
Black-box reconstruction of depth three circuits with top
fan-in two

Thesis by
Gaurav Sinha

In Partial Fulfillment of the Requirements for the
degree of

Ph.D.

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2016
Defended May 25, 2016

ii

c© 2016

Gaurav Sinha
ORCID: orcid.org/0000-0002-3590-9543

All rights reserved

iii

ACKNOWLEDGEMENTS

I have been very lucky to receive guidance, advice, friendship, love and support
from a lot of people over the course of my Ph.D.. I will try my best to thank some
of them here and would also like to apologize to the people I miss.

First of all, I wish to thank my advisor Prof. Eric Rains for being a wonderful
mentor. He was always open and willing to discussions and has played a major role
in the way I approach problems. It was very thrilling to see him connect different
areas and suggest completely fresh approaches whenever I was stuck.

My sincere thanks to Prof. Leonard Schulman who is a member of my thesis com-
mittee. Even though my interaction with him happened towards the end of my
Ph.D., we spent a lot of time going over my thesis and discussing all ideas in detail.
His suggestions have helped me improve my presentation as well as provided me
new insights into improving the result. Some of the questions he asked me have
become a part of my future research goals.

I’m grateful to Prof. Chris Umans, who has been both a great research role model
and an amazing teacher to me. Before coming to caltech I had some initial in-
troduction to his approach towards matrix multiplication algorithms and was very
fascinated by it. I met him several times during my Ph.D. to discuss various aspects
of the problems I worked upon.

I would like to thank Prof. Nets Katz who has been a great inspiration to me. During
my second year, I did a reading course with him on the Kakeya conjecture to which
he himself has contributed a lot. His class on special topics in analysis is one of my
favorite classes at CalTech.

I am extremely thankful to Neeraj Kayal for introducing me to this problem. Sukhada
Fadnavis, Neeraj Kayal and myself started working on the problem together during
my summer internship at Microsoft Research India Labs in 2011. We solved the
first important case together. I’m grateful to them for all helpful discussions, con-
stant guidance and encouragement.

I would like to thank my friends at CalTech. Without them CalTech would not have
been such an enjoyable experience. My discussions about science, politics, movies
and everything else with Vikas and Vinamra are some of my most fond memories.
Vikas has always been very motivating and helpful during the ups and downs of my

iv

stay. I miss our walks around campus. I would also like to thank Prachi for helping
me organize this thesis. Special thanks to all my friends including Utkarsh, Sisir,
Karan, Manpreet.

Last but not the least, I would like to thank my parents, brother and sister. It is their
hard work, love and support that has helped me become a better researcher and a
better person. Their unconditional love is what keeps me going and I hope to make
all of them proud.

v

ABSTRACT

Reconstruction of arithmetic circuits has been heavily studied in the past few years
and has connections to proving lower bounds and deterministic identity testing. In
this thesis we present a polynomial time randomized algorithm for reconstructing
ΣΠΣ(2) circuits over characteristic zero fields F i.e. depth−3 circuits with fan-in 2
at the top addition gate and having coefficients from a field of characteristic zero.

The algorithm needs only a black-box query access to the polynomial f ∈ F[x1, . . . , xn]
of degree d, computable by a ΣΠΣ(2) circuit C. In addition, we assume that the
"simple rank" of this polynomial (essential number of variables after removing the
gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm
runs in time polynomial in n and d and with high probability returns an equivalent
ΣΠΣ(2) circuit.

The problem of reconstructing ΣΠΣ(2) circuits over finite fields was first proposed
by Shpilka [27]. The generalization to ΣΠΣ(k) circuits, k = O(1) (over finite
fields) was addressed by Karnin and Shpilka in [18]. The techniques in these previ-
ous involve iterating over all objects of certain kinds over the ambient field and thus
the running time depends on the size of the field F. Their reconstruction algorithm
uses lower bounds on the lengths of linear locally decodable codes with 2 queries.
In our setting, such ideas immediately pose a problem and we need new techniques.

Our main techniques are based on the use of quantitative Sylvester Gallai theorems
from the work of Barak et.al. [3] to find a small collection of "nice" subspaces to
project onto. The heart of this work lies in subtle applications of the quantitative
Sylvester Gallai theorems to prove why projections w.r.t. the "nice" subspaces can
be ”glued”. We also use Brill’s equations from [9] to construct a small set of can-
didate linear forms (containing linear forms from both gates). Another important
technique which comes very handy is the polynomial time randomized algorithm
for factoring multivariate polynomials given by Kaltofen [17].

vi

PUBLISHED MATERIAL IN THIS THESIS

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
31:1–31:53. isbn: 978-3-95977-008-8. doi: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. url: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Table of Contents . vii
Chapter I: Introduction . 1

1.1 Previous Work and Connections . 4
1.2 Allowing Randomization . 4
1.3 Preliminaries . 5
1.4 A quick introduction to arithmetic circuits 9
1.5 Homogenization of ΣΠΣ(2) circuits 12

Chapter II: Some Definitions, Main Tools and Techniques 14
2.1 Introduction . 14
2.2 Uniqueness of ΣΠΣ(2) Structure 16
2.3 Factoring forms of a polynomial . 17
2.4 Good forms and reconstructed multi-set 20

Chapter III: Main result and overview . 24
3.1 Overview of the algorithm . 24

Chapter IV: Step One : Reconstruct the Ist Layer of C 28
4.1 Introduction . 28
4.2 Random Transformation . 30
4.3 Restricting the input polynomial . 32
4.4 Computing the sets Pi. 33
4.5 Gluing Pi’s to compute P . 35

Chapter V: Step Two : Reconstruct Layer II of C 39
5.1 Introduction . 39
5.2 Lines connecting forms in P(R) (P(B) resp.) to P(M2)(P(M1) resp.) 40
5.3 Termination Case : Reconstructing one of P(M1),P(M2) does the job 42
5.4 One of the multi-sets P(R),P(B) is low dimensional 45
5.5 Both multi-sets P(R),P(B) are high dimensional 48

Bibliography . 56
Appendix A: Random Transformation and Restrictions 60
Appendix B: Brill’s Equations - Characterizing polynomials which are prod-

uct of linear forms . 64
Appendix C: Black-box Factoring of Polynomials 67
Published Content and Contributions . 70
Appendix D: Proofs from Chapter IV . 72
Appendix E: Proofs from Chapter V . 74
Appendix F: Tools from Incidence Geometry 78
Appendix G: Consent Form . 80

1

C h a p t e r 1

INTRODUCTION

Recall the interpolation problem which requires finding coefficients of a polynomial
such that a number (possibly large) of point evaluations of the polynomial have been
given.

Recall 1 (Interpolation Problem). Let Λ = {λ = (λ1, . . . , λn) : λ1 + . . . + λn ≤ d}

be an indexing set. For any polynomial f (x̄) ∈ F[x̄] of degree d in variables x̄ =

(x1, . . . , xn) over the field F, we wish to compute coefficients cλ such that

f (x̄) =
∑
λ∈Λ

cλxλ

where xλ denotes the monomial xλ1
1 . . . xλnn .

We would want to solve this problem with as few evaluations as possible. Thank-
fully there are tight lower bounds which are also easy to prove. For example to
interpolate a univariate polynomial of degree d we need at least d + 1 evaluations
(folklore). One would also want to develop general algorithms to actually perform
the task of computing the coefficients. The method of Lagrange interpolation is one
such popular algorithm (see chapter 3 in [15]).

We consider a more general setup. Suppose the given polynomial has a special
representation. Can we develop algorithms to reconstruct the polynomial in the
desired representation. For example, if our polynomial is a product of linear forms
we might want to compute these linear forms by just using evaluations at some set
of points.

Arithmetic circuits are the most natural choice when one wants to talk about repre-
sentations of polynomials. In the language of arithmetic circuits, the interpolation
problem translates to finding an appropriate (generally most succinct) circuit by
just using evaluations of the polynomial. In the reverse direction, they also provide
efficient ways to evaluate the polynomial.

Informally, an arithmetic circuit is a weighted directed acyclic graph whose leaves
will denote variables and constants, internal nodes compute either the product or
linear combinations of their children and the root node(s) compute the required

2

polynomial. Weight of every edge is an element of the field and gets multiplied
to the output of the source vertex for the edge. We give the formal definition of
arithmetic circuits in section 1.4.

The last few years have seen significant progress towards interesting problems deal-
ing with arithmetic circuits. Some of these problems include deterministic polyno-
mial identity testing, reconstruction of circuits and recently lower bounds for arith-
metic circuits. There has also been work connecting these three different aspects.

In this thesis, we will primarily be concerned with the reconstruction problem. Even
though it’s connections to identity testing and lower bounds are very exciting, the
problem in itself has drawn a lot of attention because of elegant techniques and
connections to learning theory.

The strongest version of the problem requires that for any f ∈ F[x1, . . . , xn] with
black-box(query) access given one wants to construct (roughly) most succinct rep-
resentation i.e. the smallest possible arithmetic circuit computing the polynomial.
This general problem appears to be very hard. Most of the work done has dealt with
some special type of polynomials i.e. the ones which exhibit constant depth circuits
with alternating addition and multiplication gates.

Our result adds to this by looking at polynomials computed by circuits of this type
(alternating addition/multiplication gates but of depth 3). Our circuits will have
variables at the leaves, operations (+,×) at the internal gates and scalars at the
edges. We also assume that the top gate(root) has only two children and the "simple

rank" of this polynomial (essential number of variables after removing gcd of the
two multiplication gates at the middle layer) is bigger than a constant. The bottom
most layer has addition gates and so computes linear forms, the middle layer then
multiplies these linear forms together and the top layer adds two such products.

In this work, we assume only homogeneous computation, that is all polynomials
computed at all internal nodes will be homogeneous polynomials. However, we
would also like to remark that we can simulate a depth 3 inhomogeneous polyno-
mial by another depth 3 homogeneous polynomial. For reconstruction purposes,
there is no difference between the two, and so we can assume we are reconstructing
a homogeneous polynomial. We discuss this in more detail in section 1.5.

Given homogeneity, our circuit computes a polynomial of the following form :

C(x̄) = M1(x̄) + M2(x̄)

3

Here, M1 and M2 are products of equal number of linear forms. Note that we can
further factorize and pull out the gcd of M1 and M2.

C(x̄) = Gcd(C)(R + B)

where gcd(R,B) = 1.

Our condition about the essential number of variables (after removing gcd from the
multiplication gates) is called "simple rank" of the polynomial and is defined as

srank (C) = dim(sp{ linear forms l dividing R,B})

When the underlying field F is of characteristic zero (Q,R or C for simplicity), we
give an efficient randomized algorithm for reconstructing the circuit representation
of such polynomials i.e. finding the two polynomials M1,M2. Formally our main
theorem reads :

Theorem 1. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that black-box access to C has been

given (along with parameters n,d). We give a randomized algorithm that runs in

time poly(n,d) and with probability 1 − o(1) outputs the following:

• When srank (C) = Ω(1), the output is a ΣΠΣ(2) circuit computing C(x̄).

As per our knowledge this is the first algorithm that efficiently reconstructs such
circuits (over characteristic zero fields). Over finite fields, the same problem has
been considered by Shpilka in [27] and our method takes inspiration from their
work. They also generalized this finite field version to circuits with arbitrary (but
constant) top fan-in in [18]. However we need many new tools and techniques as
their methods don’t generalize at a lot of crucial steps. For eg:

• They iterate through linear forms in a finite field which we unfortunately
cannot do.

• They use lower bounds for locally decodable codes given in [8] which again
does not work in our setup.

We resolve these issues by

4

• Constructing candidate linear forms by solving simultaneous polynomial equa-
tions obtained from brill’s equations (chapter 4, [9]).

• Using quantitative versions of the Sylvester Gallai theorems given in [3] and
[6]. This new method enables us to construct nice subspaces, take projections
onto them and glue the projections back to recover the circuit representation.

1.1 Previous Work and Connections
Efficient reconstruction algorithms are known for some concrete class of circuits.
We list some here:

• Depth 2 ΣΠ circuits (sparse polynomials) in [21]

• Read-once arithmetic formulas in [28]

• Non-commutative ABP’s [2]

• ΣΠΣ(2) circuits over finite fields in [27], extended to "generalized" ΣΠΣ(k)
circuits (over finite fields) with k = O(1) in [18].

• Random multi-linear formulas in [12]

• Depth 4 (ΣΠΣΠ) multi-linear circuits with top fan-in 2 in [11]

• Random arithmetic formulas in [13]

All of the above work introduced new ideas and techniques and have been greatly
appreciated.

1.2 Allowing Randomization
It’s easy to observe that a polynomial time deterministic reconstruction algorithm
for a circuit class C also implies a polynomial time deterministic identity testing
algorithm for the same class. The idea is pretty simple. If the reconstruction al-
gorithm outputs any non-trivial circuit then we can claim that the polynomial is
non-zero otherwise we say it is zero. Here is a way to see this. If the polynomial is
identically zero all our queries to the black-box give zero and so we cannot recon-
struct anything non-trivial. Conversely for a non-zero polynomial, the reconstruc-
tion algorithm sees at least one non zero evaluation. If not then it cannot reconstruct
a correct circuit since we get no non-trivial information from evaluations.

5

From the works [1] and [14] it has been established that black-box identity test-
ing for certain circuit classes imply super-polynomial circuit lower bounds for an
explicit polynomial. Hence the general problem of deterministic reconstruction
cannot be easier than proving super-polynomial lower bounds. So one might first
try and relax the requirements and demand a randomized algorithm.

Another motivation to consider the probabilistic version comes from learning the-
ory. A fundamental question called the exact learning problem using membership

queries asks the following : Given oracle access to a boolean function, compute
a small description for it. This problem has attracted a lot of attention in the last
few decades. For e.g. in [20][10] and [19] a negative result stating that a class
of boolean circuits containing the trapdoor functions or pseudo-random functions
has no efficient learning algorithms. Among positive works [26], [4], [22] show
that when f has a small circuit (inside some restricted class) exact learning from
membership queries is possible.

Our problem is a close cousin as we are looking for exact learning algorithms for
arithmetic functions. Because of these connection with learning theory it makes
sense to also allow randomized algorithms for reconstruction.

1.3 Preliminaries
[n] denotes the set {1,2, . . . ,n}. Throughout the paper we will work over a field F
of characteristic zero. The reader may assume it to be Q,R or C for convenience.

Let V be a finite dimensional F vector space and S ⊂ V , sp(S) will denote the linear
span of elements of S. dim(S) is the dimension of the subspace sp(S).

(x̄) will be used for the tuple (x1, . . . , xn).

For any set of polynomials S ⊂ F[x̄], we denote by V(S), the set of all complex
simultaneous solutions of polynomials in S (this set is called the variety of S), i.e.

V(S) = {a ∈ C : for all f ∈ S, f (a) = 0}

LI will be the abbreviation for linearly independent and LD will be the abbreviation
for linearly dependent.

Notations - Projective spaces of linear forms
Let V denote the vector space of linear forms in variables x̄, and P(V) be the cor-
responding projective space. We will see a number of definitions, observations and

6

lemmas below which will be used throughout the thesis.

Definition 1 (Projectivization of a linear form). For a non-zero linear form l we
denote it’s projectivization as [l] ∈ P(V) which can be viewed as the set

[l] = sp(l) \ {0}.

So it is the one dimensional vector space generated l without the vector 0 (i.e. the
additive identity of V). This will also be our working definition for points in the
projective space i.e. for every point p in the projective space there exists l such that
p = [l]. Also if l, l′ are non-zero scalar multiples of each other then [l] = [l′].

Definition 2 (Projective linear forms). Points in the projective space P(V) (cor-
responding to the vector space of linear forms V) will be called projective linear

forms.

Note 1 (Sub projective spaces). Let W ⊂ V be a subspace and P(W) be the projec-
tive space of W then

P(W) ⊂ P(V).

We will often call P(W) as a sub projective space of P(V).

Definition 3 (Dependent and independent sets in P(V)). Consider points p1, . . . ,pk ∈

P(V). The points are called dependent if for any set of linearly dependent linear
forms l1, . . . , lk ∈ V we have pi = [li], i ∈ [k]. It can be checked that this definition
is "well defined" i.e. if p1, . . . ,pk are dependent then for all l′i , i ∈ [k] such that
pi = [l′i] the linear forms l′1, . . . , l

′
k are linearly dependent.

If the points are not dependent, they will be called independent.

Definition 4 (Dimension of a multi-set in P(V)). Let P be a finite multi-set of
forms in P(V). The dimension of P denoted as dim(P) is the maximum number of
independent forms in P. It can be checked that this notion is well defined.

Definition 5 (Flat defined by an independent set). Let p1, . . . ,pk ∈ P(V) be an
independent set of points in the projective space. Let l1, . . . , lk be linear forms such
that pi = [li], i ∈ [k]. We define the flat spanned by p1, . . . ,pk as

f l (p1, . . . ,pk) = {[l] ∈ P(V) : l = α1l1 + . . . αk lk : not all αi zero }.

It can be checked that this is well defined i.e. if we started with l′i instead of li, we
get the same set.

7

When we have just two independent points p1,p2 we will call the flat a line. For
three independent points we call the flat they define a plane and so on.

Definition 6 (Basis). Let P be a finite multi-set of points in P(V). An independent
subset {p1, . . . ,pk } is called a basis for P if every p ∈ P belongs to f l (p1, . . . ,pk).

Lemma 1. Let P be a finite multi-set in P(V). The following holds:

{p1, . . . ,pk } is a basis ⇔ {p1, . . . ,pk } is a maximal independent set in P.

Proof. Fix li ∈ V such that pi = [li].

For⇒, assume {p1, . . . ,pk } is a basis. So by definition they are independent. Pick
any pk+1 ∈ P. By definition of a basis we know that pk+1 ∈ f l (p1, . . . ,pk) i.e. there
exists lk+1 ∈ sp(l1, . . . , lk) \ {0} such that pk+1 = [lk+1]. Clearly l1, . . . , lk , lk+1 are
linearly dependent and thus p1, . . . ,pk ,pk+1 are dependent implying that p1, . . . ,pk

is a maximal independent set.

For⇐ assume p1, . . . ,pk are a maximal independent set in P. Assume there exists
p ∈ P such that p < f l (p1, . . . ,pk). Let l ∈ V such that p = [l]. We claim that
p1, . . . ,pk ,p are independent. If not then l1, . . . , lk , l are linearly dependent. so there
exists α1, . . . ,αk ,α (not all zero) such that

α1l1 + . . . + αk lk + αl = 0.

If α = 0 then l1, . . . , lk become linearly dependent which is not possible. Thus
α , 0. At least one of the αi , 0 otherwise l = 0. This implies that p = [l] ∈
f l (p1, . . . ,pk) a contradiction to our assumption. Therefore there is no such p and
all p ∈ P belong to f l (p1, . . . ,pk).

�

Definition 7 (Flat defined by a finite multi-set in P(V)). Let S ⊂ P(V) be a finite
multi-set. The flat defined by S denoted by f l (S) will be f l (b1, . . . ,bk) where
b1, . . . ,bk is a basis in S.

Definition 8 (Kernel of a projective linear forms). Let p ∈ P(V) and l = α1x1 +

. . . αnxn ∈ V be such that p = [l]. Further assume that i ∈ [n] is such that αi , 0

and α j = 0, for all j < i. Define ker (p) = {(x1, . . . , xn) ∈ Fn : xi = −
n∑

j=i+1

α j

αi
x j }.

8

For any polynomial f (x̄) ∈ F[x̄], we define the restricted polynomial f (x̄)|ker (p) as
the polynomial

f (x̄)|ker (p) = f (x1, . . . , xi−1,−

n∑
j=i+1

α j

αi
x j , xi+1, . . . , xn) ∈ F[x1, . . . , xi−1, xi+1, . . . , xn].

It can be checked that this is well defined, i.e. if we started with a different choice
of l, we get the same polynomial.

Definition 9 (Central Projection). Let p1, . . . ,pk ∈ P(V) be a set of independent
points. Let li ∈ V be such that pi = [li], i ∈ [k]. Since the pi’s are independent, the
set {l1, . . . , lk } is linearly independent. Let W = sp(l1, . . . , lk) and extend the basis
to get W⊥ such that W ⊕ W⊥ = V . Let p ∈ P(V) \ P(W) be any point. Consider
l ∈ V such that [l] = p and write l = w + w⊥ such that w ∈ W and w⊥ ∈ W⊥.
Since p < P(W) we can conclude that w⊥ , 0. We define the central projection of
p (denoted as π(p)) onto P(W⊥) as :

π(p) = [w⊥] ∈ P(W⊥).

It can be checked that this is well defined i.e. if we started with l′i s.t. p = [l′i] we
get the same space W .

Definition 10 (Projective Factors). For any homogeneous polynomial f we define
the multi-set of "Projective Factors" of f as:

P(f) = {[α1x1 + . . . + αnxn] ∈ P(V) : α1x1 + . . . + αnxn divides f }.

If a p ∈ P(V) belongs to P(f) then we say that p is a projective linear factor of f .

Definition 11. For any point p ∈ P(V) and multi-set S ⊂ P(V) we define the
multi-set of lines:

L(p,S) = { f l (p, s) : p, s are independent (same as saying p , s), s ∈ S}

The lemma below says that the line joining independent points p = [lp],q = [lq] is
the same as the line joining p and restriction [lq |ker (p)

].

Lemma 2. Let p,q be two independent points in P(V). Let lq ∈ V be such that

q = [lq]. Consider the restricted form lq |ker (p)
. Since p,q are independent, lq |ker (p)

is non-zero and therefore [lq |ker (p)
] is a projective linear form in the variables

x1, . . . , xi−1, xi+1, . . . , xn. We have :

f l (p,q) = f l (p, [lq |ker (p)
])

9

Note that the above definition is well defined i.e. if we started with l′q (instead of lq)

such that q = [l′q], we would get the same set f l (p,q).

Proof. Let lp ∈ V be a linear form such that p = [lp]. Let l be a linear form in
V such that [l] ∈ f l (p,q). Then l ∈ sp(lp, lq) \ {0} i.e. l = αplp + αqlq with at
least one of αp,αq non-zero. It is obvious by definition that lq = βplp + βqlq |ker (p)

.
This implies that l = (αp + αq βp)lp + αq βqlq |ker (p)

. Both αp + αq βp = 0 and
αq βq = 0 imply that either both αp,αq are zero or both βp, βq are zero. Thus
[l] ∈ sp(p, [lq |ker (p)

]). The other direction follows by a similar argument.

�

1.4 A quick introduction to arithmetic circuits
In this section we will summarize a number of basic definitions about Arithmetic
Circuits. We will be using a lot of definitions from [29]. Some recent results rele-
vant to this thesis will also be mentioned.

Definition 12 (Arithmetic circuits, adapted from [29]). An arithmetic circuitΦ over
the field F and variables x̄ = (x1, . . . , xn) is a weighted directed acyclic graph as
follows. The vertices ofΦ are called gates. Every gate inΦ of in-degree 0 is labeled
by either a variable xi, i ∈ [n] or a field element from F. Every other gate in Φ is
labeled by either × or + and has in-degree 2. Every edge is labeled by a scalar from
F.

For every arithmetic circuit Φ, we define the following (from [29]) :

– Gates of in-degree 0 are called input gates. Gate(s) of out-degree 0 are called
output gate(s).

– Gates labeled by × are called product gates and gates labeled by + are called
sum gates.

– size(Φ) (denoted by |Φ|) is the number of edges in Φ

– For every vertex v ∈ Φ, depth(v) is the length of the longest (directed) path
from an input gate to v.

– depth(Φ) is the maximal depth of a gate in Φ.

– For gates u and v in Φ, if (u,v) is an edge in Φ, then u is called a child of v,
and v is called a parent of u.

10

Polynomial computed by an arithmetic circuit, [29]
There is a natural way to compute a polynomial using an arithmetic circuit. An
input gate (labeled by a variable or field element α) computes the polynomial α.
A product gate (i.e. a gate labeled by ×) computes the product of the polynomials
computed by its children. A sum gate computes a linear combination of its children
polynomials, where the weights in the linear combinations are the weights of the
connecting edges. The polynomial(s) computed by the output gate(s) is(are) called
the polynomial(s) computed by the circuit.

Remark 1. In this thesis we will restrict the discussion to bounded depth circuits.

These are arithmetic circuits such that depth(Φ) ≤ C for a constant C independent

of n (the number of variables).

Depth three circuits, [29]
In this thesis, we will be concerned with we will be concerned with a special class
of bounded-depth circuit called depth three circuits also known as ΣΠΣ circuits. A
ΣΠΣ circuit is a depth three circuit with an addition gate at the top, multiplication
gates at the middle layer and addition gates at the bottom most layer. A closer look
at this tells us that a ΣΠΣ circuit will compute a polynomial of the form

k∑
i=1

di∏
j=1

li,j (x1, . . . , xn) (1.1)

where li,j (x1, . . . , xn) are affine forms over the variables x1, . . . , xn. The number of
summands in the outer most sum (i.e. k) is called the fan-in of the top most gate
or the top fan-in. When the top fan-in is less than or equal to k, we call the circuit
a ΣΠΣ(k) circuit. A polynomial computed by such a circuit is called a ΣΠΣ(k)
polynomial.

There are two important classes of ΣΠΣ(k) circuits, to which every other ΣΠΣ(k)
can be reduced.

Definition 13 (Simple ΣΠΣ(k) circuit). Let C be a ΣΠΣ(k) circuit computing the
polynomial C(x̄) = M1 + . . . + Mk where each Mi is a product of affine forms. We
say that C is simple if

gcd(M1, . . . ,Mk) = 1.

Definition 14 (Minimal ΣΠΣ(k) circuit). Let C be a ΣΠΣ(k) circuit computing the
polynomial C(x̄) = M1 + . . . + Mk where each Mi is a product of affine forms. We

11

say that C is minimal if for no proper sub collection of polynomials M1, . . . ,Mk

sums to zero.

If one does put any restrictions of the top fan-in, it can be easily checked that any
polynomial can be computed by this class of arithmetic circuits.

A number of interesting results are known when the top fan-in is bounded by a
constant, i.e. when k is a constant. Efficient algorithms for some popular open
problems have been developed over the last decade and we will briefly mention
some of them below, and then add to the pool by solving yet another important
problem when k = 2.

Depth three circuits with top fan-in 2

As mentioned above, when the top fan-in is equal to 2, we call the circuit a ΣΠΣ(2)
circuit. This will be the class of circuits we will be concerned with. The challenge in
this thesis is to compute the circuit given only a black-box access to the polynomial.
We give a polynomial time randomized algorithm to achieve this goal with a "very

mild" assumption of the number of "free variables" in the circuit (called simple
rank of the circuit).

Definition 15 (Simple rank (srank (C))). Let C be a ΣΠΣ(k) circuit computing the
polynomial C(x̄) = M1+. . .+Mk . Let Gcd(C) denote the polynomial gcd(M1, . . . ,Mk).

It’s easy to see that Sim(C) = C
Gcd(C) =

k∑
i=1

di∏
j=1

li,j is also a ΣΠΣ(k) polynomial with

gcd(
d1∏
j=1

l1,j , . . . ,
dk∏
j=1

lk,j) = 1. The simple rank of C denoted by srank (C) is defined

as
srank (C) = dim(sp{li,j }).

Previous (relevant) results about depth three circuits

Theorem 2 (Theorem 2 in [27]). Let f be an n-variate polynomial computed by a

ΣΠΣ(2) circuit of degree d, over a field F. Then there is a randomized interpolation

algorithm that given black box access to f and the parameters d and n runs in

quasi-polynomial time (in n, d, |F|) and has the following properties:

• If srank (f) = Ω(log2 (d) , then with probability 1 − o(1) the algorithm

outputs the (unique) ΣΠΣ(2) circuit for f .

12

• If srank (f) = O(log2 (d), then the algorithm outputs, with probability 1 −
o(1), a polynomial Lin(f), a polynomial Q(y1, . . . , yk) and k linear functions

L1, . . . ,Lk , where k ≤ rank (f), such that Lin(f) is a the product of all the

linear factors of f and Lin(f).Q(L1, . . . ,Lk) = f .

Our work extends the above result to characteristic zero fields. While doing so we
also achieve much better time complexity i.e. poly(n,d) as compared to the quasi-
polynomial time algorithm given by the above theorem. Here is a simple table
explaining similarities/ differences between their and our algorithms.

A further extension of this result was given in [18]. They derandomized the above
algorithm and gave generalizations to "generalized" ΣΠΣ(k) circuits. The output
of their algorithm is not exactly a ΣΠΣ(k) circuit but something close enough. We
do not state the theorem here and instead redirect the reader to their paper. Please
see Theorem I in [18].

Theorem 3 (Rank-bounds for identically zero ΣΠΣ(k) circuits over F (Q,R,C),
combination of theorem 1.4 in [25] and theorem [6]). Let C be a simple and min-

imal ΣΠΣ(k) circuit in n variables over F such that it computes the identically

zero polynomial, then srank (C) < R(k,F), where R(k,F) just depends on k. In

particular, when k is a constant srank (C) = O(1).

1.5 Homogenization of ΣΠΣ(2) circuits
Let f (x̄) = M1+M2 be a polynomial such that M1,M2 are products of affine forms in
variables x1, . . . , xn. We will describe a homogenous polynomial f hom(x1, . . . , xn, z) ∈

13

F[x1, . . . , xn, z] associated to f (x̄) such that the reconstruction problem for f hom

solves the reconstruction problem for f . Assume the degree of f is d and denote by
f d (x̄) the degree d homogeneous component of f . From lemma 2.1 in [7] we see
that in poly(n,d) time we can get black-box access to the homogeneous component
f d , given black-box access to f . Define

f hom(x1, . . . , xn, z) =

zd f (x1
z , . . . ,

xn
z) z , 0

f d (x1, . . . , xn) z = 0

Lemma 3. Given a black-box B for f and the parameters n,d, in time poly(n,d)
we can simulate a black-box Bhom for f hom.

Proof. Proof is straight-forward. We describe how to queryBhom at point (x1, . . . , xn, z).
If z , 0, we query B at (x1

z , . . . ,
xn
z) and then multiply the result with zd . If

z = 0, lemma 2.1 in [7] computes Bhom at the point (x1, . . . , xn, z) by computing
f d (x1, . . . , xn). �

Now suppose we have reconstructed f hom(x1, . . . , xn, z), we can reconstruct f (x1, . . . , xn)
by substituting z = 1 in the circuit for f hom.

14

C h a p t e r 2

SOME DEFINITIONS, MAIN TOOLS AND TECHNIQUES

2.1 Introduction
Let F be a field and x̄ = (x1, . . . , xn) be a tuple of variables.

Definition 16. An arithmetic circuit C is called a ΣΠΣ(2) circuit if it computes a
polynomial C(x̄) ∈ F[x̄] of the form:

C(x̄) = M1 + M2.

where M1,M2 are products of linear forms. In this case we call C(x̄) a ΣΠΣ(2)
polynomial.

Definition 17 (Some associated definitions and observations). We define some
other associated polynomials, multi-sets and make certain observations (note that
the polynomials are defined up to scalar multiplication).

– We define Gcd(C) ∈ F[x̄], to be the g.c.d. (greatest common divisor) of the
two products M1,M2 i.e. Gcd(C) = gcd(M1,M2). We write M1 = Gcd(C)R

and M2 = Gcd(C)B where R,B are products of linear forms and gcd(R,B) =

1. We can factorize the polynomial C(x̄) as

C(x̄) = Gcd(C)(R + B). (2.1)

If Gcd(C) = 1, then we say that the circuit C is "simple".

– Sim(C) = R + B, is called the "simple part" of circuit C, since the two
products R,B don’t have any common factors.

– Let P(R),P(B),P(Gcd(C)) denote the multi-sets of projective linear factors
of R,B,Gcd(C) respectively.

– It is important to note that Sim(C) itself might have more linear factors. As
an example consider the polynomial (x + y1) . . . (x + yn) − y1 . . . yn, where
x, y1, . . . , yn are variables. This polynomial is divisible by x but x does not
divide any of the two products (x + y1) . . . (x + yn) and y1 . . . yn.

15

– We define Int(C) as the product of all linear factors (up to scalar multipli-
cation) of Sim(C) and call it "internal factors". Similarly Res(C) (called
"residual factors") is defined to be the product (again up to scalar multiplica-
tion) of all non-linear irreducible factors of Sim(C).

– "Simple rank" of the circuit C denoted by srank (C) is defined as dimension
of the multi-set P(R) ∪ P(B) (see 4 for definition of dimension).

For any multi-sets S,T of projective linear forms in the projective space P(V) we
define a set of projective linear forms called the "intersection set". This set contains
forms in S ∪ T along with the forms which lie at the intersection of distinct lines
connecting S and T . Formally:

Definition 18 (Intersection set). Let S,T ⊂ P(V) be two multi-sets. The "inter-

section set", I(S,T) comprises of the following:

1. All distinct forms in S,T .

2. Intersection of distinct lines ~L1 = f l (s, t) and ~L2 = f l (s′, t′) where s, s′ ∈ S

and t, t′ ∈ T .

Note 2. It’s easy to see that |I(S,T) |≤ |S|2 |T |2.

In our application we will use S = P(R) and T = P(B). But first, let’s prove a
straight-forward lemma about multi-sets P(R),P(B),P(Int(C)):

Lemma 4. The following are true:

P(R) ∩ P(Int(C)) = φ, P(B) ∩ P(Int(C)) = φ

Proof. The proofs are similar so we just show one of them. Let p ∈ P(Int(C)).
Since Sim(C) = Int(C)Res(C), by restricting to ker (p) we see that

R|ker (p) + B|ker (p) = 0⇒ R|ker (p) = −B|ker (p) .

If p ∈ P(R) then clearly R|ker (p) = 0 and thus B|ker (p) = 0 implying that p ∈ P(B).
Therefore p divides both R,B but gcd(R,B) = 1, a contradiction. �

16

2.2 Uniqueness of ΣΠΣ(2) Structure
Note that we defined a quantity called srank (C) in definition 15 (and last part of
definition 17). It has been studied very extensively in the last decade and a number
of efficient algorithms for polynomial identity testing have been devised by proving
clever bounds on it. See theorem 1.5 and 1.7 in [25] for details.

In this section we will show that high simple rank of a ΣΠΣ(2) circuit implies
unique circuit representation. Based on the underlying field we will have different
values for "high". It’s captured by the function R(k,F) mentioned in theorem 3.

Theorem 4 (Follows from Corollary 7 in [27]). Let C be a ΣΠΣ(2) circuit com-

puting the polynomial C(x̄) such that srank (C) > R(4,F), then the circuit C is

(essentially) the unique ΣΠΣ(2) circuit computing C(x̄).

Proof. Using equation 2.1 in definition 17, write C(x̄) = Gcd(C)(R + B). Let C′

be another ΣΠΣ(2) circuit also computing C(x̄). Therefore C(x̄) also has the form
Gcd(C′)(R′ + B′) ⇒

Gcd(C)(R + B) − Gcd(C′)(R′ + B′) = 0

Note that Gcd(C),Gcd(C′) are products of linear forms. We can remove their
common factors in the above identity i.e. let Ḡ = gcd(Gcd(C),Gcd(C′)) and let
Gcd(C) = ḠH,Gcd(C′) = ḠH′ with gcd(H,H′) = 1 giving the identity:

H R + HB − H′R′ − H′B′ = 0

The polynomial H R + HB − H′R′ − H′B′ clearly has a ΣΠΣ(4) circuit. It’s easy
to check that gcd(H R,HB,H′R′,H′B′) = 1. If not then there exists a linear form l

dividing each of the four polynomials H R,HB,H′R′,H′B′. In particular l divides
H R⇒ l divides H or l divides R.

• If l divides H then it cannot divide H′ (H,H′ are co-prime). Therefore it
divides both R′ and B′ which is not possible as they are co-prime.

• If l divides R then l does not divide B as R,B are co-prime. l divides HB⇒ l

divides H which is not possible as was just shown.

So we have a simple ΣΠΣ(4) circuit which is identically 0. If this is also minimal
then by theorem 3 simple rank of this circuit is ≤ R(4,F) by [25] . But that is not

17

true since srank (C) > R(4,F). Therefore it’s not minimal i.e. some two gates sum
to 0. Going through the several cases we get either

(H R,HB) = (H′R′,H′B′) ⇒ (Gcd(C)R,Gcd(C)B) = (Gcd(C′)R′,Gcd(C′)B′)

or

(H R,HB) = (H′B′,H′R′) ⇒ (Gcd(C)R,Gcd(C)B) = (Gcd(C′)B′,Gcd(C′)R′).

Both of these mean that the circuit C was unique (up to relabeling the multiplication
gates). �

2.3 Factoring forms of a polynomial
Definition 19. Let f (x̄) ∈ F[x̄] be a polynomial. We say that a projective linear
form p is a factoring form for f (x̄) if f (x̄)|ker (p) is a non-zero product of linear forms
in the ring F[x1, . . . , xi−1, xi+1, . . . , xn]. See definition 8 for definition of restriction
to ker (p).

The set of factoring forms for a polynomial f (x̄) will be denoted by P (f).

We will now investigate properties of factoring forms for polynomials associated
with ΣΠΣ(2) polynomials.

Factoring forms for ΣΠΣ(2) polynomials
Recall that Sim(C) = R+B with gcd(R,B) = 1. Let p ∈ P(R) be a projective linear
factor of R. We easily see that Sim(C)|ker (p) = B|ker (p) , 0 (since gcd(R,B) = 1).
B|ker (p) is a non-zero product of linear forms since B was a product of linear forms,
implying that p is a factoring form for Sim(C). Therefore forms in P(R) (similarly
P(B)) are factoring forms for Sim(C) and thus belong to P (Sim(C)).

This gives us motivation to compute P (Sim(C)) as an approach to finding the prod-
ucts R,B. However there is a problem. We don’t have access to Sim(C). This prob-
lem can be circumvented by using Res(C) (defined as residual factors in definition
17) instead. We later discuss how to get black-box access to Res(C).

In the next theorem we will discuss properties of the set of factoring forms of
Res(C). This set turns out to be a subset of the intersection set I(P(R),P(B))
(for definition of intersection set see definition 18).

Theorem 5. Let C be a ΣΠΣ(2) circuit computing the polynomial C(x̄). Every

form p ∈ P(R) ∪ P(B) belongs to the set of factoring forms P (Res(C)). Further if

18

we assume that srank (C) > R(3,F) + 2, then :

P (Res(C)) ⊂ I(P(R),P(B))

i.e. the factoring forms are either forms in P(R),P(B) or lie at intersections of

distinct lines joining forms in P(R) with forms in P(B).

Proof. Let p be a factoring form for Res(C). Recall the definition of internal factors
Int(C) from definition 17. On restricting to ker (p) we get (see definition 8)

R|ker (p) + B|ker (p) − Int(C)|ker (p) Res(C)|ker (p) = 0 (2.2)

p being a factoring form for Res(C) implies that Res(C)|ker (p) is a non-zero product
of linear forms. This gives us an identically zero ΣΠΣ(3) polynomial R|ker (p) +

B|ker (p) − Int(C)|ker (p) Res(C)|ker (p) = 0.

Let’s first pull out the g.c.d. G of the three products (multiplication gates) and define

GR′ = R|ker (p) , GB′ = B|ker (p) , GF′ = Int(C)|ker (p) Res(C)|ker (p) .

with gcd(R′,B′,F′) = 1. We have two cases:

1. Case 1 : Set of linear factors of G has dimension more than one : Since G di-
vides R|ker (p) and B|ker (p) , let’s assume R1 |ker (p) (∼ B1 |ker (p)) and R2 |ker (p) (∼
B2 |ker (p)) are two linearly independent linear factors of G where R1,R2 divides
R and B1,B2 divides B. So we see that p lies on lines ~L1 = f l ([R1], [B1])
and ~L2 = f l ([R2], [B2]) (recall that [Ri], [Bi] are projectivizations of Ri,Bi re-
spectively, see definition 1). Linear independence of R1 |ker (p) ,R2 |ker (p) implies
that the lines are distinct. Therefore p ∈ I(R,B).

2. Case 2: Set of linear factors of G is one dimensional : Note that we assumed
that srank (C) ≥ R(3,F) + 2 ⇒ dimension of the linear factors of R,B is
greater than R(3,F) + 2. Therefore on restricting to the hyperplane the di-
mension goes down at most by one. That is dimension of linear factors of
R|ker (p) ,B|ker (p) is greater than R(3,F) + 2 − 1. By the assumption in this
case we will get that dimension of linear factors of R′,B′ is greater than
R(3,F) + 2 − 1 − 1 = R(3,F). On simplification (i.e. dividing equation
2.2 by G) we obtain an identically zero ΣΠΣ(3) polynomial :

R′ + B′ − F′ = 0.

19

The identically zero ΣΠΣ(3) circuit computing the above polynomial is sim-
ple (i.e. the product gates are co-prime) and has "simple rank" ≥ R(3,F).
Therefore by theorem 3 it cannot be minimal. Thus two of the products (mul-
tiplication gates) R′,B′,F′ must sum to zero⇒ one of R′,B′,F′ is zero.

• If R′ =
R |ker (p)

G = 0, or B′ =
B |ker (p)

G = 0 then p divides R or B and thus
p ∈ P(R) ∪ P(B) ⊂ I(P(R),P(B)).

• If F′ = 0 then R′ + B′ = 0 ⇒ R′ = −B′. We know that dimension of
linear factors of R′,B′ is greater than R(3,F) > 2 (if not then we can just
re-define R(3,F) = max(R(3,F),3)). So exactly like case 1 above we
can find projective linear forms R1,R2 dividing R and B1,B2 dividing
B such that p lies on distinct lines f l (Ri,Bi), i ∈ [2] further implying
p ∈ I(P(R),P(B)).

�

The next lemma will be very crucial in the reconstruction process. It states that if we
have enough projective linear forms from P(R), then every factoring form connects
one of them to some projective linear form in P(B). We call this the matching
lemma. Proof is exactly like the last theorem but we still write it for completion.

Lemma 5 (Matching lemma). Fix k = R(3,F) + 2. Let [R1], . . . , [Rk] be indepen-

dent projective linear forms in P(R) and p be any factoring form in P (Res(C)) but

not in P(R) ∪ P(B). Then there exists [Ri], i ∈ [k] and [Bi] ∈ P(B) such that p lies

on the line f l ([Ri], [Bi]).

Proof. Assume the converse i.e. for some factoring form p there does not exists
such Ri,Bi. Exactly like the previous theorem we obtain

R|ker (p) + B|ker (p) − Int(C)|ker (p) Res(C)|ker (p) = 0

and then define G,R′,B′,F′ such that

GR′ = R|ker (p) , GB′ = B|ker (p) , GF′ = Int(C)|ker (p) Res(C)|ker (p) .

with gcd(R′,B′,F′) = 1. Following the previous proof we have the identity

R′ + B′ − F′ = 0

20

If for any Ri, i ∈ [k], the restriction Ri |ker (p) divides G, then exactly like the previous
proof there is a projective linear form [Bi] dividing B such that p ∈ f l ([Ri], [Bi])
and we are done.

So assume that all Ri |ker (p) , i ∈ [k] divide R′. We know that the restrictions {Ri |ker (p) :
i ∈ [k]} have dimension equal to k − 1 > R(3,F) implying that simple rank of the
ΣΠΣ(3) circuit R′+ B′−F′ is greater than R(3,F)⇒ (exactly like last proof) it can-
not be minimal, otherwise it violates rank bound for identically zero polynomials in
theorem 3. So like the previous proof some product gate is zero. p < P(R) ∪ P(B)
implies R′,B′ are non-zero ⇒ F′ = 0 ⇒ R′ = −B′ , 0. Hence there exists pro-
jective linear form [B1] dividing B such that B1 |ker (p) ∼ R1 |ker (p) and p lies on line
f l ([R1], [B1]).

�

2.4 Good forms and reconstructed multi-set
In this section we explain the main object that accomplishes the goal of reconstruc-
tion in chapter 5. Later in chapter 5, we will show that these objects exist and apply
them to reconstruct our multi-sets P(M1),P(M2).

Definition 20 (Good form). Let p be a projective linear form in P(V), S,T be
multi-sets in P(V). We say that p is a "good form" for (S,T) if there exists s ∈

S, t ∈ T such that :

1. p, s, t are pairwise distinct.

2. The forms p, s, t are not collinear.

3. The plane Ψp,s,t = f l (p, s, t) intersects T only along the line f l (p, t).

We collect all t ∈ T for which there exists some s ∈ S such that p, s, t satisfy the
above requirements. This multi-set will be very special for us. We’ll be able to
reconstruct it. Let’s give it a name.

Definition 21. Suppose p is a "good form" for (S,T) we define the "reconstructed

multi-set" Tp ⊂ T as

Tp = {t̃ ∈ T : ∃s ∈ S : (p, s, t) satisfy bullets 1, 2 and 3 in definition 20}

21

Later on we will show how we can reconstruct multi-sets when a good form is given.
But first we describe an example of a good form. This example demonstrates two
very important applications of good forms in chapter 5. Here is a lemma.

Lemma 6. Suppose p, s ∈ P(V) are projective linear forms and T be a multi-set of

projective linear forms. Assume

– p , s and f l (p, s) ∩ f l (T) = φ.

Then p is a good form for ({s},T) and the "reconstructed multi-set" is Tp = T .

Proof. The proof is particularly simple. Consider any t ∈ T .

• Since p , s and f l (p, s) ∩ f l (T) = φ we get that p, s, t are pairwise distinct
and independent. Therefore condition 1 and condition 2 in definition 20 are
satisfied.

• Consider Ψ = f l (p, s, t). Consider any t′(, t) ∈ Ψ ∩ T . So we may write
t′ = αpp + αss + αtt, with at least one of αp,αs,αt non-zero. If αs , 0, then
we may re-write the equation as αss+αpp = t′−αtt ⇒ f l (s,p)∩ f l (t, t′) , φ
(as αs , 0). Therefore we arrive at a contradiction to f l (p, s)∩ f l (T) = φ⇒

αs = 0⇒ Ψ ∩ T ⊂ f l (p, t). Therefore p, s, t satisfy condition 3 in definition
20.

Therefore p is a good form for ({s},T). Also since t ∈ T was arbitrary, bullets
1,2,3 in definition 20 hold for all t ∈ T and thus the reconstructed multi-set in this
case is Tp = T . �

Lemma 7. Suppose p ∈ P(V) is a "good form" for (S,T) and let Tp ⊂ T be the

"reconstructed multi-set". Further assume the following

1. The form p and the multi-set S are known. Multi-set T is unknown.

2. The multi-set of lines L(p,T) (see definition 11) is known.

3. For every s ∈ S, the multi-set of lines L(s,T) is known.

Then there exists a deterministic algorithm that runs in poly(|S|, |T |,n) time and

reconstructs the multi-set Tp.

22

Proof. Let’s first give the algorithm and then discuss correctness and time complex-
ity.

Initialize T̃p = φ.

for each s(, p) ∈ S do
Let ~L be the line f l (p, s).

for each line ~Lp inside L(p,T) \ {~L} do
Consider the plane Ψ = f l (~Lp, s) spanned by line ~Lp and form s.

Find lines in L(p,T) lying on Ψ.

if ~Lp is the only such line then
for each line ~Ls ∈ L(s,T) \ {~L}, lying on Ψ do

Let t̃ be the intersection of lines ~Lp and ~Ls.

Update T̃p = T̃p ∪ {t̃} (note that this is multi-set union).

end

end

end

end

Return T̃p.
Algorithm 1: Reconstruction using a Good form

Correctness Proof - We will show below that the set T̃p computed by the above
algorithm is the same as the "reconstructed multi-set" i.e. T̃p = Tp.

1. Proof of Tp ⊂ T̃p : Let t ∈ Tp. By the definition of "reconstructed multi-set"

above, we know that there is an s ∈ S such that (p, s, t) satisfy conditions in
definition 20. The first for loop will select s at some point of time. Definition
20 implies that f l (p, t) does not contain s and so after choosing s, the second
for loop selects the line ~Lp = f l (p, t) at some point of time. Since (p, s, t)
satisfy conditions of definition 20, ~Lp is the only line from L(p,T) on the
plane Ψ = f l (p, s, t), and so the if condition inside the second for loop will be
true. Therefore the algorithm will further choose ~Ls = f l (s, t) at some point

23

of time. Clearly t is the intersection of lines ~Lp and ~Ls. When this happens t

gets added to the set T̃p implying that Tp ⊂ T̃p.

2. Proof of T̃p ⊂ Tp : Consider a form t̃ ∈ T̃p. We first show that t̃ ∈ T .
The algorithm constructs t̃ as intersection of two lines ~Lp ∈ L(p,T) and
~Ls ∈ L(s,T) for some s ∈ S. Both these lines are different from the line
~L = f l (p, s). Clearly ~Ls = f l (s, t) for some t ∈ T .

We show that t̃ = t. Suppose not, then since t̃ ∈ ~Ls and s , t̃ (otherwise
s ∈ ~Lp), we have three distinct forms {s, t̃, t} on ~Ls. The line ~Ls was chosen to
be on the plane Ψ = f l (~Lp, s). Therefore there are two distinct lines f l (p, t)
and ~Lp = f l (p, t̃) on this plane Ψ. This is a contradiction to the choice of ~Lp,
thus t̃ = t.

• p, s are different by choice of s in the second for loop. t̃ is intersection
of two lines ~Lp,~Ls (different from ~L) and thus t̃ is different from both
p, s. Thus condition 1 in definition 20 is satisfied for (p, s, t̃).

• Since ~Lp was different from the line ~L, we get that p, s, t̃ are not collinear
so condition 2 in definition 20 is satisfied for (p, s, t̃)

• Let t ∈ T be any projective linear form on the plane Ψ = f l (s,~Lp) =

f l (p, s, t̃) = Ψp,s,t̃ . If t lies on line ~Lp = f l (p, t̃) we are fine. If not then
f l (p, t) is a line from L(p,T) different from ~Lp, passing through p and
lying on Ψ, which is a contradiction to the choice of ~Lp. Therefore
ψp,s,t̃ ∩ T ⊂ f l (p, t̃) and condition 3 in definition 20 is satisfied for
(p, s, t̃).

Time Complexity : We examine the nested loop structure. First loop runs ≤ |S|
times. Second loop runs ≤ |L(p,T) | times. Inside the second loop finding all lines
in L(p,T) takes |L(p,T) |poly(n) steps since testing whether a line lies on a plane
in n dimensions can be solved using linear algebra in poly(n) steps. Inner most loop
runs ≤ |L(s,T) | times and finding intersection of lines again takes poly(n) time
using linear algebra techniques. It’s easy to see that |L(p,T) |, |L(s,T) | are both
≤ |T | and so overall we take poly(|T |, |S|,n) time.

So we see that Tp, the "reconstructed multi-set" is actually reconstructed by the
above algorithm in poly(|S|, |T |,n) time. �

24

C h a p t e r 3

MAIN RESULT AND OVERVIEW

In this chapter we will state our main theorem and also give an outline of the algo-
rithm which the theorem claims. Proof of this theorem is a combination of results
in the next two chapters. The underlying field for this entire work will be F, a field
of characteristic zero. For simplicity we assume it to be Q,R or C. Our tuple of
variables will be denoted by x̄ = (x1, . . . , xn). Fix N0 to be large enough constant
(see beginning of chapter 5 for details). Here is the main theorem:

Theorem 6. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that black-box access to C has been

given (along with parameters n,d). We give a randomized algorithm that runs in

time poly(n,d) and with probability 1 − o(1) outputs the following:

• When srank (C) 1 ≥ N0, the output is a ΣΠΣ(2) circuit computing C(x̄).

3.1 Overview of the algorithm
Recall that we are dealing with a ΣΠΣ(2) circuit computing the polynomial:

C(x̄) = M1(x̄) + M2(x̄)

where M1,M2 are products of linear forms. Given black-box access to C, we wish
to compute M1,M2. Our algorithm has two very broad steps :

Step I - Reconstruct Ist layer of the circuit
In this step we try to find a set of linear forms which appear at layer I in the circuit
C. These are precisely the linear factors of M1,M2. We end up reconstructing a
few extra linear forms and get rid of them afterwards. At the Ist layer, we have the
following two categories of linear forms.

1. Linear forms at layer I which divide C(x̄) - These are precisely the com-
mon linear factors of M1,M2. Such linear forms definitely divide the polyno-
mial C(x̄). However these may not be all linear factors of C(x̄). Consider the

1This is just the rank of Sim(C).

25

polynomial (x+y1) . . . (x+yn)−y1 . . . yn. The linear form x divides the poly-
nomial but does not divide any of the two products (x + y1) . . . (x + yn) and
y1 . . . yn. Instead of computing the set of common linear factors of M1,M2,
we compute the set of all linear factors of C(x̄). Later on during step 2 of
the algorithm, the bad forms get rejected. In order to find all linear factors
of C(x̄), we use the standard black-box factoring algorithm of [17]. The al-
gorithm gives us access to black-boxes for the factors. We convert them into
explicit coefficient form in algorithm C.

2. Linear forms at layer I which don’t divide C(x̄) - Let’s write M1 =

Gcd(M1,M2)R and M2 = Gcd(M1,M2)B where R,B are products of lin-
ear forms such that gcd(R,B) = 1. Then the linear forms at layer I which
don’t divide C(x̄) are precisely the linear factors of R and B. We compute
a set of size poly(n,d) such that it contains all distinct linear factors of R

and B. This is achieved by first making a random invertible transformation
in Section 4.2 to make sure that our variables x1, . . . , xn become "random".
Next in C(x̄) we set all but constant many variables to zero. The restriction
of our polynomial to constant many variables can actually be computed in
coefficient form efficiently using the original black-box.

Now for this restricted polynomial, we find a set of linear forms which con-
tains the (restricted) linear factors of R,B. This is done using brill’s equations
(see appendix B) which completely characterize the coefficients of polynomi-
als which split into linear factors. We repeat the whole process for different
subsets of constant many variables and compute a set containing restricted
linear factors of R,B in each case. Finally we describe a method to glue
all these sets of restricted linear forms. This gives us a set of linear forms
over x1, . . . , xn containing linear factors of R,B. The linear forms in this fi-
nal set has certain bad elements (forms which don’t divide R,B). But these
bad forms have certain structure and get rejected during the course of our
algorithm.

3. The two multi-sets computed above are then sent to the next part of the al-
gorithm which involves reconstructing the "wiring" of the circuit and finding
the gates at layer II. Along with these sets, as a by-product of algorithm C we
also compute a black-box computing the polynomial which is the product of
all non-linear irreducible factors of C(x̄). This is also used to reconstruct the
gates at layer II.

26

Step II - Reconstruct IInd layer of the circuit
In this step we use the linear forms and the black-box (computing product of non-
linear irreducible factors of C(x̄)) computed above and reconstruct the wiring in the
graph of our circuit.

Suppose r,b are linear forms dividing R,B respectively. Using the outputs from
step I, we can calculate the multi-sets

{l (mod r) : l is a linear factor of M2}, {l (mod b) : l is a linear factor of M1}.

Viewing the linear forms as points in space, the above multi-sets enable us to find
multi-sets of lines going from r to linear factors of M2 and multi-sets of lines going
from b to linear factors of M1.

Next we look for non-degenerate planes Ψ = sp{r1,r2, l} (sp{b1,b2, l}) where r1,r2

are linear factors of R and l is a linear factor of M2 (resp. b1,b2 are linear factors of
B and l is a linear factor of M1) satisfying the following condition.

• Linear factors of M2 (resp. M1) lying on Ψ only lie on the line
−−→
r1, l (resp.

−−→
b1, l).

We show that if such a configuration exists, then we can reconstruct l along with
the multiplicity with which it divides M2 (resp. M1) by considering intersections of
lines in Ψ. So the whole effort then goes into showing existence of such planes Ψ
(and that it can be found efficiently in every iteration of the algorithm). To do this
we use quantitative versions of the Sylvester Gallai theorem given in [3] and it’s
improvements from [6].

During the algorithm one of the problems we encounter is that the set P provided
by step I contains points other than linear factors of R,B. So we need to make sure
that we do not use these bad points. We do this by finding structure (see matching
lemma, 5) in these bad points (due to the way they were constructed) and use this
structure to eliminate them. If we can do this wisely then the reconstruction process
goes smoothly.

Finally, if we have reconstructed all the linear factors for one of the products M1,M2

we compute an appropriate constant that we need to multiply to the product of our
linear forms (since all linear forms will be obtained up to scalar multiplication).
This is done by using brill’s equations again and the algorithm has been explained

27

in subsection 5.3. This will be the last step of all our reconstruction algorithms in
step II.

Once we have done the above our reconstruction is complete. For technical reasons
we work with projective linear forms instead of linear forms in the entire discussion
above. This is done to give better exposition by avoiding certain trivial technicalities
that appear when a linear form is known only up to scalar multiplication.

28

C h a p t e r 4

STEP ONE : RECONSTRUCT THE IST LAYER OF C

4.1 Introduction
Recall that we have access to a black-box B for a ΣΠΣ(2) circuit C computing
the polynomial C(x̄) = M1 + M2 = Gcd(C)(R + B) = Gcd(C)Int(C)Res(C) (see
definition 17). In this chapter we wish to use B and compute all the projective linear
forms corresponding to linear forms computed at the first layer in circuit C.

On looking closely we can see that the outputs at layer I are just (scalar multiples
of) the linear factors of Gcd(C) = gcd(M1,M2) and polynomials R,B. Thus our
main objective for this chapter is to find the multi-set of projective linear forms
P(Gcd(C)) ∪ P(R) ∪ P(B), where the union is a multi-set union. We will not be
constructing this multi-set exactly but something close enough.

In this section we give algorithms to compute the following:

1. The multi-set P(Gcd(C)Int(C)) which is the multi-set of projective linear
factors of C(x̄). By abuse of notation we say that a projective linear form
divides a polynomial whenever a corresponding linear form divides the poly-
nomial.

2. A set P ⊂ P(V) of projective linear forms containing (distinct) projective
linear forms from P(R) and P(B). We wish to emphasize that this set does
not give us information about multiplicities of forms in their respective sets
P(R)/P(B). For that we develop methods in chapter 5. The set P that we
compute here has size poly(d) where d is the degree of C(x̄).

The first part of the theorem i.e. computing P(Gcd(C)Int(C)) has already been
done in algorithm C of appendix C using kaltofen’s black-box factoring algorithm
from [17]. It also gives us a black-box BRes computing Res(C). We just invoke the
algorithm here and move on to solve the second part. Thus our goal becomes:

Goal of this Section. Given a ΣΠΣ(2) circuit C as a black-box, efficiently compute
a set of projective linear forms P such that:

– p ∈ P(R) ∪ P(B) ⇒ p ∈ P, and |P |= poly(d).

29

We achieve this goal by computing the set of "factoring forms" (see definition 19)
for the polynomial Res(C) i.e.

P := P (Res(C)).

As we mentioned before solving the first part using algorithm C already gave us
access to a black-box BRes computing Res(C). The reasons for choosing this set P
are mentioned below.

Note 3 (From theorem 5). For any ΣΠΣ(2) circuit C computing polynomial

C(x̄) = Gcd(C)(R + B) = Gcd(C)Int(C)Res(C)

we have:

• Any p ∈ P(R) ∪ P(B) belongs to P (Res(C)), i.e. p is a "factoring form" for
the polynomial Res(C).

• if srank (C) is high enough (≥ R(3,F)+2), then P (Res(C)) ⊂ I(P(R),P(B))
and therefore |P (Res(C)) |≤ d4.

So this set satisfies both properties we wanted in P. From now onwards we set
P := P (Res(C)) and try to compute it using the black-box.

Let’s summarize our result in the following theorem:

Theorem 7. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that black-box access to C has been

given (along with parameters n,d). Further assume that srank (C) > max(R(3,F)+
2,R(4,F)). There exists a randomized algorithm that runs in time poly(n,d) and

outputs two multi-sets F and P of projective linear forms such that

Pr[F = P(Gcd(C)Int(C)) and P = P (Res(C))] ≥ 1 − o(1)

To compute this set P we follow a standard "restrict and lift" technique. The broad
idea is:

1. Restriction Step - Restrict C(x̄) to a number of "random" low dimensional
subspaces of Fn i.e. set many of the variables (they are "random" by the
application of a random transformation on the inputs, see section 4.2) to zero.
Then using the restricted polynomial we compute sets Pi which are (or at
least contain) restrictions of P. These sets Pi can be computed by solving a
system of polynomial equations.

30

2. Lifting Step - Once we have the Pi’s we glue them together. This gives us a
set containing P, since restrictions of forms in P are definitely glued. Then
we prune this set to throw away the bad forms using the definition of P i.e.
all forms in P are factoring forms for Res(C). The random subspace is very
important since it makes sure that we glue whatever is needed and we don’t
take too much time gluing. In short it introduces a lot of non-degeneracy
among the restrictions.

4.2 Random Transformation
Before doing any computation with the input black-box Bin, we "apply" a random
transformation Ω̃ to it. This has been explained in great detail in appendix A.

Ω̃ is constructed with the help of an n × n matrix Ω = (Ωi,j), where each entry is
chosen uniformly randomly and independently from the a set S ⊂ F. On the set
{x1, . . . , xn}, Ω̃ maps xi 7→ (Ω x̄)i (x̄ is treated as a column vector (x1, . . . , xn)T).
This map is then extended to an algebra homomorphism on F[x̄]. When the matrix
Ω is invertible the map Ω̃ becomes an isomorphism. We proceed only if Ω is invert-
ible which happens with a high probability by lemma 22 in appendix A. If it’s not
invertible we output "fail".

In order to "apply" Ω̃ to our input black-box Bin, we define a new black-box B
such that for every a ∈ Fn, B(ā) = Bin(Ω−1(ā)). This just means that to query the
new black-box B at point ā, we query the old black-box at point Ω−1(ā). If Bin

computed the polynomial f (x̄) then B computes Ω̃(f).

From now onwards we assume that Ω is invertible and Ω̃ has already been applied
to the input black-box Bin. We will work with the new black-box B which also
represents a ΣΠΣ(2) circuit C computing polynomial C(x̄). We use all definitions
in chapter 2 for this circuit/polynomial.

Assumption - Independence preserving restrictions of the intersection set
Recall the definition of intersection set in definition 18. Using the random transfor-
mation defined above we have created a new "random" set of variables x1, . . . , xn.
Applying Ω̃ preserves linear independence since it is an algebra isomorphism and
hence a linear isomorphism. In subsection 4.3, we will restrict our polynomial C(x̄)
to certain subsets of these variables. While doing this restriction, we want to pre-
serve independence for points in the intersection set. If independence is preserved
for restriction of points in I(P(R),P(B)) then it automatically gets preserved for

31

restrictions of points in multi-sets P(R),P(B) and the set P since they are all sub-
sets of I(P(R),P(B)). This turns out to be really beneficial for us when we try to
"glue" the restrictions together.

We first define the subspaces we’ll be restricting to. They will be used frequently
and so we make a separate definition for them.

Definition 22. Define subspaces Wr−1 = {(w1, . . . ,wr−1,0 . . . ,0) : w1, . . . ,wr−1 ∈

F} ⊂ Fn and Wi = {(w1, . . . ,wr−1,0, . . . ,0,wi,0, . . . ,0) : w1, . . . ,wr−1,wi ∈ F}1 ⊂

Fn, i ∈ {r + 1, . . . ,n}.

Restricting a polynomial to Wr−1 corresponds to plugging xr = . . . = xn = 0 and
restricting it to Wi corresponds to plugging xr = . . . = xi−1 = xi+1 = . . . = xn = 0.
Restriction of any polynomial f to the subspace Wi will be denoted by f |Wi

and that
to Wr−1 will be denoted by f |Wr−1

.

We also define Vi as vector space of linear forms in x1, . . . , xr−1, xi and Vr−1 as the
vector space of linear forms in x1, . . . , xr−1.

Definition 23 (Restrictions of points in projective space). Let p ∈ P(V) and con-
sider any l ∈ V such that p = [l]. When l |Wi

, 0 (resp. l |Wr−1
, 0) we say p|Wi

(resp p|Wr−1
) is defined, and define p|Wi

(resp p|Wr−1
) as the point [l |Wi

] ∈ P(Vi) (resp.
[l |Wr−1

] ∈ P(Vr−1)). Otherwise we say p|Wi
(resp p|Wr−1

) is undefined.

It can be seen that when p|Wi
(resp p|Wr−1

) is defined, it is in fact well defined (i.e. if
we choose l′ instead of l we get the same points as restrictions).

Lemma 8. Let r ≥ 4 and consider subspaces defined in definition 22 above. The

following hold with high probability:

1. Let p ∈ I(P(R),P(B)) be a point, then p|Wi
is defined and belongs to P(Vi)

(see definition 23).

2. Let p1, . . . ,ps ∈ I(P(R),P(B)), s ≤ r be s independent points (see definition

3), then p1 |Wi
, . . . ,ps |Wi

are defined and are independent points in P(Vi).

3. Let p1, . . . ,ps ∈ I(P(R),P(B)), s ≤ 3 be s independent points, then the re-

strictions p1 |Wr−1
, . . . ,ps |Wr−1

are defined and are independent points in P(Vr−1).

1 The wi is in the ith location.

32

Proof. Apply corollary 2 in appendix A for multi-set I(P(R),P(B)). Note that
|I(P(R),P(B)) |≤ d4, therefore success probability is ≥ 1 − poly(n,r,d4r)

|S | . We will
assume |S |>> Ω(poly(n,r,d4r)) and make the probability ≥ 1 − o(1). From now
onwards we assume that the statements in this lemma are always true i.e. our Ω is
always among the good cases. This is done for better exposition. �

4.3 Restricting the input polynomial
Let r ≥ 4 be any integer. Consider the subspaces Wi, i ∈ {r + 1, . . . ,n} defined in
definition 22. We restrict2 C(x̄) to Wi giving:

C(x̄)|Wi
= M1 |Wi

+ M2 |Wi

Clearly this restriction is also a ΣΠΣ(2) polynomial. We denote the above ΣΠΣ(2)
circuit computing it as C|Wi

. We can further factorize using definition 17.

C(x̄)|Wi
= Gcd(C|Wi

)Sim(C|Wi
) = Gcd(C|Wi

)Int(C|Wi
)Res(C|Wi

)

Lemma 9. The following are true (up to multiplication by a scalar):

1. gcd(R|Wi
,B|Wi

) = 1⇒ Sim(C|Wi
) = R|Wi

+ B|Wi
.

2. srank (C|Wi
) = min(r, srank (C)).

3. Res(C|Wi
) = Res(C)|Wi

with high probability.

Proof. The proof is routine and long. See lemma 26 in appendix D. To not break
continuity we urge the reader to believe the lemma and verify it later. �

Remark 2. We make a few remarks:

1. Note that we have already computed a black-box BRes computing the polyno-

mial Res(C) using algorithm C in appendix C. Part 3 in lemma 9 tells us that

Res(C|Wi
) = Res(C)|Wi

, and so by feeding the black-box BRes inputs from Wi

we can obtain a black-box for Res(C|Wi
).

2. Assuming srank (C) > r = R(3,F) + 2, in part 2 of lemma 9 we can say that

rank (C|Wj
) = r = R(3,F) + 2. Then we can use theorem 5 for this circuit and

obtain P (Res(C|Wi
)) ⊂ I(R|Wi

,B|Wi
). Also part 1 of lemma 9 and theorem

5 together imply that all projective linear forms in P(R|Wi
),P(B|Wi

) are in

P (Res(C|Wi
)).

2 This just means plugging xr = . . . = xi−1 = xi+1 = . . . = xn = 0

33

Due to these reasons we try to compute P (Res(C|Wi
)) using the black-box for

Res(C|Wi
) described above. For shorthand we define Pi = P (Res(C|Wi

)).

4.4 Computing the sets Pi.
To efficiently compute Pi, we use brill’s equations which completely characterize
coefficients of polynomials expressible as product of linear forms. We discuss them
in great detail in appendix B. Let’s first give the main result about these equations
and then an algorithm to compute the sets Pi.

The lemma below says that there exists a family of polynomials F = {F1, . . . ,Fm}

such that coefficients of all totally decomposable polynomials (i.e. product of
linear forms) are given by the variety V(F). Also this family F can be computed
in poly(dr) time as shown in appendix B.

We first compute coefficient representation for Res(C|Wi
) using part 1 in remark 2

i.e. we do Lagrange interpolation on Res(C)|Wi
. This can be done by first restricting

the black-box BRes to Wi (by feeding inputs only from Wi) and then by using O(dr)
points from Wi to interpolate. Next we consider any projective linear form in the r

variables x1, . . . , xr−1, xi. Say the coefficient of x j is non-zero ⇒ we may write a
linear form corresponding to this projective form as

x j −
∑

k∈I\{ j}

zk xk

(here I is the set {1, . . . ,r − 1, i}) and then substitute for x j in the polynomial
Res(C|Wi

). We collect the coefficients of this polynomial as polynomials in the
zk’s and use them as input into the variety V(F) described above. The solutions
for these zk’s can then be obtained using any algorithm to compute roots e.g. buch-
berger’s algorithm ([5]). Since r = Ω(1), this algorithm works in poly(d) time as
explained below.

Lemma 10 (Brill’s equations, See corollary 3 in appendixB). Let F = C, and s,d

be positive integers. Define the indexing set

Λ := {λ = (λ1, . . . , λs) : λi ≥ 0 for all i,
∑
i∈[s]

λi ≤ d}

Define t := |Λ|=
(

s+d
d

)
. We know that Λ can be used to index the coefficients of

any multivariate polynomial of degree d in s variables. For any coefficient vector

a = (aλ)λ∈Λ we have the polynomial

fa(x1, . . . , xs) =
∑

λ=(λ1,...,λs)∈Λ

aλ xλ1
1 . . . xλss

34

There exists an explicit set of polynomials F1, . . . ,Fm ∈ C[y1, . . . , yt] with m =

poly(d), such that

fa(x1, . . . , xs) is totally decomposable ⇔ F1(a) = . . . = Fm(a) = 0

Also this set {F1, . . . ,Fm} can be computed in poly(t,m) time.

Algorithm. Recall that we’ve already computed a black-box BRes for Res(C)
using algorithm C. Here is the algorithm to compute Pi, k ∈ {r, . . . ,n} using these
black-boxes:

for each i ∈ {r, . . . ,n} do

Initialize Pi = φ.

Using part 1 in remark 2 and Lagrange interpolation, compute Res(C|Wi
)

in coefficient form.

for each j ∈ I = {1, . . . ,r − 1, i} do

Let {zk }k∈I\ j be variables.

Substitute x j =
∑

k∈I\{ j}
zk xk in Res(C|Wi

) and compute the coefficient

polynomials (in {zk }k∈I\{ j}) corresponding to monomials in the
variables x̄.

Let a be the vector of coefficient polynomials calculated above.

Solve polynomial system {Fj (a) = 0, j ∈ [m]} in C, using
Buchberger’s Algorithm ([5]).

If a solution (zk)k∈I\{ j} belongs to Fr−1, add the form corresponding
form x j −

∑
k∈I\{ j}zk xk

as a projective form to the set Pi.

end

end

Return the sets Pr ,Pr+1, . . . ,Pn.

Algorithm 2: Computing sets Pi = P (Res(C|Wi
))

35

Note that since the number of solutions were O(d4), the polynomial system has
at most these many solutions and using Buchberger’s algorithm we can find all of
them. Now let’s look at the time complexity of this algorithm.

• When we substitute and expand any monomial in Res(C|Wi
), we spend O(dr)

time in computing coefficients of all monomials in the x̄ variables.

• Buchberger’s algorithm takes O(d2r) time (See [5]).

Rest of the steps are poly(r,d) time. So overall we take O(d2r) time. Since r was
set to be a constant (= R(3,F) + 2) in remark 2, the time taken is poly(d). We
will perform this for all i ∈ {r, . . . ,n} and thus in poly(d,n) time we would have
computed our all the sets Pi = P (Res(C|Wi

)). Now it’s time to glue them together
and compute the candidate set P.

4.5 Gluing Pi’s to compute P
We start with the following observation:

Observation 1. Consider projective linear forms pr ∈ Pr and pi ∈ Pi, i ∈ {r +

1, . . . ,n} such that for linear forms lr =
r−1∑
j=1

α j x j + αr xr , li =
r−1∑
j=1

β j x j + βi xi with

pr = [lr] and pi = [li] and
lr |Wr−1

∼ li |Wr−1
(, 0).

Then there exists a linear form l in variables x1, . . . , xr , xi which is a lift of both
forms lr and li. This can be seen as follows. Clearly there is some j ∈ {1, . . . ,r −1}
such that α j , 0. Without loss of generality let’s assume j = 1 (note that this also
implies that β1 , 0), then we define l as

l = x1 +
α2

α1
x2 + . . .

αr

α1
xr +

βi

β1
xi .

and p = [l] can be seen (or defined) to be a lift on (pr ,pi). Note that by definition
23, instead of saying lr |Wr−1

∼ li |Wr−1
we could have said that pr |Wr−1

,pi |Wr−1
are

defined and are equal points in P(Vr−1).

Definition 24. A pair of projective linear forms (pr ,pi) ∈ Pr × Pi are called "glu-

able" if pr |Wr−1
,pi |Wr−1

are defined and are equal points in P(Vr−1).

For pr ∈ Pr our algorithm tries to find pi ∈ Pi, i ∈ {r + 1, . . . ,n} such that (pr ,pi)
are gluable. If we can successfully find such pi’s for every i ∈ {r + 1, . . . ,n} then
gluing pr with all of them gives us a projective linear form p in variables x1, . . . , xn.

36

For our algorithm to work in polynomial time and recover P using gluing we need
to make sure of two requirement:

Lemma 11. The following hold:

1. For every p ∈ P and i ∈ {r, . . . ,n}, p|Wi
∈ Pi.

2. For any pr ∈ Pr , there is at-most one pi ∈ Pi, i ∈ {r +1, . . . ,n} it can be glued

to.

Proof. For cleaner exposition we move these proofs to appendix D. �

To not break continuity, we urge the reader to continue reading at this moment and
verify the proof later. Now we are ready to give the gluing algorithm and recover
the set P. Let’s summarize it in the following lemma

Lemma 12. Given sets Pi and black-box BRes, we give a randomized algorithm

that runs in time poly(n,d) and outputs a set P̃ ⊂ P(V) such that

Pr[P̃ = P] ≥ 1 − o(1).

Proof. Let’s first give the algorithm and then discuss it’s correctness and time com-
plexity.

37

Initialize P̃ = φ.

for pr ∈ Pr do

Pick a linear form lr = α1x1 + . . . + αr−1xr−1 + αr xr such that pr = [lr].

Initialize linear form l̂ = lr .

for i = r + 1 to n do

Find pi ∈ Pi such that (pr ,pi) are "gluable".

If more than one pi exist or no such pi exists then discard pr and break
out of this loop.

Else pick a linear form li such that pi = [li].

Find β ∈ F such that βli = α1x1 + . . . + αr−1 + αi xi.

Update l̂ = l̂ + αi xi.

end

If l̂ = α1x1 + . . . + αnxn, define p = [α1x1 + . . . + αnxn] ∈ P(V).

Compute Res(C)|ker (p) by restricting the black-box BRes.

Check if this restriction factors into a product of linear factors using
algorithm C and randomized black-box PIT algorithm (Schwartz Zippel
lemma).

If yes then add p to P̃.

end

Return P̃.

Algorithm 3: Gluing the Pi’s

Correctness Proof - (P̃ ⊂ P) Consider any p ∈ P̃. Just before the end of the
outer for loop using algorithm C we check whether Res(C)|ker (p) factors as a prod-
uct of linear factors or not. Algorithm C returns the multi-set of projective linear
factors of Res(C) (with substitution) and then using randomized black-box poly-
nomial identity testing(Schwarz-Zippel lemma) we can check whether the product
computes the same polynomial as BRes or not. So with probability 1− o(1) we will

38

be right in checking whether p is a "factoring form" of Res(C) or not and thus with
probability 1 − o(1), p ∈ P. Since the size of P̃ is less than d4, with probability
1 − o(1), P̃ ⊂ P.

(P ⊂ P̃) Let p ∈ P. By part 1 of lemma 11 we know that p|Wi
∈ Pi for every

i ∈ {r, . . . ,n}. Thus the outer for loop is called for p|Wr
at some point of time. By

part 2 of lemma 11, there is only one form p|Wi
in each Pi, i ∈ {r + 1, . . . ,n} gluable

to p|Wr
and thus we glue p|Wr

with each p|Wi
, i ∈ {r + 1, . . . ,n} and form p. Since p

is a factoring form with probability ≥ 1 − o(1) it passes all the checks after the for
loop and thus gets included in P̃. So with probability 1 − o(1) p ∈ P̃. Since P has
size ≤ d4, with probability 1 − o(1), P̃ ⊂ P

Time Complexity - Since |Pr |= poly(d), the loops run poly(n,d) times. We use
algorithm C which takes poly(n,d) time. All other steps can easily be seen to be
poly(n,d) time.

�

39

C h a p t e r 5

STEP TWO : RECONSTRUCT LAYER II OF C

For this chapter we fix δ ∈ (0, 1
8), k = max(R(3,F) + 2,R(4,F)) and N0 to be a

constant > α k
δ + 2k where α is the constant in theorem 13.

5.1 Introduction
Recall that we are trying to reconstruct the ΣΠΣ(2) structure of a polynomial (given
as a black-box) C(x̄) = M1 + M2 with M1,M2 products of linear forms. In chapter
4, we gave efficient randomized algorithms to compute the following:

1. The set P of "factoring forms" of polynomial Res(C). (See definition 19 for
definition of factoring form)

2. The multi-set P(Gcd(C)Int(C)) containing the projective linear factors of
Gcd(C)Int(C). These are same as projective linear factors of polynomial
C(x̄).

3. A black-box BRes computing the polynomial Res(C).

(See definition 17 for definitions of Int(C),Res(C)).

In this chapter we will use all of the above and compute the polynomials M1,M2 as
lists of linear forms finishing our reconstruction job.

Let’s summarize the results of this chapter in the following theorem. It uses defini-
tion 17 and 19 from chapter 2)

Theorem 8. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that srank (C) ≥ N0 (defined at

beginning of this chapter). Further assume we have access to the following:

– parameters n,d.

– black-boxes computing polynomials C(x̄) and Res(C).

40

– multi-set P(Gcd(C)Int(C)) as an explicit list of projective linear forms.

– set P (Res(C)) as an explicit list of projective linear forms.

We give a randomized algorithm that runs in time poly(n,d) and with probability

1 − o(1) outputs (as explicit lists of linear forms) two polynomials M1(x̄),M2(x̄)
which are both products of linear forms such that

C(x̄) = M1(x̄) + M2(x̄)

5.2 Lines connecting forms in P(R) (P(B) resp.) to P(M2)(P(M1) resp.)
Recall definition 11 which defines L(p,S) as the multi-set of lines connecting p

and S, where p ∈ P(V) is a projective linear form and S ⊂ P(V) is a multi-set of
projective linear forms.

Lemma 13. Given multi-sets P(Gcd(C)Int(C)), black-box BRes (computing poly-

nomial Res(C)) and a form r ∈ P(R), there is a poly(n,d) time algorithm to com-

pute the multi-set of lines L(r,P(M2)) (Recall that P(M2) = P(B) ∪ P(Gcd(C)),
where ∪ denotes the multi-set union).

Proof. Let re be the largest power of r dividing Gcd(C)Int(C). This implies that
re divides Gcd(C) (By lemma 4 we know that P(R) ∩ P(Int(C)) = φ). Thus
Gcd(C) = reG′ and

P(Gcd(C)Int(C)) = {r, . . . ,r }︸ ︷︷ ︸
e times

∪ P(G′) ∪ P(Int(C)).

So we iterate through P(Gcd(C)Int(C)) and remove all occurrences of r (this takes
poly(n,d) time). Then we will be left with P(G′) ∪ P(Int(C)). Note that

G′Int(C)Res(C) = G′(R + B).

On restricting both sides to the hyperplane ker (r) (see definition 8) we get

G′
|ker (r)

Int(C)|ker (r) Res(C)|ker (r) = G′
|ker (r)

B|ker (r) . (5.1)

Both sides are non-zero since r does not divide G′,B. Now by lemma 2, for any
p , r and l ∈ V such that p = [l], line joining r,p is the same as line joining
r, [l |ker (r)].The multi-set of lines joining r with P(M2) then becomes

L(r,P(M2)) = { f l (r,p) : p divides G′
|ker (r)

B|ker (r) }, since M2 = reG′B. (5.2)

41

and so using the above two equations we get,

L(r,P(M2)) = { f l (r,p) : p divides G′
|ker (r)

Int(C)|ker (r) Res(C)|ker (r) }. (5.3)

= { f l (r,p) : p ∈ P(G′Int(C))} ∪ { f l (r,p) : p divides Res(C)|ker (r) }

We know the multi-set of P(G′Int(C)) (by removing instances of r from P(Gcd(C)Int(C)))
and so we can compute the lines { f l (r,p) : p ∈ P(G′Int(C))}. Using black-box
BRes for Res(C) we can compute black-box for Res(C)|ker (r) (by feeding the black-
box inputs from ker (r)) and then factorize it using algorithm C. So we also have
all the projective linear factors of Res(C)|ker (r) and we can find all the lines join-
ing r to it’s factors. This process clearly takes poly(n,d) time since algorithm C
runs in poly(n,d) time and there are less than or equal to d factors⇒ forming the
lines takes poly(n,d) time. Equation 5.3 implies that this process computes the set
L(r,P(M2)). �

We summarize the whole algorithm below.

Initialize L(r,P(M2)) = φ.

for each p(, r) ∈ P(Gcd(C)Int(C)) do

Add the line f l (r,p) to L(r,P(M2)).

end

Using algorithm C in appendix C and the black-box BRes for Res(C), compute
the multi-set of factors P(f) (see definition 10) where f = Res(C)|ker (r) . f is a
product of linear forms since r is a factoring form.

for each projective linear form p in P(f) do

Add the line f l (r,p) to L(r,P(M2)).

end

Return L(r,P(M2)).
Algorithm 4: Find connecting Lines

Correctness Proof - Same as proof of the lemma above.

42

Time Complexity - Both the for loops run poly(n,d) times and algorithm C takes
poly(n,d) time. So the overall complexity is poly(n,d).

Even though we gave the algorithm only for r ∈ P(R), a similar algorithm works
for b ∈ P(B) computing the set of lines L(b,P(M1)).

5.3 Termination Case : Reconstructing one of P(M1),P(M2) does the job
We discuss a situation which arises at the end of each reconstruction algorithm
in this chapter. Assume we have been able to reconstruct one of the two multi-sets
P(M1),P(M2). Note that these multi-sets contain projective linear factors of M1,M2

respectively. We will give an algorithm to reconstruct both M1,M2 as explicit lists
of their respective linear factors. Without loss of generality let’s assume we know
the multi-set P(M1). We summarize this in the following lemma.

Lemma 14. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) = M1 + M2, where both M1,M2 are products of d linear forms in n

variables x1, . . . , xn. Assume that srank (C) ≥ N0 (defined at beginning of this

chapter). Further assume that we are given a set S of projective linear forms. We

give an algorithm that works in time poly(n,d) and does the following:

• If S , P(M1) and S , P(M2), it outputs "fail".

• If S = P(M1) or S = P(M2) with probability 1− o(1) it outputs two products

(of linear forms) M1,M2 (each given as a list of its linear factors) such that

C(x̄) = M1 + M2. When it does not output the two products it outputs "fail".

Proof. We first give the algorithm and then talk about it’s correctness and time

43

complexity. Here is the algorithm:

1. Let S = {p1, . . . ,pd }. Fix linear forms li such that pi = [li].

2. Restrict black-box B to Wr = {(w1, . . . ,wr ,0, . . . ,0)} of dimension
r = R(4,F) and interpolate using O(dr) points from Wr to get coefficient
representation of C|Wr

.

3. For i ∈ [d], compute li |Wr
by plugging xr+1 = . . . = xn = 0. Compute the

polynomial M (x̄) = l1 |Wr
. . . ld |Wr

as a list of coefficients by multiplying out
all linear forms.

4. Let α be a variable and compute the coefficient vector of the polynomial
C(x̄) − αM (x̄). Note that every entry of the vector is a degree 1 polynomial
in α.

5. Plug the coefficient vector of C(x̄) − αM (x̄) into the system of polynomials
given by brill’s equations (see lemma 10) giving a polynomial system in one
variable α.

6. Using your favorite exact root finding algorithm for univariates, solve for α.
If no (or multiple) α is found output "fail".

7. Else using algorithm C compute all projective linear factors (explicitly) of
C(x̄) − αl1 . . . ld (use black-boxes for C(x̄) and l1 . . . ld). If there are d such
forms(with multiplicity), store them in a multi-set S′. Let S′ = {l1

′, . . . , l′d }

and repeat all previous steps S′ instead of S and compute all possible α′

such that C|Wr
− α′l′1 |Wr

. . . l′d |Wr
is a product of linear forms. Using

deterministic black-box polynomial identity testing algorithm for ΣΠΣ(4)
circuits, if C(x̄) − αl1 . . . ld − α

′l′1 . . . l
′
d is an identically zero polynomial.

8. If yes then we return the gates of C(x̄) as

M1 = αl1 . . . ld and M2 = α′l′1 . . . l
′
d .

Output is given as two lists of linear forms {αl1, l2, . . . , ld } and
α′l′1, l

′
2, . . . , l

′
d .

9. If for none of the α’s, we were able to reconstruct, output "fail".

Algorithm 5: Reconstruction using one of P(M1),P(M2)

44

Correctness Proof - First let’s consider the case when S , P(M1) and S ,
P(M2). Assume that S = {p1, . . . ,pd } and li are such that pi = [li]. We show
that the algorithm outputs "fail". If not then the algorithm would have returned
lists of linear forms and before that it would have checked using deterministic poly-
nomial identity testing algorithm (in [25]) for ΣΠΣ(4) circuits whether C(x̄) −
αl1 . . . ld − α

′l′1 . . . l
′
d = 0. But this implies that S is actually one of the multi-sets

P(M1),P(M2). So we have a contradiction and the algorithm outputs "fail".

For the other part without loss of generality assume that S = P(M1). By step 1 we
would have assumed S = {p1, . . . ,pt } and fixed linear forms li such that pi = [li].
Since S = P(M1) we know there exists α ∈ F such that C(x̄) = αl1 . . . lt + M2,
where M2 is a product of linear forms. Also srank (C) ≥ R(4,F) ⇒ (by theorem 4)
that the circuit is unique and thus α is unique. Part 2 in lemma 9 implies that with
probability 1 − o(1), srank (C|Wr

) = r = R(4,F), further implying that ΣΠΣ(2)
structure of C(x̄)|Wr

will be unique. This shows that there is a unique α such that
C(x̄)|Wr

− αl1 |Wr
. . . lt |Wr

is a product of linear forms. So the coefficients (in terms
of α) of C(x̄)|Wr

− αl1 |Wr
. . . lt |Wr

will satisfy brill’s equations (see appendix B) and
on solving them we would be able to determine the unique α exactly. If an α was
found then M2 = C(x̄) − αl1 . . . lt factors into a product of linear forms. To find
these linear forms we used the factoring algorithm C which outputs a multi-set of
projective linear forms. With high probability this multi-set will be P(M2) since
with probability 1 − o(1) the algorithm C outputs the correct factors. Again on
repeating steps 1 − 6 above with this multi-set P(M2) we would be able to compute
(with probability 1 − o(1)) the unique α′ such that C(x̄) − α′l′1 . . . l

′
t is a product of

linear forms. So till now we would have computed two products M1,M2 such that
with probability 1 − o(1), C(x̄) = M1 + M2. We change this into only one sided
error i.e. make sure that if we output M1,M2 they are always right by using the
deterministic ΣΠΣ(4) polynomial identity testing algorithm in [25]. Therefore in
this case with probability 1 − o(1) we will output M1,M2 and they will be correct.

Time Complexity - Steps 1−4 are clearly polynomial time since r is constant. Step
5 and 6 involve solving poly(d) polynomials in one variable. This can be easily
done by solving one of them and satisfying the rest. This clearly takes poly(d)
time. To solve one equation we could factorize into irreducibles over F and look
for linear factors. This is also polynomial time. Step 7 invokes algorithm C, repeats
steps 1−6 and performs the polynomial time deterministic PIT for ΣΠΣ(4) circuits,
thus taking poly(n,d) time. Therefore the algorithm takes poly(n,d) time overall.

45

�

5.4 One of the multi-sets P(R),P(B) is low dimensional
Recall that we’ve assumed srank (C) = dim(P(R) ∪ P(B)) ≥ N0 (defined at the
beginning of this chapter). In this section we show that our task is much easier if
any of the two sets P(R),P(B) has dimension < N0 − 1. Without loss of generality
we assume dim(P(B)) < N0 − 1. Since dim(P(R) ∪ P(B)) ≥ N0, there exist
independent r1,r2 ∈ P(R) such that f l (r1,r2) ∩ f l (P(B)) = φ.

Our very first result in this case will make life a lot simpler. We claim that the
polynomial Int(C) is a constant i.e. the only linear factors of C are the ones dividing
Gcd(C), in other words the multi-set P(Int(C)) is empty and P(Gcd(C)) is equal
to P(Gcd(C)Int(C)), which has already been computed. This also means BRes (to
which we have access) is a black-box for Sim(C).

Claim 1. P(Int(C)) = φ.

Proof. Assume p ∈ P(Int(C)). Then R+B = Int(C)Res(C) ⇒ R|ker (p) = −B|ker (p) .
Using lemma 4 we know that P(R) ∩ P(Int(C)) = φ and thus both R|ker (p) ,B|ker (p)

are non-zero.

By unique factorization there exist B1,B2 dividing B such that r1 |ker (p) ,B1 |ker (p) are
scalar multiples and r2 |ker (p) ,B2 |ker (p) are scalar multiples. A little bit of manipula-
tion implies that r1 ∈ f l (p, [B1]). Similarly r2 ∈ f l (p, [b2]). We can use these two
to eliminate p and conclude that f l (r1,r2) ∩ f l (b1,b2) , φ which contradicts the
choice of r1,r2. �

Now we need to reconstruct P(R),P(B). The form r1 (that we chose above) outside
P(B) turns out to be a good form (see definition 20) and helps us recover the entire
P(B). Please see section 2.4 for better understanding of the following lemma and
algorithm.

Lemma 15. There exists r1 ∈ P(R) and r2 ∈ P(R) (different from r1) such that r1

is a good form for ({r2},P(B)) and the "reconstructed multi-set" (see definition 21)

in this case P(B)r1 = P(B).

Proof. Let r1,r2 be as chosen at the beginning of this section (also used in previous
claim). Clearly r1 , r2. Also f l (r1,r2) ∩ f l (P(B)) = φ by choice of r1,r2. There-
fore by lemma 6 we see that r1 is a good form for ({r2},P(B)) and the reconstructed
multi-set is P(B)r1 = P(B). �

46

Now we are ready to give the reconstruction algorithm in this case. We summarize
it in the following lemma.

Lemma 16. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that srank (C) ≥ N0. Also assume

we have access to the following:

– parameters n,d.

– black-boxes computing polynomials C(x̄) and Res(C).

– multi-set P(Gcd(C)Int(C)) as an explicit list of projective linear forms.

– set P (Res(C)) as an explicit list of projective linear forms.

Further assume that dim(P(B)) < N0 − 1. We give a randomized algorithm that

runs in time poly(n,d) and with probability 1− o(1) outputs (as explicit lists of lin-

ear forms) two polynomials M1(x̄),M2(x̄) which are both products of linear forms

such that

C(x̄) = M1(x̄) + M2(x̄)

Proof. Let’s first give the algorithm and then discuss correctness and time complex-
ity.

47

for all pairs (r1,r2) ∈ P × P do

Using algorithm 4, compute the multi-sets L(ri,P(M2)). From this remove
all lines in L(ri,P(Gcd(C))) (Note that P(Gcd(C), Int(C)) = P(Gcd(C))
in this case). This gives multi-sets of lines L(ri,P(B)), i ∈ [2].

Using these multi-sets L(ri,P(B)) and forms r1,r2 as input to algorithm 1
compute multi-set P(B)r1 i.e. the "reconstructed multi-set".

Combine multi-sets P(B)r1 and P(Gcd(C)). Send this new multi-set
(guessing that it is P(M2)) as input to algorithm 5 and try to compute
M1,M2.

If successful return M1,M2. Else continue.

end

Return "fail".
Algorithm 6: P(B) is low dimensional

Correctness Proof - Suppose that the algorithm returns "fail". We know that the
outer most for loop will at some point of time use r1,r2 mentioned in lemma 15.
For this choice we know that the reconstructed multi-set is P(B) which is actually
reconstructed by algorithm 1. Therefore the input to algorithm 5 was actually P(M2)
but it did not reconstruct M1,M2. The probability that this could happen is small.
Therefore the probability that the algorithm outputs "fail" is small.

Suppose the algorithm returns two polynomials M1,M2 (as explicit lists of linear
forms), then by the correctness of algorithm 5, it ought to be correct since that is
exactly the step which returns the two products M1,M2 and always gives the right
answer (uses deterministic polynomial identity testing at end).

Therefore with probability 1 − o(1) we output two polynomials M1,M2 (as lists of
linear forms) such that C(x̄) = M1 + M2.

Time Complexity - The for loop runs poly(n,d) times. Each algorithm called
runs in poly(n,d) time as discussed in their proofs and therefore the algorithm
takes poly(n,d) time.

�

48

5.5 Both multi-sets P(R),P(B) are high dimensional
Now we assume that dim(P(R)) ≥ N0−1 and dim(P(B)) ≥ N0−1. Define the sets
R = supp(P(R)) and B = supp(P(B)) 1. Without loss of generality we also assume
that |R |≥ |B|.

Define a function v(δ) = 3δ − 4δ2. Here is the main lemma for this section.

Lemma 17. Let C be a homogeneous ΣΠΣ(2) circuit computing a degree d poly-

nomial C(x̄) in n variables x1, . . . , xn. Assume that srank (C) ≥ N0. Also assume

we have access to the following:

– parameters n,d.

– black-boxes computing polynomials C(x̄) and Res(C).

– multi-set P(Gcd(C)Int(C)) as an explicit list of projective linear forms.

– set P (Res(C)) as an explicit list of projective linear forms.

Assume that dim(P(R)) ≥ N0 − 1 and dim(P(B)) ≥ N0 − 1. We give a randomized

algorithm that runs in time poly(n,d) and with probability 1− o(1) outputs (as ex-

plicit lists of linear forms) two polynomials M1(x̄),M2(x̄) which are both products

of linear forms such that

C(x̄) = M1(x̄) + M2(x̄)

To prove this we follow a number of steps. But first we define a bunch of multi-sets
that will be useful throughout this section. We will try to give an intuition behind
most definitions. Then we will prove lower and upper bounds on the size of multi-
sets we define. Along with this whenever required we will also talk about efficient
computation of these multi-sets and related objects. Finally we give the proof of
the above lemma accomplishing the reconstruction goal.

Definition 25. For every choice of elements r1, . . . ,rk ∈ R and b1, . . . ,bk ∈ B, we
define the sets

R (r1, . . . ,rk) = {r ∈ R : r < f l (r1, . . . ,rk), and

f l (r1, . . . ,rk ,r) ∩ (R ∪ B) ⊂ f l (r1, . . . ,rk) ∪ {r }}, and

1 For a multi-set X, supp(X) is the set of distinct elements from X.

49

B(b1, . . . ,bk) = {b ∈ B : b < f l (b1, . . . ,bk), and

f l (b1, . . . ,bk ,b) ∩ (R ∪ B) ⊂ f l (b1, . . . ,bk) ∪ {b}}.

Basically these are points r ∈ R (b ∈ B resp.) lying outside f l (r1, . . . ,rk) (f l (b1, . . . ,bk)
resp.) such that the flat r (b resp.) forms with r1, . . . ,rk (b1, . . . ,bk resp.) is ordinary
inside the set R ∪ B (for definition of ordinary flat see appendix F).

Definition 26. We also give names to the complements ofR (r1, . . . ,rk) (B(b1, . . . ,bk)
resp.) inside R (B resp.). Define

R′(r1, . . . ,rk) = R \ R (r1, . . . ,rk) and B′(b1, . . . ,bk) = B \ B(b1, . . . ,bk).

Next we define certain sub multi-sets of points in P(Gcd(C)Int(C)). For any choice
of independent points p1, . . . ,pk we look at points p ∈ P(Gcd(C)Int(C)) such
that p < f l (p1, . . . ,pk) and the flat f l (p1, . . . ,pk ,p) \ f l (p1, . . . ,pk) contains two
distinct points from the set P we computed earlier in section 4.

Definition 27. Let p1, . . . ,pk ∈ P(V) be independent points, we define

G(p1, . . . ,pk) = {p ∈ P(Gcd(C)Int(C)) : p < sp{p1, . . . ,pk }, and

|(f l (p1, . . . ,pk ,p) \ f l (p1, . . . ,pk)) ∩ P|≥ 2}. (5.3)

We will be concerned with the above sets only when p1, . . . ,pk are all inside P(R) or
all inside P(B). The aim will be to show that for appropriate choices of p1, . . . ,pk ,
central projections of these multi-sets with respect to f l (p1, . . . ,pk) has small size.
We will need to compute lines going in to these sets and to make that work we show
that whenever R (r1, . . . ,rk) (B(b1, . . . ,bk) resp.) is non-trivial then P(Int(C)) ⊂
G(r1, . . . ,rk) (G(b1, . . . ,bk) resp.).

We define a subset of P(R) (P(B) resp.) and later give an efficient algorithm to
compute this set. This set will give us points which along with an appropriate choice
of r1, . . . rk (b1, . . . ,bk resp.) will reconstruct points in P(M2) (P(M1) resp.).

Definition 28. Given independent points r1, . . . ,rk ∈ R and b1, . . . ,bk ∈ B, we
define the sets

S(r1, . . . ,rk) = {p ∈ P : ∀ i ∈ [k], f l (p,ri) ∩ (G(r1, . . . ,rk) ∪ B) = φ}, and

S(b1, . . . ,bk) = {p ∈ P : ∀ i ∈ [k], f l (p,bi) ∩ (G(b1, . . . ,bk) ∪ R) = φ}.

50

Now we are ready to prove results about the multi-sets we defined. Almost all
proofs are long and are given in the appendix. We suggest the reader to believe the
lemmas and proceed to the main theorem and later come back to see the proofs.

Lemma 18. The following holds:

1. If r1, . . . ,rk ∈ R, then for any p ∈ G(r1, . . . ,rk)

(f l (r1, . . . ,rk ,p)\ f l (r1, . . . ,rk)) and R′(r1, . . . ,rk)∪B intersect non-trivially.

2. If b1, . . . ,bk ∈ B, then for any p ∈ G(b1, . . . ,bk)

(f l (b1, . . . ,bk ,p)\ f l (b1, . . . ,bk)) and B′(b1, . . . ,bk)∪R intersect non-trivially.

3. R (r1, . . . ,rk) , φ ⇒ P(Int(C)) ⊂ G(r1, . . . ,rk). Similarly B(b1, . . . ,bk) ,
φ⇒ P(Int(C)) ⊂ G(b1, . . . ,bk).

4. Given independent points r1, . . . ,rk ∈ R (b1, . . . ,bk ∈ B resp.), r ∈ R

(b ∈ B resp.) the multi-set P(Gcd(C)Int(C)) and the set P, there exists

efficient algorithms to compute the multi-set P(M2) \ G(r1, . . . ,rk) (P(M1) \
G(b1, . . . ,bk) resp.) and multi-sets of linesL(r,G(r1, . . . ,rk)) (L(b,G(b1, . . . ,bk))
resp.).

Proof. Since the proof is long, for better exposition we move it to the appendix.
See 28. �

Lemma 19. The following hold for all independent r1, . . . ,rk ∈ R.

1. R (r1, . . . ,rk) ⊂ S(r1, . . . ,rk) ⊂ P(R).

2. B(r1, . . . ,rk) ⊂ S(r1, . . . ,rk) ⊂ P(B).

3. Given r1, . . . ,rk (b1, . . . ,bk resp.), the set P, multi-set P(Gcd(C)Int(C))
and black-box BRes, there exist efficient algorithms to compute S(r1, . . . ,rk)
(S(b1, . . . ,bk) resp.).

Proof. Since the proof is long, for better exposition we move it to the appendix.
See 29. �

51

Now we come to the application of robust high dimensional Sylvester gallai the-
orems from [3] and [6]. This will tell us about a really good choice for r1, . . . ,rk

(b1, . . . ,bk resp.) in all the above lemmas.

Lemma 20. One of the following always holds:

1. ∃ r1, . . . ,rk ∈ R : |R (r1, . . . ,rk) |≥ v(δ) |R |, or

2. ∃ b1, . . . ,bk ∈ R : |B(b1, . . . ,bk) |≥ v(δ) |R |.

Proof. Since the proof is long, for better exposition we move it to the appendix.
See 30. �

Lemma 20 then has the following obvious corollary:

Corollary 1. One of the following always holds:

1. If Part I in Lemma 20 holds then |R′(r1, . . . ,rk) |≤ (1 − v(δ)) |R |, or

2. If Part II in Lemma 20 holds then |B′(b1, . . . ,bk) |≤ (1 − v(δ)) |R |.

Proof. 1. Part I of Lemma 20 implies that R (r1, . . . ,rk) ≥ v(δ) |R |, therefore
R′(r1, . . . ,rk) ≤ |R|−v(δ) |R |= (1 − v(δ)) |R |.

2. Similarly Part II of Lemma 20 implies that B(b1, . . . ,bk) ≥ v(δ) |R |, then
B′(b1, . . . ,bk) ≤ |B|−v(δ) |R |≤ |R|−v(δ) |R |= (1 − v(δ)) |R |.

�

All of these results above were proved to show the existence of certain good forms.
This is the main ingredient in proof of lemma 17. We discuss the existence of good
forms in the lemma below.

Lemma 21. The following holds:

1. If Part I of Lemma 20 holds, then for any sub multi-set X ⊂ G(r1, . . . ,rk)
with dim(X) ≥ N0 − 1, r1 is a good form for (S(r1, . . . ,rk),X).

2. If Part II of Lemma 20 holds, then for any sub multi-set X ⊂ G(b1, . . . ,bk)
with dim(X) ≥ N0 − 1, b1 is a good form for (S(b1, . . . ,bk),X).

52

Proof. We will replace S(r1, . . . ,rk) (S(b1, . . . ,bk) resp.) in the this lemma with
R (r1, . . . ,rk) (B(b1, . . . ,bk) resp.). It can be easily seen that this implies the re-
quired statements since by lemma 19 aboveR (r1, . . . ,rk) ⊂ S(r1, . . . ,rk) (B(b1, . . . ,bk) ⊂
S(b1, . . . ,bk) resp.).

We will just show one of the two parts given in this lemma, the other follows
identically. Consider the choice of r1, . . . ,rk as in Lemma 20. We know that
R (r1, . . . ,rk) ≥ v(δ) |R |. Note that lemma 18 implies that G(r1, . . . ,rk) ⊂ R′(r1, . . . ,rk)∪
B. Let X be any sub multi-set of G(r1, . . . ,rk) such that dim(X) ≥ N0 − 1. We
want to show that r1 is a good point for (R (r1, . . . ,rk),X).

Let’s first fix l1, . . . , lk ∈ V such that ri = [li]. Let W = sp(l1, . . . , lk) and W⊥ be
any subspace of V such that W ⊕W⊥ = V . Using definition 9, we consider central
projections of points inX and R (r1, . . . ,rk) (note that no point inX or R (r1, . . . ,rk)
belongs to f l (r1, . . . ,rk)) with respect to the flat f l (r1, . . . ,rk) on to the projective
space P(W⊥). We will refer to this projection as a map π from here onwards. The
following are easy to see (we leave the verification for the reader).

1. For distinct r,r′ ∈ R (r1, . . . ,rk), π(r) , π(r′) (by definition of the set
R (r1, . . . ,rk)) and thus |π(R (r1, . . . ,rk)) |≥ v(δ) |R |.

2. Let p ∈ X ⊂ G(r1, . . . ,rk). By lemma 18, for every p ∈ G(r1, . . . ,rk), there
exists p′ ∈ R′(r1, . . . ,rk) ∪ B such that

p′ ∈ f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk).

Thus π(p′) = π(p) giving us the bound |π(G(r1, . . . ,rk)) | ≤ |R′(r1, . . . ,rk) |+|B|≤
(1 − v(δ)) |R |+|R |= (2 − v(δ)) |R |.

Using lemma 31 we know that 2−v(δ)
v(δ) ≤

1−δ
δ . The two sets π(X), π(R (r1, . . . ,rk))

are disjoint sets in P(W⊥). If not, consider rk+1 ∈ R (r1, . . . ,rk) such that π(rk+1) ∈
π(X). This implies that rk+1 ∈ f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk) for some p ∈

X. Also, since X ⊂ G(r1, . . . ,rk), by lemma 18 we know that there is a p′ ∈

R′(r1, . . . ,rk) ∪ P(B) such that p′ ∈ f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk).

Together these imply that p′ ∈ f l (r1, . . . ,rk ,rk+1)\ f l (r1, . . . ,rk). Clearly by defini-
tion of R (r1, . . . ,rk) the form p′ < R′(r1, . . . ,rk) (since the flat f l (r1, . . . ,rk ,rk+1)
is ordinary in R ∪ B). It also cannot belong to P(B) due to the exact same reason.
Therefore we have a contradiction and π(X), π(R (r1, . . . ,rk)) are disjoint.

53

Since we took a central projection with respect to f l (r1, . . . ,rk), dim(X) ≥ N0 −

1− k > α
δ inside P(W⊥). By corollary 4 we get that there exists a line inside P(W⊥)

which has exactly one point from π(X) (say π(p) with p ∈ P) and atleast one point
from R (r1, . . . ,rk) (say π(rk+1) with rk+1 ∈ R (r1, . . . ,rk)). We will show the three
conditions in definition 20 hold for the triple (r1,rk+1,p).

1. Since rk+1,p < f l (r1, . . . ,rk), clearly r1,rk+1 are distinct and r1,p are dis-
tinct. p,rk+1 are distinct as π(p) and π(rk+1) are distinct points in P(W⊥).

2. r1,rk+1 and p are independent. If not then the central projections π(p) and
π(rk+1) would be equal which is not true.

3. Let Ψ = f l (r1,rk+1,p). Assume there is another form p′ ∈ X such that
p′ ∈ Ψ. Let lk+1, lp, lp′ ∈ V such that rk+1 = [lk+1],p = [lp] and p′ = [lp′].
p′ ∈ f l (r1,rk+1,p) ⇒ there are scalars a,b,c (not all zero) such that lp′ =

al1 + blk+1 + clp. If b = c = 0 then lp′ = al1 ⇒ p′ = r1, which cannot happen
as p′ < f l (r1, . . . ,rk) (remember it is a point of G(r1, . . . ,rk)). So at least one
of b,c is non-zero. Write lk+1 = wk+1 + w⊥k+1 with wk+1 ∈ W,w⊥k+1 ∈ W⊥ ⇒

rk+1 = [w⊥k+1] and lp = wp + w⊥p with wp ∈ W and w⊥p ∈ W⊥ ⇒ p = [w⊥p].

Therefore lp′ = al1 + bwk+1 + bw⊥k+1 + cwp + cw⊥p ⇒ lp′ |W⊥
= bw⊥k+1 + cw⊥p .

Atleast one of b,c is non-zero and thus π(p′) = [lp′ |W⊥
] ∈ f l ([w⊥k+1], [w⊥p]) =

f l (π(rk+1), π(p)). Both π(p′), π(p) are in X and the line f l (π(rk+1), π(p))
contains only one point from π(X) ⇒ π(p) = π(p′) ⇒ b = 0 and thus
p′ ∈ f l (r1,p).

Therefore r1,rk+1,p satisfy all requirements in definition 20 and thus r1 is a good
form for (R (r1, . . . ,rk),X). �

Now we are ready for the proof of lemma 17 which was the main reconstruction
result of this section.

Proof. We first give the algorithm promised in the lemma and then discuss correct-

54

ness and time complexity.

Fix k = R(3,F) + 2.

for each r1, . . . ,rk ∈ P do

Compute multi-set K = P(M2) \ G(r1, . . . ,rk) using algorithm in last part of
lemma 18 and define multi-set X = G(r1, . . . ,rk) (note that we do not know
X).

Compute the set S(r1, . . . ,rk) using algorithm in last part of lemma 19.

Compute multi-set of lines L̃(r1) = L(r1,G(r1, . . . ,rk) ∪ B) and
L̃(s) = L(s,G(r1, . . . ,rk) ∪ B) for all s ∈ S(r1, . . . ,rk) using algorithm in
last part of lemma 18.

while true do

Assume dim(X) < N0 − 1. Since dim(R ∪ B) ≥ N0, there exists
r1 , r2 ∈ R such that sp(r1,r2) ∩ sp(X) = φ. Therefore r1 is a good form
for ({r2},X) by lemma 15. Using algorithm 1 compute X and update
K = K ∪ X. Using algorithm 5 compute M1,M2. If output is not "fail"

then break out of this while loop and output M1,M2. Else continue

Using r1, set S(r1, . . . ,rk) and lines L̃(r1), L̃(s)(∀s ∈ S(r1, . . . ,rk)) as
input to algorithm 1, recover a multi-set of points Xr1 .

If Xr1 = φ. Then break out of this while loop.

Else update K = K ∪Ur1 , L̃(r1) = L̃(r1) \ L(r1,Xr1) and
L̃(s) = L̃(s) \ L(s,Xr1) (for all s ∈ S(r1, . . . ,rk)).

Update X = X \ Xr1 .

end

end

Output "fail".
Algorithm 7: Both P(R),P(B) have large dimension

Correctness - The algorithm returns polynomials M1,M2 using algorithm 5 and
therefore if an answer is returned it is always correct.

Suppose we output "fail". We will show that the chances of this happening are
very small (o(1) to be precise). We know by lemma 21 that there exists a choice of

55

r1, . . . ,rk such that r1 is a good form for (S(r1, . . . ,rk),X) for allX ⊂ G(r1, . . . ,rk)
and dim(X) ≥ N0 − 1. Since we output "fail" at some point of time we must have
used these r1, . . . ,rk in the for loop. Clearly from the algorithm at any point of time
X ⊂ G(r1, . . . ,rk).

If dim(X) < N0 − 1, then clearly algorithm 1 would not recover X with probability
≤ o(1). So the probability we output fail is small.

If dim(X) ≥ N0 − 1 then by lemma 21 we would have recovered Xr1 ⊂ X. This
would have gone on until dim(X) < N0 − 1 and then with probability ≤ o(1) we
would not recover X. So we output fail with probability o(1).

Therefore with probability 1− o(1) we output two products M1,M2 and our answer
is always right.

Time Complexity - All algorithms used run in poly(n,d) time. The outer for loop
runs poly(n,d) times since k is a constant. So for the entire algorithm to run in
poly(n,d) time we need to show that the while loop runs poly(n,d) times. If at any
stage dim(X) < N0−1 then we halt in one step. Else if Xr1 = φ we break out of the
loop. Else K = K ∪ Xr1 and so the size of K grows at least by 1. K ⊂ P(M2) and
so it can grow at most poly(n,d) times, thus the while loop runs poly(n,d) times.

�

56

BIBLIOGRAPHY

[1] Manindra Agrawal. “Proving lower bounds via pseudo-random generators”.
In: FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December
15-18, 2005, Proceedings, volume 3821 of Lecture. Springer, 2005, pp. 92–
105.

[2] V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. “New Results on
Noncommutative and Commutative Polynomial Identity Testing”. In: 2012
IEEE 27th Conference on Computational Complexity (2008), pp. 268–279.
issn: 1093-0159. doi: http://doi.ieeecomputersociety.org/10.
1109/CCC.2008.22.

[3] B. Barak et al. “Rank bounds for design matrices with applications to com-
binatorial geometry and locally correctable codes”. In: Proceedings of the
43rd annual ACM symposium on Theory of computing. STOC ’11. San Jose,
California, USA: ACM, 2011, pp. 519–528. isbn: 978-1-4503-0691-1. url:
./BDWY11.pdf.

[4] Amos Beimel et al. “Learning Functions Represented As Multiplicity Au-
tomata”. In: J. ACM 47.3 (May 2000), pp. 506–530. issn: 0004-5411. doi:
10.1145/337244.337257. url: http://doi.acm.org/10.1145/
337244.337257.

[5] B. Buchberger. “A Theoretical Basis for the Reduction of Polynomials to
Canonical Forms”. In: SIGSAM Bull. 10.3 (Aug. 1976), pp. 19–29. issn:
0163-5824. doi: 10.1145/1088216.1088219. url: http://doi.acm.
org/10.1145/1088216.1088219.

[6] Z. Dvir, S. Saraf, and A. Wigderson. “Improved rank bounds for design ma-
trices and a new proof of Kelly’s theorem”. Forum of mathematics - Sigma
(to appear). 2012. url: DSW12.pdf.

[7] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. “Automata, Lan-
guages, and Programming: 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I”. In: ed. by Javier Es-
parza et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. Chap. Test-
ing Equivalence of Polynomials under Shifts, pp. 417–428. isbn: 978-3-662-
43948-7. doi: 10.1007/978-3-662-43948-7_35. url: http://dx.doi.
org/10.1007/978-3-662-43948-7_35.

[8] Zeev Dvir and Amir Shpilka. “Locally decodable codes with 2 queries and
polynomial identity testing for depth 3 circuits”. In: SIAM J. COMPUT 36.5
(2007), pp. 1404–1434.

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
./BDWY11.pdf
http://dx.doi.org/10.1145/337244.337257
http://doi.acm.org/10.1145/337244.337257
http://doi.acm.org/10.1145/337244.337257
http://dx.doi.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
DSW12.pdf
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35

57

[9] Izrail Moiseevitch Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky.
Discriminants, resultants, and multidimensional determinants. Mathematics
: theory & applications. Autre tirage de l’édition Birkhäuser chez Springer
Science+ Business Media. Boston, Basel, Berlin: Birkhäuser, 1994. isbn: 0-
8176-3660-9. url: http://opac.inria.fr/record=b1103027.

[10] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct
Random Functions”. In: J. ACM 33.4 (Aug. 1986), pp. 792–807. issn: 0004-
5411. doi: 10.1145/6490.6503. url: http://doi.acm.org/10.1145/
6490.6503.

[11] Ankit Gupta, Neeraj Kayal, and Satya Lokam. “Reconstruction of Depth-4
Multilinear Circuits with Top Fan-in 2”. In: Proceedings of the Forty-fourth
Annual ACM Symposium on Theory of Computing. STOC ’12. New York,
New York, USA: ACM, 2012, pp. 625–642. isbn: 978-1-4503-1245-5. doi:
10.1145/2213977.2214035. url: http://doi.acm.org/10.1145/
2213977.2214035.

[12] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. “Efficient Recon-
struction of Random Multilinear Formulas”. In: IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011. 2011, pp. 778–787. doi: 10.1109/FOCS.2011.
70. url: http://dx.doi.org/10.1109/FOCS.2011.70.

[13] Ankit Gupta, Neeraj Kayal, and Youming Qiao. “Random arithmetic formu-
las can be reconstructed efficiently”. English. In: computational complexity
23.2 (2014), pp. 207–303. issn: 1016-3328. doi: 10.1007/s00037-014-
0085-0. url: http://dx.doi.org/10.1007/s00037-014-0085-0.

[14] J. Heintz and C. P. Schnorr. “Testing Polynomials Which Are Easy to Com-
pute (Extended Abstract)”. In: Proceedings of the Twelfth Annual ACM Sym-
posium on Theory of Computing. STOC ’80. Los Angeles, California, USA:
ACM, 1980, pp. 262–272. isbn: 0-89791-017-6. doi: 10.1145/800141.
804674. url: http://doi.acm.org/10.1145/800141.804674.

[15] Begnaud Francis Hildebrand. Introduction to Numerical Analysis: 2Nd Edi-
tion. New York, NY, USA: Dover Publications, Inc., 1987. isbn: 0-486-65363-
3.

[16] Erich Kaltofen. “Effective Noether Irreducibility Forms and Applications”.
In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of
Computing. STOC ’91. New Orleans, Louisiana, USA: ACM, 1991, pp. 54–
63. isbn: 0-89791-397-3. doi: 10.1145/103418.103431. url: http://
doi.acm.org/10.1145/103418.103431.

[17] Erich Kaltofen and Barry M. Trager. “Computing with Polynomials Given
Byblack Boxes for Their Evaluations: Greatest Common Divisors, Factor-
ization, Separation of Numerators and Denominators”. In: J. Symb. Com-
put. 9.3 (Mar. 1990), pp. 301–320. issn: 0747-7171. doi: 10.1016/S0747-

http://opac.inria.fr/record=b1103027
http://dx.doi.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://dx.doi.org/10.1145/2213977.2214035
http://doi.acm.org/10.1145/2213977.2214035
http://doi.acm.org/10.1145/2213977.2214035
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://doi.acm.org/10.1145/800141.804674
http://dx.doi.org/10.1145/103418.103431
http://doi.acm.org/10.1145/103418.103431
http://doi.acm.org/10.1145/103418.103431
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6

58

7171(08)80015 - 6. url: http :/ /dx . doi. org/ 10. 1016 /S0747 -
7171(08)80015-6.

[18] Zohar S. Karnin and Amir Shpilka. “Reconstruction of Generalized Depth-3
Arithmetic Circuits with Bounded Top Fan-in”. In: Proceedings of the 24rd
Annual CCC. 2009, pp. 274–285.

[19] Michael Kearns and Leslie Valiant. “Cryptographic Limitations on Learn-
ing Boolean Formulae and Finite Automata”. In: J. ACM 41.1 (Jan. 1994),
pp. 67–95. issn: 0004-5411. doi: 10.1145/174644.174647. url: http:
//doi.acm.org/10.1145/174644.174647.

[20] Michael Kharitonov. “Cryptographic Lower Bounds for Learnability of Boolean
Functions on the Uniform Distribution”. In: Proceedings of the Fifth Annual
Workshop on Computational Learning Theory. COLT ’92. Pittsburgh, Penn-
sylvania, USA: ACM, 1992, pp. 29–36. isbn: 0-89791-497-X. doi: 10.1145/
130385.130388. url: http://doi.acm.org/10.1145/130385.130388.

[21] Adam R. Klivans and Daniel Spielman. “Randomness Efficient Identity Test-
ing of Multivariate Polynomials”. In: Proceedings of the Thirty-third Annual
ACM Symposium on Theory of Computing. STOC ’01. Hersonissos, Greece:
ACM, 2001, pp. 216–223. isbn: 1-58113-349-9. doi: 10.1145/380752.
380801. url: http://doi.acm.org/10.1145/380752.380801.

[22] Adam Klivans and Amir Shpilka. “Learning restricted models of arithmetic
circuits.” In: Theory of computing 2.10 (2006), pp. 185–206.

[23] S. Kopparty, S. Saraf, and A. Shpilka. “Equivalence of Polynomial Identity
Testing and Deterministic Multivariate Polynomial Factorization”. In: Com-
putational Complexity (CCC), 2014 IEEE 29th Conference on. June 2014,
pp. 169–180. doi: 10.1109/CCC.2014.25.

[24] Gary L. Mullen and Daniel Panario. Handbook of Finite Fields. 1st. Chap-
man & Hall/CRC, 2013. isbn: 143987378X, 9781439873786.

[25] Nitin Saxena and C. Seshadhri. “From Sylvester-gallai Configurations to
Rank Bounds: Improved Blackbox Identity Test for Depth-3 Circuits”. In:
J. ACM 60.5 (Oct. 2013), 33:1–33:33. issn: 0004-5411. doi: 10 . 1145 /
2528403. url: http://doi.acm.org/10.1145/2528403.

[26] Robert E. Schapire and Linda M. Sellie. “Learning Sparse Multivariate Poly-
nomials over a Field with Queries and Counterexamples”. In: In Proceed-
ings of the Sixth Annual ACM Workshop on Computational Learning Theory.
1996, pp. 17–26.

[27] Amir Shpilka. “Interpolation of depth-3 arithmetic circuits with two multipli-
cation gates”. In: In STOC ’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing. ACM Press, 2007, pp. 284–293.

[28] Amir Shpilka and Ilya Volkovich. “Improved polynomial identity testing for
read-once formulas”. In: (2009), pp. 700–713.

http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1145/174644.174647
http://doi.acm.org/10.1145/174644.174647
http://doi.acm.org/10.1145/174644.174647
http://dx.doi.org/10.1145/130385.130388
http://dx.doi.org/10.1145/130385.130388
http://doi.acm.org/10.1145/130385.130388
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://doi.acm.org/10.1145/380752.380801
http://dx.doi.org/10.1109/CCC.2014.25
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.1145/2528403
http://doi.acm.org/10.1145/2528403

59

[29] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A Survey of Re-
cent Results and Open Questions”. In: Foundations and Trends in Theoreti-
cal Computer Science 5.3–4 (2010), pp. 207–388. issn: 1551-305X. doi: 10.
1561/0400000039. url: http://dx.doi.org/10.1561/0400000039.

[30] Madhu Sudan. “Algebra and Computation”. In: 1998. url: http://people.
csail.mit.edu/madhu/FT98/.

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://people.csail.mit.edu/madhu/FT98/
http://people.csail.mit.edu/madhu/FT98/

60

A p p e n d i x A

RANDOM TRANSFORMATION AND RESTRICTIONS

For technical purposes we wish to randomly transform the variables in our poly-
nomial. In order to do this we use an n × n matrix Ω = (Ωi,j). First we define a
map Ω̃ : xi 7→ (Ωx̄)i, where x̄ is viewed as the n × 1 column vector (x1, . . . , xn)T .
This can be extended to a linear transformation on V , the vector space of linear
forms in variables x̄ = (x1, . . . , xn). Once we have such a linear transformation
Ω̃, we extend it further to polynomials in the most natural way i.e. we define
Ω̃(f)(x1, . . . , xn) = f (Ω̃(x1), . . . ,Ω̃(xn)). We leave it to the readers to check that
this map is well defined and is an extension of the linear transformation Ω̃. Note
that by abuse of notation we used Ω̃ for both maps. It can be further checked that Ω̃
an algebra homomorphism on F[x̄].

In our application we choose the matrix Ω such that every entry Ωi,j is picked uni-
formly randomly and independently from a fixed finite set S ⊂ F. As a first step of
our algorithm we will apply Ω̃ to our input polynomial C. This will ensure that the
new variables we have are "random" in some sense. A problem we face is that our
input is given as a black-box and so what does "applying" Ω̃ mean? This is easily
resolved by augmenting our input black-box i.e. we apply Ω̃ to the black-box.

To evaluate the polynomial Ω̃(C) (for some polynomial C) at the point ā = (a1, . . . ,an),
we query the original black-box for C at the form Ω−1(ā). Symbolically we define
a new black-box B such that B(ā) = Bin(Ω−1(ā)), where Bin is the input black-box
for polynomial C. Note that this needs Ω to be invertible. We check this just after
choosing Ω. It will be invertible with a high probability as shown in lemma 22
below. If it is not then we output "fail". We also point out that when Ω is invertible,
Ω̃ becomes an algebra isomorphism.

The randomness in our algorithms is precisely due to this choice we make at the
beginning. A lot of results we prove in this work will be true with high probability
over the choice of Ω.

Lemma 22. Let Ω be the matrix chosen above. We can show

Pr[Ω is not-invertible] ≤
n
|S |

61

Proof. This is equivalent to saying that the determinant det(Ω) = 0. Determinant
of Ω is a polynomial of degree n in n2 variables {Ωi,j : (i. j) ∈ [n] × [n]} and is
not identically zero since coefficient of the monomial Ω1,1 . . .Ωn,n is equal to 1.
Therefore by Schwartz-Zippel lemma

Pr[Ω : det(Ω) = 0] ≤
n
|S |

�

and hence with high probability Ω is invertible.

Let P(V) be the projective space corresponding to the vector space V of linear forms
in x̄. For j ∈ {r + 1, . . . ,n}, consider the subspaces:

Wi = {(w1, . . . ,wr−1,0, . . . ,0,w j ,0, . . . ,0) : w j ∈ F for j ∈ {1, . . . ,r − 1, j}}

Below we show that with high probability a projective form cannot lie in the pro-
jective space of the random subspace above. Therefore when we restrict to this
subspace the form remains non-zero.

Lemma 23. Let T ⊂ P(V) be a multi-set of forms. The following is true:

Pr[Ω : ∃ form t ∈ T : Ω(t)|Wi
= 0] ≤

|T |

|S |

Proof. Fix t = [t1x1 + . . . + tnxn]. We know that coefficient of x1 in Ω(t) is equal
to Ω(t)1 =

∑
k

tkΩk,1. This is a polynomial in the variables Ω1,1, . . . ,Ωn,1. If this

polynomial were identically zero then all ti = 0, i ∈ [n] ⇒ t < P(V). Thus this
polynomial is not identically zero. By the Schwartz-Zippel lemma

Pr[Ω : Ω(t)1 = 0] ≤
1
|S |
.

Clearly the variable x1 and coefficient Ω(t)1 appear on restriction of t to Wi. Thus
Ω(t)1 , 0⇒ Ω(t)|Wi

is non-zero . A union bound over forms in T give us:

Pr[Ω : ∃ form t ∈ T : Ω(t)|Wi
= 0 ≤

|T |

|S |
.

�

Next we show that an independent subset of size r , inside a multi-set T ⊂ P(V),
continues to be independent when restricted to certain r variables in the new "ran-

dom" set of variables defined by Ω̃.

62

Lemma 24. Let T ⊂ P(V) be a multi-set of forms. The following is true:

Pr[∃ j ∈ {r, . . . ,n} and independent forms t1, . . . , tr ∈ T :

Ω(t1)|Wj
, . . . ,Ω(tr)|Wj

are dependent] ≤
(n − r + 1)r |T |r

|S |

Proof. Fix independent forms t1, . . . , tr ∈ T . Let ti = [ti,1x1 + . . . ti,nxn] with
ti,k ∈ F. Clearly for i ∈ [r] the restrictions of Ω(ti) are:

Ω(ti)|Wj
= [

∑
k

ti,kΩk,1x1 + . . .
∑

k

ti,kΩk,r−1xr−1 +
∑

k

ti,jΩk,j x j]

The set {Ω(t1)|Wi
, . . . ,Ω(tr)|Wi

} are dependent if and only if the determinant

g(Ω) =

������������������

∑
k

t1,kΩk,1 . . .
∑
k

t1,kΩk,r−1
∑
k

t1,kΩk,j∑
k

t2,kΩk,1 . . .
∑
k

t2,kΩk,r−1
∑
k

t2,kΩk,j

.

.∑
k

tr,kΩk,1 . . .
∑
k

tr,kΩk,r−1
∑
k

tr,kΩk,j

������������������

is zero. If the above determinant is identically zero (i.e. as a polynomial) then by
plugging in suitable values of Ω’s we get that the determinant

������������

t1,1 t1,r−1 t1,j

t2,1 t2,r−1 t2,j

.

tr,1 tr.r−1 tr,j

������������

= 0

is zero. This is a minor of the matrix formed by coefficients of t1, . . . , tr and there-
fore cannot be zero. So the determinant (polynomial) g(Ω) is not identically zero.
Hence by the Schwartz Zippel Lemma :

Pr[Ω : g(Ω) = 0] ≤
r
|S |

Now doing a union bound over all {t1, . . . , tr } ∈ T and j ∈ {r, . . . ,n} we get that

Pr[∃ j ∈ {r, . . . ,n} and forms t1, . . . , tr ∈ T :

Ω(t1)|Wi
, . . . ,Ω(tr)|Wi

are dependent] ≤
(n − r + 1)r |T |r

|S |

�

63

Another lemma of the same sort which will be useful is stated below.

Lemma 25. Let Wr−1 = {(a1, . . . ,ar−1,0, . . . ,0)} ⊂ Fn,r ≥ 4. Consider multi-set

T ⊂ P(V). Then:

Pr[∃ independent forms t1, . . . , ts ∈ T , s ≤ 3 :

Ω(t1)|Wr−1
, . . . ,Ω(ts)|Wr−1

are dependent] ≤
poly(n,r, |T |r)

|S |

Proof. Exactly like the previous proof with some minor changes. We do not repeat
it for cleaner exposition. �

Now we summarize the above lemmas in the way we wish to apply them.

Corollary 2. Let T ⊂ P(V) and r ≥ 4. The following statements are true with

probability ≥ 1 − poly(n,r,|T |r)
|S | :

1. Let t ∈ T be , then with high probability Ω(t)|Wi
is a well defined projective

form i.e. is non-zero.

2. For every independent t1, . . . , ts ∈ T with s ≤ r, Ω(t1)|Wj
, . . . ,Ω(ts)|Wj

are

independent.

3. For every independent t1, . . . , ts ∈ T with s ≤ 3, Ω(t1)|Wr−1
, . . . ,Ω(ts)|Wr−1

are independent.

Proof. For Part 1 we use Lemma 23 given in this appendix. For part 2 extend the set
{t1, . . . , ts} of forms to an independent set of size r inside T and then use Lemma
24. Part 3 follows by Lemma 25 above. We want all three to be true and so we add
their failure probabilities i.e. take a union bound over the bad cases. �

In our application |S |>> Ω(poly(n,r, |T |r)) and so we will assume that the above
corollary holds deterministically for the set T .

64

A p p e n d i x B

BRILL’S EQUATIONS - CHARACTERIZING POLYNOMIALS
WHICH ARE PRODUCT OF LINEAR FORMS

Let f (x̄) ∈ C[x̄] be a polynomial of degree d in variables x̄ = (x1, . . . , xn) such that
f (x̄) factors into a product of linear forms. These are called totally decomposable
polynomials. In this chapter we will give a characterization for the coefficients of
f .

This has been well studied in mathematics literature. The basic idea is to construct
a family of polynomials in many variables which vanish exactly at the coefficients
of totally decomposable polynomials. A clean mathematical construction is given
by Brill’s Equations given in Chapter 4, [9].

However we still need to calculate the time complexity. But before that we define
some operations on polynomials and calculate the time taken by the operation along
with the size of the output. Note that all polynomials are over the field of complex
numbers C and all computations are also done for the complex polynomial rings.

Let x̄ = (x1, . . . , xr) and ȳ = (y1, . . . , yr) be variables. For any homogeneous
polynomial f (x̄) of degree d, define

f x̄k (x̄, ȳ) =
(d − k)!

d!
(
∑

i

xi
∂

∂yi
)k f (ȳ)

Expanding (
∑
i

xi
∂
∂yi

)k as a polynomial of differentials takes O((r+k)r) time and has

the same order of terms in it. f (ȳ) has O((r + k)r) terms. Taking partial derivatives
of each term takes constant time and therefore overall computing (

∑
i

xi
∂
∂yi

)k f (ȳ)

takes O((r +k)2r) time. Also the expression obtained will have at most O((r +k)2r)
terms. Computing the external factor takes poly(d) time and so for an arbitrary
f (x̄) computing all f x̄k (x̄, ȳ) for 0 ≤ k ≤ d takes poly((r + d)r) time and has
poly((r + d)r) terms in it. From Section E., Chapter 4 in [9] we also know that
f x̄k (x̄, ȳ) is a bi-homogeneous form of degree k in x̄ and degree d − k in ȳ. It is
called the kth polar of f .

65

Next we define an � operation between homogeneous forms. Let f (x̄) and g(x̄) be
homogeneous polynomials of degrees d, define

(f � g)(x̄, ȳ) =
1

d + 1

d∑
k=0

(−1)k
(
d
k

)
f ȳk (ȳ, x̄)gx̄k (x̄, ȳ)

From the discussion above we know that computing f ȳk (ȳ, x̄)gx̄k (x̄, ȳ) takes poly((r+

d)r) time and it is obvious that this product has poly((r + d)r) terms. Rest of the
operations take poly(d) time and therefore computing (f �g)(x̄, ȳ) takes poly((r +

d)r) time and has poly((r + d)r) terms. From the discussion before we may also
easily conclude that the degrees of x̄, ȳ in (f � g)(x̄, ȳ) are poly(d). The form
(f � g) is called the vertical(Young) product of f and g. See Section G., Chapter 4
in [9].

Next for k ∈ {0, . . . ,d} and z̄ = (z1, . . . , zr) consider homogeneous forms:

ek =

(
d
k

)
f x̄k (x̄, z̄) f (z̄)k−1

Following arguments from above, it’s straightforward to see that computing ek takes
poly((r + d)r) time and has poly((r + d)r) terms. Each ek is a homogeneous form
in x̄, z̄ and f . It has degree k in x̄, degree k (d − 1) in z, and k in coefficients of f .
See Section H. of Chapter 4 in [9]. Let’s define the following function of x̄ with
parameters f , z

P f ,z (x̄) = (−1)dd
∑

i1+2i2+...+rir=d

(−1)(i1+...+ir) (i1 + . . . + ir − 1)!
i1! . . . ir!

ei1
1 . . . e

ir
r

Note that {(i1, . . . , ir) : i1 +2i2 + . . .+rir = d} ⊆ {(i1, . . . , ir) : i1 + i2 + . . .+ ir ≤ d}

and therefore the number of additions in the above summand is O(poly(r + d)r).
For every fixed (i1, . . . , ir) computing the coefficient (i1+...+ir−1)!

i1!...ir ! takes O(poly((r +

d)r)) time using multinomial coefficients. Each ek takes poly((r + d)r) time to
compute. There are r of them in each summand and so overall we take O(poly((r +

d)r)) time. A similar argument shows that number of terms in this polynomial is
O(poly((r + d)r)). Some more analysis shows that P f ,z (x̄) is a form of degree d

in x̄ whose coefficients are homogeneous polynomials of degree d in f and degree
d(d − 1) in z̄. Let

B f (x̄, ȳ, z̄) = (f � P f ,z)(x̄, ȳ)

66

By the arguments given above calculating this form also takes time poly((r + d)r)
and it has poly((r + d)r) terms. This is a homogeneous form in (x̄, ȳ, z̄) of multi-
degree (d,d,d(d − 1)) and it’s coefficients are forms of degree (d + 1) in the coef-
ficients of f . See Section H., Chapter 4 in [9]. So in time poly((r + d)r) we can
compute B f (x̄, ȳ, z̄) explicitly.

Now we arrive at the main theorem

Theorem 9 (Brill’s Equation, See 4.H, [9]). A form f (x̄) is a product of linear

forms if and only if the polynomial B f (x̄, ȳ, z̄) is identically 0.

We argued above that computing B f (x̄, ȳ, z̄) takes O(poly((r + d)r)) time. It’s
degrees in x̄, ȳ, z̄ are all poly(d) and so the number of coefficients when written as
a polynomial over the 3r variables

(x1, . . . , xr , y1, . . . , yr , z1, . . . , zr) is poly((r + d)r). We mentioned that each coeffi-
cient is a polynomial of degree (d + 1) in the coefficients of f . Therefore we have
the following corollary.

Corollary 3. Let

I := {(α1, . . . ,αn) : ∀i : αi ≥ 0,
∑
i∈[r]

αi = d}

be the set capturing the indices of all possible monomials of degree exactly d in r

variables (x1, . . . , xr). Let fa(y1, . . . , yr) =
∑
α∈I aαyα denote an arbitrary homo-

geneous polynomial. The coefficient vector then becomes a = (aα)α∈I . Then there

exists an explicit set of polynomials F1(a), . . . ,Fm(a) on poly((r + d)r) variables

(a = (aα)α∈I), with m = poly((r + d)r), deg(Fi) ≤ poly(d) such that for any

particular value of a, the corresponding polynomial fa(y) ∈ ΠΣd
F[ȳ] if and only

if F1(a) = . . . = Fm(a) = 0. Also this set {Fi, i ∈ [m]} can be computed in time

poly((r + d)r) time.

Proof. Clear from the theorem and discussion above.

Note that in our application r = O(1) and so poly((d + r)r) = poly(d).

67

A p p e n d i x C

BLACK-BOX FACTORING OF POLYNOMIALS

In this section we will develop algorithms to factorize black-boxes of multivari-
ate polynomials and extract all the linear factors explicitly. We also compute the
product of all non-linear irreducible factors.

Consider variables x̄ = (x1, . . . , xn) and field F. Let V be the vector space of linear
forms in F[x̄] and P(V) be the corresponding projective space. Let f (x̄) ∈ F[x̄] be
a degree d polynomial. Factorize f (x̄) to get the following form:

f (x̄) = l1(x̄) . . . lt (x̄)Res(f)(x̄). (C.1)

– Every li (x̄) is an linear form.

– The polynomial Res(f)(x̄) called "residual factors" has no linear factors.

– Define the multi-set F = {[l1], . . . , [lt]} ⊂ P(V).

Goals for this chapter. Given black-box access to f (x̄), we will discuss efficient
(randomized) algorithms to recover:

– The set F explicitly, i.e. all [li] explicitly.

– Black-box access to polynomial Res(f)(x̄).

Black-box access to factors. We first compute black-boxes for all irreducible
factors of f (x̄). An algorithm to do the same was given by Kaltofen and Trager
in [17]. Even though their algorithm was meant for characteristic zero fields, with
minor changes it works over all finite fields. Details can be found in lecture 9
from MIT’s algebra and computation course lecture notes [30]. A short and sweet
description fulfilling all important details is given in remark 11.5.66 in [24].

The essence of their algorithm is an "effective" Hilbert’s irreducibility theorem (see
theorem 11), which says that an irreducible polynomial continues to be irreducible
when restricted to certain random 3− dimensional subspaces. This has been dis-
cussed in great detail in section 4 in [16]. In particular the result can be found in

68

corollary 2 of section 4 in [16]. The theorem is sometimes also called "quantitative

Bertini theorem". See Theorem 11.5.33 in [24] for details and further references.

Here is the black-box factorization theorem:

Theorem 10 (Black-box factorization, Section 2 in [17], lecture 9 in [30], remark
11.5.66 in [24]). Let f (x̄) ∈ F[x̄] be an n−variate, degree d polynomial. Assume

f (x̄) = h1(x̄)e1 . . . hk (x̄)ek , where {hi (x̄)}ki=1 are distinct irreducible polynomials

in F[x̄] and let e = (e1, . . . ,en) denote the tuple of exponents. Then there is a

randomized algorithm, that given black-box access to f (x̄) (and parameter n), runs

in time poly(d,n) and outputs a tuple of integers e = (e′1, . . . ,e
′
k) along with a

collection of black-boxes computing h′1, . . . h′k such that

Pr[e′ = e,∃γi ∈ F \ {0}, i ∈ [k] : ∀ā ∈ Fn,h′i (ā) = γihi (ā)] ≥ 1 −
poly(d)
|F|

Now we are ready to give [1]

69

BIBLIOGRAPHY

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
31:1–31:53. isbn: 978-3-95977-008-8. doi: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. url: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

70

PUBLISHED CONTENT AND CONTRIBUTIONS

[Include a bibliography of published articles or other material that are included as
part of the thesis. Describe your role with the each article and its contents. Citations
must include DOIs or publisher URLs if available electronically.

If you are incorporating any third-party material in the thesis, including works that
you have authored/co-authored but for which you have transferred copyright, you
must indicate that permission has been secured to use the material. For example:
“Fig. 2 reprinted with permission from the copyright holder, holder name”

Add the option iknowwhattodo to this environment to dismiss this message.]

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
31:1–31:53. isbn: 978-3-95977-008-8. doi: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. url: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

the algorithm. We state it in an informal way and leave the details for the reader to
verify. The algorithm is a very simple application of Theorem 10.

Algorithm

1. Using Theorem 10 obtain the tuple of numbers (e′1, . . . ,e
′
k) and the tuple of

black-boxes (h′1, . . . ,h
′
k).

2. Iterate over all irreducible factors (black-boxes) h′i and using O(n) queries
interpolate a linear form li = α0 + α1x1 + . . . + αnxn.

3. Then using the randomized black-box polynomial identity testing algorithm
(a.k.a schwartz zippel lemma) we check if hi − li is an identically zero poly-
nomial. This just involves checking h′i (ā) − li (ā) for ā chosen uniformly
randomly from a large subset S ⊂ F.

4. If yes, we add ei copies of the form [li] to our set F .

5. If no, we add ei copies of the black-box hi to another multi-set F ′.

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

71

6. At the end of the iteration, we define a black-box Res(f) =
∏

h∈F ′
h. This

black-box can be simulated by querying each of the black-boxes in F ′ and
multiplying the outputs.

7. Finally we return the set F and the black-box Res(f).

It’s trivial to see that the time complexity of this algorithm is poly(n,d).

As mentioned before the algorithm in [17] uses the effective Hilbert irreducibility
theorem. This theorem is also useful for us in this thesis and so we state it here.

Theorem 11 (Effective Hilbert irreducibility / Quantitative Bertini theorem). Let

F be a perfect field and g(x̄) ∈ F[x] be a degree d irreducible polynomial. Pick

tuples, a = (a2, . . . ,an), b = (b1, . . . ,bn), c = (c1, . . . ,cn) such that every ai,b j ,ck

is chosen uniformly randomly and independently from a set S ⊂ F. Consider the

bi-variate restriction

ĝ(X,Y) = g(X + b1Y + c1,a2X + b2Y + c2, . . . anX + bnY + cn)

Then

P[(a,b,c) ∈ Sn−1 × Sn × Sn : f̂ (X,Y) is irreducible] ≤
2d4

|S |

Proof. See corollary 2 in [16], remark 11.5.33 and remark 11.5.66 in [24], theorem
1.1 in [23].

72

A p p e n d i x D

PROOFS FROM CHAPTER IV

Lemma 26. The following are true :

1. gcd(R|Wi
,B|Wi

) = 1⇒ Sim(C|Wi
) = R|Wi

+ B|Wi
.

2. srank (C|Wi
) = min(r, srank (C)).

3. Res(C|Wi
) = Res(C)|Wi

with high probability.

Proof. We prove them one by one below:

1. Let R1,B1 be any linear factors of R,B respectively. By Part 1 and 3 of
Lemma 8 we know that [R1 |Wi

], [B1 |Wi
] are distinct forms. This implies that

R1 |Wi
,B1 |Wi

are LI further implying gcd(R|Wi
,B|Wi

) = 1. Sim(C|Wi
) = Sim(C)|Wi

follows from this directly.

2. srank (C|Wi
) ≤ srank (C) since the dimension clearly cannot increase on

restriction. srank (C) ≤ r since it is the dimension of a set of forms which
are projectivisations of linear forms in x1, . . . , xr−1, xi. This set has dimension
r . Thus srank (C|Wi

) ≤ min(r, srank (C)).

If s = min(srank (C),r) then there exists p1, . . . ,ps forms in P(R) ∪ P(B).
They also belong to I(P(R),P(B)), therefore by Parts 1 and 2 of Lemma
8, p1 |Wi

, . . . ,ps |Wi
are independent forms in P(R|Wi

) ∪ P(B|Wi
) giving s ≤

srank (C|Wi
) and we are done.

3. Consider any irreducible factor of Res(C). It is non-linear and so by effective
Hilbert irreducibility (see theorem 11 in appendix C) it remains non-linear
(actually irreducible) with high probability as long as r ≥ 3. There are at the
most d such factors and so by a union bound all of them remain non-linear
with high probability. This implies that Res(C)|Wi

is a product of non-linear
irreducibles dividing C(x̄)|Wi

and thus divides Res(C|Wi
). The other direction

is simpler. Note that Res(C|Wi
) divides C(x̄)|Wi

= Gcd(C)|Wi
Int(C)|Wi

Res(C)|Wi
.

The product Gcd(C)|Wi
Int(C)|Wi

only has linear factors and thus Res(C|Wi
)

divides Res(C)|Wi
.

73

�

Proof of Part 1 in Lemma 9 above also tells us that the multi-set P(R|Wi
),P(R|Wi

)
are the same as the multi-sets P(R)|Wi

,P(B)|Wi
. We will try to reconstruct multi-sets

containing them and then glue these reconstructions. But first we determine what
set to reconstruct. In Part 2 of Lemma 9 above if we assume r to be any constant
≥ R(3,F) + 2, we get that srank (C|Wi

) ≥ R(3,F) + 2. This enables us to use
the Structure Theorem for Factoring Forms of Res(C|Wi

). We use the shorthand
Pi = P (Res(C|Wi

)) for the factoring forms of Res(C|Wi
) .

Lemma 27. The following hold:

1. For every p ∈ P and i ∈ {r, . . . ,n}, p|Wi
∈ Pi.

2. For any pr ∈ Pr , there is at-most one pi ∈ Pi, i ∈ {r +1, . . . ,n} it can be glued

to.

Proof. 1. Let p = [l] ∈ P and assume l = α1x1 + . . . αnxn where αi , 0
and α j = 0 for all j < i. Recall ker (p) = {(x1, . . . , xn) ∈ Fn : xi =

−
n∑

j=i+1

α j

αi
x j }. By lemma 8 p|Wi

is defined for all i ∈ {r, . . . ,n}. We show that

p|Wi
is a factoring form for Res(C|Wi

) and therefore belongs to Pi. By lemma
9, Res(C|Wi

) = Res(C)|Wi
. Also note that ker (p|Wi

) = ker (p) ∩ Wi. This
gives us

Res(C|Wi
)|ker (p)∩Wi

= Res(C)|Wi |ker (p)∩Wi

= Res(C)|ker (p)∩Wi
= Res(C)|ker (p) |ker (p)∩Wi

.

Since Res(C|Wi
) has no linear factors, none of the expressions above is zero.

Also since p ∈ P, Res(C)|ker (p) is a non-zero product of linear forms ⇒
Res(C)|ker (p) |ker (p)∩Wi

is a non-zero product of linear forms ⇒ p|Wi
∈ Pi (by

the equation above).

2. Let pr ∈ Pr and assume there exists distinct pi,p′i ∈ Pi such that (pr ,pi) and
(pr ,p′i) are gluable. Clearly pi,p′i ∈ I(P(R|Wi

),P(B|Wi
)) (using theorem 5

since r is high enough and also using part 1 of lemma 9). It’s easy to see using
part 2 of lemma 8 that I(P(R|Wi

),P(B|Wi
)) ⊂ I(P(R),P(B))|Wi

. Now part 3
of lemma 8 implies that pi |Wr−1

,p′i |Wr−1
are distinct which is a contradiction to

both (pr ,pi) and (pr ,p′i) being gluable.

�

74

A p p e n d i x E

PROOFS FROM CHAPTER V

Lemma 28. The following holds:

1. If r1, . . . ,rk ∈ R, then for any p ∈ G(r1, . . . ,rk)

(f l (r1, . . . ,rk ,p)\ f l (r1, . . . ,rk)) and R′(r1, . . . ,rk)∪B intersect non-trivially.

2. If b1, . . . ,bk ∈ B, then for any p ∈ G(b1, . . . ,bk)

(f l (b1, . . . ,bk ,p)\ f l (b1, . . . ,bk)) and B′(b1, . . . ,bk)∪R intersect non-trivially.

3. R (r1, . . . ,rk) , φ ⇒ P(Int(C)) ⊂ G(r1, . . . ,rk). Similarly B(b1, . . . ,bk) ,
φ⇒ P(Int(C)) ⊂ G(b1, . . . ,bk).

4. Given independent points r1, . . . ,rk ∈ R (b1, . . . ,bk ∈ B resp.), r ∈ R

(b ∈ B resp.) the multi-set P(Gcd(C)Int(C)) and the set P, there exists

efficient algorithms to compute the multi-set P(M2) \ G(r1, . . . ,rk) (P(M1) \
G(b1, . . . ,bk) resp.) and multi-sets of linesL(r,G(r1, . . . ,rk)) (L(b,G(b1, . . . ,bk))
resp.).

Proof. 1. Let p ∈ G(r1, . . . ,rk). By definition of G(r1, . . . ,rk) there exists at
least two distinct points p1,p2 from P on f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk).
If any of p1,p2 belongs to B we are done. If any of them belongs to P \
R ∪ B, then since k ≥ R(3,F) + 2 by lemma 5 there exists i ∈ [k] such that
f l (ri,p) contains a point b from B. Clearly b then belongs f l (r1, . . . ,rk ,p) \
f l (r1, . . . ,rk) and we are done. So the only case left is when both p1,p2 ∈ R.
If any of p1,p2 (say p1) belongs to R (r1, . . . ,rk) then p2 < f l (r1, . . . ,rk ,p1) \
f l (r1, . . . ,rk) = f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk) (by definition of points in
R (r1, . . . ,rk)). So we arrive at a contradiction and so p1 either belongs to B
or R′(r1, . . . ,rk). Hence proved.

2. This is identical to the above proof.

3. Consider rk+1 ∈ R (r1, . . . ,rk). By definition rk+1 < f l (r1, . . . ,rk) and
f l (r1, . . . ,rk ,rk+1) ∩ (R ∪ B) ⊂ f l (r1, . . . ,rk) ∪ {rk+1}. Consider any point

75

p ∈ P(Int(C)). By restricting to ker (p) and following an argument we’ve
seen multiple times before, there exists bk+1 ∈ B such that bk+1 ∈ f l (rk+1,p).
If p ∈ f l (r1, . . . ,rk), then this implies that bk+1 ∈ f l (r1, . . . ,rk ,rk+1) \
f l (r1, . . . ,rk) which is a contradiction since no point from B lies on the set
f l (r1, . . . ,rk ,rk+1) \ f l (r1, . . . ,rk). Next since k ≥ 3, by the above argument
there exist three points b1,b2,b3 ∈ B such that bi ∈ f l (p,ri), i ∈ [3]. Also
note that all p , ri and p , bi for i ∈ [3] (by lemma 4). We claim that at least
two of the bi’s are different, otherwise the set {b1,b2,b3,p} has dimension
≤ 2. Let p,q (or just p) be a basis for this set. This is not possible since the
three dimensional flat, f l (r1,r2,r3) ⊂ f l (p,q) (as ri ∈ f l (p,bi), i ∈ [3]). So
at least two bi’s are distinct. Also the bi’s don’t lie on f l (r1, . . . ,rk) since p

does not. Therefore we found two distinct points from P on f l (r1, . . . ,rk ,p)\
f l (r1, . . . ,rk) for every p ∈ P(Int(C)) ⇒ P(Int(C)) ⊂ G(r1, . . . ,rk). The
other part is identical.

4. Iterate through every point p ∈ P(Gcd(C)Int(C)). If p < f l (r1, . . . ,rk),
by iterating through P check whether the set f l (r1, . . . ,rk ,p) \ f l (r1, . . . ,rk)
contains at most one distinct points from P. This can be checked by simple
linear algebra. This computes the multi-set P(M2) \ G(r1, . . . ,rk).

Recall that using algorithm 4 we already know how to compute the lines
L(r,P(M2)). Start with L(r,G(r1, . . . ,rk) ∪ B) = L(r,P(M2)). Compute
the multi-set L(r,P(M2)) \ (L(r,P(M2) \ G(r1, . . . ,rk))). This computes the
required multi-set of lines L(r,G(r1, . . . ,rk) ∪ B).

�

Lemma 29. The following hold for all independent r1, . . . ,rk ∈ R.

1. R (r1, . . . ,rk) ⊂ S(r1, . . . ,rk) ⊂ P(R).

2. B(r1, . . . ,rk) ⊂ S(r1, . . . ,rk) ⊂ P(B).

3. Given r1, . . . ,rk (b1, . . . ,bk resp.), the set P, multi-set P(Gcd(C)Int(C))
and black-box BRes, there exist efficient algorithms to compute S(r1, . . . ,rk)
(S(b1, . . . ,bk) resp.).

Proof. 1. Let rk+1 ∈ R (r1, . . . ,rk). This implies that rk+1 < f l (r1, . . . ,rk) and
f l (r1, . . . ,rk ,rk+1) ∩ (R ∪ B) ⊂ f l (r1, . . . ,rk) ∪ {rk+1}. Assume rk+1 <

S(r1, . . . ,rk) i.e. on one of the lines say f l (r1,rk+1) there is a point p ∈

76

G(r1, . . . ,rk)∪B. p cannot be inB by the choice of rk+1. So p ∈ G(r1, . . . ,rk).
By lemma 18 there exists p′ ∈ R′(r1, . . . ,rk) ∪ B lying on f l (r1, . . . ,p) \
f l (r1, . . . ,rk). This implies that p′ ∈ f l (r1, . . . ,rk ,rk+1) \ f l (r1, . . . ,rk).
Since p′ ∈ R (r1, . . . ,rk)∪B ⊂ R ∪B we conclude that p′ = rk+1 but that is a
contradiction since R′(r1, . . . ,rk),R (r1, . . . ,rk) were complements inside R.

For the other inclusion, let p ∈ S(r1, . . . ,rk). Then the lines f l (p,ri) do
not intersect G(r1, . . . ,rk) ∪ B for any i. By definition p ∈ P. p < B by
definition. If p ∈ P \ (R ∪ B) then by matching lemma (lemma 5) there
exists ri, i ∈ [k] such that b ∈ f l (ri,p) a contradiction to the choice of p.
Thus p ∈ R. Hence proved.

2. Exactly identical to the proof above.

3. First compute the multi-set of lines L(r,G(r1, . . . ,rk) ∪ B) using the algo-
rithm given in the last part of lemma 18. Iterate through p ∈ P and add
it to the set S(r1, . . . ,rk) if none of the lines f l (r,p) belongs to the set
L(r,G(r1, . . . ,rk) ∪ B).

�

Lemma 30. One of the following always holds:

1. ∃ r1, . . . ,rk ∈ R : |R (r1, . . . ,rk) |≥ v(δ) |R |, or

2. ∃ b1, . . . ,bk ∈ R : |B(b1, . . . ,bk) |≥ v(δ) |R |.

Proof. The proof is divided into two cases:

Case I - |B|≤ 4δ |R | :

Since dim(R) ≥ 2Ck
δ + k > Ck

δ , we know by Corollary 4, there exist k linearly
independent points r1, . . . ,rk ∈ R such that the set Y = {r ∈ R : f l (r1, . . . ,rk ,r) ∩
R ⊂ f l (r1, . . . ,rk) ∪ {r }} has size ≥ (1 − δ) |R |. That is there are a large number
of points in R forming an ordinary flat with r1, . . . ,rk inside R. From this set
we throw away all those r’s whose flat with r1, . . . ,rk contains a point from B
outside f l (r1, . . . ,rk). The remaining r’s are such that their flats with {r1, . . . ,rk }

are ordinary in R ∪ B. The left over set is exactly the set R (r1, . . . ,rk). We would
have thrown away ≤ |B| points overall and therefore the set the left over set i.e.
R(r1, . . . ,rk) has size ≥ |Y|−|B |≥ (1−δ) |R |−4δ |R |= (1−5δ) |R |≥ (3δ−4δ2) |R |=
v(δ) |R | (note that when δ < 1

8 , 1 − 5δ ≥ 3δ − 4δ2).

77

Case II - 4δ |R |≤ |B|≤ |R| : In this case we will use Corollary 4 again but with 2k

points. We know that dim(R ∪ B) ≥ 2Ck
δ + k > 2Ck

δ and therefore there are 2k

linearly independent points p1, . . . ,p2k ∈ R ∪B such that the setY = {p ∈ R ∪B :
f l (p1, . . . ,p2k ,p) ∩ R ∪ B ⊂ f l (p1, . . . ,p2k) ∪ {p}} has size ≥ (1 − δ) |R ∪ B|=
(1 − δ)(|R |+|B|) since R,B are disjoint. Out of the 2k points, by pigeon hole
principle at least k, say p1, . . . ,pk belong to R or B. If p1, . . . ,pk ∈ R, we consider
the set R (p1, . . . ,pk) = {r ∈ R : f l (p1, . . . ,pk ,r) ∩ R ∪ B ⊂ f l (p1, . . . ,pk)}. This
set clearly contains the setY\B and thus it has size ≥ |Y|−|B|= (1−δ)(|R |+|B|)−
|B|≥ (1 − δ)(1 + 4δ) |R |−|R| (since 4δ |R |≤ |B|≤ |R|). So we get that the size of
the desired set is ≥ ((1 − δ)(1 + 4δ) − 1) |R |= (3δ − 4δ2) |R |= v(δ) |R |. When
p1, . . . ,pk ∈ B, we use the same approach to conclude that the set B(p1, . . . ,pk) =

{b ∈ B : sp{p1, . . . ,pk ,b}∩R∪B ⊂ sp{p1, . . . ,pk }∪{b}} contains the setY\R and
therefore has size ≥ |Y|−|R|≥ (1− δ)(|R |+|B|) − |R|≥ ((1− δ)(1 + 4δ) − 1) |R |=
v(δ) |R |. So we know that |B(b1, . . . ,bk) |≥ v(δ) |R |.

Clearly one of the two cases will hold and we get the desired result.

�

Lemma 31. Let v(δ) = 3δ − 4δ2. Then for δ ∈ (0, 1
8),

(2 − v(δ))
v(δ)

≤
1 − δ
δ

.

Proof. Note that
(2 − v(δ))

v(δ)
=

2 − 3δ + 4δ2

3δ − 4δ2 .

We know that δ < 1
8 and so 4δ2 < δ ⇒ 2δ < 3δ − 4δ2 ⇒

2δ − 3δ2 + 4δ3 < 3δ − 4δ2 − 3δ2 + 4δ3 ⇒

δ(2 − 3δ + 4δ2) < (1 − δ)(3δ − 4δ2).

We know that 3δ − 4δ2 > 0 and δ > 0 as δ ∈ (0, 1
8). Therefore we see that

(2 − v(δ))
v(δ)

=
2 − 3δ + 4δ2

3δ − 4δ2 <
1 − δ
δ

.

�

78

A p p e n d i x F

TOOLS FROM INCIDENCE GEOMETRY

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem
from [3] and [6]. In this subsection we do preparation for the same. The results in
[3] and [6] are given for linear and affine spaces.

It is well known that all incidence results continue to hold if we consider projective
spaces instead of affine or vector spaces. In this chapter we just state the results as
they were given in [3], but when we use them we use the projective space analogue.
We encourage the reader to show equivalence of the two results.

Our main application will also involve a corollary we prove towards the end of this
subsection.

Definition 29 ([3]). Let S be a set of n distinct points in complex space Cr (or
projective space P(Cr)). A k- flat is ordinary if its intersection with S is contained
in the union of a (k − 1) flat and a single point.

Definition 30 ([3]). Let S be a set of n distinct points in Cr . S is called a δ − SG?
k

configuration if for every independent s1, . . . , sk ∈ S there are at least δn points
t ∈ S such that either t ∈ f l ({s1, . . . , sk }) or the k−flat f l ({s1, . . . , sk , t}) contains a
point outside f l ({s1, . . . , sk }) ∪ {t}.

Theorem 12 ([3]). Let S be a δ − SGk configuration then dim(S) ≤ O((k
δ)2).

This bound on the dimension of S was further improved by Dvir et. al. in [6]. The
latest version now states

Theorem 13 ([6]). Let S be a δ − SG?
k configuration then dim(S) ≤ α k

δ for some

α > 0.

Corollary 4. Let dim(S) > α k
δ (for C in above theorem) then S is not a δ − SG?

k

configuration i.e. there exists a set of independent points {s1, . . . , sk } and ≥ (1−δ)n

points t such that f l ({s1, . . . , sk , t}) is an ordinary k − f lat. That is:

• t < f l ({s1, . . . , sk })

• f l ({s1, . . . , sk , t}) ∩ S ⊂ f l ({s1, . . . , sk }) ∪ {t}.

79

Lemma 32 (Bi-chromatic semi-ordinary line). Let X and Y be disjoint finite sets in

Cr satisfying the following conditions.

1. dim(Y) > α
δ .

2. |Y |≤ c|X | with c < 1−δ
δ .

Then there exists a line l such that |l ∩ Y |= 1 and |l ∩ X |≥ 1

Proof. We consider two cases:

Case 1 : c |X |≥ |Y |≥ |X |

Since dim(Y) > C1, using the corollary above for S = X ∪ Y, k = 1 we can get
a point s1 ∈ X ∪ Y for which there exist (1 − δ)(|X |+|Y |) points t in X ∪ Y such
that t < f l{s1} and f l{s1, t} is elementary. If s1 ∈ X then (1 − δ)(|X |+|Y |) − |X |≥
(1 − 2δ) |X |> 0 of these flats intersect Y and thus we get such a line l. If s1 ∈ Y

then (1 − δ)(|X |+|Y |) − |Y |≥ ((1 − δ)(1
c + 1) − 1) |Y |> 0 of these flats intersect X

giving us the required line l with |l ∩ X |= 1 and |l ∩ Y |= 1.

Case 2: |Y |≤ |X |

Now choose a subset X1 ⊆ X such that |X1 |= |Y |. Now using the same argument
as above for S = X1 ∪ Y there is a point s1 ∈ X1 ∪ Y such that (1 − δ)(|X1 |+|Y |) =

2(1 − δ) |Y |= 2(1 − δ) |X1 | flats through it are elementary in X1 ∪ Y . If s1 ∈ Y

(1 − 2δ) |Y |> 0 of these flats intersect X1. If s1 ∈ X1, (1 − 2δ) |X1 |> 0 of these flats
intersect Y . In both these above possibilities the flat intersects Y and X1 in exactly
one point each. But it may contain more points from X \ X1 so we can find a line l

such that |l ∩ Y |= 1 and |l ∩ X |≥ 1.

	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Previous Work and Connections
	Allowing Randomization
	Preliminaries
	A quick introduction to arithmetic circuits
	Homogenization of (2) circuits

	Some Definitions, Main Tools and Techniques
	Introduction
	Uniqueness of (2) Structure
	Factoring forms of a polynomial
	 Good forms and reconstructed multi-set

	Main result and overview
	Overview of the algorithm

	Step One : Reconstruct the I^st Layer of C
	Introduction
	Random Transformation
	Restricting the input polynomial
	Computing the sets Metapost_i.
	Gluing Metapost_i's to compute Metapost

	Step Two : Reconstruct Layer II of C
	Introduction
	Lines connecting forms in P(R) (P(B) resp.) to P(M_2)(P(M_1) resp.)
	Termination Case : Reconstructing one of P(M_1),P(M_2) does the job
	One of the multi-sets P(R),P(B) is low dimensional
	Both multi-sets P(R),P(B) are high dimensional

	Bibliography
	Random Transformation and Restrictions
	Brill's Equations - Characterizing polynomials which are product of linear forms
	Black-box Factoring of Polynomials
	Published Content and Contributions
	Proofs from Chapter IV
	Proofs from Chapter V
	Tools from Incidence Geometry
	Consent Form

