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ABSTRACT

A central pursuit of macroeconomic research is to understand the source of short
run variations in aggregate economic variables. To this end, the branch of macroe-
conomics known as Real Business Cycle (RBC) theory emphasizes the role of distur-
bances to the real economy while abstracting from nominal variables (e.g. money).
According to RBC theory, business cycles are the result of optimal responses to
exogenous stochastic disturbances on technology in a structure of capitalistic pro-
duction. In this report, we contend that the structure of capitalistic production
per se constrains the ability of the economy to absorb shocks. That is, even if
the feedback behavior in the model is designed to mitigate fluctuation (and is not
necessarily optimal relative to some inter-temporal utility), the resulting sensitivity
is nevertheless constrained by a lower bound. Moreover, we show that this lower
bound is exacerbated with increasing steady state consumption, capital and invest-
ment. Concretely, we show that the Ramsey model, linearized about its steady
state equilibrium, has a non-minimum phase structure and therefore its sensitivity
is constrained by the control theoretic design limits. Moreover, the non-minimum
phase zero is given by the inverse of the discount factor. As the discount fac-
tor approaches unity, steady state consumption approaches optimal steady state
consumption, but the non-minimum phase zero approaches the closed unit circle
exacerbating the sensitivity constraints.
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C h a p t e r 1

INTRODUCTION

1.1 Background and Motivation
One of the primary tasks of macroeconomic research is to elucidate the key mech-
anisms underlying business cycles. The term business cycle refers to fluctuations
and co-movements of key aggregate economic variables around trend-line growth.
Such variables include production, employment, investment, wages, interest rates,
and consumption. Periods of rapid upswings in the aggregate variables are referred
to as expansions, and general declines are referred to as recessions. Despite the
use of the term “cycle,” economists generally agree that aggregate fluctuations
are aperiodic with varying duration and occurring at irregular intervals. The now
widely held empirical definition for the business cycle was established by [1]. Figure
1.1 shows real gross domestic product (GDP) since 1947 and figure 1.2 shows the
unemployment rate for the U.S. since 1948; periods of recession are denoted by
shaded vertical bars.

There are a great number of theories regarding the causes of business cycles (not all
of them being mutually exclusive). Austrian business cycle theory, in the tradition
of Carl Menger and Eugen von Bohm-Bawerk, emphasizes misallocation within an
economy’s inter-temporal capital structure resulting from credit-induced booms
[2]. Keynesian theory regards incomplete nominal adjustment (such as sluggish

Figure 1.1: U.S. Real GDP
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Figure 1.2: U.S. Unemployment Rate

price and wage adjustments) as a key transmission mechanism of fluctuations to
output and employment [3]. Economists in the Monetarist tradition underscore the
importance of the supply of money as a factor in recessions [4]. On the empirical
side, [5] highlights the consistent empirical prominence of residential investment
during business cycles and the fact that it is the best leading indicator of an
oncoming recession. He suggest that housing should play a prominent role in the
conduct of monetary policy. [6] shows, in an multi-sector equilibrium model, that
fluctuations in the match between resources and wants creates large fluctuations
in output and employment because moving resources from one sector to another
is costly. Importantly, he concludes that a higher degree of specialization in the
economy implies more severe fluctuations, along with a higher average level of
output and growth.

Despite the variety of schools of thought regarding the causes of business cycles,
the prevailing mainstream view in modern macroeconomics holds that economic
fluctuations are the responses of a dynamic economic system subject to exogenous
random shocks [7]. This view is motivated by the observation that relative move-
ments of the key variables exhibit characteristic patterns during the business cycle,
despite the fact that the fluctuations as a whole do not seem to follow a regular
cyclical pattern [8]. The proximate causes (shocks) of expansions and contractions
may vary from business cycle to business cycle and occur at irregular intervals, but
the general behavior during the business cycle is somewhat consistent.

The consensus view among modern economists is that models of this flavor must
have dynamic general equilibrium foundations [9]. That is, models of economic
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fluctuations should consist of a dynamic optimization framework in which agents
optimize some inter-temporal utility function subject to constraints that repre-
sent available technology and institutional structure. Real Business Cycle (RBC)
theory and New Keynesian theory are the two most prominent branches of macroe-
conomics that subscribe to this paradigm. RBC theory emphasizes real variables,
real disturbances, efficient markets, and connections to long run growth, while New
Keynesian models emphasize nominal variables such as prices, wages and interest
rates, market imperfections and connections to monetary policy [3].

1.2 Contributions
In this report we explore the role that the basic capitalistic structure of an economy
plays in establishing the existence of economic fluctuations. To do so we use a
framework from which RBC theory is built called the Ramsey model. The Ramsey
model, at its core, is a difference equation that models the basic capitalistic pro-
duction process of an economy. The notion that production outputs are required
as inputs to maintain production is what we refer to as capitalistic production.
The Ramsey model also captures the notion of dynamic equilibrium (equilibrium in
the economic sense). This means that streams of consumption/investment/capital
are optimal in the sense of some inter-temporal utility function. This differs from
the basic RBC model in two ways. In the RBC model a labor decision is included
and a stochastic disturbance to production technology is introduced. So rather
than dynamic equilibrium, we have stochastic dynamic equilibrium; i.e. optimal
consumption/investment/capital behavior in the sense of expected utility.

Our purpose for employing such a framework is two-fold. Firstly, differences from
the basic RBC model are inconsequential in the context of our contributions al-
lowing us to appeal to the mainstream literature. Secondly, it assumes only very
basic structure. That is, it abstracts from markets, money, frictions, etc. Hence,
any constraints imposed by this real structure must be essential. That said, we
emphasize that the purpose here is not to quantitatively reproduce actual busi-
ness cycle behavior, but rather to contend that minimal assumptions give rise to
conditions for which to expect the existence of fluctuations.

We use design limits from control theory to demonstrate this. [10] use similar
design limits to explore design trade-offs encountered in monetary policy in a New
Keynesian model. Similarly, [11] uses design limits to study robustness of optimal
monetary policy rules. [12] looks at frequency domain implications of measurement
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error for the design of monetary policy. Our analysis, in contrast, abstracts from
nominal variables and uses similar control theoretic tools to explore constraints
that arise from the real structure of capitalistic production.

Concretely, we start with a Ramsey model in long run equilibrium. That is, trajec-
tories for capital, investment and consumption are optimal with respect to infinite
horizon utility and are in steady state. We show that the steady state is stable.
We then assume that a small perturbation in the technology parameter induces
small perturbations in all the other variables. This allows us to study the linearized
system. We then assume investment as a control variable and consumption as an
output. This assumption along with the capitalistic nature of the production pro-
cess gives rise to a non-minimum zero. Thus, the Poisson integral applies and
constrains sensitivity reduction. Limits on sensitivity reduction imply amplification
of perturbations and hence economic fluctuations. Moreover, we show that the
constraints depend on the discount factor to future utility. Specifically, as the dis-
count factor approaches one, optimal steady state consumption is maximized and
the non-minimum phase zero approaches 1, thereby exacerbating the constraints
on sensitivity reduction.

1.3 Overview
In Chapter 2 we derive the Ramsey model. We start by reviewing the basic Solow
growth model and then extend it to capture dynamic optimizing behavior. Chapter
3 establishes the main result; i.e. constraints on sensitivity reduction and how
they depend on the discount factor. We start by departing from the RBC model
of stochastic optimization and establishing the linearization of the Ramsey model
around its long run equilibrium. We then note that the linearization has a non-
minimum phase zero equal to the inverse of the discount factor. We state the
sensitivity constraints and discuss their implications for business cycles. In Chapter
4 we conclude with a discussion and possibilities for future research directions.
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C h a p t e r 2

NEOCLASSICAL GROWTH MODEL

2.1 The Solow Growth Model
The Solow growth model is a simple model of economic growth based on produc-
tion and capital accumulation. Production is given by the standard neoclassical
aggregate production function F : R2 → R which relates physical output to
physical inputs. It represents the maximum attainable output given inputs while
abstracting from details on how that maximum is actually attained. Production
output Y in the Solow model is thus given by

Y = ΛF (K,AN)

where Λ represents a shock to production technology, K represents capital, N
represents the labor force and A represents the “effectiveness” of labor or “knowl-
edge”. This interpretation of A follows from the fact that A > 1 results in an
increase from A = 1 of the marginal productivity of labor for given capital. The
Solow model itself does not actually account for shocks, but is included here for
completeness as it will be utilized later; for now Λ can be taken as constant. As
is standard in macroeconomics, F is assumed to satisfy the following conditions:

1. It is homogeneous of degree one, i.e. it satisfies cy = F (cx1, cx2) for any c,

2. It has continuous first and second order partial derivatives which satisfy
Fi > 0 and Fii < 0 1,

3. Its first order partial derivatives also satisfy limxi→0 Fi(xi) =∞ and limxi→∞

Fi(xi) = 0.

The first condition, referred to as constant returns to scale, asserts that the
economy is at point where there are no more gains to be made from further
specialization [3]. More importantly, it allows total output to be exhaustively
distributed to the owner’s of inputs according to their marginal products, i.e.
F (x1, x2) = F1x1 + F2x2 [13]. The second condition states that the marginal

1Here Fi represents the partial derivative of F with respect to input i and xj represents the
jth input to F
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product of inputs are everywhere positive but are subject to diminishing marginal
returns. Lastly, the third item is referred to as the Inada conditions [14]. They
guarantee a nonzero stable stationary point in the model.

In the Solow model the labor force is the entire population and so full employment
is assumed (this assumption is held throughout the report as it is not essential
to the the results). The labor force and its effectiveness are assumed to grow
exponentially as

Nt+1 = nNt

At+1 = aAt, (2.1)

where n > 1 and a > 1 are exogenous parameters. Thus the growth rates for the
population and technology are constant and given by n−1 and a−1, respectively.

Capital is assumed to grow under a capitalistic process; i.e., a process by which
some of the output produced is used as input in the production function:

Kt+1 = ΛF (It, AtNt)

Ct = Kt − It. (2.2)

Here C is consumption and I is investment. In words, current consumption is
given by current capital less capital used as input to the production of next period
capital (investment). Next period capital consists solely of new units of output,
and so 100% depreciation per period is assumed. It should be noted that there
exist different variations of the basic process model in the economics literature.
Most texts write the model as

Kt+1 = It

Ct = ΛF (Kt, AtNt)− It.

In this version, Kt is interpreted as capital available at the beginning of the period
but Ct (resp. It) is interpreted as consumption (resp. investment) at the end of
the period since production takes time. To avoid any confusion we use the model
in (2.2), consistent with, for example, [15].

Defining k := K
AN

, and using (2.1) and (2.2) we can write

kt+1 = ΛF (It, AtNt)
anAtNt

= λF (it, 1)
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which follows from constant returns to scale and where λ := Λ
an

and i := I
AN

.
Further defining c := C

AN
and f(·) := F (·, 1) we get the so called intensive form

of the model,

kt+1 = λf(it)

ct = kt − it. (2.3)

where kt, ct, it, λ ≥ 0. Lower case variables thus correspond to upper case variables
as measured relative to trend growth in effective labor. That is, subtracting the
linear trend on a log plot of an non-intensive variable gives the log plot of the
respective intensive variable. Lastly, the Solow growth model consists of (2.3)
along with the assumption that investment is a constant fraction of the production
output (a constant savings rate s); that is, it = skt with 0 ≤ s ≤ 1.

Balanced Growth Path and the Golden Rule
The balanced growth path refers to the stationary point of (2.3); it is given by the
solution k∗ > 0 to k = λf(sk). The solution exists and is stable by the conditions
on the partial derivatives of the production function F (which also hold for the
intensive form of the production function f) . It is referred to as the balanced
growth since a constant intensive variable implies a constant growth rate of the
respective non-intensive variable; a rate equal to the growth rate of effective labor.
Thus, in steady state all non-intensive variables grow at the same rate.

In particular, steady state consumption is given by c∗(s) = λf (sk∗(s))− sk∗(s),
where the dependence on the savings rate of steady state capital and consumption
is explicitly shown. A natural question to ask is whether there exists a savings
rate that achieves optimal consumption in steady state. Such a savings rate does
in fact exist since steady state consumption as a function of the savings rate is
continuous over a compact set. Moreover, consider the partial of c∗ with respect
to s,

∂c∗

∂s
= (λf ′(sk∗(s))− 1)

(
k∗(s) + s

∂k∗

∂s

)
.

Since the second multiplicative term on the rhs is always positive, the savings rate
that corresponds to optimal consumption in steady state is given by λf ′(sk∗(s)) =
1. The steady state level of capital k∗ that corresponds to this savings is known
as the golden-rule level of capital.
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2.2 The Ramsey-Cass-Koopmans Model
The Ramsey model extends the Solow model by removing the restriction that in-
vestment is a constant fraction of output (determined as an exogenous parameter)
and introduces preferences over consumption at different time periods. Preferences
are captured by a utility function, and investment is, therefore, determined as the
strategy maximizing utility over an infinite horizon subject to the constraints of
the capitalistic process. Formally, the problem is stated as

max
i0,i1,...

U =
∞∑
t=0

βtu(ct)

s.t.

kt+1 = λf(it)
ct = kt − it
ct ≥ 0
it ≥ 0
kt+1 ≥ 0

(2.4)

for t = 0, 1, . . ., where k0 is given, β ∈ (0, 1), and u : [0,∞) → R satisfies the
same conditions on the first and second order derivatives as the production func-
tion. The function u is the single period utility function and represents the utility
derived from current consumption of production output. The parameter β is the
discount factor and represents the degree to which current consumption is valued
over future consumption; as β approaches 1, valuation of future consumption ap-
proaches that of current consumption. The utility function U , therefore, serves to
rank consumption streams, and the Ramsey model posits that given initial capital,
investment behaves so that consumption follows a utility maximizing trajectory.

This basic framework of inter-temporal utility optimization subject to constraints
imposed by production possibilities and possibly other elements (e.g. market fric-
tions, monetary constraints, stochastic uncertainty etc..) is referred to as a dy-
namic general equilibrium (DGE) model, and serves as the basic workhorse for
modern macroeconomic study [9]. The reason for the popularity of this paradigm
is two-fold. Firstly, DGE represents a unified modeling framework that is apt to
address both questions of long run growth and short run fluctuations. Secondly,
such an aggregate model, under certain conditions, can be decomposed as a de-
centralized model where many firms and households optimize their own objective
functions subject to given prices, wages and interest rates consistent with compet-
itive equilibrium [16]. Since, we are interested in the basic determinant of short
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run fluctuations (and not necessarily elements that can exacerbate fluctuations)
the simplest of such DGE models, as given by (2.4), is the preferred model here.

First Order Conditions
The derivation here is analogous to that by [17]. To characterize the optimal
trajectories of capital, consumption and investment, we use dynamic programming
to derive first order conditions . The Bellman equation for (2.4) is given by

v(k) = max
0≤i≤k

[u(k − i) + βv (λf(i))] . (2.5)

The conditions on the production function and single period utility function guaran-
tee that the Bellman principle applies so that the solution to the Bellman equation
gives the solution to (2.4). Moreover, these conditions guarantee that solution v
exists, is differentiable, strictly increasing, and strictly concave, the optimal policy
function h is increasing and differentiable, and v is the fixed point of a suitably
defined contraction mapping.

Substituting the optimal policy function into (2.5) gives

v(k) = u (k − h(k)) + βv (λf (h(k))) .

Differentiating, we get

v′(k) = u′ (k − h(k)) (1− h′(k)) + β [v′ (λf (h(k)))λf ′ (h(k))h′(k)] . (2.6)

To simplify this expression, consider the first order condition that corresponds to
maximizing the rhs of (2.5),

−u′(k − i) + βv′ (λf(i))λf ′(i) = 0. (2.7)

We use this expression to simplify the second term on the rhs of (2.6) to get

v′(k) = u′ (k − h(k)) (1− h′(k)) + u′ (k − h(k))h′(k)

= u′(k − i).

Here (and through the reminder of the derivation) i refers to optimal investment
i = h(k). Since this expression holds for arbitrary values of k we can write,
v′ (kt+1) = u′ (kt+1 − it+1). Substituting this into (2.7) allows us to write first
order conditions, independent of the value function, as

1 = β
u′ (kt+1 − it+1)
u′ (kt − it)

λf ′ (it) .

This expression along with the expression kt+1 = λf (it) is a system that governs
the optimal trajectories of capital, investment, and consumption.
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The Saddle Path, Balanced Growth, and the Modified Golden Rule
The first order conditions along with the expression for next period capital comprise
a two dimensional non-linear system in capital and investment. The stationary
point of this system is given by

k∗ = λf (i∗)

1 = βλf ′ (i∗) . (2.8)

Using the implicit function theorem, the Jacobian of the system evaluated at the
stationary point can be written as

A =
 0 β−1

−1 1 + β−1 + βu′(k∗−i∗)λf ′′(i∗)
u′′(k∗−i∗)

 .
Since det(A) > 1 and tr(A) > 1 + det(A), the eigenvalues of A, λ1 and λ2, are
real and satisfy 0 < λ1 < 1 < λ2. The stationary point, therefore, is a saddle
point. It can thus be shown, as in e.g. [17, p. 16], that the one dimensional stable
manifold is the graph of the optimal policy function that uniquely solves (2.4); it
is referred to as the saddle path.

We have hence shown that the steady state of the one dimensional model of the
basic capitalistic process (2.3) is stable when investment is chosen optimally with
respect to the infinite horizon utility. The stationary point is given by (2.8), and,
as in the Solow model, is referred to as the balanced growth path.

Recall from the exposition of the Solow model that the level of steady state invest-
ment corresponding to optimal steady state consumption is given by 1 = λf ′(i∗).
Comparing this with (2.8) we see that steady state investment, and hence con-
sumption and capital, in the Ramsey model fall below investment, consumption
and capital corresponding to the golden rule. For this reason, the level of capital
stock given by (2.8) is referred to as the modified golden rule. Importantly, note
that as β → 1 the steady state of the Ramsey model approaches the golden rule
and hence approaches optimal steady state consumption. As we will see, this has
important implications regarding how the Ramsey model behaves to disturbances
from the steady state.
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C h a p t e r 3

THE LINEARIZED MODEL AND ROBUSTNESS CONSTRAINTS

The branch of macroeconomics known as Real Business Cycle (RBC) theory ex-
tends the Ramsey model by including hours worked as an additional set of decision
variables and interpreting the shock parameter Λ as a stochastic process thereby
turning the deterministic infinite horizon problem into a stochastic control problem.
Models of this flavor have been shown to successfully replicate actual historical
data on U.S. business cycles with simulated data from calibrated models [18]. This
success has been largely responsible for establishing RBC theory as a core com-
ponent of modern mainstream macroeconomics. It, however, has been met with
some skepticism. In particular, the assumption that unemployment is the result of
an optimal decision to allocate time toward leisure over labor has been called into
question [19]. Secondly, the calibration process typically results in attributing a
relatively large variance to the shock parameter Λ. Since this parameter is tradi-
tionally interpreted as shocks to technology, [20] has argued that such technology
shocks are difficult to reconcile with actual data.

Despite its potential shortcomings, RBC theory has established dynamical general
equilibrium as the central methodological paradigm for macroeconomic research.
Moreover, recent work has addressed some of the criticisms leveled against RBC
theory [21].

Given the structure of an RBC model, the theory conjectures that a tendency for
economic fluctuations results from 1. optimizing behavior relative to 2. preferences
subject to constraints imposed by 3. the capitalistic structure of production in a
4. dynamic and 5. uncertain environment. The RBC literature hypothesizes,
as supported by simulation, that all these factors taken together are sufficient to
generate business cycle phenomena. A natural question to ask is then whether
each of those factors also represent quintessential elements.

Taking 4. and 5. as given, in this section we use control theory to underscore the
role that the 3., the capitalistic structure of production, plays as a cause of short
run fluctuations by abstracting from 1., optimizing behavior. Concretely, we adopt
the same source of disturbances as that in RBC models (namely, perturbations in
the parameter λ) and derive constraints that apply to any linear control laws, not
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just utility maximizing ones.

3.1 Linearized Model
In this section we view short run fluctuations in terms of small deviations from the
balanced growth path of the Ramsey model. Assume there is an unanticipated
perturbation (or shock) in the technology parameter so that the new value of the
parameter is given by λ(1 + ∆λ)1. This induces a corresponding perturbation in
the modified golden rule level of capital, investment and consumption; i.e. the
new values are given by k∗(1 + ∆k), i∗(1 + ∆i), and c∗(1 + ∆c), respectively.
Assuming the perturbations vary with time, we have

k∗ (1 + ∆kt+1) = λ (1 + ∆λt) f (i∗ (1 + ∆it))

c∗ (1 + ∆ct) = k∗ (1 + ∆kt)− i∗ (1 + ∆it) . (3.1)

A first order approximation for the non-linear term is given by

λ (1 + ∆λt) f (i∗ (1 + ∆it)) ≈ λf (i∗) + λf ′ (i∗) i∗∆it + f (i∗)λ∆λt.

Substituting this linear approximation into (3.1) and recalling that the steady state
satisfies (2.8) we get

k∗∆kt+1 = β−1i∗∆it + k∗∆λt
c∗∆ct = k∗∆kt − i∗∆it.

Defining xt := ∆kt, ut := ∆it, yt := ∆ct, and dt := ∆λt, for convenience, we
can therefore write the linearization as

xt+1 = β−1 i
∗

k∗
ut + dt

yt = k∗

c∗
xt −

i∗

c∗
ut.

Taking the z-transform of this linear system gives

Y = i∗

c∗
β−1 − z

z
U + k∗

c∗
1
z
D, (3.2)

where the upper case variables refer to the z-transform of the respective lower case
variables.

1∆x represents the percentage deviation from the unperturbed value x.
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Figure 3.1: Negative Feedback System

3.2 Robustness Analysis
(3.2) gives the open loop frequency response of consumption in terms of two
transfer functions: one corresponding to the open loop response of consumption to
investment and the other corresponding to the open loop response of consumption
to a disturbance. We posit that the system is structured as a negative feedback
system with consumption as output and investment as the control variable. Thus,
if we define

P (z) := i∗

c∗
β−1 − z

z

W (z) := k∗

c∗
1
z

and we let C (z) be any linear controller, we get the canonical negative feedback
system shown in figure 3.1. As can be deduced from the figure, the transfer
function from disturbance to output is given by WS, where S is the sensitivity
function defined as,

S := 1
1 + PC

.

The sensitivity function is well known to characterize the sensitivity of the closed
loop transfer function to an infinitesimal perturbation in the nominal plant P
[22]. In our context, we see that in order to mitigate fluctuations resulting from
disturbances, i.e. |WS| < 1, the control law should be designed so as to make S
as small as possible across a broad range of frequencies. The ability to design such
a control law, however, is fundamentally constrained because P is non-minimum
phase. With the assumption that consumption is output and investment is input,
(3.2) shows the structure defining the basic capitalistic process necessarily induces
a zero, q = β−1, located outside the closed unit disk . The following theorems show
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that this non-minimum phase zero necessarily implies constraints on sensitivity
reduction.

Theorem 1. If the closed loop system of figure 3.1 is stable, then

‖WS‖∞ ≥
k∗

c∗
β.

Proof. Since the closed loop system is stable, WS is analytic in the complement
of the closed unit disk, and so the maximum modulus theorem holds. Hence,
k∗

c∗
β ≤ |WS (β−1)| ≤ sup|z|>1 |WS(z)| = ‖WS‖∞.

This theorem states that the non-minimum phase zero allows us to lower bound
the worst case amplification of the consumption output due to a disturbance.
Moreover, we show that for at least one type of production function, this lower
bound gets worse as β approaches 1.

Lemma 2. If βk∗ − i∗ > 0, then ∂
∂β

(
k∗

c∗

)
> 0.

Proof. Recall that the steady state conditions for capital, investment and con-
sumption in the Ramsey model are given by

1 = βλf ′ (i∗)

k∗ = λf (i∗) (3.3)

c∗ = λf (i∗)− i∗.

Implicit differentiation of these conditions gives
∂i∗

∂β
= −β−1 f

′ (i∗)
f ′′ (i∗)

∂k∗

∂β
= λf ′ (i∗) ∂i

∗

∂β
(3.4)

∂c∗

∂β
= (λf ′ (i∗)− 1) ∂i

∗

∂β

all of which are greater than zero by the properties of the production function.
From the product rule we see that ∂

∂β

(
k∗

c∗

)
> 0 is implied by

∂k∗

∂β
c∗ − ∂c∗

∂β
k∗ > 0.

Using the expressions in (3.3) and (3.4), we note that the LHS is equivalent to(
k∗ − β−1i∗

) ∂i∗
∂β

.

The lemma follows since ∂i∗

∂β
> 0.
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Theorem 3. The Cobb-Douglas production function 2 f(i) = iα where α ∈ (0, 1)
meets the condition of lemma 2, ∀β ∈ (0, 1).

Proof. Applying (3.3) to f(i) = iα we get that i∗ = (αβλ)1/(1−α) and k∗ =
λ (αβλ)α/(1−α) . Thus,

βk∗ − i∗ = βλ (αβλ)α/(1−α) − (αβλ)1/(1−α)

= (βλ− αβλ) (αβλ)α/(1−α)

= βλ (1− α) (αβλ)α/(1−α)

> 0.

This theorem shows that for at least one class of production function, namely the
Cobb-Douglas production function, the lower bound on ‖WS‖∞ is made worse
when β is increased toward 1. We next show that the non-minimum phase zero also
imposes constraints directly on the sensitivity function; constraints that represent
explicit trade-offs in sensitivity reduction over a range of frequencies.

Theorem 4. (Poisson Integral for S). If the closed loop system is stable, then
π∫
−π

log
∣∣∣S (ejω)∣∣∣ 1− β2

β2 − 2βcos (ω) + 1dω = 0. (3.5)

Proof. The proof is given in [24] with q = β−1.

Since the multiplicative term next to the log sensitivity is always positive, the Pois-
son integral tells us that weighted sensitivity reduction must be fully compensated
by weighted sensitivity amplification. Moreover, note that the multiplicative term
acts like a low pass filter amplifying low frequency log sensitivity and attenuating
high frequency log sensitivity. Thus, low frequency sensitivity reduction must be
accompanied by even larger sensitivity amplification at higher frequencies. This
effect is exacerbated as β → 1 since the cutoff frequency of the low pass filter
gets smaller as β approaches 1 and the maximum magnitude gets larger.

2[23]
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To make this more concrete, suppose that the economy is structured so that
disturbances are sufficiently attenuated within some frequency band. Specifically
assume that ∣∣∣S (ejω)∣∣∣ < α, ∀ω ∈ [−ω1, ω1] (3.6)

where ω1 < π. The following corollary (which follows from the Poisson Integral)
states that the maximum sensitivity is lower bounded.

Corollary. (The Water Bed Effect). If the closed loop system is stable and (3.6)
holds, then

‖S‖∞ ≥
( 1
α

) Ω(ω1)
π−Ω(ω1)

(3.7)

where Ω is given by

Ω (ω1) = −∠
(
βejω1 − 1
β − ejω1

)
.

Proof. This proof is also given in [24] with q = β−1.

This corollary states that making the sensitivity arbitrarily small over some band,
necessarily implies arbitrarily large maximum sensitivity. Importantly, note that
Ω (ω1) → π as β → 1. This implies that the exponent in (3.7) becomes large as
β approaches 1, thereby aggravating the constraint.

We have thus shown that in the Ramsey model, attenuation of fluctuations result-
ing from disturbances is necessarily limited. Since the sensitivity constraints apply
for any linear controller, fluctuations are not necessarily the result of short run
maximization of the utility function. Rather, they may be interpreted as necessary
trade-offs that result from constraints given by the non-minimum phase struc-
ture of the basic capitalistic process. Moreover, this structure implies an explicit
trade-off between sensitivity attenuation in different frequency bands.

We have also shown that these sensitivity constraints are made worse when β

approaches 1. From the analysis of the balanced growth path of the Ramsey
model, recall that the steady state approaches the golden rule as β → 1. Thus,
assuming long run equilibrium, this implies another, perhaps surprising, trade-off.
As preferences adjust so that optimal steady state consumption is approached,
the constraints on sensitivity are made worse. The intuition behind this is that
as β → 1 future consumption becomes as much valued as current consumption.
This puts pressure on the system to be more "capitalistic," hence exacerbating the
non-minimum phase nature of the steady state.
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C h a p t e r 4

CONCLUSION

4.1 Discussion
In a model of economic growth called the Ramsey model, we demonstrated that
fluctuations from steady state growth can be viewed in terms of robustness (sen-
sitivity) constraints that are a necessary byproduct of the basic capitalistic process
underlying the economy. We also showed that these constraints are aggravated as
the economy becomes more capitalistic .

The model used consists of optimization of infinite horizon preferences subject
to constraints that represent the capitalistic economy. One of the core branches
of macroeconomics, Real Business Cycle theory, extends this model by adding a
stochastic component that perturbs the production process of the economy. The
stochastic control problem is then solved, and aggregate fluctuations are therefore
viewed as optimal responses to stochastic perturbations. In our approach, we
instead focus on general perturbations to the steady state of the linearized Ramsey
model. This allows us to consider controls that are not necessarily optimal relative
to a consumption utility function, and to apply tools from control theory.

We find that the ability to mitigate disturbances, as viewed through the sensitivity
function, is limited. Specifically, the capitalistic nature of the basic process induces
a non-minimum phase zero in the linearized plant. We showed that this zero es-
tablishes a lower bound on the norm of the consumption frequency response to
disturbances. Moreover, through the Poisson Integral for the sensitivity function,
this non-minimum phase zero establishes trade-offs in sensitivity across different
frequency bands. Therefore, controls that attenuate low frequency disturbances,
necessarily amplify higher frequency disturbances. Moreover, this trade-off is ex-
acerbated with changing preferences. When preferences change toward valuing
future consumption more, the capitalistic requirements on the basic system in-
crease and this moves the non-minimum phase zero toward the unit disk, thereby
exacerbating the trade-offs.

Thus, if the economy is structured so as to “smooth” the business cycle in the
presence of (low to mid frequency) disturbances, it will necessarily be fragile to
higher frequency disturbances. Moreover, the better it smooths in one band, the
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more fragile it becomes in another. In this sense, the capitalistic nature of the
basic economic process itself may be a fundamental reason for the existence of the
business cycle. Therefore, optimizing behavior in the presence of stochastic dis-
turbances, as modeled by RBC theory, can be viewed as a particular manifestation
of the trade-offs imposed by the non-minimum phase capitalistic structure.

4.2 Future Research Directions
It is well known that investment is more volatile than consumption in the business
cycle [25]. This work focused on constraints related to mitigating fluctuations
in consumption. Future work should be directed at understanding the implica-
tions of the given analysis on investment behavior and constraints that pertain to
investment (such as the Bode integral for the complementary sensitivity function).

Secondly, the assumption that consumption be treated as output in the section
on the linearized model is somewhat ad hoc. There is no apriori reason to restrict
setting investment as output and consumption as the control input. Doing so would
replace the non-minimum phase zero with an unstable pole. Since complementary
Poisson and Bode integrals exist for the case of unstable poles, the analysis should
follow similarly. This is needs to be looked at carefully.

Though the aim of this report was to establish sensitivity constraints on a model
that contains only the most basic features of a capitalistic economy, possible future
work includes demonstrating how the sensitivity constraints are incorporated into
models with more realistic structure. For example, in our analysis we assumed
100% depreciation per period of output, i.e. completely perishable output. It
seems straight forward to add a depreciation term to study durable output and its
effects on the given constraints.

Another direction is to explore the structure studied in the seminal paper by [18].
In their model, capital is constructed in stages before it can be used in production.
Each stage takes time and resources. It seems that each stage would possibly act
as a delay in the formulation of the Poisson/Bode integral, thereby exacerbating
the constraints.

The results could be extended further by considering the multi-input multi-output
case. [15] study a multi-sector model that includes a labor decision. Specifically,
they assume a multi-input multi-output production function given by

Ki,t+1 = λiL
bi
it

N∏
j=1

I
aij
ijt , i = 1, 2, . . . , N
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with

Zt = H −
N∑
i=1

Lit

Cjt = Kjt −
N∑
i=1

Iijt j = 1, 2, . . . , N

where multiple commodities are now assumed, labor enters into the production
function, and there is a labor/leisure decision (Z is leisure, L is labor, and H is
total time available per period). Moreover, the utility function now depends on
multiple commodities and leisure. This model is analogous to the model used in
this report. In fact, if the labor decision is ignored and one commodity is assumed,
the core of the model becomes a specific instance of the Ramsey model without
underlying effective labor and population growth. Thus, it seems that analogous
constraints from MIMO control would apply to this case.

A subsequent direction would be to explore nonlinear versions of constraints arising
from unstable zeros. This could help illuminate on what the constraints are in the
full nonlinear system.
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