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ABSTRACT 

A multiplicative design is a square design (that is, a set S of 

n elements called varieties, and a collection of n subsets of S 

called blocks) in which each block may be assigned a positive number, 

called the block's weight, less than the size of the block in such a way 

that the size of the intersection of two distinct blocks is the geometric 

mean of their weights. A uniform design is a multiplicative design in 

which the difference between the weight and size of a block is inde­

pendent of the choice of the block. A \-design is a multiplicative 

design with identical weights in which not all of the block sizes are 

equal. 

It is conjectured that if a multiplicative design has a multi­

plicative dual, and if neither design belongs to a specific class of 

designs, then both are uniform designs. Two cases of this conjecture 

are proved, one of which is this generalization of a result of K. N. 

Majumdar: a \-design with a multiplicative dual has A.= 1. Degener­

ate multiplicative designs are investigated. A generalization to 

multiplicative designs of Henry B. Mann's upper bound on the multi­

plicity of a repeated variety is also proved. 



iv 

TABLE OF CONTENTS 

Acknowledgments 

Abstract .•... 

SECTION 

1 

2 

3 

4 

5 

Refe rences 

Introduction •....••...... 

Degenerate Multiplicative Designs 

The ;>.. -Designs with Multiplicative Duals . 

A Second Case of the Conjecture ... 

A Generalization of Mann's Inequality 

Page 

11 

111 

1 

5 

9 

20 

28 

35 



1 

SECTION 1 

INTRODUCTION 

By a combinatorial design, or simply a design, we mean a 

finite set S = [a
1

, ..• , am} and a finite indexed collection S 1 , ..• , Sn of 

subsets of S. Traditionally the elements a. are called varieties and 
1 

the subsets S., which need not be distinct, are called blocks. We 
J 

define the following integers commonly associated with a design: 

m 

r. = IU:a. ES.}! 
1 1 J 

1 ~ i ~ m 

µ ij = I f e : [a i, a j} ~ s £} I 
1 s: i, j ~ m, i -:# j 

n 

k. = ls.I, 1 ~ j ~n 
J J 

\ .. = Is. n s.I 
lJ 1 J 

1 :s; i, j ~ n, i -:# j 

variety order 

replication numbers 

linkage numbers 

block order 

block sizes 

overlap numbers 

To each design we associate the (0, 1)-matrix A = [a . .] of size 
lJ 

m by n in which a .. = 0 or a .. = 1 according as a. f. S. or a. ES .. 
lJ lJ 1 J 1 J 

This matrix representation is quite useful and we will often identify 

a design with its incidence matrix whenever no confusion could result. 

If A is the incidence matrix of a design, a dual of the design is a 

design whose incidence matrix is AT' the transpose of A. We have 
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AT A = diag [k 
1

- ;\ l l , ••• , k - ;\ ] + [ ;\ .. ] , 
n nn lJ 

AA T = diag [r 1-µl l '.•.'rm -µmm]+ [µi) ' 

where µ .. for 1 s: i s: m and;\ .. for 1 s: j s: n may be given arbitrary 
11 JJ 

values. 

We define some axiomatically restricted designs. Suppose the 

overlap numbers ;\ .. of a design have a constant value ;\for i :f. j and 
lJ 

that k. > ;\ for 1 s: j s: n. It is known [9, 11 J then that the block order n 
J 

of the de sign cannot exceed the variety order m, that is 

m :::= n • ( 1. 1) 

This relation is known as Fisher 1 s inequality. If in addition when 

m = n and the block sizes k. of the design also have a common value k, 
J 

the design is called a (v, k, ;\)-design where v = m = n. Conditions 

imposed on a (v, k, ;\)-design to exclude degeneracies are v > k + 1, 

k > ;\ + 1, and ;\ > O. A useful necessary condition [8 J on the param­

eters of a (v, k, ;\}-design is 

k
2 

- ;\v = k - A ( 1. 2} 

If m = n, if the overlap numbers have a common value ;\, and 

if the block sizes are~ all equal, the design is called a ;\-design 

[8]. The conditions imposed here to exclude uninteresting degener-

ac ie s are k. > ;\ > 0 for 1 s: j s: n. 
J 

Suppose that in a certain design we can associate with each 

block S. a positive number ;\ ., called its weight, such that the (i, j)-
J J 

overlap 
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A.. . = I s. n s .1 = ./A.. ./A. . 
lJ 1 J 1 J 

for all i -:/. j. If in addition the block order n and variety order m are 

equal and m = n :2: 3, the design is called a multiplicative design. The 

conditions imposed here to exclude degeneracies are k. >A.. > 0 for 
J J 

1 s j s n. A multiplicative design in which k. - A.. is constant for 
J J 

1 s j s n is called a uniform design. Ryser [10] defined these designs 

and constructed several classes of them. Degenerate multiplicative · 

designs are not without interest and these are discussed in some detail 

in Section 2. 

Define a multiplicative design to be bordered if, through row and 

column permutations, the incidence matrix A of the design can be 

brought to the form 

A=[T.J 
where X and Y are column matrices, each consisting entirely of zeroes 

or entirely of ones, and where Bis a (v, k, A.)- design, possibly a 

degenerate one. Several classes of bordered multiplicative designs 

may be immediately constructed in terms of (v, k, ;\)-designs. 

It is known [8] that the dual of a (v, k, ;\)-design is also a 

(v, k, ;\)-design. Ryser [10] proved this generalization to uniform 

designs. 
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Theorem~ [Ryser]. The dual of a uniform design is a uniform 

design. 

A weak converse to Theorem 1. 1 might be: If a multiplicative design 

has a multiplicative dual, then both the design and its dual are ur.iform. 

This is seen to fail for many bordered multiplicative designs, but 

there is some evidence that for all other designs the converse is true. 

Conjecture ~· If a nonbordered multiplicative design has a multi-

plicative dual, then both the design and its dual are uniform designs. 

Sections 3 and 4 prove certain cases of Conjecture 1. 2, '.2here 

is less hard evidence for the following conjecture. 

Conjecture . 1, 3. A multiplicative design has at most two distinct 

weights. 

But if Conjecture 1. 3 holds, then the results of Sections 3 and 4 go a 

long way in establishing Conjecture 1. 2. 

If in the definition of a multiplicative design we do not neces -

sarily require that m = n, then we call the design a partial multiplica-

tive design. An inequality of Fisher type [10] implies m ::<: n, however. 

If in addition k. - A. is constant for 1 ~ j ~ n, it is called a partial 
J J 

uniform design. These are investigated in Section 5, and in particular 

we prove a generalization of an upper bound due to H. B. Mann [ 7, 5] 

on the multiplicity of the repeated variety. 
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SECTION 2 

DEGENERATE MULTIPLICATIVE DESIGNS 

By a (nondegenerate) multiplicative design on the parameters 

k 1 , ... , kn and \ 1 , .•. , \n we mean a (0, 1)-matrix A of order n 

satisfying 

and 

AT A = diag [k1-\
1

, ••• , k -\ ] + [/\ . J\ .] 
n n 1 J 

0 < \. < k. 
1 1 

for 1 s: i s: n 

(2. 1) 

(2. 2) 

The intent of the conditions (2. 2) is to exclude unimportant degenE>rate 

cases. Analogous conditions for (v, k, \)-designs and \-designs 

exclude only readily identifiable degenerate configurations. The 

instances of A in which (2. 1) holds and .(2. 2) fails are not as clear, 

however, and the following discussion will describe many of them. 

Condition (2. 1) and the structure of A require that 0 s; \. and 
1 

0 s: ki for 1 s: i s: n. With no loss of generality we set \
1 

s: •.. s: A.n. 

Then k. ~ J\. J\ . 
1 

:<:A.. for 1 s: i < n, but k ::::: \ does not necessarily 
1 1 1+ 1 n n 

hold. Indeed if B is a (v, k, \)-design and if A is formed in tre follow-

ing way from B 

1 

B 

A = l 

1 . . . 1 1 
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then A satisfies (2. 1) with n = v+ 1, k 1 = • • • 

2 

= k 1 = k+ 1 , k = v+ l , n- n 

A. 1 = · ·• =A. 1 = A.+l and A. = (k+l) /P,.+l). n- n 
But k <?: A. for k <?: 2 \+ 1 

n n 

and k s; A. for k < 2A.+ 1. If a (v, k, A.)-design satisfies one of the con­
n n 

ditions k <?: 2A.+l, k < 2A.+l, its complement satisfies the other. 

Assume now that k. 2: A.. :? 0 for 1 s; i ~ n. If k. = A.. = 0 for some 
1 1 1 1 

i, the ith column consists entirely of zeros and its presence does not 

affect the rest of the matrix. We hence take k. > 0 for 1 s; i s; n. 
1 

Call 

the column i of A to be type 1, 2 or 3 according ask.> A..> 0, 
1 1 

k. =A.. >0, or k. >A.. =O. Ifk. =A.. >Oandk.= A..>OwithA.. :?A.. 
1 1 1 1 1 1 J J 1 J 

then the inner product JA.. JA.. cannot exceed the column sum A.., w !1ence 
1 J J 

A.. s; A. .. Hence A.. = A.. for columns of type 2. 
1 J 1 J 

We now see that A must have the form 

A= 

type 1 type 2 type 3 

("-\ ("-\ ("-\ 

c 1 
0 

0 

1 . 
0 . . 

1 ,.____ 
0 . . 

·~ 
1 . 

0 . . 
1 

r... 

(2. 3) 

) e 

Note that e :? f. If e = f, it is possible that no columns of type 2 occur, 

in which case A has the form 
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where I is an identity matrix of arbitrary order and A 1 is a nonde gen-

e rate multiplicative design. 

If e > f, however, columns of type 2 must occur. Otherwis e C 

in (2. 3) would be a nondegenerate partial multiplicative design of a si ze 

that violates the Fisher inequality. When columns of type 2 occur , C 

cannot be square. If C were square, say with parameters kJ., ... , k~ 
d 'I 'I uld f D an 11.

1
, •.. , 11.g we co ormasquare , 

1 

}k~+I I = Ag+ 1 

1 

D = c 0 

0 

0 ..• 0 0 

A column of type 2 is adjoined and then a row of zeros. The deter­

T 
minant of D D may be computed explicitly to be 

whe n ce det D -:/:. O. But D contains a row of zeros and hence is sing ula r, 

a contradiction. 
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Constructions exist where columns of type 2 occur and C is of 

size g by g-1. Replace the last column of a projective plane P of 

order m by its complement. Then the first g-1 = m
2 

+ m columns of 

the altered P denote C with k~ = · · · 

= 1. The last column is of type 2 with 

= k 1 

1 = m+ 1 and A '1 g- . 

k 1 = ;\
1 

= m
2

• g g 

= • . • :::: 

A question on degenerate multiplicative designs remains 

unanswered. Under what conditions can a partial nondegenerate r.oulti-

plicative design of size n by r, with n > r, be augmented by a degen-

erate column of type 2? 
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SECTION 3 

THE \ -DESIGNS WITH MULTIPLICATIVE DUALS 

In [6] K. N. Majumdar (alias Majindar} showed essentially 

that a \-design whose dual is a \
1
-design satisfies \ = \

1 
= 1. It is 

well-known [3, 9] that there is exactly one 1-des ign for each o rder 

n > 3, apart from block and variety labeling, and that this may be 

represented in matrix farm as 

0 1 • . • 1 

1 

1 

I n-1 
( 3. 1} 

Now I 
1 

is a degenerate (v, k, \}-design with (v, k, \} = (n-1, 1, 0), so 
n-

(3 . 1) satisfies the conditions of a bordered multiplicative design ~ iven 

in Section 1. It is also immediate that (3. 1) is the only bordered 

multiplicative design that is also a \-design. A \-design is a non-

uniform multiplicative design, so that Conjecture 1. 2 in the case of a 

\ -design becomes: If a \-design A has a multiplicative design as its 

dual, then A is a bordered multiplicative design, and hence \ = 1. 

This is the special case of Conjecture 1. 2 proved in Theorem 3. 2 

below. 

A few facts are needed first. Ryser [9] and Woodall [ 11] 

proved that a \-design (speaking now in matrix-theoretic terms} h as 



10 

precisely two distinct row sums r
1 

and r
2

, and that these numbers 

satisfy 

( 3. 2) 

With no loss of generality we henceforth insist that r 1 > r
2 

> 1, ard 

that the first e 
1 

rows of the incidence matrix A of the \.-design have 

row sum r 
1

, and the last e
2 

rows of A have row sum r
2

, where 

e 1 + e
2 

= n. Lastly for each j in 1 s: j ~ n let k 1
• and k~~ respectively 
J J 

denote the sum of the first e 
1 

entries, and the sum of the last e
2 

entries of column j. Following Ryser, the sum of the inner prod11cts 

of column j with all other columns may be computed in two ways to get 

( 3. 3) 

Relation (3. 2) was used in the last equality. Division of {3. 3) by r
2

- l 

then yields 

pk 1
• + k~c = \.{ p+ 1) 
J J 

{ 3. 4) 

where p = ( r 
1 

- 1) / ( r 
2 

- 1) > 1. 

W. G. Bridges [2] has constructed a \.-design in tre following 

way from each matrix B which is the incidence matrix of a degenerate 

(v, 1, 0)-design I or of a nondegenerate (v, k, \.
1
)-design with 

v 

(v,k,\. 1
) 'f. {4t-l,2t-l,t-l) 

for all t ;:: 2. The rows of B are permuted so that the k ones of the 

first column appear initially. The matrix B is then partitioned into 

quadrants as shown 
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1 
.... 
'•' 

1 
B = 

0 

-·-'•' 

0 

and all but the lower right quadrant of B is complemented. The resul-

tant matrix A can directly be shown to be the incidence matrix of a 

!.._-design with A_ = k - t.._'. The column sums of A are k = v - k with 1 . 

multiplicity 1, and k 2 = 2{k-A_
1

) of multiplicity v - 1. {The Hadamard 

(v, k, !.._')-designs Bare excluded above because, precisely in those 

instances, k
1 

= k
2

, and A is a (v, k, !.._)-design and not a !.._-design.) 

Furthermore, 

v-k 

~k+A' k- t.._' k 
v-2 

AAT 
v-k 

= ( 3. 5) 

k~l 
k- t.._' v-k 

t.._ 

k+l 

It has been conjectured that this remarkable kind of derived !.._-design, 

called type.!_ by Bridges, characterizes all !.._-designs. He and others 

have shown this to be the case for A_ ~ 9. 

A theorem of Kramer [ 4] and Woodall [11] is given next; it is 

needed for the proof of Theorem 3. 2. It is given again here because 
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this version is more direct and more suited to our purposes. In the 

proof of Theorem 3. 2 we also employ some techniques of Majumdar 

[ 6]. 

Theorem 3. 1 (Kramer and Woodall): A A. -design in which the rnter-

section of two rows depends only on the row sums of those rows is of 

type I. 

Proof: We know that the matrix form of the ;... .. design A= [ a .. ] h a s 
lJ 

precisely two distinct row sums r 1 and r
2

, and by assumption that 

there exist numbers A. 11 , ;... 12 , A. 22 such that 

r 1 All 

~ "'12 el 

AAT= 
All rl 

r2 "'22 
"'12 ~ e2 

"'22 r2 

In addition we have assumed 

AT A = diag [k1 - A., ••• , kn - A.] + A.J 

where J denotes the matrix of ones of order n. According as 1 s; i $; e 
1 

or e 
1 

< i $; n, the (i, j)-entry of the identity A(A TA) = (AA T)A may be 

computed explicitly to be 

or 

a .. (k.-A.) + r 1 A. 
lJ J 

( 3. 6) 

(3. 7) 
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where k 1
• and k'~ are respectively the sum of the first e 

1 
entries, and 

J J . 

the sum of the last e
2 

entries, of column j. If 0 < kj < e
1

, that is, if 

there is both a zero and a one among the first e 
1 

entries of column j, 

then we conclude from (6) that kj - A.= r 1 - A. 11 • Similarly 0 < kJ< < e
2 

implies k. - A. = r 2 - A.22 by (7). Hence for each j in 1 ~ j ~ n, at least 
J . 

one of (a), (b), (c) holds, and at least one of (d), (e), (f) holds, where 

(a) k'. = 0 (b) k'. = e 1 
J J 

.... 
k~< ( d) k''.' = 0 (e) = e2 

J J 
( f) k j - A. = r 2 - A. 2 2 

Call a column j of A of special type if one of (a) or (b) holds, 

and if one of (d) or (e) holds, for j. First note that (a) and (d) cannot 

both hold for column j, since then k. = O. Also (b) and (e) cannot both 
J 

hold for column j, since then k. = n. Either (a) and (e), or else (b) 
J 

and (d), hold for a column j of special type. Two columns of A, say 

columns 1 and 2, cannot both be of special type, for then either A. = 0 

or k
1 

= k
2 

= A. would result. Thus there is at most one column of 

special type in A. 

Suppose some column not of special type, say column j = 1, 

satisfies (a), so that (f) must also hold for j = 1. If in addition (d) holds 

for j = 2, then A.= 0, a contradiction. Also (e) cannot hold for j = 2, 

for then k
1 

= A.. Thus if (a) and (f) holds for j = 1, then (f) holds for 

all columns j not of special type. In general all columns not of special 

type have the same column sum if any one of them satisfies (a). The 

same is true if any one of them satisfies (d). 
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Suppose instead that (b) and (f) hold for j = 1, but that neither 

(a) nor (d) hold for any column not of special type. If (e) holds for 

column j = 2 not of special type, then A cannot contain a column of 

special type, for it would be contained in column 1 or else in column 

2. Now n "'= 3 by definition, (b) holds for j = 1, (e) holds for j = 2, 

and column 3 is not of special type. We claim (e) cannot also hold 

for j = 3. For then e
2 

S: A. by the inner product of columns 2 and 3. 

But from k 'i + k~ = A. and k'~ > 0 we have k~ < A. whence by (3. 4) 

e 2 = k~ = A. - p( k~ - A.) > A. 

a contradiction. Similarly (b) does not hold for j = 3 under thes e 

conditions. Because now (c) holds for j = 2 and j = 3 and (f) holds 

for j = 1 and j = 3, all three columns have the same column sum. 

In all remaining cases, either (c) holds for all columns j not 

of special type, or (f) does, or both. In either case, all columns 

not of special type have the same column sum. The upshot of this and 

the preceding two paragraphs is that all columns not of special type 

have the same column sum. 

Not all of the column sums of A are equal, for then by a 

standard theorem [9] a (v, k, A.)-design results for A, not a ;\-design. 

So necessarily a unique column of special type occurs. We have 

either 
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1 

Al el 

1 
A = 

0 

}2 A2 

0 

(3. Sa) 

or 

0 }I Al 

0 
A = ( 3. 8b) 

1 

1 

wher e k 2 = • • • = kn. 

Suppose that A has the form (3. Sa). Columns 1 and j, where 

1 < j s n, have inner product :\ , and so k
1
• = :\for 1 < j ~ n. From (3. 4) 
J 

we conclude that 

....... ' 
k:' = :\ - p(k.-:\) = :\ 

J J 

Take 1 < j < J., s: n, and let x be the number of solutions i in the interval 

1 s: i ~ e 
1 

of a .. = a. ~ = 1. Using k
1
• = k >'.< = :\ it is not hard to show that 

lJ l .N J J 

a . . = a. = 0 has e
2 

- :\ - x solutions i in the interval e
1 

<is: n. If A is 
lJ 1 J., 

transformed into A" as shown, 

0 

0 
A" = 

1 

1 

it is clear that A" is a {v, k, :\)-design with {v, k, :\) = (n, e
2

, e
2

- :\). 
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Similarly, if A has the form (3. 8b), the matrix formed by complement-

ing all elements in (3. 8b) except those of A 2 , is a (v, k, \)-design with 

(v, k, A.)= (n,e
1
,e

1
-A.). With either form A is a \-design of type L 

The proof is finished. 

Theorem 3. 2. If a \-design has a multiplicative design as its dual, 

then A_ = 1. 

Proof: Let A = [a .. ] denote the incidence matrix of the \-design. For 
' lJ 

1 ~ i ~ n there are appropriate parameters k., r., A.. such that 
1 1 1 

AT A = diag [k1 -A., ••• , kn -A.] + A.J 

AA T = diag [r 1 - A. 1 , •.• , r n - A.n J + [J\ JA.j J 

where J denotes the matrix of ones of order n. Let J' denote the 

matrix of ones of size n by 1. The equality A T(AJ 1 ) = (AT A) J' yields 

( 3. 9) 

Premultiplication of (3. 9) by A then gives 

~\ /AJj r~ ll = ~A(n~ l)r ll + A r~l l 
r r A.(n- l)r k 

n n n n 

(3. 10) 

Similarly the equality A(A T J') = (AA T)J' yields 
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k 1 r 1 + s ..f "A 1 - "A 1 

A = ( 3 . 11) 

k r +s /).. - A 
n n n n 

where s - ;A + · · · + ,!A • Now (3. 10) and (3. 11) together imply - 1 n 

2 
r

1
+t JA 1 - r 1 A1 A(n-l)r 1 r 1 +s ..fA 1 - Al 

= + ( 3. 12) 

A(n- l)r 
n r + s ..fA - A n n n 

wher e t = r 1 ..f A 1 + • • · + r ..fA • n n 
The ith column entry of (3. 12) m ay 

b e r e written as 

(r . -l) A. + (s-t)..fA. + r . + A(n-l)r. -
1 1 1 1 1 

2 
r. = 0 

1 

We haver . > 1 by nondegeneracy assumptions, so that (3. 13) is a 
1 

quadratic equation in /).. .. 
1 

(3. 13) 

Permute the rows of A so that ri = s 1 for 1 ~ i ~ e, and r i = s
2 

f o r e < i ~ n, where s 
1 

and s
2 

are the two distinct row sums of A 

g uaranteed in (3. 2). Then ..fA1 , ... , ..fAe each satisfy the same qua d-

ratic equation (3. 13), and so have among themselves at most tw o 

distinct values. Suppose that both roots of (3. 13) are assumed, so 

that for some i f. j, 

..fA . + ..fA. 
1 J 

But we have n ~ 3 and d > O. This is a contradiction. Hence A 
1

, ... , Ae 

hav e a common value µ 1 , and similarly Ae+i•· .. , An have a common 
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value µ 2 • 

We have shown that the intersection of two rows of A, say rows 

i and j with i =/. j, depends only on the row sums of those rows; this 

intersection is namely 

l-L1 if r. = r. = sl 1 J 

l-L2 if r. = r. = S2 1 J 

/µ l /µ 2 if fr., r ·} 
. 1 J = [s1,s2} 

By Theorem 3.1, A is of type I. Suppose A is derived not from the 

degenerate (n, 1, 0)-design I , but from a nondegenerate (v, k, A.')­
n 

design B whose parameters satisfy (v, k, A.) =/. ( 4t- l, 2t- l, t-1). From 

the description ( 5) of AA T, and from the nondegeneracy conditions 

k > 1, v - k > 1 on B, we see that 

µ 1 =v-2k+A. 1 , µ2 = A.' + I , 

or essentially the same situation with µ
1 

and µ
2 

interchanged. We 

evaluate µ
1 

µ2 in two ways to get 

(k-A.')
2 

= (v-2k+A.')(A.'+l) 

If the usual necessary condition for (v, k, A.)-designs, 

k(k-1) = A.'(v-1) 

is subtracted from (3. 14) we have 

v = 3k - 2A.' 

( 3. 14) 

(3. 15) 

(3. 16) 
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Together ( 3 . 15) and (3. 16) show that 

(k-f..')(k-2)...'-l) = 0 

whence k = 2 ).._ 1 + 1 because k > ).._ 1 for nondegenerate (v, k, ).._}-de sig ns, 

This and ( 3 . 16) imply that, for some t;;:: 2, 

(v, k, f..') = (4t-l, 2t-l, t-1) 

a contradiction. 

Hence A is derived from the degenerate (n, 1, 0)-design I . It 
n 

is routine to show that the construction gives an A of the form (3. 1), a 

form which characterizes 1-designs. Hence ).._ = 1, and the proof is 

finished. 
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SECTION 4 

A SECOND CASE OF THE CONJECTURE 

In Section 3 the case of the conjecture was proved in which the 

multiplicative design has exactly one distinct weight and its multi-

plicative dual has arbitrarily many distinct weights. The cas e which 

suggests itself next is that case in which both the design and its ciual 

have precisely two distinct weights. Theorem 4. 1 below proves this 

with an additional assumption on the block sizes of the design and its 

dual. 

Theorem 4. 1. Suppose the dual of a nonbordered multiplicative design 

is also a multiplicative design. Suppose also that each design hc.s 

exactly two distinct weights, and that for each design, the size of a 

block depends only on the weight of that block. Then the design cind 

its dual are both uniform designs. 

Proof: We have assumed that there are invariants n, e
1

, e
2

, f
1

, f
2

, 

k 1 , k 2 , A1 , A2 , r 1, r 2 , µ 1 , µ2 with Ali A2 and µ
1 

i µ
2

, and a (0, 1)­

matrix A = [a . . ] of order n satisfying 
lJ 
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Partition the matrix A into quadrants as shown: 

A = 

Lets~ and s'}<be respectively the sum of the first f
1 

entries, and of the 
1 1 

last f
2 

entries, of row i of A. 

the sum of the first e 
1 

entries, 

Likewise let l and £,~'< be respectively 
J J 

and of the last e
2 

entries, of colurrm j 

of A. Note thats~+ s~'< is r 1 or r 2 according as 1 s:: is: e 1 or e
1 

<is: n, 

and that tj + tj is k
1 

or k
2 

according as 1 ~ j s: f
1 

or f
1 

< j ~ n. 

In the matrix equality A(A TA} = (AA T)A, the upper left quad-

rant of size e 
1 

by f
1 

may be written explicitly as 

(k 1-A 1}A 11 + Al ·diag[s~, ••• ,s:
1
J· J+ A12 • diag[s!•··· ,s:

1
J. J 

= (r 1-µ.l}All + µ.l • J • diag [,e,~' ••• ' ,e,;l J 

+ µ. 12 • J·diag[ ,e,r •••. , t£'< J 
1 

( 4. l} 

where J denotes here the matrix of ones of size e 
1 

by f 
1

, and where 

A12 = / A
1 

JA
2 

and µ. 12 = Jµ. 1 J µ. 2 is written for brevity. 

First suppose that k
1 

- A
1 

= r
1 

-µ.
1 

in (4. l}. With s:~ = 
1 

and tj'< = k f tj. this supposition allows us to write (4. l} as 

( A 1 - A. 12) • diag [s ~, .•. , s: l] · J + r 1 A. 12 J 

= ( µ. 1- µ. 12> • J· diag [,el'···' .e; J + klµ.12 J • 
1 

(4. 2) 
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Note that A.
1 

f. A.
2 

and µ 1 f. µ
2

, respectively imply that A.
1 

- )_
12 

and 

µ
1 

- LL
12 

are nonzero. The entries of the matrix on the left side of 

(4. 2) are constant within the same row, and those of the matrix en 

the right side of (4. 2) are constant within the same column. Hence 

the entries are constant within each matrix, and A
11 

has constan t row 

sums and constant column sums. 

Suppose instead that k
1

-A.
1 

f. r
1
-µ

1
. Then (4. 1) may be solved 

for A
11 

with the result that 

( 4. 3) 

for some real numbers a 1, ... , a and b 1, •.. , bf . If the rank of the 
e 1 1 

(0, 1)-matrix All is greater than 1, A
11 

must contain a nonsingular 

(0, 1)-submatrix of order 2. Apart from row and column permuta-

tions, these submatrices are characterized by 

L ~J (4. 4) 

where the asterisk::< denotes either 0 or 1. Because (4. 4) is a sub-

matrix of A
11

, (4. 3) implies that the lower right entry::< is 2. This 

contradiction implies that the rank of A 11 is 0 or 1. By similar 

reasoning ( 4. 3) excludes 

[] ( 4. 5) 

as a possible submatrix of A 11 . It is straightforward to show that a 
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(0, 1)-matrix of rank 0 or 1, containing no submatrix which by row and 

column permutations could be brought to ( 4. 5), has one of the forms 

(a) 0 (b) J (c) [ Oj J] (d) DJ ( 4. 6) 

This argument for A 11 can be similarly applied to each quad­

rant A .. with 1 $: i ~ 2 and 1 ~ j ~ 2. Then either (1) r.- µ . = k.- :\ . and 
. lJ l l J J 

A .. has constant row sums and constant column sums, or (2) A . . has 
lJ lJ 

one of the forms (4. 6a,b,c,d). If (1) holds for any pair of adjacent 

quadrants (that is, for All and A 12 , A 12 and A 22 , A 22 and A
21

, or 

A
21 

and All) then r
1 

- µ
1 

= r
2

-µ
2 

or k 1-:\ 1 = k
2

-:\
2 

may be deduced. 

These are respectively the conditions for the uniformity of AT and of 

A. By Theorem 1. 1, if one of A and AT is uniform, they both are. 

In this instance we are done. 

Apart from row and column permutations the remaining 

instances fall into three cases, 

(I) 'no no] 

ro no 

(II) [no no J (III) lyes no J 
no yes Lno yes 

where a quadrant is marked yes or no according as condition ( 1) 

above does or does not hold for that quadrant. 

( 4. 7) 

In cases (I) and (II), the row sums of A 11 are constant, or the 

column sums are constant, or both. Say at least the first possibility 

holds. Then each of A 11 and A 12 has the form (a), (b) or (c). Since 

AT is a nondegenerate design, A does not have repeated rows. Hence 

e
1 

= 1 here. Similarly if A 21 has constant row sums, then e
2 

= 1. 



24 

But n = e 
1 
+ e

2 
= 2 contradicts n <!: 3, a condition assumed at the out-

s tart. Then A
21 

has constant column sums, so that A
11 

does as well. 

Hence f 
1 

= 1 for the same reason that e 1 = 1. In case (I) alone the 

entire argument can be applied to quadrant A
22 

instead of A
11

, with 

the conclusion that e
2 

= f 2 = 1. Again the contradiction n = e 1 + e
2 

= 2 

results. 

In case (II) alone we still have e 1 = f 1 = 1. Because A
22 

has 

constant row sums and column sums, A
12 

has constant column sums 

and A
21 

has constant row sums. Hence A may by row and column 

permutations be brought to the form 

where a
11 

is of course either 0 or 1, X and Y are column matrices, 

each consisting of either n-1 zeros or else of n-1 ones, and A
22 

is a 

(v, k, A.)-design with v = n - 1. This describes the form of tre bordered 

multiplicative designs discussed earlier and excluded by hypotheses of 

the theorem. 

In case (III) we gather that A 11 and A
22 

each have consta:at row 

sums and constant column sums, and hence that A
12 

and A 21 each 

have constant row sums and constant column sums. Each of A
12 

and 

A
21 

then has form (a) or form (b). Note that A 
11 

then has constant 

inner products between distinct rows and constant inner products 

between distinct columns. Fisher's inequality (1. 1) may now be 
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T 
applied twice, to A

11 
and to A

11 
, to get respectively e

1 
~ f

1 
a;:i.d 

e
1 

s f
1

• Hence A 11 is a (v', k'\')-design with v' = e 1 = f 1. Like-· 

wise A
22 

is a (v':<, k>:<, \>:<}-design with v>:< = e
2 

= f
2

. 

If A 
12 

and A
21 

are both of the form (a), clearly J \ 
1 
J),

2 
= 0, 

whence either \
1 

= 0 or \
2 

= O. This contradicts the nondegeneracy 

of A. If A
12 

and A 21 are both of the form {b) we may calculate 

explicit! y 

whence \
1 

\
2 

may be evaluated in two ways to get 

( 4. 8) 

The condition ( 1. 2) for (v, k, \)-designs, applied respectively to A 11 

and A 22 , yields 

k
12 

- \
1
v

1 = k
1 
-\

1 

With these equalities, (4. 8) may be rewritten as 

[v':<(v 1-k1) - (k':<+l)(k1- \ 1)] 

+ [k1(v':<_k':<) - (\ 1+l)(k':<_\':<)] = 0 ( 4. 9) 

The number of (0, O) entries in two distinct columns of a 

(v, k, ), }-design is v - 2k + \. Hence v - k ~ k- ),, a nd it can be shown 

that the inequality is strict for nondegenerate designs. If both A
11 
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and A
22 

are nondegenerate (v, k, \)-designs, observe that 

v'-k' >k 1
-\

1 

k
1 > \

1 + 1 , 

· imply that the left side of (4. 9) is positive, a contradiction. At least 

one of All and A 22 is then degenerate, say All. Here A 11 must have 

the form 0, I, J, or J-I, apart from row and column permutations. 

It has neither the form 0 nor the form J, for then case (II) applies 

instead, and v' > 1 for the same reason. If A
11 

has the form I, so 

I I I I 
that (v , k , \ ) = (v , l, 0), equation ( 4. 9) becomes 

In any case v':' - Zk'~ + \'~ ;;;: 0, so that v 1 = 2 and v'~ = k':' + 1. Hence A
22 

is degenerate. In fact A
22 

necessarily has the form J - I. The total 

design A then has the form J- I and is inadmissible because A.
1 

= A.
2

. 

If A 11 instead has the form J-I, (4.9) gives 

We again conclude that v'~ = k':' + 1, and that A has the form J - I. 

Finally we consider the case when A 12 is of the form 0 and 

A
21 

is of the form J. The case with 0 and J interchanged is essen­

tially the same. Still with A
11 

a (v
1

, k
1

, \
1
)-design and with A

22 
a 

(v~:', k':', \':' )-design, we compute 
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Equate the two evaluations for A.
1 

A.
2 

to get A.
1 

A.':' = k':' 2 - A.':'v':', whence 

by the usual necessary condition (1. 2) for (v, k, \.)-designs, A.'A.':' = 

k':' - A.':'. Multiplicativity for AT gives the dual statement A.\':' = k
1 

- A. 
1

• 

Hence we have 

(4. 10) 

From (4. 10) we see that 

, r ... !< ... 1..oo r • .t.. r .. ,,. 
r 

1 
- µ

1 
= k - A. = k'' - A.''' = (v + k''') - (v + A.''') = r 

2 
- µ

2 

These are respectively the conditions for the uniformity of the designs 

T 
A and A • This completes the proof. 

This argument is by no means delicate. In fact it seems likely 

that Theorem 4. 1 can be proved without the condition that the size of 

a block depends only on the weight of the block in both the design and 

its dual. If this could be done, it would follow from Theorem 3. 2 and 

the strengthened Theorem 4. 1 that Conjecture 1. 3 implies Conjecture 

1. 2. 
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SECTION 5 

A GENERALIZATION OF MANN'S INEQUALITY 

In the definition of a multiplicative or of a uniform design, the 

requirement that the variety order m and the block order n are 

equal is highly restrictive. An inequality [10] of Fisher type implies 

m ~ n in any case. If we replace m = n by the requirement m ~ n, we 

call the design a partial multiplicative design. If in addition k. - A. is 
J J 

constant for 1 ~ j ~ n, it is called a partial uniform design. We can 

also reasonably require that the row sums of the design are at least 

two, since a row with no ones or with a single one does not contribute 

to column intersections. 

Partial multiplicative designs can of course be created by 

simply deleting columns of a multiplicative design. To illustrate how 

easily other partial multiplicative designs can be constructed if m is 

allowed to grow much larger than n, we let Al, ... , An be any n positive 

numbers such that JA.. JA.. is integral for 1 s: i < j ~ n. Let R . . be the 
l J lJ 

row vector of length n whose ith and jth entries are one and whose 

other entries are zero. Let A be a matrix containing as its rows pre-

cisely JA. A. copies of R .. for each pair i, j satisfying 1 s: i < j s; n. If 
l J lJ 

2 
we sets = JA 1 + • • · + /An' then m = ( s - Al - · · · - An} /2 and 

k. = s A. - A. for 1 s: j s: n. This partial multiplicative design A is 
J J J 

uniform only when 
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(a) A = ..• 
1 = A n' 

(b) n = 4 and Al = A2 -J A3 = A4' or else, ( 5. 1) 

(c) A 1 -J A2 A and Al = 
2 

(n > 4) = ••• = (n-3) A
2 n 

This example suggests that the study of partial multiplicative designs 

might profitably be restricted to partial multiplicative designs in which 

m is not much larger than n, or in which the design is a partial uni-

form design. 

A block design is a design in which the overlap numbers A. are 
J 

all equal, and the replication numbers r. are all equal. Of course 
1 

m 2: n. H. B. Mann [7] and van Lint and Ryser [5] have shown that 

a variety (row) of a block design is repeated in the design at most m/n 

times. (A variety of a design is said to be repeated s times in the 

design if there are precisely s - 1 other varieties in the design which 

belong to precisely the same blocks as the given variety.) This upper 

bound m/n can actually be assumed when a block design is formed by 

repeating each row of a (v, k, A.)-design, with v = n, a constant number 

u of times. Then u = min. 

There are partial uniform designs which do not satisfy this 

bound m/n, such as the design given by (5. lb) when A.
1 

= A.
2 

= 1 and 

A.
3 

= A.
4 

= 4, for instance. Another, more interesting, incidence of 

failure for partial multiplicative designs is sketched in Figure 1. Here 

A
1 

and A':', respectively denote a (v
1

, k', A. 1)-design and a (v':', k':', :>-..':')-

design, and J and 0, respectively denote appropriate matrices of 

ones and of zeros. Choose the parameters of A':' so that A.':' I k':' and 

I 
, .. 

x y A.''' . If the parameters of A' are given by 
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A' J 

x repetitions 

y repetitions 

0 A':' 

Figure 1 

I 

v 
k

1
(k

1
-l) 

= + 1 ' 
A I 

then A is a partial multiplicative design. Each row is repeated either 

x or y times, and 

Clearly min(x, y) ~ min, but max(x, y) :!i: m/n does not always hold. 

For instance, take 

(v':\ k':', \.':' ) = (3, 2, 1) 

( v >!' ' k':' ' \. .:, ) = ( 7 ' 3 ' 1) 

I I I 
(v,k,\.}=(7,3,l}, x=l, y=2, 

(v
1

, k
1

, \.
1

) = (16,6,2), x = 1, y = 2 

or 

In either case y .;,, m/n. The above examples are in fact partial uni-

form designs. 

Mann's proof, however, suggests how a correct analogui:: to his 

inequality can be constructed. 
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Theorem 5. 1. In a {nondegenerate) partial multiplicative design of 

variety order m and block order n, let a given variety z with 

replication number e be repeated s times. Let z belong to the 

blocks s 1, •.• , Se' and set 

Then 

K = kl + · · · + ke , 

L = {/Al + ... + /1e)2 -0. +···+A.) 1 e 

2 
... m{K+ L) - K 

s ;:a 2 
me +K+ L- ZKe 

{ 5. 2) 

Proof: Consider the incidence matrix of size m by n of this partial 

multiplicative design. Permute the rows of A so that the s copies of 

the row corresponding to z occur initially. Also permute the columns 

of A so that the e ones of the first s rows occur initially. The matrix 

A then has the form 

e 

m 

n 

where J and 0 denote appropriate matrices of ones and of zeros. Let 

I 

6 denote here summation over j in the range 1 S: j S: e, and 6 denote 

summation over i in the range s+ 1 s: i s: m. Let as+ 
1

, ... , am be the 
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row sums of A 21 . The number of ones in A 21 can be computed in two 

ways as 

6
1 

a. = 
1 

6 k. - se 
J 

= K - se (5. 3) 

The number of ordered pairs of ones on the same row of A 21 can also 

be computed in two ways as 

I 

6 a.(a.-1) = 
1 1 

(6 JA. .) 2 
- 6 A.. - se(e -1) 

J J 

= L - se(e-1) 

The sum of (5. 3) and (5. 4) is 

"'\'I 2 
u a. 

1 

2 = K + L - se 

(5. 4) 

We see there are K - se ones distributed among them - s rows of A
21

. 

The Cauchy-Schwartz inequality implies that 6
1 

a~ is minimized when 
1 

the a. are all equal. Hence 
1 

2 2 
K+ L - se ;::: (K - se) /(m - s) 

The quadratic term in s vanishes upon multiplication of this inequality 

by m - s, so we conclude that (5. 2) holds. This completes the proof. 

From the Cauchy-Schwartz inequality we also gather that 

equality holds in ( 5. 2) when and only when the a. are all equal. This 
1 

condition is met, for example, when A consists of s copies of each 

row of a bordered design 
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A' =ITT 
and when the distinguished variety z corresponds to the first row of 

I 
the matrix A shown above. 

The inequality (5. 2) does not have the same great usefulness 

of Mann's inequality s s.: m/n because the numbers e, K, and L depend 

on the choice of the variety z in the design, where of course, m and 

n do not. For completeness we deduce Mann's result from Theorem 

5. 1. 

Corollary 5. 2 (Mann). If, in Theorem 5. 1, the overlap numbers :\. 
J 

of the partial multiplicative design have a common value :\, and its 

replication numbers r. have a common value k, thens s.: m/n. 
l 

Proof: 

design. 

A partial multiplicative design so defined is in fact a block 

It is known [8 J that the block sizes k. have a common 
l 

value r, and that 

bk = rv , r - A = rk - :\v , 

where b = m and v = n. With k. = r, e = k, K = rk and L = :\k(k-1), 
l 

inequality ( 5. 2) becomes 

whence 

k br+b:\k-b :\ -r
2

k 
s ~ k • bk+ r + :\k- A- 2rk 

( 5. 5) 
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- s(bk+ r - A_- 2rk} + r(bk+ A.k+ r - A - 2rk} 

2 
;;:: - (br+ bA.k-bA_- r k} + r(bk+ A.k+ r - A_- 2rk} 

(r-s} [(bk-rk} - (r-A.}k + (r-A_}] 

:::: (b-r}( r - A_}(k- l} ( 5. 6) 

The identities (5. 5} may be applied to the left side of (5. 6) to obtain 

that is, 

(r-s) [(rv-rk} - (r-A.)k + (rk- A_v} J 

;;:: (b-r}( r - A_}(k- 1) 

(r-s} [r-A.}(v-k}] ;;:: (b-r}(r-A.}(k-1) ( 5. 7} 

The partial multiplicative design of Theorem 5. 1 is nondegenerate, so 

that r > A. Hence ( 5. 7} becomes 

(r -s }(v-k} ;;:: (b-r }(k- l} 

whence 

r 
k (k-1} . 

We finally have 

r r b 
s s: r - - (k-1} = - = -

k k v 

The first of the identities (5. 5} is invoked again at the last equality. 

Hence s s: b /v = m/n, and we are finished. 
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