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ABSTRACT 

co 
Bounds are derived for both the L2- and L -norms of the error in approxi-

mating sufficiently smooth functions by polynomial splines using an integral 

least square technique based on the theory of orthogonal projection in real 

Hilbert space. Quadrature schemes for the approximate solution of this least 

square problem are examined and bounds for the error due to the use of such 

schemes are derived. The question of the consistency of such quadrature 

schemes with the least square error is investigated and asymptotic results 

are presented. Numerical results are also included. 
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INTRODUCTION 

In this paper we consider polynomial spline approximation t.echniques based 

on the theory of orthogonal projection in real Hilbert space. Splines are used 

as the approximations since they have smoothness properties and have been 

used to int.erpolat.e to large classes of smooth functions with small errors. In 

addition, with the proper choice of basis functions, splines give rise to bounded 

well-conditioned matrices without orthonormalization. The motivation for the 

use of an integral least square technique is the hope that it might generate ap-

proximations which would smooth errors due to "noisy" data. Int.erpolation 

t.echniques should be avoided, if possible, when attempting to approximate such 

data sets. 

We begin, in Section 1, with a discussion of a least square approximation 

theory for finite dimensional subspaces of real Hilbert space. In Section 2, 

we confine our att.ention to the Hilbe!'t space L2[0, 1] with inner product defined 

for g,hE:L2[0,1] by 

(g,h) = j 1 
g(x) h(x) dx. 

0 

We consider the finit.e dimensional subspaces to be spaces of polynomial spline 

functions. Standard spline interpolation results are given [14] and then used to 
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bound the L2-norms of the least square error and its derivatives. We then 

employ the L2-bounds to derive L
00

-bounds for the same error functions using 

a Sobolev type inequality. We discuss the application of techniques based on 

this least square theory to empirical data, i.e. , tabulated functions. In Sections 

3 and 4, we discuss, in detail, the use of certain types of quadrature schemes 

for the approximate solution of the least square spline approximation problem 

for a tabulated function. We derive bounds for the error introduced into the 

least square spline approximation by the use of these quadrature schemes. We 

then investigate the consistency of the orders of accuracy of the discretized tech

niques with the order of accuracy of the true integral least square technique. 

Asympototic results are presented throughout Sections 2, 3, and 4 wherever 

appropriate. Finally, in Section 5, we present some numerical results based 

on programs coded in FORTRAN implementing some of the techniques discussed 

here as well as the standard discrete least squares technique. These techniques 

are compared in their effectiveness in approximating by polynomial splines the 

exponential function as well as several discrete data sets of particular interest. 
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1. THE LEAST SQUARE PROBLEM IN REAL HILBERT SPACE 

In this section we formulate the least square problem in real Hilbert space. 

We demonstrate the equivalence of this problem to that of solving an appropriate 

linear system of equations. The matrix involved is shown to be positive definite 

and symmetric thereby guaranteeing that a unique solution to the system of equa

tions exists. We then conclude that a unique solution to the least square prob

lem always exists. Finally, we discuss the context in which these concepts are 

to be employed in this paper. 

Let H be a real Hilbert space with the inner product of two elements f, gEH 

denoted by (f, g). This inner product satisfies the following properties for all 

f, g, hEH and any real number a.. 

i) (a.f, g) 

ii) (f + g,h) 

iii) (f' g) 

a (f, g) 

(f, h) + (g, h) 

(g, f) 

iv) (f, f) > 0 for f f 0 

v) (f, f) 0 for f == 0. 

(1.1) 

Then 11f11 - (f, f)l/ 2 defines a norm on Hand d(f, g) - 11 f - g 11 defines a metric 

on H. 
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Let G be any finite dimensional subspace of H. Then, given any f(H, we 

wish to find an element g(G which minimizes d(f,g) = llf - gll. We call this 

problem the least square problem for f ( H associated with the finite dimensional 

subspace G of H. 

Suppose that the elements g1 , &;i, ••• , g
11 

form a basis for G. 

Let Ct = (t:ici, ••• , a 11 ) and define 

F~ (1.2) 

Clearly, our original problem is equivalent to finding an n-tuple & = (&1 , ••• , &
11

) 

which minimizes F~. Using the definition of the norm II· II and the properties 

of the inner product ( · , · ) , we find that 

F~ 

is a quadratic function of the exp 1 s: i s: n. Consequently, the partial derivatives 

of F with respect to the a 1, 1 s: i s: n, evaluated at such a minimum must equal 

zero, i.e. , for 1 s: i s: n 

oF & 
oa@ 

1 

n 
-2(f, gt) + 2 L: &J(gp gJ) 

j=l 
0. (1.3) 
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We shall write this system of equations, lmown as the normal equations, as 

A 

Aa. - k 0 (1.4) 

where the entries, a 1J' of A and the components, ki' of£ are defined by 

A 

a 1J - (gpgJ), k 1 - (f,g1), for 1 s i,j s n. (1.5) 

Of course the matrix A is the well known Gram matrix or Gramian of the elements 

g1 , ••• , ~of H. 

The matrix A is symmetric since (gpgJ) = (gJ,g1) for alli,j by property (iii) 

of the inner product. Now given any n-tuple q = (a.1' ••• ,O!n) 

(1.6) 

But equality in (1.6) implies that 
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Applying property (v) of the inner product yields 

and, consequently, et 1 = 0 all i, since the g1, 1 ~ i ~ n, are linearly independent. 

So et 1Acx :?: O with equality only if ex = O. Therefore, A is also positive definite. 

But then A has a unique inverse, A- 1 , and & = A- 1~ is the unique solution to the 

system (1.4). Therefore, 

is the unique solution to the least square problem for f(H associated with the 

finite dimensional subspace G = span[g1 , ••• gn} of H. This completes the proof 

of the following well known theorem which is true, in fact, for any closed sub-

space G of H and is known as the Projection Theorem. 

Theorem 1.1-Given any f(H, the least square problem for f associated 

with G always has a unique solution. 

Note that our proof of the theorem also provides a potential means by which 

such solutions may be obtained. 

In later sections of this paper, least square problems in the real Hilbert 

space L2[0, 1] with inner product 
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(g, h) - £1 
g(x) h(x) dx 

0 

will be discussed. These least square problems will be posed with respect to 

finite dimensional (sub)spaces of polynomial splines. In the following section 

we discuss such spaces of polynomial splines and the least square problem in 

this context. 
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2. THE LEAST SQUARE PROBLEM IN L2 [0, 1] WITH RESPECT TO 
POLYNOMIAL SPLINE SPACES 

In this section we first define the concept of polynomial spline spaces and 

state some standard spline interpolation results. We then examine, in detail, 

the least square problem in L2 [0, 1] with respect to these finite dimensional spaces 

of polynomial splines. We use L2-error bounds for polynomial spline interpola-

00 

tion to derive both L2 - and L -error bounds for least square spline approxima-

tion. We conclude with a discussion of the implementation of this technique. 

We begin with the following definitions. For each non-negative integer, N, let 

9t[O, 1] denote the set of all partitions, A, of the interval [O, 1] of the form 

A: o 1. (2.1) 

00 

Moreover, let&>[O, 1] = NYo 9PN[O, 1]. 

If A E&'N[O, 1], dis a positive integer and z is an integer such that -1 s; z s;d - 1, 

the polynomial spline space, Sp(d, A, z), is defined to be the set of all real valued 

functions s(x)E cz[o, 1] such that, on each subinterval [xpx1+11, O s; i s; N, of 

[0,1] determined by A, s(x) is a polynomial of degreed. Here, C- 1[0,1] is de-

fined to be the set of all piecewise continuous functions on [O, 1] with each discon-

tinuity a simple jump discontinuity at one of the points xt' 1 ~ i ~ N. We note 

that Sp(d, A, z) <; L2[0, 1] and, since L2[0, 1] is a real Hilbert space with respect 

to the inner product (·,·)defined for g,hEL2[0, 1] by 
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(g, h) - £1 
g(x) h(x) dx, 

0 

we may study the least square problem for any ff:L2 [0, 1] with respect t.o the 

finite dimensional subspace Sp(d,A,z). Theorem 1.1 applies and, consequently, 

we know that a unique solution t.o this problem always exists. 

Note also that, for d = 2m - 1, m ~ 1, and m - 1 s: z s: 2m - 2 = d - 1, 

the definition of polynomial splines given here agrees with that of deficient 

splines of [l]. For generalizations of the concept of spline space, the reader 

is invited t.o study [16]. In fact, the polynomial spline interpolation results to 

be stated in this section remain essentially unchanged if one allows the integer z 

t.o depend on the partition points xit 1 s: i s: N, in such a way that 

m - 1 s: z(x1) s: 2m - 2. 

As in [1], we define the interpolation mappingg.:c•-1[0,l]-Sp(2m - 1,A,z) 

by .~f = s where 

s; k s: 2m - 2 - z , 1 s: i s: N 
(2.2) 

, i=O,N+l. 

The preceding interpolation mapping corresponds t.o the Type I interpolation 

mapping of [ 16]. 

We shall soon need the following basic result on polynomial spline 

interpolation. 
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Theorem 2.1-The interpolation mapping given by (2.2) is well defined 

for all AE.o/'[O, 1], 1 ::;; m, and m - 1 ::;; z ::;; 2m - 2. 

Before we state the result which gives bounds for the error in polynomial 

spline interpolation, we must first make the following definitions. For each 

positive integer, p, let .KP [O, 1] denote the collection of all real valued functions, 

f(x), defined on [O, 1] such that f(CP- 1[0, 1], DP- 1f is absolutely continuous, and 

DPf(L2[0, 1] where Df = df/dx denotes the derivative off. Also, given any 

following theorem is a composite of special cases of Theorems 3.5 and 4.1 of 

[14]. 

Theorem 2.2 - Let 1 ::;; m, 0 ::;; N, A(&'N[O, 1] and let m - 1 ::;; z ::;; 2m - 2. 

Then, for any f(l(2m[O, 1] and 0 ::;; j ::;; 2m, 

(2.3) 

where 



[ (z - 2 + m) !]2 

77an - J 

[(z - 2 + m) !]2 

j !7T:an - J 

(z - 2 + m) ! 
77 m 

if 

11 

if 0 $ j $ 2m - 2 - z, 

if 2m - 2 - z < j $ m - 1, 

m, 

= ~ + [ (z - 2 + m) ! + 2] [ (3m) ! JB (A/ ~J - m , if m + 1 $ j $ 2m - 2, 
1T 2m J 1T m U 4m - j ) ! 

2 + [(z -2 + m)! + 2] r. (3m)! ]\A!~m-1 if = 2m - l, 
(2m - 1) !rr 77m u2m + 1) ! ' 

1 , if j = 2m. 

We note, as does the author of [14], that#.,f is not necessarily in Kl[O,l] for 

z + 1 < j $ 2m and, in this case, we must define l!Dl(f -~f)llL2[0,l] by 

These interpolation results enable us to give bounds for the L2-norms of the 

error and its derivatives in approximating elements of certain classes of func-

tions by polynomial splines using the least square technique of Section 1 of this 

paper in the context described at the beginning of this section. 

We have confined our attention to L2[0, 1] with inner product of g,h€L2[0, 1] 

defined by 
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(g, h) - f 1 g(x) h(x) dx. 
0 

As we have noted, L2[0, 1) is a Hilbert space with respect to this inner product 

since the norm which is induced by this inner product is the V3-norm. Conse-

quently , the least square problem for any fEL2 [0, 1] with respect to any finite 

dimensional subspace of L2 [0, 1) always has a unique solution. In particular, 

if the subspace is a polynomial spline space, Sp(d,A,z), AE.o/'[0,1] and 

-1 ~ z ~ d - 1, we shall denote the solutions. By definition, s is that element 

of Sp(d,A,z) which minimizes lit- s\\L2[0,l] over Sp(d,A,z), i.e., for any 

sESp(d, A, z) 

(2.5) 

Now, if d = 2m -1, fEI(2m[0,1] s;L2[0,1], and m -1 ~ z ~ 2m - 2, then.~f is a 

well-defined element of Sp(2m - 1, A, z) and, consequently, 

Finally, Theorem 2.2 with j = 0 applied to the right hand side of (2.6) gives 

us the following theorem in the case that j = 0. 

Theorem 2.3-Let 1 ~ m, 0 ~ N, AE-~[0,1] and m -1 ~ z ~ 2m - 2. 

For any function fE.K?n[0,1] s; L2[0,1], ifs is the least square approximation to 

fin Sp(2m - 1,A,z), then 
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(2.7) 

where 

c m,z,J ~zo' ifj =O, 
' ' 

K + 2 [ (2m - l) ! ]'.:> K (A//:;,,.\ J if 1 s J. s 2m - 1 
~"In, z, j (2m - j - 1) ! u.lll, z,o ~ ' 

= l\i~z,2m' if j = 2m, and (2.8) 

the~ z J are given by (2.4). 
' ' 

Proof: We assume 1 s j ~ 2m - 1 since we have already established the result 

of the theorem in the case that j = 0 and it is immediate in the case that j = 2m 

since I)2m8 = 0 on [O, 1]. We shall need the following lemma which gives an in-

equality of E. Schmidt that relates the L2-norm of the derivative of a polynomial 

to the L2-norm of the polynomial itself. See Appendix A for a proof of this result. 

Lemma: Let Pm(x) be a polynomial of degree m on [a,b]. Then 

11 11 (m + 1>2 11 11 
DPm L 2 [a,b] s b - a Pm L2 [a,b] · (2.9) 

We now proceed with the proof of the theorem. We first use the triangle 

inequality to obtain 

(2.10) 
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recalling that.~f is a well defined element of the spline space Sp(2m - 1, A, z) 

to which s also belongs. Applying (2.9) j times to the second term on the right 

hand side of the inequality (2.10) we obtain 

j 

1( (2m - i)2 

i =l 
s: __ @_A_J_ l~f- sllL2[0,l] 

2 

[ (2m - l) ! J A - J II ~f '"'II 
L<2m -j -1)! @ '• - s Vf0,1] 

s: 2 [ (2m - 1) ! ]21~\- J 114' 9fll 
L(2m - j - 1) ! ':=! !'" - • Vto, 1] • 

Combining (2.10) and (2.11) we obtain 

(2.11) 

(2.12) 

s: llDJ(f '7_f)ll + 2[ (2m -1)! ]2 A-J II . II 
-.m L2 [0,1] L(2m-j-1)! @ f-~f L<l[0,1]. 

Finally , applying Theorem 2.2 to the terms on the right hand side of (2.12) 

gives 
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(2m - 1) ! - J - an an 
[ ]

8 

+ 2 (2m - j - 1) ! @ ~,z,o(A) II D fllL2[0, 1) 

(2m - 1) ! - J - 2r J an 
{ 

2 } (2.13) 

~,z,J + 2f (2m - j - 1) i] (A/~ Km,z,o (A) II D fllL2[0, 1) 

the result of the theorem in the case that 1 s: j s: 2m - 1. 

We immediately have the following corollary. 

Corollary: Given a sequence of partitions [AJ}~=l of [O, 1) such that 

lim. AJ = O, if s J' for each j, is the least square spline approximation in 
J-a> 

Sp(2m - 1,A,z), m - 1s:zs:2m - 2, to fe"I0'[0,1], then 

~im 11 f - s J II L2[0, l] 0 · 
J-+00 

If, in addition, (Al/AJ) s: Mall j, then, for 1 s:k s: 2m - 1, 

00 
We now introduce a lemma which enables us to derive bounds for the L -norm 

of the least square error in terms of our bounds for the L2-norm of this same 

error. 
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Lemma: Let u by absolutely continuous on [a, b] such that Du£ L2[ a, b]. Then 

llullLCX)[a,b] s; J2<P - af
112 

llullL::i[a,b] +,/2(b - a)
112 

llDullL2[a,b]. 

(2.14) 

Proof: For any x, x1 £[a, b] 

and, consequently, 

Squaring the inequality, we obtain 

and integrating both sides with respect to x1 yields 
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Therefore 

and so 

from which the result of the lemma follows immediately. 

This brings us to the following theorem. 

Theorem 2.4- Let 1 $ m, 0 $ N, AEBl'N[O, 1] and m - 1 $ z $ 2m - 2. For any 

function frK21'1[0, 1] S L8[0, 1], ifs is the least square approximation to fin 

Sp(2m - 1, A, z), then, for 0 $ j $ 2m - 1, 

(2.15) 

where 

(2.16) 

sESp(2m - 1, A, z) is a polynomial of degree 2m - 1 on each subinterval [xpx 1+11 

of A, and consequently, nJsE:K1[xp xi+ 1], O s: i s: N, o ~ j ~ 2m - 1. Applying our 

lemma to DJ(f - s) on each subinterval [xpx 1+ 11 of A we obtain 
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But (2.17) immediately implies that 

(2.18) 

We now apply the results of Theorem 2.3 to the terms on the right hand side of 

(2.18) to yield 

the result of the theorem. This completes the proof. 



19 

Again, the corollary is immediate. 

Corollary: Given a sequence of partitions [ti.J}~ 1 of [O, 1] such that 
J-

lim. AJ "' 0 and (Al/AJ) s; Mall j, if sJ, for each j, is the least square spline 
J--+ CXl -

approximation in Sp(2m -1,A,z), m -1s;zs;2m - 2, to f{K2 m[0,1], then, for 

O s; k s; 2m - 1, 

~im \I D~f - §J )\ \L oo[O, 1] 0. 
J--+ CXl 

Setting theoretical considerations aside, we now turn to the practical prob-

lem of actually obtaining such approximations. The proof of Theorem 1.1 im-

mediately leads us to the question of basis functions for the finite dimensional 

space of approximating functions. Let [ s 1 }~~ be a set of basis functions for the 

NS-dimensional spline space, Sp(d, A, z). We note that NS = d + 1 + N(d - z). 

In fact, the total number of indeterminates required to define an arbitrary ele-

ment of Sp(d, A, -1) is (N + 1) (d + 1) since we must determine the coefficients 

of a polynomial of degreed on each of N + 1 subintervals of A and there are no 

continuity constraints. In the case that there are constraints, and here we con-

sider the integer z to depend on the interior mesh points x1' 1 ~ i ~ N, continuity 

of degree z (x 1) at Xp 1 s; i s; N, introduces z(x 1) + 1 constraints and consequently 

reduces the number of indeterminates by z(x 1) + 1. Therefore, 

N 
NS (N -+ l)(d + 1) - L(z(x 1) + 1) 

i=l 

d + 1 + Nd - f z(x
1

) 

i=l 
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which reduces to NS = d + 1 t N(d - z) in the case that z(x 1) = z, 1 s; is; N. 

Now, for f(L2[0, 1], we have seen that the least square approximation to fin 

Sp(d,A,z) is 

where & = (Cxl' ••• , &N5) is the unique solution to the system 

A 

Aa. - k 0 (2.19) 

A A 

where the entries, a 1l, of A and the components, k 1, of k are defined for 

1 :s; i,j :s; NS by 

atl - £1 
s 1(x) sl(x) dx and 

0 
(2.20) 

k1 - f 1 
f(x) s 1(x) dx. 

0 

Therefore, in order to actually obtain the least square approximation to fin 

Sp(d, A, z), i.e., calculate the NS-tuple & , we must have numerical values for 

the entries of A and the components of Ras well as an effective technique with 

which to solve the system (2.19). Since A is positive definite and symmetric, 

the point successive over-relaxation iterative method is guaranteed to converge 

and can be used to determine & (cf. [17, p. 59]). Another possibility would be to 

use the method of Cholesky (cf. [7, p. 127]). However, if A is also a band matrix, 
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which indeed is the case when d = 2m - 1, m ~ 1, and m - 1 s; z s; 2m - 2 for 

suitably chosen basis functions (cf. [13]), Gaussian elimination can be used to 

efficiently solve the system (2.19). In any case, the zero structure of A deter-

mines the technique to be employed and its rate of convergence. In fact, once 

the basis functions for Sp(d, A, z) are chosen, the entries of A may be calculated 

directly as they are just sums of definite integrals of polynomials over subin-

tervals [x1,x1+11, 0 s; is; N, of A. Of course, the zero structure of A will then be 

determined and the appropriate technique can be chosen. The possibility of cal-

culating the entries of k directly seems remote since we may not have a represen-

tation off which would admit such a calculation. Indeed, in many, if not most, 

practical applications, f is a tabulated function, i.e., its value may be known at 

only a finite number of discrete points. In such a situation, a quadrature scheme 

of some sort must be used to obtain the NS-tuple ~. an approximation to ~. and 

we solve the system 

0 (2.21) 

instead of (2.19). I.et 

where Ci (ci 1 , • • • , ex NS) is the unique solution to (2.21). Recalling that the 

least square approximation is denoted s, we wish to bound 11 s -s 11 in terms of 

known quantities in order to consider convergence results as well as the concept 
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of consistency in the cases that bounds for 11 f - § 11 exist. To this end, let L 

denote the integral over [O, 1] and let L be the quadrature rule used to determine 

E'., both regarded as bounded linear functionals on C[O, 1]. Then 

1 s; i s; NS, and k1 = Us 1' 1 s; is; NS, and beginning with (1.6), we find that 

lls - sllt21:a,b] 

NS L (ex 1 -a 1)(L[fstl - L[fsd) 
i=l 

(L - L)[f f (Ct 1 - CX 1) s~ 
i=l ~ 

<L - L) [f<s - s)J. 

We shall use this relation in the next sections in order to develop our main re-

sults, much as a similar relationship leads to similar results in [6]. 
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3. QUADRATURE SCHEMES OF THE INI'ERPOLATORY TYPE 

In this section we first consider the concept of interpolatory quadrature and 

we derive error bounds for such schemes when applied to members of certain 

classes of functions. We then describe composite quadrature schemes (based on 

interpolatory formulae) which we shall use to obtain approximate solutions to the 

least square problems which we discussed in preceding sections. We study the 

error introduced into the approximation by the use of such a composite scheme. 

We examine the question of convergence for sequences of such approximations. 

We then define the concept of consistent quadrature schemes and conclude this 

section with an application of the discussion to the case at hand. 

As in [8, p. 303], let the n + 1 distinct points T 0 < T1 < · ·-< T n be given so 

that a s: T J s: b for all j. Then, for any function CYEC[a, b], we may construct the 

interpolation polynomial, Pn(x), of degree at most n such that CY(TJ) = Pn(TJ) for 

all j. We take 

as an approximation to 

L*CT lb C1(X) dx. 
a 

(3 .1) 

(3.2) 
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By using the Lagrange form for the interpolation polynomial 

where 

and 

n 
P n(x) L ¢n,J(x) CJ(T j) 

j=O 

W0 (X) 

we obtain from (3.1) the quadrature formula 

L *a 

with the coefficients w n,J given by 

(3.3) 

(3.4) 

Any quadrature formula of this form is called an interpolatory quadrature formula. 

We intend to consider the quadrature formula L of Section 2 to be a composite 

rule based on quadrature formulae of the interpolatory type. The following theorem 

will enable us to bound the error in approximating an integral by such a composite 
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scheme. This result is quite general and sharper bounds exist for special 

interpolatory schemes such as Gaussian and Newton-Cotes quadrature 

formulae. 

Theorem 3.1- Let L* be defined as above. Then, the quadrature error for 

l<L* - L*) (]I I L*a - L*al 

(3.5) 

where Q is independent of the length ·of the interval [a, b]. 

Proof: Clearly (L* -L*) Pn = 0 for any polynomial Pn(x)ofdegreeatmostn. 

Consequently, we may employ Peano's Theorem [5, p. 109] to obtain the follow-

ing representation for the quadrature error 

where 

and 

L*a - L*a 

K(t) 

lb nn+ 1 a(t) K(t) dt 
a 

(3.6) 

(3. 7) 



(x - t)! 
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{

(x 

0

- t)n , x ~ t 

' x < t. 
(3.8) 

The notation (L* - L*)x means the error functional (L* - L*) applied to the x-

variable of (x - t~. Now, applying the Cauchy-Schwarz inequality to (3.6) we 

immediately obtain 

{ b p12 'lb )lh! 
I L*cr - L*cr I ~ J j \ 1)11+ 1 cr(t) 12 dt ( ) I K(t) \2 dt l 

l a j l a j 

We shall complete the proof of the theorem by demonstrating that 

/b K2(t) dt 
a 

(b - a) ... 3 _£1 
K'(t) dt 

(3.9) 

(3.10) 

where K(t) is the kernel associated with the interpolatory quadrature scheme L* 

based on the interval [O, 1] corresponding to L* under the change of variables 

defined by 

s 
t-a 
b-a 

for t€[a,b] 

i.e., L* is based on polynomial interpolation at the points p1 defined by 

(3.11) 



over the interval [O, 1) . 
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T 1 - a 
, O ~ i ~ n, 

b-a 
(3.121 

Let us first examine the structure of the kernel K(t). (3.7) and (3.8) imply 

that 

n !K(t) 

(t - b)n+l Ln 
(-l)n+l _ _ + (t )n n + 1 wn,J - Tl , Tk-1 < t ~ Tk, 1 ~ k ~ n, 

j=k 

(t - b)n+l 

n + 1 

(3.13) 
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Introducing the change of variables defined by (3.11) into the integral 

we obtain 

f 1 
K2[a + s(b - a)](b - a) ds 

0 

(b - a) /
1 

K2[a + s(b - a)] ds 
0 

since dt = (b - a) ds. But (3.13) implies that 

(3.14) 

n 
(a +s(b-a)-b)n+l ""' 

n + 1 + L..J wn,j(a + s(b-a)-a-pj(b-a))n, 
j=O 

O s s s p0 , 

n!K[a + s(b - a)] 

(a + s(b - a) - bt+ 1 

n + 1 ' Pn < s s 1 



However, for any U€C[O, 1) 

where 
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(s-l)n+l(b-at+l 
n + 1 ' Pn < s ~ 1. 

_(s - l)n+ l 

n+l 

n 

Pn < 8 ~ 1. 

L*a L wn,Ja(pj) 
j=O 

1 ~ k ~ n, 

(3.15) 

1 ~ k ~ n, 

(3.16) 
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(3 .17) 

and 

Wn(x) (x - Po)(X - Pi,)··· (x - Pn), for x([O, 1]. (3.18) 

Now (3.16) implies that 

1 - t - a f 
b 

(b - a) a ¢11,.,(~ - a) dt • 0 ~ j ~ n, (3.19) 

under the inverse of the change of variables defined in (3.11). But (3.17) 

implies that, for t€[a, b], 

, 0 ~ j ~ n. (3.20) 

Introducing the same change of variables into (3.18), we obtain, for t([a, b], 

-I~) 
u.ln\b - a 

~ (t -a _ T - a) 
I I b-a if-:-i
j =O 

(3.21) 
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Consequently 

~('TJ-a _ 'Tk-a) 
II b-a b-a 

k=O 
k;ij 

= 

Substituting (3.21) and (3.22) into (3.20), we obtain, for tt"[a, b], 

- (t -a) 
~\J b - a 

and combining (3.4), (3.19), and (3.23), we find that 

Repeating the derivation of (3.13) for K{s) instead of K(t), we obtain 

(s - l)n+l Ln 
+ ~(s -p )n 0 S: s S: Po 

n+l . b-a J ' ' 
J=O 

(3 .22) 

(3.23) 

(3.24) 

n!K(s) 
( 1)11+1 n 

(-l)n+lS- + '°'6n,J (s-p )11 Pk-1 <SS: n., (3.25) 
n + 1 ~ -a J ' MC 

J=k 

1 s: k s: n, 

(S - l)n+l 
n + 1 ' P11 < s s: 1 . 
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A comparison of (3.15) and (3.25) implies, upon cancellation of n!, that 

K(a + s(b - a)) (b - a)n+ 1 K(s) 

which, when substituted into (3.14), yields 

/b K2(t) dt 
a 

(b - a)2n+3 £1 
K2(s) ds. 

0 

(3.26) 

Combining this with (3.9) gives (3.5), the result of the theorem. Clearly, 

J 1 ll/2 
Q = (I K2 (s) ds (3 .27) 

Given partitions A~ of the form 

of the subintervals [xpx 1+1], 0 ~ i ~ N, determined by A, we define the com-

posite rule L by 

,..., 
La (3.28) 

in terms of the weights w 1 J, 0 ~ j ~ n, of the interpolatory quadratures n, 

L7, 0 ~ i ~ N, defined over the partitions A~· This brings us to the following 

theorem, which can be improved in those cases that sharper bounds exist for 

the interpolatory schemes employed in the composite rule. 
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Theorem 3 .2 - Let A(~[O, 1], N :=:: 0, and let the partitions A~, 0 ~ i ~ N, of the 

intervals [x1'x 1+ 1] be given. Let Sp(d,A,z), d ~ n, be a polynomial spline space, 

i.e., -1::: z::: d-1. For f(cn+ 1[0, 1] <; Kn+ 1[0, 1] <; VTO, 1], lets be the least square 

approximation to fin Sp(d,A,z), i.e., if {s J~~ 1 form a basis for Sp(d,A,z) then 

where & == (&1, •• • , &Ns) is the unique solution to the system (2.19). Finally, let 

s be the discretized least square approximation to f in Sp(d, A, z) defined by 

where a ~ ~ ~ 

- (a 1, ••• , °'Ns) is the unique solution to the system (2.21) with k deter-

mined by the composite scheme L defined in (3.28). Then 

(3.29) 

where K is a positive constant not necessarily independent of A and, again, 

A== max (x - x) 
O::O i::O N 1+1 1 • 

Proof: Using (2.22) and applying (3.5 ) to the corresponding interpolatory 

quadrature scheme L~ in each subinterval determined by A with the appropriate 

normalized constant denoted Q1, we obtain 
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Ila - 8\li.2Co, 11 I (L - LHf(s - s)J I 

where Q = max , Q1 and where hl = xj+l - Xp 0 s: j s: N. However 
0~1~N 

since f(cn+ 1[0, 1) implies the existence of the positive constant 

(3 .30) 

(3.31) 

c, = max ll D~\\L1o l] and s,s(Sp(d,1:1,z) implies thats - sis a polynomial of 
~k~n+ 1 , 

degrees: don each subinterval [X,i,X,t+i] and so 11 Die(§ - s) I luix x ] = 0, 0 s: j s: N, 
l p j+l 

d + 1 s: ks: n + 1. Combining (3.30) and (3.31) and applying Schmidt's in-

equality, (2.9)' k times to 11 Dk(s - s) I IL2r 1, 0 s: j s: N, 1 s: ks; d, we find 
LXj,Xj+l 

tbat 
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::: Q· c . I~ (n +1)[ d! J2L (t:i..)n-d+l/2. lls s11 
r l~ k (d-k)! j - L2 [0,l] 

since hJ::: 1, 0 ::: j s N, and 

N 

I: h J i. 
j =O 

(3.32) 

Cancelling the factor \Is - s\JL2{0, l] from both sides of (3.32), we obtain 

where 

K - . . J~(n + l)[ d! ]
2

1 
Q Cr l ~ k (d - k) ! j 

is not necessarily independent of~. This completes the proof. 
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The following corollary is immediate. 

Corollary: Given a sequence of partitions [ AJ} ~=l of [O, l] such that 

lim. AJ = O, lets J, foreachj, betheleastsquareapproximationinSp(d,Al,z), 
J--+ 00 

-1 ~ z ~ d - 1, to fEcn+ 1[0, l]. Let .¥S ~- 1[0, l] be finite. For each j, let s J be 

a discretized least square approximation in Sp(d, /::i,.J, z) to f obtained by using a 

composite quadrature rule LJ of the form given by (3.28) where all partitions of 

the subintervals determined by AJ over which the interpolatory formulae are 

defined, when scaled to [O, l], are members of the finite set :¥. Then, if d ~ n 

This means, of course, that the errors introduced into the approximation by the 

use of composite schemes of this type tend to zero with AJ. These errors may 

or may not be small compared to \\f - sJ\\L2[0, l]' Nevertheless, combining the 

corollary to Theorem 2.3 with this last corollary, we obtain the following result. 

Corollary: If, in addition to the hypothesis of the corollary just given, we 

also assume that d = 2m - 1 and m - 1 ~ z ~ 2m - 2 = d - 1, then 

We proceed to define the concept of the consistency of quadrature schemes 

for the approximate solution of the least square problem (cf. [6]). Let d be any 

fixed positive integer and let rt&' be a collection of partitions, A, of [O, l]. For 
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each A E'?J, let Sp(d, A, z) be a space of polynomial splines and let s.6., the least 

square approximation to ff.V{0,1] in Sp(d,A,z), satisfy 

(3 .33) 

where I I· I IN is some norm on L2 [0, 1] and.Ytand £are positive constants independent 

of A. In addition, for each A E'?J, let s.6., that element of Sp(d, .6., z) obtained as an 

approximation to s.6. using some bounded linear functional 1..6., satisfy 

(3.34) 

where.Y{' and £'are positive constants independent of!::... Then, the triangle 

inequality, (3.33) and (3.34) imply that 

for all l::..E'?i since!::.. s: 1. Consequently, if min(£,£ 1 ) ~ £, i.e., t' ~ t, the 

order of accuracy of the splines s.6., l::..f.76, as approximations to f is no worse 

than the order of accuracy of the spline approximations s.6.. In this case, we 

say that the choice of functionals, L.6., is consistent in the norm 11 • I IN with the 

bounds given by (3.33). 

The results of Theorems 2 .2 and 3 .2 immediately give us the following 

theorem. 
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Theorem 3.3 - Let r5=~[O,1], d = 2m - 1, and m - 1::;; z::;; 2m - 2. Let 

sc; ~"-1[0, 1) be finite. For each AE75, let the linear functional in (3.28) be 

defined in terms of interpolation over partitions of subintervals of A all of which, 

when scaled to [O, l], are members of.'¥. Then, forfECn+l[O, 1] and 4(2m-l)::;; 2n-1, 

· 8m - 3 2n + 3 th' h · f l' f t· 1 · i. e. , n :<! 
2 

or m ::;; 
8 

, ls c 01ce o lnear unc lona s ls con-

sis tent in the L 2 -norm with the bounds for the least square error given by (2. 7). 

We note that this result can be improved in those cases in which special 

bounds exist for the interpolatory formulae which are employed in the composite 

rules. 
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4. QUADRATURE SCHEMES OF THE FILON TYPE 

In this section we investigate the use of quadrature schemes of the Filon type 

for the approximate solution of the least square problem in L2[0, 1]. Beginning 

with a definition of Filon type quadrature, we note its dependence on interpola-

tion. We derive bounds for the error in approximating the solution of the least 

square problem by such a technique in terms of the error in the interpolation 

used to define the quadrature. This leads us to the derivation of bounds for the 

error in piecewise Lagrange interpolation. We discuss the question of conver-

gence for sequences of approximations based on Filon type quadrature schemes 

using this type of interpolation and we conclude with a theorem on the consistency 

of such Filon type schemes with the least square error. 

Just as in the preceding section, we are faced with the problem of approxi-

mating the components of R, i.e. , the integrals 

where the splines fs 1}~~ form a basis for the polynomial spline space Sp(d,b.,z). 

In the last section we considered interpolating the integrands by polynomials and 

integrating the interpolates as approximations to the integrals. This method of 

approximating the components of ~ depends only on point evaluations of the basis 

functions, s 1, 1 s: i s: NS, when, in fact, we have explicit piecewise polynomial 
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representations for them. In this section we consider quadrature rules based 

on interpolating the function, f, by a piecewise polynomial, denoted r, and 

using the representations of the basis functions directly in calculating the approxi-

mations to the integrals in question, i.e., we define the vector k· as an approxi-

mation to ~' by 

!<, - L[fs,J " ;:
1 

f(x) s,(x) dx , 1 < < NS. (4.1) 

Quadrature schemes for integrals of product integrands in which only one of the 

factors requires approximation are said to be of the Filon type, (cf. [5, p. 62]). 

Since 7 and all the basis functions, Sp 1 s: i s: NS, are piecewise polynomials, 

each component of k is just the sum of definite integrals of polynomials and can 

be calculated directly. Here, again, we let 

where a = (c(l, .•. ,a,.s) is the unique solution of the linear system of (2.21) 

when Eis defined by (4.1). We state and then prove the following theorem which 

give bounds for the L2-norm of the error in approximating the least square spline 

approximation to f bys in terms of the Lq-norm, 2 s: q s: co, of the error in approxi-

mating f by the interpolate r. 
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Theorem 4.1-Let AE&'N[0,1], N ~ 0, be of the form (2.1) and let Sp(d,A,z) 

be a polynomial spline space, i.e., -1::;: z::;: d - 1. For fEC[0,1], let§ be the 

least square spline approximation to fin Sp(d,A,z), i.e., ifthe splines [s 1}~~ 
form a basis for Sp(d,A,z), then 

where & == (&1' ••• , &Ns) is the unique solution to the linear system of equations 

defined by (2.19). Finally let 

be the discretized least square approximation to f(Sp(d, A' z) where a == <a1 •••• ,a NS) 

is the unique solution to the system (2.21) with R: determined by the functional L de-

fined in (4.1). Then, for 2 ::;: q ::;: '"" 

(4 .2) 

Proof: Beginning with (2.22), just as in the proof of Theorem 3.2, we obtain 

for 2::;: q::;: °"• 
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(L - L)[f(s - s)J 

j\f(x) - f(x)] . [s(x) - s(x)] dx 
0 

Cancelling 11 § - sl IL8[0, 1] from each side yields (4.2). 

If bounds for the error in the interpolation can be derived, they can be coupled 

with the results of Theorem 4.1 to investigate convergence and consistency results 

analogous to those given at the end of the preceding section. To be more specific, 

we could discuss the convergence of sequences of discretized least square spline 

approximations to a function, f, obtained using a Filan type quadrature scheme 

based on the interpolate to f. And, for collections of such quadrature schemes, 

we could investigate the question of their consistency with our bounds for the L2 -

norm of the least square error. 

Error bounds for piecewise Hermite (osculatory) interpolation can be derived 

using the Peano Kernel Theorem (cf. [4]). In order to obtain such interpolates to 

a tabulated function, tables of values of certain derivatives of the function are re-

quired in all but the linear case. In order to avoid this difficulty, we employ piece-

wise Lagrange interpolation for our results based on Filan type quadrature schemes. 

We note, however, that this type of interpolation may coincide with piecewise Hermite 
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interpolation in the linear case. Using rather general error bounds for Lagrange 

interpolation over the interval[a,b] (cf.[12, p. 105]), we are able to derive global 

error bounds for piecewise Lagrange interpolation. 

We begin with the following definition. For any positive integer s, let P
8
[a, b] 

be the set of all polynomials of degree at most s defined on [a, b]. Given any func-

tion fEC[a, b] and a partition A* of [a, b] of the form 

let its unique A*-interpolate be the element f *EP
6
[a,b] such that 

This, of course, is the standard definition of Lagrange interpolation. 

Because of the local character of piecewise polynomial interpolation, we may 

focus our attention on the interval [O, 1]. For fixed x0 E[O, 1], the error in this 

interpolation, denoted by F and defined for fEC[O, 1] by F(f) == f(x0) - f*(x
0
), is 

a linear functional on C[O, 1]. We note that the definition of F depends on x
0 

and A*. Following [12, p. 85] in using Lagrange's interpolation formula, 

we see that this error functional is an elementary Stieltjes integral, i.e. , there 

exists a function µ(x, xo) of bounded variation with respect to xE[O, 1] for each 

x0 E[0, 1] such that for any f EC[O, 1] 

F(f) £1 

f(x) dµ(x, xo) 
0 

(4.3 ) 
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In order to give an explicit representation for µ(x,x 0), let £. 1(x) (P
8
[0,1], 0 $ i $ s, 

be defined by 

<\,J' 0 $ j $ s, 

where 61,J is the Kronecker delta function. Then Lagrange's formula for the 

A* -interpolate of fr C[O, 1] is given by 

f*(x) (4.4) 

Consequently, defining µ(x,x 0), for 0 $ TJ < x0 < TJ+i $ 1, 0 $ j $ s - 1, by 

k 

-L £, 1(Xo) ' T k < x $ Tk+ 1 ' 0 $ k $ j - 1 ' 
i=O 

-~ t,(x,) , r, < x < x,, 

k 
1 - L £ 1(x0), Tk < x $ Tk+l, + 1 $ k $ s - 1, 

i=O 

s 
1 - L 1, 1 (x0 ) , T 8 < x $ 1 , 

i=O 
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so that µ(x,x
0

) is a step function with simple jump discontinuities of magnitude 1 

at x
0 

and -£ j(xo) at T J' 0 s j s s, we immediately obtain 

f 1 f(x) dµ(x,x 0 ) 

0 

s 
f(x0) - L f(T j ) £ j(X0) 

j =O 

This representation implies that Fis a bounded linear functional on C[O, 1]. How-

ever, we also have, for any gEP slO, 1], 

F(g) 0 

since g certainly interpolates itself over A* and interpolation over A* is unique. 

We are now in the position to apply the Peano Kernel Theorem (cf. [12, p. 25]) to 

the functional F. 

We must first generalize the spaces KP[O, 1] defined in Section 2. For any 

positive integer p and any extended real number r, 1 s r s ex>, let KP, r[a, b] be the 

collection of all real valued functions, f(x), defined on [a, b] such that f(C P- 1(a, b], 

DP- 1f is absolutely continuous, and DPfE U[a,b]. Note that, for allpositiveintegers 

p, K1'•2[0,1] = KP[0,1] as defined in Section 2. 

Theorem 4.2- For 1 s p s s + 1, given any fEKP,r[o, 1], then, for any fixed 

x0 E[O, 1], the functional of (4.3) can be expressed as 

F(f) (4.6) 
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where 

f 1 (x - t)1'- 1 

t (p - 1) ! dµ(X,Xo)• (4. 7) 

We remark that Fx in (4.7) means the application of F to [(x-t)r 1/(p - 1)!} 

considered, for fixed t, as a function of x, and, as usual, 

x :<>: t, 

The explicit representations (4.4) and (4.5) allow us to determine the kernels 

K6 ., P(t,x0 ) although they are by no means uncomplicated in all but the linear case. 

Formula (4.5) implies that µ(x,x 0) is of bounded variation on [O, 1], uniformly 

with respect to x 0E:[O, 1], i.e., there exists a constant K dependent on D.. *but 

independent of x 0 such that Var µ(x,x 0) s: Kall x,x0 E:[O, 1]. Thus, as I (x -t)P- 1 1 

is bounded on [O, 1] x [O, 1], it follows from (4.7) that the kernel, K6.,P(t,x0), is 

uniformly bounded on [0,1] x [0,1]. Consequently, if 1/r + 1/r' = 1, then the 

function 

is an element of Lc:i[o, 1], 1 s: q s: ""• and we can define the constant c"* " by 
w. ,P,r,-. 
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Then, applying Holder's inequality to (4.6) gives 

(4.8) 

and integrating the q-th power of both sides of(4.8)with respect to x 0 gives, with 

the definition of c"* Pr q, the following corollary toTheorem4.2 (cf. [12, p. 105)). 
w' '' 

Corollary: For 1 s p s s + 1, given any f(KP,r[o, 1], then 

for 1 s q, r s c:o. 

We now obtain the analogous result for the interval [a, b]. For any f(KP,r[a, b], 

1 s p s s + 1, (4.6) can be written as 

* f(a +x
0
[b-a])-f (a+x0[b-a]) 

where 0 s x 0 s 1. Consequently, we have a second corollary to Theorem 4.2. 

Corollary: For 1 s p s s + 1, given any f(KP,r[a, b], then 

for 1 s q, r s c:o • 

If A* is given as a partition over [a,b], cl:i.*,p,r,q will be interpreted to mean 

the normalized constant defined over [O, 1]. 
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We are now in the position to estimate the global error in piecewise Lagrange 

interpolation. Given a partition t:..T of the interval [a, b] of the form 

b 

and partitions A~ of the subintervals [xpx1+1], 0 s: is: N, of the form 

A* 
i 

we define the (AT) *-interpolate to fEC[a, b] by 

where f 7 is the A:-interpolate to fas defined earlier in this section. Note that 

f need not be continuous at the points Xi, 1 S: i S: N, although continuity at Xi is 

guaranteed by T i-i ,s = x 1 = T i,o· 

In the following theorem, we give bounds for the global error in (i::..T) * -

interpolation. 

Theorem 4.3 - For 1 s: p s: s + 1, given any fEKll,r[a, b], if r is the (AT) * -

interpolate to f as defined above, then 

for any q ~ r, and, if 1 s: q .,;;: r, 

max 
O:S t:SN c6.* ll r,q. \\Dllf\\Lr[ b] ' 

i' ' . a, 
(4.9) 

ll f - r11T'[a,b] .,;;: (l::..T)ll-1/r+l/q. (b - a)<r-q)/rq. max CA* • \\Dllf\\ 
.1..i' o:Si:SN ,_,.i, p,r, r Lr[a, b]' 

(4.10) 
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Proof: With the definition of KP,r(a, b] and the hypothesis of the theorem, it 

is clear that DPf E U[a, b] and f - r E L"[a, b] for 1 ~ q ~ co. For 0 ~ i ~ N, let 

and 

Then, from the second corollary to Theorem 4.2, we have, for O ~ i ~ N, 

...- (x - x )p-l/r-1/q • c • W 
~ 1+1 1 '"* p r q 1 • 

uu '' 

Here, the constants c"* P r " are interpreted to be the normalized constants de-
u 1, ' ' 

fined over the interval [O, 1] in terms of the appropriately scaled partition. But 

then 
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(4.11) 

For q ~ r, Jensen's inequality [ 2 , p. 18] gives 

(4.12) 

" {f.b i IJ'f(t) i· dtf" i 1 D"fl lura.b] . 

Combining (4.11) and (4.12) gives (4.9), the first result of the theorem. Namely, 

for q ~ r, 

(4.9) 

Now, for 1 ~ q ~ r, the integral Holder's inequality gives 
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which, when combined with (4.9) in the case q = r, gives (4.10), the second result 

of the theorem. That is, for 1 s q s r, 

This completes the proof of the theorem. 

As a corollary to Theorems 4.1 and 4.3, we have the following result. We 

do not employ these theorems in their greatest generality. We assume q = 2 

in the first theorem and q = r = 2 in the second. 

Corollary: Let AE:.1'[0, 1] and lets be the least square spline approximation 

in Sp(d, A, z) to frlQl[O, 1]. Given a finite subset Jc;;_ .f'
9

_ 1 [0, 1] and a sequence of 

partitions [A~t 
1 

of [O, 1] such that lim . A~ = O, let sJ, for each j, be a 
J = J- CD 

discretized least square approximation in Sp(d, A, z) to f obtained using a Filon 

type quadrature scheme based on (A~r-interpolation where the partitions of the 

subintervals of A~, scaled to the interval [O, 1], are all elements of the finite 

set.:/:. Then, if p s s + 1, 

This result tells us that the L2-errors introduced into the approximation by 

the use of these Filon type schemes tend to zero with A~. These errors may or 

may not be small compared to 11 f - s II L2f 
0

, l]° By combining the corollary to 

Theorem 2.3 with this last result, we obtain the following corollary. 
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co 
Corollary: let {AJ}j=l be a sequence of partitions of [O, l] such that 

lim. A J = 0 and let § ,, for each j, be the least square spline approximation in 
J-= • 

Sp(2m - 1, AJ, z), m - 1 ~ z ~ 2m - 2, to f£P[O, l]. Given a finite subset 

,7c .9',- 1(0, l] and a sequence of partitions {A~}'.'° 
1 

of [O, 1] such that lim. A~ = 0, 
- J= J-= 

let sJ, for each j, be a discretizedleastsquareapproximation inSp(2m - l,Al,z) 

to f obtained using a Filon type quadrature scheme based on (At)* -interpolation 

where the partitions of the subintervals of A~ , scaled to the interval [O, l], are 

all elements of the finite set S. Then, if 2m ~ s + 1, 

Ulr final result of this section deals with the concept of the consistency of 

collections of such schemes as defined at the end of the preceding section and fol-

lows from Theorems 2.2, 4.1, and 4.3. 

Theorem 4.4-1..et 'f5 =8f'[O,l], Jts;g>4 _ 2 [0,l], . .¥finite, m - 1~z~2m-2 

and, for A £'t-?, consider approximating the least square approximation in 

Sp(2m -1,A,z) to f£K2-[0,l] using a linear functional of the form (4.1) based 

on (AT)*-interpolation with AT s A and the partitions of the subintervals of 

AT, scaled to the interval [O, l], all in$. Then this choice of linear functionals 

is consistent in the L2-norm with the bounds for the least square error given 

by (2. 7). 
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5. NUMERICAL RESULTS 

In this section we present our numerical results based on FORTRAN codes 

of the techniques which we have considered in this paper. Listings of some of 

these codes and descriptions of their uses are included in Appendix B. We begin 

with a documentation of experiments designed to test the validity of some of the 

theoretical results. We follow with examples of least square spline approxima-

tions to data sets which are generally considered to be difficult to approximate 

with polynomials. We conclude with least square spline approximations to em-

pirically determined data sets which are of practical interest. Wherever it 

seems appropriate, we include comments of computational interest. It seems 

appropriate now to mention that all numerical results were computed on a 

UNIVAC 1108. 

Let /:1 ~ be the uniform partition of [O, 1] with mesh length hN = 1/(N + 1). Fix 

m = 1 or 2 and let m - 1 s z s 2m - 1. We begin with an examination of the 

errors in approximating the exponential function, exp(x) = eX, over [O, 1] by 

elements of the spline space Sp(2m - 1, aN, z) using four different techniques. 

We define the splines SN, s;;. s~. and ~(Sp(2m - 1,1:1N,z) as follows: 

~ - Least square approximation to exp as defined in Section 2, 

S'li - Discretized least square approximation to exp based on a composite 

interpolatory quadrature scheme as defined in Section 3, 

~2 s " - Discretized least square approximation to exp based on a Filon type 

quadrature scheme using piecewise Lagrange interpolation as defined 

in Section 4, 
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~ _ Least squares approximation to exp based on the standard discrete 

t.echnique. 

We not.e that s N can be obtained since, for the exponential function, we can comput.e 

numerical values for the components of the vector ~of the syst.em (2.19). The 

discretized least square approximations, ~ and 8~. are obtained by solving the 

"' syst.em (2.21) where .15_, an approximation to .15_, in each case is determined by the 

appropriat.e quadrature scheme. The standard discrete least squares t.echnique, 

which is used to obtain ~. can be discussed in the cont.ext of Section 1 with only 

slight modifications. A (discret.e) semi-inner product is employed instead of an 

inner product, i.e., property (iv) of (1.1), the defining relations for an inner 

product, is not satisfied, and the only loss the theory suffers is that the matrix 

involved cannot be guarant.eed to be positive definit.e. Of course, the pot.ential 

instability in solving the corresponding syst.em must be considered when em-

ploying this purely discret.e technique. 

Theorems 2.3, 2.4, 3.2, 4.1, and 4.3 are employed to obtain the following 

CD 

appraisals where K, K , K,_, and ~are all positive constants independent of hN. 

(5.1) 

(5.2) 

(5.3) 

where n is the order of int.erpolatory quadrature in t.erms of which s~ is defined, 

and 
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(5.4) 

where s is the degree of piecewise Lagrange interpolation employed in the Filon 

quadrature in terms Of which S~ is defined and hT is the mesh width for the distri-

bution of data for this interpolation technique. Combining (5.1) with (5.3) yields 

(5.5) 

and (5.1) with (5.4) yields 

We have no bounds for the error in the fourth approximation. However, for certain 

weighted discrete techniques, the results of Section 3 are valid. Explanatory re-

marks are in order. We observe, for example, that the interpolatory schemes 

of order n employed in Section 3 are exact for polynomials of degree s:n. Con-

sequently, if n::?: 4m - 1, composite interpolatory schemes of order n are exact 

for products of splines in Sp(2m - 1,A,z) and, in particular, for the entries of 

the least square matrix defined in (2.20). Then, for the discrete technique 

with weights from the composite interpolatory scheme, Theorem 3.2 holds and 

we have appraisals in these special cases. 

CUr first numerical results are presented in Tables 1, 2, and 3. We give 

approximate numerical values for the quantities II exp - sNllL2[0,l] and 

11 exp - sN I IL 1o, l] for the spline spaces Sp(l, AN, 0), Sp(3, AN, 2), and Sp(3, AN, 1) 
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TABLE 1. Least Square Linear Spline Approximation of the Exponential Function 

hN I I exp - §NI I vico' 1] Ct \\exp - §N l \L..,[O, 1] Ct 

1/2 1.68 . 10-2 -- 5.00 . 10-2 --

1/ 3 7.44. 10-3 2.01 2.31 . 10-2 1.90 

1/4 4.18 . 10-3 2.00 1.33 . 10-2 1.92 

1/5 2.68. 10- 3 2.00 8.63 . 10-3 1.94 

1/6 1.86 . 10-3 2.00 6.04. 10-3 1.95 

1/7 1.36 . 10-3 2.00 4.47 . 10- 3 1.96 

1/8 1.04 . 10-3 2.00 3.44 • 10-s 1.97 

TABLE 2. Least Square Cubic Spline Approximation of the Exponential Function 

hN \\exp - sN l \L2[0, l] Ct \lexp - sNllL..,[0,1] Ct 

1/ 2 4.53. 10- ~ -- 1.82 . 10- 4 --

1/3 1.63 . 10-5 2.52 3.11 . 10-5 4.36 

1/ 4 5.30 . 10-s 3.90 1.09 . 10- 5 3.66 

1/5 2.30. 10-s 3.73 4.81. 10-s 3.65 

1/6 1.13 . 10-6 3.91 2.40 . 10-e 3~82 

1/ 7 6.21 . 10-? 3.87 1.35 . 10-e 3.74 

1/8 3.68. 10-7 3.92 8.06. 10-7 3.85 



hN 

1/2 

1/3 

1/4 

1/5 

1/6 

1/ 7 

1/8 
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TABLE 3. Least Square Cubic Hermite Spline Approximation of the 
Exponential Function 

llexp - sN\\L2[0,l] a 11 exp - § N \ \ L ~[ 0 ' 1] 

4.25 • 10-s -- 1.48. 10-4 

1.16 . 10- 5 3.20 3.74. 10-s 

4.32 . 10-s 3.44 1.31 . 10-s 

1.94. 10-s 3.60 5.65 . 10-6 

9.87 . 10- 7 3.69 2.81. 10-6 

5.53. 10-7 3.75 1.55 . 10-6 

3.33. 10-7 3.79 9.24 . 10-7 

°' 
--

3.38 

3.65 

3.77 

3.83 

3.86 

3.88 
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for N = 1, 2, ... , 7. Following [ 6], for each pair of consecutive entries, we 

have included the quantity 

defined in t:erms of successive values of the mesh spacing, hn
1 

> hn
2

• The 

motivation for the definition (5. 7) is the fact that as hn ..... 0 we have 

for some constants a and .Y{ depending on the norm 11 • 11, but not on hw Then for 

two successive values of h, hn
1 

> h~, 

from which the definition of a follows. In the tables enough values of hare given 

to see that the comput:ed exponents of (5. 7) in the L2-norm are converging to the 

asymptotic values given by (5.1), i.e., a ,...., 2m. The loss predicted by (5.2) of 

CX) 

1/ 2 of an order of accuracy in moving from the L2-norm to the L -norm is ap-

parently not realized in this case. 

Tables 4, 5, and 6 include, for several values of n, approximate numerical 

values for the quantities 11 §N - s~ I IL2[0, 1] where S?i is an approximation in 

Sp(2m - 1,~ N,z), m = 1,2,m - 1~z~2m - 2, to §N determined by a composit:e 

int:erpolatory formula based on n+l-point open Newton-Cotes quadrature formulae. 

Again, we include the quantity a. The order of accuracy predict:ed by (5.3) as a 

function of n and mis n - 2m + 3/2 or (2n - 4m + 3) / 2. We observe the following 



TABLE 4. lnterpolatory Quadrature and Linear Spline Spaces 

n=l n=2 

~ lls - ~llv110,11 ex !Is - ~llL2[0, l] (X 

1/2 3.59 • 10-a -- 2.26 • 10- 4 --
1/3 2.12 • 10-a 1.30 6.01 • 10-5 3.27 

1/4 1.37 • 10- 2 1.53 2.19 • 10-5 3.51 

1/5 9.88 . 10- 3 1.45 1.02 • 10- 5 3.44 

1/6 7.54 • 10- 3 1.48 5.40 • io- 6 3.48 

1/7 6.01 • 10- 3 1.48 3.16 · 10- 6 3.46 

1/8 4.93 · io- 3 1.48 1.99 . 10-6 3.48 

n=3 

lls - ~llL2[0,l] 

1.17 • 10-4 

3.11 · 10-5 

1.13 · 10-5 

5.26 ' 10-6 

2.79 . 10-6 

1.63 . 10-6 

1.02 · 10-6 

(X 

--

3.27 

3.51 

3.44 

3.47 

3.48 

3.50 

CTI 
co 



TABLE 5. Interpolatory Quadrature and Cubic Spline Spaces 

n=3 n=4 n=5 n=6 

bN llsN-81llL2(0,1) ex 11 §N - 81IIL2[0'1] ex llsN-8111L2[0,1) ex llsN-8111L2(0,1) 

1/2 1.59 . 10- 2 -- 9.13 · 10-s -- 5.49 · 10-s -- 1.06 . 10-7 

1/3 9.88 . 10-3 1.17 2.77 • 10-s 2.94 1.66 • 10-s 2.94 1.48 • 10-e 

1/4 5.13 . 10- 3 2.28 8.02 · 10- 6 4.30 4.82 • 10-0 4.30 2.40 • 10- 9 

1/5 3.98 • 10-3 1.14 4.06 · 10- 6 3.05 2.44 • 10-6 3.05 7 .82 • 10- 10 

1/6 2.86 . 10- 3 1.81 2.03 . 10-0 3.80 1.22 · 10-s 3.80 2.72 . 10- 10 

1/7 2.33 . 10-3 1.33 1.22 . 10-0 3.29 7.34 . 10-7 3.29 1.20 . 10- 10 

1/8 1.88 • 10-3 1.62 7 .55 • 10-7 3.60 4.54 . 10-7 3.60 5.68 • 10- 11 

n=7 
a ll~-8111L2[0,l] 

-- 6.17 · 10-e 

4.86 9.44 • 10-9 

6.31 1.54 • 10-9 

5.03 5.00 · 10-io 

5.80 1.74 • 10- 10 

5.28 7.70 . 10- 11 

5.63 3.62 . 10-11 

ex 

--

4.86 

6.31 

5.03 

5.80 

5.27 

5.64 

O> 
0 



TABLE 6. Interpolat:ory Quadrature and Cubic Hermite Spline Spaces 

n=3 n=4 n=5 n==6 

hN llsN-~llL2[0,1) a llsN-~llL2(0, 1) a llsN-s~lle[o, 11 a llsN-s~llL2[o, 11 
a 

1/2 5.9.0 . 10-2 -- 3.82 • 10- 4 -- 2.30 . 10- 4 -- 4.63 . 10-7 --
1/3 3.62 . 10-2 1.21 1.05 . 10- 4 3.19 6.30 ' 10- 5 3.19 5.66 · 10- 9 5.19 

1/4 2.60 . 10-2 1.15 4.26 · 10-s 3.13 2.56 · 10-5 3.13 1.29 · 10-9 5.13 

1/5 2.03 · 10-2 1.12 2.13 · 10- 5 3.11 1.28 • 10- 5 3.11 4.14 • 10- 9 5.11 

1/6 1.66 · 10-2 1.11 1.21 • 10- 5 3.10 7.26 · 10-s 3.10 1.63 • 10- 9 5.10 

1/7 1.40 · 10-2 1.09 7.51 · 10-s 3.09 4.51 · 10- 6 3.09 7.46 . 10- 10 5.09 

1/8 i.21 · 10- 2 1.09 4.98 • 10-e 3.08 2.99 · 10-s 3.08 3.78 . 10- 10 5.09 

n=7 

I I SN-~I IL2[0, 1] 

2.96 . 10-7 

3.61 · 10- 9 

8.26 • 10- 9 

2.64 • 10- 9 

1.04 . 10- 9 

4. 76 · 10- 10 

2.41 . 10- 10 

a 

--

5.19 

5.13 

5.11 

5.10 

5.09 

5.09 

O'l ..... 
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discrepancies between the observed and predicted values of the order of accu

racy of this technique in the L2 -norm. For the linear spline spaces, Sp(l, AN, 0), 

we observe the values of 1.5, 3.5, and 3.5 for the limiting values of a when 

n = 1, 2, and 3, respectively, and yet the values predicted by the theoretical 

resuits are 0.5, 1.5, and 2.5. We observe, however, that special error bounds 

can be derived for odd point (even values of n) Newton-Cotes formulae which 

yield an additional order of accuracy. Consequently, we observe a constant 

discrepancy of one between the predicted and observed orders of accuracy in 

approximating the least square linear spline approximation to the exponential 

function using this type of discretized technique. We note that the corresponding 

table in the L co -norm reflects the loss of a half of an order of accuracy predicted 

by theoretical considerations. However, we have not included this table in this 

presentation of our numerical results. In the cubic case, i.e., m = 2 and z = 2, 

we observe the numbers of 1.5, 3.5, 3.5, 5.5, and 5.5 for the limiting values of 

a when n = 3, 4, 5, 6, and 7 and again find discrepancies with the predicted values 

of 0.5, 1.5, 2.5, 3.5, and 4.5. Considering the additional order of accuracy for 

odd point Newton-Cotes formulae, we again observe a constant discrepancy of one 

order of accuracy between the computed and predicted values of a. We also note 

that a predicted loss of a half an order of accuracy can be observed when the 

corresponding table in the Leo-norm is computed. Finally, for the cubic Hermite 

spline spaces, i.e., m = 2 and z = 1, the observed values of a are tending to 

1.0, 3.0, 3.0, 5.0, and 5.0 for n = 3, 4, 5, 6, 7 and the predicted values based on 

the special bounds for the odd point Newton-Cotes formulae are 1.5, 3.5, 3.5, 
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5.5, and 5.5 just as in the cubic case. However, here we observe the constant 

discrepancy of one half of an order of accuracy between the predicted and observed 

values for a.. In this case, the loss of a half order of accuracy predicted by theo

retical considerations when using La-error bounds and Sobolev type inequalities 

to generate L = error bounds is not observed. These same discrepancies were 

observed in least square approximation of the function sin (2x), 0 s: x s: 1. The 

analogous tables for the Filon type quadrature schemes show no discrepancies 

between the predicted and observed values of ex. Consequently, we omit them 

from this presentation of numerical results. 

Corresponding to the spline spaces Sp(l,A,.,O), Sp(3,Ai,2), and Sp(3,~,1), 

respectively, in Tables 7, 8, and 9, we present approximate numerical values 

for the quantities \\exp - ~\\V'{O, l]' \\exp - s~llL2[0, l]' and !lexp - s~l\Vl[O, l] 

where the quadrature schemes used to determine the discretized spline approxi-

mations are chosen to be consistent with the L2-bounds for the least square error 

as given by (5.1). Specifically, the composite interpolatory formula employed to 

determine $1£ Sp(2m - 1,AN,z) is based on (4m - 1) - pt open ended Newton-Cotes 

formulae and the Filon scheme used to determine s~ is based on piecewise Lagrange 

interpolation of degree 2m - 1. For any fixed value of N, the data points used to 

determine the approximations are the same for each technique. Again the quantity, 

ex, as defined in previous tables is included. We note that both discretized approxi

mations, ~and~. exhibit the consistent behavior predicted by our theoretical 

considerations. We also note that the standard discrete least square technique 

generates spline approximations, ~. which also exhibit this consistent behavior. 



TABLE 7. Consist.ent Quadrature Schemes for Linear Spline Spaces 

hN \\exp - ~\IL2[0, 1] ex \\exp - ~I IL2[0, 1] ex \\exp - s~\\L2[0, 1] 

1/2 1.68 . 10- 2 -- 1.72 . 10-2 -- 1.69 . 10-2 

1/3 7.48 . 10- 3 2.01 7.62 . 10- 3 2.00 7.51 . 10-3 

1/4 4.18 . 10- 3 2.00 4.29 . 10- 3 2.00 4.23 • 10- 3 

1/5 2.68 . 10- 3 2.00 2.75 . 10- 3 2.00 2.70 . 10- 3 

1/6 1.86 . 10- 3 2.00 1.91 . 10-3 2.00 1.87 . 10- 3 

1/7 1.36 . 10- 3 2.00 1.40 . 10- 3 2.00 1.38 . 10- 3 

1/8 1.04 . 10- 3 2.00 1.07 • 10-3 2.00 1.05 • 10- 3 

ex 

--

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

O') 

""' 



TABLE 8. Consistent Quadrature Schemes for Cubic Spline Spaces 

hN II exp - ~llL2[0, 1) Ct II exp - ~llL2[0,1] Ct llexp - s~llL2[o,lJ 

1/2 4.54 • 10- 5 -- 4.53 • 10-5 -- 4.64 • 10-s 

1/3 1.63 . 10- 5 2.52 1.63 • 10- 5 2.52 1.63 · 10- 5 

1/4 5.30 • 10-6 3.90 5.30 • 10-6 3.90 5.31 • 10-6 

1/5 2.30 • 10-6 3.73 2.30 . 10- 6 3.73 2.30 • 10-6 . 

1/6 1.13 • 10-6 3.91 1.13 • 10-6 3.91 1.13 · 10-5 

1/7 6.22 . 10- 7 3.87 6.22 . 10-7 3.87 6.22 • 10-7 

1/8 3.68 • 10-7 3.92 3.68 . 10-7 3.92 3.68 . 10-7 

ex 

--

2.58 

3.90 

3.74 

3.91 

3.87 

3.92 

O'l 
C}1 



TABLE 9. Consist.ent Quadrature Schemes for Cubic Hermit.e Spline Spaces 

hN \\exp - ~llL2£0, l] Q'. \\exp - ~llL2[0, l] Q'. \\exp - s~\IL2[0, l] 

1/2 4.26 · 10- 5 -- 4.26 · 10-s -- 4.36 · 10- 5 

1/3 1.16 · 10- 5 3.20 1.16 · 10-s 3.20 1.18 · 10-s 

1/4 4.32 . 10-B 3.45 4.32 · 10-s 3.44 4.36 · 10- 6 

1/5 1.94 · 10-s 3.60 1.94 . 10- 5 3.GO 1.95 . 10-a 

1/6 9.87 . 10- 7 3.69 9.87 . 10- 7 3.69 9.93 . 10- 7 

1/7 5.53 . 10-7 3.75 5.53 . 10-7 3.75 5.56 . 10- 7 

1/8 3.33 . 10- 7 3.79 3.33 . 10- 7 3.79 3.35 . 10-7 

Q'. 

--

3.22 

3.46 

3.61 

3.70 

3.76 

3.80 

a> 
O'> 
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We now turn to the approximation of data sets of special interest. The first 

two of these data sets are considered difficult to approximate using polynomials 

because of ''their inability to take sharp bends followed by relatively flat be

havior" (cf. [11, p. 15)). In Fig. 1 we present plots of two different spline 

approximations in Sp(3,A,2) with A= {o.o, 0.05, 0.15, 0.85, 0.95, 1.0} to the 

data points (cf. [15]). On these plots, the knots are denoted Aand the data 

points +. The upper plot represents a spline whose coefficients were determined 

using the standard discrete least square technique. The lower plot corresponds 

to a discretized least square approximation determined by Filon quadrature 

based on piecewise linear interpolation. Plots of the analogous approximations 

for another data set of similar interest (cf. [9]) are given in Fig. 2. 

We conclude this section with the approximation of seven sets of data repre

senting the velocity of sound in water versus depth. Of course, such data de

pend on many things including longitude, latitude, and the meteorological con

ditions where and when these velocities were determined. The use of cubic 

spline interpolates in ray tracing algorithms as approximations to sound velocity 

profiles has recently been investigated (cf. (10)). In Figs. 3 through 9 we pre

sent plots of two cubic spline approximations to the appropriate data sets. The 

techniques used to determine these approximations as well as our notation in the 

plots are identical to those of Figs. 1 and 2. We employed the partition 

A= {o.o, 400.0, 800.0, 1,600.0, 3,200.0, 6,400.0, 18,000.0} for all splines in 

Figs. 3 through 9. We remark that the sparseness of the data for the deeper 
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+ 

0.20 Q.40 a.so a.so I .oo 

Discrete Least Squares Polynomial Spline Approximation 

+ 

0.20 Q.40 Q.60 a.ea I .QO 

Discretized Integral Least Square Polynomial Spline Approximation 

FIG. 1. A ''Difficult" Data Set 
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+ 

D.2D D.4D D.6D D.aD I .DD 
r.tole Fraction Ethanol 

Discrete Least Squares Polynomial Spline Approximation 

0-+-~~~~~~~~~~,--~~~~-.---~~~~-r-~~~~-, 

LltJ.DD D.2D D.4D D.60 D.aD 1 .DD 
Mole Fraction Ethanol 

Discretized Integral Least Square Polynomial Spline Approximation 
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portions of the profiles makes the standard discrete technique unreliable be

cause of its tendency to interpolate the data when it can. Indeed, the distribution 

of the data is the main reason that piecewise linear interpolation is employed in 

the Filon quadrature used to discretize the least square technique. 
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Appendix A 

ON AN INEQUALITY OF E. SCHMIDT 

Iµ 1932, E. Schmidt stated without proof the following inequality which relates 

the L2-norm of a polynomial ~(x) of degree Mon [-1, 1] to the L:<Lnorm of its 

derivative: 

In [3], R. Bellman gave a proof that k.. s: (1/..;2)(M + 1)/M):a (and so 

lim sup ~ s: 1/ J2) based on the Cauchy-Schwarz inequality and properties of 

the Legendre polynomials. Employing essentially the same techniques, we are 

able to obtain the improved bound, k.. s: (1/2) ((M + 1)/M)2
, as well as an im

proved asymptotic result, lim sup k.,. s: 1/2./Z . 

Beginning with the following recurrence relation for Legendre polynomials 

(cf. [8, p. 206]), i.e., 

(2n + 1) ~(x) 

where ·9: is then-th Legendre polynomial, we immediately have 

IXF'2n I: (4k + 3) ~lc+l ' 

k=O 

and (A.1) 
n 

IXF'2n+l 2: (4k + 1> ~le. 
k=O 
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Expressing p,,,(x) in terms of the Legendre polynomials 

IJi.,(X) (A.2) 

and using the orthogonality relations of the ~. we find that 

M /1 L a~ 9'~(x) dx 
k=O -1 

(A.3) 

Beginning with (A.2), employing (A.1), and denoting the greatest integer less than 

or equal to x by [x], we find that 

[M/2] [(M-1) / 2] 

L a2t' n~.(x) + L a:ar+l D9':ar+1(X) 
r =O r=O 

L (4k + 3) 9gk+1(x) L ~r + L (4k + 1) ~k(x) L a 2r+i • 
0~2~M-2 r~k+l 0~2~M-1 r~k 

Consequently, applying (A.3) to Dp,,,(x), we find that 
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{ }

2 

2 L (4k + 3) L ~r 
Q$;2k!;:M-2 r~k+l 

+ 2 L (4k + 1)} L a2r+ 1 }

2 

(A.4) 
Q$;2~M-1 l r~ 

We now bound each of the sums on the right hand side of (A.4). 

Setting ar = ( (2r + 1) / 2)1-12 brt w~ bound the first sum as follows: 

$; 2 L ( 4k + 3) ~ L 4
r + 

1
} • { L b2 } 

Q$;2k$;M-2 lr~k+ 1 2 r~k+ 1 
2

r 

$; L (4k + 3){ L (4r + 1)} • L b;_ 
Q$;2k$;M-2 r~k+l r~O 

M (M + 1) (M + 2) (M + 3) 

8 
L b~r , if M is even, 
r~O 

(M -1) M(M + 1) (M + 2) '°' b 2 'f M . dd 
8 L..J 2r ' 1 lS 0 • 

r~O 

A similar calculation yields a similar bound for the second sum: 

(A.5) 
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2 L (4k + 1){ L a2r+ 1}2 
0~2k~M -1 r<'=k 

(M - 1} M(M + l(M + 2} L.: b~+1, if Mis even, 
8 

r<'=O 

~ (A.6) 

M(M + l}(M + 2}(M + 3} L.: b~r+l , if Mis odd. 
8 

r<'=O 

We note that these bounds are due to H. Cheng. We immediately observe that 

/

1 M M 
[DpM(x)]2dx ~ M(M + l}(M + 2}(M + 3) Lb~ = M(M + l}(M + 2}(M+3) L 2:~ 

-1 8 k=O 8 k=O 2k 1 

by (A.3 ). Consequently , 

M(M +lH~ + 2HM + 3) fl [PM(x)]2dx 

-1 

[
(M + IHM + 2HM + 3)]1/2 

~ ~ 8M3 

and these bounds yield lim sup ~ = 1/ (2,/Z ) . In fact, a result of Hille, Sze go, 

and Tamarkin states that lim k M = 1/rr . 

However, we may combine the bounds (A.5) and (A.6) in order to obtain a 

constant of the same form as that given by R. Bellman. 
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We have 

and so 

I 1 [DpM(x)]2 dx 
-1 

~ {(M-1) M(M+l)(M+2) + M(M+l)(M+2)(M+3)} t b~ 
8 8 k=O 

M(M + l)(M + 2)(2M + 2)~ 2a~ (M + lf£1 
L....J ~ 4 [pM(S)]2 dx 

8 k=O 2k + 1 -l 

We immediately have the following generalization for polynomials defined 

over the interval [a, b]. 

ll ll (M+l)
2 ll ll 

Dp,,, L2[a, b] ~ b - a PM L2[a, b] · 
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Appendix B 

A CUBIC SPLINE APPROXIMATION PROGRAM - CSP LIT 

We shall briefly describe the FORTRAN program CSPLIT and the subrou

tines on which it depends and remark that this is one program of many which we 

have used to investigate the techniques discussed in the main body of this paper. 

Note that all special purpose subroutines pertaining to least square approxima

tion in cubic spline spaces have FORTRAN names beginning with the letter C. 

The names of the analogous routines in the linear and cubic Hermite cases 

begin with the letters L and H, respectively. All these special purpose codes 

are actually quite general allowing us great flexibility in the numerical work 

which we wish to rursue. However, there are definite limits on the size of the 

problem which we can handle with these programs as they are presently coded. 

Given numerical values for the points of the partition A(Z (i), i = 1, NM) and 

for the abscissa and ordinate of each data point (X(i,j ), i = 1, NP, j = 1,2), 

CSPLIT is programmed to compute the coefficients of both a discrete and a 

discretized least square approximation to the data in the spline space Sp(3, A, 2) 

and to generate a CALCOMP plot tape with which graphs of these approximations 

are obtained. We note the use of COMMON statements in all but the general pur

pose polynomial manipulation routines (PO LEX, PO LINT, POLVAL, and 

LGRNGE) in order to yield access to the main variables to all subroutines need

ing it. This reduces the number of arguments required for the special purpose 

routines. We also note that most of the real variables in the programs are 
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stored in double precision in order to avoid, as much as possible, rounding 

errors in the accumulation of the many inner products which must be calculated 

as well as in the solution of systems themselves. 

The main program, CSP LIT, coordinates the use of the general and special 

purpose subroutines needed to generate and plot the indicated spline 

approximations. Listings of CSPLIT and its subroutines are given in Figs. 10 

through 21. CINPUT is programmed to compute and store in the SC-array 

numerical values for the coefficients of the polynomial representations of the 

basis functions for the spline space Sp(3, ~' 2). These basis functions have been 

chosen so that each has its support confined to at most four adjacent subintervals 

of the partition~ (cf. [13]). Consequently, the matrices involved in both the sys

tems which we must solve are band matrices. 

A call to the subroutine CDI.S fills the A-array and the first column of the 

B-array with the IUimerical values corresponding to the normal systems of equa

tions for the discrete least squares approximation. CDLS depends on the cubic 

spline evaluation subroutine CEVA L. MATINV is called to obtain a solution to 

our system using Gaussian elimination. The coefficients of the discrete least 

square approximation to the data are found in the first column of the B-array 

and are then stored in the second column of this same array. 

A call to the subroutine CMTRX fills the A-array with the entries of the 

least square matrix. We chose to base the discretized technique on a Filon type 
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quadrature scheme which employs piecewise linear interpolation to the data. 

A call to the subroutine C F1LON fills the first column of the B-array with 

numerical values based on our chosen type of quadrature. If we wished to em

ploy a composite interpolatory type scheme, we would have used the subroutine 

CPLATE. Subsequent to a second call to the subroutine MATINV, the first two 

columns of the B-array contain the coefficient of the discretized and the discrete 

least square approximations to the data in the spline space Sp(3, A, 2). Finally, 

a call to the subroutine CSPLOT produces the CALCOMP plot tape used to gen

erate graphs of these approximations. The graphs of the approximations pre

sented in Figs. 1 through 9 of Section 5 of this paper were generated with the 

program CSPLIT (with slight modifications demanded by the different data 

formats). 
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COMMON Zl20l1SC(7,2214l1X(99o2loBl22,4l1A(22o22l 
DOUBLE PRECISION Z•SC1X1B1A 
NOATA : 0 
READ<5•10l NM 

10 FORMAT<IlOl 
40 FORMAT(8010.4l 

REA 0 <5•40l <ZIIl•I=loN~l 
30 READ(51lOl NP 

REAo<5•20> (IX(l•JloJ:t,2)•l=l•NPl 
20 FORMAT(8F8oOl 

REA0(5110l MOATA 
NOATA : NDATA + 1 
CALL CI NPUTINMoOoOI 
CALL CDLS(NMo NPI 
NS : N"l+2 
CALL MATINV(NS1l•O~TER~122•4l 
DO 50 I:l,NS 

50 Bllo21 : B<I•ll 
CALL CMTRX<NMl 
CALL CFILONINM1NP,~I 
CALL MAT I NV(NSol•OETER~o22•4l 
DO 60 I:l,NS 

60 ~RITE<617ol B<I•ll•B<I•2l 
70 FORMAT(/120250161 

11tRITEl6180l 
80 FORMAT(/////) 

CALL CSPLOT(NM,NDA I A,MDATA•NPl 
IF(MDATAoEG.ll GO To 3n 
STOP 
ENO 

FIG. 10. Program listing for CSPLIT. 
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SUBROUTINE CINPuT(NMrHl 
CO..,MON z<2oi.sc17,£214l•X(99,2>.0122,4),A(22.221 
DOUBL~ PRECISION Z•Sc.x.p.A.c.u.F.T.p 
DIMENSION Cl91,~F(911U(919l1K(9,9l•Fl9l,T(40l 
DO 10 I:l,7 
DO 10 J:l,22 
DO 10 L:l,4 

10 sc<1·~·L> = 0.000 
lFIHo£Q,D.0) H : Zl2l-Zlll 
Till : Z<ll-3.•n 
Tl2l : Zlll-2.•H 
T ( 31 : Z ( 1 I -H 
DO 20 J:l,N'-1 

20 T!I+3l : Zill 
IF(H.EQ.o.oi H = ZlNMl-ZINM-11 
T!NM+4) : Z(NM)+rl 
TINM+SI : ZINMl+2.•H 
TIN~+cl : ZINM)+3,•H 
NF ( 1) : l 
K(l1ll : 3 
NP5 : N"'+5 
DO 40 I:4,NP5 
P: !TII+1>-T<Ill•lT(l+ll-T!I-lll•<TII+ll-T<I-21l•(T(1+ll-T(l-3)l 
Clll : (-4,Q~Ol/P 
u11,11 : TII+ll 
CALL POLEX<l•C1~F,U•K1N1Fl 
DO 30 J:l,4 

30 sc<~·l-3•4l = FIJI 
40 CONTINUE 

~o cO I:5,NP5 
P: ITIIl-T(I+lll•ITIIl-TCI-lll•ITlll-T(I-211•1TIIl-T1I-3ll 
Clll : 1-4.0DOl/P 
u11,11 : TIII 
CALL POLEX<l•C•NF1U•K•N,FI 
DO 50 J:l,4 

50 SCIJ•I-3•31 : F(Jl + SC!J,I-3•41 
cO CONTI :,UE 

DO oO I:&,Np5 
p = (f(I-ll-TII+l)l•(TII-ll-TIIll•<T<I-tl-T(1-21l•<T<r-ll-T(l-~ll 
Clll : (-4.0DOl/P 
U!l.11 : TII-ll 
CALL POLEX<l•C1NF,U•K•~•FI 
DO 70 J:l,4 

70 SCIJ•l-3•2> : F(Jl + SC<J•I-3•31 
80 CONT I , ~UE 

DO lOU z:7, 1~P5 

P: ITII-2l-T<I+lll•<l<I-21-TIIll•IT(I-2l-T!i-lll•CTl:-2l-T!I-~ll 
CCl> : 1-4.0DOl/P 
UC l, 11 : TC I-21 
CALL POLEX<l•C,,'<F,lnK.~ ! ,Fl 

DO c;O J:l,4 
90 sc<~·I-3•11 = F(Jl + SCCJ.I-3•2> 

100 CONT I.WE 
RETuR:, 
E'<O 

FIG. 11. Program Listing for Subroutine CINPUT. 
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SUAMOJ TJNE POLEXlNlrCrNFrU•K•N•f) 
DP't.N ~ION C (9l rNF(~) rU(919l • K (91 9 ) • P (91Q) ,NN(Q) rF (Q) 
DOUdL~ PRECISION C•UrPrF 
DO 5 1=1•9 
DO 5 .J=l•9 

5 P(Ir.Jl : OoODO 
DO 60 J:l, NT 
P<Jrll : ClJl 
N : 1 
IF(NF(J).[Q,0) ~ o To 50 
IF : NF(Jl 
DO 40 I:ltIF 
LF : K(J•I> 
Do 30 L:l,LF 
P(JrN+l) : P(J,N) 
!FIN ,LT.?) GO TO ~0 

DO 10 KK=N r~•-l 
10 P(J,KKl : P(J•KK-1l-U(J1Il•P(J•KKl 
20 P(J,ll : -U<J•Il•PlJrll 

N : "l+l 
30 CONTINUE 
40 CONTINUE 
50 NN(J) : N 
60 CONTINUE 

N : 0 
DO 70 J:l,NT 

70 N: MAXO<N•NN(Jll 
DO 90 I:l,9 
F<Il: Q.ODO 
DO 80 J:l,NT 

80 F<Il : F(Il + PlJ,ll 
90 CONTINUE 

RETURN 
END 

FIG. 12. Program Listing for Subroutine POLEX. 

SUBROUTINE CDLSlN~•NP) 
COMMON Z(20lrSC(7,22,4lrX(99r2l•B(22,4l,A(22 122l 
DOUBL~ PRECISION Z•SCrXrB•A•UrV 
NS : NM+2 
DO 20 I:l, NS 
6(1,ll = o.o 
DO 10 J:l,NP 
CALL CEVALINMrI•l,~(J,ll•Vl 

10 BCI,ll : Biirll + ~1Jr2l•V 
20 CONTl i<UE 

00 40 J:l, NS 
DO 40 J:l,NS 
ACirJl : O·O 
DO 30 K:l,NP 
CALL CEVALI NM •J•l,~(K,ll•Ul 

CALL CEVAL(NM'1'1,~IK.1J,Vl 
30 A(I.Jl :r; A<I•Jl + u•v 
4U CONTINUE 

RETURN 
END 

FIG. 13. Program Listing for Subroutine CDLS. 
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SUBROUllNE CEVALINM•J•~~•S•Vl 
COMMON Zl20l•SC!7,~2•4loX(99r2lrRl22o4l•Al22122l 
OOUbLE PRECISION Z•SCrX•A•A•V•S 
IF(J,[G,ll GO Tu 4V 
IF(J,£G,2> GO TO 3u 
IF(J,£G,3l GO TU 2U 
IF<s-Z<J-3llllO•llU• 
IFts-Z<J-2))50,~U, 

20 IF<s-Z<J-1))60.bUr 
30 IFIS-l1Jll70•70• 
40 IFIS-Z(J+1l)80oo0,!10 
50 I( = 1 

GO TO (90,lOOlrNO 
60 I( = 2 

GO TO (90ol00loNO 
70 I( = 3 

GO TO (90olOOl,NU 
80 I( = 4 

GO TO (90,100l1ND 
90 V : SCll•J•t<> + SCl2oJ•Kl•S + SCl3•Jrt<l•S••2 + 5C(4rJ,t<l•S••3 

GO TO 120 
100 V : SC<2•J•Kl + 2,U•Srl3rJ•Kl•S + 3oO•SCl4•J1Kl•S••2 

GO TO 120 
110 v = o.o 
120 RETuqN 

END 

FIG. 14. Program listing for Subroutine CEVAL. 
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SUBROUTINE MATINV(N•M•DETERM,ND•MD) 
COMMON z<20>•SCl7,~2,4l•X(99,2>•Bl22,4l•A(22,22l 
DIMENSION IPIVOTl50l1 JNDEX<50•~>. PIVOTl50l 
DOUBL~ PRECISION Z•Sc.x.0.A.PIVOT.AMAX•T•SWAP 
EQUIVALENCE llRO#,JROWl• <ICOLU14,.JCOLUM)• lAMAX• Tr S .. APl 

10 DETERM=l·O 
1'5 DO 20 J:lrM 
20 IPIVOT<Jl:O 
30 DO 550 I=l•N 
40 AMAx=o.o 
45 DO 105 J=l•N 
50 IF <IPIVOT<Jl-ll 6li• 1051 60 
60 DO 100 K=l•N 
70 IF <IPIVOTlKl-11 80• 100• 740 
80 IF lDABS(AMAXl•UAB~(A(J•Klll b5• 100, 100 
85 IROw:J 
90 ICOLUM:K 
95 AMAX:A(.J•l<l 

100 CONTINUE 
105 CONTINUE 
110 IPIVOT(ICOLUMl:IPI~OT<ICOLUMl+l 
130 IF <IROw·ICOLUMl 1401 260, 140 
140 DETERM=·DETERM 
150 DO 200 L=l•N 
160 SWAP=A<IROW1Ll 
170 A(IROW•Ll:A1ICOLUM•Ll 
200 A<lCOLUM•Ll:SWAP 
205 IF(~) 2601 260, 210 
210 DO 250 L=l• M 
220 SWAP=BlIROWrLl 
230 B<IRO~•Ll:B(ICOLUM•Ll 
250 B<lCOLUM•Ll:SWAP 
260 INDEXCI1ll=IROW 
~70 INDEXlI,2l=IC0LUM 
310 PIVOT(l):A(JCOLUM,lCOLllMl 
320 DETERM=DETERM•PIVOllil 
330 AlICOLUM•ICOLUMl=l•O 
340 DO 350 L=l•N 
350 AIICOLUM•Ll=AlICOLUMrLl/PIVOT(Il 
355 IFIMl 380, 380, 360 
360 DO 370 L=l•M 
370 BCICOLUM•Ll:BlICOLUMrLl/PIVOT(ll 
360 DO 550 Ll:lrN 
390 IFlLl·ICOLUMl 400, 550• 400 
400 T:A(Ll•ICOLUMl 
420 AILl•lCOLUM):O,O 
430 DO 450 L=1•N 
450 A(Ll•Ll=ACLl•Ll-A(lCOLllM•Ll•T 
455 IF(Ml 550, 5501 460 
460 DO 500 L=l•M 
500 BlLl•Ll=B<Ll•Ll•B(lCOLUMrLl•T 
550 CONTINUE 
600 DO 710 I=l•N 
610 L:N+l•I 
620 IF ll NDEXlLrll•l NDLXlL•2ll 630• 7101 630 
630 JROw=INDEXlLrll 
640 JCOLUM=INDEX(L,zl 
650 DO 705 K=l•N 
660 SWAP=A<K•JROWl 
670 A(KrJRO-l:A(K•JCOLvMl 
7u0 ACK,JCOLUMl:SWAP 
705 CONTINUE 
710 CON TI NUE 
740 RETURN 
750 END 

FIG. 15. Program Listing for Subroutine MATINV. 



93 

SUBROUTINE CFlLONINM,NP,MI) 
OIMEN~ION Tl20l•El~l1F(9l1Gl9) 
COMMON Zl20)•~C17r~21411Xl9912lrBl2214l•Al22 1 22) 
DOUBLE PRECISION Z•Sc,X,B1ArTrErFrG1V 
DO 10 1:1122 

10 Bllrll : OoODO 
MJ : Ml + 3 
LL = l 
KK : l 
KI : l 
KF : 2 

20 lF(Z(KF)oGE,XIKK+Ml-11111 GO TO 30 
KF : l\F+l 
IFIKF.GEoNM) GO To 30 
GO TO 20 

30 DO 40 I:l1MI 
Elll : XIKK+I-111) 

40 Fill : XIKK+I-1r2) 
CALL LGRNGEIMirE1F1NDrGI 
T(KI) : XILLrll 
IF<LL1EGoll TIKI> : Zill 
II : KI+l 
IF : KF-1 
IFIIIoGToIFl GO To 80 
DO 70 1:1 I o!F 

70 TI I> : Z II l 
80 TIKFl : XIKK+MI-1111 

IF(NP,LE•KK+Ml-ll TIKFI : Z<NMl 
DO 140 I=KI,IF 
IP3 : I+3 
DO 130 IS=I dP3 
DO 120 J:11MJ 
FIJ) : O·ODO 
DO 110 L=l1J 

110 F<J> = FIJl+SCIL1I~11-IS+4l•G<J-L+ll 
120 CONTINUE 

CALL POLINT(MJ1F1TII+1l.Tll)1VI 
BIIS1ll : 8CISrll+~ 

130 CONTl"4UE 
140 CONTINUE 

IFITIKF),GE.ZINMI) GO TO 170 
IFIKK+MI-loGE•NPl ~O TO 170 
KI = KF 
IFIZIKFJ.GT,Xll(K+M!-11111 Kl : KF-1 
KF : Kl+l 
LL = KK+MI-1 
KK : L.L 
IFINPoLToKK+MI-11 KK : NP-MI+l 
GO TO 20 

170 RETURN 
END 

FIG. 16. Program Listing for Subroutine CMTRX. 
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SUBROUTINE POLINT(NrC•EB•EA•VI 
DIMENSION C (10) 
DOUBLE PRECISION C•EB•EA•V•U 
DO 10 J:N,1,-1 

10 C(J+ll : C(J)/OFLOAT(J) 
C<ll : o.ooo 
NORDER : N+l 
CALL POLVALINOROER•C1EBrV) 
CALL POLVAL(NORDER•C•EA•U> 
v = v-u 
RETURN 
END 

FIG. 17. Program Listing for Subroutine POLINf. 

SUBROUTINE POLVAL(NOROERrP•S•V> 
DIMENSION P(9) 
DOUBLE PRECISION P•S•V 
V : PINOROERJ 
IF(NORDER,EQ,11 RElURN 
DO 10 I:NQRDER•2•-l 

10 V : S•V + P<I-11 
RETURN 
ENO 

FIG. 18. Program listing for Subroutine POLVAL. 
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SUBROUTINE CMTRX(N~l 
COMMON Z(20J,§C(7,~2,4l1X(99,2l1B(22,4l,A(22,22l 
DOUBLE PRECISIO~ Z•Sc,x,9,A.F1U 
DIMENSION F(10J1U(~0,10J 
NMl : N,.1-1 
DO 120 I=l•NMl 
DO .30 M:l,4 
DO 20 J:l,7 
F<.JJ = o.oDo 
DO 10 l<:l,J 

10 F(.JJ : F(.J) + SC(1<•I14l•SC(.J-K+l•I-M+41Ml 
20 CONTINUE 
30 CALL POLINT<7•F•l(l+ll•Z<r>.u<IrM)l 

DO bO M:l,.3 
DO 50 J:l,7 
F(J) : O•ODO 
DO 40 l<:l,J 

40 F(JJ : F(Jl + SC(1<•I+lr.3l•SC<.J-K+l•I-~+4,~) 
50 CONTINUE 
60 CALL POLINT<7•F•l(l+ll•Z<I>rU(I,~+4)) 

DO 90 M:l,2 
oo ao J:1,1 
F(JJ : o.ODO 
DO 70 1<:1,.J 

70 F(JJ : F(.J) + SC(1<1I+2•2l•SC(.J-~+l•I-~+4,~l 
80 CONTl liUE 
90 CALL POLINT(7•F•L(l+ll•Z(I),Ull1M+7)) 

DO 110 J=1•7 
F(J) : O·ODO 
DO 100 K=l•J 

100 F(JJ : FIJ) + SC<K•I+.3•1l•SC<.J-K+l•l+.3•ll 
110 CONTieiUE 

CALL POLINT(7•F1Z(l+ll17-IIl1UII1lOll 
120 CoNJI ,-.UE 

DO 130 I=1•22 
DO t.30 J=1•22 

l.30 A(I1Jl : O.OOO 
DO 140 I=l•NMl 
A(I1IJ : AII1Il + U(I14) 
A<I,I+l) : A(l1l+ll + lJ(I,.3l 
AII.I+2) : A(Id+2J + ll(J,2) 
A!I.I+.3l : A(ld+.3l + LJ(J,lJ 
A(l+l•l+ll : A(l+1•I+1J + UII17) 
A!I+l1l+2> : A<l+t•I+2l + U(l16l 
A!I+l1I+.3l : A(l+l•I+3l + U(J15) 
AII+21I+2) : A(!+2•1+2l + UII•9) 
ACI+21I+.3l : A(l+2•I+.3l + U(J18) 
A(l+.31I+.3J : A(l+3•I+.3l + U(l•lOJ 

140 CONTINUE 
W.<2 : NM+2 
DO 170 1=2•NM2 
11 = 1-1 
DO 160 ...i=t•Il 

160 A(J,.Jl : A(J1ll 
170 CONTil<UE 

RETURN 
EtiD 

FIG. 19. Program Listing for Subroutine CFILON. 
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SUBROUTINE LGRNGECNPNTS1XrY1NORDER•Fl 
DIMENSION X(l0)1Y(lOl1CllOl1NFl911UC9,9),K(9 1911F(9) 
DOUBLE PRECISION X•Y•C•UrF 
DO 10 I:l,lllPNTS 
NF'(Il : NPNTS-l 
DO 10 J:l,NPNTS 

10 K(l,J) : 1 
DO 60 1:1,NPNTS 
CI I> : l • 000 
DO 20 J:l,NPNTS 
IFIJ.EQ.I) GO Tv 2u 
CIIl : CIIl•IXlll-X(J)) 

20 CONTINUE 
Clll : YIJ)/CII> 
DO 50 J:l,NPNTS 
IF'I J-I l 30, 50 • .. 0 

30 U(l1Jl : X(J) 
GO TO 50 

.. o UII•J-1) : XIJ> 
50 CONTINUE 
60 CONTINUE 

CALL POLEXINPNT~•C•NF1U1K1NORuEk1F) 
RETURN 
END 

FIG. 20. Program Listing for Subroutine LGRNGE. 
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SUBROUTINE CSPLOT(NM•N•~•NPl 
COM~ON z<201.sc11,,2,4),X(99.2l•B<22.4l.A(221221 
DIMEN~ION WORK(l02~),XARRAY(503l•YARRAYl503),Y(501l 
DOUBLE PRECISION Z•Sc,x.e.A.r.v.v 
IFINeGT.11 GO TO tu 
CALL PLoTs<wORK(ll•102418) 
CALL PLOT1s.o.1.75•-3l 

10 NPS : 501 
NMl : NPS - 1 
NS : NM + 2 
DO 70 K:l,2 
DO 20 I:l,Np 
XARRAY(ll : XII•ll 

20 YARRAY<Il = X<I•2> 
XARRAY(~P+ll : o.o 
XARRAY(NP+2l = jOou.o 
YARRAY(NP+ll = 485u.o 
YARRAY(NP+2l : 100e0 
CALL AXIS(O •• O.•lH •113.190.14850.•lOO.l 
CALL AXIS<o •• o •• lH •-1•6 •• 0 •• 0 •• 3000.1 
CALL LINE(XARRAY(1l1YARRAYCll•NP1l•-1•3l 
00 40 I:l,NPS 
T: DFLOATll-ll•<z<NMl-Zllll/DFLOATINMll 
Y(l) = o.o 
DO 30 J:l,NS 
CALL CEVALINM•J•l1l1V) 

30 Y<Il : YIIl + B(J,K)•V 
XARRA'l'(Il : T 

40 YARRAY(l) : Y(ll 
XARHAY(NPS+ll : O.u 
XARRAY(NPS+Zl = 3ouo.o 
YARRAY(NPS+l) : 46~0.0 
YARRAY(NPS+Zl : lOO.O 
CALL LINE<XARRAYl1l•YAARAY<ll•~PS,ltOt2l 
XARRAY(NM+ll : o.o 
lUJlaAY(MM+2l ; JODU.O 
TAKRATIN"+ll = 4~5u.o 
TARRAYINM+2l = ioo.o 
oo oO I:l,NM 
Y(I) : OeO 
DO 50 J:l,NS 
CALL CEVAL<NM•J•l1L(ll•Vl 

50 Y<I> : Y<Il + B(J,Kl•V 
YARRAY(ll : Y(ll 

60 XARRAY(ll : Z!Il 
CALL LINECXARRAY<l>•YARRAY<ll•~M•1•-1•2l 
IF(KeEG.11 CALL PLVTCo.,4.51•3> 
IFCKeEG.2) CALL PL0TC8e5•-4e5••Jl 

70 CONTINUE 
IFCM.EG.0) GO TO 90 
GO TO 110 

90 CALL PLOT(o •• o •• 99~) 
110 RETuR r• 

END 

FIG. 21. Program Listing for Subroutine CSPLOT. 


