocities, where the dis-

tribution function is 

(-m-)1/2 
Z'rrKT 

2 
-mvz /2KT 

e 

and the other velocity components are independently normalized. We 

will average the above results over an MB distribition in which 

2 3KT = m v h before the microwave pulses are applied. The fraction 
e t 

remaining is 
00 

- 2 
3vz - --

Rm(t) dV 1:_ (L - vt) H(L - vt) ( 3 )
1

/
2 

e 
L 2 

2 
2vth 

(3.66) 

If we let u = 

Now defining 

R (t) 
m 

h/2 v /v h z t 

/3/2 L 
ul = 

tvth 

1 

then we have 

we have 

" ~ -u 
erf(u

1
) --- (1 - e 1) 

lif u 
1 

As t + o, u + oo and R (t) + 1 
1 m 2 

since erf(O) = 0 
1 -ul 

and lim -(1 - e ) = 
ul 

limiting values are correct. 

2rrvth 

(3.67) 

(3.68) 

As t + 00 , u
1 

+ 0 and 

0, R (t) + 0 • Thus the 
m 

Figure 3.1 is a graph of R (t) 
m 

describing the decrease in the 

fraction of hot electrons due to parallel free streaming. This migra-

tion causes the effective perpendicular temperature of the electrons at 
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a given radial position in the discharge tube to change as described 

by equation (3.48). 

3.8 Computed Echo Strength 

The final expressions for the strength of the first 3PE and the 

transient response are 

Transient 

I = .9A J dx n(x) v trans 2a p 

First echo: 

I . = .9A J dx n(x) ( 0 3(1 R ) 2 /3) E 2a vp exp -µT - m vth 

00 

-3z e 

(3.69) 

x { l (-)n+l In(z)[I2n_
1

(4z) + Izn+l(4z)]-I
0

(z)I
1

(4z)} (3.70) 
·n=l 

where 

a= 1 - exp[-~ S(x) T
3 <v~h>] 

3 2 2 
2w H(3w - w ) u c p 

2 3KT 
e 

vth = m 
2 

1 -u 
R (t) = erf(u1) --- (1 - e 1) 

m u111T 

= ../3/2 L 
ul T vth 

T is the spacing of the second and third impulse, T is the 

spacing of the first and second, and v 
0 

is the electron speed increment 
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which would be caused by either of the first pulses alone. Because 

the electron density gradient was shown to be an important parameter, 

for example in Fig.2.7 a truncated Gaussian electron distribution was 

used: 
2 

n(x) = n exp(-f(x/a) ). max 

This is a simple model for computations, although it has 

several obvious flaws. It is a one-dimensional instead of cylindrical 

model, it ignores the cosinusoidal variation of the electric field 

across the waveguide, and the finite spectral width of the exciting 

pulses has not been included. However, these complications seem un-

necessary when the basic mechanism for echoes and their qualitative 

behavior are not well understood. The present model also makes the 

simplifying assumption that "thermalization" is independent of the 

free-streaming cooling process, and this tends to make the predicted 

optimum third pulse spacing too small, especially at low densities. 

Of more consequence are the arbitrary assumptions which were 

made in modeling the effect of thermal mode growth on the ringing 

response and on the behavior of the plasma after the first two pulses. 

The pulsed response decay factor produces an answer consistent with 

the small time perturbation, which is the only case for which the theory 

has been done, and the decay factor is a simple and convenient model 

for the loss of ringing response energy to thermal modes and for the 

computation of echoes. The concept of thermalization is more dubious, 

and it is an attempt to explain how the frequency-periodic heating of 

the plasma by the first two pulses results at a later time in a fre-

quency periodic response to the third pulse. 
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After mentioning these serious objections to this echo model 

we will enumerate its desirable features. 

(1) The echo does not directly depend upon electron neutral 

collisions, and this is a necessary feature of the model which was 

dictated by experiment. 

(2) The electron density gradient appears prominently in the 

theory and acts to make the effect stronger at higher gradients which 

is experimentally observed. 

(3) The time required after the second pulse to create the 3PE 

decreases as the density increases, which is the most significant 

feature of the present experiments. 

(4) By considering the decay of the magnitude of impulsive 

excitation, the echo obtained is proportional to the third pulse 

amplitude as required. 

Now we must examine the time scale and magnitude of the model. 

First estimate 8 , let w2/w2 = .1 
p c 

~ 1 -7 
d/dx = l/a = 1~-, and let T = 10 cm 

With these approximations 
dw 

sec. 

w4(____£)2 
~~~P~-d~x=--~-=-~ = 

- 2w3H (3w2 - w2) 
2.6 x 106 

u c p 

w 
c 
~ 1.5 x 1010 

If the electrons acquire 1 eV after an impulse, then 

v 
0 

' 

0 If the plasma is initially at room temperature, 300 K, then 
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and 

7 -1 
vth 1.167 x 10 cm sec 

Let T 6 
= 10 seconds. 

a - 1 - exp[-2BT 

from Figure 3.1 this gives 

z l B-r 3 
R a v2 

2 m o 

Then 

3 2 '\, -710 <v >] = 1 - e th 

-1 '\, 
u

1 
1. 36 

'\, 
R .38 

m 

1. 78 

'\, 

1 

From a plot of the integrand of equation (3.70) vs. z it can 

be shown that the above value of z corresponds to a sizable echo. 

Explicit graphs of the echo strength will be shown !ater. 

Computational Methods 

In order to compute the integral it was necessary to evaluate 

it in three ranges of the parameter z • For small z the Bessel 

functions were expanded in power series. 

Define a function F(z) by 

F(z) = exp( -3z) {-I
0 

(z) I 1 (4z) 

\ n+l } + l (-) In(z)[I2n-l (4z) + I 2n+l (4z)] 
n=l 

(3.71) 

Using 



-81-

oo (!_ X2)k 
I (x) = (.!. x) n l _4 __ _ 

n 2 k=O k! (n+k) ! 

for small z , we have 

F(z) ~ -2z + 7z
2 

-
3
{ z

3 
+ (29 + ;~) z

4 
+ ·•• (3. 72) 

For intermediate z , the series of Bessel functions was 

evaluated. Note that the forward recurrence relations cannot be 

used because round-off errors grow rapidly. 

For large z , F(z) changes very slowly and the sUIImlation 

becomes too tedious. Thus we use half the first Fourier component 

of F(z) by an asymptotic expansion. 

2'1T 2 
F(z) = ~1T J cos Q -2z(l + cos 9) dQ (3. 73) e 

0 

When z is large, only 9 near 1T will contribute. Expand 

1 + cos 9 near e = 1T • 

1 + cos 9 ~ l._ 92 - l._ 94 + l._ 96 
2 4 6! 

The asymptotic series consists of terms like 

A(l)l/4[1 + B(l)l/2 + c(l) + n(l)3/2 + ···] 
z z z z 

l+.!. 
We will keep terms up to and including (l) 2 4 

z 

The range of integration over dQ will be extended to ± 00 

and we will use the result 
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~+l f(n:l) [Ref. 8, 860.19] 
mr 

All powers in the exponent will be expanded in series except 

exp(-z¢
4/2). 

After some computation, one obtains 

where c = .008252 and 
5 ~ 

512 = .0097656 . 

(3.74) 

The following three figures show the results of the echo model 

described above. The curves plot the amplitude of the echo in dB 

below the transient response vs. the time interval between the second 

and third applied impulses. The electron distribution is assumed to 

have a truncated Gaussian profile so that the density gradient can be 

easily varied by changing the parameter r , and the column radius or 

slab half-width is assumed to be 1.33 cm. The other parameters are 

shown on the graphs. 

- In Fig. 3.2 the maximum electron density is varied as the other 

parameters are held fixed. As the density decreases, the maximum 

amplitude and the rise and fall rates of the echo become smaller. This 

behavior agrees qualitatively with that of Figs. 2.10 and 2.11, and 

the optimum third pulse spacings agree rather well. However, the 

maximum amplitude of the echoes disagrees drastically. In Fig. 2.11 

the echo strength at T = 1 µsec varies from 10 to 14 dB below 
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the transient response, whereas the computed curve of Fig. 3.2 shows 

a rapid decrease of the maximum echo strength as the density decreases. 

Furthermore, the decrease with density of the rate of fall-off is not 

as pronounced in Fig. 3.2 as in Fig. 2.11. 

These discrepancies can be remedied by varying the other 

parameters in the model. Recall that the plasma column profile 

appeared to become more peaked in the radial direction as the plasma 

decayed in the afterglow, as shown in Fig. 2.7. We speculate that 

this is caused by the shorter parallel diffusion length further from 

the axis of the two magnet coils. Figure 3.3 shows an attempt to 

coordinate decreasing density and temperature with an increasing ratio 

of n to n max avg 
The variation in peak echo amplitude is now in much 

better agreement with experiment, and the fall-off rate becomes much 

more gradual as the temperature decreases. 

Figure 3.4 shows the predicted variation with the first two 

pulse powers as parameters. The calculations show a strong dependence 

of echo strength on V which does not agree with experiment. Also, 
0 

as V becomes large enough, the echo can "saturate" and vary only 
0 

slightly over a range of T . This behavior is not seen experimentally, 

and it may be removable by the effects of collisions which have been 

ignored in this study. If the effect of collisions were to remove 

heated electrons at a faster rate than thermal free streaming, and if 

the echo parameters were such as to cause "saturation" of the thermal 

mode process, then we speculate that the results of Fig. 2.9 would 

result, in which the echo is only slightly changed by a 10 dB change in 

pulse power. 
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At this point it should be mentioned that this model contains 

no free parameters which can be manipulated to change the gross charac-

teristics of the results. The numbers used in the computations are 

quite close to those of the experiments, and it is encouraging that 

the magnitudes of the echo and of 

the experimental values. Although 

T max 

v 
0 

in particular are close to 

was not experimentally meas-

ured, Bruce could calibrate his input power against v 
0 

by measuring 

the initial collisional decay rate of the transient response at very 

low densities. With his very similar equipment he could obtain V 's 
0 

8 -1 up to 10 cm sec • 
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IV. INSTABILITY OF A DELTA FUNCTION DISTRIBUTION IN 

VELOCITY SPACE 

4.1 Instability Theory 

· During the course of this thesis, the modulated absorption 

effects were discovered before the thermal mode damping was conceived. 

The modulated absorption was originally interpreted as confirmation of 

the perturbed density mod~l, although instabilities were eventually 

abandoned as an attempt to explain echoes. To explain the creation of 

density perturbations we considered the possibility of plasma instabi­

lities which would result from the first two pulses and would cause 

turbulent diffusion from the hot layers. 

Tataronis [l] has computed unstable behavior in plasmas due 

to a ring distribution of perpendicular velocities. In that case the 

plasma is far out of equilibrium, and for sufficiently high densities 

there are plasma waves propagating perpendicularly to the static mag­

netic field with complex w and/or K • Tataronis found a lower 

density threshold for instability when oblique propagation was allowed, 

although that case is more complicated. 

In discussing cyclotron echoes it is usually assumed that the 

applied fields are impulsive and that the electrons with a given 

resonant frequency are all excited with the same original phase and 

speed (see Gould diagrams, Fig. 1.1). This leads to the o function 

electron velocity space distribution function, which is even further 

from equilibrium than the ring distribution and thus is expected to 

IHIVl' a fow-'r density threshold for instability. We will follow the 

same method used by Tataronis excep t for the slight additional 
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complexity caused by the lack of cylindrical symmetry in velocity 

space. 

The plasma is described by the collisionless Boltzmann or Vlasov 

equation 

(4 .1) 

We will use the electrostatic approximation for the perturba-

tion fields 

+ + + + 
E1 (r,t) = - \7¢

1 
(r, t) and 

Also, the source of the perturbation field is 

where 

\1 • E 
1 

p/t. 
0 

The normalization is 

f dv fe = 1 

0 (4. 2) 

(4. 3) 

(4.4) 

(4. 5) 

In linearizing the problem we will have zero and first order 

distribution functions, a zero order magnetic field, and a first order 

electric field. We will ass1..U11e an infinite homogeneous plasma, so 

there will be no zero order spatial gradients and hence no zero order 

ambipolar electric field. This was not assl.lllled in the theory of 

Chapter III. The linearized equations for the zero and first order 

distribution functions are 
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e -+ :t 
- E • V f 
m 1 v o 

(4. 6) 

(4. 7) 

Here the velocity is actually the unperturbed or zero order 

velocity. The left hand side can be recognized as the total or con-

vective derivative of the first order distribution function along the 

zero order trajectory. 

e + :t 
- E • V f 
m 1 v o (4.8) 

This is to be integrated from t = 0 when the sources are 

turned on until the time t when the particle's position and velocity 

+ -+ 
coincide with the Eulerian coordinates r and v • We are considering 

an initial value problem and pursuing a method of formally integrating 

the equation for f
1 

. The initial conditions are zero. 

t 

: f 
E (t') • V f (r' v' t')dt' 1 v' o , ' 

0 

(4.9) 

This formal solution for f
1 

will be used to find the electro-

static perturbation E
1 

ne 
E: 

0 J 
+ + psource 

dV f 1 e: 
0 

For instabilities no sources are needed, so we have 

(4.10) 



-+ v • E = -w 1 

where we have used 

2 
p f dV' 

w2 = 
p 

0 
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t 

J 
-+ 
E (t' r') 

1 ' 0 

0 

2 ne /E m 
0 

f (r' v' t') o o' o' dt' (4.11) -+ av' 
0 

After following Tataronis' method as shown in the Appendix, one 

obtains for the dispersion function for electrostatic waves propagating 

perpendicular to B in a spatially uniform plasma with a delta func­
o 

tion distribution function 

2 Tf 

K = 0 = 1 + ....£. --- sin x sin(ili: + µ sin x)dx w 1 J 
2 sin rrn (4.12) 

WC 0 

where n = w/w 
c 

and 
KV 

0 µ =-­w and we have used the distribution 
c 

function 

f <v ,~,v.J..) = o<v,
1 

) o(~ - w t) o(v - v ) 
0 ,, c .&. 0 

which is "created" at the position 

impulse. 

(0,0,V ) at t 
0 

(4.13) 

0 by the applied 

Equation (4.12) reduces to the correct cold plasma limit as 

µ -+ 0 , as shown in the Appendix. 

Now we will show the results of numerically solving eq. (4.12) 

for n and µ • 
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4.2 Dispersion Curves and Implications for Echoes 

When equation (4.12) is solved numerically to find the zeroes 

of K , and when the plasma density is large enough, gaps appear in 

the dispersion curves which are due to coupling of the different 

modes and which indicate instability [1,2] • However, the critical 

density is approximately 
2 2 w /w = .811 which is much higher than the 
p c 

three pulse echo experiment densities. Thus this approach could not 

explain 3PE through enhanced diffusion as had been hoped, and the 

analysis of these instabilities was not pursued. 

In Figs. 4.1 and 4.2 we see the dispersion curves resulting 

from the zeroes of K for several values of 2 2 w /w . 
p c 

The points at 

which the solution crosses n = n agree well with the values obtained 

by approximating K 

There were also experimental grounds for abandoning this 

approach. Instabilities should manifest themselves as noise emission 

at frequencies other than the usual range from the cyclotron to upper 

hybrid frequency range and near the harmonics, but no such unusual 

noise frequencies could be seen with a Tektronix 1130 spectrum 

analyzer when the plasma was heated with the 10 watt pulsed traveling 

wave tube which was used in the echo experiments. Thus we concluded 

that this type of instability was not related to three pulse echoes. 
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V. SLOW WAVES AFI'ER ONE MICROWAVE PULSE 

5.1 Dependences upon Magnetic Field and Pulse Power 

In echo experiments the observed signals can be cluttered with 

spurious reflections, and the usual way of deciding if a given peak is 

indeed an echo is to turn off one of the exciting pulses. The signal 

in question will then disappear if it is due to an echo, and after only 

one exciting pulse there is usually only a transient reflected pulse. 

However, using the echo set-up very close to the end of the RF break­

down, it is possible to observe an additional pulse following 

the first transient. This pulse moves in time with respect to the first 

pulse as the magnetic field is varied slightly. The effect seemed to 

occur for frequencies just under the maximum upper hybrid frequency, and 

there was no noticeable difference in the time separations of the inci­

dent and response pulse when the effect was observed in reflection and 

in transmission. When the extra pulse was isolated by a PIN diode 

modulator and spectrum analyzed, its spectrum was similar to that of 

the incident pulse. The response pulse was shown to be proportional 

to the input pulse power by an experiment in which the transmitter and 

receiver attenuations were varied together in such a way that the total 

attenuation was constant. The extra pulse amplitude varied by less 

than 10% on a square law scale, thus showing that the extra pulses are 

linear with respect to the input pulse. The amplitude of these pulses 

was about 40 dB below the incident pulse. The extra pulses were 

tlwught to be slow wave pulses, SWP. 

In Flg. ".1 we see the SWP moving away from the incident pulse 

as the magnetic field is increa s ed slightly. The maximtun e lectron 
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d d b 4. 8 X 1010 
by h f b ensity was measure to e t e cessation o a sorption 

method described on page 23 at a coil current of 260 amps. The gas 

pressure was 5µ argon, the signal frequency was 3 GHz, and the experi-

ment was performed 15 µsec in the afterglow, when the plasma was 

probably still quite warm. A circulator was used for convenience in 

measuring the density, and an HP 462A pulse amplifier allowed the 

crystal detector to be used at a lower power level where it was closer 

to having a square-law response. The detected pulses were sampled by 

a PAR 160 boxcar integrator with a 10 nsec time window, and the time 

separation of the input pulse and the SWP is shown on the figure in 

nanoseconds. 

These extra pulses were not a beat phenomenon between the inci-

dent signal and the maximum upper hybrid frequehcy. If the period of 

such a beat phenomenon is denoted by T , then 

1 - = (5.1) 

since the signal frequency must be less than or equal to the maximum 

upper hybrid frequency if there is to be a resonant interaction with 

the plasma. As the magnetic field is increased the frequency differ-

ence would also increase and the time spacing would decrease, which is 

the opposite of the observed behavior. 

5.2 Model for Temporal Separation of Incident and Slow Wave Pulses 

Because the extra pulses were linear with respect to the input 

pulse amplitude, and because of their time behavior when the magnetic 

field was varied, it was decided to model the phenomenon as the 
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conversion of electromagnetic energy into electrostatic slow waves 

inside the plasma [l]. The waves are assumed to be launched at an 

upper hybrid layer, then travel diametrically through the plasma column 

to the opposite upper hybrid layer where they are converted back to EM 

waves and detected [2~5J. 

The waves are assumed to be electrostatic plasma waves obeying 

the dispersion relation [6,7]. 

w2 -1. 
(I.) 00 e I nw 

K = 0 = 1 - ....E. l n c (5.2) 2 A W-nw w -00 c c 

K V 2 

=~ where A (--t) and Vt w 
c e 

The dispersion relation has been solved numerically to find the 

so-called cyclotron harmonic waves and the results have been experi-

mentally verified (1,8]. We will use an approximate dispersion 

relation obtained by expanding K to second order in A so that an 

analytic form for the group velocity of the slow waves can be used in 

computing propagation delays across the column. The electron density 

will be assumed to have a parabolic variation with radius. 

Using the fact 

I (1.) 
n 

we find 

11 ().) 

1
2

(1.) 

= (~)n 
2 l 

K=O 

"' ). 1. 3 .. 2 + 16 

"' 
).2 

= 8 

Kl (K+n) I 



"' A. 3 
48 

2 w 
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With the notation ---.E. = x2 
2 

and w -= 
w 

c 
n ' the dispersion rela-

w 
tion is approximately c 

'\, 
0 = 1 -

A.2 
1-/..+- 1 1 3 WC 

X2( 2 ) {<A A )( 
A. 2 + 16 w -w 

1..2 2w 
+ ( c 

8 w- 2w 
c 

2w 3 3w 
__ c_)+A( c 
w+2w 48w-3w 

c c 

which to second order in A. is 

"' x2 
3A.X

2 
O=l---+------

rl-1 (4 - si) (s-22-1) 

Now let A= x2 , Z s-2
2 

c 

w 
c 

w+w ) 
c 

3w 

w+ ~w )} 
c 

151..2 x2 

2 (Z-1)(4-Z)(9-Z) - A(4-Z)(9-Z) + 3A.A(9-Z) - 151.. A= 0 

The group velocity is defined by 

and s:ince 

dw 
dK 

dsi ds-2
2 

1 
d/.. = dK d/../dK 

__ 1_=wLv =-n-v 
v2 K v2 G v ./A G 

..L ..1. 

2K 2 
w 

c 

(5. 3) 

(5.4) 

(5. 5) 

(5.6) 

We can find VG without solving explicitly for w Expanding the 

approximate dispersion relation and differentiating with respect to 

A , we find that the final expression for the group velocity is 



-102-

2 
w 

3 .....£. c~i + lOA. - 9] 
v Ir 2 w 

v = t c (5. 7) 
G n 2 w2 

3 (4 - n
2

) 2- 2n2(2 +~)+ 1 + ~(13- 3A.) 2 w w c c 

and A. is related to n by 

(5.8) 

Figure 5.2 shows the dispersion curve and ratio of VG/Vt 

predicted by the approximate theory. The numerical results mentioned 

above show that the group velocity should go to zero at n = 1, but the 

approximate expression is satisfactory for the experimental conditions 

in which the working frequency is always close to the local upper 

hybrid frequency. 

The density profile has a radius a which is approximately 

1.33 cm. We will use the normalized radius x = r/a. The normalized 

radius at which the upper hybrid layer occurs will be called L . 

For the case of a parabolic profile we have 

2 2 2 
(5.9) w (x) = w (1 - x ) p po 

2 2 1/2 w - w 
L {1 - c } (5.10) 2 w 

po 
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Although the time of flight should be computed from the 

integral of dx/VG , which would converge in this case, it was more 

convenient for the purpose of modeling the experiment to use 

T = where 

L 

<VG>= t J VG(x) dx 

0 

(5.11) 

As the magnetic field is increased, the radius of the hybrid layer 

increases, the slow wave pulses must travel further, and the 

temporal separation between the incident pulse and the SWP increases. 

This is shown in Fig. 5.3 and indicates that the experimental observa-

tions can indeed be explained in terms of slow waves being created and 

then reconverted to EM waves. Unfortunately in this model the dis-

tance traveled and the average group velocity approach zero at nearly 

the same rate when the magnetic field is raised to the value at which 

the hybrid layer is exactly at the center of the coltnnn, so the 

interval does not go to zero at a coil current of 250 amps. 

By examining Fig. 5. 3 we see that another drawback of the 

model is the unreasonably high electron temperature which must be 

assumed in order to make the predicted and obs erved pulse spacings 

comparable. 

These discrepancies point to a fundamental flaw in the mod.el, 

and they may be related to Gruber's claim [ 9] that the conversion 

process occurs in the volume of plasma inside the hybrid layer and not 

just at that layer. If the conversion process does occur in the in-

terior volume of plasma., then it is possible that the distance travelled 

by the plasma waves could approach zero more rapidly than the average 

group velocity as the hybrid layer approaches the center of the colwnn. 
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SLOW WAVE PULSE MODEL 
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A more likely source of error is the fact that the electron 

profile is probably not the parabolic distribution which was assumed. 

A more peaked distribution would reduce the time of flight, but at the 

experimentally early times in the afterglow (S. 50 µsec) the plasma pro­

file is expected to be fairly uniform. Finally, eq. 5.2 is for an 

infinite plasma and this will cause errors in the region of small µ 

near the hybrid layer which is approached as the time of flight de­

creases to its minimum. 

We see that the present model of slow wave pulses is inadequate 

in the electron temperatures which must be assumed and in the limiting 

behavior of the pred~cted pulse intervals as the static magnetic field 

is increased to the value for which the pulse center frequency equals 

the maximum upper hybrid frequency. Nevertheless, because the pre­

dicted behavior is in sufficient qualitative agreement with experiment 

and because the observed second pulse is linearly related to the input 

pulse power, we conclude that conversion of EM waves into plasma waves 

does occur in the present experimental arrangement. 

5.3 Relation to Echo Work 

In Chapter 3 a model for three-pulse echoes was developed which 

postulated the conversion of the applied microwave pulses into short 

wavelength plasma waves in a way which depended upon the plasma tempera­

ture. Although the model agreed in important ways with experimental 

results, it was not known whether such a temperature dependent conver­

sion actually occurred under the experimental conditions present. The 

slow wave pulses described in the present chapter demonstrate that the 

mode conversion process does indeed occur. The observed pulses were 
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on the order of 40 db below the applied pulse. This amplitude is the 

result of two successive conversion processes plus the loss from prop-

agating across the column, thus the conversion efficiency at the first 

UH layer must be appreciable. 

Of course, the conditions in the 3PE experiments are different, 

and there are factors which imply that mode conversion in that case is 

larger and factors implying that conversion is smaller than in the SWP 

experiments. According to Stenzel [10) the plasma temperature at the 

end of an RF breakdown pulse is about 1 eV at a density of about 

loll -3 cm . Thus the local temperature in a 3PE experiment can be as high 

as in the SWP experiment, but the density is one to two orders of mag-

nitude less. This would tend to reduce the conversion efficiency, 

according to the model of Chapter 3. However, in the high density SWP 

experiments the microwave energy which actually reaches the UH layer may 

be significantly reduced due to the existence of an evanescent layer in 

which microwave propagation in the extraordinary mode is cut off.[11). 

This layer would be much less influential in a lower density plasma, and 

this consideration would tend to increase the significance of mode con-

version in 3PE work. 

5.4 Estimate of Conversion Amplitude 

H. H. Kuehl [3] has computed the fraction of incident power that 

is converted from an electromagnetic wave into a plasma wave when the 

plasma is inhomogeneous only in the direction of propagation. When the 

interaction region is small compared to a free space wavelength, which 

is also the case in the present echo experiments, Kuehl obtained the 

power conversion coefficient 

T = p 
4~ (5.12) 



where Tl 

2 
(J) 

c 
= m2t3 

aw2 
__.£. 

dlt X=UH layer 
2· 2 

(J.) - (J.) 
c 
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X=~X 
c 

(5 .13 ) 

(5.14) 

In his model, he assumed that the density rises smoothly 

from zero up to a constant value far away from the upper hybrid region. 

Here we will use the maximum plasma frequency to evaluate q( 00 ) from 

is about 

2 
q 

[ m 2 - m( mrm ) ] [ m 2 - m( m-m ) ] 
p c p c (5.15) 

In m:y 3 PE experiment, m = 2rc x 2. 5 x 109 , the bandwidth 
2 

100 MHz ~ ~ mpo suppose m is halfway between m and 
41'( (J) , c 
d cc d c 

, and let dX = o; dx = (ii" , where a = 1. 33 cm 

then we have 

2 """' 3 q -

(J) 
- = c 

' 

2 'V 
(J.) 

po 

t3 = 

q( 00 ) ::::; 1. 73 

2 . 5 x 2rc x io9 
3 x io10 = 

1 1.97 x 1019 
:524 1.33 

2rc t3m roe 

(J) 2 1 l 11 ~ (...£) = 2.W ( 
(J) t3 

.524 

~ 2.87 

l 2 
) 

1 i 2rcl3ru 
+2--2rcf c 



-109-

~ ~ ~ = .334 
2.07 

Fram Kuehl's graphs, when ~ = .334 and q = 1.73 

T ~ .15 , or a conversion loss of about 8 db. 
p 

' 

Now estimate the conversion efficiency under the conditions 

of the slow wave experiment 

N ·max 

(J.) = 

= 4.8 x 1010 

2rr x 3 x 109 = 1.885 x 1010 

260 9 2rr x 301 x 2.5 x 10 = 1.356 x 10
10 

2 2 8 20 
wpo = (5.64) x 10 x 1\na.x ~ 1.527 x 10 

Suppose the critical cyclotron frequency is at 250 amps. 

Then we have 

2 
4.97 q = 

q ~ 2.23 

2 (m2 - (J.) 

~ 
c = 2 c 

(J.) -
(J.)9. 

2 
= (J.) 

c 

2 
- (J.) ) 

c 
2 mpo 

= 

2 
- (J.) co 

.486 

= 
2 

( (26) - 1) 
25 

2 
(J.) 

co 

For these parameters, Tp ~ .1 , which is roughly a 10 db 

conversion loss. This is not inconsistent with the observed slow wave 

pulse amplitudes being 40 db below the incident pulse power, since in 

the SWP experiment there are two mode conversions and additional losses 

in propagating through the plasma region between the two hybrid locations. 
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Thus Kuehl's model implies a significant steady state con­

version from EM waves to plasma waves for the conditions of my slow 

wave pulse, three pulse echo, and absorption experiments. His calcu­

lations make more plausible my explanation of the slow wave pulse 

experiment and my hypothesis of mode conversion after impulsive excitation, 

since in that case the ringing response is like a continuous driving 

source for plasma waves. 
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VI Summary and Conclusions 

This thesis has investigated three pulse cyclotron echoes(3 PE) 

in rare gas afterglow plasmas. The static magnetic field was parallel 

to the discharge tube, which passed perpendicularly through the short 

sides of a S-band waveguide. The experiment used the extraordinary mode 

of propagation in plasmas, and the static magnetic field was adjusted so 

that the center frequency of the applied pulses fell in the upper hybrid 

2 2 2 m = m (r) + m for some radius r , 
p c range of f'requencies. That is, 

where m 
c 

is the electron cyclotron frequency and mp is the electron 

plasma frequency. 

In Chapter I and II the experimental properties of echoes were 

shown to be incompatible with the existing models. The echo amplitude 

is a linear function of the third applied pulse amplitude, and this is 

in qualitative disagreement with the so-called collisional model, which 

invokes more rapid de-phasing of the higher energy electrons as the 

necessary non-linear mechanism. It was noted that the non-linear col-

lective oscillation model which Blum and Bauer used to describe two 

pulse echoes is too weak an effect to account for the observed echo 

strengths. 

Experiments on 3 PE in Chapter II showed that the electron 

density is the most significant parameter, especially with regard to the 

growth and decay of the echo following the first two pulses. The time 

interval between the second and third pulses must be the most important 

in creating the conditions for a linear echo after the third pulse. 

That is, the non-linearity operates between the second and third pulses. 

The electron density was shown to have a qualitative as well as 

l i ~. 
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quantitative effect on the echo, and this is not explained by echo models 

which depend upon electron-neutral collisional effects. 2 PE and 3 PE 

were seen to be similar in the lengthening of optimum pulse spacings as 

the electron density decreased. Periodic modulation of both the emission 

and absorption of the plasma was observed following the first two pulses 

for probably the first time, and the excited layers were shown not to 

interact. These additional methods of investigating echo processes will 

be helpful in formulating a satisfactory theory. 

A model containing the experimentally important parameters was 

developed. Because the actual experimental conditions are very difficult 

to handle theoretically, the model was based upon the much simpler case 

of the generation of plasma waves following an impulsive excitation for 

times so small that the original transient response has lost negligible 

energy to the plasma waves. The model produced an easily evaluated echo 

strength which is in better agreement with experiment than previous 

theories, especially in the dependence of the echo strength on the third 

pulse position for different densities. 

Because of the impulsive nature of the applied microwave signals, 

unstable electron velocity space distributions could be created. This 

was briefly examined and discarded as a possible influence in echo 

experiments. 

The possibility of converting microwave pulses into electrostatic 

plasma waves is experimentally verified for the particular geometry and 

plasma conditions of the echo experiments by the detection and qualitative 

theoretical explanation of slow wave pulses created inside the plasma 

column by the applied microwave pulses. This supports the mode conversion 
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echo model. 

Any extension of the work in this thesis shouJdfirst concentrate 

on improving the theory. The complexity would be very great if col­

lisions were included to damp the plasma waves and if the differential 

equation for the electric field is solved numerically to find the field 

at all points in space and time, especially if the actual waveguide 

geometry with its holes in the side walls is considered. 

Instead of attempting to deal with finite geometry effects and 

with boundary value problems, it would be better to explore as far as 

possible a local model, that is, consider the plasma response as a 

sununation of responses by independent regions in the plasma. The two 

frequency heating experiments tend to support this approach. A specific 

theoretical problem to consider is the power radiated in the form of 

plasma waves from a freely oscillating dipole layer located at the upper 

hybrid position in a semi-infinite plasma with only x dependent 

properties as a function of dipole energy density, electron density, and 

density gradient. 

Some method of experimentally detecting plasma waves created 

after the third pulse would be very desirable, although the low density 

and temperature of the afterglow plasmas would certainly suffer major 

perturbations in the form of sheaths by even the finest metallic probe . 

The present model could be extended to include 2 PE, but that 

would require the solution of a non-linear equation to find the damping 

of the first two pulses by thermal mode generation. For 3 PE, a non­

linear approach was avoided by the choice of the model. That is, the 

heating effects of the first two pulses were not considered in calculat-
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ing the subsequent energy transfer from the first two pulses 1transient 

responses into the frequency periodic hot layers in the plasma. It was 

possible, and in fact dictated by experiment, to consider the linear 

interaction of the third input pulse with the frequency periodic plasma 

conditions set up by the first two pulses. The exact manner in which the 

frequency periodic temperature was created was relatively unimportant. 

That is, given such a temperature distribution from some cause, there 

would be a linear 3 PE after the third pulse. On the other hand, describ­

ing 2 PE would require much more care in the exact interaction of the first 

two pulses. 

In conclusion, density dependent collective effects have been 

shown to be important in three pulse and two pulse cyclotron echoes. 

Although it is not an exact theory, the mode conversion model agrees well 

with experiment in several important ways. This new mechanism for echo 

processes deserves further study. 
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APPENDIX 

DISPERSION RELATION FOR A DELTA FUNCTION DISTRIBUTION 

In this Appendix we ~ill continue the derivation of the dielec-

tric function for a delta function distribution which was begun in 

Chapter 4. After eq. (4.11) we must specify the zero order state of 

the plasma. 

In coordinate space the distribution function is uniform, and 

the electrons are assumed to be neutralized by a positive background 

of fixed ions. The form of f in velocity space is determined by 
0 

(4. 6). 

It will be convenient to use cylindrical velocity space coor-

dinates as in the diagram, Fig. A.l. 

z 

Bo 

x 

With these coordinates we have 

e -+ -+ -;t; 
(V x B ) • V f = 

m o v o 

FIG A.l 

eB 
0 

m 

()f 8f 
0 0 

(Vy 8V - Vx av) 
x x 

Defining w = eB/m and using the relations 
c 

(A.1) 



av 
av cos l/J 

x 

al/J sin l/J 
av v 

x 

we obtain 

e-+-+ -+ 
- -(V x B ) • '\/ f 

m o v o 
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av 
av = sin l/J 

y 

al/J 
= 

cos l/J 
¥ v 

y 

which, when inserted into equation (4.6), gives us 

Clf af 
-

0 

+ w "''' "' 0 at C O'f' 

(A. 2) 

(A. 3) 

Thus we see that the unperturbed distribution function must be 

of the form (characteristics) 

f 
0 

Now the unperturbed orbits must be specified by solving 

-+ dr (t I) 
0 

dt' 

-+ 
dV (t') 

0 

dt' 

-+ = v (t') 
0 

e -+ + -+ A - - v ( t I ) x B = -w v ( t I ) x z 
m o o c o 

The solution can be expressed in matrix notation as 

( A.4) 

(A. 5) 
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-+ -+ 1 ++- -+ +, r (t-t') = r T(t-t 1 ) . v = r 
0 w 0 c 

-+ ++ -+ v' v (t-t') = R(t-t') . v = 
0 0 

(A. 6) 

where r and v are the values at t'=t and 

sin <P (1 - cos cf>) 0 

- (1 - cos cf>) sin ; 0 (A. 7) 

0 0 

cos <P sin <P 0 

Rij -sin <P cos <P 0 (A. 8) 

0 0 1 

and <P = w (t-t'). r' and v' specify the unperturbed orbits. 
c 0 0 

Now in this spatially uniform problem we can Fourier transform 

in space and Laplace transform in time to solve for E1 with real K. 
00 

i 1 (K,w) = J dr f 
0 

-+ -+ 
dt E

1 
(r,t) exp[-i(wt - K • r)] 

-+ -+ 
E1 (r,t) 

J dK J ~w1T El(K,w) 
(21T)3 

-+ -+ 
exp [ i (wt - K • r) ] 

c 

(A. 9) 

(A.10) 

The contour C is a straight line parallel to the real axis and 

in the lower half complex w plane, below all singularities of the 

integrand. This assures zero response before the sources are turned on 

at t = 0 . 



the 

-+ 
q 

-119-

Now Fourier transform the equation for E
1 

, eq. (4.11), introduce 

unperturbed or'bits, and use the spatial uniformity of f 
0 

-+ -+ 
t 

+++ 2J -+ iK•r 
J dV' J 

+ • v f dt' -iK •El (K,t) +wp dr e E (t' r') 0 
0 0 1 , 0 v' o 

0 
0 

(A· 11) 

t 
-+ -+ -+ 2 

-iK •El (K,t) +WP ++J 
J 

-+ iK•r 
dr e dV' 

0 J 
-+ -+ 1 # -+ 

dt' E1 (r-w T(t-t')oV,t') 

0 

of 
0 

x av' = 
0 

c 

0 (A.12) 

-+-+ 1-++ ,+ 
Now let q = r - - T(t-t )•V and note that the second term in w 

c 
is spatially invariant. By using equation ( A. 9) this becomes 

-+ -+ -+ 2 J -iK • E1 (K,t) +WP dV' 
0 

t 

f 
+ + of 

dt' El (K,t') • -+ 

av' 
0 0 

x 
i -+ # -+ 

exp(- K • T(t-t ') •V) = 0 
w c 

Because the derivative is evaluat.ed on the unperturbed path 

(A.13) 

given by equation (A.6), the integrand is a product of a function of 

(t'-t') and 'E
1 

(K,t ') • Then we will find the Laplace transfonn of 

equation (A.13) by using the convolution theorem 

00 

J dt 
0 

t 

e-iWt f 
0 

dt If ( t I) f ( t-t I) 
1 2 

We will use the electrostatic approximation in which 

-+ -+ -+ -+ 
El (K,t') = iK ¢(K,t') 

(A.14) 

(A.15) 
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By choosing the coordinate system as shown · in Fig. A.2 we will 

-+ 
need only two components of K In fact, only the special case of 

z 

k 

FIG A.2 

x 

Kn = 0 will be considered. -

By combining equations (A.13), (A.14), and (A.15) ·we have 

2 

{1 + ~ J dt J dV0 (t) iK 

0 

a~ 
--- exp [ -iwt 

-+ av (t) 
0 

+ _!._ K: • ~ < t) • v l} cp <K:, t > = o w 
c 

(A.16) 

For self-excited oscillations the bracket, which is the equiva-

lent dielectric function for electrostatic oscillations, must vanish. 

By using the coordinate system of Fig. A.2 we have 

and 

-+ -++ -+ wet wet 
K • T(t) • V = 2K V sin -

2
- cos("\jJ - -

2
-) 

-+ 
K • 

df 
0 

-+ av (t) 
0 

= K 
df 

0 

av (t) 
ox 

By using the transformation equations 

(A.17) 

( A.18) 
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v (t) cos ¢v + sin ¢v 
OX X y 

v (t) -sin ¢v + cos ¢v oy . x y 

¢ = w t 
c 

and their inverses, we can show 

av 
W- = cos(\jJ - ¢) 

OX 

ai/i 1 
.....:::..:t:.. = - - sin ( \jJ - ¢) av v ox 

and the expression for the derivative is 

af af K af 
0 

K -
0 cos(\jJ- ¢) - - --2. sin(l/J- ¢) av v a\jJ K av (t) 

OX 

If we now define 

2iK V w t w t 
G(l/J, t) = c c exp [ -iwt + -w-- sin - 2- cos (l/J - - 2-) ] 

c 

We can define the quantity in brackets in equation (A.16) as 

2 

where 

w 
K = l + j (Il + 1 2 ) 

00 00 

J V dV 
0 

a cS(V - V ) 
i{K [ o ] av v 

0 0 

(A.19) 

(A. 20) 

(A. 21) 

(A.22) 

(A. 23) 

(A. 24) 
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00 00 27T 

I 2 J av,, J v av J d\jl J dti {- ~ o (V - v 
0

) 

-00 0 0 0 

(A. 25) 

where we have introduced the delta function distribution in velocity 

space which is "created" at the position (O,O,V ) at t = 0 by the 
0 

applied impulse 

Integrate 

00 

Il = J V dV 

0 

Integrate f dV 

we have 

00 

w t w t 
ljJ, and set 2 c c sin over vi/ sin -- cos -- = 

2 2 

00 

J 
a o(V - V0 ) -iwt iK V 

d ti K av-< V ) e + exp [ w sin 

0 

by parts. Let w t = T , Q = w/w 
c c 

iK 

c 

KV 
0 --= w 

c 

- J 
0 

dt V exp[-iwt + i].l sin wct][l+i ].l sin T] 
0 

(A. 26) 

w t 
c 

w t] 
c 

(A . 27) 

].l . Then 

(A.28) 

We ~ill convert the infinite integral over the periodic function 

into an integral over one period. 

00 
00 

l 
n=O 

dT 
w 

c 
(A. 29) 
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iK 00 
2n(n+l) 

=-- l J 
dT -Hh iµ sin T ( 1 + i µ Sin T) I1 - e e v w 

0 0 2nn c 

iK 2n 
00 

J l -2nirill 
dT 

-iWT iµ sin T (1 + iµ --- e e e v w 
0 c 0 0 

where n has small negative imaginary part. 

Note that 
00 

I 
n=O 

-iK 
11 = w V 

c 0 

·n zrr 
en1 J i·µ s1'n T]e-inTeiµ sin T dT 

2i sin rm [l + 

0 

Divide this integral into two subintegrals 

2TI 

I nin -nTi iµ sin T 
e e e 

0 
2n 

I nin -nTi iµ sin T [iµ sin T] e e e 

0 

Now let T + T + TI 

TI 

Al J 
rrin -inT -inn i µ sin(T +TI) 

= e e e e 

-TI 
TI 0 

sin 

f 
-inT -iµ sin T d + I -inT -iµ sin T dT e e T e e 

0 -TI 

T] 

Reverse the range on the second integral and let T + -T 

TI 

Al· = 2 J cos[µ sin T + nT] dT 

0 

Similarly, 

(A. 30) 

, (A. 31) 

(A. 32) 

(A. 33) 

(A. 34) 

(A. 35) 

(A. 36) 
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'IT 

A2 = 2µ J sin T sin(nT + µ sin T)dT 

0 

'IT 

(A. 37) 

ll = __ -_K ___ J {cos(µ sin T+nT)-µ sin T sin(µ sin T + nT)} dT w v sin 'ITn 
c 0 0 

(A. 38) 

We have set K~ = K. Returning to 12 , equation (A.25), and 

performing manipulations analogous to those for 1
1

, we find 

'IT 

K 1 J 12 =~sin Tin cos(Tn + µ sin T)dT 

Using 

c 0 0 

KV /w 
0 c 

2 
w 

µ ' the final answer for K is 

1 + _..E_ [+ _K_ 

K
2 w v dT {cos(Tn + µ sin T) 

c 0 
0 

(A. 39) 

- cos(µ sin T + nT) +µsin T sin(Tn +sin T)} (A.40) 

2 'IT 

K 1 + -1-s-i_n_l'IT_n-J sin T sin(nT +µsin T)dT 

WC 0 

(A. 41) 

Now the dielectric constant can be easily evaluated for any n 

and µ by numerical integration. Test the answer in the cold plasma 

limit by letting µ ~ 0 and keeping zero order terms in µ • 

Expand the integral for Hmall µ 
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We find that 

2 2 w w 
lim K = 1 + = 1 - E 

2 w2 2 2 µ -+ 0 w - w w (1 - -) c c 2 

(A. 42) 

w c 

which is the usual cold plasma result. 

Now as an aid to computation we will locate the points where 

the dispersion curves for real K and w cross harmonics of the cyclo-

tron frequency. Expand K assuming Q - n is small. 

Examining just the integral we have 

7T 

J sin x sin(nx + µ sin x) = J sin x[sin nx cos(µ sin x) 

0 0 

+cos x sin(µ sin x)] (A. 43) 

where we have changed T to x . By using well known identities [l] 

this becomes 

7T 00 

K = J sin x(sin Qx {J
0

(µ) + 2 l J 2m(µ) cos(2mx)} 
m=l 

00 

+cos nx {2 l J2m+l(µ) sin(2m+l)x}dx 
m=O 

(A. 44) 

After some manipulation we find that the series expansion for K 

is 

K = 
2 

w 
1 + _.E. 

2 w 
c 

00 

+ L n J (µ)[--1 __ 

0 2m+l (2m+2)2n2 
(A.45) 



-126-

Now look for solutions near multiples of 

Near Q = 0: 

2 
'\, w 1 

K = 1 + -1- Jl (µ) Q 
w 

c 

w 
c 

(A.46) 

K = 0 when J
1 

< 0 for 3.8 < µ < 7.1 so the zero 

frequency solutions are near µ = 3.8 and 7.1. 

Near n = 1: 

2 J (µ) J2(µ) 
'\, 

w 
1 + -1?. { 0 } K = 

1-rl 
+ 

rl- 1 2 w c 

This implies 

2 w 
Jo(µ) - J2(µ) = __£ (1 - Q2) 

- w2 
p 

(A. 47) 

<A.48) 

Thus the solutions pass through Q = 1 near µ = 1.84 and 5.33 . 

The numerical so1utions- of eq. (A~41) are shown in Figs. 4.1 

and 4.2. 

Reference for Appendix 

1. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical 

Functions, U. S. Government Printing Office, 1966; Equations 

9.1.42 and 9.1.43. 


