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SUMMARY

The present paper supplies some general theorems with
which periodic supersonic motions of a thin wing of fairly
general planform may be analyzed to yield valuable three-
dimensional results. It is shown that The method developed
by Evvard (Refs., 1,2) for ﬁreating the steady supersonic
motion of a thin wing with subsonic leading or side edges is
valid for an oscillating wing of similar planform. Illus-
trations of the application of these general theorems are
furnished by a careful study of several types of periodic
oscillations of a rectangular wing. The present report
includes a complete analysis for the case of plunging oscil-
lations.  Important steps have also been taken towards
solution of the cases of pitching and rolling oscillations.
The essential results are presented in a number of vector
diagrams giving the magnitudes and phase angles of the 1ift
and moment. Computations are made for several aspect ratios
at two Mach numbers (M=10/7,2) when the reduced frequency (k)
ranges from 0 to 2.,0. It is found that the 1ift and moment
vectors acting on a rectangular wing with supersonic plung-
ing oscillations have positive phase angles within certain
ranges of lMach numbers and aspect ratios, while the corres-
ponding vectors acting on a wing of infinite span with the
same kind of motion have negative phase angles for every
Mach number, This new discovery indicates strongly ﬁhe ne-

cesslty of revising present day wing flutter calculations.
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I. INTRODUCTION

The determination of the forces and moments acting
on an oscillating wing in a main stream of uniform super-
sonic speed is important because of its vital role in the
prediction of the flutter and aerodynamic instability cha-
racteristics of high speed aircraft and supersonic missiles.
In the past, calculations concerning this problem were
mostly based on an analysis of é two-dimensional wing, i.e,.
a wing of infinite span ( see Refs. 3, 4, 5, 6 and 7 ).

A satisfactory theory of the corresponding problem for a
three—~dimensional wing of finite span is not yet available.
The objective of the present research is to provide some
calculations for a three-dimensional oscillating wing moving
at a supersonic speed,

For a thin oscillating wing at a small angle of at-~
tack, the basic equation for the disturbance velocity poten-
tial may be'derived, on basis of small disturbances, as a
second order linear differential equatioﬁ. By applying the
principle of superposition, the solution of a linear partial
diffefential equation may be superimposed to yield more so-
lutions. Physically, this principle opens the way to replace
the wing by a distribution of an infinite number of elemen-
tary sources or acoustic radiators. In the present paper,
explicit expréssions for the velocity potentials satisfying
prescribed boundary conditions in either purely or mixed

supersonic regions on a’ three-dimensional oscillating wing
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at a supersonic speed are obtained by the source superpo-
sition method.

To determine the aerodynamic loading over a wing
surface during its motion, it is necessary to compute the
~distribution of the pressure discontinuity across the wing.
After the velocity potential has been found, the linear
Bernoulli's equation may be applied to evaluate this pres-
sure distfibution. And, then, general expressions of the
aerodynamic forces and moments can be derived. General
formulae for the 1ift and moment (due to 1ift) are given
in the present paper.

For the purpose of illustrating these general results,
detailed considerations are given to the cases of periodic
supersonic motions of a rectangular wing. Many interesting
features of the supersonic oscillations of a wing with fi-
nite span are discovered. It is believed that the tip
effects for a rectangular oScillating wing of ordinary as-
pect ratio can not be neglected. For a certain range of
Mach numbers, there are significant indications of reversal
of the sign of the phase angles of the 1lift and moment vec~
tors, due to the presence of wing tips. Therefore, the
flutter computations on the basis of two-dimensional results

are erroneous and should be revised. .
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IT. FORMULATION OF THE MATHEMATICAL PROBLEM

¢ 2.1 Preliminary comgiderations

It is ihtended to study the periodic supersonic mo-
tions'of a thin‘wing of a general planform as shown in
Fig. 1. As in Ref. (7), it is convenient to designate the
region ODO' as a purely supersonic region while the remain-
der part'of the wing is regarded as a mixed supersonic re-
gion. For the present analysis, it is assumed that

(1) the subsonic leading edges OA and 0O'B are indepen-
dent, i.e. any lMach wave emitted from a point on OA will
not first meet 0'B, and vice versa;

(2) the trailing edge AB is purely supersonic, conse-
quently; any disturbance behind the wing will not affect
the conditions on the wing and at the trailing edge the
Kutta~-Joukowski condition need not hold;

(3) ﬁhe air flow is isentropic and irrotational, con-
sequently, the presence of strong shock waves is excluded
while the existeﬁce of a velocity potential function is
assured;

(4) the viscosity effects are neglected, consequently,
. There exists a tangency condition such that the air flow
past the wing will be tangential to the wing section at
every instant; and

(5) the angle of attack and the motion of the wing are
such that the disturbance velocities due to the wing are

very small in comparison with the free stream sound speed
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and their second order terms may be neglected.

§ 2.2 Basic differential equation and boundary conditions

The basic differential equation of the disturbance

veloecity potential due to the motion of a thin oscillating
wing may be derived on the basis of assumptions (3) and (5).

The equation reads (Fig. 2)

[P 2y ¢ T &4 _ 2 y'¢
Z}' Dt + a* JXIt * (a‘ ! 2x% T 2y2 232 (1)

where U is in the positive x-direction. For periodic super-
sonic motions, 9£>>l, the equation is of the hyperbolic type.
Symbols are defined in appendix §8.1.

It is required to find particular solutions of this
differential equation which satisfy some ﬁ%eseribed boundary
conditions. To the approximation of the linear equation,
it is permissible to replace the prescribed boundary condi-
tions on the actual wing surface by the same boundary con-
ditions referred to the x,y plane where z=0. (Ref. 8).
Because of the nature of the prescribed periodic motions
aﬁd by the assumptions (1), (2) and (4), it is easy to write
down several boundary conditions as follows:

(1) The z-components of the disturbance velocities on

the top and bottom surfaces of the wing are respectively

g.inig—;(x, Y 3,t) = Wr(xY,+0) exp(iot)
-+

=-UA (% Y,+0) exp(<pvt)

(2)
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lim g—;—(%, Y 3,6) = w (1,4,-0) exp(«prt)
30

= UAg(%y,~0) exp(<wt)
| (2a)
where +0 and -0 designate the top and bottom surfaces res-
pectively of the wing. A sign convention for A, and 4,
i.e. the effective slopes of the streamlines on the top and
bottom surfaces respectively, is adopted as shown in Fig.3.
( compare with Ref. 1 ).

(2) In front of the wing;i.e. in the region v00'!'G in
Fig. 1, there exists a zone of silence in which ¢ =0. And,
the conditions behind the wing are of no interest.

Something must be sald about the conditions in the re-
gions in front of 0A and O0'B but behind the leading Mach
waves Ov and 0'G. (Fig. l);' In these regions, interactions
between the top and bottom surfaces of the wing cannot be
avoided; this is because of the subsonic nature of the bo-
undaries OA and O'B which, instead of forming a complete
barrier to isolaterthe top and bottom surfaces, permit the
spilling of effecté of the disturbances from the top to the
bottom surfaces, and vice versa. The interaction effects
appear as a zZ-coumponent disturbance velocity which is not
specified in advance, To overcome this uncertainty, it is
necessary to make use of another physical law. Since the
fluid medium can not sustain any strain, pressure equili-
brium must be maintained off the wing. By means of the

linearized Bernoulli's equation (Ref. 2) this pressure
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continuity condition may be stated analytically as

2%
2%

(3)

2é: 24 _  a¢s
3e tUox = 58+ U

Eq. (3) serves as a complimentary boundary condition. It
is valid everywhere off the wing, in particular, in the

regions AOv and BO!G.
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III. SOURCE-SUPERPOSITION METHOD OF SOLUTION

§ 3.1 Elementary oscillating source potential

As pointed out in Ref'. (7), Eg. (1) also represents
the partial differential equation for the velocity poten-
tial of a disturbance source which is moving in the negative
x-direction at a wuniform speed U and causing the propagation
of sound wave of small amplitude in a fluid medium. Simpli-
fication of this equation may be achieved with the introduc-

tion of coordinates transformations as follows:

X = B’-)C

Y= <y

3= 4

v = gat - é%é (4)
where 8 = _g‘_,)é

az
After this transformation, Eg.(1l) becomes

¥ 26 ¥ _ P _ (5)

ax,z 3712 32,2 - at:z

This equation is of general occurrence in investigations of
“undulatory disturbances propagated with unit velocity
independent of the wave length. Extensive discussions on

this equation may be found in any treatise of mathematical
physics. (Ref. 10). It is convenient to introduce the spheri-
cal polar coordinéteé (r, 6, w) through the following

transiformations:
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’ . 2 2 2 ‘/2

Y= 1 b oo w A= [(3)-94-3]

‘= A A b C(HJB:[/"%:(#Z“ZE)]‘
"= 4 (v 8 tanw = 3/y

(8)

By Eqs. (5) and (6), the wave equation in spherical polar

coordinates is obtained as follows :

¢ 2 9
/0% 9

IS YT AW A S
4 +/?.2/0-¢:M.9 5—9—(%9 39/1‘-42/@‘35 de? - atfz (7)

By means of separation of variables, the harmonic solutions

of Eq. (7) are found as follows (Ref. 11):

¢ :Z A x% Iﬂ*é(m)“/}:(c""é)}{wmw} exp(rift’) (8)

mn - ) i
£mn T @) LA, (e 6)) | Al

where f, mand n ére the separation parameters and A,, is
an arbitrary constant. Jney(dr) and IT,.4(fr) are the Bessel
functions of the first kind of order (n+4) and -(n++£) res-
pectively. P,(cos 6) and Q,(cos 6) are the Associated
Legendre functions, of degree n and order m, of the first
and second kinds respectively.

(an taking m=n=0 in Eq. (8), a simple particular solu-

tion is found
¢ = /m"éji,z (LA) exp (L0t) (9)

= AZ)* L oo dn explilt’) (9a)

where A is an arbitrary constant. By converting back to



-

X,¥,%,t system, Eq. (9a) yields

¢l = /4, - ﬁa/‘L 6)(/)[4. /sa‘ (gb)
where o= %L %*—ﬂ‘(51+37J}$ (10)
y = Lap
4 = A

(9b) répresents the disturbance velocity potential at
arpoint (x,¥52), at an instant t, due to a simple harmoni-
cally oscillating source of strength A,, located at the
origin of the coordinate system, When the disturbance
source 1s situwated at an arbitrary point ( ¥,%7,}), the ve-
locity potential at (x,y,z), at instant t is ( see Refs.

12 and 13 )

(9¢)

4 = A Lol expfint-&

ﬁm

where T = [(x-z)z-ﬁz(y—*?)z - g 03- 01 )" ~ (102)

and A;( £,%,8%8) defines the space variation‘of the source
strength., Of course, ¢ 1is a solution of Eq. (1). The ex-
ponential factor involving t indicates clearly the periodic
nature of the motion. Therefore, as in Eg. (2) or (25),
is the freguency of the‘periodic motion.

At this point, it is interesting to consider a physical
picture as follows. In Fig. 4, an oscillating source is lo-
cated at the point (¥, %, $) at time t. Since the distur-

- bance source is moving in the negative x-direction, at suc-
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cessive earlier instants 7, the disturbance centers have
to be located at the points (£+Uz%,7,$ ) in order that
the disturbance source reaches the point (“i, 1,¢) at time
-t In particular, two sound waves. originated at two dis-
tinct disturbance centers, at two earlier instants 7. and
7 s Wwill pass through a particular field point ( x, y, 2z )
at time t. This physical fact may be used to derive the
source potenﬁial represented in Eq. (9¢). (Ref. 7).

Von Karman's three rules of supersonic aerodynamics
may be verified, (Ref. 8).. At any instant t, the distur-
bance source at (§,7,8 ) is forbidden to send signals
ahead of the enveloped region of the successive wave fronts
from successive earlier instants. The envéloped region
which is a circular cone in space with vertex at (§,7,3%)
at instant t, thus represents the zone of action for the
disturbance source; while outside this circular cone, there
exists a zone of silence. 1In fact, Eq.(9¢c) gives real va-
lves for ¢, only in the interior of the cone. This down-
stream facing Mach cone represents the region of influence
’of the source at (% s My 3 ) at instant t. Conversely, the
pressure, density and velocities at an arbitrary field point
(x, yo 2 ) at an instant t will depend on the disturbances
issued at previous instants from the points that lie on or
inside a similar Mach cone extending upstream from ( Xy ¥y B)e

This upstream facing Mach cone represents the domain of de-

pendence for a field point ( x, y, 2z ) at instant %.
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¢ 3.2 Disturbance velocity potential of an oscillating wing

' Elementary oscillating sources of the type expressed
in Eq. (9¢) will now be distributed to represent the top
and bottom surfaces of a thin oscillating wing. In a linear
theory, a wing surface may, indeed, be simulated by a dis-
tribution of elementary sources in the x,y plane. For such
a distribution of elementary sources, the disturbance velo-
city potential at a point ( x, Vs Z2 ) at time t may be com-
puted by a surface integral

Flouat) = [[ (43850 didy (11)

where

2 5 2 2,2 %
coda (227 gy B3 )%}
[x-57~ BL9-1F - B3] %2

D(%Y,3,t; 5,m) = gA(5,7) eX/s{aw[t-;%Jx—f)J}

and S is the region of integration in the x,y plane. Hence,
to compute the disturbance veiocity potential due to a wing
performing small oscillations in a supersonic stream is to
determine the surface integral & . By the principle of
superposition, this surface integral &, is again a solu-
tion of the linear partial differential equation, Eq. (1).
In order to proceed further, it is necessary to seek
answers to the following questions : (1) what is the Pro-
per region of integration S ? (2) what is the appropriate
strength of the distributed sources ? To answer these ques-
tions, it is natural to consider the given boundary condi-

tions,.
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§ 3.3 Velocity potential at a point in the purely super-

sonic region at instant t

Since the top and bottom surfaces, in a purely super-

sonic region, are completely isolated; a field point ( X,

Yy 2 ), where z)0, will be influenced only by the singulari-
ties or disturbances distributed over the top surface of the
wing, included in the upstream facing Mach cone from ( x,

Vs % ) (Fig. 5). Then, with reference to Fig. 1, the re-
gion of integration S for the surface integral, Eq. (ll),

is bounded by the curves§=3, and (x-t) - £(y-1n)-g'2=0;
and the velocity potential at a point ( %, vy, z ) in the

viecinity of the wing at an instant t, may be written as

P(x43¢t)

4

A4 ) Codf (5781045 ’
[e- ) - p2(3-0)* -3 1

xpy Yo H -5 g3

=g ex,o(ivt)f exp[- "ﬁ’:g(xng)]dgf b
4 #-glex-r-p37”

(12)
Let B(Y-M) = [(x-17- £'3)% oo, | (13)
/ 2 2z ,2 }5 .
and dq = F [(x-5)-g5")" 2nd, dg, (13a)

then Eq. (12) becomes

x—ﬂ3 .
é(x;'j,},t) = ex,o(;pt)f exp[--"';%(x_g)]c{g
;l

T ; 5 5 .
X / Al £ fl—ﬁ'-[(%-g)iﬁ‘;‘]écwez) Co-o{;%[(x" ) -}szég]/,uﬂ.a,} d@l
o (12a)
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By differentiating Eq. (12a) with respect to z, it is found
that

(1 4 3, t) = -mg exp[u)(t rYo ] A(x-p3, 4)

-p3
+ exp(wt)f exp[- 4p?1(x 0}dt

X f 2 [A{ § Y- ple-0=8 51" cov o} Coof E%[(x—g)ip‘;,‘]}é,oae.ﬂ ds, (12)

It is easily seen that in the second term on the right hand
side of Eq. (14) , the differentiation of the integrand with
respect to z under the integral signs will yield the follow-

ing result :

2 _[A(F, 9-n,co00) oo ( 25 0in6,)]

ﬁ} -] ’)AIMQ)J
2, (15)
where, of course, 4, = F’[(%-E)z-ﬂzz‘ly‘ | (18)

By substituting Eq. (15) into Eq. (14), it is found that

:;:(x Y,3,t) = - ex,o[«.;)(tn‘,m_z )] A(x-83,4)

’ %83 T Ay
-p;exp(&ﬂt}! exp[ ":g(x E)J di !-;A_.{A(;' :lv‘zlco-os,)CM( ;a MQ)JJGI
' (14a)

On taking the limiting value of Eq. (14a) at z = +0, it is
seen that
(1) the first term becomes -mA ALY exp(<rt) 3

(2) the second term vanishes with z; because as z=+0,
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the multiple integral which is finite is multiplied by
2z =+0, |

Hence it is concliuded that

g—f(x, y,+0,t) = ~TB A(X Y, +0) exp(<vt) a7

By Eqs. (2) and (17), it is easily found that
Wi (X, y, +0) ex/_-,("pt) = - UAT (x, Y, -HJ) exp ({;)i') = —ﬂﬁﬂ(x,gfﬂ)&/’(ii’t) (18)

Similarly, by ccnsiderations of the conditions on the bot-

tom surface, it may be shown that

W, (X, y,-0) exp(ipt) = TNg(xY,-0)explivt) = agARY-)ep(rt) (19)

Egs. (18) and (19) may be regarded as confirmation of the
following theorem :

Theorem 1 The strength of the source at any point at

any instant on the surface of an oscillating wing is

linearly dependent on the downwash at that point and
at that instant and is independent of the dovnwash of
the neighboring points.

Eq. (12) and theorem 1 provide definite answers as to
the proper region of integration and appropriate source
strength for the determination of the velocity potential at
a point ( X, ¥y 2 ) in the purely supersonic region of an
oscillating wing at supersonic speed, at an instant t.
Therefore, it is simple to state the following theorem :

Iheorem 2 The velocity potential at an instant t, at
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a point P in the purely supersonic region on the sur-
face of a three-dimensional oscillating wing (Fig. 1),

may be computed by

P(x, Y, 10t)

- A (P (-5 67y-n)] >
—_— . _ U W;-(E,’U}wéla_[(ﬂ v-ply-v] }
=7 EX/J(u)t);/ eXp[ o (X ;)]J;/ et ——-—-——-——[(%_g),_ FEIEL

L
5F&§)

(12b)
top
where z=1t0 refers to the{ }surface of the wing.

bottonm

§ 8.4 Velocity potential at a point in the mixed super-

sonic region at instant t

A mixed supersonic region may be converted into a
pseudo-purely supersonic region.," This is accomplished
by-assuming that the region ahead of the wing but behind
the leading Mach waves is occupied by a thin impermeable
diaphragm (Fig. 1) which is an extension of the wing having
the following properties (Ref. 1) :

(1) It will not alter the flow over the wing;

(2) Tt will sustain no pressure gradient (see Eq.(3)).
With the presence of this diaphragm, the top and bottom
surfaces of the wing may again be considered as independent
of each other. However, there is an unknown velocity com-
ponent in the z»direction in the diaphragm region, which
actually is due to the interaction effects between the top
and bottom surfaceé;

In order to compute the velocity potential at the point
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Q, it is convenient to first consider a point N located on
the trace of the upstream facing Mach cone from Q, in the
diaphragm plane (Fig. 1). Let the unknown vertical velocity
or downwash and the effective slope of the streamline on

the top surface of the diaphragm be w,_ (%,,y,) and A, (Xy,yw~)
respectively. Then, by Eq. (12b), it is found that

W, (£,7) CM[E‘:);,_[( X §)-p%(Y, - 'l)zl'g} d

(%, y, +ot) =~ Lex i»t)[ -
Ep, oo, 72 v s.{ [cx-59-p04, 00 exp[ L2 (% D)]

L (378 V)
—#exp[xyi—)ﬁ W, (5,7) oo [l - B4, ’1)} de

5 [ tr-p 0T ep 2 0x,)] (=0)
20

where S, 1s the region of the wing and §, is the region of
the diaphragm included in the upstream facing Mach cone from.
N(xys% s+0), a2t instant t.

The regions of integration S, and Sp‘are most easily
expressed in terms of the oblique u,v coordinates defined

as follows :

u = M (¢ -py)

B
\/:E%(Ei-ﬁ’l) (21)
or g:-%(vf- w)
N = 4 (v- uw) (=2)

With these coordinates transformations s the point (x,,,y,,,)

is transformed into (u,,V, ), where
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Vo= g5 (et BY,) | (212)
or Xy = X4’3(\/,,4- u,)
Yo = 7g( Ve~ Uy | (222)

The surface integral §br in Eq. (20) becomes

fb (uw,VN, {'0) t)

v(u)
W, (x, v)coo{,,ﬂa[(u W(v- v }

(u,-uw) 2exp[“’(u -] gy (b -v)” exp[ AE (vy~v)]

== exp(wt) l

V
Wp, (1,1 w{,%p‘i[("n‘“)(%“v)]z}
)/"f“P[“')(” -u) v (% -v* exp[;_z(v,,—v)_]

P(wt) I

(20a)

there wr(u,v) is the downwash on the top surface of the
wing, W,,r(u,v) is the dowvnwash on the top surface of the dia-
phragm, the area bounded by Osusu, and v, (W)¢vév, (u) is §,,
and the area bounded by O¢u¢u, and v, (u)svgv,,, is Sp. (Fig.l).
Similarly, for the corresponding point l\T(uA,,VNI,-—O,t)

on the bottom surface of the diaphragm, it is obtained that

P (o, Y, -0 t)

LA
= —l- exp(pt) [ du Walu,v) c,a{mﬁa[(uﬂ -} (i) }
e (- w* e[ w] vy (40" exp[Fhu-v]

v,
du NWDB(“V)W{Mﬁa[(U ~u)(v,- Vﬂ }

S oVt
tr ea(p( & ](u -u)% ex[:["’)(u -u)] e (%-vY* e"/’[m(vh’"vﬂ

(20b)
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Off the wing, the z-component of the disturbance velo-
city must be continuous, In terms of the effective slopes
of the stream lines, this conditions is, with the sign con-

vention of Fig. 3,
Np (w,v) =— A, (uv) = Np(w,v) (23)
From Eq., (3), it is found that, in the diaphragm region,

&, (1Y +ot) = B, (1,9,-0t) + [ (x-Ut,Y) (24)

where F is an integration function. The leading Mach wave
Ov (Fig. 1) from the origin, O, represents a line of in-
finitesimal disturbance along which F(x-Ut,y) can be set
equal to zero at all times. F remains zero along y= cons-
tant lines for values of x not intercepted by the Wihg.

( see Ref., 9). Therefore, in Eq. (24); F may be put to zero,
Then, from Egs. (20a), (20b), (£3) and (24), it is obtained
that

u vi(u)

; /" Ju [Age) = A )] Coof e (4000 VI "
2 J &, - u)'/z ex/v[%’(u”-u)] V() (v -v)f exP[4;J(V 'V)_]

Y
/ / ANplav) CM{”-?;E[(“N-'N)(\{V*V)J}E} y
5 (=" “"P[ ] s (-7 ep[Z (wv] (25)

When Y =0, this reduces to

u, v, () u,

N
f du Aglu,v) - A () I/_/ du ] Ay (u,v) dv
o (4, 'u)/Z v Gy (% - V)yz aj (4, -w)*% V() (% - V)

I~

2

(=8)

Inasmuch as the limits of integration of the u-integrals
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are the same for all values of u, and owing to the nature

of the functions, the two integrals with respect to v may
be equated along lines of constant v that extend across the
wing and the diaphragm (Fig. 1). Therefore,

V()

Yu
Ay, dy f Nglu,v) - Ap(u,v)
(Vi -v)* 2(V-v)*%

v, (u) V) (2 7)

This is the fundamental result of Ref. (1) and also is the
basic equation of Ref. (2). The above argument is valid
because the terms containing u, do not appear in the v-
integrals, and hence the equality Eq. (27) is true for all
uy's on the line v:v,. |

" The parallel treatment of Eq. (25) would be possible
if the terms containing (u,-u) (v, =v) can be separated as in
Eqe (26), under the integral signs. The present treatment
represents a first aﬁtempt towards this end. The isolation
of terms containing (u,-u) from terms containing (v, -v) such
that the v-integrals are free of the (uw-u) factor, may be
accomp;ished by the following procedures.

The term (v, -v)(u,-u) vanishes at (u.,v,), therefore

the equality Eq. (25) actually should be

v, {w)

lim {uwé du [As(u,v)—.A,(u,vg]c'm[h%[(uﬂ-u)(%-yzrg}dv
£€>0 o (Y, - u)'/zeX,o[ls‘_:-)(u,-uﬂ V() 2(%_,,)": ex/:,[f;_'“g(%_v)‘]
- s .
o Yy, € du Ab(u) V) M{;w_;_‘i[(aﬂ_u)(%_vyé}dv -
E50 o G aerliunal yy (u- R eRE

f‘ ~»o
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The nature of the functions /%,.AT and 4 must be such as to
insure the existence of the improper integrals. Thus, ex-

cept for the singularity (u,,vy), in the finite integration
regions, the integrands are défined and bounded everywhere,
Now, the circular functions are defined by power series; in
particular, the power series expansion of the cosine func-

tion is |

_5:)_ 2n (

28)

The series in Eq. (28) has theé following properties :
(Ref. 14)

(1) it converges absolutely for all values of z (real
and complex),

(2) it converges uniformly in any bounded domain of
values of z, and comnsequently,

(3) it is a continuous function of z for all values
of z. | -
Because of the uniform continuity, the cosine function in

Eq. (252) may be expanded in an infinite series and the or-

ders of integration and summation may be inverted. Thus

P\ 1 \2n b Y, ~€ s ACY n-£
i & "Ga) ) m* Do [ =) " [ [Agte- 2,0 (y,-v) d
ni [T(nvt) fw0o0 exP[%;(uN-u) Ve zexp[j'ﬁ’(%-vg

h=zo
%-§,

oo n n, g N2y =€ nt
=3 ol i’ G- s [ Ay
L ny [T(r+F) 5,:: ° Exf[/;—‘-:-)(uwu)] V() exp[p—‘—"—:-)(!{,—vﬂ (25b)

O

where [ represents the well-known Gamma-function. With the

conviction that the improper integrals under question exist,
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the "lim" signs may be left out.

In Eg. (25b), unlike in Eq. (25a), the v-integrals do
not contéin u, terms, and the problem has been reduced to
one analogous toc that of Eq. (26). Now, it may be pointed
out that since Eg. (25a) is derived by equating the velo-~
city potentials on the top and bottom surfaces of the dia-
phragm (Fig. 1), the two sides of Eq. (25b) may conveniently
be considered as power series in (;%) of a potential func-
tion ;§', satisfying the original linear differential equa-
tion, Eq. (1); consequently corresponding terms may be
equated.,

Therefore, for constant value of v,, with n being any

positive integer, it 1s seen that

ra v n-4

(o Cu)Gy _ [ (g0 ) 4 dy
V() E"P[ﬁ)(‘fv—"ﬂ (e 2 exp[%(% -v)]

(29)

In this system of simultaneous integral equations Z%Ku,v)
and A(u,v) are known while A (u,v) is unknown. Consider,
say, (N+1) integral equations corresponding to n=0,1,2,....
esssll. (of course, in the limit, N— e ), In order that
these (N+1) simultaneous equations may determine one unknown
A,, it is necessary that the (N+1) equatibns are not mu-
tually independent, that is, the (N+l) equations are redu-
cible to one equation. In fact, this is true for the system,
Eq. (29). For instance, when n=1, it is obtained from Eq.

(29) that
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Vir L \/(u)
Apluv) (viy-vYdy _ [ [Agfavd-Arv (%-V) %1y
ep[Zog-v] ) 2ep(gh ] (50)

V() V(u)

Carry out a differentiation of Eq. (30) with respect to v, .
The result of this differentiation plus (%ﬁ) times Eq. (30)

yields
Ve(w) .
AD(U \/) (VN V) d\/ [ [A (“ V) —A7_(H V] (V -V,
exP[{;': (%-V)] 2 exp[ (v,-v)]

g AT
<

(81)
Valu)

which is Eq. (289) for n=0., Therefore, when A, satisfies
Eq. (30), it also satisfies Eq. (31), This argument can be
carried on, by induction, to include the case for every n.
Therefore, the system, Eq. (29), is consistent and deter=
‘mines an unigue function A,. |

For the determination of the contribution of the dia-
phragm on the velocity potential at a point Q(ua,w&,io) on
the top and bottom sﬁrfaces of the wing, it is not necessary
to solve the integral equation, Eq. (89), explicitly. ILet
this contribution be called £, (us,V, ,t0,t) (see Fig. 1).
Then,

fw(%vzot)

¢

4
du %Ab(u v)CM{Aj;;:_[(% w(g-v)] } dv
(11 u)/z (.9)(/0[.4.’1(1,/G u)] Vtw) (V V) ex/,[_g(;a, Vg]

:z—zwyau)f

n- /2 -
-—_ U x| (l—))t) Z - )] (EE) (Xll_) 7T (uq u) c/u A (u, V)(V V) dV
~ M P n! F(nféL) s exp[ (% u)] vt exf[ (V |/)]

=y}

(22)

where u'! is the u-coordinate of the intersection point of
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the curves : vs=v,(u) and v=v,, i.e. v.(u')=vq.

By comparing

»-% Vi n-%
fA) («, |/)(V V) d\/ With Ap(u, v) (VM" V) v
<V
V() N/’[ Log-v)] Yt e"P[ﬁ—a(%"’ﬂ

it is seen that they are identical if every v, in the latter
is replaced by vg. But the value of v, along the v=constant
line passing through the point (ug,% ,t0) is v, (Fig. 1).

Hence for every positive integer n, and on the line v=cons-

tant=v, on wing or v, on diaphragm, Eq. (29) may be extend-

ed to be
/\6 A (4, v) (v, _v)n_'gv _ WVAD(U,V) (m_v)n-'éc{‘/
Valu) 6‘/’[;3"7:(%”)] ¥ () exp[gl"-:(%-v)]
Ve () nk v
/[/la(uv) -, @) (%Y dy_ [ [Aglun) Al (y-vy Jv
() zex,ﬂ[é{(%-v)] | VJM D)

(33)
On substituting Eq. (33) into Eq. (32), it is found that

By, 20,0)

.-L 72 \é("‘) n—}e/
=2 T explive) z ) &) " /("4 du__ [ (49 -Atan)(-v)
™ n [(nrE P exla[")(u 0] vy 2 exlp[‘P(v vy

= + (‘,}Jt) [ du [Aa(uv) A(UVJW{MM[(U-IJ)(V vﬂ }c/
'-‘)/e‘/’["')(" ~wl e 2(%- V)zexf[“)(" v)

(32a)

In Eq. (32a) an important theorem is established. The the-
orem may be stated as follows :

Theorem 5 In computation of the velocity potential
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at an instant t at a point @ (Fig. 1) in the mixed su-
personic region of an oscillating wing at supersonic
speed, the contribution of the diaphragm may be eva-
Juated by Eq. (32a). In other words, the contribution
of the diaphragm can be evaluated by an equivalent in-
tegration over a portion of the wing surface.

Now, the velocity potential £ at the point Q on the

top wing surface at instant t may be computed. It is

D (4, %, +0, )
w V(u)

4 / du [Aoa) ~Aple v)]q,,{ma[(u -wi- u))'s}
EXP(“” )z Up[‘y(“a u)] w0 2(v% V)z eKID["'V(V V)]
/ c/u (u)/l (U,V) CM{Mﬁq[(u “)(a Vﬂ }
exf’(&ﬁ)t) (% u)/g E_XfJ["')(ua ll)] V(u) (V V)}/zé’(}?["‘) (V Y)J
Y “oiwoddh o

A —uy% exp 4"’(%, W) ey (% - V) ex [’”’(v -v)

[ P % (34)
In Eq. (34), the first surface integral represents the con-
tribution from the diaphragm, while the last two surface
integrals are the contribution from the top of the wing.
(Fig. 1). By combining the first and second surface inte-

grals, it is seen that

P (45, v, +0,t)
v u, (,-u)(vg-v)
U exP(Al)t)[ }/Ju / [./1 (u, )+A (}\//ﬂco,a{/“ﬁ:[ll -u, y]} V
7“4 u)zex:"[u)(“@ DK V(u) 2(y-v)* ex/o['t %~V
u, V. (up-u)(Vy ~v)
+—exp(,,p)f du ( ® Ay (u0) corfim )i VJ}

u’ (Z( u)/z ex/?[/-;'g(u@-u)] V{(u) (V V) % exP[Ap(V VJ
(34a)



—25-

By doing the same thing for the bottom surface of the wing,

it is seen that

P (%, %, -0, t)
Va(u)
du AgV) +./lr(u,v]Qo{MM[(4/@ ~L)(y~ V))}
XID(A,I)Z') / 7Y 0(
L e"P[‘ (4~ G 2(y,~ vk exp[""(v v
+mar & p(wt)f du Ae(uz V) o (=) -] %

u’ é‘a “) 9)97[4‘1(" u)] vi(u) (%- V)l/z exp[:&‘f(% - V)J
) # (5)

Egs. (34a) and (35) may be restated in the following theo-

rem
Theorem 4 A. The velocity potential, in the mixed su-
' personic region on the top surface of a three-dimensional

oscillating wing, may be computed by Eq. (34a); or in

the x,y coordinates,

E(Z, y) "aat)
q Vad 2 2%
= O eipript [Ag G0+ A5, 7)]@4[/&((-;) By~ ,,)J}
= WEXP( Y )!{ 2[(1 ;) . B(Y- 7)]’2 EXID[‘- (- §_)‘] d{ﬂ[’?

A6, ) eos [l drdy

(-3~ §y-0T* ep[ 2 x-1)]

s %exp(éﬂt)‘g (Séb)

where (x,y,+0) represents a point Q (Fig. 1), S, is the
area bounded by O¢ugu! and’v.(u)svswlﬁ), and S, is the
area bounded by u'susu, and v, (0)svsvg.

| B, The velocity potential, at a ccrrespond-
ing point on the bottom surface of the same wing at the
same instant t, is given by Eq. (35); or, in the x,y

coordinates,



§(X) y,‘ —'0) t)

— gexf(dut)/[[/l (5, +A, (5, ’Zﬂ[od[ﬁ (-3 p - 7)]} ds dy
sz)ﬁwwﬁ%ﬂ”wa

exp(mt)[j /1 (5, ol (-5 Y- 'vj %)
(X E) F‘(y ynlza/,[4 (X E))

(35a)

§ 5.5 gymmetrical and antisymmetrical solutions

In a linear treatment, the effects of camber and thick-

ness of the airfoil section may be considered separately.
The calculations for an actual wing at an angle of attack
different from zero may be performed in two parts : (1) the
solution for a symmetrical wing of the given thickness dig-
tribution at zero angle of attack, essentially a drag pro-
blem and (2) the solution for & thin wing of zero thickness
with the given camber distribution at the given angle of
attack, essentially a 1lift problem.

For a drag probiem, it is clear that in Egs. (2) énd
(2a) the functions w, and w, are related in the following
way

w,.(x,y,+0) :—VVB(X,’J,—O) (56)
Or, in terms of the effective slopes of the streamlines,
it is required that

./l (x, ¥4, +0) = A (x A 0) (56&)

Thus, by Eqs. (12b), (34b) and (35a), the following result

is easily obtained :
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F(LY, +ot) = B(xY-o0t) (37)

On the other hand, for a 1ift problem, the functions

w, and W, are so related that

w, (%, y,+0) = W, (% ¥, -0) (38)
Or, in terms of A, and Az , this is

A (69,+0) = —Ag (x,Y,-0) (38a)

Thus, by Egs. (12b), (34b) and (35a), it is easily verified
that
F(nY,+0,t) = - F(LY -0 t) (39)

Egs. (37) and (39), therefore, characterize respectively
the symmetrical and antisymmetrical solutions for a general
problem, It is worthy of mentioning that in the case of
the symmeti‘ical solutions, (4, +4s )= A, = Az by Eq.

(36a), so, it is convenient to replace £(A-+Az ) in Iq.
(34b) by A, and in Eq. (352) by <4s. 4And, in the case
of the antisymmetrical solutions, A, +A;, = 0 by Eq. (38a),

so, in Egs. (34b) and (35a), the integrals over Sw, Vanish.
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IV, GENERAL FORMULAE FOR THE LIFT AND MOMENT

¢ 4.1 Antisymmetrical velocity vpotential functions

The previous discussions were devoted to the computa-
tions of particular solutions of Eg. (1), representing the
disturbance veloéity potential functions which satisfy a
set of boundary conditions (Eqs. (2), (2a) and (38)) pre-
scribed by the given periodic. supersohic motions and the
known geometry of a thin oscillating wing. These consider-
ations are of fundamental importance in the formulation
of a linear theory for the unsteady motions of a thin wing
moving faster than sound speed. As a matter of fact, after
the velocity potentials have been computed with the general
theorems thus far obtained, it i1s possible to determine the
aerodynamic locading over a general oscillating wing as shown
in Fig. 1 without too much difficulty. It is intended now
to derive the generalﬂexpressions for the 1ift and the
pitching moment due to the lift. TFor this purpose, it is,
of course, necessary to consider only the antisymmetrical
solutions mentioned in §3.5..0n the basis of the general re-
sults obtained in §3.3 and $§3.4, the following results are
valid

(1) For a typical point P(x,y,+0) in the purely super-
sonic region ODO' on the top surface of the oscillating wing
shown in Fig. 1, the velocity potential at an instant t is
given by Eq. (12b).

(2) For a typical point Q(x,y,+0) in the mixed super-
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sonic region ODEA on the top surface of the oscillating wing
shown in Fig. 1, the velocity potential at an instant t is
given by

2 N2 zZ
Ay 5,n) ool (035 B - 0T}
(x5 B0 el x5 (34¢)

Bxyrot) = Leptirt) [
Swa
where S., is the area QQ, Q,Q; bounded by the three Mach lines
QQ, 5 Q,Qz, QQy; and the leading edge Q,Q,. Eq. (34c) is ob-
tained from Eq. (34b) simply by dropping the surface inte-
gral over S.,.
(3) Similarly, the velocity potential at an instant t,
at a point K in the mixed supersonic region O'DFB, or at a
point C’'in the mixed supersonic region DEF, on the top sur-
face of the oscillating wing shown in Fig. 1 may also be
computed by Eq. (34c). TFor the point X, Sw, 1s the area
KK, K,K;bounded by the three Mach lines XX, , KK,, K,K; and
the leading edge K,K;. For the point C, S,, is the area
CC,C.C:Cs bounded by the four Mach lines CC, ,C,C,, C,C,,
CC, , and the leading edge C.Cs. ’
§ 4.2 General expressibns of the 1ift and moment
Iﬁ a linear theory, the pressure disturbance due to
the wing may be determined by the linearized Bernoulii's
equation
PPN N 'S (40)
where p, 1s the disturbance pressure expressed as the de-~
viation of the local pressure p from the free stream pressure

&

P, On the top surface of an oscillating wing, the distur-
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bance pressure p

p,, 1is, then,

by =8 [;_tg_;(x, y +0,1) + Uaix@(x,y,w, t)] (40a)

For an antisymmetrical or 1lift problem, by Eq. (39), it is
clear that

/P'T = - #IB (41)

where D, ’is the corresponding disturbance pressure on the
bottom surface of the wing. In an oscillating wing as shown
in Fig. 1, it is necessary to substitute for £ , in Eq.
(40a), by the potential function given either in Eq. (12b)
or in Eq. (34c¢), according to whether the purely or the mix-
ed supersonic region is considered. Thus, it is convenient
to treat these regions separately. The total 1ift force L

exerted on a region of area S on the wing is therefore
L= (ty-t,)ds =~ zéf b, dsS (42)
G

L is positive if the 1lift acts upward. The average 1ift

coefficlent in the reglon under consideration is, as usual,
C, = —& (42a)

The pitching moment due to L in Eq. (42), about the y-axis,

i.e. the line x=0, may be evaluated as
M= - zgw’,r ds (43)

A counterclockwise moment is positive. The average moment
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coefficient in the area S is defined as

M

"= Trvsa (452)

where x. 1s a convenient characteristic length, for in--

stance, the average chord of the wing.
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V. PLUNGING OSCILLATIONS OF A RECTANGULAR WING

§ 5.1 Disturbance velocity potentials

A rectangular wing is showmn ingFig. 8 (compare with
Fig. 1). This rectangular wing is assumed to be an ideal
flat plate of zero thickness. Its aspect ratio, AR=b/x.,
is assumed to be sufficiently large such that AR > '/p
( the condition of independent subsonic edges ). In Part V,
it is assuméd that the rectangular wing is undergoing a
slight, periodic plunging motion ( as in a bending oscil-

lation ) such that
We (3, %) exp(vt) = w, exp(irt) at every instant (44)
where w, is a real constant which may also be expressed as
v -, | (45)

A, , in Bq. (45), is the maximum angle of attack of the
wing. The purely supersonic region ODOi and the mixed su-~
personic regions ODEA, O'DFB and DEF will be designated for
simplicity as regions II, I, III and IV respectively (Fig.6).
It will be tacitly assumed that the velocity potential func-
tions in region II are continuous in the space and time va-
riables; as are the velocity potential functions in region
I or IIT or IV, In the following exposition the analytical
expreséion,fdr the velocity potential in the purely super-
sonic region will be found different from those for the ve;

- locity potentials in the mixed supersonic regions. In fact,
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the conditions in the purely supersonic region will be
shown identical to those of a two-dimensional flow fiéld,
while the conditions in the mixed supersonic regions are
quite different. The feasibility of joining together two
different flow fields across a common boundary is explained
by the nature of the hyperbolic differential equation, Eq.
1. |
With’réference to Fig. 6 and by Eq. (12b), it is imme-
diately found for a point P(x,y,+0) in region II that

F(x, 4,40, t)

1, 2 2 27%
Itgd) conf g -7~y %}

deep Lot -pry-0R

£
= 0—7;1° exp(a)l‘.')ol ex/a[- 4/3;5(""})] dfg

(46)

By introducing a set of new integration variables 6, and o

defined by
_ T .
T = (2-%)
_ U
o o0 8, = - (Y-1) :
o pa (4a7)

Eq. (46) may be integrated once with respect to 6, to yield
%

P yrot) =4,a fj—f— exp(<Pt) O/ eXp(-ic) ]‘:(ﬁ) do (462)

where Y = LY (48)

is sometimes called the U"reduced frequencyt,

It is obvious that in Eq. (46) identical results will
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be.obtained with assignment of any value of y, for instance,
y=0. Thus, the final expression of £ 1is independent of
the y-vgriable. This expression for £ in Eq. (46a) has been
previously obtained by several authors in their researches
on the periodic plunging motions of a two-dimensional wing
moving at a supersonic speed (Refs. 3 to 7 ).

An alternative expression of this same £ at the point
P(x,y,+0) in thé region II can be obtained in the u,v plane.
With reference to Fig. 6 and by applying the coordinates
transformations in Eq. (22) to Eq. (12b), it is obtained
that 4

Py +0 )
Yy v '
UA’ exp(</t) /P du [PCM{M;Z(?UF“u)(%—Vg]é}
-V, 4 - )yzexP[bl)(%—u)] -2 ( V)I/zexlp[ﬁ'f(%"vﬂ

(49)

By writing the cosine term in its exponentisl form and with

the introduction of new integration variables p and q de-

£

fined by
P = (\7,-\/)'/" - ﬁ’(u,,—u)/z
g = (%-wé+-ﬁ%(%>—“)g (50)
(49) can be rewritten as

28y 0] d

('f"”‘) ..——(u u)z (%H.d A (u a)2 }

,{ e rlE ffdw/ expl- 2241 48
Up-ut) (%

[/
u)é



~B5=

4
(t;,f-u) * —(u ~u)/

(u u)]C/u

~(%+&) +—L(u w)

expl-22 pldp
(49a)

°ex1b&-ﬂf) / (d,- w) e"/’[

¥4

In Eqg. (49a), introduce another set of new variables

PIRA
P = (/3—4)271’
= [P -w)]?
G = Laztsl (51)
then it 1s easily found that
P (w4 % +0,t)
/m(u,ﬂ;,)] —+[/34(u,,+l,é) G]
_ zUA /34 e,%,(,,pt)/ expl-d ﬁc;]u(ﬁ«f : e?(_tp)a{p
”_[ﬁn(”ﬂ"y’) ¢

(49b)

By Egs. (22) and (48),

y _rM,
V{ups« = Ba p%_'ﬁ

(where x is, of course, the x-coordinate of the point P in

Fig. 6) and therefore, Eq. (49b) becomes

E(UPJ +o, t) l
A% S(h-69*
- 2ha g fepifere]  aptdp
E-h-6Y% (49¢)%

* Of course, here £ (up,vp,+0,t) merely indicates that the
potential functions are comnuted at the point P(up, s*0,t).
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In Eq. (49¢), let G/k"= (52)

so, finally, it is found that
1
Flu 40 t) = 2 A 4,0 L2 exp(ivt) [ f u R ) dua (49d)

where
KA+ ]

- B Y d
Flonckot) = exp i) |, g SPCPI 4P (55)

[>]

In Eq. (49d), the final expression of & again does
not contain the y-variable. And, because (1) the regions
of integration (Fig. 8) in the Xyy plane and the u,v plane
are identical for Eqs. (46) and (49), and (2) these fegions
are distributed with elementary oscillating sources of iden-
tical strength, the two different ways of integration should
yield the same result. Therefore, on comparing & from Egs.

(46a) and (49d), it is seen that the integral functions
‘& .
f e,x[o(—tcr)];(ﬁa) do

and 2% [ £ M) du

2
m o

must be equivalent. In the present paper, these integral

functions will be designated as the T-functions, viz.

£
T _ 7./; ":T:'. — /o (CMO“‘:/J‘A’"‘O_) Z(_Mg) do‘ (548')
= 2% fluh ) du (54D)

- where the real and imaginary parts of the complex T-function
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are T, and (-T;) respectively. T, and T; (and so T) are
evidently functions of two variables k and M. In Ref. (15),
Schwarz expanded the T-functions in Eq. (54a) iﬁto infinite
series by which he compubed the numerical values of T, and
T: to six decimal places for 0sk¢2 and 1¢M¢10 at conven-
iently small intervals of k. In appendix §8.3, the func-
tion f£(m,k,M) in Eq. (53) is expanded into a wniformly con-
vergent series (Ref, 16) which can be integrated term by
term to yield from Eq. (54b) new infinite series for the T-
functions. On writing out the first five terms of the new

infinite series, it is obtained that

T=k (al woh + 4T ach)
VL T ok o (47, +4T) wink ]
FIP[(aTit L) conk + (4T + bT) k]
ri(( T, +453) coak + (b5 T, FbT v b L) A A
rES[(a T+ 4 T+ 057,)) cooh + (bsls + bgJs + l’,‘oI)/"';‘*’le.]
+esaes (55)
Tok( b ok - T ak)
L+kl[(5,1+sz;) cood = 4T aih]
+k;[(5333 e b, T) conde = (4,7, + 4,7,) ainh ]
+k4[(l>51;+ b T« b)) cood - (T, + as7J,) M'ft]
T[Ty ¢ b - B, T) ek (% ¢ &Lt 4 ank]

+.!... (56)
where
a, = )
_ /
al— 3;3-/- ﬁ—
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and all the Bessel functions (J's) are of the argument k/M.
In Table 1, the values of T, and T, computed by Egs. (55)
and‘(56) for 0¢k¢1,0 at M=2 are cémpared with those given
by Schwarz in Ref. (15), Therefore, for small values of k,
very good accuracy for T, énd I; is obtained by using the
formulae given in Egs. (55) and (56).

However, attention will now be directed to the evalua-

tion of the velocity potential function at an instant t at
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a point Q(u,,ve,+0) in the mixed supersonic region I on the
top surface of the rectangular oscillating wing (Fig. 6).

By Eqs. (34a) and (34c), it is immediately obtained that

é(“@, %, +0, t)
%
20 [(wa-w)(g-v))} dv

u MBA.

°e¢ “VE
P( ) [(% u)zexp["'l)(ua u)] “u (V'V)EE%P["J(V V)] (58)

From previous computations (Eq. (49a)), this may be re-

written as

P (%, %, +0, t)
p 4 I’
(V*“)?*ATI("Q u)/z

— ce/x {uﬂf)[(% u) ez [—-—Z—z(u uyzfu/ ' gx/,(__;l,)dfg
P P pa m (o %4 (i -2 (58a)

By introducing the variables P and G defined in Eq. (5la)¥,
Eq. (58a) becomes
Py, 1, 40, )

; a4
”@ a)J/ ‘G"“[ﬁ’ai(“a*'c’v)‘a’,]

— 204, ’3“ ex (u)t)/ expl-i c) dG/ exp(-iP?)dP
k : 4 £-[Ltyry)- 6% (58b)

By Egs. (22) and (48),

£ fpa B
Y - _Y g Bl
pa (% -Y%) = _73a_My = 4 Z et
D b
* ( ) G:[—a_("‘a‘“)] (513)

*% With the coordinate system as shown in Fig. 6, all y
values on the wing are negative. Thus, y_—lvt .
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(where x,y are, of course, the Cartesian coordinates of the

point Q in Fig, 6) and therefore, Eq. (58b) may be rewritten

as
f(xY,+0,t) ,
(4 2l S a(h-c*
= 24,0 8% exprivt) | xe,?,[_b%})dg,/ exptip)dp
4 ° A (h-62)*% (58¢)

By substitution of Egs. (52) and (53), Eq. (58¢c) finally

becomes

19\ %

P, 4 +0,¢) = Ti—ﬁ%Aaa %ﬁez/a(wt)a/ xf (x, %, M) C{/t (584)

By comparison of Egs. (494) and (58d), it is concluded
that

(1) The velocity potential functions in the purely and
mixed supérsonic regions on a rectangular wing with plunging
oscillations have the same inner P-integral, viz, the Fres-
nel integral (see Appendix §8.2); but, then, they differ in
the integration limits in the outer _u-integrals. TFor the
mixed supersonic case, the integration limits for the -
integral contain the conical flow variable, 6/%/%, that char-
acterizes Busemann's steady rectaﬁgular wing tip theory
(Ref. 17). Thus, while only three variables, viz. k(x), N
and t, enter the velocity potential function in the purely
supersonic region, one additional variable,p/Y//x , enters

the velocity potential funection in the mixed supersonic re-

. 8ion. Therefore, the purely supersonic region II (Fig. 6)
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is a two-dimensional flow field but the mixed supersonic
region I is a genuine three-dimensional flow field. The
two types of flow fields are natched together along a Mach
line 0D (Fig. 6). This is in conformity with a very impor-
tant principle in the theory of hyperbolic differential
equations :‘ Whenever the flow in two adjacent regions is
described by expressions which are analytically different
then the two regilons are necessarily separated by a Mach
line. (Ref. 18).

(2) In a linear theory, strong shock waves must be ex-
cluded. The Mach line OD is an infinitesimal disturbance
wave across waich the flow variables such as density, press-
ure and velocities, and consequently, the velocity poten-
tial and its derivatives (to the second order) must be con-
tinuous.* Therefore, along the Mach line from the wing tip,
O, in the present theory, the velocity potential function
in the two-dimensional flow region will have to change con-
tinuously into the velocity potential function in the three-
dimensional flow region. This is, indeed,; verified in the
above calculations because the conlcal flow variable A/4//«x
assumes the value unity on the Mach line 0D, (Fig. 6), ang

so, the velocity potential function £ given in Eq. (58d)

* In mathematics, one speaks of "continuity along a path'",
which means that the conditions for continuity (Ref. 19)
are fulfilled for all points lying on the path in ques-
tion, irrespective of the values of the function for
other points.



—42—

changes over to the form of £ given in Eq. (49d).

Furthermore, the above computations in the u,v plane il-
lustrate well the parallelism in the evaluation of the ve-
locity potentials in the wing tip region and the two-dimen-
sional flow région of a rectangular oscillating wing. This
particular édvantage is lost ﬁhen the computations are car-
ried out in the x,y plane.

Now, return to Fig. 6. It is easily seen that for
plunging oscillations, the regions III and I of the rectan-
gular wing should have identical flow conditions because of
symnetry. Therefore, the above deductions for region I are
equally trué for region III of the rectangular wing.

From the discussions in §4.1, it is possible to deter-
mine the velocity potential &£ at an instant t at a point C
(x,74+0) in the region IV of the rectangular wing (Fig. 8)

by the following superpcsition formula :

F(xy+o,t) = & + & - &, (59)

where £ 1s the velocity potential for a right hand wing
tip, £, is the corresponding velocity potential for a left
hand wing tip and £, is the two-dimensional velocity poten-
tial, o
$ 5.2 Lift and moment expressed as definite integrals

For the present discussion, it is most convenient to
consider a rectangular wing as shown in Fig. 7. Thus, the
total 1ift and moment acting on the wing consist of three

parts, viz., (1) 1ift L, and moment M, due to the contri-
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bution of region II, (2) 1ift L, and moment M, due to the
contribution of region I and (3) 1ift L, and moment M; due
to the contribution of region II'. Of course, the velocity
potentials in the regions II and II' which are purely super-
sonic, are given by Egs. (46a) and (49d); and the velocity
potential in the region I which is mixed supersonic, is
given by Eq. (58d).

Formula of C.. in region II

The 1lift contribution due to a portion of region II
(Fig. 7) of unity span may be.expressed by Eqs. (49d4), (40a)
and (42) as

[} Z,
L, = _Zldly[ 'ﬁlr dx

= 2§ [ [U (x'jwt) FAVE Y s0t)] dx (60)

where by Egqs. (49d) and (54b),

F(xy,10t) = A alL exp i) TC4, M) (61)

With 8=x,, it is easily seen that by Eqgs. (42a), (80) and
(81)

4P
o | o o[ §(x Y +0,t) dy

we [
b | #yroe) di

%,
—Aa——fpupﬂ [Uﬂ * ”fT%d
(60a)
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where (T)& means that the T-functions are evaluated for
< . .

2

VA M
U p°

above yields

k, = Replacing x, in Eq. (60a) by k., defined as

: A
Vi f,_o _ / . ,3
4d,e0p(vt) e [(Te ++ Mz,f Td4] (60b)

It is interesting to consider the limiting case when k, =0

or V=0 for Eq. (60b). Thus, it is easily found that

/3 fa.o ___ /3 (C‘-o);)= o

%)3;12(4—406*}’1"”) - 4-A4, =/

which verifies the well-known Ackeret formula (Ref. 20)

(CL‘,)P“ = —4;1—‘-’ h (62)

Then, Eq. (60b) may be rewritten as

CLo — , ~cA-
Gk % [((n-iTs 5z (A /"‘)]%c (60c)
where C¥ = (¢),., exp(ivt) (63)
A, ~ |
and  (Au-id)e = | (T-<To) 44 (64)

qg is the "quasi~-steady" 1ift coefficient in region II
(Fig. 7), i.e. the 1ift coefficient in region II computed

by the steady state theory from the instantaneéus angle of
attack,

Formuls, of Cwm, in region IT

The moment contribution dué to the 1ift acting on a

portion of region II (Fig. 7) of unity span may be expressed
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by Egs. (49d), (40a) and (43) as

M, ——zfdyfff,r (x = 29[¢[U’ (xy+at)+u)§(xy4ot)]d7‘
~(85)

where £ is the function defined in Eq. (61). Then, by Eq.
(43a), it is seen that

fx 22 iy o t)dy 4 ‘“" ]x_%;(t Y +ot) dy
K (65a)

Integrating the first integral on the right-hand side of

Eq.(65a) by parts yields

C, = [x g(x‘y+ot)—/§(x,y+ot)dx+~/x§(xy+oﬂd¢]

:A.,a/” ex,aam—-—[(r)fe /Talaz + =X /xT‘dx]

:A“ exf)f-.'ﬂf:) [(7’)4c - _I f ‘TJ-A + "'_/tz / ‘/ATJA]

c

4wt [(7-T) - i) ¢ g Bo B,

e (65b)
. 4‘
where (}3,,_”-:53;)4%c = [ A(Ta-<T)d4b (686)
From Eq. (65b) it is easily found that
. . /?cMo \ _ (CM.:);J-_-:: _ /
];,1'51(4Acexp(n'ut)7— (e 2
or (Gr)p=o = £(C)o=0 (87)

that 1s, on a steady wing, the center of 1ift in the purely
supersonic region i1s at the mid-chord point from the leading

edge. Now, on introducing

C, = (¢.) oo exp(int) (68)
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which is the "quasi-steady" moment coefficient in region II
(Fig. 7), Eq. (65b) becomes |

c
o

Mo

X

2 (T m (i) b i BB
ﬁc[(7_ ) -4 ( Y I (65¢)

()

(65¢) is the desired formula,

Formuls of C., 1n region T

The two wing tips in Fig.7 contribute the same amount of
lift,because of symmetry. 'Thus, the 1lift contribution of
the region I which has an afea of 8=x72 /p may be expressed

by Eqs. (58d), (40a) and (42) as

:4;:[0[,4][0' 1f/+ot)+d)§(xy+ot‘)de (69)

where # is the function defined by Eq. (58d). And so, the

1ift coefficient C,, in region I is by Eq. (42a),

% @ . % °
LI / ay+mﬂ4y+;£f[dxé§agjqﬂdy o)
7k ©c 7 69a

P T Ux s
The first double integral in Eq. (69a) may be treated as
follows
fd%f aé(%){/a‘ot)dy: [C/’j] (ﬂy_f.ot)d%
° % e Y

= [ [Z(x 9+0t) ~ F(-py, v r08)] dy
G my)
=2 fat2 Exp(mﬂf)[’g /"(7/ F A, M) du

/%)Jyfﬂ%Mh M%#J (70)
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= 2.4 a £ exp(mt)[ﬂ & /(/ 1) f(u, 4, M)c!/a

LS ‘%Vwo[ FpAm)dp] (7o)
where the last operation consists of changing the order of
integrations with respect to y and to « in the first double
integral of Eg. (70) and replacing (-@y) by x in the second
double integral of Eq. (70).

Similarly, the second double integral in Eq. (69a) may

be, by a change in the order of integrations, converted into

: s /9/://Z
/dx/ £(x Yy +0t) a(‘l/———.Aa. exp&ut)/&‘c/x[‘/f// f(/«;@ M)://u
e % -

X, ’
=2 8,0 Lrepot L[ xh7dx [Gp) f (A ) s
(71)

Before summing up these results, it is convenient to define

- the H-functions of two variables k(x) and M as follows :
H= H,-¢H, = %«éé/(/_/“)f(,u,ﬁ,M)o//u ‘ (72)

where H, and (-H,) denote the real and imaginary parts res-
pectively of the complex H-function. |

Now, with the definitions of the T- and H-functions as
given in Eqs. (54b) and (72) respectively, and by substitu-
tion of Egs. (70a) and (71) into Eq. (69a), it is found
that
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G = A aﬂex,a(Lpt)[(HA-cHM -+ /de+ /x/v'a/x]

e cxptivt) [(Ha- <Ky, -} | ‘(7;%7;)44 + £ / ke (Hy-it;) d 4
4.~ Z !

P A %M o
o ‘ﬂ
= 2% epot) [(Ha-ib) - (Amid) + g (C-il)] (69b)
4,
where (C,~1C,)p = | A (He-<H) d4 (73)

It can be easily verified that

J
i '—;/4,,_(‘4,,) = L
U [z A4k)] = 3

_ 3
éc H/(_(‘é‘_!] - 4_

-ﬁ(_:a

and that all the other terms on the right-hand side of Eq.
(69b) vanish in the limit when k = 0. Therefore, it is

easily seen that
Cuye, = 20), (5-2) = 5 Cdpes (74)

which is, of course, the same result as found by Busemann
(Ref. 17) in his conical flow field theory of the rectangu-
lar wing tip with steady motion. Introduce the "quasi-

steady" 1ift coefficient in region I (Fig. 7) defined as
C, ¥ = (&), explavt) (75)

then, Eq. (69b) may be rewritten as

Lo

e = - iHe) = (Aa i) + i m ey (69¢c)
Ly
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which is the required formula.

In a later section, methods of calculating the H%func—
tions defined in Eq. (72) will be discussed. The H-func-
tions are of primary importance for studying the flow con-
ditions in the rectangular oscillating wing tips region.
Their appearance in the moment coefficient C,, will be shown
presently. |

Formula of Cwm, in region T

The moment due to the 1lift force L, in Eq. (69) may
be expressed by Egs. (58d), (40a) and (43) as

M, = —4/xdxf #ir dY
-x/ﬁ

:45’/“1%/[0' £ (1, 9,+0,8) + P B (X, 5’*°t)]‘{3/ (78)
/]

where £ 1s the function defined by Eq. (58d). 4And so, the

moment coefficient CM, in region I is by Eq. (43a)

CM, g: u[xd:é (x Y +0 t)dy+ &P:’ [,d;c/ F(x, 4,40, t)a/y (763)

Consider the first double integral. By integration by

parts, it is obtained that

[xdx[ “oF (x.4,+0t)dy = / y [x———(x 4+0t)dx
% Rz

= ] [«cgm 5, +0t) + BYF(-BY, 4+ E) - / F(x,910t) a’x]
o (77)

in which the first integral on the right is by previous com-

putations,
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]/ % Flxe Y rot)dy = A,alleplivt) 2 (H)4 (772)
'X‘ﬂ

the second integral on the right is

] e }é !
| Py BCpy v r0t) dy = 2d.a L exprivt) // DAY 2y [ F L, )y, m] dp

Ze ‘
= -—"7—5_—./'.‘4 %ﬂ'exf’(t'pt)—"[x‘k&dd [ f(/“'; ‘4'M)q£l4

= ~Aoa 5t epirt) 4 I % T dx (77b)

and the third integral on the right is by Eq. (71),

-]

]dy/ E(x,Y,+0,t) dx = fdx f F(xyrot) Jy Aa Exp(wt)-/xﬂ‘/af (77¢)
x, J

Consider next the second double integral, By substitution
of Eq. (58d) for Z and then interchenging the order of

integrations with respect to y and M, 1t is found that

]xa(oz] & (x4 +o, 1) ‘lf}' FAa—exP(L;’t)/xéydx[J [03 /x)f-(/u 4 M) dpe

..Z/ﬁ °
e
———Aa A4 exp(zyt) / /4‘4744/(1/)]‘//:,%,14)#—,44 eX,o(t‘ﬂt)/x‘Ho/x
(78)
Hence by using Egs. (76a),(77),(77a), (77b), (?7c) and (78),

the following result is readily obtained 3

v, =Aa LS eplrt) (Mg - Lo [Ty - L,

c @

4 4
54, , .. / y i
= 27 PO [ (gL [ hTak -l e 22 (e "y

C

A, . . .
= ;—%‘ exp(ivt) [(Hu-iHy) - kj—z(&-@) - 5%

B p .
/éw*m" D‘)]A

(76D)
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where .
(Pa-:D)y = | £ (H -H)d4 (79)

It is important to observe that
3

lim [LHd]= 2

£~ ks *

tm [586)] = 5
%E?[iécgéﬂ::jF

and that the limiting values of the remaining terms on the
right-hand side of the Eg. (76b) vanish when k, = 0. There-

fore, it is seen that
(CM/),\=o: 4'(04.,)'):" 73— '3—/ - —i,——) = .‘_f_(d,)pw - (80)

Hence, the center of 1ift in the steady rectangular wing
tips region is located at two thirds of the chord from the
leading edge.

Finally, define the "quasi-steady!" moment coefficient

in the region I (Fig. 7) as

e

C

M,

¢ = (CM‘);Jza exp(ivt) (81)

Then, Eq. (76b) may be rewritten as

Cats 6 [(H-it) - L (By-iB) - Lo (Cy-cC) 4 22 (D,-iD) ]
Cu® A [ A2 4 A M ’g‘('?fsc)

This is the desired formuls.

Formula of Ce. in region IT!

The 1ift contribution due to the region II' (Fig. 7)
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mey be expressed by Eq. (42) as
% - %
L, = —4]‘dxf 4 dy (82)
) ‘ -4’,_//3
Since the region II' is purely supersonic, the potentiszl
function £ and the pressure disturbance p,, are both in-
dependent of the y-variable (see Egs. (49d) and (40a)).

Therefore, Eq. (82) may be integrated once to yield
L, =-4[(5F-F) tpdx (82a)

And so, the 1lift coefficient C,, in region II' is by Eq.

(42a)
% %

g 5 [ .
CLz = _.FUTJQ‘! 1):7— J7‘ F FUZ%:a/ ’(¢/r ‘/7‘ ] (8‘5)

It is recognized that the first factor on the right-hand
side of Eq. (83) is simply 2C,,, and the second factor on
the right-hand side of Eq. (83) is simply -2C., . Hence,

it is obtained that

C"z = 2 (C"o - CM,,) (85&)

Formula of Cm. in region It
The moment due to the 1ift L, given in Eq. (82) may be

expressed by Eq. (43) as

- %/

%, B
M, = —4!'¢x6 2, dy - (84)
-X¢ ﬁ

Again, on account of the fact that the disturbance pressure
D, in the region II' is independent of‘the y-variable, Eq.

(84) may easily be reduced to
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u, = -4 ! (B~ %) 2ty dx (842)
And, by Eq. (43a), it is found that
5 Ao $ Xe
= - e da + —2— [ 27 4,_d
CMZ - Pszcz ! 11’ ® + fUzﬂfaa !X ’pr x
x.
7 2
- Z(Mo * flecsa/ * ¢’T dx (85)
The factor

e
f“%, dx = - § I[Uéf—(x,y,w,t)nﬂf(x, 4,40, t)] Kodx

may be, by integrating the first term in the bracket [oe..)

by parts, reduced to

xe X T Ke
f K dx = - [ U[ A E (%Y, +o,t)-2 ] %i(x,wqt)dx]*éﬂ/ L E Gyt 1‘(’“”‘)}
© @ ° 86

In Eq. (86), substitution of Eq. (61) for Z yields

e Y 45 Xe
]xzf,r dx = —Aoa —ﬂp—qex/)(éj)t) f[U[“:(T)& —Zc/x TJ—,{] {-4';1‘! 7‘27-6{74}

2, '4<. 2 3 .41
=-AaLlexplive)g I{ O[x:(T)y, - 2(22)° | 4TdA] # P Ly f £ 7d4 }(8 )
¢ Ga

By combination of Egs. (85) and (86a), it is found that

Whel"i 3 . 4 g 4,
s’&: exf,(‘-,,t,[(r)&a-?!&né # %Mzo/ A Tdh]

A _ ) X iB* .
£ eup(eot)[(-iT5) - 2elneihi) v 2 (6B, (g

. ,
and (B,-<£), = [ AT -cT) d A (88)
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Iift and moment of the entire wing

The above calculations give the expressions of the
average 1lift and moment coefficients in the various regions
of the rectangular wing as shown in Fig. 7. For the ave-
rage 1ift and moment ccefficients’of the entire wing, it is
proposed to introduce the symbols C,, 6 and C,,  respectively.

Then, it is obtained that

1<) + (C/-: + C‘-z) _g—&']

C. d [[Lox‘ (k-2 3

R v Ax‘

= () # (G ) o (89)

which by Eq. (83a) may be rewritten as
Copy = Coo * (G = 20n) 5 (89a)

From Fig,7, this formuia evidently holds when o2 & 2 2 |
But, it also holds when 1<pAR<2 (Fig. 6). This is because
of the fact mentioned in Eq. (59). Indeed, if the 1lift
coefficient in region IV (Fig. 6) were actually calculated
on besis of this potential function, Eq. (59), it can be
used ip conjunction with the 1ift coefficients in regions
I, 1I, III (Fig. 6) as derived above to yield the same Cr.,
as given in Eq. (8%a). Hence, this equation is valid for
1¢$ AR S »

A ratio CLW/C% is interesting because it represents
the ratioc of the 1ift ccefficient for a finite wing to that
for an infinite wing; in other words, it represents the

~ aerodynamic efficiency of a rectangular wing. This ratio
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is easily obtained as

AR 1$B AR S 00 (90)

By a similar procedure, the C,,, can be derived as

follows :

2 A ~ .:3
CMN :.A—Ixcg[CMaxc (6_2/3)+(CM:+2CM0+ CM) Z —]

=y L
= CMa + (CM,—I- (M)ﬁ/’? lé /3 AR\( oo (91)

And the ratio Cmw /Chn, can be then expressed as

G\ 1
fuo) PR 1¢ B ARS oo (92)

G
Ly - 7 + (—ML 4
CM CMa

o

§ 5.3 Dual correlation relations between T and H-functions

Differentiation of the function %;sz (Eq. (54b)) with

respect to k yields after some calculations that

2 T
ﬁ(‘%/z

)= it | A f G w) i+ L expl [T 7 T

(93)

By Eqs. (72) and (93), the following formula can be easily

obtained :
T — ML T L ! papl o B[ T ﬁ)-ij’(ﬁ)}}
B”T”'ﬁzfe[ 35 72 7 R EOPEAR (Jo\n! ™ il (932)
But by Eq. (54a), it is seen that

_;’_Z = exp(-ik) J;(%) ¥* (94)

¥ This can also be obtained from Eq. (54b).
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and therefore, Eq. (93a) may be rewritten as

2

St ki [ TR K] T (95b)

M
2p

EH=T7 -

By separation of the real and imaginary parts, a set of dual

correlation relations between T and H is found as follows :

B, = T v [ TG ek -Teh)act] + F ) (25)
o= T+ 2% ([ T ack L) k] - 2} (96)

Egs. (95) and (96) may be used to calculate the values of
Hy, and H, on baslis of the values of T, and T, given in Ref.
(15). 1In Table g2, the values of T,,T,,H, and H; are given
for 0¢k<2.0 and M=10/7,2, where the values of T, and T, are
taken from Ref. (15) while the values of H, and H, are com-
puted by Egs. (95) and (98).

It may noted that Egs. (95) and (96) are not entirely
satisfactory for the evaluation of H, and H; at very small
k, because of the presence of the terms with denominator k.%
Means of relieving this inconvenience are provided as fol-
lows ¢

-+ (1) The T-series given in Egs. (55) and (56) may be
used to compute the values of T, and T; to seven or eight
digits for very small k. These values of T, and T; may be

used in Eqs. (95) and (96) for the evaluation of H, and H,

* Indeed, it is more convenient to compute H,k and H;k be-
cause the definite integrals Ci,C:, D. and D; contain
only H,k, H:k, H,k*and H;k*respectively.
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to five or six significant figures.,

(2) Or alternatively, the H, and H, functions can bé‘ex~
panded into infinite series similar to Egs. (55) and (56),
és'in appendix § 8.4. These H-series may then be used for
accurate determination of the values of H, and H; for small
ky as 1llustrated in Table 3.

§ 5.4 Evaluation of the definite integrals and numerical
results (see also § 8.5) |

The most efficient and simplest method of numerical
evaluation of the definite integrals in Eqs. (84), (66),
(73), (79) and (88) is by application of the Euler-Maclsurin
formula (Ref. 14), viz.

atre

f F)dt = w5 Fla)+ Flarw) + Farea) + .« o - +Z—’F(4+rw)]
@
Q) B, W B W (em-1 (2n- l) /?
+ Z T (my [F (a.f-rw) -F )] * (9’7)
\"Vhere an+el 1
R,= Zn)l I ¢z,,('b)[z £ )(a.+mur+urt)] dt | (98)

B,, 1s the mth Bernoullisn ﬁumber,
and %&t) is the nth order Bernoullian polynomial.
For the sake of securing reasonable accuracy without too
much computational labor, it suffices to employ a cut-off

version of Egq. (97) as follows :

a, +rw-
f Fe)dx = w—[;’—F{a) + Flatw) + Flatzw) + -+« - *2—,F{4fn.r)]

a

+ L [Flaero -~ F @] e f™ (£ asra) - FO@) 97a
216 )

Accordingly, values of A,,A.,B,,B; 5C45C: 5D, 4D ,E, and
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E; are determined for k,=0,.4,.8,1.2,1.6,2.0, and #=10/7,
‘2.00, by application of Eq. (97a).% Results are tabulated
in Tables 4,5,6,7 and 8, The formulae Egs. (60c),(65c),
(69¢),(76¢),(87),(90) and (92) are then used to compute the
respective aerodynamic coefficients. Results of these com-
putations are summarized in Tables 9,10,11 and 12, These
data are plotted as the vector diagrams in Figs.8,9,10,11,
12,18,14 and 15. The analysis of the plunging oscillations
of a rectangular wing moving at a supersonic speed therefore
comes to an end. Discussions of these results are postponed

to Part VII.

* Mathematical tables such as Refs. (21) and (22) are use-
ful for this task.
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VI. OTHER TYPES OF OSCILLATIONS QF A RECTANGULAR WING
§ 6.1 Pitching oscillations of a rectangular wing

Suppose that the rectangular flat plate (Fig.8) 1s un-
dergoing a periodic pitching motion (as in a torsion oscil-

lations) about the y-axis such that
W, (5, 1) exp (VE) = — A, U exp(iDE) at every instant (92)

Then, with reference to Fig. 6 and by substitution of Eq.
(99) into Eq. (12b), it is immediately found for a point P
(x37,+0) in region II that

P(r, Y +o t)

y+ L(x-F) P2 2 %
ﬂg{ﬂ—;)ﬂ;] B ool prllx-1-5 (fl-'i)] }o[
pz.ai [(1,_ f)z"ﬁz(y"l)z]z

P
= A, exf(&'ﬂt)[ ;’exp[
i ° :/-,;’(z—;)

(100)

which as in Eq. (46a) may be integrated once to yield

P Y, +o,t)

,A 2 2 Jé
___Aoaf;ex/a(wt)[xof L) exp-ioXde - %!”T,(Xq{)e"/"('w) dcr] (100a)

By integration by parts twice it is found that (see the re-

currence relation in §8.5)
. M? Y N Ry .
[e1.5) exp-ic)der = SHe{ hexpcebi168) - 7 T6a] - AT (101)

And, combination of Eqs. (54a),(93b),(100a) and (101) yields

$(x, 9, +0,t) :A,a@eﬁz-Mi exp(<pt) h (2H - T)
(100b)
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This equation of the velocity potential at a point P on the
rectangular wing (Fig. 6) may agailn be verified by an inte-
gration in the u,v plane. Thus, Eq. (99) may be rewritten
as

W, (4, v) exp(int) = —UAL (urvyexp(ivt) (99a)

and Eq, (100) is transformed into

P (%, % +0,t)

V ‘
_UA P wu du P coof 22 L0V} dy
T eXF(acl)t){/(u u)&exla[“)(u “)]_l (- V)% exf,[u’(v -v)]

)3 \7: 4
+ fp du ffvm{&%%[("r'“’(‘f”“’ﬂé}‘/"}
Jotogors Loz ) o

After some calculations, Eq. (102) may be rewritten as

7 (4p, %, +0, T)

(up-1)%d .
:%MAGXP("’.‘)U {—(/+ )/ex/a;"’uﬂ (uuu)] [ ‘”‘/’(‘/EZ ) a(?

(i L2, ) o feXf’( £29%)dg

~L.)Ve,([/;y';s “ u)]

4.” 2
tas ex/:[’-"ﬁ(u a)] [( (up_u)/z M) P(
AP 2
((u —u)"2 exP(—P_aZ' )]} (1023,)
‘ : 2 ; 4
where q,=-(%ru)r ML(u,-u)/ and q= (\,/,+u)é+ ﬁ’(ap-u)/

(103)

It can be shown without much trouble that
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Up

1 oL (- @ et (k) Qu Ry 2]

v e:(p[;‘) £ (- )]

= - T (5Y ko) [{ L) - 7 T(%) (104)
And, therefore, combination of Eqs. (102a), (92b), (54b)
and (104) yields
E (o, 1, #0,t) = A (B L exptivt) 4 (24 -T)

which is Eq. (100D).
For a point Q(ua,qa,+0) in region I of a rectangular
wing (Fig. 6) with pitching oscillations, the velocity po-

tential & at an instant t is by Egs. (34a),(38a) and (99a)

f(u% ‘6; +0» t)

‘a %
— Bl exmpt)[ a—" [ " el (a9 f dv
™M (o~ u)‘éxf[“')(ua—u)] w (- v)% ex,o["’)(v v)]

AT (v conlimla-ca-9 dv)
o (o emZla-a] w (- e[ o-v] J(105)

As in Eg. (102a), this may be reduced to

Z (%, Y%, +0, )

A, 2, d 2
a /3 exp(Al)t)[(/"'Mz %/ P( /:!a.z-)d?‘

4
+""'z£;7 Exp['-')/’ (4 uy [( (1, u_)z M)éxlo( Z’) ((u ~u)e M) ID( Z)J

2
ﬁa My <V _z :
2;) B )/(u u)"‘&?’[d) £ (=) Z/GXP("p—ag.)d?} (105a)

a M*
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where q,:—(\aru)é/-q’—(ud—u)kz s Q= (%+u)5+#(ua—u)'/z, (108)
It is then possible to derive the folliowing formula

§(ua) %) *0) t)

)
ad, £ vty (22 -+ L %/ 4 “d
=2 &b expot) ) [0 4 ) K% Fouhm) g
G

v RAE [ F (o hom) du

o
ik expC ) op) coetBase] o
Y

< - rzpk 2k
+70/ /AM[%(/-/‘)]O[/&]} (105b)
The essence of the discussions in § 5.1 may apply equal-
ly well to these new velocity potentials represented by Egs.
(100b) and (105b). The principle of patching up of the two-
dimensional and the three-dimensional flow fields along a

A — 1, Bq. (105Db)

Mach line is again verified because when
reduces to Eq. (100b). Calculations of the 1ift and moment
in the different regions on the wing can be carried out on
basis 'of Egs. (100b) and (105b) in the same manner as in

§ 5.2, It 1s anticipated that the detail computations may
be complicated but no essential difficulty is involved,

§ 6.2 Rolling oscillationsg of a rectangular wing

In this case, the dowvnwash condition on the top surface

of the wing is specifiled by

Wr (8, 1) exp(vt) = -/, T7ex(vt)  at every instant (107)



or in the u,v coordinates
W, () exp(ipt) = — Le(v-u) explivt) (107a)

With reference to Fig. 6 and by substitution of Eq. (107)
in Eq., (12b) it is found for a point P(x,y,+0) in region

II that

§(9‘; % +0’ t)
X Y50 f) cotf alle-1) 0y d
- ' T Ba % 7
=££ exlo(u)t)o/exf[' p (x- fjd;[_("_;) (A Pl A W (108)

wihlch may be integrated once to yield
141 )
(%4, +0, t) :Aogf;,iexp(ant)ﬁ Aa@) Ji“ T exp(avt) (108a)

This same expression can be obtained by integration in the

u,v plane, Thus

$(%, %, +0, t)

% .
= 2 expa,)t){ [ du_ coofizga(Cen 0y} dy
(u,, -u)z ex/n[ (tp-u)] w (%- V)% ex[;[" -]

y ¥ ,
+fp du / V“"I’»fp—i(("ﬁ‘“)(‘ﬁ'vﬂé}dv}
ot e (v eglis- ) (109)

which as in Eq. (102a) may be rewritten as

é (4, o, +0, t)

et - 20)2 d.
aA 'exp{u)f){(/ MZ)IWI /D(‘ ?) ¥
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I’ -
£ dx e ; AP e
+4 5 exP[l:lJ_E_z(a '“2]&/ (a,,-u)/ M) X/J[ Ba )‘((a u)z Mje'(/o( /eaf)]
ﬁaMz P

: r Ju
%L%wy)-é (g exp [22 1 o] [6"”( /"‘“d?}
(109a)

where q, and q, are as defined in Iq. (103). 4nd, com-
bination of Egs. (10%a), (93b), (54b) and (104) yields Egq.
(108a).

For a point Q(ua,za,+0) in region I of a rectangular

wing (Fig. 6) with rolling oscillations, the velocity po-

tential z at an instant t is by Egs. (34a),(38a) and (107a)

f(“a, VQ, +o.v t)

"b ‘é 2y V)z
= 'ex,omtJf 5 e e g coof mpal a6} dy

%

U,

- )VzexP[»d)(uQ u)J-ll. (V V)zex [A—D)(V V)J

%

f f"m 20 ((ut-uX-vI[E} dv }
+ ( _u)/zex/)[»t"(u u] (V v) exlp[ (y- V)J

Y

(110)

which after some calculations may be written as

Z (U, G, +0,t) =2 Md,«; Q) exp(Pt)

N % (ﬁ/ﬂ)a
x[(l—M;)Jé .! Flu R m) p2d

i ﬂ/fﬂ)
-4 4% / Fép e ) dpa

ﬁ/f” 2 (ﬁ
-uﬁewmwﬂf (@#)M%l;hﬁwék / Mﬂubﬁ- vﬁéJ}

(110a)
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It can easily be shown that Eg. (110a) reduces to Eq.
(108a) when -%g!::l. And, calculations of the 1ift and
moment on basis of Egs. (108a) and (110a) may be carried

out as in § 5.2.
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VII. CONCLUSICNS

(1) In Ref. (7), the boundary value problem for the
determination of the velocity potehtial in the purely su-
personic region of a wing with unsteady motions at supers
sonic speed was treated by source-superpesition method in
a quite general manner. In fact, Theorems 1 and 2 mentioned
above are included in Garrick and Rubinow's results. On
specializing to considerations of periodic supersonic mo-
tions, the derivation of Eq. (17) becomes very simple. The
derivation of the same equation in Ref. (7) is more compli-
cated.

() In Ref. (9), the boundary value problem for the de-
termination of the velocity potential in the mixed supersonic
region of an unsteady wing was analyzed. Evvard's general
results are expressed in an extraordinarily complicated form.
The present results, as given in Theorems 3 and 4, however,
are quite simple. The "equivalent integration zrea" ides
(Theorem 3) was first discovered by Evvard in another paper
on source-superposition method for steady supersonic wings
(Ref. 1). The essential results, in Theorems 3 and 4, are
to extend the validity of this ides to the cases of periodic
motions.

(5)»Since an arbitrary downwash function can usually
be expanded as a Fourler series, the periodic motions may
be considered as the basis for building up more general mo-

tions for an unsteady wing. This paves the way to extend



67~

the validity of the theorems 1,2,3 and 4 to much more gener-
al unsteady motions.

(4) However, the "equivalent aream idea, Theorem 3, is
not applicable to arbitrary unsteady supersonic motions.
A particular type of motion which is of both theoretical
and practical interest and which provides an example of the
fallacy of the Theorems 3 and 4, is the so called "unit step"
motion, in which =z wing at rest starts abruptly at a certain
instant and then maintains a steady motion. For composition
- of the velocity potential for a wing with motion of this na-
ture, the "unit step" source will be useful. The "unit stept
source can be derived from an oscillating source by a con-

tour integration in the V-plane,

o(x-§)) dY
$x93.8) = /¢ &= szcw 'exr[V[t- A ()

where C i1s the contour shown in Fig., 16. By writing the
cosine term in exponential form Eq. (111) can be shown to

yield

LA (111a)

¢>6zy3t)‘-

where H( &) is the "unit step" function having the property

that
H(pm) =

M0

A< 0 (112)

Now, draw a sphere of radius (at) enclosed in the cir-

cular cone from the "unit step" source at (§,%7,¢), with
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the center of the sphere located at a distance (Ut) from
(¢,7,3) (Fig. 17). Then the region of influence of the
source is divided into three regions (by Eq. (112)):

(A) In region I, the influence is equivalent to that
¢f a steady source.

(B) In region II, the influence is equivalent to that
of a steady source of half strength.

(C) In region III, no influence of the source will be
felt.
The region of dependence for a point (x,y,z) will consist of
three similar regions.

Consider the 1lift problem of a rectangular flat plate
wing performing "unit step!" motion. Suppose that the velo-
~clty potential at a point S in the mixed supersonic region
near the wing tip is to be computed at an instant t,, such
that at, < 1yl (Fig. 18). According to the argument above,
thé condition at S will depend on both regions A and B and
the wing tip will have no influence. But in accordance with
the Theorems 3 and 4, the domain of dependence at S would
exclude the shaded region in Fig. 18 in the computation of
the velocity potential at S, at instant t,.

o

Therefore, Theorems & and 4 are not applicable to "unit
step" wings. This fact is indicated (but not proved) by Eq.
(111) because the operation of the contour integration will
carry the cosine function to infinity such that the argument

of Eq. (25b) breaks down in the proof of Theorem 3.
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(5) In Part V, the general theorems developed in Part
III are used to compute the supersonic plunging oscillations
of a rectangular flat plate., This analysis provides a rath~
er simple example of the remarkable tip effects of a three-
dimensional oscillating wing. This is most easily seen by
examining some of the interesting phase relations revealed
in the 1ift and moment vector diagrams (Fig. 8,2,12 and 13),
It is convenient to introduce the following complex repre-~
sentations of the 1lift and moment vectors given in Egs.

(60c),(65¢c),(69¢c) and (76c¢):

C.. = 4;1«%_{ exp [i(Vt + €,)] (60d)
Cr, = 22|24 expliGot+ 5] (65d)
C, = 5l ewlie s €] (69d)
G, = 43‘:2°§—E' exp( <t + 5)] (764)
where |Cuwl| _ [/Cy L,Z}% is the modulus
il = e, + (&) ’
- -1 (CLo/ C,_:)- .
and €, = fan™ =l el 435 the phase angle of the
(C./ct),
vector C.. ; and similarly, ‘jzﬂ,l Ce, and‘ Cm| are the
o CEIl C¥ CZ

- modull, and %, € and § are the vhase angles, respectively,

of the vectors _%g; ,_%ﬂ__ and Cm._
| 5o ox Ci

&y

It is then observed that
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(A) In Figs. 8 and 9, at M =10/7, €, %, €, & are
all negative for 0<k ,<¢1.6; they are all zero for k,= 0. €
and ¢, become peositive while € and $ remain negative for va-
lues of k. close to 2.0.

(B) In Figs. 12 and 13, at U=2, €, 5 are negative
while €, 8§ are positive for 0<k.¢<2.0; they are all zero
for k.= C.

The occurrence of this alternation in the phase relation is
an interesting feature worthy of particular mentioning. The
effect of this phase shift in the wing tips is undoubtedly
a factor that requires further study.

(6) The following considerations will help to explain
these phase shifts. Thus, from Egs. (60c) and (65¢), it is

deduced that

(G, /G¥) = { 1+ Ok + O + o]
bl st 0 e 06D <}
(6,/G) = { 1+ Okl) + OChS)+ - - }
baf-F b Ok + 0T+ ] (114)
From Eqs. (69c) and (76c), it is deduced that
(CLI/C,:)I(‘> - { ! + 0(/&5) + Oﬂﬁp‘f)-f- e e }
vif M2 g Ok + OKS) + - } (115)
(C/C[;"")———{ 1+ Okl + OhY) + - - - - }
rif REED 4 - Ok + O + ] (116)
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And, from Eqs, (89a) and (91), it is found that

G, /C.x = {(/-ﬁ)" 04+ O+ - - . .. } (117)
rif -BZ"A'::P;’;‘“’ 4. +OA )+ O} +- }

o/ Ot = ((1=5hg) + Ok + Ok + -} (118)
o B 4 0 o]

From these equations, the following interesting results are
easily seen:

(A) only the terms with even powers of k., appear in
the real components of the vectors;

(B) only the terms with odd powers of k., appear in
the imagiﬁary components of the vectors;

(C) in the vieinity of k, = 0, the first power term in
k, dominates the series for the imaginary components, there-
fore, ;

(a) by Egs. (113) and (114), (C., /C.%*), and (Ca, /G
are always negative , i.e., ¢ and §, remain negative for all
Mach numbers (of course, M>1);

(v) by Eqs. (115) and (116), when 4> 3, (C., /C_¥);
and (Cu, /C,¥), are positive, i.e., >0, s, > 0; when M%< 3,

(Ce, /C.*); and (Cwm, /C,*), are negative, i.e., ¢< 0, 5 < 0;

when 1M°=3, (Cc, /C.*), and (O, /C,¥*), start with a term at

most of the order of k.
(¢) by Bq.(117), the vector(C.,/C.¥*) will have posi-
tive phase angle when 1<M< 141/4(3AR-[9AR" -81* or
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M*> 141/4XBAR+[9AR" ~8}%)" ; it will have nezative phese angle
when 141/4(3AR-[9AR «-%31‘4)2 M < 1+1/4XBAR+ [SAR* -8)%) 5 its imagi-
nary component will start with a term at most of the order
of k7 when M= 1«1/4)(3ARt[0AR® -8)%)°,
(@) by Eg. (118), the vector Cu,/Cum, * will have posi-

tive phase angle when 1<Milﬂ1/4X§ARm[(§ARf'w&ﬁf' or
W5 1(1/4X & AR+ [(24R)® -8]"’)2; it will have negative phase angle
when 1HL/4(EAR- [(ZAR) -89 < Mc14(ZAR +[(ZAR) -G1%); its imagi-
nary component will start with a term at most of the order
of k) when M= 1+1/4(ZAR +[(ZARY -g/%)%
Hence, the phase relations calculated on basis of a two di-
mensional analysils are likely to be erroneous. And, aero-
dynamic instability and flutter computations that did not
take into account the wing tip effects, are not relisble.
Revisgion of these calculations are, consequently, necessary.,

(7) It is interesting to study the effect of this phase
shift on the one-dimensional flexural instability of a rec-
tangular wing., For this purpose, it is necessary to compute
the work done by the wing system. ‘It is clear that the work
done per cycle of the plunging oscillation is

am,

W=/ 748 at (119)

where L -is the 1ift force on the wing which can be expressed

as follows (see Eq. (604)):

L= |L| exp[c(vt+€)] | (60e)
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and dy/dt is the downwash velocity due to thée wing as de-
fined in Egs. (44) and (45). Thus, it is seen that

an/p
W o= -[ |L|UA, coo(vtse) coopt dE
2/ ] . )
= - '/_| oA, f [(ax,,)tm &= Mutwe)mﬂtj dt

.
= L TA, e (119a)

And, therefore, for €< %5, alr absorbs energy from the wing
system, i.e. the system is aerodynamically stable. Only
when 6>’éF, alr supplies energy to the system, and conse-
quently, there is danger of aerodynamic instability.

(8) In Figs. 10,11, 14 and 15, it is seen that the
higher is the aspect ratio;‘the closer is the beshavior of a
finite oscillating wing to the ideal infinite oscillating
wing. Indeed, as AR —o0, it is easily obbtained from Fgs.

(90) and (92) respectively that

C,= Cyp, GCu= Cw as AR— (120)

w “w

Also, Eqs. (117) and (118) become Eqs. (113) and (114) re-
spectively when AR—>e. Therefore, the tip effects are grow-
ing less conspicuous as the aspect ratio of a rectangular

wing increases. This is, of course, not unexpected.
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VIII. APPENDICES

§ 8.1. Symbols and notations

XV 5%
§9Ms3
t

P
7

U/a=H
v

w(%,1)exp(ivt)
w(§,Vexp(irt)
(5, 1)exp(irt)
(%, ) exp (ir't)

ALE,1)
A(¥,7)

As,7)

Cartesian coordinates

running Cartesian coordinates

time variable

disturbance velocity potential
elementary oscillating source potential

disturbance veloclty potential on the
wing surface

free stream sound speed

free stream speed in the positive
x=-direction

free stream Mach number

frequency of the periodic motions of
the wing

z-component of the disturbance velocities
at a p01at (¥,7,+0) on the top surface of
the wing at an instant €.

z-component of the disturbance velocities
at a point (¥,7,~0) on the bottom surface
of the wing at an instant €.

z—-component of the disturbance velocities
at a point (E 1,+0) on the top surface of
the diaphragm at an instant t.

z—component of the disturbance velocities
at a p01nt (3 Q,«O) on the bottom surface
of the 01aohfagm at an instant t.

effective slope of the top surface of the
wing, at a point (§,7,+0)

effective slope of the bottom surface of
the wing, at a point (%,7,-0)

effective slope of the top sur;ace of the
diaphragm, at a point (§,7,+0)



Ay (557)
uyv
XC
b
AR=b/x,
A,

M PX
k il
P,
P
b
s
C’-o 3 CIM‘,
C ¥,C %
CLI 5 CM,
C.%s Cy*
Ci, s C%b
Cew
Corrr
&
€
d
W
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effective slope of the bottom suriace of the
diaphragm, at a point (§,7,-0)
oblique (characteristic) coordinates
rectangular wing chord
rectangulaf wing span
rectangular wing aspect ratio
rectangular wing maximum angle of attack
reduced freguency
disturbance pressure
local pressure
free stream pressure
free gstreanm density
1lift, moment coefficients in the region II of
the rectangular wing (Fig.7)
"guasi- steady" 1lift, moment coefficients in
the region I of the rectangular wing (Fig.7)

1i£t, moment coefficients in the region I of
the rectangular wing (Fig.7)

guasi- steady" 1ift, moment coefficients in
the region I of the rectangular wing (Fig.7)

1lift, moment coefiicients in the region IT!
of the rectangular wing (Fig.7)

1ift coefficient of the wing

moment coefficient of the wing
elementary "unit step" source potential
phase angle of the 1lifft vector

phase angle of the moment vecior

work done per cycle of oscillation



7.

In two-dimensional problems of diffraction of light
produced by a wedge or half plane, Sommerfield introduced
the ingenious idea of many-valued wave functions (Refs. 23,
24 and 25). The Sommerfield'!s two-valued wave function

may be expressed in a form involving the function

3
F(R) = [ exp(-cp?) dP (121)

o

This function has real and imaginary parts
&
C(R) = | cn prdp (122)
f
S(R) = [ anpdP (123)

which are known as Fresnel's integrals (Refs. 16 and 26),
These integrals can be expanded in various forms, among which
the series expansions due to Lommel will be discussed now
and used later (§ 8.3 and§8.4).

Let a new variable of integration b=P" (124)

be introduced, then Egs. (122) and (123) become

[ [

Clh) =7 cns e =L [ T, rds (122a)
b 5

§(4) = £+ J ainb b= 2(F) [ Ty )b (123a)

In accordance with Lommel, these integrals may be computed

by (Ref 18)

%
Ot = T [ Ly (26,0) cout, + Ly, (26,0) aint)) (1221)



e {1 e
SCh) = I [ Ly (2b,,0) dinh, ~ L3, (24, 0) coa by, ] (125b)

vhere L,(2b,,0) and Ly,(2b,,0) are particular cases of
Lommel's functions of two variables of A-th order,

L¢(bya), when b=8b,, a=0 and £=1/2, £=3/2 respectively.
In general, when £ 1s a non-integer, Lommel's functions

Lg(b,0) are defined by (Ref, 16)

oo ()m(,b),tf-z:n
b o) = ~ {2
Lﬂ( , 0) '%; [(L+2m+1) (185)
thus, for £ = 1/2, b=2b,,
R SO i
Ly, (26, 0) = e 125a
6 %:o [ (Lezmer) (125a)
and for £ =3/2, b=gb, ,
2eem
- = (_)m (Lﬂ)z “—
L%n%“@__gg (2 iomed) (125Db)

Besides, it is not difficult to verify the following for-
mulae correlating Ly(Rb,,0) and Ly(2h,,0):

d - b

zEL N (Zth, 0) = Lv/2 (26, 0) (126)

d !
25, Ly (28,0) = (8 )%

[
|
I\
A
™
iaw
Q
~

(127)

By simple elimination process, the following differential

equation for L,(2b,,0) can be established

' d [d /
Ly (2, 0) + g (G Lo (2tr,0) = ] = 0 (128)
Similarly, it is found that

o . _
agz Loy (25, 0) [(Trb,.)’z LS/Z(ZI”"O)] = ¢ (129)
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Hence, Fqs. (125a) and (125b) may be considered as the series
solutions of the differential equations, Egs. (128) and (129)
respectively. It is, therefore, concluded that the real and

imaginary parts of Fg. (121) are Fresnel integrals, C(b,)

and S(b,), which may be computed by Egs. (122b) and (123b),
where Ly(2b,,0) is a solution of Eq. (128) in the form given
by Eq. (125a), and L,(2b,,0) is a solution of Eg. (129) in
the form given by Eq. (125b).

§ 8.3 Series representations of the T-functions

The function f(u,k,M) defined in Eq. (53), can be re-
written as
-,Q/[/;“,,—N/—/A‘)%] » RE (B (VY i
Fu, R M) = exp(- 25 4,«){ (Coa po- inin Py dp | (WP‘-LMPMP}@Sa)

In Eq. (53a), Fresnel's integrals may be replaced by Lommel's

functions as discussed in $§8.2. Thus, it is found that
f(M,‘&,M) (fr) eXf(-cﬂ){ exp[tz""g(/ﬂ‘)&][L/ (24 o)+4[_3, (24, o)]

+ex;a[4'£ﬁ£(/-/4‘)y‘][ Ly(2b:,0)+ « L3/z (2., "JJ} (55b)

where fb,) _ omE, o m?
{bz} =R (02t 5] (130)

Substitution of Eq. (52b) into Eq. (54b) yields
T = (L,’f',f) e)rp(ﬁé)f {eXP(-—Mz%)[Lg(Z‘M +iLyab,0)

vesp( aiat)[Ly(h o) eiLy (et olf covs, do, (157

where &4, b, and b, are defined as follows:



iy jo
6. = an’m (132)

2

{};'} = A (con t 2528) (130a)

2

On separating the real and imaginary parts of the integrand

in Eq. (131), it is found that

T = Ef o) (T+T+ T-T)+ (T -F+G+7%)] (131a)

‘I"l'/ )
: Ly (25,0) T (133)
where [ cos( ainze, { = }wezalaz: { }
) Enehs I3 (134)
% L, (26, 0) =
! an(% MZQZ){ L/z o } e 6, d6, — { A } (135)
) o £ (136)
% L (25,0 . (137)
fm(%mwz){ [, (26 0)} e, o, = { 5'}
’ A T (138)
5 Ly (e, 0) T (139)
IM(£M29,) S }Coag de, = { ! }
- Ly (26, 0) T (140)

To evaluate T, 4T, evsssTpy 1t is convenient to introduce
Lommel's series for Ly and L;,. Egs. (125a) and (185b)

can be rewritten as

N N TP
L'/z (Zb": 0) =2 ':‘I')Z 1485 oo (dm+l) (1250)
m=o (2ms1) te€rms
4% oo -t 2m -1
T X " (2b0)
Lo (36,0) = 26500~ 55 (1254)
= _—V_'——l
” 2m terms

whence it follows that

Lp@s,0) _ | N _of s (i war 2] 00, (141)
s Ly (26, 0) Rz M.Zc;,,.. J-3-5 - (2my1) ’
/z “ o ("hf/,;rz;.rms (142)



wG30=
(143)

m-{ A 2mtt
Co—ie L3/z (Zbllo)} I Oo «) 2 mtl[&z (Maa + Z)] cor 6
2 =% § ] .
= N S ANARE CLALL (144)
(y;,;. 1) terms
e O 2mri
Ay coss,

M

r+!
é

In Egs. (141) and (143), the expression (cosé,
can be e*cnandéd by binomial theor em into
. 2m+l-rgz Coa 3
(145)

X (zmr1)! /

) . 02 me"_
Cond, ( Coq 8, + M ) = YE (@me1-r)I Il Mamﬁ_r
<0

(zn)1 }

By method of induction, it can be easily proved that
(148)

A = z‘/”"{ > g’,:rrsfz:f’ cot2n-rA + e

e { (-()znu(i';rz’ A;,,z(»-nétm} (147)

Cor®g = 22,, -, R to2(n-r)A ¢ ((2»’;;!&)!} (148)
Cos 2(n-r+1)A } (149)

(znwl)’
Gavri-r)t ri!

/

{ (2,, re !
2n+t
Crt” A = > {

rzo

In BEq. (145), if r is odd, (r+l) and (2m+l-r) are both
even; by Egs. (146) and (148), it is obtained that
2m+/-rez cnrf/gz - (2m-;’:l’£.;l(f+l)-’ VVm,r (8,) (150)

Ain
[cw 2(m-j-d+1)8, + toa 2 (m- r+al-j)a}

Tfl 7'-
=) (rri-dyl 41 d!
cor2(Z"-d) 6
d 1

where
(92) - zZ= (Zm rel
Y=1
2
T DT 2, " Gerd 4
res .y
= m-J—Lszz(m-j-!:—')Ga

)
(Zm—-rfl-j)! J’
(151)

/
2 érzfl ) ¢ (zm-an-/ )dz

\ll
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Also, in Eq.(145), if r is even, (r+1) and (2m-r+1) are both

odd; by Eqs. (147) and (149), it is obtained that

T ead ™M g, — (Z"'";'z’,:',,f’”” I, . (152)
m——- pa -
where o zE o m-4 2[Mz(m-g—£+l)éz+M2(m'r'§f£)82]
Y 9 -
m > ; (Zm_rf-l—g)_’ (f+l—'£-).’ #! Al (155)

Combination of Eqs.(145),(150) and (152) yields

2'111"/ 2m (2m+/)! (r.‘_/)
Cot 6, ( Cot 6, + ) E sz-p/Msz-/-r U,;, (52)

2mel
(amv1)] (v+1)
+ E 2ot pgEmtl=F pym,rm?)
y=43- (1458«.)

 Substitution of Eq.(145a) into Eq.(141) gives

Co-deg L}é (zbl, 0)

2m+l

S LS OT S R ) ST m)

mzo,2- 7502 Y=4h3-

(141a)
Substitution of Eq.(145a) into Eq.(143) gives

coa 8, [ 3, (26,0)

2m+!

/ N et m/ _rEl r+/
:ﬁz(_) { Z AR (z)+ 2 Mzmrl—rW } (145&)

m=1, 3, =43

It is clear that in Egs.(142) and (144), coseLl,(2b.,0) and
cosgL%ﬂébz,O) can be computed by Egs. (141la) and (143a) re-
spectively, with 6, replaced by (-6.). (154)
Because of the analytic properties of Lommel's Series (Ref.

16), the infinite series in Egs. (14la) and (143%a) are
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uniformly convergent and therefore the defianite integrals
Ty 3Tz5 eseeTy can be evaluated by integration term by tern.
By this procedure, from Eqs.(133),(154),....(140) and
(13la), it is finally obtained that

P

T = L exp(-ih) {[ Z(—)z ’"*’m'Z e | VT, (4) coolh aiut) dy
mzo2z. r=13; P
ST S ] s aiet) 4]
m=l,3-- r=02- o
Z2m+l w
+,.[ Z(—) L Z% [ A, con( £ ait) dy
m=43. r=43,.. d

Soren Sz s e is])

powr) oy (131b)
where ¢=26.., Eq. (131b) is the desired series representa-
tion of the T~functions. Presumably, the velocity potential
function # defined in Eq.(61) is a continuous function of k.
~ Therefore, the T-series must be uniformly convergent in k..
So, Eq.(131b) may be used to determine the values of T, and
T, to any degree of accuracy desired. GFEvaluation of the T-
series can easily be accomplished by using the following

formulae:

[CM,(}%AAM'//) coeny di

{ ~I) . if n 1s zero or an even integer (158)

0 , if n is an odd integer . (157)
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fr,«a( ) Arnf dp

{'1KLH% s if n is an odd integer (158)

0 s 1f n is zero or an even integer (159)

The computations for the first few terms of the series are
fairly straightforward. The results are given in Eqs. (55),
(56) and (57) (§5.1).

$ 8.4 Series revresentations of the H-functions

The H-functions are defined in Eq.(72). In Eq.(93a),
a correlation relation between T and H is established.
Series representations of the H;functions, therefore, can
be derived from Egs.(131lb) and (93a). On the other hand,
an analysis similar to that just described in §8.3 may be
carried out as follows :

Substitution of Eqg.(53b) into Eq.(72) yields

, P :
H= %)é exp(-ik) / { exp(- 7'4—4»«;;252) [Ly (2b,0) + <l s, (2b,,0)]

vexp(h ainit)[ Ly tho) 4 iLrileh )| cove dt

(160)

where 6,,b, and b, are as defined in Egs.(132) and (130a),
On separating the real and imaginary parts of the integrand

in Eg.(160), it is obtained that

4 .
= (& exp(-ik) [(H o+t + Hy~Ho) + i(He-Ho + By )] (160a)
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(161)
(162)

wnere L

L, (2h,,0) H,
[CM(M/Lmz }affgzc{ez:{

Ly (26,0)

(184)
}/Z 2
/L«-u,( A 26,

©

(186)
(187)
(168)

[ 3,(26,0)
A

| i iz

o

i
{%} (183)
L3, (26, ©0)
y (26, 0)} coi's, ds, :{ H;}
)

Loy (26, 0
% coi’s, dg, =
3/2 (252 0)

e,

]/zw(——ng){ Ly (28, O)}Lnagz v
o]
p

By binomial theorem, it is easily seen that

3 A, 2m+l i (2m+1)t / . Aml-r Y43
coe’s, (cm o+ L) = E ooy 7 g A g ot g,
[ ) (169)

If T is even, (r+3) and (2m+l-r) are both odd; by Egs.
(147) and (149), it is found that

/J,;u.zm”—ygz CM“SGZ — (zm-;:'ljigrﬁs).’ /C;',f (8s) (170)
where
m-5 Fri m-’y—zz[ w2l L4208, + 4in 20 Atd /)9J
Z(—) A 2m-g-ht2)6, S A
Fm,r(el):,z (2»14—-/-"f )’3‘ (7*3"£)'il
g=o Hh=o aKE S (171)

If r is odd, (r+3) and (2m+l-r) are both even; by Egs.

(146) and (148), it is found that

. - _ @m-re)! (ve3)!
PPl f% coa 3, = i E—MJ),(&Z) (172)

where

f’ TJ'I )
(6 ) = Z E @ E [coaz(m-j-d+2)6, + Co«.z(m-g'-/wd-/)ez]
(2mri-r-4 )1 41 (ys3-d)id!

j=e d=o
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rH/
2

/ Z e 2(Z2-d)s,

[BEN? 4 Gres-d)rd!

-+

p 214
m~—? -0-—):_/ . ~
/ Z TV g z(meg- =) e,

+ TR TEREWEE F]
(zm+/-r—j)_lj_/

EET £,

Y
2 [ (2 (178)

Combination of Egs. (162),(170) and (172) yields

2m+/

cou’t ((cont, v 2t

2mi+1

_ . (zm+1)! (yr3)! (2m+1)! (r+3)!
- F E)-”Jr(az)

(8,) +
2m+3 amel-y Ty TR 2m+3 -
Y=02.- 2 rim 4 y=43,. 2 r-’MMH r

(169a)

Thus, it 1s easily seen that

mel

haid A Jz»—u-/

o Z 3 4
(‘.011102 L’/(Zb: 0):_I E 72 CMLGZ[%- (mszf- M)
2 £ JA
m= {-3-8& .- (2,"1./3

—
(m+1) terms

2m+l

2m
-1 E L F g (r+3)! Z (re3)!
—4”'5 © /é m!{ i MZ»H-/-V /:;;,,_(62) + Y_IMZ’”"/"" En,r{al)
m=0z, r=0,2 .. y=13. (174)

and that

o0 m-/ X Ainbp\y2mt!
/ @ 7 2™ e, [ (e, + 257)]
3 2 2 ™M
(M 26 0) == —5>
‘92[-%( 1,0 T4 J-3.85 .- (2mp1)
e ]

m=13,-

-
(m+1) Terms

2m#t

2m
| ot % (r+3)! (r+3)!
=% E @ EL” 2m_/{ g Wﬁ;,@) f‘E Wn,—,_,—.&"ﬁ,ﬂ,@)
m=i3.. e ZTER

) | (175)
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The computations of cos’s,L,(2b,,0) can easily be accom-
plished by Eq.(174) with ¢ replaced by -6, . Similar pro-
cedure vields c0s®8, Ly, (2b.,0) from Eq.(175). Therefore,
by Eqs. (161),(162) ....(168) and (160a), it is obtained
that

E = 4——1'; ex/J/-;A)[[Z ) gémwm Z r/(;‘jj:/—r fcm(ﬁ&,d,mﬂ) E;),(‘/’)c[gé

m=0,2 .- r=43.

O0a

LS ZMMJM(%MQF;J@JLﬁ}

r,MZMO-I-)’
m=3.. 7:0_,2,~- : °
o0 2mel ¢ ye L 2 J
« Z mel : Y+ 3)! (e ,°
+4_[ &) z 4’2 mi W’ f M{MM‘P)EMJV(’#) fb
m=1,3, - r=i3.. e

oo

—-ZH?"%’N/ -y 2m fl(:;;ii:_ I/‘”""('A Ml//)/',:r(qb)dt/lj}

m=z0,2 .- r=0,2--

(160b)
where Y¥=26,. Eq.(160b) represents the desired series
representations of the H-functions. The first few terms

of the H-series can be given as follows :

Hy=k [ (4T +4T) conk + AT aind ]
14T+ 4 T) conh + (BT +8T) Ainh )
+ W4T+ &L+ L) ok + (BT /?,J;)Mle]

K ((%T + T+ L) conde v (AL + BT, + foT,) k)
PRt L+ el v T, + 4, T) coad v (BT + BT, + B, I) At
Foesesseens / (176)

CHi= k[ AT ook - (I + %) ik ]

F K[ BT+ L) cosd = (4T + o) ik ]
(BT psTy) conh - (T, e Ty ¢ ) deh ]



S Ly

+ K ((PT e BT + L) ton s = (s + gy # o Ti) ot ]

+ K[ (P # BT+ BT) ook - (L s ata L # oy T, # 4y T) A ]

4 sesccevcss (177)
where 3
)

oly = 4—’

s = 4_/( 2,1;3 ﬁ_

= F (-G

oly = ‘%(31441‘ /zfqz +ZZ )

oy = - ZL -# - 3/7 * i-"s;—

o, = - ZL( 4_1;44 ‘Z,Q,Mz“ éf! )

oAy = - zi(é.le7 * zq—iv/-"' * 3!/:/\43* 645‘4

oLy = 23‘( 7./3M7‘ z/;.'M‘— 2-’:‘-’”3 :’Z‘“\

B

oy = 3.’( z,fz,l;.ws * z_ls,fs,rls,wé * 2.1335!/»14 ! 2.’5{.’Mz 4 é,f//z/\

ol = 3.’(“ 3j148 - 21354./,446 - 4//;,«14 B 2.//;.7/‘42 ’ 2—/\

o4y = 31( 7.’/4M8 * 6.’,/1/1‘ f 2’/3_{5!/4‘*L B 7;7‘4" fff )

oy= 31( 5{1148 B 3./6;/14" ’ 4/;-.//144 ) Z';!M" ’ 7I-’ )

fr= -z

pe= #(Gm+ )

P = 4L(-711/7 /)

P = ‘2/"( 20le 2/43 * /221 )

B = 2_/(_45”15 - é/:'l? *4,{///\

Pe = ‘zi(_s-_,le * 4.1;44- * .S'.ZW‘ ’ 4;)

Fr
Ps

_ 3 (_ 8 =z __# . / )
2 GIMEé  BIIMF SIME T 317
_i( 2 4, _Z 3, 19
2\ eimé " BHUMF T SIM? 7t /7



—88=

_ 36 10 20 / 132
fr = "3"(«’1'.'/\4" * it * Fistars T Sim? Y gt
——p 25 __t0 =z 110
L ( HUMT  TIMT HSIMT 316IM7 T BIM
_ 6 / 2 __ & 10
Pu==31(~ G * T * Fistare " FeTaE * B (178)

and all the Bessel functions (J's) are of the argument k/If.
In Table 3, Egs.(176) and (177) are used to compute the
values of H, and H; for M=2 and 0<k<¢1.0, /The good agree-
ment of the data in Tables 2 and & verifies the statement
that the H-series give accurate values of H, and H. for

small k,

$ 8.5 Some reduction formulse and derivatives

(1) Because of the analytic properties of the T- and
H-series, it 1s permissible to substitute the results in
Eqs. (55),(56),(176) and (177) into Egs.(64),(66),(73), (79)
and (88), and then to integrate term by term. For such
‘calculations, it is necessary, in general, to evaluate a

definite integral of the following form :

- 4k %
f " exp(-c) T, (7 do = pM™' f o exp(-iMa) T, (@) do- (179)

where E:k/M, and nrm»l. On integrating the second inte-

gral in Eq.(179) by parts, it is found that

%
f " exp(-iMa) ], (c) dor

-5 7 2" n-m g n-m)(n1-m-1 z”‘z .
:exP(_LM&)J;(%Jf%—((_Jsz £ Z;M)'Z) £oo

—m

7-m=l b )l K

' —m
N o)l B
+) (n-m)

Camprm O T J
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- [ exp(-LMO‘)];-, (0'))( o - )0 + Gr-m)Cr-m-)o" "2

-im (-im)® Cim)?
+(_)”""" (n—*_n)! a‘:"_' H_)”'”' (n- m)l_" ».1-/} do
(—LM)-"' ( M
(179a)
Introduce the new notations

A7 T (k) eplimb) = I (m4) (180)

A . ” ,

[T I me) de = L. (M #A) (181)

Then, Eq.(179a) becomes
» —_ _ / ” — » -
LomE) = -2 (1 on &) - L) %))

_ L) [P E) - L m ) ]

-im)?

(n-m)(n-m=1) n-z 7 n-2 e
+ DIROFC [ LT m Ay - L) L))

Mt (7-m)! it _ mﬂ
+6 (Lpn"*"[/I' (m, %) o )]

" G [T - L, mA)] (182)
Eq.(182) 1s a reduction formula for L, (M,k); by applying
Thls reduction formula repeatedly, it is possible to ex-
press L,(M,k) in terms of L] (M,k), L (Myk)ye0eee, L. (M,k).
In Ref,(4), a recurrence relation which may be Wfitten as

follows in the present notations, is given



=30~

,52 LIm%&) =[LT (k) - ﬁi’ + (1=2) I(&’] £ exp(-cm k)

+ilran) L) &) + G=nf bl 7 &) (183)

By means of Eq,(183), therefore, I, (i,k) can be reduced to

L;(M,k). From Egs.(54a) and (181), it is easily seen that

M%) = M——I—[ex/:'(na)]-(,\‘;) do = L7 4) (184)

Therefore, by using Egs.(182) and (183) repeatedly, it is
possible to express L:(M,E) in terms of the T-functions.
And, the definite integrals A,B,C,D and E can be evaluated
analyticaily in terms of the T-functions.

(2) For numerical evaluation of the definite integrals

by Euler-Maclaurin method, the following formulae are use-

ful
4
Toh) = [ cona J(GF) do (185)
T!(4) = ;77,:%): Cosh ‘,(é) (188)
T, R = 2Tk = i d I(Mi)—M—’mﬁf/é) (187)

Ty = 2 k)

= cw-ﬁ_[—(HZL (é)uw 2{4)]/-#0@ _]—(%) (188)
&
T (k) = D/MO‘I,(,%JO- (189)

Tic= S Tth= Ak T (%  (190)



~91-

Th) = 2Tk = corR T() - i () acuth (101)

T, (&) = 3 ,éa T ck)
= sk [+ ) T LTH) e 2T (192)
Hh = Tk + 2 (AT ek - TG aR) +T]  (195)

(, 4)’: o (A
= (i A) + M[éwla[m,— /)f(:f)  Ja (j‘)]+—m&f(f} (194)

(B4 = 2 (4h)
= () + 2 b nink (G- VTR - 5 L )
thcosd [(- oz ¢ T (Y + 2 T ()]
+ ek (G-I - i)+ T

(195)
(H &)m: —;72—, (/ii_‘é)
=Rk S| eor Al gt VLR i T - s ()
-k sk {2t BT + 7 T
reosd (-t 2ATEH + B0
e (ot L - IR
Ho4 = TA +—[&(mu<—-—)+ Lrkeid) -] (197)

(B A) = 2 (4:h)

Ma[ﬂmﬁ[(z—,;-/)f( )—2/;2 (ﬁj]"/\%l—(%m%}

:mm#mz




(B, 4) = 2 (H:4)

= (T 4) + ﬁ;f

[ #eorh (- )TER) - LT GH)
#hai (250 TR # s T (2]

#pind (G- DTG - LB - 1)

(199)

(H;4) = 2 (Hik)

= (k)" 2 (k[ 550 DTG + 5 )
A TR

gm*

+ aya%[(zilz -3)I€‘A§£)‘ZA%EZ(%)J

Fainh (b gm0 TG + 2 TE- 7

M3 3

(200)
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Comparison of the values of Ta and T: computed from Fas.

A e AR ARSI - R Ly Wit

1\71{:2000

(55) and (56) with those given by Schwarz
Present theory .....with [ ]

Schwarz!s results...without [ J.

k [TIL] ‘I‘,L [T‘_] T, [Z]-Ta X /00 Ly Jo0
T. A
0 0 0 0] 0 0 0
.02 019889 ,019889 ,000200 .000200 0 0
« 06 . 059960 059860 ,001792 001729 0 0
« 10 009813 029818 .004284 ,004994 0 0
o 14 . 159486 ,139486 ,009778 ,009778 0 0
+20 .1985056 158505 ,012208 ,019909 0 0
.40 . 588143 ,388150 ,078562 .078547 -,0018% ,019%
.50 560507 ,560631 172878 172727 -,022% .080%
+ 80 707857 708710 .298057 287377 -.120% .229%
- 1,00 .822892 .826654 ,447598 ,445887 ~,455% 0 5845
Values of Ta,T:,He and He M=10/7
k T, T H, H,
0 0 0 0 0
o . 188347 .019885 . 148969 013263
o4 . 386936 078171 201826 . 0B2236
€ . 556806 . 170880 422856 . 114520
o8 . 700504 201770 « 537538 . 196356
1.0 812672 432805 632103 . 292925
1.2 280424 . 58b292 . 704556 . 308756
1.4 « 935505 738762 . 754520 . 508171
1.6 « 944205 . 887636 . 182624 ,615732
1.8 . 927048 1.021494 . TOR2617 717270
2.0 . 888280 1.1357287 . 784201 807216
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TABLE, WO (Cont'd)

Values of Tra.T: Heand He

K T, T, o, 1,
0 0 0 0 0

o 2 . 188505 .019809 . 149067 013278

ol e 38150 078547 . 292588 052462

-G . 560831 . 17278 425348 s L15633

s . 708710 e 297377 - 542750 . 159736
1.0 «o26854 0 4AB88Y . 041081 . S00778
1.2 . 910564 .610584 L TL7708 o 414073
1.4 . D58569 . 783083 7711380 . DB455D
1.6 . 970882 . 955180 «501340 657064
1.8 L S42T7ET 1.118287 .. 008162 . 1766387
2.0 .389092 1.2687565 . 706744 ., 8890057

TARLE  THREE
Values of Ha and He computed from Eus,. (176) and (177)
M=2.00

X H, H, x H, H;

0 0 0 o i < 143067 013278
.08 .0149891 0001333 o 40 . 202588 0hR462
s ., 0449747  ,0011986 .60 «AEBB48 . L15633
10 07488038 0033292 e e 542750 . 188736
o 8 . 1048725 ,00685204 1.0 .041081 . 2007786

TARLE FQUR
Values of Ak and Al
M=310/7

k A i k Aa Al

0 0 0 1.2 022427 . 254666
o & 078686 . 010580 1.8 s 5893665 « 550127
O . 298658 . 080755 2.0 1.363040 L 9B7411
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TABLE FOUR (Cont'd)

Values of Axr and Ac M=2.00

A, A; k A, A
0 0 0 l.2 .3829820 261114
4 078810 010551 1.6 1.010864 . DT743186
8 e 501432 081876 2.0 L, 388790 1.020898
TABLE FIVE
Values of B. and B:<
M=10/7 M=2.,00
0 - 0 0 0
L020813 .0G3151 .020954 003161
. L7620 . 048153 . 158813 . 048766
4829095 . 225985 . 4888897 e 232324
1.008439 543887 1.024168 . 07H488
1.667556 1.380115 1,703460 1.483518
IABLE SIX
Values of Cr and Ce
M=10/"7 M=2,00
C, C; Cr C;
0 0 0 0
015738 . 002104 . 015762 002110
119864 . 032302 . 1205738 .032671.
s ST3458 . 152800 . 377896 . 156673
. T94833 440103 .2086"76 JAE4124
» OBB395B .957628 1,387520 1.023606
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TABLE SEVEN

A =54

Values of Da and D&

M=10/7 =2.00

k ' Da D: Da D;

0 0 0 0 0

4 L 004713 L D00872 . 004718 . 000875

0O .071389 . 020520 .071855 . 020843
1.2 - 530549 « 145374 . D34801 < LASB3EY
1.6 526057 . Db4 368 . 043622 . 272106
2.0 1.553527 1.,494327 1.988454 1,608382

TABLE TIGHT
Values of Er and Ed
M=10/7 =200

k E, E; E,. B,

0 C 0 0 0

o4 006261 . 001007 , 006261 .C01010

o2 . 093770 . 0B0672 . 094513 031089
1.2 . 425890 e 214779 432850 221382
1.6 1.160435 309148 1.188811 . 552285
2.0 2,358391 2.146106 2.412818 2,320199

TABLE NINE
Values of Tthe 1ift ceefficients Cee and C.,
M=10/7

k (Cro /Cegf)n (Cro /Cu#)e  (Cot /Cei)a  (Cuv /Cu¥)s

.0 1.000000 0 1.000000 0

o4 « 980753 -, 095103 . 577230 ~,0B8710

e L2711 - 173680 . 2177296 -, 084880
1.2 » 3580253 - 223212 » O3808 -, 092714
}.6 . 765481 -, 238042 . TH4668 -, 048288
2.0 . 588280 -, 220289 0951562 038310




TABLE NINE (Cont'd)

Values of the 1ift coefiicients Ceu, and C.

Mzg @ OO
k (Cua /C.5%), (Cea /C%), (Coy /C7%),  (Cu, /C%),
0 1.000000 0 1.000000 0
o4 .890158 ~.048598 .£95200 034710
.8 , 562459 ~,089129 582948 . 076986
1.2 . 522000 -,115157 . 969264 .132356
1.6 876016 -.123145 . 556052 .202376
2,0 832383 ~.113036 572402 283424

TABLE TEN

=—A

Values of the moment coefficients ‘CM, and Cwm,

M=10/7
k (CM° /ije)a (CMc /CM,%){ (CM/ /CM,’X‘),‘ (GM, /CM,"X'),,;
0 1,C00000 0 1,00 0
o4 .8971120 -+ 126030 . 973515 -, 065505
3 .581572 -.22D748 « 502019 -,103185
1.2 . 179638 =,272664 506421 -, 083174
1.6 .0060424 - 279950 » T1L4660 -, 089583
2.0 . 508689 - 251794 653070 +,078885
M=2,00
ko ©Cm/C),  (Cm/Ch) (Om /Gu¥),  (Gu /Cy¥);
0 1.000000 0 1.00C000 0
o4 . 585260 -, 064356 L, 294125 039015
«3 « 244098 -,11592886 . 279755 087855
1.2 » 3849384 -,14462%2 « 564269 . 152700
106 .819668 "’0145192 ® 948729 nggg'?d.tj.;?.»
2.0 761014 -.118418 « 975576 e DHERAEE
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TABLE ELEVEN

Lift coefiicient of the rectangular wing. Cew

LB=1/8 ARZ1
‘k" (CLW/C‘-o )/7. (C'—w /CLa ).o (C‘-w /C‘—a )ﬁ_ (CLW /Cl—a ).‘:
. 500000 0 . 500802 0]
» 503422 .050418 . 513256 . 049420
0514336 . 101284 0 025804 - 089278
534715 0 LOR248 » 543930 » 149233
. 567663 . 201032 « 576225 . 197051
. 615924 0 241877 « 823530 » 250891
AR=3
k (Cow/Cp ), (Cen/Ci ) (Cuw/Cu ),  (Cuw/Cu )
0 836634 0 . 901980 0
4 837752 016473 . 502651 . 009884
8 841318 . 033083 . 204781 . 012856
1.2 . B347377 042744 . 208786 . 028847
1.6 8587482 . 085684 » 515845 » 039410
2.0 874510 . 078964 . 8247706 . 047378
M=2,00
AR=1/8B AR=1

k (Cen/Cur )y (Cen/Cro):  (Cew/Cip )y (Cew/Ceu ),

0 » 500000 0 o 111325 0

o4 - 504634 . 058250 . 714000 . 0B3631

s « 518881 » L15958 . 782284 . 066948
1.2 0 044584 . 171726 s 736950 .029146
1.6 . 578792 222041 . 756816 0 128195
2,0 . 634156 . 262832 . 788780 « 151746
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TABLE ELEVEN (Conttd)

Tift coefficient of the reclhtancular wing, Ceiw
¥=2,00
ABR=35 AR=5

———

k (CLw/Cl-o )& (CLW/CLe )4_' (CLW/CLO )/t (C‘-W /Cl-o );,_

0 « 908775 0 s 942265 0

o4 + 904667 »C11210 « 942800 . 006726

o8 < 207428 . 0223106 « 944457 . 013320
1.2 . 212317 053049 < 947390 .019829
1.6 » 918239 042752 » 951365 - 0256359
2.0 « 929585 .050582 < 957756 .0350349

TABLE TWELVE

-

Moment coefficient of the rectangular wing, Cmw

Mm=10/7
AR=1/8 AR=1
k <CMW/CM¢ )fL (C/"w /CMp )A: (CMW/CM.; )4 (CMW/CM‘, 2'
0 e CODDDS 0 0 546536 0
iy » 5254588 . 062541 . 34776 . 061302
o8 0 238791 « 128806 - 3H2863 0 126441
1.2 s 341073 « 139478 «0D41ER » 283717
1.6 » 381822 289449 594071 s 283717
2.0 445849 « S8R746 4D68BE3 . 37H166
AR=3 AR=5
Kk Co/Cn ) (Onn/Cu),  (Con/Cu )y  (Gui/C. ),
0 « 182179 0] .869307 0
o4 . 782592 020424 869555 - 012260
o8 . 784288 . 042147 . 370573 . 025288
1.2 . 184707 . 085176 870824 - 032106
1.6 » 798024 , 004572 878814 - 056743
2.0 .818941 . 125055 891365 . 075033
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TABLE TWELVE (Cont'd)

Moment coefficient of the rectangular wing., Camw.
H=2,.00

AR=1/8 AR=1
k (CMW /CMQ )ﬂ (CMN/CMo )1, (CMw/CMc )h. (CM..V /CMo )Aj
0 0 053535 0 .815100 O
o4 « 558138 . 081429 617871 .047013
«8 « 553718 « 163898 . 626869 . 094827
1.2 « 584502 » 240667 . 6440642 0144145
1.6 .431251 0 SRT4TT .671633 . 189069
2.0 . 028049 .410011 . 124632 « 236720
AR=3 AR=5
B (Cu/On)  (Cu/C),  (Gu/Cu ) (Cm./Cu)
0 .871700 0 « 928020 0
o4 872624 . 015671 . 923574 . 009403
.8 .875623 - 081542 « 925374 . 018925
L& .381547 . 048048 . 928928 . 028829
1.6 890544 . 063023 . 984327 . 037814
2e0 . 908211 .078807 « 944926 047344
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: FIGURE 1
PLANFORM OF A GENERAL WING.
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FIGURE 2
COORDINATE SYSTEM

WING
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- FIGURE 3
SICGN CONVENTION OF A's
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FIGURE 4
REGION OF INFLUENCE
OF SOURCE AT (},%,¢) AT INSTANT %
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FIGURE &

SINGULARITIES OR SOURCES IN x,y PLANE
THAT AFFECT CONDITIONS AT (x,v,2z) AT INSTANT %
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FIGURE 6
PLANFORM OF A RECTANGULAR WING, 1<@AR(2
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FIGURE 7
PLANFORM OF A RECTANGULAR WING, S<fAR<eco
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FIGURE 16 -
CONTOUR OF INTEGRATION IN THE V=-PLANE



=118

(¢,n,3)

FIGURE 17
REGION OF INFLUENCE
OF AN "UNTTSSTEP® SOURCE AT (§,7,3) AT AN INSTANT &
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FIGURE 18

THE WING TIP REGION OF A RECTANGULAR FLAT _
PLATE PERFORMING “UNITwSTEP”VEQTIOﬁ AT THSTANT t,



