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ABSTRACT 

π-bound Molybdenum-quinonoid complexes supported by pendant phosphines were 

prepared and investigated for metal-ligand cooperative reactivity and access to multiple 

equivalents of protons and electrons within a single transition metal complex. Chapters 

3, 4, and 5 of this dissertation describe the synthesis, characterization, and reactivity of 

these complexes in the context of multiproton, multielectron chemistry and small 

molecule activation. 

Chapter 2 presents the synthesis of an unprecedented bis-borane supported peroxide 

dianion, prepared from a mixture of ferrocenes, borane, and dioxygen. The peculiarity 

of such a structure is emphasized, and reactivity explored. While ferrocenes of varying 

reduction potential were found to lead to the peroxide, only 

tris(pentafluorophenyl)borane was found to yield isolable peroxide, with other boranes 

leading to oxygenation or borate formation. 

Chapter 3 describes the synthesis of a series of π-bound Molybdenum-quinonoid 

complexes and explores their reactivity with dioxygen. The Mo-quinonoid interaction is 

probed and elucidated through a number of reactions and experiments, highlighting the 

importance of the electronic coupling of the metal center with the organic fragment on 

overall reactivity with O2.  

Chapter 4 further explores the π-bound Molybdenum-quinonoid complexes in various 

protonation and oxidation states, totaling four electrons and two protons accessible to 

the system. Proton-coupled electron transfer was demonstrated in two different 
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oxidation states, and the effects of the metal-quinonoid interaction on the transfer of 

protons and electrons investigated thermochemically.  

Chapter 5 explores the potential for π-bound Molybdenum-quinonoid complexes to 

access inner-sphere reactivity. The activation of E–X bonds, including H2 and PhSiH3, 

is demonstrated, as well as catalytic hydrosilylation of aldehydes.  

Appendix A describes initial investigations into the preparation of heterobimetallic 

complexes supported by the catechol-diphosphine ligand framework. The synthesis of 

heterobimetallic MoCu complexes is presented and their structural parameters 

discussed.  

Appendix B outlines the synthesis of multinucleating ligand platforms based off 

bipyridine frameworks, for the preparation of biologically inspired multimetallic 

complexes. Dioxygen reactivity of a dicopper system is also briefly presented. 

Appendix C contains relevant NMR spectra for the compounds presented in the 

preceding sections. 
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CHAPTER 1 
 

General Introduction 
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This dissertation deals primarily with the synthesis, characterization, and reactivity 

studies of π-bound Molybdenum-quinonoid complexes. Emphasis is placed on  

multiproton, multielectron chemistry in the context of small molecule activation, as well 

as metal-ligand cooperation.  

Small molecule activation, from N2 or O2 reduction to H2O oxidation requires the 

making and breaking of multiple chemical bonds, and thus requires the controlled 

transfer of multiple equivalents of protons and electrons. In nature, there are two basic 

startegies employed to facilitate the transfer of multiple equivalents of electrons: 

cooperative reactivity of multiple metal centers, or participation of non-innocent or 

redox active ligands. In the former case, several metal centers distribute the redox 

requirement so as not to build up charge at a single center, thus lowering the energy of 

the system and facilitating the desired chemistry, while in the latter, organic fragments 

are used to store and transfer redox equivalents in place of additional metal centers. The 

concept of non-innocent or redox active ligands has gained significant interest in past 

few years, with base metals demonstrating reactivity similar to their more noble 

counterparts.  

Our group has investigated terphenyldiphosphine ligands which enforce metal-arene 

interactions, and in several instances observed unusual or non-innocent behavior. In the 

case of a Ni-H compound, the H was found to migrate reversibly from the metal center 

to the central arene of the ligand yielding an allyl moiety, a reversible transfer of 

formally protons and electrons between a transition metal and ligand. In an attempt to 

better control such a transfer of protons and electrons between a metal and ligand, the 

terphenyldiphosphine ligand was functionalized with a catechol or ortho-hydroquinone 

moiety. The two protons and two electrons potentially accessible from the 

hydroquinone/quinone couple, in addition to any redox states accessible at the metal 

center, was envisioned as a route to facile small molecule activation. 
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Low-valent molybdenum complexes were targeted for their ability to bind small 

molecules such as N2 or CO2, as well as their propensity to engage in metal-arene 

interactions. Reaction with Mo(CO)3 precursors resulted in successful metalation of the 

functionalized diphosphine and access to Mo-quinonoid chemistry. In exploring the 

coordination chemistry of the Mo-quinonoid complexes, it was observed that the Mo0-

catechol complex reacts with O2 to yield a Mo0-quinone product and H2O. This 

reactivity was explored in depth (Chapter 3). An outer-sphere reduction-initiated 

mechanism was elucidated through the use of an external Lewis acid combined with the 

unfunctionalized metal complex, which led to isolation of a bis-borane peroxide and 

MoI compound. The bis-borane peroxide was investigated further (Chapter 2), while the 

investigation of the Mo-quinonoid complexes was also expanded. 

Multiple oxidation and protonation states within the system were accessed, 

demonstrating a total of two protons and four electrons (Chapter 4). Thermochemical 

analysis was used to probe the effect of the metal-quinonoid interaction on the proton-

coupled electron transfer chemistry of the organic fragment, with significant attenuation 

of the bond dissociation free energy of the first O–H moiety observed upon oxidation 

of the metal center. Changes in acidities and reduction potentials as a function of 

oxidation state and metal-quinonoid interaction could allow access to different 

mechanistic pathways within proton-couple electron transfer reactions. 

From there, this dissertation continues with a discussion of efforts to access inner-

sphere small molecule activation (Chapter 5). Two-electron reduction of a MoII-quinone 

complex was found to yield a Mo0-quinone product that demonstrated E–X bond 

activation to yield Mo–Cl and Mo–H products. The same compound was also found to 

be a catalyst for the hydrosilylation of aldehydes, with a proposed mechanism involving 

Lewis-base catalysis. Finally, the dissertation discusses the potential of using the 

catechol-diphosphine ligand in the synthesis of bimetallic complexes, with initial 

successes including Mo-Cu bimetallic systems (Appendix A). 
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CHAPTER 2 
 

DIOXYGEN REDUCTION  
Dioxygen Redox Chemistry with the Ferrocene-Lewis Acid Combination: Reduction to 

a Boron Peroxide in the Presence of Tris(pentafluorophenyl)borane 
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ABSTRACT   

  Although several Group 13 peroxides have been reported, boron-supported 

peroxides are rare, with no structurally characterized examples of the BO2B moiety. 

Herein, the synthesis of a bis-borane supported peroxide and its structural and 

electrochemical characterization is described. Typically air-stable outer-sphere single-

electron transfer reagents, ferrocenes were found to react with dioxygen in the presence 

of B(C6F5)3, a Lewis acid unreactive to O2, to generate bis-borane peroxide. 
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INTRODUCTION 

Dioxygen reduction to peroxide represents an important chemical transformation for 

energy generation and storage applications in fuel cells and Li-O2 batteries[1]. Transition 

metal supported peroxides is an intermediate in the reduction of O2.[2] Peroxides are 

also powerful oxidants that exhibit interesting and synthetically useful reactivity derived 

from the inherently weak O–O bond.[3] Next to carbon, organosilicon-based peroxides 

have been the most well studied and developed of the main group peroxides, and the 

combination of the weak O–O bond with the strong Si–O interaction has led to new 

and diverse reactivity.[4] Group 13 peroxides are comparatively less developed. Several 

examples of In,[5] Ga,[6] and Al[7] have been isolated and structurally characterized. These 

compounds are typically prepared by treatment of group 13 alkyl species with an 

organic hydroperoxide or inorganic superoxide, and by O2 insertion to generate alkyl 

peroxide moieties. The isolation of these compounds is remarkable given the reducing 

power of the element-alkyl bonds and the oxidizing potential of the O–O bond are 

stored in the same molecule.[6c, 6d, 7a] Organoboron-based peroxides are very rare. There 

have only been three reports on structurally characterized compounds containing a 

peroxy-boranyl (RB–O2) linkage.[8] This paucity of stable and structurally characterized 

molecules containing the peroxy-boranyl moiety is likely due to its propensity to 

undergo oxidative C–B bond cleavage.[9] Herein we report the synthesis and structural 

characterization of the first bis-borane supported peroxide dianion, wherein the source 

of the [O2]2- moiety is dioxygen, generated in connection with decamethylferrocene 

(Cp*
2Fe) and ferrocene (Cp2Fe) as reductants. 
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Results and Discussion  

 

Exposure of an equimolar mixture of Cp*
2Fe and B(C6F5)3 in deuterated dichloromethane 

to excess O2 at room temperature led to a color change from yellow-orange to deep forest 

green upon addition (eq 1), consistent with oxidation of Cp*
2Fe to the 

decamethylferrocenium cation (Cp*
2Fe+). This assignment was further supported by 1H 

NMR spectroscopic data that revealed the Cp* (pentamethylcyclopentadienyl) methyl peak 

had shifted upfield from 1.8 ppm to approximately -25 ppm. The 19F NMR spectrum of the 

dark green solution revealed a set of new peaks at -130, -165, and -168 ppm, consistent with 

a tetrahedral boron center.[10] Toepler pump measurements indicate the consumption of 0.42 

equiv of O2, UV-Vis measurements show the generation of 0.85 equiv of Cp*
2Fe+ consistent 

with the two electron reduction of O2. If the reaction is sufficiently concentrated, dichroic 

green/blue crystals precipitate from solution within minutes. An X-ray diffraction study of 

these crystals revealed the solid-state structure of the resulting product to contain an 

unprecedented bis-borane-supported peroxide dianion 2.12- with two decamethylferrocenium 

counter cations (Figure 2.1).  The O–O (1.485(2) Å) and B–O (1.472(2) Å) distances are 

similar to the previously reported examples of B–O–O moieties supported by four 

coordinate boron, and consistent with the formation of a peroxide moiety. These distances 

2 CpR
2Fe  +  2 B(C6F5)3

O2 (1 atm) O
O

B(C6F5)3

(C6F5)3B

2 [CpR
2Fe]+

2-

CpR = C5H5, C5Me5

CpR
2Fe

CD2Cl2, 25 °C, 24 h
no reaction

CD2Cl2, 25 °C, 24 h
no reactionB(C6F5)3

(1)

CpR
2Fe + B(C6F5)3

CD2Cl2, 25 °C
minutes (CpR = C5Me5)

 to 7 h (CpR = C5H5)

O2 (1 atm)

O2 (1 atm)

N2 (1 atm)

CD2Cl2, 25 °C, 24 h

(2)

(3)

(4)no reaction (CpR = C5H5)
< 15% conversion (CpR = C5Me5)
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are 1.527(3) and 1.456(2) Å, respectively, for a B–O–O–C moiety resulted from the reaction 

of 9-boraanthracene with O2.[8b] For a B–O–O–C motif resulted from a phosphine borane 

reaction with singlet O2, the structural parameters are 1.454(6) and 1.473(4) Å, 

respectively.[8a] A B–O–O–Rh moiety resulted from the reaction of a Rh-peroxo with a 

boronic acid displays a trigonal boron,[8c] with the B–O distance shorter (1.400(2) Å) and the 

O–O distance longer (1.497(1) Å) than the above, likely because of the stronger interaction 

between O and three-coordinate boron. The B–O–O angle (106.9(1)°) is similar to the C–

O–O angle (107.5(2)°) in bis(triphenylmethyl)peroxide[11]. 

      

Figure 2.1. Solid state structures of [2.12-][Cp*
2Fe+]2•2CH2Cl2 (a) and [2.12-][Cp2Fe+]2 (b). 

Hydrogen atoms and solvent molecules omitted for clarity. Fluorine and carbon atoms 

depicted in light grey and black, respectively. Select bond distances and angles: (a) B–O = 

1.472(2) Å, O–O’ = 1.485(2) Å, ∠B–O–O’ = 106.9(1)° (b) B–O = 1.472(5) Å, O–O’ = 

1.487(5) Å, ∠B–O–O’ = 108.0(3)°. 

(a) (b) 
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Figure 2.2. Cyclic voltammogram of [2.12-][Cp*
2Fe+] in 0.1 M [nBu4N+][PF6

-] in DCM 

recorded with a glassy carbon electrode. Scan rate of 50 mV/s. Potentials referenced to 

Cp2Fe/Cp2Fe+. 

Electrochemical investigation of [2.12-][Cp*
2Fe+]2 by cyclic voltammetry (Figure 2.2) 

revealed the reversible redox couple of Cp*
2Fe/Cp*

2Fe+ referenced to -0.59 V (vs 

Cp2Fe/Cp2Fe+)[12] and a quasi-reversible redox event centered at +0.17 V (vs Cp2Fe/Cp2Fe+) 

assigned to the [2.12-] fragment. This event was assigned to a single-electron oxidation to 

form a superoxide species that is unstable in solution. The double concentration of Cp*
2Fe+ 

vs [2.12-] results in the observed relative peak size. Attempts to access the presumed 

superoxide via means of chemical oxidation have resulted in complex mixtures of 

diamagnetic species by 19F NMR spectroscopy. This redox potential is more positive than 

that of cryptand-encapsulated peroxide,[13] demonstrating greater stabilization of the anionic 

peroxo moiety by the Lewis acidic boranes over the cryptand hydrogen bonding.  

The weaker reductant ferrocene was also found to react with dioxygen in the presence of 

B(C6F5)3, yielding a species similar to [2.12-][Cp*
2Fe+]2 by 19F NMR spectroscopy; however, 

the reaction is considerably slower, requiring several hours to complete.[14] The formation of 



 
11 

the peroxide dianion [2.12-] was confirmed crystallographically (Figure 1), with structural 

parameters very similar for the two versions differing in the nature of the cation. Additional 

experiments were performed with ferrocenes and boranes to better understand the 

formation of [2.12-]. As control reactions, solutions of Cp2Fe, Cp*
2Fe and B(C6F5)3 were 

exposed separately to an atmosphere of O2 and monitored by 1H NMR spectroscopy (eqs 2 

and 3). No conversion was observed over 24 hours. A mixture of Cp*
2Fe and B(C6F5)3 at 

room temperature, under N2, led to slow formation of Cp*
2Fe+, with less than 15% 

conversion after 24 hours, and unidentified species by 19F NMR spectroscopy. There is no 

observable oxidation of Cp2Fe in the presence of B(C6F5)3 over similar timescales. These 

control experiments show that the reduction of O2 (eq 1) requires both the reductant and the 

Lewis acid. The observed slow conversion of the stronger reductant Cp*
2Fe  vs Cp2Fe in the 

absence of O2 is reminiscent of the reduction of B(C6F5)3 by Cp*2Co to generate the 

[B(C6F5)3]- radical anion[15] that decomposes to a complex mixture of species in 

dichloromethane;[16]  however, attempts to detect the [B(C6F5)3]- radical anion by EPR 

spectroscopy have been unsuccessful to date. Although Cp*
2Fe has a reduction potential 

significantly more positive than B(C6F5)3 (vide infra), redox chemistry has been reported 

between B(C6F5)3 and metal complexes that are weak reductants.[17] 

Formation of [2.12-] is not inhibited by the presence of the bulky base 2,6-di-tert-butyl-4-

methylpyridine (DTBMP) for either ferrocene or decamethylferrocene, inconsistent with a 

mechanism initiated by protonation of Fe[18] with adventitious strong acid.[19] Performing the 

reaction of Cp2Fe, B(C6F5)3, and O2 in the presence of sub-stoichiometric strong acid 

H(OEt2)2B[C6H3(CF3)2]4 resulted in conversion to a mixture of species by 19F NMR 

spectroscopy, including the bis-borane-hydroxide anion [[(F5C6)3B]2OH-] as a major 

component.[20] With 50 mol % H(OEt2)2B[C6H3(CF3)2]4, [[(F5C6)3B]2OH-][Cp2Fe+] was 



 
12 

isolated in 35 % yield, and its structure was confirmed crystallographically (SI). In an attempt 

to access [2.12-] via an alternative route, reaction of 4 equivalents of B(C6F5)3 with 1 

equivalent of DABCO•2H2O2 and 1 equivalent of DABCO (DABCO = [2.2.2]-

diazabicyclooctane) resulted in a mixture of species by 19F NMR spectroscopy. Treating the 

isolated peroxide [2.12-][Cp*
2Fe+]2 with acid also resulted in a mixture of unidentified species 

by 19F NMR spectroscopy. These results suggest that in the presence of Brønsted acid, 

ferrocenes and B(C6F5)3 different O2 reduction pathways are operative. Moreover, the B–O–

O–B moiety of [2.12-] is not stable in the presence of protons (or the combination with 

conjugate bases). Therefore, the reductive synthesis from O2 is instrumental for the isolation 

of [2.12-].  

The difference in rates for Cp2Fe vs Cp*
2Fe indicates that the stronger reductant better 

facilitates the reaction, even though neither reacts with O2 directly. Several other boron-

based Lewis acids were tested in combination with Cp*
2Fe or Cp2Fe for reactivity with O2. 

BF3•OEt2, B(C6H5)3, and B(C6F5)2(C6H5) show generation of the respective ferrocenium 

cations (Cp2Fe+ for BF3•OEt2, Cp*
2Fe+ for B(C6H5)3 and B(C6F5)2(C6H5)),  indicating that 

electron transfer does occur. However, the only characterized boron products were borates 

resulting from ligand scrambling and oxygenation (BF4
-, B(OC6H5)(C6H5)3

-, and 

B(C6F5)2(C6H5)2
-, respectively), without a peroxide moiety.[21] These studies indicate that the 

electron deficient C6F5 moiety, less prone to migration, is instrumental for the isolation of 

the B2O2 species.  

The formation of compound [2.12-] represents a rare example of using ferrocenes to 

reduce dioxygen to peroxide in the absence of additional transition metal catalyst or strong 

Brønsted acid. Although the reaction of ferrocene with O2 in the presence of excess Lewis 

acids of the form MX3 (X = Cl for M = Al, As, Bi, and Sb; X = F for M = B) to yield the 
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corresponding ferrocenium salts [Cp2Fe+][MX4
-] was previously reported, the oxygen-

containing by-products eluded characterization.[22] More recently, Zheng reported the 

B(C6F5)3 catalyzed disproportionation of superoxide into dioxygen and peroxide,[23] though 

the putative B–O2
n- species remained elusive. Activation of O2 either inner-[24] or outer-

sphere[25] by ferrocenes has been proposed. Additionally, the generation of reduced borane, 

•B(C6F5)3
- by species less reducing than Cp*

2Fe has been reported.[17, 26] Although the one-

electron reduction potentials are mismatched with Cp2Fe or even Cp*
2Fe (-1.18 V vs 

Cp2Fe/Cp2Fe+ in DMSO for O2
-/O2 couple[27] and -1.79 V vs Cp2Fe/Cp2Fe+ in DCM for 

•B(C6F5)3
-/B(C6F5)3 couple[16, 28]), the presence of the Lewis acidic B(C6F5)3 may facilitate 

direct reduction of O2 by ferrocenes, as demonstrated for rates of electron transfer that 

increase with coupling to proton or metal transfer.[29] 
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CONCLUSIONS 

 In summary, a facile synthesis and structural characterization of the bis-borane supported 

peroxide [2.12-] was reported. Taking advantage of readily available starting materials, 

reduction of dioxygen with ferrocenes in the presence of B(C6F5)3 generates the B2O2 

moiety. Notably, the precursors are separately unreactive with O2 under ambient conditions, 

highlighting the reduction of O2 facilitated by Lewis acid binding.  Other boron based Lewis 

acids underwent ligand disproportionation, indicating that the electron deficient C6F5 moiety 

is important for the stability of the bis-borane peroxide.  
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EXPERIMENTAL SECTION 

General considerations:  

Unless indicated otherwise, reactions performed under inert atmosphere were carried 

out in oven-dried glassware in a glovebox under a nitrogen atmosphere purified by 

circulation through RCI-DRI 13X-0408 Molecular Sieves 13X, 4x8 Mesh Beads and 

BASF PuriStar® Catalyst R3-11G, 5x3 mm (Research Catalysts, Inc.). Anhydrous 

dichloromethane was purified by sparging with nitrogen for 15 minutes and then 

passing under nitrogen pressure through a column of activated A2 alumina (Zapp’s). 

CD2Cl2 was purchased from Cambridge Isotope Laboratories, dried over calcium 

hydride, then degassed by three freeze-pump-thaw cycles and vacuum-transferred prior 

to use. 1H and 19F NMR spectra were recorded on Varian Mercury 300 MHz 

spectrometers at ambient temperature, unless denoted otherwise. 1H NMR chemical 

shifts are reported with respect to internal solvent: 5.32 ppm for CD2Cl2. 19F NMR 

chemical shifts are reported with respect to an external standard of C6F6 (-164.9 ppm). 

Elemental analysis was conducted by Robertson Microlit Labs (Ledgewood, NJ). 

Electrochemical measurements were recorded with a Pine Instrument Company 

AFCBP1 bipotentiostat using the AfterMath software package. Cyclic voltammograms 

were recorded on ca. 2 mM solutions of the relevant complex in the glovebox at 20 °C 

with an auxiliary Pt-coil electrode, a Ag/Ag+ reference electrode (0.01 M AgNO3, 0.1 M 

[nBu4N+][PF6
-] in MeCN), and a 3.0 mm glassy carbon electrode disc (BASI). The 

electrolyte solution was 0.1 M [nBu4N+][PF6
-] in CH2Cl2. All reported values are 

referenced to an internal ferrocene/ferrocenium couple. 
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Unless otherwise noted all chemical reagents were purchased from commercial 

sources and used without further purification. Ferrocene, decamethylferrocene, 2,6-di-

tert-butyl-4-methylpyridine (DTBMP), [2.2.2]-diazabicyclooctane (DABCO) and 

tris(pentafluorophenyl)borane were purchased from SigmaAldrich and sublimed prior to 

use; B(C6F5)3 was sublimed twice prior to use. DABCO-2H2O2 and H(OEt2)2BArF24 

were prepared according to the literature methods.30,31 

 

NMR Scale Reactions of Cp2Fe, Cp*
2Fe, B(C6F5)3, and O2 

B(C6F5)3 and O2: A solution of B(C6F5)3 (0.0203 g, 0.039 mmol) in CD2Cl2 (0.6 mL) was 

degassed via three freeze-pump-thaw cycles in a J. Young NMR tube. An atmosphere of 

O2 was admitted to the headspace of the tube and the reaction was continuously 

inverted over 24 hours at room temperature, monitoring by 19F NMR spectroscopy (see 

Figure C2.1). 

 

Cp*
2Fe and O2: A solution of Cp*

2Fe  (0.0138 g, 0.042 mmol) in CD2Cl2 (0.6 mL) was 

degassed via three freeze-pump-thaw cycles in a J. Young NMR tube. An atmosphere of 

O2 was admitted to the headspace of the tube and the reaction was continuously 

inverted over 24 hours at room temperature, monitoring by 1H NMR spectroscopy (see 

Figure C2.2). 
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Cp*
2Fe and B(C6F5)3 under N2 – NMR: A solution of Cp*

2Fe (0.0130 g, 0.040 mmol) and 

B(C6F5)3 (0.0202 g, 0.040 mmol) in CD2Cl2 (0.6 mL) was added to a J. Young NMR tube 

and monitored over time by 1H and 19F NMR spectroscopy (see Figure C2.3-4). 

 

Cp*
2Fe and B(C6F5)3 under N2 – UV-vis: A mixed solution of Cp*

2Fe (0.0131 g, 0.040 

mmol) and B(C6F5)3 (0.0203 g, 0.040 mmol) in DCM (1 mL) was left standing in a sealed 

1 dram vial in a nitrogen filled glovebox over 26 hours at room temperature. Aliquots of 

the reaction were diluted by a factor of 0.06 in DCM and the formation of Cp*
2Fe+ 

monitored by UV-vis spectroscopy (see Figure C2.6). 

 

Cp*
2Fe and B(C6F5)3 under vacuum: In the glovebox, a solution of Cp*

2Fe (0.0133 g, 0.041 

mmol) in CD2Cl2 (0.3 mL) was added to a J. Young NMR tube and frozen in the cold 

well cooled by liquid N2. A solution of B(C6F5)3 (0.0211 g, 0.041 mmol) in CD2Cl2 (0.3 

mL) was layered on top of the frozen Cp*
2Fe solution, and the tube frozen again in the 

cold well. The J. Young NMR tube was then sealed, removed from the glovebox and 

immediately submersed in an acetone/dry ice bath. The solution was degassed at -80 °C 

and then allowed to warm to room temperature. The reaction was monitored over time 

by 1H and 19F NMR spectroscopy (see Figure C2.7-8). 

 

Cp*
2Fe, B(C6F5)3, and O2: A solution of B(C6F5)3 (0.0259 g, 0.051 mmol) and Cp*

2Fe  

(0.0188 g, 0.057 mmol) in CD2Cl2 (0.6 mL) was degassed via three freeze-pump-thaw 

cycles in a J. Young NMR tube. An atmosphere of O2 was admitted to the headspace of 

the tube. Upon inversion of the tube an immediate color change from yellow-orange to 
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a dark green occurred. 1H and 19F NMR spectroscopy revealed a single new species (see 

Figures C2.9-10). After approximately 30 minutes a generous amount of dichroic 

green-blue crystals was observed in the tube. 

 

Cp*
2Fe, B(C6F5)3, and O2 in the dark: The above procedure was repeated using B(C6F5)3 

(0.0258 g, 0.051 mmol) and Cp*
2Fe (0.0196 g, 0.057 mmol) in CD2Cl2 (0.6 mL) with the 

modification that the J. Young tube was wrapped in aluminum foil to prevent the 

admittance of any light into the reaction, and the lights were turned off to prevent 

exposure during transfer into the NMR probe. The same new species was observed by 

1H and 19F NMR spectroscopy as above (see Figures C2.11-12). 

 

Cp2Fe, B(C6F5)3, and O2: A solution of B(C6F5)3 (0.0258 g, 0.050 mmol) and Cp2Fe  

(0.0109 g, 0.059 mmol) in CD2Cl2 (0.6 mL) was degassed via three freeze-pump-thaw 

cycles in a J. Young NMR tube. An atmosphere of O2 was admitted to the headspace 

and the reaction was inverted continuously and monitored by 1H and 19F NMR 

spectroscopy over time. After 7 hours at room temperature the solution had darkened 

to a deep blue and all of the B(C6F5)3 had been consumed and a single major new 

species was observed by 1H and 19F NMR spectroscopy (see Figures C2.13-14). After 

degassing the solution via three freeze-pump-thaw cycles the color had turned back to 

green-blue and significant decomposition was observed by 19F NMR spectroscopy (see 

Figures C2.15-16). Repeating the experiment without degassing can result in the 

formation of crystals suitable for X-ray diffraction. 
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NMR Scale Reactions in the Presence of Additives 

Cp*
2Fe, B(C6F5)3, and O2 with 2,6-di-tert-butyl-4-methylpyridine (DTBMP): A solution of 

B(C6F5)3 (0.0213 g, 0.0416 mmol), Cp*
2Fe (0.0142 g, 0.0435 mmol), and DTBMP 

(0.0084 g, 0.0409 mmol) in CD2Cl2 (0.6 mL) was degassed via three freeze-pump-thaw 

cycles in a J. Young NMR tube. An atmosphere of O2 was admitted to the headspace of 

the tube. Upon inversion of the tube an immediate color change from yellow-orange to 

a dark green occurred. 1H and 19F NMR spectroscopy revealed the formation of [12-

][Cp*
2Fe+]2 (see Figures C2.17-18). 

 

Cp2Fe, B(C6F5)3 and O2 with DTBMP in parallel with Cp2Fe, B(C6F5)3 and O2: A solution of 

B(C6F5)3 (0.0202 g, 0.0395 mmol), Cp2Fe (0.0074 g, 0.0398 mmol), and DTBMP (0.0082 

g, 0.0399 mmol) in CD2Cl2 (0.6 mL) was degassed via three freeze-pump-thaw cycles in 

a J. Young NMR tube. At the same time, a solution of B(C6F5)3 (0.0214 g, 0.0418 mmol) 

and Cp2Fe (0.0082 g, 0.0441 mmol) was degassed via three freeze-pump-thaw cycles in a 

second J. Young NMR tube. An atmosphere of O2 was admitted to the headspace of 

each tube, and the reactions followed by 1H and 19F NMR spectroscopy (see Figures 

C2.19-20). After approximately 2 hours at room temperature, crystals of the product 

[2.12-][Cp2Fe+]2 began forming in both tubes, complicating qualitative comparison of the 

rate of the two reactions by NMR spectroscopy. Overall, the reaction appears 

unaffected by the presence of DTBMP. 

 

Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24: A solution of B(C6F5)3 (0.0119 g, 0.0232 mmol), 

Cp2Fe (0.0051 g, 0.0274 mmol), and H(OEt2)2BArF24 (0.0017 g, 0.00168 mmol) in 
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CD2Cl2 was degassed via three freeze-pump-thaw cycles. An atmosphere of O2 was 

admitted to the headspace and the reaction was inverted continuously, monitoring by 

1H and 19F NMR spectroscopy over time. After approximately 3 hours the B(C6F5)3 had 

been converted to a mixture of [2.12-][Cp2Fe+]2 and other species (see Figures C2.21-

22). 

 

Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24: The reaction was repeated as above using B(C6F5)3 

(0.0113 g, 0.0221 mmol), Cp2Fe (0.0046 g, 0.0256 mmol), and H(OEt2)2BArF24  (0.0095 

g, 0.00938 mmol) in CD2Cl2 (0.6 mL). After approximately 2 hours the B(C6F5)3 had 

been converted to a mixture of species with negligible [2.12-][Cp2Fe+]2 observed (see 

Figures C2.23-24). Crystals formed from this reaction were identified by a preliminary 

crystal structure as [{(F5C6)B}2OH-][Cp2Fe+] in  (see Figure C2.36). 

 

Miscellaneous Reactions 

Reaction of [2.12-][Cp*
2Fe+]2•2CH2Cl2 with H(OEt2)2BArF24: [2.12-][Cp*

2Fe+]2•2CH2Cl2 

(0.0095 g, 0.00506 mmol) was added to a solution of H(OEt2)2BArF24 (0.0055g, 0.00543 

mmol) in CD2Cl2 (0.6 mL), and the reaction products observed by 1H and 19F NMR 

spectroscopy (see Figures C2.25-26). 

 

Reaction of [12-][Cp2Fe+]2 with H(OEt2)2BArF24: [2.12-][Cp2Fe+]2 (0.0030 g, 0.00160 mmol) 

was added to a solution of H(OEt2)2BArF24 (0.0023g, 0.00227 mmol) in CD2Cl2 (0.6 
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mL), and the reaction products observed by 1H and 19F NMR spectroscopy (see 

Figures C2.27-28). 

 

Reaction of B(C6F5)3 with DABCO•2H2O2 and DABCO: B(C6F5)3 (0.0221 g, 0.0432 mmol) 

was added to a solution of DABCO•2H2O2 (0.0020 g, 0.0111 mmol) and DABCO 

(0.0016 g, 0.0143 mmol) in CD2Cl2 (0.6 mL) and the reaction products observed by 1H 

and 19F NMR spectroscopy (see Figures C2.29-30). 

 

Synthesis of bis(decamethylferrocenium) 

bis(tris(pentafluorophenyl)boranyl)peroxide [2.12-][Cp*
2Fe +]2•2CH2Cl2 

B(C6F5)3 (0.1336 g, 0.261 mmol) and Cp*
2Fe (0.0861 g, 0.264 mmol) were combined in 

DCM (2 mL) and added to a Schlenk tube charged with a stir bar. The tube was then 

removed from the glovebox and taken to the Schlenk line where the solution was 

degassed via three freeze-pump-thaw cycles. Next, an atmosphere of O2 was added to 

the headspace with rapid stirring. After 5 seconds the solution had turned from yellow-

orange to deep forest green. After 2 minutes the stirring was stopped and the solution 

left standing at room temperature. After 10 minutes at room temperature dichroic 

crystals began forming. After 30 minutes at room temperature the solution was 

degassed via three freeze-pump-thaw cycles, and the Schlenk tube was taken back into 

the glovebox and the crystals collected on a medium porosity glass frit, washing with 

minimal amounts of cold DCM. The crystals were then dried under vacuum to yield 

0.1297g (53.9%) of the titular compound. 1H NMR (300 MHz, CD2Cl2 , 25 °C): δ -34.7 
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ppm (br). 19F NMR (125 MHz, CD2Cl2 , 25 °C): δ -130.0 (br), -164.7 (br), -168.0 (br). 

λmax (DCM, nm), ε (M-1cm-1): 780, 1091; 710, 653; 650, 444. Anal. Calcd for [2.12-

][Cp*
2Fe +]2•2CH2Cl2, C78H64B2Cl4F30Fe2O2: C, 49.87; H, 3.43. Found: C, 50.04; H, 3.49. 

 

Synthesis of bis(ferrocenium) bis(tris(pentafluorophenyl)boranyl)peroxide [2.12-

][Cp2Fe+]2 

B(C6F5)3 (0.0113g, ) and Cp2Fe (0.0043 g, ) were combined in DCM (0.4 mL) and added 

to a J. Young NMR tube. The tube was removed from the glovebox and taken to the 

Schlenk line. The solution was degassed via three freeze-pump-thaw cycles and an 

atmosphere of O2 was added to the headspace. The tube was then continuously inverted 

for several hours. Over the course of 30-60 minutes the solution changed from orange 

to green to dark blue. After 2 hours, some dark blue crystals began forming in the tube. 

After five hours, the reaction had gone to completion by 19F NMR spectroscopy. After 

7 hours, the solution was degassed via three freeze-pump-thaw cycles and taken back 

into the glovebox. The crystals were then collected on a medium porosity glass frit, 

washing with minimal amounts of cold DCM. The crystals were then dried under 

vacuum to yield 0.0043 g (27%) of the desired compound. 1H NMR (300 MHz, CD2Cl2 , 

25 °C): δ 31.9 ppm (br). 19F NMR (125 MHz, CD2Cl2 , 25 °C): δ -139.8 (br), -165.8 (br), 

-172.4 (br). Anal. Calcd for [2.12-][Cp2Fe +]2•CH2Cl2, C57H22B2Cl2F30Fe2O2: C, 45.25; H, 

1.47. Found: C, 45.13; H, 1.56. 
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Synthesis of ferrocenium bis(tris(pentafluorophenyl)boranyl)hydroxide 

[[(F5C6)3B]2OH-][Cp2Fe+] 

B(C6F5)3 (0.0113 g, 0.0221 mmol), Cp2Fe (0.0046 g, 0.0256 mmol), and H(OEt2)2BArF24  

(0.0095 g, 0.00938 mmol) were combined in DCM (0.5 mL) and added to a J. Young 

NMR tube. The solution was degassed via three freeze-pump-thaw cycles and an 

atmosphere of O2 was added to the headspace. The tube was then continuously inverted 

for several hours, monitoring by 19F NMR spectroscopy. After approximately 2 hours 

the B(C6F5)3 had been converted to a mixture of species with negligible [2.12-][Cp2Fe+]2 

observed. After approximately 3 hours dark blue crystals formed in the tube, and after 

degassing were isolated by filtration on a fine porosity glass frit, washing with minimal 

amounts of cold DCM. The crystals were then dried under vacuum to yield 0.0047 g 

(35%) of the titular compound. A single crystal X-ray diffraction study was performed 

on this material (Figure S36). 1H NMR (300 MHz, CD2Cl2 , 25 °C): δ 30.7 ppm (br). 19F 

NMR (125 MHz, CD2Cl2 , 25 °C): δ -135.2 (br), -159.1 (br), -164.7 (br). 
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Figure 2.3. Variable scan rate cyclic voltammograms of [2.12-][Cp*

2Fe+]2 in 0.1 M 

[nBu4N+][PF6
-] in DCM with glassy carbon electrode. Potentials referenced to 

Cp2Fe/Cp2Fe+. 
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Crystallographic Information 

CCDC 1000579 and 1023005 contain the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif.  

 

Refinement Details  

In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, 

then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-

ray tube, Kα = 0.71073 Å) or a Bruker SMART CCD based diffractometer (Mo sealed 

X-ray tube, Kα = 0.71073 Å). All diffractometer manipulations, including data 

collection, integration, and scaling were carried out using the Bruker APEXII 

software.32 Absorption corrections were applied using SADABS.33 Space groups were 

determined on the basis of systematic absences and intensity statistics and the structures 

were solved by direct methods using XS34 or by intrinsic phasing using XT 

(incorporated into SHELXTL) and refined by full-matrix least squares on F2. All non-

hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen 

atoms were placed in the idealized positions and refined using a riding model. The 

structure was refined (weighed least squares refinement on F2) to convergence. 

Graphical representation of structures with 50% probability thermal ellipsoids was 

generated using Diamond visualization software.35 

  



 
26 

Table 2.1.  Crystal and refinement data for complexes [2.12-][Cp*
2Fe+]2•2CH2Cl2 and 

[2.12-][Cp2Fe+]2. 
 [2.12-][Cp*

2Fe+]2•2CH2Cl2 [2.12-][Cp2Fe+]2 
CCDC Number 1000579 1023005 

Empirical formula C38H32BCl2F15FeO C28H10BF15FeO 
Formula weight 1878.41 g/mol 1428.04 

T (K) 100 100 
a, Å 11.330(2) 10.5469(9) 
b, Å 14.003(3) 10.646(1) 
c, Å 14.176(3) 12.043(1) 

  α, deg 114.17(3) 77.024(3) 

 β, deg 105.17(3) 88.081(4) 

 γ, deg 96.41(3) 71.474(3) 
Volume, Å3 1918.3(7) 1248.3(2) 

Z 1 1 
Crystal system Triclinic Triclinic 
Space group P-1 P-1 
dcalc, g/cm3 1.626 1.900 

 θ range, deg 2.20 to 43.57 2.38 to 30.58 
µ, mm-1 0.639 0.742 

Abs. Correction Multi-scan Multi-scan 
GOF 0.961 0.9420 

R1
 ,a wR2

 b [I>2 σ(I)] 0.0599, 0.1920 0.0869, 0.2449 
a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo

2-Fc
2)2]/∑[w(Fo

2)2]1/2. 
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Figure 2.4. Structural drawing of [2.12-][Cp*
2Fe+]2•2CH2Cl2 with 50% probability 

ellipsoids. Hydrogen atoms and solvent molecules not shown for clarity. Carbon and 

fluorine atoms shown in black and green, respectively. 
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Figure 2.5. Structural drawing of [2.12-][Cp2Fe+] with 50% probability ellipsoids. 

Hydrogen atoms not shown for clarity. Carbon and fluorine atoms shown in black and 

green, respectively. 
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Figure 2.6. Preliminary crystal structure of [{(F5C6)3B}2OH-][Cp2Fe+]•2CH2Cl2. 

Hydrogen atoms and solvent molecules not shown for clarity. Carbon and fluorine 

atoms shown in black and green, respectively. 
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ABSTRACT   

A series of π-bound Mo quinonoid complexes supported by pendant phosphines has 

been synthesized. Structural characterization reveals strong metal-arene interactions 

between Mo and the π-system of the quinonoid fragment. The Mo-catechol complex 

(3.2a) was found to react within minutes with half an equivalent of O2 to yield a Mo-

quinone complex (3.3), H2O and CO. Si- and B- protected Mo-catecholate complexes 

also react with O2 yielding 3.3 and (R2SiO)n and (ArBO)3 byproducts, respectively. 

Formally, the Mo-catecholate fragment provides two electrons, while the elements 

bound to the catecholate moiety act as acceptors for the O2 oxygens. Unreactive by 

itself, the Mo-dimethylcatecholate analog reduces O2 in the presence of added Lewis 

acid, B(C6F5)3, to generate a MoI species and  a bis-borane supported peroxide dianion, 

[[(F5C6)3B]2O2
2-], demonstrating single electron transfer chemistry from Mo to the O2 

moiety. The intramolecular combination of molybdenum center, redox active ligand, 

and Lewis acid reduces O2 with pendant acids weaker than B(C6F5)3. Overall, the π-

bound catecholate moiety acts as a two-electron donor. A mechanism is proposed 

where O2 is reduced through an initial one-electron transfer, coupled with transfer of 

the Lewis acidic moiety bound to the quinonoid oxygen atoms to the reduced O2 

species. 
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INTRODUCTION 

Biological reduction of  dioxygen is performed by active sites that employ redox non-

innocent ligands, and proton relays to control the transfer of  electrons and protons to 

substrate.[1] In synthetic transition metal chemistry, redox non-innocent ligands[2] and second 

coordination sphere acid/base moieties that facilitate proton transfer[3] engender novel 

reactivity at the metal center. However, ligand systems that engage in both electron and 

proton transfers to substrates are less common.[4] Metal-quinonoid complexes in which the 

metal is π-bound to the quinonoid fragment have the potential to access the two-electrons 

and two-protons of  the hydroquinone/quinone couple in addition to any accessible metal-

based redox couples. The study of  π-bound metal-quinonoid complexes[5] has focused on 

polymeric metal–organometallic coordination networks,[5] with only rare examples of  

substrate based reactivity.[4b, 6] Although not directly coordinated to metal, hydroquinone has 

been employed as distal redox mediator.[4b] 

We have previously reported ligand designs that employ the π-system of an arene to 

support metals in various coordination environments.[7] A Ni–H complex underwent 

reversible H-migration between the metal and pendant arene, demonstrating the 

reversible transfer of (formally) protons and electrons between the Ni center and the 

ligand.[8] Extending this chemistry to multi-proton, multi-electron processes at a single 

metal site with a pendant catechol moiety, we report herein the first synthesis of a series 

of Mo quinonoid complexes and their reactivity with dioxygen. 
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RESULTS AND DISCUSSION 

Scheme 3.1. Synthesis of π-bound Mo-quinonoid complexes. 

 

Access to the desired Mo-catechol complex 3.2a was pursued through the use of the 

Si-protected catechol diphosphine 3.1b, designed to avoid formation of oxygen-bound 

Mo-catecholate species. Heating diphosphine 3.1b with (PhMe)Mo(CO)3 (Scheme 3.1) 

in tetrahydrofuran (THF) generates a new species 3.2b by NMR spectroscopy. A singlet 

(50.6 ppm) is observed by 31P{1H} NMR spectroscopy, while the protons assigned to 

the central arene ring in the 1H NMR spectrum of 3.2b resonate upfield (5.7 ppm, 

CDCl3) compared to that of the free phosphine 3.1b (6.8 ppm, CDCl3) and have split 

into an apparent triplet (JHP = 4 Hz). Additionally, two singlets account for the methyl 

groups bound to silicon, indicating desymmetrization of the two faces of the central 

ring. These data are consistent with a Cs symmetric molecule in which there is a strong 

metal-arene interaction with the central ring of the terphenyl moiety. The solution IR 

spectrum of 3.2b reveals three bands in the region corresponding to CO stretches (νCO 

= 1959, 1843, and 1835 cm-1) consistent with a Mo(CO)3 fragment. 
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Figure 3.1. Solid-state structures of  3.2a, 3.2b, 3.3, and [3.4+]2[[(F5C6)3B]2O2
2-]. Solvent 

molecules, hydrogen atoms, and second 3.4+ cation are omitted for clarity. Carbon and 

fluorine atoms are depicted in black and green, respectively. Select bond distances (average 

values of  two molecules in asymmetric unit for 3.2a) are given in Å. 

The single-crystal X-ray diffraction (XRD) study of  3.2b (Figure 3.1) confirmed the 

spectroscopic findings, which are also consistent with the previously reported analog.[9] In 

the solid state, the metal center exhibits a pseudo-octahedral geometry with the coordination 

sphere comprised of  two trans phosphines, three meridional carbonyls and an η2-interaction 

with the π-system of  the catechol fragment. Localization of  double-bond character in the 

central arene ring suggests significant π-backbonding between Mo and the ring (the C7–C12 

and C10–C11 bonds at 1.37 Å are considerably shorter than C7–C8, C9–C10, and C11–C12 at 1.43 

Å). The aryl C–O bond distances at 1.37 Å are consistent with C–O single bonds. 

The catechol complex 3.2a can be accessed from 3.2b by removal of the SiMe2 group 

upon treatment with NaOMe in MeOH, followed by aqueous NH4Cl work-up. 

Alternatively, 3.2a can be accessed directly from diphosphine 3.1a through reaction 
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with Mo(CO)3(MeCN)3 at room temperature. The resulting product exhibits 

spectroscopic features similar to those of 3.2b. A new broad resonance at 5.6 ppm (1H 

NMR) is assigned to the catechol OH protons. This assignment was confirmed by loss 

of this resonance upon addition of D2O. An XRD study of 3.2a (Figure 3.1) revealed 

structural parameters nearly identical to those of 3.2b. 

2.2 Reduction of  O2 by Mo-Catechol with Formation of  Mo-Quinone. While 

transition metal σ-bound catecholate complexes in general,[1a, 10] as well as Mo-catecholate 

complexes specifically,[10b, 11] have been reported to react with dioxygen to afford intra- and 

extra-diol cleavage products and oxidation to quinones, we are unaware of  any reports on π-

bound transition metal quinonoid complexes facilitating dioxygen reduction. To test the 

propensity of  the metal-catechol moiety of  3.2a to perform the transfer of  multiple 

electrons and protons, its chemistry with O2 was studied. Exposure of  a solution of  3.2a in 

DCM to an atmosphere of  O2 resulted in quantitative conversion to a new diamagnetic 

species 3.3 (eq 3) upon addition. The product displays a singlet at 72 ppm by 31P{1H} NMR 

spectroscopy. By 1H NMR spectroscopy, the resulting species exhibits a new apparent triplet 

at 4.9 ppm, assigned to olefinic protons coupled to the phosphines. The solution IR of  3.3 

reveals bands at 1875 and 1605 cm-1 consistent with the stretching frequency of  metal-

bound carbonyl and a quinone carbonyl stretch, respectively.[12] The solution 13C{1H} NMR 

reveals two resonances at ca. 240 ppm, consistent with two Mo-bound carbonyls. These 

spectroscopic features suggest conversion to a quinone-Mo(CO)2 species, assignment 

confirmed by the solid-state structure (Figure 3.1). The Mo center exhibits a pseudo-trigonal 

prismatic geometry, with the vertices defined by two phosphine donors, two CO ligands, and 

two olefin moieties of  the diene bound η4 to the metal center. The C–O bonds of  the 

organic fragment have contracted to 1.23 Å, consistent with carbon-oxygen double bonds. 

Formally, complex 3.2a was oxidized by two electrons, coupled with the transfer of  two 
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protons, to generate 3.3, with the oxidation state of  the metal center unchanged (Mo0), and 

only the organic fragment undergoing the redox transformation. 

To deconvolute the effect of  the catechol vs metal moieties in the reaction with O2, 

control experiments were performed with several species. 3,6-(Bis-2-bromophenyl)-catechol 

(3.1Br, eq 1), a phosphine-free alternative to 3.1a, exhibits no reaction under an atmosphere 

of  O2 in CD2Cl2 at room temperature, over 24 h (1H NMR spectroscopy). Under similar 

conditions, the dimethyl-catecholate Mo complex 3.2f and the parent complex 3.2g (eq 2) 

also showed no conversion with O2 over 24 hours.  These experiments indicate that the Mo-

catechol combination is required for the reactivity observed. 

 

Toepler pump experiments were performed for the reaction of  3.2a with O2. Gas (0.48 ± 

0.02 equiv) was generated in the reaction. Upon consumption of  excess O2 by reaction with 

a basic pyrogallol solution, the remaining gas (1.05 ± 0.05 equiv) was found to be 

combustible with CuO at 350 °C consistent with CO. The identity of  the released gas was 

further confirmed by reaction with a CuI precursor, to generate a previously reported 

CuI(CO) species.[13] Overall, the Toepler pump experiments reveal that 0.5 equivalents of  
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dioxygen are consumed and one equivalent of  CO is released per mole of  3.2a. This 

stoichiometry is consistent with four-electron reduction of  O2 to water, involving two 

equivalents of  metal complex. This process could occur via partial reduction of  O2 by one 

equivalent of  3.2a to H2O2, followed by reduction of  H2O2 with a second equivalent of  

3.2a. Indeed, 3.2a cleanly converts to 3.3 upon treatment with H2O2, while 3.3 exhibits only 

minor conversion to unidentified species (<20%) with H2O2 (1 equiv) within one hour. Thus 

it is plausible that H2O2 could be the initial O2 reduction product, which is then rapidly 

consumed by a second equivalent of  3.2a. 

To understand the O2 reduction process in more detail, 3.2b was investigated as a metal 

complex with an electron rich central ring, yet without easily transferable protons. 

Compound 2b reacts with O2 to also generate 3.3, albeit slower than 3.2a (over the course 

of  several hours), with silyl-containing by-products identified by GC-MS as cyclo-oligomers 

of  dimethylsiloxane. It has been reported that O2 electrochemically reduced in the presence 

of  R2SiX2 (R = Me, Et, and Ph, X = Cl, OMe) transiently generates silanones (R2Si=O 

species) that oligomerize to yield cyclopolysiloxanes.[14] As silanones are highly reactive and 

rapidly oligomerize, the presence of  silanones in solution is typically deduced via trapping 

experiments with linear siloxanes, such as hexamethyldisiloxane. [14-15] Silanones insert into 

the Si–O bond of  Me3SiOSiMe3 to yield longer linear chain siloxanes of  the form 

Me3Si(OSiMe2)nOSiMe3 (n = 1, 2) which can be easily observed. An intermediate species 

(3.2h, Scheme 2) is observable by 31P{1H} and 1H NMR spectroscopy during the reaction of  

3.2b with O2, with a relative integration of  the Si–CH3 singlets to the central arene triplet of  

6:2, rather than 3:2 in 3.2b. These data are consistent with insertion of  generated Me2Si=O 

into the Si–O bond of  3.2b (Scheme 2.2), and was confirmed through independent 

synthesis. This observed species (3.2h) indicates that the Me2Si moiety acts as an oxygen 

acceptor to generate Me2Si=O, as protons do when starting from 3.2a to generate 

H2O2/H2O. 
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Scheme 3.2. Reactivity of  3.2b and 3.2c with O2. 

 

The effect of  increasing the steric bulk at Si on the overall reaction with O2 was 

investigated with the Et2Si and iPr2Si analogues 3.2c and 3.2d (Scheme 3.1). Electrochemical 

measurements indicate that the nature of  the alkyl group does not have a significant effect 

on the reduction potentials and, hence, the electronic properties of  the complexes (Figure 

3.2 and 3.7). Exposure of  3.2c to an atmosphere of  O2 leads to consumption of  starting 

material within hours, similar to 3.2b, with the formation of  a 1:1 mixture of  3.3 and the 

diethylsilanone insertion product 3.2i; however, conversion of  3.2i to 3.3 is much slower, 

requiring 48 hours for full conversion.   Reaction of  3.2d with O2 is significantly slower, with 

<20% of  3.3 generated over the course of  5 days at room temperature.  The observed effect 

in the rate of  reaction due to increasing steric bulk indicates that the silicon center is 

accessed during a rate determining process; since the reduction potentials of  3.2b, 3.2c, and 

3.2d are very similar this process likely involves Si–O bond formation from O2.  

Reaction with O2 was found to extend to boron-substituted 3.2e as well, though compared 

to 3.2b the reaction is slower. After 36 hours at room temperature 3.2e had been consumed 

and 3.3 formed in ca. 80% yield. New unidentified species were observed by 31P{1H} NMR 

spectroscopy, in addition to multiple broad resonances by 19F NMR spectroscopy. A 
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qualitatively similar set of  spectra was obtained when 3.3 was combined with the boroxin 

(ArBO)3 in CD2Cl2, likely due to the formation of  Lewis acid-base adducts and 3.3-mediated 

oligomerization of  a “ArBO” moiety similar to the polysiloxanes observed for 3.2b.  

2.3 Investigation of  the Role of  Lewis Acids in O2 Reduction by Mo/quinonoid 

Compounds. Considering that pendant H+, [R2Si]2+, and [RB]2+ moieties can act as Lewis 

acids and all engage in the O2 activation process, more mechanistic insight was sought by 

addition of  an external Lewis acid to target intermolecular reactivity. Compound 3.2f does 

not undergo O2 reactivity on its own. Addition of  2 equivalents of  B(C6F5)3 to 3.2f under N2 

resulted in a broadening of  the NMR spectroscopic features of  3.2f, similar to what has 

been reported for a zirconocene complex.[16] This may be caused by a combination of  

effects, including electron transfer and coordination of  borane to ether or carbonyl moieties. 

Exposure of  this mixture to O2 results in a mixture that is silent by 1H and 31P{1H} NMR 

spectroscopy, and a gradual color change was observed from red-orange to brown to dark 

purple (λmax = 575 nm) over the course of  30 minutes at room temperature. Purple crystals 

of  compound [3.4+]2[[(F5C6)3B]2O2
2-] were isolated from the reaction mixture and an XRD 

study revealed a six-coordinate Mo(CO)3 unit bound by the terphenyl-diphosphine with 

methoxy moieties intact analogous to 2.2a and 2.2b (Figure 3.1). The unit cell contains a bis-

borane supported peroxide dianion,[17] in a ratio of  1:2 (peroxide to Mo), indicating that the 

metal complex is a mono-cation (formally MoI), consistent with the lack of  diamagnetic 

resonances by NMR spectroscopy. The formation of  the [[(F5C6)3B]2O2
2-] dianion was 

recently reported upon treatment of  mixtures of  ferrocenes and B(C6F5)3 with O2.[17] 

Observation of  [3.4+]2[[(F5C6)3B]2O2
2-] in reaction of  3.2f and B(C6F5)3 with O2 demonstrates 

the ability of  the Mo center to reduce O2 via outer-sphere one-electron transfer. 
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Scheme 3.3. Reactivity of 3.2f  with O2 in the presence of  B(C6F5)3. 

 

Over the course of  several hours the purple solution of  3.4+ generated a new diamagnetic 

ion 3.52+, which was independently synthesized by oxidation of  3.2f with two equivalents of  

silver trifluoromethanesulfonate (AgOTf). Upon treatment of  3.2f with AgOTf, the solution 

initially turned purple, consistent with formation of  one-electron oxidized 3.4+, then pale 

yellow-orange to yield 3.52+ via further oxidation and loss of  CO. In the presence of  the bis-

borane supported peroxide dianion, 3.52+ partially converts to a new diamagnetic species, 

3.6+, resulting from ether demethylation. Independent synthesis by addition of  MeOTf  to 

3.3 supports the structural assignment of  3.6+. After complete conversion of  intermediate 

3.4+ to a mixture of  3.52+ and 3.6+, vacuum transfer of  the volatiles to a J. Young NMR tube 

revealed the formation of  Me2O and MeOH. To determine the origin of  the O-atom in 

Me2O, the oxidation reaction was performed with 18O2 instead of  natural abundance O2. 

Me2O generated in the reaction was detected by GC-MS, and when performing the 

experiment with 18O2, the major isotopolog observed was Me2
18O. While not quantitative, 

observation of  Me2O formation suggests that the peroxide moiety reacts with 3.52+ via 

abstraction of  Me+ to yield 3.6+.[18] Conversion of  3.52+ to 3.6+ demonstrates the ability of  a 

reduced oxygen species to cleave the O–element bond of  the resulting oxidized Mo 

complex, although cleavage of  the aryl–O bond has not been ruled out.[18a] 
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The crystal structure of  3.4+ allows for an evaluation of  the effect of  the metal oxidation 

state on the interaction with the arene. While partial localization of  double-bond character in 

the catechol moiety was observed for 3.2a and 3.2b, with C–C distances varying between 

1.37 and 1.43 Å, the dimethyl catecholate moiety of  3.4+ displays C–C distances in a 

narrower range (1.40–1.42 Å). These structural parameters suggest that the Mo-arene 

interaction shifted from predominantly Mo-to-arene π-backbonding to arene-to-Mo σ-

donation upon oxidation of  the metal center.[19] The Mo–C distances are ca. 0.05 Å shorter 

in 3.2a (ca. 2.55 Å) vs 3.4+(ca. 2.50 Å) indicating a strong interaction between the metal 

center and the ring. This interaction increases the electrophilicity of  the arene and of  group 

E bonded to the catecholate oxygens. It is proposed that this activation of  E for nucleophilic 

attack facilitates the reaction with the O2 fragment.  

 

Figure 3.2. Cyclic voltammograms of  compounds 3.2b (red), 3.2d (purple), 3.2e (green), 

and 3.2f (blue) in 0.1 M [nBu4N+][PF6
-] in THF recorded with a glassy carbon electrode. Scan 

rate of  100 mV/s. Potentials referenced to Cp2Fe/Cp2Fe+.  

Further insight into the redox chemistry of  the reported Mo complexes is provided by 

cyclic voltammetry studies (Figure 2.2). Compound 3.2f shows a symmetric and fairly 

reversible couple, consistent with the isolation of  both neutral and oxidized species and 
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relatively small structural reorganization. Compound 3.2b exhibits a more asymmetric 

couple with less cathodic compared to anodic current. Increasing steric bulk at Si in 3.2d 

shows a return to a symmetric couple, while the more sterically accessible 3.2e shows a fully 

irreversible couple at all scan rates. This electrochemical behavior is reminiscent of  the 

behavior of  (η6-arene)Cr(CO)3 compounds, wherein the reversibility of  the one-electron 

redox event is highly dependent on the presence of  nucleophiles (additives such as MeCN, 

MeOH, H2O, THF or the counteranions ClO4
- or PF6

-),[20],[21]  due to chemical decomposition 

of  the generated radical cation by external nucleophiles. Consequently, reversibility can be 

achieved in non-coordinating solvents like CH2Cl2 by either lowering the temperature or 

employing less-nucleophilic electrolyte anions such as [B(C6F5)4
-].[21]  

For compounds 3.2b-e, we speculate that upon one-electron oxidation, the Si and B 

bound to the catecholate oxygens develop more electrophilic character and become 

susceptible to attack by external nucleophiles, either from the supporting electrolyte 

(tetrabutylammonium hexafluorophosphate) or even the solvent itself  (THF), resulting in 

the observed electrochemical irreversibility. Indeed, chemical oxidation of  3.2b with either 

one or two equivalents of  Ag(OTf) or [Cp2Fe+][PF6
+] in THF resulted in a mixture of  

species by 1H and 31P{1H} NMR spectroscopy, capable of  polymerizing THF over the 

course of  several hours, suggesting the generation of  a very electrophilic species. Conversely, 

oxidation of  3.2d with two equivalents of  Ag(OTf) in THF yields a single major diamagnetic 

species by 1H and 31P{1H} NMR spectroscopy and the resulting solution was not observed 

to polymerize THF. As the alkyl substituents bound to Si are oriented away from both the 

metal center and the catechol carbocyclic ring (Figure 2.1), the recovery of  electrochemical 

reversibility from 3.2b to 3.2d and lack of  solvent polymerization upon chemical oxidation 

of  3.2d is suggestive of  Si being the site of  nucleophilic attack. The bulkier isopropyl groups 

of  3.2d better impede the approach of  nucleophiles to the Si center compared to the methyl 

groups of  3.2b. These results are consistent with increased electrophilic character 
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developing on the Lewis-acidic E upon oxidation, indicative of  ligand-metal cooperation by 

activation of  the catechol moiety upon Mo-based electron transfer. The reactivity of  O2 of  

these species follows the trends observed electrochemically, with the bulky species displaying 

more reversible CV reacting slower.  

 

To further probe the role of  metal-ligand cooperation for species with the quinonoid 

fragment connected to the Mo center on the reactivity with dioxygen, reaction of  3.2g with 

O2 in the presence of  external catechol was investigated. Compound 3.2g was selected for 

this experiment to limit potential complications due to loss of  Me+ as was observed during 

the reaction of  3.2f and B(C6F5)3 with O2. Compound 3.2g is competent for O2 reduction in 

the presence of  B(C6F5)3, generating the same borane-supported peroxide, [[(F5C6)3B]2O2
2-], 

as 3.2f according to 19F NMR spectroscopy (eq 4).  

Accordingly, exposure of  an orange mixture of  3.2g and catechol to an atmosphere of  O2 

results in a slight darkening of  the solution over the course of  3 hours (the time required for 

quantitative conversion of  3.2b to 3.3, eq 5). 31P{1H} NMR spectroscopy shows a complete 
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loss of  signal, while 1H NMR spectroscopy reveals a broadening of  the signals 

corresponding to 3.2g; however, the majority of  the catechol remains unaffected over the 

course of  the reaction (eq 6) with less than 15% conversion. After 36 hours at room 

temperature, a new signal is observed by 31P{1H} NMR spectroscopy at 60 ppm, consistent 

with oxidation of  the phosphine to free phosphine oxide, indicative of  decomposition of  

the metal complex. These results suggest that the presence of  external catechol is sufficient 

to facilitate O2 reactivity at Mo, but this is a slow process and the low conversion of  catechol 

and decomposition of  the metal complex indicate that the resulting reduced oxygen species 

preferentially reacts with the Mo complex over the external catechol. Additionally, reaction 

of  catechol with O2 in the presence of  1,1’,3,3’-tetramethylferrocene (Me4Fc) as a surrogate 

outer-sphere reductant of  similar potential as the reported Mo complexes was investigated 

(eq 7). Over the course of  3 hours at room temperature, slight oxidation of  Me4Fc (< 5%) 

was observed by UV-Vis spectroscopy; however, no conversion of  catechol was detected by 
1H NMR spectroscopy. The low conversion of  catechol oxidation chemistry observed in 

these intermolecular reactions emphasizes the cooperative nature of  the reactivity observed 

for the Mo quinonoid complexes. 

2.4 Proposed Mechanisms for O2 Reduction by Mo Quinonoid Complexes. The 

intermolecular reactivity of  3.2f and O2 in the presence of  B(C6F5)3 (Figure 3.3) offers 

insight applicable to the intramolecular systems. The proposed mechanism for O2 activation 

by 3.2f and B(C6F5)3 initiates via outer-sphere electron transfer from Mo to O2, facilitated by 

the strongly Lewis acidic borane. While the reduction potentials of  the Mo0/MoI couple and 

the •O2
-/O2 couple are mismatched (-0.176 V vs Cp2Fe/Cp2Fe + for Mo0/MoI in THF vs -

1.18 V vs Cp2Fe/Cp2Fe+ for •O2
-/O2 in DMSO),[22] it has been demonstrated that by 

coupling Lewis acid binding, electron transfer rates can be greatly increased.[23] This pre-

equilibrium step is driven forward by the rapid disproportionation of  the proposed borane 

supported superoxide into borane-supported peroxide and dioxygen, as has been previously 
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reported.[24] Disproportionation of  the formally 17-electron 3.4+ yields the 18-electron 

complex 3.52+ and regenerates starting material 3.2f. While it is anticipated that the MoI of  

3.4+ should be an even weaker reductant than 3.2f, further oxidation of  3.4+ via O2 and 

B(C6F5)3 to yield 3.52+ cannot be ruled out.  

η6-Coordination of  phenol to a Cr(CO)3 unit resulted in a 4 pKa unit increase in acidity,[25] 

and thus it is presumed that similar activation of  the catecholate unit in 3.52+ results in 

increased susceptibility of  the methyl groups toward nucleophilic attack. Both nucleophilic 

attack at the methyl carbon and at the aryl carbon have been proposed in Cp*Ir(η6-anisole)2+ 

complexes.[18] Based on our isotopic labeling studies, 3.52+ is demethylated by the borane-

supported peroxide via nucleophilic substitution at methyl to yield methylperoxide and 3.6+, 

with the former reacting further to yield the observed Me2O or Me2
18O.  

 

Figure 3.3. Proposed mechanism for intermolecular reactivity of  3.2f and B(C6F5)3 with O2. 
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Extending these intermediates to the intramolecular system, the proposed mechanism for 

O2 activation at the catechol and protected catecholate π-complexes initiates via an outer-

sphere electron transfer (Figure 3.4A), with the protons (or Si, B) serving as intramolecular 

Lewis acidic moieties (as B(C6F5)3 does with 3.2f in intermolecular fashion) that facilitate the 

initial electron transfer and stabilize the resulting reduced O2 species, •O2
-, as represented in 

3.9.[23a] Oxidation of  the Mo complex through electron transfer to O2 results in increased 

electrophilicity at E (E = H, R2Si, ArB) as supported by structural analysis of  3.4+, 

electrochemical analysis, and chemical oxidation of  3.2b. Loss of  carbonyl coupled with 

attack by •O2
- on the electrophilic Lewis acid E results in scission of  a catecholate-E bond, 

with subsequent steps leading to O–O bond cleavage (analogous to the formation of  3.6+ 

and Me2O). The intermediacy of  a MoII compound 3.10 accessed via further oxidation of  

3.9 cannot be ruled out, with attack by a reduced oxygen species again resulting in formation 

of  3.11. While it is unclear at which step the O–O bond is cleaved, one demonstrated 

possibility is that 3.2a reduces H2O2 to yield H2O and 3.3. Analogous EO2 species (E = R2Si, 

ArB) are anticipated to be even more reactive than H2O2, and therefore it is presumed if  

generated they will be consumed via further reaction with starting material 3.2. A recently 

computed mechanism for O2 reduction with hydroanthraquinones invokes H-atom 

abstraction,[26] and although the organo-quinonoid 3.1Br does not react with O2, it cannot be 

ruled out that 3.2a follows a similar mechanism (Figure 3.4B), whereby the Mo center does 

not directly participate in the reactivity, but activates the catechol moiety.  
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Figure 3.4. Proposed mechanism for intramolecular reactivity of  3.2a-e,h-i with O2 (A), 

and alternative mechanism for intramolecular reaction of  3.2a with O2 (B). 
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CONCLUSIONS 

In summary, π-bound Mo-catechol complexes were synthesized and their reactivity with 

dioxygen to yield a Mo-quinone product was investigated. Control experiments of  Mo 

complexes in the absence of  the catechol moiety or the catechol in the absence of  Mo 

showed no reaction with O2. Additionally, catechol added to solution, but not covalently 

connected to Mo (or tetramethylferrocene as an alternate single electron reductant), is 

oxidized only partially. Altering the substitution on the catechol oxygen centers from H to Si 

or B maintains reactivity with O2, but at lower rates. The dimethyl-Mo quinonoid complex 

still reacts with O2, but in the presence of  B(C6F5)3, to afford a bis-borane supported 

peroxide. Mechanistically, the O2 activation is proposed to occur via intramolecular Lewis 

acid assisted electron transfer. The present studies demonstrate the ability of  a π-bound 

metal-quinonoid complex to facilitate multi-electron and proton transfer (as well as silicon, 

boron, and carbon transfer) from the quinonoid moiety to a small molecule substrate, with 

coupling of  the Mo and quinonoid fragments integral to the observed reactivity.  
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EXPERIMENTAL SECTION 

General considerations:  

Unless indicated otherwise, reactions performed under inert atmosphere were carried 

out in oven-dried glassware in a glovebox under a nitrogen atmosphere purified by 

circulation through RCI-DRI 13X-0408 Molecular Seives 13X, 4x8 Mesh Beads and 

BASF PuriStar® Catalyst R3-11G, 5x3 mm (Research Catalysts, Inc.). Solvents for all 

reactions were purified by Grubbs’ method.[27] C6D6 was purchased from Cambridge 

Isotope Laboratories and vacuum distilled from sodium benzophenone ketyl. CD3CN, 

CD2Cl2, and CDCl3 were also purchased from Cambridge Isotope Laboratories and 

distilled from CaH2 prior to use. Alumina and Celite were activated by heating under 

vacuum at 200 °C for 24 hours. 1H, 19F, and 31P NMR spectra were recorded on Varian 

Mercury 300 MHz spectrometers at ambient temperature, unless denoted otherwise. 13C 

NMR spectra were recorded on a Varian INOVA-500 MHz spectrometer. 1H and 13C 

NMR chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.06 

ppm for C6D6, 1.94 ppm and 118.26 for CD3CN, 5.32 ppm and 53.84 ppm for CD2Cl2, 

and 7.26 ppm and 77.16 ppm for CDCl3, respectively. 19F and 31P NMR chemical shifts 

are reported with respect to an external standard of C6F6 (-164.9 ppm) and 85% H3PO4 

(0.0 ppm).  

Powder and thin film ATR-IR measurements were obtained by placing a powder or 

drop of solution of the complex on the surface of a Bruker APLHA ATR-IR 

spectrometer probe and allowing the solent to evaporate (Platinum Sampling Module, 

diamond, OPUS software package) at 2 cm–1 resolution. Solution IR spectra were 

recorded on a Thermo-Fisher Scientific Nicolet 6700 FTIR spectrometer using a CaF2 
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plate solution cell. Fast atom bombardment-mass spectrometry (FAB-MS) analysis was 

performed with a JEOL JMS-600H high resolution mass spectrometer. Gas 

chromatography-mass spectrometry (GC-MS) analysis was performed upon filtering the 

sample through a plug of silica gel. Electrochemical measurements were recorded with a 

Pine Instrument Company AFCBP1 bipotentiostat using the AfterMath software 

package. Cyclic voltammograms were recorded on ca.  2 mM solutions of the relevant 

complex in the glovebox at 20 °C with an auxiliary Pt-coil electrode, a Ag/Ag+ 

reference electrode (0.01 M AgNO3, 0.1 M [nBu4N+][PF6
-] in MeCN), and a 3.0 mm 

glassy carbon electrode disc (BASI). The electrolyte solution was 0.1 M [nBu4N+][PF6
-] 

in THF. All reported values are referenced to an internal ferrocene/ferrocenium couple. 

Elemental analysis was conducted by Robertson Microlit Labs (Ledgewood, NJ). 

Unless otherwise noted all chemical reagents were purchased from commercial 

sources and used without further purification. Pinacol, 2-bromodiodobenzene, HNpic2 

(HNpic2 = di(2-picolyl)amine), and para-trifluoromethylphenylboronic acid were 

purchased from Alfa Aesar. Veratrole and TMEDA were purchased from Alfa Aesar 

and distilled from CaH2 prior to use. B(OMe)3 was purchased from Alfa Aesar and 

distilled from sodium prior to use. Chlorodiisopropylphosphine and Cu(MeCN)4OTf 

were purchased from Sigma Aldrich. Me2SiCl2, Et2SiCl2, iPr2SiCl2, and (ClMe2Si)2 were 

purchased from Sigma Aldrich and distilled from CaH2 prior to use. (ClEt2Si)2O was 

prepared by hydrolysis of Et2SiCl2 followed by fractional distillation. Assignments of 

NMR spectra are given corresponding to the following numbering scheme: 
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Synthesis of 2,3-dimethoxyphenylene-1,4-bis(pinacolato)boronic ester 

 

Adapted from the literature.[28] On the Schlenk line, veratrole (10.0 mL, 78.5 mmol) and 

TMEDA (20.0 mL, 133 mmol) were added via syringe under a counter-flow of N2 to a 

1000 mL Schlenk bomb charged with Et2O (500 mL) and a large stir bar and fitted with 

a rubber septum. The bomb was cooled toca. 4 °C using an ice bath, and under a 

counter-flow of N2 nBuLi (100 mL, 2.5 M, 250 mmol) was added via Teflon cannula 

transfer. The ice bath was removed, the bomb was sealed with a screw-in Teflon 

stopper and heated to 40 °C (CAUTION: Always use a blast shield and all necessary 

personal protective equipment when heating/manipulating pyrophorics in a sealed 

vessel.) for 4 hours with vigorous stirring (Note: large amounts of precipitate form during 

this stage, and if adequate stirring is not maintained the final yield will be significantly 

diminished). The reaction was removed from heat and once again cooled to ca. 4 °C 

using an ice bath and the Teflon stopper replaced with a rubber septum. B(OMe)3 (29.0 

mL, 260 mmol) was then added via syring under counterflow of N2 with vigorous 

stirring. After complete addition, the bomb was once again sealed with the screw-in 

Teflon stopper, and the reaction allowed to warm to room temperature over the course 
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of 12 hours with stirring. The bomb was again cooled to ca. 4 °C using an ice bath, 

opened to air, and the mixture quenched with the slow addition of HCl (6 M, 500 mL, 3 

mol). All further manipulations were performed in air. Upon complete addition of HCl, 

the mixture was transferred to a 2L separatory funnel and the layers separated. The 

aqueous layer was washed with Et2O (2 x 200 mL), and the combined organic layers 

were dried over MgSO4, filtered, and concentrated via rotary evaporation. The residue 

was combined with pinacol (19 g, 160 mmol) and Toluene (50 mL) in a 500 mL round 

bottom flask charged with a stir bar and equipped with a Dean-Stark trap. The mixture 

was then refluxed for 4 hours with stirring. After cooling to room temperature, all 

volatiles were removed by rotary evaporation and the residue was recrystallized from 

hot hexanes (ca. 200 mL) at -30 °C to afford approximately 10 g of the desired product 

as off-white powder/microcrystalline solid. Concentration of the filtrate followed by 

recrystallization from pentane can afford approximately another 5 g of desired product. 

Total isolated yield is 15.449 g (50.5%). The obtained product displayed a 1H NMR 

spectrum matching that previously reported in literature.2 1H NMR (300 MHz, d6-

acetone), δ(ppm): 7.31 (s, 2H, Ar-CH), 3.80 (s, 6H, OCH3), 1.34 (s, 24H, C(CH3)2). 
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Synthesis of 1,4-bis(2-bromophenyl)-2,3-dimethoxybenzene 

 

Suzuki coupling conditions were adapted from a previously published procedure.[29] 2,3-

dimethoxyphenylene-1,4-bis(pinacolato)boronic ester (15.4993 g, 39.7 mmol), K2CO3 

(26 g, 190 mmol), toluene (340 mL), H2O (185 mL), EtOH (185 mL) were combined in 

a 1000 mL Schlenk bomb with screw-in Teflon stopper. The mixture was degassed by 

three freeze-pump-thaw cycles, and 2-bromoiodobenzene (10.7 mL, 83.3 mmol) and 

Pd(PPh3)4 (1.744 g, 1.51 mmol) were added under a counter-flow of N2. The mixture 

was again degassed by a freeze-pump-thaw cycle, and the Schlenk tube was placed in an 

oil bath and heated to 80°C. After stirring for 12 h, the mixture was allowed to cool to 

room temperature and the volatiles removed via rotary evaporation and further workup 

performed in air. H2O (250 mL) and DCM (250 mL) were added and the mixture 

transferred to a 1L separatory funnel with vigorous mixing. The layers were separated 

and the aqueous layer washed with DCM (2 x 100 mL). The combined organic fractions 

were dried over MgSO4, filtered, and concentrated via rotary evaporation. The residue 

was dissolved in hot MeOH (100 mL), filtered, and cooled to -30 °C in a freezer. After 

12 hours the resulting white precipitate was collected on a glass frit, rinsing with 

minimal cold MeOH and dried under vacuum to afford the desired product (10.3468 g, 

58.1%). 1H NMR (300 MHz, CDCl3), δ(ppm): 7.70 (d, 8.0 Hz, 2 H, Ar-CH), 7.39 (d, 5.5 

Hz, 4 H, Ar-CH), 7.25 (m, 2 H, Ar-CH), 6.99 (s, 2 H, Ar-C1H), 3.70 (s, 6 H, OCH3). 13C 
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NMR (75 MHz, CDCl3), δ(ppm): 150.58 (s, Ar-CH), 139.44 (s, Ar-CH), 135.88 (s, Ar-

CH), 132.74 (s, Ar-CH), 131.56 (s, Ar-CH), 129.07 (s, Ar-CH), 127.10 (s, Ar-CH), 

125.33 (s, Ar-CH), 123.92 (s, Ar-CH), 60.97 (s, OCH3). MS (m/z): calcd, 447.9496 [M]+; 

found, 447.9483 (FAB+, [M]+). 

 

Synthesis of 1,4-bis(2-bromophenyl)-2,3-dihydroxybenzene (3.1Br) 

 

In a Schlenk flask under N2 counterflow, 1,4-di(2-bromophenyl)-2,3-dimethoxybenzene 

(8.4322 g, 18.8 mmol) was dissolved in DCM (50 mL) with stirring. The flask was fitted 

with a septum and chilled to -78 °C in a dry ice/acetone bath. BBr3 (4.5 mL neat, 1 

mmol) was added to the flask drop-wise via syringe over 5 min. The reaction was 

allowed to warm to room temperature over 12 h. After cooling with an ice/water bath, 

the reaction was then quenched by slow dropwise addition of H2O until bubbling ceased. 

Further manipulations performed in air. The reaction mixture was further diluted with 

H2O (50 mL). The mixture was transferred to a separatory funnel, mixed well, and the 

layers separated. The aqueous layer was washed with DCM (2 x 25 mL). The combined 

organics were dried with MgSO4, filtered, and concentrated via rotary evaporation to 

yield the desired product as a tan powder (7.389 g, 93.5%). 1H NMR (300 MHz, CDCl3), 

δ(ppm): 7.75 (d, 2 H, Ar-CH), 7.46 (s, 2 H, Ar-CH), 7.44 (s, 2 H, Ar-CH), 7.34-7.27 (m, 

2 H, Ar-CH), 6.84 (s, 2 H, Ar-C1H), 5.34 (br, 2 H, OH).13C{1H} NMR (126 MHz, 

CDCl3), δ(ppm): 140.9 (s, Ar-CH), 138.1 (s, Ar-CH), 133.2 (s, Ar-CH), 132.1 (s, Ar-

BrBr

OMeMeO

2.5 eq. BBr3

DCM, -78 °C

BrBr

OHHO
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CH), 129.7 (s, Ar-CH), 127.9 (s, Ar-CH), 127.7 (s, Ar-CH), 124.0 (s, Ar-CH), 121.9 (s, 

Ar-CH). MS (m/z): calcd, 419.9184 [M]+; found, 419.9180 (FAB+, [M]+). 

 

Synthesis of 1,4-bis(2-bromophenyl)-2,3-di(methoxymethylether)benzene 

 

A Schlenk flask was charged with 1,4-di(2-bromophenyl)-2,3-dihydroxybenzene (6.0973 

g, 14.5 mmol) dissolved in PhMe (100 mL). Under N2 counter-flow, a 2.1 M solution of 

chloromethyl methyl ether in toluene (21.0 mL, 44.1 mmol)[30] was added to the stirred 

reaction mixture, followed by N,N-diisopropylethylamine (7.8 mL, 43.7 mmol). The 

reaction was allowed to stir for 12 hours at room temperature under N2. The volatiles 

were removed under rotary evaporation, and further manipulations were performed in 

air. The residue was dissolved in H2O (150 mL) and DCM (150 mL) and transferred to a 

separatory funnel. The layers were separated and the aqueous layer washed with DCM 

(2 x 50 mL). The combined organic extracts were dried with MgSO4, filtered and 

concentrated under rotary evaporation to yield the desired product as a white powder 

(6.9031 g, 93.6%). 1H NMR (300 MHz, CDCl3), δ(ppm): 7.68 (d, 2 H, Ar-CH), 7.51-7.34 

(m, 4 H, Ar-CH), 7.25-7.19 (m, 2 H, Ar-CH), 7.07 (s, 2 H, Ar-C1H), 5.01-4.85 (br, 4 H, 

CH2OCH3), 2.93 (s, 6 H, CH2OCH3). 13C{1H} NMR (75 MHz, CDCl3), δ(ppm): 147.8 

(s, Ar-CH), 139.4 (s, Ar-CH), 136.6 (s, Ar-CH), 132.6 (s, Ar-CH), 132.3 (s, Ar-CH), 

3 eq. NEtiPr2
3 eq. CH3OCH2Cl

PhMe, 25 °C

BrBr

OHHO

BrBr

OCH2OCH3H3COH2CO
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129.0 (s, Ar-CH), 127.0 (s, Ar-CH), 126.0 (s, Ar-CH), 124.2 (s, Ar-CH), 99.2 (s, Ar-CH), 

56.7 (s, Ar-CH). MS (m/z): calcd, 507.9708 [M]+; found, 507.9713 (FAB+, [M]+). 

 

Synthesis of 1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-catechol (3.1a) 

 

A Schlenk tube was charged with 1,4-di(2-bromophenyl)-2,3-

di(methoxymethylether)benzene (6.9031 g, 13.6 mmol), THF (60 mL), and a stir bar. 

The reaction mixture was cooled to -78 °C with the use of a dry ice/acetone bath. 

Under a counter-flow of N2, a 1.7 M solution of tBuLi (33.0 mL, 56.1 mmol) in 

pentanes was added via syringe drop-wise. A light yellow color appeared in seconds, and 

as the reaction was allowed to stir for 30 minutes at -78 °C, a pale orange color evolved. 

After stirring for 1 hour at -78 °C, chlorodiisopropylphosphine (4.60 mL, 28.6 mmol) 

was added to the reaction mixture via syringe under a counter-flow of N2, inducing a 

light yellow color. After stirring for 1 hour at -78 °C, the reaction was removed from 

the dry ice/acetone bath and allowed to warm to room temperature. After stirring for 2 

hours at room temperature the volatiles were removed under reduced pressure. To the 

residue was added degassed MeOH (60 mL) and HCl (12 M, 10 mL). The mixture was 

then heated to 60 °C for 4 hours. After cooling to room temperature, the volatiles were 

again removed under reduced pressure. All further manipulations were performed under 

an N2 atmosphere in a wet glove box. The residue was treated with DCM (100 mL) and 

(iPr)2PP(iPr)2

OHHO

BrBr

OCH2OCH3H3COH2CO

i) 4.1 eq. tBuLi
    THF, -78 °C

ii) 2.1 eq. ClPiPr2
   -78 °C to rt
iii) xs HCl, MeOH
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saturated aqueous K2CO3 (100 mL) and transferred to a separatory funnel with vigorous 

mixing. The layers were separated and the organics washed with saturated aqueous 

NH4Cl (100 mL). The layers were again separated and the aqueous layer washed with 

DCM (2 x 50 mL). The combined organics were dried with MgSO4, filtered, and 

concentrated under vacuum to afford an off-white powder. Trituration with MeOH (25 

mL) afforded a white precipitate that was collected on a glass frit. The solid was washed 

with Et2O (25 mL) and MeCN (25 mL), and then dried under vacuum to yield the 

desired product in 81.3% yield (5.4627 g). 1H NMR (300 MHz, CDCl3), δ(ppm): 7.57 – 

7.50 (m, 2 H, Ar-CH), 7.45 – 7.36 (m, 6 H, Ar-CH), 6.80 (s, 2 H, Ar-C1H), 6.56, (br, 2 

H, Ar-C3OH), 2.24 (br, 2 H, PCH(CH3)2), 2.02 (br, 2 H, PCH(CH3) 2), 1.20 – 0.80 (br, 

24 H, PCH(CH3)2). 31P{1H} (121 MHz, CDCl3), δ(ppm): 3.06 (br), 2.17 (br), -1.56 (s), -

29.16 (s). 13C{1H} (126 MHz, CDCl3)  δ: 146.25 (d), 141.00 (s), 134.00 (d), 131.99 (s), 

131.67 (s), 130.02 (s), 128.90 (s), 126.97 (s), 123.95 (s), 25.04 (br), 22.47 (br), 20.00 (br), 

18.97 (br). MS (m/z): calcd, 493.2425 [M-H]+; found, 493.2438 (FAB+, [M-H]+). 

 

Synthesis of dimethyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)silane (3.1b) 

 

Diphosphine 3.1a (2.5003 g, 5.06 mmol), Me2SiCl2 (0.835 g, 6.47 mmol), and Et3N 

(1.2033 g, 11.9 mmol) were combined with PhMe (20 mL) in a Schlenk bomb charged 

P(iPr)2 (iPr)2P

HO OH

1.5 Me2SiCl2
2.5 Et3N

PhMe, 100 °C

P(iPr)2 (iPr)2P

O O
Si
Me2
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with a stir bar and a screw-in Teflon stopper. The bomb was removed from the glove 

box and heated to 100 °C in an oil bath for 12 hours generating a white precipitate. 

After cooling to room temperature, the bomb was taken back into the glove box and 

the white precipitate filtered on celite, washing with additional PhMe. The filtrate was 

then concentrated in vacuo to yield the desired compound 3.1b as a white powder in 

97.5% yield (2.7152 g).  1H NMR (300 MHz, C6D6), δ(ppm): 7.40 (m, 4 H, Ar-CH), 7.14 

(m, 4 H, Ar-CH), 6.94 (s, 2 H, Ar-C1H), 1.90 (m, 4 H, PCH(CH3)2), 0.99 (m, 24 H, 

PCH(CH3)2), 0.17 (s, 6 H, SiCH3). 31P{1H} (121 MHz, C6D6), δ(ppm): -1.24 (s). 13C{1H} 

NMR (126 MHz, C6D6), δ(ppm): 146.55 (s), 146.31 (s), 145.87 (s), 136.32 (d), 132.53 (d), 

131.23 (d), 128.66 (s), 126.89 (s), 123.45 (d), 24.66 (br), 20.68 (s), 20.52 (s), 19.73 (br), -

0.02 (s, SiCH3). Compound hydrolyzed under FAB-MS conditions, only mass consistent 

with 3.1a observed. 

 

Synthesis of diethyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-catechol)silane 

(3.1c) 

 

Compound 3.1c was prepared analogously to above using diphosphine 3.1a (0.1555 g, 

0.314 mmol), Et2SiCl2 (0.0715 g, 0.455 mmol), and Et3N (0.1031 g, 1.02 mmol) in PhMe 

(10 mL). The desired compound 3.1c was isolated as a white powder in 98.5% yield 

(0.1793 g).  1H NMR (300 MHz, CDCl3), δ(ppm): 7.55 (m, 2 H, Ar-CH), 7.36 (m, 6 H, 

P(iPr)2 (iPr)2P

HO OH

1.5 Et2SiCl2
2.5 Et3N

PhMe, 100 °C

P(iPr)2 (iPr)2P

O O
Si
Et2
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Ar-CH), 6.75 (s, 2 H, Ar-C1H), 2.03 (m, 4 H, PCH(CH3)2), 0.97 (m, 4 H, PCH(CH3)2 

and SiCH2CH3). 31P{1H} (121 MHz, CDCl3), δ(ppm): -2.06 (br), -2.73 (br).  13C{1H} 

NMR (126 MHz, CDCl3), δ(ppm): 146.15 (s), 145.85 (s), 145.61 (s), 135.77 (d), 132.41 

(s), 131.14 (s), 123.22 (s), 126.73 (d), 123.15 (s), 24.36 (d, PCH(CH3)2), 20.29 (s, 

PCH(CH3)2), 20.14 (s, PCH(CH3)2), 19.67 (d, PCH(CH3)2), 6.72 (s, SiCH2CH3), 5.49 (s, 

SiCH2CH3). MS (m/z): calcd, 579.2977 [M+H]+; found, 579.2980 (FAB+, [M+H]+). 

 

Synthesis of diisopropyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)silane (3.1d) 

 

Compound 3.1d was prepared analogously to above using diphosphine 3.1a (0.1518 g, 

0.307 mmol), iPr2SiCl2 (0.0976 g, 0.527 mmol), and Et3N (0.0942 g, 0.931 mmol) in 

PhMe (10 mL). The desired compound 3.1d was isolated as a white powder in 96.7% 

yield (0.1799 g).  1H NMR (300 MHz, CDCl3), δ(ppm): 7.58 (m, 2 H, Ar-CH), 7.38 (m, 6 

H, Ar-CH), 6.76 (s, 2 H, Ar-C1H), 2.03 (m, 4 H, PCH(CH3)2), 1.05 (m, 42 H, 

PCH(CH3)2 and SiCH(CH3)2). 31P{1H} (121 MHz, CDCl3), δ(ppm): -2.61 (br), -2.98 (br).  

13C{1H} NMR (126 MHz, CDCl3), δ(ppm): 146.62 (s), 145.89 (s), 145.66 (s), 135.67 (d), 

132.39 (s), 131.42 (s), 128.05 (s), 126.57 (m), 123.32 (s), 24.46 (d, PCH(CH3)2), 20.31 (s, 

PCH(CH3)2), 20.17 (s, PCH(CH3)2), 19.78 (d, PCH(CH3)2), 16.04 (s, SiCH(CH3)2), 13.02 

(s, SiCH(CH3)2). MS (m/z): calcd, 607.3290 [M+H]+; found, 607.3290 (FAB+, [M+H]+). 

P(iPr)2 (iPr)2P

HO OH
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Synthesis of 4-(trifluoromethyl)phenyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-

2,3-catechol)borane (3.1e) 

 

In the wet glove box under an atmosphere of N2, 3.1a (1.53 g, 3.09 mmol) and 

p(F3C)C6H4B(OH)2 (0.5876 g, 3.09 mmol), and MgSO4 (0.4 g, 3.3 mmol) were combined 

in a Schlenk tube with m-xylenes (10 mL). The reaction was heated to 120 °C for 2.5 

hours. The volatiles were removed under vacuum, the residue washed with Et2O (10 

mL), and the product extracted with C6H6 (15 mL), filtered through Celite, and 

concentrated under vacuum to yield 0.9 g (44.8%) of the desired product as an off-white 

solid. 1H NMR (300 MHz, C6D6), δ(ppm): 7.80 (m, 2 H, Ar-CH), 7.52 (m, 2 H, Ar-CH), 

7.37 (m, 2 H, Ar-CH), 7.24 (m, 2 H, Ar-CH), 7.20 (s, 2 H, Ar-C1H), 1.92 (m, 4 H, 

PCH(CH3)2), 0.98 (m, 24 H, PCH(CH3)2). 31P{1H} (121 MHz, C6D6), δ(ppm): -1.54 (s). 

19F NMR (282 MHz, C6D6 , 25 °C), δ(ppm): -61.52 (s).  13C{1H} NMR (126 MHz, 

C6D6), δ(ppm): 146.01 (s), 145.02 (s), 144.78 (s), 136.57 (s), 136.39 (s), 135.78 (s), 133.74 

(q, CF3), 132.79 (s), 131.12 (s), 128.88 (s), 127.62 (s), 125.40 (d), 124.85 (m), 24.70 (d, 

PCH(CH3)2), 20.45 (s, PCH(CH3)2), 20.29 (s, PCH(CH3)2), 19.75 (d, PCH(CH3)2). MS 

(m/z): calcd, 649.2784 [M+H]+; found, 649.2794 (FAB+, [M+H]+). 
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Synthesis of 1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-dimethoxybenzene 

(3.1f) 

 

A Schlenk tube was charged with 1,4-di(2-bromophenyl)-2,3-di(methoxy)benzene 

(2.0449 g, 4.56 mmol), THF (30 mL), and a stir bar. The reaction mixture was cooled to 

-78 °C with the use of a dry ice/acetone bath. Under a counter-flow of N2, a 1.7 M 

solution of tBuLi (11.0 mL, 18.7 mmol) in pentanes was added via syringe dropwise. A 

light yellow color appeared in seconds, and as the reaction was allowed to stir for 30 

min at -78 °C, an orange color evolved. After stirring for 1 hour at -78 °C, 

chlorodiisopropylphosphine (1.55 mL, 9.74 mmol) was added to the reaction mixture 

via syringe under a counter-flow of N2, inducing a light yellow color. After stirring for 

1h at -78 °C, the reaction was removed from the dry ice/acetone bath and allowed to 

warm to room temperature. After stirring for 2 hours at room temperature the volatiles 

were removed under reduced pressure. Further manipulations were performed under an 

N2 atmosphere in a wet glove box. The residue was treated with DCM (50 mL) and H2O 

(50 mL) and transferred to a separatory funnel with vigorous mixing. The layers were 

separated and the aqueous washed with DCM (2 x 25 mL). The combined organics were 

dried with MgSO4, filtered, and concentrated under vacuum to an off-white powder. 

Trituration with MeOH (20 mL) afforded a white precipitate that was collected on a 

glass frit, and then dried under vacuum to yield the desired product in 60.3% (1.4385 g). 

(iPr)2PP( iPr)2

OMeMeO

BrBr

OMeMeO

i) 4.1 eq. tBuLi
    THF, -78 ϒC

ii) 2.1 eq. ClPiPr2
   -78 ϒC to rt
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1H NMR (300 MHz, CDCl3), δ(ppm): 7.42 (m, 2 H, Ar-CH), 7.12 (m, 6 H, Ar-CH), 7.00 

(s, 2 H, Ar-C1H), 3.56 (s, 6 H, OCH3), 2.00 (m, 2 H, PCH(CH3)2), 1.79 (m, 2 H, 

PCH(CH3) 2), 1.20 – 0.75 (m, 24H, PCH(CH3) 2). 31P{1H} (121 MHz, CDCl3), δ(ppm): -

1.13 (s). 13C{1H} (126 MHz, CDCl3), δ(ppm): 150.43 (s), 146.83 (d), 136.44 (m), 132.32 

(s), 130.77 (s), 127.97 (s), 126.55 (s), 125.77 (s), 60.12 (s), 25.22 (br), 24.41 (br), 20.0-

19.0 (m). MS (m/z): calcd, 523.2895 [M+H]+; found, 523.2891 (FAB+, [M+H]+). 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-catechol] 

tricarbonylmolybdenum(0) (3.2a) 

 
From 3.1a: Mo(CO)3(MeCN)3 (1.3010 g, 4.29 mmol) and 3.1a (1.0494 g, 2.12 mmol) 

were combined with THF (20 mL) and stirred at room temperature for 72 hours, 

generating a dark brown solution. Upon completion of the reaction (a single major peak 

near 50 ppm by 31P NMR), the volatiles were removed under reduced pressure and the 

residue then triturated with MeCN (15 mL). The resulting orange precipitate was 

collected on a glass frit and washed with minimal MeCN until the brown filtrate had 

lightened to pale orange. The remaining solid was then dried under vacuum to yield 

0.6192 g (43.3%) of the desired product (spectroscopic features reported below). 

 

Mo(CO)3(NCMe)3

THF, rt
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From 3.2b: In a water-tolerant glove box under N2, NaOMe (0.3380 g, 6.25 mmol) was 

added to a stirred suspension of 3.2b (1.5179 g, 2.08 mmol) in MeOH (15 mL) in a 100 

mL round bottom flask, and the solution rapidly became homogeneous. After stirring 

for 1 hour at room temperature, the volatiles were removed under reduced pressure. 

The residue was then treated with a saturated aqueous NH4Cl solution (50 mL) and 

DCM (50 mL) and transferred to a separatory funnel and thoroughly mixed. The layers 

were separated and the aqueous layer washed with DCM (2 x 25 mL). The combine 

organics were dried over MgSO4, filtered, and concentrated in vacuo. The resulting 

orange powder was transferred to a dry glove box and residual H2O/MeOH removed 

by triturating the powder in dry MeCN, collecting the solid on a glass frit, washing with 

additional dry MeCN, and finally drying under vacuum to yield 1.3072 g (93.3%) of the 

desired product. Crystals suitable for X-ray diffraction were grown from slow 

evaporation of a saturated C6H6 solution. 1H NMR (300 MHz, C6D6 , 25 °C), δ(ppm):  

7.55 (m, 4 H, Ar-CH), 7.12 (m, 4 H, Ar-CH), 5.73 (t, JPH = 4 Hz, 2 H, Ar-C1H), 5.26 (s, 

2 H, Ar-C1OH),  2.66 (m, PCH(CH3)2), 2.54 (m, PCH(CH3)2). 1.62 (m, 6H, PCH(CH3)2), 

1.20 (m, 12H, PCH(CH3)2), 0.92 (m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, C6D6 , 25 

°C), δ(ppm): 50.62 (s). 13C NMR (125 MHz, C6D6 , 75 °C), δ(ppm): 224.00 (t, Mo-CO), 

214.23 (t, Mo-CO), 212.48 (t, Mo-CO), 144.34 (t, Ar-C4), 141.67 (s, Ar-C3), 132.77 (t, 

i) NaOMe, MeOH

ii) NH4Cl, H2O/DCM
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Ar-C9), 131.96 (s, Ar-C5), 130.06 (s, Ar-C8), 129.21 (s, Ar-C7), 127.65 (s, Ar-C2), 122.25 

(t, Ar-C6), 87.58 (s, Ar-C1), 35.92 (t, PCH(CH3)2), 32.39 (t, PCH(CH3)2), 20.82 (m, 

PCH(CH3)2), 20.02 (s, PCH(CH3)2), 19.67 (m, PCH(CH3)2), 19.57 (m, PCH(CH3)2). IR 

(DCM), νCO (cm-1): 1959.3, 1843.2 (br). λmax (THF, nm), ε (M-1cm-1): 478, 3.9x103; 355, 

8.2x103; 285, 3.3x104. Anal. Calcd for [3.2a], C33H40MoO5P2: C, 58.76; H, 5.98. Found: 

C, 59.01; H, 5.72. 

 

Synthesis of [dimethyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)silane]tricarbonylmolybdenum(0) (3.2b) 

 

Diphosphine 3.1b (2.204 g, 4.00 mmol) and (PhMe)Mo(CO)3 (1.314 g, 4.83 mmol) were 

combined in THF (10 mL) and added to a Schlenk tube charged with a stir bar and 

fitted with a screw-in Teflon stopper. The sealed vessel was removed from the glove 

box and heated to 70 °C with stirring in an oil bath for 3 hours. After complete 

conversion (a single peak at 52 ppm by 31P NMR), the Schlenk tube was returned to the 

glove box and the volatiles were removed under reduced pressure. The residue was 

triturated with MeCN (10 mL), and the resulting orange precipitate was collected on a 

glass frit, washing with minimal additional MeCN until the filtrate was a pale orange. 

The orange powder was then dried under vacuum to yield 2.7561 g (94.2%) of the 

(PhMe)Mo(CO)3
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desired product. Crystals suitable for X-ray diffraction were grown from cooling of a 

saturated MeCN solution at -35 °C. 1H NMR (300 MHz, C6D6 , 25 °C), δ(ppm): 7.92 (d, 

2 H, Ar-CH), 7.55 (d, 2 H, Ar-CH), 7.25 (t, 2 H, Ar-CH), 7.10 (t, 2 H, Ar-CH), 5.69 (t, 

JPH = 4 Hz, 2 H, Ar-C1H), 2.67 (m, PCH(CH3)2), 2.44 (m, PCH(CH3)2). 1.60 (m, 6H, 

PCH(CH3)2), 1.25 (m, 6H, PCH(CH3)2), 1.13 (m, 6H, PCH(CH3)2), 0.87 (m, 6 H, 

PCH(CH3)2), 0.58 (s, 3H, MeCN CH3) 0.08 (s, 3 H, SiCH3), -0.16 (s, 3 H, SiCH3). 31P 

NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 51.37 (s). 13C NMR (125 MHz, C6D6 , 25 °C), 

δ(ppm): 223.96 (t, Mo-CO), 214.11 (t, Mo-CO), 212.85 (t, Mo-CO), 146.48 (s, Ar-C3), 

144.58 (t, Ar-C4), 131.45 (t, Ar-C9), 131.27 (s, Ar-C5), 131.17 (t, Ar-C8), 128.73 (s, Ar-

C7), 127.31 (t, Ar-C2), 120.99 (t Ar-C6), 115.96 (s, MeCN NCCH3), 85.12 (s, Ar-C1), 

35.66 (t, PCH(CH3)2), 32.39 (t, PCH(CH3)2), 20.57 (t, PCH(CH3)2), 19.67 (t, 

PCH(CH3)2), 19.60 (t, PCH(CH3)2), 19.40 (m, PCH(CH3)2), 0.16 (s, MeCN NCCH3), -

0.88 (s, SiCH3), -1.04 (s, SiCH3). IR (powder), νCO (cm-1): 1956, 1838, 1800 (br). IR 

(DCM), νCO (cm-1): 1959.3, 1843, 1835. Anal. Calcd for [3.2b•MeCN], C37H47MoNO5P2: 

C, 57.58; H, 6.24; N, 1.81. Found: C, 57.25; H, 5.87; N, 1.80. 
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Synthesis of [diethyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)silane]tricarbonylmolybdenum(0) (3.2c) 

 

Compound 3.2c was prepared analogously to 3.2b using diphosphine 3.1c (0.1577 g, 

0.272 mmol) and (PhMe)Mo(CO)3 (0.1120 g, 0.412 mmol) in THF (8 mL). The desired 

compound 3.2c was isolated as an orange powder in 79.2% yield (0.1638 g). 1H NMR 

(300 MHz, C6D6 , 25 °C), δ(ppm): 8.01 (d, 2 H, Ar-CH), 7.60 (d, 2 H, Ar-CH), 7.30 (t, 2 

H, Ar-CH), 7.14 (t, 2 H, Ar-CH), 5.78 (t, JPH = 4 Hz, 2 H, Ar-C1H), 2.72 (m, 

PCH(CH3)2), 2.49 (m, PCH(CH3)2). 1.66 (m, 6H, PCH(CH3)2), 1.30 (m, 6H, 

PCH(CH3)2), 1.21 (m, 6H, PCH(CH3)2), 0.94 (m, 9 H, PCH(CH3)2 and SiCH2CH3), 0.62 

(m, 5 H, SiCH2CH3 and SiCH2CH3). 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 51.47 

(s). 13C NMR (125 MHz, C6D6 , 25 °C), δ(ppm): 223.92 (t, Mo-CO), 214.07 (t, Mo-CO), 

212.59 (t, Mo-CO), 146.84 (s, Ar-C3), 144.67 (t, Ar-C4), 131.56 (t, Ar-C9), 131.32 (s, Ar-

C5), 131.14 (t, Ar-C8), 128.76 (s, Ar-C7), 127.28 (t, Ar-C2), 120.97 (t, Ar-C6), 85.14 (s, Ar-

C1), 35.65 (t, PCH(CH3)2), 31.38 (t, PCH(CH3)2), 20.59 (t, PCH(CH3)2), 19.68 (t, 

PCH(CH3)2), 19.56 (t, PCH(CH3)2), 19.39 (m, PCH(CH3)2), 6.21 (s, SiCH2CH3), 5.92 (s, 

SiCH2CH3), 5.64 (s, SiCH2CH3), 5.05 (s, SiCH2CH3).  IR (film), νCO (cm-1): 1957, 1840, 

1819. Anal. Calcd for [3.2c], C37H47MoO5P2Si: C, 58.57; H, 6.38. Found: C, 59.02; H, 

6.51. 

(PhMe)Mo(CO)3

THF, 70 °C

P( iPr)2 (iPr)2P

O O
Si
Et2

(iPr)2P P( iPr)2

O O

Mo
OC

COOC

Si
Et2

3.1c 3.2c



 

70 

 

Synthesis of [diisopropyl-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)silane]tricarbonylmolybdenum(0) (3.2d) 

 

 

Compound 3.2d was prepared analogously to 3.2b using diphosphine 3.1d (0.1829 g, 

0.301 mmol) and (PhMe)Mo(CO)3 (0.1260 g, 0.463 mmol) in THF (8 mL). The desired 

compound 3.2d was isolated as an orange powder in 78.5% yield (0.1862 g). 1H NMR 

(300 MHz, C6D6 , 25 °C), δ(ppm): 8.03 (d, 2 H, Ar-CH), 7.59 (d, 2 H, Ar-CH), 7.29 (t, 2 

H, Ar-CH), 7.12 (t, 2 H, Ar-CH), 5.79 (t, JPH = 4 Hz, Ar-C1H), 2.71 (m, PCH(CH3)2), 

2.47 (m, PCH(CH3)2). 1.66 (m, 6H, PCH(CH3)2), 1.30 (m, 6H, PCH(CH3)2), 1.21 (m, 6H, 

PCH(CH3)2), 1.07 (m, 6 H, SiCH(CH3)2), 0.93 (m, 8 H, PCH(CH3)2 and SiCH(CH3)2), 

0.79 (m, 6 H, SiCH(CH3)2. 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 51.69 (s). 13C 

NMR (125 MHz, C6D6 , 25 °C), δ(ppm): 223.84 (t, Mo-CO), 214.02 (t, Mo-CO), 212.30 

(t, Mo-CO), 146.92 (s, Ar-C3), 144.68 (t, Ar-C4), 131.66 (t, Ar-C9), 131.36 (s, Ar-C5), 

130.98 (t, Ar-C8), 128.82 (s, Ar-C7), 127.25 (t, Ar-C2), 120.76 (t, Ar-C6), 84.98 (s, Ar-C1), 

35.65 (t, PCH(CH3)2), 31.72 (t, PCH(CH3)2), 20.61 (t, PCH(CH3)2), 19.69 (t, 

PCH(CH3)2), 19.51 (t, PCH(CH3)2), 19.36 (m, PCH(CH3)2), 16.34 (s, SiCH(CH3)2), 15.85 
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(s, SiCH(CH3)2), 13.45 (s, SiCH(CH3)2), 12.76 (s, SiCH(CH3)2).  IR (powder), νCO (cm-1): 

1953, 1836, 1812. Anal. Calcd for [3.2d], C39H52MoO5P2Si: C, 59.53; H, 6.66. Found: C, 

59.22; H, 6.51. 

 

Synthesis of [4-(trifluoromethyl)phenyl-(1,4-bis(2-

(diisopropylphosphino)phenyl)-2,3-catechol)borane]tricarbonylmolybdenum(0) 

(3.2e) 

 

 

Compound 3.2e was prepared analogously to 3.2b using diphosphine 3.1e (0.4090 g, 

0.631 mmol) and (PhMe)Mo(CO)3 (0.2345 g, 0.862 mmol) in THF (10 mL). The desired 

compound 3.2e was isolated as a red powder in 76.6% yield (0.4010 g). 1H NMR (300 

MHz, C6D6 , 25 °C), δ(ppm): 7.96 (m, 2 H, Ar-CH), 7.69 (d, 2 H, BAr-CH), 7.62 (d, 2 

H, Ar-CH), 7.41 (t, 2 H, Ar-CH), 7.23 (m, 4 H, BAr-CH and Ar-CH), 5.80 (t, JPH = 4 

Hz, 2 H, quinonoid Ar-CH),  2.73 (m, 2 H, PCH(CH3)2), 2.45 (m, 2 H, PCH(CH3)2). 

1.63 (m, 6H, PCH(CH3)2), 1.29 (m, 6 H, PCH(CH3)2), 1.10 (m, 6 H, PCH(CH3)2), 0.86 

(m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 51.49 (s). 19F NMR 

(282 MHz, C6D6 , 25 °C), δ(ppm): -61.68 (s).  13C NMR (125 MHz, C6D6 , 25 °C), 
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δ(ppm): 221.97 (t, Mo-CO), 213.90 (t, Mo-CO), 213.15 (t, Mo-CO), 146.13 (s, Ar-C3), 

143.08 (t, Ar-C4), 135.89 (m, BAr-C), 134.00 (q, BAr-CF3), 131.58 (m, BAr-C), 131.21 (t, 

Ar-C9), 130.94 (m, Ar-C5 and Ar-C8), 129. 28 (br, Ar-C7), 124.82 (t, Ar-C2), 121.80 (t, Ar-

C6), 84.01 (s, Ar-C1), 35.54 (t, PCH(CH3)2), 31.70 (t, PCH(CH3)2), 20.35 (br, CH(CH3)2), 

19.53 (br, PCH(CH3)2), 19.37 (br, PCH(CH3)2). IR (powder), νCO (cm-1): 1956, 1839 (br). 

Anal. Calcd for [3.2e] C40H42BF3MoO5P2: C, 57.99; H, 5.11. Found: C, 57.50; H, 5.14. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

dimethoxybenzene]tricarbonylmolybdenum(0) (3.2f) 

 

Compound 3.2f was prepared analogously to 3.2b using diphosphine 3.1f (0.6007 g, 

1.15 mmol) and (PhMe)Mo(CO)3 (0.3988 g, 1.47 mmol) in THF (15 mL). The desired 

compound 3.2f was isolated as an orange powder in 78.7% yield (0.6354 g). 1H NMR 

(300 MHz, C6D6 , 25 °C), δ(ppm): 7.78 (m, 2 H, Ar-CH), 7.54 (d, 2 H, Ar-CH), 7.24 (t, 

2 H, Ar-CH), 7.16 (t, 2 H, Ar-CH), 5.81 (t, JPH = 4 Hz, 2 H, Ar-C1H), 2.64 (m, 2 H, 

PCH(CH3)2), 2.40 (m, 2 H, PCH(CH3)2). 1.68 (m, 6 H, PCH(CH3)2), 1.23 (m, 12 H, 

PCH(CH3)2), 0.91 (m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 

50.09 (s). 13C NMR (125 MHz, C6D6 , 25 °C), δ(ppm): 222.76 (t, Mo-CO), 213.66 (t, 

(PhMe)Mo(CO)3

THF, 70 °C
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Mo-CO), 213.62 (t, Mo-CO), 150.05 (s, Ar-C3), 145.13 (t, Ar-C4), 132.33 (t, Ar-C9), 

131.16 (s, Ar-C5), 131.05 (t, Ar-C8), 120.89 (t, Ar-C6), 128.67 (s, Ar-C7), 127.66 (t, Ar-

C2), 87.21 (s, Ar-C1), 60.53 (s, quinonoid Ar-OCH3), 36.42 (t, PCH(CH3)2), 33.08 (t, 

PCH(CH3)2), 21.26 (t, PCH(CH3)2), 20.04 (s, PCH(CH3)2), 19.59 (t, PCH(CH3)2), 19.47 

(t, PCH(CH3)2). IR (powder), νCO (cm-1): 1954, 1824 (br). Anal. Calcd for [3.2f], 

C35H44MoO5P2: C, 59.83; H, 6.31. Found: C, 60.12; H, 6.21. 

 

Synthesis of [tetramethyl-1,3-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)disiloxane]tricarbonylmolybdenum(0) (3.2h) 

 

Compound 3.2a (0.0785 g, 0.116 mmol), (ClMe2Si)2O (0.0404 g, 0.199 mmol), and Et3N 

(0.0643 g, 0.635 mmol) were combined in THF (5 mL) and stirred for 12 hours at room 

temperature, developing a precipitate over this time. The mixture was then filtered 

through a pad of celite, washing with additional THF. The filtrate was then 

concentrated in vacuo and triturated with MeCN (5 mL). The resulting orange precipitate 

was collected on a pad of celite, dissolved in C6H6, filtered through celite, and 

concentrated under reduced pressure. The resulting residue is a mixture of 3.2h and 

3.2b in ca. 8:1 ratio, respectively. Recrystallization twice via vapor diffusion of pentane 

into a saturated C6H6 solution of the residue, collecting the filtrate, yields the desired 
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compound (0.0187g, 20.0%). 1H NMR (300 MHz, C6D6 , 25 °C), δ(ppm): 7.77 (d, 2 H, 

Ar-CH), 7.57 (d, 2 H, Ar-CH), 7.22 (t, 2 H, Ar-CH), 7.16 (m, 2 H, Ar-CH), 5.88 (t, JPH 

= 4 Hz, 2 H, Ar-C1H), 2.67 (m, 2 H, PCH(CH3)2), 2.44 (m, 2 H, PCH(CH3)2). 1.66 (m, 6 

H, PCH(CH3)2), 1.23 (m, 12 H, PCH(CH3)2), 0.93 (m, 6H, PCH(CH3)2), 0.30 (s, 3 H, 

SiCH3), 0.05 (s, 3 H, SiCH3). 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 50.05 (s). 13C 

NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 223.83 (t, Mo-CO), 214.20 (t, Mo-CO), 213.02 

(t, Mo-CO), 145.64 (t, Ar-C4), 142.53 (s, Ar-C3), 132.24 (t, Ar-C9), 131.26 (s, Ar-C5), 

130.89 (t, Ar-C8), 127.23 (t, Ar-C2), 127.20 (t, Ar-C6), 87.50 (s, Ar-C1), 35.72 (t, 

PCH(CH3)2), 32.51 (t, PCH(CH3)2), 21.02 (t, PCH(CH3)2), 19.96 (s, PCH(CH3)2), 19.40 

(t, PCH(CH3)2), -0.31 (s, SiCH3), -0.47 (s, SiCH3). IR (powder), νCO (cm-1): 1956, 1838, 

1800 (br). 

 

Synthesis of [tetraethyl-1,3-(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

catechol)disiloxane]tricarbonylmolybdenum(0) (3.2i) 

 

 

Compound 3.2a (0.1961 g, 0.291 mmol), (ClEt2Si)2O (0.0768 g, 0.296 mmol), and Et3N 

(0.1414 g, 1.40 mmol) were combined in THF (5 mL) and stirred for 12 hours at room 
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temperature, developing a precipitate over this time. The mixture was then filtered 

through a pad of celite, washing with additional THF. The filtrate was then 

concentrated in vacuo and triturated with MeCN (5 mL). The resulting orange precipitate 

was collected on a pad of celite, dissolved in C6H6, filtered through celite, and 

concentrated under reduced pressure. The resulting residue is a mixture of 3.2i, 3.2c, 

and 3.2a in ca. 7:2:1 ratio, respectively. Recrystallization four times from hot pentane 

yields the desired compound (0.0165 g, 6.7%). 1H NMR (300 MHz, C6D6 , 25 °C), 

δ(ppm): 7.77 (d, 2 H, Ar-CH), 7.57 (d, 2 H, Ar-CH), 7.24 (t, 2 H, Ar-CH), 7.16 (m, 2 H, 

Ar-CH), 5.88 (t, JPH = 4 Hz, 2 H, Ar-C1H), 2.68 (m, 2 H, PCH(CH3)2), 2.45 (m, 2 H, 

PCH(CH3)2). 1.67 (m, 6 H, PCH(CH3)2), 1.24 (m, 12 H, PCH(CH3)2), 1.12 (t, J3 = 8 Hz, 

6 H, SiCH2CH3), 0.95 (m, 6H, PCH(CH3)2), 0.77 (m, 10 H, SiCH2CH3 and SiCH2CH3), 

0.57 (m, 4 H, SiCH2CH3). 31P NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 59.96 (s). 13C 

NMR (121 MHz, C6D6 , 25 °C), δ(ppm): 223.88 (t, Mo-CO), 214.28 (t, Mo-CO), 212.80 

(t, Mo-CO), 145.68 (t, Ar-C4), 142.74 (s, Ar-C3), 132.30 (t, Ar-C9), 131.28 (d, Ar-C5), 

131.13 (t, Ar-C8), 127.27 (m, Ar-C2), 127.21 (t, Ar-C6), 88.15 (s, Ar-C1), 35.73 (m, 

PCH(CH3)2), 32.52 (m, PCH(CH3)2), 21.07 (m, PCH(CH3)2), 19.95 (m, PCH(CH3)2), 

19.59 (m, PCH(CH3)2), 19.41 (m, PCH(CH3)2), 6.64 (s, SiCH2CH3), 6.49 (s, SiCH2CH3), 

6.42 (s, SiCH2CH3), 6.24 (s, SiCH2CH3). IR (film), νCO (cm-1): 1956, 1840, 1816. 

 

 

 



 

76 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

quinone]dicarbonylmolybdenum(0) (3.3) 

 

A solution of 3.2a (0.0215 g, 0.0319 mmol) in THF (0.6 mL) was added to a J. Young 

style NMR tube and degassed via three freeze-pump-thaw cycles. An atmosphere of O2 

was then added to the headspace and the tube inverted for 60 seconds. 31P NMR 

spectroscopy revealed complete conversion to a new species at approximately 72 ppm. 

The volatiles were removed under vacuum, and the residue was dissolved in MeCN (2 

mL) and then the volatiles removed under vacuum, repeating this multiple times to 

remove the H2O side product. Finally, the residue was triturated with Hexanes and the 

volatiles removed under vacuum to afford the desired product in 96.4% yield (0.0198 g, 

0.0307 mmol). Refluxing the compound in PhMe for an hour and then allowing the 

solution to cool to room temperature formed crystals suitable for X-ray diffraction. 1H 

NMR (300 MHz, CD3CN , 25 °C), δ(ppm): 7.43-7.68 (m, 8 H, Ar-CH), 5.09 (s, 2 H, 

C1H), 3.11 (m, 2 H, PCH(CH3)2). 2.93 (m, 2 H, PCH(CH3)2), 1.10-1.34 (m, 18 H, 

PCH(CH3)2), 0.82-0.92 (m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, CD3CN , 25 °C), 

δ(ppm): 72.43 (s). 13C NMR (126 MHz, CD3CN , 25 °C), δ(ppm): 246.34 (t, 20 Hz, Mo-

CO), 222.58 (t, 18 Hz, Mo-CO), 173.31 (s, quinonoid Ar-CO), 138.02 (m), 135.81 (m), 

134.51 (s), 134.12 (s), 132.62 (t), 132.10 (t), 130.02 (t), 100.58 (s, quinonoid Ar-CH), 
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65.30 (s, OCH3), 29.58 (m, PCH(CH3)2), 28.98 (s, PCH(CH3)2), 19.03 (s, PCH(CH3)2), 

18.30 (t, PCH(CH3)2), 18.12 (s, PCH(CH3)2), 18.04 (s, PCH(CH3)2). IR (THF), νCO (cm-

1): 1875, 1605. Anal. Calcd for [3.3], C32H38MoO4P2: C, 59.63; H, 5.94. Found: C, 60.11; 

H, 6.04. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

dimethoxybenzene]dicarbonylmolybdenum(II) trifluoromethanesulfonate 

([3.52+][OTf-]2) 

 

To a stirred suspension of 3.2f (0.0400 g, 0.0569 mmol) in MeCN (2 mL) was added a 

solution of AgOTf (0.0331 g, 0.129 mmol) in MeCN (2 mL). Upon addition the reaction 

became a purple heterogeneous mixture, which was stirred at room temperature until 

the purple color dissipated (approximately 20 min), resulting in a yellow/brown 

heterogeneous mixture. The solution was then filtered through celite, and the filtrate 

was evaporated under reduced pressure. The resulting residue was freed of excess 

MeCN by trituration with hexanes (3 mL), followed by evaporation under reduced 

pressure to yield the desired product as a tan solid (0.0505 g, 91.2%). 1H NMR (300 

MHz, CD3CN , 25 °C), δ(ppm): 7.70-8.00 (m, 8 H, Ar-CH), 6.80 (s, 2 H, Ar-C1H), 3.42 
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(m, 2 H, PCH(CH3)2). 3.18 (m, 2 H, PCH(CH3)2), 1.35 (m, 18 H, PCH(CH3)2), 1.18 (m, 

6 H, PCH(CH3)2). 31P NMR (121 MHz, CD3CN , 25 °C), δ(ppm): 72.43 (s). 19F NMR 

(282 MHz, CD3CN , 25 °C), δ(ppm): -79.19 (s). 13C NMR (126 MHz, CD3CN , 25 °C), 

δ(ppm): 222.65 (t, Mo-CO), 222.58 (t, Mo-CO), 141.31 (s, quinonoid Ar-CO), 138.02 

(m), 135.81 (m), 134.51 (s), 134.12 (s), 132.62 (t), 132.10 (t), 130.02 (t), 100.58 (s, 

quinonoid Ar-CH), 65.30 (s, OCH3), 29.58 (m, PCH(CH3)2), 28.98 (s, PCH(CH3)2), 

19.03 (s, PCH(CH3)2), 18.30 (t, PCH(CH3)2), 18.12 (s, PCH(CH3)2), 18.04 (s, 

PCH(CH3)2). IR (MeCN), νCO (cm-1): 2019, 1961. λmax (MeCN, nm), ε (M-1cm-1): 430, 

5.0x102; 350, 2.0x103; 290, 6.4x103.  Anal. Calcd for [3.52+][OTf-]2, C36H44F6MoO10P2S2: 

C, 44.45; H, 4.56. Found: C, 44.23; H, 4.39. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

methylsemiquinonate]dicarbonylmolybdenum(II) trifluoromethanesulfonate 

([3.6+][OTf-]) 

 

To a solution of 3.3 (0.0205 g, 0.0318 mmol) in MeCN (2 mL) was added MeOTf (5 µL, 

0.0442 mmol). The mixture was stirred for 5 minutes and the volatiles were removed 

under vacuum. The residue was triturated with C6H6 and the precipitate collected on a 
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pad of celite, washing with additional C6H6. The solid was dissolved in MeCN, filtered 

through celite, and concentrated under reduced pressure. Excess MeCN was removed 

by triturating in hexanes followed by removal volatiles under vacuum. The desired 

compound was isolated as a pale yellow powder (0.0159 g, 0.0197 mmol, 61.8%). 1H 

NMR (300 MHz, CD3CN , 25 °C), δ(ppm): 7.60-7.80 (m, 8 H, Ar-CH), 5.89 (dd, JHP = 

5.7 Hz, 1.2 Hz, 1 H, Ar-C1H), 5.71 (dd, JHP = 5.7 Hz, 2.4 Hz, 1 H, Ar-C1H’), 3.92 (s, 3 

H, OCH3), 3.41 (m, 2 H, PCH(CH3)2), 3.17 (m, 2 H, PCH(CH3)2), 1.20-1.45 (m, 18 H, 

PCH(CH3)2), 0.93-1.10 (m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, CD3CN , 25 °C), 

δ(ppm): 78.19 (d, JPP’ = 18 Hz), 65.44 (d, JPP’ = 18 Hz). 19F NMR (282 MHz, CD3CN , 

25 °C), δ(ppm): -77.09 (s). 13C NMR (126 MHz, CD3CN , 25 °C), δ(ppm): 233.60 (dd, 

JCP = 23.0 Hz, 21.5 Hz, Mo-CO), 228.62 (dd, JCP = 23.0 Hz, 21.5 Hz, Mo-CO), 163.51 

(s, quinonoid Ar-C=O), 143.03 (d, Ar-C), 142.68 (d, Ar-C), 141.17 (d, Ar-C), 135.24 (m, 

O3S-CF3), 133.50 (m, Ar-C), 133.04 (m, Ar-C), 130.84 (m, Ar-C), 129.99 (m, Ar-C), 

129.28 (m, Ar-C), 128.06 (m, Ar-C), 124.13 (m, Ar-C), 123.31 (s, Ar-C), 120.76 (s, Ar-C), 

99.23 (m, quinonoid Ar-CH),  129.99 (m, Ar-C), 83.47 (m, quinonoid Ar-CH), 62.11 (m, 

OCH3), 30.31 (s, PCH(CH3)2), 30.12 (s, PCH(CH3)2), 27.70 (m, PCH(CH3)2), 26.70 (m, 

PCH(CH3)2), 18.46 (m, PCH(CH3)2), 18.46 (m, PCH(CH3)2), 18.04 (m, PCH(CH3)2), 

17.73 (m, PCH(CH3)2), 17.46 (m, PCH(CH3)2). IR (film), νCO (cm-1): 1979, 1907, 1615.  
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Synthesis of bis(1,3-dimethylcyclopentadienyl)iron(II) (Me4Fc) 

 

 

In a schlenk tube, FeBr2 (1.0828 g, 5.02 mmol) and 1,3-dimethylcyclopentadienyl 

lithium (1.0438 g, 10.4 mmol) were combined in THF (30 mL) and heated to 70 °C for 

3 hours, and the resulting brown/orange suspension was then concentrated under 

reduced pressure. The red-brown residue was extracted with Et2O (50 mL), filtered 

through alumina and concentrated under reduced pressure to yield the desired product 

as a red-orange oil (0.4038 g, 33.2%). 1H NMR (300 MHz, C6D6, 25 °C), δ(ppm): 3.73 

(s, 4 H), 3.66 (s, 2 H), 1.86 (s, 12 H). 13C NMR (126 MHz, C6D6, 25 °C), δ(ppm): 83.17 

(s, C2), 71.86 (s, C1), 70.03 (s, C3), 14.34 (s, C4). ESI-MS (m/z, relative abundance): 242.2 

[M]+, 100%; 227.2 [M-CH3]+, 12%. MS (m/z): calcd, 242.0785 [M]+; found, 242.0764 

(FAB+, [M]+). 
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Control Reactions with O2 

  

3.1Br: An NMR solution of 3.1Br (0.0214 g, mmol) in CD2Cl2 (0.5 mL) prepared on the 

bench top was added to a J. Young style NMR tube and degassed via three freeze-

pump-thaw cycles. An atmosphere of O2 was added to the headspace and the reaction 

monitored by 1H NMR spectroscopy. There was no observed reaction over the course 

of 24 hours. 

 

 

3.2f: In the glove box, a solution of 3.2f (0.0198 g, mmol) in CD2Cl2 (0.6 mL) was 

added to a J. Young style NMR tube. On the Schlenk line, the solution was degassed via 

three freeze-pump-thaw cycles and an atmosphere of O2 was added to the headspace. 

The reaction was then monitored by 1H and 31P NMR spectroscopy. There was no 

observed reaction over the course of 24 hours. 
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3.2g: In the glove box, a solution of 3.2g (0.0225 g, mmol) in C6D6 (0.6 mL) was added 

to a J. Young style NMR tube. On the Schlenk line, the solution was degassed via three 

freeze-pump-thaw cycles and an atmosphere of O2 was added to the headspace. The 

reaction was then monitored by 1H and 31P NMR spectroscopy. There was no observed 

reaction over the course of 24 hours. 

 

Reactions with O2 

 

3.2b: A solution of 3.2b (0.0232 g, 0.0317 mmol) in CD2Cl2 (0.6 mL) in a J. Young style 

NMR tube was degassed via three freeze-pump-thaw cycles. An atmosphere of O2 was 

then added to the headspace, and the tube continuously inverted, monitoring the 

reaction over time by 1H and 31P NMR spectroscopy. After 1.5 hours at room 

temperature, the reaction exhibited a roughly 1:1:1 mixture of unconverted 3.2b, 

product 3.3, as well as an intermediate species identified as 3.2h (confirmed by 

independent synthesis, vida supra). After 3 hours the reaction had gone to completion 
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with 3.2b fully converted to 3.3 and a mixture of Me2Si-containing products. An 

aliquant of the reaction mixture diluted in DCM was filtered through silica gel and 

submitted to gas chromatography-mass spectrometry (GC-MS) analysis, which revealed 

the Me2Si-containing products to be cyclooligomers of dimethylsiloxane (i.e. (Me2SiO)n 

where n = 3, 4, 5, 6). 

 

 

3.2c: The above procedure was repeated with 3.2c (0.0211 g, mmol) in CD2Cl2 (0.6 mL). 

After 8 hours at room temperature, 3.2c had converted to a 1:1 mixture of 3.3 and 3.2i. 

After 48 hours at room temperature, 3.2i had fully converted to 3.3. 
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3.2d: The above procedure was repeated with 3.2d (0.0241 g, mmol) in CD2Cl2 (0.6 mL) 

and monitored by 1H and 31P NMR spectroscopy. After 5 days at room temperature, 3.3 

had formed in ca. 15% along with ca. 35% unidentified species. 

 

 

3.2e: The above procedure was repeated with 3.2e (0.0201 g, 0.0243 mmol) in CD2Cl2 

(0.6 mL) and monitored by 1H, 19F, and 31P NMR spectroscopy. After 36 hours, 3.2e 

had converted to a mixture of species comprised mainly of 3.3 (ca. 80% relative 

integration by 31P NMR) and other unidentified products. Additionally, the 19F NMR 

revealed two clusters of broad peaks grouped around -59.5 ppm and -61.5 ppm. 
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To better understand the unidentified mixture of species, a solution of 3.3 (0.0202 g, 

0.0313 mmol) and (ArFBO)3 (0.0063 g, 0.0122 mmol, independently synthesized, ArF = 

p-CF3C6H4)[31] in CD2Cl2 (0.6 mL) was monitored by 1H, 19F, and 31P NMR 

spectroscopy. After one hour at room temperature, the mixture exhibited spectra that 

were qualitatively similar to the product of 3.2e with O2. Notably, by 31P NMR 

spectroscopy, broad peaks were observed ca. 1.5 ppm upfield of 3.3, with a relative 

ratio of 1:4 (unknown species : 3.3), and by 19F NMR, two sets of broad peaks were 

observed, grouped around -59.5 ppm and -61.5 ppm. Based on these results, it is 

plausible that in the reaction of 3.2e with O2 “ArFB=O” or some other reactive B-O 

species may be transiently generated (analogous to Me2Si=O in reaction of 3.2b with 

O2), which could then react further by cyclization or oligomerization. The reaction of 

3.3 with (ArFBO)3 suggests that 3.3 may form a Lewis acid-base adduct with (ArFBO)3, 

possibly prohibiting cyclization of “ArFBO” into the otherwise thermodynamic sink 

(ArFBO)3 and instead favoring higher oligomers. 

 

 

3.2f with B(C6F5)3: A solution of 3.2f (0.0210 g, 0.0299 mmol) and B(C6F5)3 (0.0301 g, 

0.0588 mmol) were combined in CD2Cl2 (0.6 mL) and added to a J. Young style NMR 

tube. The solution was degassed via three freeze-pump-thaw cycles and an atmosphere 
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of O2 was added to the headspace. The reaction was followed by 1H, 19F, and 31P NMR 

spectroscopy. After 30 minutes the color of the solution had changed from orange to 

dark brown to deep purple with no signals observable by 31P NMR spectroscopy and 

only broad resonances observable by 1H NMR spectroscopy. After ca. 2 hours a large 

number of purple crystals had formed in the tube suitable for x-ray diffraction. If 

unperturbed, over the course of another 4-5 hours the purple color faded to yield a pale 

yellow solution with non-crystalline yellow precipitate. 31P and 1H NMR spectroscopy 

revealed two new diamagnetic products, a major symmetric species assigned as 3.52+ and 

a minor asymmetric species assigned as 3.6+. These assignments were confirmed by 

removal of the volatiles under vacuum and reconstituting the residue in CD3CN (0.6 

mL) and comparing the NMR spectra to those of the independently synthesized 

[3.52+][OTf-]2 and [3.6+][OTf-].  

 

The above reaction with O2 was repeated with 3.2f (0.0221g, 0.0315 mmol) and B(C6F5)3 

(0.0332 g, 0.0648 mmol) in CD2Cl2 (0.6 mL). After approximately 24 hours, the volatiles 

were vacuum transferred to a second J. Young style NMR tube and the formation of 

Me2O was confirmed (δ = 3.27 ppm)[32] in addition to small amounts of MeOH and 

H2O. The solution was then submitted to GC-MS and the Me2O eluted at 1.45 min with 

two major peaks at 45.1 and 46.1 m/z. 

 

The reaction was repeated as above with 3.2f (0.0197 g, 0.0280 mmol) and B(C6F5)3 

(0.0302 g, 0.0590) in CD2Cl2 (0.6 mL). Instead of natural abundance O2, 98% 18O2. After 

3 days, the volatiles were vacuum transferred to a second J. Young style NMR tube and 
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the formation of Me2O confirmed. The solution was submitted to GC-MS, and the 

Me2O observed at 1.45 min with major peaks at 47.1 and 48.2 m/z consistent with 

Me2
18O, as well as minor peaks at 45.1 and 46.1 m/z consistent with Me2

16O. Relative 

ratio of 18O/16O estimated at 3:1. 

 

 

3.2g with B(C6F5)3: A solution of 3.2g (0.0186 g, 0.0289 mmol) and B(C6F5)3 (0.0329 g, 

0.0643 mmol) were combined in CD2Cl2 (0.6 mL) and added to a J. Young style NMR 

tube. The solution was degassed via three freeze-pump-thaw cycles and an atmosphere 

of O2 was added to the headspace. The reaction was followed by 1H, 19F, and 31P NMR 

spectroscopy. After 45 minutes the color of the solution had changed from orange to 

dark brown to purple with loss of signal by 31P NMR spectroscopy and broadening of 

resonances by 1H NMR spectroscopy. By 19F NMR spectroscopy, generation of 

[((F5C6)3B)2O2
2-] can be observed. After 36 hours at room temperature, 31P and 1H NMR 

spectroscopy reveal formation of [P2Mo(CO)2]2+. 
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3.2g with catechol: A solution of 3.2g (0.0203 g, 0.0315 mmol) and catechol (0.0073 g, 

0.0663 mmol) in CD2Cl2 (0.6 mL) in a J. Young style NMR tube was degassed via three 

freeze-pump-thaw cycles. An atmosphere of O2 was then added to the headspace, and 

the tube continuously inverted, monitoring the reaction over time by 1H and 31P NMR 

spectroscopy. Conversion of catechol was determined via 1H NMR integration using the 

residual PhMe from synthesis of 3.2g as internal standard. 

 

 

Me4Fc with catechol: A solution of Me4Fc (0.0106 g, 0.0438 mmol) and catechol (0.0107 

g, 0.0972 mmol) with diglyme (0.0022g, 0.0164 mmol) used as internal standard in 

CD2Cl2 (0.6 mL) in a J. Young style NMR tube was degassed via three freeze-pump-

thaw cycles. An atmosphere of O2 was then added to the headspace, and the tube 

continuously inverted, monitoring the reaction over time by 1H and 31P NMR 

spectroscopy. After 3 hours, the volatiles were removed under vacuum. The residue was 

diluted in THF (3 mL), and an aliquot (0.15 mL) was then further diluted with 

additional THF (2.85 mL, total volume 3.0 mL). Quantification of Me4Fc oxidation was 

determined by UV-vis analysis of this diluted solution and comparison to a similarly 
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diluted solution of Me4Fc (0.0106 g, 0.0438 mmol) after oxidation with Ag(OTf) (0.0118 

g, 0.0459 mmol) and filtering to remove the Ag0 precipitates. 

 

Reactions with H2O2 

 

3.2a: In a water-tolerant glove box under an N2 atmosphere, 3.2a (0.0213 g, 0.0316 

mmol) in THF (2 mL) was stirred in a 20 mL vial. An aqueous solution of H2O2 (3.3 M, 

12 µL, 0.0396 mmol) was added to the solution and the mixture stirred for 1 hour at 

room temperature. The volatiles were then removed under reduced pressure, and the 

residue was taken up in CD2Cl2 (0.6 mL) to reveal quantitative conversion from 3.2a to 

3.3. 

 

 

3.3: As above, to a stirred solution of 3.3 (0.0198 g, 0.0307 mmol) and 1,3,5-

trimethoxybenzene (0.0039 g, 0.0315 mmol) in THF (2 mL) in a 20 mL vial was added 
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an aqueous solution of H2O2 (3.3 M, 12 µL, 0.0396 mmol). The mixture was stirred for 

1 hour at room temperature. The volatiles were then removed under reduced pressure, 

and the residue was taken up in CD2Cl2 (0.6 mL) to reveal approximately 80% of 3.3 

remained, along with approximately 20% conversion to unidentified species by 1H 

(relative integration of central arene C-H to internal standard trimethoxybenzene aryl C-

H) and 31P (relative integration of peak at 71 ppm corresponding to 3.3 to group of 

signals at ca. 58 ppm corresponding to unidentified species) NMR spectroscopy. 

 

 

Quantification of O2 consumed and CO released in conversion of 3.2a to 3.3 

In a Schlenk flask charged with a stir bar, 0.0504 g (0.0747 mmol) of 3.2a was dissolved 

in CHCl3 (12 mL). The solution was degassed by three freeze-pump-thaw cycles. The 

reaction vessel was then exposed to 5.01 eq of O2 (0.377 mmol) via calibrated gas bulb 

and stirred vigorously for 5 hours at room temperature. After 5 hours the solution was 

frozen and the gas in the Schlenk flask was pumped through a liquid nitrogen cooled 

trap and collected in a calibrated volume (31.2 mL) using a Toepler pump. After 20 

minutes (ca.  25 cycles of the Toepler pump) the Schlenk flask was sealed and thawed. 

Upon thawing the solution was re-frozen and the aforementioned Toepler pump 

process was repeated. After three of the described freeze-Toepler pump-thaw cycles, 

the pressure of gas collected was found to be 246.6 mm Hg (0.414 mmol, 5.51 eq after 

confirming quantitative conversion of 3.2a to 3.3 by 1H and 31P NMR spectroscopy). 

The gas was then exposed to a degassed solution of NaOH (0.75 g, 18.8 mmol) and 

pyrogallol (0.5 g, 3.96 mmol) in H2O (20 mL) in a second Schlenk flask, and the 
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solution was stirred vigorously for 4 hours to consume the excess O2. After 4 hours, the 

aqueous solution was frozen and the gas in the Schlenk flask was pumped through a 

liquid nitrogen cooled trap and collected in a calibrated bulb (31.2 mL) using three of 

the aforementioned freeze-Toepler pump-thaw cycles and the pressure of gas measured. 

Using the Toepler pump, the gas was then pumped through a CuO filled tube. The tube 

was heated and kept between 300 and 350 °C. After 1 hour of pumping the gas through 

the CuO tube, the pressure of gas was again measured. By subtracting the two 

measurements, the total pressure of gas consumed in the CuO tube was found to be 

47.5 mm Hg (0.0797 mmol, 1.06 eq). Performing the experiment described above in 

triplicate, it was found that reaction of 3.3 with approximately 5 equivalents of O2 

generated 0.048 ± 0.02 equivalents of gas, and the amount of non-O2 gas consumed in 

the CuO tube was found to be 1.05 ± 0.05. This data is consistent with a stoichiometry 

of 3.2a consuming 0.5 equivalents of O2 and releasing 1 equivalent of CO.  

 

To further support this stoichiometry and confirm the identity of the gas being released 

in the reaction as CO, the Toepler pump experiment was repeated as mentioned above 

using 0.0492 g (0.0729 mmol) of 3.2a with the following modification: after consuming 

the excess O2 in the NaOH/pyrogallol solution (rather than burning the gas in the CuO 

tube) the remaining gas was exposed to a solution of HN(pic)2 (0.0524 g, 0.263 mmol) 

and Cu(MeCN)4OTf (0.0954 g, 0.253 mmol) in MeCN (12 mL) and the mixture stirred 

vigorously for 4 hours. After 4 hours the gas remaining was measured, and the total gas 

consumed by the CuI solution was found to be 0.98 eq. IR data of the resulting CuI 

solution revealed a band at 2091 cm-1 consistent with formation of the previously 
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reported HNpic2Cu(CO)BArF20,[33] and identical to the band observed by independently 

exposing a mixture of Cu(MeCN)4OTf and HN(pic)2 to excess CO in MeCN. 

 

 

 

Ultraviolet-Visible Spectroscopy 

 

Figure 3.5. Reaction of 3.2e with 2 AgOTf in THF. The red trace represents the first 

data point after mixing. New band with λmax = 575 nm assigned to intermediate 

[3.4+][OTf-]. Traces taken every 30 seconds. After 20 minutes all of the major bands 

have diminished, consistent with formation of [3.52+][OTf-]2. (Note: traces shifted up ca. 

0.3 a.u. with respect to baseline due to formation of Ag0 precipitate). 
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Figure 3.6. Reaction of 3.2e and B(C6F5)3 with O2 in DCM. The red trace represents 

the first data point 30 seconds after mixing. Over time (red arrow), a new band with 

λmax = 575 nm assigned to [3.4+]2[{(F5C6)3B}2O2
2-]2 increases to a maximum at 

approximately 60 minutes (blue trace), and diminishes again (blue arrow) over the 

course of another 600 minutes (green trace). Over the course of the reaction, the bands 

with λmax = 390 nm and 480 nm corresponding to 3.2e have been halved, consistent 

with a 3.2e:B(C6F5)3 stoichiometry of 1:2. (Note: time between traces varies) 
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Cyclic Voltammetry 

Figure 3.7. Cyclic voltammograms of compounds 3.2b, 3.2d, 3.2e, 3.2f , 3.2g, and 

Me4Fc taken in 0.1 M [nBu4N+][PF6
-] in THF with a glassy carbon working electrode at 

250 mV/s. Potentials reported with respect to the Cp2Fe/Cp2Fe+ couple.  
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Crystallographic Information 

CCDC 1026539-1026542 contain the supplementary crystallographic data for this paper. 

These data can be obtained free of charge from The Cambridge Crystallographic Data 

Centre via www.ccdc.cam.ac.uk/data_request/cif.  

 

Refinement Details  

In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, 

then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-

ray tube, Kα = 0.71073 Å) or a Bruker PHOTON100 CMOS based diffractometer (Mo 

micro-focus sealed X-ray tube, Kα = 0.71073 Å). All diffractometer manipulations, 

including data collection, integration, and scaling were carried out using the Bruker 

APEXII software.[34] Absorption corrections were applied using SADABS.[35] Space 

groups were determined on the basis of systematic absences and intensity statistics and 

the structures were solved by direct methods using XS[36], by intrinsic phasing using XT 

(incorporated into SHELXTL), or by charge flipping using Olex2[37] and refined by full-

matrix least squares on F2. All non-hydrogen atoms were refined using anisotropic 

displacement parameters. Hydrogen atoms were placed in the idealized positions and 

refined using a riding model. The structure was refined (weighed least squares 

refinement on F2) to convergence. Graphical representation of structures with 50% 

probability thermal ellipsoids was generated using Diamond visualization software.[38] 
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Table 3.1.  Crystal and refinement data for complexes 3.2a•2.25C6H6 and 3.2b•NCMe. 

 3.2a•2.25C6H6 3.2b•NCMe 
CCDC Number 1026539 1026540 

Empirical formula C93H107Mo2O10P4 C37H47MoNO5P2Si 
Formula weight 1700.55 771.73 

T (K) 100 100 
a, Å 11.9691(7) 11.4020(4) 
b, Å 16.935(1) 17.1733(7) 
c, Å 22.841(1) 19.0484(7) 

  α, deg 106.621(3) 90 

 β, deg 91.522(3) 102.399(1) 

 γ, deg 109.707(3) 90 
Volume, Å3 4137.5(4) 3642.9(2) 

Z 2 4 
Crystal system Triclinic Monoclinic 
Space group P-1 P21/c 
dcalc, g/cm3 1.365 1.407 

 θ range, deg 1.84-30.00 2.18-33.14 
µ, mm-1 0.440 0.523 

Abs. Correction Semi-empirical Semi-empirical 
GOF 1.633 0.990 

R1
 ,a wR2

 b [I>2 σ(I)] 0.0506, 0.2015 0.0486, 0.1523 
a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo

2-Fc
2)2]/∑[w(Fo

2)2]1/2. 
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Table 3.2.  Crystal and refinement data for complexes 3.3 and  [3.4+]2[[(F5C6)3B]2O2

2-

]•2CH2Cl2. 

 3.3 [3.4+]2[[(F5C6)3B]2O2
2-]•2CH2Cl2 

CCDC Number 1026541 1026542 
Empirical formula C32H38MoO4P2 C108H92B2Cl4F30Mo2O12P4 

Formula weight 644.50 g/mol 2631.00 g/mol 
T (K) 100 100 
a, Å 11.6649(8) 12.511(1) 
b, Å 16.1870(8) 15.145(1) 
c, Å 16.4201(8) 15.613(1) 

  α, deg 90 64.704(3) 

 β, deg 108.193(3) 81.599(3) 

 γ, deg 90 85.342(3) 
Volume, Å3 2945.4(3) 2645.5(4) 

Z 4 1 
Crystal system Monoclinic Triclinic 
Space group P21/c P-1 
dcalc, g/cm3 1.453 1.651 

 θ range, deg 2.27-37.78 1.45-27.48 
µ, mm-1 0.590 0.514 

Abs. Correction Semi-empirical Semi-empirical 
GOF 0.830 0.901 

R1
 ,a wR2

 b [I>2 σ(I)] 0.0356, 0.1189 0.0576, 0.1453 
a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo

2-Fc
2)2]/∑[w(Fo

2)2]1/2. 
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Figure 3.8. Structural drawing of 3.2a with 50% probability ellipsoids. Hydrogen atoms 

and solvent molecules are omitted for clarity. Carbon atoms are shown in black. 
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Figure 3.9. Structural drawing of 3.2b with 50% probability ellipsoids. Hydrogen atoms 

and solvent molecules are omitted for clarity. Carbon atoms are shown in black. 

 
Figure 3.10. Structural drawing of 3.3 with 50% probability ellipsoids. Hydrogen atoms 

and solvent molecules are omitted for clarity. Carbon atoms are shown in black. 
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Figure 3.11. Structural drawing of [3.4+]2[[(F5C6)3B]2O2
2-] with 50% probability 

ellipsoids. Hydrogen atoms, solvent molecules, and second Mo compound are omitted 

for clarity. Carbon and fluorine atoms are shown in black and green, respectively. 

 

Special Refinement Details for 3.4+: A ligand isopropyl group and the DCM solvent 

molecule were positionally disordered. Both were satisfactorily modeled as 

approximately 50:50 mixtures using “PART” cards in SHELX 
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ABSTRACT   

A series of π-bound molybdenum quinonoid complexes supported by pendant 

phosphines has been synthesized. These compounds formally span three protonation-

oxidation states of the quinonoid fragment (catechol, semiquinone, quinone) and two 

different oxidation states of the metal (Mo0, MoII), notably demonstrating a total of two 

protons and four electrons accessible in the system. Transfer of multiple equivalents of 

protons and electrons from the Mo0 and MoII catechol complexes, 4.1 and 4.2, to H-

atom acceptors azobenzene and TEMPO suggest the presence of weak O–H bonds. 

Thermochemical analysis reveals bond dissociation free energies (BDFEs) for the first 

O–H of 72.6 kcal/mol in the Mo0 complex 4.1 and 66.3 kcal/mol in the MoII complex 

4.2, compared to 76.4 kcal/mol for a metal-free catechol 4.8, demonstrating that 

proton-coupled electron transfer can be facilitated significantly by the π-bound metal 

center. 
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INTRODUCTION 

Proton-coupled electron transfer (PCET) reactions encompass some of the most 

complex and challenging transformations in synthetic chemistry, including multi-proton 

multi-electron processes such as O2 reduction.[1] In biology, tyrosine[2] and quinone[3] 

moieties have been implicated in multi-electron processes, and as such the PCET of 

phenols[4] and hydroquinones[5] have been extensively studied in water, and to a lesser 

extent in non-aqueous solvents. Interest in the effects of non-covalent interactions such 

as hydrogen bonding[6] and cation-π interactions[7] on structure and reactivity has grown 

over the last few decades with wide-ranging applications across many disciplines of 

chemistry. Hydrogen bonding has been shown to modulate the PCET of simple 

phenolic small molecule systems,[8] while cation-π interactions (specifically π-bound 

transition metals) have been shown to facilitate activation of C–H[9] and C–

heteroatom[10] bonds in aromatic systems. Though π-bound transition metal quinonoid 

complexes have previously been reported, their study has largely focused on 

incorporation into metal-organometallic frameworks[11] and thus their potential for 

PCET chemistry remains underexplored. 

Transition metal complexes with pendant acid/base moieties have been demonstrated 

to facilitate small molecule reactivity through cooperative metal-ligand proton 

transfer,[12] and redox-noninnocent ligands supporting transition metals have been 

shown to facilitate storage of multiple redox equivalents;[13] however systems involving a 

single metal that can access multiple equivalents of protons and electrons are quite 

rare.[14] π-bound transition metal quinonoid complexes have the potential to access two 

protons and two electrons from the quinonoid moiety, as well as any electrons 
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accessible through redox states at the metal center. Not only could these systems be 

envisioned to facilitate multi-proton, multi-electron transformations, but also changes in 

the oxidation state at the metal center could be envisioned as a method to affect the 

PCET chemistry of the quinonoid fragment. We have recently reported the synthesis of 

a series of π-bound Mo0-quinonoid complexes and demonstrated their ability to transfer 

two H+ (as well as R2Si2+, ArB2+, and Me+) and two electrons to O2.[15] Herein we report 

an expanded series of Mo-quinonoid complexes in varying protonation and oxidation 

states spanning a total of two protons and four electrons, and investigate the impact of 

the metal-arene interaction on the PCET chemistry of the quinonoid fragment. 
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RESULTS AND DISCUSSION  

  Scheme 4.1. Synthesis and reactivity of Mo-quinonoid complexes. 

 

Treatment of 4.1 with two equivalents of AgOTf in MeCN results in oxidation of the 

metal center by two electrons to yield the MoII complex 4.2 (Scheme 4.1). Oxidation of 

the metal center results in loss of a CO ligand and a haptotropic shift of the metal-arene 

interaction from η2 to η6. Solution IR data for 4.2 in MeCN reveals strong bands 

assigned to carbonyl C–O stretches at 2010 and 1955 cm-1 (ca. 150 cm-1 higher in energy 

compared to 4.1), consistent with a more oxidized metal center. A single crystal X-ray 

diffraction (XRD) study of 4.2 confirms the presence of the Mo(CO)2 unit, but the 

structure is highly disordered with respect to the position of the catechol oxygen atoms 
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and thus hinders detailed discussion of the metal-arene interaction through bond 

metrics. 

 

Figure 4.1. Solid-state structures of 4.3, 4.5a, 4.5b and 4.6 with 50% probability thermal 

ellipsoids. Solvent molecules, hydrogen atoms, and outer-sphere anions are omitted for 

clarity. Carbon atoms are depicted in black. Select bond distances (average values of four 

molecules in asymmetric unit for 4.3) are given in Å. 
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Treatment of 4.2 with one equivalent of 2,6-di-tert-butyl-4-methylpyridine (DTBMP) in 

MeCN results in quantitative mono-deprotonation to yield 4.3. The appearance of a 

band in the IR at 1608 cm-1 and a carbon resonance in the 13C NMR spectrum at ca. 156 

ppm are consistent with the formation of the semiquinone C=O moiety upon 

deprotonation. Additionally, a shift to lower energy of the IR bands assigned to Mo-

bound carbon monoxide C–O stretches (1904 and 1880 cm-1 in 4.3) is consistent with a 

more electron rich metal center, as has also been previously observed in cationic 

Mn(CO)3 quinonoid complexes.[16] An XRD study of 4.3 (Figure 4.1) confirms these 

spectroscopic findings, revealing one long quinonoid C–O bond (avg 1.33 Å) and one 

short quinonoid C–O bond (avg 1.26 Å), consistent with the semiquinone assignment. 

Compound 4.3 can be further deprotonated with Et3N to yield the previously reported 

compound 4.4. 

Reaction of 4.4 with two equivalents of AgOTf in a 1:1 mixture of THF/MeCN results 

in the formation of two isomers, as determined by 31P NMR spectroscopy and 

crystallography (Figure 4.1), differing in the position of the CO ligand relative to the 

quinone moiety. The major species 4.5a, which resonates as a singlet at ca. 75 ppm in 

CD3CN (31P), can be enriched to approximately 80% via successive recrystallizations, 

albeit in low yield (~20%). XRD studies of 4.5a and 4.5b reveal MoII-quinone 

complexes with two outer-sphere counter anions. Oxidation of the metal center from 

(formally) Mo0 to MoII results in loss of a carbonyl ligand and coordination of two 

MeCN molecules, yielding a pseudo-pentagonal bipyramidal geometry about the metal 

center with the remaining carbonyl anti with respect to the quinone. Upon oxidation the 

quinone fragment retains the short C–O bonds (avg 1.22 Å in 4.5a and 4.5b compared 

to 1.23 Å in 4.4), while the diene fragment reveals a slight contraction of the C=C 
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bonds (avg 1.41 Å in 4.5a and 4.5b compared to 1.44 Å in 4.4) consistent with less  π-

backbonding in the more oxidized complex. The syntheses of compounds 4.4 and 

4.5a/4.5b described above involve sequential steps involving the separate transfer of 2e- 

and 2H+. These compounds can also be prepared in single synthetic steps from 4.1 via 

reaction with 2 equivalents of 2,4,6-tri-tert-butylphenoxy radical and from 4.2 via 

reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), respectively, in 

combined 2e-/2H+ transformations. 

Oxidation of 4.4 with PhICl2 results in formation of a third MoII-quinone complex 4.6. 

Here again a CO ligand is lost upon oxidation and binding of two chloride ligands and a 

single isomer is generated (NMR and IR spectroscopy). An XRD study (Figure 4.1) 

shows the CO ligand syn with respect to the quinone CO moieties (analogous to 4.5b) 

and bond metrics similar to those of 4.5a and 4.5b. Compounds 4.5a, 4.5b, and 4.6 

represent rare examples of accessing redox equivalents beyond the two stored in the 

catechol moiety, and allow two different oxidation state entries into the study of PCET 

chemistry of Mo-quinonoid complexes. 
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Scheme 4.2. Reactivity of quinonoid complexes with azobenzene and TEMPO. 

 

Reactions of compounds 4.1 and 4.2 with azobenzene and (2,2,6,6-

tetramethylpiperidyl)oxyl (TEMPO) were performed in MeCN (Scheme 4.2). 

Compound 4.1 reacts with azobenzene quantitatively to yield 4.4, while 4.2 generates a 

mixture of 4.5 and 4.3 in ca. 1:2 ratio (NMR spectroscopy). Similar to the reaction with 

azobenzene, 4.1 reacts with TEMPO to quantitatively yield 4.4, while 4.2 yields a 

mixture of 4.5a and 4.4 in ca. 1:1 ratio (1H NMR spectroscopy). The formation of both 

oxidized (compound 4.5a) and deprotonated (compounds 4.3 and 4.4) products from 

the reactions of compound 4.2  with azobenzene and TEMPO can be rationalized via 

competing acid-base side reactions between 4.2 and the by-products TEMPOH and 1,2-

diphenylhydrazine. As a control, under identical conditions it was found that the metal-

free quinonoid compound 2,6-bis(orthobromophenyl)catechol (4.8) exhibited no 

reaction with azobenzene or TEMPO. 

These results suggest that the O–H bonds in compounds 4.1 and 4.2 are relatively 

weak, as they react with azobenzene to generate 1,2-diphenylhydrazine, with a reported 
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N–H bond dissociation free energy (BDFE) of 67 kcal/mol (in DMSO) and TEMPO to 

generate TEMPOH, with a reported O–H BDFE of 66.5 kcal/mol (in MeCN). 

Furthermore, the metal-quinonoid complexes are activated with respect to (overall) H-

atom transfer when compared to the metal-free compound 4.8, which shows no 

reactivity with TEMPO or azobenzene under similar conditions. Based on these 

reactions alone, thermodynamic assumptions cannot be made about the Mo complexes, 

as CO is irreversibly lost upon oxidation; however, by measuring the pKa’s of 

compounds 4.1, 4.2, and 4.3 as well as the oxidation potentials of the respective 

conjugate bases, BDFE’s for the first O–H in MeCN can be calculated using equation 

(1)[14b] to determine the effect of the metal-quinonoid interaction in varying protonation 

and oxidation states on the PCET chemistry. 

 

The pKa’s for compounds 4.1, 4.2, and 4.3 were determined in MeCN using 

acids/bases of known strength, measuring the equilibrium constants by 1H NMR 

spectroscopy (see experimental section for further details) and combining the 

equilibrium constant with the pKa of the known acid/base using Hess’s Law to 

determine the pKa of the desired compounds as previously reported.[17] The conjugate 

bases of compounds 4.2 and 4.3 are compounds 4.3 and 4.4, respectively, and their 

preparations found above and elsewhere,[15] while the conjugate bases of 4.1 and 4.8 

were prepared via deprotonation with benzyl potassium in the presence of crown ether 

(see experimental details). Oxidation potentials were determined via electrochemical 

experiments (Figure 4.2). In all cases, two oxidation events[18] were observed via cyclic 

and square-wave voltammetries, with the first event used to calculate the BDFEs. All 

BDFEMeCN(X–H) = 54.9 + 1.37pKa(X–H/X–) + 23.06E°(X–/X )     (1)
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observed events were irreversible, with the exception of the first event for the conjugate 

base of 4.8 (purple traces, Figure 4.2). While BDFE values have previously been 

calculated using irreversible oxidation events measured via cyclic voltammetry,[14b, 19] 

square-wave measurements were employed to minimize error associated with 

irreversible events. The pKa and oxidation potential values are collected in Table 1, 

along with the resulting BDFE values calculated using equation (1). 

 

Figure 4.2. Cyclic voltammograms (solid lines) and square-wave voltammograms (dashed 

lines) of conjugate bases of compounds 4.1 (red), 4.2 (blue), 4.3 (green), and 4.8 (purple) in 

0.1 M [nBu4N+][PF6
+] in MeCN recorded with a glassy carbon electrode. Scan rate of 50 

mV/s for cyclic voltammograms. (b-15-c-5) = benzo-15-crown-5. 
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Table 4.1. Thermochemical data for selected quinonoid compounds 
 pKa(O–H)

[a] E°(O-/O·)
[b] BDFEO–H

[c] 

4.1 25.89(9) -0.770 V 72.6 kcal/mol 
4.2 4.74(9) 0.220 V 66.3 kcal/mol 
4.3 17.1(4) -0.470 V 67.5 kcal/mol 
4.8 26.3(1) -0.630 V 76.4 kcal/mol 

[a] pKa for first O–H determined via solution equilibria (see SI). [b] Oxidation potential for 

conjugate base determined via square-wave voltammetry. [c] Calculated using equation (1). 

Comparing first compound 4.1 to compound 4.8, the effect of  η2 coordination of  the 

Mo0(CO)3 moiety to the quinonoid fragment on the PCET chemistry can be assessed. 

Compounds 4.1 and 4.8 exhibit similar pKa values (25.89(9) and 26.3(1)), while the presence 

of  the Mo0(CO)3 unit in 1 results in a more reducing species, shifting the oxidation potential 

140 mV more negative. Overall the presence of  the metal-quinonoid interaction in 4.1 

results in a lower first O–H BDFE of  72.6 kcal/mol compared to 76.4 kcal/mol for the 

metal-free quinonoid 4.8.  

Next, comparing compound 4.1 to compound 4.2, the effect of  changing the oxidation 

state of  the metal center on the PCET chemistry can be analyzed. Oxidation of  4.1 from 

Mo0 to MoII accompanied by loss of  a CO ligand and a shift of  the metal-quinonoid 

interaction from η2 to η6 results in >20 orders of  magnitude increase in acidity, with a 

measured pKa of  4.74(9) for 4.2 compared to 25.89(9) for 4.1. This increase in acidity is 

greater than the calculated increase in acidity for phenol upon one-electron oxidation.[20] The 

oxidation from 4.1 to 4.2 also results in a large positive shift in the oxidation potential of  the 

conjugate base (+0.220 V for conjugate base of  4.2 compared to -0.770 V for conjugate 

base of  4.1), consistent with a more electron deficient species. The increased acidity in 4.2 

thermodynamically outweighs the positive shift in oxidation potential, resulting in a weaker 

calculated BDFE for the first O–H of  66.3 kcal/mol. 
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Finally, the effect of protonation state while maintaining the same overall oxidation state on 

the metal-quinonoid interaction and the resulting PCET chemistry can be analyzed by 

comparing compounds 4.2 and 4.3. Deprotonation of 4.2 to yield 4.3 results in a shift of the 

metal-quinonoid interaction from η6 to η5, as well as a decrease in the overall charge from 

di-cation to mono-cation. The acidity of the remaining O–H moiety (pKa = 17.1(4)) of 4.3, 

is lower than in 4.2. A more negative oxidation potential of the conjugate base (-0.470 V) is 

observed for 4.3. The negative shift of the oxidation potential nearly counter-balances the 

decrease in acidity, resulting in a modest increase in the BDFE to 67.5 kcal/mol for 

compound 4.3. 

These results demonstrate that metal-quinonoid interactions can be used to modulate the 

PCET of the quinonoid fragment, with the first O–H BDFE shifting over a notable 10 

kcal/mol from 76.4 kcal/mol for metal-free compound 4.8 to 66.3 kcal/mol in compound 

4.2. Not only does the strength of the O–H bond weaken with increasing metal-quinonoid 

interaction, but changes in the acidity and oxidation potentials could result in access to 

different PCET pathways. For example, compound 4.1 exhibits relatively low acidity (pKa = 

25.89) and mild reducing power (E° = -0.285 V), with a significant shift in the oxidation 

potential upon proton transfer (E° = -0.770 V for the conjugate base). These 

thermodynamic parameters suggest that compound 4.1 is likely to proceed through either a 

concerted proton-electron transfer (CPET) pathway or a stepwise electron transfer-proton 

transfer (ET-PT) pathway, and disfavors the stepwise PT-ET pathway. Alternatively, 

compound 4.2 exhibits significantly greater acidity (pKa = 4.74) and low reducing power (E° 

= +0.94 V), with a large shift in oxidation potential upon proton transfer (E° = +0.220 V 

for conjugate base 4.3). These thermodynamic parameters suggest compound 4.2 is likely to 
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proceed through a CPET pathway or a stepwise PT-ET pathway, and disfavors a stepwise 

ET-PT pathway. 

Scheme 4.3. Thermochemical analysis of stepwise vs. concerted pathways in reactions of 4.1 

and 4.2 with TEMPO. 

 

For example, the thermodynamics of  the reactions of  4.1 and 4.2 with TEMPO can be 

analyzed to differentiate the three potential pathways: proton transfer (PT), electron transfer 

(ET), and CPET (Scheme 4.3). For compound 4.1, comparing the pKa of  4.1 (25.89(9)) to 

the estimated pKa of  TEMPOH+ (ca. -4),[14b] an initial proton transfer from 4.1 to TEMPO 

would involve an equilibrium constant of  10-30, giving ΔG°PT = 41 kcal/mol (Scheme 3). The 

electron transfer pathway is similarly uphill, with oxidation potential E° = -0.285 V for 

compound 4.1 and E° = -1.95 V for the TEMPO/TEMPO- couple[21] resulting in a ΔG°ET = 

38 kcal/mol. The concerted pathway instead is more thermodynamically accessible with 

ΔG°CPET = 6.1 kcal/mol. Through the same analysis with compound 4.2, we can calculate 

the proton transfer pathway to be uphill with ΔG°PT = 12 kcal/mol, while the electron 

transfer pathway is significantly uphill with ΔG°ET = 67 kcal/mol, and the concerted 

pathway is nearly thermo-neutral with ΔG°CPET = -0.2 kcal/mol. While it should be 

1  + TEMPO
CPET

PT

ET
[1 - e-]+ + TEMPO-

[1 - H+]- + TEMPOH+

[1 - H] + TEMPOH

∆G°PT = 41 kcal/mol

∆G°CPET = 6.1 kcal/mol

∆G°ET = 38 kcal/mol

2 + TEMPO
CPET

PT

ET
[2 - e-]+ + TEMPO-

[2 - H+]- + TEMPOH+

[2 - H] + TEMPOH

∆G°PT = 12 kcal/mol

∆G°CPET = -0.2 kcal/mol

∆G°ET = 67 kcal/mol



 

119 

emphasized that this analysis is purely thermodynamic, these result indicate that in the 

reaction of  4.1 and 4.2 with TEMPO the CPET pathway is favored in both cases, but with 

4.2 the stepwise PT-ET pathway may also be accessible. 

Scheme 4.4. Thermochemical analysis of ET vs. CPET pathways in reactions of 4.1 with 

O2. 

 

 

Finally, this thermochemical data can be used to analyze the reaction of  4.1 with O2. The 

previously proposed mechanism initiated through outer-sphere electron transfer to generate 

a MoI species and •O2
-, though the CPET pathway could not be ruled out.[15] Using E° = -

1.28 V for the •O2
-/O2 couple in MeCN[22] and 47.8 kcal/mol as the BDFE of  •O2H,[23] the 

thermodynamic values of  ΔG°CPET = 25 kcal/mol and ΔG°ET = 23 kcal/mol can be 

calculated (Scheme 4.4). While it should again be emphasized that these analyses are purely 

thermodynamic, these calculations suggest that the outer-sphere electron transfer pathway is 

thermodynamically accessible when compared to the CPET pathway. 

 

 

  

1   +  O2
CPET

[1 - H]  +  •O2H ∆G°CPET = 25 kcal/mol

1   +  O2 [1 - e-]+  +  •O2
- ∆G°CPET = 23 kcal/molPT
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CONCLUSIONS 

  In summary, the synthesis of an expanded series of Mo-quinonoid complexes has 

been reported, demonstrating a total of two protons and four electrons accessible to the 

system. The Mo0-catechol and MoII-catechol complexes both exhibit PCET reactivity 

with azobenzene and TEMPO. Thermochemical analysis reveals that η2 interaction of 

the Mo0(CO)3 moiety with the catechol in 4.1 results in a 3.8 kcal/mol decrease in the 

BDFE of the first O–H as compared to the metal-free catechol 4.8, while oxidation of 

the metal center from Mo0 to MoII (along with loss of a CO ligand and shift of the 

metal-quinonoid interaction from η2 to η6) results in a further decrease in the first O–H 

BDFE by 6.3 kcal/mol for compound 4.2, an overall decrease of 10.1 kcal/mol. 

Furthermore, changing the oxidation state of the metal center from Mo0 to MoII may 

allow access to alternate PCET pathways based on changes in acidities and oxidation 

potentials. These results prompt further investigation into the use of π-bound transition 

metal fragments to modulate the PCET chemistry of hydroquinone and other similar 

moieties within the context of multi-proton multi-electron small molecule 

transformations. 
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EXPERIMENTAL SECTION 

General considerations:  

Unless indicated otherwise, reactions performed under inert atmosphere were 

carried out in oven-dried glassware in a glovebox under a nitrogen atmosphere purified 

by circulation through RCI-DRI 13X-0408 Molecular Seives 13X, 4x8 Mesh Beads and 

BASF PuriStar® Catalyst R3-11G, 5x3 mm (Research Catalysts, Inc.). Solvents for all 

reactions were purified by Grubbs’ method.[24] CD3CN and CD2Cl2 were purchased from 

Cambridge Isotope Laboratories and distilled from CaH2 prior to use. Alumina and 

Celite were activated by heating under vacuum at 200 °C for 24 hours. 1H, 19F, and 31P 

NMR spectra were recorded on Varian Mercury 300 MHz spectrometers at ambient 

temperature, unless denoted otherwise. 13C NMR spectra were recorded on a Varian 

INOVA-500 MHz spectrometer. 1H and 13C NMR chemical shifts are reported with 

respect to internal solvent: 1.94 ppm and 118.26 for CD3CN, and 5.32 ppm and 53.84 

ppm for CD2Cl2, respectively. 19F and 31P NMR chemical shifts are reported with 

respect to an external standard of C6F6 (-164.9 ppm) and 85% H3PO4 (0.0 ppm).  

Powder and thin film ATR-IR measurements were obtained by placing a powder 

or drop of solution of the complex on the surface of a Bruker APLHA ATR-IR 

spectrometer probe and allowing the solvent to evaporate (Platinum Sampling Module, 

diamond, OPUS software package) at 2 cm–1 resolution. Solution IR spectra were 

recorded on a Thermo-Fisher Scientific Nicolet 6700 FTIR spectrometer using a CaF2 

plate solution cell. Fast atom bombardment-mass spectrometry (FAB-MS) analysis was 

performed with a JEOL JMS-600H high-resolution mass spectrometer. Gas 

chromatography-mass spectrometry (GC-MS) analysis was performed upon filtering the 
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sample through a plug of silica gel. Electrochemical measurements were recorded with a 

Pine Instrument Company AFCBP1 bipotentiostat using the AfterMath software 

package. Cyclic voltammograms and square-wave voltammograms were recorded on ca.  

2 mM solutions of the relevant complex in the glovebox at 20 °C with an auxiliary Pt-

coil electrode, a Ag/Ag+ reference electrode (0.01 M AgNO3, 0.1 M [nBu4N+][PF6
-] in 

MeCN), and a 3.0 mm glassy carbon electrode disc (BASI). The electrolyte solution was 

0.1 M [nBu4N+][PF6
-] in MeCN. All reported values are referenced to an internal 

ferrocene/ferrocenium couple. Elemental analysis was conducted by Robertson Microlit 

Labs (Ledgewood, NJ). 

Unless otherwise noted all chemical reagents were purchased from commercial 

sources and used without further purification. AgOTf, 2,3-dichloro-5,6-dicyano-1,4-

benzoquinone and benzo-15-crown-5 were purchased from Sigma Aldrich and used as 

received. 2,6-di-tert-butyl-4-methylpyridine, 4-tert-butylphenol, 2-nitroaniline, and 

[2,2,2]-diazobicyclooctane were purchased from Sigma Aldrich and sublimed prior to 

use. PhICl2,[25] BnK,[26] 4.1,[15] 4.4,[15] and 4.8[15] were prepared using literature 

procedures. Assignments of NMR spectra are given corresponding to the following 

numbering scheme: 

 

 

 

1
2
3

4

X X
5 6

7
89

Y Y
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Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-catechol] 

dicarbonylmolybdenum(II) bis(trifluoromethanesulfonate) (4.2) 

 

Compound 4.1 (0.0833 g, 0.123 mmol) was stirred as a suspension in MeCN (2 mL). 

AgOTf (0.0617 g, 0.240 mmol) was added as a solution in MeCN (2 mL) to the stirring 

suspension. Upon addition the reaction became a purple heterogeneous mixture, which 

was stirred at room temperature until the purple color dissipated (approximately 20 

min), resulting in a yellow/brown heterogeneous mixture. The solution was then filtered 

through celite and the filtrate evaporated under reduced pressure. The resulting residue 

was freed of excess MeCN by trituration with hexanes (3 mL), followed by evaporation 

under reduced pressure to yield a tan solid (0.1089 g, 93%). 1H NMR (500 MHz, 

CD3CN, 25 °C): δ 10.07 (s, 2 H, Ar-OH), 7.87 (m, 4 H), 7.80 (t, 7.5 Hz, 2 H), 7.77 (t, 7 

Hz, 2 H), 6.46 (s, 2H, Ar-C3H), 3.32 (m, 2 H, CH(CH3)2). 3.20 (m, 2 H, CH(CH3)2), 1.37 

(m, 6 H, CH(CH3)2), 1.31 (m, 6 H, CH(CH3)2), 1.21 (m, 6 H, CH(CH3)2), 1.18 (m, 6 H, 

CH(CH3)2). 31P NMR (121 MHz, CD3CN, 25 °C): 72.38 (s). 19F NMR (282 MHz, 

CD3CN, 25 °C): -79.33 (s). 13C NMR (150 MHz, CD3CN , 25 °C): 226.99 (t, Mo-CO), 

224.17 (t, Mo-CO), 140.34 (s, Ar-C1), 137.96 (m, Ar-C2), 136.49 (m, Ar-C9), 134.62 (s, 

Ar-C5), 134.28 (s, Ar-C6), 131.94 (t, Ar-C), 129.89 (t, Ar-C), 124.87 (t, Ar-C), 95.74 (s, 

Ar-C3), 28.83 (m, CH(CH3)2), 18.58 (s, CH(CH3)2), 18.00 (s, CH(CH3)2), 17.92 (s, 

2 AgOTf

MeCN, rt

4.1 4.2

(iPr)2P P( iPr)2

HO OH

Mo
OC

COOC

(iPr)2P P(iPr)2

HO OH

Mo

COOC (OTf)2
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CH(CH3)2). IR (MeCN), νCO (cm-1): 2010, 1955. Anal. Calcd for [4.2], 

C34H40F6MoO10P2S2: C, 43.23; H, 4.27. Found: C, 43.16; H, 4.38. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

semiquinonate]dicarbonylmolybdenum(II) trifluoromethanesulfonate (4.3) 

 

To a solution of 4.2 (0.0427 g, 0.0452 mmol) in MeCN (2 mL) was added 2,6-di-tert-

butyl-4-methylpyridine (0.0049 g, 0.0437 mmol) as a solution in MeCN (2 mL). The 

mixture was stirred at room temperature for 30 minutes, at which point the volatiles 

were removed under vacuum. The resulting residue was taken up in a minimal amount 

of MeCN and added to a stirred solution of Et2O (15 mL) drop-wise. Upon complete 

addition, the resulting suspension was cooled to -35 °C for 20 minutes and then filtered 

cold on a pad of celite. The solid was dissolved in MeCN, filtered, and concentrated 

under vacuum to afford the desired product (0.0258 g, 72%). Crystals suitable for X-ray 

diffraction were grown via vapor diffusion of Et2O into a saturated solution of 3 in 

DMF. 1H NMR (300 MHz, CD3CN, 25 °C): δ 9.09 (s, br), 7.77 (m, 4 H), 7.68 (m, 4H), 

5.90 (s, 2 H), 3.17 (m, 4 H), 1.28 (m, 18 H), 1.06 (m, 6 H). 31P NMR (121 MHz, CD3CN, 

25 °C): 72.02 (s). 19F NMR (282 MHz, CD3CN, 25 °C): -79.19 (s). 13C NMR (150 MHz, 

CD3CN, 25 °C): 236.68 (t, Mo-CO), 229.21 (t, Mo-CO), 156.00 (s, Ar-C1), 142.65 (t, Ar-

MeCN, rt

4.2 4.3

(iPr)2P P(iPr)2

HO OH

Mo

COOC (OTf)2

(iPr)2P P(iPr)2

HO O

Mo

COOC (OTf)

NtBu tBu
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C2), 136.55 (m, Ar-C9), 133.38 (s, Ar-C5), 133.10 (s, Ar-C6), 130.10 (s, Ar-C), 129.88 (s, 

Ar-C), 116.70 (s, Ar-C), 88.92 (s, Ar-C3), 28.89 (t, CH(CH3)2), 27.33 (t, CH(CH3)2), 18.43 

(s, CH(CH3)2), 18.24 (s, CH(CH3)2), 18.04 (s, CH(CH3)2). IR (THF, cm-1), νCO: 1904, 

1880, 1608. Anal. Calcd for [4.3], C33H39F3MoO7P2S: C, 49.88; H, 4.95. Found: C, 49.56; 

H, 5.02. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

benzoquinone]bis(acetonitrile)carbonylmolybdenum(II) 

trifluoromethanesulfonate (4.5a and 4.5b) 

 

Compound 4.2 (3.0274 g, 3.20 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

(0.7187 g, 3.17 mmol) were combined in a schlenk tube charged with a stir bar and 

MeCN (15 mL). The schlenk tube was sealed and heated to 80 °C for 3 hours. 

Completion of the reaction was determined via 31P NMR analysis of an aliquot of the 

reaction mixture, revealing loss of the starting material at ~72 ppm, and presence of 

two new signals at ca. 74 ppm and ca. 70 ppm. After cooling to room temperature, all 

volatiles were removed under vacuum. The residue was then vigorously triturated with 

THF (8 mL) to precipitate a brick red powder, and the solid collected on a glass frit. 

MeCN, 3 hr, 80 °C

4.2 4.5a + 4.5b

(iPr)2P P(iPr)2

HO OH

Mo

COOC (OTf)2

Cl CN

O
CNCl

O

(iPr)2P P(iPr)2

O O

Mo

L2L1 NCMe (OTf)2

4.5a L1 = MeCN, L2 = CO
4.5b L1 = CO, L2 = MeCN



 

126 

The solid was then redissolved in a minimal amount of MeCN and recrystallized via 

vapor diffusion of Et2O. Crystals grown from this mixture after 48 hours at room 

temperature were then collected and dried under vacuum to afford a mixture of 4.5a 

and 4.5b in ca. 3:2 ratio (2.6323 g, 82%). These crystals were found suitable for X-ray 

diffraction. Note: the NCCH3 ligands exchange slowly with the CD3CN NMR solvent 

for compound 4.5b, such that the bound acetonitrile can be easily observed by both 1H 

and 13C NMR spectroscopies. Compound 4.5a exhibits faster ligand exchange, such that 

signals for the bound acetonitrile ligands could only be observed by 1H NMR 

spectroscopy. 

4.5a: 1H NMR (300 MHz, CD3CN, 25 °C), δ(ppm): 7.6 – 7.8 (m, 8 H, Ar-CH), 6.22 (t, 

JPH = 1.4 Hz, 2 H, Ar-C1H), 3.49 (m, 2 H, PCH(CH3)2), 3.14 (m, 2 H, PCH(CH3)2), 3.10 

(t, 3.6 Hz, 3 H, equatorial NCCH3), 2.48 (s, 3 H, axial NCCH3), 1.2 – 1.5 (m, 18 H, 

PCH(CH3)2), 0.70 (m, 6 H, PCH2(CH3)2). 31P NMR (121 MHz, CD3CN, 25 °C), δ(ppm): 

74.63 (s). 19F NMR (282 MHz, CD3CN, 25 °C): -79.22 (s). 13C NMR (125 MHz, CD3CN, 

25 °C), δ(ppm): 213.38 (t, Mo-CO), 178.73 (s, Ar-C3), 147.06 (t, Ar-C4), 143.00 (t, Ar-

C9), 135.31 (s, Ar-C5), 133.36 (t, Ar-C8), 132.15 (s, Ar-C7), 131.92 (t, Ar-C2), 130.91 (t, 

Ar-C6), 88.79 (s, Ar-C1), 29.54 (m, PCH(CH3)2), 27.53 (t, PCH(CH3)2), 20.82 (s, 

PCH(CH3)2), 20.27 (s, PCH(CH3)2), 19.71 (t, PCH(CH3)2), 18.75 (t, PCH(CH3)2). IR 

(powder), νCO (cm-1): 2020, 1680.  

4.5b: 1H NMR (300 MHz, CD3CN, 25 °C), δ(ppm): 7.6 – 7.8 (m, 8 H, Ar-CH), 6.27 (t, 

JPH = 1.2 Hz, 2 H, Ar-C1H), 3.49 (m, 2 H, PCH(CH3)2), 3.32 (m, 2 H, PCH(CH3)2), 2.98 

(t, 3.6 Hz, 3 H, equatorial NCCH3), 2.57 (s, 3 H, axial NCCH3), 1.2 – 1.5 (m, 12 H, 

PCH(CH3)2), 1.09 (m, 6 H, PCH2(CH3)2), 1.04 (m, 6 H, PCH2(CH3)2). 31P NMR (121 
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MHz, CD3CN, 25 °C), δ(ppm): 70.25 (s). 19F NMR (282 MHz, CD3CN, 25 °C): -79.22 

(s). 13C NMR (125 MHz, CD3CN, 25 °C), δ(ppm): 219.05 (t, Mo-CO), 175.53 (s, Ar-C3), 

144.34 (t, Ar-C4), 142.26 (t, Ar-C9), 136.01 (s, Ar-C5), 133.03 (t, Ar-C8), 132.57 (s, Ar-

C7), 132.32 (t, Ar-C2), 130.91 (t, Ar-C6), 92.96 (s, Ar-C1), 30.61 (m, PCH(CH3)2), 27.87 (t, 

PCH(CH3)2), 20.37 (s, PCH(CH3)2), 20.27 (s, PCH(CH3)2), 19.74 (s, PCH(CH3)2), 18.65 

(t, PCH(CH3)2). IR (powder), νCO (cm-1): 1990, 1680.  

Anal. Calcd for [4.5a/4.5b]•MeCN, C39H47F6MoN3O9P2S2: C, 45.14; H, 4.56; N, 4.05. 

Found: C, 45.34; H, 4.61; N, 4.04. 

 

Synthesis of [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

benzoquinone]dichlorocarbonylmolybdenum(II) (4.6) 

 

From 4.4: In the glovebox, a schlenk flask was charged with compound 4.4 (0.1712 g, 

0.234 mmol), MeCN (10 mL), and a stir bar, and the flask was brought out to the 

schlenk line. Under a counterflow of N2, PhICl2 (0.1505 g, 0.547 mmol) was added all at 

once as a solid. The reaction became a dark red homogeneous solution with evolution 

of gas. The reaction was stirred under N2 for 1 hour at room temperature, during which 

a large amount of brick-red material had precipitated from solution. The volatiles were 

then removed under reduced pressure and the schlenk flask then returned to the 

MeCN, rt

4.4 4.6
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O O
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(iPr)2P P(iPr)2

O O
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Cl Cl
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glovebox. The residue was triturated with THF (20 mL) and the precipitate collected on 

a glass frit, washing with additional THF (10 mL). The solid was then dried under 

vacuum to afford the desired product as a brick-red powder in 87.5% yield (0.6621 g). 

Spectroscopic data can be found below. 

 

From 4.1-SiMe2: In the glovebox, a schlenk flask was charged with compound 4.1-

SiMe2 (0.1712 g, 0.234 mmol), MeCN (10 mL), and a stir bar, and the flask was brought 

out to the schlenk line. Under a counterflow of N2, PhICl2 (0.1505 g, 0.547 mmol) was 

added all at once as a solid. The reaction became a dark red homogeneous solution with 

evolution of gas. The reaction was stirred under N2 for 1 hour at room temperature, 

during which a large amount of brick-red material had precipitated from solution. The 

volatiles were then removed under reduced pressure and the schlenk flask then returned 

to the glovebox. The residue was triturated with THF (20 mL) and the precipitate 

collected on a glass frit, washing with additional THF (10 mL). The solid was then dried 

under vacuum to afford the desired product as a brick-red powder in 87.5% yield 

(0.6621 g). Crystals suitable for X-ray diffraction were grown via layering of pentane 

onto a saturated solution of the compound in DCM. 1H NMR (300 MHz, CD2Cl2 , 25 

°C), δ(ppm): 7.62 (m, 4 H, Ar-CH), 7.55 (m, 2 H, Ar-CH), 7.47 (m, 2 H, Ar-CH), 7.45 

(m, 2 H, Ar-CH), 5.93 (s, Ar-C1H), 3.57 (m, 2 H, PCH(CH3)2), 3.13 (m, 2 H, 

MeCN, rt

4.6
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(iPr)2P P(iPr)2

O O
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Cl Cl
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PCH(CH3)2), 1.57 (m, 6H, PCH(CH3)2), 1.48 (m, 6H, PCH(CH3)2), 1.27 (m, 6H, 

PCH(CH3)2), 0.55 (m, 6 H, PCH(CH3)2). 31P NMR (121 MHz, CD2Cl2 , 25 °C), δ(ppm): 

53.48 (s). 13C NMR (125 MHz, C6D6 , 25 °C), δ(ppm): 220.88 (t, Mo-CO), 174.96 (s, Ar-

C3), 143.58 (t, Ar-C4), 133.90 (t, Ar-C9), 130.98 (s, Ar-C5), 130.91 (t, Ar-C8), 129.97 (s, 

Ar-C7), 129.74 (t, Ar-C2), 115.29 (t, Ar-C6), 94.67 (s, Ar-C1), 29.78 (t, PCH(CH3)2), 27.10 

(t, PCH(CH3)2), 20.60 (t, PCH(CH3)2), 20.26 (t, PCH(CH3)2), 19.83 (t, PCH(CH3)2), 

18.84 (m, PCH(CH3)2), 16.34. IR (powder), νCO (cm-1): 1965, 1652. Anal. Calcd for [4.6], 

C31H38MoO3P2: C, 54.16; H, 5.57. Found: C, 53.40; H, 5.54. 

 

Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-

(diisopropylphosphino)phenyl)-2,3-semicatecholate]tricarbonylmolybdenum(0) 

(4.9) 

 

To a solution of 4.1 (0.0623 g, 0.0924 mmol) in THF (2 mL) was added dropwise a 

solution of BnK (0.0118 g, 0.0906 mmol) in THF (2 mL). Upon complete addition, a 

solution of benzo-15-crown-5 (0.0507 g, 0.189 mmol) in THF (2 mL) and the mixture 

was stirred at room temperature for 30 minutes. The volatiles were then removed under 

b-15-c-5 =
O

O
O

O

O

i) 1 eq BnK
 THF, rt

ii) 2 eq b-15-c-5
THF, rt

4.1

(iPr)2P P( iPr)2

HO OH

Mo
OC

COOC

(iPr)2P P(iPr)2

O OH

Mo
OC

COOC

4.9

[b-15-c-5]2K+
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reduced pressure, and the resulting residue was triturated with Et2O (5 mL) and the 

solid collected on a pad of celite. The solid was then dissolved in benzene (5 mL), 

filtered through celite, and concentrated in vacuo to afford the desired product as an 

orange powder (0.0756 g, 66%). 1H NMR (300 MHz, CD3CN , 25 °C), δ(ppm): 9.22 (s, 

br, 1 H, O–H), 8.04 (d, 8 Hz, 2 H, Ar-CH), 7.91 (d, 8 Hz, 2 H, Ar-CH), 7.38 (t, 8 Hz, 2 

H, Ar-CH), 7.25 (t, 8 Hz, 2 H, Ar-CH), 6.91 (m, 2 H, crown Ar-CH), 6.81 (m, 2 H, 

crown Ar-CH), 5.38 (t, 4.9 Hz, 2 H, quinonoid Ar-C3H), 3.91 (m, 4 H, crown O–CH2), 

3.66 (m, 8 H, crown O–CH2), 3.66 (m, 8 H, crown O–CH2), 3.57 (m, 4 H, crown O–

CH2), 2.93 (m, 2 H, PCH(CH3)2), 2.48 (m, 2 H, PCH(CH3)2), 1.42 (m, 6 H, PCH(CH3)2), 

1.31 (m, 6 H, PCH(CH3)2), 0.96 (m, 6 H, PCH(CH3)2), 0.90 (m, 6 H, PCH(CH3)2). 31P 

NMR (121 MHz, CD3CN , 25 °C), δ(ppm): 51.42 (s). 13C NMR (126 MHz, CD3CN , 25 

°C), δ(ppm): 229.15 (t, 10 Hz, Mo-CO), 216.66 (t, 10 Hz, Mo-CO), 211.78 (t, 10 Hz, 

Mo-CO), 149.80 (s, Ar-C1), 148.65 (s, crown Ar-C–O), 133.03 (s, Ar-CH), 132.29 (s, Ar-

CH), 131.73 (s, Ar-CH), 130.73 (s, Ar-CH), 128.59 (s, Ar-CH), 126.62 (s, Ar-CH), 

124.95 (s, Ar-CH), 122.43 (s, crown Ar-CH), 120.19 (s, Ar-C), 114.32 (s, crown Ar-CH), 

86.58 (s, C3), 69.49 (s, crown O–CH2), 68.75 (s, crown O–CH2), 68.26 (s, crown O–

CH2), 67.91 (s, crown O–CH2), 34.65 (t, PCH(CH3)2), 31.16 (t, PCH(CH3)2),  20.31 (t, 

PCH(CH3)2), 19.92 (t, PCH(CH3)2), 19.53 (s, PCH(CH3)2), 19.52 (s, PCH(CH3)2). IR 

(THF), νCO (cm-1): 1875, 1605. Anal. Calcd for [4.9], C61H79KMoO15P2: C, 58.65; H, 6.37. 

Found: C, 57.33; H, 6.10. 
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Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-bromophenyl)-2,3-

semicatecholate] (4.10) 

 

To a solution of 4.8 (0.0998 g, 0.238 mmol) in THF (2 mL) was added dropwise a 

solution of BnK (0.0309 g, 0.237 mmol) in THF (2 mL). Upon complete addition, a 

solution of benzo-15-crown-5 (0.1351 g, 0.504 mmol) in THF (2 mL) and the mixture 

was stirred at room temperature for 30 minutes. The volatiles were then removed under 

reduced pressure, and the resulting residue was triturated with Et2O (5 mL) and the 

solid collected on a pad of celite. The solid was then dissolved in benzene (5 mL), 

filtered through celite, and concentrated in vacuo to afford the desired product as an 

orange powder (0.1213, 51%). 1H NMR (300 MHz, CD3CN , 25 °C), δ(ppm): 9.22 (s, br, 

1 H, O–H), 8.04 (d, 8 Hz, 2 H, Ar-CH), 7.91 (d, 8 Hz, 2 H, Ar-CH), 7.38 (t, 8 Hz, 2 H, 

Ar-CH), 7.25 (t, 8 Hz, 2 H, Ar-CH), 6.91 (m, 2 H, crown Ar-CH), 6.81 (m, 2 H, crown 

Ar-CH), 5.38 (t, 4.9 Hz, 2 H, quinonoid Ar-C3H), 3.91 (m, 4 H, crown O–CH2), 3.66 

(m, 8 H, crown O–CH2), 3.66 (m, 8 H, crown O–CH2), 3.57 (m, 4 H, crown O–CH2), 

2.93 (m, 2 H, PCH(CH3)2), 2.48 (m, 2 H, PCH(CH3)2), 1.42 (m, 6 H, PCH(CH3)2), 1.31 

(m, 6 H, PCH(CH3)2), 0.96 (m, 6 H, PCH(CH3)2), 0.90 (m, 6 H, PCH(CH3)2). 31P NMR 

i) 1 eq BnK
 THF, rt

ii) 2 eq b-15-c-5
THF, rt

4.8

Br Br

HO OH

Br Br

O OH
4.10

[b-15-c-5]2K+

b-15-c-5 =
O

O
O

O

O
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(121 MHz, CD3CN , 25 °C), δ(ppm): 51.42 (s). 13C NMR (126 MHz, CD3CN , 25 °C), 

δ(ppm): 228.21 (t, 10 Hz, Mo-CO), 215.71 (t, 10 Hz, Mo-CO), 210.83 (t, 10 Hz, Mo-

CO), 148.86 (s, Ar-C1), 147.70 (s, crown Ar-C–O), 132.09 (m), 131.35 (s, Ar-CH), 

130.79 (s, Ar-CH), 129.78 (s, Ar-CH), 127.64 (s, Ar-CH), 125.68 (s, Ar-CH), 124.00 (s, 

Ar-CH), 121.48 (s, crown Ar-CH), 113.37 (s, crown Ar-CH), 85.63 (s, C3), 68.55 (s, 

crown O–CH2), 67.81 (s, crown O–CH2), 67.32 (s, crown O–CH2), 66.96 (s, crown O–

CH2), 33.70 (t, PCH(CH3)2), 30.22 (t, PCH(CH3)2),  19.37 (t, PCH(CH3)2), 18.98 (t, 

PCH(CH3)2), 18.58 (s, PCH(CH3)2), 18.57 (s, PCH(CH3)2). Anal. Calcd for [4.3], 

C46H51Br2KO12: C, 55.54; H, 5.17. Found: C, 54.15; H, 5.33. 
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General procedure for determining the pKa of compounds 4.1, 4.2, 4.3 and 4.8 

 

The pKa values for compounds 4.1, 4.2, 4.3, and 4.8 were determined via 1H NMR 

spectroscopy and are the average of triplicate self-consistent trials, as has been 

described previously.[17] The compound of interest was combined with an acid or base 

of known pKa and the equilibrium populations were determined via 1H NMR 

spectroscopy. All compounds exhibit rapid proton exchange on the NMR time-scale, 

such that the chemical shift can be used to determine the mole fraction of the species in 

solution via the equation χA = (δeq – δA)/(δA – δB), where χA is mole fraction of the acid, 

δe is the equilibrium chemical shift and δA and δB are the chemical shifts of the pure 

acid and the pure conjugate base, respectively. The value of χA was determined using 

well-resolved 1H NMR signals, with good agreement observed between the independent 

calculations. The value used to determine the equilibrium concentration was the average 

of the independent caluclations. Once the equilibrium concentrations were determined, 

the equilibrium constant between the compound of interest and the acid/base of known 

pKa was determined, and by using Hess’s law the pKa of the Mo complex (or 4.8) was 

determined. The following acids/bases were used to determine the unknown pKa’s: 4-

tert-butylphenol (pKa = 27.45) for compound 4.1 and 4.8; [2,2,2]-diazobicyclooctane 

(pKa = 18.60) for compound 4.3; 2-nitroaniline (pKa = 4.80) for compound 4.2. 
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Reactions of 4.1, 4.2 and 4.8 with azobenzene and TEMPO 

 

4.1 and TEMPO: Compound 4.1 (0.0295 g, 0.0437 mmol) and TEMPO (0.0147 g, 

0.0941 mmol) were combined in CD3CN (0.6 mL) in a 1 dram vial and thoroughly 

mixed for 30 seconds until all of 4.1 had solubilized and the color had darkened from 

pale orange to red-orange. The solution was then transferred to an NMR tube and the 

1H and 31P NMR spectra were recorded (Figure C4.21). 

 

2 and TEMPO: Compound 2 (0.0225 g, 0.0238 mmol) and TEMPO (0.0082 g, 0.0525 

mmol) were combined in CD3CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 

seconds until all of 2 had solubilized and the color had darkened from pale orange to 

red-orange. The solution was then transferred to an NMR tube and the 1H and 31P 

NMR spectra were recorded (Figure C4.22). 

 

4.8 and TEMPO: Compound 4.8 (0.0412 g, 0.0981 mmol) and TEMPO (0.0299 g, 0.191 

mmol) were combined in CD3CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 

seconds until all of 4.8 had solubilized. No color change was observed. The solution 

was then transferred to an NMR tube and the 1H and 31P NMR spectra were recorded 

(Figure C4.23). 

 

4.1 and azobenzene: Compound 4.1 (0.0226 g, 0.0335 mmol) and azobenzene (0.0070 g, 

0.0384 mmol) were combined in CD3CN (0.6 mL) and the resulting suspension was 
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transferred to a J-young style NMR tube. The tube was then heated to 80 °C, 

monitoring by 1H and 31P NMR spectra over time (Figure C4.24). 

 

4.2 and azobenzene: Compound 4.2 (0.0199 g, 0.0211 mmol) and azobenzene (0.0046 g, 

0.0252 mmol) were combined in CD3CN (0.6 mL) and the resulting solution was 

transferred to a J-young style NMR tube. The tube was then heated to 80 °C, 

monitoring by 1H and 31P NMR spectra over time (Figure C4.25). 

 

4.8 and azobenzene: Compound 4.8 (0.0367 g, 0.0874 mmol) and azobenzene (0.0167 g, 

0.0916 mmol) were combined in CD3CN (0.6 mL) and the resulting solution was 

transferred to a J-young style NMR tube. The tube was then heated to 80 °C, 

monitoring by 1H and 31P NMR spectra over time. 
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Refinement Details  

In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, 

then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-

ray tube, Kα = 0.71073 Å) or a Bruker PHOTON100 CMOS based diffractometer (Mo 

micro-focus sealed X-ray tube, Kα = 0.71073 Å). All diffractometer manipulations, 

including data collection, integration, and scaling were carried out using the Bruker 

APEXII software.[27] Absorption corrections were applied using SADABS.[28] Space 

groups were determined on the basis of systematic absences and intensity statistics and 

the structures were solved by direct methods using XS[29], by intrinsic phasing using XT 

(incorporated into SHELXTL), or by charge flipping using Olex2[30] and refined by full-

matrix least squares on F2. All non-hydrogen atoms were refined using anisotropic 

displacement parameters. Hydrogen atoms were placed in the idealized positions and 

refined using a riding model. The structures were refined (weighed least squares 

refinement on F2) to convergence. Graphical representation of structures with 50% 

probability thermal ellipsoids was generated using Diamond visualization software.[31] 
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Table 4.2.  Crystal and refinement data for complexes 4.3•0.5DMF and 4.5a•2NCMe. 

 4.3•0.5DMF  4.5a•2NCMe 
Empirical formula C34.5H42.5F3MoN0.5O7.5P2S C39H50F12MoN4O3P2Sb2 

Formula weight 831.18 g/mol 1252.23 g/mol 
T (K) 100 100 
a, Å 30.285(3) 10.005(1) 
b, Å 26.445(2) 27.668(2) 
c, Å 17.945(1) 19.306(1) 

  α, deg 90 90 
 β, deg 93.729(2) 94.925(3) 
 γ, deg 90 90 

Volume, Å3 14341(2) 5324.3(5) 
Z 4 4 

Crystal system Monoclinic Monoclinic 
Space group P21/c P21/n 
dcalc, g/cm3 1.407 1.562 

 θ range, deg 2.18-33.14 1.29-38.57 
µ, mm-1 0.573 1.377 

Abs. Correction Semi-empirical Semi-empirical 
GOF 1.057 1.132 

R1
 ,a wR2

 b 
[I>2 σ(I)] 

0.0872, 0.1294 0.0409, 0.1502 

a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo
2-Fc

2)2]/∑[w(Fo
2)2]1/2. 
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Table 4.3.  Crystal and refinement data for complexes  4.5b and  4.6. 
 4.5b 4.6 

Empirical formula C37H44F6MoN2O9P2S2 C31H38Cl2MoO3P2 
Formula weight 996.74 g/mol 687.39 g/mol 

T (K) 100 100 
a, Å 11.3464(4) 16.255(1) 
b, Å 21.2519(8) 16.255(1) 
c, Å 17.4117(7) 22.205(2) 

  α, deg 90 90 
 β, deg 94.171(1) 90 
 γ, deg 90 90 

Volume, Å3 4187.4(3) 5866.9(5) 
Z 4 8 

Crystal system Monoclinic Orthorhombic 
Space group P21/n Pbca 
dcalc, g/cm3 1.581 1.556 

 θ range, deg 2.629-43.71 1.83-45.29 
µ, mm-1 0.571 0.771 

Abs. Correction Semi-empirical Semi-empirical 
GOF 1.025 0.954 

R1
 ,a wR2

 b 
[I>2 σ(I)] 

0.0496, 0.0741 0.0338, 0.0868 

a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo
2-Fc

2)2]/∑[w(Fo
2)2]1/2. 
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Figure 4.3. Structural drawing of 4.3•0.5DMF with 50% probability ellipsoids. 

Hydrogen atoms, solvent molecules, and additional three Mo complexes and three 

triflate anions of the asymmetric unit are omitted for clarity. Carbon and fluorine atoms 

are shown in black and green, respectively. 

 

Special Refinement Details for 4.3: A triflate anion and a DMF solvent molecule 

were positionally disordered. Both were satisfactorily modeled as approximately 50:50 

mixtures using “PART”, “SAME”, and “EADP” cards in SHELX. 
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Figure 4.4. Structural drawing of 4.5a•2NCMe with 50% probability ellipsoids. 

Hydrogen atoms and solvent molecules are omitted for clarity. Carbon and fluorine 

atoms are shown in black and green, respectively. 

 

Special Refinement Details for 4.5a: Two acetonitrile solvent molecules were highly 

disordered and could not be adequately modeled even with constraints. The electron 

density of these molecules was removed using the “solvent mask” function in Olex2. 
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Figure 4.5. Structural drawing of 4.5b with 50% probability ellipsoids. Hydrogen atoms 

are omitted for clarity. Carbon and fluorine atoms are shown in black and green, 

respectively. 
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Figure 4.6. Structural drawing of 4.6 with 50% probability ellipsoids. Hydrogen atoms 

are omitted for clarity. Carbon atoms are shown in black. 
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E–X BOND ACTIVATION AND OTHER REACTIVITY 
E–X Bond Activation and Small Molecule Reactivity Facilitated by Molybdenum 

Quinonoid Complexes  
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ABSTRACT   

  Mo-quinonoid complexes with coordinatively unsaturated or substitutionally labile 

ligands were targeted for inner-sphere small molecule reactivity. Mo0-quinone 

compound 5.6a demonstrated a labile MeCN ligand that could be displaced by 

nucleophiles such as azide. Compound 5.6a was also found to react with Me3SiCl, H2, 

and PhSiH3 to yield Mo–Cl and Mo–H products. Compound 5.6a proved effective as a 

hydrosilylation pre-catalyst for various aldehydes. Initial investigations suggest a Lewis-

base catalyzed mechanism.   
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INTRODUCTION 

  Metal-ligand cooperativity can lead to interesting and diverse reactivity,[1] with 

activation of small molecules such as H2 or silane across metal-ligand bonds well 

documented.[2] Shvo’s catalyst is an unusual subset of such complexes in that the small 

molecule activation occurs across a ligand that is bound orthogonal to the metal.[3] A 

similar class of transition metal complexes are the quinonoid complexes.[4] While π-

bound transition metal quinonoid complexes have been previously studied, they 

typically are coordinatively saturated by cyclopentadienyl or carbonyl ligands, thus 

prohibiting inner-sphere bond activation. We have recently reported the synthesis of a 

series of π-bound Mo0-quinonoid complexes and demonstrated their ability to transfer 

two H+ (as well as R2Si2+, ArB2+, and Me+) and two electrons to O2. Herein we report 

the activation of E–X bonds across a Mo-quinonoid fragment and demonstrate catalytic 

hydrosilylation of aldehydes. 
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RESULTS AND DISCUSSION   

Scheme 5.1. Synthesis of Mo0-catecholate compounds 5.2 and 5.4a,b. 

 

In an effort to access reduced Mo-quinonoid complexes with coordinately unsaturated 

metal centers or substitutionally labile metal-bound ligands, chemical reduction of 

oxidized compounds 5.1 and 5.3 were pursued (Scheme 5.1). Treatment of 5.1 with 2 

equivalents of Cp2Co followed by quenching with excess Me3SiCl results in reduction of 

the quinonoid moiety from (formally) quinone to catecholate. Reduction results in a 

haptotropic shift of the metal-quinonoid interaction from η4 to η6 concomitant with 

dissociation of a phosphine ligand, as evidenced by the asymmetric 1H and 31P NMR 

spectra, suggestive of a C1 symmetric product. The 31P NMR spectrum reveals two 

singlets, the downfield peak at ca. 95 ppm assigned as Mo-bound phosphine, and the 

upfield peak at ca. -1 ppm consistent with unbound phosphine. Additionally, the 1H 

NMR spectrum reveals a doublet and a doublet of doublets in the quinonoid C–H 

region each integrating to 1 H, assigned as coupling between two chemically distinct 

protons (3JHaHb = 5.6 Hz), as well as coupling to phosphine (3JPH = 1.8 Hz), consistent 
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with the assigned asymmetric product. The 1H and 31P NMR spectra are also consistent 

with the analogous parent compound recently reported. 

Starting from the more oxidized MoII-quinone compound 5.3, four-electron reduction 

to Mo0-catecholate can be achieved using four equivalents of sodium naphthalenide in 

THF, followed by quenching with excess Me3SiCl or Me2SiCl2 to afford the CS 

symmetric products 5.4a and 5.4b, respectively. As in 5.2, reduction results in a 

haptotropic shift of the metal-quinonoid interaction from η4 to η6, while loss of 

chloride rather than phosphine yields the coordinatively satured mono-carbonyl 

compounds 5.4a and 5.4b. The 1H and 31P NMR spectra of 5.4a and 5.4b are also 

consistent with the analogous parent compound previously reported. These results 

suggest that for the reduced quinonoid fragment (catechol/catecholate), the η6 metal-

quinonoid interaction is favored over η4 or η2, and in the resulting Mo-carbonyl 

products (5.2, 5.4a,b) the metal remains coordinatively saturated. Thus, it is postulated 

that maintaining the η4 Mo-quinonoid interaction may facilitate access to a 

coordinatively unsaturated metal center. 

Scheme 5.2. Synthesis of Mo0-quinone complex 5.6a. 

 

Two-electron reduction of the MoII-quinone species 5.5a,b can be achieved with two 

equivalents of Cp2Co to yield the formally Mo0-quinone products 5.6a,b (Scheme 5.2). 

The reduction initially yields a mixture of two products as determined by 31P NMR 
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spectroscopy, analogous to the two isomers of starting material 5.5a,b. This mixture 

can be thermally converted to a single isomer over the course of several minutes at 80 

°C, or alternatively after pumping down the solution and workup, with compound 5.6a 

isolated as the single product. An XRD study of compound 5.6a is presented in Figure 

5.1. Upon two-electron reduction, the quinonoid C–O bond lengths increase only 

slightly from 1.22 Å in 5.5a to 1.24 Å in 5.6a, consistent with C–O double bonds and 

formal assignment as Mo0-quinone. 



 

153 

  

Figure 5.1. Solid-state structures of 5.6a, 5.7, 5.8 and 5.9- with 50% probability thermal 

ellipsoids. Solvent molecules, hydrogen atoms (except hydride in 5.7), and outer-sphere 
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cations are omitted for clarity. Carbon atoms are depicted in black. Select bond distances are 

given in Å. 

Scheme 5.3. Reactivity of 5.6 with N3
-, Me3SiCl, and H2. 

 

The MeCN ligand in compound 5.6a was found to be labile and readily substituted 

with azide upon reaction with [nBu4N+][N3
-] to yield 5.9. Reactivity of compound 5.6a 

was expanded to neutral small molecules, with Me3SiCl yielding the Mo-Cl compound 

5.8.  Next, reactivity with H2 was investigated. It was found that in C6D6 5.6a reacts 

with excess H2 in minutes to yield a single new species 5.7, resonating as a singlet at ca. 

96 ppm in the 31P NMR spectrum. The 1H NMR spectrum of 5.7 exhibits an upfield 

triplet (2JHP = 72 Hz) at ca. -2.4 ppm, as well as a broad downfield singlet at ca. 8.8 ppm, 

each integrating as 1 H, assigned to Mo-hydride and quinonoid O–H moieties, 

respectively. The solid state structure confirms the spectroscopic assignments, revealing 

one short quinonoid C–O bond (1.26 Å) and one long quinonoid C–O bond (1.33 Å), 

consistent with the hydride semiquinone assignment. Reaction of 5.6a with H2 to yield 
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5.7 formally involves intramolecular reduction of the quinonoid moiety by the metal 

center and heterolytic cleavage of H2 across the Mo-quinonoid fragment. This type of 

H2 reactivity is reminiscent of Shvo’s catalyst and the pyridine diphosphine systems 

studied by Milstein and coworkers, in that the (formally) proton resulting from H2 

heterolysis is accepted by an atom of the ligand not directly bound to the metal center 

facilitated by electron movement through the ligand framework.  

Scheme 5.4. Proposed reactivity of 5.6a with PhSiH3 in C6H6. 

 

Compound 5.7 was found unreactive toward (de)hydrogenation chemistry, thus 

reactivity of 5.6a with other E–X bonds was investigated. It was found that 5.6a reacts 

with PhSiH3 in C6H6 at room temperature to yield a major new species spectroscopically 

similar to 5.7. This new compound exhibits a singlet by 31P NMR spectroscopy at ca. 94 

ppm and a triplet (2JHP = 70 Hz) in the 1H NMR spectrum at ca. -2.6 ppm, consistent 

with formation of a hydride-semiquinone product. In analogy to 5.7, initial Si–H 

activation is assumed to yield 5.11 (Scheme 5.4). In the case of 5.11, coordination of the 

semiquinone C=O moiety to give a 5-coordinate hypervalent silicon center is 

anticipated to activate the remaining Si–H bonds for further reactivity. Reaction of 5.11 

with a second equivalent of 5.6a is postulated to yield the 6-coordinate hypervalent 

silicon di-Mo complex 5.12. The remaining Si–H bond in 5.12 is anticipated to be even 

more activated compared to 5.11, and in the absence of other suitable electrophiles may 
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react with Mo species in solution resulting in decomposition. After 2 hours at room 

temperature, a new singlet appears in the 31P NMR spectrum at ca. -2.5 ppm consistent 

with unbound phosphine, corresponding to ca. 25% of material, with further growth of 

this peak over longer periods of time. 

Table 5.1.  Summary of benzaldehyde hydrosilylation reactivity. 

 

Entry R Precatalyst Solvent Temperature 
(°C) 

Time 
(hr) 

Conversion 
(%)a	

Ratio 
5.10a/5.10ba 

1 H 5.6a C6D6 20 48 <5 - 
2 H 5.6a C6D6 80 24 100 12 
3 CF3 5.6a C6D6 80 12 100 14 
4 CF3 5.6a 9:1 

C6D6:CD3CN 

20 12 54 3.2 
5 CF3 5.6a 3:1 

C6D6:CD3CN 

20 12 65 3.0 
6 CF3 5.6a 1:1 

C6D6:CD3CN 

20 12 80 4.1 
7 CF3 5.6a 1:3 

C6D6:CD3CN 

20 12 94 7.8 
8 CF3 5.6a CD3CN 20 0.5 100 26 
9 H 5.6a CD3CN 20 5 >95 17 

10 NMe2 5.6a CD3CN 20 26 92 13 
11 CF3 5.5a/b CD3CN 80 12 0 - 
12 CF3 5.1 CD3CN 20 24 0 - 
12 CF3 2.2g CD3CN 20 24 0 - 
13 CF3 LiOtBu CD3CN 20 0.25 100 >50 

General conditions: 7.5  µmol of precatalyst, 150  µmol of substrate, and 280  µmol of PhSiH3 were 

combined with 0.5 mL of solvent in J. Young NMR tube, monitoring by 1H NMR spectroscopy over 

time. aDetermined via NMR integration. 

Based on these results, compound 5.6a was investigated for catalytic hydrosilylation 

reactivity with substituted benzaldehydes (see Table 5.1). Initial reactions in C6D6 

revealed negligible conversion at room temperature (Entry 1), but full conversion at 80 

°C over the course of hours (Entry 2 and 3). Next, it was found that switching the 

PhSiH3    +
R

O

0.05 precatalyst

conditions
1.2 eq 1.0 eq

PhSiH2OCH2Ar + PhSiH(OCH2Ar)2

5.10a 5.10b
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solvent to MeCN resulted in complete conversion within 30 minutes at room 

temperature (Entry 8). It was observed that modest conversion at room temperature 

could be achieved in C6D6 with the addition of MeCN (Entry 4), while increasing the 

ratio of MeCN to benzene results in increasing conversion (Entries 4–8). Electron 

withdrawing substituents were found to accelerate reactivity, while electron donating 

groups were found to slow reactivity (Entries 8–10). Finally, compounds 5.5a/b, 5.1, 

and 2.2g were found to be ineffectual precatalysts under these conditions (Entries 11–

13), while the strong Lewis base LiOtBu demonstrated catalytic competency (Entry 14). 

Additionally, while 5.6a demonstrates Si–H activation in C6D6 to yield a Mo–H species 

as evidenced by 1H NMR spectroscopy, no Mo–H resonance is observed in CD3CN. 

Scheme 5.5. Proposed reactivity of 5.12 with aldehyde. 

 

Based on these results, two different Lewis base-catalyzed mechanisms for 

hydrosilylation are proposed for compound 5.6a. The first mechanism which is 

operative in the absence of acetonitrile involves sequential Si–H bond activations to 

yield putative compound 5.12, which contains an activated Si–H bond (Scheme 5.4). 

Compound 5.12 is proposed to react with aldehyde to generate the cation 5.13 (Scheme 

5.5) and an alkoxide, the latter facilitating Lews base-catalyzed hydrosilylation. Indeed, 

small crystals grown from the catalytic mixture of 5.6a/PhSiH3/PhC(O)H (Table 5.1, 
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Entry 2) were found to be suitable for x-ray diffraction. The XRD study revealed the 

cationic structure of 5.13 (Figure 5.2), suggesting the loss of hydride from the proposed 

5.12. This proposed mechanism would also be consistent with the observation that 

addition of MeCN increases conversion, as increasing the polarity of the reaction 

medium would favor the formation of the charged 5.13 and alkoxide species. 

 

Figure 5.2. Solid-state structure of cation 5.13 with 50% probability thermal ellipsoids. 

Solvent molecules, hydrogen atoms (except hydrides), and outer-sphere anion omitted for 

clarity. Carbon atoms are depicted in black. 

 

 

 

5.13+ 



 

159 

Scheme 5.6. Proposed reactivity of 5.6a with PhSiH3 in MeCN. 

 

Alternatively, no evidence has been observed to suggest that Si–H bond activation 

occurs in MeCN, thus it is proposed that 5.6a acts as nucleophile directly through redox 

tautomer 5.6a’ (Scheme 5.7). Nucleophilic attack of 5.6a’ on PhSiH3 would generate the 

zwitter-ion 5.13, which is proposed to be the active hydrosilylation species. In either 

case, it is proposed that the active catalyst is generated through coordination of the 

quinonoid oxygen atoms to the Si center of the silane, which generates more hydridic 

Si–H bonds. In the absence of MeCN, it is proposed that the activated Si–H bond 

transfers the hydride to Mo to yield first 5.11 then 5.12. While in the presence of MeCN 

the activated Si–H bond may still react with the metal center (as unidentified species are 

generated over time as observed by 31P NMR spectroscopy), it is proposed that direct 

reactivity with substrate occurs due to lack of MeCN dissociation from the metal center. 
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CONCLUSIONS 

In summary, Mo0- and MoII-quinone compounds were successfully reduced by two- 

and four-electrons, respectively, to yield coordinatively saturated Mo0-catecholate 

species. Selective two-electron reduction of a MoII-quinone complex was found to 

afford a Mo0-quinone complex with a substitutionally labile MeCN ligand. Compound 

5.6a was shown to react with Me3SiCl, PhSiH3, and H2 to yield Mo–Cl and Mo–H 

products, demonstrating the first examples of E–X bond activation in π-bound Mo- 

quinonoid complexes. Compound 5.6a was also shown to be an active pre-catalyst for 

the hydrosilylation of aldehydes, with initial studies suggesting a Lewis base-catalyzed 

mechanism. 
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EXPERIMENTAL SECTION 

General Considerations 

Unless indicated otherwise, reactions performed under inert atmosphere were carried 

out in oven-dried glassware in a glovebox under a nitrogen atmosphere purified by 

circulation through RCI-DRI 13X-0408 Molecular Seives 13X, 4x8 Mesh Beads and 

BASF PuriStar® Catalyst R3-11G, 5x3 mm (Research Catalysts, Inc.). Solvents for all 

reactions were purified by Grubbs’ method.[6] C6D6 was purchased from Cambridge 

Isotope Laboratories and vacuum distilled from sodium benzophenone ketyl. CD3CN, 

was also purchased from Cambridge Isotope Laboratories and distilled from CaH2 prior 

to use. Alumina and Celite were activated by heating under vacuum at 200 °C for 24 

hours. 1H and 31P NMR spectra were recorded on Varian Mercury 300 MHz 

spectrometers at ambient temperature, unless denoted otherwise. 1H NMR chemical 

shifts are reported with respect to internal solvent: 7.16 ppm for C6D6, and 1.94 ppm 

for CD3CN, respectively. 31P NMR chemical shifts are reported with respect to an 

external standard of 85% H3PO4 (0.0 ppm).  

Unless otherwise noted all chemical reagents were purchased from commercial 

sources and used without further purification. 

 

 

 

 



 

162 

Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

bis(trimethylsilyl)catechol)]dicarbonylmolybdenum(0) (5.2) 

 

A solution of Cp2Co (0.0309 g, 0.163 mmol) in THF (ca. 2 mL) was added to a stirred 

suspension of 5.1 (0.0503 g, 0.0780 mmol) in THF (ca. 3 mL). The mixture was stirred 

for 5 minutes at room temperature, generating a homogeneous solution. Me3SiCl (0.100 

mL,  0.788 mmol) was added neat, immediately generating a light precipitate. After 

stirring for 30 minutes at room temperature, the heterogeneous mixture was filtered 

through celite and the filtrate concentrated under vacuum. The residue was 

reconstituted in C6H6 (ca. 4 mL) , filtered through celite, and again concentrated under 

vacuum to yield 0.0542 g (88%) of the desired product. 1H NMR (300 MHz, C6D6, 25 

°C), δ(ppm): 7.92 (m, 1 H, Ar-CH), 7.27 (m, 2 H, Ar-CH), 6.94-7.11 (m, 5 H, Ar-CH), 

4.89 (d, JHH’ = 5.6 Hz, 1 H, Ar-C1H), 4.02 (dd, JHH’ = 5.6 Hz , JHP = 1.8 Hz, 1 H, Ar-

C1’H), 2.57 (m, 1 H, PCH(CH3)2), 2.32 (m, 1 H, PCH(CH3)2), 2.10 (m, 1 H, PCH(CH3)2), 

1.75 (m, 1 H, PCH(CH3)2), 1.32 (m, 6 H, PCH(CH3)2), 1.14 (m, 9 H, PCH(CH3)2), 0.97 

(m, 3 H, PCH(CH3)2), 0.86 (m, 3 H, PCH(CH3)2), 0.28 (m, 9 H, Si(CH3)3), 0.12 (m, 9 H, 

Si(CH3)3). 31P NMR (121 MHz, C6D6, 25 °C), δ(ppm): 94.70 (s, Mo-P), -1.26 (s, 

unbound P).  
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Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

dimethylsilylene)catechol)]carbonylmolybdenum(0) (5.4a) 

 

A dark green solution of Na[C10H8] was generated by stirring naphthalene (0.0203 g, 

0.158 mmol) in THF (ca. 2 mL) over Na mirror for 30 minutes. The Na[C10H8] solution 

was then added to a stirred suspension of 5.3 (0.0199 g, 0.0309 mmol) in THF (ca. 3 

mL). The mixture was stirred for 60 minutes at room temperature, generating a 

homogeneous solution. Me2SiCl2 (0.0260 g,  0.201 mmol) was then added neat, 

immediately generating a light precipitate. After stirring for 30 minutes at room 

temperature, the heterogeneous mixture was filtered through celite and the filtrate 

concentrated under vacuum. The residue was reconstituted in C6H6 (ca. 4 mL) , filtered 

through celite, and again concentrated under vacuum to yield 0.0445 g of the desired 

product with naphthalene as an orange solid. 1H NMR (300 MHz, C6D6, 25 °C), δ(ppm): 

7.4 (d, 7 Hz, 2 H, Ar-CH), 7.28 (m, 2 H, Ar-CH), 7.0-7.15 (m, 4 H, Ar-CH), 4.34 (t, JHP 

= 1.8 Hz, 2 H, Ar-C1H), 2.53 (m, 2 H, PCH(CH3)2), 2.18 (m, 2 H, PCH(CH3)2), 1.41 (m, 

6 H, PCH(CH3)2), 1.10 (m, 12 H, PCH(CH3)2), 0.97 (m, 6 H, PCH(CH3)2), 0.50 (m, 3 H, 

Si(CH3)), 0.14 (m, 3 H, Si(CH3)). 31P NMR (121 MHz, C6D6, 25 °C), δ(ppm): 82.60 (s).  
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Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

bis(trimethylsilyl)catechol)]carbonylmolybdenum(0) (5.4b) 

 

A dark green solution of Na[C10H8] was generated by stirring naphthalene (0.0203 g, 

0.158 mmol) in THF (ca. 2 mL) over Na mirror for 30 minutes. The Na[C10H8] solution 

was then added to a stirred suspension of 5.3 (0.0190 g, 0.0295 mmol) in THF (ca. 3 

mL). The mixture was stirred for 60 minutes at room temperature, generating a 

homogeneous solution. Me3SiCl (0.0210 g,  0.193 mmol) was then added neat, 

immediately generating a light precipitate. After stirring for 30 minutes at room 

temperature, the heterogeneous mixture was filtered through celite and the filtrate 

concentrated under vacuum. The residue was reconstituted in C6H6 (ca. 4 mL) , filtered 

through celite, and again concentrated under vacuum to yield 0.0479 g of the desired 

product with naphthalene as an orange solid. 1H NMR (300 MHz, C6D6, 25 °C), δ(ppm): 

7.4 (d, 7 Hz, 2 H, Ar-CH), 7.28 (m, 2 H, Ar-CH), 7.0-7.15 (m, 4 H, Ar-CH), 4.34 (t, JHP 

= 1.8 Hz, 2 H, Ar-C1H), 2.53 (m, 2 H, PCH(CH3)2), 2.18 (m, 2 H, PCH(CH3)2), 1.41 (m, 

6 H, PCH(CH3)2), 1.10 (m, 12 H, PCH(CH3)2), 0.97 (m, 6 H, PCH(CH3)2), 0.50 (m, 3 H, 

Si(CH3)), 0.14 (m, 3 H, Si(CH3)). 31P NMR (121 MHz, C6D6, 25 °C), δ(ppm): 80.77 (s).  
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Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

quinone)]molybdenum(0)carbonyl(acetonitrile) (5.6) 

 

Compound 5.5 (0.2321 g, 0.233 mmol) and Cp2Co (0.0867 g, 0.458 mmol) were 

combined in MeCN (ca. 10 mL) in a Schlenk tube charged with a stir bar and fitted with 

a Teflon valve. The tube was sealed and heated to 80 °C for 1 hour. After cooling to 

room temperature, the volatiles were removed under vacuum. The residue was triturated 

with Et2O (ca. 5 mL), and the precipitate filtered over celite. The precipitate was then 

extracted with C6H6 (ca. 10 mL), filtered through celite, and the filtrate concentrated 

under vacuum to yield 0.1101 g (70%) of the desired product as a dark red powder. 

Crystals suitable for x-ray diffraction were grown via vapor diffusion of Et2O into a 

concentrated MeCN solution of a 1:1 mixture of 5.6a and PhNHNHPh. 1H NMR (300 

MHz, C6D6, 25 °C), δ(ppm): 7.92 (m, 2 H, Ar-CH), 7.22 (m, 2 H, Ar-CH), 7.05-7.12 (m, 

4 H, Ar-CH), 4.29 (s, 2 H, Ar-C1H), 2.63 (m, 2 H, PCH(CH3)2), 2.13 (m, 2 H, 

PCH(CH3)2), 1.74 (s, 3 H, NCCH3), 1.52 (m, 6 H, PCH(CH3)2), 0.90-1.10 (m, 18 H, 

PCH(CH3)2). 31P NMR (121 MHz, C6D6, 25 °C), δ(ppm): 80.55 (s).  
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Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

semiquinonate)]molybdenum(II)carbonyl(hydride) (5.7) 

 

Compound 5.6 (0.0212 g, 0.0322 mmol) was solubilized in C6D6 (ca. 0.5 mL) and added 

to a J. Young style NMR tube. The solution was then degassed via three freeze-pump-

thaw cycles, and the headspace was replaced with 4 atmospheres of H2. After inverting 

for 10 minutes at room temperature, quantitative conversion was observed by NMR 

spectroscopy. Crystals suitable for x-ray diffraction were grown upon standing in a 

concentrated MeCN solution. 1H NMR (300 MHz, C6D6, 25 °C), δ(ppm): 8.84 (s, 1 H, 

O–H), 7.30 (m, 2 H, Ar-CH), 7.00-7.10 (m, 6 H, Ar-CH), 5.16 (s, 2 H, Ar-C1H), 2.51 

(m, 4 H, PCH(CH3)2), 1.00-1.30 (m, 24 H, PCH(CH3)2), -2.36 (t, 2JHP = 72 Hz, 1 H, Mo-

H). 31P NMR (121 MHz, C6D6, 25 °C), δ(ppm): 96.02 (s).  
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Synthesis of [(1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-

(trimethylsilyl)semiquinonate)]molybdenum(II)carbonyl(chloride) (5.8) 

 

To a solution of compound 5.6 (0.1976 g, 0.301 mmol) in MeCN (ca. 5 mL) was added 

neat Me3SiCl (0.30 mL, 2.36 mmol). The mixture was stirred at room temperature for 30 

minutes, over which time a precipitate had formed. The volatiles were then removed 

under reduced pressure. The residue was then triturated with MeCN (ca. 3 mL), and the 

precipitate filtered over a pad of celite washing with additional MeCN (ca. 1 mL). The 

remaining purple solid was then solubilized with Et2O (ca. 5 mL), filtered, and 

concentrated under vacuum to afford 0.1988 g (91%) of the desired compound. Crystals 

suitable for x-ray diffraction were grown via vapor diffusion of pentane into a 

concentrated benzene solution. 1H NMR (300 MHz, C6D6, 25 °C), δ(ppm): 8.84 (d, 7.7 

Hz, 2 H, Ar-CH), 7.07 (m, 2 H, Ar-CH), 6.98 (m, 4 H, Ar-CH), 4.31 (s, 2 H, Ar-C1H), 

3.42 (m, 2 H, PCH(CH3)2), 2.57 (m, 2 H, PCH(CH3)2), 1.49 (m, 6 H, PCH(CH3)2), 1.19 

(m, 6 H, PCH(CH3)2), 0.98 (m, 6 H, PCH(CH3)2), 0.39 (s, 9 H, Si(CH3)3). 31P NMR (121 

MHz, C6D6, 25 °C), δ(ppm): 65.57 (s).  
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Refinement Details  

In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, 

then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-

ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-

ray tube, Kα = 0.71073 Å) or a Bruker PHOTON100 CMOS based diffractometer (Mo 

micro-focus sealed X-ray tube, Kα = 0.71073 Å). All diffractometer manipulations, 

including data collection, integration, and scaling were carried out using the Bruker 

APEXII software.[7] Absorption corrections were applied using SADABS.[8] Space 

groups were determined on the basis of systematic absences and intensity statistics and 

the structures were solved by direct methods using XS[9], by intrinsic phasing using XT 

(incorporated into SHELXTL), or by charge flipping using Olex2[10] and refined by full-

matrix least squares on F2. All non-hydrogen atoms were refined using anisotropic 

displacement parameters. Hydrogen atoms were placed in the idealized positions and 

refined using a riding model. The structures were refined (weighed least squares 

refinement on F2) to convergence. Graphical representation of structures with 50% 

probability thermal ellipsoids was generated using Diamond visualization software.[11] 
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Table 5.2.  Crystal and refinement data for complexes 5.6•2(PhNH)2, 5.7•NCMe, and 
[5.9-][Cp2Co+]•3C6H6. 

 5.6•2(PhNH)2 5.7•NCMe [5.9-][Cp2Co+]•3C6H6 

Empirical formula C57H65MoN5O3P2 C33H43MoNO3P2 C58H66CoMoN4O3P2 
Formula weight 1026.06 659.56 1083.96 

T (K) 100(2) 100(2) 100(2) 
a, Å 10.9476(6) 9.0297(6) 16.122(2) 
b, Å 13.9763(7) 13.0226(8) 9.744(1) 
c, Å 19.100(1) 14.8559(9) 33.850(3) 

  α, deg 78.051(2) 110.083(2) 90 
 β, deg 81.673(2) 94.570(3) 94.425(8) 
 γ, deg 67.189(2) 101.936(3) 90 

Volume, Å3 2628.8(2) 1583.5(2) 5301.9(1) 
Z 2 2 4 

Crystal system Triclinic Triclinic Monoclinic 
Space group P-1 P-1 P21/c 
dcalc, g/cm3 1.2962 1.383 1.358 

 θ range, deg 2.23–33.14 1.72–37.78 1.21–38.20 
µ, mm-1 0.358 0.549 0.657 

Abs. Correction Multiscan Multiscan Multiscan 
GOF 1.0441 1.146 0.980 

R1
 ,a wR2

 b [I>2 σ(I)] 0.0521, 0.0738 0.0371, 0.0526 0.0418, 0.1139 
a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo

2-Fc
2)2]/∑[w(Fo

2)2]1/2. 
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Table 5.4.  Crystal and refinement data for complexes 5.8•2C6H6, and [5.13][TfO-]. 
 5.8•2C6H6 [5.13][TfO-]•3.5C6H6 

Empirical formula C37H50ClMoO3P2Si C90H104F3Mo2O9P4SSi 
Formula weight 764.19 659.56 

T (K) 100(2) 100(2) 
a, Å 19.539(1) 9.0297(6) 
b, Å 10.4416(7) 13.0226(8) 
c, Å 37.210(2) 14.8559(9) 

  α, deg 90.022(4) 110.083(2) 
 β, deg 102.173(3) 94.570(3) 
 γ, deg 89.970(3) 101.936(3) 

Volume, Å3 7420.6(8) 1583.5(2) 
Z 8 2 

Crystal system Triclinic Triclinic 
Space group P-1 P-1 
dcalc, g/cm3 1.368 1.383 

 θ range, deg 1.06–30.99 1.72–37.78 
µ, mm-1 0.578 0.549 

Abs. Correction Multiscan Multiscan 
GOF 1.016 1.146 

R1
 ,a wR2

 b [I>2 σ(I)] 0.0572, 0.1611 0.0371, 0.0526 
a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo

2-Fc
2)2]/∑[w(Fo

2)2]1/2. 
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MULTIMETALLIC MO-CU AND MO-MO COMPLEXES SUPPORTED BY A CATECHOL-
DIPHOSPHINE LIGAND 
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ABSTRACT   

  Multimetallic complexes inspired by the carbon monoxide dehydrogenase biological 

active site were designed and synthesized. Supported by the catechol-diphosphine 

ligand, Mo-Cu complexes with 1:1 and 1:2 Mo:Cu ratio were synthesized and 

structurally characterized. The complexes demonstrated no reactivity with CO, but did 

exhibit some reactivity with isocyanide. Initial attempts at reducing the complexes, as 

well as chemically modifying the Mo=O moieties have shown some potential. 
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INTRODUCTION 

    

Figure A.1. Active site of Mo-Cu CODH3 (left) and model complex of CODH with 

bridging sulfides4 (right). 

Carbon Monoxide Dehydrogenase (CODH) is a metalloenzyme that reversibly 

oxidizes CO to generate CO2 in bacteria and archaea. There are two forms of CODH, 

the Ni-Fe CODH isolated from Carboxydothermus hydrogenoformans1 and the Mo-Cu 

CODH isolated from Oligotropha carboxidovorans2. The active site of Mo-Cu CODH 

contains a five-coordinate pterin-bound Mo-dioxo (oxo-hydroxo) center bound to a Cu-

cysteinate center through a bridging sulfide (see Figure 1). Several synthetic mimics3,4 of 

this active site have successfully incorporated Mo-oxo centers with CuI moieties 

through bridging sulfides, though reactivity with CO or isocyanide has yet to be 

demonstrated. Model systems of similar Mo and W metalloenzyme active sites 

incorporating oxo and dithiolate ligands have demonstrated catalytically accessible 

MoIV/MoVI couples through oxo-transfer reagents such as phosphines and thioethers, 

though there has been no reported reactivity with CO/CO2 or isocyanides/isocyanates 

in these systems5,6. Recently, cyclopentadienyl-diamidate supported Mo- and W-oxo 
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complexes demonstrated degenerate and non-degenerate oxo-transfer with CO/CO2 

and isocyanide/isocyanate substrates via the more reduced MII/MIV couple7.  

 

Figure A.2. Targeted multimetallic CODH model complexes (right) inspired by 

previous catechol-diphosphine complex (left). 

Previously, Lin (Sibo Lin, Quarterly Report January, 2012) demonstrated the synthesis 

of a penta-Ni complex, Ni(catP2Ni2Cl)2, via the catechol-diphosphine ligand H2catP2 

(see Figure 2), where one square-planar NiII center is bound between the oxygen atoms 

of 2 catecholate ligands, and two Ni2Cl moieties are bound by the phosphine donors 

and exhibit interaction with the π-system of the central arene rings. Inspired by this 

multimetallic complex with a hard, high valent NiII bound by the catecholate moiety and 

softer, lower-valent NiI
2 centers bound by the phoshpines, synthesis of multimetallic 

complexes of relevance to the active site of Mo-Cu CODH were envisioned via the bis-

chelating ligand precursor H2catP2 (Figure 2). 

In the case of Mo-Cu systems (M=Mo and M’=Cu in Figure 2) in which CuI is bound 

by the phosphines, interaction between Cu and the π-system of the central arene are not 

strongly anticipated as previous terphenyl-diphosphine CuI complexes synthesized in 

the group have not demonstrated such interactions in solid-state structures. 
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Alternatively, mono- and multi-metallic systems in which a low-valent metal interacts 

with the π-system of the central arene (such as Mo) could potentially access the redox-

non-innocence of the catechol ligand8,9 with the oxygen atoms also serving as potential 

proton relays. This could allow access to chemistry related to proton10 and dinitrogen11 

reduction. 

 

 

 

  



 

178 

RESULTS   

 The synthesis and characterization of catechol-diphosphine ligand H2catP2 has been 

reported previously (Sibo Lin, Quarterly Report January, 2012). Reaction of a 

suspension of H2catP2 in MeCN with 1 equivalent of Cu(MeCN)4OTf resulted in a 

homogeneous, pale yellow solution after stirring for 2 hours at room temperature 

(Figure 3). The product, H2catP2CuOTf, was characterized by 31P nuclear magnetic 

resonance (NMR) spectroscopy, revealing a broad singlet at ca. 9 ppm. This chemical 

shift is consistent with other CuI-para-terphenyl-diphosphine complexes synthesized 

previously in the Agapie group. In the 1H NMR spectrum, a sharp singlet observed at 

6.77 ppm, integrating as two relative to the rest of the spectrum, was assigned as the 

central arene protons. A broad resonance centered at 5.8 ppm was observed and 

assigned as the hydroxyl protons. The remaining aromatic and aliphatic resonances are 

consistent with a C2v symmetric product.  Electron Spray Ionization Mass Spectrometry 

(ESI-MS) data from a solution of H2catP2CuOTf in MeCN reveals a major peak at 557.3 

m/z, consistent with the [H2catP2Cu]+ fragment.  
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Figure A.3. Synthesis of various metal complexes of H2catP2. TBA+ = nBu4N+. 

 Reaction of H2catP2CuOTf with half an equivalent of MoO2(acac)2 and one equivalent 

of NaOtBu in MeCN at room temperature over the course of 30 minutes yields a dark 

red/purple solution (Figure 3). The resulting product, MoO2(catP2Cu)2, was 

characterized by 31P NMR, revealing a broad singlet at 10 ppm. While the 1H NMR 

spectrum is consistent with an overall C2 symmetric molecule, symmetry across the 

catechol-diphosphine ligand has been broken, as evidenced by the two doublets at 6.53 

and 6.28 ppm (J = 7.5 Hz). These resonances, integrating as two relative to the rest of 
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the spectrum, were assigned as the central arene protons. The fact that the 31P NMR 

does not reveal this break in symmetry can be ascribed to the very broad nature of the 

31P resonance bound to Cu. ESI-MS data of a solution of MoO2(catP2Cu)2 in either 

THF or MeCN reveals a major peak at 1241.2 m/z and a minor peak at 1263.2 m/z, 

consistent with the [MoO2(catP2Cu)2 + H]+ and [MoO2(catP2Cu)2 + Na]+ fragments, 

respectively. Purple crystals grown from vapor diffusion of pentane into THF were 

studied by XRD, revealing a six-coordinate cis-dioxo Molybdenum center bound by two 

catechol-diphosphine ligands via the catechol oxygen atoms (Figure 4). Each catechol-

diphosphine ligand is also bound to a three-coordinate CuI center through the 

phosphine atoms, with the coordination sphere of Cu being completed by an interaction 

with the proximal Molybdenum-bound oxo. Bond length anaylsis of the Mo-O and Cu-

O distances is more consistent with an assignment of a Molybdenum-oxo coordinating 

to CuI than a bridging oxo. 
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Figure A.4. Solid-state structure of MoO2(catP2Cu)2. Hydrogen atoms and solvent 

molecules omitted for clarity. Phosphorus, oxygen and carbon atoms depicted in purple, 

red, and grey, respectively. Select bond distances (Å): Cu1–O1 = 2.11; Cu2–O2 = 2.13; 

Mo1–O1 = 1.73; Cu1–O1 = 1.75. 

 Altering the ratio of H2catP2CuOTf and MoO2(acac)2 in the absence of base, a new 

product containing a one-to-one Mo/Cu ratio was isolated. Reaction of H2catP2CuOTf 

with one equivalent of MoO2(acac)2 in neat DME at room temperature over the course 

of several hours yields a dark green/black solution. After removing the volatiles in 

vacuo, 31P and 1H NMR of the MeCN soluble material reveal multiple broad resonances 

assigned as a mixture of species. Yellow plates were crystallized out of a solution of this 

mixture overnight and analyzed by XRD to reveal a dimeric product, Mo2O5(catP2Cu)2 

Cu1 O1 

Mo 
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(Figure 5). This product contains a Mo2O5 core in which two cis-dioxo molybdenum 

centers are joined by a bridging oxo. Each Molybdenum atom is bound by a cathecol-

diphosphine ligand through the catechol moiety, with one catechol oxygen atom 

bridging to the secondary molybdenum atom. In this complex, the phosphine-bound Cu 

atoms exhibit an interaction with the π-system of the central arene of the catechol-

diphosphine ligand rather than the proximal oxo. A more rational synthesis (Figure 3) 

of Mo2O5(catP2Cu)2 was pursued through reaction of (TBA)2Mo2O7 with two 

equivalents of H2catP2CuOTf in MeCN, initially generating a dark green/black solution. 

Over the course of a day, a light colored precipitate formed. This precipitate was 

filtered, washed with MeCN, and then dissolved in benzene. The 31P NMR of the 

isolated yellow product reveals a pair of broad doublets at 10.2 and 12.2 ppm, 

consistent with the structure of Mo2O5(catP2Cu)2. The 1H NMR reveals a pair of broad 

resonances at 6.43 and 6.63 ppm, each integrating as two against the rest of the 

spectrum, assigned to the central arene ring. The remaining aromatic resonances are 

consistent with a C2 symmetric molecule in which the two halves of the catechol-

diphosphine ligand are chemically distinct. ESI-MS data from a THF solution of 

Mo2O5(catP2Cu)2 reveals major peaks at 1384.9, 1407.0, and 1625.7 m/z, which can be 

assigned as the [Mo2O5(catP2Cu)2]+, [Na + Mo2O5(catP2Cu)2]+, and [TBA + 

Mo2O5(catP2Cu)2]+ fragments, respectively. 
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Figure A.5. Preliminary XRD structure of Mo2O5(catP2Cu)2. Hydrogen atoms omitted 

for clarity. Carbon atoms depicted in grey. 

Scheme A.1. Synthesis of [TEA][MoO3(catP2Cu)]. 

 

 An alternative Mo-Cu complex demonstrating a 1:1 Mo:Cu ratio can accessed via 

reaction of H2catP2CuOTf with (Et4N)2MoO4 in MeCN (see Scheme A.1). Care must be 
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given to introduce H2catP2CuOTf slowly to the molybdate solution and at low 

temperature, otherwise MoO2(catP2Cu)2 is generated as a significant side product. While 

the 31P NMR spectrum of the new product [Et4N][MoO3(catP2Cu)] is not significantly 

shifted from starting material H2catP2CuOTf, the signal is significantly sharper, 

suggestive of a Cu-oxo interaction present in solution. In the 1H NMR spectrum, the 

resonance assigned to the catechol C–H protons has shifted upfield ca. 0.5 ppm in 

[Et4N][MoO3(catP2Cu)], consistent with formation of the Mo-catecholate moiety. Single 

crystals of TEAMoO3(catP2Cu) suitable for XRD were grown via diffusion of Et2O into 

a saturated MeCN solution. In the solid state, the complex exists as a coordination 

polymer (Figure A.6). 

 

Figure A.6. Solid-state structure of TEAMoO3(catP2Cu). Cations omitted for clarity. 

Molybdenum, copper, phosphorus, oxygen, carbon and hydrogen atoms depicted in 

MoO3(catP2Cu)
-
 

{MoO3(catP2Cu)}n 
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orange, teal, purple, red, black and grey, respectively. Depiction of single 

MoO3(catP2Cu)- unit (left top and bottom); coordination polymer of {MoO3(catP2Cu)}n 

(right).  

 

 Reaction of H2catP2Mo(CO)3 with half an equivalent of MoO2(acac)2 and one 

equivalent of TBAOAc in MeCN over the course of one hour yields a dark orange 

solution. After removal of the solvent, precipitation from an ethereal solution with 

pentane results in isolation of an orange product, [TBA]2[MoO2(catP2Mo(CO)3)2]. The 

31P NMR of [TBA]2[MoO2(catP2Mo(CO)3)2] reveals a pair of doublets at 49.3 and 52.8 

ppm (JPP = 95.6 Hz), consistent with coupling of chemically distinct phosphines 

through the Mo center. The 1H NMR reveals a pair of doublet-of-triplets at 5.97 and 

6.06 ppm, integrating as two against the rest of the spectrum, assigned to the central 

arene. The complex splitting is assigned as coupling between the two distinct protons, 

as well as proton-phosphine coupling through the Mo center. The remaining aromatic 

resonances are consistent with a C2 symmetric molecule in which the two sides of the 

catechol-diphosphine ligand are chemically distinct. Negative polarity ESI-MS data for a 

solution of TBA2MoO2(catP2Mo(CO)3)2 in MeCN exhibits a major peak at 802.9 m/z, 

which could be assigned as the [MoO2(catP2Mo(CO)3)]- fragment. IR (KBr) of 

[TBA]2[MoO2(catP2Mo(CO)3)2] reveals a sharp stretch in the carbonyl region at 1835 

cm-1 and a less intense, more broad stretch at 1785 cm-1 consistent with the Mo(CO)3 

unit remaining intact. 
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Figure A.7. Preliminary XRD structure of [TBA]2[MoO2(catP2Mo(CO)3)2]. TBA cations 

omitted for clarity. Molybdenum, phosphorus, oxygen, carbon, and hydrogen atoms 

depicted in orange, purple, red, black, and grey, respectively. 

 With metal complex MoO2(catP2Cu)2 in hand, preliminary reactivity of this complex was 

investigated toward small molecule activation. Exposure of a solution of MoO2(catP2Cu)2 to 

an atmosphere of CO showed no reaction by 31P and 1H NMR, either in CD3CN or C6D6. 

When a solution of MoO2(catP2Cu)2 in C6D6 was treated with one equivalent of tBuNC a 

new set of resonances appears in both the 31P and 1H NMR, and by adding in additional 

equivalents of tBuNC (up to 6: see Figure A.S11 for 31P NMR of titration), resonances 

corresponding to starting material MoO2(catP2Cu)2 diminish as the new resonances grow.  
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Figure A.8. 31P (right) and 1H NMR (left) of reaction of MoO2(catP2Cu)2 (maroon) with one 

equivalent tBuNC in C6D6 with 1,3,5-trimethoxybenzene as internal standard (green). Above: 

Proposed equilibrium for tBuNC binding to Cu. 

The 31P NMR reveals three new peaks that appear upon addition of one equivalent of tBuNC 

at 2.5, 6.2, and 7.4 ppm, which integrate approximately as 1 : 2 : 1. In the 1H NMR, three 

new doublets appear in the central arene region from 6-7 ppm in addition to those of the 

starting material at 6.25 and 6.52 ppm. The new doublets appear at 6.80, 6.61, and 6.43 ppm 

and integrate as 1 : 1 : 1. It is presumed that a fourth doublet lies buried under the 6.52 ppm 

resonance of MoO2(catP2Cu)2, which no longer integrates 1 : 1 against the 6.25 ppm 

resonance. Two-dimensional NMR studies have yet to be performed to confirm this 
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hypothesis. Based on the integrations of these new resonances in both the 31P and 1H NMR, 

it is proposed that tBuNC binds to CuI and an equilibrium exists between a species with both 

phosphine arms of the catechol-diphosphine ligand bound to Cu and another species with 

one phosphine bound and the second phosphine dissociated (see Figure A.8).  

 Reduction of MoO2(catP2Cu)2 was investigated toward the goal of accessing either a more 

nucleophilic Mo-oxo moiety or a MoIV species capable of reducing CO2 to yield a MoVI-oxo 

species with concurrent loss of CO. The cyclic voltammogram (CV) of MoO2(catP2Cu)2 

presented in (Figure A.9) reveals only irreversible reduction events that have been assigned 

as reduction of Cu and reduction of corresponding ligand oxidation products. 

MoO2(catP2Cu)2 showed no reactivity with Na[naphthalenide] or Ph3P, and reaction with 

Me3P appears to only yield Cu-bound Me3P products with no Me3PO detectable by 31P 

NMR. Reaction of MoO2(catP2Cu)2 with Me3SiOTf in MeCN results in a brown/grey 

solution exhibiting broad 31P and 1H NMR spectra. ESI-MS data of the resulting brown/grey 

product in THF revelas a major peak at 1224.2 m/z and a minor peak at 1241.0 m/z. While 

the latter is assigned as the [MoO2(catP2Cu)2 + H]+ fragment and is consistent with 

MoO2(catP2Cu)2, the major 1224.2 m/z peak corresponds to a mono-oxo [MoO(catP2Cu)2]+ 

fragment. This fragment could suggest that the desired MoO(OSiMe3)(catP2Cu)2OTf species 

was formed and under the ESI conditions the –OSiMe3 group is lost, yielding the 1224.2 m/z 

fragment. Similar oxo-abstraction was attempted by reaction of MoO2(catP2Cu)2 with two 

equivalents of Ph3SiSH, which has been shown in literature12,13 to substitute sulfido for oxo 

ligands. Heating at 50 °C over four hours resulted in a color change from dark red to brown. 

31P and 1H NMR of the resulting brown solution revealed loss of resonances corresponding 

to MoO2(catP2Cu)2 and displayed only broad features. ESI-MS analysis of this brown 

product in THF reveals a dominant peak at 1224.3 m/z corresponding to the mono-oxo 
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fragment [MoO(catP2Cu)2]+, as well as minor peaks at 1241.2, 1256.2, and 1273.2 m/z. The 

former corresponds to the parent [MoO2(catP2Cu)2 + H]+ fragment, while the latter two 

peaks can be assigned as the sulfide-incorporating [MoOS(catP2Cu)2]+ and [MoS2(catP2Cu)2 

+ H]+ fragments, respectively, suggesting the substitution of either one or both oxo’s for 

sulfides (see Scheme A.2). Attempts at crystallographically isolating these products were 

unsuccessful.  

 

Figure A.9. Cyclic voltammogram (250 mV/s, falling) of 3 mM H2catP2CuOTf (blue) and 3 

mM MoO2(catP2Cu)2 (red) with 0.1 M Bu4NPF6 in MeCN. 

Scheme A.2. Possible oxo-substitution products from reaction with Ph3SiSH. 

 

Electrochemical investigation of the Mo complexes H2catP2Mo(CO)3 and 
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TBA2MoO2(catP2Mo(CO)3)2 reveal accessible oxidation events for both compounds (see 

Figure 10). The parent compound, para-P2Mo(CO)3 has been oxidized by two electrons with 

AgOTf to yield the MoII complex para-P2Mo(CO)2(OTf)2. The CV in Figure 9 suggests a 

similar oxidation may be accessible for H2catP2Mo(CO)3. The CV for 

TBA2MoO2(catP2Mo(CO)3)2 reveals several closely overlapping oxidative waves which could 

be indicative of multiple oxidative events or the result of weak electrochemical 

communication between the two Mo(CO)3 units through the MoO2 center. These oxidations 

reveal corresponding reductions that are shifted more than 1 V negative from the oxidations, 

suggesting some sort of rearrangement or chemical reaction that takes place upon oxidation.  

 

Figure A.10. Cyclic voltammogram of 3 mM TBA2MoO2(catP2Mo(CO)3)2 (blue, 250 mV/s, 

falling) with 0.1 M Bu4NPF6 in MeCN and 3 mM H2catP2Mo(CO)3 (red, 250 mV/s, rising) 

with 0.1 M Bu4NPF6 in THF.	 	
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DISCUSSION 

 The structurally characterized compounds MoO2(catP2Cu)2 and Mo2O5(catP2Cu)2 both 

demonstrate the successful introduction of a CuI-diphosphine moiety into a Mo-dioxo core 

via bis-chelating catechol-diphosphine ligand precursor H2catP2. In MoO2(catP2Cu)2, there is 

a direct interaction between each Cu center and each Mo-oxo in the solid state, while 

Mo2O5(catP2Cu)2 demonstrates an interaction between Cu and the π-system of the central 

arene of catP2. This π-system interaction is likely the result of geometric inflexibility enforced 

by the Mo2O5 core, as well as the overall neutral charge on the compound (i.e. the lack of 

counter-anions capable of coordinating to Cu). While the presence of the bridging oxo 

enforces a 1 : 1 Cu/Mo ratio, it lowers the coordination number around each Mo to 5 donor 

atoms, resulting in the µ2κ1κ2 binding of the catecholates to generate pseuodo-octohedral 

Mo’s, restricting the angle of the central arene relative to the Mo center, and preventing the 

Cu atom from reaching the oxo. In MoO2(catP2Cu)2, the more flexible central arene can 

bend upward toward the oxo, closing the distance between the Cu and oxygen atoms, 

resulting in an interaction. 

 As there has only been one structurally characterized CO bound Cu phosphine complex 

reported in the literature14, a complex in which the phosphine-bound metal contained bound 

CO ligands was desired, and the successful installation of the Mo(CO)3 unit on the parent 

ligand resulted in pursuing H2catP2Mo(CO)3 not only for incorporation into a CODH 

model, but also for investigation of its possible redox properties and proton/electron 

transfer abilities. The cyclic voltammograms for both H2catP2Mo(CO)3 and 

TBA2MoO2(catP2Mo(CO)3)2 suggest there are accessible oxidized products for both systems 

that could demonstrate interesting chemistry. Aside from CO, the reaction of 
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MoO2(catP2Cu)2 with tBuNC is encouraging, though structural confirmation of coordinated 

tBuNC was never achieved.  

 The lack of observable reactivity for MoO2(catP2Cu)2 with CO is likely due to the 

complex’s relatively electrophilic oxo’s and inaccessibility of lower oxidation states of 

the Mo center. The nucleophilicty of the oxo’s could be increased through reduction of 

the Mo center, however the hard Mo center does not appear susceptible to reduction 

due to the strong sigma-donating catecholate and oxo ligands. Synthesis of the thiol 

variant of H2catP2 is currently being pursued via the Newman-Kwart15 rearrangement, in 

an effort to “soften” these supporting ligands on Mo. Alternatively, substitution for one 

of the oxo’s has been attempted via reaction with Ph3SiSH, and ESI data suggests the 

desired sulfide containing products were accessed. Incorporation of a sulfide bridging 

between Mo and Cu would not only help to soften the Mo center, but also may 

demonstrate insertion of CO or isocyanide into the Cu-S bond, as insertion of CO into 

the Cu-S bond in CODH has been proposed in the mechanism of CO oxidation2. 

Holm16 has synthesized a number of WVI complexes with various oxo, sulfido, and 

dithiolate ligands as models for the Xanthine Oxidoreductase family active sites, and 

similar synthetic routes are being investigated using H2catP2 toward accessing MoO2SCu 

systems. 
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CONCLUSIONS 

 The catechol-diphosphine ligand H2catP2 has demonstrated itself to be a versatile bis-

chelate in synthesizing multimetallic complexes MoO2(catP2Cu)2, Mo2O5(catP2Cu)2 and 

TBA2MoO2(catP2Mo(CO)3)2. The structurally characterized complexes MoO2(catP2Cu)2 and 

Mo2O5(catP2Cu)2 exhibit key structural elements desired of a CODH mimic, notably 

proximity of the Cu center to the Mo-dioxo unit in MoO2(catP2Cu)2 and the 1:1 Mo/Cu 

ratio in Mo2O5(catP2Cu)2. Reactivity of MoO2(catP2Cu)2 with tBuNC is encouraging and 

could be pursued further, while lack of reactivity with CO was not unexpected. To further 

probe desired reactivity of these systems, related complexes that incorporate bridging 

sulfides and dithiolate supporting ligands should be synthetically targeted, as well as the thio-

catechol variant of the H2catP2 ligand. Similarly, the dimeric TBA2Mo2O5(catP2Cu)2 could be 

investigated as a precursor toward accessing a heterobimetallic MoCu complex with a 

secondary dithiolate supporting ligand.  

. 
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EXPERIMENTAL SECTION 

Synthesis of H2catP2CuOTf. A solution of Cu(MeCN)4OTf (156.0 mg, 00.414 mmol)  in 

MeCN (4 mL) was added to H2catP2 (201.6 mg, 0.408 mmol). The suspension was stirred at 

room temperature until a homogeneous solution formed. Volatiles were removed under 

vacuum. The remaining crude was washed with benzene, and the precipitate dissolved in 

THF, filtered and concentrated in vacuo to yield an off-white solid (277.3 mg, 96% yield). 

See Figures A.S1 and A.S2 for NMR spectra of this compound. 

 

Synthesis of MoO2(catP2Cu)2. A solution of H2catP2CuOTf (117.5 mg, 0.166 mmol) in 

minimal MeCN was added to a solution of MoO2(acac)2 (29.5 mg, 0.0904 mmol) in MeCN (2 

mL) with stirring. To this solution was added NaOtBu (16.4 mg, 0.171 mmol) with the aid of 

minimal MeCN. Upon addition, a dark red color developed. The reaction solution was left to 

stir for 2 hours. The volatiles were removed in vacuo, and the crude solid was washed with 

Et2O and the precipitate dissolved in benzene, filtered, and lyophilized to yield a dark red 

powder (95.3 mg, 92.5%). XRD quality crystals were grown from vapor diffusion of pentane 

into a THF solution of MoO2(catP2Cu)2. See Figures A.S5 and A.S6 for NMR spectra of this 

compound.  

 

Synthesis of Mo2O5(catP2Cu)2. H2catP2CuOTf (42.0 mg, 0.0594 mmol) and TBA2Mo2O7 

(22.0 mg, 0.0279 mmol) were combined in MeCN (5 mL), immediately generating a dark 

green/black solution. This reaction mixture was left stirring, and over the course of several 

hours a light colored precipitate formed. After stirring for a day, the volatiles were removed 

in vacuo. The crude residue was washed with MeCN, and the resulting precipitate dissolved 
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in benzene, filtered, and lyophilized to yield a yellow powder (10.2 mg, 25% yield). See 

Figures A.S7 and A.S8 for NMR spectra of this compound. 

 

Synthesis of TBA2MoO2(catP2Mo(CO)3)2. To a suspension of H2catP2Mo(CO)3 (22.1 mg, 

0.0328 mmol) in MeCN (2 mL) was added sequentially a solution of MoO2(acac)2 (5.3 mg, 

0.0162 mmol) in MeCN (1 mL) and TBAOAc (20.3 mg, 0.0673 mmol) also in MeCN (1 

mL). The resulting orange solution was stirred for 2 hours and then the volatiles were 

removed in vacuo. The crude residue was dissolved in a minimal amount of Et2O and 

pentane was added to precipitate a bright orange solid. This solid was dissolved in benzene, 

filtered, and lyophilized to yield a bright orange powder (19.7 mg, 61% yield). See Figures 

A.S9 and A.S10 for NMR spectra of this compound. 

 

 

Figure AS.1. 31P NMR(121 MHz, CD3CN) spectrum of H2catP2CuOTf 
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Figure A.S2. 1H NMR(300 MHz, CD3CN) spectrum of H2catP2CuOTf 

 

Figure A.S3. 31P NMR(121 MHz, CD3CN) spectrum of MoO2(catP2Cu)2  

 

Figure A.S4. 1H NMR(300 MHz, CD3CN) spectrum of MoO2(catP2Cu)2 
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Figure AS.5. 31P NMR(121 MHz, C6D6) spectrum of Mo2O5(catP2Cu)2 

 

Figure A.S6. 1H NMR(300 MHz, C6D6) spectrum of Mo2O5(catP2Cu)2 

 

Figure A.S7. 31P NMR(121 MHz, C6D6) spectrum of H2catP2Mo(CO)3 
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Figure A.S8. 1H NMR(300 MHz, C6D6) spectrum of H2catP2Mo(CO)3 

 

Figure A.S9. 31P NMR(121 MHz, C6D6) spectrum of TBA2MoO2(catP2Mo(CO)3)2 

 

Figure A.S10. 1H NMR(300 MHz, C6D6) spectrum of TBA2MoO2(catP2Mo(CO)3)2 
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Figure A.S11. 31P NMR(121 MHz, C6D6) spectrum of addition of tBuNC to 

MoO2(catP2Cu)2. Equivalents by panel: 1) 0 eq, 2) 1 eq, 3) 2 eq, 4) 3 eq, 5) 4 eq, 6) 6 eq. 
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ABSTRACT   

 Metalloproteins such as Acetyl Coenzyme A Synthase and Carbon Monoxide 

Dehydrogenase catalyze reactions involving CO2 and CO to generate organic products 

useful in biological systems. Inspired by these active sites, a series of mulidentate 

ligands incorporating various sulfur and nitrogen donors into a bipyridine-bisphenol 

framework were synthesized. First row transition metal complexes supported by these 

ligands were pursued and both mono- and multi-metallic complexes characterized 

structurally and spectroscopically. Multi-metallic Copper complexes are shown to react 

with dioxygen, yet structural modification of the supporting ligand may prove beneficial 

in facilitating cooperative intramolecular reactivity. Future investigations of multi-

metallic complexes with Nickel and Molybdenum are also discussed. 
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INTRODUCTION 

 In nature, metalloproteins catalyze a multitude of reactions of interest to the modern 

chemist, ranging from C-H bond functionalization to small molecule activation (H2
1, 

N2
2, O2

3, CO/CO2
4,5, etc.). Many of these transformations are chemically complex, 

requiring transfer of multiple electron/proton equivalents, and in some cases 

Figure B.1: Active site structures of Ni-Fe CODH showing CO2 bridging between Ni 

and Fe (top left)6, Acetyl-Coenzyme A Synthase in the oxidized NiIINiII state (top 

right)7, Mo-Cu CODH (bottom left)8, and Tyrosinase showing substrate orientation 

(bottom right)9. 
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they involve the interaction of multiple substrates with the metalloprotein active site. A 

prime example is the bifunctional enzyme Carbon Monoxide Dehydrogenase/Acetyl 

Coenzyme-A Synthase (CODH/ACS) from Moorella Thermoacetica7. The ~300 kDa 

α2β2 dimer reversibly catalyzes the two electron reduction of CO2 to CO at the C-cluster 

(Ni-Fe CODH), while the A-cluster (ACS) reversibly catalyzes the assembly of acetyl 

coenzyme-A from CO, the methyl group of a corrinoid Iron-Sulfur protein (CoFeSP), 

and coenzyme-A, as given by the reactions below. 

CO2 + 2e- + 2H+ ⇄ CO + H2O 

CO + Me-CoIIIFeSP + CoA ⇄ CoIFeSP + Acetyl-CoA 

 Inspection of the two active sites of CODH/ACS reveals hetero-multi-metallic 

centers primarily composed of Nickel, Iron, and Sulfur (Figure B.1). There are a 

number of metallo-proteins with active sites composed from these elements, for 

example the Hydrogenases ([NiFe] H2ase10,11, [FeFe] H2ase12-14, [Fe] H2ase15,16), as well as 

those which incorporate metals other than Nickel and Iron, with examples including the 

Molybdenum and Copper containing CODH8 and the Copper containing Tyrosinase9 

(see Figure B.1). These examples are by no means exhaustive. In the majority of these 

systems, substrate reactivity often occurs at multiple earth-abundant metal centers held 

in close proximity to one another by Sulfur and Nitrogen-containing ligands. Inspired 

by these active sites, synthesis of a class of multinucleating ligands based on a 

bipyridine- bisphenol backbone (Figure B.2) was pursued that could allow access to 

multi-metallic complexes relevant to biological systems. 
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Figure B.2: Multimetallic compounds pursued in this report (center and left), and their 

structural similarity to Schiff-base macrocylces (right). 

 Macrocyclic systems structurally similar to 1 and 2 proposed in Figure B.2, namely 

Schiff-base compounds 3 and their variants, are well documented in the literature17,18. 

Though some of these systems have demonstrated interesting electrochemical19,20 and 

magnetic properties21 of the coupled metal centers, they have demonstrated little 

substrate-based reactivity22, possibly due to the coordinatively saturated nature of these 

compounds. It is believed that by employing hemi-labile terminal donors in an acyclic 

system, the terminal metal centers will have flexible coordination geometries to stabilize 

multiple oxidation states (i.e. tetrahedral NiI/0 vs square planar NiII) and accessible 

coordination sites at which to bind substrate and potentially access further chemistry. 
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RESULTS AND DISCUSSION  

Scheme B.1. Synthesis of bis-thioether proligand 10. 

 

  In pursuit of metal complexes of the type 1 in Figure B.2, the initial synthetic 

route chosen was that outlined in Scheme B.1, wherein the key step involves a Suzuki-

Miyaura coupling between 6,6’-dibromo-2,2’-bipyridine (8) and the aryltrifluoroborate 

potassium salt 7. In attempting to access compound 9 via other cross-coupling 

methods, it was discerned that the Suzuki route gave higher, more reproducible yields 

than the corresponding Negishi coupling and that the aryltrifluoroborate salts were 

more easily isolated and purified than the corresponding boronic acids and esters. A 

simple SN2 reaction between sodium isopropylthiolate and bromide 4 easily yields 

thioether 5, while MOM protection of the phenol followed by halogen-lithium 

exchange, quenching with B(OiPr)3 and work-up with KHF2 afforded the 
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trifluoroborate salt 7 in moderate yield. 

Scheme B.2. Attempted metalations of 10 with NiII and Ni0 precursors. 

  

 Suzuki cross-coupling of 7 with 6,6’-dibromo-2,2’-bipyridine afforded the desired 

coupled product 9 in good yield, and the MOM protecting group could easily be cleaved 

with methanolic HCl, yielding the desired 10. Treatment of a solution of 10 in THF with 

one equivalent of Ni(acac)2 also as a solution in THF at room temperature produced a 

color change from pale yellow to dark red over the course of 1 hour. Removal of the 

volatiles in vacuo resulted in isolation of a salmon-orange solid. Upon work-up, the 

diamagnetic 1H NMR spectrum of the resulting product revealed resonances consistent 

with a C2v symmetric molecule. The absence of a phenol signal and the lack of a shift in 
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the benzylic methylene and the isopropyl methyne resonances compared to the starting 

material suggest that Ni is bound in the bpy-phenol pocket as indicated in Scheme B.2. 

Electrospray Ionization Mass Spectrometry (ESI-MS) data from a solution of the 

salmon-orange product in CH2Cl2 revealed peaks at 793, 1477, and 685. These masses 

are assigned as [M + CH2Cl2 + Na]+, [2M + CH2Cl2 + Na]+, and [M + H]+, where M 

corresponds to structure 11.  

 

Figure B.3: Crystal structures of compound 11 (top left) and literature23 compound 13 

(top right). Colors and atoms correspond to Nitrogen (blue), Oxygen (red), Sulfur 

(yellow), and Nickel (green). Comparison of selected bond lengths and angles (table). 
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  Crystals grown by slow evaporation of a solution of this orange solid in CH2Cl2 

at room temperature were analyzed by XRD and revealed the structure given in Figure 

B.3. The Ni atom is coordinated in a square-planar geometry slightly distorted toward 

tetrahedral. This structure and its metrical parameters correspond well to the similar 

tert-butyl-substituted literature23 compound 13. The Ni-N and Ni-O bond distances are 

slightly shorter in 11 than in 13, which is likely due to a steric interaction between the 

ortho-tert-butyl groups in 13. This interaction would result in expansion of the O-Ni-O 

angle and contractions of the N-Ni-O and N-Ni-N angles, which is consistent with the 

observed values.  

  

Figure B.4: Cyclic voltammograms of compound 10 (top left), compound 11 (bottom 

left), and a series of LMII literature compounds23 with similar structure (right). For the 

LMII compounds, M = Zn (a), Ni (b), Cu (c), and Co (d). All voltammograms were 
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taken in CH2Cl2 with 0.1 M TBAPF6 (compounds 10 and 11) or 0.1 M TBAClO4 

(LMII) supporting electrolyte. Potentials are referenced to Fc/Fc+. 

 Electrochemical investigation of compound 11 in CH2Cl2 revealed 4 irreversible 

oxidations and an irreversible reduction (see Figure B.4), while the electrochemistry of 

compound 10 exhibits 2 irreversible oxidations and an irreversible reduction. 

Comparing 10 and 11 with literature compound 13, the first two oxidations of 11 at 0.7 

and 1.0 V (vs Fc/Fc+) are assigned as ligand-based oxidation of the phenoxides that 

have been split by electrochemical communication through the Ni center, and the 

second two oxidations at 1.3 and 1.5 V are assigned as oxidation of the benzylic 

thioethers that have also been split by interaction with the Ni center, while the event at 

-1.9 V is assigned as ligand-based reduction of the bipyridine backbone. These 

assignments are consistent with the CV observed for compound 13 (also Figure B.4), 

which demonstrates 2 reversible oxidations assigned to the phenoxides, and an 

irreversible reduction assigned to reduction of the bipyridine ligand. 

 Pursuing di-Ni compounds of relevance to the active site of ACS (see Figure B.1), 

reaction of 11 with Ni(OTf)2 was attempted for extended time periods both at room 

temperature and refluxing in MeCN or MeOH, however only the unreacted starting 

materials were isolated upon workup. Access to the desired di-cationic compound 12 via 

other NiII sources such as NiI2 or Ni(ClO4)2-6H2O have not yet been investigated. 

Alternatively, addition of one equivalent of Ni(COD)2 to a solution of 11 in C6D6 led to 

a color change from dark red to brown over the course of 12 hours at room 

temperature. The 1H NMR spectrum of this brown solution showed only resonances 

assignable to Ni(COD)2 and free COD, with no resonances assignable to diamagnetic 
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starting material 11. Removal of the volatiles in vacuo resulted in isolation of a brown 

solid; however, dissolving of this brown solid in either C6H6 or THF followed by 

filtering and concentrating in vacuo resulted in isolation of a salmon-orange solid with 

diamagnetic 1H NMR resonances assignable to 11, corresponding to the bulk of the 

starting material by mass. It is postulated that in solution a di-Nickel compound is 

formed that is unstable to loss of COD, as indicated in Scheme B.2, and upon work-up 

this compound decomposes to the mono-Ni compound 11 and Ni black.  

 The results of these initial attempts at forming a di-Ni compound suggest that under 

these conditions the terminal thioether sulfurs may be too poor of sigma donors to 

stabilize a NiII cation and too poor of pi-acids to stabilize Ni0. There are surprisingly 

few di-cationic, square-planar, bis-thioether, acyclic NiII compounds that have been 

crystallographically characterized in the literature, which have been accessed either via 

bis-thioether ligands24-28 or alkylation of neutral bis-thiolate Ni compounds29-31. A 

structurally related Schiff-base Cu compound employing thioether ligands has been 

reported in the literature32, and in this report the authors found that reaction of the 

neutral CuII compound with AgBF4 results in the formation of a hetero-bimetallic 

cationic complex in which the phenoxides bridge to a Ag+ ion terminally bound by the 

two thioether sulfur atoms. Through bond-length analysis of the solid-state structure, 

the authors propose only weak interactions between Ag+ and the phenoxide oxygens 

and stronger interactions between Ag+ and S (though this is to be expected based on 

Hard-Soft Acid-Base theory). Extending this to compound 11, it is possible that the 

similarly covalent Ni-O bonds would result in only weakly donating M-O interactions to 

a second metal center. 

 Based on this analysis, it was speculated that the bridging phenoxides/bis-thioethers 
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present in compound 11 could not suitably stabilize a di-Ni complex capable of 

participating in substrate-based reactivity.  

Scheme B.3. Access to mixed thiolate/thioether compounds via alkylation of bis-

thiolates. 

  

 Focus was shifted toward pursuing a mixed thiolate/thioether ligand that could bind a 

second NiII atom through an anionic thiolate, but also retain hemi-lability through a 

thioether moiety. It was believed that a mixed thiolate/thioether di-Ni compound could 

be accessed via mono-alkylation of a di-thiolate di-Ni compound as shown in Scheme 

B.3. Duboc33 recently demonstrated that starting from neutral MII bipyridine-bis-

thiolate compounds 14 and 15, the identity of the metal determined the thiolate 

alkylation product with CH3
+ sources such as MeI. Thus when M is Zn, exposure of 15 

to an excess of MeI results in the isolation of a bis-thioether product 17 in which the 
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sulfur atoms are no longer bound to the metal center. Alternatively, when M is Ni 

exposure of compound 14 to an excess of MeI results in the formation of the mono-

alkylated cationic mixed thiolate/thioether product 16 in which the thioether sulfur 

remains bound to the metal, while the corresponding bis-alkylated product is not 

observed. The authors suggest this is due to the electronics of the more covalent Ni-S 

interaction in contrast to the more ionic Zn-S interaction, which they support this 

hypothesis with DFT calculations, in addition to sterics. 

 Focusing on accessing a mixed thiolate/thioether system similar to that of Duboc, an 

alternate synthetic route was devised that would allow installation of the terminal donor 

atoms later in the synthesis, giving access to a more diverse set of ligands. This more 

direct, modular synthesis is outlined in Scheme B.4. Starting from para-tertbutylphenol, 

reaction with MOMCl in the presence of Hunig’s base yielded the desired MOM 

protected product 18. Ortho directed lithiation followed by quenching with B(OiPr)3 

and workup with KHF2 afforded the desired aryltrifluoroborate salt 19 in high yield. 

The Suzuki coupling of this compound with 6,6’-dichloro-2,2’-bipyridine led to the 

desired product 21. It should be noted that Suzuki couplings of 6,6’-dibromo-2,2’- 

bipyridine34,35 and various chloropyridines36,37 with arylboronic acid derivatives are 

well documented in the literature, yet this is the first reported Suzuki coupling 

employing 6,6’-dichloro-2,2’-bipyridine. A one-pot MOM deprotection/ortho 

bromomethylation with HBr in acetic acid yielded the desired dibromide 22 in near 

quantitative yield. From here, several functional groups were successfully installed at the 

benzylic position via SN2 reactions, namely acetylthioester (23), di-(2-picolyl)-amine 

(24), N-methyl-(2-picolyl)- amine (25), and methylimidazolium bromide (26).  
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Scheme B.4. Alternate synthetic route to multinucleating, acyclic ligands. 

 

 Unfortunately, numerous attempts at installing phosphines onto the ligand framework 

were unsuccessful. It was postulated that while sulfur and nitrogen are sufficiently 

nucleophilic to displace the bromide, phosphines are more bulky and instead 

deprotonate this reactive orthobromomethylphenol moiety, even though other ortho-

bromomethylphenol phosphine compounds have been reported in the literature38,39. 

Disappointingly, the acetyl-protected variant of compound 22 also failed to yield 

phosphine-substituted products.  
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Scheme B.5. Toward accessing a mixed thiolate/thioether bimetallic compound. 

  

 Toward accessing a mixed thiolate/thioether bimetallic compound, reaction of the 

thioester compound 23 suspended in refluxing methanol with MII(OAc)2-xH2O and two 

equivalents of Et3N over the course of 12 hours led to a color change from tan to 

yellow, red/orange, and brown for M = Zn, Ni, and Co, respectively (see Scheme B.5). 

After cooling to room temperature and collecting the colored precipitates, the yellow 

product from the Zn reaction proved insoluble in most solvents, however it was 

solubilized by pyridine, suggesting that the product forms oligomers that can be broken 

up by strongly coordinating solvent. Similar bisphenol-pyridine Cu and Zn compounds 

have been shown to exhibit dimerization and oligomerization in the solid state40. This 

yellow Zn product has yet to be characterized further by either 1H NMR spectroscopy 
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in d5-pyridine or ESI-MS.  

 The products of the Ni and Co reactions, however, showed solubility in chlorinated 

solvents and THF. The 1H NMR spectrum of the Ni product in CDCl3 revealed 

diamagnetic resonances consistent with a C2v symmetric molecule and displayed 

aromatic resonances similar to those observed in compound 13. The absence of a 

phenol resonance and the lack of a shift in the benzylic methylene and the thioester 

acetyl resonances suggest Ni is bound in the bipyridine pocket. ESI-MS data from a 

solution of the red/orange solid in 1:1 CH2Cl2:MeOH revealed a peak at 707. This mass 

is assigned as the [M + Na]+ ion where M is compound 27. The 1H NMR spectrum of 

the Co product in CDCl3 only revealed resonances assignable to trace solvents and no 

resonances assignable to the diamagnetic starting material. The observed color change 

and the absence of diamagnetic 1H NMR resonances are consistent with the formation 

of a paramagnetic CoII complex. ESI-MS data from a solution of the brown solid in 1:1 

CH2Cl2:MeOH revealed a peak at 708. This mass is assigned as the [M + Na]+ ion where 

M is compound 28. 

 The Ni compound 27 was taken on and deprotection of the thioester moieties was 

attempted with two equivalents of NaSEt in THF/MeOH at room temperature. After 

stirring for 10 minutes, removal of the volatiles in vacuo followed by treatment of the 

crude reaction product with a saturated aqueous NaHCO3 solution and extraction with 

DCM led to the isolation of a red solid. The 1H NMR spectrum of this red solid 

revealed resonances consistent with a C2v symmetric molecule. The absence of a 

phenolic signal suggests that Ni remains bound to a phenoxide moiety. The absence of 

the benzylic methylene and thioester acetyl resonances and the appearance of a new 

doublet at 3.86 ppm and a new triplet at 3.10 ppm that integrate as 4:2 (against the 18H 
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tert-butyl resonance at 1.35 ppm) suggest clean conversion to the bis-thiol compound 

29 in which 3-bond coupling is observed through the sulfur heteroatom. ESI-MS data 

of a solution of this product in CH2Cl2 failed to yield any assignable signals, possibly 

due to the reactive and oxygen-sensitive thiol moieties assumed present. It was found 

that the cleanest deprotections were affected with very short reaction times, on the 

order of 10 minutes, while slightly longer reaction times resulted in the appearance of 

downfield resonances in the 1H NMR spectra assigned as phenolic protons, presumably 

corresponding to loss of Ni. 

 Reaction of the Ni-bisthiol compound 29 as a solution in THF with one quivalent of 

Ni(acac)2 at room temperature led to a color change from dark red to brown over the 

course of 12 hours. Removal of the volatiles in vacuo led to the isolation of a brown 

solid. This brown product demonstrated incredibly low solubility in most common 

solvents; however, a suspension of this solid in MeCN was subsequently solubilized 

over the course of 3 hours upon addition of 1.5 equivalents of MeOTf. Removal of the 

volatiles in vacuo resulted once again in the isolation of a brown solid. The 1H NMR 

spectrum of this product in CD3CN revealed only broad resonances in the diamagnetic 

region. ESI-MS data of a solution of this brown solid in MeCN revealed a peak at 688. 

This mass is assigned as the [M + O + H]+ ion, where M corresponds to the cation of 

compound 30. 
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Scheme B.6. Synthesis of multimetallic Cu-containing complexes. 

 

 Attempts at crystallizing this product are currently underway. If this product is indeed 

a di-Ni compound, it seems that either the Ni centers adopt pseudo-tetrahedral 
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geometries or in solution the Ni centers are able to distort away from square-planarity 

quickly on the NMR timescale, giving rise to broad resonances. One can imagine a 

fluxional process in which the phenoxides rotate in and out of the bipyridine plane that 

could account for this distortion from square-planar geometry. Variable temperature 1H 

NMR experiments have yet to be performed to investigate this phenomenon further. 

 Inspired by the active site of Tyrosinase, other multi-metallic compounds (see 2 in 

Figure B.1) were pursued in which pendant amine arms could bind two CuI atoms in 

close proximity to a third metal center (see Scheme B.6). If the two CuI centers could 

cooperatively react with dioxygen intramolecularly, a reactive Cu2O2 intermediate could 

be held in close proximity to a pendant lewis acid that could facilitate substrate-based 

C–H bond oxidation. Pursuant to this goal, addition of a solution of one equivalent of 

AlMe3 in Toluene upon thawing to a frozen solution of compound 24 in Toluene 

followed by warming the solution slowly to room temperature resulted in a color change 

from orange to brown and subsequent lightening to a red/orange after stirring at room 

temperature for 3 hours. Upon removal of the volatiles in vacuo, 1H NMR of the 

resulting yellow solid in CD2Cl2 revealed resonances consistent with a Cs symmetric 

molecule. The absence of a phenolic resonance and the lack of significant shifts in the 

pyridyl and benzylic methylene signals suggest binding of aluminum in the bipyridine 

pocket. The appearance of a signlet at -1.5 ppm that integrates as 3H against the tert-

butyl 18H singlet at 1.3 ppm is assigned as the Me-Al peak and is consistent with similar 

bisphenoxide-Al-Me species reported in the literature41. The benzylic methylene protons 

have split due to the break in symmetry created by the presence of the proposed 5-

coordinate Me-Al moiety in compound 31. Based on integration, the picolyl methylene 

protons exhibit diastereotopicity, while the phenolic benzyl protons demonstrate 
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coincidental resonance. 

 Heating this product in the presence of one equivalent of 2,4,6-trimethylphenol in 

THF or a mixture of THF/C6D6 for 36 hours at 60 °C resulted in the loss of the Al-Me 

resonance by 1H NMR and the growth of several new resonances consistent with a Cs 

symmetric molecule. The resulting orange product was washed with Et2O to remove 

unreacted 2,4,6-trimethylphenol as well as other minor impurities, and the resulting 

orange precipitate exhibited an 1H NMR spectrum consistent with Aluminum-

phenoxide compound 32. Addition of a solution of 2 equivalents of Cu(NCCH3)4OTf in 

MeCN to a suspension of compound 32 in MeCN resulted in a homogeneous orange 

solution after 5 minutes. Removal of the solvents in vacuo resulted in isolation of an 

orange solid. 

 Analysis of the 1H NMR spectrum of this compound revealed resonances consistent 

with a Cs symmetric molecule in which the benzylic signals have split further, with both 

the picolyl and phenolic methylene protons exhibiting diastereotopicity. The chemical 

shifts of the pyridyl resonances in the aromatic region are also consistent with binding 

to CuI, thus this product has been assigned as the desired Al-Cu2 complex 33. 

Reactivity with dioxygen of this compound was investigated next to determine the 

feasibility of intramolecular Cu-O2 reactivity and consequential C–H bond oxygenation 

of the bound trimethylphenoxide. Exposure of a solution of compound 33 to an 

atmosphere of O2 at -40 °C in MeCN resulted in a color change from light orange to 

dark brownorange. After warming to room temperature and removal of the volatiles in 

vacuo, the resulting brown-orange solid exhibited only broad resonances in the 

diamagnetic region by 1H NMR spectroscopy, consistent with oxidation of CuI to a 

paramagnetic product. Protonolysis of this dark brown-orange product with excess HCl, 
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extraction with Et2O and analysis by GC-MS revealed only 2,4,6-trimethylphenol in the 

organic fraction, and nothing that could be assigned as an oxidized product of the 

phenol. Since free ligand 24 cannot be detected by GC-MS, the organic extract was then 

analyzed by 1H NMR spectroscopy. Aside from the 2,4,6-trimethylphenol and free 

ligand, no other products could be readily identified. 

 

Figure B.5: UV-vis absorption of the reaction of 33 with O2 at -80 °C in 1:1 

EtCN:Toluene at ~0.05 mM. The blue line is the absorption of 33 under N2. The other 

traces are after the addition of an oxygenated solution of 1:1 EtCN:Toluene, and show 

only the expected decrease is absorption corresponding to the dilution. No detectable 

change appears over 30 minutes. 

  Monitoring of the reaction of compound 33 with dioxygen at -80 °C in a 1:1 

mixture of EtCN and toluene by UV-vis spectroscopy revealed no change in absorption 

(see Figure B.5). Various CuxOy intermediates (see Figure B.6) that result upon reaction 
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of x equivalents of CuI with dioxygen exhibit specific UV-vis and Resonance Raman 

spectral features that have been investigated in the literature42 for other CuI complexes. 

None of the possible CuxOy intermediates listed in Figure B.6 were observed by UV-vis 

monitoring. Upon warming to room temperature, analysis of the oxidized product by 

GC-MS in a manner similar to the NMR reaction revealed only 2,4,6-trimethylphenol. 

  

Figure B.6: Possible CuxOy intermediates formed upon reaction of O2 with CuI 

compounds supported by di-, tri-, and tetra-dentate amine ligands (N2, N3, and N4 L 

ligands). Taken from the literature42. 
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Figure B.7: Crystal structure of 34, top view (right) and side-on view (left). For clarity, 

hydrogen atoms and outer-sphere triflates have been omitted. Atoms correspond to 

nitrogen (blue), oxygen (red), copper (orange), chloride (green), and carbon (grey). 

 Insight into the lack of observable cooperative, intramolecular reactivity of compound 

33 with dioxygen was gained by the reaction of dioxygen with a mixture of free ligand 

24 and 3 equivalents of Cu(NCCH3)4OTf in MeCN (see Scheme B.6). Upon exposure to 

an atmosphere of O2 at -40 °C, the light orange solution of the mixture of free ligand 

and three equivalents of CuI turned dark green. Upon warming to room temperature, 1H 

NMR analysis of the resulting dark green product revealed only broad resonances in the 

diamagnetic region, suggestive of oxidation of CuI. Crystals of this dark green product 

suitable for X-ray Diffraction studies were grown by slow evaporation of a concentrated 

MeCN solution at room temperature. The corresponding crystal structure reveals a tri-

metallic complex composed of three CuII centers (see Figure B.7); one Cu is bound in 

the bpy-bisphenol pocket, while the other two Cu atoms are each bound by a 
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dipicolylamine arm, with a fourth interaction with a phenoxide oxygen atom. The 

sterically accessible nature of the phenoxide moiety and the visible interaction present 

in 34 seems to suggest that an oxidized Cu atom bound to a dipicolylamine arm can 

easily be coordinated by these oxygen atoms. While it has been suggested previously 

that phenoxides bound to CuII or NiII exhibiting fairly covalent M–O bonds would only 

weakly bridge to a second metal center, this crystal structure indicates that an 

interaction is possible, at least in the solid state. Considering compound 33 contains Al-

O bonds, which are more ionic in nature than the Cu-O bonds in compound 34, it is 

possible that this exposed phenoxide atom could rapidly bridge to an oxidized copper 

species supported by one of the dipicolylamine moieties. 

 Based on these results, the mechanism proposed in Scheme B.7 could account for the 

lack of observable cooperative, intramolecular reactivity of compound 33 with 

dioxygen. The initial step involves reaction of one CuI center with O2 to form either the 

side-on superoxo-CuII 33-SS or the mono-nuclear peroxo-CuIII 33-MP-1, which are likely 

in equilibrium with one another. As soon as it is formed, this equilibrium oxidized-Cu 

center then rapidly and irreversibly binds to the aluminum-bound phenoxide oxygen, 

generating the 33-MP-2. This bound species is unable to react further with another CuI 

center intramolecularly as it is sterically inaccessible to the second dipicolylamine arm. 

This species then thermally decomposes, yielding some oxidized copper product 33ox. 

While Cu-superoxo and peroxo species SS and MP do typically exhibit distinct 

spectroscopic absorptions in the UV-visible region, the extinction coefficients 

associated with these species are usually quite low (~1000 M-1cm-1)43-46 and the more 

intense absorptions likely overlap with the main absorption of 33 at ~350 nm, which 

exhibits a very large extinction coefficient (~30,000 M-1cm-1). Thus assuming this 
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proposed mechanism is operative, it is not surprising that a Cu-peroxo or superoxo 

species is not detected by UV-vis spectroscopy at these low concentrations (~0.05 mM). 

Resonance Raman experiments have not yet been performed to observe any O–O or 

Cu–O vibrations associated with a Cu-superoxo or peroxo species. 

Scheme B.7. Proposed mechanism of O2 reactivity for 33. 

 

 Finally, as the thioether’s present in 11 were posited to be both inadequate sigma 

donors and pi-acceptors for stabilizing either a NiII or a Ni0 center, the possibility of 

using N-heterocyclic carbenes (NHCs) in the terminal donor position was pursued (see 

Scheme B.8) as NHCs have been shown to readily bind both Ni(II)47 and Ni(0)48. Initial 
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access to the methyl-substituted bis-imidazolium bromide 26 was gained via simple SN2 

displacement of the benzylic bromide in 22 with methylimidazole (Scheme B.4), 

resulting in precipitation of the pale yellow product out of THF. The resulting solid 

proved insoluble in MeCN, but was readily solubilized in MeOH, and revealed 1H NMR 

resonances consistent with structure 26 in CD3OD.  

Scheme B.8. Towards N-heterocyclic carbene compounds. 

  

 Analogous to complexes 27 and 28, reaction of compound 26 suspended in refluxing 

MeCN with Ni(acac)2 resulted in a color change from pale yellow to red over the course 

of 12 hours. Collection of the red precipitate via filtration and analysis by 1H NMR in 

CD3OD revealed diamagnetic aromatic resonances consistent with the formation of the 

desired Ni compound 35. ESI-MS data of a solution of this red product in MeOH 

revealed a peak at 698, assigned as [M – 2Br]+ where M is compound 35. Initial attempts 

at accessing a di-Ni compound via either deprotonation of the imidazolium to form the 

free NHC followed by metallation with NiII or Ni0, or formation of the NHC-AgBr 

compound by reaction with Ag2O followed by transmetallation with NiII have proved 

unsuccessful. This may be due to the relative instability of methyl-substituted NHCs as 
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compared to the bulkier arylsubstituted NHCs49. 
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CONCLUSIONS 

  A series of substituted bipyridine-bisphenol compounds were synthesized 

incorporating various sulfur- and nitrogen-donor functional groups. Using these ligands, 

multi-metallic complexes of relevance to biological systems were pursued. Multi-metallic 

Ni2 systems were not readily accessed from bis-thioether compound 11, however the 

thioether donors may better stabilize a softer metal like Ag+. Hetero-bimetallic first-row 

transition metal MII-Ag+ complexes supported by compound 11 could be pursued and 

their structural and electrochemical properties investigated. The use of the thioester 

group in compound 23 allowed easy access to mono-metallic bis-thiol compound 29, 

suggesting site-selective access to a series of hetero-bimetallic compounds can be gained 

through use of this protected thiol moiety. Furthermore, access to mixed 

thiolate/thioether bi-metallic complexes similar to 30 in which the bipyridine-bound 

metal is varied across the first row could be pursued and substrate-based reactivity 

investigated related to ACS. 

 The ability of bpy-bisphenol compounds to generate mulit-metallic complexes was 

demonstrated through the dipicolylamine-functionalized compound 24, as both the 

hetero-metallic Al-Cu2 compound 33 and tri-metallic Cu3 compound 34 were 

synthesized from this ligand precursor. The structural characterization of 34 revealed 

unanticipated interactions between the oxidized dipicolylamine-bound Cu centers and 

the phenoxide moieties, which was interpreted as a contributing factor in the lack of 

demonstrated cooperative intramolecular reactivity of 33 with O2. Use of bulkier, 

tetradentate amine ligands (N4) supporting Cu in place of the dipicolylamine moiety may 

circumvent this phenoxide bridging and allow intramolecular dioxygen reactivity 

between the Cu centers. Additionally, further investigations into ligands bearing more 
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robust NHC moieties and their corresponding multi-metallic complexes could be 

pursued. 
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EXPERIMENTAL SECTION 

General considerations. 

 All procedures were carried out using standard Schlenk techniques or in a M. Braun 

glovebox filled with purified nitrogen unless stated otherwise. All reactions involving 

metal reagents were carried out in the glovebox. Anhydrous THF was purchased from 

Aldrich in 18 L Pure-PacTM containers. Anhydrous dichloromethane, acetonitrile, 

diethyl ether, and THF were purified by sparging vigorously with nitrogen for 15 

minutes and then passing under nitrogen pressure through a column of activated A2 

alumina (Zapp’s). Anhydrous DMF was purchased from Sigma-Aldrich and stored 

under nitrogen over 4 Å molecular sieves. Spectrophotometric grade acetone was 

purchased from Sigma-Aldrich, dried over calcium sulfate, vacuum-transferred onto 

additional calcium sulfate, vacuum-transferred a second time, and stored in the 

glovebox. All non-dried solvents used were reagent grade or better. All NMR solvents 

were purchased from Cambridge Isotope Laboratories, Inc. NMR solvents were dried as 

follows: CD3CN, CD2Cl2, and CDCl3  over calcium hydride, C6D6 over sodium 

benzophenone ketyl. All NMR solvents were degassed by three freeze-pump-thaw 

cycles and vacuum-transferred prior to use. 1H NMR spectra were recorded on a Varian 

300 MHz instrument, with shifts reported relative to TMS as determined by observation 

of the residual solvent peak. Unless otherwise noted, all commercially available materials 

were used as received. Compounds 450 , 1051 , and 2052  were prepared according to 

literature procedures. UV-Vis spectra were collected on a Varian 50 Bio 

spectrophotometer using a Schlenk-adapted 1 cm quartz cuvette. Low-temperature UV-

Vis spectra were obtained using a Varian dip-probe (661.202-UV, 10 mm). 
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Synthesis of 2-bromo-4-(tert-butyl)-6-((isopropylthio)methyl)phenol  (5) 

In a 100 mL round bottom, NaH (2.0746 g, 86 mmol) was suspended in THF (50 mL). 

To this suspension was added isopropyl mercaptan (15 mL, 160 mmol) dropwise, 

stirring until hydrogen formation had ceased. Next 4  was added neat, and the mixture 

stirred at room temperature for 2 hours. The volatiles were then removed in vacuo and 

the residue washed with a saturated solution of NH4Cl (50 mL). The organics were 

extracted with CH2Cl2  (3 x 50 mL), dried over MgSO4 , filtered and concentrated in 

vacuo. The residue was then purified by kugelröhr distillation, yielding 11.2277 g (85%) 

of a pale yellow oil. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 7.37 (d, 2.1 Hz, 1H), 

7.15 (d, 2.1 Hz, 1H), 6.24 (s, 1H), 3.82 (s, 2H), 2.85 (septuplet, 6.6 Hz, 1H), 1.26-1.29 

(m, 15H). 

 

Synthesis of 1-tert-butyl-3-((isopropylthio)methyl)-4-(methoxymethyloxy)-

benzene  (6) 

A solution of MOMCl (~70 mmol) in toluene (~50 mL) was prepared according to the 

literature53 . To this solution was added 5  (11.2277g, 35 mmol) and N,N-

diisopropylethylamine (12 mL, 70 mmol). The resulting mixture was then heated at 50 ° 

C for 12 hours. After cooling to room temperature, the volatiles were removed in 

vacuo. The residue was dissolved in a saturated aqueous solution of NH4Cl (50 mL) and 

extracted with CH2Cl2  (1 x 50 mL; 2 x 25 mL). The combined organics were then 

washed with NaHCO3 (50 mL), dried over MgSO4, filtered, and concentrated in vacuo. 

The residue was then purified by kugelröhr distillation to yield 10.6829 g (84%) of a 

yellow oil. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 7.42 (d, 2.4 Hz, 1H), 7.34 (d, 
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2.4 Hz, 1H), 5.12 (s, 2H), 3.85 (s, 2H), 3.66 (s, 3H), 2.86 (septuplet, 6.9 Hz, 1H), 1.27 

(d, 6.9 Hz, 6H), 1.28 (s, 9H). 

 

Synthesis of potassium (2-(methoxymethyloxy)-3-(isopropylthio)methyl-5-(tert-

butyl)-phenyl)-trifluoroborate  (7) 

In a 100 mL round bottom 6  (2.0155 g, 5.6 mmol) was stirred in THF (50 mL) and 

cooled to -78 ° C. Next, nBuLi (2.4 mL, 2.65 M, 6.4 mmol) was added dropwise. After 

complete addition, the solution was stirred for 15 minutes at this temperature, then 

B(OiPr)3  (1.6 mL, 6.9 mmol) was added neat. The solution was stirred at -78 °C for 1 

hour and then allowed to warm to room temperature over night. The volatiles were then 

removed in vacuo, and KHF2  (2.6784 g, 34.3 mmol) was added as a solution in H2O (10 

mL) and MeOH (10 mL). The mixture was stirred for 1 hour at room temperature, and 

the resulting precipitate was then filtered on a glass frit, rinsing with H2O and then 

hexanes. The resulting white solid was then dried under vacuum, yielding 0.9686 g 

(45%) of the desired compound. 1H NMR (300 MHz, (D3 C)2CO, 25 °C): δ  (ppm) 7.52 

(d, 2.7 Hz, 1H), 7.18 (d, 2.7 Hz, 1H), 5.14 (s, 2H), 3.86 (s, 2H), 2.89 (septuplet, 6.9 Hz, 

1H), 1.27 (s, 9H), 1.25 (d, 6H). 19F NMR (300 MHz, (D3C)2CO, 25 °C): δ  (ppm) -139.2 

(broad multiplet). 

 

Synthesis of 6,6’-bis-(2-(methoxymethyloxy)-3-(isopropylthio)methyl-5-(tert-

butyl)-phenyl)-2,2’-bipyridine  (9) 

In a schlenk bomb was combined 6,6’-dibromo-2,2’-bipyridine (0.3091 g, 0.98 mmol), 7 

(0.9083 g, 2.3 mmol), K2CO3  (1.3028 g, 9.4 mmol), toluene (40 mL), MeOH (10 mL), 
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H2O (5 mL) and a stir bar. The vessel was degassed using the freeze-pump-thaw method 

(3 cycles), and then under an atmosphere of N2 a suspension of Pd(PPh3)4  (0.0679 g, 

0.06 mmol) in degassed toluene (5 mL) was transferred to the reaction mixture. The 

bomb was sealed and refluxed at 80 °C for 12 hours. After cooling to room 

temperature, H2O (50 mL) was added to the reaction mixture and the organic material 

was extracted with CHCl3  (50 mL). The aqueous layer was then washed with CHCl3  (2 

x 25 mL), and the combined organic washes were dried over MgSO4, filtered, and 

concentrated in vacuo. The crude yellow solid was then suspended in a minimal amount 

of MeOH, sonicated for 5 minutes, cooled to -20 ° C for one hour, and then filtered on 

a glass frit. The yellow powder was then collected and dried under high vacuum, 

yielding 0.7059 g (80%) of the desired product. 1H NMR (300 MHz, CDCl3, 25 ° C): δ  

(ppm) 8.50 (dd, 7.5 Hz, 1.2 Hz, 2H), 7.86 (t, 7.5 Hz, 2H), 7.80 (dd, 7.5 Hz, 1.2 Hz, 2H), 

7.72 (d, 2.7 Hz, 2H), 7.48 (d, 2.7 Hz, 2H), 4.78 (s, 4H), 3.94 (s, 4H), 3.30 (s, 6H), 2.96 

(septuplet, 6.9 Hz, 2H), 1.39 (s, 18H), 1.33 (d, 6.9 Hz, 12H). 

 

Synthesis of 6,6’-([2,2’-bipyridine]-6,6’-diyl)-bis-(2-(isopropylthio)methyl-4-(tert-

butyl))phenol  (10) 

In a 50 mL round bottom, 9  (0.5035 g, 0.7 mmol) was suspended in MeOH (20 mL). 

Then concentrated HCl (0.40 mL, 12 N, 4.8 mmol) was added and the mixture stirred 

for 1 hour at room temperature. The volatiles were then removed in vacuo and the 

residue treated with H2O (20 mL). The organics were extracted with CHCl3  (3 x 20 

mL). The combined extracts were dried over MgSO4 , filtered, and concentrated in 

vacuo to yield 0.2806 g (60%) of the desired product. 1H NMR (300 MHz, CDCl3, 25 ° 

C): δ  (ppm) 14.39 (s, 2H), 8.15 (dd, 6.6 Hz, 2.1 Hz, 2H), 8.04 (m, 4H), 7.77 (d, 2.1 Hz, 
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2H), 7.44 (d, 2.1 Hz, 2H), 3.94 (s, 4H), 2.97 (septuplet, 6.9 Hz, 2H), 1.38 (s, 18H), 1.33 

(d, 6.6 Hz, 12H). 

 

Synthesis of LSiPrNi  (11) 

In a 20 mL scintillation vial, 10  ( 0.02 g, mmol) was dissolved in THF (5 mL). To this 

solution was added Ni(acac)2  (0.01 g, mmol) as a solution in THF (2 mL). A color 

change from pale yellow to dark red was observed over the course of 30 minutes. After 

stirring for 3 hours, the volatiles were removed in vacuo, and the resulting salmon-

orange solid washed with Et2O (5 mL). The salmon-orange precipitate was then 

collected and dried in vacuo yielding (60%) of the desired product. 1H NMR (300 MHz, 

CDCl3, 25 ° C): δ (ppm) 14.39 (s, 2H), 8.15 (dd, 6.6 Hz, 2.1 Hz, 2H), 8.04 (m, 4H), 7.77 

(d, 2.1 Hz, 2H), 7.44 (d, 2.1 Hz, 2H), 3.94 (s, 4H), 2.97 (septuplet, 6.9 Hz, 2H), 1.38 (s, 

18H), 1.33 (d, 6.6 Hz, 12H). ESI-MS . 

 

Synthesis of 4-tert-butyl-1-(methoxymethyloxy)-benzene  (18) 

A solution of MOMCl (~500 mmol) in toluene (~220 mL) was prepared according to 

the literature53. To this solution was added 4-tert-butylphenol (50.6929 g, 337 mmol) 

and N,N-diisopropylethylamine (80 mL, 460 mmol). The resulting mixture was then 

heated at 50 ° C for 12 hours. After cooling to room temperature, the volatiles were 

removed in vacuo. The residue was dissolved in a saturated aqueous solution of NH4Cl 

(150 mL) and extracted with CH2Cl2  (1 x 150 mL; 2 x 100 mL). The combined organics 

were then washed with NaHCO3  (150 mL), dried over MgSO4, filtered, and 

concentrated in vacuo. The residue was then purified by kugelröhr distillation to yield 

63.0975 g (96%) of a colorless oil. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 7.31 (d, 
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8.7 Hz, 2H), 6.98 (d, 8.7 Hz, 2H), 5.16 (s, 2H), 3.48 (s, 3H), 1.30 (s, 9H). 

 

Synthesis of potassium (2-(methoxymethyloxy)-5-tert-butyl-

phenyl)trifluoroborate  (19) 

In a 3-neck, 500 mL round bottom fitted with N2  inlet and 60 mL dropping funnel was 

added TMEDA (9.3 mL, 62.0 mmol) in Et2O (250 mL). The solution was cooled to -40 

° C and nBuLi (24 mL, 2.61 M, 62.6 mmol) was added dropwise, flushing with Et2 O 

(20 mL). After stirring for 15 minutes, 1-tert-butyl-4-(methoxymethoxy)-benzene 

(10.0105 g, 51.5 mmol) was added dropwise, flushing with Et2O (20 mL). After stirring 

for 1 hour at -40 ° C, the cooling bath was removed and the mixture allowed to warm to 

room temperature for 1 to 2 hours. The reaction mixture was then cooled to -78 ° C 

and B(OiPr)3  (16 mL, 69.3 mmol) was added neat. The solution was stirred for 1 hour 

at this temperature and then warmed to room temperature and left stirring over night. 

The solution was then concentrated in vacuo and quenched with a solution of KHF2  

(24.0255 g, 308 mmol) in H2O (100 mL) and MeOH (100 mL), stirring for 1 hour. The 

resulting precipitate was then filtered on a coarse glass frit, washing with H2O followed 

by washing with hexanes. The resulting white solid was then collected and dried under 

high vacuum for several hours, yielding 13.6358 g (88%) of the desired product. 1H 

NMR (300 MHz, (D3C)2CO, 25 °C): δ  (ppm) 7.59 (d, 2.7 Hz, 1H), 7.06 (dd, 8.7 Hz, 2.7 

Hz, 1H), 6.78 (d, 8.7 Hz, 1H), 5.13 (s, 2H), 3.44 (s, 3H), 1.26 (s, 9H). 19F NMR (300 

MHz, (D3C)2CO, 25 °C): δ  (ppm) -140.5 (broad multiplet). 
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Synthesis of 6,6’-bis-(5-tert-butyl-2-(methoxymethyloxy)phenyl)-2,2’-bipyridine  

(21) 

In a schlenk bomb was combined 6,6’-dichloro-2,2’-bipyridine (2.0174 g, 9.0 mmol), 19  

(6.4166 g, 21.4 mmol), K2CO3  (8.8966 g, 64.4 mmol), toluene (160 mL), MeOH (40 

mL), H2O (20 mL) and a stir bar. The vessel was degassed using the freeze-pump-thaw 

method (3 cycles), and then under an atmosphere of N2  a suspension of Pd(PPh3)4  

(0.3001 g, 0.26 mmol) in degassed toluene (20 mL) was transferred to the reaction 

mixture. The bomb was sealed and refluxed at 80 ° C for 12 hours. After cooling to 

room temperature, H2O (100 mL) was added to the reaction mixture and the organic 

material was extracted with CHCl3  (160 mL). The aqueous layer was then washed with 

CHCl3  (2 x 50 mL), and the combined organic washes were dried over MgSO4, filtered, 

and concentrated in vacuo. The crude yellow solid was then suspended in a minimal 

amount of MeOH, sonicated for 5 minutes, cooled to -20 ° C for one hour, and then 

filtered on a glass frit. The white powder was then collected and dried under high 

vacuum, yielding 3.9948 g (82%) of the desired product. 1H NMR (300 MHz, CDCl3, 25 

°C): δ  (ppm) 8.51 (dd, 6.4 Hz, 2.4 Hz, 2H), 8.00 (d, 2.4 Hz, 2H), 7.85 (m, 4H), 7.40 (dd, 

8.7 Hz, 2.4 Hz, 2H), 7.19 (d, 8.7 Hz, 2H), 5.19 (s, 4H), 3.44 (a, 6H), 1.40 (s, 18H). 

 

Synthesis of 6,6’-([2,2’-bipyridine]-6,6’-diyl)bis(2-(bromomethyl)-4-(tert-

butyl)phenol)  (22) 

In a 3-neck 250 mL round bottom was combined 21  (3.1500 g, 5.8 mmol), 

paraformaldehyde (0.5371 g, 17.9 mmol), glacial acetic acid (50 mL), and a stir bar. 

HBr(g)  was bubbled through the suspension with vigorous stirring for 15 minutes. Then 
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the reaction flask was sealed and heated at 90 °C over 8 hours, turning from a yellow 

heterogenous mixture to an orange homogenous solution. After cooling to room 

temperature, the acetic acid was distilled in vacuo, the residue washed with H2O (50 

mL), and extracted with CHCl3  (3 x 50 mL). The combined organic washes were dried 

over MgSO4 , filtered, and concentrated in vacuo. The resulting residue was then 

triturated with hexanes, filtered, and dried under vacuum yielding 3.6696 g (98%) of a 

yellow powder. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 14.62 (bs, 2H), 8.17 (dd, 

7.5 Hz, 1.5 Hz, 2H), 8.09 (t, 7.5 Hz, 2H), 8.05 (dd, 8.1 Hz, 1.5 Hz, 2H), 7.86 (d, 2.4 Hz, 

2H), 7.48 (dd, 2.4 Hz, 2H), 4.74 (s, 4H), 1.39 (s, 18H). 

 

Synthesis of S-5-(tert-butyl)-3-(6'-(5-(tert-butyl)-2-hydroxy-3-methylphenyl)-[2,2'-

bipyridin]-6-yl)-2-hydroxybenzyl ethanethioate  (23) 

In a 50 mL round bottom equipped with a stir bar was combined 22  (1.0153 g, 1.6 

mmol), KSAc (0.5567 g, 4.8 mmol), and DMF (30 mL). The flask was sealed and heated 

at 80 °C over 12 hours. After cooling to room temperature, the DMF was distilled in 

vacuo, and the residue washed with H2O (20 mL), and extracted with CH2Cl2 (3 x 20 

mL). The combined organic washes were dried over MgSO4, filtered, and concentrated 

in vacuo, yielding 0.8276 g (83%) of a tan powder. 1H NMR (300 MHz, CDCl3, 25 °C): 

δ (ppm) 14.41 (s, 2H), 8.0 – 8.15 (m, 6H), 7.79 (d, 2.1 Hz, 2H), 7.50 (d, 2.1 Hz, 2H), 

4.28 (s, 4H), 2.35 (s, 6H), 1.37 (s, 18H). 
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Synthesis of 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(2-((bis(pyridin-2-

ylmethyl)amino)methyl)-4-(tertbutyl)phenol)  (24) 

In a 25 mL round bottom was combined diisopropylethylamine (0.3578 g, 2.8 mmol), 

di-(2-picolyl)amine (0.5101 g, 2.6 mmol), THF (10 mL), and a stir bar. To this stirred 

solution was added dropwise a solution of 22  (0.7488 g, 1.2 mmol) in THF (10 mL), 

with precipitate forming upon addition. After complete addition, the mixture was left 

stirring at room temperature for 3 hours. Then, the precipitate was filtered and the 

filtrate concentrated in vacuo. The crude solid was then dissolved in a minimal amount 

of 1:1 EtOAc:Et2O, and washed with H2O (3 x 30 mL). The organic layer was then 

dried over MgSO4, filtered, and concentrated in vacuo, yielding 0.4432 g (43%) of an 

orange solid. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 13.72 (bs, 2H), 8.53 (m, 4H), 

8.19 (d, 7.5 Hz, 2H), 8.05 (t, 7.5 Hz, 2H), 8.00 (t, 7.5 Hz, 2H), 7.82 (d, 2.4 Hz, 2H), 7.63 

(m, 10H), 7.13 (m, 4H), 3.95 (bs, 8H), 3.93 (bs, 4H), 1.37 (s, 18H). 

 

Synthesis of 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(2-((N-methyl-N-(pyridin-2-

ylmethyl)amino)methyl)-4-(tert-butyl)phenol)  (25) 

In a 25 mL round bottom was combined diisopropylethylamine (0.4131 g, 3.2 mmol), 

N-methyl-(2-picolyl)amine (0.2070 g, 1.7 mmol), THF (10 mL), and a stir bar. To this 

stirred solution was added dropwise a solution of 22  (0.5012 g, 0.8 mmol) in THF (10 

mL), with precipitate forming upon addition. After complete addition, the mixture was 

left stirring at room temperature for 3 hours. Then, the solvent was removed in vacuo. 

The residue was then dissolved in DCM, and washed with aqueous NaOH (1M, 1 x 20 

mL) and H2O (3 x 30 mL). The organic layer was then dried over MgSO4, filtered, and 

concentrated in vacuo. The resulting residue was then triturated with pentane, yielding 
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0.4432 g (43%) of an orange solid. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 13.77 

(bs, 2H), 8.55 (m, 2H), 8.22 (d, 7.5 Hz, 2H), 8.07 (d, 7.5 Hz, 2H), 8.00 (t, 7.5 Hz, 2H), 

7.85 (d, 2.1 Hz, 2H), 7.66 (m, 2H), 7.50 (m, 4H), 7.16 (m, 2H), 3.85 (bs, 4H), 3.82 (bs, 

4H), 2.37 (s, 6H), 1.39 (s, 18H). 

 

Synthesis of 6,6'-([2,2'-bipyridine]-6,6'-diyl)bis(2-((N-methyl-N-(pyridin-2-

ylmethyl)amino)methyl)-4-(tert-butyl)phenol)  (26) 

In a 25 mL round bottom was combined diisopropylethylamine (0.4131 g, 3.2 mmol), 

N-methyl-(2-picolyl)amine (0.2070 g, 1.7 mmol), THF (10 mL), and a stir bar. To this 

stirred solution was added dropwise a solution of 22  (0.5012 g, 0.8 mmol) in THF (10 

mL), with precipitate forming upon addition. After complete addition, the mixture was 

left stirring at room temperature for 3 hours. Then, the solvent was removed in vacuo. 

The residue was then dissolved in DCM, and washed with aqueous NaOH (1M, 1 x 20 

mL) and H2O (3 x 30 mL). The organic layer was then dried over MgSO4 , filtered, and 

concentrated in vacuo. The resulting residue was then triturated with pentane, yielding 

0.4432 g (43%) of an orange solid. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 13.77 

(bs, 2H), 8.55 (m, 2H), 8.22 (d, 7.5 Hz, 2H), 8.07 (d, 7.5 Hz, 2H), 8.00 (t, 7.5 Hz, 2H), 

7.85 (d, 2.1 Hz, 2H), 7.66 (m, 2H), 7.50 (m, 4H), 7.16 (m, 2H), 3.85 (bs, 4H), 3.82 (bs, 

4H), 2.37 (s, 6H), 1.39 (s, 18H). 
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Synthesis of LSAcNi  (27) 

In a schlenk tube, 23  (0.2112 g, 0.3 mmol), Ni(OAc)2-4H2O (0.0981 g, 0.4 mmol), and 

NEt3 (0.1031 g, 1.0 mmol) were suspended in MeOH (20 mL). The suspension was then 

heated at 60 °C for 12 hours, during which the color changed from tan to red. After 

cooling to room temperature, the red precipitate was filtered and washed with MeOH (3 

x 10 mL). The precipitate was then collected and dried in vacuo yielding (60%) of the 

desired product. 1H NMR (300 MHz, CDCl3 , 25 °C): δ  (ppm) 7.72 (d, 7.5 Hz, 2H), 

7.57 (d, 7.5 Hz, 2H), 7.46 (t, 7.5 Hz, 2H), 7.40 (d, 2.1 Hz, 2H), 7.34 (d, 2.1 Hz, 2H), 

4.25 (s, 4H), 2.35 (s, 6H), 1.33 (s, 18H). ESI-MS (DCM/MeOH): m/z = 707 [M + Na]+. 

 

Synthesis of LSacCo  (28) 

In a schlenk tube, 23  (0.1999 g, 0.3 mmol), Co(OAc)2-4H2O (0.0889 g, 0.4 mmol), and 

NEt3 (0.0685 g, 0.7 mmol) were suspended in MeOH (20 mL). The suspension was then 

heated at 60 °C for 12 hours, during which the color changed from tan to brown. After 

cooling to room temperature, the brown precipitate was filtered and washed with 

MeOH (3 x 10 mL). The precipitate was then collected and dried in vacuo yielding 

(60%) of the desired product. ESI-MS (DCM/MeOH): m/z = 708 [M + Na]+ . 

 

Synthesis of LSHNi  (29) 

In a 20 mL scintillation vial, 27  (0.0380 g, 0.055 mmol) and NaSEt (0.0099 g, 0.12 

mmol) were combined with THF (9 mL) and a magnetic stir bar. MeOH (1 mL) was 

added and the red solution stirred for 10 minutes at room temperature. Then the 

volatiles were removed in vacuo, the residue was washed with  saturated aqueous 

NaHCO3 (10 mL), and the product extracted with excess CHCl3. The combined organic 
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extracts were dried over MgSO4, filtered and concentrated in vacuo, yielding g (%) of 

the desired product. 1H NMR (300 MHz, CDCl3, 25 °C): δ  (ppm) 7.81 (d, 7.5 Hz, 2H), 

7.74 (d, 7.5 Hz, 2H), 7.62 (t, 7.5 Hz, 2H), 7.44 (d, 2.1 Hz, 2H), 7.28 (d, 2.1 Hz, 2H), 

3.86 (d, 8.1 Hz, 4H), 3.10 (t, 8.1 Hz, 2H), 1.35 (s, 18H). 

 

Synthesis of LAlMe  (31) 

In a 20 mL scintillation vial, 17  (0.1085 g, mmol) was dissolved in Toluene (4 mL). In a 

separate vial AlMe3  (0.0095 g, mmol) was dissolved in Toluene (1 mL). In a cold well, 

the two vials were cooled using liquid N2. After freezing the solutions, the vials were 

removed and allowed to thaw. Upon thawing, the AlMe3 solution was added to the 

solution of 17 with stirring. The mixture was allowed to warm to room 

temperature and stirred for another 3 hours. The mixture first darkened, then lightened 

again over this time period. The volatiles were then removed in vacuo, giving the 

desired compound in quantitative yield. 1H NMR (300 MHz, CD2Cl2, 25 °C): δ  (ppm) 

8.41 (m, 4H), 7.93 (bs, 6H), 7.88 (d, 2.4 Hz, 2H), 7.78 (d, 7.8 Hz, 2H), 7.67 (td, 7.5 Hz, 

1.8 Hz, 4H), 7.59 (d, 2.4 Hz, 2H), 7.13 (m, 4H), 4.10 (bs, 4H), 4.06 (d, 15 Hz, 4H), 3.99 

(d, 15 Hz, 4H), 1.41 (s, 18H), –1.44 (s, 3H). 

 

Synthesis of LAl(OPhMe3)  (32) 

In a schlenk tube was combined 18 (0.0732 g, mmol), 2,4,6-trimethylphenol (0.0101 g, 

mmol), THF (10 mL), and a stir bar. The sealed tube was then heated at 60 ° C over 24 

hours. The solvents were removed in vacuo and the crude solid was washed with Et2O 

(5 mL). The precipitate was then redissolved in THF (5 mL), filtered through celite, and 
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concentrated in vacuo, yielding 0.0781 g (94 %) of an orange solid. 1H NMR (300 MHz, 

CD2Cl2, 25 °C): δ  (ppm) 8.56 (m, 4H), 7.9 – 8.0 (m, 8H), 7.78 (d, 7.8 Hz, 4H), 7.69 (td, 

7.8 Hz, 1.8 Hz, 4H), 7.58 (d, 2.4 Hz, 2H), 7.16 (m, 4H), 6.19 (s, 2H), 4.21 (d, 15.6 Hz, 

2H), 4.02 (s, 8H), 4.00 (d, 15.6 Hz, 2H), 1.87 (s, 3H), 1.37 (s, 18H), 1.35 (s, 6H). 

 

Synthesis of LAl(OPhMe3)Cu2(NCMe)2(OTf)2  (33) 

In a 20 mL scintillation vial (19 ) (0.0763 g, mmol) was suspended in MeCN (4 mL). To 

this stirred suspension was added a solution of (MeCN)4Cu(OTf) (0.0554 g, mmol) in 

MeCN (2 mL). Upon addition the orange suspension turned homogeneous. After 

stirring for 15 minutes, the solvent was removed in vacuo, yielding the desired complex 

in quantitative yield. 1H NMR (300 MHz, CD3CN, 25 °C): δ  (ppm) 8.35 – 8.50 (m, 8H), 

8.28 (d, 8.1 Hz, 2H), 7.70 (d, 2.4 Hz, 2H), 7.45 – 7.55 (m, 6H), 7.22 (m, 4H), 6.95 (bs, 

4H), 6.31 (s, 2H), 4.50 (d, 12 Hz, 2H), 4.12 (d, 12 Hz, 2H), 3.77 (bs, 6H), 3.38 (s, 1H), 

3.17 (s, 1H), 1.99 (s, 6H), 1.70 (s, 3H), 1.48 (s, 6H), 1.31 (s, 18H). 
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CHAPTER 2 

 
Figure C2.1. 19F NMR spectra of B(C6F5)3 under O2 (1 atm) at 5 min. (bottom) and 24 
hours (top) in CD2Cl2 at 25 °C. 

 

 
Figure C2.2. 1H NMR spectra of Cp*

2Fe under O2 (1 atm) at 5 min. (bottom) and 24 
hours (top) in CD2Cl2 at 25 °C. 
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Figure C2.3. 1H NMR spectra of Cp*

2Fe and B(C6F5)3 under N2 at 15 min. (bottom) 
and 12 hours (top) CD2Cl2 at 25 °C. 

 
Figure C2.4. 19F NMR spectra of Cp*

2Fe and B(C6F5)3 under N2 at 15 min. (bottom) 
and 12 hours (top) CD2Cl2 at 25 °C. 
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Figure C2.5. UV-vis spectrum of [12-][Cp*

2Fe+]2 in DCM with varying concentration. 

 

 
Figure C2.6. UV-vis monitoring of the NMR concentration reaction of Cp*

2Fe and 
B(C6F5)3 in DCM under N2. Aliquots of the reaction were taken over time and diluted 
by a factor of 0.06. The absorption at 780 nm was measured to determine the amount 
of Cp*

2Fe+ generated. After 26 hours at room temperature, less than 15% of the total 
Cp*

2Fe had been oxidized to Cp*
2Fe+. 
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Figure C2.7. 1H NMR spectra of Cp*

2Fe and B(C6F5)3 under vacuum at 15 min. 
(bottom) and 12 hours (top) CD2Cl2 at 25 °C. 

 
Figure C2.8. 19F NMR spectra of Cp*

2Fe and B(C6F5)3 under vacuum at 15 min. 
(bottom) and 12 hours (top) CD2Cl2 at 25 °C. 
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Figure C2.9. 1H NMR spectrum of Cp*

2Fe and B(C6F5)3 under O2 (1 atm) in CD2Cl2 at 
25 °C. 

 
Figure C2.10. 19F NMR spectrum of Cp*

2Fe and B(C6F5)3 under O2 (1 atm) in CD2Cl2 at 
25 °C. 

 
Figure C2.11. 1H NMR spectrum of Cp*

2Fe and B(C6F5)3 in the dark under O2 (1 atm) 
in CD2Cl2 at 25 °C. 
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Figure C2.12. 1H NMR spectrum of Cp*

2Fe and B(C6F5)3 in the dark under O2 (1 atm) 
in CD2Cl2 at 25 °C. 

 
Figure C2.13. 1H NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 7 hours 
in CD2Cl2 at 25 °C. 

 
Figure C2.14. 19F NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 7 hours 
in CD2Cl2 at 25 °C. 

 



 

255 

 
Figure C2.15. 1H NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 
degassing in CD2Cl2 at 25 °C. 

 
Figure C2.16. 19F NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 
degassing in CD2Cl2 at 25 °C. 

 
Figure C2.17. 1H NMR spectrum of Cp*

2Fe, B(C6F5)3, and DTBMP under O2 (1 atm) in 
CD2Cl2 at 25 °C. 
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Figure C2.18. 19F NMR spectrum of Cp*

2Fe, B(C6F5)3 and DTBMP under O2 (1 atm) in 
CD2Cl2 at 25 °C. 

 

 
Figure C2.19. 1H NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 3 hours 
in CD2Cl2 at 25 °C  (bottom) and Cp2Fe, B(C6F5)3 and DTBMP under O2 (1 atm) after 3 
hours in CD2Cl2 at 25 °C (top). 
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Figure C2.20. 19F NMR spectrum of Cp2Fe and B(C6F5)3 under O2 (1 atm) after 3 hours 
in CD2Cl2 at 25 °C  (bottom) and Cp2Fe, B(C6F5)3 and DTBMP under O2 (1 atm) after 3 
hours in CD2Cl2 at 25 °C (top). 

 
Figure C2.21. 1H NMR spectrum of Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24 under O2 (1 
atm) after 3 hours in CD2Cl2 at 25 °C. 
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Figure C2.22. 19F NMR spectrum of Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24 under O2 (1 
atm) after 3 hours in CD2Cl2 at 25 °C. 

 
Figure C2.23. 1H NMR spectrum of Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24 under O2 (1 
atm) after 2 hours in CD2Cl2 at 25 °C. 
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Figure C2.24. 19F NMR spectrum of Cp2Fe, B(C6F5)3 and H(OEt2)2BArF24 under O2 (1 
atm) after 3 hours in CD2Cl2 at 25 °C (bottom) and crystals of [{(F5C6)3B}2OH-

][Cp2Fe+] isolated from the reaction mixture in CD2Cl2 at 25 °C (top). 

 
Figure C2.25. 1H NMR spectrum of [12-][Cp*

2Fe+]2 and H(OEt2)2BArF24 in CD2Cl2 at 
25 °C. 
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Figure C2.26. 19F NMR spectrum of [12-][Cp*

2Fe+]2 and H(OEt2)2BArF24 in CD2Cl2 at 
25 °C. 

 
Figure C2.27. 1H NMR spectrum of [12-][Cp2Fe+]2 and H(OEt2)2BArF24 in CD2Cl2 at 25 
°C. 

 
Figure C2.28. 19F NMR spectrum of [12-][Cp2Fe+]2 and H(OEt2)2BArF24 in CD2Cl2 at 25 
°C. 
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Figure C2.29. 1H NMR spectrum of B(C6F5)3, DABCO•2H2O2, and DABCO in 
CD2Cl2 at 25 °C. 

 

Figure C2.30. 19F NMR spectrum of B(C6F5)3, DABCO•2H2O2, and DABCO in 
CD2Cl2 at 25 °C. 

 

 

 
Figure C2.31. 1H NMR spectrum of [12-][Cp*

2Fe+]2 in CD2Cl2 at 25 °C. 
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Figure C2.32. 19F NMR spectrum of [12-][Cp*

2Fe+]2 in CD2Cl2 at 25 °C. 
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CHAPTER 3 

 

Figure C3.1. 1H NMR spectrum of 3.1a in CDCl3 at 25 °C. 

 

Figure C3.2. 13C{1H} NMR spectrum of 3.1a in CDCl3 at 25 °C. 

 

Figure C3.3. 31P{1H} NMR spectrum of 3.1a in CDCl3 at 25 °C. 
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Figure C3.4. 1H NMR spectrum of 3.1b in C6D6 at 25 °C. 

 

Figure C3.5. 13C{1H} NMR spectrum of 3.1b in C6D6 at 25 °C. 

 

Figure C3.6. 31P{1H} NMR spectrum of 3.1b in C6D6 at 25 °C. 
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Figure C3.7. 1H NMR spectrum of 3.1c in CDCl3 at 25 °C. 

 

Figure C3.8. 13C{1H} NMR spectrum of 3.1c in CDCl3 at 25 °C. 

 

Figure C3.9. 31P{1H} NMR spectrum of 3.1c in CDCl3 at 25 °C. 
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Figure C3.10. 1H NMR spectrum of 3.1d in CDCl3 at 25 °C. 

 

Figure C3.11. 13C{1H} NMR spectrum of 3.1d in CDCl3 at 25 °C. 

 

Figure C3.12. 31P{1H} NMR spectrum of 3.1d in CDCl3 at 25 °C. 
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Figure C3.13. 1H NMR spectrum of 3.1e in C6D6 at 25 °C. 

 

Figure C3.14. 13C{1H} NMR spectrum of 3.1e in C6D6 at 25 °C. 

 

Figure C3.15. 31P{1H} NMR spectrum of 3.1e in C6D6 at 25 °C. 
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Figure C3.16. 19F NMR spectrum of 3.1e in C6D6 at 25 °C. 

 

Figure C3.17. 1H NMR spectrum of 3.1f in CDCl3 at 25 °C. 

 

 
Figure C3.18. 13C{1H} NMR spectrum of 3.1f in CDCl3 at 25 °C. 
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Figure C3.19. 31P{1H} NMR spectrum of 3.1f in CDCl3 at 25 °C. 

 

 
Figure C3.20. 1H NMR spectrum of 3.2a in C6D6. 

 

 
Figure C3.21. 13C{1H} NMR spectrum of 3.2a in C6D6 at 75 °C. 
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Figure C3.22. 31P{1H} NMR spectrum of 3.2a in C6D6. 

 

 
Figure C3.23. 1H NMR spectrum of 3.2b in C6D6 at 25 °C. 

 

 
Figure C3.24. 13C{1H} NMR spectrum of 3.2b in C6D6 at 25 °C. 
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Figure C3.25. 31P{1H} NMR spectrum of 3.2b in C6D6 at 25 °C. 

 

 
Figure C3.26. 1H NMR spectrum of 3.2c in C6D6 at 25 °C. 

 

Figure C3.27. 13C{1H} NMR spectrum of 3.2c in C6D6 at 25 °C. 

 

 

-40-30-20-100102030405060708090100110120130140150160170180190200
(ppm)

5
1
.3
7

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
(ppm)

1
.8
9

5
.3
2

1
0
.0
9

7
.1
8

7
.1
0

6
.7
6

2
.3
0

2
.1
9

2
.0
1

2
.0
0

2
.1
4

2
.2
2

1
.8
1

0
.4
6

0
.6
2

0
.9
4

1
.2
1

1
.3
0

1
.6
6

2
.4
9

2
.7
2

5
.7
8

7
.1
4

7
.3
0

7
.6
0

8
.0
1

0102030405060708090100110120130140150160170180190200210220230
(ppm)

5
.0
5

5
.6
4

5
.9
2

6
.2
1

1
9
.3
9

1
9
.5
6

1
9
.6
8

2
0
.5
9

3
1
.6
8

3
5
.6
5

8
5
.1
4

1
2
0
.9
7

1
2
7
.2
8

1
2
8
.7
6

1
3
1
.1
4

1
3
1
.3
2

1
3
1
.5
6

1
4
4
.6
7

1
4
6
.8
4

2
1
2
.5
9

2
1
4
.0
7

2
2
3
.9
2



 

272 

Figure C3.28. 31P{1H} NMR spectrum of 3.2c in C6D6 at 25 °C. 

 

Figure C3.29. 1H NMR spectrum of 3.2d in C6D6 at 25 °C. 

 

Figure C3.30. 13C{1H} NMR spectrum of 3.2d in C6D6 at 25 °C. 

 

 

-50-40-30-20-100102030405060708090100110120130140150160170180190
(ppm)

5
1
.4
7

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
(ppm)

5
.8
0

8
.4
2

6
.4
4

7
.2
8

6
.6
3

6
.0
4

2
.1
0

2
.1
3

2
.0
1

2
.4
3

2
.1
6

2
.0
5

1
.8
1

0
.7
9

0
.9
3

1
.0
7

1
.2
1

1
.3
0

1
.6
6

2
.4
7

2
.7
1

5
.7
9

7
.1
2

7
.2
9

7
.5
9

8
.0
3

102030405060708090100110120130140150160170180190200210220230
(ppm)

1
2
.7
6

1
3
.4
5

1
5
.8
5

1
6
.3
4

1
9
.3
6

1
9
.5
1

1
9
.6
9

2
0
.6
1

3
1
.7
2

3
5
.6
5

8
4
.9
8

1
2
0
.7
6

1
2
7
.2
5

1
2
8
.8
2

1
3
0
.9
8

1
3
1
.3
6

1
3
1
.6
6

1
4
4
.6
8

1
4
6
.9
2

2
1
2
.3
0

2
1
4
.0
2

2
2
3
.8
4



 

273 

Figure C3.31. 31P{1H} NMR spectrum of 3.2d in C6D6 at 25 °C. 

 

Figure C3.32. 1H NMR spectrum of 3.2e in C6D6 at 25 °C. 

 

Figure C3.33. 13C{1H} NMR spectrum of 3.2e in C6D6 at 25 °C. 
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Figure C3.34. 31P{1H} NMR spectrum of 3.2e in C6D6 at 25 °C. 

 

Figure C3.35. 19F NMR spectrum of 3.2e in C6D6 at 25 °C. 

 

Figure C3.36. 1H NMR spectrum of 3.2f in C6D6 at 25 °C. 
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Figure C3.37. 13C{1H} NMR spectrum of 3.2f in C6D6 at 25 °C. Solvent peaks off 
scale. 

 

 

Figure C3.38. 31P{1H} NMR spectrum of 3.2f in C6D6 at 25 °C. 

 

Figure C3.39. 1H NMR spectrum of 3.2h in C6D6 at 25 °C. 
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Figure C3.40. 13C{1H} NMR spectrum of 3.2h in C6D6 at 25 °C. Solvent peaks off 
scale 

 

Figure C3.41. 31P{1H} NMR spectrum of 3.2h in C6D6 at 25 °C. 

 

Figure C3.42. 1H NMR spectrum of 3.2i in C6D6 at 25 °C. 
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Figure C3.43. 13C{1H} NMR spectrum of 3.2i in C6D6 at 25 °C. Solvent peaks off scale 

 

Figure C3.44. 31P{1H} NMR spectrum of 3.2i in C6D6 at 25 °C. 

 

Figure C3.45. 1H NMR spectrum of 3.3 in CD3CN at 25 °C. 
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Figure C3.46. 13C{1H} NMR spectrum of 3.3 in CD3CN at 25 °C. Solvent peaks off 
scale. 

 

Figure C3.47. 31P{1H} NMR spectrum of 3.3 in CD3CN at 25 °C. 

 

Figure C3.48. 1H NMR spectrum of [3.52+][OTf-]2 in CD3CN at 25 °C. 
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Figure C3.49. 13C{1H} NMR spectrum of [3.52+][OTf-]2 in CD3CN at 25 °C. 

 

Figure C3.50. 31P{1H} NMR spectrum of [3.52+][OTf-]2 in CD3CN at 25 °C. 

 

 

Figure C3.51. 19F NMR spectrum of [3.52+][OTf-]2 in CD3CN at 25 °C. 
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Figure C3.52. 1H NMR spectrum of [3.6+][OTf-] in CD3CN at 25 °C. 

 

Figure S3.53. 13C{1H} NMR spectrum of [3.6+][OTf-] in CD3CN at 25 °C. 

 

Figure C3.54. 31P{1H} NMR spectrum of [3.6+][OTf-] in CD3CN at 25 °C. 

 

 

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5
(ppm)

5
.8
5

1
9
.3
7

3
.3
3

1
.3
6

2
.9
8

1
.0
1

1
.0
0

9
.3
3

3
.1
7

3
.4
1

3
.9
2

5
.7
1

5
.8
9

0102030405060708090100110120130140150160170180190200210220230240
(ppm)

1
7
.4
6

1
7
.7
3

1
8
.0
4

1
8
.4
6

2
6
.7
0

2
7
.7
7

3
0
.1
2

3
0
.3
1

6
2
.1
1

8
3
.4
7

9
9
.2
3

1
2
0
.7
6

1
2
3
.3
1

1
2
4
.1
3

1
2
8
.0
6

1
2
9
.2
8

1
2
9
.9
9

1
3
0
.8
4

1
3
3
.0
4

1
3
3
.5
0

1
3
5
.2
4

1
4
1
.1
7

1
4
2
.6
8

1
4
3
.0
3

1
6
3
.5
1

2
2
8
.6
2

2
3
3
.6
0

-40-30-20-100102030405060708090100110120130140150160170180190200
(ppm)

6
5
.4
4

7
8
.1
9



 

281 

Figure C3.55. 19F NMR spectrum of [3.6+][OTf-] in CD3CN at 25 °C. 

 

 
Figure C3.56. 1H NMR spectrum of Me4Fc in C6D6 at 25 °C. 

 

 
Figure C3.57. 13C{1H} NMR spectrum of Me4Fc in C6D6 at 25 °C. 
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Figure C3.58. 1H NMR spectrum of 3.1Bra in CD2Cl2 under O2 at 25 °C after 10 
minutes (bottom) and 24 hours (top). Solvent peak off scale. 

 

 

 
Figure C3.59. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2g in C6D6 
under O2 at 25 °C after 10 minutes (bottom) and 24 hours (top). Solvent peak off scale. 
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Figure C3.60. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2f in 
CD2Cl2 under O2 at 25 °C after 10 minutes (bottom) and 24 hours (top). 

 

 
Figure C3.61. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2a + H2O2 
after 1 hour (bottom) and 3.3 + H2O2 after 1 hour (top) in CD2Cl2 at 25 °C. 
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Figure C3.62. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2b under 
N2 (bottom) and under O2 after 1.5 hours (middle) and after 3 hours (top) in CD2Cl2 at 
25 °C. 

 

 
Figure C3.63. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2c under 
O2 for 8 hours (bottom) and 48 hours (top) in CD2Cl2 at 25 °C. 
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Figure C3.64. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2d under 
O2 for 10 minutes (bottom) and 5 days (top) in CD2Cl2 at 25 °C. 

 

 

 
Figure C3.65. 19F NMR spectra (left), 1H NMR spectra (center) and 31P{1H} NMR 
spectra (right) of 3.2e under O2 after 10 minutes (bottom), 6 hours (middle), and 36 
hours (top) in CD2Cl2 at 25 °C.  
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Figure C3.66. 19F NMR spectra (left), 1H NMR spectra (center) and 31P{1H} NMR 
spectra (right) of 3.2e under O2 (bottom) and 3.3 + (pCF3C6H4BO)3 under N2 (top) in 
CD2Cl2 at 25 °C. 

 

Figure C3.67. 19F NMR spectra (left), 1H NMR spectra (center) and 31P{1H} NMR 
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spectra (right) of 3.2f and 2 equivalents B(C6F5)3 under N2 (maroon), under O2 for 10 
minutes (green), 7 hours (teal), and 24 hours (purple) in CD2Cl2 at 25 °C. 

 

 

 
Figure C3.68. 19F NMR spectra (left), 1H NMR spectra (center) and 31P{1H} NMR 
spectra (right) of 3.2g and 2 equivalents B(C6F5)3 under N2 (maroon), under O2 for 15 
minutes (green), 12 hours (teal), and 36 hours (purple) in CD2Cl2 at 25 °C. 
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Figure C3.69. 1H NMR spectra (left) and 31P{1H} NMR spectra (right) of 3.2g and 
catechol under N2 (maroon), under O2 for 10 minutes (green), 3 hours (teal), and 36 
hours (purple) in CD2Cl2 at 25 °C. 

 

 

 
Figure C3.70. 1H NMR spectra of Me4Fc and catechol under N2 (maroon), under O2 
for 10 minutes (green), 90 minutes (teal), and 3 hours (purple) in CD2Cl2 at 25 °C. 
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CHAPTER 4 

 

 Figure C4.1. 1H NMR spectrum of 4.2 in CD3CN at 25 °C. 

 
Figure C4.2. 13C{1H} NMR spectrum of 4.2 in CD3CN at 25 °C. 

 

 Figure C4.3. 31P{1H} NMR spectrum of 4.2 in CD3CN at 25 °C. 
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Figure C4.4. 19F NMR spectrum of 4.2 in CD3CN at 25 °C. 

 

 

Figure C4.5. 1H NMR spectrum of 4.3 in CD3CN at 25 °C. 

 

 

Figure C4.6. 13C{1H} NMR spectrum of 4.3 in CD3CN at 25 °C. 
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Figure C4.7. 31P{1H} NMR spectrum of 4.3 in CD3CN at 25 °C. 

 

 

Figure C4.8. 19F NMR spectrum of 4.3 in CD3CN at 25 °C. 

 

 

Figure C4.9. 1H NMR spectrum of mixture of 4.5a and 4.5b in CD3CN at 25 °C. 
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Figure C4.10. 13C{1H} NMR spectrum of mixture of 4.5a and 4.5b in CD3CN at 25 
°C. 

Figure C4.11. 31P{1H} NMR spectrum of mixture of 4.5a and 4.5b in CD3CN at 25 
°C. 

 

Figure C4.12. 19F NMR spectrum of mixture of 4.5a and 4.5b in CD3CN at 25 °C. 
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Figure C4.13. 1H NMR spectrum of 4.6 in CD2Cl2 at 25 °C. 

 

Figure C4.14. 13C{1H} NMR spectrum of 4.6 in CD2Cl2 at 25 °C. 

 

 Figure C4.15. 31P{1H} NMR spectrum of 4.6 in CD2Cl2 at 25 °C. 
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Figure C4.16. 1H NMR spectrum of 4.9 in CD3CN at 25 °C. 

 

Figure C4.17. 13C{1H} NMR spectrum of 4.9 in CD3CN at 25 °C. 

 

 Figure C4.18. 31P{1H} NMR spectrum of 4.9 in CD3CN at 25 °C. 
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Figure C4.19. 1H NMR spectrum of 4.10 in CD3CN at 25 °C. 

 

 
Figure C4.20. 13C NMR spectrum of 4.10 in CD3CN at 25 °C. 

 

 

  
Figure C4.21. 1H NMR spectrum (left) and 31P NMR spectrum (right) of 4.1 and 2 
equiv. TEMPO in CD3CN at 25 °C after 10 min. 
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Figure C4.22. 1H NMR spectrum (left) and 31P NMR spectrum (right) of 4.2 and 2 
equiv. TEMPO in CD3CN at 25 °C after 10 min. 

 

 
Figure C4.23. 1H NMR spectrum of 4.8 and 2 equiv. TEMPO in CD3CN at 25 °C 
after 10 min. 
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Figure C4.24. 1H NMR spectrum (left) and 31P NMR spectrum (right) of 4.1 and 
azobenzene in CD3CN after 15 min room temperature (bottom), 1 hour 80 °C 
(middle), and 3 hours 80 °C (top) all recorded at 25 °C. Note: the low signal 
corresponding to 1 in the bottom and middle spectra is due to the low solubility of 
4.1 in CD3CN. 

 

 

 

 
Figure C4.25. 1H NMR spectrum (left) and 31P NMR spectrum (right) of 4.2 and 
azobenzene in CD3CN after 15 min room temperature (bottom), 3 hour 80 °C 
(middle), and 24 hours 80 °C (top) all recorded at 25 °C. 
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CHAPTER 5 

 

Figure C5.1. 1H NMR spectrum of 5.2 in C6D6 at 25 °C. 

 
Figure C5.2. 31P{1H} NMR spectrum of 5.2 in C6D6 at 25 °C. 

 
Figure C5.3. 1H NMR spectrum of 5.4a in C6D6 at 25 °C. 
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Figure C5.4. 31P{1H} NMR spectrum of 5.4a in C6D6 at 25 °C. 

 
Figure C5.5. 1H NMR spectrum of 5.4b in C6D6 at 25 °C. 

 
Figure C5.6. 31P{1H} NMR spectrum of 5.4b in C6D6 at 25 °C. 
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Figure C5.7. 1H NMR spectrum of 5.6a in C6D6 at 25 °C. 

 
Figure C5.8. 31P{1H} NMR spectrum of 5.6a in C6D6 at 25 °C. 

 

Figure C5.9. 1H NMR spectrum of 5.7 in C6D6 at 25 °C. 



 

301 

 
Figure C5.10. 31P{1H} NMR spectrum of 5.7 in C6D6 at 25 °C. 

 
Figure C5.11. 1H NMR spectrum of 5.8 in C6D6 at 25 °C. 

 
Figure C5.12. 31{1H} NMR spectrum of 5.8 in C6D6 at 25 °C. 

 


