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ABSTRACT 

In studying finite linear groups of fixed degree over 

the complex field, it is convenient to restrict attention to 

irreducible, unimodular, and quasiprimitive groups. If one 

assumes the degree to be an odd prime p, there is a natural 

division into cases, according to the order of a Sylow p-group 
4 of such a group. When the order is p · or larger, all such 

groups are known (by W. Feit and J. Lindsey, independently). 

THEOREM 1 • Suppose G is a finite group with a faithful, 

irreducible, unimodular, and quasiprimitive complex representation 

of prime degree p ~ 5. If a Sylow p-group P of G has order 

p3, then Pis normal in G. 

As is well known, Theorem 1 is false for p = 2 or 3. 

Combining Theorem 1 with known results, we have immediately the 

following conjecture of Feit. 

THEOREM 2. Suppose G is a finite group with a faithful, 

irreducible, and unimodular complex representation of prime 

degree p ~ 5. Then p2 does not divide tbe order of G/OP(G). 

The following result, which is of independent interest, 

is used in the proof of Theorem 1 • 

THEOREM 3. Suppose G is a finite group with a Sylow 

p-group P of order larger than 3, which satisfies 

for all x /: 1 in P. 

If G has a faithful complex representation of degree less than 

(1 Pl - 1 )2/ 3, then Pis normal in G. 



CHAPTER I 

INTRODUCTION 

In studying finite linear groups of fixed degree over the 

complex field, it is convenient to restrict attention to irreducible, 

unimodular, and quasiprimitive groups. (For example, see [3], [9], 
and (12].) As is well-known, any representation is projectively 

equivalent to a unimodular one. Also, a representation which is 
• not quasiprimitive is induced from a representation of a proper 

subgroup. (A quasiprimitive representation is one whose restriction 

to any normal subgroup is homogeneous, i.e., a multiple of one 

irreducible representation of the subgroup.) Hence, these assump

tions are not too restrictive. If one assumes also that the degree 

is an odd prime p, there is a natural division into cases, according 

to the order of a Sylow p-group P of such a group G. The following 

is known. 

·1. l Pl = P• G is known for small values of P• See below. 

2. IP\ = p2 • Here G is G1xz, where Z is the group of order 

p and G1 is a group from case 1. [3]. 
3. IPI = p3• G is known only for small values of p. 

4 4. \Pl = p. Here P contains a subgroup Q of index p which 

is normal in G, and G/Q is isomorphic to a subgroup of SL(2,p). [7) 

and [10], independently. 

5. I Pl > p5• No such G exists. [7] and [1 O]. 

Our main theorem concerns the third case above. 

THEOREM 1. Suppose G is a finite group with a faithful, 

irreducible, unimodular and quasiprimitive representation of prime 

degree p ~ 5. If a Sylow p-group P of G has order p3, then Pis 

normal in G and G/P is isomorphic to a subgroup of SL(2,p). 

It is well-known that this Theorem is false for p = 2 or 3. 
Counterexamples are provided by groups projectively equivalent to 
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the alternating groups A
5 

and A6, respectively. Combini~ Theorem 

with the other results in the five cases cited above, we have the 

following conjecture of Feit [6]. 
THEOREM 2 ~ SUppos e G is a finite group with a faithful, 

irreducible and unimodular complex representation of prime degree 

p ~ 5. Then p2 does not divide the order of G/O (G). p 
Note that the quasiprimitivity condition is dropped in 

Theorem 2. Representations of prime degree which are not quasi

primitive are monomial, and for monomial representations, the 

Theorem is trivial. 

It is likely that Brauer conjectured all of the above when 

he wrote [3], although he was able to get full results only when 

IP! = p2 • . Partial results in the other cases allowed him to class

ify all groups where p = 5. (The cases p = 2 or 3 are classical, 

as are groups of degree 4. [1 ].) Using Brauer's general approach, 

Wales was able to handle the case p = 7 in three papers, (12], (13], 

and (14]. It is clear f'rom the amount of work involved in these 

that full results for primes ~ 11 will be very difficult without 

further techniques. Lindsey [9] has used some of these same ideas 

in his classification of groups of degree 6. Using entirely differ

ent special methods, Feit has settled the case p = 11 when the 

character of degree 11 is rational-valued, [7]. 
The general method for the cases l Pl ~ p3 used by both 

Brauer and Wales was to show P was not too large, and then handle 

each case arithmetically. Feit and Lindsey have now settled the 

case I Pj ~ p 4 
in general. With Theorem 1 , only the case I Pl = p 

remains unsolved. 

The following result, which is used in the proof of Theorem 1, 

is of independent interest. 

THEOREM 3. Suppose G is a finite group with a Sylow p-group 

P satisfying 

CG(x) = P, all x f 1 in P. 
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If I Pl > 3 and G has a faithf'u.l complex representation of degree d 

with 

d ~<I Pl - 1 )
213, 

then P is normal in G. 

Leonard [8] has proved a theorem like Theorem 3 under a 

considerably stronger bound on d. Brauer and Leonard have shown [4] 

that under the weaker hypothesis 

the bound 

d < <I Pl - 1 )
1

/
2 

forces P normal in G. Both this result and Theorem 3 are sharp, in 

the sense that if we replace d by d-1 in the inequalities, the results 

are false. Counterexamples are SL(2,5) and PSL(2,5) with p = 5. 

However, a more reasonable bound in both cases lilight be 

d < t <I Pl - 1 ), 

which would be sharp infinitely o:f'ten. The techniques used to prove 

Theorem 3 can be refined to yield bounds of the form 

a< 1zn <IP! - 1 ), 

where m is a certain integer depending only on I Pj , but this 

result is not needed here. 

OUr notation is fairly standard. If G is a finite group 

with a subgroup H, then NG(H), CG(H) and Z(G) denote, respectively, 

the normalizer in G of H, the centralizer in G of H, and the , 
center of G. If p is a prime number, oP (G) denotes the smallest 

normal subgroup of G whose quotient has order prime to P• Equi

valently, it is the subgroup of G generated by all elements of G 

whose order is a power of p. If x E G has order a power of p, we 

call x a p-element, while if x has order prime to p, we say x is 

a p'-element, or call x p-regular. IGl denotes the order of G. 

We will use the term character only for characters of 
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complex representations, while the term generalized character will 

be used for the difference of two characters. If e1and e2 are two 

class f'unctions on G, we have the usual inner product 

(e
1
,e

2
) = fcn- I e 1 (x)e

2
(x-1 

). 

XEG 
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CHAPTER II 

PROOF OF THEOREM 3 

Brauer and Leonard [4] have considered the character theory 

of finite groups G with a Sylow p-group P which satis f i es 

Throughout this thesis, we will be interested in a special cas e of 

these results; namely, when P satisfies the stronger condition 

( 1 ) CG(x) = P, all x f 1 i n P. 

In this case, P is an abelian group and N = N~(P) is a Frobenius 
u 

group with Frobenius kernel P. 

The character theory for N itself is well-known. Let 

s = IN/PI and ts = IP\ - 1, so that t is an integer. There c: r e 

s
1 

irreducible characters, s
1 
~ s, 

• , e 
sl 

whose kernel s All contain P, and t i rreducible cha r acter s 

"-1' • ' At 

which are faithful on N. These faithful characters are induced 

from non-principal linear characters of P. In particular, their 

degrees are all IN/Pl = s, and if g E N-P, then 

If x E P, 

and 

0 = Al (g) = ••• = At (g). 

then 
t 
) 
L 

i=l 

i=l 

A. (x) = -1, 
l. 

i=l 
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The results of Brauer and Leonard show that G has a similar 

character theory. The integers sand tare as above: s = \N/P\, 
and ts= IP\ - 1. There are 1 irreducible characters, 1::: s, 

1 G = cp1 ' • • • ' cpl 

called ordinary characters of G, and t irreducible characters 

called exceptional characters of G. These two sets of characters 

constitute exactly those characters of G which do not vanish on 

the non-identity elements of P, and exactly those whose degrees 

are not divisible by 1 P\ • There are non-zero integers b
1

, ••• , bp 

an integer r, and a sign 5 = ±1, such that, for x t 1 in P, 

cp (x) = b = w (1) (mod !Pl), for 1::: m::: l, m m m 

Ak(x) = r + 5Xk(x), 

J\k(1) = r + 6s (mod IP\), for 1 < k < t. 

If g e G has order prime to p, then 

and this common value is an integer. We have 

l 

lb! + r
2
(t - 1) + (r - o )

2 = s + 1. 

m=1 

In particular, each lbm\ ::: p. 

Wh en t = 11 the exceptional character is indistinguishable 

from the ordinary characters, so a1J. mention of exceptional char

acters is omitted in this case. 

We are now ready to begin the proof of Theorem 3, which we 

restate as 

Proposition 1 • Suppose G is a f'ini te group containing a 

Sylow p-group which satisfies 

CG(x) = P, all x t 1 in P. 



7 

Suppose al.so that G has a faithf'uJ. representation of degree d with 

d:S~(\P\ -1). 

Then one of the following holds. 

(i) P is normal in G. 

(ii) t
2 < s, wheres= ING(P)/P\ and st=\ P\ - 1. 

It is easy to show that Proposition 1 implies Theorem 3. If 

G satisfies the hypotheses of Theorem 3, then G satisfies the hypo

theses of Proposition 1, and as \ P\ > 3, the degree d given for G 

by Theorem 3 is less than ~ (\Pl - 1 ). Let ~m be any non-exceptional 

constituent of the character x of degree d. Since com(l) < ~ (\ P\ - 1) 

and cp (1 ) = e IP\ + b , for integer E! and I b I < p,. we must have m m m m m 
e = o, so P is contained in the kernel of ~ • Thus, as x is faith-m m 
f'uJ., it must have same exceptional. constituent /\. We have 

s :S /\(1) :Sx(1) = d .:S <IP\ - 1 )2/3 = (st)2/3. 

That is, s3 :S s2t 2, so s :S t 2 , contrary to (ii). Hence, (i) holds, 

proving Theorem 3 from Proposition 1 • 

Before proving Proposition 1 , we need two lemmas concerning 

class multiplication in N. 

LEMMA 1. Suppose that G satisfies the hypotheses of Propo

sition 1, and that Pis not contained in any proper normal. subgroup 

of G. If there are three (not necessarily distinct) classes K., 
J_ 

Kj, ~of N = -NG(P) consisting of non-identity p-elements of N 

whose associated class multiplication constant aijk for N satisfies 

aijk :S {s - n)/t, 
2 

for same positive integer n, then ((n - 1 )t) < s. 

Proof. The given faithf'uJ. representation of G must have 

an exceptional character as a constituent. By a theorem of Leonard 

[8], it has degree s, and the restriction of any exceptional char

acter of G to N remains irreducible. Let gi, gj' ~ be elements 

of Ki' Kj, KJc1 respectively, and define 
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where the sum l:' is over all exceptional characters /\ of G, or, 

equivalently, of N. We have 

+ l_ L .. k ) 
s lJ ' 

= \~I (I:" 9(1 )2 + ~ Lijk), 

=\SP\ (s + l_ L ) s ijk ' 

where the sum f. 11 is over all non-exceptional irreducible characters 

9 of N. .t"..S a .. k < (s-n)/t, we get 
lJ -

- lli (s -n) < - 1 
s - L .. k• st s 1J 

Now N controls fusion of its :;,1- <: lements with respect to G, 

so there is a class multiplication constant a . . k for G associated 
lJ 

with a .. k. Here we find 
lJ 

Hence, 

o <a . . k 
- lJ 

s - l1i (s-n) < - l_ L < 
st s ijk -

+ l_ L . . J 
s lJ • 

Since P is contained in no proper normal subgroup of G, we 

see that b = ~ (1) holds only form= 1, i.e., only for the prin
m m 

cipal character ~l. Thus, if m f 1 1 ~m(l) ~IP\ - =st. Note 
2 

that as r = o, we have 2:: b = s. Let B denote the maximum positive 
m 

value among all the b • Then 
m 
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s - l1i (s-n) st < _1_}:; 
st m/=1 

2 
s t - (st+1 )(s-n) < L: 

2 
s t -

2 
s t -

(n-1 )t - 1 

-
m/=1 

s + nst + n 

+ ~ < B. 
s 

b3 + 1' m 

b3 + st, m 

< sB + st, 

2 As B is an integer, and 0 < n < s, (n-1 )t < B. But L: b = s , 

and Bis some b , so ((n-1 )t)2-< s. It is easy to see t~at this 
m -

last inequality is strict, 

COROLLARY. With the above notation, some b > (n-1 )t. 
m-

LEMMA 2. The integer n in Lemma 1 may be taken to be at 

least 2. 

Proof. Let K,' ••• , Kt be the classes of non-identity 

p-elements of N, and K0 the class of the identity. For each 

i = 1, ••• , t , let i' be the subscript of the class cons isting 

of elements which are the inverses of elements in K .• Then for 
1 

fixed i /= o, 

2 1 K.1 2 
= 

t 
s = L: aii 1kl ~1 + aii'O\ KO! 1 k=1 

t 
= L: a .. 'k s + s 

k=1 J.J. 

so that 

2 t 
s - s == I: aii 1k s, 

k=1 
t 

s - 1 = 2.: a .. 'k• 
k=1 J.J. 

Thus, some a .. 1k < (s-1 )/t. If i' /= j, then 
J.J. -

f 



2 s I Ki \ \K) 
t 

= ~-· 

aijk L" 

k=l 

Hence, some such a .. k < s. 
lJ -

10 

t 
= L: aijk\ ~\ 

k=l 

s. 

Now suppose by way of contradiction, that all a . . k > ( s -1 )/t , 
l J -

fo r all i , j , k == 1, 2, ••• , t. By t he above calculations , we 

must have 

a .. 'k = (s-1 )/t, all i, k = 1 , . . . , t, 
ll 

8 ijk = ( s -1 )/t for t-1 values of k, 

(s-1 +t )/t for 1 value of k, if , I 
= l 

Note t divides s-1 here, as a. ·'k is an integer. We will show 
ll 

f 

that this situation can occur only when t is 1 or 2, contrary to 

s<d<~(\P\ -1). 

j. 

Let A be a fai thf'ul character of N, and l !J the corresponding 

representation of the center of the group algebra of N: 

=~X(g.) =X(g.). 
s l l 

Ast f 1, there is some j f i', so we may write 

(2) 
t 

),, ( g . ):\ ( g . ) = cu ( K . ) o ( K . ) == /:'. a . . k '.!l ( K ) 
l J J. J k=l lJ -K: 

t 
= st-1 L: t.. (gk ) + f.( g .. ) 

k=l lJ 

s-1 ( ) = - - t + A g .. • 
lJ 

Here we have chosen gk E ~' all k, and gij in the uni que cla s s 

for which a . "k has the distinguished value. We also have 
lJ 
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t 

(3) /.. (g. )/.. (g.) 
l l 

= r_n(K. ):n(K. 1 ) = !:: ai·i· ' k ·i l (K ) + s:1 (l) 
l l k=1 k 

s -1 t 
= - t I: /.. ( g, ) + s 

k=1 !\: 

s -1 
= s - t. 

Combining (2) and (3) fo r i' f j, we find 

2 
, s 1 ) I s - t- = f._ ( g . )"- ( g . ) "- ( g . )"- ( g . ) 
\ l l J J 

Setting x = /._ (g .. ) , this is 
lJ 

2 

( s-1 ) ( s-1 )(- s-1 ) s-- =::.X-- x--
t . t t 

2 
= s ( -) s-1 (s-1 ) x+x - + - • t t 

Thus, 

2 s-1 -
s - s = t (-1-(x+x) +2s). 

As s f 1 (otherwise G = P follows tri vially), 

1 -s = t (-1-(x+x)+2s), 

ts - 2s + 1 = -(x+x). 
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Nowt > 2, so this is positive. Since \x+Xj S 21 x!, we have 

( 
s-1 )

1
/
2 

1/2 (t-2)s + 1 = ts - 2s + 1 S 2 s -~ . < 2s • 

But t-2 > 1, so 

< 2 1/2 
s s ' 

s < 4. 

Thus, s = 1, 2, or 3, and since t divides s-1, we have t = 1 or 2, 

or else s = 1, none of which are allowed. This completes the proof 

of Lemma 2. 

Finally, we prove Proposition 1. Suppose G is a counter

example of minimal order. By Lennnas 1 and 2 ~ogether, we have 

t
2 < s unless P is contained in a proper normal subgroup of G. As 

G is a counterexample, the latter is true. But the given fai thful 

character of G is still faithful when restricted to the normal sub

group H, so H satisfies the hypotheses of the Proposition . 

; Fj < \ Gj , we have P norP.ln l in H, and so chni~a cteristic in H, 

wnence P is normal in G. Proposition 1 is proved. 

Brauer [3] has shown that the situation described in Prop

osition 1 arises naturally in the study of finite linear groups of 

prime degree. In particular, suppose G is a group satisfying the 

hypotheses of Theorem 1. Then Z(G) = Z(P) is cyclic of order p, 

and a Sylow p-group P of G = G/Z(G) satisfies (1 ). Hence, all of 

the character theory described at the beginning of thi s chapter 

applies to G, and so to G. Further more, if x is the given character 

of degree p, then we have one of only two cases: 

CASE I: xx has norm 2. That is, xx = cri1 + co2 , where ("1 
is the principal character of G, and w2 is some ordinar;,r irreclucibl e 

character of G, and so of G. 

CASE II: XX has norm 1 +t. Here we have 
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XX = cp1 + L:' A, 

where L:' denotes the sum over all exceptional characters f\ of G. 

Notice that when t = 1, the two cases are indistinguishable. 

Also, if t ~ 1,2, then in Case II, Gfker ~ satisfies the hypotheses 

of Proposition 1. Now suppose that G is a counterexample to the 

Theorem of minimal order. From Wales [12], we have that G is 

si;:wle, so k·2r is the trivial group. Hence, in Case II, w: 

nus t have t 2 < s or t = l or 2. In fact, the former always holds 

except for p = 2, a case we are not discussing. In Chapter III 

we will prove a similar result (Lennna 14) for a minimal counter

example in Case I, namely 

PROPOSITION 2. Suppose G is a counterexample to Theorem 1 

of minimal order, and suppose Case I holds for G. If p ~ 7, then 

(t-1 )2 < So 

Groups satisf'y:i_ng the hypotheses of Theorem 1 are all known 

for p < 7, and Theorem l is true here. We may assume, then, that 

in all -cases (t-1 )2 :::_ s. We now show that this severely limits 

the possibilities for p, s and t. 

As usual, we let N = NG(P), so 
2 elementary abelian group of order p , 

isomorphic to a subgroup of GL(2,p). 

N = N_(P). Here P 

and sg we have N/P 
However, since N/P 

is the 

being 

is 

N/P, and Z(P) is in the center of N, this is actually a sub-

group of SL(2,p). The subgroups of SL(2,p) of order prime to 

p are easily described. For each of these, we get information 

about s, and so about t, as (t-1 )2 :::_ s. From this we then find 

information about p. These results are summarized in the following 

table. 
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s 

(a) Has a cyclic subgroup 

of index at most 2. 

s ::: 2p+2 

(b) SL(2, 3) 

(c) Projec tive cover of S1 4 

s = 24 

s = 48 

s = 120 ( d) SL(2, 5) 

Case 

st !Pl -
' I 

we have 

(a) is computed as follows. 

= p
2 - 1, we must have t > ~ 

-2 

(~_-3 )2 \ ,... < 2p + 2, 

2 
p - 14p + 1 ~ o, 

sop< 14. Asp is an integer, p::: 13. 

t -2_ 

t>~ 
-2 (p-1 ) p < 1 3 

t ::: 5 p ~ 11 

t ::: 7 p ~ 17 
t < 11 p ~ Ji 

Since 8 ~ 2p+2 and 

(p-1 ) • Now as ( t - 1 )2 < 

The remaining cases are all computed by the same method. 

We do case (d) as an example. 
2 

As s = 120 and (t-1 )
2 < s, we get 

t < 11. Thus, p - 1 =st~ 120x11 2 2 
= 1320. Hence, p < 37 = 

1369. Since pis a prime, p::: 31. 

: : , 

The values of p, s, and t occurring in the above list will 

be considered in the last chapter, where we will show that they do 

not occur for the group G. That is, no minimal counterexample to 

Theorem 1 exists, so Theorem 1 is true. 
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CHAPI'ER III 

CHARACTER THEORY FOR A COUNTEREXAMPLE TO THEOREM 1 

Throughout this chapter, we will assume G is a counter

example to Theorem 1 of minimal order. In particular, as was 

mentioned in Chapter II, we have G = G/Z(G) a simple group, and 

the character theory described at the beginning of Chapter II 

applies to G. We will use the notation introduced there, and 

will sometimes consider characters of G as characters of G, with

out changing this notation. We begin by investigating the char

acters of N = NG(P) more thoroughly. Let s denote the sum of 

the distinct faithful irreducible characters of N. We will let 

Z = Z(G) =Z(P). 

The class function s defined by 

( (x) 2 
= p if x is a non-central p-element, 

= 0 otherwise, 

is a generalized character of G, and, in fact, 

1 t 
( = ?:: bmtcom + (rt-o) ~ Ak. 

m=1 · k=1 

(Brauer and Leonard [4]). 
LEMMA 3. Let e be a character of N such that 

e (1 ) 2 = np - n, some positive integer n, 

e (x) = -n, all x f T in P. 

Then 9 = ns. In particular, 9(g) = 0 if g E N-P. 

Proof. Clearly, elP is n times the sum of all non-
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principal irreducible characters of P. Hence, e is a sum of 

faithf'ul characters of N. Since e is constant on non-identity 

elements of P, the result follows. 

LEMMA 4. x0 N = e
1 

+ S• In particular, \x (x)\ = 1, 

if x E N- P. 

Proof. xY.1 N = (x \ N)(x\ N) , so 81 is a constituent. 

Define the character t by 

x:x\ N = 91 + t • 

We note that Z<::_ ker xx, so xx can be considered a character of N. 

Since x (x) = 0 for x € P-Z, we have 

2 
¢ (1 ) = p - 1, 

1i (x) = -1, for x f 1 in P. 

By Lemma 3, qi = S • 
LEMMA 5. Let 9 be an irreducible character of N such that 

z cf:.. ker e. Then there is a conjugate xp of x such that x = xp on 

p-regular elements of N, and an irreducible character 9. of N/P 
l 

such that e = e . (xp IN). 
1 

Proof. 

that if xp is 

then e. (xp\ N) 
l 

We enumerate the characters of N. First, we show 

a conjugate of x, and e. is irreducible for N/P, 
1 

is irreducible. We have 

Now (e.e., e1 ) = 1, and since 8.9. has Pin its kerne:, but no 
l 1 l 1 

constituent of ~ does, (eiei, ~) = o. Hence, Ai(xp\N) has norm 

1 and so is irreducibleo 
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Now x has p-1 distinct conjugates xp which agree with x 
on all p-regular elements of G. Thus, our contribution to the 

sum of the squares of the irreducible degrees so far is 

s t 2 sl 
~1 

e.(1)
2 

+ r "-k(1) + (p-1) l: (e(1}x(1))
2 

i~ 1 k~ i~ 

2 2 = s + ts + (p-1 )sp 

= s + (p
2

-1 )s + (p-1 )sp
2 

2 3 2 3 I I = s(p + p -p ) = sp = N • 

Hence, we have all the irreducible characters of N in this way. 

The Lemma is proved. 
I II • Let x and x denote the symmetric and skew-symmetric 

2 t ensor constituents of x • 

1 2 2 
x '(g) = 2 (x(g) + x(g )), 

x
11

(g) = 2 (x(g)
2 

- x(g
2

)), all g E G. 

These are characters of G. Since x' andx 11 have no constituents 

with z in their kernels, there are characters e I and e" of N/P 

such that 

x11 I N = e" (xP IN), 

for an appropriate conjugate xp of x. Note that e' and e 11 need 

not be irreducible. Also, e'(l) = ~ (p+l) and e"(l) = ~ (p-1 ). 
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LEMMA 6. Ifs is even, e' and e" have no common constituents. 
2 Proof. Let x EN, x = 1, x f 1. Then 

P =x(l) =x(x2 ) = (x' -x")(x) 

= (9 I - e" )(x) (xp (x)) 

=±(A' -e")(x), 

P = le '(x) - e"(x)I < !e '(x) \ + \e "(x)\ 

< I?.±!.. + ~ = P• 
- 2 2 

This forces representations affording e' and e" to represent x 

as I in one case and -I in the other (of appropriate sizes). 

They can have no common constituents. 

We will next construct a generalized character of G and 

apply the character theory so far developed. Suppose ~ is any 

generalized character of G. Define a class f'unction ~O by 

where x0 denotes the p-regular part of x. It follows from 

Brauer's characterization of characters that ~ O is again a 

generalized character of G, and in fa ct, of G. We will be 
I II 2 interested in x0, x0, x0, and Xo• Note that we have that 

2 
Xo = 'XX + C, 

as x is real on p-regular elements (Wales [12]). 
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LEMMA 7. Suppose 1\ andµ. are generalized characters of 

G, and A is a non-principal linear character of z. Assume that 

for all irreducible characters X of G, whenever (1\, X) f 0 or 

(µ., X) f 0 we have X\ Z = X(1 )~.. Then 

1 
(1\o' µ.o) = (1\, µ.) + 2 T1 (1 )µ.(1 )t. 

p 

Proof. Let R denote the set of p-regular elements of G, 

and S the set of non-central p-elements of G. We put 1 E R. 

Let A be an irreducible constituent of 1\ \ z. Note that 1\ andµ 

vanish on P-Z. Write 

= fcn- 2: 1\ (XO) µ. (XO) 
XEG 

= fcn- I: I: 1\( (xz)0 ) 1.1i( (xz)0 ) 
I XER ZEZ 

+ fcn- ~ T\ (xo) µ.(xo) 
XES 

= fcn- 1: L: -n(x) A ( z) f[Z) ~ 
XER ZEZ 

1 
+ fGf I: 1\(1) µ.(1) 

XES 

= fcn- L: L: 1\(xz) 1.J.(xz) 
I XER ZEZ 

+ fcn- I: ~ .,.,1(1) µ.(1) ( (x) 
XEG p 

= fcn- L: 1\(x) ~ 
XEG 

+fcn- L: -;T\(1) µ.(1) C(x). 
XEG p 
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But t h i s is just 

1 = ('n, µ.) + 2 11 (1) µ.(1 ) (cr1, C) 
p 

1 = en, µ.) + 2 11 (1) µ.(1) t, 
p 

as required. 

We will denote x; - X~ by x2 • Note that x2 . - Xo has 

degree o. 
LEMMA 8. x0 has norm 1 +t. If xx has norm 2, then x2 - x0 

has norm 3. 
Proof. Apply :Lermna 7. Note t hat x' and x" ar e irreducible 

when xx has norm 2, and x is not conj ugate to either of them, as 

p > 3. 
When XX has norm 2, we will choose our notation so that 

Ch . t (J f h th t CJ d xx = c01 + cp2 • oos e a conJuga e x o x sue a x0 = x0 an 

x0 x2 
has z in its kernel. 

LEMMA 9. Suppose s is even and 1\ is an irreducible char

acter of G such that 

Then 11\ N has only exceptional characters as constituent s. 

Proof. Note f i rst that 

(J II e II n-1 
Similarly, x x = + 2 s • · 6 I II By Lemma . , 9 and 8 have no 

common constituents. 
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LEMMA 10. We have t -f 1. 
2 Proof . If t = 1, s = p 1, and sos is even. Since G 

is simple, it has no non-principal characters of degree < p, for 

such a character would have P in its kernel. Thus, x
0 

= a
1 

- a
2

, 

for irreducibles ai of G. Nm·: (x0 x', x
0

) = 1, as 

d , ·- 1 ( (J II ) 1 an , sinnl.a1· y, x x , x0 = • It follows that 

(x 
0 
x ', a, ) , (x cr x", a, ) ~ 1 • 

By Lemma 9, a1 IN= ns , for some integer n. Note that ; is irred

ucible here. That is, a, (1) = np2-n~ and a1 (x) = -n, for x € P-Z. 
2 

Hence, a2 (1 ) = np -n-p and a
2 

(x) = -n-p, for x € P-Zo This is 

contrary to \a2 (x)\ < p, proving the Lennna. 

LEMMA. 11. cp1 i s not a constit uent of x
2 

- x
0 

if xx has 

norm 2. 

Proof. Assume the contrary. 

However, 

Thus, (x2 - x.0, co2 ) = (x2 - x0, -cp1 ) . Hence, (x2 - x0, "'l) = ±1, 

and (x2 - x0, cp2 ) is its negative. Since we have three constituents 

in x2 - x0, there is only one left, say co. Then cr (l) = p
2 

- 2, and 

:- ( x ) = -2, for x € P-Z. By Lemma 3, (c.0 + c;:i1 ) \ N has only except ional 

constituents. This is a contradiction, since e1 is obviously a 

constituent, and is not exceptional. 
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LEMMA 12. x0 has no exceptional constituents if xx 
has norm 2. 

Proof. Suppose the contrary. As x0 is constant on P-z, 
all t exceptionals Ak have the same multiplicity in Xo• As x0 
has norm 1 +t, we must have 

t 
±-x_ 0 = 1.: i\k ± CD ' 

k=l 

for some irreducible ~ for G. Note ~ f y1 • 

Suppose first that s is odd. Then t is even, so 

1 + t = (cp 
1 

is odd. Hence, (co1 , x.2 ) = (cp1 , x~ - x;) is also odd. Since 

( ~1 , x. 0 ) = o, we have (co1 , x2 - x0 ) odd, and so not zero. 

This contradicts Lew.ma 11 • 

Hence, we may assume s is even. In this case, each 

exceptional 1\ is real-valued. For any character 1\ of G, let 

v('T\) = (q:i1 , 1\), where 1\(x) = 1l(x2 ). (For the properties of 

the f'unction v, see Feit [5], for instance.) Observe that 

x0 = x2 • If 11 is real and irreducible, then v(!l) = ±1 . Other

wise v( T\ ) = 0 for irreducible 11· Now, from Lemma 11 

O = (cpl ' X2 .:. Xo) = (cpl ' X2) 

t 
= ±( ~ v(Ak) ± v(cp)). 

k=l 

Since v(Ak) is non-zero and independent of k, we have 

0 = t v(A1 ) ± v(cp). 
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This shows that t = 1, contrary to Lemma 10. The Lemma is 

proved. 

LEMMA 13. If xx has norm 2, either 

(i) rt - 5 is even. In particular, t is odd and 

s is even, and r is not zero. 

(ii) t = 2 and p ~ 5. 
Proof. Suppose rt - 5 is odd and x2 - x

0 
has no exceptional 

constituents. Then for any k, 1 ~ k ~ t, 

rt - 5 = (J\k , (,) = (J\k , XX + 0 

( 
I II ) is odd. Hence, J\k , x
0 

- x0 
(J\k , x2 - x0 ) = o, we have J\k 

Lennna 12. 

is odd, and so not zero. Since 

a constituent of x
0

, contrary to 

Now suppose x2 - x0 has some exceptional constituent. 

Since x2 - x 0 is constant on P-Z, all exceptionals have equal 

multiplicity in x2 - Xo• As this character has norm 3 and 

degree o, there are at most 2 exceptionals. That is, t = 2. 

Since 3 = 1 + t = (~1 , x~) is odd, we can show in the usual 

way that (cp1 , x0 ) /: o. For an appropriate conjugate x0 
of x, 

Lemma 7 shows 

( 2) ( (xa )2) x 0 , x 0 = x, + pt = pt = 

Hence, (x.0 , xx) = (x.0 , X~ - ( ) = O, so that co2 is a constituent 

of x0, and its multiplicity is the negative of the multiplicity of 

cp
1 

in x. 0• As x0 has norm 1 +t = 3, there is only one other 

constituent of Xo• It has degree p
2
%p-2, but p

2
-p-2 would be 

an ordinary de~ree with corresponding b = -p-2, contrary to 
m_ 2 

. \b \ < p. Hence, we have a character of G of degree p +p-2o 
m 

This must be an ordinary degree with corresponding value of b 
m 



being p-2. Now 

1 (p2-1 ) = s > 
2 

24 

m 

Thus, p < 7, sop~ 5, as required. 

LEMMA 14. We have 

where square brackets denote the "greatest integer" :function. 
2 

If xx has norm 2 and p '.::: 7, then (c;::1 , x
0

) = 0 and (t-1) :'.: s. 

Proof. A calculation similar to that of Lemma 7 shows 

2 
= p • 

Thus, 

and equality holds only if PXo - ( = IXDm• However, equality 

would then imply w (1 ) = p, which is not the case. Hence, 
m 

so that 

b t 
m 
p \ ' 

proving the first statement. 

To prove the last statement, consider 

t 
~ (/\ r )2 < 2 
'' k' PX.o - ·' - P 

k =l 
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As above, equality canriot hold. Note that 

(Ak , PXo - (, ) = - (Ak, G) = -rt+o, 

by Lemma 12. As r f o, we have jrt-5 \ ~ t-1, whence t(t-1 )2 

is less than p2 • This implies (t-1 )2 ~ s. 
2 To prove the remaining statement, note that (t-1) < s 

forces t < p, and we know b1 = 1. Hence, (cp1 , x0 ) = O or 1. 

Say it is 1. By Lemma 11, (cp1 , x2 - x0 ) = o, so (c'.11 , x2 ) = -1. 

However,(CD1 , x;) = 1+t is an even integer, so -1 = (c01, x2 ) 

must be even, a contradiction. 

This Lemma Dmnediately implies Proposition 2 of ChapterII . 

LEMMA. 15. x is rational-valued on p-regular elements of G. 

Proof. Suppose not. By a theorem of Wales [12], x is real-

valued on p-regular elements, and we have Case I. As x is not 

rational on p'-elements, there is a Galois automorphism T of the 

field of \ Gl -th roots of 1 such that 

x 'f f x, 

·/\ P = x\ P. 

Again by the results of Wales (12), xX! is irreducible, and real

valued. We choose our notation so that xx = ~l + ~2 , as usual. 

Note that x' and x" are irreducible, and 

2 ' i 2 -'T' - ,. ( -'T' -'T' ) (x , (x ) ) = (xx , xx ) = xx. , xx = 1 • 

Thus, exactly one of x' or x /1 is fixed by 'f. 

It is trivial to show x0 - x~ has norm 2. Say 
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where a1 and a2 are irreducible. Now 

d • ·1 1 ( O II ) 1 1 W h an SJ.mi ar y, x x , x0 = a so. e ave 

( 0 I T) ( I -0 T) 
X X ,x 0 = X ' X Xo - (')(I J XX T) = 0, 

I T ( 0 fl 'T as x and xx are irreducible. Similarly, x x , x0) = o. 
Thus, 

( o, T) (o,.. ,-) 
x x , x 0 - x 0 = x ~ , x 0 - x 0 = 1. 

. ( v I ) ( 0 II ) In particular, both x x , a1 and x x , a, are at least 1. 

Hence, a, \N consists of faith:t'ul characters of N by Lemma 9, 
for sis even by Lennna 13. Fram Lemma 12, a1 is not an excep

tional character, so i t is constant on P-Z. Thus, a1 \N = n;, 
2 for some positive integer n. We have a

1 
(1) = np -n and a1 (x) 

T 2 
-n, for all x E P-Z. As x0 - x0 vanishes on P, a2 (1 ) = np -n 

and a2 (x) = -n, for all x E P-z, also_. Thus, a2 \ N = ns, by 

Lemma 3. In particular, (a1 - a2 ) IN = (x 0 - x~) l N = o. 

Now (x2 - x 0, x0 - x~) = 1 from Lennna 7, so either a1 
or a2 occurs in X2 - Xo· Furthermore, 

<x2 - Xo' x ,-;r) <x2 
T-"f 

+ c) = - x ' xx 0 

= (x2 - Xo' (x~)2) 

(x I II a (x T )2-) = ±1 = - x - x ' 

as exactly one of x 1 , x fl is fixed by T • Since cn1 is not a 
T 

constituent of x2 - x0, we mus t have that cn2 is. 
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'. ·le show next that neither of °1' cx2 is cp;. :rn fact, if 

one is, then x0 has a conjugate ~~ of cp2 as a constituent. 

11ow, as p > 3, 

(x 0 , xP<) = (x0
, (xP )2 ) = o, 

by a calculation similar to that of Lemma 7. 'Ihis forces co1 
also to be a constituent of x0, contrary to Lemma 14. 

Hence, x
2 

- x0 has two distinct constituents whose 

restrictions to N are multiples of S• It follows from Lemma 

3 that the third const ituent is also a multipl e of i; when restricted 

to N. Thus , (x2 - x0 )]N = O. But ass is even, N contains an 

involution x not in the kernel of X• Thus, 

o = (x2 - x0 )(x) = x(x2 ) - x(x) = x(1) - x(x), 

a contradiction. This completes the proof. 

Lerruna 15 limits the prime divisors of G, by a theorem of 

Schur [11 ] • The following consequence will be very helpful in 

Chapter IV. 

L:EM-!A. 16. Suppose q is a prime, q =:: ~ (p+3), p f. q. If 

q divides the order of G, then there is an integer m, 1 ~ m ~ 

~ (p+1) such that mp = 1 (mod q). In particular, if either 

q > p or Case I holds, then q does not divide the order of G. 

Proof. By Lerruna 1 5, x is r ational on p-regular elene: t·;-.;:;. 

In IJarticular, i :i: Q is a Sylow q-group of G, then x \ Q is 

rational. ~:. etting \ Q,\ = qa, a theorem of Schur [11 ] tells us 

a < [..."£__ J + I--.L-. J + - q-1 q(q-1) 2 + ••• 
[ 

p ] 
q (q-1) ' 

where square brackets denote the greatest integer function. In 

particular, if q > p, then q does not divide the order of G. If 

q < p, we see that q divides the order of G at most to the first 



power. Thus, Brauer's theory [2] applies. Let 

CG ( Q) = Q x V x z. 

To each q-block ~ of G of f'ull q-defect, there corresponds a 

character a of Vanda positive integer T, where a has T distinct 

conjugates a = a,, . . . , aT, under the action of NG ( Q). Let 

A., i = 1, ••• , q-1, denote the distinct non-principal linear 
J_ 

characters of Q, and p the regular representation of Q. Ea ch 

i rreducible character iL ~ has one of the following forms, 

,. 
(a) i Q 2:: a. + p '\l , 

J_ 
i=l 

q-1 T 

(b) 2:: A. 2:: a. + p ·q, 
i=l 

J_ 
j=l J 

T 

(c) 2:; I \. 2:: a. + p 'T) , 
J_ 

j=l J 

when restricted to Q x v. Here ~ is some character of V which may 

be different for each character in S, and may be o. Also, ~ ' 

is a certain Gauss sum. Characters of type (c) are called excep

tional, and are similar to the exceptional characters introduced 

in Chapter II. Only characters which are irrational on Q are 

considered to be exceptional, for the rational cas e must correspond 

to either type (a) or (b). 

We first consider x l ( Q x V). Since x is rati onal on 

p-regular elements , x I Q, is rational, so we have case (a) or (b). 

h character of type (b) has degree 

( q-1 )Ta(l) + q1\(1 ), 

which cannot equal p, according to our assumptions on q. Hence, 

x is of type (a) , and 1\ has degree 1. Let 



We have shown 

T 

r = :s 
i=1 

a .• 
J. 
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Note that r is r at ional valued, as x is . 

Now consider the synnnetric and skew-synnnetric t ensor 
2 

constituents of x • Since, for any g E G, 

we calculate that, fo:r. g E Q x v, 

x'( g ) = 1Qr'(g) + ~ (q-1) PT12 (g) + P'Tl '(g) + P'Tlf(g), 

x " ( g ) = 1 l" ( g ) + ~ ( q-1 ) a 112 
( g ) + Pr\" ( g ) + PT\ r ( g ) • 

Since f is rational-valued, either r ' or f " has 1V as a consti tuent. 

Hence, either x ' or x" has a term 1 Q1 V which does not come f rom a 

character of G of zero q-defect. The character 0 of G corresponding 

to this term must then be of type (a). It cannot be the principal 

character of G, for x is not rational-valued on P. That is, ~ 

is a faithf'ul character of G whose degree satisfies 

cp ( 1 ) = 1 (mod q ) , p \co(1 ), 

This proves t he f irst statement. 
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Now suppose xx has norm 2. As we have seen, x' and x" 
must be irreducible in this case, so ~ is one of them. In 

particular, .... -. has degree ~ (p2 
± p ), and either r ' or r" is 

Tlv• This forces a to have degree 1. Since ~ (1) = 1 (mod q) , 
we must also have T = 1 • Hence, x has degree 

p =x(1) = (q-1),-a(1) + qT\(1) = 2q - 1, 

1 so that q = 2 (p+1 ), contrary to assumption. This shows that 

q does not divide the order of G. 

LEMMA 17. In either Case I or Case II, x
0 

has no excep

tional characters as constituents. 

Proof. If Case I holds, this is just Lemma 12. Suppose 

Case II holds. Since x
0 

is constant on P-Z, all exceptional 

characters have the smne multiplicity in Xo• By Lemma 8, x
0 

has norm 1 +t, so we must have 

t 

±x. = L: f\k - Cf.1n' 0 
k=1 

for some n. The /\k all have degree s, so equating degrees, 

That is, 

and 

2 
±p = st - ~ (1) = p - 1 - m (1 ). n n 

2 m (1 ) = p - 1 ± p, 
n 

b = ±p - 1. 
n 

But bn = -p - 1 is contrary to lbnl < p, so we have bn = p - 1. 

Nowt f 1 by Lemma 10, sot~ 2, whence 
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2 = p - 2p + 1. 

2 (p - 1 ) 

From this it follows that p ::: 3, contrary to hypothesis . This 

proves the Lemma. 

Let ~ denote a generalized character of G whose degree 

is divisible by p, and let A be a non-principal linear character 

of z. Define the class f'unction l\A by 

A 1\ (x) = 1l (x0 ) A(xp) unless x a non-central p-element, 

= 0 x a non-central p-element, 

where x0 denotes the p-regular part of x, and x the p-part. 
A P 

Note that if (x\z, A) 2 f o, then (x0 ) = X• Brauer's character-

ization of characters shows that, in general, ~A is a generalized 

character of G. 

LEMMA 18. Suppose 1\ is an irreducible character of G 

of zero p-defect (i.e., degree divisible by p2
), and 11

1 
is a 

generalized character of G whose degree is divisible by p. 

Let A be a non-principal character of z. Then 

(i) l\A is an irreducible character of G, 

(ii) (l\A, l\~ ) = (1\ , 1\1 ). 

Proof. Both parts follow from a calculation similar to 

the one used to prove Lemma 7. Note that both 1l and T\\. vanish 

on non-central p-elements. 



LEMMA 19. x
0 

has no constituents of zero defect for Go 

Proof. Suppose, by way of contradiction, that T\ is an 

irreducible constituent of x0 of zero defect. Write 

x0 = nT\ + 111 , 

~ .... ~1er~ ( ~. , >,
1 

) = o. Choose a character A. o f Z so that (x.
0

)1' = v_ . 
Now 

A. A. A. A. x = (x0 = (n11 + T\1 ) = n11 + 111 • 

As x is irreducible and has degree p, (x, 11A.) = o. Thus, we 
A. A. have (1\ , 11

1 
) /: o, contrary to Lemma 20. 

LEMMA 20. All constituents of x
0 

are ordinary characters 

of G. 

Proof. This iB an immediate consequence of Lennnas 17 and 19. 

In view of this Lemma, we may define the integers a by m 

Xo = z a cp • m m 
m 

LEMV..A 21 • We have 

b t b t 
m (i) a = m or 

m p p 
particular, each term a b is non-negative. mm 

(ii) Z a2 = 1 + t. 
m 

m 

(iii) Z a b = P• 
m mm 

+ 1 , for each m. 

Proof. Part (i) is Lemrna 14. Part (ii) follows from 

In 

(x0, x0 ) = 1 + t, which is Lemma 8. Part (iii) may be proved by 

observing that , as ~ vanishes off P-z, 
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(x
0

, C ) = (p:o
1 

, 0 = pt, 

on the one hand, while 

on the other. 

>:: a (c,., , r ) 
m m '"' 

m 
l: a b t, 

mm 
m 
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CHAPl'ER IV 

NUMERICAL RESULTS 

In this Chapter, we use the results of Chapter III to 

investigate the minimal counterexample G to Theorem 1 • From 

Chapter II, we see that p ~ 31, and the values of sand tare 

quite restricted. We treat the possibilities for p individually. 

First note that Theorem 1 is proved for p = 5 and 7 in [ 3] and 

[ 1 2], [ 1 3], and [ 1 4] • We may as slme :9 >11 • 

LEMM.I\ 22. We have p /= 11. 

Proof. First say Case I holds. By Lemma 13, tis odd, ann 

by Lemma 1 O, t /= 1 • As t divides p
2 1 = 120, we must have t = 3 

or 5. If t = 3, then s 

this order. Hence , t 

40, but SL(2,11) has no subgroup of 

5, and s = 24. 

From the proof of Lemma 14, we have 

I , I 4 whence , 5r- n: < . As r /= O, we haver= o. Furthermore, 

so that 

and 

25 = s + = L: b
2 

+ (t-1 )r
2 

+ (r-6 )
2 

m m 

;-· b2 4 '-·' + ' m 
m 

m 



Now, Lemma 21 shows 

r 2 
1 + t a = m 

m 

L: a b = p mm m 

with each term a b > o. mm-

= 

35 

= 6, 

11 ' 

An easy analysis of cases yields only the following 

two solutions for the set of l aml and the set of lbml such that 

a f O. 
m 

\b I m 

Both of these have 

l, 

a f 0 m 

2 

2 

2 

2 

2 

I a I m 

2 

21' 

lb I m 

4 

2 

1 

so the values of \b j above are the only ones which occur. 
m 

However, recall that b1 = 1 and b2 = -1. There must be two 

values \b l which are 1. This contradiction proves the Lemma 
m 

in Case lo 
2 2 

For Case II, we have t ~ s, tr 1, and t\ (p -1 ). There 

are no solutions, so Case II cannot occur either, as s must be 

the order of a subgroup of SL(2,11 ). 



LEMMA 23. We have pf. 17. 

Proof. Case I is eliminated by observing that ti (p2-1 ), 
2 2 

t f 1, t(t-1) ~ p, and t odd leave only t = 3, sos= 96, 

while SL(2,17) has no subgroup of order 96. 

Applying the argument of Lermna 22 for Case II, we now 

find pos s ible values for t and s, namely, t = 6 and s = 48, 

for N/ P Lhe proper covering of s4 . From Leonard [ 8], we see 

that each positive b is less than or equal to some irreducible 
m 

degree of this while the Corollary to Lennna 1 shows that 

some b is at least 6. This is a contradiction. 
m 

For p = 13, we may eliminate Case I as in Lemma 23, and · 

Case II as in Lerrnna 24. 

The table given in Chapter II shows that we have now 

eliminated all possibilities for N/P except SL(2,5). In all 

remaining cases, s = 120 and t is uniquely determined by p, 
2 for 120s = p -1. In particular, 5 divides either p+l Or p-1. 

This eliminates p = 23, so it remains only to consider 

p = 1 9, 29, and 31 • 

LEM.MA 24. If Case II holds, we have p = 19. If Case I 

holds, p f 31. 

Proof. Suppose p = 31, sot= 8. Ast is odd in Case I, 

this possibility is eliminated. Thus, say Case II holds. By 

Lemma 1, there is an integer a .. k < (s-n)/t, and by Lemma 2, 
l.J -

we may choose n ~ 2. Hence, we may actually choose n = 8. 

Now Lemma 1 shows 49 x 64 ~ s = 120, a contradiction. The Case 

p = 29 is handled similarly in Case II. 

LEMMA 25. We have p f. 19. 

Choose . t a of x such 
a 2 has Z Proof. a conJuga ex that x x 

in its kernel. Write 

( 0 II ) ( II -Q ) ( II 2) x x , x0 = x , x x0 = x , x > o. 

() II 
'rhus, x x has an irreducible constituent crin in common with x0, 
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and (crn' x 0 ) > O. This character is an ordinary character by 

Lennna 20, and has positive b by Lennna 14. We will show that 
n 

there is no possibility for ~ (1) = ep2 + b • Note that b < n n n -
10, as b

2
<s=120, and that e < 8, as er (1) <x0 (1)x"(1) = 

n - - n 
9 x 19

2
• 

Since x is rational on 19-regular elements, it must be that 

the order of G is divisible only by primes less than or equal to 19. 

In fact, if q is a prime other than 19, a theorem of Schur tells 

us that the power to which q occurs in !Gl is at most 

+ • • • , 

where square brackets denote the greatest integer f'unction. 

Furthermore, Lennna 16 shows that neither 13 nor 17 divide the 

order of G. 

Calculation shows that no integero:f the :form 192e + b, 
n 

withe and bn as above, divides lG\ as described. As there is 

no possible value :for ~ (1 ), we have proved the Lemma. 
n 

LEMMA 26. We have p F 29. 

Proof. Note that if p = 29, we must have Case I. We 

apply the technique o:f Lemma 27 to find the common constituent 
0 II 

of x x and Xo• Here b ~ 1 0 and e ~ 13. Further, we look for 

a common constituent o:f x 0 x' and x
0

, with b < 1 O again, and 

e < 14. Only the :following six degrees occur. 

29
2 

+ 4 = 845 

29
2 

+ 6 = 847 

2 x 29
2 

+ 8 :r: 1690 

11 x 29
2 

+ 1 = 9252 

11 x 29
2 

+ 10 = 9'261 

13 x 29
2 

+ 2 = 109350 
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We claim that 9261 carmot be the degree of an irreducible 
CJ, CJ" I constituent ~ of x x or x x • The restriction w N is of the 

form aF, + e, for some positive integer a and some character 8 

with no faithful constituents for N. Here e has degree at least 
CJ ' \ I I 21 , but we know that 'X X N = 0 + 1 5s, where 6 has degree 1 5. 

We get a similar contradiction for XCJX"• The same sort of 
CJ II argument shows 10935 does not occur for xx • 

Now observe that 

2 
(25x 0- c, 25x 0- 0 = 625x8 - 50x29x7 + 29 x8 

= 737. 

We know that for any exceptional. A, we have (A, x0 ) = o, and 

(A, () = rt-6. Thus, since there are t exceptional characters, 

2 2 
t(rt-6) = 7(7r-6) ~ 737, 

2 
(7r-6) ~ 1 06. 

This forces \7r-6\ = 8 or 6, as r f o. We can now account for at 
2 

least 7x6 = 252 out of the norm of 25x0- C· Also, ~1 and ~2 
do not occur in x0, and so each account for 49 towards this norm. 

Hence, we must still account for at most 737 - 340 = 387. This 

will be useful several times in the argument. 

Except for exactly five values of m, am and bm have the 

same parity. Two of these are, of course, m = 1 and 2. The 

other three are the constituents of x2 - Xo• Indeed, the multip

licity of ~m in x2 is of the same parity as in x~, and this is 

b t if m /: 1,2. Thus, a and b have different parity exactly 
m m m 

when (~m' x2 - x0 ) /: o, or m = 1 or 2. We will use this fact 

o:f'ten. 

Our third tool is a consequence of the Cauchy-Schwarz 
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inequality. Write 

841 = 292 = ( E a b \,
2 

a -/:0 m In/ 
m 

so that 

1 05 < ;:: b
2 

• 
a f. 0 m 
m 

We use the above to help show there is no m such that 

a b = 1. Such an m would imply a contribution of another 
mm 2 2 2 

(25 a -tb ) = (25 - 7) = 18 = 324, leaving only 387 - 324 = m m 
63 unaccounted for. For all other m, we must have 

(25a - 7b )2 < 63, 
m m -

so 

l 25a - 7b l < 8. m m 

For given \al, the value of l b \ must lie in the range indicated. m m 

l a I m \b I m 

0 

3 or 4 

2 7 or 8 

Suppose first that no \ aml = 2. Let a be the number of constituents 



40 

of x0 with I b I = 4, and b the number with l b 1 = 3. We have m m 
from Lemma 21 that 

4a + 3b = 28, 

1 6a + 9 b ~ 1 05, 

a+b=7• 

We find a > 5, but we have seen above that there are at most 

three values m other than 1 and 2 for which a and b have 
m m 

different parity. This provides a contradictiono 

Now suppose some Ja l = 2. All other \al are 1. Here m m 
we have 

4a + ~·b > 12 
~· - , 

a + b = 3, 

forcing a= 3, b = o. Now we find all constituents of x
2 

- x0 
have b = ±4. As this character has degree 0 1 this cannot 

ID 

happen. This final contradiction shows that in no case do we 

have a b = 1. Hence, by Lemma 14, if b = ± 1, we have a = O. mm m m 
In particular, this eliminates 9252 as an irreducible degree 

in Xo• 

We now consider each of the possible pairs of degrees 

from our list of four remaining which can arise from x0x' or 
0 II xx • Note that these two characters have no connnon constituents 

by Lemma 91 except possibly some exceptionals. The object is 

to try to extend the pair into lists of l a l and lb!, subject · m m 
to the above, and Lennna 21. The arguments here are similar to 

those used to show no a b = 1, and to those used for Case I 
mm 

of Lemma 22. In only two cases do these arguments not suffice. 

These can both be eliminated in essentially the same way, so we 

do the harder one. 
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The set to consider is 

8, 5, 4, 2, 2, 1, 1, 

which satisfies all the above conditions. In this case we have 

rt-o = ±6. 

products. 

The table below allows us to compute certain inner 

For each of the above values of b , we list the 
m 

absolute values of the multiplicities in the indicated generalized 

characters. Note that although we do not know the signs of 

these multiplicities, they are in each case of the same sign as 

b • m 
That is , the entries of any row all have the same sign. 

2 
For x0, we list the sum of the multiplicities in x; and x;• 
We know both of these values because we know their sum and 

difference, but, because of the ambiguity of signs, we do not 

know which is which. Our goal is to show that no possible 

choice of multiplicities for x; is consistent. 



b 
m 

8 

5 

4 

2 

2 

2 

1 

1 

0 

0 
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2 

0 or 2 

0 or 2 

0 or 2 

0 

0 

The inner products we will check are 

1 2 
+ 2(p+l) t = 1576, 

27+29 

17+18 

14+14 
or 

1 3+1 5 

7+7 
or 

6+8 

7+7 
or 

6+8 

4+4 

3+3 

according to Lerrnna. 7. Note that the inner product with x2 is 

even, so the multiplicity in x; of the character with bm = ±5 

must be 18. Suppose first that the character with b = 8 has 
m 

multiplicity 27 in xb· Then it is easy to see that none of the 

possible choices of multiplicities for the remaining three 

characters gives the correct inner product with x
2

• Thus, 

the character with bm = 8 has multiplicity 29 in x;. Now, 

checking the inner product with x
2

, we find only the two 
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possibilities 

b I I 

'Xo or Xo m 

8 29 29 

5 18 18 

4 15 ? 

2 ? 7 

2 ? 8 

1 4 4 

3 3 

There are many ways to fill in the unknown entries, but 

none of these satisfies (x.b, x~) = 1576, as is easily checked. 

Note that here we must also consider the contribution 7 x 32 = 
63 from the exceptional characters. 

The same method eliminates the set 

8, 5, 3, 3, 2, 1, 1' 1, 1, 

which also occurs. With these arguments, the proof of Theorem 1 

is complete. 
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