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ABSTRACT

Bounds are derived for both the IL2- and L™ -norms of the error in approxi-
mating sufficiently smooth functions by polynomial splines using an integral
least square technique based on the theory of orthogonal projection in real
Hilbert space. Quadrature schemes for the approximate solution of this least
square problem are examined and bounds for the error due to the use of such
schemes are derived. The question of the consistency of such quadrature
schemes with the least square error is investigated and asymptotic results

are presented. Numerical results are also included.
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INTRODUCTION

In this paper we consider polynomial spline approximation techniques based
on the theory of orthogonal projection in real Hilbert space. Splines are used
as the approximations since they have smoothness properties and have been
used to interpolate to large classes of smooth functions with small errors. In
addition, with the proper choice of basis functions, splines give rise to bounded
well-conditioned matrices without orthonormalization. The motivation for the
use of an integral least square technique is the hope that it might generate ap-
proximations which would smooth errors due to "noisy'" data. Interpolation
techniques should be avoided, if possible, when attempting to approximate such

data sets.

We begin, in Section 1, with a discussion of a least square approximation
theory for finite dimensional subspaces of real Hilbert space. In Section 2,
we confine our attention to the Hilbert space L30, 1] with inner product defined

for g,heL30,1] by

1
(8,h) = / g(x) h(x) dx.
0

We consider the finite dimensional subspaces to be spaces of polynomial spline

functions. Standard spline interpolation results are given [14] and then used to



bound the IL2-norms of the least square error and its derivatives. We then
employ the L?-bounds to derive L”-bounds for the same error functions using

a Sobolev type inequality. We discuss the application of techniques based on

this least square theory to empirical data, i.e., tabulated functions. In Sections
3 and 4, we discuss, in detail, the use of certain types of quadrature schemes
for the approximate solution of the least square spline approximation problem
for a tabulated function. We derive bounds for the error introduced into the
least square spline approximation by the use of these quadrature schemes. We
theninvestigate the consistency of the orders of accuracy of the discretized tech-
niques with the order of accuracy of the true integral least square technique.
Asympototic results are presented throughout Sections 2, 3, and 4 wherever
appropriate. Finally, in Section 5, we present some numerical results based
on programs coded in FORTRAN implementing some of the techniques discussed
here as well as the standard discrete least squares technique. These techniques
are compared in their effectiveness in approximating by polynomial splines the

exponential function as well as several discrete data sets of particular interest.



1. THE LEAST SQUARE PROBLEM IN REAL HILBERT SPACE

In this section we formulate the least square problem in real Hilbert space.
We demonstrate the equivalence of this problem to that of solving an appropriate
linear system of equations. The matrix involved is shown to be positive definite
and symmetric thereby guaranteeing that a unique solution to the system of equa-

tions exists. We then conclude that a unique solution to the least square prob-

lem always exists. Finally, we discuss the context in which these concepts are

to be employed in this paper.

Let H be a real Hilbert space with the inner product of two elements f, geH
denoted by (f,g). This inner product satisfies the following properties for all

f,g,heH and any real number «.

i) (af,g) = a(f,g)

ii) (f+g,h) = (£,h) + (g,h)

iii) g = (&9 (1.1)
iv) £ >0 for £ #0
V) (f,f) = 0 for f = 0.

||f - g || defines a metric

1]

Then ||f|| = (f,f)Y2 defines a norm on H and d(f, g)

on H.



Let G be any finite dimensional subspace of H. Then, given any feH, we
wish to find an element geG which minimizes d(f,g) = Hf - gH We call this
problem the least square problem for f € H associated with the finite dimensional

subspace G of H.

Suppose that the elements g,,g,,...,g, form a basis for G.

Leto = (%,...,0,;) and define

n
F@) = Flayy...,Qy) = “f-z:a,g,
i=1

r (1.2)

Clearly, our original problem is equivalent to finding an n-tuple & = (&;,...,&,)

which minimizes F(a). Using the definition of the norm ||- || and the properties

of the inner product (-,-), we find that

n n
F@ = F(ap-'-)an) = (f-z aigi’ f-zaigi) =
i=1 i-1

n n n
(f,f) - 22 ai(f,g,)*“zz aia,j(gugg)
i=1 i=1 j=1

is a quadratic function of the a,, 1 < i < n. Consequently, the partial derivatives
of F with respect to the &y, 1 < i < n, evaluated at such a minimum must equal
zero, i.e., forl1 si<n

3F

n
5o & = 208) *2) ) &,@ng) = 0. (1.3)

31



We shall write this system of equations, known as the normal equations, as

1=

Ao -k =0 (1.4)

where the entries, a,,, of A and the components, ﬁi, of 1_2_ are defined by
a, = (8,8, ky = (f,g), for 1 <1i,j = n. (1.5)

Of course the matrix A is the well known Gram matrix or Gramian of the elements
Byss s+ 8, of H.

The matrix A is symmetric since (g;,g,) = (g;,8,;) for alli,j by property (iii)

of the inner product. Now given any n-tuple @ = (Q3,...,0,)

n n
a'Aa = ZE o0 (8 8))

i=1j=1

n n
= (Zl 48y Z anJ)
1:

=1

2
> 0. (1.6)

n
Z 048y
=1

But equality in (1.6) implies that

n
Z 0,8
i=1




Applying property (v) of the inner product yields

n
Zaigi = (0
i=1

and, consequently, o, = 0 all i, since the g,, 1 = i < n, are linearly independent.
So o'Aa = 0 with equality only if @ = 0. Therefore, A is also positive definite.
But then A has a unique inverse, A™}, and & = A"lg is the unique solution to the
system (1.4). Therefore,
n
g = Z 0.8,

i=1

is the unique solution to the least square problem for f€H associated with the
finite dimensional subspace G = span{g,,...g,} of H. This completes the proof
of the following well known theorem which is true, in fact, for any closed sub-

space G of H and is known as the Projection Theorem.

Theorem 1.1 — Given any feH, the least square problem for f associated

with G always has a unique solution.
Note that our proof of the theorem also provides a potential means by which
such solutions may be obtained.

In later sections of this paper, least square problems in the real Hilbert

space LA[0,1] with inner product



1
(g,yh) = f g(x) h(x) dx
0

will be discussed. These least square problems will be posed with respect to
finite dimensional (sub)spaces of polynomial splines. In the following section
we discuss such spaces of polynomial splines and the least square problem in

this context.



2. THE LEAST SQUARE PROBLEM IN 1°[0,1] WITH RESPECT TO
POLYNOMIAL SPLINE SPACES
In this section we first define the concept of polynomial spline spaces and
state some standard spline interpolation results. We then examine, in detail,
the least square problem in I?[0,1] with respect to these finite dimensional spaces
of polynomial splines. We use LP-error bounds for polynomial spline interpola-
tion to derive both I2- and L -error bounds for least square spline approxima-

tion. We conclude with a discussion of the implementation of this technique.

We begin with the following definitions. For each non-negative integer, N, let

Z[0,1] denote the set of all partitions, A, of the interval [0,1] of the form
A:0:X0<X1<"'<XN<XN+1:10 . (2-1)

Moreover, let#[0,1] = Nijo.%[o,l].

If Ae#[0,1], disapositiveinteger and z is an integer such that-1<z<d-1,
the polynomial spline space, Sp(d, A,z), is defined to be the set of all real valued
functions s(x)e C?[0, 1] such that, on each subinterval [x,,X,,,], 0 < i < N, of
[0,1] determined by A, s(x) is a polynomial of degree d. Here, C"[0,1] is de-
fined to be the set of all piecewise continuous functions on [0, 1] with each discon-
tinuity a simple jump discontinuity at one of the points x,, 1 < i < N. We note
that Sp(d, A, z) € L70,1] and, since I7[0,1] is a real Hilbert space with respect

to the inner product (-,-) defined for g,hel?0,1] by



1
(g,h) = / g(x) h(x) dx,
0

we may study the least square problem for any f €12[0,1] with respect to the
finite dimensional subspace Sp(d,4,z). Theorem 1.1 applies and, consequently,

we know that a unique solution to this problem always exists.

Note also that, ford =2m -1, m 2 1,andm-1sz <2m-2 =d-1,
the definition of polynomial splines given here agrees with that of deficient
splines of [1]. For generalizations of the concept of spline space, the reader
is invited to study [16]. In fact, the polynomial spline interpolation results to
be stated in this section remain essentially unchanged if one allows the integer z
to depend on the partition points x;, 1 i < N, in such a way that

m-1<2z(x,)<2m -2,

As in [1], we define the interpolation mapping.#:C*"*[0, 1]~ Sp(2m - 1,4,z)

by.Zf = s where

’OskSZm-z-z s I =

D'six,) = Di(x,) (2.2)

losksm-1 , i=0,N+1,

The preceding interpolation mapping corresponds to the Type I interpolation
mapping of '[16].
We shall soon need the following basic result on polynomial spline

interpolation.
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Theorem 2.1 — The interpolation mapping given by (2.2) is well defined

for all Ae#[0,1], 1 < m,andm -1 <z < 2m - 2.

Before we state the result which gives bounds for the error in polynomial
spline interpolation, we must first make the following definitions. For each
positive integer, p, let K*[0, 1] denote the collection of all real valued functions,
f(x), defined on [0, 1] such that feC*~[0,1], D® f is absolutely continuous, and
D*feL?[0,1] where Df = df/dx denotes the derivative of f. Also, given any

Aez]0, 1] of the form (2.1), let &= ax(x,+, - X,) and A = min (x,,, - x,). The

m
0<i<N

following theorem is a composite of special cases of Theorems 3.5 and 4.1 of

[14].

Theorem 2.2 —Ietl < m, 0 < N, Ac#[0,1]andletm -1 < z < 2m - 2,

Then, for any feK®[0,1] and 0 < j < 2m,

HDJ(f _‘gmf)”Lz[o’ll = Km,Z,J(K)a_J HI)?mf”LE[O’]_] (2.3)

where



i 8 |

- 112
T~ 112
=[(zj,fr;_n})'] , if2m-2-z<j<m-1,

(z-2+m)! =R
= if j m,

L ’ -

2 [z-2+m)! +2][ (3m)!
(

2—
B EE mo 4m-j)!] A/8)}7" , ifm+1<j<2m-2,

2 +[(z-2+m)!+2] (3m) !
2m - 1) !m me 2m +1)!

- [,
](A/A)m'l, if j =2m-1,

=1 ,if j = 2m.

We note, as does the author of [14], that.#f is not necessarily in K![0, 1] for

z +1 < j < 2m and, in this case, we must define ||D’( -.gf)HLz[O 1 b
s

N . 1/2
S(f -7 = IE -

These interpolation results enable us to give bounds for the L?-norms of the
error and its derivatives in approximating elements of certain classes of func-
tions by polynomial splines using the least square technique of Section 1 of this

paper in the context described at the beginning of this section.

We have confined our attention to L?0,1] with inner product of g,heL3[0,1]

defined by
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1
(g,h) = / g(x) h(x) dx.
0

As we have noted, L20,1] is a Hilbert space with respect to this inner product
since the norm which is induced by this inner product is the L2-norm. Conse-
quently, the least square problem for any f€1°[0,1] with respect to any finite
dimensional subspace of L?[0,1] always has a unique solution. In particular,

if the subspace is a polynomial spline space, Sp(d,A,z), Ae#[0,1] and

-1 < z < d -1, we shall denote the solution §. By definition, § is that element

of Sp(d, A, z) which minimizes ||f - over Sp(d, A,z), i.e., for any

S”Lz[O,l]
s€Sp(, 4, z)

Hf_gHLE[O,l] = ”f-SHLz[O,ll (2.5)

Now, ifd = 2m - 1, feK*[0,1] CL40,1], and m -1 < z < 2m - 2, thenZf isa

well-defined element of Sp(2m - 1, A,z) and, consequently,

< ||£ -4tl|

|| - éHLQ[O,l] 120, 1]

Finally, Theorem 2.2 with j = 0 applied to the right hand side of (2.6) gives

us the following theorem in the case that j = 0.

Theorem 2.3 —Letl <m, 0 < N, AeZ0,1]andm -1 < z < 2m - 2.
For any function feK®[0, 1] € L?[0,1], if § is the least square approximation to

fin Sp(2m - 1,4A,z), then
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1D - 8)ll g, 37 = Copep a4 1078l g

where

Cm,z,d = I{m,z,o ’ lf] = 0’

2m-1)! 7 = . .
Km’z’3+2[(2m—j-1)!] K“az,o(A/é)d’ ifl1<j<2m-1

= I%,z,an’ if j = 2m, and (2.8)
the Km,z,J are given by (2.4).

Proof: We assume 1<j=< 2m - 1 since we have already established the result
of the theorem in the case that j = 0 and it is immediate in the case that j = 2m
since D?"S = 0 on [0,1]. We shall need the following lemma which gives an in-
equality of E. Schmidt that relates the Le-norm of the derivative of a polynomial

to the L2-norm of the polynomial itself. See Appendix A for a proof of this result.

Lemma: Let p,(x) be a polynomial of degree m on [a,b]. Then

(m + 122
|lem||L2[a,b] = b -a Hpm“ Lg[a_’b] L (2°9)

We now proceed with the proof of the theorem. We first use the triangle

inequality to obtain

|| D3 - 8)]| < ||D¥E -2 || + || DYt - §)||L2[0 g @10

130, 1] L30,1]
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recalling that.%f is a well defined element of the spline space Sp(2m - 1,4, z)
to which § also belongs. Applying (2.9) j times to the second term on the right

hand side of the inequality (2.10) we obtain

J
T em - i)
i1

I04AE = BMlzro, g = @s 1M~ Ellapo, y -

3

(2m - 1)! £ a
[(2m - 1)!] @ 4t - S”1,2[0,1]

10 s A g ’
< [T i - el + - 8llgao, )

@m -1 Py e (2.11)
5 2[(2m =] - 1)1] @ |k 'gf”mo,u‘

Combining (2.10) and (2.11) we obtain

3 2

(2.12)
2
< HE = —@Cm-1! . .
1D -%D 1l 200, +2[(2m —7-n1) @7 Al g
Finally. applying Theorem 2.2 to the terms on the right hand side of (2.12)

gives
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HDJ(f - §)HL2[0, 1]

< Koo 107l g )

+2[_(2_m-_1!L]‘(é)-3 Km,t,°(z)au HDanf”Lz[O»ll )

@m -j - 1)!
om - 11 T (2.13)
{Iin,Z,J 8 2[(—25111:11__.]_—):—1?] (A/é)'j Km,Z,O} (A)an"d ” DaanLQ[O’ 1]

the result of the theorem in the case that1 < j < 2m - 1.

We immediately have the following corollary.

Corollary: Given a sequence of partitions { A-‘};l of [0, 1] such that
limj_mzJ = 0, if §,, for each j, is the least square spline approximation in
Sp@2m - 1,4A,z), m - 1< z <2m - 2, to feK*[0,1], then

lim ||f - §J||L2[0,1] = O

Jeteo

If, in addition, (A'/A') < M all j, then, for 1 <k <2m - 1,

lim || D*(f - =

Jee

§J)HL2[0’ 1]

We now introduce a lemma which enables us to derive bounds for the Lm-norm
of the least square error in terms of our bounds for the L2-norm of this same

error.
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Lemma: Let u by absolutely continuous on [a,b] such that Duel?la,b]. Then

”u||L°°[a,b] = ‘/z_(b - a)_l/e ||uHL2[a,b] +"/2_(b - a')l/z ”Du”Le[a,b].

(2.14)

Proof: For any x,x; €[a,b]

X
ux) = ux,) +f Du(§) d¢
Xy

and, consequently,

X
lux)| < fu,)| + f |Du(é) | dg
X

1

X V2
< fuy| + -xll”{ f |Du(£>Fde}

X4

= |11(X1)| +( - a)],/g ”DuHLQ[a’b]‘

Squaring the inequality, we obtain

e = {Juexy - @ - 272 [[Dull g, oV

< 2lux) P +20 - a) |‘Du|‘2L3[a,b]

and integrating both sides with respect to x, yields
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® - < 2P, 0 +20-2° [Du|PL,
Therefore
e P < 20 - )7 [P, o+ 20 -2 lioelRg, o
and so
)| < /2(b - a) Ve HuHLe[a,b] /20 - 2)V2 |lDuHL2[a,b]

from which the result of the lemma follows immediately.
This brings us to the following theorem.
Theorem 2.4 —ILet 1<m, 0 <N, Ae#l0,1] and m - 1 <z < 2m - 2. For any

function feK*[0,1] € L30,1], if § is the least square approximation to f in

Sp(2m - 1, A,z), then, for 0 <j<2m -1,

HDJ(f = §)HL°°[0,1] - C::Z’J(Z)an—.j—l/z ”DaanLe[O,]_] (2.15)
where
C:,z,., = ﬁ[cm,z,m + Cm,z,j(Z/é)l/z]' (2.16)

Proof: feK®[0,1] implies that D¥feK'[x,,X,,,],0 <i< N, 0<j< 2m - 1. Also,
SeSp(2m - 1,A,z) is a polynomial of degree 2m - 1 on each subinterval (XX, 41]
of A, and consequently, D'8¢KYx,,x,,,,0<i<N, 0<j<2m - 1. Applying our

lemma to D¥(f - §) on each subinterval [x,,x,.,] of A we obtain
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|| Dt - §)HLw[x,,xi+1]

< ﬁ(xi+1 - Xi)_va HDJ(f = é)“L@[xi’xi+1]

o2 (®yaq = X)V2 || DI - Ol e x.. ] (2.17)
1981+ d

<VZ@ V2 ||DUE - 8| g 4y +VZ@YE||IDIE - B o e

But (2.17) immediately implies that

|| DXE - 8)]] < max ||DY(f - 8)||

5 () i Lx, x40

(2.18)

S V2@V D - )| g oy VE@Y2|IDE - 8 || g

We now apply the results of Theorem 2.3 to the terms on the right hand side of

(2.18) to yield

”DJ(f _ §)”Lm[0’1]

= ‘\/_2_@—1/2 Cn,z,J(K)a—J H D>f HIP[O, 1]

FZ@Y2Cy @ | DA ) =

VE[Cuyn, o1 * Copr, s (B/AZ @472 || D8 |

the result of the theorem. This completes the proof.
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Again, the corollary is immediate.

Corollary: Given a sequence of partitions { A’ };1 of [0, 1] such that
limj_.m—A.J = 0 and (—A—J/QJ) < M all j, if §,, for each j, is the least square spline
approximation in Sp(2m - 1,4,z), m - 1<z < 2m - 2, to feK®*"[0, 1], then, for
0sks2m-~-1,

lim || DXf -

Pe

§J)”L°°[0,1] = 0.

Setting theoretical considerations aside, we now turn to the practical prob-
lem of actually obtaining such approximations. The proof of Theorem 1.1 im-
mediately leads us to the question of basis functions for the finite dimensional
space of approximating functions. Let {si]iN:S1 be a set of basis functions for the
NS-dimensional spline space, Sp(d,A,z). We note that NS=d + 1 + Nd - z).
In fact, the total number of indeterminates required to define an arbitrary ele-
ment of Sp(d,A,-1) is (N + 1)(d + 1) since we must determine the coefficients
of a polynomial of degree d on each of N + 1 subintervals of A and there are no
continuity constraints. In the case that there are constraints, and here we con-
sider the integer z to depend on the interior mesh points x,, 1 <1i < N, continuity
of degree z(x,) at x,, 1 <1 < N, introduces z(x,) + 1 constraints and consequently
reduces the number of indeterminates by z(x,) + 1. Therefore,

N

N+ 1@+ 1) - Dz, + 1)
i=1

d*l*Nd-% z(xi)

i=1

NS
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which reduces to NS = d + 1 + N(d - z) in the case that z(x,) = z, 1si<N.
Now, for feL?[0,1], we have seen that the least square approximation to f in

Sp(d, A, z) is

NS
s = &,s,
i=1
where & = (&,,...,0y) is the unique solution to the system
Ao -k = 0 (2.19)

where the entries, Ay of A and the components, ﬁv of E are defined for

1<1i,j < NSby

»
1]

]
1 / S ((x) sy(x) dx and
0

1
A / f(x) s,(x) dx.
0

Therefore, in order to actually obtain the least square approxirmation to f in

(2.20)

=
1l

Sp(d, A,z), i.e., calculate the NS-tuple &, we must have numerical values for
the entries of A and the components of _fg as well as an effective technique with
which to solve the system (2.19). Since A is positive definite and symmetric,
the point successive over-relaxation iterative method is guaranteed to converge
and can be used to determine _&_ (cf. [17, p. 59]). Another possibility would be to

use the method of Cholesky (cf. [7, p. 127]). However, if A is also a band matrix,
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which indeed is the case whend = 2m -1, m2> 1, and m - 1<z <2m - 2 for
suitably chosen basis functions (cf.[13]), Gaussian elimination can be used to
efficiently solve the system (2.19). In any case, the zero structure of A deter-
mines the technique to be employed and its rate of convergence. In fact, once

the basis functions for Sp(d,A,z) are chosen, the entries of A may be calculated
directly as they are just sums of definite integrals of polynomials over subin-
tervals [x,,X,4,], 0 <i< N, of A. Of course, the zero structure of A will then be
determined and the appropriate technique can be chosen. The possibility of cal-
culating the entries of g directly seems remote since we may not have a represen-
tation of f which would admit such a calculation. Indeed, in many, if not most,
practical applications, f is a tabulated function, i.e., its value may be known at
only a finite number of discrete points. In such a situation, a quadrature scheme
of some sort must be used to obtain the NS-tuple g, an approximation to E, and

we solve the system
Ag-K =0 | (2.21)

instead of (2.19). Let

where @ = (@,,...,0,) is the unique solution to (2.21). Recalling that the
least square approximation is denoted §, we wish to bound ||§ - §|| in terms of

known quantities in order to consider convergence results as well as the concept
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of consistency in the cases that bounds for ||f - §|| exist. To this end, let L
denote the integral over [0,1] and let L be the quadrature rule used to determine

K, both regarded as bounded linear functionals on C[0,1]. Then
" 1
k, = / f(x) s,(x) dx = L[fsy],
0

1<i=<NS, andk, = Ifs,, 1 <i< NS, and beginning with (1.6), we find that

18-51k 40 oy - @-8 AG-B)

i=1
NS *:
= D @, - &) (Lifsy) - Lifsq)
i=1

1l

_T NS §
(L - L)[fz @, -a, s,]
i=1

1]

(L - T)[£6 - 5)].

We shall use this relation in the next sections in order to develop our main re-

sults, much as a similar relationship leads to similar results in [6].
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3. QUADRATURE SCHEMES OF THE INTERPOLATORY TYPE

In this section we first consider the concept of interpolatory quadrature and
we derive error bounds for such schemes when applied to members of certain
classes of functions. We then describe composite quadrature schemes (based on
interpolatory formulae) which we shall use to obtain approximate solutions to the
least square problems which we discussed in preceding sections. We study the
error introduced into the approximation by the use of such a composite scheme.
We examine the question of convergence for sequences of such approximations.
We then define the concept of consistent quadrature schemes and conclude this

section with an application of the discussion to the case at hand.

As in [8,p. 303], let the n + 1 distinct points T, <T, <***<T_ be given so
that a < T, <b for all j. Then, for any function geC[a,b], we may construct the
interpolation polynomial, P, (x), of degree at most n such that o(t,) = P (,) for

all j. We take

b .
I = / P, (x) dx (3.1)
a

as an approximation to

b
L*o :/ o(x) dx. (3.2)
a
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By using the Lagrange form for the interpolation polynomial

n
P,(x) = ) 8y, O
j=0
where
_ownx) .
Pn,sX) ®-T) w,f(TJ) , for xe[a,b], 0 <j <n,
and

w,X) = X-Ty)x =Ty " (x~-7T,), for xe[a,b],

we obtain from (3.1) the quadrature formula

n
Iro = ) w,, 00, (3.3)
=0
with the coefficients w, , given by

b
Wi / 8,,(%) dx, 0 < j < n. (3-4)
a

Any quadrature formula of this form is called an interpolatory quadrature formula.

We intend to consider the quadrature formula T.of Section2 tobe a composite
rule based on quadrature formulae of the interpolatory type. The followingtheorem

will enable us to bound the error inapproximating anintegral by such a composite
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scheme. This result is quite general and sharper bounds exist for special
interpolatory schemes such as Gaussian and Newton-Cotes quadrature

formulae.

Theorem 3.1 — Let T.* be defined as above. Then, the quadrature error for

any 0eC™" }[a,b] satisfies

|(L* - T¥ 0| = |L*o - T*a| =

b n
/ oft) dt =) w, ,o(r)
a j=0

J:

= Qb - a2 ||p || ©.5)

12[a,b]
where Q is independent of the length of the interval [a,b].

Proof: Clearly (L* - T.*%) p, = 0 for any polynomial p,(x) of degree at mostn.
Consequently, we may employ Peano's Theorem [5, p. 109] to obtain the follow-

ing representation for the quadrature error

b
L*o - T*0 = / D *1lg(t) K(t) dt (3.6)
a
where
1 -
K@) = (L* - 19, [x - 9)f] 3.7)

and
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x-t" , x2t

(x~tR = { (3.8)
0 s X <t

The notation (L* - 1*), means the error functional (L* - T.*) applied to the x-
variable of (x - t}¢ . Now, applying the Cauchy-Schwarz inequality to (3.6) we

immediately obtain

T WA
L*o - L*o| = |D**1g(t) |2 dt Kty dt; =
st b B

vz

b
{ fa |K<t>|2dt; D=0l aga, by e

We shall complete the proof of the theorem by demonstrating that

b 1
/ K3t)dt = (b - a)=*3 / K23(t) dt (3.10)
0

a

where E(t) is the kernel associated with the interpolatory quadrature scheme L*
based on the interval [0, 1] corresponding to T.* under the change of variables

defined by

8= for te[a,b] (3.11)

164y L* is based on polynomial interpolation at the points p, defined by
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p=Ho=,0si2n, (3.12)

over the interval [0,1].

Let us first examine the structure of the kernel K(t). (3.7) and (3.8) imply

that

n!K(t)

‘ b n
(/ (x - P dx - Y w, (T, - )i
a j=0

Il

j b n
(/ (x - t)" dx -Z wn,J(TJ - t)f
t j=0

Il

g e |

n
- tyntl
ib_L o z Wn,J(Tj - t)ﬁ
=0

i n

(t - b)r+?

e +an,5(t-TJ)“,asts'r°
=0

= (_1)n+ 1< it_-__b):—_i

n
n+1 +.Zl:{w“”(t “TYH Ty <t<T,1<k<n,
J:

A n+l
‘n—EIL,T,ftSb.

(3.13)
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Introducing the change of variables defined by (3.11) into the integral

b
/ K2(t) dt,

a

we obtain

|

b 1
/ K2(t) dt = / K3[a +s(b - a)](b - a) ds
a 0

Il

1
(b -a) / K3a +s(b - a)] ds (3.14)
0

since dt = (b - a) ds. But (3.13) implies that

(a+s(b-a)-b)~*1

n
+ ) w, (@+sb-a)-a-p,b-a),
=0

n+1
0 =s = p,
—a)-ph)tl &
n!Kia+s(-a)] = (_1)n+1< (a+S(t:1 +a-?l b) +Ewn,d(a+S(b-a)-a-p3(b-3-))",
j=k

Pe-1 <S8 = pp 1 =k=n,

@+sb=-a)-byr*?
\ n+1

,pn<S$1
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( -1)t1p - nt1l il
= )n +(l;. ; +E wn,J(S—pJ)n(b‘a)n,OSSSpo,
j=0
s-1)"+1(p -g)n+l n
= (-1)n+1< ( )n +®1 ) +Z Wn’J(S—pJ)n(b_a)n’ pk—l <s < pk’
j=k
1.2k < n,
~1\n+1lt —q\nt1l
\(S 1)n+(bl a) oot
(3.15)

n
(18—1!“'” w.
n+l +-Z(:)'}5£_'%(S-ps)n’ 0 =s = py
J:

=i s | ik
= (_1)n+1(b_a)n+1<£ST:lL +Z_%v_i%(s _pj)n’ P <s< Bis
ji=k

1 =k =1y

(s=1)n*?

n_+1

y Pp< s = 1.
However, for any ceC[0, 1]

n
L*o = an’jc(pj)
j=0

where

1
Woy = [ $n,3x) dx, 0 =j <n, (3.16)
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A R

= —p)w'(p)’ for xe[0,1], 0<j=<n, (3.17)
3 n\™y

and

W, (X) = (X = po)(x = py)°** (x - p,), for xe[0,1]. (3.18)

Now (3.16) implies that

b
— o 1 = Wil =g "
Wy = (b'a)'/a. ¢ﬂ,3(b-a) dt, 0 <j<n, (3.19)

under the inverse of the change of variables defined in (3.11). But (3.17)

implies that, for te[a,b],

it~ a
= -a\ _ b-a .
¢“’3(b—a> E (t_,,.1> E,/.rj_a> y 0=j=<n. (3.20)

b-a “\b—a

Introducing the same change of variables into (3.18), we obtain, for te[a,b],

) )

j=0

11

n
1 t
aogm We-1) = 2250, (3.21)
=0
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Consequently

n
—fTy -2\ _ Tu~8 . Ty=a
w“(B-a) 1:‘_T(b-a b—a)

k#j
1 = (7))
R l?r Ty -T) = .(‘l‘)’n__{a)_n. (3.22)
=0
k#

Substituting (3.21) and (3.22) into (3.20), we obtain, for te[a,b],

g LA wy(t) : . :
¢n,:(b & a) =7, @lry $ot) s 0 j<mn, (3.23)

and combining (3.4), (3.19), and (3.23), we find that

® @n, (3.24)

wm = F_—_IE-.

Repeating the derivation of (3.13) for K(s) instead of K(t), we obtain

ot ey o
S +E %’{%(s-pd)“,OSSSpo,
=0

n+1l

e =i nt+l 4
niK(@s) = (-1)n+1<1‘°’n—+)1— £y P2l (5-p)" Py-y < 8 S Py (3:25)
&

1<k =<n,

= n+l
Byt o

\ n+1
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A comparison of (3.15) and (3.25) implies, upon cancellation of n!, that
K@ +sb -2a)) = (b -a)*1K@) (3.26)

which, when substituted into (3.14), yields

b 1
/ K3t) dt = (b - a)>*® f K23(s) ds.
0

a

Combining this with (3.9) gives (3.5), the result of the theorem. Clearly,
‘ 1 Il/? '
Q = l—[ K= (s) ds . (3.27)
0 i

Given partitions A of the form
* . L
Ay : x,ST.,< Ty < STyn < Xy

of the subintervals [x,,X,,4], 0 < i £ N, determined by A, we define the com-

posite rule ) by

N n

To =3 > wh, o) (3.28)
i=0 j=0
in terms of the weights w;, y» 0 = j < n, of the interpolatory quadratures
LY, 0 <i < N, defined over the partitions A;. This brings us to the following
theorem, which can be improved in those cases that sharper bounds exist for

the interpolatory schemes employed in the composite rule.
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Theorem 3.2 — Let A€#2[0,1],N = 0, and let the partitions Af, 0 <i < N, of the
intervals [x,,X,+,] be given. Let Sp(d,4,z), d < n, be a polynomial spline space,
i.e., -1<z<d-1. For feC**}0,1] < K**[0,1] € L0, 1], let § be the least square
approximation to f in Sp(d, A, z), i.e., if {s,}\%, form a basis for Sp(d,4,z) then

NS

6‘131
i=1

n>
I

where @ = (Gq,...,0) is the unique solution to the system (2.19). Finally, let

S be the discretized least square approximation to f in Sp(d, A, z) defined by

n

NS
= O i,
i=1
where é = (’&1, v ,aNS) is the unique solution to the system (2.21) with k deter-

mined by the composite scheme T. defined in (3.28). Then

118 - 81l 5,y = K@*+¥2 (3.29)

where K is a positive constant not necessarily independent of A and, again,

A = max .
A= 0515N(X1+1 X}

Proof: Using (2.22) and applying (3.5) to the corresponding interpolatory
quadrature scheme 'f,*i in each subinterval determined by A with the appropriate

normalized constant denoted Q;, we obtain
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18-51750, 1 = @ -DIEG -]

N
< max Qi E(hj)n+3/2 ‘an+1[f(§ ¥ ’é’)] H
i=0

0<i<N LQ[XJ,XJ+1]
= i n+8/2 || DRt YfS - 3.30
Qj=0 g TG Sl 5 A

where Q= max  Q, and where hy = x,,, -X;, 0 < j < N. However
0<i<N

HDn“’l[f(g i E‘)] HLQ[XJ,XJ'PI]

n+l
o Bl b ~,
D ¥+1f|| o KroeE
< k:0( el D =Dl
d
=C D¥(§ - 3.31
(e Bl @.31

since feC**1[0, 1] implies the existence of the positive constant

C, = max || Dp¥l|| and §,5eSp(d, A, z) implies that § - §'is a polynomial of

O<k<nt1l

Lo,1]

degree < d on each subinterval [xyX ] and so || DX - g)uLali, =0,0<j< N,

Xy +l

d+1<k<n+1. Combining (3.30) and (3.31) and applying Schmidt's in-

equality, (2.9), k times to ||D*@8 - 5) 0sj<N, 1sk<d, we find
LAx,

nx3+1]’

that



N d
Hg-gni?/[(),l] s Q¢ Z }(llj)r +3/2 E(n;)”m(g—E)HLQ[XJ’XJ”]z

N o S

J= k=0

o

d + ¢ - N
e }Z(Hkl>[m(-i_ic)!] { ”g'SHLQ[o,1]‘]_};6(“9“'“3'2

k=0

g s 5 3
RS ;Z(nkl)[(d(—iic)!};' @retye - {185z, 4
(3.32)

sincehjsl,OSjSN, and

N
ZhJ:

j=0

Cancelling the factor ||§ - s from both sides of (3.32), we obtain

SHLa[O, 1]

& _ —n"d+1/
|18 SHLQIO,I] < K@) >

where

k=0

K= Qc- (‘Zd:(nH)[(dd'k ﬂ

is not necessarily independent of A. This completes the proof.
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The following corollary is immediate.

Corollary: Given a sequence of partitions {A’ };:1 of [0, 1] such that

limj_w° A =0, let §J, for each j, be the least square approximation in Sp(d,A’,z),
-1<z<d-1, tofeC**0,1]. Let FC 7,10, 1] be finite. For each j, let '53 be
a discretized least square approximation in Sp(d, A’,z) to f obtained by using a
composite quadrature rule 'ij of the form given by (3.28) where all partitions of

the subintervals determined by A’ over which the interpolatory formulae are

defined, when scaled to [0, 1], are members of the finite set #. Then, ifd < n

lim ||8, = 0.

Jroe

- gﬂ“Lzlo,ll

This means, of course, that the errors introduced into the approximationby the
use of composite schemes of this type tend to zero with _A_J. These errors may

or may not be small compared to ||f - Nevertheless, combining the

é.‘.IHLa[O’ 1]'
corollary to Theorem 2.3 with this last corollary, we obtain the following result.

Corollary: If, in addition to the hypothesis of the corollary just given, we

also assume thatd =2m-landm-1<z<2m -2 =d -1, then

lim Hf— = 0.

e

gdan[O, 1]

We proceed to define the concept of the consistency of quadrature schemes
for the approximate solution of the least square problem (cf. [6]). Let d be any

fixed positive integer and let & be a collection of partitions, A, of [0,1]. For
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each Ae@, let Sp(d,A,z) be a space of polynomial splines and let §A’ the least

square approximation to feL0,1] in Sp(d, A, z), satisfy

||£ - 84l = @®* (3.33)

where H | |N is some norm on L?[0, 1] and.#and £ are positive constants independent
of A. In addition, for each Ae%, let EA, that element of Sp(d, A, z) obtainedasan

approximation to § using some bounded linear functional 'iA, satisfy
~ S f; i
185 = Sally = #'(&) (3.34)

where. %’ and 4’ are positive constants independent of A. Then, the triangle

inequality, (3.33) and (3.34) imply that

I1£="sally = 11£ =841 + 1184 = Sally
N +<7{'(Z)'°'

< ) @t

for all A e since A < 1. Consequently, if min(4,4’) = £, i.e., £’ = 4, the
order of accuracy of the splines EA, Ae¥, as approximations to f is no worse
than the order of accuracy of the spline approximations §5. In this case, we
say that the choice of functionals, T, is consistent in the norm [|* ||y with the

bounds given by (3.33).

The results of Theorems 2.2 and 3.2 immediately give us the following

theorem.
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Theorem 3.3 — Let € =.[0,1], d=2m -1, and m - 1<z <2m - 2. Let
F C #,-1[0,1] be finite. For each Ac?, let the linear functional in (3.28) be
defined in terms of interpolation over partitions of subintervals of Aall of which,
whenscaledto[0,1], are members of #. Then, for feC**[0,1] and 4(2m-1) <2n-1,
m -3 2n+3

2 or m < 3

i.e., n 2 , this choice of linear functionals is con-

sistent in the L*-norm with the bounds for the least square error given by (2.7).

We note that this result can be improved in those cases in which special
bounds exist for the interpolatory formulae which are employed in the composite

rules.
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4. QUADRATURE SCHEMES OF THE FILON TYPE

In this section we investigate the use of quadrature schemes of the Filon type
for the approximate solution of the least square problem in L0,1]. Beginning
with a definition of Filon type quadrature, we note its dependence on interpola-
tion. We derive bounds for the error in approximating the solution of the least
square problem by such a technique in terms of the error in the interpolation
used to define the quadrature. This leads us to the derivation of bounds for the
error in piecewise Lagrange interpolation. We discuss the question of conver-
gence for sequences of approximations based on Filon type quadrature schemes
using this type of interpolation and we conclude with a theorem on the consistency

of such Filon type schemes with the least square error.

Just as in the preceding section, we are faced with the problem of approxi-

mating the components of E, i.e., the integrals

-~

ky

1
/ f(x) s,x) dx , 1 < i < NS,
0

where the splines {s,}ilisl form a basis for the polynomial spline space Sp(d, A, z).
In the last section we considered interpolating the integrands by polynomials and
integrating the interpolates as approximations to the integrals. This method of
approximating the components of E depends only on point evaluations of the basis

functions, s,, 1 < i £ NS, when, in fact, we have explicit piecewise polynomial
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representations for them. In this section we consider quadrature rules based

on interpolating the function, f, by a piecewise polynomial, denoted T, and
using the representations of the basis functions directly in calculating the approxi-
mations to the integrals in question, i.e., we define the vector E, as an approxi-

mation to 1_2_, by
p 1
k, = L(fs,] = / T (x) 8, dx, 1 i< NS (4.1)
0

Quadrature schemes for integrals of product integrands in which only one of the
factors requires approximation are said to be of the Filon type, (cf. [5, p. 62]).
Since T and all the basis functions, s;» 1 i < NS, are piecewise polynomials,
each component of E is just the sum of definite integrals of polynomials and can

be calculated directly. Here, again, we let

n
1
™M Z
A 7))
RN
:m

where Q’ = (&1, b ,ENS) is the unique solution of the linear system of (2.21)

when E is defined by (4.1). We state and then prove the following theorem which
give bounds for the L?-norm of the error in approximating the least square spline
approximation to f by S in terms of the Li-norm, 2 < q < », of the error in approxi-

mating f by the interpolate f.
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Theorem 4.1 — Let Ae#[0,1], N = 0, be of the form (2.1) and let Sp(d, A, z)

be a polynomial spline space, i.e., -1 <z<d-1. For feC[0,1], let § be the
NS
least square spline approximation to f in Sp(d, A, z), i.e., if the splines {S‘}i=1

form a basis for Sp(d,4,z), then

where & = By ,Oy) is the unique solution to the linear system of equations

defined by (2.19). Finally let

be the discretized least square approximation to feSp(d, A, z) where Q = (&1, S ,’&Ns)

is the unique solution to the system (2.21) with E determined by the functional L de-

fined in (4.1). Then, for 2 < q < o,

H§ —EI”LQ[O,I] = Hf—’fv”LQ[O,l]‘ (4.2)

Proof: Beginning with (2.22), just as in the proof of Theorem 3.2, we obtain
for 2 < q < o,
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|18 - EHQLQ[O’ 1 (L - T)[EB - 3)]

1
f [fx) - Tx)] * [8(x) - 5(x)] dx
0

= ”f_?HLq[O’]_] i H§ _EHLE[O’]_]

Cancelling ||8 - 5| from each side yields (4.2).

L0, 1]
If bounds for the error in the interpolation can be derived, they can be coupled
with the results of Theorem 4.1 to investigate convergence and consistency results
analogous to those given at the end of the preceding section. To be more specific,
we could discuss the convergence of sequences of discretized least square spline
approximations to a function, f, obtained using a Filon type quadrature scheme
based on the interpolate to f. And, for collections of such quadrature schemes,
we could investigate the question of their consistency with our bounds for the L2-

norm of the least square error.

Error bounds for piecewise Hermite (osculatory) interpolation can be derived
using the Peano Kernel Theorem (cf. [4]). In order to obtain such interpolates to
a tabulated function, tables of values of certain derivatives of the function are re-
quiredin all but the linear case. Inorder toavoid this difficulty, we employ piece-
wise Lagrange interpolation for our results based on Filon type quadrature schemes.

We note, however, that this type of interpolation may coincide with piecewise Hermite
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interpolation in the linear case. Using rather general error bounds for Lagrange
interpolation over the interval[a,b] (cf.[12, p. 105]), we are able to derive global

error bounds for piecewise Lagrange interpolation.

We begin with the following definition. For any positive integer s, let P [a,b]
be the set of all polynomials of degree at most s defined on[a,b]. Given any func-

tion feC[a,b] and a partition A* of [a,b] of the form
AY :a<T,<T <+ <T,_,<T,SDh,
let its unique A*—interpolate be the element f*ePs[a,b] such that
f'r) = f(r), 0<j<s.

This, of course, is the standard definition of Lagrange interpolation.

Because of the local character of piecewise polynomial interpolation, we may
focus our attention on the interval [0,1]. For fixed x,€[0,1], the error in this
interpolation, denoted by F and defined for feC[0,1] by F(f) = f(x,) - £'(x,), is
a linear functional on C[0,1]. We note that the definition of F depends on x,
and A*, Following [12, p. 85] in using Lagrange's interpolation formula,
we see that this error functional is an elementary Stieltjes integral, i.e., there
exists a function U(x,x,) of bounded variation with respect to x€[0, 1] for each

X,€[0, 1] such that for any feC[0, 1]

1
F(f) = / £(x) dp(x, x,) (4.3)
0
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In order to give an explicit representation for u(x,x,), let £,(x) e P,[0,1], 0 i< s,

be defined by

L(t) 251,3, 0<j<s,

where 61’ , is the Kronecker delta function. Then Lagrange's formula for the

A™-interpolate of feC[0, 1] is given by

S
*x) = ) £r) 4,x). (4.4)
=0

Consequently, defining p(x,x,), for 0 <7,<x,<T,,;,1,0<j<s -1, by

(

LXK, X,) =§

0, 0=x=<7,,

k
'Zza(xo)’ Tk <X STy 05k=j=1,
i=0

_2 zi(xo) » Ty <X < Xq
1:

4.5)

1=~ LiXy) s Xg S X < Tyyq,

1=0

k
1-D Ay(%)» Ty <X STy, j+1skss-1,
=0

1= hl®) s Ty <x S 1,
i=0
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so that u(x,x,) is a step function with simple jump discontinuities of magnitude 1

at x,and -£,(x) at 7y, 0<j<s, we immediately obtain

1 S
/ f(x) dIJ-(X’Xo) = f(xo) —Z f(TJ) ff'](xo)
0 j=0

]

f(x,) - £'(x,) = F().

This representation implies that Fis a bounded linear functional on C[0,1]. How-

ever, we also have, for any geP [0, 1],

F(g = gy -8"(x,) = 0

since g certainly interpolates itself over A* and interpolation over A* is unique.
We are now in the position to apply the Peano Kernel Theorem (cf.[12, p. 25]) to

the functional F.

We must first generalize the spaces KP[0, 1] defined in Section 2. For any
positive integer p and any extended real number r, 1 <r <, let K»[a,b] be the
collection of all real valued functions, f(x), defined on [a,b] such that feC?~ Y[a,b],
Dr~f is absolutely continuous, and D*f € L7[a,b]. Note that, for all positive integers

p, K»30,1] = KP[0,1] as defined in Section 2.

Theorem 4.2—For 1 < p < s + 1, given any feK?"[0, 1], then, for any fixed

X,€[0,1], the functional of (4.3) can be expressed as

1
F() = f(x) - f (x) = / DPf(t) Kpw ,(tsX,) dt (4.6)
0
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where

]

Ko, it

(x=tp? 1 - =1
F{(p_l } / ix—)l)—'dp,(x,xo). (4.7)

We remark that F, in (4.7) means the application of F to {(x-t)27Y/(p - 1)1}
considered, for fixed t, as a function of x, and, as usual,
‘(x ~t)rl, x =2 t,
(® -t =
0 T,
The explicit representations (4.4) and (4.5) allow us to determine the kernels
Kax, 5 (tsX,) although they are by no means uncomplicated in all but the linear case.
Formula (4.5) implies that u(x,x,) is of bounded variation on [0, 1], uniformly
with respect to x,€[0, 1], i.e., there exists a constant K dependent on A* but
independent of x, such that Var u(x,x, < Kall x,x,¢[0,1]. Thus, as | (x-t)"‘1|
is bounded on [0, 1] x [0, 1], it follows from (4.7) that the kernel, KA*,p(t,xo), is
uniformly bounded on [0,1] x [0,1]. Consequently, if 1/r + 1/r’ = 1, then the

function

‘ 1 /vt
gA',Pﬂ‘(XO) = (/ |KA§,p(t,X°)|ﬂdt
0

is an element of 11[0,1], 1 < q < », and we can define the constant CA* b rq by
b

1 Va
CA', Dyryd = / | gA*, p,r(xo) ‘q dxo
0
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Then, applying Holder's inequality to (4.6) gives

|fxg) - £5xg)| = || D] (o) (4.8)

L7[0, 1] BA%es

and integrating the q-th power of both sides of (4.8) with respect to x, gives, with

the definition of cyx the following corollary to Theorem 4.2 (cf.[12, p. 105]).

3Py ?

Corollary: For 1<p<s +1, given any feK»"[0,1], then
*
”f ok HLQ[O,I] % CA*, p,ryq HDprLr[O,l]

for 1 < ¢, r < =,

We now obtain the analogous result for the interval[a,b]. For anyfeK®"[a,b],

1<p=<s+1, (4.6) can be written as
1
f(a+xo[b—a])—f*(a+xo[b—a]) = (b-a)"/ Drf(a +t[b -a]) Kae ,(t,%x,) dt
0

where 0 < x, < 1. Consequently, we have a second corollary to Theorem 4.2.
Corollary: For 1 < p < s +1, given any feK™»"[a,b], then

Hf = f*|‘L°-[agb] = (b i a)p-‘l,/r+]/°l : cA‘yPs"’q ’ ”Dpf”Lr[a’b]

forl < q; r £ o

If A is given as a partition over [a,b], cax will be interpreted to mean

3Py Ty

the normalized constant defined over [0, 1].
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We are now in the position to estimate the global error inpiecewise Lagrange

interpolation. Given a partition At of the interval [a,b] of the form
Bria = X, <X < vev X, < X453 = b
and partitions A’: of the subintervals [x,,X,,,], 0 <i< N, of the form
Al tx, = Tap X Tpa €200 2 Tgs ® Bouy
we define the (A;)*-interpolate to feC[a,b] by
Tx) = f;® , x€[X,X,4,], 0 <1< N,

where £ is the Af-interpolate to f as defined earlier in this section. Note that
T need not be continuous at the points x,, 1 =i < N, although continuity at x, is

guaranteed by T,_, , = X, = Ty 4.

In the following theorem, we give bounds for the global error in (A7) A

interpolation.

Theorem 4.3 —For 1 <p<s +1, given any feK®"[a,b], if T is the (A;)*-

interpolate to f as defined above, then

e = Fllpapg,py @GPV Ye - max cpg et D%l Ly, 1y (49)
foranyq=>r, and, ifl1 < q<r,
||£ -T’HLq[a,b] < @7Vt (b - 2)rTeV . max o HDpf”Lf[a,b]‘

(4.10)
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Probf: With the definition of K*"[a,b] and the hypothesis of the theorem, it

is clear that D*f ¢ L'[a,b] and f - fe If[a,b] for 1<gq< . For 0 <i<N, let

1/q

Xq+1
B = / |£t) - Tk at
Xy
and
% Vr
w, = / | DPE(t) |7 dt
Xy
Then, from the second corollary to Theorem 4.2, we have, for 0 <i < N,
Vaq

Xi+1 i
v, = / |£t) - £ t) |2 at
Xy

_ =~1/r=1/q . .
S (Xyeq = X)F CA% pyrya © Wi

Here, the constants CA%,p,rpa BTE interpreted to be the normalized constants de-

fined over the interval [0, 1] in terms of the appropriately scaled partition. But

then
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b Va
WE-Tl fapa = %f [t®) - Tty P dt}
a

Vaq
\f(t) -Top dt}

e
1l
o
w
N4

N )Vq f N Ve
= %U‘}j < lg [(X1+1—X1)P—]/f+]/q a cA*i,p,r,q . w1]
1= 1=
N Vq
A \p—Vr+1/q . . a
< Ay MAX Gt e § Wi (4.11)

For q = r, Jensen's inequality [ 2 , p. 18] gives

‘ N Vaq N Vr ‘ N X i Ve
> Joafy =43 / | Detcty |* dt
l i=0 i=0 li=0 X,
(4.12)
b Vr

Combining (4.11) and (4.12) gives (4.9), the first result of the theorem. Namely,
for q = 15

Hf_?l”Lq[a,b] = (AT)p—l'/r+1/q s {JE?_?N Ai,p,r,q : HDpf”Lr[a’b]‘ (4.9)

Now, for 1 < q sr, the integral Holder's inequality gives

Hf - ?”Lq[a,b] < b- a)(r—q)/rq ”f i T’HL"[a,b]
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which, when combined with (4.9) in the case q = r, gives (4.10), the second result

of the theorem. Thatis, forl1 < qgq < r,

£ -1l

0<i<N

| S @l - a)rTam . mAK O g - || D]

L%a,b Lf(a,b]

This completes the proof of the theorem.

As a corollary to Theorems 4.1 and 4.3, we have the following result. We
do not employ these theorems in their greatest generality. We assume q = 2

in the first theorem and q = r = 2 in the second.

Corollary: Let Ae#{0,1] and let § be the least square spline approximation
in Sp(d, A, z) to feK?[0,1]. Given a finite subset .#C .#,_,[0, 1] and a sequence of
partitions {A%};l of [0, 1] such that limj_.m KJT =0, let E'J, for each j, be a
discretized least square approximation in Sp(d, 4, z) to f obtained using a Filon
type quadrature scheme based on (An]r)*-interpolation where the partitions of the
subintervals of Aj, scaled to the interval [0, 1], are all elements of the finite

set.#. Then, ifp < s +1,

lim ||8 = 0.

e

- SJHL2[0’1]

~This result tells us that the L*-errors introduced into the approximation by
the use of these Filon type schemes tend to zero with ZJ, These errors may or

may not be small compared to ||f - §|| By combining the corollary to

L30,1]"

Theorem 2.3 with this last result, we obtain the following corollary.
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Corollary: Let {A’};:l be a sequence of partitions of [0, 1] such that
limj_.m K I =0andlet § ¢ for each j, be the least square spline approximation in
Sp@2m - 1,A%2z), m-1<z<2m - 2, to feK®[0,1]. Given a finite subset
#C #,-,[0,1] and a sequence of partitions { A}, };1 of [0, 1] such that limj_mD Zl, =0,
let '55, for each j, be a discretized least square approximation inSp(2m - 1, 4, z)
to f obtained using a Filon type quadrature scheme based on (Ai-)*-interpolation

where the partitions of the subintervals of A} , scaled to the interval [0,1], are

all elements of the finite set #. Then, if 2m < s +1,

lim I\f- 0.

gt

EJ ||m0,1] =

Qur final result of this section deals with the concept of the consistency of
collections of such schemes as defined at the end of the preceding section and fol-

lows from Theorems 2.2, 4.1, and 4.3.

Theorem 4.4 — Let ¥ =.2[0,1], #C &, -.[0,1], .# finite, m - 1<z <2m-2
and, for A €%, consider approximating the least square approximation in
Sp(2m - 1,4,z) to feK*[0, 1] using a linear functional of the form (4.1) based
on (Ar)*-interpolation with ZT < A and the partitions of the subintervals of
A+, scaled to the interval [0,1], all in #. Then this choice of linear functionals
is consistent in the L?-norm with the bounds for the least square error given

by 2.7).
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5. NUMERICAL RESULTS

In this section we present our numerical results based on FORTRAN codes
of the techniques which we have considered in this paper. Listings of some of
these codes and descriptions of their uses are included in Appendix B. Webegin
with a documentation of experiments designed to test the validity of some of the
theoretical results. We follow with examples of least square spline approxima-
tions to data sets which are generally considered to be difficult to approximate
with polynomials. We conclude with least square spline approximations to em-
pirically determined data sets which are of practical interest. Wherever it
seems appropriate, we include comments of computational interest. It seems
appropriate now to mention that all numerical results were computed on a

UNIVAC 1108.

Let A be the uniform partition of [0, 1] with mesh length h = 1AN + 1). Fix
m=1or2andletm-1 <z < 2m - 1. We begin with an examination of the
errors in approximating the exponential function, exp(x) = e*, over [0, 1] by
elements of the spline space Sp(2m - 1,A,z) using four different techniques.

We define the splines §,, 5}, 52, and 53¢ Sp(2m - 1,4, z) as follows:

§, = Least square approximation to exp as defined in Section 2,

'5}1 = Discretized least square approximation to exp based on a composite
interpolatory quadrature scheme as defined in Section 3,

Eﬁ = Discretized least square approximation to exp based on a Filon type

quadrature scheme using piecewise Lagrange interpolation as defined

in Section 4,



54

and

E’a = Least squares approximation to exp based on the standard discrete
technique.

We note that §, canbe obtained since, for the exponential function, we can compute
numerical values for the components of the vector Eof the system (2.19). The
discretized least square approximations, E}q and Eﬁ, are obtained by solving the
system (2.21) where E, an approximation to E, in each case is determined by the
appropriate quadrature scheme. The standarddiscrete least squares technique,
which is used to obtain S%, can be discussed in the context of Section 1 with only
slight modifications. A (discrete) semi-inner product is employed instead of an
inner product, i.e., property (iv) of (1.1), the defining relations for an inner
product, is not satisfied, and the only loss the theory suffers is that the matrix
involved cannot be guaranteed to be positive definite. Of course, the potential
instability in solving the corresponding system must be considered when em-

ploying this purely discrete technique.

Theorems 2.3, 2.4, 3.2, 4.1, and 4.3 are employed to obtain the following

appraisals where K, Kw, K,, and K, are all positive constants independent of hy.

“exp i §NHL2[0,1] s K(hn)e‘ ’ (5.1)
|lexp - §NHL°°[0,1] < Km(hN)?’“Vz . (5.2)
8y - 8l zp, ) = KatRO™ =72, (5.3)

where n is the order of interpolatory quadrature in terms of which '5}‘ is defined,

and
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H§N ™ gﬁ“Lalo’ 1] < Ka(h'r)"l’ (5~4)

where s is the degree of piecewise Lagrange interpolation employed in the Filon
quadrature in terms of which 52 is defined and h; is the mesh width for the distri-

bution of data for this interpolation technique. Combining (5.1) with (5.3 ) yields

llexe - Sl 40,y = (K + Kl lyeinmase 5.5)

and (5.1) with (5.4) yields

llexo - 88| g 3y < [K + KJ{max(hy, hy) i@+ (5.6)

We have nobounds for the error in the fourth approximation. However, for certain
weighted discrete techniques, the results of Section 3 are valid. Explanatory re-
marks are in order. We observe, for example, that the interpolatory schemes
of order n employed in Section 3 are exact for polynomials of degree <n. Con-
sequently, if n 2 4m - 1, composite interpolatory schemes of order n are exact
for products of splines in Sp(2m - 1,4A,z) and, in particular, for the entries of
the least square matrix defined in (2.20). Then, for the discrete technique

with weights from the composite interpolatory scheme, Theorem 3.2 holds and

we have appraisals in these special cases.

Qur first numerical results are presented in Tables 1, 2, and 3. We give
approximate numerical values for the quantities ||exp - §"”L9[0 1 and
’

||exp - §~”L"‘[o 1 for the spline spaces Sp(1,4,,0), Sp(3,4A,,2), and Sp(3,4,,1)
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TABLE 1. LeastSquare Linear Spline Approximation of the Exponential Function

h, llexp - 8ull 2. 15 « llexe - 84ll =0, o
1/2 1.68 + 1072 -- 5.00 + 1072 -

1/3 7.44 - 1073 2.01 2.31 = 102 1.90
1/4 4,18 * 1073 2.00 1.33 107 1.92
1/5 2.68 + 1072 2.00 8.63~ 1072 1.94
1/6 1.86 + 1072 2.00 6.04 *+ 1073 1.95
1/7 1.36 « w0 2.00 4.47 - 1072 1.96
1/8 1.04 * 1072 2.00 3.44 - 107° 1.97

TABLE 2. Least Square Cubic Spline Approximation of the Exponential Function

hy lexp = 8l 216, 13 a llexp - [l =0 4 a
1/2 453 10" -- 182 w4y -

1/3 168 = 1072 2.52 3.11 - 10°° 4.36
1/4 530 107 3.90 1.09 * 10°° 3.66
1/5 2.30 * 107° 3.73 4.81 - 107® 3.65
1/6 p e S [ 3.91 2,40 - 107° 3.82
1/7 6.21 * 107" 3.87 1.35 - 107 3.74
1/8 3.68 + 1077 3.92 8.06 *+ 1077 3.85




TABLE 3. Least Square Cubic Hermite Spline Approximation of the
Exponential Function

hy ”eXP T §"HL2[0,1] « |lexp - §NHL"°[0,1] ]
1/2 4,26 + 107" -- 1.48 - 1074 -

1/3 1684 307 3.20 .74 107" 3.38
1/4 4,32 « 10°° 3.44 R 3.65
1/5 1.94 * 107 3.60 5.65 = 107% 3.7
1/6 9.87 * 1077 3.69 2.81 - 107° 3.83
1/1 5:563 - 1077 3.75 1,85 * 1078 3.86
1/8 3.33" 1877 3.79 9.24 * 1077 3.88




58

for N = 1,2,...,7. Following [6], for each pair of consecutive entries, we

have included the quantity
a = log (Hexp - 8n,||/||exp - §n2\|) /log(hn,/hn,) (5.7)

defined in terms of successive values of the mesh spacing, hn1 > hne. The

motivation for the definition (5.7) is the fact that as hy, - 0 we have
|lexp - 8[| ~ by

for some constants o and.# depending on the norm ||- ||, but not on hy. Then for

two successive values of h, hn1 > hy s
~ N a
llexp - 8n,|1/11exp - 8n,|| ~ (bn,/BnJ
from which the definition of & follows. In the tables enough values of h are given
to see that the computed exponents of (5.7) in the L2-norm are converging to the
asymptotic values given by (5.1), i.e., & ~ 2m. The loss predicted by (5.2) of
1/2 of an order of accuracy in moving from the L2-norm to the L -norm is ap-

parently not realized in this case.

Tables 4, 5, and 6 include, for several values of n, approximate numerical

values for the quantities ||§, - where S} is an approximation in

=

SN‘ |L2[0, 1]
Sp(2m - 1,A,z), m = 1,2,m - 1<z < 2m - 2, to §, determined by a composite
interpolatory formula based on n+l-point open Newton-Cotes quadrature formulae.

Again, we include the quantity a. The order of accuracy predicted by (5.3) as a

function of n and m is n - 2m + 3/2 or (2n - 4m + 3)/2. We observe the following



TABLE 4. Interpolatory Quadrature and Linear Spline Spaces

n=1 n=2 n=3

hy 18 - Bill 0, ¢ 118 - Rllyzy0, 1 & 118 - Sillyor0, A
1/2 3.50 « 107° -- 2.26 - 107* - 2 - 1wt -

1/3 212+ 107® 1.30 6.01 - 1078 3.27 3.11 ¢ 107% 897
1/4 1.37 = 107% 1.53 249 107% 3.51 135 107% 3.51
1/5 9.88 - 1072 1.45 102~ 20" 3.44 5.26 * 107 3.44
1/6 7.54 » 1079 1.48 5.40 - 107 3.48 2,19+ 107" 3.47
1/7 6.01 - 1072 1.48 3.16 - 107° 3.46 1.63 *+ 107© 3.48
1/8 493+ 10°° 1.48 1.99 + 107 3.48 1.02 * 107® 3.50

6S



TABLE 5. Interpolatory Quadrature and Cubic Spline Spaces
n=3 n=4 n=5 n=6 n=17

h, HgN-g}'HLQ[O,I] a \|§N-§}|\Lz[0’1] o ||§N'§§\\mo’1l o Hén'g}aHLz[O’l] o ||§N'§WL3[0,1] o
1/2| 1.59- 1072 |-- 9.13 * 1075 - 5.49 * 107° -- 1.06 - 1077 | -- 6.17 * 1078 | --

1/31 988~ 107* |1atl 227~ 207" 2.94| 1.66° 107° 2.94 1.48 * 1078 | 4.86 9.44 + 107° |4.86
1/4| 5.13:-107% |[2.28| 8.02- 10°° 4.30 | 4.82- 107 4.30 2.40 * 107%. | 6:81 1.54 * 107° |6.31
1/84 "398 167* (L4} 408~ 107% 3.05| 2.44 - 1078 3.05 7.82 - 1070 | 5.03 5.00 - 107 |5.03
1/6] 2.86-10°° {181 2.08 «'107° 3.80| 1.22° 10°® 3.80 2.72 - 107 | 5.80 1.74 * 107 | 5.80
/7] 2.33-107 (1.38] 122+ 107" 3.29| 7.34° 1077 3.29 1.20 + 107 | 5.28 7.70' - 107 | 5.27
1/6}1 188+ 10°% (l.62] 7.65+ 107 3.60| 4.54 - 1077 3.60 5.68 - 107 | 5.63 3.62 - 1071 [5.64

09



TABLE 6.

Interpolatory Quadrature and Cubic Hermite Spline Spaces

n=3 n=4 n=5 n=6 =7
by |I8u-Rllgo gl @ [N8-Bllag yl @ [I8-Fllsg ol @ [18-Bllg | @ [Na-Sllz, 4| @
1/2| 5.90° 1072 | -- 3.82 - 1074 -- 2.30 - 107* -~ 4.63 - 1077 | -- 2.96 - 1077 | --
1/3| 362102 |121} 1.05- 1074 3.19| 6.30 * 10°° 3.19 5.66 - 107 | 5.19 3.61° 10°® | 5.19
1/4| 2.60- 1072 | 1.15| 4.26 * 1075 3.13| 2.56 + 1075 3.13 1.29 - 10™® | 5.13 8.26 * 107° | 5.13
/61 2408 W02 L] 243 WP 3.111 1.28 < 107° 3.11 4.14* 107° | 5.1 2.84+ 107 1 5,11
1/6 | 1.66 -+ 1072 | 1.11| 1.21- 10°° 3.10 | 7.26 - 107 3.10 1.63 + 107° | 5.10 1.04 - 107° | 5.10
1/7| 1.40° 107 | 1.09| 7.51- 107°® 3.09 | 4.51- 107° 3.09 7.46 * 1071 | 5.09 4.76 -+ 107 | 5.09
1/8 121~ 107% 1108 ] 498+ 10°° 3.08| 2.99° 10°° 3.08 3.78 - 1071 | 5.09 2.41 + 107 | 5.09

19
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discrepancies between the observed and predicted values of the order of accu-
racy of this technique in the L2-norm. For the linear spline spaces, Sp(1, &y, 0),
we observe the values of 1.5, 3.5, and 3.5 for the limiting values of & when

n = 1, 2, and 3, respectively, and yet the values predicted by the theoretical
resuits are 0.5, 1.5, and 2.5. We observe, however, that special error bounds
can be derived for odd point (even values of n) Newton-Cotes formulae which
yield an additional order of accuracy. Consequently, we observe a constant
discrepancy of one between the predicted and observed orders of accuracy in
approximating the least square linear spline approximation to the exponential
function using this type of discretized technique. We note that the corresponding
table in the L®-norm reflects the loss of a half of an order of accuracy predicted
by theoretical considerations. However, we have not included this table in this
presentation of our numerical results. In the cubic case, i.e., m =2 and z = 2,
we observe the numbers of 1.5, 3.5, 3.5, 5.5, and 5.5 for the limiting values of
a whenn = 3, 4, 5, 6, and 7and again find discrepancies with the predicted values
of 0.5, 1.5, 2.5, 3.5, and 4.5. Considering the additional order of accuracy for
odd point Newton-Cotes formulae, we again observe a constant discrepancy of one
order of accuracy between the computed and predicted values of . We also note
that a predicted loss of a half an order of accuracy can be observed when the
corresponding table in the L™ norm is computed. Finally, for the cubic Hermite
spline spaces, i.e., m = 2 and z = 1, the observed values of & are tending to
1.0, 3.0, 3.0,' 5.0, and 5.0 for n = 3,4,5,6,7 and the predicted values based on

the special bounds for the odd point Newton-Cotes formulae are 1.5, 3.5, 3.5,
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5.5, and 5.5 just as in the cubic case. However, here we observe the constant
discrepancy of one half of an order of accuracy between the predicted and observed
values for o. In this case, the loss of a half order of accuracy predicted by theo-
retical considerations when using I°-error bounds and Sobolev type inequalities
to generate L” error bounds is not observed. These same discrepancies were
observed in least square approximation of the function sin (2x), 0 S x < 1. The
analogous tables for the Filon type quadrature schemes show no discrepancies
between the predicted and observed values of at. Consequently, we omit them

from this presentation of numerical results.

Corresponding to the spline spaces Sp(1, A, 0), Sp(3,4&y,2), and Sp(3, A, 1),
respectively, in Tables 7, 8, and 9, we present approximate numerical values
, and ||exp -

for the quantities ||exp - |exp -

E%”qu,].]’ | gﬁ”lﬁ[o,l} gﬁ”lﬁ[o,l}

where the quadrature schemes used to determine the discretized spline approxi-
mations are chosen to be consistent with the L2-bounds for the least square error
as given by (5.1). Specifically, the composite interpolatory formula employed to
determine s} ¢ Sp(2m - 1,4 ,,z) is based on (4m - 1) - pt open ended Newton-Cotes
formulae and the Filon scheme used to determine s2is based onpiecewise Lagrange
interpolation of degree 2m - 1. For any fixed value of N, the data points used to
determine the approximations are the same for each technique. Again the quantity,
o, as defined in previous tables is included. We note that both discretized approxi-
mations, S} and E'i, exhibit the consistent behavior predicted by our theoretical
considerations. We also note that the standard discrete least square technique

generates spline approximations, 3, which also exhibit this consistent behavior.



TABLE 7. Consistent Quadrature Schemes for Linear Spline Spaces

b, llexp - Bl 20, 1 o llexp - 8ll 2. o lexe -Sllm0.yy | @

1/2 1.68 + 102 -- 1% JgFe - 1.69 - 1072 -

1/3 7.48 - 1072 2.01 7.62 - 1072 2.00 7.51 ¢« 1073 2.00
1/4 4.18 - 1072 2.00° 4.29 - 1073 2.00 4.23 * 1072 2.00
1/5 2.68 - 1073 2.00 2.76 « 1072 2.00 2.70 - 10”3 2.00
1/6 1.86 - 1072 2.00 1.91 - 1073 2.00 1.87* 1073 2.00
1/7 1.36 - 1072 2.00 1.40 - 1072 2.00 1.38 + 1072 2.00
1/8 1.04 - 107 2.00 1.07 - 1072 2.00 1.05 - 1073 2.00

¥9



TABLE 8. Consistent Quadrature Schemes for Cubic Spline Spaces
hN ”exP o ’gjﬁHLE[O,H o ”exP i E%HLE[O’]_] o HeXp = S%HLQ[O,H a
1/2 4.54 - 1075 - 4,53 « 10°% - 4.64 - 1075 -
1/3 1.63 + 1075 2.52 1.63 - 10”5 2.52 1.63 *+ 10”5 2.58
1/4 5.30 - 1078 3.90 5.30 + 1078 3.90 5.31 - 1078 3.90
1/5 2.30 - 1078 3.73 2496 107" 3.73 2.30 * 107 - 3.74
1/6 1.13 * 107® 3.91 118 * 107% 3.91 1:18 « 10 3.91
177 6.22 * 1077 3.87 622 1077 3.87 6.22 + 1077 3.87
1/8 3.68 «+ 1077 3.92 3.68 - 1077 3.92 3.68 - 1077 3.92

g9



TABLE 9. Consistent Quadrature Schemes for Cubic Hermite Spline Spaces

hy llexp - S a0 1, « llexp - &ll 20, o llexp - Rlz0. 2

1/2 4.26 + 1075 - 4.26 « 107° -- 4.36 *+ 107% -

1/3 1.16 - 1073 3.20 1.16 - 107% 3.20 1.18 - 1075 3.22
1/4 4,32 « 107° 3.45 4.32 - 107® 3.44 4.36 * 107 3.46
1/5 1.94 - 1078 3.60 1.94 - 10°¢ 3.60 1.95 - 107° 3.61
1/6 9.87 + 1077 3.69 9.87 * 1077 3.69 9.93 - 1077 3.70
1/7 5.53 « 1077 3.75 5.53 « 1077 3.75 5.56 * 1077 3.76
1/8 3.33 + 1077 3.79 3.33+ 1077 3.79 3.35 + 1077 3.80
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We now turn to the approximation of data sets of special interest. The first
two of these data sets are considered difficult to approximate using polynomials
because of "their inability to take sharp bends followed by relatively flat be-
havior' (cf. [11, p. 15]). In Fig. 1 we present plots of two different spline
approximations in Sp(3,4,2) with A= {0.0, 0.05, 0.15, 0.85, 0.95, 1.0} to the
data points (cf. [15]). On these plots, the knots are denoted A and the data
points +. The upper plot represents a spline whose coefficients were determined
using the standard discrete least square technique. The lower plot corresponds
to a discretized least square approximation determined by Filon quadrature
based on piecewise linear interpolation. Plots of the analogous approximations

for another data set of similar interest (cf. [9]) are given in Fig. 2.

We conclude this section with the approximation of seven sets of data repre-
senting the velocity of sound in water versus depth. Of course, such data de-
pend on many things including longitude, latitude, and the meteorological con-
ditions where and when these velocities were determined. The use of cubic
spline interpolates in ray tracing algorithms as approximations to sound velocity
profiles has recently been investigated (cf. [10]). In Figs. 3 through 9 we pre-
sent plots of two cubic spline approximations to the appropriate data sets. The
techniques used to determine these approximations as well as our notation in the
plots are identical to those of Figs. 1 and 2. We employed the partition
A= {0.0, 400.0, 800.0, 1,600.0, 3,200.0, 6,400.0, 18,000.0} for all splines in

Figs. 3 through 9. We remark that the sparseness of the data for the deeper
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portions of the profiles makes the standard discrete technique unreliable be-
cause of its tendency to interpolate the data when it can. Indeed, the distribution
of the data is the main reason that piecewise linear interpolation is employed in

the Filon quadrature used to discretize the least square technique.
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Appendix A

ON AN INEQUALITY OF E. SCHMIDT

In 1932, E. Schmidt stated without proof the following inequality which relates
the L%norm of a polynomial p,(x) of degree M on [-1, 1] to the L*>norm of its

derivative:
”DpHHLq-l,ll s kﬂ Y M2 . HpM”Lq_l’ll'

In [3], R. Bellman gave a proof that k, < (1/4/2)(M + 1)/M)? (and so

lim sup k, = I/J-Z_ ) based on the Cauchy-Schwarz inequality and properties of
the Legendre polynomials. Employing essentially the same techniques, we are
able to obtain the improved bound, k, < (1/2)(M + 1)/M)?, as well as an im-

proved asymptotic result, lim sup ky < 1/24/2 .

Beginning with the following recurrence relation for Legendre polynomials

(cf. [8, p. 206]), i.e.,
D#,,(x) - D#-,(x) = (20 +1) Z(x)
where # is the n-th Legendre polynomial, we immediately have
3
DZ, = (4k +3) Fry s
k=0

and (A.1)

n
DRy = ) Wk + 1) B,
k=0
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Expressing py(x) in terms of the Legendre polynomials

M
Pu(x) = a, #(x) , (A.2)
k=0

and using the orthogonality relations of the 9;, we find that

1 M 1
f [py@]2dx = ) a2 f Px) dx
-1

k=0 =1

Il

Il

e
2 (A.3)
= 2k + 1

Beginning with (A.2), employing (A.1), and denoting the greatest integer less than

or equal to x by [x], we find that

M
Dpyx) = D a, DZ)
k=0

[M/2] [M-1)/2]
= o, DR 3. Sy DAL
=0 =0

Il

2 (k+3) By Y At Y (kD) B® Y ag,-
0=2k=M-2 r=k+1 0=2k=M-1 r=k

Consequently, applying (A.3) to Dpy(x), we find that
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1 2
/ [Dpy(x)]2dx = 2 37 (4k+3){ X agr}
=1

0=2k=M-2 rxk+1

+2 ) (4k +1){}: aml}z

0<2k<M-1 r=>k

We now bound each of the sums on the right hand side of (A.4).

Setting a, = ((2r + 1) /3?0, we bound the first sum as follows:

- (4k+3){ 3 aer}z =

0=2ksM-2 r=k+1

0<2k<M-2 r=k+1

1/ 2
g 3 (4k+3){2 (fl-r—zﬂ> zbzr}

0<2ksM-2 r>k+1 r=k+1

£3 Y (4k+3)%2 é%t—l}-{z: bgr}

< 2. (4k+3){2(4r+1)}-2b3,

0<2k<M-2 r>k+1 r=0

MM +1)(M+2) (M +3)
8

Z bz, , if M is even,
r=>0

(M=-1) M(M +1)(M +2)
8

> b3, if M is odd.
r=0

A similar calculation yields a similar bound for the second sum:

(A.4)

(A.5)
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2
2 Y (4k+ 1){2 azr”}

0<2k<M-1 rzk
(M-1) MM +1(M + 2) D bZ.,,, if M is even,
8 r=>0
_ (A.6)
M(M + 1)(M +2)(M + 3) 3 b2 if M is odd
) er+1l ? -
r=0

We note that these bounds are due to H. Cheng. We immediately observe that

1 M M 2
MM +1)(M+2)(M +3) ~_ MM+1)(M+2)(M+3) z : 2ak
‘/-:l [DpM(X)]2 dx < ) k::(): b% i 8 & 2k+1

1

MM M+2)M

ey o +3)/ [py(x)]2dx
=1

by (A.3). Consequently,

(M + 1)(M + 2)(M + 3)7¥2
k < [ sM2 ]

and these bounds yield lim sup k, = 1/(2A/E ). In fact, a result of Hille, Szego,
and Tamarkin states that lim ky = 1/7.

However, we may combine the bounds (A.5) and (A.6) in order to obtain a

constant of the same form as that given by R. Bellman.
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We have

1
/ [Dpy (x)]* dx
-1

2 {gM—l) MM+1)(M+2) i M(M+1)(M+2)(M+3)} %
8 8 =0

b2 =

M 2g2 ¢ [t
M+ D+ HEM E BN 25 i+ f [pu(s)]? dx
k=0

8 2k +1 4 1
and so
2
1/M+1
kmsz(M).

We immediately have the following generalization for polynomials defined

over the interval [a, b].

M +1)2
DBl e by = o g 1Pwllzpa, by -
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Appendix B

A CUBIC SPLINE APPROXIMATION PROGRAM — CSPLIT

We shall briefly describe the FORTRAN program CSPLIT and the subrou-
tines on which it depends and remark that this is one program of many which we
have used to investigate the techniques discussed in the main body of this paper.
Note that all special purpose subroutines pertaining to least square approxima-
tion in cubic spline spaces have FORTRAN names beginning with the letter C.
The names of the analogous routines in the linear and cubic Hermite cases
begin with the letters L and H, respectively. All these special purpose codes
are actually quite general allowing us great flexibility in the numerical work
which we wish to pursue. However, there are definite limits on the size of the

problem which we can handle with these programs as they are presently coded.

Given numerical values for the points of the partition A(Z (i), i = 1, NM) and
for the abscissa and ordinate of each data point (X(i,j), i =1, NP, j =1,2),
CSPLIT is programmed to compute the coefficients of both a discrete and a
discretized least square approximation to the data in the spline space Sp(3,4,2)
and to generate a CALCOMP plot tape with which graphs of these approximations
are obtained. We note the use of COMMON statements in all but the general pur-
pose polynomial manipulation routines (POLEX, POLINT, POLVAL, and
LGRNGE) in order to yield access to the main variables to all subroutines need-
ing it. This reduces the number of arguments required for the special purpose

routines. We also note that most of the real variables in the programs are



86

stored in double precision in order to avoid, as much as possihle, rounding
errors in the accumulation of the many inner products which must be calculated

as well as in the solution of systems themselves.

The main program, CSPLIT, coordinates the use of the general and special
purpose subroutines needed to generate and plot the indicated spline
approximations. Listings of CSPLIT and its subroutines are given in Figs. 10
through 21. CINPUT is programmed to compute and store in the SC-array
numerical values for the coefficients of the polynomial representations of the
basis functions for the spline space Sp(3,4, 2). These basis functions have been
chosen so that each has its support confined to at most four adjacent subintervals
of the partition A (cf. [13]). Consequently, the matrices involved in both the sys-

tems which we must solve are band matrices.

A call to the subroutine CDLS filis the A-array and the first column of the
B-array with the numerical values corresponding to the normal systems of equa-
tions for the discrete least squares approximation. CDLS depends on the cubic
spline evaluation subroutine CEVAL. MATINV is called to obtain a solution to
our system using Gaussian elimination. The coefficients of the discrete least
square approximation to the data are found in the first column of the B-array

and are then stored in the second column of this same array.

A call to the subroutine CMTRX fills the A-array with the entries of the

least square matrix. We chose to base the discretized technique on a Filon type
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quadrature scheme which employs piecewise linear interpolation to the data.

A call to the subroutine CFILON fills the first column of the B-array with
numerical values based on our chosen type of quadrature. If we wished to em-
ploy a composite interpolatory type scheme, we would have used the subroutine
CPLATE. Subsequent to a second call to the subroutine MATINV, the first two
columns of the B-array contain the coefficient of the discretized and the discrete
least square approximations to the data in the spline space Sp(3,4,2). Finally,
a call to the subroutine CSPLOT produces the CALCOMP plot tape used to gen-
erate graphs of these approximations. The graphs of the approximations pre-
sented in Figs. 1 through 9 of Section 5 of this paper were generated with the
program CSPLIT (with slight modifications demanded by the different data

formats).
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COMMON Z(20)¢SC(7+22+4)9X(99+2)91B(22+4)rA(22,22)

DOUBLE PRECISION Z*SCeXsBrA
NDATA = 0

READ(S¢10) NM

FORMAT(I10)

FORMAT(8D10,4)

READ(5+40) (Z(I)rI=1sNM)
READ(5¢10) NP

READ(5020) ((X(IvJ)eJ=192)eI=1eNP)
FORMAT(B8FB8.0)

READ(5¢10) MDATA

NDATA = NDATA + 1

CALL CINPUT(NMy0.0)

CALL CDLS(NM/NP}

NS = NM+2

CALL MATINV(NS,1+DETERMe22¢4)
DO 50 I=1,NS

8(I,2) = B(1e1)

CALL CMTRX(NM)

CALL CFILON(NMyNP,2)

CALL MATINV(NS,1»DETERM»2204)
DO 60 I=1,NS

WRITE(6+70) B(Iv1l)eB(Ie2)
FORMAT(/¢2025.16)

WRITE(6,80)

FORMAT(///77)

CALL CSPLOT(NMyNDATA)MDATAINP)
IF(MDATA«EQ,1) GO TO 3n

STOP

END

FIG. 10. Program Listing for CSPLIT.
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SUBROUTINE CINPUT (NMsH)
COMMON Z(20)9SC(7s2204) 1 X(99,2)9B(22+4)1A(22/,22)
DOUBLE PRECISION ZtSCeXsReAsCoUrFoTop
DIMENSION C(9)pnNF(9)»U(993)sK(9+9)F(3),T(40)
Do 10 I=1,7
DO 10 J=1,22
DO 10 L=1,4
10 SC(IrJel) = 0,000
IF(HeEQ.0,0) H = Z2(2)=Z(1)
T(1) = Z(1)=3.%n
T(2) = Z(1)=2e%H
T(3) = 2(1)=H
DO 20 I=1,Nv
20 T(I+3) = z2(1)
IF(HeEQe0,0) H = ZINM)=Z(NM=1)
T(NM+4) = Z(NM)+H

T(NM+5) = Z(NM)+2,%H
T(NM#6) = Z(NM)+3,*H
NF(1) = 1

K(l,1) = 3

NPS = NM+§5
DO 40 I=4,NPS
P = (TUI+1)=T(I))a(T(I+1)=T(I=1))e(T(I41)=T(1=2))%(T(;+1)=T(I=3))
C(1) = (=4.000)/P
DEL:1) = TEI*L)
CALL POLEX(12CoNFoUrKeNyF)
DO 30 J=1,4
30 SClurl=3r4) = F(J)
40 CONTINUE
00 60 I=5,NPS
P = (T(I)=T(I+1)) el T(I)=T(I=1))s(T(I)=T(I=2))s(T(I)=T(I=3))
C(l1) = (=4.0D0)/P
Ultel) = T
CALL POLEX(1eConFoUrKsNyF)
DO 50 J=1,4
50 SC(JUrI=3¢3) = F(J) ¢ SC(JrI=3+4)
60 CONTINWUE
DO 60 I=6,NPS
P = (T(I=1)=T(I+1) ) (T(I=1)=T(I)) (T (I=1)=T([=2))%(T(1=1)=T(I=3))
C(l) = (=4.0D0)/P
UElsl) = TUI=1)
CALL POLEX(1¢CoNFoUrKsNsF)
Do 70 J=1.,4
70 SClurl=302) = F(J) + SC(JrI=3+3)
80 CONTIWUE
DO 100 I=7¢NP5S
P = (T(I=2)=T(I1+1))*(T(I=-2)=T(I)) (T (I=2)=T([=1))%(T(;=2)=T(I=3))
C(1) = (=u.0D0)/P
Utisl) = THI=2)
CALL POLEX(1eCowFolrKetoF)
DO 40 J=1,4
90 SC(Ur]=3r1) = F(J) + SC(JUrI=302)
100 CONTINUE
RETUR:N
END

FIG. 11. Program Listing for Subroutine CINPUT.
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SUBKOUTINE POLEX(NT»CoNFoUrKsNeF)
DIMENSION C(9) o NF(Y)eUI999) 4k (9+9)eP(9+Q) ,NN(9)¢rF(9)
DOUGLE PRECISION CrUrPsF
Do 5 I=1r9

DO 5 J=1+9

P(IsJ) = 0.000

DO 60 JU=1,NT

P(Jel) = ClY)

N=1

IF(NF(J)«EQ,0) 60 10 50
IF = NF(J)

DO 40 I=1,IF

LF 2 Kiger)

00 30 L=1,LF

P(JeN+1) = P(JsN)

IF(N +LT.2) GO TO <0

DO 10 KK=N s2r¢=1

P(JIKK) = P(JrKK=11=U(JrT)*P(urKK)
P(Jel) = =U(JrI)*PlJrl)
N = N+1

CONTINUE

CONTINUE

NN(J) = N

CONTINUE

5= 0

DO 70 J=1,NT

N = MAXO(NeNN(J))

DO 90 I=1,9

F(I) = 0.0D0

DO 80 J=1,NT

F(I) = F(I) + P(Jyl)
CONTINUE

RETURN

END

FIG. 12. Program Listing for Subroutine POLEX.
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SUBROUTINE CDLS(NM¢NP)

COMMON 2(20)eSC(7,22:4)9X(9992)1B(22+4)1A(22,22)
DOUBLE PRECISION Z¢SCeXeBrAsU»V
NS = NM+2

DO 20 I=1,NS

B(I,1) = 0.0

DO 10 J=1,NpP

CALL CEVALINM:IrloA(Jsl)eV)
B(Is1) = B(Iel) + A(Us2)%V
CONTINUE

DO 40 I=1,NS§

DO 40 J=1,NS

A(I+J) = 0.0

DO 30 K=1,NP

CALL CEVAL(NMyJrloX(Kel)oU)
CALL CEVAL(NMeIrlon(Ks1)0oV)
A(Ied) = A(Ird) + Usy

CONTINUVE

RETURN

END

FIG. 13. Program Listing for Subroutine CDLS.
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SUBROUTINE CEVAL(NMiJsNDeSeV)
COMMON 2(20)¢SC(7sc204) ¢X(99+2)1B(22+4)9A(22,22)
DOUBLE PRECISION Z¢SCeXsBeAsVeS
IF(U.EQ.1) GO TO 40

IF{J«EQ,2) GO TO 3U

IF(UeEQ.3) GO TU 2V
IF(s=2(JU=3))110,110U>
IF(5=2(U=2))50,50,
IF(s=2(U=1))60s0U,
IF(S=2(J))T70+70»
IF(s=2(J+1))80,00,110

=1
GO 70 (90,100)+ND
K =2
GO TO (90,100)ND
K=3
GO TO (90,100),nND
K = U4

GO TO (90,100)#ND

V = SCl1egeK) + SCL2rJrK) %S + SC(3rJpK)%Sa*2 + SC(UyJ,K)%S*%3
G0 70 120

V = SCl2eJrK) # 2,UsSC(30JrK)*S ¢ 3,0%SC(4ry)K)eSk%2

60 TO 120

V = 0,0

RETURN

END

FIG. 14. Program Listing for Subroutine CEVAL.
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SUBROUTINE MATINV(N+MsDETERMsNDsMD)
COMMON Z2(20)¢SC(7222¢8)+¢X(99+2)¢B(22,4)¢A(22,22)
DIMENSION IPIVOT(SUJ» INDEX(50ec)s PIVOT(50)
DOUBLE PRECISION Z¢SCoXsBrAsPIVOT,AMAX» TrSWAP
EQUIVALENCE (IROW,JROW)» (ICOLUM»JCOLUM)s (AMAX, T¢ SJAP)
10 DETERM=1.0
15 DO 20 J=i.N
20 IPIVOT(J)=0
30 DO 550 I=irN
40 AMAX=0.0
45 DO 105 U=1rN
S0 IF (IPIVOT(U)=-1) 6Ue 105, 60
60 DO 10U K=i*N
70 IF (IPIVOT(K)=1) BUs 100+, 740
80 IF (DABS(AMAX)=DABS(A(JrK))) 65 100, 100
85 IROW=J
90 ICOLUM=K
95 AMAX=A(JrK)
100 CONTINUE
105 CONTINUE
110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
130 IF (IROwW=ICOLUM) 140 260, 140
140 DETERM==DETERM
150 DO 200 L=1°¢N
160 SWAP=A(IROW,L)
170 A(IROwWeLI=ACICOLUMIL)
200 A(ICOLUMeL)=SWAP
205 IF(m) 260, 260, 2310
210 DO 250 L=1r M
220 SWAP=B(IROW,L)
230 B(IRKOweL)=B(ICOLUMIL)
250 B(ICOLUMeL)=SWAP
260 INDEX(Io1)=IROW
270 INDEX(I»2)=1COLUM
310 PIVOT(I)=A{ICOLUM,1COLUM)
320 DETERM=DETERM#PIVOI(I)
330 A(ICOLUM» ICOLUM) =10
340 DO 350 L=1°N
350 A(ICOLUML)=A(ICOLUM,L)/PIVOTI(I)
355 IF(m) 380, 380, 36U
360 DO 370 L=1M
370 B(ICOLUM L)=B(ICOLUM,L)/PIVOTI(I)
380 DO 55U Li=1,N
390 IF(Li=-ICOLUM) 4U0, 550, 400
400 T=A(Lie¢ICOLUM)
420 A(Li.ICOLUM)=0,0
430 DO 450 L=1rN
450 A(LL1reL)=A(LIsL)=ACICOLUMIL) =T
455 IF(M) 550, 550, 460
460 DO 500 L=1rM
500 B(L1eL)=B(L1,L)=B(ICOLUMIL) =T
550 CONTINUE
600 DO 710 I=1eN
610 L=N+1-I
620 IF (INDEX(L:,1)=INDEX(Le2)) 630¢ 710s 630
630 JROW=INDEX(L1)
640 JCOLUMSINDEX(Los2)
650 DO 705 K=1isN
660 SWAP=A(KsJROW)
670 A(K,JROW)=A(K»JCOLUM)
700 A(Ky,JCOLUM)=SWAP
705 CONTINUE
710 CONTINUE
740 RETURN
750 END

FIG. 15. Program Listing for Subroutine MATINV,
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SUBROUYINE CFILON(NMsNP,MI)
DIMENSION T(20)»E(Y)eF(9),6(9)
COMMON 2(20)+SC(7v&2+4)9X(99,2)9B(22,4)+A(22,22)
DOUBLE PRECISION Z¢SCoXsBrAsTsEsFsGov
0O 10 I=1,22
10 B(I,1) = 0.000

MJ = ML + 3
L o= 1
Kk = 3
KI = 1
KF = 2
20 IF(Z(KF)GE . X{KK*+Ml=1,1)) GO TO 30
KF = KF+l1
IF(KF.GE+NM) GO TO 30
GO TO 20

30 DO 40 I=1,vI
E(I) = X(KK+I=1,1)
40 F(I) = X(kKK+I=1.2)
CALL LGRNGE (MI+Er*Fe*NDsG)
T(KI) = X(LLeld)
IF(LL,EQel) TIkI) = 2(1)
Il = Ki<l
IF = KF=1
IF(II.6GT«JIF) GO TO 80
DO 70 I=IIelF
70 T(I) = zZ(1)
80 T(KF) = X(KK+MI=1,1)
IF(NP.LE«KK4MI=1) T(KF) = Z(NM)
DO 140 I=KI,IF
IP3 = I+3
DO 130 IS=I.IP3
DO 120 J=1vMJ
F(J) = 0.000
DO 110 L=1+J
110 FUJ) = FUOUI4SC(Lr IS I=IS+u)xG(J=L+1)
120 CONTINUE
CALL POLINT(MJsFeT(I+1)»T(I)sV)
B(ISel) = B(ISs1)eV
130 CONTINUE
140 CONTINUE
IF(T(KF)+GE,Z(NM)) GO TO 170
IF(KK+MI=1.GE«NP) GO TO 170

K1 = KF
IF(Z(KF) oGT X (KK#Mi=191)) KI = KF=-1
KF = KI+l
LL = KKéMI=}
KK = LKL
IF(NPeLToKK+MI=1) KK = NP=MI+1
G0 TO 20
170 RETURN
END

FIG. 16. Program Listing for Subroutine CMTRX.



94

SUBROUTINE POLINT(NeCeEBrEANIV)
DIMENSION C(10)
DOUBLE PRECISION CrEB'EArVIU
DO 10 J=N,1,-1
10 C(JU+1) = Cc(U)/DFLOAT(Y)
Ctl) = 0.0D0
NORDER = N+1
CALL POLVAL(NORDER'*C»EBWV)
CALL POLVAL (NORDER'C+EA,V)
V = Vv=U
RETURN
END

FIG. 17. Program Listing for Subroutine POLINT.

SUBROUTINE POLVAL (NORDER+P#S»V)
DIMENSION P(9)
DOUBLE PRECISION PrSev
V = P(NORDER)
IF (NORDER,EG.1) RETURN
D0 10 I=NORDERs2¢=1
10 V = SsV + P(I=1)
RETURN
END

FIG. 18. Program Listing for Subroutine POLVAL.
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SUBROUTINE CMTRX (NMm)
COMMON Z(20)sSC(7+2204)9X(99+2)9B(22)4)1A(22,22)
DOUBLE PRECISION Z¢SCeXsBrAsFoU
DIMENSION F(10)r,U(<0,10)
NM1 = NMm=§
DO 120 I=1/NM1
DO 30 M=1,4
DO 20 J=1,7
F(J) = 0.000
DO 10 K=1,J
10 F(J) = FIY) + SCUK?IoW)uSC(U=K+1rI=M+4sM)
20 CONTINUE
30 CALL POLINT(7¢FsZ2(i41)+2(1)0u(Iom))
D0 bO M:1'3
Do 50 J=1,7
F(J) = 0+00D0
D0 40 K=1,J
40 F(J) = F(Y) + SCIKrI+1+3)uSC(JU=K+1rI=M+y4rM)
50 CONTINUE
60 CALL POLINT(79oFeZ(l+1)+Z2(I)oU(IoM4+4))
Do 90 M=1,2
00 80 J=1,7
F(J) = 0.000
DO 70 K=1,J
70 F(J) = FUJ) + SCUKeI+2+2)8SC(U=K+1rI=a4Urn)
80 CONTINWUE
90 CALL POLINT(7sFo2(L#1)0sZ(1)oU(TIeMsT))
DO 110 J=1+7
F(J) = 0+000
DO 100 K=1-J
100 F(J) = F(JU) + SCIKrI+301)%SC(J=K+1rI+3,1)
110 CONTINUE
CALL POLINT(7oFe2(i+1)o2(1)eU(Is10))
120 CONTINUE
D0 130 I=1r22
DO 130 J=1r22
130 A(I,J) = 0.0D0
DO 140 I=1sNML
A(l:e1) 2 A(TI+1) # UCIs8)
AGTal+1) = ALlal®1) * ULT,3)
A(I I+2) ACIoI®*2) ¢ U(Ie2)
AlLeI*3) = A(Ysls3) + U(Te1)
ACT+1p1¢1l) = A(TI*121%]) + UlLe?)

1)

A(I+10142) = ACL*+19I42) + U(I+6)
A(I+1,143) = A(I+101I+3) + U(Is5)
A(I420142) = A(L+20142) + U(1¢9)
A(I42,143) = A(L+22143) + U(1,8)
A(I+3,143) = A(L*+30143) + U(I,10)

140 CONTINUE

NM2 = NM+2
DO 170 I=2+NM2
it = 1~}

DO 160 uU=1r11l
160 A(IsJ) = ACUP])
170 CONTINUE

RETURN

END

FIG. 19. Program Listing for Subroutine C FILON.
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SUBROUTINE LGRNGE {NPNTS+X»YsNORDER!F)
DIMENSION X{10) oY {10)+C(10)oNF(9),U(9,9)sKk(9,9)sF(9)
DOUBLE PRECISION XeYeCoUrF
DO 10 I=1,NPNTS
NF(1) = NPNTS=1
DO 10 J=1,NPNTS
10 K(I,J) =1
Do 60 I=1,NPNTS
C(I) = 1.000
DO 20 J=1,NPNTS
C(I) = C(De(X(I)=X(J))
20 CONTINUE
CtI) = vY(r)/C(I)
DO S0 J=1,NPNTS
IF(U=1)30,5040
30 U(IesJd) = x(Y)
60 TO0 S0
40 U(I,J=1) = x(V)
50 CONTINUE
60 CONTINUE
CALL POLEX(NPNTS?CoNF sUrK s NORUERF)
RETURN
END

FIG. 20. Program Listing for Subroutine LGRNGE.
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SUBROUTINE CSPLOT(NMsNeM¢NP)
COMMON Z(20)sSC(T9c2e4)eX(99:2)¢B(22:4),A(22,22)
DIMENSION WORK(1024)»XARRAY(503)YARRAY(503),Y(501)
DOUBLE PRECISION Z¢SCeXsBrArTeVeY
IF(NeGT,1) GO TO 1L
CALL PLOTS(WORK(1)r1024,8)
CALL PLOT(5,001.750=3)
10 NPS = 501
NMLI = NPS = 1
NS = NM + 2
Do 70 K=1,2
DO 20 I=1l,Np
XARRAY(I) = X(I.1)
20 YARRAY(I) = X(1+¢2)

XARRAY{(NP+1) = 0.0
XARRAY (NP+2) = 3000,0
YARRAY(NP+1) = 48sS0L,.0

YARRAY(NP+2) = 100¢0
CALL AXIS(0.00,01lH »1¢3,090,04850,0100.)
CALL szs(oa'ol'lH v=1¢6. 000000'3000.)
CALL LINE(XARRAY(1)eYARRAY(1)sNPr10=1,3)
DO 40 I=1,NPS
T = DFLOAT(I~=1)*(Z(NM)=Z(1))/DFLOAT(NM])
Y(I) = 0.0
DO 30 J=1,NS
CALL CEVAL(NMsJrleTeV)

30 Y(I) = Y(I) ¢+ B(JyK)eV
XARRAY(I) = T

40 YARRAY(I) = Y(I)

XARRAY(NPS+1) = 0,V

XARRAY (NPS+2) = 3000.0
YARRAY(NPS+1) = 4850,0
YARRAY(NPS+2) = 100.0

CALL LINE(XARRAY(1)9oYARRAY(1)eNPSe100:2)
XARRAY (NM+1) = 0.0
XARRAY(NM+2) = 3000.0
YARRAY(NMel) = 485V.0
YARRAY (NM+2) = 100.0
D0 60 I=1,NM
Y(I) = 0.0
DO 50 J=1i,NS
CALL CEVAL(NMoJelo&(I)oV)
S0 Y(I) = Y(1) + B(JyK)=#V
YARRAY(I) = Y(I)
60 XARRAY(I) = 2(1)
CALL LINE(XARRAY(1)sYARRAY(1)r\NMel1r=1,2)
IF(KsEQs1) CALL pLUT(O.I“.SO‘S)
IF(KeEQ,2) CALL PLOT(B45¢=4,5¢=3)
70 CONTINUE
IF(M.EQ.0) GO TO 9V
G0 TO 110
90 CALL PLOT(0.+0,099%)
110 RETURN
END

FIG. 21. Program Listing for Subroutine CSPLOT.



