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ABSTRACT

The properties of optical parametric fluorescence and
parametric oscillation are considered in detail. Parametric fluores-
cence occurs when a pump light source (usually a laser) is incident
on a nonlinear crystal; an input pump photon is "split" into two new
photons whose energies sum to that of the pump. The frequencies of
the fluorescence output can be tuned by varying the nonlinear crystal
refractive indices. In a parametric oscillator, an optical resonator
_is used to provide feedback at the fluorescence frequencies so that
coherent oscillations occur. The result is a coherent, narrow band-
width light source which is wavelength-tunable over thousands of
angstroms.

For use in theoretical discussions, the nonlinear equations
which describe three-wave parametric interactions are derived from
Maxwell's equations. The interaction equations are given in a general
form which exhibits the spatial and temporal dependence of the fields.
The equations are solved for the case of a steady-state, non-depleted
pump, parametric amplifier.

The power, bandwidth, and angular dependence of parametric
fluorescence are theoretically discussed in detail. Experimental mea-
surements using a 1.06u, NA:YAG laser are in good agreement with the
theory. The experiments constitute the first observation of parametric

fluorescence in the infrared.
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The theoretical properties of parametric oscillators are dis-
cussed using a simple but rigorous Fabry-Perot analysis. The analysis
| gives the threshold and oscillation frequencies of a parametric
oscillator and the results are used to provide some insights into an
oscillator's bandwidth and stability. The rise time of a pulsed para-
metric oscillator driven by a Q-switched pump is analyzed rigorously
for the first time. The analysis gives a minimum peak pump power for
oscillation which can be substantially larger than the "ew" threshold

power.

Measurements on a 1.06u-pumped, internal, LiNbO_, parametric

3
oscillator are presented. The threshold, bandwidth, mode spectra, tuning
range, and time behavior are discussed and compared to theory. The
experimental results show good qualitative agreement with theory except
that the bandwidth is nearly an order of magnitude smaller than expected.
Peak power conversion efficiencies of 50% are observed along with 10%

average power conversion. Several suggestions are made for improving

the performance of this type of parametric oscillator.
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Chapter 1

INTRODUCTION

The first coherent light source flashed on in 1960 [1]. Since
that first demonstration of a ruby laser by Maiman, many successful
efforts have been made to improve laser operation, to increase the
number of available wavelengths, and to apply this intense light
source to the solution of practical as well as research problems. One
such success was the demonstration of second-harmonic generation by
Franken, et al in 1961 [2]. Each laser was then capable of producing
at least two frequencies if suitable doubling materials could be
found. Another major advance occurred in 1965 when Giordmaine and
Miller reported the observation of optical parametric oscillation [3].
Driven by a laser, the optical parametric oscillator produces a
coherent light output which has all the properties of ordinary laser
light but which can be continuoﬁsly tuned over a wide wavelength
range. By using parametric oscillators, tunable coherent light can
now be produced at wavelengths ranging from the infrared at 9.6u [4]
all the way through the visible region to 0.4u [5,6]. The advent of
the parametric oscillator has thus greatly increased the useful poten-
tial of the laser.

This thesis discusses many of the properties of the optical
parametric oscillator (OPO) and of the basic physical process which
drives it, optical parametric fluorescence. For those who are unfami-
liar with this new and rapidly changing area of quantum electronics
and nonlinear optics, the following list briefly defines some of the

terms which appear frequently in subsequent chapters.
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1. Nonlinear crystal. Parametric oscillation can occur

because some materials have a nonzero, nonlinear component in the
dielectric polarization. That is, P = €E + dE2 and d # 0 . Any
material which lacks inversion symmetry can have this property and

is called '"nonlinear". For OPO applications, high optical quality is
required so all materials used to date have been crystals*. In addi-
tion, the crystals used so far have been birefringent so that ''phase-
matching'" can be achieved (see item 4 below). This last restriction
has severely limited the number of crystals which can be successfully

used in parametric oscillators.

2. Pump, signal, and idler. These terms are carry-overs from

microwave parametric devices; they name the laser which drives the
OPO (the pump) and the two lower frequencies which are produced by the
parametric interaction. By convention, the signal frequency is

greater than or equal to the idler frequency.

3. Doubly-resonant and singlv-resonant. An OPO is constructed

by using a high-Q optical cavity to provide feedback at the signal
frequency and perhaps also at the idler frequency. If the optical
cavity is resonant at both the signal and idler frequencies, the OPO
is called "doubly-resonant'. If feedback occurs at only one frequency

(either signal or idler), the OPO is '"singly-resonant'.

4., Phase-matching. In normally-dispersing materials, the

polarization wave generated by the nonlinear mixing of two fields will

= : _ :
See Ref. 7 for a good summary of nonlinear materials available up to

1970.
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usually travel at a different velocity than the "free" wave it radiates.
The fields produced at different points in the material will thus be
out of phase and will interfere destructively throughout most of the
material. This interference will prevent efficient parametric interac-
tions. Giordmaine [8] and Maker, et al [9] simultaneously realized

that the use of birefringent materials could eliminate this problem. By
suitably selecting the polarization directions of the interacting
fields, the phase velocities of the waves could be made equal. This
equalizing of phase velocities is known as "phase—matching".or "index-

matching" since the phase velocity is related to the index of refraction.

5. Phase-matching angle. The two different waves which can

propagate in a birefringent material are known as the "extraordinary
wave" and the "ordinary wave'. The index of refraction seen by the
extraordinary wave can be changed by changing the direction the wave
propagates through the crystal [10]. The angle between the z(optic)-
axis of the crystal and the extraordinary wave vector is called the
"phase-matching angle'. In most parametric oscillators, this angle is
the one between the pump propagation direction and the crystal z-axis.
This brief introduction should help to clarify some of the
discussions in subsequent chapters. The following chapter uses
Maxwell's equations to derive the nonlinear interaction equations
which describe a general three-wave interaction in a nonlinear material.
A steady-state solution for the optical parametric amplifier is
also presented. Chapter 3 discusses the properties of optical

parametric fluorescence. After a review of the basic theoretical
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aspects, experimental results in the infrared are compared to theory
with good agreement. The experimental observations constitute the
first measurements of optical parametric fluorescence in the infrared.

Chapter 4 discusses theoretically the important parameters of
parametric oscillators including threshold, rise time and bandwidth.
The OPO threshold is found using a simple but highly useful Fabry-
Perot analysis. The risetime of a pulsed parametric oscillator driven
by a Q-switched laser is derived rigorously for the first time.
Chapter 5 presents observations on the properties and operating
characteristics of a 1.06u-pumped parametric oscillator. Good power
conversion efficiencies are reported and suggestions are made for

further improving the performance of this type of OPO.
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Chapter 2

NONLINEAR INTERACTION EQUATIONS

A. Introduction

This chapter is devoted to deriving the differential equations
which describe the changes in an optical field due to a nonlinear
polarization. Previous derivations of the nonlinear interaction equa-
tions either have assumed steady-state, harmonic-time dependence [1,2],
considering only spatial variations, or have expanded the fields in
eigenmodes of a cavity resonator [3,4], thus treating only the time
variation of the field amplitudes. Phase considerations have been
limited to the case of constant phase, with the relative phase be-
tween the waves chosen for maximum power transfer between the fields.

In general, both the amplitude and phase of a wave driven by a non-
linear polarization can vary and such variations can occur both in space
and in time. The derivation presented here gives the interaction equa-
tions in a general form which allows for both temporal and spatial
variations in the phase as well as the amplitude of the separate fields.

To derive the interaction equations, a nonlinear polarization
term proportional to the square of the total electric field is added
to Maxwell's equations. Using various approximations, the equations are
then simplified to find the coupled equations describing the changes in
the electric fields of interest. A steady-state solution of these

equations concludes the chapter.
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B. Derivation of the Interaction Equations

The starting point in the derivation is Maxwell's equations in

MKS units for a polarizable, charge-free medium:

>

= oD >
VXH—E'FJ (2.1)
->
z_ _ 3B
V# Ewm g (2.2)
veDd= 0 (2.3)
->
VeB= 0 (2.4)
The necessary constitutive relations are
(a) P=ecE+3P
o
() =
(c) J= of ; (2.5)

Substituting Eq. (2.1) in (2.2) and using (2.5) gives the vector wave

equation,
> 2 33,
-.). ~
-VXVxE=v2E..v(v.E)=uga_E+u S__(g.ﬁ)_,_u __NL (2.6)
o ot o 8t2 o Btz

where 0 = o(w), U = uo , and the tensor quantities in (2.6) are de-

fined by
(a) [e(@]y, = e {8,+ Dy @]y,

(b) (PNL)i = dijk EjEk
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(c) D = €g*E+ P ” (2.7)

The subscripts i, j, and k refer to arbitrary cartesian directions
and summation is assumed on repeated indices. Equation (2.7c¢) is a
direct result of Eqs. (2.5a), (2.7a), and (2.7b). The quantity XL(w)
is the usual linear dielectric susceptibility, o(w) is an "effective
conductivity" to account for any losses, and the nonlinear polariza-
tion term is gﬁL . The origins of the nonlinear polarization have
been discussed by a number of authors [1,4,6] soin this discus-

sion, the nonlinear term is a given quantity. Although Eq. (2.3)
requires V °3 = 0 , for most applications the anisotropic character
of the medium can be neglected so that V 'B = gV E = 0 . Making

this assumption assumes that B and E are parallel (or equivalently,
Xij = Xsij where X 1is the total optical susceptibility). This
assumption is not strictly true in an anisotropic medium, so in order
to trace the polarization source for each component of a radiated wave
back to the wave equation, Eq. {2.6), the following analysis must be
carried out in general vector form with V- 3 =0 and 3 given by
Eq. (2.7c). An analysis of this type is given in Ref. 1 and an
example of when such considerations might be important is given in

Ref. 7. In the foilowing treatment, this complication is ignored since
it adds only a small and unimportant correction to the final result.

Elimination of the V  E term in Eq. (2.6) also allows the vector

nature of the differential equation to be removed.

The following assumptions about the fields of interest are also

useful:
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1) The field amplitude and phase variations occur only in the
direction of propagation, taken as the z-direction for each wave (not
the same as the z(optic)-axis of the crystal). When double refraction
effects are present, this assumption is not strictly true, since energy
flows in a direction normal to the index surface. Here such problems
are neglected by assuming the fields extend far enough in the trans-
verse (x and y) directions soO that spatial separation of the waves does
not occur. The influence of double refraction on parametric gain is
discussed in Ref. 8. All differences in propagation direction will be
included in the phase mismatch Ak discussed below.

2) Time variations are nearly harmonic and consequently only
fluctuations slow compared with the optical frequency are considered.

3) The phase fronts are planar, although a general transverse
variation of the fields will be retained. This assumption is equiva-
lent to a near-field approximation for Gaussian beams wherein dif-
fraction effects are neglected. The transverse beam profile is thus
independent of 2z and the phase is independent of the transverse coor-
dinates x and y.

4) There are only three fields of interest designated the
"signal', "idler", and "pump" and represented by subscripts 1, 2, and
3. The frequencies of the three fields obey the relationship

- > > "
Wy wl + W, and by convention, w3 W, > Wy

With the above assumptions, the fields can be written as

ilw.,t-k,z)

+ complex conjugate]

(a) EJ. (“’j’kj

g = j
sX3¥sZ,t) = ) E, (x,y,2,t)e

A



s 1 e

-> —_ i¢-(z’t)
(b) Ej(x,y,z,t) = Ej(x,V,Z,t) g TR

Y253 o a (2.8)

The quantities w, and kj are chosen so that in the absence of
3 =x 5
losses and the nonlinear interaction (U = U, PNL = 0}, the wave

' -
equation is satisfied when Ej(r,z,t) = constant vector and ¢j(z,t) =

constant. This implies the relationship

2 2
k., =uew . Z.9
3= Yore"s L

v

>
The previous assumption of V ¢ E = 0 allows the linear dielectric

constant to be defined as ej = eo(l + Xj(uﬁ)) «» The complex ampli-
tudes Eﬁ(r,z,t) in Eq. (2.8) are the traveling wave amplitudes and
thus for resonant fields are only half of the maximum field amplitude.
The wave equation must be satisfied separately for each fre-
quency of interest. Equivalently, "nonsynchronous" terms which vary
at optical frequencies other tham those satisfying w3 = W + w, will
average to zerc over periods long compared to an optical cycle but
short compared to time variations of Ej(r,z,t) . Consider first the
signal wave of frequency Wy . The assumption that the field ampli-

tudes vary slowly in one wavelength and during one optical cycle can

be written as

s >
9 E1 BEl
() o A % g
0z
(2.10)
3231 aEl
(b) << W, = .
8t2 1 3t

All derivatives of the nonlinear polarization atre neglected so that
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Putting Egs. (2.8) and (2.9) into Eq. (2.6) and using the above assump-

tions gives

-
BEl ny i0y \BEI on;
e e S gEas tap :
5 11 -
fom) o 242 _iAks (2.11)
- d:E, E, e
2g.c 273
1
> > >
where Ak = |k3— kl- kzl is the phase-mismatch, Vuoel = nl/c and

nlis the index  of refraction at W) .

A brief diversion is useful at this point to discuss the mis-
match term Ak . Examination of Eq. (2.11) shows that if Ak # 0 ,
the contributions to the signal mode amplitude from differential path
elements dz will get out of phase and interfere destructively in a
distance 2c = m/Ak . This distance is known as the 'coherence length."
On the other hand, if Ak = 0 , the entire nonlinear crystal acts as a
phase-arrayed dipole radiating in the direction of propagation. The
condition Ak = 0 is equivalent to requiring that the phase velocity
of the nonlinear polarization wave equal that of the radiated (free)
wave in the crystal.‘ Consequently, the requirement Ak = 0 is known
as the '"phase-matching" condition or, since k = nw/c , as "index
matching".

Tﬁe index-matching condition Ak = 0 is always satisfied in

vacuum, but is ordinarily not possible in normally dispersive materials

where n(w) increases with w . Giordmaine [9], and Maker, et al [10],
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however, concurrently realized that index-matching could be achieved
in birefringent materials by suitably selecting the direction of
propagation and the polarizations of the fields (see Appendix I).
: ol Oy +3
A unique set of polarizations e, e, and e for the three
modes is now selected on the basis of the nonlinear crystal class and

the desired parametric process. An effective nonlinear coupling coef-

ficient can thus be defined by

e, 1 233
dijk ei ej e, (2.12)

where i, j, and k refer to cartesian directions and summation is
implied by repeated indices. The exact form of d for various crys-
tals of interest is given in Appendix I.

When the distributed losses represented by cj/Ej at each
frequency are small, GO /2u3€j =2 0 . The resulting equation describ-

J

ing the time and spatial dependence of the complex field amplitude at

w, 1is

oE n, oF © iw,dn

1. .1 & e 1 1 & -iAkz

St Ee A 2e ¢ E3ts e @A
where a, = nlc/(Zelc) is the fractional field loss per unit distance
at wl .

A useful normalization for the field amplitude at wj is
defined by
Wy /2
Ej(x,y,z,t) > (;f? uj(x,y) Aj(z,t) . (2.14)

J
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The transverse dependence of the fields has been explicitly

factored out in the function uj(x,y) The amplitudes Aj have the
useful physical significance that A? is proportional to the photon

flux (photons/sec) at the frequency w, - The transverse functions uj(X,Y)

are normalized so that

® oo

f j u?(x,y) dx dy = 1 . (2.15)

-0 =00

With this normalization the time-averaged power at uﬁ (averaged over
an optical cycle) is P, = l-e cw IA,!Z
j -2 03]

When (2.14) is put in Eq. (2.13), and Eq. (2.15) is used to

integrate out the transverse dependence, the final expression is

8"1

1 l ] * -iAkz
-7; e lA1 = iI'A2 A3 e (2.16)
where
d(w w w3u 142
P Bl 0 04 1 (2.17)
2 n1n2n3€
and
= f J U u,u, dx dy . (2:18)

The value of I is evaluated in Appendix II for various combinations
of the functions u.j .
A similar derivation gives the equations for the idler and

pump fields. The results are given in Eqs. (2.19) and (2.20):
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* %
8A2 n, o
2 * 1Akz
T'i' T-t—"‘ a2 A2 il A1A3 (2.19)
JA n, JA
3 53 e iAkz
" + ST + a3A3 = -il AlAZe : (2.20)

The phase variation can be treated separately by using Eq.
(2.8b) in Eqs. (2.16), (2.19), and (2.20). The resulting equations

for the real amplitudes and phases are

JA 8A1

l l i :
(a) s a,A = r A2A331n 8(z)
8A2 n 3A2
2 e )
(b) i + e E ot {:IZA2 =T A1A3Sln 0(z)
JA n, oA
3 373 ey .
(c) B + s + a3A3 = -T AlAZSln 0(z)
90 1 3
(d) BT 5t Wghy w Myl - Rydy)

. s e 1Az
A TR T Ay

Ycos 6(z) (2.21)

where 6(z) = ¢3(z,t) - ¢1(z,t) ~ ¢2(z,t) - Akz = Ap - Akz and all
second order terms in ¢ such as (3¢/3t)2 and 82¢/3t2 have been
neglected. Equation (2.21d) is actually a sum of three equations com-
bined to exhibit the functional dependence of A¢

Equations (2.21) are very similar to the amplitude and phase
equations derived by Lamb [11] using the concept of cavity modes in
Maxwell's equations. In Lamb's analysis 0OE/dz and 0¢/3z are both

zero, with the only spatial variation of the fields occurring in the
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cavity modes. In addition, there is a "mode-pulling'" term on the left-
hand side of the phase equation, (Eq. (21d) above)). This term is

(wl - le) where w, 1is the actual oscillating frequency and

1

le = E%E is the mth cavity mode frequency for a cavity of length L .
Although frequency-pulling effects may be important in determining the
exact frequency of a resonant field, such complications are neglected
here. Note that in the present treatment, a finite value for Ak can
play the same role as the frequency-pulling term in Lamb's equations.
Equations (2.16) - (2.21) are the principal results of this

section. These equations can now be used to derive various properties

of three-wave optical parametric interactions.

C. Steady-State Solution

The steady-state solution to Eqs. (2.21) is the simplest case to
consider and gives some insights to the characteristics of three-wave
parametric interactions. In order to further simplify the solution of
the equations, the pump field is assumed to be unaffected by the inter-
action (nondepleted pump) and each field amplitude is allowed to carry
its own phase. The small gain solutions found with these approximations.
have a particularly simple form and are useful in discussing parametric
fluorescence and in calculating the threshold of a parametric oscilla-
tor. Steady-state solutions which include pump depletion are given in
Ref. 1.

The equations to be solved are Eqs. (2.16) and (2.19) with

9/3z =0 :

oA A
[ty % —iAkz
(a) E = ig A2 e



~

(b) (2.22)

Q|
N'
!
i
a9
*
>
i
o

where
g =T A ‘ (2.23)

All losses in the nonlinear material have been neglected so a;= a,= 0,

The solution of Eqs. (2.22) is facilitated by the substitutions [7]

Al(z) = mlexp(Y -1 %%) z

A;(z) = m; exp(y + i %%) z (2.24)
where oy and m; are independent of =z . Substitution of Eq. (2.24)

in Eq. (2.22) gives a determinantal equation for <Yy whose solution is

P i, @.29

The boundary conditions are taken to be

id.
e I e g B (2.26)

Aj(O) = AjO

where the amplitudes AjO and phases ¢j0 are real quantities. Using
these boundary conditions and solving for the fields at the output of

the nonlinear crystal gives

A (2) = (oA, + B*AZO) e

il
~
Q*
>

A5 (%) +BA ) e (2.27)

where
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o = (cosh YL + iék-sinh YL) exp(- EAE&)
2Y 2
B~ = 3B Saohive e [-4 (e ~ A§&)] ) (2.28)

The nonlinear crystal length is £ and A¢ = ¢30— ¢10- ¢20 is the
initial value of the relative phase. Note that when Ak # 0 ,

Ad(R) # Ad as expected from Eq. (2.21d). For collinear propagation,
the phase-mismatch is

i,
Ak = k- kl— k E{n3w3— nlwl— nzub) . (2.29)

3 2

Equations (2.27) and (2.28) are the solutions for a low-gain paramet-
ric amplifier with inputs at both wy and Wy .
An optimum value for the initial relative phase can be found

by examining the signal output power. From Eq. (2.27) the signal power

atlz = L fe

and

P (8) = [a (®)]% = A% + B® + 2B sin(A¢ - ©) (2.30)
where
2
2 . Do " AL
A ]aAlol = A 1+ ¥ sinh“yg) (2.31)
i §o.um gl Ty
B —IBAZOI = Ay YZ sinh™y&% (2.32)
_ -1 Ak sinh Y&
S an 2y cosh YQ) (2.33)
The signal power will be maximum when A¢ - £ = m/2 . Consequently,
the optimum relative phase A¢m is
cot Mg = ~tan g = - 55 tanh VL . (2.34)
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This result has also been derived by Smith [12]. The maximum signal

power is
w w
- 1 R . % 2.%
[1>l(52,)]malx = PlO e (Plo + ™ P20> £° + 2(‘”2 PlOPZO) f(1+£7)
(2.35)
where
f =& sinh v& (2.36)
i
d P ewAz/Zi the i t £ & T t t elth
o = i - S e npu ower . npu a e er
an 50 OC 4340 P P a 4 puts

wl or w2 will be amplified to produce an output at wI 0f course,

the same conclusion also holds for the field at wz.
If the one or both of the inputs to a parametric amplifier have
randomly varying phases or if the pump phase fluctuates (non-coherent

pump [13,14]), A¢ will be a randomly varying function of time.

In this case, there is no correlation between the inputs at wl and

w, and the last term in Eq. (2.30) will average to zero. The net

2
effect is to reduce the gain of the parametric amplifier [14]. The
signal output power in this case is
gh gz_ 2
Pl(Z) = PlO + (Plo -+ B; on) Yz sinh ¥4 & (2.37%
The travelling-wave parametric amplifier will thus work even for completely

incoherent sources although the gain is less than when the inputs are

perfectly coherent.
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Chapter 3

OPTICAL PARAMETRIC FLUORESCENCE

A. Introduction

The steady-state solution of the nonlinear interaction equations
found in the preceding chapter gave the outputs of an optical paramet-
ric amplifier in terms of its inputs. An important quantity for any
amplifier is the noise of the device. That is, what is the amplifier
output with no external input? In a parametric amplifier, the source
of the noise is a process called "optical parametric fluorescence'.
This fluorescence or ''parametric noise'" can be viewed aé the nonlinear
optics analog to the familiar spontaneous emission which produces the
noise in a laser amplifier. The analogy goes even further. In a
laser, the magnitude and spectral width of the spontaneous emission de-
termine the gain (threshold) and the linewidth of the laser output. In
a parametric oscillator, it is the parametric fluorescence which gives
the threshold and bandwidth of the device.

The phenomenon of parametric fluorescence is illustrated schem-
atically in Fig. 3-1. A pump field at W, is incident on a nonlinear
material and there are no other inputs. The pump interacts with the

material to produce output signal (wl) and idler (wz) frequencies which

satisfy the relation

W, =W, +w (3.1)

R 2 :
Although there are an infinite number 6f frequency pairs which can sat-
isfy Eq. (3.1), the parametric output is limited by the phase-matching

requirement to the frequencies and directions which can also satisfy
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Figure 3-1. Generation of optical parametric fluorescence. The
pump field at w, generates new frequencies w; and
w2 by interacting with the nonlinear crystal. The
detector accepts only those frequencies produced
within the cone of half-angle 6

the condition

bk = [E, - kK, -k | n/2 . (3.2)

1t 2|

The length of the nonlinear crystal is % and Ej is the wave vector
of the field at uﬁ .

A useful way of viewing parametric fluorescence is to consider
it as a quantum—meghanical photon scattering process in the nonlinear
crystal. Because of the crystal nonlinearity, there is a finite prob-
ability that an input pump photon will "spontaneously" split into two
new photons. Conservation of energy then gives Eq. (3.1) and conserva-
tion of photon momentum gives Eq. (3.2) with Ak = 0 . The process can
also be viewed as parametric amplification where the amplifier inputs
are the uncorrelated zero-point vibrations of the electromagnetic
field. Parametric fluorescence is thus a direct demonstration of the

interaction of a physical system with the zero-point energy of the elec-

tromagnetic field.
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This chapter studies both theoretically and experimentally the
properties of parametric fluorescence. A review of the theory of
parametric fluorescence is presented first. Studies of total-emitted
fluorescence power are then presented. Finally, the fluorescence band-
width and angular distribution are studied and the theoretical predic-
tions are confirmed by the first experimental measurements of narrow

bandwidth infrared-pumped fluorescence.

B. Theory

The phenomenon of spontaneous parametric fluorescence was first
discussed in 1961 by Louisell, Yariv, and Siegman [1]. Since that
time, comprehensive theoretical treatments have appeared [2-4], along
with numerous experimental observations [3,5-16]. A completely rigor-
ous theoretical treatment of parametric fluorescence requires a quantum
mechanical analysis [2,4]. A semiclassical analysis gives the correct
results, however, and is very appealing because of its simplicity. The
following analysis follows the plane-wave theory of Byer and Harris [3].

Consider an interaction of plane waves in a parametric amplifier.
The amplifier is driven by the pump field at W, and has inputs at
both the signal and the idler frequencies. For calculation of the sig-
nal parametric fluorescence output at Wy s these inputs are not
externally applied but are assumed to arise from the zero-point energy
of the electromagnetic field. That is, there is an input energy flux

of Aw/2 per blackbody mode at both w, and The differential

i 2.°
inputs are thus given by the product of the energy per mode multiplied
by the appropriate velocity in the crystal and by the differential num-

ber of modes which can interact in the crystal. For the idler input at
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w2 , the result is

h ’ d(_l.)_?-_) =’Hu)2c dk2
20 Brg T Ty |y d

(3.3)

Since this is a plane-wave analysis, A 1is the cross-sectional area
of the crystal (or pump beam for finite beams), c/n2 is the idler
velocity in the crystal, and ‘A is Planck's constant.

Using the geometry of Fig. 3-2 and assuming cylindrical symmetry

-E'(wi)

-k-z (w 2)

s’ Ak
k3 (03) v

e S
ko)  k20w20)

Figure 3.2 Geometry for parametetric fluorescence. The collinear

frequencies wjp and w9p are assumed to be
exactly phase-matched (|Ak| = 0).

about the pump allows the kz—space volume differential to be written as

d°k, = 27 sin Y dY

2 W

dwz (3.4)

w
| =
WiN w

2
2
c

>
where |k2| = k2 = nzwz/c . From Eq. (3.1), dmz = —dwl and for small

angles and IAKI << k2 , U dp = (kl/k2)2¢ dd . Ignoring the minus sign

and using Eq. (3.4) in Eq. (3.3) gives

P ﬁwzw n2
D=~ 6 a0 aw, - (3.5)
0 20¢2m?ec | »

Since the signal and idler inputs are uncorrelated, Eq. (2.37)
can be used to find the signal power at the output of the nonlinear

crystal. Because the zero-point energy of the electromagnetic field
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cannot be observed directly, the observable signal power is Pl(l) -
Plo . Using the relation PlO
(2.37) gives the signal output as

= d(Pl/A)0 = (wl/wz) d(P?_/A)0 » Eq.

P w P 2
d(j%J = 2 al~d(7§) Ez-sinhzyl (3.6)
2 0 v
where from Eqs. (2.17) and (2.23)
2
d w,w P
2 2.2 ey
g =1 & = (—-3—) ‘ (3.7)
3 2€3n n.n c3 A
o 273

The results of Appendix II, Eq. (II.8), have been used to evaluate the

overlap integral I and P, is the total pump power.

3
The parametric gain is usually very small so g << Ak/2 and

Y = iAk/2 . Using this limit and combining Eqs. (3.5)-(3.7) gives the

within dw, and contained in the angle

differential signal power at wy 1

¢ dp as

ar, = K22P3 sine™ (ALY b ad v, (3.8)

where sinc x = sinx/x and

n dzﬁw4w
1 ji i
£ = i (3.9)
2(2ﬂ)2€3c5n n
o 2°3

Notice that the area A does not appear in Eq. (3.8); dPl depends only
on the total pump power rather than the pump intensity. The fluores-
cence power is thus independent of the pump area (degree of focusing)

and even the pump cohérence [4].

Most of the interesting properties of parametric fluorescence
are contained in the phase-matching term involving Ak . With the
geometry of Fig. 3-2, the magnitude of the phase-mismatch for small

angles is given by
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Ak = k3— kl— kz +, -Z-W = (3.10)

Although Eq. (3.10) could be used directly in Eq. (3.8), a useful ap-
proximation is found by expanding kl and k2 in Taylor series about
the collinear phase-matched frequencies. Retaining terms up to second-

order in frequency gives

M = b w - b + Go? (3.11)
o | i
where
kg
Eis 2&0 3 (3.12)
20
3k 3k
1'%10 2190
; szl azkz
TR + (3.14)
1 Z awz w awz w,
1 Byq " 98,y [Uog

The frequency in Eq. (3.11) is defined as the deviation from the col-

linear frequencies (w=w,- wlo) and the collinear frequencies are

L
assumed to be exactly phase-matched (k3= klO + kZO)'

Examination of Eq. (3.11) gives several qualitative results. The
fluorescence power is emitted in a cone about the pump direction with
each direction ¢ defining a different phase-matched frequency. For
b03>0, higher frequencies (w1.>“ﬁ0) will phase match at larger ¢
For bo‘<0, lower frequencies (w1<'wlo) will phase-match off the col-
linear axis and there is a maximum angle at which phase-matched fre-

quencies can be found. Physically, this maximum angle is the one at

which w1=(u2==w3/2 (degeneracy) since w3/2 is the lowest possible

signal frequency. This will be the case as long as the following
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equation has a solution:
n, (w,)
33
Cogp. = — —— . (3.15)
B (e
Equation (3.15) is plotted as a function of crystal temperature in
Fig. 3-3 for a 1.064M pump wavelength in LiNbO3 (bo < 0) and for

*
two different phase-matching angles, em.

T T T T T s i I T I's k
- LiNbOy -
e A3 = 1.064 1 4
) | 3
) & :
2 .0 Om = 49° 1
(¢}

s i 4
£ = -
B 05 o ¥
: ) -
~ \ -

o- 1 | 1 L1 1 1 1 1 ]

I90 200 2|10 220 230 240
Temperature (°C)

Figure 3-3. Maximum angle ¢y at which the degenerate wavelength
A1 = 2A3 is found as a function of temperature and
for two values of the phase-matching angle, Om. The
crystal is LiNbO3 and the pump wavelength is 1.064y.
The theoretical curves are found from the index data
of Ref. 17. The experimental points correspond to
the temperatures at which the total fluorescence power

peaks for a detector acceptance angle 6 = ¢m.

* >
The angle between the pump direction ks and the crystal optic axis
is called the phase-matching angle (see Appendix LY
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The three experimental points were obtained from measurements of
total fluorescence power using a procedure to be described in the

next section.

C. Fluorescence Power

The total fluorescence power within a given detector acceptance
angle is found by integrating Eq. (3.8) over all frequencies and
angles. The result is

© §
P, = °P f J K sine’ (AkL/2) ¢ dédw . (3.16)
55 9

5
If the frequencies within the angle 6 are far from degeneracy, then

blw << bo. Equation (3.11) can then be used in Eq. (3.16) to find [3]

T : (3.17)

In evaluating the integral in Eq. (3.16), K has been assumed constant
over the small range of frequencies which contribute to the integral.
This will be a valid approximation as long as 6 is not too large. From
Eq. (3.16) it is apparent that the total signal fluorescence power
varies linearly with crystal length and pump power [6] and will increase
as degeneracy is approached (bo = 0 at degeneracy).

It is interesting to investigate the increase of the fluorescence
power as the collinear phase-matched frequencies are tuned toward

degeneracy. Tuning is accomplished by changing the refractive indices

*
Degeneracy occurs when wl = w, = w3/2.
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at each frequency by varying the phase-matching angle or the crystal
temperature. The frequencies which satisfy Ak = 0 are thus changed.
Clearly the signal power will not increase without bound as the
degenerate condition is approached, but rather will reach some maximum
and then begin to decrease. The maximum total power will occur near,
but not exactly at, collinear degeneracy. Figure 3-4 shows several
theoretical power versus temperature curves for a 1.064u pump in
LiNbO3. The ordinate axis in the figure is the total signal plus idler
power per unit pump power. The curves in Fig. 3-4 were computed by
numerical integration using Egs. (3.11) and (3.16) and the refractive
index data of Ref. 17.

In one report on total emitted fluorescence [18] the authors
implied that the peak power occurred at collinear degeneracy. As shown
in Fig. 3-4, the peak is a function of the maximum detector acceptance
angle, and the collinear wavelength at the peak of the power can differ
considerably from degeneracy.

To get a qualitative picture of how the total fluorescence power
peaks, consider Fig. 3-5 where Eq. (3.11) is used to plot ¢2 versus W
for Ak = 0 . Only the solid portion of the curves in Fig. 3-5 has
physical meaning. The double-valued behavior of w(¢2) as found from
Eq. (3.11) results from truncating the Taylor series expansions of
kj(w) . For the case of bl < 0 (Fig. 3-53), there is a maximum
angle (Eq. (3.15)) for which phase-matched frequencies can be found.

The phase-matched frequencies are emitted in a cone about the collinear

axis with half-angle ¢m . As collinear degeneracy is approached (by
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Figure 3-4. Theoretical total fluorescence power as a function of

temperature in LiNbO3 for A3 = 1.064u and a phase-
matching angle Gm = 50°. The ordinate axis is the signal
+ idler fluorescence power per unit pump power in watts.
Each curve corresponds to a different detector acceptance
angle measured internal to the nonlinear crystal. The
vertical arrows indicate the.collinear signal wavelength
at the temperature giving maximum power.
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Figure 3-5. Qualitative plot of ¢2 as defined by Fig. 3-2 and
Eq. (3.11) as a function of frequency. The curves
are drawn for Ak =0 and (a) b ,b1_<0 5

bo’b >0 . Only the solid portiog of the curves
has pﬁysical meaning (see text).

increasing the crystal temperature, for example), ¢m decreases and
eventually becomes smaller than the acceptance angle 60 . From this
point, the total phase-matched bandwidth within 6 decreases. Since
the power per unit bandwidth is approximately constant (see Section D
below), the total measured power thus begins to decrease. The curves
in Fig. 3-4 illustrate this behavior since the peak of the curves occur
at lower temperatures (farther from collinear degeneracy) for larger
values of 6 .

The case of b1 > 0 dis illustrated in Fig. 3-5b. The degenerate
frequency does not phase-match at any angle if there is a non-degener-
ate phase-matched collinear frequency. For this case in LiNbO3, collin-

ear degeneracy can be approached by decreasing the crystal temperature.
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As the temperature is lowered below the degenerate temperature, there
are no frequencies which phase-match collinearly. The "cone" of
fluorescence then develops a dark center and the degenerate frequency
is found at some ¢min > 0. As before, the total bandwidth and the
total fluorescence power in a given 6 then decrease.

An experimental arrangement for measuring the total emitted
fluorescence power is shown in Fig. 3-6. The pump is a 1.064u
tungsten-pumped Nd:YAG laser, Q-switched by a rotating mirror. Two
LiNbO3 nonlinear crystals purchased from different manufacturers were

used; one was cut for a phase-matching angle of 50° and for the other,

em = 49°, The crystal used was held in a temperature-controlled oven

P P2 F
‘{‘H“E—'ﬂ" o —E-H—ﬁ—— D2 Amp DELAY

M LASER OVEN f

®
TRIGGER BOXCAR
INTEGRATOR

Figure 3-6. Schematic of experimental arrangement for measuring
total emitted fluorescence power. Pump laser: 1.064u
repetitively Q-switched Nd:YAG. M: rotating mirror

Q-switch (400 Hz). P1,P2: crossed polarizers. F: 1.06u

reject, 1.30 to 3.0u pass filters. D1,D2: high-speed
detectors. F: short focal length lens. The LiNbO,
crystal is held in the temperature-controlled oven.
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so that its temperature could be continuously varied. The temperature
stability of the oven was better than 0.1°C over the length of the
nonlinear crystal and the oven calibration accuracy was * 0.2°C.

The results of the experimental fluorescence measurements
are shown in Figs. 3-7 and 3-8 along with theoretical curves calculated
using the index data of Hobden and Warner [17]. The solid curves were
computed using Eqs. (3.11) and (3.16) and the dashed curves found from
the approximate. expression, Eq. (3.17). The experimental points and
the solid curves are each normalized to their respective maximum; the
dashed curve is normalized to the maximum of the solid curve in each
case. Note that far from the maximum the two curves are nearly identi-
cal. The theoretical peak power in Fig. 3-7 corresponds to 5.8 x 10_6
watts of in-crystal total fluorescence power for the experimental 2 KW
peak pump power.

Since the indices of refraction in LiNbO3 are known to vary
with composition [19-21], the theoretical curves must be corrected to
account for the difference between the crystal compositions used here
and that in Ref. 17. Both crystals used in these experiments were grown
from a congruent melt [21]; the crystal used by Hobden and Warner [17]
had a stochiometric composition. The Sellmeir equations given by
Hobden and Warner show that the strongest temperature variation of the
indices occurs in the extraordinary index n, and is nearly independent
of wavelength (the Sellmeir equation constants vary slowly with tempera-
ture so d(dn/dT)/dA ~ 0). In addition, Bergman,et al [20] have shown
that only n, is affected by crystal composition. One possible

conclusion of these observations is that only the wavelength-independent
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Total parametric fluorescence power in LiNbO, for A3 = 1.064y, Gm = 50°, and
6 = 1.0°. Solid curve: exact theory (Eq. (3.16)); dashed curve: approximate
theory (Eq. (3.17)). The theoretical curves have been shifted by -29.5°C to align
the theoretical and experimental peaks. For temperatures below that indicated,
only the signal power is included in the theoretical curve because of the reduced
transmission of the filters used in the experiment.
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(Eq. (3.17)). The theoretical curves have been shifted by + 1.9°C to align the
theoretical and experimental peaks. For temperatures below that indicated, only
the signal power is included in the theoretical curve because of the reduced
transmiscion of the filters used in the experiment.
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temperature variation of the extraordinary index is affected by
crystal composition.

In the type of phase-matching used here (ordinary signal and
idler, extraordinary pump), only the index of refraction seen by the
pump field will be affected by different crystal compositions. The
result for congruent crystals will be to increase ne(l3) [20] and
decrease the phase-matching temperature for a given parametric process
[19-21] from those for a stochiometric crystal. To first order, the
shape of the phase-matched wavelength versus temperature curve will
not be affected by crystal composition, but its location relative to
the temperature axis will change.

The theoretical curves in Figs. 3-7 and 3-8 have thus been
shifted along the temperature axis to align the theoretical and experi-
mental peaks. The two different crystals had significantly different
phase-matching characteristics as indicated by the different temperature
shift. In Fig. 3-7 the theoretical curve is shifted by -29.5°C (Tpeak
(expt.) - Tpeak (theory)). In Fig. 3-8, however, the shift is + 1.9°C.
The close agreement of the theoretical curves and the experimental
points over a wide temperature range and for two different crystals
and phase-matching angles gives support to the assumption that the
shape of the wavelength versus temperature curve is nearly unchanged
by variations in crystal composition; only the temperature at which

certain frequencies phase-match is altered.
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D. Bandwidth
The exact spectral bandwidth of the fluorescence incident on
a detector is found by integrating Eq. (3.8) over the detector

acceptance angle 6. The result is

dP. (6,w) K4P 2

i - 3 GO~ _ ’

e e S <—5—— > t B 8) (3.18)
i
2

where B =(bow + blw Y 9/2  and
X 2 —sinzx i sinu
S(x) = J sinc udu = -——::——-+ f i du . (3.19)
o o

The fluorescence bandwidth can now be defined as the full-width at half-
maximum of the power per unit frequency, dPl/dwl. An approximation

to this exact bandwidth can be found by defining the bandwidth as the
full-width at half-maximum of the sinCZCAkR/Z) curve. Equation (3.11)

then gives.

L L
3.541b ° 3.54Tb_\°
R 2 Co ot o WIS B0 IR
Awl = w ’ <bo + 4blG8 + T > <b0 = T > ‘-(3-20)

For small enough values of 6 and for frequencies far from collinear

degeneracy so that blw << bo’ the approximate bandwidth reduces to

_ Lg% 6o
s T R
0 (o]

Aw (3.25)

Notice that as 6 > 0, the bandwidth approaches a minimum value. This
is true because even in the collinear direction there are output fre-
quencies corresonding to ]AkZ/ZI < m. Equation (3.21) also requires

that for 62 > 1.77m1/GL, the bandwidth will vary as the square of
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the acceptance angle.
Equations (3.17) and (3.21) can be combined to give an
interesting result. Dividing Eq. (3.17) by {3.21) gives the power

per unit bandwidth as

Pl g ﬂK2P3 e2
1 1l K 2

oL + 6

For large angles such that 62 >> 1.77m/G%, Eq. (3.22) shows that the
power per unit bandwidth becomes constant, independent of 6 and for
small angles will vary as 92. This behavior is also present in Eq.
(3.18), of course, but is not readily apparent. The maximum power per

unit bandwidth can be found from Eq. (3.18), however. The result is

dap 2KAP
<—1> =—Gé s(cLe2/a) . (3.24)
max

dwl

E. Experimental Measurements

Measurements of narrow bandwidth parametric fluorescence have
previously been made only in the visible or near-visible spectral
regions where photomultipliers can be used as detectors. This limitatioﬁ
has occurred because the fluorescence power is very small ( 10—ll
watts/(PB—cm—l) in the visible) and because available detectors are
relatively insensitive for wavelengths longer than 1uU. An experimental
arrangement which overcomes those difficulties is shown in Fig. 3-9.

The laser is the same one used in the previous total power measurements,

but here it is operated cw. The nonlinear crystal is anti-reflection
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Figure 3-9. Schematic of experimental arrangement for measuring
IR narrow-bandwidth parametric fluorescence. Pump
laser: cw Nd:YAG. Py: polarizer. fl,f2: collecting
and matching telescope. A: limiting aperture. C:
chopper. F: visible and pump filters. f,: short
focal length lens. D: PbS photoconductive detector.

coated and placed inside the laser cavity to take advantage of the
large optical powers available inside the cavity.

There were two main reasons for operating the laser cw instead
of Q-switched. First, the PbS photoconductive detector, lock-in com-
bination provides approximately four times the signal-to-noise as the
best available high-speed detector amplifier combination used with a boxcar
integrator. Second, the high power densities inside the laser during
Q-switched operation quickly damage the coatings on the nonlinear crystal.
The one drawback of cw operation is that the high laser power (® 40
watts in the experiment) heated the crystal and thus shifted the tuning
curve of the observed fluorescence from that expected from the oven

temperature readings.
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The results of several monochromater scans are shown in Fig.
3-10 along with theoretical curves computed by integrating Eq. (3.18)
over the 202 bandwidth of the monochromator at each center wavelength.
Because there was no way to accurately calibrate the detection system
at 1.621, the experimental data are normalized to the peak of the
theoretical curve for each value of 6. The vertical line at Xl =
1.6278u corresponds to the theoretical collinear phase-matched
wavelength. Note that the peak of the fluorescence versus wavelength
curve is farther from the collinear wavelength for larger angles.

The theoretical curves are computed using the data of Ref. 17
and a crystal temperature of 173.5°C. In the experiment, however, the
crystal oven was set at 170.2°C for all measurements. The crystal
used corresponds to the fluorescence data of Fig. 3-8 so that the
expected theoretical temperature was 170.2 - 1.9 = 168.3°C. The shift
of the crystal temperature due to heating by the laser is thus approx-
imately 5.2°C. As can be seen from Fig. 3-10, the agreement between
experiment and theory is good even though the theory was derived from
a plane-wave analysis and the experiment used a finite (but weakly
diverging) beam.

One of the qualitative features of the theoretical analysis is
also evident from Fig. 3-10. The peak power reaches a maximum for
6 ~ 0.7° and is nearly constant for larger angles. For a 40 watt pump
(the approximate 1.06! power inside the laser), this peak corresponds
to an in-crystal fluorescence power of 6.0 x 10—10 watts. The
approximate transmission of the optical system at 1.6y is 10% so that

the expected detector voltage signal is 42 uv. This is to be compared
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Signal fluorescence power as a function of wavelength for various detector accep-
The solid curves are theoretical with the temperature chosen to

® = 0.4° curve with the experimental peak (see text). The
The mono-

tance angles.

align the peak of the
experimental data are normalized to the peak of each theoretical curve.
chromator bandwidth is 208 and the experimental uncertainty is indicated in each

figure. The vertical line at Al = 1.6278y is the collinear signal wavelength.
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to the observed value of 25 pv. The discrepancy can be attributed
in part to the nonuniform heating of the crystal by the laser pump
beam. Since the laser has some transverse profile (roughly Gaussian),
the amount of heating will vary across the beam so that different
parts of the crystal are at different temperatures. A temperature
profile will cause nonuniform phase-matching so the entire pump
power will not be effective in generating fluorescence at a particular
frequency.

By integrating the area under the power versus wavelength
curves, the total emitted signal power in a given solid angle can be
found. The results are shown in Fig. 3-11. The solid theoretical
curve was computed using Eq. (3.16) and a numerical integration and
the dashed line is found from Eq. (3.17). The experimental points
are normalized to the theoretical value at 62 = 0.16.

The fluorescence bandwidth and peak power can be found from
measurements such as those shown in Fig. 3-10. The results are shown
in Figs. 3-12 and 3-13 as a function of the square of the acceptance
angle. The bandwidth values are taken directly from the experimental
data, but the peak power data are normalized to the theoretical value
at 62 = 0.28. The agreement with theory is seen to be good within
the experimental error. The figures exhibit again the qualitative
predictions of the theory: for small 6, a minimum bandwidth and a
peak power varying as 92; for large angles, there is a maximum peak
power and the bandwidth varies as 62. The solid theoretical lines in
the figures are computed using Eq. (3.18); the dashed line in Fig.

3-12 is found from Eq. (3:21) and that in Fig. 3-13 from Eq. (3.22).
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Figure 3-11. beéliéiéﬁ;i>power versus detector acceptance angle.
The solid line is the theoretical in-crystal fluor-
escence power per unit pump power calculated using
Eq. (3.17). The dashed line is found using the approx-
imate expression, Eq. (3.15). The experimental data
are normalized to the solid theoretical curve at
62 = 0.16 deg?.
The tuning curve of the 1.064u -pumped fluorescence is shown in
Fig. 3-14. To compare the experimental data with theory, two corrections
must be made. First, the tuning data were taken with an acceptance
angle of B = 0.4°. The peak of the monochromater scans will thus be
shifted from the actual collinear wavelengths by an amount which depends
on the temperature. The experimental wavelengths are corrected for this
shift using the data of Ref. 17. Second, the heating of the crystal
must be taken into account and related to the crystal oven temperature
settings. To do this, the theoretical curve is shifted by + 1.9°C from
the results found using Ref. 17 (result of total power measurement,
Fig. 3-8) and the oven readings are increased by 5.2°C. With these cor-

rections the theoretical tuning curve agrees nicely with the experimental

data.
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Figure 3-12. Signal fluorescence bandwidth as a function of detector
acceptance angle. The solid line is the exact theoretical
bandwidth; the dashed curve is found from Eq. (3.21).
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Figure 3-13.

Peak fluorescence power in a 20A bandwidth as a function
of detector acceptance angle. The ordinate axis is the
theoretical in-crystal fluorescence power per unit pump
power. The experimental data are normalized to the
theoretical curve at 62 = 0.28 degz. Solid curve:
exact theory (Eq. 3.18)). Dashed curve: approximate
theory (Eq. 3.22)).
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Finally, the theoretical minimum bandwidth calculated from
Eq. (3.20) with 6 = 0 is shown in Fig. 3-15 along with several
experimental points. The experimental values were found by measuring
the bandwidth with © = 0.4° and correcting the results by a temperature
dependent factor to give the bandwidth for 6 = 0. The data have also
been corrected for crystal heating and the theoretical curve shifted
by + 1.9°C as explained above. The bandwidth is nearly linear with
temperature (and signal wavelength) far from degeneracy and rapidly

increases as collinear degeneracy is approached.
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CHAPTER 4

PARAMETRIC OSCILLATOR: THEORY

A. Introduction

This chapter discusses theoretically some of the important
parameters of parametric oscillators. The most general case of a pulsed
parametric oscillator where all the fields have both time and space de-
pendence has not yet been treated in detail. The complexity of solving
simultaneously the six nonlinear, coupled, partial differential
equations describing the oscillator is immense. All published treat-
ments to date simplify the problem usually by neglecting either the
time or space dependence of all the fields and frequently by assuming
one or two fields to be constant in both time and space.

This treatment makes no attempt to solve the general problem.
In each case, however, as much generality as possible is retained. The
threshold behavior of a parametric oscillator is studied by examining
a steady-state parametric amplifier placed inside a Fabry-Perot reso-
nator. Returning to the time-dependent interaction equations, the rise
time of an oscillator is discussed in detail. Finally, a few comments
are made on the bandwidth and frequency stability of the oscillator out-

put and on the limitations on pump bandwidth.

B. Fabry-Perot Analysis of a Parametric Oscillator

The steady-state behavior of a parametric oscillator is the

simplest case to discuss. Consider a generalized Fabry-Perot resonator
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filled with a nonlinear medium as shown in Fig., L4-1. There is one

As; > > A3(O) A3(.€) — A3(L) S > Ax,
—_— A|(O) Al(“) e Al(L) e a8 Alf
Ayt f=—A;(0) A (L) Ay lL) o—
' — = A,(0)  Ay(L) —= Az(L) —=f —= Ay,
Azr - - Azr(O) AZI’(‘C) - : Azr(L)‘
Nonlinear | ]
0 Material i il
Mirror | Mirror 2

Figure 4-1. Generalized Fabry-Perot resonator partially filled with a
nonlinear medium of index n. at w. . The only input field
is the pump at . The églues of the signal (w1),
idler (w,), and pump fields are indicated at each point
in the resonator.

incident field (the pump) at w but reflected and transmitted fields

3 J
exist at all three frequencies W, W and @ . Thus there are

18 field quantities inside the resonator. The normalized field amplitudes
as defined in Chapter 2 will be used throughout the following discussion.
For the purpose of the present discussion, it is convenient to
neglect pump depletion so that the nonlinear interaction has negligible
effect on the field at aé . With this assumption, the pump fields at

the input and output of the nonlinear crystal are equal so that

ig
’ ¥ < 30
A3(L) = A3L = A3(O) = A3Oe (L4-1)

where A30 is a real quantity. This assumption excludes the case of

strong interaction and efficient energy conversion from pump to signal
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and idler, but is adequate for threshold calculations. Siegman[l] and
Bjorkholm [2]have treated the problem of doubly resonant oscillators
with strong pump depletion and Kreuzer [3] has analyzed the same problem
for the singly-resonant oscillator. .Armstrong, et al[4] have found the
general solution to the three coupled amplitude equations (Chapter 2,
Egs. (2.2a,b,c)) for the parametric amplifier. The following analysis
could be extended to the general case of a depleted-pump by using the
results of Ref. 4 in place of Egs. (4.2) below.

The analysis begins with the steady-state amplifier solutions
found in Chap. 2 for the fields at the output of the nonlinear crystal

(Eqs. (2.27) and (2.28)):
(a)  A(2) = (oA, + B*AZO) 1Py Kt

() A3(1) = @Ay, + BAy) e HPo0m KoY £z

I

All the quantities appearing in Eq. (4.2) are as defined in Chap. 2 and
the plane-wave phase exp(-ikj&) has been put back into the expressions

for Aj(L) . For collinear propagation the phase mismatch Ak is
given by

=k s i

3 1 5 (nw, - n,o, - D

e 3.3 ikl 2o

ol

Bakap = Mlyg'm Rekag (4.3)

where kjo = wj/c is the wave vector in vacuum (n = 1) and ny is the

index of refraction at aﬁ
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The equations for the field amplitudes at any point in the
cavity can be expressed in matrix form by defining the following
quantities:

if10 g*.if10

Qe
(a) = . ¢
fh Be-l¢20 a*e_l¢20
3 1
e—lklOLl 0]
0 eikzo Lé

2

Q

(b) g =

s : A,(2)
C =
3 A,()
A ;
(@) R 5 (4.4)
; AZO

*
where Li is the optical length of the cavity at uﬁ and ij = wj/c.

With these definitions the fields at mirror 2 can be written as

~

AL = C2C1 0 . (4.5)

~

Note that because all losses in the nonlinear crystal have been
1(9,0= $5q)
~ 2 2 05 *20

neglected, ldet(Cl)l = I(la[ - |3| ) e - [ Ik T

*
and A are related to A and A¥

The quantities AlrL 2L 1L 21,

by the reflectance of mirror 2. It is convenient to assume that both
mirror 1 and mirror 2 have zero reflectance at w3 , since this is the

usual case (ldeally) in practice. The complex field reflection

*
The optical length at uﬁ is Lg = (nj—l)i + L.
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coefficients of mirror i(i = 1,2) at wj is given by

.y e ™9 for j=1,2 . (4.6)

Thus '~

12 is the reflection amplitude of mirror 1 at w and

2 1‘1)12
is the corresponding phase change upon reflection. Using Eq. (4.6) ,
the matrix describing the reflection at mirror 2 is

T

R, = (4.7)
0 R,

Similarly, the effect of mirror 1 is described by il g

R11 0

* .
0 R

(4.8)

bk
]

The description of the backward-traveling waves (relative to the
input pump direction) depends on whether a backward-traveling pump
wave is generated by the backward-traveling phase-matched signal énd
idler waves. Unless special precautions are taken (using a ring-
resonator [5], for example), a backward-traveling pump wave will
always be generated when the idler reflectance is non-zero and will
reduce the efficiency of the oscillator [2].

As long as the nondepleted-pump approximation is wvalid, however,
there is negligible loss to the fields at w, and w, due to

1 Z

backward-wave pump generation. This conclusion remains true as long
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as Al(l) and AZ(R) remain much less than A3 as is the case near
threshold. Within this approximation, a complete round trip in the

resonator is represented by

By =Ry G R GGty (4.9)

The self-consistency condition that the resultant field after one
round-trip must equal the assumed input field is implicit in Eq. (4.9),

The requirement for nontrivial solutions for KO is

det(R102R2C2Cl -I)= 0 (4.10)

~

where I is the identity matrix. Since ]a[z - ]B[z =1, Eq. (4.10)

implies that

' _91 '
ZikzoL2 21k10Ll

%
L+ Ry Ry RI,Ry,y = (0*Rf)RG e AR R B0 .

(4.11)

C. Oscillation Threshold

The threshold amplitude and phase conditions for oscillation
are found from Eq. (4.11) by equating the real and imaginary parts of
the equation to zero. Because of the way in which Eq. (4.11) was
derived, it also contains the usual Fabry-Perot resonance conditions on
frequency and round-trip phase change. There are thus two separate
factors which determine the oscillation threshold. The first require-
ment is that the signal (and idler, if both have feedback) be near a
resonant frequency of the passive Fabry-Perot cavity. The frequencies

do not have to lie exactly on a resonance, but there will be an increase
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in threshold depending on how far off-resonance the particular fre-
quency occurs [6]. The amount of the increase for a given deviation
from resonance depends on the loss and the mirror reflectivity at the
frequency of interest [7].

The second requirement is that the phase-mismatch Ak be small
enough so that the parametric gain can overcome the losses of the
cavity. Clearly this condition is not independent of the Fabry-Perot
condition; changing w, and w, to make Ak = 0 may increase the

1 2

Fabry-Perot losses because arbitrary wl and w, will not lie on

cavity resonances. This difficulty was first pointed out by Giordmaine

and Miller [6]. For high reflectivities at both Wy and W, the

Fabry-Perot condition is by far the most stringent requirement [6].
At this point it is convenient to define the total phase change
d - '
at wy during one cavity round trip as wl ZklOLl + wll + le .

This is the phase change for the wave at in the absence of any

1
nonlinear interaction. Similarly, the round trip phase change at ub
. pasy L ' £
is .wz 2k20L2 + wlZ + wzz . New real amplitude reflection
coefficients are defined by
b R S
R2 =TIy, Ty, . (4.12)

For equal reflectances at both mirrors, R1 and R2 are the intensity

reflection coefficients of the mirrors at w, and w2 , respectively.

1§
These definitions allow the real part of Eq. (4.11) to be

written as
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1+ Rlecos(\P1 - wz)

la‘ & Rlcos(\pl + ¢) + chos(lp2 + ¢) (4.13)
and the imaginary part gives
sin(y, - ¥,)
lo| = e i ok (4.14)

Rlsin(lpl + ¢) - stin(ll)2 + ¢)

The quantity ¢ 1is the phase of the complex number o and is given

by
bkl -1, Ak sinh Y&
P om =Tt e e
Akl T
= ——2—+A¢m =hg (4.15)

where the last relation follows from Eq. (2.34). Note that the initial
value of the relative phase A¢ does not appear in the oscillation
conditions (4.13) and (4.14). The threshold for oscillation is thus
independent of A¢ even though the parametric gain is maximum for the
particular value given by Eq. (2.34).

Combining Eqs. (4.13) and (4.14) gives a relationship between
the phases wl and ¢2 at threshold:

sin(y+ 6)  Ry(1 - )

R EY T N Ra-t (4S80

Note from Eq. (4.16) that for R, # R, , the signal and idler phases

will not differ by a multiple of 27T even though the round trip phase

change for each must be nearly 27 x (integer) so that wy and Wy
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are near a Fabry-Perot resonance. Note also that the phase change
resulting from imperfect phase-matching (Ak # 0) in the nonlinear
interaction is included in the oscillating phase condition (Eq. (4.16))
as well as in the threshold amplitude conditions (Eq. (4.13)).

Using Eqs. (4.13), (4.14), and (4.16), the threshold conditions

are summarized in Eqs. (4.17):

-

BIC cos (¥,+d) - (1- CZsin’ (¥,+$)) /21,
1 R, # R, (a)
2 = 2 i
Rt GOy o 1+R g - B
et ke Wt o5 cos (V,+9) Yotat e, ATRETE. ey ek
=, W +é=2om o Ry, = Do )
5 1

where B = R1(1 - R%)/R%-Ri) and C is given by Eq. (4.16). A
similar result has been given by Falk [8]. It is also straightforward
to show that

sin(wo+ 20k + 29)

tanlipt 9 =TT cos v+ 2BKE ¥ 29) s
where
W= ~Rkaglis Vgt Yook Moyt Vg
= Y+ ¥, - 28k : (4.19)

The quantity wb is the sum of the signal and idler phase changes for
one cavity round trip when Ak = 0 . Equation (4.19) follows directly

from the definitions of wl’ wz, and Ak and can be used with Eq.
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(4.18) to eliminate (¢2+ ¢) from Eqs. (4.17). The usefulness of the
quantity wo is that it depends only on the mirror phase changes
(nearly constant with frequency when the amplitude reflection is con-
stant) and on the properties of the passive cavity at w3 c

Although Eqs. (4.17) and (4.18) are explicitly functions of
Ak , they should really be considered as functions of wy since
Ak = Ak(wl) (see Eq. (3.11)). Viewed in this manner, the equations
give the pump threshold power (P3T o (32)2) and the oscillation fre-

quency ., ; the idler frequency wz is determined once wl is known,

s

since w, = Wy = wy and w3 is considered fixed. A number of special

cases will now be considered.

Doubly-Resonant Oscillator (DRO) with R1= R,= R

This case is the most common one encountered experimentally

with the DRO. Equations (4.17b) and (4.18) give the threshold condi-

tion as
gi 2 2 wo
5 sinh“Y% = I 4 (Kmin+ Dtan 65—4-Ak2~+¢) (4.20)
y
where
22
€y = LK) (4.21)
s 4R
and for C= 1, Eq. (4.18) gives
tan(Y,+ ¢) = tan(wo/z + Bk& + $) . (4.22)

Examination of Eq. (4.16) shows that wl = wz + 2mm in this case, so

whenever wl is on a passive-cavity resonance, wz also coincides
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with a resonant frequency; any deviation from exact resonance will
occur equally in both frequencies. There are two limiting cases of
interest: (1) Ak = 0 , but wl and wz may not coincide with a
passive-cavity resonance (wo = wl + wz # 2mm); and (2) wli-wz =

2mT (u)l and w, exactly resonant), but Ak # 0 .

2
For all reasonable values of R (R .90), Eq. (4.21) gives

K . << 1 so Eq. (4.20) can be written as
min

2
2 tan“ (P /2 + Ak + ¢)
g sAnhoYE i k. [1 + ° s (4.23)

min g
Y min

This relation shows that variations in wo or Akf% will have less
effect on oscillator threshold for larger values of Bt (larger
minimum threshold)*. The minimum threshold condition occurs when
wo = 2mm and Ak = 0 . Equation (4.23) gives for this case

(gg)iin o el (4.24)

min

where sinhzgl = (gZ)Z.
The threshold for the first limiting case when Ak = 0 and

b, # 2mr is found from

2
w2 tan” (Y /2)
-s%‘-h—g& B e S i (4.25)
min Kmin

As long as Ak = 0 , the oscillator threshold is determined completely

by the properties of the passive Fabry-Perot resonator. The threshold

*
A similar conclusion is given in Ref. 9 where an entirely different
approach to the problem is used.
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can thus be expected to vary as the reciprocal of the transmission of
the Fabry-Perot etalon when viewed from the outside. From Ref. 7,

the inverse transmission of a Fabry-Perot is given by

21 % -—fﬂi7z sin (6/12) (4.26)
(1-R)

|

where ¢ is the round trip phase change in the resonator. The
similarity between Egqs. (4.25) and (4.26) is obvious. The frequency

deviation corresponding to a given wo is

cy

wc = wl - wlo = Efg (4 270
1

where wl is the actual signal frequency and wlO is the signal fre-

quency when = 0 (modulo 2x) and Ak =0 .,
The second limiting case occurs when Ak # 0 but Wy and w,
both lie exactly on a passive cavity resonance (wl " wz = 2mT) .

Since in this case wo = 2mm - 2Ak{ , the threshold is found from

2

gi-sinthQ = K
y

2
min T A0 ¢ (4.28)
with ¢ given by Eq. (4.15). For small gain (gl << 1) and large Ak

(Ak/2 >> g) , ¢ = 0 and the threshold is given by

K.o.
(e)? = 5 L , (4.29)
sinc” (AkR/2)

This result was first given by Giordmaine and Miller [6] and can also
be derived from the results of Smith [10]. Note that in this approxi-

mation (gSL)Z/Kmin is independent of K. ; changes in mirror
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reflectivity have no effect on the threshold gain profile. Equation

(3.11) gives the frequency deviation corresponding to a given Ak as

5 ] _ (AL /2)
i T (Tb_/2) W0}
where Wyq is the actual signal frequency and W10 is the same as

previously defined.

The ratio (g,Q,)z/Kmin represents the increase in threshold when
the oscillator deviates from the optimum conditions Ak = 0 and
wl + wz = 2mm . This ratio is plotted in Fig. 4-2 as a function of
wo/Z or Ak%/2 for the two limiting cases using Eqs. (4.25) and
(4.29). The curves corresponding to variations in wo are labeled
according to the value of R wused in calculating S To convert

the ordinate axis in Fig. 4-2 to frequency units, the following values

are chosen:
5 L= 1.2cn

L 0.56 cm

b | 7.3% 10—13sec/cm - (4.31)

(o}

These numbers correspond to the experimental conditions in Chap. 3 and

Chap. 5 with A3 = 1.064y and Al = 1,62y in LiNbO3. With these

numbers, Eqs. (4.27) and (4.30) give

Sw -1
v = —2==0.133(Y_/2) cm
(& 2Te o
Sv, = iuik- = 26(Ak&/2) cm’l (4.32)
vk 27me :

A given change in Ak{# thus corresponds to a much larger change in

frequency than a similar change in wo and a very large frequency
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Figure 4-2, Tncrease in parametric oscillator threshold resulting from a change in the phase-mismatch
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shift is required before the threshold is affected by Ak # 0 . Thus,
as expected for high-Q cavities, deviation from the exact resonance
condition produces a much larger increase in threshold than does a
finite value of Ak . The actual operating frequencies will therefore
be very near the passive-cavity resonant frequencies, and given a value
for wo , the oscillation frequencies at threshold are found from
Ak = —wO/Z . Note that if wo varies randomly from =T to T, the
oscillating frequencies will vary with an rms value corresponding to

|akt| = n/4 and a maximum value given by |AkL| = x/2[8] .

Singly Resonant Oscillator

This case is by far the simplest to consider since now there
are no constraints on the nonresonant field (taken here to be the idler

at wz) . When R, = 0,. the phase condition, Eq. (4.16), gives the

2

oscillating frequency for minimum threshold as
wl + ¢ = 2mm (4.33)

where m is an integer. Note that the oscillating frequency is
shifted from the cold-cavity resonance (wl = 2mm) when Ak # 0 (see
Eq. (4.15) for ¢(Ak)) . The amount of the shift when gf << 1 and
Ak/2 >> g is very small since ¢ = 0 in this case. For all practi-
cal purposes, therefore, the oscillation frequencies of the singly-
resonant oscillator are the passive-cavity resonant frequencies.

When &k = 0 , the oscillation threshold is given by Eq. (4.17c)

1- 8
7
o

as

sinh2g£ - (4.34)
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ortfor. RIF=SLy
P it w i
T .. 1

(gz)iin = = > . (4.35)

2
o) i

When Ak # 0 , the threshold is found from the more general expression

2
2 1-R 2(1 - R,)

-575 B e = LR 2R1 (4.36)
Y e Ry

It is interesting to compare the threshold of a singly reson-

ant oscillator (SRO) to that of an ideal doubly resonant oscillator

(DRO) when ¥ = 2mx and 4k =0 . Recalling that P = g, the
result when gf << 1 is
(P o) (R+ R))?
s’sro . (Bt Ry
3T’ DRO R (1-R)
and
(P.m)
BL AR et for R =R, =1. (4.38)

(Pypdpro 1Ry

The reflectance in Eq. (4.37) is that of the bRO; for the SRO, R2 =0
The approximate result, Eq. (4.38), has previously been given by Byer
[11] and by Harris [12]. It can also be derived directly from Egs.
(2.21a) and (2.21b) using Oj = 1/(1-Rj) . The approximate result
becomes exact when R1 = R2 = R . This conclusion follows directly

from Eqs. (4.21) and (4.35)..
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D. Rise Time of Pulsed Parametric Oscillators

In a pulsed parametric oscillator driven by a Q-switched
laser, the pump power will exceed oscillator threshold only for a
limited time. Starting at threshold, the oscillator fields must
build up from noise (parametric fluorescence) . It is essential
that the rise time of the power in the oscillator fields be less than
the duration of the pumping pulse; otherwise oscillation levels will
be very low and little power will be transferred from the pump to the
oscillator fields.

Previous calculations of the rise time of parametric oscilla-
tors [11,13] have assumed a constant pump power and have neglected
spatial variations of the oscillator signal and idler fields. Such
results are not strictly applicable for pulsed oscillators and are
inadequate to describe the rise time of a singly-resonant oscillator
where the nonresonant field has a strong spatial variation. In this
section the rise time of a pulsed doubly resonant oscillator (DRO) is
calculated. A similar analysis which includes results for a singly-
resonant oscillator is presented in Ref. 14, The results are used to
derive relationships that must be obeyed by the various oscillator
parameters to insure efficient power conversion. Numerical results
using a Gaussian time envelope for the pump pulse are presented and
significant differences are found between these results and rise time
values computed using a square pump pulse and a steady-state analy-
18- [11,12].,

The theoretical analysis begins with the general interaction

equations for the signal and idler fields found in Chap. 2 (Egs.
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(2.21)). Since the pump field will not be strongly depleted until the
signal and idler fields build up to values comparable to the pump,
pump depletion is neglected for calculating rise time. The pump,
however, does have a "slowly-varying' time envelope which is charac-
teristic of a Q-switched laser pulse. The pulsed nature of the pump

is accounted for by writing it as
A3(z,t) = A3pf(t) (4.39)

where A is the peak value of the pump field at w, and £f(t) 1is

3p 3
a normalized Gaussian function. Note that the pump envelope is
assumed independent of z . Defining t = 0 as the time when the

oscillator first reaches threshold, a pumping ratio N can be defined

by
2
P A
N= 2= 2oL : (4.40)
st AL £

The threshold for oscillation is P3T and N is the factor by which

the pump peak power exceeds threshold. The quantity P3T as used

here is the usual cw threshold* (gain = loss) and may differ considerably
from the experimentally observed threshold (minimum peak pump power for
oscillation to occur).

The Gaussian time dependence of the pump field is written in

the form

£lt) = expl-lt ~ TT)Z/bz] (4.41)

*
See Ref. 15 and Section C of this chapter.
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where 2

T
Bl B o
2. In(2)

and Tp is defined as the full-width at half-maximum of the pump

pulse intensity. The quantity TT is the time between the oscillator

threshold level (t = 0) and the peak of the pump pulse so that

Z
2 Biin gy e

1 2 T 4 1n(2)

T (4.42)

with N being defined by Eq. (4.40). The relationships between the
various quantities are illustrated in Fig. 4-3a.

The simplest case to consider is the DRO with equal losses at
wy and Wy - This is the usual case experimentally and will be the
only one treated here. Setting 09/9z = 0 in Egs. (2.21la) and (2.21b),

integrating each over the cavity length, and solving the resulting

time-dependent equations with initial conditions Al(O) = A and

10
AZ(O) = A20 gives

7 ts (t) ts_(t)
Al(t) = E{(Alo + A20) e 4—(Alo— A20) e 1 (4.43)
where R = ca/L' with ¢ the single—pasé power loss at wy and Wy and
ts, (t) = Blent/2g(e) - e . (4.44)

The relative phase is time-independent when the initial condition is

chosen as A¢ = AkL/2 + %- to maximize the interaction, and the func-
tion g(t) is defined by
t
t-T iz
g(t) = f £(t)dt = ?Lz‘/i lerf(—D) +erf(zD] . (4.45)

0
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(a)

Figure 4-3. (a) Gaussian pump pulse defining the quantities 17 , P3p ,

t = 0 is defined by the oscillator
threshold level. (b) Square-pulse approximation to the
Gaussian used with steady-state equations. (c¢) Qualitative
plot of R;(t) = Pj(t)/P;y showing the relationship
between Tp and T7 . Note that in the undepleted pump
approximation used here, the signal power continues to grow
until the pump falls below threshold (t = 27Tq)

and P3p . Note
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The integral in (4.45) has been evaluated for f£(t) as defined by Egs.

(4.41) and (4.42), and

erf(x) =

e

e 2
f e “ du
0

The initial values of the resonant fields are found from the
parametric fluorescence power inside the resonator at threshold and
within the bandwidth of the oscillator [11,16]. Since these values are
many orders of magnitude below the oscillator operation level, only the
rapidly growing part of Eq. (4.43) will contribute to the field at

w When the second term of (4.43) is neglected, the power output at

1 *

wl can be written as

2ts(t)= e2ts(t)

P10

P, (t) = %—(li—y)ZPl(O)e (4.46)

where from Eq. (4.43) and Ref. 16,

Ay w P, (0)1/2 _
T A, | 9P @ = w.n
and

_a+n?

Fio 4

P, (0)

P10 is the initial input to the signal oscillator mode.

The rise time of a parametric oscillator can be defined in a
number of ways. A convenient operational approach is to define the
rise time Tp as fhe time required for the signal output power Ple
to reach a predetermined value starting from the moment the pump

reaches threshold. Assuming the only loss is due to output coupling,

this definition of TR can be written as



279

Ple(TR) =it Pl(TR) = constant . (4.47)

Since the initial internal signal power Pl(O) =P is due to spon-

10

taneous parametric fluorescence driven by the threshold pump power,

10 S
o = 1/(1-R)). Consequently, the constant appearing in Eq. (4.47) can

Pl e P3T/a . For the DRO, however, P o« u? , (see Eq. (4.29) with

be replaced by rPlO/a where r is some constant. The risetime TR
is thus defined by the following equation:
P (Tg)

(1)) = - : (4.48)
R1 R P10 0LZ

Combining Eqs. (4.48), (4.44), and (4.46) gives

2
ety = 22 (W Pg(ry -1y = 2D (4.49)

Note that the ratio r/OL2 enters as the argument of a logarithm, so
that the risetime is not strongly dependent on the value chosen for
5%

Although in the sense defined here the oscillator is not "on"
until Eq. (4.49) is satisfied, the oscillator is always "on'" in the
sense of the pump being above the cw threshold for all times in the
range t =0 to t = ZTT . The signal and idler fields experience a
net round trip gain and thus grow in amplitude during this time period.
The value of r chosen for calculating rise time is arbitrary, but
fortunately, because of the "explosive' nature of the signal buildup,
T is not a strong function of the ratio r/OL2 . A change of two

R

orders of magnitude in r results in a change of T_ by only about 10%.

R
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For experimental comparisons a useful parameter is the quan-
tity P3P/(P3T/a2) = Naz since the peak pump power is usually fixed
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