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ABSTRACT 

Nonlinear refractive index changes in isotropic media are a 

consequence of two distinct types of mechanisms. An "electronic" 

mechanism arises from the nonlinear distortion of the electron orbits 

about the nuclei and a "nuclear" mechanism arises from an electric-

field-induced change in the motions of nuclei. 

A general treatment of nonlinear optical phenomena involving 

a polarization cubic in the electric field strength is given with the 

topic of nonlinear index changes treated as a special case. A central 

result of this theory is the following expression for the nonlinear 

polarization P3 (t) in terms of the electric field E(t), the "electronic" 

parameter CJ and the "nuclear response functions" a(t) and b(t): 

+I b(t-T)E(T)•E(t)E(T)dT 

In the theory the relationship between these parameters and 

the nonlinear susceptibility tensor ~ is established. Several 

experiments in nonlinear optics are analyzed; in particular, it is 

shown that Kerr effect measurements lead to a determination of the 

quantity CJ + S (where S = f b(t)dt) whereas measurements of the 

intensity dependent rotation of the polarization ellipse of a monochro­

matic optical beam yield the quantity CJ + 2S. Hence together these 

two techniques of fer a means of uniquely determining both the "electronic" 

parameter CJ and the "nuclear" parameter S in any isotropic medium. 
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The nonlinear susceptibility element x~ 221 (-w,w,w,-w) = a;~a 

is calculated from ellipse rotation measurements in fused quartz, 

BK-7 borosilicate crown glass, and SF-7 dense flint glass giving 

-15 q 
values of 1.5, 2.3, and 9.9 x 10 esu at A = 6943A, respectively. 

These measurements constitute the first observations of ellipse rota-

tion in any solid and (with an absolute accuracy of 11%) are the most 

accurately known of any nonlinear optical parameter in glasses. 

Although the interpretation of these results along with Kerr, 

three-wave mixing, and third harmonic generation data nominally indicate 

that a >> S for glasses, we hesitate to conclude that the nonlinear 

refractive indices in glasses are purely "electronic" in origin until 

the uncertainties in the latter measurements are reduced. If it is 

assumed however that electronic contributions are dominant, these experi-

mental data would indicate that the nonlinear refractive index n2 for 

a linearly polarized beam in fused quartz, BK-7 glass, and SF-7 glass is 

-13 1.2, 1.7, and 6.9 x 10 esu respectively. 

Parallel investigations of "ellipse rotation" in the symmetric 

1221( ) -15 molecule liquid CC14 show that X
3 

-w,w,w,-w = 6.1 x 10 esu. 

This value when interpreted along with very accurate Kerr measurements 

indicate that the fractional electronic contribution to the Kerr constant 

(J 
of cc14 is given by cr+S = 0.54 ± 0.17. Hence both electronic and 

nuclear contributions are significant to nonlinear refractive index 

changes in cc14 • 
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CHAPTER I 

INTRODUCTION 

1.0 Introduction 

The origins of the nonlinear refractive indices of optically . 
dense media have for many years been uncertain due to the large number 

of plausible mechanisms which may be responsible for these index 

effects in any given medium. Lacking were both a consistent theoreti-

cal formulation and a group of suitable experiments which would enable 

one to effectively separate out the various possible contributions. 

To be sure it is generally agreed that nonlinear refractive index 

changes in liquids of highly anisotropic molecules arise primarily 

from the reorientation of these molecules by the applied field. (l) 

However the role of other mechanisms which are dominant in symmetric 

molecule liquids and amorphous solids where the reorientation mechanism 

is small or nonexistent has been somewhat uncertain. 

The scope of this thesis is to present a unified approach to 

this problem by considering the nonlinear refractive indices in iso-

tropic media as very special cases of a more general class of nonlinear 

optical effects. A formulation of the nonlinear polarization will be 

presented based upon the mechanisms which have been proposed as being 

responsible for nonlinear index changes. The various nonlinear optical 

effects which arise as a consequence of this nonlinear polarization are 

examined in the light of this formulation and an experimental investi-

gation is conducted . to demonstrate the feasibility of a technique which 

shows particular promise in providing a quantitative statement 
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concerning the contributions to the nonlinear refractive index which 

arise from an electronic distortion mechanism. (2) 

As with many topics in physics, the area of nonlinear optics 

has both an early and a recent history. In this case these two periods 

of time are rather sharply delineated by the first successful achieve­

ment of optical maser action in ruby by Maiman in 1960(3) followed 

shortly thereafter by the development of Q-spoiling by Hellwarth. <4) 

The first observation of a nonlinear phenomenon involving a 

change in the optical susceptibility which is proportional to the 

square of the applied field strength is the observation of field 

induced birefringence by John Kerr in 1875. (S, 6) This phenomenon 

which has been termed the d.c. Kerr effect occurs with the application 

of a strong static electric field to the medium to produce an optical 

birefringence which is detected by monitoring the polarization of a 

weak optical beam as it propagates through the medium. Since its dis-

covery a wealth of experimental data has become available reporting 

the size of this "electro-optic" effect in various liquids. <7) Attempts 

have also been made to account for the physical mechanisms which pro­

duce Kerr birefringence. In particular Voight has suggested the 

possibility of an induced change in refractive index due to a deforma­

tion of the electron orbits of the medium by the strong field(B) and 

Langevin(9) and Havelock(lO) have considered the field induced changes 

in the arrangement of nuclei whose electrons then respond linearly to 

the applied field. 

With the invention of the Q-spoiled laser a host of new non-

linear optical effects which involve nonlinear polarizations which are 
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cubic in the electric field strength have been observed(ll) and 

measurements of the d.c. Kerr effect have been made with greatly 

improved accuracy. (lZ) In particular the generation of optical har-

monies and optical frequency mixing have been observed by Maker, 

Terhune and Savage, (l3 ,l4) intensity dependent changes in refractive 

index resulting in self-focusing of the optical beam were reported by 

Chiao, Garmire, and Townes(lS) and a variety of stimulated light scat­

tering processes have been reported by various authors. (l6-lB) Also 

Maker, Terhune and Savage have observed birefringence effects induced 

by an optical beam which produce a change in the polarization charac­

teristics of the beam itself (l9) and Mayer and Gires have observed an 

a.c. Kerr effect in which the strong field producing the birefringence 

is supplied by an optical beam. (ZO) 

Since all of the effects which were outlined above are a conse-

quence of a nonlinear polarization cubic in the electric field strength 

- * which we denote by P
3
(t), we would expect that a phenomenological 

expression for this nonlinear polarization would provide a basis for 

relating the various nonlinear phenomena. These relationships will 

serve as a basis whereby we shall extract quantitative information 

concerning the various contributing mechanisms to the nonlinear 

polarization. 

More specifically, the experimental investigation which we 

report in this work involves the study of the intensity dependent 

* Here and throughout this text, the tilde (-) will be used to denote 
all functions of time to distinguish them from frequency domain func­
tions. 
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change in the state of polarization of an elliptically polarized beam 

as it propagates through an isotropic medium. Maker et al. (l9) first 

predicted and observed this "ellipse rotation" phenomenon by monitor­

ing the state of polarization of an elliptically polarized ruby laser 

giant pulse after it had traversed a liquid filled absorption cell. 

Although this ellipse rotation phenomenon is seemingly only a special 

case of the Kerr effect in which the strong Kerr field is provided by 

the beam which itself sees the induced birefringence, it will be shown 

that ellipse rotation measures a quantity different from that of the 

Kerr effect. In fact it will be seen that together the Kerr effect and 

ellipse rotation experiments provide a practical means of separating 

direct electronic from nuclear rearrangement type contributions to the 

nonlinear refractive index in any isotropic medium. 

The specific isotropic materials which have been examined in 

this work are the symmetric molecule liquid cc14 and several optical 

glasses of varying density including fused quartz. By making several 

modifications to overcome difficulties which were encountered in 

previous ellipse rotation studies, we obtain the first experimental 

determinations of the ellipse rotation parameter in any solid. With 

an approximate absolute accuracy of 11%, these measurements constitute 

the most accurate determinations of any nonlinear optical constant in 

glass. Additionally the measurements in liquid cc1
4 

provide the most 

accurate determination of the electronic distortion contribution to the 

nonlinear refractive index and the Kerr constant of cc1
4 

currently 

available. 
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1.1 Summary of Research 

The description of this research is divided into seven separate 

chapters including this chapter of introduction. 

A review of the formalism of "nonlinear optical susceptibilities" 

which are employed in the formal description of nonlinear optical 

processes is given in Chapter II. Particular attention is devoted to 

the nonlinear susceptibility tensor r 3 which is employed to describe 

induced refractive index changes and other processes which involve a 

nonlinear polarization P
3

(t) which is cubic in the electric field 

strength. 

Having laid the foundation for the description of nonlinear 

optical processes, Chapter III provides a review of four experimental 

techniques which have been employed to measure elements of the non-

linear susceptibility tensor x3 in isotropic media. These are (1) 

the generation of radiation at the third harmonic of an optical 

monochromatic wave,(2) the optical mixing of three monochromatic 

waves, (3) the Kerr effect, and (4) effects involving index changes 

governing the propagation of an optical beam which are induced by the 

beam itself, such as ellipse rotation. 

In Chapter IV a phenomenological model is developed for the 

nonlinear polarization P
3
(t) which is cubic in the electric field 

strength. This model is based upon the various mechanisms which have 

been proposed as sources of nonlinear refractive index changes in 

-isotropic media and the resulting expression for P
3

(t) will provide a 

basis for the physical interpretation of the various results of the 

experimental determinations which were described in Chapter III. This 
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interpretation of the various measurements of the nonlinear suscep-

tibility elements will be presented in Chapter V. The results of this 

analysis show that the Kerr effect and ellipse rotation measurements 

enable us to separate electronic distortion and nuclear rearrangement 

contributions to the nonlinear refractive index in any isotropic meditan. 

In Chapter VI a complete description and analysis of our 

experimental investigation of ellipse rotation is presented. Finally 

in Chapter VII of this work the results of the ellipse rotation study 

are compared with and interpreted in the light of the other measure-

ments of the nonlinear susceptibility. The merits and weaknesses of 

each experimental measurement are discussed and the data are inter-

preted to show that the electronic contributions tend to dominate the 

nonlinear refractive index in glasses whereas both nuclear rearrange-

ment and direct electronic contributions are significant in cc1
4

• 

Several appendices have been added to provide supplementary 

material which was felt to be inappropriate for inclusion into the 

main text. Particularly important are Appendices H and I which are 

addressed to considering the polarization properties of nonlinear 
~ 

processes involving P
3
(t) and to the relationship between the spon-

taneous scattering of light and the nonlinear susceptibility. This 

latter appendix could possibly give several insights into the possi-

bility of determining the sources of nuclear contributions to the 

nonlinear polarization of isotropic media through the use of light 

scattering studies. 

As a final note Appendices L and M include preprints of two 

articles which provide a concise sunnnary of the essence of the work 



-7-

reported in this thesis. These articles have been accepted for pub­

lication in Physical Review B (Jan. 1972) and Physical Review A 

(Dec. 1971) respectively. 
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CHAPTER II 

THE FORMAL DESCRIPTION OF NONLINEAR OPTICAL PHENOMENA 

2.0 Introduction 

The problem of the interaction of a classical electromagnetic 

field with an atomic system was given early consideration in the 

development of perturbation theory in modern quantum mechanics. (l, 2) 

In recent years the development of the laser has renewed interest in 

processes invo·lving the interaction of optical radiation and dielec-

tric media which involve an induced polarization which is nonlinear 

in the electric field strength. In particular Armstrong et al. have 

employed perturbation theory to derive a set of "nonlinear suscepti-

bilities" which characterize the interaction of a superposition of 

monochromatic waves with a dielectric medium assuming an interaction 

Hamiltonian of the form H' = - J! e E(t) where ]! is the dipole 

moment operator. (J, 4) Other workers have also considered the contri-

butions arising from the inclusion of magnetic dipole and electric 

quadrupole type terms in the Hamiltonian and shown them to be negli­

gible at optical frequencies. (S) 

In this chapter our aim will be to review the formalism which 

has been established for the description of nonlinear optical interac-

tions. Our intent will be to establish a means of describing such 

interactions rather than to be concerned about the explicit quantum 

mechanical forms taken on by the parameters in this formalism. In 

Section 2.1 a brief review of the standard macroscopic linear suscep-

tibility relations is given. Section 2.2 contains a generalization 
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of the linear theory to all orders in the electric field based upon 

Butcher's formulation of nonlinear optical interactions which gives 

both time and frequency domain expressions for the nonlinear polariza­

tion. (6) The "nonlinear susceptibility" which describes the 

nonlinear polarization in the frequency domain is defined and related 

to the temporal response characteristics of the nonlinear polarization. 

Finally, in Section 2.3, the definition of the nonlinear susceptibility 

is particularized to consider the case where the incident field con-

sists of a discrete number of monochromatic components. 

2.1 Macroscopic Linear Susceptibility 

-The response of a dielectric medium to an electric field E(t) 

in the linear theory of dielectrics may be characterized by writing 

polarization P(t) in the form 

00 

(2.1) 

Here a sum is assumed to be taken over the repeated indices of a 

Cartesian coordinate system and Xij(t) is the ijth element of the 

second rank "linear response tensor". This expression gives the 

-polarization P(t) in the form of a linear response to a forcing 

function E(t) for a time invariant system. Since causality requires 

that f.(t) only depend on E(T) for t > T, the response tensor 

Xij(t-T) must be zero for t-T < 0 • 

Problems involving the interaction of an electromagnetic field 

with a dielectric are most commonly considered in the frequency domain 

where the relationship between the field and the polarization is 
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considerably simplified. In order to transform Equation (2.1) into 

the frequency domain, the ·Fourier transform pair will be defined by 

the convention( 7) 

00 

1 
J 

- iWT -f(w) =- f(T) e dT - F(f(t)) 2n (2. 2a) 
...00 

00 

- I -iwt F-l(f(w)) f (t) ... f (w) e dw - (2.2b) 
...00 

where the tilde (-) will be employed over all functions of time to 

distinguish them from frequency domain functions. Now by taking the 

Fourier transform of Equation (2.1) and applying the Fourier convolu­

tion theorem (7) 

00 

2nf(w) g(w) = F( I f(t-T) g(T) d-r) (2.3) 

one arrives at the frequency domain equivalent of Equation (2.1) given 

by 

Pi(w) = Xij (w) E. (w) 
J 

(2.4) 

Here Pi(w) and Ej(w) are the Fourier transforms of Pi(t) and 

i.<t> respectively and xij<w> is the ijth element of the linear 
J 

susceptibility tensor defined by the convention xij(w) = 
00 

J xij(t) eiwtdt • (8) 
We note that since i>(t) and E(t) are both 

...00 

real valued functions of time, xij <t> must also be real. Hence 

(2.5) 

where the asterisk denotes the complex conjugate. 
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In sunnnary, it is seen that in the linear macroscopic theory, 

Equation (2.1) adequately describes the response of a dielectric medium 

-to an applied field E(t) • The specific form of the linear response 

function and linear susceptibility may be arrived at on the basis of a 

(9) ' (10) 
classical or a quantum mechanical microscopic model of the 

dielectric assuming a dipolar interaction between the atomic system and 

the electromagnetic field. 

2.2 Nonlinear Optical Susceptibilities 

The linear response of a dielectric medium which is described by 

Equation (2.1) gives an adequate description of the interaction process 

between the field and dielectric for cases in which the applied field 

is small compared to the fields which bind the charged particles of 

which the dielectric medium consists. At high field strengths however, 

the same dipole-field interaction Hamiltonian H' = -µ • E(t) which is 

used to obtain the linear susceptibility will also yield significant 

contributions to the polarization which arise from higher order per-

turbation theory and which are nonlinear in the applied field 

strengths. ( 4) 

Butcher(6) has considered the nonlinear response of a dielectric 

medium to an applied field E(t) and shown that the polarization may 

be written in the time domain in the form, 
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00 00 00 

= 

00 00 00 

+ f J J x;ju(t--r
1

,t--r
2

,t--r
3

>Ej(-r1>Ek(T2)Ei(T3)dT1dT2dT3 + ••• 

-O>--<lO---OO 

(2.6) 

which includes contributions to the polarization from quadratic, cubic, 

and higher order terms in the field E(t) • It should be noted that a 

sum is to be taken over all repeated indices in Equation (2.6) and that 

p (t), the nonlinear polarization mth order in the electric field 
--m 

strength, is characterized by a "nonlinear response tensor" of rank 

m+l whose elements are denoted by These 

"nonlinear response functions" collectively serve as the basis for the 

description of nonlinear optical phenomena.* 

In this work the primary concern is with isotropic media which 

possess inversion symmetry. Hence a spatial inversion of .§_(t) must 

result in a spatial inversion of the polarization P(t) • The non-

linear response is consequently ruled out in such 

materials. (ll) This requirement explains the absence of generation(l2) 

and optical rectification(l3) in media possessing inversion symmetry. 

The fact that Equation (2.6) gives the proper form for the nonlinear 
polarization terms is illustrated in Appendix A for the case of a non­
linear polarizati~n quadratic in the field, fz(t). The assertion that 
the cubic term f3(t) is also appropriate is borne out by the models 
for the cubic nonlinearities which are given in Chapter 4. 
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Primary consideration will thus be given to the nonlinear response 

tensor which characterizes a nonlinear polarization 

cubic in the electric field strength.* 

Just as it is often convenient to work in the frequency domain 

in considering a linear medium, an equivalent approach may be taken in 

characterizing the nonlinear response. This is implemented by sub-

stituting 
00 

~(t) a J E(w) e-iwt dw (2.7) 

into the third order term of Equation (2.6) and interchanging the order 

of integration. This operation yields 

00 

III 
(2.8) 

where 
00 

-III 
(2.9) 

is the fourth rank nonlinear susceptibility tensor. By taking the 

Fourier transform of Equation (2.8) and using the definition of the 
l Joo i(w - w ) t 

Dirac delta function o(w-w) = - e 0 dt ' it becomes clear 
0 21T 

* 

"""6o . 

Since our interest in this work is only in effects involving a non-
linear polarization cubic in the electric field strength, it should 
be understood that the term nonlinear response tensor will apply to 
the fourth rank tensor -ijki( ) unless specifically noted 
otherwise. X 3 Tl' T 2 'T 3 
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that Equations (2.8-2.9) describe the nonlinear mixing of three frequen-

cy components of the field to produce a polarization at their sum 

frequency. Thus we find 

00 

(2.10) 

-,ijki( ) The nonlinear susceptibility x3 w1 ,w2,w3 and the nonlinear 

response function have several qualities analogous to 

their linear counterparts. In particular the reality condition on 

(2.11) 

the causality condition must also apply so that 

(2.12) 

if any of the arglllll.ents T1 , T2 , or T3 are negative. 

In examining the nonlinear response tensor, two symmetry 

restrictions are of particular interest. Firstly, it is to be recog-

nized that has not been uniquely specified with 

respect to the interchange of the pairs j,T1 , k,T2 , and i,T
3 

• Since 

it is evident from the integral expression for P3(t) given in 

Equation (2.6) that the ordering of the electric field components is 

of no consequence, a natural choice is to symmetrize 

with respect to the interchange of pairs j,T1 , k,T2 , and i,T
3 

• 

Thus we write 
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(2 .13) 

In like manner it is evident from applying Equation (2.9) to Equation 

,ijkt (2.13) that the nonlinear susceptibility x3 (-w,w
1

,w2 ,w3) is 

invariant with respect to the interchange of pairs j,w
1 , k,w2 , and 

t,w
3 

• Thus we may write 

(2.14) 

Secondly it will be noted that materials belonging to each 

crystallographic group will have certain synunetry restrictions imposed 
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upon them. (ll) These restrictions will in general reduce the number of 

independent non-vanishing tensor elements and help to make the experi-

mental determination of the nonlinear susceptibility a more readily 

realizable task. The symmetry properties of 

been tabulated by Birss(l4) and by Maker and 

1ijki x3 (w1 ,w2 ,w3) have 

Terhune. (l5) The sym-

metry relations for isotropic media are particularly simple; in this 

case the 81 elements of the fourth rank nonlinear susceptibility (or 

nonlinear response tensor) are reduced to a set of three independent 

elements. (l6) 

2.3 Nonlinear Optical Response to . a Discrete Spectral Input 

Since the fields which are employed in the experimental investi-

gations of nonlinear optical phenomena are most often monochromatic or 

the superposition of several monochromatic waves, it is of value to 

specialize the formulation of Section 2.2 to the case where the spec-

trum of the input field consists of a discrete set of frequencies. This 

approach was adopted by Bloembergen(3) and by Maker and Terhune(l6 ) to 

obtain the nonlinear polarization resulting from the mixing of three 

monochromatic waves; we shall also adopt this approach in the present 

work. 

Consider an applied field of the form 

~(t) 
n -iw. t 

= Re { l E (r) e i } 

i=l -wi 

which may be written in the frequency domain in the form 

1 n 
~(w) = - l Ewi(o(w-wi) + o(w+wi)) 2 i=l 

(2.15) 

(2.16) 
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Substituting this field into Equation (2.10) and considering the com-

ponent of the nonlinear polarization P3i(w) at the frequency 

w 
c 

are three frequency components 

of E(w) , we find that 

(2.17) 

Here the degeneracy factor D = 6, 3, or 1 depending on whether none, 

two, or all of the frequencies w 
c 

are degenerate; see 

Appendix B. 

Since the field of Equation (2.15) will invariably result in a 

nonlinear polarization which also possesses a discrete frequency spec-

trum as in Equations (2.17) and (B.3), it is convenient to write 

P3 .(w) = l/2(P3 ) . o(w - w - w. - we) 
1 s ,w 1 s a b s 

(2.18) 

and to redefine the nonlinear susceptibility in the form 

(2.19) 

so as to eliminate the factor of 1/8 in Equation (2.17). 

Here the additional argument w has been adopted to conform' to 
s 

. <16> d i . d h .d . h convention an t serves as a rem1n er t at we are cons1 er1ng t e 

nonlinear polarization at the frequency w = w + wb+ w . Using this 
s a c 

convention it is seen that Equation (2.17) may be written in the form 
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(2.20) 

Although we shall use the convention of Equation (2.20) in this 

work, the reader is cautioned that both definitions of the nonlinear 

susceptibilities which are related by Equation (2.19) are to be found 

in the literature, sometimes with a slightly different notation. Hence 

care should be taken to avoid confusion regarding the factor of 4 

difference in the two definitions of the nonlinear susceptibility. (J,l6) 
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CHAPTER III 

THE DETERMINATION OF THE THIRD ORDER NONLINEAR SUSCEPTIBILITY 

TENSOR IN ISOTROPIC MEDIA 

3.0 Introduction 

In Chapter II the formalism of the nonlinear susceptibility coef-

ijkt . (1 2) ficients x
3 

was reviewed. ' The convention proposed by Maker 

(3) i 0 kR. and Terhune has been adopted to characterize x
3

J in the present 

work. 

Research in the experimental determination of the nonlinear 

susceptibility tensor elements in dielectric media has progressed along 

several directions. The variety of experiments which have been per-

formed involve a wide range of frequencies and thus provide information 

on the spectral dependence of ijkt x
3 

as well as its spatial dependence. 

In this chapter we present a review of several techniques which 

have been employed to determine the size of ijkt x
3 

in isotropic media. 

Our intent shall be firstly to recognize the particular element of 

x~jkt which is determined by each of the techniques so as to provide a 

framework for their later comparison and interpretation and secondly to 

review the interaction process which is involved in each of these 

experiments thus laying the basis for understanding the strengths and 

weaknesses of each of the experimental techniques. 

The discussion of the techniques of determining ijkt 
x3 may be 

divided into four distinct groups of experiments. Firstly we shall 

examine the third harmonic generation technique which was first employed 

by Maker et al. to study the nonlinear susceptibility of calcite. <4> 
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Secondly, we shall review the three-wave mixing process of Maker and 

Terhune(3) which is a generalization of the third harmonic generation 

process and involves the optical mixing of three monochromatic waves 

to produce radiation at their sum frequency. Thirdly, we direct our 

attention to field induced birefringence effects in which strong 

optical or low frequency fields at a given frequency induce refractive 

index changes within the medium which are experienced by an optical 

wave at another frequency. Such effects are exemplified by the d.c. 

Kerr effect discovered by John Kerr in 1875(5) and the optical a.c. 

Kerr effect which was observed more recently by Mayer and Gires. (6) 

Finally, we shall review induced refractive index changes which are 

experienced by a monochromatic optical beam which itself induced the 

change. Examples of these "self-induced effects" are the self-focus­

ing of optical beams observed by Chiao, Garmire, and Townes(?) and 

the self-induced rotation of an elliptically polarized beam which was 

first proposed and observed by Maker et al. (8) 

3.1 The Nonlinear Wave Equation in Isotropic Media 

Since our interest in this work will be restricted to the con-

sideration of isotropic media, the nonlinear susceptibility 

must be invariant under all spatial synnnetry transformations. The 81 

elements of this fourth rank tensor are consequently reduced to a set 

of three independent elements which will be denoted by 

and X1122 
o (

3) Here the superscripts 1 and 2 denote 
3 

1221 1212 
x ' x ' 3 3 

x, y, or z • : 

In the spatially degenerate case where i = j = k = R, it is observed 
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that x1111 = x1221 + x1212 + x1122 • 
3 3 3 3 

Recognizing the form which is taken by 
i'kn x J N 
3 

in an isotropic 

medium, let us consider Maxwell's equations in a region free of cur-

rents and charges at the frequency w 
s 

which was defined in Equation 

(2.17) as being a frequency at which the nonlinear polarization 

exhibited a nonzero component, i.e., W =W +~+ s a w c Hence we 

write 

iwe:(w ) 47TW 

'iJ x l!w (_;:) s 
~ (r) - i--s-P (_!:) = - c c 3,w 

s s s 
(3.1) 

iw 
'iJ x E (.E) = _s H (.E) 

-w c -w (3.2) 
s s 

where e:(w ) is the linear dielectric constant which is a scalar in 
s 

isotropic media and the permeability of the medium is assumed to be 

that of free space. Combining Equations (3.1-3.2) we find the wave 

equation which takes the form 

2 2 w n 4nw2 

+ _s_ E' (r) 
2 -w 

= - __ s P' (.E) 
c2 -3,ws 

(3.3) 
c s 

for the wave at frequency 

is defined by 2 n = e:(w ) 
s 

w 
s 

Here the linear refractive index 

and the primes have been added to avoid 

n 

confusion between these fields and those which will be defined direct-

ly below. 

It is evident that one solution of Equation (3.3) is that in 

which the field E' is assumed to take the form of a wave traveling -w s 
in some direction in space; hence it is convenient to pick the propa-

gation direction along the z axis and to separate out the rapidly 
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oscillating optical component by writing 

E' (r) w -
s 

.. e 

P ' (r) p ( ) 
3 = 3w..E. ,ws , s 

ik(w )z s 

e 
ik(w )z 

s 

(3.4a) 

(3.4b) 

where k(w ) = n(w )w /c and the "complex amplitudes" ..!L and s s s UJ 

s 
p 
-3 w , s 

now vary slowly in space and are constant over dimensions of 

the order of a wavelength. Substituting Equation (3.4) into Equation 

(3.3) we find the form 

()~ 4TI(k2 (w ) 
2ik(w ) __ s = - __ 2 __ s_ P3 w (£) 

s az n , s 
(3.5) -

CIE 

where it is assumed that I v2~ .. I << I k(ws) -uls I 
--vJ az From Equation 

s 
(3.5) it is clearly seen that the spatial variations in ~ 

s 
are 

driven by the nonlinear polarization P
3 

• - w In the sections to fol-
' s 

low this relationship will serve as a basis for reviewing the various 

.. kt 
elements of x~J which have been experimentally determined through four -

types of experimental techniques. 

3.2 Harmonic Generation 

Perhaps one of the most striking examples of the nonlinear 

optical processes predicted by Equation (3.5) is that of the generation 

of radiation at the third harmonic 3w of a monochromatic input wave 

of frequency w • Third harmonic generation (THG) was first experi-

mentally observed by Terhune et al. in calcite using a Q-switched ruby 



-27-

laser~4 ) 

Assuming an input wave of the form 

the nonlinear polarization takes the form 

P' tr) = 3X1122 (-3w w w w)E E • E ei3k(w)z -3, 3w '.:.. 3 , , , -uriJJ -w 

where the completely degenerate frequency arguments reduce 

a scalar by the relation(3) 

X
1111 _ 3X1122 X1221 1212 
3 - 3 = 3 3 = 3X 3 · 

(3.6) 

(3.7) 

to 

<. 

(3.8) 

(see Equation (2.13)). Using Equation (3.7) in Equation (3.5) it is 

found that 

2ik(3w) aE3w - 3k2(3w) X1122(-3w w w w)E • E E ei~kz 
~ - - n 2 (3w) ' ' ' -w -uriJJ 

(3.9) 

where ~k = 3k(w) - k(3w) = (3w/c) [n(w) - n(3w)] • This expression 

may be integrated along z to yield 

E3W = 3k(3w) X1122(-3w,w,w,w)E •EE (ei~ki_ 1) 
2~kn 2 (3w) 3 -w -uH.t.J 

(3.10) 

where P is the length of the sample. From Equation (3.10) it is seen 

that the amount of third harmonic power is limited by the coherence 

length i = rr/~k which is the path length over which the radiating c 

nonlinear dipoles P3w can interfere constructively. <9) Typical 
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values for i in glass with the fundamental input at A = 1.06µ 
c 

are of the order i ~ 1-5µ • As the length of the sample i varies 
c 

over two coherence lengths the third harmonic power oscillates 

through a cycle. 

It is clear that THG gives a measure of x1111 (-3w,w,w,w); 
3 

however the extremely short coherence lengths make accurate direct 

measurements virtually impossible. Since :the medium is isotropic i 
c 

cannot be extended by index matching as would be possible in aniso­

tropic media. (lO) This experimental difficulty has been overcome in 

part by measuring the THG emitted upon reflection of the fundamental 

wave from the sample surface. (ll;l2) 

3.3 Optical Mixing 

A generalization of the THG mixing process is three-wave mixing 

(TWM), the creation of a wave at the sum frequency of three other 

waves. In this case the input wave may be written in the form· 

~(t) 

where k. = w.n(wi)/c and the waves E , E , and E are assumed 
1 1 ~1 ~2 ~3 

to be parallel and linearly polarized for simplicity. The resultant 

R.'3,n is consequently given by Equation (2.20) to be 

(3.12) 
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In the partially degenerate case w
1 

= w2 = w, w3 .. -(w - !J.) which 

(3) 
was considered experimentally by Maker and Terhune 

2 ik' z 
= 3X~111(-(w+~),w,w, - (w-!J.))Ew E~-!J. e (3.13) 

where k' = 2k(w) - k(w-~) • 

Again Equation (3.5) may be integrated using Equation (3.13) as 

a source term to yield 

Ew+A = 3k(w+!J.) Xllll(-(w+!J.),w,w,-(w-!J.)) E2E* (ei!J.k'z_ 1) 
u Z!J.k, n2 (w+!J.) 3 w w-6 

(3.14) 

where 6k' = k(w+!J.) - k' = k(w+!J.) +k.(w-6)-2k(w) 

= [n(w+!J.) + n(w-!J.) - 2n(w)] w 
c 

It is clear from this development that the special case of partially 

degenerate three-wave mixing will determine one of two independent 

ijkR. elements of , x
3 

(-(w+!J.),w,w,-(w-6)). The other element X~ 221 

may be obtained by polarizing ~ perpendicular to ~6. 

In contrast to the case of third harmonic generation the experi-

mental determination of x1111 may be implemented by direct applica-
3 

tion of Equation (3.14) since the coherence length t 
c is now 

generally three orders of magnitude larger than in the case of THG. 

In this case 6 << 2w and dispersive effects are consequently much 

smaller. Hence t may be adjusted to yield maximum generated power c 

at 
(3) 

w +!J. • 
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3.4 Induced Kerr Birefringence 

In an isotropic medium, a test beam of frequency w will 

exhibit birefringence in the presence of a strong linearly polarized 

beam of frequency Q • This "electric-field-induced birefringence" 

is known as the Kerr effect after John Kerr(S) who first observed 

this phenomenon in 1875. Generally the "d.c. Kerr effect"(S) in 

which the frequency n is a d.c. or radio frequency is distinguished 

from the more recently observed "a.c. Kerr effect11
(
6 ,l3 ,l4) in which 

n is an optical frequency. Both cases however are described in 

terms of a Kerr constant B defined by the expression 
0 

where on - on is 
II J_ 

and perpendicular to 

B 
0 

= 

the 

the 

w(onll - on_.l_) 

2rrc < E2> av 

difference in 

direction of 

refractive indices 

polarization of the 

(3.15) 

parallel 

strong beam 

and <E2> is the mean square value in time of the strong field. av 
-Consider a wave E(t) consisting of two linearly polarized 

components traveling in the z direction 

(3.16) 

where The nonlinear polarization responsible for 

the index change seen by .§.(w) may be deduced from Equation (2.20) 

to be of the form 
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(P3',w)i = 6X1221 (-w,w,n,-n)E .En .E~ . 3 W,J ~,,J u, 1 

+ 6X13122(-w,w,n,-n) L~l2 E . --,, w, 1 

ikz 
e 

ikz 
e (3.17) 

Clearly the strong field En serves to produce a constant change 

in the polarizability of the medium which is seen by the weak field 

E . In terms of the induced change in the linear susceptibility -w 
oxij one may write 

oxij (w) = 6X1221(-w,w,Q,-Q) E~ .EQ . 3 , 1 ,J 

+ 6X1212(-w,w,n,-n) E~,jEQ,i 3 
" 

+ 6X1122(-w w n -n) 
3 ' ' ' EQ,kEQ,k 

oij (3.18) 

where is defined by P 3i = oxij (w) E • • 
W,J 

The change in the 

index of refraction corresponding to such a change in the suscepti-

bility may be obtained by differentiating the expression n = ./£ = 

11 + 4rrX to obtain 

On = .!. 4TT OX 
2 /1+4TTX 

= 2nox 
n (3.19) 

Thus using Equation (3.18) in Equation (3.19) one finds that the 

induced index changes parallel and perpendicular to the direction of 

polarization of the intense beam ~ are given by 
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27T 1221 
on 

11 
... ~ 6lX~ (-w,w,n,-n)+ x~ 212 (-w,w,n,-n) 

(3.20) 

and 

The Kerr constant of Equation (3.15) may thus be expressed in 

the form 

B = 247T [X13221(-w,w,n,-n) + x1212(-w,w,n,-n)] 
o An(w) 3 

(3.21) 

Here we note that 1En1
2 

<cos
2
nt>av = ~1Enl 2 

• The experimen­

tal measurement of Kerr birefringence consequently enables us to 
.) 

determine a linear combination of two of the three independent elements 

of ijkt x
3 

(-w,w,n,-n) in isotropic media. 

3.5 Self-Induced Changes in Refractive Index 

A particularly interesting case of intensity induced changes in 

the refractive index is that in which the high intensity beam induces 

the changes which in turn govern its own propagation characteristics. 

These self-induced changes in refractive index are seen to be respon­

sible for the self-focusing of spatially limited beams. (l) Indeed it 

is this fact which is a motivating factor for the study of intensity 

dependent refractive index changes. 

In order to see the refractive index changes which are induced 

by a plane wave in an isotropic medium, we substitute the monochromatic 

wave of Equation (3.6) into Equation (2.20) to obtain in vector form 
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2 ikz 
P3,w a{6X~212 (-w,w,w,-w)}i~I ~ e 

+ 3X1. 221 (-w w w -w)E2 E* eikz 
3 ,,, -w-w (3.22) 

where we have used the relation x1212 (-w,w,w,-w) = x1122 (-w,w,w,-w) 
3 3 

from Equation (2.13). This expression may be substituted directly 

into the wave equation (3.3), to solve exactly for the induced refrac-

tive index change on • Alternately by applying Equation (3.19) to 

estimate on we find that for a linearly polarized plane wave 

on = 6TI Xllll(-W WW -w)IE 12 
R. n 3 ' ' ' -w 

(3.23) 

where it is recalled that x1111 = x1212 + x1122 + x1221 
3 3 3 3 

In con-

trast we find for a circularly polarized wave that 
L 

on = 12TI xll22(-w w w -w) IE 12 
c n 3 ' ' ' w (3.24) 

where IE 1
2 is specified by the convention w IE 12 

= 2 < E2 ( t)> • -w - av 

If the optical beam is spatially limited, the spatial gradient 

in the intensity profile of the beam will produce a corresponding 

gradient in the index of refraction of the medium. Hence a net "self-

focusing" effect occurs when the resultant lensing effect of the 

induced index change becomes large enough to overcome diffraction 

spreading of the beam. (l5) It is thus seen that Equations (3.23) and 

(3.24) offer in principle a means of determining several nonlinear 

susceptibility tensor elements by direct measurement of the power 

thresholds required for self focusing to occur. <7,l5) 
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Practically speaking, the accurate direct determination of 

nonlinear refractive index changes is an extremely difficult task to 

perform. Both the theoretical complexities of the nonlinear diffrac-

tion process and the experimental difficulty of specifying and 

reproducing the spatial and temporal output from a high power solid 

state laser serve to put a practical limit on the accuracy with which 

such self-focusing measurements may be made. Perhaps the most accurate 

determinations of nonlinear index changes via self-focusing measure-

(16 ments are the studies performed by McAllister, DeShazer, and others ' 

l]) where the change in the spatial profile of the laser beam is 

monitored as the self-trapping process takes place. Notwithstanding, 

self focusing is necessarily associated with rather large index 

changes and high intensities (compared to the Kerr effect, for 

example). Hence the measurements performed are more likely to be 

influenced by instabilities in the trapping process or other nonlinear 

effects such as multiphoton absorption and stimulated scattering. (lS) 

This is particularly true in solid media where the nonlinear index of 

refraction is small and self focusing is often accompanied by damage. 

In addition to self focusing, the index changes induced by a 

monochromatic beam may also be reflected in a change in the polariza-

tion properties of the beam as it propagates through the medium. In 

contrast to self focusing, such effects may be observed in spatially 

uniform optical beams and may be detected when phase shifts of only 

a few degrees have been produced; thus much lower intensities may be 

used to observe this effect. Maker et al. were the first to predict 

and observe this phenomenon when they monitored the intensity dependent 



-35-

rotation of an elliptically polarized ruby laser giant pulse after it 

had traversed a liquid filled absorption cell. (S) Additionally, this 

effect which we term "induced ellipse rotation" may be measured over 

a large range of powers which are well below the thresholds for self 

focusing. Thus ellipse rotation offers a possibly effective and 

accurate means of characterizing and determining the self-induced 

refractive index changes in an isotropic medium. 

Since ellipse rotation involves the same self-induced refrac-

tive index changes which govern self-focusing effects, the nonlinear 

polarization of Equation (3.22) may be employed directly in the consid-

eration of this phenomenon. Here it is interesting to note that this 

relation is simply a degenerate case of the a.c. Kerr effect expressed 

by Equation (3 . 17). The "probe field" itself now acts as its own 

"Kerr field". 

Clearly the nonlinear polarization given by Equation (3.22) 

may be specified in terms of two independent parameters since x1122 
3 

cannot be differentiated from X1212 in this relation. Hence Maker 
3 

et al. have chosen to write the nonlinear polarization in the form( 3) 

where 

and 

P' = {A E E •E* + .!. B E* E • E }eikz 
-3 'w """"i.1)-'W -w 2 -w -w -w 

A= 3{X1122 (-w,w,w,-w) + X1212(-w,w,w,-w)} 
3 3 

B = 6X1221(-w,w,w,-w) 
3 

(3.25) 

(3.26) 
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The first term is noted to be parallel to E whereas the second term 
-w 

can in general manifest a birefringent component. Substituting Equa-

tion (3.25) into the nonlinear wave equation, Equation (3.5) yields 

a~(z) 27Tik 
----=---

Clz n2(w) 
{A E • E* E + 1. B E • E E*} 

-U) -U) -U) 2 -U) -U) -U) 
(3. 27) 

Let us consider the case of Equation (3.27) in which E(t) is an 

elliptically polarized wave and it is assumed that A and B are 

real. In this case E(t) may be characterized as the sum of a right 

and a left circularly polarized component. C3) Hence 

where 

E+w "' "' "' E = - (e + ie ) = E+w e+ =+w . 12 x y 

and 
E 

E = ~ ( ~ - i~ ) = E ~ 
--w 12 x y -w -

(3.28) 

e and 
x 

"' e being unit vectors in the x and y direction respec-
y 

tively. Substituting Equation (3.28) into Equation (3.27) one finds 

a C.!+.w + !!_J 
Clz 

(3.29) 

Noting that 

"' "' 0 "' I ,,._ 
0 e+·•e+ = e •e = 

"' "' "'* "' e •e = 1 e+ = e + - (3.30) 
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Equation (3.29) reduces to 

2'1Tik 2 2 = 2 {AIE+wl + (A+B)IE-wl }~ 
n (w) 

+ 2Tiik {AjE 12 + (A+B)!E-L .. 12} E 
n 2 (w) -w -n.u --w 

(3.31) 

It is seen from Equation (3.27) that since A and B are assumed to 

be real 

a< IE 1
2> E* 

__ --w __ = E • --w + c.c. = 0 
az --w az 

(3.32) 

Also, from Equations (3.30) and (3.31), 

az az = 0 (3.33) 

Thus in the case where A and B are real, one finds that Equation 

(3.31) may be separated into the forms 

a14w 2'1Tik 2 2 
-- = {Al E.L..I + (A+B) I E_wl }.!i_. .. 

az n2(w) -n.u --.w 
(3.34) 

()E 
--w 2'1Tik {AIE 1

2 + (A+B) IE 1
2}E az- = n2 (w) -w +w --w 

(3.35) 

Applying the definition of the induced refractive index change given in 

Equation (3.19) to Equations (3.34) and (3.35) it is seen that the in-

duced index changes on+ .and on for right and left circularly polarized 

components are given by 
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(3.36) 

Since the solution to Equations (3.34) and (3.35) are of the form 

= E+ (O) 
-W ' (3. 37) 

it is seen that the difference in the phase shift ¢(z) between the 

left and right circular components of the wave is given by 

¢(z) 
w 

= ¢+(z) - ¢_(z) = ~ (on+ - on_)z 

This phase shift results in a rotation of the major axis of the 

polarization ellipse by an angle 9=~ 
2 

(see Appendix C). 

(3.38) 

Thus 

an elliptically polarized plane wave E = ~ .. + E experiences a 
-tU ---.-w - -w 

rotation of its major axis of polarization by an amount 

e = ~ (on - on_)z 
2c + 

(3.39) 

in propagating a distance z through an isotropic medium. Measurement 

of this rotation angle thus gives a direct measurement of 

B = 6X1221 (-w,w,w,-w) • (8) 
3 

The various elements of the nonlinear susceptibility tensor which 

are measured by the techniques described in this chapter are tabulated 

in Table 3.1 for convenient reference. As we proceed in the following 
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chapters to develop physical models to characterize the nonlinear 

susceptibility, it will become evident that the tensor elements which 

are displayed in Table 3.1 bear a definite relationship to one 

another and that their determination will provide information on 

physical constants which will serve to specify the nature of the 

nonlinear polarization. 



Experimental Technique 

Third Harmonic 
Generation (THG) 

Three Wave Mixing 
(TWM) (Degenerate 
Case) 

Kerr Effect 

Self Focusing 
Linear Polarization 

Self Focusing 
Circular Polarization 

Ellipse Rotation 
(ER) 
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TABLE 3.1 

Input 
Field 

tE + tE A 
-W --ul-u 

-+ 
tE + E A """().) --ul-u 

o~ 

o~ 

Measured Nonlinear 
Susceptibility Element 

xllll(-3w,w,w,w) 
3 

xllll(-(w+!::.),w,w,-(w-!::.) 
3 

x~221(-(w+!::.),w,w-(w-!::.)) 

x1221(-w,w,n,-n)+x1212(-w,w,n,-n) 
3 3 

xllll(-w w w -w) 
3 . ' ' ' 

xll22(-w,w,w,-w) =xl212(-w,w,w,-w) 
3 3 

xl221(-w,w,w,-w) 
3 
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CHAPTER IV 

MECHANISMS FOR THE THIRD ORDER NONLINEAR POLARIZATION IN 

ISOTROPIC MEDIA 

4.0 Introduction 

The nonlinear susceptibility tensor ijki x
3 

which we employ to 

characterize nonlinear optical processes in isotropic media was defined 

in Chapter II. In Chapter III the various experimental techniques which 

have been employed to measure elements of this tensor in isotropic media 

have been reviewed. The results of this discussion are summarized in 

Table 3.1. Recognizing that the nonlinear susceptibility elements are 

functions of their four frequency arguments as well as their spatial 

indices, we see that the comparison of the various experimental deter-

minations of this tensor will require the development of some phenome-

nological model which will relate the various tensor elements and aid in 

specifying their dispersion characteristics. 

In this chapter we shall give consideration to the various 

mechanisms which contribute to the nonlinear polarization in isotropic 

media. We shall review phenomenological models for each of the con-

tributing mechanisms and demonstrate that each of these mechanisms 

produces a nonlinear polarization which conforms to a unique functional 

form which we shall propose for P
3

(t) • This form for P
3

(t) will 

serve as a basis for the comparison and interpretation of the experi-

mental determinations of ~~ x3 which will be considered in subsequent 

chapters. 

More specifically, it will be shown in this chapter that the 

nonlinear polarization arising from each physical mechanism may be 
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written in the form 

+ I b(t-T)E(T) • E(t)E(T)dT (4.1) 

Here the first term gives the "fast responding" electronic contribution 

to the nonlinear polarization which arises as a result of a direct dis-

tortion of the electronic orbits from their region of linear response 

and the latter two terms model the slower nuclear nonlinearities which 

are a consequence of electric field induced changes in the motions of 

(1,2) 
nuclei whose electrons then respond linearly to the applied fields. 

Our consideration of the mechanisms of nonlinear polarization 

will be divided into two major sections. In Section 4.1 the electronic 

distortion mechanism will be considered by employing a simple classical 

model for the nonlinear response. The nuclear rearrangement type 

mechanisms will be given consideration in the various subsections of 

Section 4.2. 

4.1 Direct Electronic Distortion 

The idea that the electronic structure of any atom or molecule 

may be distorted by the application of an electric field to produce a 

net dipole moment which is linearly proportional to that field is a 

well known empirical postulate of the theory of dielectrics. This 

assumption of a linear electronic polarizability is well established 

in both the classical(3) and quantum mechanical(4) theory of dielectric 

media. 
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In the classical theory, the electron oscillator model or 

"Lorentz model"(S) of the atom is employed to predict the response 

of the system to an applied field E(t) ~ The equation of motion of 

the electron is then written as 

+y 
di_(t) 

dt 
2 -+ w r(t) = o-

-eE(t) 

m 
(4.2a) 

where -e is the electron charge, r(t) the displacement of the 

electron from its zero field equilibrium position, m the electron 

mass, w the transition (absorption) frequency of the atom, and 
0 

y the linewidth of the transition which phenomenologically models 

the damping of the electron oscillator. Although the oscillator model 

generally presents quite an adequate description of the electronic 

response arising from a particular electric dipole transition of the 

system, it is to be recognized that each electron in the system is in 

actuality bound by the many charges which surround it. Hence the 

harmonic potential would be expected to be a valid approximation of the 

binding potential for small values of r(t) only. For high electric 

fields E(t) one would expect that anharmonic terms would enter into 

the power series expansion of the binding potential and that r(t) 

would consequently exhibit a nonlinear response to the applied field. (l) 

Bloembergen has used the electron oscillator of Equation (4.1) 

to model the nonlinear response by adding an anharmonic forcing term 

to this relation which is proportional to r 2 (t) • (G) Since our con-

cern in this work is primarily with isotropic media, the model which we 

consider should be invariant with respect to all symmetry 

* See Appendix D for local field corrections. 
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transformations. Hence we choose to modify Equation (4.2a) by consid-

ering the form 

d2r(t) dr(t) 
2 -

eE(t) 
+y + w r(t) + dr(t) • r<t> r(t) = - (4.2b) 

dt2 dt o- m 

which is a vector form of Duffing's equation(l,B) where d is assumed 

to be small so as to produce only a perturbation of r(t) from its 

linear solution. Armstrong et al. (9) and Wang(lO) have both consid-

ered the scalar form of Equation (4.2) as a model for direct electronic 

nonlinearities in the polarization. 

Although the model of Equation (4.2b) is for an isotropic 

oscillator, it is to be recognized that it is applicable to media 

consisting of randomly oriented anisotropic molecular units. In this 

case the linear and nonlinear responses would represent the orienta-

tionally averaged responses which characterize the macroscopic 

behavior of the system. (l,ll) 

An approximate solution of Equation (4.2b) may be obtained by 

employing a perturbation series in powers of d which would take the 

form (B) 

(4.3) 

Here r (t) gives the solution which is linear in the field E(t) and the 
-0 

succeeding terms represent small corrections to the linear solution. 

This trial solution is quite a reasonable one to assume since the fre-

quency of the incident field is well below the oscillator absorption fre-

quency and is known to produce a linear response for sufficiently small 
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field strengths. Substituting Equation (4.3) into Equation (4.2b) 

and solving iteratively for r.(t) ' one obtains for the first two 
. l. 

terms 

00 

J Z(t-T) 
eE(T) 

r Ct) = - dT 
-0 27Tm (4. 4) 

-00 

00 

dr
1

(t) = 
d J zct--r)r <-r) • r: C-r)r <-r) dT 27T -"'1) -"'1) -"'1) 

(4.5) 
-00 

where Z(t) is the inverse Fourier transform of the oscillator res-

ponse function 
2 2 -1 Z(w) = [w - w - iwY] . 
0 

Since the classical polarization is defined by P(t) = -Ne r(t) 

where N is the number density of oscillating electrons in the dielec-

tric, the polarization due to the transiton of interest may be written 

in the form 

- -
E_(t) = P1(t) + P3(t) + ··· 

00 

(4.6) 

where R.1 (t) and P
3

(t) are the linear and third order nonlinear 

polarizations respectively and the linear ~espouse function is given by 

Ne2 -X(t) = 2mn Z(t) • Comparing Equation (4.6) with Equation (2.6) it is 
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seen that the third order nonlinear response tensor takes the form 

x 

-dm 

3N
3

e
4 

00 

I X(T)X(tl-T)X(t2-T)X(t3-T) dT 
-00 

(4. 7) 

Using Equation (2.9) to transform this response tensor into the fre-

quency domain, it is clear that the nonlinear susceptibility tensor 

takes the form 

x (4.8) 

Here the linear susceptibility is given by Ne
2 

X (w) = - Z (w) , D 
m 

is 

the degeneracy factor which is 6, 3, or 1 depending on whether the 

frequency arguments w
1

,w
2

,w
3 

are nondegenerate, partially degener­

ate, or totally degenerate, and the result has been divided by a 

factor of 4 in accordance with the convention adopted in Equation 

(2.19). 

In the experimental situations which we shall consider the 

medium is transparent at all frequencies which are involved in the 

nonlinear interaction and the resonant frequency of the electronic 

transition w is assumed to be well above any of the interacting 
0 

so that 2 
w 

0 

2 w. >> WY 
1 

Under this 

condition it is easy to see that x(w) is real valued and that 

'dX/'dw is small so that dispersion is negligible. Thus Equation (4.8) 
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may be approximated by the form 

(4.9) 

where -2dm 4 -
a = ~ x (w) ; the 

N e 
w denoting a mean value of the f requen-

cies involved in the interaction. 

Equation (4.9) is readily transformed into the time domain 

again where it is seen to yield a nonlinear polarization of the form 

a - - -P3 (t) = z E(t) • E(t) E(t) (4.10) 

in conformity with our proposed form of Equation (4.1). In essence 

Equation (4.10) relays the fact that in the low frequency limit, the 

anharmonic oscillators are lossless and the polarization responds 

instantaneously to the field. 

Since the materials to be examined in this work are highly 

transparent in the visible, the dispersionless estimates given by 

Equations (4.9) and (4.10) will prove to be quite adequate in approxi-

mating the electronic nonlinear response of these materials; see 

Appendix E. 

4.2 Nuclear Nonlinearities 

In this section (which we have divided into five parts) we con- . 

sider contributions to the nonlinear polarization which arise as a 

consequence of a rearrangement in the positions of nuclei in the 

medium. These "slow" responding nonlinearities which we shall term 

"nuclear" nonlinearities or "nuclear rearrangement type" nonlinearities 
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are many in number and it is often difficult to attribute the nuclear 

contribution to a nonlinear optical phenomenon to any one nuclear 

mechanism. Our intent in this section will be to review some simple 

classical models for the most commonly proposed nuclear mechanisms 

and to show that these yield contributions to the nonlinear polariza-

tion P3 (t) which conform to the last two terms of Equation (4.1) 

thus building a phenomenological basis for asserting the general 

applicability of this relation. Specifically, the five nuclear 

mechanisms which we shall consider are (1) molecular reorientation, 

(2) Raman type nonlinearities, (3) molecular librations, (4) molecu-

lar redistribution, and (5) electrostriction. With the exception of 

electrostriction, these mechanisms do not involve macroscopic density 

changes in the medium, but rather local electric field induced changes 

in the arrangement of nuclei which are reflected in changes in the 

electronic polarizability of the molecular system as a whole. 

4.2.1 Molecular Reorientation 

Perhaps the most common nonlinear optical effect resulting in 

an induced refractive index change is the d.c. Kerr effect which is a 

special case of the a.c. Kerr effect discussed in Section 3.3. In 

liquids of nonpolar anisotropic molecules such as cs
2 

it is well 

known that the alignment or "reorientation" of the molecules by the 

applied electric field yields a major contribution to the induced 

b . f . f h d" (2,12,13) ire ringence o t e me ium. 

Although molecular reorientation effects are generally asso-

ciated with liquid media in which the relaxation times for reorienta-

(14) tion may be as short as a few picoseconds, reorientation phenomena 
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are also known to occur in solids. Generally speaking the reorienta-

tion times associated with molecular solids are long enough to exclude 

them from being considered as a possible mechanism for the induced 

refractive index changes seen under high power (nanosecond or pico­

second) laser excitation. (l5) However it should be noted that the 

freedom of rotation which is exhibited by a molecule is highly depen-

dent upon its synunetry and hence such synunetric molecules as CH4 and 

cc1
4 

possess a rather large degree of rotational freedom in the 

crystalline state. (l6 ,-l]) Recently, investigations of the "plastic 

crystal" succinonitrile demonstrate that cases do exist in which 

anisotropic molecules in the solid state may exhibit quite rapid 

reorientation times (~50 psec). (lS,l9) Hence although reorientation 

effects are unlikely to be of great importance in the determination of 

induced refractive index changes in solids, they cannot be ruled out 

completely. 

The general problem of the reorientation of polar molecules 

in a static electric field was considered by Debye in 1912. <2o) It 

is a well known result that the average orientation of these molecules 

will take on a Maxwell-Boltzmann energy distribution 

f(U) 
-U/kT e 

J e-U/kT d0 

where the integral is taken over the entire sphere and U is the 

(4.lla) 

energy of the molecule in the presence of the applied field. Hence 

the average moment of a system of polar molecules each with a permanent 

dipole moment µ may be written in the form 
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µ = I µ cos 8 f(-µE cos 8) d8 (4.llb) 

where e is the angle between the permanent moment µ and the d.c. 

field E , the "bar" denotes an orientational average over the sphere, 

and the energy of each dipole in the field is given by U = -µE cos 8 • 

When the orienting field E is varying in time, the equilibrium 

distribution function f is no longer applicable to this problem. 

Debye was the first to address himself to the problem of polar molecules 

in an a.c. electric field. (Z0, 2l) Using Einstein's theory of Brownian 

motion to model the damped rotation of the molecules, Debye found that 

the system may be characterized in terms of a time varying distribution 

function f(8,t) which obeys the relationship( 2l) 

l a [sin 8(kT .£!_ - Mf)] 
sin 8 ae ae (4.12) 

Here 8 is again the angle between the polar axis of the molecule and 

the electric field, M = µE sin 8 is the torque on the molecule due 

to the applied field, and ~ is the damping constant of inner friction 

which specifies a "damping torque" by the relation M = ~ d8 
damp dt 

This coefficient has been estimated by Stokes to be given by 

3 
~ = 87111 a for a liquid with a viscosity coefficient n consisting of 

h ' 1 1 1 f d' II II (21,22) sp erica mo ecu es o ra ius a • 

Since the torque on a permanent dipole is seen to reverse its 

sign as the direction of the applied field is reversed, it is clear 

that such a permanent dipole will play no part in contributing to 
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nonlinear index changes which are induced by optical fields (i.e., 

the orientation of the molecules will not be able to follow the rapid 

oscillations of the optical field}. It will be shown however that 

the torque experienced by a molecule with an anisotropic polarizabil-

ity tensor under optical excitation will possess a component which 

varies slowly in time. Hence the molecules will exhibit a reorienta-

tion by the impressed field which will result in an induced hire-

fringence due to the inherent anisotropy in the polarizability of the 

individual molecules. 

The problem of the reorientation of anisotropic polarizable 

molecules in a time varying field has recently been considered in 

connection with stimulated Rayleigh wing scattering of light in 

1 . "d (23-25) 1qu1 s. In particular it has been noted by Bloembergen and 

Lallemand that the description of such a system of molecules in an 

a.c. field will be adequately accomplished by the distribution func-

tion of Equation (4.12) provided that the correct expression is sub-

. d f h M( ) . h. 1 . h · ( 25 ) st1tute or t e torque t in t is re at1ons 1p. 

In order to see the effects of reorientation on the induced 
\ 

refractive index changes of a medium, let us consider a system of 

"cigar shaped symmetric top molecules" each of which has a polariza-

bility tensor of the form 

( a.l 0 

~) ~ = 0 a.l (4.13) 

0 0 

in its principal coordinate system and which may be re-expressed in 

the more general form 
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· -Ca2-a1) cos8sin8 sin<P 

2 
a1+<a2-a1)cos 8 

for an arbitrary orientation (8,<P) of the a 2 principal axis with 

(4.14) 

respect to the fixed spatial axes x, y, and z as shown in Figure 4.1 , ; 

see Appendix F. 

If the molecule is assumed to react instantaneously to the 

applied field (no dispersion) then the dipole moment .E. may be 

written in the form 

i<t> = g_(8 ,<P> • E(t) (4.15) 

and the energy of the molecule in the field E(t) ( 26 27) may be written ' 

u(t) 
1 

= - 2 g_(8 ,<P) E(t) E(t) (4.16) 

Assuming E(t) to be linearly polarized along the z axis in Figure 

-4.1, the torque M experienced by the molecule is given by 

(4.17) 

which is clearly seen to be symmetric about E = 0 . 

Substituting this expression into Equation (4.12) we find 

-2 
~ ()f _ 1 a { . ()f _ (a2-a1 )E (t)sin 28 
kT 8t - sin 8 a8° sin 8 a8° + f 2kT } (4.18) 
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for a field polarized along the z axis. Here the torque has been 

written as a negative quantity since it is directed in the direction 

of decreasing e ~ 

The solution of Equation (4.18) may be obtained in two steps 

the details of which are outlined in Appendix G. A special case is 

-first considered in which E(t) is a d.c. field which is turned off 

at t = 0 . The solution for this case yields a general form for a 

trial solution for the general case of arbitrary E(tl • The outcome 

of these calculations show that retaining terms up to second order in 

the field, the solution of Equation (4.18) for a field ,!(t) of any 

polarization is given by 

t 

I p(t-T)Ei(T)Ej(T) dT} (4.19) 

where 0 . specifies the angular orientation of the molecule, a.ij(0) 

is the ijth component of the molecular polarizability tensor, 

a.ij(0) = (l/47r) /a.ij(0)d0 = ((a2+2a.l)/3)oij = aoij is the average 

polarizability; and p(t) = e-t/TR/ TR is the orientational response 

function. 

I; 

6kT 
where 

Here the relaxation time TR is given by 

TD is the Debye relaxation time. (Zl) 

T = T /3 = 
R D 

Clearly the solution given by Equation (4.19) reduces to the 

Maxwell-Boltzmann distribution to second order in E when the applied 

field is constant. It is also noteworthy that for a monochromatic 

optical field, the finite response time TR , which is at least a few 

picoseconds in liquids, will cause an averaging over all optical com­

ponents of E2
(t) and consequently f(0,t) will only depend on the 
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time averaged value of ~2 (t) • This is physically reasonable since 

one would expect that rapid oscillations would be damped out by the 

orientational system response and that the molecules would only see 

the "d.c." component of the torque expressed in Equation (4.17). 

The distribution function given by Equation (4.19) may be 

applied to find the orientationally averaged· "polarizability tensor of 

each molecule in the medium. This average polarizability is given by 

(4.20) 

which upon substitution of Equation (4.19) yields 

t 

aij(t) = a&ij + 2~T(aijaki - a
2
oijoki) I p(t-T)Ek(T)Ei(T)dt (4.21) 

-00 

where a is the average linear polarizability (a2+ 2a1)/3 • By 

neglecting dispersion and comparing Equation (2.6) to Equation (4.21) 

it is easy to see that the latter is a special case of the former 

where the triple integral over three time variables in the nonlinear 

term is reduced to a single integral over two of the fields. The 

single integral expresses the fact that the polarizability is modulated 

by low frequency components in E2(t) whereas high frequency optical 

terms are "averaged out" by the response function p(t) • 

The explicit evaluation of Equation (4.21) is simplified con-

siderably by recalling that for isotropic media, the 81 independent 

terms of reduce to three terms corresponding to the three per-

mutations of Furthermore, since Equation (4.21) 
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is symmetric with respect to the fields Ek and Ei , there are only 

two independent elements and aij(t) may be cast in the form 

(4.22) 

where N is the number density of molecules and Equations (4.21) and 

(F.6) yield the relationship 

(4.23) 

Thus the nonlinear polarization P3 (t) may be written in the form 

+ I bl (t-T)E(T) • E(t)E(T)dT (4.24) 

This relationship clearly establishes the fact that the molecular re-

orientation mechanism yields a form for P3 (t) which is in agreement 

with the form proposed in Equation (4.1). Moreover it is seen from 

Equation (4.23) that the anisotropy parameter (a2-a
1

) 2 is the one 

molecular parameter on which this effect depends. 

Although our primary concern in this work is with the refrac-

-tive changes which are predicted by R_
3
(t), it is to be noted that the 

reorientation mechanism is also partially responsible for the Rayleigh 

wing scattering of light(ZS) to which we will give further 
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consideration in Appendices H and I. Since Equations (4.23) and 

(4.24) completely specify the properties of the reorientational non-

linear polarization, they will determine the polarization properties 

of all nonlinear processes arising from this mechanism. We shall 

however defer any further discussion of these properties to Appendices 

H and I. 

4.2.2 Raman Type Nonlinearities 

In addition to molecular reorientation, any medium may exhibit 

a nonlinear polarization as a result of the ·modulation of its polari-

zability by the (Raman) vibrational modes which are driven by an 

incident field. Raman scattering processes are well understood both 

in liquid and in crystalline solid media. In the former the interac­

tion is on the localized level of intra-molecular vibrations< 29> 

whereas collective vibrational (optical phonon) modes are responsible 

for the light scattering processes in the latter case. (30) In the 

case of amorphous materials, however, an incomplete understanding of 

the material structure has limited the understanding of the basic 

excitations involved in the scattering process. (3l) 

A fundamental understanding of the Raman process may be ob-

tained by expanding the electronic polarizability nij of the medium 

in a Taylor series in one of its vibrational coordinates Qk as sug­

gested by Placzek. <32> We then obtain 

(4.25) 

This relationship conveys the fact that the polarizability of the 
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fundamental unit of scattering is modulated by the vibration of some 

nuclear coordinate. In liquids this polarizability would be charac-

terized by the individual molecules whereas the unit cell would be 

the characteristic unit in the case of crystalline solids. 

-Assuming that the Fourier spectrum of E(t) lies well below 

the fundamental electronic absorption in aij and neglecting disper­

sion it is easily shown that the energy .of interaction between aij 

and the electric field E(t) takes the form< 26 , 27) 

where a sum is taken over the repeated indices. Hence the force 

driving the vibrational oscillations is given by 

au 1 aai. 
F(t) = - - = - (__!.:]_) Ei(t) Ej (t) 

aQk 2 aQk 
(4.26) 

If it is assumed that the vibrations are harmonic, the equation of 

motion for Qk may be written in the form 

(4.27) 

where n is the resonant frequency of the vibration, µ is the 
0 

reduced mass of the system and r is a loss which is phenomenologi-

cally added. 

Since Equation (4.27) is linear, the solution may be expressed 

in terms of an impulse response ~(t) convoluted over the forcing 

function. Thus we may write 
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aa. I -QkCt) = l._.::.=..!i pCt-T) E CT) E.CT) dT 
2µ aqk 2Tr i J 

C4.28) 

Here ¢Ct) is given by the inverse Fourier transform of the frequency 

response ~(w) = cn2-<.02- iwf)-1 • 
0 

Using Equations (4.25) and C4.28) the nonlinear polarization is 

found to be given by 

- - -EiCT)EmCT)dT EjCt) 

C4.29) 

The time integral of Equation C4.29) is quite similar to Equation 

C4.21) which describes the case of reorientation. Again the response 

of P
3

Ct) is determined by a single integral over time. The Raman 

response function ¢Ct) however differs from the reorientation 

response pCt) in that it possesses a resonance at some frequency 

n in the infrared region rather than exhibiting a simple relaxational 
0 

response. The response drops off rapidly for frequencies w > n 
0 

that the Raman nonlinearities will also "average ·out" optical com-

ponents of while responding most strongly to frequency com-

so 

ponents near In essence the vibrational modes of the medium are 

seen to slowly modulate Cl •• 
l.J 

in time as they are driven by the compon-

ents of near the resonance frequency n 
0 

Since the interest in this work is in isotropic media, it is 

again necessary to average Equation C4.29) over all possible orienta-

-tions of the scattering units. The specific form of P
3

Ct) will 

depend on the symmetry properties of aaij/aQk for the individual 

scatterers, however, it has already been noted in connection with 
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Equation (4.22) that an orientational average of Equation (4.29) will 

result in a nonlinear polarization of the form 

(4.30) 

where Equation (4.29) now gives 

the "bar" denoting an· average over all directions and the indices 1 

and 2 representing x, y, or z • 

For the special case of "cigar shaped" molecules, the averages 

to be performed here are identical to those employed evaluating Equa-

tion (4.22); see Appendix F. Equation (F.6) clearly shows that 

a
2
(t) and h

2
(t) may no longer be characterized by one parameter as 

was done for a1(t) and b1 (t) in the previous subsection. Rather, 

it is found that in the more general case where the scattering unit 

has polarizabilities a 1 , a
2 

and a
3 

along its three principal axes 

a
2
(t) and b

2
(t) are dependent upon two parameters. <29 ) Hence we 

find 

(4.31) 

(4.32) 

where 

(4.33) 
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and 

(4. 34) 

It is clear from the preceding development that Raman type non-

linearities also conform to Equation (4.1). Several factors, however, 

distinguish this mechanism from reorientation. Firstly, the polariza-

tion properties of P3(t) are specified by two independent parameters 

~ and ~ which depend on the symmetry of the fundamental scattering 

unit. We note that this is equivalent to saying that all elements of 

(aaij/aQk)(aaim/aQk) are completely determined by ~ and ~ ; see 

Appendix F. Secondly, the response functions in the Raman process 

exhibit resonances at some frequency Q which is characteristic of 
0 

the molecular vibration. Generally speaking this resonance may lie 

-1 -1 anywhere in the region of 100 cm out to several thousand cm , 

however it is worthwhile to note that a Raman vibration may contribute 

to P3 (t) even if it is being driven at a frequency which is over a 

hundred linewidths off resonance. <33 , 34) This will be discussed 

further in connection with the interpretation of specific experimental 

results in Chapter 7. Finally we note that b2(t) ~ -3a2(t) unless 

~ = 0 • This last property is reflected in the polarization charac­

teristics of the Raman process<35) which will be discussed further in 

Chapter 8. 

The Raman model presented above may be straightforwardly 

employed to consider Raman processes arising from molecular vibrations 

in liquids. :consideration of similar processes in glasses and other 
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amorphous solids have been hindered by a lack of knowledge concerning 

the fundamental excitations involved in the scattering process. (3l) 

Also, although Raman scattering studies have been conducted in glasses 

since the early days of its discovery, it is only recently that data 

worthy of interpretation have become available. <36) Attempts have been 

made to consider the structure of fused quartz in terms of Si0
4 

tetra­

hedral units or (Si0
2

)n units with limited success. <37 , 3s) Very 

recently Shuker and Gammon< 39> have attempted to describe the Raman 

scattering in fused quartz with the aid of the random network model of 

Sio
4 

tetrahedra proposed by Bell et al. <4o, 4l) This treatment of the 

problem is based upon the same displacement dependence of the electronic 

polarizability which is expressed by Equation (4.25); however rather 

than assuming an almost infinite coherence length for the optical phonons 

as in a tr~e crystal, the coherence is assumed to extend over only a few 

hundred angstroms, which is small compared to an optical wavelength. 

Hence the scattering is determined by the modes of excitation of struc-

tural units containing several hundred atoms. In contrast to crystals, 

the momentum matching restrictions are superseded since the coherence 

length of the interaction is much shorter than an optical wavelength. 

Yet in contrast to a liquid, the Si0
4 

tetrahedra which make up the net­

work model are still strongly coupled on a local level and this 

coupling determines the modes of excitation of the medium. 

4.2.3 Molecular Librations 

In our consideration of molecular librations in Subsection 4.2.1 

it was found that a system of molecules which are assumed to undergo 
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continuous rotational motion damped by a Brownian type collisional 

relaxation may be described by a generalization of the Maxwell-

Boltzmann distribution in a time varying electric field. Debye, 

however, in attempting to determine the permanent dipole moments of 

various molecules by measuring the dielectric constant, found that 

this theory exhibited large discrepancies between liquid and gaseous 

phases. Even larger discrepancies (over three orders of magnitude) 

were exhibited in predicting the saturation behavior of liquids from 

the measured dipole moments. This led to the first postulation of 

the possibility of elastic rotational oscillations of molecules in 

li "d d" (22,42) qui me ia. These oscillations would be the result of the 

local fields of surrounding molecules which form a "potential well" in 

which the molecule rests. 

Although the relaxational reorientation and elastic rotational 

oscillations may appear to be mutually exclusive in any given system 

of molecules, we may see that this is not necessarily the case by 

viewing the rotational oscillations or "librations" as having a finite 

lifetime TR, after which the molecule makes a small "j.ump" to a new 

equilibrium orientation about which it again exhibits librations. 

Assuming that TR, is much smaller than the rotational relaxation time 

TR , these elementary "jumps" may be viewed as incremental changes in 

position which sum up to produce the reorientational relaxation effects. 

Recently librational oscillations have been proposed by Staranov 

to model the lineshape of light scattering from liquids . <43) Shapiro 

and Broida have suggested them as a possible explanation for the devia-

tion of the lineshape of reorientational Rayleigh wing scattering in 
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cs
2 

from the predicted Lorentzian shape;(l4) and Cubeddu et al. sug­

gest that these librations contribute significantly to the intensity 

dependent refractive index of cs
2 

under picosecond pulse excitation. <44 , 

45) It is worthwhile noting that stimulated librational scattering has 

also been observed in liquids of polar molecules in which one would 

expect the dipole-dipole interactions to be large. <46) 

The simplest model of the small orientational displacements 08 

experienced by librating molecules is obtained by assuming oscillation 

in a harmonic potential. <43) Assuming the same system of cigar shaped 

symmetric top molecules characterized by Equation (4.13), one may write 

the equation of motion 

I d2oe + A doe + Goe = - 12 (a2-al) E2(t) sin 28 
dt2 dt 

(4.35) 

where I is the moment of inertia of the molecule, A the coeffi-

cient of internal friction, G the elastic force constant, and the 

torque resulting from the applied field E(t) along the z direction 

was derived in Equation (4.17). 

Equation (4.35) is clearly linear and thus the solution may be 

written directly to give 

- 1 I H(t-T) -2 08 = - 2 (a2-a1)sin(29) 2~ _ E (T) dT (4.36) 

where the response function H(t) is given by the Fourier transform 

relation - -1 2 -1 H(t) = F {(G -Iw - iwA) } • 

Equation (4.36) again expresses a response which involves a 

convolution of the square of the field over the oscillator response 
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function. The change in the susceptibility of the medium along the 

field direction may be calculated by noting that the polarizability 

change along the applied field may be shown from Equation (4.14) to 
aa. 

be oCizz = a~z oS = -2(a.2-a1) sine cos 8 08. Averaging over a random 

distribution of N molecules per unit volume, one finds that the 

change in susceptibility along the direction of the applied field is 

given by 

o~z = 1L J oa. (t) d0 
"Z 4iT ZZ 

(4.37) 

Here we have used the average 2 sin (28) = 8/15 for a uniform distri-

bution. Likewise in a direction perpendicular to the applied field 

the change in the susceptibility is 

-
= - L. N(a. -a. )2 I H(t-T) E2(T)dT 

15 2 1 2iT (4.38) 

where again Equation (4.14) gives ca.xx = 2(a.2-a1)sin 8 cos 8 sin2
<P 08 

and sin
2

(28)sin
2¢ = ~5 

Comparison of Equations (4.37) and (4.38) with Equation (4.22) 

which exhibits the most general form of induced polarizability involv­

ing a convolution over E2(t) for isotropic media, clearly shows that 

the induced librational susceptibility may be written in the form 
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(4.39) 

where Thus the nonlinear polar-

ization is again seen to take the form given by Equation (4.1) 

(4.40) 

It is evident from the foregoing discussion that librational 

scattering exhibits the same polarization characteristics as scatter-

ing which arises from molecular reorientation (Rayleigh wing scatter-
' 

ing) since b
3
(t) = -3a 3(t). Librations however would exhibit 

-1 
resonances in the range of approximately 20 cm to several hundred 

wave numbers with response times of the order of 0.1 psec or 

greater. <45 > One would expect that since the librational motions 

involve .small perturbations in the orientation of molecules, these 

orientational modes of vibration would be much more likely to contri-

bute to the nonlinear polarization in solids where the relaxational 

reorientation times would be expected to be extremely long. 
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4.2.4 Molecular Redistribution 

In a dense polarizable medium the application of a strong elec­

tric field causes a mutual interaction to occur between each of the 

induced dipoles in the medium. The induced anisotropic dipole-dipole 

forces experienced by the molecules are proportional to the time 

average of the square of the field strength and are naturally a func­

tion of the dipole separation and hence the density of the medium. 

Consequently the impressed field will cause the system of molecules to 

be "redistributed" from its zero field distribution in establishing a 

new equilibrium. This mechanism termed "molecular redistribution" was 

first proposed by Hellwarth<47> in 1965. Since it involves field 

dependent changes in the short range order of the system (short com­

pared to an optical wavelength) a resultant induced change in the 

refractive index of the medium is observed. 

In considering the nonlinear mechanisms presented thus far the 

approach has been to present the most straightforward models by largely 

ignoring local field effects and only taking them into consideration 

as a correction after calculating the nonlinear susceptibility; see 

Appendix D. For example in the case of molecular reorientation, each 

molecule was treated as an independent entity and the distribution 

function was calculated for that molecule without regard for how the 

orientation of the molecule itself or the distribution of the sur-

rounding molecules might affect the local fields used in the calcula­

tion. 

Since the redistribution mechanism is by its very nature a 

collective mechanism which is a consequence of the dipole-dipole 
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interaction forces, it is naturally impossible to consider this prob-

lem in terms of independent molecules. Perhaps the simplest example 

of redistribution would be the artificial situation where we consider 

only two molecules of polarizability a and separated by the vector 

r which interact solely through their induced dipolar fields. Their 

mutual energy of interaction Uint in a field E would simply be the 

energy necessary to bring one dipole into the field of the other. 

Thus, 

U. = - o.E • (-=D • aE) = a2
=D:.§_ ! int 

(4.41) 

where D = = 

(1 - 3g) 

rs is the dipole field tensor. Clearly Uint is 

maximized when r is perpendicular to E and minimized when r is 

parallel to E (assuming lrl to be constant). Hence the latter 

situation would be the more probable in equilibrium. 

The form of the nonlinear susceptibility arising from molecular 

redistribution in a d.c. or monochromatic optical field was derived by 

Hellwarth<33) for the special case of the d.c. or optical Kerr effects 

where a strong linearly polarized field produced an optical birefring-

ence which was probed by a weak field; see Section 3.3. The 

assumption of d.c. or high frequency optical fields permitted the 

derivation to be carried out without giving consideration to transient 

effects as the molecular motions are unable to follow the rapid opti-

cal oscillations. Hence the system could be assumed to be in a state 

of statistical mechanical equilibrium in the presence of an electric 

field whose mean square value helps to determine the statistical state 

of the system. 
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Although there is no simple model yet available to characterize 

the transient time response of the redistribution mechanism, we will 

argue that a response of the form given by Equation (4.1) is to be 

expected on a phenomenological basis. For the sake of completeness 

we give the derivation of the steady state susceptibility change aris-

ing from redistribution to show that it does indeed exhibit the 

expected E2 dependence, possesses the proper symmetry, and is in fact 

a special case of Equation (4.1). <33> 

The calculation of the effect of molecular redistribution on 

the polarizability of a medium involves a statistical mechanical 

average over all possible ways of arranging N molecules of polariza­

bili ty a(w) in a volume V << A3 in the presence of an applied 

field E(t) = Re{E ei(k•.£ -wt)} • 
- -w 

A molecule at a point r in the volume V will exhibit a 

dipole moment 

m<P = a(w) E~ 

in the presence of the local electric field E<P at the point 
-~ 

(4.42) 

Since the local field is simply that which results from the impressed 

field plus the dipolar field of the surrounding N-1 molecules in the 

volume V , we may write 

(4.43) 

where n<P8 is the dipole field tensor defined in Equation (4.41) with 

r now taken to be r<P - r 8 It is assumed that a sum is taken over 

all repeated indices. Equation (4.43) may easily be solved for m<P 
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giving 

(4.44) 

where X~e = [6~9.!_ + a(w)Q~e]-l Thus we have exp~essed the dipole 

moment of any molecule at the point r~ in terms of the applied field 

assuming the other N-1 molecules are in a certain configuration which 

we denote by {r~} • The average polarization of the medium may then 

be obtained by summing over the N molecules and averaging over all 

possible configurations. This gives 

(4.45) 

where the brackets <> denote an average over all possible configura­

tions . {r~} of the N molecules and P(t) = Re{P ei(k•r-wt)} • 
- -w 

Substituting Equation (4.44) into Equation (4.45) one finds that 

may be expressed in the familiar form 

• E 
~ 

where the linear susceptibility 

p 
-w 

(4.46) 

Now if the field ~ in Equation (4.46) is considered to be a 

weak "probe" field and another strong field denoted by 

is applied to the medium, it will in general affect the average over 

. {r~} which was taken to obtain .X(w) • Again we note that this is a 

consequence of the redistribution which takes place to lower the dipole-

dipole interaction energy of the system. 
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More specifically the average may be expressed in the form of 

the classical average 

I 
v+v 

dr • • ·dr T ({r<f>}) exp (- --0
) _ 1 N =w kT 

(4. 47) 

where the integration is taken over the volume V for each of the N 

particles in that volume; v is the zero field intermolecular poten-

tial and the dipole-dipole interaction energy v is given by 

1 . { <f>} * v = - 4 V :!Q( r ) :~ ~ (4.48) 

1 which is simply Equation (4.41) summed over all of the 2 N(N-1) pos-

sible pairs of particles in the volume V with the local fields 

expressed in terms of the applied field ~ • 

Rewriting Equation (4.47) with the int~grand expanded in a power 

series, it is seen that 

v ---kT 
... ) VO 

exp(--) kT 

X(w) = ----------------

J dr • • • dr (1 -1 ~ 

v ---kT 
... ) v 

0 exp(--) kT 

where the average < > 
0 

is taken with v = 0 (i.e. , ~ = O) • 

(4.49) 

It is clear that Equation (4.49) exhibits a nonlinear suscepti-

bility of the form 
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(4.50) 

Moreover it is to be noted that 
ijk.t 

X3 is independent of k for 

long wavelengths where k-3 >> v • In this limit ijk.t 
X3 must take 

on the rotational syunnetry of an isotropic medium. Hence from Equa-

tions (4.46) and (4.49) we see that oxij may be written in the form 

(4.51) 

where A' and B' are constants. Equation (4.51) exhibits the same 

form derived for the Kerr tensor of an isotropic medium as shown in 

Equation (3.18). 
1 1221 

Moreover one sees that - B' = 6X (-w,w,n,-n) 
2 3 

= 6X1212 (-w,w,n,-n) • Hellwarth has demonstrated by an expansion of 
3 

Equation (4.49) that B' = -JAY • (33) Thus the symmetry of 

for the redistribution process is identical to that which is obtained 

for reorientation and librations. 

Equation (4.51) suggests that the equilibrium distribution 

which is attained with the medium subject to the strong field .§.n 

involves a change in the linear susceptibility which is proportional 

to the mean square value of that strong field. Since the processes 

which are involved in establishing this equilibrium involve the physi-

cal redistribution of nuclei as they respond to the change in dipole-

dipole interaction forces induced by the field, one would expect that 

a response function could also be defined to characterize the tran-

sient behavior of this process. Indeed, it is reasonable to expect 

(at least in fluids) that the intermolecular collision times would be 



-75-

characteristic of these response functions since it is the dipole-dipole 

forces experienced in these collision processes which produce the 

redistribution effects. <4s) Hence a general form for the time response 

of the susceptibility change in the redistribution process would be 

given by 

(4.52) 

Again this is of the same form as that derived for molecular reorienta-

tion although the time response functions will now most probably not be 

a simple exponential relaxation. Thus again Equation (4.1) should ade-

quately describe redistribution and the contribution to the nonlinear 

polarization would be written as 

P 3 <t> = J a4 <t--r>E<-r> • E<-r> d-r E<t> + f b 4 <t--r>E<-r> • E<t>E<-r>d-r 
(4.53) 

Although the precise character of the response functions for 

molecular redistribution are not presently known, one would expect 

that information regarding the spectral character of these functions 

could be obtained by light scattering measurements; see Appendix I • 

Several investigations have been conducted to measure the Ramant 

tHere the word''Raman" is used in its more general sense to denote any 
light scattering process in which a frequency shift is observed. 
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f i 1 1 li id eel (17) (49-50) 
spectra o such synunetr c mo ecu e qu s as 4 , argon, 

and xenon( 4B) in which the low frequency scattering spectrum (involv­

-1 
ing Stokes shifts of less than 200 cm ) can only result from the 

intermolecular processes which are responsible for molecular redis-

tribution. Although many anomalies still exist with respect to the 

specific lineshapes obtained and the dependence of the scattered 

spectra on temperature, density, and other parameters, it is found in 

all of the cases investigated that (1) the decay of the scattered 

intensity in the wings of the spectrum (greater than approximately 

20 cm-l Stokes shift) exhibit an exponential falloff with frequency; 

(2) the linewidths of the scattering indicate that the response times 

involved are of the order of tenths of picoseconds; and (3) the scat­

tering is depolarizedt indicating that h4(t) = -3a4(t). 

At present further work is being pursued to obtain a better 

understanding of the microscopic processes which are involved in 

intermolecular light scattering. C5l) It is hoped that these studies 

will provide further insight into the character of the response func-

tions involved in the redistribution process. 

4.2.5 Electrostrictive Effects 

Our treatment of the major mechanisms which are responsible 

for a nonlinear polarization which is cubic in the electric field 

t A depolarized scattering process is defined to be one in which the 
ratio of intensities between the scattered light with its plane of 
polarization parallel and perpendicular to the input polarization 
respectively takes on a value of 4/3 • It is shown in Appendix! 
that this requirement is equivalent to having b(t) =--3a(t). 
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strength would not be complete without a consideration of electro­

striction. In contrast to all of the other mechanisms which have been 

considered thus far, electrostrictive changes in the refractive index 

of a medium are a direct consequence of induced changes in the macro­

scopic density rather than changes in the local arrangement of 

molecules. <52> 

In essence electrostriction arises as a result of internal 

forces which are produced in any dielectric medium as a consequence 

of a nonuniform electric field. Since the dipoles which are induced 

by the field are proportional to the field strength and the net force 

which is experienced by each of these dipoles is proportional to the 

gradient of the electric field strength, it is seen that the net force 

on each molecule must be proportional to the gradient of the square of 

the field, that is, to the gradient of the intensity. <52> 

The role of electrostriction in producing self focusing of 

optical beams was first proposed by Chiao, Garmire, and Townes in 

their original investigation of self-trapping. <53) Shen<54 , 55) and 

others(56 , 57) have made subsequent studies of the relative importance 

of electrostriction in the self-focusing process in liquid media. 

Recently, Kerr( 5B-60) gave extensive consideration to this mechanism 

in his theoretical investigations of electrostrictive self focusing 

in glasses . In the present work we shall not give extensive considera­

tion to this particular mechanism since, as we will show, it is the 

one contribution to the nonlinear polarization which does not enter 

directly into the parameters which are determined by our experimental 

investigations. Hence we intend only to summarize several important 
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characteristics of the electrostrictive mechanism referring the reader 

to the literature for further details. <52- 60) 

Kerr in his consideration of electrostrictive self focusing has 

demonstrated that the refractive index change arising from the induced 

electrostrictive density variations in the medium is determined by the 

relation<59) 

(4.54) 

where po is the equilibrium density of the medium in the absence of 

the strong field, I = <E2> is ilie average intensity of the strong av 

beam, v is the velocity of sound in the medium, and n is the 
s 

refractive index. Here it is worthwhile to note that the refractive 

index change which is produced by the strong field is independent of 

the polarization of the strong beam (i.e., only dependent on its 

intensity). This suggests that electrostrictive effects cannot induce 

birefringence in isotropic media. Consequently b(t) in Equation 

(4.1) must be zero for electrostriction. 

Since electrostriction produces an isotropic refractive index 

change it will not yield any direct contribution to induced bire-

fringence effects such as the Kerr measurements and the study of 

ellipse rotation. It may be shown however that since Equation (4.54) 

is linear in n , the expression for an electrostrictively produced 

nonlinear polarization may be characterized in terms of a phenomena-

logical a(t) found in Equation (4.1). In this case however the in-

terpretation of a(t) must be generalized to include spatial operators 
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which act upon 
-2 
E (.E_, t) since the induced changes in refractive index 

are not directly coupled to the intensity of the applied beam but rather 

through the relationship given by Equation (4. 54). 

this development have been reported by Kerr. ( 60) 

The details of 

Since electrostrictive contributions to the nonlinear polariz-

ation involve macroscopic density changes, it may be argued that they 

will also play no role in optical mixing experiments such as third 

harmonic generation and three-wave mixing. These processes involve 

rapid changes in the polarizability to which the density variations 

will not respond. It should be noted however that electrostrictively 

produced density changes may affect the results of these studies as 

well as the induced birefringence studies by changing the intensity 

profiles of the input beams employed in the experiments through 

electrostrictive self focusing. 

Generally speaking electrostrictive self-focusing effects may 

be neglected unless the duration of the incident laser pulse is 

longer than a characteristic time t which is defined as the period 
c 

required for an acoustic wave to propagate across the radius of the 

incident beam a 
0 

Physically we see that this is the time required 

for the density wave which is generated by the electrostrictive force 

(which is maximum at the edge of the beam where the gradient is large) 

to propagate to the center of the beam where it will have a maximal 

effect in the self-focusing process. In order to obtain an estimate 

of some typical pulse times and power thresholds which are required 

for electrostrictive self-focusing effects, let us calculate 
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(4.55) 

which was shown by Kerr< 59) to be the critical power for electrostric-

tive self focusing of a Gaussian (intensity profile) beam in the steady 

state (long pulse duration) approximation. For the case where we have 

a focused beam with a
0 

= 75µ and A • 694 nm we find for cc14 that 

t = 100 nsec and K = 13 kW whereas for fused quartz t = 12.5 nsec 
c c 

and K = 1.1 MW or 3. 7 MW 

mental values are used for 

depending on whether theoretical 

p ~n in the calculation. <59) 
0 op 

or experi-

These 

estimates provide some guidelines as to the experimental parameters 

. which must be chosen to avoid electrostrictive self-focusing effects 

in the experimental investigations. 

As we consider the experimental determination of the nonlinear 

susceptibilities in the chapters to follow, the possibility of electro-

strictive self focusing will be kept in mind to prevent any misinter-

pretation of the results. The experimental parameters will be picked 

so that either the pulse duration is shorter than t 
c 

or the pulse 

power is well below the critical power for the material under investi-

gation. In our particular experimental investigation of ellipse 

rotation, we will see that the proportionality . of the ellipse rotation 

angle to the input power of the beam as expressed in Equation (3.39) 

will give an additional means· of verifying the fact that electrostric-

tive self focusing is not affecting the results. 
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4.3 Summary of Nonlinear Polarization Mechanisms 

It has been demonstrated in this chapter that each of the mech­

anisms which contribute to a nonlinear polarization cubic in the 

electric field strength may be shown to produce a contribution which 

conforms to Equation (4.1). Using this fact we will show in subse­

quent chapters how this expression may be employed to experimentally 

distinguish the nuclear contributions to P3(t) from those which are 

purely electronic in nature. 

The problem of experimentally resolving the various nuclear con­

tributions to the nonlinear polarization is a more complex issue to 

which we shall not give extensive consideration in this work. In 

Appendices H and I it will be shown how light scattering measurements 

may be employed to supplement the nonlinear optical measurements of 

the nuclear response functions a(t) and b(t), however it is to be 

recognized that even a knowledge of these functions would not assure 

the ability to separate uniquely the various nuclear mechanisms. 

With these remarks we shall proceed to show how the electronic 

contribution to P3 (t) as characterized by the parameter cr in 

Equation (4.1) can be uniquely determined by a combination of Kerr 

and ellipse rotation experimental data without having to know the 

explicit forms of the nuclear response functions a(t) and b(t) • 
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CHAPTER V 

INTERPRETATION OF THE NONLINEAR POLARIZATION 

5.0 Interpreting the Model for RJ(t) 

In Chapter IV we gave a phenomenological basis for stating that 

the third order nonlinear polarization in any isotropic medium may be 

expressed by the relation 

(5.1) 

when all frequencies involved are much lower than any electronic 

absorptions. Here cr is the parameter which characterizes direct 

-electronic distortion nonlinearities and the response functions a(t) 

and b(t) characterize those nonlinearities which result from nuclear 

rearrangement. 

We shall in this section use the model to derive a general ex-

pression for the nonlinear susceptibility tensor 

This nonlinear susceptibility expression will then serve as a basis 

for the interpretation of the experimental determinations which were 

described in Chapter 3. 

Looking first at the electronic contribution to the nonlinear 

polarization, it is clear from both Equation (5.1) and Equation (4.7) 

that in the dispersionless approximation," the nonlinear electronic 

response tensor takes the form 
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Here the subscript "e" denotes the fact that we are only considering 

the electronic portion of the nonlinear response. This expression is 

readily transformed into the frequency domain where we find 

(5.3) 

Clearly Equations (5.2) and (5.3) give a characterization of 

the electronic contribution to the nonlinear polarization in the case 

where all frequencies involved in the nonlinear process are far from 

the frequency of the electronic transition. The more general expres-

sions for the nonlinear response and nonlinear susceptibility which 

included dispersion were previously given in Equations (4.7) and (4.8). 

Going on to examine the nuclear portion of the nonlinear 

polarization given by Equation (5.1) we see from Equation (2.6) that 

the nuclear nonlinear response function is given by 

(5.4) 
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which has been symmetrized with respect to the interchanges of the 

pairs j ,T
1 

+-+- k, T 
2 

+-+- t, T 
3 

in accordance with the discussion of 

Equation (2.13). Employing the transformation of Equation (2.9) 

and dividing by a factor of 4 to conform to the more common definition 

of given in Equation (2.20), we obtain 

00 00 

Here a(w) = I a(t) eiwt dt and b(w) = I b(t) eiwt dt • Thus these 

-00 -00 

functions are equal to the Fourier transforms of the time functions 

a(t) and b(t) multiplied by a factor of 2TI • 

It is clear ·that a direct consequence of the nuclear response 

functions of Equation (5.1) is that the nonlinear susceptibility takes 

the form of a sum of terms which are functions of the sum (or differ-

ence) of two frequency arguments. 

5.1 Interpretation of the Nonlinear Susceptibility 

Having derived the forms of the electronic and nuclear contrib-

utions to the nonlinear susceptibility, we may combine Equations (5.3) 

and (5.5) to obtain 
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(5. 6) 

This expression may be applied directly to interpret the physical 

significance of the nonlinear susceptibility elements which have been 

measured by the techniques which we have described in Chapter III. 

The results of this application of Equation (5.6) are tabulated in 

Table 5.1 where the assumption has been made that a(~) and b(~) 

are negligible compared to cr at optical frequencies (e.g., 14,000 

-1 cm ). This assumption is quite reasonable since most common Raman 

-1 
vibrations are resonant from approximately 100-5000 cm and yield 

negligible contributions at optical frequencies. It will be noted 

however that the terms a(~) and b(~) in the TWM susceptibilities 

have been retained, since ~ in this experiment is often generated by 

a Raman laser(l) and could thus yield a resonant contribution to 

Although some terms have been dropped for convenience in 

the table, we add a note of caution that reference should be made 

back to Equation (5.6) in any case in which the medium of interest has 

vibrational resonances which lie in the visible. 

Table 5.1 clearly shows that third harmonic generation is the 

only experimental means of directly measuring the electronic contrib-

ution to As we shall discuss in Chapter 7, however, THG 



Experiment 

Third Harmonic 
Generation 

Three-Wave Mixing 

Kerr Effect 

Direct Interferometric 
Measurement of onll 
Using Two Beams 

Direct Interferometric 
Measurement of on 
Using Two Beams 1 
Ellipse Rotation 

Self Focusing Linear 
Polarization 

Self Focusing Circu­
lar Polarization 

Elements of ijkR. x
3 

Determined 

xllll(-3w,w,w,w) 
3 

l 
x~ 111 (-(w+6),w,w,-(w-6)) 

xl221(-(w+6),w,w,-(w-6)) 
3 

~2 x1221(-w,w,n,-n)+x1212(-w,w,n,-n)} 
3 3 

x1111(-w,w,n,-n) 
3 

x1 i 22 (-w,w,n ,-n) 
3 

xl221(-w,w,w,-w) 
3 

xllll(-w,w,w,-w) 
3 

xll22(-w,w,w,-w) 
3 

TABLE 5.1 

Interpretation 

a/8 

a/8+ (l/6){a(6)+b(6)} 

cr/24 + 1
1
2 b (6) 

(cr+S)/24 

(3cr+2a+2S) 
24 

(cr+2a) 
24 

(cr+2S)/24 

3o+4a+4S 
24 

cr+2a+S 
24 

Here a = a(o) and S = b(o) 

Reference 
Equations 

(3.8-3.10) 

(3.14) 

(3.21) 

(3.20a) 

(3.20b) 

(3. 39) 

(3.23) 

(3.24) 

I 
\0 
...... 
I 
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studies are extremely difficult to perform with any degree of preci­

sion and are virtually impossible to calibrate to any degree of 

accuracy. 

Three-wave mixing studies offer a possible alternative means 

of measuring the electronic contribution to the nonlinear response if 

it can be established in any particular situation that a(~) and 

b(~) are negligible. Perhaps light scattering measurements along 

with measurements of the polarization dependence of the TWM signal(2) 

may be used to establish whether or not the nuclear contribution may 

be neglected in any given situation. However this measurement cannot 

in general be regarded as a means of measuring the purely electronic 

contribution to the nonlinear susceptibility without the aid of sup­

plementary measurements to establish the validity of neglecting ' the 

nuclear dependence of the measurement. 

Generally speaking the Kerr effect and ellipse rotation together 

offer the most experimentally promising means of determining the elec­

tronic parameter a and also the nuclear parameter S = b(O) • The 

former technique gives a determination of a + S whereas the latter 

measurement yields a + 2$ • The application of these two techniques 

have the added advantage that they are both easily calibrated to the 

same very accurate absolute standard of calibration; see Section 6.7. 

Clearly it may be inferred from Equation (5.1) and Table 5.1 

that if a and S are known, only a is needed to completely charac­

terize an isotropic medium with respect to intensity dependent changes 

in refractive index. In the nuclear rearrangement models of Chapter 

IV it has been demonstrated that with the exception of electrostriction 
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and possibly the Raman effect, the nuclear nonlinearities exhibit a 

ratio of Bia = -3 • In general, this ratio may be determined through 

the measurement of depolarization ratios in light scattering studies~(J) 

Upon further examination of Table 5.1 we note two additional 

possibilities for determining the intensity dependent refractive 

index which should not be overlooked. The first of these is a direct 

measurement of on
11 

and on.l using interferometric techniques. Pre­

vious attempts at performing such interferometric determinations in 

solids have not produced results which are consistent with any of the 

other measurements outlined in Table 5.1. <4) However, such measure-

ments have been performed with some degree of success in liquid 

media. (5) An accurate interferometric determination of this type using 

a low frequency Kerr field (which is yet of a high enough frequency to 

rule out electrostrictive effects) would be of great value in verify-

ing the assertions of the previous investigations. An examination of 

Table 5.1 will show that the quantities measured by such an experiment 

when combined with ellipse rotation and/or Kerr data will yield a 

unique determination of a, B and a in addition to giving a check on 

the consistency of ellipse rotation and Kerr measurements. Indeed, in 

view of the difficulty of making accurate a.c. Kerr measurements (see 

Section 7.0) the interferometric measurements may well prove to be the 

most ideal data to use in conjunction with ellipse rotation data for 

the determination of a, B, and a . 

The second added scheme for determining a, B, and a from 

Table 5.1 is suggested by the direct measurement of self-focusing 

thresholds(6) for plane and circularly polarized waves. Although 

* See Appendix I. 
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these measurements will in principle provide the same information which 

may be obtained by the interferometric techniques proposed above, this 

technique is not readily adaptable to accurate determinations of 

ijki x
3 

• The reasons are primarily twofold. Firstly, circularly 

polarized beams have been shown to be extremely unstable in the self­

focusing process. (],S) Secondly, the experimental implementation of 

such measurements, as discussed in Section 3.4, is extremely difficult 

being complicated by the facts that (1) self-trapping is highly 

dependent on beam profile, (2) trapping is a threshold process which 

eliminates the possibility of making the measurements over a large 

range of powers, and (3) trapping involves high intensities and rather 

large index changes which bring in the possibility of complications 

from damage phenomena in solids and other nonlinear optical pbenomena. 

In the light of the above facts, we conclude that until the 

interferometric determinations of and are shown to be 

practically feasible, ellipse rotation and the Kerr effect offer a 

unique means of determining the electronic contribution to the non-

linear polarization and estimating the nonlinear refractive index in 

any isotropic medium. Under certain conditions, three-wave mixing 

data may serve as an added check on the conclusions drawn from the 

ellipse rotation and Kerr data. 
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CHAPTER VI 

EXPERIMENTAL IMPLEMENTATION OF THE ELLIPSE ROTATION STUDY 

6.0 Introduction 

In this chapter we describethe implementation of an ellipse 

rotation experiment with which we have measured the ellipse rotation 

parameter x~ 221 (-w,w,w,-w) in cc14 and obtained the first measure­

ment of ellipse rotation in any solid, viz., fused quartz, BK-7 

borosilicate crown glass, and SF-7 dense flint glass. 

The first observation of ellipse rotation was performed by 

Maker, Terhune, and Savage in 1964(l) using a weakly focused multimode 

ruby laser. Wang( 2) and McWane and Sealer(3) have performed subse-

quent ellipse rotation studies using unfocused multimode lasers. 

These latter results show that the earlier measurements had yielded 

values of x1221 which were about an order of magnitude too small. 
3 

In the present study of ellipse rotation, several modifications 

have been made in the experimental technique which overcome dif f icul-

ties encountered in previous studies. Firstly, the reproducibility 

of our results were assured by using a single (transverse and longitud-

inal) mode Q-spoiled ruby laser in our investigation. The independence 

of our results on the spatial profile of the laser was confirmed by 

complementary data obtained with the use of a multimode laser. 

Secondly, our investigation was conducted with a beam which was 

focused centrally into the sample under study so that the entire 

ellipse rotation process occurred within a focal volume which was 

entirely contained by the sample. It will be shown that this 
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condition results in an ellipse rotation signal which is independent 

of the dimensions of the sample and the focal length of the input 

beam. This greatly facilitates a direct accurate comparison of 

ellipse rotation parameters for media of widely varying refractive 

indices. Additionally, focusing is particularly advantageous in the 

study of materials with extremely low ellipse rotation coefficients 

since it produces sufficiently high intensities within the samples to 

detect induced birefringence without the need for picosecond pulse 

techniques and also allows the intensities at all sample-air inter­

faces and at all of the other associated optical components to be much 

lower than that within the samples. This latter factor is extremely 

important in that it prevents the possibility of erroneous readings 

due to nondamaging absorbing plasmas being formed at sample-air inter­

faces or due to nonlinear phenomena induced within the polarizing 

optics of the experiment. 

As a third point, the sensitivity of our apparatus was increased 

by measuring the ellipse rotation directly through monitoring the 

amount of light rotated into a polarization orthogonal to the input 

polarization. Previous experimental investigations inferred ellipse 

rotation by monitoring the relative change in two orthogonal linearly 

polarized components of the output beam after it had traversed the 

sample. Our "null" technique offers a major advantage not only in the 

increased sensitivity which is achieved but also in the fact that it 

provides a direct means of monitoring the amount of stray birefringence 

in the system at low input power levels where no ellipse rotation 

occurs. Consequently, we are provided with a means of determining the 
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sensitivity of our ellipse rotation apparatus for small angles of 

rotation. 

Finally, previous difficulties which were encountered in the 

calibration of ellipse rotation studies have been overcome in our 

investigation by calibrating all of the measurements to the ellipse 

rotation parameter a+2B for cs 2 • This parameter we are able to 

determine to within 2% absolute accuracy using the very accurate d.c. 

Kerr measurements which are reported in the literature; see Section 

6.6. 

This chapter will be divided into seven sections. Firstly, a 

detailed description of the experimental arrangement is given in 

Section 6.1. The samples which we studied are then described in 

Section 6.2. In Section 6.3 the analysis of ellipse rotation which 

was given in Section 3.4 is generalized to the case of a focused 

Gaussian beam. These results are then employed in Section 6.4 to 

interpret the signal which is experimentally measured in our investi­

gation of ellipse rotation. In Section 6.5 we describe the details 

of the data collection process and the means applied to reduce the 

data. The calibration standard for the experiment is discussed in 

Section 6.6. Finally the results of the ellipse rotation study are 

presented in Section 6.7. 

6.1 The Experimental Arrangement 

The experimental arrangement for our ellipse rotation measure­

ment is schematically diagrammed in Figure 6.1. The sole purpose of 

the apparatus is to direct an elliptically polarized laser beam into 

the samples to be examined and to analyze the amount of light at the 
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sample exit face which is orthogonally polarized with respect to the 

input signal. 

The Q-spoiled ruby laser is fired into a stack of Schott glass 

neutral density filters (F-1) to set the input intensity into the 

sample. One of the filters (N.D. = 0.1) is tilted to split off a 

portion of the beam for power monitoring in the photodiode D-1. The 

rest of the beam is coupled through a high power Rochon prism (Pl) to 

define its plane of polarization. This is followed by a Fresnel 

rhomb (Rl) which is oriented so as to produce elliptically polarized 

radiation of the desired eccentricity. The beam is then focused into 

the sample centrally by lens (Ll) and then recollimated by lens (L2). 

A second Fresnel rhomb (RZ) is oriented parallel to Rl so as to produce 

a linearly polarized output in the absence of ellipse rotation. This 

is followed by a Wollaston prism (PZ) oriented to direct a maximum 

"transmitted" signal into the photodiode (D3) and a mini.mum "nulled" 

signal into DZ in the absence of ellipse rotation. 

The laser power delivered to the sample is adjusted by moving 

the Schott neutral density filters from stack F-1 to F-Z thus ensuring 

a constant total power level into the monitoring diodes. Any rotation 

of the polarization ellipse during propagation through the sample thus 

reveals itself as a relative increase in the "nulled" signal at DZ. 

Monitoring of the transmitted beam at D3 gives assurance that there 

are no changes in the transmission path or spatial profile of the 

laser which might give erroneous readings in DZ. 

Having given a general description of the experimental arrange­

ment, we shall go on to give a more specific descri ption of the 
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various elements employed in the experiment and of the alignment pro­

cedures which were followed to ensure accurate repeatable results. 

The Laser - The ruby laser which was employed in this work con­

sisted of a 9/16" diam x 4" long 60°Czochralski grown ruby which is 

antireflection coated on both ends. The ruby is mounted in a Korad 

K-1 laser head which is water cooled to ·operate at approximately 65°F. 

In the course of our investigation of ellipse rotation, the laser was 

operated in two different modes as shown in Figure 6.2. In multimode 

operation a KDP Pockel's cell and quartz Brewster stack were employed 

as a means for Q-switching the laser. In this mode the beam diameter 

was apertured to 1/4" and the output was measured to be 0.6J in a 

20 ns (FWHM) pulse as monitored on a TRG Model 100 ballistic thermo­

pile and on the detector Dl. Single mode operation was achieved by 

using a 2mm long cell of cryptocyanine in acetone as a saturable 

absorber and internally aperturing the output beam to 1/8" diameter. 

The dye cell was placed at Brewster's angle in front of the rear 

reflector of the laser. In this mode of operation, the output was 

approximately O.OSJ in a 20 ns pulse. 

In both modes of operation the length of the optical cavity was 

approximately 75 cm and longitudinal mode selection was performed by 

employing a Korad K-LMS sapphire etalon as the output reflector. The 

rear reflector in both modes of operation is a 99%+ reflectivity rupy 

laser mirror 

The Neutral Density Attenuators - The filters in neutral density 

stacks F-1 and F-2 are Schott glass ND-419 filters totaling N.D. = 4.0 

at 6943R (2 - N.D. = 1.0, 5 - N.D. = 0.3, 5 - N.D. = 0.1). Attenuation 
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checks using the ruby laser source showed no detectable deviations 

from the specified values for these filters both individually and 

stacked. Examination of the filters on a Joyce Loebl double beam 

recording microdensitometer after the experimental investigation 

showed the filters to exhibit flat characteristics across their sur­

face area with a relative density variation of no more than 0.025 

density from one filter to another. During the ellipse rotation 

study the filters were numbered and moved in the same sequence to 

increase intensity on each experimental run. Thus each sample was 

examined under the same conditions. 

The Detection System - The detectors D-1, D-2, and D-3 are all 

ITT FW 114A S-20 biplanar photodiodes with response times of approxi­

mately 1 ns. The input beam is apertured to 1/8" and expanded to 

fill the detection surface with a 20 mm f.l negative lens. To 

prevent stray light from entering the detectors two 30% transmitting 

200R (FWHM) Optics Technology ruby laser filters are employed at D-1 

and D-3 and a Spectrolab 68% transmitting 14R (FWHM) ruby laser spike 

filter is employed at D-2. Input levels into the diodes are adjusted 

by using Kodak wratten neutral density filters. 

The output signals from D-2 and D-3 are monitored on a 

Tektronix type 555 dual beam oscilloscope with type L plug-ins operat­

ing at a 100 ns/cm sweep rate. D-1 is monitored by a Tektronix type 

585 oscilloscope with a 50 ns/cm sweep rate. The overall response 

times of the detection systems are thus approximately 7 ns for D-1 

and 15 ns for D-2 and D-3. 
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Fresnel Rhombs - The Fresnel rhombs used in this investigation 

were a pair of Isomet LMA 3000 glass rhombs. These were mounted in 

lucite holders which clamped the rhombs from the sides. Tension on 

the holders was adjusted for minimum birefringence at the detector 

D-2 and the rhombs were rotated so that the power into the sample con­

sisted of 14.8% right circularly polarized and 85.2% left circularly 

polarized radiation, i.e., the rhomb was tilted at 22.5° with respect 

to the vertical; see Section 6.4. 

Focusing Optics - The focusing lenses used in this study were 

10 and 15 cm focal length biconvex pairs which were adjusted to focus 

the laser beam into the center of each sample and recollimate the 

transmitted laser radiation. The choice of these two sets of lenses 

was based on the fact that shorter focal length lenses would produce 

such high intensities as to damage the solid samples before an appre­

ciable ellipse rotation could be observed; on the other hand, longer 

focal length lenses would tend to cause surface breakdown on the 4" 

long samples and also violate the condition that the sample completely 

contain the focal volume of the lens; see Section 6.3. 

Alignment Optics - Since a 2 meter path exists between the laser 

and the detectors D-2 and D-3, a deviation of the beam by 1.5 m rad. 

at the laser output would cause the signal at the detectors to miss 

completely the 1/8" diameter detection aperture. This deviation could 

easily be produced by a slight wedge in the filters of stack F-1 which 

would be moved to F-2 to increase the intensity at the sample. It is 

thus vital to constantly check system alignment. 
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The aligrunent scheme shown in Figure 6.3 was used to check 

alignment of the system after each shot and after each transfer of 

filters between F-1 and F-2. Essentially the scheme involves align­

ing a He-Ne laser collinear with the ruby laser beam and using it as 

a continuous monitor of proper alignment. Initial alignment is per­

formed by aligning the He-Ne beam to coincide with burn spots produced 

on Polaroid film inserted at several positions along the optical path 

between the laser and detectors. The mirror M-1 in Figure 6.3 which 

serves to insert the He-Ne beam into the ruby laser cavity collinear 

to the ruby laser output beam is removed before each shot and replaced 

after pulsing the ruby laser with the aid of reference points in the 

ruby laser cavity. Exact alignment is assured since the output 

reflector of the He-Ne laser and the sapphire etalon of the ruby laser 

form an interferometer, the fringes of which may be viewed at the 

detector D-1 entrance aperture when exact alignment is attained. 

6.2 Sample Selection and Preparation 

Three glass samples and one symmetric molecule liquid were 

chosen for study in this work. The choice of glasses was primarily 

based upon the availability of other (a.c. Kerr, THG, and TWM) experi­

mental data although an effort was made to examine silicate glasses 

of diverse densities. Glasses examined were fused quartz (suprasil), 

Schott BK-7 borosilicate crown glass, and Schott SF-7 dense flint 

glass. Carbon tetrachloride (CC1
4

) was selected as the symmetric mole­

cule liquid to be studied since accurate d.c. Kerr data is readily 

available on it and the relative sizes of electronic and nuclear 
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rearrangement type contributions to its nonlinear refractive index is 

yet an unresolved question. Since the Kerr measurements on the liquid 

have been performed with much greater accuracy than any of the meas-

urements in the solid media, they will serve as examples of the 

potential promise of ellipse rotation and Kerr measurements as tools 

for effectively separating electronic and nuclear nonlinearities in 

isotropic media. 

The nominal length of the samples used in this study was 4". 

This choice is somewhat arbitrary, but was based on the fact that much 

longer samples might exhibit prohibitively high stray birefringence 

and much shorter samples would necessitate such high intensities (i.e., 

strong focusing) as to possibly result in breakdown of the sample 

before ellipse rotation is observed. All sample and cell surfaces were 

optically polished to minimize scattering and glass samples were Grade 

A for minimum scatter and birefringence. The CC14 used in the study 

was J. T. "Baker Analyzed" reagent photometric grade cc1
4

• 

Samples were examined under two sets of experimental conditions 

in this study. In the first case, the focusing and recollimating 

lenses were fixed at a constant separation and the samples were cut so 

as to maintain collimation of the beam upon its exit from the second 

lens. The lengths of the samples are obtained by keeping the parameter 

K 
1 L(l - -) 
n 

(6.1) 

constant. Here L is the sample length and n the refractive index. 

We note that this parameter is independent of the focal length of the 

lenses used. The details of this derivation and the equations for the 
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lens spacing are given in Appendix J. A 4" long absorption cell with 

quartz windows selected for minimum birefringence was used to hold the 

cc1
4

• The calculated lengths of the samples are shown in Table 6.1. 

The second set of samples used in the study were all 4" in 

length. In this case the lenses were adjusted for each sample to 

maintain approximate collimation of the laser beam. This enabled us 

to check the assertion that our results should not depend on sample 

dimensions; see Section 6.3. 

6.3 Ellipse Rotation Using Focused Gaussian Beams 

Previous experimental studies of ellipse rotation have been 

(1-3) 
perfonned using unfocused or weakly focused beams. As discussed 

in Section 6.0 we believe that several major advantages may be 

achieved by using focused beruns, especially for media with low ellipse 

rotation parameters. 

Marburger and others have performed computer studies on the 

self focusing of linearly polarized beams~4 , 5 ) They find that for 

pulse powers significantly below the critical powers for self focus-

ing it is valid to assume that a Gaussian beam remains Gaussian as it 

propagates through the medium. The elliptically polarized beam is a 

much more complicated case which has not been studied fully. Pre-

liminary studies show that such beams exhibit anomalous behavior in 

self focusing since the right and left circularly polarized components 

are cross coupled by the nonlinearity, and self focusing consequently 

progresses at a different rate for each component. <5 , 6) Nevertheless 

it is quite reasonable to assume that at the low powers at which we 

are conducting our ellipse rotation studies (see Section 6.5) changes 
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TABLE 6.1 

Sample Refractive Index at 6943R Length L (inches) 

CC14 
1.46 4.0 

Fused Quartz 1.455 4.0 

BK-7 Glass 1.51 3.7 

SF-7 Glass 1.63 3.24 
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in the beam profile resulting from self-focusing effects should be 

negligible. Indeed, this is borne out by our experimental results. 

The effects of self focusing for higher input powers is still an unre­

solved question which is presently being studied by Marburger. (l) 

Since our primary interest in this work is in making a compari­

son of ellipse rotation data between a standard reference sample and 

several other materials, we shall attempt to derive some qualitative 

results concerning ellipse rotation with focused beams which will aid 

us in interpreting the data. A rigorous consideration of the non­

linear propagation problem will be def erred until a more definitive 

treatment becomes available. 

Perhaps one of the most basic estimates of the behavior of the 

ellipse rotation signal in a focused beam experiment would be obtained 

by considering the case of a focused Gaussian beam(S) in the limit 

where the power is low enough to permit the assumption that the spatial 

energy profile of the beam remains unaltered in propagating through the 

nonlinear medium. Since ellipse rotation experiments are generally 

carried out under the condition that the ellipse rotation signal is 

small compared to the total input power, the neglecting of self­

focusing effects is quite reasonable. Although the spatial profile of 

the laser output in our own experimental investigation was not pre­

cisely determined, the Gaussian estimate should give some valuable 

insights for the interpretation of the results which we have obtained. 

The validity of our analysis concerning the dependence of the ellipse 

rotation signal on power input, focusing, and other parameters will be 

verified in the experimental investigation. 
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The propagation of a Gaussian beam in a linear dielectric medium 

is described by the Rayleigh-Sommerfeld formulation of diffraction as 

applied to each transverse component of the incident electric field. (9
) 

The axial component of the field is specified by the relation I/• E = 0 • 

Although the field is normally separated into Cartesian components, 

right and left circularly polarized components are also admissible 

since the Helmholtz equation V
2E + k2E = 0 is a vector relation which 

may be separated into circular as well as Cartesian components. If it 

is assumed that the transverse components of the electric field possess 

a Gaussian distribution and that the beam is converging to a focus at 

the center of the sample z = 0 , then the transverse components of the 

field are completely specified by the relation(S) 

~(r,z) 
w 2 1 ik 

= E~ e± w(~) exp{ i (kz-y) - r (w2 (z) - 2R(z)} (6. 2) 

Here r is the radial distance outward from the axis of the beam; 

E~ I ./2 are the peak amplitudes of the right and left circularly 

polarized components of the beam at the focus z = 0 ; 

e+_ = (e ± ie )//2 are the right and left circularly polarized unit 
x y 

vectors defined in Equation (3.28); w(z) =w (l+ (Az/(mv2n)) 2) 1 / 2 is the -
. 0 0 

l/e spot size with >. being the free space wavelength; R(z) = 

2 2 z(l+(7TW n/(Az)) ) is the radius 
0 

of the wavefront; and the phase 

factor -1 2 y is given by y = tan (Az/(rrw n)). An examination of Equa-
. 0 

tion (6.2) clearly shows that the Gaussian beam propagates with its 

surfaces of constant energy flux specified by a set of hyperboloids 

which obey the relation 
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(6.3a) 

Here K parameterizes the set of hyperbolic surf aces across which 

there is no energy flow. In addition to K , an orthogonal set of 

surfaces parameterized by the variable s may be defined which deter-

mines the surfaces of constant phase. Assuming y to be negligibly 

small, these surfaces may be approximated by the relationship 

s = 
2 

r 
z + 2R(z) (6.3b) 

The lines of constant K and s are shown in Figure 6.4. Clearly for 

the cylindrically symmetric beam a hyperboloidal surf ace is traces out 

by s for each value of K thus suggesting a "ray" interpretation of 

the energy flow in the beam. Equation (6.3) and Figure 6.4 also show 

that K and s provide an alternate system of coordinates by which 

the beam may be characterized. Specht has demonstrated that this sys-

tem is identical to the prolate spheroidal coordinates in the limit 

where (Ar) 2/(rrw2n) 2 << 1. (lO) This condition is most certainly satis­
o 

fied in the region of high intensity at optical wavelengths. In the 

analysis to follow, we shall adopt the ray approach to interpret the 

flow of energy in the beam. It should be borne in mind however that 

the preceding developments have been based upon the assumption that 

only the transverse components of the electric field are significant. 

The £-number of the beam should thus be kept high enough to merit the 

dropping of axial components of the field in estimating the energy 

flow and induced refractive index changes. Thus we shall assume that 
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R(z)/w(z) >> 1 • 

Under the assumption that the power in the beam is such that 

the spatial energy distribution given by Equation (6.2) is unperturbed 

by the induced change in refractive index, the field of Equation (6.2) 

may be substituted into Equation (3.36) to obtain an estimate of the 

induced change in the linear susceptibility. The results may then be 

substituted into the wave equation, Equation (3.3) to give an expres-

sion for the perturbed solution for the field. Putting the results in 

terms of the circularly polarized modes of Equation (6.2) we find 

v2~(r,z) + k2~±(r,z) = 

47Tk2 2 
- ~2- {AjE±

0
(r,z)j + (A+B) jE (r,z)} 2 ~(r,z) 

:ru -n 
(6.4) 

Here ~ (r,z) are the right and left circularly polarized components _o 

of the field given by Equation (6.2) with the peak amplitudes 

equal to E: ,and ~(r,z) 
-0 -

is the perturbed field. 

E' 
± 

Under the assumption that changes in the spatial profile of the 

beam due to self focusing will be negligible, we shall adopt a trial 

solution of the form 

where 
w 2 1 ik 

U(r,z) = w(~) exp i(kz-y) - r ( 2 - R(z)) 
w (z) 

(6.5) 

This form is essentially the same as the Gaussian of Equation (6.2) 

with the exception that what was previously the "peak amplitude" of 
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the field is now allowed to vary as a function of s and K , the 

two variables previously defining the ray paths in Figure 6.4. 

Substituting Equation (6.5) into Equation (6.4) we obtain the 

form 

2r t 1 2 2r UV' E (s,K)+ 2V'U(r,z) • V'E (s,K) +E (s,K)V' U(r,z) +k E (s,K)U(r,z) 

2 
= -

47T~ {AIE±
0

(r,z) 1
2

+ (A+B) IE+
0

(r,z) 1 2 }E~(s,K)U(r,z) (6.6) 
n 

Upon examination of Equation (6.6) we note firstly that since U(r,z) 

is a Gaussian beam, it satisfies the Helmholtz equation. Thus the last 

two terms on the left side of Equation (6.6) sum to zero. Secondly 

we note that since s defines the surfaces of constant phase for 

U(r,z) and the amplitude of U(r,z) changes slowly over distances·of 

the order of a wavelength, we may make the approximation 

' 2V'U(r,z) •VE (s,K) 
<rn~ (s ,K) 

2ik ( ) as u r,z (6. 7) 

Also since ' E±(s,K) is assumed to be constant over distances of the 

order of a wavelength, the first term in Equation (6.6) will be negli-

gible compared to the term of Equation (6.7). Hence Equation (6;6) may 

be approximated by the relation 

I 

l oE±(s,K) 
-E-~-(-s-, -K-) o s (6.8) 

Integration of Equation (6.8) with respect to s for various 

fixed values of K will be a rather straightforward operation if 

w(z) is approximated by w(s) in the expression for E+ (r,z). 
-0 

This 
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is justified since R(z)/w(z) >> 1 • Hence assuming A and B to be 

real as we have done in Section 3.4, we recognize that Equation (6.8) 

merely predicts that the nonlinearity will produce a differential phase 

shift ¢ (L) = ¢.A..L(L) - ¢ (L) 
K ~· K-

between the right and left circular 

components of the input beam. Explicitly, we find for a sample of 

length L with the focal region of the beam centered in the sample, 

the phase shift takes the form 

¢K(L) = ¢K+(L) - ¢K_(L) 

L/2 

= I (6.9) 

-L/2 

Clearly, the exponential dependence of the differential phase shift on 

2 2 
K = r /w (z) shows that · it takes on the Gaussian profile of the input 

beam. Performing the integration of Equation (6.9) and expressing the 

result in terms of the ellipse rotation angle for the set of rays 

parameterized by K we find 

-1 x tan 

(6.10) 

Here we have used the relation B = 6X~ 221 (-w,w,w,-w) = !<cr+2S) from 

Equation (3.26) and Table 5.1. It should be noted that in the limit 

where the length of the sample L is large enough to encompass the 

focal region of the beam, the -1 tan factor in Equation (6.10) will 
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take on its L ~ 00 limit of TI 

It is often convenient to specify the rotation angle in terms of 

a quantity other than the field strength which is directly measurable. 

Since the total time averaged power <P> in the Gaussian beam is av 

related to the peak amplitudes of the field by the expression 

(6.11) 

Equation (6.10) may be rewritten in the form 

2 2 2 -2K 
TI

3
W (~+2$) <P> cos(2u)e 

av (6.12) 
c n 

Here tan u = IE+' /E' I gives the relative field strength in the 
0 -o 

right and left circularly polarized modes and we have taken the limit 

where L is large compared to the focal region of the beam. 

Equation (6.12) clearly shows that the degree of ellipse rota-

tion of each group of rays characterized by K is linearly propor-

tional to the total power input and completely independent of focal 

and sample dimensions provided that the sample completely contains 

the focal volume of the beam. In order to prevent the sample from 

being subjected to unnecessarily high field intensities, the experi-

mental investigations of ellipse rotation should be conducted with the 

longest possible sample which is free of optical birefringence and the 

longest focal length lens which is consistent with the restriction 

that the sample completely contain the focal volume of the beam. It 

should be noted that the invariance of OK with respect to sample and 
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focal dimensions permits the interchanging of various samples in the 

investigation without making any correction for focusing in the com-

parison of the recorded ellipse rotation data. Furthermore, it should 

be recalled that the focused beam experiment also offers an advantage 

in that only the sample is subject to the high power densities of the 

focused beam. As noted earlier, this is a major advantage in the 

examination of materials with low ellipse rotation coefficients. 

In summary, we have considered the generalization of ellipse 

rotation to the case of a focused Gaussian beam in the approximation 

that self-focusing effects are negligible for small ellipse rotation 

angles. A ray optics approach has been used to calculate the induced 

ellipse rotation in various portions of the beam. It is found that the 

resulting expression for the differential phase shift which is given by 

Equation (6.9) is effectively identical to the plane wave result of 

Equation (3.39) with the exception that E2z is not replaced by 

f E
2

ds for each ray of the beam. 

The final result ' given in Equation (6.12) demonstrates the 

linear dependence of the ellipse rotation angle on the input power 

<P> for the Kth set of rays. In order to obtain the total amount av 

of power which is rotated into a polarization state orthogonal to that 

of the input beam, an integral of the input intensity must be taken 

over its cross sectional area weighted by the ellipse rotation angle 

for each ray. This analysis will be carried out in the section which 

follows. 
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6.4 Interpretation of the Ellipse Rotation Signal 

Having expressed the ellipse rotation angle for each ray in a 

Gaussian input beam as a function of the parameter K , which is 

effectively a specification of the radial distance from the beam axis 

normalized to the spot size, we shall continue in this section to 

express this ·result in terms of a directly measurable quantity, the 

power measured by the diode D-2 in Figure 6.1. In contrast to pre­

vious ellipse rotation measurements which measured the relative amounts 

of power in two perpendicularly polarized directions, it is to be 

recognized that our experimental configuration measures directly the 

amount of power which is rotated into a polarization which is orthogonal 

to that of the input polarization of the elliptically polarized radia­

tion. Hence at low input levels there would ideally be no signal 

observed at D-2 and the presence of any signal would represent a source 

of "noise" which would arise as a result of stray birefringence in the . 

system and would place a limit on the minimum detectable amount of 

ellipse rotation. 

In order to interpret the results expressed by Equation (6.12) 

in terms of the measured power at D-2 we shall employ the schematic 

.representation of our experiment which is shown in Figure 6.5. At the 

input to the sample the electric field of the beam may be represented 

by the form 

E(r,-L/2) = E+(r,-L/2)e+ + E_(r,-L/2)e_ (6.13) 
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Upon traversing the sample the two components of the beam will 

have experienced a differential phase shift resulting in the rotation 

of the polarization ellipse. Hence the field may be written in the 

form 

E(r,L/2) 

i28 (L) 
= {E+(r/L/2)e K e+ +E_(r,L/2)e_} (6.14) 

where we must employ Equations (6.9) - (6.12) to write the phase shifts 

which are produced by the nonlinear polarization. 

Upon exiting from the sample, the field expressed by Equation 

(6.14) continues to propagate as a Gaussian beam in a linear medium. 

The ellipse rotation angle which has been assumed to be small, should 

not affect the propagation of the beam appreciably (i.e., self focusing 

neglected). Hence the second lens will recollimate the beam and direct 

it to the detection aperture of the diode D-2, where it may be expressed 

in the form 

i28 (L) · 
= {E+(r,zD)e K e+ + E_(r,zD)e_} (6.15) 

Here E±(r,zD) take the form which the Gaussian input beam would have 

at the detection aperture were the nonlinear behavior of the sample 

negligible. Hence E±(r,zD) are Gaussian beams of the form given in 

Equation (6.2) with a spot size which we shall denote by w' • The 

size of w' is determined by the focal lengths of the two lenses in 

the experiment. (S) 



-122-

Using Equation (6.15) it is seen that the fraction f c e > 
K 

of 

power which is orthogonally polarized to the input polarization for 

the Kth set of rays in the beam may be expressed in the form 

f(e > = 
K 

i28 
(E+(r,zD)e Ke+ +E_(r,zD)e_) • (E+(r,zD)e+ - E_(r,zD)e_) 

2 2 
IE+(r,zn>I + IE_(r,zn>I (6.16) 

It is significant to note here that our experimental apparatus shown 

in Figure 6.1 does in fact read the fractional power directly since 

the total attenuation in the optical path of the experiment is kept 

constant, i.e., the power to the sample is increased by moving neutral 

density filters from stack F-1 to F-2. By substituting tan u = 

IE+(r,zD)/E_(r,zD)j into Equation (6.16) and using Equation (3.30) it 

is seen that 

f (8 ) = (sin(2u) sin e ) 2 
K K 

(6.17) 

For small rotation angles sin e ~ e 
K K 

Hence substituting Equation 

(6.12) into Equation (6.17) for small values of eK, one finds 

f(8 ) 
K 

In order to obtain a value for the total fraction F of 

orthogonally polarized light reaching D-2, the fraction f(8 ) 
K 

(6.18) 

must 

be integrated over the detection aperture after it is weighted by the 

Gaussian intensity distribution of the field in Equation (6.15). 

Performing this operation we find 



4 F •-­,2 
w 

r 
0 2 2 I exp(-2r /w' ) 

0 (1- exp(-2r~/w' 2)) 
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2 2 
{TI w

3 
(cr+2f3) <P> exp(-2r2/w' 2)} 2 rdr 

av 
nc 

= .1!..JL (cr+2f3 <P> )2 
Jc6 n av 

(6.19) 

Here r is the radius of the detection aperture; w' is the spot size 
0 

defined in Equation (6.15); K has been re-expressed in the form 

r 2/w12 ; and u has been set equal to 22-1/2° to maximize Equation 

(6.18) and give the maximum sensitivity. It should be noted that this 

last fact places 14.8% of the power into one of the circularly polar-

ized modes of the input beam. 

Equation (6.19) clearly demonstrates that the relative sizes 

(cr+2f3) 
n 

may be determined for any two samples by monitoring F as of 

a function of the input power < P> av 
The F oc <P>2 dependence of 

av 

Equation (6.19) will serve as a check on the range of validity of the 

experimental determination. Furthermore it is to be noted that F 

is maximized as r approaches zero. This is to be expected since 
0 

the maximum rotation angle is attained where the beam intensity is 

maximum. Since the power reaching the detector also decreases with 

decreasing r however, the optimal aperture size will be limited by 
0 

the sensitivity of the detection system. 

6.5 Experimental Procedure and Data Reduction 

In the experimental determination of F vs < P> using the av 

apparatus described in Section 6.1, a rigid procedure was followed to 
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insure the accuracy and repeatability of the results. 

Having aligned the apparatus using the He-Ne alignment laser 

and having adjusted all of the polarizing elements for a minimal "null 

signal" at the diode D-2 in Figure 6.1, the ruby laser is fired 

several times with the neutral density stack F-1 full (i.e., minimum 

input to the sample); this assures proper nulling of the system at 

D-2 and will also yield an estimate of the sensitivity of the system. 

Generally this "null signal" at D-2 is less than 0.002 of the trans-

mitted power in the laser beam which is detected at D-3. 

Once the null level of the system is determined for the sample 

under study, the power is increased gradually until a detectable 

change is produced inthe signal at D-2. The laser is fired repeatedly 

at a rate of one shot every 6 minutes to insure repeatability of the 

laser output. As the signal at D-2 begins to increase, the power to 

the sample is increased in steps of 0.1 density and the signals 

produced at the three diodes are recorded with each successive laser 

shot. Since the signal-to-noise ratio is low for small ellipse 

rotation angles due to stray birefringence, it is difficult to obtain 

accurate results at low input powers. Likewise, results obtained at 

extremely high input levels will be affected by the self focusing of 

the beam or by other nonlinear phenomena such as stimulated light 

scattering. Hence it is to be expected that the range in which the 

measurements would give accurate results would be that in which the 

F ~ <P>
2 

dependence which is predicted by Equation (6.19) is strictly av 

adhered to. Subsequent estimates of the critical powers for self 

focusing using the data from our experimental determinations show that 
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our results are obtained from data for which the input power is less 

than 25% of the critical power. C5) Hence the results are self con-

sistent and it is not surprising that the experimental data would 

F a: <P>2 
av dependence which we predicted. adhere closely to the 

After gathering the data for several samples, a normalization 

procedure must be followed to correct the readings obtained at D-2 

for fluctuations in laser power and also for the finite "null signal" 

measured at the beginning of each run. Hence F may be written in 

the form 

(signal at D-2)(mea~ signal ;~1D-l) - (null signal at D-2) 
F = ~~~~~~~~~---'s_i~g~n_a_l~a~t~~~~~~~~~~~~~~~~-
rel (mean signal at D-3 

mean signal at D-1) 
(6.20) 

Here Equation (6.20) gives a relation for the relative increase in F 

as a function of increasing signal at D-2 rather than an absolute 

reading of the fraction F • This is to say that F 
rel 

is equal to 

F multiplied by some constant factor. In Equation (6.20) the factor 

in the denominator serves to normalize the results in the event that 

the transmission of the samples differ. This factor was found to be 

constant from sample to sample. The first term in the numerator pos-

sesses a factor which serves to normalize the signal at D-2 to a 

constant laser output level, whereas the second term in the numerator 

subtracts out the "null signal" so that F = 0 at low levels of rel 

input to the sample. 

The results of plotting the relative measurements of F vs 

<P> are shown in Figures 6.6 and 6.7 where the data for the four av 
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materials which we are studying have been plotted. Since carbon-

disulphide, cs
2 

; has been sel~cted as the normalization standard, 

an ellipse rotation plot of this material has been included for com-

parison. The plotted points on the figures are actual data points 

which were obtained by direct application of Equation (6.20), whereas 

the solid lines are the best fit F ex: < P>2 lines through the data. 
rel av 

On these graphs <P> = 1 
av 

corresponds to an input power of roughly 

0.6 kW and F = 10 
rel 

corresponds to an approximate fraction 

F = 1/1500 (roughly an equivalent rotation of 2° for an incident 

plane wave). Most of the experimental runs in this investigation were 

carried out by using the single mode laser configuration described in 

Section 6.1 since this mode of operation was most repeatable and 

excluded the possibility of multimode effects; however the results 

displayed on Figures 6.6 and 6.7 were all repeatable to within+ 10% 

independent of the laser mode used, the focal length of the lens 

system (10-15 cm f.l), or the sample lengths. 

During the data collection process, several additional restric-

tions were imposed which helped to improve the repeatability of the 

measurements. The alignment of the optical components and detectors 

was extremely important. Hence the alignment scheme of Figure 6.3 

was employed to check the alignment of the system after each shot. 

Changes in the intensity profile of the laser output during an 

experimental run will naturally change the ellipse rotation signal and 

thus produce a "scatter" in the plotted data. Errors from laser flue-

tuations were minimized firstly by periodically checking the near and 
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far field patterns produced by the laser on a piece of exposed 

Polaroid film. Changes in the laser output would also show up in a 

variation of the signal at the diode D-1 or in the ratio of signals 

at diodes D-1 and D-3. This is reasonable since a variation in the 

spatial energy distribution of the laser pulse would not only have 

different propagation characteristics, but also produce a varying 

response on the photocathodes of the detectors. Hence any shots which 

produced a variation in signal at D-1 or in the ratio of signals 

D-1/D-3 of greater than + 10% from their mean values were rejected as 

"bad shots". Such fluctuations in laser output are a consequence of 

temperature variations in the laser system or fluctuations in the 

flashlamp voltage. 

As a final, very important, precaution the experimental data on 

any given sample are not considered to be meaningful unless parallel 

data on a sample of some other material are obtained and plotted 

without a realignment of the laser system. Since the investigation 

involves the comparison of ellipse rotation data for several samples 

to infer their relative values, it is imperative that each sample be 

examined under exactly the same experimental conditions. 

In conclusion we observe that the largest ellipse rotation 

signals shown in Figures 6.6 and 6.7 are signals of less than 15° 

equivalent rotation for an incident plane wave. It is thus quite 

reasonable that the results obtained would not be appreciably affected 

by any self focusing. Although it is conceivable that electrostric­

tive self focusing could affect the results of our experiment by 

producing self focusing without an increase in the ellipse rotation, 
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this may be seen to be most improbable by comparing the power levels 

which are employed in Figures 6.6 and 6.7 with the response times and 

power levels predicted for electrostrictive self focusing in Section 

4.2.5. Indeed, the assertion that electrostrictive self focusing is 

absent is borne out by the adherence of the data to the F a:< P>2 
av 

fit predicted by Equation (6.19) and the constancy of the ratio of 

signals D-1/D-3 which was maintained in the experimental investiga-

tion. 

6.6 Calibration Standard for Ellipse Rotation 

One of the major limitations on the accurate determination of 

nonlinear optical susceptibilities is the lack of an absolute standard 

to which relative measurements may be calibrated. The calibration of 

previous ellipse rotation studies was achieved by attempting to esti-

mate the total power output and spatial intensity profile of the laser 

directly. (l-3) A recent study by McAllister, Mann, and DeShazer, 

however, indicates that the output of a single mode Q-spoiled laser 

will exhibit "hot spots" and irregular time behavior which are not 

detectable by the usual means of monitoring the laser output on film 

(a time integrating process) or by measuring the total output of the 

laser on a photodetector (a spatial integration of the output). (ll) 

Such irregularities in laser output are only eliminated by meeting 

stringent requirements on the design of the optical cavity and by 

extremely careful alignment. (l2) Multimode lasers such as those 

employed in previous ellipse rotation studies would clearly be even 

more difficult to characterize. 
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In view of the difficulties of a direct calibration procedure, 

we have chosen to calibrate our measurements of ellipse rotation to 

the ellipse rotation parameter for carbon disulphide, cs2 , which we 

are able to determine to within 2% at 23°C and A = 6943R through 

the use of very accurate d.c. Kerr constant measurements reported in 

the literature. (l3) Thus the repeatability of the laser output is all 

that is necessary to insure accurate and reproducible results. 

The use of the Kerr measurements to calibrate ellipse rotation 

may be understood by an examination of Table 5.1 which shows that a 

Kerr determination will yield a value of cr+S for a sample whereas 

cr+2S is measured by ellipse rotation. Hence the medium to be used 

for a calibration standard should be one in which either electronic 

or nuclear mechanisms dominate so that either a or S is negligible. 

In this case the d.c. Kerr measurement may be corrected by employing 

the Lorentz local field factors to obtain the a.c. Kerr constant from 

which the ellipse rotation parameter may be inferred directly. 

In this investigation our choice of cs2 for the standard of 

calibration was based on the above condition in addition to the fact 

that its Kerr constant is the best known of any substance. A recent 

measurement by Volkova et al. shows that this constant is found to be 

B
0 

(cs
2

) = 3494 ± 4 x 10-lO esu at 546 nm and 23°c. (l3) By correcting 

this value to 6943R using the dispersion measurements of B
0

(CS
2

) 

performed by McComb, (l4) we find that B
0 

(CS
2

) = 253 ± 5 x 10-9 esu at 

6943R and 23°c. 

Since cs2 is a highly anisotropic molecule, one would be led to 

expect that molecular reorientation effects would greatly overshadow 
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any contributions to the nonlinear polarization arising from direct 

electronic distortion. Recent attempts have been made by Mayer(lS) 

and Hauchecorne et al. (l6) to measure the electronic parameter 

in cs
2 

using two completely independent techniques: (1) second 

harmonic generation in the presence of a d.c. electric field, and 

(2) three-wave mixing. Both of these studies indicate that a < O.Ol5e 

for cs
2 

; see Appendix K for further details. 

Neglecting the size of a compared to· that of a it is seen 

that the ellipse rotation parameter is given by the relation 

x~221(-w,w,w,-w) = a;~s 
B nA 

= - 0
- = 378 ± 7 x l0-15 esu 24ir 

at 6943K and 23°c with n = 1.62 • Since the dielectric constant of 

cs
2 

is equal to the square of its refractive index to within less than 

1/2%, it is felt that local field corrections may be neglected in the 

above estimate. 

As a final note we should like to point out that the choice of 

cs2 as a standard of calibration holds an added advantage other than 

those outlined above in that it is also employed as the standard of 

calibration in the a.c. and d.c. Kerr measurements with which we shall 

compare our data in Chapter VII. 

6.7 Results of Ellipse Rotation Measurements 

The ellipse rotation data presented in Figures 6.7 and 6.8 may 

be interpreted with the aid of Equation (6.19) to yield an estimate 

of X~ 221 (-w,w,w,-w) • As suggested by Equation (6.19), F obeys 

the relation 
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F = JcJ+2f3 <P> )2 
n av (6.21) 

where J is constant depending on the laser beam profile. Thus a 

knowledge of the refractive index n for each material will allow us 

to inf er cr+2f3 from the graphs using cr+2B = 378 + 7 x lo-15 
24 - esu for 

cs
2 

as the standard of calibration. The results are shown in Table 

6.2. 

As we have already noted in Section 6.5, the uncertainty in the 

ellipse rotation results should be no greater than 10% relative 

accuracy since the various experimental runs over a large range of 

experimental conditions invariably yielded results which were well 

within this range. Hence the absolute accuracy of these determinations 

should be better than ±11%. 
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TABLE 6.2 

Material ·__x.1221{-WzWzWz-W2x1015 esu 
3 

cs2 
378 + 7 

Fused Quartz 1.5 

BK-7 Glass 2.3 

SF-7 Glass 9.9 

CC14 6.08 

All values within + 10% of cs2 standard. 
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CHAPTER VII 

INTERPRETATION OF THE NONLINEAR SUSCEPTIBILITY 

MEASUREMENTS IN ISOTROPIC MEDIA 

X~jk,Q, 7.0 The Accuracy of Experimental Determinations of ~ 

In this chapter we shall use the nonlinear susceptibility rela-

tions which are summarized in Table 5.1 to interpret the presently 

available experimental measurements of 
i'k,Q, x/ in cc1

4 
and the opti-

cal glasses which we have studied in the hope of inferring the sizes 

of the electronic and nuclear contributions to the intensity-dependent 

refractive indices of these materials. Since the validity of our 

analysis will depend upon the accuracy with which each of the experi-

mental investigations have been conducted, we shall first discuss the 

merits and weaknesses of each of the experimental techniques. 

Third Harmonic Generation Measurements 

The third harmonic generation coefficient x1111 (-3w,w,w,w) was 
3 

measured by Wang and Baardsen in BSC glass. (l) As we have noted in 

Section 3.1, the short coherence length involved in this process makes 

surface scattering measurements the only practical means of implement-

ing this determination. The measurement was thus adversely affected 

b (1) h 'b'l' f f . . . <2> d (2) h 1 . 1 y t e possi i ity o sur ace impurities an t e ow signa 

yield, which resulted in the need to use photon counting techniques. 

Since this latter fact necessitated repetitive pulsing of the laser, a 

loss in mode control and repeatability was inevitable. It is thus not 

at all surprising that the value obtained for x1111 (-3w,w,w,-w) had 
3 

a relative accuracy of approximately 30%. Since the only means of 
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calibrating THG data is through a direct estimation of the laser out-

put power and beam profile, the difficulties which have already been 

discussed with regard to this technique in the case of the ellipse 

rotation studies also apply here. The requirement of repetitive 

pulsing, however, complicated th1s determination to an even greater 

extent and the absolute accuracy was thus assessed to be a factor of 

3. In the light of such a large uncertainty, it would be highly arti-

f icial to attempt to draw any conclusions from the THG data; rather it 

is to be recognized that the value of THG determinations lies in their 

ability to give relative determinations of the electronic contribution 

cr to the nonlinear polarization. Hence we merely note that the find-

ings of these investigations are in excellent agreement (20%) with our 

ellipse rotation measurements on borosilicate crown glass, but recog-

nize that this agreement should not be considered to be extremely 

significant in view of the large uncertainty in the data. 

Three-Wave Mixing Measurements 

The three-wave mixing (TWM) studies which determine 

x 1111 (-(Wf-~),w,w,-(w-~)) were first reported by Maker and Terhune in 
3 

a number of crystalline solids in addition to fused quartz and BSC 

glass. (3) In a more recent study Hauchecorne, Kerherve, and Mayer(4) 

reported TWM determinations in cc1
4

, cs2 , fused quartz, and a number 

of optical glasses. In this latter work a study of second harmonic 

generation in the presence of a strong static electric field in cs2 and 

CC14 vapor is also reported. This technique might be considered to be 

a very special case of three-wave mixing in which the difference in 
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frequency 6 is equal to w • Thus X1111 (-2w,w,w,O) is determined. 
3 

From Table 5.1 it is clear that this technique provides a means of 

measuring a since a(w) and b(w) would clearly be negligible at 

optical frequencies. 

Considering first the use of TWM to determine 

x1111 (-(w+6),w,w,-(w-6)) we note that the frequency components taking 
3 

part in the mixing process are usually generated by employing a ruby 

laser as the fundamental frequency source and directing the beam 

through a Raman laser cell to generate a Stokes shifted beam at fre-

quency w-6 • Since this scheme involves two simultaneous nonlinear 

processes, stimulated Raman scattering and three-wave mixing, one would 

expect that any fluctuations in the laser output would be grossly 

amplified in the output signal of the experiment. Even so, the experi-

menters were able to obtain repeatable results with a relative 

uncertainty of approximately 20% by splitting the beams involved in 

the mixing process into two separate paths and making TWM measurements 

on two samples simultaneously. One of the samples could then serve as 

a standard of calibration to which all of the other materials could be 

referenced. 

The absolute calibration of the two TWM studies were achieved 

in quite distinct manners which shall be discussed separately. In the 

original investigation by Maker and Terhune()) a benzene cell was used 

as the Raman source thus resulting in a Stokes shift of 992 cm-1 • 

Calibration was quite ingeneously achieved by making TWM measurements 

on a sample of benzene. Since the 992 cm-l Stokes shift is then 

resonant with a Raman active molecular vibration of the sample, it is 
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argued that the 'l'WM susceptibility is related to the Raman susceptibi-

lity by the relation 

3 I X1111 (-(w+/:,.) ,w,w,-(w-6) >I ~ 6jX 1111 (-(w-6) ,w,w-6,-w) I 
3 3 

(7 .1) 

where x1111 (-(w-6),w,w-6,-w) is the Raman susceptibility which may be 
3 

calculated from direct measurements of the spontaneous Raman scattering 

cross section. Although this result may have been inferred by "ignoring 

dispersion" due to the frequency change /:,. and including the degeneracy 

factors D from Equation (2.20), a better idea of what this approxima-

tion really involves may be obtained by substituting the laser and Stokes 

waves into Equation (5.6) to find that the Raman susceptibility may be 

expressed in the form 

1 1 1 
x~ 111 (-(w-6),w,w-6,-w) = 8 cr + 12 (a(-6)+b(-6)) + 12 (a+B) (7. 2) 

Here we note that a= a(O), B = b(O) and the rapidly varying optical 

terms of the nuclear response have been dropped since they are negli-

gibly small. A measurement of the total spontaneous Raman scattering 

cross section and linewidth will yield a measurement of 

Im X~ 111 (-(w+/j.),w,w-6,-w) = l~ {a"(-/j.)+b"(-6)} (7. 3) 

where it is recalled that a"(-/:,.) and b"(-/:,.) are the imaginary parts 

of a(-/:,.) and b(-/:,.) respectively; see Appendix I. From Section 

4.2.2 it will be recalled that a(/:,.) and b(/:,.) for the case of a 

Raman vibration are pure imaginary quantities when ±/:,. lies on a 

vibrational line center and that a"(!:,.) and b"(/:,.) are odd functions 
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of 6. • Hence Equation (7 .1) is seen. to be valid if the contributions 

a , a ,and 8 are negligible compared to the nuclear functions 

a(6.) and b(6.) • The fact that this condition is satisfied is attested 

by the manner in which the TWM power drops off in a benzene sample 

when any medium other than benzene is employed as a Raman source. C5) 

Employing the determination of the Raman cross section at 6943R ob­

tained by Mcclung, ( 6) it is found that 

Ix~ 111 c-Cw+-6.) ,w,w-6.,-w)I = 35 ± 1x10-
14 

esu 

for benzene. Using this as the standard of calibration we estimate 

that the absolute accuracy of the original TWM studies should be approx-

imately ±35%. 

In the more recent study by Hauchecorne et al. two alternate 

Raman sources, hydrogen and methane, were employed to produce Stokes 

-1 -1 
shifts of 415·0 cm and 2914 cm respectively. Performing the TWM 

studies with two different sets of mixing frequencies permitted the 

researchers to estimate the degree to which the nuclear functions 

a(6.) and b(I:.) were possibly contributing to the TWM susceptibility. 

Absolute calibration of the TWM studies in the glass samples studied 

was based on the second harmonic generation susceptibility of crystal-

line quartz. The focal intensity of the laser beam at the sample was 

calibrated by a measurement of the second harmonic power generated with 

a quartz sample. The focal intensity of the Stokes beam was measured 

by measuring the power generated in the E ,E A mixing process in w w-u 

quartz. Although no absolute uncertainties were quoted, it is to be 

expected that the measurements could certainly be no more accurate than 
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the 35% obtained by Maker and Terhune since the calibration involves 

both a detennination of the average laser field intensities and the 

second harmonic generation susceptibility. 

The experimental studies of TWM and electric field induced 

second harmonic generation in cs2 and cc1
4 

(4) were calibrated in an 

entirely different manner. The relevant nonlinear susceptibilities 

were measured both directly through an estimate of the laser output 

power and beam prof i le and also by the calibration method of Maker and 

Terhune applied to hydrogen rather than benzene. C3) Again, the abso­

lute uncertainties in the calibration are not quoted; it is noteworthy 

however that the d.c. Kerr measurements of gaseous argon and hydrogen 

obtained by Buckingham et al. yield an electronic contribution to the 

nonlinear susceptibility which is twice the size of that used in the 

calibration of these measurements. C7,B) 

A.C. Kerr Measurements in Glasses 

The a.c. Kerr measurements in glasses and fused quartz were 

reported by Duguay and Hansen in 1970. C9-ll) The ultra-short laser 

pulse Kerr techniques which were employed in this work were first 

reported in a study of the response time of induced birefringence in 

benzene. (l2) More specifically, a mode locked Nd:glass laser emitting 

pulses at 1.06µ, 4-5 ps in duration was employed to produce a Kerr 

birefringence in the glass samples which was detected by monitoring 

the polarization of a weaker second harmonic beam in transmission 

through the sample. 

The implementation of an a.c. Kerr study using picosecond laser 

pulses is an extremely difficult piece of experimental work to perform 
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accurately due to the necessity of obtaining repeatable pulses from 

sample to sample and the rigid requirement of having the two trains of 

5 ps pulses coincide precisely as they enter the Kerr cell. Each 

pulse in the train is approximately 1.5 mm in length and thus any 

change in the relative overlap of the two pulses from one specimen to 

the next would completely invalidate the results. The fact that the 

glasses possess a Kerr coefficient two orders of magnitude lower than 

that of cs2 made the study even more difficult. In view of these facts 

it is not at all surprising that the relative accuracy of the a.c. Kerr 

measurements are 35-50%. 

In an attempt to calibrate a relative measurement of this type a 

specification of the beam character and direct calculation of the Kerr 

constant would be highly artificial. Fortunately, the Kerr studies are 

normalized using cs
2 

as a standard of calibration. The choice of this 

common standard in the calibration of a.c. Kerr and ellipse rotation 

measurements make their comparison particularly meaningful. 

Kerr Measurements in CCl4 

The most precise determination of the Kerr constant of cc1
4 

is 

h d d b G t 1 (13' 14) t e .c. measurement reporte y eorge e a • Using cw laser 

techniques the Kerr constant of liquid CC1
4 was determined relative 

cs
2 

with a relative accuracy of better than 1% at A = 6328R and 

23°c. The determined ratio of B
0

(CS 2)/B
0

(CC14) = 41.6 may be cor-

rected using the dispersion measurements of McComb for cs
2 

and of 

Szivessy and Dierkesmann for cc1
4

• (l5) Henc·e we find 

Bo(CSz) 

B
0 

(CC14) = 40.8 ± 0.8 

to 
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Ellipse Rotation Studies 

It has already been noted that the absolute accuracy of the 

ellipse rotation study which we have undertaken should be approximately 

±11%. The degree of accuracy is partially due to the fact that a 

nanosecond Q-spoiled laser without mode-locking is sufficient for the 

implementation of this study. Hence mode control and repeatability are 

vastly increased. 

From the theoretical considerations of Chapter V and the fore-

going discussion, it is evident that ellipse rotation and the Kerr 

effect are two techniques which are particularly well suited for the 

comparison and interpretation of the electronic contribution to the 

nonlinear refractive index changes in isotropic media. Of all of the 

third order nonlinear phenomena which have been studied in glasses 

only third harmonic generation depends on no other parameters than the 

two which are determined by ellipse rotation and the Kerr effect. 

Additionally, these phenomena are easily calibrated to the same, very 

accurate, standard of calibration, the Kerr constant of cs2• Hence a 

direct comparison is especially meaningful. 

As we proceed to interpret the Kerr and ellipse rotation data 

the results of the three-wave mixing studies should not be overlooked. 

Although these data have a dependence on the nuclear rearrangement 

parameters a(6) and b(6) , they may still be used as a valuable 

check on the conclusions which are drawn from Kerr and ellipse rotation 

measurements, especially when the nuclear contributions to the TWM data 

can be shown to be negligible through studies of the polarization 
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dependence of the mixing process and through light scattering measure-

ments. 

7.1 Conclusions Concerning Optical Glasses 

The results of the experimental investigations into ellipse 

rotation, the a.c. Kerr effect, and three-wave mixing in glasses are 

sunnnarized in Table 7.1. As evidenced in the table, the data is 

calibrated according to the discussions of Sections 6.6 and 7.0 and 

presented in terms of parameters which would all be equal for any given 

material if all nuclear contributions could be neglected. 

Comparison of the a.c. Kerr and ellipse rotation data for fused 

quartz and BK-7 glass in the first two columns indicate that S is 

nominally zero for both materials since it must take on a positive (or 

zero) value in order to produce a negative perturbation in the total 

energy of the medium in the field. It is easily shown however that a 

worst case estimate of the nuclear contribution to the Kerr constant of 

fused quartz may yield a value as large as 100%, whereas a maximum 

value of 45% is obtained for BK-7 glass. It has been suggested in 

Appendix I that absolute Raman scattering spectra may yield new esti-

mates of the nuclear contributions to the intensity-dependent refrac-

tive indices. However, since the only currently available light 

scattering data on glasses all involve relative measurements, such 

conclusions will have to be deferred to a future date. (l6 ,l7) 

In any attempt to use TWM data to infer the size of electronic 

contributions to the nonlinear susceptibility, the possibility of 

nuclear contributions a(~) and b(~) shown in Table 5.1 should not 

be ignored without careful consideration. As noted previously, light 
I 
~ 
(. 
I 

I 



Material 

cs
2 

Fused Quartz 

BK-7 BSC Glass 

SF-7 Flint Glass 

LaSF-7 Glass 

WG-1 Glass 

D2129 Glass 

FED Glass 

Ref er enc es 

Ellipse Rotation 
(cr+28)/ 24 

378 

1.5(1.5) 

2.3(2) 

9.9(10) 

Kerr Effect 
(cr+S)/24 

189 

1. 7 (9) 

2.6(9) 

13.3(40) 

(11) 

TABLE 7.1 
-15 All data in units of 10 esu 

Three-Wave Mixing 
a 1 2'4 + 18ca (ti)+ b (fl)) 

2.0(4) 

3.8(8) 

(3) 

1. 75 

12.3 

12.5 

28.4 

(4) 

n6943R 

1.62 

1.455 

1.513 

1.631 

1.91 

1. 7 

1. 71 

1.95 

Values in parentheses denote the uncertainty in the last digit relative to the calibration 

standard employed in each investigation. 

I 
t--' 
~ 

°' I 
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scattering measurements will prove to be of great value here when they 

become available. For the present, a comparison of the TWM data in 

Table 7.1 for fused quartz seems to indicate that the measurements of 

Maker and Terhune(3) which employ a 992 cm-l Stokes shift are affected 

by nuclear contributions whereas studies conducted by Hauchecorne et 

al. <4) where a Stokes shift of 4150 cm-l was used derives a smaller 

contribution from nuclear nonlinearities. In view of the accuracy of 

these measurements however, we feel that such strong conclusions are 

premature without further investigation. Along these lines, it is felt 

that TWM measurements of both x 1111 

3 
and xl221 

3 
involving Stokes 

shifts of several values along with Raman scattering data would cer-

tainly settle the question of electronic versus nuclear contributions 

to TWM. 

If in fact the measurements of Hauchecorne et al. are 

accurately calibrated, and the TWM susceptibility which they measure is 

primarily electronic in nature, these measurements would clearly back 

our assertion that the electronic nonlinearities are dominant in pro-

ducing nonlinear refractive index changes in glasses. In examining 

their data it is interesting to note that the values for WG-1 Schott 

glass and D-2129 glass whose linear refractive indices fall between 

those of SF-7 and LaSF-7 both have nonlinear parameters which also fall 

between those of SF-7 and LaSF-7. Likewise the parameter measured for 

FED glass is the highest of all glasses measured in correspondence to 

its high linear refractive index. 
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The Nonlinear Refractive Index of Glasses 

With the presently available data it is worthwhile to calculate 

the nonlinear refractive index The index change resulting in 

the self focusing of a linearly polarized beam is given by Equation 

(3.23) and Table 5.1 to be 

where IE j2 • w 
giving(l8) 

Thus 

n2 - :1T <t CJ + (a+ f3)) 

(7 .4) 

is defined by 

(7.5) 

It is important to recognize that this value of n2 is different from 

that which is commonly defined in Kerr experiments and arises from the 

onll of Equation (3.20). Using the data in Table 5.1, this "Kerr non-

linear index" may be written in the form 

n' = 21T (32 CJ+ (a+ f3)) 
2 n 

(7.6) 

which is indeed equal to n2 if CJ is negligible as in most Kerr 

liquids. However, ni ~ n2 if CJ is dominant, a fact which is often 

overlooked in the literature(ll,l9). 

Suppose (in accordance with our nominal results) that this elec-

tronic contribution CJ is assumed to dominate in Equation (7.5). In 

this case we may write 31TCr n2 ~ ~- and inf er the value of 
2n CJ using our 

ellipse rotation data (i.e., x1221 ~ CJ/24). This estimate gives values 
3 . 

-13 of n2 • 1.18, 1.69, 6.85 x 10 esu for fused quartz, BK-7 glass, , 



-149-

and SF-7 glass respectively. Moreover an estimate of the critical 

powers for self focusing given by(ZO) 

p = 
er (7.7) 

yields approximate values of 0.25, 1, and 1.4 MW for SF-7, BK-7, and 

fused quartz respectively. Had the a.c. Kerr data been used to find 

n2 assuming cr >> S , values approximately 10% higher would have been 

obtained for 

In order to obtain an estimate of how great an error might be 

made by assuming a >> S it is instructive to assume the worst case 

estimate that S = O. 45 (cr + S) for BK-7 and S ~ (cr + S) for fused 

quartz. Using these worst case estimates with the upper limits of our 

data for x1221 (which were used to obtain these estimates) one finds 
3 

that n2 = 0.6 and -13 1.2 x 10 esu for fused quartz and BK-7 glass 

respectively (assuming S = -3a). These estimates are somewhat lower 

than those (more likely) estimates where S is assumed negligible; 

however both estimates clearly give critical powers for self focusing 

which are lower than the powers which are generated by mode locked 

solid state lasers. This suggests the possibility of self-focusing 

processes occurring in the laser oscillators, a contention which would 

merit further investigation since such phenomena would profoundly 

affect the output characteristics of these devices. 

7.2 Conclus i ons Concerning CCl4 

The conclusions which were drawn concerning optical glasses were 

necessarily limited by the availability of accurate a.c. Kerr data. In 
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order to bring out the value of comparing ellipse rotation and Kerr 

data for separating electronic and nuclear nonlinearities in isotropic 

media, we shall examine our results on CC14 . 
The relative value of the Kerr constants 

measured by Hellwarth and George~l4 ) As noted 

results of this determination may be expressed 

(0+8)/n of cs2 

(0+8)/n of cc14 

= 40. 8 ± o. 8 

at 6943R and 23°c. 

of cs2 and cc14 were 

in Section 7.0 the 

in the form 

(7. 8) 

The results of our ellipse rotation measurements on cc1
4 

were 

given in Table 6.2 in the form x1221 (-w,w,w,-w) = 6.08 ± 0.6 x lo-15 
3 

esu. In terms of Equation (6.21) and Figure 6.8 we may write this 

result in the form 

(o+28)/n of cs2 

(a+ 28)/n of cc14 

= 56 ± 6 (7. 9) 

It should be noted here that two previous measurements of this ratio 

obtained by Maker, et al. <21> and Wang( 22) reported values of 32 and 

34 respectively. These latter results however, claimed a relative 

accuracy of 25% and were achieved with the use of unfocused or weakly 

focused multimode lasers. The existence of such a discrepancy in the 

data is thus not at all surprising especially in view of the fact that 

cc14 has a relatively low ellipse rotation coefficient (compared to cs
2 

for example) thus making this measurement particularly difficult to 

perform with an unfocused beam apparatus. Both the small ellipse rota-

tion signal and the necessity of subjecting other components in the 
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experiment to high intensities are liable to contribute to erroneous 

conclusions in such an experiment. 

By combining the results of Kerr and ellipse rotation data as 

given in Equations (7.8) and (7.9) and employing the cs2 Kerr constant 

normalizations previously discussed in Section 6.6, it is found that 

and that 

a+ S = 100 ± 4 x lo-15 esu 

_L = 
cr+S 0.46 ± 0.17 

(7 .10) 

(7.11) 

for cc1
4 

at 6943R and 23°c. Employing Equation (7.5) to calculate n
2 

with S = -3a <23) one finds that 

n2 = (3.06 ± .3) x l0-13 (7.12) 

which corresponds to a critical power of approximately 550 kW. This 

figure is well within the limits of the 600 ± 300 kW critical power 

measured directly by Wang. (22) 

Having established that both electronic and nuclear nonlineari-

ties play a significant role in contributing to the intensity 

dependent refractive index, it is worthwhile to examine and compare 

other techniques which may be applied to separating electronic and 

nuclear nonlinearities in cc1
4

. 

Attempts to distinguish such contributions to the Kerr constants 

of symmetric molecule liquids by studying the temperature dependence 

of the effect have proved inconclusive, primarily due to the lack of a 

good theoretical model which describes this dependence. (l3) 
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Although one might hope that the nuclear response might be 

"frozen out" and thus distinguished by conducting experiments with 

picosecond laser pulses, the linewidth of the main central component 

of the depolarized light scattering spectrum indicates that the 

nuclear response time is appreciably shorter than a picosecond;<23 ) 

see Appendix I. Even in media where the nonlinearities producing the 

central spectral component may be frozen out by picosecond laser 

pulses, one must still deal with Raman type nonlinearities which 

would result in a much faster responding contribution. 

Three alternative methods, d.c. Kerr measurements on cc14 vapor, 

TWM, and static field induced second harmonic generation have all 

been employed to obtain estimates of the second hyperpolarizabi-

lity y of cc1
4 

molecules in the vapor phase. Since Y is defined 

(1.)YE3 h by the expression p = a
0

EL + 6 L w ere p is the dipole moment 

of the molecule, a
0 

the linear polarizability, and EL the local 

field, an application of Equations (3.21) and (4.10) along with Table 

5.1 clearly showsthat the electronic contribution to the Kerr con-

stant may be written in the form 

2 
B = 27T 27T (n +2)4 NY 

o elec n>.. a = n>.. 3 3 (7 .13) 

Here N is the number density of molecules in the liquid and the 

refractive index, n in the Lorentz local field factor is assumed to 

be constant over the optical range of the experiment. 

The d.c. Kerr measurement of cc14 vapor was performed by 

Buckingham. <24) A value of -36 y = 9.96 ± 0.32 x 10 esu was deter-

mined by extrapolation of the Kerr data to infinite values of 
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temperature. <25 ) From Equation (7.13) with N = 6.242 x l021cm-3 

find that this hyperpolarizability corresponds to a value of 

cr = 75 x l0-14 esu. 

we 

The three-wave mixing and field induced second harmonic generation 

studies were both performed in gaseous cc1
4 

by Hauchecorne et al. using 

a Q-spoiled ruby laser. <4) Both of these investigations yield a value 

-36 of y = 4.2 x 10 esu in the case where a hydrogen cell is used as a 

Raman source. Th . d 1 f cr -- 31.6 x lo-36 esu. is correspon s to a va ue o 

When methane is employed as a Raman source for the TWM study however, a 

value of y ~ 7.4 x lo-36 esu is obtained. A study of the polarization 

dependences of TWM showed that the ratio of power emitted at the TWM 

frequency for the case where the Stokes wave was polarized parallel to 

the fundamental wave compared to the case where they were perpendicu-

larly polarized is 10 for the case of a hydrogen Raman source and 14 for 

the case of a methane Raman source. It is seen from Equation (3.14) and 

Table 5.1 that this ratio should be 9 for a purely electronic contribu-

tion. Hence it is suggested that the hydrogen Raman cell measurement 

gives the more accurate of the two estimates. This comparison also sug-

gests the wide range of frequencies over which nuclear mechanisms may 

play a role in contributing to the nonlinear susceptibility. 

Although neither of the two values obtained by the two groups 

agree well with one another, it is to be noted that the apparent dis-

agreement lies in the absolute calibration of the data rather than the 

relative determinations. (It will be recalled that the value obtained 

by Buckingham for the hyperpolarizability of Ar is twice that which was 

used by Hauchecorne et al. in their calibration of the TWM and second 
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harmonic generation data. <4 , 7)) Nevertheless, we recognize that our 

result (J = 54 ± 17 x 10-15 esu clearly falls between results obtained 

by the other workers. 

Although it is interesting to make the comparisons above and to 

speculate on the implications of the various determinations, it should 

be borne in mind that the calculation of liquid phase Kerr constants 

from vapor phase data may commonly err by a factor of two or more. 

Hence our result which asserts that the Kerr constant of liquid cc1
4 

is 

46 ±17% nuclear provides the most accurate determination of this param-

eter to date. 

7.3 Summary 

Nonlinear refractive index changes in isotropic media have been 

considered as a special case of nonlinear optical phenomena involving a 

polarization cubic in the electric field strength. By modeling this 

polarization in the form proposed in Chapter IV 

P3 (t) = ~ E(t) ·E(t)E(t) + J a<t-T)E(T) ·E(T)dT E(t) 

+I b(t-T)E(T)•E(t)E(T)dT 

where (J is the parameter of "electronic distortion" and a(t) and 

-b(t) are the time response functions for "nuclear rearrangement", we 

have established a basis for interrelating the various elements of the 

nonlinear susceptibility tensor x
3 

• 

The above expression has been applied to interpret several non-

linear optical phenomena including optical frequency mixing and optic-

ally induced refractive index changes. The results of this analysis 

have been summarized in Table 5.1 which lists each phenomenon, the 
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nonlinear susceptibility elements involved, and the interpretation of 

these tensor elements in terms of a , a , and b • In Appendices H and 

·1 further relationships between a(t) and b(t) and spontaneous and 

stimulated light scattering parameters are established. 

The analysis suggests that mostt nonlinear refractive index 

changes in isotropic media may be characterized in terms of the elec-

tronic parameter cr and the nuclear parameters a= f a(t)dt and $ = 

f b(t)dt. For this reason the Kerr effect experiments which measure 

1 { 1221( n n) 1212( } cr+$ the tensor elements 2 x3 -w,w,~,,~, +x3 -w,w,n,n) = 24 for 

jn-wj sufficiently large and the measurements of the intensity depen-

dent rotation of the polarization ellipse of a monochromatic optical 

beam which determines 1221( ) cr+2S x3 -w,w,w,-w = 24 show particular promise 

for the study of nonlinear index changes. Together these experiments 

yield a determination of both the electronic parameter a and the nuc-

lear parameter S . Thus they provide a means of completely determin-

ing the electronic contribution to nonlinear index changes. Also, 

since a may be inferred from {3 using spontaneous light scattering 

measurements, a means is also provided to characterize the nuclear non-

linearities; see Appendix I. 

The practicability of this technique has been demonstrated 

through a focused beam investigation of "ellipse rotation" which is 

particularly well suited to media exhibiting small nonlinearities. 

l 2 21 ( ) 5 -15 Values of X -w,w,w,-w =l. , 2.3, 9.9 and 6.08 XlQ esu 
3 

have 

been obtained for fused quartz, BK-7 borosilicate crown glass, SF-7 

tThose which do not involve components in the spectrum of E2(t) 
which are resonant with a vibrational mode of the medium. 
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dense flint glass, and carbon tetrachloride (CC1
4

) respectively at 

23°C and A = 6943~ • These measurements constitute the first obser-

vations of ellipse rotation in any solid and (with an absolute ac-

curacy of 11%) are the most accurately known of any nonlinear optical 

constant in glasses. 

Although our results when interpreted with a.c. Kerr and 

three-wave mixing data suggest that electronic contributions may 

dominate nonlinear index changes in glasses, we have been hesitant 

to rule out possible nuclear contributions until the uncertainty in 

the Kerr measurements can be reduced. If a purely electronic mechan-

ism is assumed, however, we would obtain a nonlinear refractive index 

-13 n2 of 1. 2, 1. 7, and 6. 9 x 10 esu for fused quartz, BK-7, and SF-7 

glasses respectively. Even if nuclear contributions are found to be 

significant, these estimates would not err by much more than 50%, 

clearly suggesting that these "fast responding" nonlinearities are 

sufficiently large to produce self focusing in glasses with critical 

powers in the 1 MW range. 

In contrast the case of cc1
4 

for which very accurate Kerr 

data is available demonstrates the power of the proposed method for 

separating electronic from nuclear nonlinearities. 
(J 

With cr+f3 = 

O. 54 ± 0.17 both electronic and nuclear nonlinearities are signifi-

cant and a value of the "fast responding" part of the nonlinear index 

(which excludes electrostrictive effects) is found to be 

-13 n2 = (3. 06 ± 0.3) x 10 esu. 
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APPENDIX A 

Electron Oscillator Model for P2(t) 

As an example of how the nonlinear polarization second order in 

the electric field strength may take on the time dependence suggested 

by Equation (2.6), let us consider the Lorentz electron oscillator model 

of an atomic system(l) in which the usual harmonic potential is per-

turbed by the presence of a small anharmonicity. Hence expanding the 

anharmonic potential in a power series about its minimum value and 

keeping only the first order nonlinearity one finds that the equation 

of motion of the electron may be written in the form( 2) 

d
2
r(t) + y dr(t) + w2 r(t) + or2(t) 

dt2 dt 0 
= - eE(t) 

m 
(A.l) 

where w is the resonant frequency of the electron oscillator, y 
0 

the linewidth of the transition being modeled, r(t) the displacement 

of the electron from its equilibrium position, -e the electron 

charge, m the reduced mass of the electron, E(t) the applied electric 

field, and o the anharmonic coefficient. We shall assume that 

or(t) is much smaller than w2 so that the anharmonicity merely 
0 

presents a small correction to the linear solution in which 0 ~ 0 . 

Adopting an approximation to r(t) in the form of a power series in 

o we write 

(A.2) 

where r (t) 
0 

is the solution of Equation (A.l) with 0 = 0 and the 

succeeding terms present small corrections to this linear approximation. 
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Substituting this trial solution into Equation (A.l) and equating 

powers of 0 one finds for the first two terms 
00 

r Ct) = - I z(t-T) eE(T2 dT 
0 2rrm (A.3) 

-= 

(A.4) 

where z(t) is the inverse Fourier transform of the linear oscillator 

response function 

Since the polarization of the dielectric medium is defined by 

the relation P(t) = -Ne r(t) where N is the number density of 

electrons, the linear polarization is given by Pl(t) =-Ne ro(t) and 

the nonlinear polarization quadratic in the electric field strength is 

clearly given by P2(t) =-Ne orl(t) which may be written in the form 

00 

- -2 z(t-T) r (T) dT 
0 

I X2(t-T,t-T2)E(Tl)E(T2)dTldT2 
-00 

where Equation (A.3) was employed to define 

which clearly takes the form given in Equation (2.6). 

(A.5) 

(A. 6) 
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APPENDIX B 

Expanded Form for · ·! 3 (w) 

In Section 2.3 the ith component of the nonlinear polarization 

was examined at a specific frequency w which is the sum fre­s 

quency of three monochromatic field components, i.e., w = w + wb+ w s a c 

see Equation (2.17). For the sake of completeness we note here for 

the case of a field whose Fourier spectrum is given by 

_!(w) =; ~ {o(w-wn) + o(w+wa)} 
a 

+ 2
1 E {o(w-w) + o(u.rrw )} w c c (B.l) 

c 

the complete expression for the nonlinear polarization P3 . (w) 
'l. 

which is given by 

00 

P3 . (w) = 
'l. III 

x (B.2) 

takes the form 
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1 ijk.R. P
31

.(W) = -
8 

~ x
3 

(w ,w ,w )E.(w )Ek(w )E 0 (w) o(w-3w) 
n=ts} n n n J n n N n n 

3 ijkR, + -8 l x3 (w ,w ,w )E.(w )Ek(w )E 0 (w) 
·{ } n n m J n n N m n= s 

m={s} 
n:fm 

o(w-2w -w ) n m 

3 . 'kR. + - l x3
1

J (w ,w ,w )E.(w )Ek(w )Ei(w )o(w-w -w -w) (B.3) 
4 c{s} n m p J n m p n m p 

Here {s} denotes the set of subscripts (a,b,c,a*,b*,c*) where 

wn* -wn; sums are assumed to be taken over the spatial indices j, 

k, and R. ; and the notation c{s} denotes the fact that the third sum 

is to be taken over all combinations of the indices in {s} , i.e., 

n =f m =f p • It is seen that Equation (B.3) consists of a total of 56 

terms (six terms in the first sum, thirty in the second and twenty in 

the final sum) corresponding to all possible combinations of the 

indices {s} taken three at a time (including combinations in which 

two and all three of the indices are degenerate such as (a,a,a) or 

(a,a,b)). 
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APPENDIX C 

The Ellipse Rotation Angle 

Given an elliptically polarized wave of the form 

(C.l) 

a schematic representation of the wave may be given in terms of the 

two counter-rotating vectors as shown in Figure C.l. Clearly, the 

major axis of the ellipse of polarization is oriented along the x-

axis. Now if a phase shift ~ is produced between the right and left 

circularly polarized components of the wave, the schematic representa-

tion is changed to that shown in Figure C.2. Since the two counter-

rotating components are of the same frequency, they clearly sum to 

produce a maximum in the polarization ellipse at an angle ~/2 with 

respect to the x-axis. Hence the ellipse rotation angle is ~/2 • 
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APPENDIX D 

Local Field Corrections for Xijki 
~~~~~~~~~~~~~~~3~-

In a dense medium the electric field E.,l seen by individual 

electrons in the medium is affected by the dipolar fields of surround-

ing atoms or molecular groups. Hence the macroscopic susceptibility 

cannot be obtained by simply multiplying the average polarizability of 

individual molecules by the number density of molecules. Rather, the 

susceptibility of the medium must be corrected to include terms which 

will express the local field in terms of the macroscopic field. 

For the case of a dielectric medium where the electron states 

are localized in space, Lorentz(l) has chosen to express the local 

field in the form 

~..?(w) = ~(w) + cj>P (w) (D.l) -
This expression may be shown to hold exactly in cubic ionic solids and 

approximately in isotropic liquid media where cp = 47f /3 • (3) Hence, 

using the definition P(w) = X;i:'.'.(w)EX(w) where Xi:., is the "local 

linear susceptibility" (i.e., that which is obtained for cp = O), one 

finds that 

E (w) = ~ E(w) = L(w) E(w) 
-J: 1 - cp (w)- -

(D. 2) 

where L(w) is defined to be the "Lorentz local field correction 

factor". 

Using the relation E(w) - 1 = 4rrL(w)X:l(w) with cp 4rr/3 in 

Equation (D.2) one finds 



L(w) = e::(w)+2 
3 

-166-

2 
n (w)+2 

3 
(D.3) 

Hence the nth order macroscopic nonlinear polarization with which we 

have been dealing in the text would presumably be written in the form 

Here the local field factors which are usually lumped into the defini-

tion of the nonlinear susceptibility tensor ~ have been factored 

out and another nonlinear susceptibility tensor ~ defined which is 

essentially the nonlinear susceptibility which we have been modeling 

in Chapter IV since it excludes local field effects, i.e., ¢ = 0 • The 

colon II • It . in Equation (D.4) is used to denote the dot products of the 

n field components E(w.) with the nth order nonlinear susceptibility 
- l. 

tensor. 

Although the nonlinear polarization given by Equation (D.4) 

appears to be that which we would substitute into Equation (3.3) as a 

nonlinear source term, this would be incorrect. To see this we write 

the total macroscopic polarization in the form 

_!:(w) (D.5) 

where the local field E~w) = E(w) + ¢P(w) and PNL(w) is composed 

of terms of the form given in Equation (D.4). Substituting the local 

field into Equation (D.5) and solving for _!:(w) one finds that 

P(w) ~ NL 
= L(w) K (w) E(w) + L(w) _!: (w) (D. 6) 
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where PNL(w) is given by the expression of Equation (D.4). From this 

relation it is clear that Equation (D.4) does not give the nonlinear 

susceptibility which is fully corrected for local fields, but that the 

true macroscopic nonlinear susceptibility must include an "extra" local 

field correction at the frequency w • Hence the total polarization 

may be written in the form 

00 

P(w) = X(w)•E_(w) + l ln(-w,w1 ,w2,···,wn):E_(w1)···E(wn) 
n=2 

where X(w) L(w)X;t(w) and 

~ 
L(w)L(w )L(w )···L(w )X (-w w ••• w) 1 2 n ~ ' l' ' n 

for n= 1,2,3,··· • 

(D. 7) 
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APPENDIX E 

Dispersion Corrections for Electronic Nonlinearities 

It will be recalled that in Section 4.1, the electronic portion 

of the nonlinear susceptibility was shown to take the form 

(E. l) 

which we choose to approximate by employing the dispersionless estimate 

(E. 2) 

for some mean value w of the frequencies involved in the mixing 

process. 

In order t o estimate the degree of dispersive error which 

might be expected to arise from the various frequency components used 

in the different experimental investigations, we may calculate the fac­

tor of Equation (E.2) for each case of experimental inte;est, assuming 

a purely electronic nonlinearity. Since 2 
X (w) = (n (w)-1) I 4'IT, we need 

only to compare the dispersive effects of the factor 

3 
II 

i=l 

2 {n (w.)-1} 
1 

(E.3) 
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where the IT denotes a product of the terms in brackets whi ch follow 

it. 

It should be recalled that in addition to correcting for the 

dispersion on the nonlinear susceptibility a correction must also be 

made for local fields. This involves a factor of 

where 
n

2
(w.) + 2 

1. 
L(w.) = -----

1. 
3 

In Table E.l we have tabulated the refractive indices for 

fused quartz and BK-7 glass at all wavelengths which are applicable 

to available experimental determinations. In Table E.2 the factor 

81 NL is tabulated for each case in which data is available for 

in these media. Clearly the dispersion corrections are small enough 

to be negligible in all cases. 
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TABLE E.l 

Material Fused Quartz Su:erasil BK-7 Schott Glass 

>.{){) 

3533 1. 476 1.519 

5300 1.46 

5490 1.46 

6500 1.457 

6943 1.455 1.513 

7460 1.454 

9750 1.451 

1060 1.45 1.507 



Experiment 

Third Harmonic 
Generation 

A.=1.06µ 

Ellipse Rotation 
A.=6943A 

a.c. Kerr Effect 
"-1=l.06~ 
A. 2=5300A 

Three Wave Mixing 
A =6943A 

-1 
L'l=992cm 

Three Wave Mixing 
A.=6943.A _

1 6=4,150 cm 
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TABLE E.2 

81NL for Fused Quartz Suprasil 81NL for BK-7 Schott Glass 

453 

448 936 

444 930 

451 

445 
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APPENDIX F 

The Polarizability Tensor ~(8,¢) 

In Section 4.2.1 we considered a molecule whose polarizability 

t ensor in its principal coordinate system was given by 

( ~l 
0 

~) Ci. = Ci.l (F .1) 

0 

and is diagrammatically represented in Figure 4.1. Using the rotation 

matrix(4) 

A= 
(

-cos\jJsin¢-cos8 cos¢s in\jJ 

sin\jJsin¢-cos8cos¢cos\jJ 

sin8cos¢ 

cos\jJcos¢-cos8sin¢sin\jJ 

-sin\jJcos¢-cos8sin¢cos\jJ 

sin8sin¢ 

sin\jJsin8) 

cos\jJsin8 

cose 

(F. 2) 

where and \jJ are the Euler angles; we find that a may be 

written for a molecule oriented as shown in Figure 4.1. This gives 

t 
= !:._ • Ci. • !:._ = 

(a
2
-a

1
)sin28sin¢cos¢ 

a
1
+(a

2
-a

1
)sin28sin2¢ 

(a2-a1)sin8cos8sin¢ 

(a2-a1 ) cos8sin8cos¢) 

(a2-a1)cos8sin8sin¢ 

2 
al+(et.2-al)cos e 

(F. 3) 

Here !:._t is the transpose of _!. and the resultant polarizability is in-

dependent of \jJ since ~ is synunetric with respect to its x and y 

principal axes. 

tThis unusual definition of the Euler angles is chosen so that e and 
¢ correspond to the azimuthal and polar angles shown in Figure 4.1. 
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When the molecules are randomly oriented in a medium, the 

total system will exhibit a polarizability per unit volume which is 

proportional to the orientationally averaged single molecule polariza-

bility. Performing this average for a randomly oriented system of 

molecules we find that 

a = Zn J _g_(8,¢) d8 (F.4) 

Here the integration is taken over the entire sphere of solid angles 

8 and the average polarizability a = (a2 + 2a1)/3 • It is to be 

noted here that Trace (_g_) remains invariant as it must under a 

rotational operation. As expected the averaging operation reduces a 

to a scalar since the medium of molecules is macroscopically isotropic. 

Another useful average for the molecule of Equation (F.l) is 

the quantity aije akt(G), for this average determines the value of 

the nonlinear susceptibility and response tensor; see Equation (4.21) 

for the case of molecular reorientation. One would expect that 

since the tensor is modelling the nonlinear response in an isotropic 

medium, it may be characterized by a maximum of three independent 

tensor elements. Indeed, performing the averages, it is found that 

4 2 
45(a2-al) + 

2 a. for i=j = k = )!, 

2 2 2 
aijakt = a - 45(a2-al) for i = j :f k )!, 

(F.5) 

(a2-al) 
2 for i=k :f j )!, 

15 or i=t :f j k 

Thus we may write these results in the form 
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Both a .. 
l.J 

and aij°'kt are considered for the more general case where 

0 

(F. 7) 

in the book by Wilson, Decius, and Cross. (lS) Our results may be 

generalized to this case by replacing our a by a= (1/3) (a
1
+a.

2
+a.

3
) 

2 2 2 2 and our (a2-a1) by (l/2){(a1-a2) +(a2-a3) +(a1-a3) } • 
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APPENDIX G 

The Distribution Function for Molecular Reorientation 

In Section (4.2.1) we showed that the distribution function 

r(t), which describes the orientational distribution of an ensemble 

of polarizable cigar shaped molecules as described by Equation (4. 13) 

obeys the relation (Equation (4.18 )) 

L ar _ 
kT 3t -

1 a 
sin e ae 

-
{ sin e ~ + ae 

for a field polarized along the z axis. 

sin 28 
} (G.l) 

We shall undertake the solution of this equation in two steps. 

First we shall consider the case of an applied d.c. field which is shut 

off at t = O. This will establish the concept of the relaxation time 

of the system and give us a general form for a trial solution for 

the case where E(r,t) varies arbitrarily in time. 

Consider a field of the form 

t < ·o -E(t) = (G.2) 

0 t ~ 0 

-where !(t) is directed along the z axis. For t < O we know 

that the system must take on a Maxwell-Boltzman distribution, hence 

-U/kT f = _e ___ _ 

fe-U/kTdQ 
(G.3) 
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1 2 2 
exp{ 2kT((a2-a.1)cos 8+a1)E

0
} 

= ----~-l------~·----2-------2--~ 
fexp{ 2kT((a2-a1)cos 8+a1)E

0
}dn 

, 
.t:I =--+ 

41T 

2 2 
(a2-a1)E

0
(cos 8- 1/3) 

81TkT + •.. 

Here we have used the relation U = -(l/2)a (0)E2 
zz z from Equations 

(4.14) and (4.16) • The dropping of all higher order terms is 

-23 3 justified since a is typically of the order 10 cm so that 

even for a power density of 10
10 

W/cm
2 

(E
2 

= 8.4 x 10 7 esu) we have 

alEl 2/kT ~ 10-
2 

at 300°K. This power density is well above the 

optical breakdown intensity for liquids and is typical for break-

down in glasses. It is also to be noted that the factor "1/3" 

in the second term is maintained so that the normalization f!dn = 1 

is preserved. 

For t ~ 0 Equation (G.l) becomes 

(G.4) 

Since r(t=O) must match the Maxwell-Boltzman distribution of 

Equation (G. 3) we choose a trial solution of the form 
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f(t) - 2 
= A(t) + B(t) cos e (G.5) 

which, when substituted into Equation (G.4), yields 

i:;; ax ai3 2 - 2 
kT (at+ at cos 8) = -6 B(t) cos 8 

-+ 2B(t) (G.6) 

By matching the angular varying terms of Equation (G.6) we find 

the two conditions: 

aA = 2kT B(t) 
at i:;; 

(G. 7) 

and 

(G. 8) 

-Solving Equations (G. 7) and (G • 8) f is found to take on the form 

(G. 9) 

Here C, D, and F are constants and the orientational relaxation time T 
R 

is given by 

where is the Debye relaxation time. <5
) As t becomes very large 

we must have an isotropic distribution. Thus D = O. Matching the 

initial conditions we find the solution 
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2 1 -t/TR 
(cos e - 3)e (G.10) 

Thus the distribution function is seen to decay exponentially to a 

i.miform distribution with a characteristic time TR = ~/6kT. 

The form of Equation · (G.10) suggests that we adopt a 

trial solution of the form 

- 2 1 -f(t) = A{l + S(cos e - 3)Ht)} (G.11) 

in considering the solution of Equation (G.l) for the more general 

case of an arbitrary but linearly polarized E(t). Substituting 

Equation (G.11) into Equation ( G • 1) we ob tain, 

2 1 1 a -
6TTA{f3(cos 8- 3)~'(t)}= sine ae{f3A~(t)sin8sin(28) 

+ f3<PE
2
A sin(28) {l+f3(cos

2e- ~)~(t)}} 
-1 

where f3 = (kT) and <P =<a.2-at/2 (G .12) 

Expanding Equation (G .12), employing several trigonometric identities, 

and keeping terms up to first order in 
-1 

f3 = (kT) . we find that Equation 

· (G .12) reduces to the simple form 

iii' ( t) (G.13) 

Clearly the problem of solving for f has been reduced to the form of 

- -a first order linear equation for ~(t). Writing ~(t) in the form of 
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a convolution and substituting into Equation (G.11) we find that 

T-t 

'R d-r } (G.14) 

This solution for a linearly polarized field ~(t) is clearly seen to 

take the form of a uniform distribution f = ~TI which is perturbed by an 

anisotropic term which takes on the form of a linear response function 

-2 
driven by the force E (t). It is easily seen that for E(t) =constant 

the solution reduces to the approximate Maxwell-Boltzmann equilibrium 

distribution given in Equation (G.3).For an arbitrary linearly polarized 

!Ct) the system is seen to average out oscillations in E2 (t) which 

are faster than the response time 'R' but respond readily to slower 

oscillations. It is this reorientational relaxation mechanism which is 

responsible for the phenomenon of Rayleigh wing scattering of light. ( 6) 

See Appendix H • 

It is clear that Equation (G.14) must represent the solution for 

f(t) for any linearly polarized field since the medium is isotropic and 

thus the form of f(t) should be independent of the orientation of the 

medium (or the coordinate system). Examining the d.c. case given by Equa-

tion (G.3). we recognize that f may be written in the form 

f 1 {l - U(G) ucer. } 
- !;-;- kT 

(G.15) 
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where the "bar" denotes an orientational average. For 

t he a.c. case given in Equation (G.14), this expression is virtually 

1 2 
unchanged except that now U(0) = - 2 azzEz is replaced by, 

<U (0) > 
a = - zz t 
-2- f 

T-t 
~ 2(t) -

z 'R 
--- e d-r 

-co 

which, for the specific case of a monochromatic optical field, is seen 

to be the time averaged energy. Since this quantity must clearly be in­

dependent of the direction of E(t), we may write <u(0)> in the form 

<U(0)> = -
t 

f 

T-t 
E . (-r)E. (-r) 'R 
-1~~~]~- e dT 

'R 

where aij(0) is given in Equation (4.14) and we sum over the repeated 

indices i and j. Thus for any linearly polarized wave we would expect 

that 

where 

f(0,t) = _l. { 1 -
41T 

- t/T 
e R 

i. ij 
a J (8) - a (0) 

co 

f 
2kT -co 

t >' 0 

(G.16) 

(G.17) 

(G .18) 

p (t) = 
'R 

(G .19) 

0 t < 0 
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The solution in Equation (G.18) was derived for a linearly 

polarized wave of arbitrary time dependence and direction of polariza-

tion. We would argue, however, that this solution is valid for a 

field whose direction of polarization varies in time. To see this on 

physical grounds we simply recognize that a reorientational nonlinear-

ity is dependent upon the induced alignment of molecules along the 

direction of the applied field and that the time constant associated 

with this process is not dependent upon whether or not there is a 

change in the direction of the field. This may be shown mathematical-

ly by constructing the input field in the form of a step function 

series of vectors which sum to yield a continuously varying vector 

field E(t) in the limit where the interval between the steps is 

vanishingly small. Since the solution for - - 1 <P a: (f --) 
47f 

involves the 

solution of a linear equation, the results for each step interval in 

the field may be added to obtain the total solution for <P(t) • This 

step function representation of ~(t) and the resulting series 

solution is seen to be independent of the direction of ~(t) since 

<U(8)> is independent of the direction of E(t) in Equation (G.17). 

Thus Equation (G.18) is seen to be generally applicable to a field 

which varies in direction as well as amplitude. 



-182-

APPENDIX H 

Stimulated Scattering of Light and the Polarization 

-Properties of E_
3

(t) 

H.O Stimulated Light Scattering Processes 

It has been demonstrated in Chapter IV that any isotropic 

medium exhibits a nonlinear polarization cubic in the electric field 

_strength which may be written in the form 

P/t) = crE(t)"E(t)E(t) +I a(t-T)E(T)"E(T)dT E(t) 

+I b(t-T)E(T) ·E(T) ·E(t)E(T) dT (H. l) 

where cr is the parameter of electronic distortion and a(t) and 

-b(t) characterize the nuclear nonlinearity. Thus far in this work 

we have been dealing with nonlinear interactions which involve sum and 

difference frequencies which are either very large or very small com-

pared to the molecular vibrational resonances of the medium. This has 

permitted us to assume that a(w) and b(w) take on real values in 

the experimental studies which have been considered.(]) In this sec-

tion we shall extend our consideration of nonlinear processes to 

include the cases in which a(w) and b(w) are complex valued and 

hence result in an induced gain (or loss) in the nonlinear medium. 

This gain results in what is commonly known as the "stimulated scatter­

ing of light". <3
) Physically such a process involves the coupling of 

a strong electromagnetic wave onto the molecular vibrations of the 
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medium which in turn couple energy back into a wave at a different 

frequency and result in gain. In Section H.l we shall use the model 

of Equation (H.l) to examine the dependence of both stimulated scat-

tering of light and induced refractive index changes on the polariza-

tion and frequency separation of the incident fields involved in the 

interaction. 

-In order to assess the role of R_
3

(t) in the processes des-

cribed above we again employ Maxwell's equations to arrive at the 

wave equation (Equation (3.3)) 

2 2 
v2E'(r) + w n (w) E'(r) 

-w- 2 -w-
e 

2 
_ 4nw P' (r) 

2 -3 w -c , 
(H. 2) 

Since the primary interest is now in light scattering processes and 

induced changes in refractive index, we choose to write the field in 

the form of two monochromatic components; thus, 

E(t) = Re{E ei(K·r-stt) + E ei(k•r-wt)} (H.3) 
- 41 -w 

Employing Equation (H.3) in Equation (2.20) we find that P3 ,w(E) may 

be written symbolically in the form 

(H.4) 

Here ~3 (-w,w,n,-n) is the fourth rank tensor whose components are 

ijld x
3 

(-w,w,n,-n) and the three dots indicate that the dot product is 

taken between the fields and the susceptibility tensor K3 . Sub­

stituting Equations (H.3) and (H.4) into Equation (H.2) we may solve 

for k2 (w) to find that 
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2 2 
w n (w) { 24rr A* ( n n)•A *} = 

2 
1 + -

2
- ew·~3 -w,w,il,,-i), :e~ (H. 5) 

c n 

where = E !IE I --w w is the unit vector specifying the polarization of 

E --w 

Assuming that the nonlinearity is small, we may expand Equation 

(H.5) to find that the nonlinearity produces a real index change at 

frequency w which is given by 

cSn(w) 12rr A* x··A EE* = -- e • ·e n(w) w 3· w ~ (H. 6) 

and an intensity gain corresponding to an_ imaginary index change 

g(w) (H. 7) 

I d II Here x3 an 43 are the real and imaginary parts of the nonlinear 

susceptibility tensor _x
3 

and g(w) is defined by the relation 

IE 12 = IE 12 egz 
--w --w z=O 

(H. 8) 

for a wave vector k along the z axis. 

It is noteworthy to recognize that Equation (H.5) yields the 

exact solution for k2 (w) and the induced index change whereas Equa-

tion (H.6) gives the same estimate which was obtained through Equations 

(3.5) and (3.20). The gain (or loss) defined by Equations (H.7) and 

(H.8) forms the basis for stimulated light scattering processes. ( 6, 8) 

Both the induced refractive index change and the induced gain 

are functions of ~ = n - w and of the polarization properties of ~ 

and E 
-w 

In Section H.l we shall consider this polarization and the 
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frequency dependence as it is determined by the model of Equation (H.l). 

H.l The Dispersion and Polarization Properties of !3(t) 

Since the nonlinear polarization cubic in the electric field 

strength is characterized by Equation (H.l) we would expect that this 

relation along with the physical models of Chapter IV which yield 

specific forms for a ' a(t) and b(t) would completely determine 

the manner in which the medium would react to the field of Equation 

(H.3). Since the medium is assumed to be isotropic, the third order 

nonlinear polarization is specified by the three susceptibility tensor 

elements x1122 , X1221 , and X1212 , which may be shown through Equa-
3 3 3 

tion (5.6) to be given by 

x 1 1 2 2 
( -w, w, n, -Q) = L (a + 2a + b ( - ~)) 

3 24 

x1221(-w,w,n,-n) 
3 

;
4 

(cr + 8 + b(-~)) 

x~ 212 (-w,w,n,-n) = ~4 (cr + 2a(-~) + 8) 

(H. 9) 

(H.10) 

(H.11) 

where, in contrast to Table 5.1, we have retained the nuclear terms 

of frequency -~ = w - n ' but again dropped optical terms of higher 

frequency. 

Substitution of Equations (H.9) through (H.11) into Equations 

(H.6) and (H.7) characterizes the polarization properties for induced 

gairr and refractive index changes. The results of this substitution 

have been tabulated for four special cases in Table H.l: (1) ~ 

linearly polarized with E I IE ' (2) -w -n linearly polarized with 

~ .l ~ ' (3) ~ circularly polarized with E 
-w circularly polarized 

in the same direction, and (4) .§n circularly polarized with ~ 



oX(w) g(w) x cn(w) on(w)x n(w) 

2nl~l 2 

1~1 2 4nwl~l 2 

~"~ 6X1111(-w,w,n,-n) - -h1:a11 (-6) + b" (-6)} ~4 {30+2(a+B)+2(a'(-6) 
3 12 

Linearly + b I (-6))} 
Polarized 

~l~ 6X 1122 (-w,w,n,-n) 
-b" (-6) ~4 {a + 2a + b I ( -6)} 

3 24 
Linearly 
Polarized 

I 

6X1122(-w,w,n,-n) - L{2a"(-6)+ b"(-6)} ~4 { 20 + 2a+B+2a' ( -6) 
I-' 

~same as~ co 
24 ()'\ 

I 
Circularly + 6X1212(-w,w,n,-n) + b I (-6)} 
Polarized 

En opposite E 6X1122(-w,w,n,-n) -b"(-6) ~4 ( 20 + 2a+B+2b' ( -6)} - -w 3 12 
Circularly + 6X1221(-w,w,n,-n) 
Polarized 3 

TABLE H.l 

a(6) =a' (6) + ia" (6) b (6) = b I (6) + ib 11 (6) 
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circularly polarized in the opposite direction. 

In examining the table, it is difficult to obtain a full under-

standing of the gain and refractive index change relations independently 

of the specific forms of a(-6) and b(-6) for the various nuclear 

rearrangement mechanisms. Hence these forms already given in Chapter 

IV are again tabulated in Table H.2 in terms of the real and imaginary 

parts of a(6) and b(6) for each mechanism. 

Clearly many conclusions may be drawn from Tables H.l and H.2 

concerning the polarization and spectral behavior of the induced refrac-

tive index changes and induced gain which are a result of each of the 

mechanisms. We shall not discuss all of the implications of these 

results but rather note several interesting and important consequences 

of these results. 

Firstly, we note that a , a = a(O) and S = b(O) are all real 

quantities. Hence the gain is always zero for 6 = 0 • <9) It is also 

interesting to note that the gain function obeys the same symmetry 

restrictions held by the spontaneous light scattering cross section. 

For example, in the common case of "depolarized scattering"t it is 

noted that the ratio of spontaneous light scattering intensities 

polarized parallel and perpendicular to the input polarization respec-

tively is given by I I I I IJ_ = 4/3 • Indeed we see that for this case 

- -b(t) = -3a(t) and thus It will be shown in Appendix 

I that the induced gain functions bear a proportionality relationship 

to the spontaneous light scattering cross sections. This suggests the 

tScattering is depolarized if (in a plane perpendicular to the input 
polarization) the light scattered parallel to the input polarization 
111 divided by the light scattered perpendicular to the input polariza­
tion attains its maximum possible value, 4/3. 



Reorientation 

Raman Effect 

~ 

Libration 

Stimulated Scattering 
Process 

Stimulated Rayleigh 
Wing Scattering 

Stimulated Raman 
Scattering 

Stimulated Libra­
tional Scattering 

a(6) = a' (6) + ia" (6) 

-N(a -a )2 
2 1 

45(1+ 62 2 (l+ i6T ) 
TR) R 

N ( 45s2 _ 2y/) 
90µ ((n~ -l 2) 2+6 2r2) cn~-l2 +ilf) 

2 2N(a2-a1) 

15((G - 162) 2+ 62A2) 

x (G - 162+ i6A) 

TABLE H.2 

b(6) = b' (6)+ ib"(ll) 

N(a -a )2 
2 1 

15(1+
6

2 2 (l+ iM ) 
TR) R 

3NljJ
2 

45µ((n 2-62) 2+ 62r2) 
0 

x (n2 -6 2 +i6f) 
0 

2N(a -a )2 
2 1 

5((G - 162)-:2_+_
6
_2_A_2) (G-lti

2
+i6A) 

I 
I-' 
00 
00 
I 
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ability to determine a(6) and b(6) through light scattering studies. 

The cases of circular polarization in Table H.l are of particular 

interest. Assuming b(t) -3~(t) it is seen that g /g = 1/6 • 
same opp 

Consequently a circularly polarized "pump beam" will produce stimulated 

light scattering into a polarization which is circularly polarized in 

the opposite direction. This is in marked contrast to the linearly 

polarized case where the gain is highest in a direction parallel to 

that of the incident polarization. 

Examining the real refractive index change induced by the circu-

larly polarized wave we find that 

n same 
n opp 

2cr + 2a + f3 + 2a
1
(-6) + b' (-6) 

2cr + 2a + f3 + 2b' (-6) (H.12) 

Hence in contrast to the case of the perpendicularly polarized linear 

polarization case, the induced refractive index change is equal if the 

difference frequency 6 = n - w is such that a'(-6) and b'(-6) are 

negligibly small compared to the other terms in Equation(H.12). This 

suggests the interesting possibility of measuring the nuclear contri-

butions a'(-6) and b'(-6) as a function of 6 by performing an 

a.c. Kerr effect experiment with a circularly polarized Kerr field ~ 

inducing the refractive index change. A linearly polarized probe field 

E will then experience no rotation in the absence of a contribution -w 

from a'(-6) and b'(-6), however, a rotation of the field will yield 

a direct measurement of the quantity 2a'(-6)- b'(-6) • 

It has already been shown for the case of two perpendicularly 

polarized plane waves that on
11 

I onl. is very much different for the 

two cases 6 = 0 and 6 ~ 0 • Likewise for the case where 6 = 0 
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for two circularly polarized components 

on same 
xll22(-w,w,w,-w) + xl212(-w,w,w,-w) 

on opp X1122(-w,w,w,-w)+X1212(-w,w,w,-w)+2x1221(-w,w,w,-w) 
3 3 

= a + 2a + S 
2cr + 2a + 3S 

which is clearly different from the result of Equation (H.12). 

(H.13) 

This 

illustrates the importance of recognizing and keeping track of the 

terms which arise due to degeneracies in the field components when 

making calculations of induced gain and refractive index changes. 
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APPENDIX I 

Relating the Scattering Cross Section to 

the Nonlinear Polarization 

I.O Photon Representation of Light Scattering 

In Appendix H we derived a classical expression for the gain 

which is induced in an isotropic medium by an intense optical field 

E • The classical treatment was fully justified on the basis that the 

intense optical fields involved in the interaction assured that each 

radiation mode was well populated. (lO) By employing this formalism to 

calculate the forward gain in the stimulated scattering of a linearly 

polarized beam ~ pumped by another linearly polarized beam ~ 

which is polarized parallel to it, we find from Equation (H.7) that 

the intensity gain g ll(w) may be written in the form 

-4rrw " jE 
1
2 

gl l(w) = cn(w) XR
11 
~ (I.l) 

Here the imaginary part of the Raman susceptibility Xiii for scatter­

ing into this mode is given by 6 Im{x 1111 (-w,w,n,-n)} and the Stokes 
3 

shift ~ is Q - w • In fact it should be noted that this expression 

is valid not only for forward scattering in the direction of the pump 

beam, but for any direction in which the polarization of the scattered 

wave is parallel to that of the pump ~, i.e., for k in the y-z 

plane of Figure I.I. Since the time averaged pump intensity In may 

be written as 

= (I. 2) 



y 
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where is the number of incident photons in the mode volume v 

and n(Q) is the refractive index at frequency n , we may express 

the gain in terms of the pump photon population and write 

-128rr 4 -Ile <n >X" 
Q Rll 

(I. 3) 

where .A = 2rrc/w • w The growth equation for the Stokes intensity may 

then be written in the form 

(I.4) 

where 

Although Equation (I.4) expresses a classical model for the 

induced gain in the Stokes wave, it is suggestive of an equivalent rela-

tion which may be derived for the interaction of a system of harmonic 

oscillators (phonons) with an electromagnetic field. (ll,lZ) Since each 

of the nuclear mechanisms proposed in Chapter IV may be modelled in 

terms of the vibration of some coordinate of nuclear rearrangement, we 

may develop a quantum mechanical model for the medium by quantizing 

each coordinate of vibration to give a phonon-like representation of 

the medium. (l3) The growth equation for <n > w then takes the form 

d <n > 

dzw = ~ {wemission - wabsorption} 
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= K {j <n(")-1, n +l, n +lja(")a+a+jn("),n, n >j 2 
w I I ~' w p a w p ~' w p 

-j<n,.,+l, nw-1, n -lja~a a jn("),n ,n >j 2} 
~t p ~G W p 3' W p 

= K {<n(")>(<n >+l)(<n >+1)- (<n(")>+l)<n ><n >} 
WI I ~' w p ~' w p 

(I.5) 

Here the emission and absorption rates for Stokes photons, W i i em ss on 

and W are given in terms of raising "a+" and lowering "a" absorption' 

operators for the photon and phonon modes which are initially in a state 

<n("),n ,n > where the three arguments denote the occupancy of pump, 
~' w p 

Stokes, and phonon states respectively. The constant of proportionality 

for the scattering process K was obtained classically in Equation 
w11 

(I.4) which is seen to be equal to Equation (I.5) in the classical limit 

where <n > >> 1 
w and It is particularly noteworthy that 

K is the same constant applied both to the emission and absorption 
wll 

processes in Equation (I.5). This is necessary to satisfy the condi-

tion that d<n >/dt = 0 w in thermal equilibrium. The processes which 

are described by Equation (I.5) are shown diagrammatically in Figure 

I.2 which is intended to give a pictorial visualization of the opera-

tion of raising and lowering operators. It is clearly seen that the 

'!>tokes scattering" process represented by the first term of Equation 

(I. 5) involves the "annihilation" of a pump photon and results in the 

"creation" of a Stokes photon and an added phonon (represented by the 

dot moving to the upper state). Conversely, the anti-Stokes scattering 

process described by the second term of Equation (I.5) involves the 

"annihilation" of a Stokes photon and a phonon to "create" a pump 

photon. The factors of "l" which distinguish Equation (I.5) from 
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Equation (I.4) are seen to account for the spontaneous emission terms 

in the quantized field and in the phonon mode. (ll) Hence Equation 

(I.5) is seen to be a generalization of Equation (I.4) which includes 

terms in the quantum limit, i.e., spontaneous emission terms. 

In order to see the relationship of the Raman susceptibility 

x 
Rll 

to the light scattering process, we take the limit of Equation 

(I.5) where only the incident field ~ is appreciably populated. 

This yields the relationship for the case of spontaneous Raman scat­

tering of lightt. Hence we may write 

d<n > 
w 

dz 
= K <n,...,>(<n > + 1) 

Wll H p 
(I.6) 

Since the source of energy for the scattering process described by 

Equation (I. 6) must come from the "pump mode" <nn> , one would expect 

that we may write an expression analogous to Equation (I.6) which 

describes the attenuation of the incident field. For the sake of 

completeness, we could include in this new expression a term which 

would describe scattering into the pump mode <nn> from the mode at 

w' = n + 6 • Hence following an argument analogous to that which was 

used to obtain Equation (I.4) we find that the population of the pump 

mode <nn> is characterized by the relation 

t 

< n,...,> < n > + K,..., < n , > < n,...,> 
~' w ~' 11 w ~' 

('I. 7) 

Here the term Raman scattering is used in its more general sense 
where it refers to any light scattering process involving a frequency 
shift. 

' 
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where 

= 

and 

Here we note that the same 
II 

XR
11 

may be used to express ' K , K("'\ 
wll all 

and K since 
n11 

Im X1111(-W,w,n,-n) 
3 

is only a function of the dif-

ference frequency ~ = n - w and is odd in ~ since the nonlinear 

response tensor must be real; see Section 2.1. 

In a manner analogous to that used to arrive at Equation (I.5) 

we may obtain a quantum mechanical equivalent of Equation (I.7). 

Developing this relationship and specializing it to the case of spon-

taneous Raman scattering from the incident wave ~ whence 

and <n ,> , we find that w 

= - K 1 (<n > +l) <n("'\> - K("'\ <n > <n("'\> 
n 11 P ~' a 11 P ~' 

(I.8) 

Here the first term describes spontaneous scattering into the Stokes 

mode at frequency w and the latter term describes scattering into 

the anti-Stokes mode at frequency w' = n+~ • Integrating this rela-

tion directly to obtain <nn> we find that 

where 

-rrz 
e 

(<n >+l) + K("'\ <n > • 
P ~' 11 P 

I (Io 9) 

If it is assumed that the thermal 
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equilibrium of the system remains undisturbed by the incident field, 

a Bose-Einstein distribution may be employed to specify 

which case we find that(l4) 

IT K { 1 } 
nil --fi~ 

ekT -1 

<n > 
p 

in 

(I.10) 

Recalling that the definition of the scattering cross section cr for 

scattering into the Stokes and anti-Stokes modes polarized parallel to 

the input wave is given by the expression 

-N cr z 
= <1\"2> I z=O e v (I.11) 

where N is the number density of scatterers, we see immediately v 

that the scattering cross sections for these two modes may be written 

in the form 

( 

1-e kT 

(I.12) 

Here the subscripts denote the Stokes and anti-Stokes cross sections 

respectively . Clearly Equation (I.12) yields a relationship between 

the scattering cross sections into a single radiation mode polarized 

parallel to the incident field and having a frequency shift of ~ 

and the Raman susceptibility x" - 6 Im(X1111(-w,w,n,-n) • Rll - 3 
By a 

' 
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completely parallel development, relations which are equivalent to 

Equations (I.11) and (I.12) may be derived to relate the scattering 

cross sections a 
J_s 

and a 
J_aS 

to the Raman susceptibility 

II 

XR = 
l 

6 Im{x 1122 (-w,w,n,-n)} for scattering into a single mode which 
3 

is polarized perpendicular to the polarization of the incident field. 

Examination of the gain relation, Equation (H.7) indicates that these 

expressions for scattering into the perpendicularly polarized modes 

are valid not only for forward scattering, but for scattering in any 

direction in space. 

I.l Relating the Total Light Scattering Cross Section to the Nonlinear 

Susceptibility 

Theoretically Equation (I.12) along with Equations (H.9) through 

(H.11) which relate the nonlinear susceptibility to the nuclear response 

functions establishes a direct relationship between the light scatter-

ing cross sections for the parallel and perpendicular modes of scat-

tering and nuclear response functions a(~) and b(~) • Hence 

information regarding these functions may be obtained by measuring the 

scattered intensities. Experimentally however it is useful to obtain 

a knowledge of the variation of the scattered intensity with the 

direction of scattering and also to integrate Equation (I.12) over a 

finite frequency band since the scattered intensity which is actually 

measured will invariably be into more than one radiation mode. 

The angular integration for the modes which are polarized 

perpendicular to the input polarization are straightforwardly treated 

since these modes exhibit a scattering cross section which is indepen-

dent of the direction of scattering, as was previously noted. Hence 
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the scattering cross section is obtained by replacing the symbol 11 II 11 

with the symbol "l_ 11 in Equation (I.12). In contrast it may be seen 

from Equation (H.7) that scattering into the modes which exhibit a 

component of polarization parallel to the direction of polarization of 

the incident beam exhibit a scattering cross section which is maximum 

in the plane perpendicular to the incident field (y-z plane in Figure 

I.l) and drops off as 2 cos ~ when the direction of scattering deviates 

from this plane by an angle ~ • The radiation pattern may thus be 

interpreted as that which is produced by an induced dipole along the 

direction of polarization of the incident field. (l5 ,l6) 

In considering the spectral integral over all of the frequency 

modes into which scattering may occur, we first recognize that the 

density of radiation modes per unit solid angle per unit frequency in 

by (ll) the volume V is given 

dp(w) 
d0 dw 

vw2
n

3 (w) 

(2Tic) 3 (I.13) 

Hence the total scattering cross sections per unit solid angle for 

Stokes and anti-Stokes scattering are given by 

00 

do Ti~ 
= I 0 lls(n, 6) 

dE~ O -6~ d6 dG dG d(Q-6) (I.14) 

and 0 

00 

dcrT I las 
= J 0 1ias (Q,~) 

dE(n+6) d6 d0 d8d(n+6) (I.15) 

0 

Equivalent relations for scattering into the perpendicularly polarized 

modes are obtained by simply replacing I I with 1 in Equations (I.14) 

and (I.15). 

' 



Generally a j js (s-2, !J.) and will exhibit a number of 

resonances which arise as a result of the various nuclear contribu-

tions which were modeled in Section 4.2. For the sake of simplicity 

we shall consider the case where the single mode scattering cross sec-

!J. = !J. 
0 

tion exhibits only a single resonant frequency at In the 

case where more resonances exist in the cross section, we recognize 

that the results are additive. Practically speaking, however, x" R 

will be most strongly affected by the mechanism which produces a 

resonance in the cross section in closest proximity to the Stokes 

shift !J. = n - w of interest. 

In order to evaluate Equations (I.14) and (I.15) we first recall 

that the single mode scattering cross sections are related to the Raman 

susceptibility by Equation (I.12). Hence the relations (see Equations 

(H. 9) through (H.11)) 

= 6 Im x1122 (-w,w,n,-n) 
3 

= l b"(-!J.) 
4 

(I.16) 

(I.17) 

may be employed to evaluate Equations (I.14) and (I.15) for specific 

forms of a(-!J.) and b(-!J.) • It is immediately evident from these 

relations that the "depolarization ratio"(l6) is given by the relation 

Since 

(J 

T 
lls 

-
(J 

J_s 

= 
2{a" (-!J.) + b" (-!J.)} 

b II (-/J.) 

4 
T = 3 for a "depolarized scatterer", we must have 

(I.18) 

b" (-!J.) = 

-3a"(-!J.) for this case. It is also evident from a comparison of 

Equation (I.18) to Table H.l that T is also given by the ratio of 

' 
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Raman gains 

T = (I.19) 

as we had claimed in Appendix H. 

The explicit evaluation of Equations (I.14) and (I.15) are par-

ticularly simple in two cases of experimental importance. 

Case 1. 'fill >> kT 
0 

In the first case the resonant frequency fl at which 
0 

ja"(-Ll)j 

and I b" (-fl) I attain their maximum values is such that 'fill >> kT , 
0 

the pump frequency n is much greater than the resonance frequency 

fl , and the linewidth of the resonance oll is much smaller than the 
0 0 

resonant frequency fl 
0 

We first note in this case that the equilibrium phonon popula-

tion <n > is much greater than unity. Hence using Equation (I.16) 
p 

in Equation (I.12) and taking the low temperature limit of the Bose-

Einstein distribution one finds 

(Q,fl) = -647T41ld~"(-Ll)+b"(-Ll)} 
NvAnAn_~n (Q-fl) n(Q) v 

exp(-hll/(kT)) (I. 20) 

Again analogous relations for the scattering cross sections into the 

single mode polarized perpendicular to the input polarization may be 

obtained by replacing II with 1 and a"(-Ll)+b"(-Ll) with 

~ b" (-fl) in Equation (I. 20). 

' 
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In using Equation (I.20) to evaluate Equations (I.14) and 

(I.15) it is to be noted that the only significant contributions to 

the integral come from the small frequency band near 11 = /1 where 
0 

the response functions are strongly peaked. It is also to be recog-

nized that the factor exp(-tl.11/(kT)) is slowly varying near 11 
0 

compared to a"(-11) and b"(-11) • Hence we may approximate n ± /1 
0 

by n ± /1 
0 

and replace with 11 
0 

in the exponential factor. The 

total cross section per unit solid angle for scattering into the modes 

polarized parallel to ~ in the scattering plane perpendicular to 

~ is then written in the form 

= 

-32n(n-11)n3 !h{j (a"(-11) + b"(-11))d/1} 
0 

00 -1111 
dcrTllas _-32n(n+l1)n

3
-ri{

0
j(a"(-11)+ b"(-11))dl1} exp(- k~) 

· -de - 3 
Nvl.n+/1 "n n(n) 

0 

(I.21) 

Upon examining Table H.2 it is evident that all mechanisms 

which satisfy the condition 1111 >> kT (T ~ O) exhibit response 
0 

functions which may be approximated near the resonant frequency t:,
0 

by a Lorentzian lineshape of the form 

a"(-11) !:! -n o/1 L(/1) a"(/1 ) 
4 0 0 

(I. 22) 
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where 

L(/J.) 2 
= -

7T 

ot:i 12 
0 (I. 23) 

00 

is the Lorentzian lineshape normalized so that J L(/J.)d/J. = 1 and we 

have assumed a"(/J.) and b"(/J.) to be odd functigns of /J. (see Sec-

tion 2.2). 

Using Equations (I.22) and (I.23) to evaluate Equation (I.21) 

we obtain 

8n(n-!J. )TI~{a"(/J. ) + b"(/J. )}o/J. 
0 0 0 0 

(I. 24) 

(I. 25) 

which establishes the relationship between the nuclear response func-

tions and the spontaneous scattering cross section for this "low 

temperature" case. 

It is to be noted that the ratio of the Stokes and anti-Stokes 

cross sections given by Equations (I.24) and (I.25) is 

dcr II -1 
( T as) 

d0 (I. 26) 

Recognizing that this relationship is for the "photon" scattering cross 

sections and invoking Equation (I.2) to obtain the ratio of scattered 

intensities, we find that 
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dI dI -1 
T 11 s ( T 11 as ) 

d0 d0 
(I. 27) 

where and are the intensities per unit solid angle 

in the Stokes and anti-Stokes modes respectively which are polarized 

parallel to the polarization of the incident wave. Again we emphasize 

that equivalent results apply to the modes which are polarized per-

pendicularly with respect to the input polarization. 

Case 2. kT >> -116 

In the second specific case which we will consider, the thermal 

energy is much greater than the mean Raman shift. This occurs in the 

case of librational scattering at room temperatures or when the scat-

tering arises from reorientational fluctuations or intermolecular 

interactions (redistribution). 

For librational scattering the lineshape is approximated by the 

same Lorentzian curve used in considering Case 1. Here however, the 

kT >>..fl'6 limit is taken in evaluating the Bose-Einstein distribution 

so that it may be approximated by the factor kT/(-U6) for both Stokes 

and 

row 

see 

anti-Stokes cases. Assuming that the linewidth 06 

compared to the Stokes shift 6 that 
-t16 fi6o 

so -~--
kT - kT 

that Equation (I. 24) is modified to the form 

dcrT II as 
d0 

87r
4{a"(6) + b"(6 )}kT 06 

0 0 0 

' 

0 
is again nar-

' it is easy to 

(I. 28) 
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In considering the scattering due to reorientation and redis-

tribution where the line is centered at !:. = 0 we shall approximate 

the lineshape by the Lorentzian response functions which were derived 

for the case of reorientation as shown in Table H.2. Hence writing 

-a"(-ti) = rr~ a(O) L' (!:.) 

-b" (-!:.) = rrf:.. b (O) L' (!:.) 
2 

(I. 29) 

where the Lorentzian lineshape centered about !:. = 0 is now given by 

LI (!:.) 2 = -
l/T 

Tr 

which again is normalized so that 

co 

I LI (f:..)df:.. 

0 

1 and 81:. 
0 

(I. 30) 

2 
= -

T 

Substitution of Equations (I.29) and (I.30) into Equations 

(I.16), (I.12), and (I.14) in succession then yields the result 

= 
16rr4{a(O) + b(O)}kT 

N A.4 
v n 

(I. 31) 

In summary we see that Equations (I.12) through (I.15) provide 

a basis whereby the light scattering in any frequency band may be 

related to the nonlinear response functions a(f:..) and b(f:..) • Two 

specific cases, the low and the high temperature limits, were consid-

ered in which the total light scattering cross sections integrated over 

the frequency band could be related to the nuclear response functions 

a(f:..) and b(f:..) • Moreover, it was noted that the ratio of 
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2(a"(Ll) + b11 (Ll))/b"(Ll) is identical to the experimentally measurable 

depolarization ratio for light scattering T = I 
11

; IJ_ 
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APPENDIX J 

Focusing Optics in the Ellipse Rotation Study 

In Section (6.2) it was noted that one set of samples was 

cut so that the focusing lenses could be kept stationary as the samples 

were interchanged still maintaining collimation of the output beam 

with the focus of the lens system centered in the sample. This con-

figuration is shown in Figure (J.l), where L is the length of the 

sample, n2 its refractive index, f 1 and f 2 the focal lengths 

of the focusing and recollimating lenses respectively in the medium 

with index and and the respective spaces between the 

lenses and sample interfaces. 

In order to calculate the value of i 1 necessary to put 

the geometric focus at the center of the sample we use a ray matrix 

(17,18) 
approach. The input rays are specified by a two component vector 

x
1 

specifying the distance of a ray from the beam axis and the slope 

of the ray with respect to the axis. Thus at the input plane of the 

system 

(J.l) 

The matrices for the focusing lens f
1

, the space i 1 , the inter-

face to n2, and the space L/2 are given by 

(J. 2) 

' 



-2
0

9
-

N
 

' 
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M2 = [: :] (J. 3) 

1 :l] M3 = (J. 4) 
0 

n2 

and 

M4 . [: L:J (J.5) 

respectively. Thus at the focus of the lens fl which is centered in 

the sample (z = 0) 

~~]= [:J = M4 M3 M2 Ml l:J (J.6) 
=-== = = === 

= 

0 

The condition x
5 0 clearly requires that 

(J. 7) 
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which reduces to 

L 
2n 

in the limit n1 = 1 and n2 = n • 

Similarly symmetry tells us that 

(J. 8) 

(J. 9) 

Furthermore it is easy to see from the expression for the slopes at 

the focus that the spot sizes w at the input and output of the 

system obey the relationship, 

(J.10) 

From Equation (J.~) it is seen that the "effective focal length" of 

the focusing lens is 

(J.11) 

Thus the focus is kept at the center of each sample by requiring that 

L take on such a value that 

L(l - ..!..._) = 
2 n 

constant . (J. 12) 
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APPENDIX K 

The Hyperpolarizability of cs 2 

It was noted in Section 6.6 that the electronic parameter a 

in liquid cs2 is less than 1-1/2% of the nuclear parameter s so that 

the ellipse rotation parameter xl221(-w,w,w,-w) 
3 

for cs2 may be deter-

mined by a measurement of its Kerr constant. 

The electronic portion of the Kerr constant is seen from 

Equation (3.21) and Table 5.1 to take the form 

(K. l) 

Experimentally, it is often convenient to specify the electronic param-

eter a in terms of Y the "second hyperpolarizability per mole­

cule". (lg) This parameter may then be corrected for local field ef-

fects and multiplied by the number density of molecules in the liquid 

to yield the result (see Equation (7.13)) 

(B ) _ 2TI {n
2
; 2}4 NY 

o elec - n>.. 3 (K. 2) 

Recent measurements of Y for cs2 have been performed by 

(20) (21) . Mayer and Hauchecorne et al. using two independent techniques 

(1) electric field induced second harmonic generation, and (2) three-

wave mixing, applied to cs2 vapor. 

The second harmonic generation technique, although successful 

in finding y for fifteen other molecules, found y to be too small _!£. 

-37 detect in cs2 (y < 10 esu). The three-wave mixing studies using a ruby 

laser source determined values of -37 y = 35 x 10 esu and 70 x lo-37 esu 

' 
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-1 
using Raman sources of hydrogen (/::, = 4150 cm ) and meth9-ne (/::, = 2914 

cm-1) respectively. Since the ratio of the susceptibility elements 

x1111 (-(w+6),w,w,-(w-6)) = 9a + 4{a(6) + b(6)} (K.3) 
xl221(-(w+6),w,w,-(w-/::,)) 3a + 2b(6) 

should be equal to three for a purely electronic contribution, the 

three-wave mixing signal should exhibit a power ratio of 9 between the 

two modes of polarization which are used to study three-wave mixing 

(i.e., Stokes beam polarized parallel to pump and Stokes beam polarized 

perpendicular to pump). This ratio was found to be 8.5 for the case of 

a hydrogen Raman cell and 19 for the case of the methane cell. Hence 

the value -37 Y = 34x10 esu is likely to have been affected less by 

the nuclear contributions from neighboring Raman resonances in the TWM 

studies. 

Using Y -- 35 x l0-37 esu 1. · · E · (K 2) as an upper imit in quation . 

with N = 1022cm-3 we find (B ) 
1 

< 3.6><10-9 
o e ec -

than 1-1/2% of the total Kerr constant 253 x 10-9 

at 23°c and A = 6943R. 

esu which is less 

esu for liquid cs2 

For the sake of completeness we should like to note that 

Bogaard et al. <22) using a temperature extrapolation of the d.c. Kerr 

constant of cs2 vapor to infinite temperatures, where the effects of 

molecular reorientation should be small, have inferred that 11.3% of 

the Kerr constant of cs2 arises from direct electronic distortion. In 

view of the large range of temperatures involved in the extrapolation 

and the fact that this is an attempt to determine a small electronic 

contribution in the background of a rather significant nuclear 
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nonlinearity, we assess that this estimate is most probably erroneously 

high, and that the other measurements of Y yield results which are 

closer to the true value. 
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INTENSITY-INDUCED CHANGES IN OPTICAL 

POLARIZATIONS IN GLASSESt 

tt ttt A. Owyoung, R.W. Hellwarth, and N. George 

California Institute of Technology 
Pasadena, California 

ABSTRACT 

Using a single mode ruby laser we have made the first 

measurements of intensity-induced changes of the optical polarization 

(ellipse rotation) in solids, viz. fused quartz and Schott BK-7 and 

SF-7 glasses for which we have obtained the nonlinear susceptibility 

values 

-15 c1221(-w,w,w,-w) = 1.5, 2.3, and 9.9 x 10 esu 

respectively. These values are accurate to within 10% relative to 

the value for liquid cs2 which we used for calibration and deter­

mined from other experiments to be 37.8 x l0-14esu to within 2%. 

We also show theoretically that a comparison of these values with 

electric-field-induced birefringence (Kerr) data can determine unique-

ly the fractional contribution to both of purely electronic non-

linearities. Existing Kerr data are only accurate enough at present 

for us to conclude that the electronic nonlinearities might dominate 

our effect. 
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I. Introduction 

A strong, elliptically polarized, optical beam induces an 

optical anisotropy in any normally isotropic medium throueh which 

it passes, and undergoes thereby a change in its state of polar-

ization. Maker et al. first prcd~ctcd and observed the intensity 

induced rotation of the polarization ellipse of a plane wave by 

monitoring the polarization of an elliptically-polarized ruby-laser 

giant ~ulse after it had traversed a liquid-filled absorption cell. 1 

Here we report the first measurements of this inte~sity-induced 

ellipse rotation in solids, viz. fused quartz, BK-7 borosilicate 

crown glass and SF-7 dense flint glass. Being around 10% 

absolute accuracy, these constitute the most accurate measurements 

of any nonlinear coefficients for glasses to date. 

, As we show in Section II, both this effect of "ellipse 

rotation" and also the electric-field-induced birefringence (Kerr 

effect) depend on the (one) nonlinear electronic polarizability 

parameter, and also, but in different ways on another parameter 

that measur.es certain contributions of local nuclear redistribution 

to the effects. Hence these two experiments jointly offer a unique 

po~sibility of distinguishing between the two underlying physical 

mechanisms unambiguously in glasses and liquids. Of all other non­

linear optical effects obsenred in glasses only the purely electronic 

process of third harmonic generation (THG) depends on no other in­

dependent parameters than the two involved in these two effects. 

Wang and Baardsen have measured THG in borosilicate crown glass,
2 

and their result is consistent with ours for BK-7 glass. The great 

difficulty in calibrating this effect led them to estimate their 
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absolute. accuracy to be a factor of three. So there is little signif-

icance in the comparison. 

Maker and Terhune have observed three wave mixing (1'ill1) in 

3 fused quartz, BSC glass and in liquids and crystals. They argued 

that, because no variation in the effect with frequency is observed 

in the glas.scs, it is probably · purely electronic in origin. This 

interpretation of their data is not inconsistent with our results, 

but their experimental uncertainties were too large to confirm this 

conclusion by comparison with ours. The many other nonlinear optical 

effects that have been observed in glasses clearly involve index 

coefficients and physical mechanisms independent of .those of interest 

here. 

In Section III we describe our experimental results and 

the e:>.."Perimental means we have developed to overcome some of the 

difficulties that have arisen in the previous ellipse-rotation studies 

on liquids. When in the discussion of Section IV we use the theory 

of Section II to compare our experimental results with the Kerr data 

4 5 
of Duguay and Hansen on fused quartz and BK-7 glass,' we find that the 

electronic contribution to either effect is not negligible, but the 

un~ertainties in the Kerr data leave the possibility that the nuclear 

contribution may or may not be significant. Other evidence is dis-

cussed which suggests that the nuclear contribution cannot yet be 

ruled insignificant. Implications of our measurements to other non-

linear optical effects are also discussed in Section IV. 

II. Relation Between Ellipse Rotation and Kerr Ef f e cts 

In order to establish the desired relations between certain 
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nonlinear susceptibility coefficients for isotropic media, we use 

,~NL -+ the fact that the nonlinear polarh:ation density .t' (r, t), third 

order in the electric field, may be separated into two parts. First, 

there is an "electronic" part 
->- ->-
p (r,t) which results from a dis­

c 

tort ion of the electron orbits about the nuclei, considered fixed in 

a typical sp3tial conficuration. This polarization responds so 

quickly in transparent media (within several electronic cycles) that 

we may consider the response to be instantaneous for the electro-

magnetic fields of interest. Therefore it may be expressed in the 

form, 

-+ -+ 1 -++ -++ -+-+ 
Pe(r,t) = 2 cr E(r,t) • E(r,t)E(r,t) (1) 

for an isotropic material. This term alone would be responsible for 

third harmonic generation. The electronic nonlinear susceptibility 

coefficient cr exhibits dispersion which is small at the optical 

frequencies we employ and which we correct for when necessary. 

Evidently cr is independent of temperature at fixed density, but 

it varies with temperature at fixed pressure in a way not yet under-

stood. 

The remaining part of pt~L is a nuclear part 
+ + 
P (r, t) 

n 

which is due to the linear response of the electronic currents about 

nuclear arrangements whose statistical probabilities are altered 

slightly in order to lower the average field-crystal interaction 

energy. When (as here) the medium has no absorption near field fre-

quencies and has negligible dispersion, the instantaneous fluctuation 

in this interaction energy density in a small volume (compared to a 

-+ ->--+ #-+ ->-+ 
wavelength) about r may be written -E(r,t)•c£(r,t)•E(r,t)/8~, 
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-<-+ 
where 6E is the deviation from its average of the dielectric per-

ntlttivity tensor appropri3te to the nuclear placements in the neigh-

->- ->- ->- -+>- ->- ->-
b o rhoo<l of r at time t. Since P (r,t) equals 6E•E(r,t)/4u 

n . 

averaged with a weighting function (i.e.,density matrix) expanded to 

first order in the above interaction energy, it is easy to see that, 

for isotropic media, 
-+ 
P must be of the form, 

n 

->--+ -+-+ J 2-+ f-+ -++ +-+ Pn(r,t) = E(r,t) a(t-s)E (r,s)ds + E(r,t)•E(r,s)b(t-s)E(r,s)ds (2) 

Here the scalars a(t) and ~(t) are nuclear response functions for 

the "isotropic" and "anisotropic" parts of the nonlinear polarization 

respectively, formed from the appropriate two-time correlations of 

~ 

components of 6~. It is often useful to think of these functions 

as weighted sums over normal modes (of the nuclear motions) of the 

mode coordinates' temporal response functions. The characteristic 

decay times in these response functions, and hence in a(t) and b(t), 

are several orders of magnitude longer than those for electronic 

nonlinearities. Also a and b are temperature-dependent at fixed 

density. However, no predictions of the temperature dependence for 

specific glasses is yet available, and so there is no known way of 

distinguishing nuclear and electronic contributions to nonlinear 

optical effects in glasses by observing their temperature variations. 

Substituting into Equations (1) and (2) the specific forms . 

->- :..r 
of E(r,t) used in observing various nonlinear effects, we now pro-

ceed to solve Maxwell's equations to see what combinations of the 

infinitude of parameters contained in a(t) and b(t) describe the 

ellipse rotation ·and Kerr effects. 
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Intensity Induced Rotation of the Polarization Ellipse 

To analyze this effect, we assume that there is propagating 

in the medium a z-directed monochromatic plane wave of frequency w 

composed of right and left circularly polarized waves having complex 
,.. ,.. 

vector amplitudes (x ± iy)E±/./2 and propagating with wave-vectors 

and 
->-
k respectively. Substituting such a field in Equations 

(1) and (2), one finds directly that Maxwell's equations are satis-

fied at th.e frequency . w if 

where is the time average of 
+ + 

2E • E, 

(3) 

a : fa(s) ds, $ :; fb (s) ds and n is the (linear) ·refractive index 

at w. We have neglected the terms which are proportional to the 

Fourier transforms of a(t) and b(t) at 2w, because the nuclear 

response at this frequency is extremely small. According to 

Equation (3) the axes of the polarization ellipse rotate by an angle 

a over a distance z so that a fraction 

F(z) = (sin 2¢ sin 8)
2 

(4a) 

of the field at z becomes orthogonally polarized to the field at 

z ~ O; here tan ¢: jE+/E_j and a= (k+ - k_)z/2. In our 

experiments jk+ - k_j << nw/c, whence 

(4b) 
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If focusing is weak enough so that no further self-focusing 

due .to nonlinear effects occurs, then we expect geometrical optics to 

be valid. In this case the ellipse rot4tion angle may be computed 
. z 

for each ray by substituting J2 E
2

(z)dz for E2
z in Equation (4b); 

zl 
here the integral is taken along the ray path. If this integral is 

calculated along an axial ray through the focus of an ideal gaussian 

beam, then 

00 

f E
2

(z)dz = 8TiwP/c
2 

(4c) 

-= 

where P is the total power in the beam. We shall allow our non-

linear samples to completely encompass a focal region so as to take 

advantage of the independence of e on beam geometry indicated here. 

We _will ensure that self focusing and nonlinear absorption effects 

are negligible by confining measurements to low enough powers that the 

6 « E2. dependence of Equation (4b) is observed. 

1 In terms of the "B" coefficient defined by Maker et al, 

in their original description of ellipse rotation, and in terms of 

the appropriate commonly used "c-coeff icients" defined by Maker and 

Terhune.
3 

cr + 2$ = 4"B" = 24c
1221

·c-w,w,w,-w) •. (5) 

Kerr Effect 

In an isotropic materiai a test beam of frequency 

w will exhibit birefringence in the presence of a strong beam 

-r -r 
Ev (r, t) of frequency v. This "electric-field-induced birefringence" 
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is called the "ac Kerr effect" when 'V is an optical frequency, and 

called the "de Kerr effect" when 'V is a radio frequency or lower. 

Both cases are described by a Kerr constant, B, defined by 

2 
27Tc<E > v av 

(6) 

where onll - onJ. is the difference between the induced changes in 

the refractive index paralle~ and perpendicular to the direction of 

EV 0

whose mean square value in time is Again using the 

forms of Equations (1) and (2) in Maxwell's equations, we come di-

rectlyto values for the desired index changes (second order in Ev~ 

that yield 

B = w(a + $)/(nc) (7) 

provided that b(t) has no appreciable Fourier component at 2v 

and lw - vi, as is the case in the experimental works we will cite. 

In terms of the appropriate c-coefficients, 

a+$= 12[c1212 (-w,w,v,-v) + c1221(-w,w,v,-v)j. 

From Equations (4) and (7) come "the important consequence 

that (small angle) ellipse rotati9n measures a + 2$ while the Kerr 

effect measures a + S and together the effects yield the electronic 

parameter a ·and the nuclear parameter $ separately. 

III. Experiment 

1 The first measurements by Maker et al. of ellipse rotation 
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coefficients, which (like subsequent measurements) were done in 

liquids, depended on an estimate of the beam profile for a weakly 

focused multi-mode beam. 6 7 Wang, and McWane and Sealer, found by 

repeating the measurements with more carefully controlled unfocused 

(but multi-mode) beams, .that the earlier estimates had yielded 

coefficients about an order of magnitude too small. In the pres-

·ent n1easurements on glasses we have attempted to avoid some of the 

earlier difficulties in several ways. First we have employed a 

single (transverse and longitudinal) mode beam, calibrated by meas-

uring the ellipse rotation of cs 2 , whose cr + 2$ value we are · 

able to determine to within 2% from other experiments. We have also 

used strong enough focusing of the beam into the sample so as to 

ensure that the entire ellipse rotation takes place within the focal 

volume and to take advantage of the resulting independence of the 

ellipse rotation angle on sample and focal dimensions. This arrange-

ment also allows . the optical intensity at the entrance ·and exit air-

glass interfaces to be much lower for a given ellipse rotation angle ., 

thus eliminating the danger of a nondamaging, absorbing plasma forming 

at the entrance face. As a result we have obtained reproducible re-

sults,-for all glasses studied, while using different focal length 

lenses and samples, and also after using both passive and active 

Q-spoiling techniques. 

The experimental configuration is shown in Figure 1. The 

laser is a water cooled room temperature ruby laser Q-switched with 

a dye of cryptocyanine in acetone. Mode selection is performed by 

aperturine the 9/16 in. diam. x 4 in. ruby to give a 3mm output spot 

employing a sapphire etalon as the output reflector. The laser out~ 
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put ~s ~.05J in a 20ns pulse under a single mode operation. Power 

monitoring of the laser output is performed via a beam splitter 

which directs a portion of the beam to ~n ITT FW ll4A S-20 biplanar 

photodiode. The rest of the bear.1 is coupled through a Rochon prism 

(Pl) to define its plane of polarization prior to its introduction 

into the fresnel rhonili (Rl) which is oriented so as to produce an 

elliptically polarized input of desired eccentricity. The beam is 
. 

then focused into the sample centrally by lens (Ll) and then ,recolli-

mated by lens (L2). A second Fresnel rhomb (R2) is oriented parallel 

to Rl so as to produce a linearly polarized output in the absence of 

ellipse rotation. This is followed by a Wollaston prism (P2) oriented 

to direct a maximum "transmitted" signal into D3 and a minimum "nulled" 

signal into D2 in the absence of ellipse rotation. 

The laser power delivered to the sample is adjusted by moving 

the Schott h_igh power neutral density filters from neutral density 

stack Fl to F2 thus ensuring a constant reference power level into the 

diodes in the absence of a nonlinearity. Any rotation of the polar-

ization ellipse . during propagation through the sample thus reveals 

itself as a relative increase in the "nulled" signal. Monitoring of 

the transmitted beam in D3 reveals any induced changes in the trans-

mission path or changes in the spatial profile of the laser. A He-Ne 
0 

laser operating at 6328A and adjusted collinearly with the ruby laser 

beam was used continuously to ensure proper alignment of the system. · 

The result of a typical run of the three glasses and ~iquid cs 2 is 

shown in Figure (2). The fraction F of orthogonal polarization is 

plotted versus input laser power P, and exhibits the P2 dependence 

of Equation (4). Clearly this could not result if self focusing or 
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absorptive nonlinear effects, which would alter the assumed beam shape 
, • 

in a power dependent way, were occuring to a significant degree. 

In this study as in the Kerr effect measurements, liquid 

carbon disulphide (CS 2) was chosen as the standard to which measure­

ments of ellipse rotation in fused quartz, and Schott BK-7 and SF-7 

glasses were compared. The absolute value of the de Kerr constant 

of cs2 is the best known of any substance and has been determined in 

a recent very accurate measurement by Volkova et al.,to be 3494 ± 

4 x lo-10esu at 546 nm and 23°C. 8 Using the variation of this 

"constant" with wavelength measured by McComb, 9 we obtain for it the 

value 253 ± 5 x l0-9esu at 694 nm and 23°C. Mayer10 and Hauchecorne 

11 et al., have found that cr is unobserable in cs
2 

by a sensitive 

method (second harmonic generation in the presence of astatic field) 

that clearly would observe it directly. One can conclude from their 

data that cr < O.OlS and so, from Equations (5) and (7) we conclude 

that for 

at 694 nm 

-14 cs2 , (cr + 2$)/24 = c1221 (-w,w,w,-w) = 37.8 ± 0.7 x 10 esu 

12 ' 
and 23°C. Because the dielectric constant of cs 2 is 

equal to the square of the refractive index (at 6943A and 23°) to 

within less than 0 .5%, we feel we can negle.ct dispersion corrections 

in inferring the ellipse rotation constant from the de Kerr constant. 

The results of interpreting our F vs P observations with 

Equation (4) are sumi~arized in Table 1 along with ac Kerr, three-

wave mixing data, and the linear refractive indices used in data 

reduction. The coefficients listed have been chosen so that they 

would all be equal to c1221 = cr/24 if nuclear motions and dispersion 

could be neglected. Fortunately for our purposes, cs 2 was also 

used to calibrate the ac Kerr effect observations. Although the three 



-230-

wave mixing effect depends in a diffe r ent way (signified by o) on 
. • . 

a( t) and b ( t), we have listed its measured values also, these being 

the most accurate of other existing related data. 

IV. Discussion 

It is evident from their definitions in Section · II that both 

cr and S must be positive in order that the .electronic and nuclear 

distortions lower the field-sample interaction energy. Therefore 

comparing our results with the Kerr data from Table I indicates that 

tl1e electronic contribution to either effect is not negligible, but 

that the nuclear contribution may be. However, we hesitate to con-

jccture from these resu:)..ts that the relative nuclear contribution is 

in fact negligible, mainly for the followi_ng reason. As is the 

case for liquids, there is a rigorous connection between the Fourier 

transforms at frequency w of the nuclear correlation functions 

a(t) and b(t) and the intensity of light scattered at a frequency 

shift t!,.w 
15 from glasses. This means, for one thing, that the 

nuclear contribution S to the ellipse rotation and Kerr effects 

could be found independently from the depolarized light scattering 

. . (. f l" . d 16) intensity, JUSt as or iqui s • Although the absolute intensity 

of the depolarized scattering from a glass has not yet been calibrated, it 

is known to be roughly as large as that from some liquids in which 

l "b . h K ff 1 b · l7 nuc ear contri utions to t e err e ect are Known to e important. . 

The nucl ear motions which cause electrostriction and which 

appear in the isotropic a(t) term of Equation (2) are well known 

to be i~portant to self-focusing in glasses. It is instructive to 

estimate for comparison the electronic contribution to the commonly 
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used ·nonlinear index for linearly polarized light, assuming that 

all ~f our ellipse rotation results were electronic. From equation 

(3) one has immediately that n2 = 7r(3a/2 + 2$ + 2cx.) /n in general and 

n
2 

= 3TirJ/(2n) for purely electronic effects. With our results in 

Table I this would give -13 n2 = 1.2, 1.7, and 6.9 x 10 esu respective-

ly for fused quartz, BK-7 and SF-7 glasses. These values alone imply 

critical powers for the electronics self-focusing of a Gaussian beam 

in an infinite medium from around. 0.25 to 1.5 MW, close to what is 

expected from transient electrostriction and to what is commonly ob-

served. 

If the nonlinear medium were not isotropic then the rela~ions 

we derived in Section II and all of the foregoing discussion and inter-

pretation which derived from them would not apply. The strain bire-

f ringence that can be observed in some glass samples indicates that 

anisotropic regions may exist within glass samples. We have deter-

mined that such inhomogeneities did not contribute to our results 

(to within our stated errors) from the following observations. First, 

the strain birefringence was too small to be observable in our samples 

which produced extinction of .... 10-3 between crossed polarizers. More 

important, our results were reproducible (within the stated errors) 

when the samples were rotated about the beam axis and when different 

samples of the same glass were employed. 

In summary, we have demonstrated here that intensity-

induced index changes for a monochromatic beam can be seen and meas~ 

ured in glasses, and with an absolute accuracy ( .... 10%) that makes 

quantitative interpretation useful. We have shown that comparison 

of these effects with the electric-field-induced birefringence 
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(Kerr) effect in the same glass can yie ld a unique determination of 

the relative contributions of electronic and nuclear mechanisms to 

these effects, and that existing Kerr data indicate that electronic 

mechanisms must be important in the glasses which we have studied. 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of the experimental arrangement used 

to observe ellipse rotation. BS = beam splitter, 

P-1 = Rochon Prism, P-2 = Wollaston Prism, F-1 and 

F-2 = Schott neutral density stacks totaling N.D. = 4.0, 

F-3, F-4 and F-5 6943A spike filters, D-1, D-2 and D-3 

= ITT FW 114A biplanar photodiodes, R-1 and R-2 = fresnel 

rhombs, L-1 and L-2 =lenses (10-15 cm f.l.). 

Figure 2. Composite graph of F vs P for fused quartz, BK-7 and 

SF-7 glass, and cs2 • Unit abscissa corresponds to an 

absolute power P = 0.6kW and the ordinate 10 corresponds 

to an angular ellipse rotation 0 ~ 2°, both of which are 

cross sectional averages of uncertain precision. (From 

2 
Equation (4) it is noted that for each ray F « a for 

small e). 
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0RIGIN OF THE NONLINEAR REFRACTIVE INDEX OF LIQUID CC14t 

* . ** R. W. Hellwarth, Adelbert Owyoung, and Nicholas George 

California Institute of Technology 

Pasadena, California 91109 

(Received 26 July 1971) 

We report here the first determination for a simple liquid 

(specifically liquid CC14) of the fraction of its Kerr effect that 

arises from the (nearly instantaneous) nonlinear response of its 

electronic currents, and hence would exist even if the nuclei were 

frozen in position. To do this, we have remeasured the power de-

pendence of the rotation of the polarization ellipse of a mono-

chromatic beam in cc14 with greatly improved accuracy (± 10% 

absolute) using a single Gaussian mode ruby (giant pulse) laser. 

We then compare the results of this ellipse rotation measurement with 

existing Kerr data, and, using a general relation between the relative 

electronic contributions to both effects which we demonstrate, we 

show that e4 ± 16)percent of the Kerr effect in CC14 arises from 

nonlinear electronic response. The method should be useful for any 

isotropic material. 
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I. INTRODUCTION 

The second-order nonlinear electric susceptibility tensor 

x(
2) of a material manifests itself in a variety of coIIUilonly ob-

served effects, such as electric-field-induced birefringence (Kerr 

effect). The physical mechanisms which can contribute to this non-

linear susceptibility at frequencies well below any electronic 

absorption frequency are of two distinct types, and contribute 

additively to 
(2) x . An "electronic" contribution arises from a 

nonlinear distortion of the electron orbits around the nuclei, 

1 considered to be fixed in an average or typical arrangement. This 

contribution would be observable,in principle,within a few elec­

tronic cycles (-lo-16s) after sudden application of a strong elec-

tric field, and is independent of temperature at constant density. 

The second, or "nuclear", contribution arises from an electric-

field-induced change in the motions of nuclei; in the presence of 

these changed motions the electronic currents respond linearly to 

the impressed electric fields. 2 This nuclear contribution could 

be observed after the sudden 

a time lapse of the order of 

impression of a field only following 

-12 the time (-10 sec) required for a 

thermal nucleus to move a typical internuclear distance or execute 

a vibrational cycle. These nuclear contributions are generally 

temperature-dependent at constant density. 

Owing mainly to the fact that observed temperature de-

pendences of the Kerr effect (at constant pressure) are generally 

too large to be consistent with the former electronic mechanism, 

it has usually been assumed that the latter nuclear contributions 
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dominate in liquids. 2 However recent measurements of this temper-

ature dependence in various simple liquids (composed of elec-

tronically saturated, non-associating, electrically isotropic and 

neutral atoms or molecules) have yielded dependencies sometimes 

small enough to be consistent with electronic mechanisms being 

important. 3 This is especially evident in the case of the commonest 

and most widely studied of simple liquids: carbon tetrachloride 

3 (CC14). In this liquid, measured light scattering intensities are 

more consistent with its Kerr constant being partly electronic 

4 than not. Furthermore, recent measurements of the purely elec-

tronic nonlinearity in cc14 gas, 5- 7 when extrapolated to liquid 

density by unreliable theory, also suggest that the two classes 

of mechanisms may contribute comparable amounts to the Kerr effect 

in cc14 • Since so much of the interpretation of various data on 

CC14 depends on the relative importance of these mechanisms, we 

have undertaken a more direct measurement of the electronic 

fraction of the room temperature Kerr constant of liquid CC14 using 

a novel technique (discussed in Section II) which we have employed 

previously to answer similar questions about nonlinear optical 

8 effects in glasses. 

We find this fraction to be (54 ± 16)% by comparing 

our measurements (described in Section III) of the power-dependent 

rotation of the polarization ellipse of a monochromatic beam in 

cc14 with previous measurements of its Kerr effect, all in the 

light of a general relation between the two effects derived in 

Section II. Our value for the ellipse rotation is roughly 50% 

higher than that measured previously by Wang9 and over five times 
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10 

that reported by Maker et al., in their original prediction and 

first measurements of this effect. Unlike in these earlier investi-

gations, we have been able to employ new techniques to obtain a 

single Gaussian mode laser beam, a fact which we believe is mainly 

responsible for the discrepancies. 

In our concluding Section IV, we discuss various alternat-

ive methods of separating electronic from nuclear contributions to 

the nonlinear polarization (third order in the electric field), 

including the extrapolation to liquid densities of recent hyper-

polarizability measurements on vapors and absolute measurements of 

light scattering intensities. We argue that our technique of com-

paring Kerr and ellipse-rotation data offers the simplest and most 

accurate method presently available for distinguishing these mech-

anisms in isotropic media. 

II. RELATION BETWEEN ELLIPSE-ROTATION AND KERR EFFECTS 

We outline here how the two classes of mechanisms deter-

mine the ellipse-rotation and Kerr effects in such a way as to allow 

their unique separation by measuring the two effects. More details 

f h . d 1 d 1 i . 1 h 8 ' 11 o t is an re ate re at ons are given e sew ere. 

We start from the fact that the nonlinear polarization 

density 
:tNL -+ 
P (r,t), third order in the electric field, may be separated 

into two parts. First, there is an electronic part 
-+ -+ 
P (r, t) 

e 
which 

results from a distortion of the electron orbits about the nuclei, 

considered fixed in a typical spatial configuration. This polar-

ization responds so quickly in transparent media (within several 

electronic cycles) that we may approximate it by the instantaneous 
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form 

-+-+ 1-+-+ -+-+ -+-+ 
Pe(r,t) = rE(r,t) • E(r,t)E(r,t) (1) 

for any isotropic material. The electronic nonlinear susceptibility 

coefficient a exhibits a small dispersion at the optical fre-

quencies employed which we correct for when necessary. Evidently 

a is independent of temperature at fixed density (although it 

varies with temperature at fixed pressure in a way not well under-

stood). 

The remaining part of -+NL p is a nuclear part 
-+ -+ 
P (r,t) 

n 

which is due to the linear response of the electronic currents 

about nuclear arrangements whose statistical probabilities are 

altered slightly in order to lower the average field-crystal inter-

action energy. When (as here) the medium is nonpolar, has no 

absorption near field frequencies and has little dispersion, the 

instantaneous fluctuation in this interaction energy density in a 

-+ 
volume about r which is small compared to a wavelength may be 

-+ -+ ~ -+ -+ -+ -+-+ 
written -(l/8TI)E(r,t)•o£(r,t)•E(r,t), where OE is the deviation 

from its average of the dielectric permittivity tensor appropriate 

-+ 
to the nuclear placements in the neighborhood of r at time t. 

-+ -+ ++-+ -+ 
Since P (r,t) equals o£•E(r,t)/4TI averaged with a weighting 

n 

function (i.e.,density matrix) expanded to first order in the 

above interaction energy, it must .be proportional to the electric 

field at the same time (t) times a convolution of the square of 

the electric field at earlier times. In an isotropic medium, this 

means that the nuclear contribution to the nonlinear polarization 
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must have the form 

-+-+ -+-+ f 2 -+ f-+-+ -+-+ -+-+ Pn(r,t)=E(r,t) ·a(t .... s)E (r,s)ds+ E(r,t)!E(r;s)b(t-s)E(r,s)ds (2) 

Here a(t) and b(t) are nuclear response functions for the 

"isotropic" and "anisotropic" parts of the nonlinear polarization 

respectively, formed from the appropriate two-time correlations of 

~ 

components of OE. The characteristic decay times in these response 

functions are several orders of magnitude longer than those for 

electronic nonlinearities. Also a and b are temperature-

dependent, both at fixed density and fixed pressure, but in a way 

too poorly understood to yet be useful for the purpose of distin-

quishing nuclear and electronic contributions to nonlinear optical 

effects in liquids by observing their temperature variations. 

Substituting into Equations (1) and (2) the specific 

-+ -+ 
forms of E(r,t) used in observing various nonlinear effects, we 

now proceed to solve Maxwell's equations to see what combinations 

of the infinitude of parameters contained in a(t) and b(t) describe 

the ellipse rotation and Kerr effects. 

Intensity - Induced Rotation of the Polarization Ellipse 

To analyse this effect, we assume that there is propagating 

in the medium a z-directed monochromatic plane wave of frequency w 

composed of right and left circularly polarized components having 

complex vector amplitudes (~ ± iy)E±/12. -+ 
The two wavevectors k± 

corresponding to these components are found by substituting the field 

into Equations (1) and (2), transforming these expressions into the 
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±NL frequency domain, and substituting the resultant expression for P (w) 

into Maxwell's equations i.e., the wave equation in the frequency domain. 

Since the Fourier transforms of the nuclear response functions a(t) 

and b(t) are negligibly small at optical frequencies in E2(t), we 

find that at frequency w, 

(ck±/nw)
2 

a 1 + TI[(cr + 2a + 8)E2 +(a+ 28)jE j2J/n
2 

(3) 
+ 

+ + 
is the time average of 2E • E, a = fa(s)ds, 

B = /b(s)ds and n is the (linear) refractive index at w. Accord-

ing to Equation (3) the axes of the polarization ellipse rotate by 8 

over a distance z so that a fraction 

F(z) = (sin 2¢ 
2 sin8) (4a) 

of the field at z becomes orthogonally polarized to the field at 

z = O; tan ¢ = IE+/E_j and 

lk+ - k_j << nw/c, whence 

8 = (k+ - k_)z/2. In our experiments 

(~) 

If the beam is weakly focused, and 8 << 1 so that no 

further self-focusing due to nonlinear effects occurs, then we expect 

geometrical optics to be valid. In this case the ellipse rotation 

angle may be computed for each ray by substituting 
z2 2 
f E (z)dz for 
zl 

in Equation (4b); here the integral is taken along the ray path. 

If this integral is calculated along an axial ray through the focus 



of an ideal Gaussian beam, we have 

2 
= Bm&/c 
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12 

(5) 

where P is the total power in the beam, In our experiments we take 

advantage of this independence of e on beam dimensions when the 

liquid sample completely surrounds the focal region, measuring 8 by 

measuring the orthogonally polarized fraction F of the emerging beam. 

10 In terms of the "B" coefficient defined by Maker et al., 

in their original description of ellipse rotation, and in terms of 

the appropriate commonly used "c-coefficients" defined by Maker and 

13 Terhune, we see from Equation (3) that 

CJ+ 2$ = 4 "B" = 24c1221 (-w,w,w,-w) • 

Kerr Effect 

In an isotropic material a test beam 

(6) 

+ + 
E (r,t) of frequency w 

+ + w will exhibit birefringence in the presence of a strong beam EV(r,t) 

of frequency v. This "electric-field-induced birefringence" is called 

the "a.c. Kerr effect" when v is an optical frequency, and called 

the "d.c. Kerr effect" when V is a radio frequency or lower. Both 

cases are usually described by a Kerr constant B (not the "B" above) 

defined by 

B = 
w(o11 - 6n.1.) 

2 2nc<E > 
V av 

(7) 
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where on,, - on l. is the difference between the induced changes in 

the refractive index parallel and perpendicular to the direction of 

-+ 
EV whose mean square value in time is 

Again on11 and onl. may be calculated by substituting the 

two monochromatic plane waves into Equations (1) and (2) in the fre-

d . d . :±Np L(w) quency omain an using in Maxwell's equations. Substituting 

the resulting refractive index changes (second order in E) into Equa-

tion (7) we find that 

B = w(cr + S)/(nc) (8) 

Here it is assumed that b(t) has no appreciable Fourier component 

a 2V and lw - vi. In te~ of the appropriate c coefficients, 

cr+S = 12[c1212 (-w,w,v,-v)+c1221(-w,w,v,-v)]. (9) 

Now one can see the important consequence that (small angle) 

ellipse rotation measures a+ 2S, while the Kerr effect measures 

a + S and together the effects yield the electronic parameter a 

and the nuclear parameter S separately. 

III. EXPERIMENT 

In the present ellipse-rotation experiments on CC14 we have 

attempted to avoid the difficulties encountered in earlier such meas-

urements in several ways. First~we have employed a single (trans-

verse and longitudinal) mode beam, calibrated by measuring the ellipse 

rotation of cs2 , whose a+ 2S value we are able to determine to 

within 2% from other experiments. (Fortunately, the Kerr constant of 
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cc14 is also known most accurately in terms of that of cs2.) We have 

also used stronger focusing into the sample so as to ensure that the 

ellipse rotation takes place entirely within the focal volume, thus 

taking advantage of the resulting independence of the ellipse rotation 

angle of sample and focal dimensions. This arrangement also allows 

the optical intensity at the entrance and exit air-glass interfaces 

to be much lower for a given ellipse rotation angle, thus eliminating 

the danger of a nondamaging, absorbing plasma forming at the entrance 

face. As a result we observe a value of F/P2 reproducible to within 

ten percent, while using different focal length lenses, and samples, 

and also after changing the ruby laser beam diameter and employing both 

active and passive Q-spoiling techniques. 

The experimental configuration is shown in Figure 1. The 

laser is a water ·cooled room temperature ruby laser Q-switched with a 

dye of cryptocyanine in acetone. Mode selection is performed by 

aperturing the 9/16" diam. x 4" ruby to give a 3 mm output spot employ­

ing a sapphire etalon as the output reflector. The laser output is 

0.05J in a 20 ns pulse under single mode operation. Power monitoring 

of the laser output is performed via a beam splitter which 

directs a portion of the beam to an ITT FW 114A S-20 biplanar photo­

diode. The rest of the beam is coupled through a Rochon prism (Pl) 

to define its plane of polarization prior to its introduction into 

the fresnel rhomb (Rl) which is oriented so as to produce an ellipti­

cally polarized input of desired eccentricity. The beam is then 

focused into the sample centrally by lens (Ll) and then recollimated 

by lens (L2). A second Fresnel rhomb (R2) is oriented parallel to R1 

so as to produce a linearly polarized output in the absence of ellipse 
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rotation. This is followed by a Wollaston prism (P2) oriented to 

direct a maximum "transmitted" signal into D3 and a minimum "nulled" 

signal into D2 in the absence of ellipse rotation. 

The laser power delivered to the sample is adjusted by 

moving the Schott high power neutral-density filters from neutral-

density stack Fl to F2 thus ensuring a constant reference power level 

into the diodes in the absence of a nonlinearity. Any rotation of 

the polarization ellipse during propagation through the sample thus 

reveals itself as a relative increase in the "nulled" signal. Moni-

toring of the transmitted beam in D3 reveals any induced changes 

in the transmission path or changes in the spatial profile of the 

0 

laser. A He-Ne laser operating at 6328A and adjusted collinearly 

with the ruby laser beam was used continuously to ensure proper 

alignment of the system. 

Figure (2) shows the result of a typical run on the liquids 

cc14 and cs 2 • From this and similar other data we conclude that at 

0 

6943A and 23°C, 

(a+ 2B)/n of cs2 
(cr + 2B) /n of eel ., 56 ± 6 • 

4 
(10) 

Using Equation (8) we find that a previous direct measurement of the 

ratio of the Kerr constants of 

(a+ B)/n of cs2 
(cr + $)/n of cc14 

= 40.8 

and cc14 

± ·o. 8. 

3 gives 

(11) 

0 0 

at 6943A and 23°C, (This measurement, which was performed at 6328A, 
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actually gave 41.6 for this ratio, and we have applied a small disper-

sion correction obtained from the wavelength variation data given in 

the Landolt-Bornstein tables14 .) 

5 6 Mayer, and Hauchecorne, et al.,have found cr to be un-

observable in cs 2 by a sensitive method (second harmonic generation 

in the presence of an electric field) with which they are able to 

observe the electronic hyperpolarizability in fifteen other molecules 

(including CC14). From their data we conclude that cr < 0.01 S 
15 

for cs2 , and so Equations (10) and (11) combine to give for the 

electronic fraction cr/(cr + S) of the Kerr constant of cc14 (at 
0 

6943A and 23°C) 

cr/(cr + S) = 0.54 ± 0.16. (12) 

We can derive from Equations (10) and (11) absolute values 

for cr and S of cc14 with the aid of the recent very accurate 

determination of the Kerr constant of 16 by Volkova, et al·. , who 

found it to be 3494 ± 4 x 10-lO esu at 546 nm and 23°C. Using the 

less accurate data of McComb to estimate the wavelength variation of 

this "constant", we deduce that it is 253 ± 5 x 10-9 esu at 6943A 

and 23°c. 14 Using refractive index values 1.62 and 1.46 for cs2 and 

CC1 4 respectively, the previously mentioned measurements imply that 

cr + s = 100 ± 4 x 10-15 esu (13) 

0 

for .cc14 at 6943A and 23°C. (This value is well within the range 

of values deduced from the literature, and a little more accurate.) 
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IV. DISCUSSION 

. 10 9 Maker et al., and Wang have also measured the ellipse 

rotation constant for both liquids cs2 and cc14 but used multimode 

beams. Their results give 32 and 34 respectively for the ratio of 

Equation (10) instead of 56 as we have found. (Wang's absolute value 

of S for cs2 however agrees well with our value.) However Wang 

believed his relative values for various liquids to be accurate only 

to roughly ± 25% and so the discrepancy is not surprising especially 

in view of the fact that CC1
4

, having a relatively weak ellipse 

rotation, was extremely susceptible to errors from self-focusing and 

other spurious effects. 

One of us has derived a relation between the constant S 

and the total of the depolarized light scattering intensity for a 

classical liquid. 4 Although it was derived on the basis of a micro-

scopic approximation (the linear dipole approximation), we have 

recently shown it to be a somewhat more general theorem than that 

derivation implies, and probably reliable to within a percent or 

11 so. With the six (pre-laser) measurements of the absolute de-

polarized light scattering intensity from liquid cc14 and the exis-

ting Kerr data the theorem predicted that S/(o + S) was between 

0.36 and 0.60 for cc14 , 4 in almost perfect agreement with Equation 

(12). However a laser measurement of the scattering intensity was 

about 50 per cent greater than previous values. 4 There were also 

pre-laser experimentors who disagreed with the scattering values for 

4 other liquids given by the sources of the CC14 data. Therefore, no 

definite conclusions could be drawn at the time. Our present results 
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now lead us to believe that the standard pre-laser literature-values 

for both the depolarized scattering and Kerr constants of liquid cc1
4 

are correct within their limits of error. Furthermore, the strength-

ening of the basis for the scattering - Kerr - effect relation now 

leads us to prefer the "high" values for the light scattering from 

cs2 (and also from benzene) that are quoted many places in the liter-

ature in competition with a large number of experimentors who prefer 

"low" values (about 40% lower). 11 

Attempts to distinguish electronic and nuclear contributions 

to the Kerr constant of cc14 (and other symmetric - molecule liquids) 

by studying its temperature dependence have proved in-

conclusive, mainly because one has no accurate way to calculate the 

dependence in such simple liquids. 

One might hope that picosecond laser pulses could be pro-

duced short enough to "freeze out" nuclear motions and see only a. 

From the frequency width of the depolarized scattering spectrum of 

liquid cc14 , one can see that the nuclear response time of the main 

central component is a good deal shorter than the shortest of present 

laser pulses (-one psc) . But even if this central component could 

be frozen out, the Raman lines which produce a nuclear contribution 

in around l0-13sec would still compete with the electronic mechanism, 

and thus picosecond pulse methods give little promise of distinguishing 

the electronic effect unambiguously. 

Two methods have been used recently to measure the electronic 

hyperpolarizability of cc14 molecules in the vapor phase. Mayer, 5 

6 and Hauchecorne, et al., have measured the second harmonic produced by 

a ruby laser beam in the presence of a static electric field. Bogaard, 
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et al., have measured the Kerr constant of 7 vapor. If we use 

these data in the standard theory of the electronic Kerr effect in 

liquids, with local field corrections, 1 ' 2 we predict a value of a 

for liquid cc14 that is just below the lower limit of Equation (12) 

from the second harmonic measurements and a value just above the 

upper limit of Equation (12) from the Kerr measurements. Considering 

that the standard theory of the Kerr effect for liquids errs common­

ly by a factor of two or more in predicting the nuclear contribution 

from vapor data, it is difficult to say more than that, though in­

consistent with each other, neither of the above hyperpolariaabilities 

may be said presently to be inconsistent with our results. 

Aside from third harmonic generation, which has proven to 

be extremely difficult to calibrate in dense media, we know of no 

methods other than those which we have just discussed for dis­

tinguishing the electronic from nuclear mechanisms in the third order 

nonlinear polarization of liquids. Now that the techniques for 

producing a single Gaussian mode laser pulse have been developed, it 

would seem fairly evident from the foregoing discussion of these 

other methods that the comparison of Kerr and ellipse-rotation constants 

is the simplest and most accurate method presently available for com­

paring the electronic and nuclear contributions to these effects in 

isotropic media. 
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FIGURE CAPTIONS 

Figure 1. Schematic diagram of the experimental arrangement used 

to observe ellipse rotation. BS = beam splitter, 

P-1, = Rochon Prism, P-2 = Wollaston Prism, F-1 and 

F-2 = Schott neutral density stacks totaling N.D. = 4.0, 
0 

F-3, F-4 and F-5 6943A spike filters, D-1, D-2, and D-3 

= ITT FW 114A biplanar photodiodes, R-1 and R-2 = fresnel 

rhombs, L-1 and L-2 =lenses "(10-15 cm f.l.). 

Figure 2. Typical graph of F vs optical power P. Unit abscissa 

corresponds approximately to an absolute P = 0.6kW and 

the ordinate 10 corresponds to an angular ellipse rotation 

of 8 ~ 2° , both of which are cross sectional averages of 

uncertain precision. (From Eq. (4) it is to be noted that 

2 for each ray F ex a for small 8). 
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