Black-box reconstruction of depth three circuits with top
fan-in two

Thesis by
Gaurav Sinha

In Partial Fulfillment of the Requirements for the
degree of
Ph.D.

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2016
Defended May 25, 2016

© 2016

Gaurav Sinha
ORCID: orcid.org/0000-0002-3590-9543

All rights reserved

11

11

ACKNOWLEDGEMENTS

I have been very lucky to receive guidance, advice, friendship, love and support
from a lot of people over the course of my Ph.D.. I will try my best to thank some

of them here and would also like to apologize to the people I miss.

First of all, I wish to thank my advisor Prof. Eric Rains for being a wonderful
mentor. He was always open and willing to discussions and has played a major role
in the way I approach problems. It was very thrilling to see him connect different

areas and suggest completely fresh approaches whenever I was stuck.

My sincere thanks to Prof. Leonard Schulman who is a member of my thesis com-
mittee. Even though my interaction with him happened towards the end of my
Ph.D., we spent a lot of time going over my thesis and discussing all ideas in detail.
His suggestions have helped me improve my presentation as well as provided me
new insights into improving the result. Some of the questions he asked me have

become a part of my future research goals.

I’m grateful to Prof. Chris Umans, who has been both a great research role model
and an amazing teacher to me. Before coming to caltech I had some initial in-
troduction to his approach towards matrix multiplication algorithms and was very
fascinated by it. I met him several times during my Ph.D. to discuss various aspects

of the problems I worked upon.

I would like to thank Prof. Nets Katz who has been a great inspiration to me. During
my second year, I did a reading course with him on the Kakeya conjecture to which
he himself has contributed a lot. His class on special topics in analysis is one of my

favorite classes at CalTech.

I am extremely thankful to Neeraj Kayal for introducing me to this problem. Sukhada
Fadnavis, Neeraj Kayal and myself started working on the problem together during
my summer internship at Microsoft Research India Labs in 2011. We solved the
first important case together. I'm grateful to them for all helpful discussions, con-

stant guidance and encouragement.

I would like to thank my friends at CalTech. Without them CalTech would not have
been such an enjoyable experience. My discussions about science, politics, movies
and everything else with Vikas and Vinamra are some of my most fond memories.

Vikas has always been very motivating and helpful during the ups and downs of my

v
stay. I miss our walks around campus. I would also like to thank Prachi for helping

me organize this thesis. Special thanks to all my friends including Utkarsh, Sisir,

Karan, Manpreet.

Last but not the least, I would like to thank my parents, brother and sister. It is their
hard work, love and support that has helped me become a better researcher and a
better person. Their unconditional love is what keeps me going and I hope to make

all of them proud.

ABSTRACT

Reconstruction of arithmetic circuits has been heavily studied in the past few years
and has connections to proving lower bounds and deterministic identity testing. In
this thesis we present a polynomial time randomized algorithm for reconstructing
2I1X(2) circuits over characteristic zero fields F i.e. depth—3 circuits with fan-in 2

at the top addition gate and having coefficients from a field of characteristic zero.

The algorithm needs only a black-box query access to the polynomial f € F[xy,...,x,]
of degree d, computable by a ZI1X(2) circuit C. In addition, we assume that the
"simple rank" of this polynomial (essential number of variables after removing the
gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm
runs in time polynomial in n and d and with high probability returns an equivalent
211X (2) circuit.

The problem of reconstructing XIIX(2) circuits over finite fields was first proposed
by Shpilka [27]]. The generalization to ZIIX(k) circuits, k = O(1) (over finite
fields) was addressed by Karnin and Shpilka in [[18]. The techniques in these previ-
ous involve iterating over all objects of certain kinds over the ambient field and thus
the running time depends on the size of the field F. Their reconstruction algorithm
uses lower bounds on the lengths of linear locally decodable codes with 2 queries.

In our setting, such ideas immediately pose a problem and we need new techniques.

Our main techniques are based on the use of quantitative Sylvester Gallai theorems
from the work of Barak et.al. [3] to find a small collection of "nice” subspaces to
project onto. The heart of this work lies in subtle applications of the quantitative
Sylvester Gallai theorems to prove why projections w.r.t. the "nice"” subspaces can
be “glued”. We also use Brill’s equations from [9] to construct a small set of can-
didate linear forms (containing linear forms from both gates). Another important
technique which comes very handy is the polynomial time randomized algorithm

for factoring multivariate polynomials given by Kaltofen [[17].

vi

PUBLISHED MATERIAL IN THIS THESIS

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016,
31:1-31:53. 1sBN: 978-3-95977-008-8. por: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. urL: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

Vil

TABLE OF CONTENTS
[Acknowledgements|o oL Lo 111
BABSTAC o o o e v
(fableof Contents| vii
[Chapter I: Introduction| 1
[T _Previous Work and Connectionsl 4
(1.2 Allowing Randomization| 4
[L3 Preliminaries 5
(1.4 A quick introduction to arithmetic circuits| 9
(1.5 Homogenization of 211%(2) circunts|. 12
[Chapter II: Some Definitions, Main Tools and Techniques|. 14
2.1 Introductionl 14
[2.2 Uniqueness of XI1X(2) Structure| 16
[2.3 Factoring forms of a polynomial{. 17
2.4 Good forms and reconstructed multi-sett 20
(Chapter III: Main result and overview| 24
3.1 Overview of the algorithm | 24
(Chapter IV: Step One : Reconstruct the I Layerof C| 28
BI Introduction] 28
4.2 Random Transformation 30
.3 Restricting the input polynomual| 32
4.4 Computing thesets P;. | L. 33
4.5 Gluing P’stocompute P|o 35
[Chapter V: Step Two : Reconstruct Layer llof C| 39
0.1 Introduction| 39

[5.2 Lines connecting forms in P(R) (P(B) resp.) to P(M>)(P(M;) resp.) | 40
[5.3 Termination Case : Reconstructing one of P(M;),P(M;) does the job| 42

[5.4 One of the multi-sets P(R),P(B) 1s low dimensional| 45

[5.5 Both multi-sets P(R),P(B) are high dimensionalf 48
Bibliography| 56
[Appendix A: Random Transformation and Restrictions| 60
[Appendix B: Brill’s Equations - Characterizing polynomials which are prod- |
[uctoflinearforms|. L o 64
[Appendix C: Black-box Factoring of Polynomuals| 67
[Published Content and Contributionsl 70
[Appendix D: Proots from Chapter IV|. 72
[Appendix E: Proofs from Chapter V| 74
[Appendix F: Tools from Incidence Geometry| 78

[Appendix G: Consent Form| 0L, 80

Chapter 1

INTRODUCTION

Recall the interpolation problem which requires finding coefficients of a polynomial
such that a number (possibly large) of point evaluations of the polynomial have been

given.

Recall 1 (Interpolation Problem). Let A = {1 = (A1,...,4,) : A1 +...+ 4, <d}
be an indexing set. For any polynomial f(x) € F[x] of degree d in variables X =

(x1,...,x,) over the field F, we wish to compute coefficients c, such that
f@ =) ext
AEA
where x* denotes the monomial xf b x,/}”.

We would want to solve this problem with as few evaluations as possible. Thank-
fully there are tight lower bounds which are also easy to prove. For example to
interpolate a univariate polynomial of degree d we need at least d + 1 evaluations
(folklore). One would also want to develop general algorithms to actually perform
the task of computing the coefficients. The method of Lagrange interpolation is one

such popular algorithm (see chapter 3 in [15]).

We consider a more general setup. Suppose the given polynomial has a special
representation. Can we develop algorithms to reconstruct the polynomial in the
desired representation. For example, if our polynomial is a product of linear forms
we might want to compute these linear forms by just using evaluations at some set

of points.

Arithmetic circuits are the most natural choice when one wants to talk about repre-
sentations of polynomials. In the language of arithmetic circuits, the interpolation
problem translates to finding an appropriate (generally most succinct) circuit by
just using evaluations of the polynomial. In the reverse direction, they also provide

efficient ways to evaluate the polynomial.

Informally, an arithmetic circuit is a weighted directed acyclic graph whose leaves
will denote variables and constants, internal nodes compute either the product or

linear combinations of their children and the root node(s) compute the required

2

polynomial. Weight of every edge is an element of the field and gets multiplied
to the output of the source vertex for the edge. We give the formal definition of

arithmetic circuits in section [[L4

The last few years have seen significant progress towards interesting problems deal-
ing with arithmetic circuits. Some of these problems include deterministic polyno-
mial identity testing, reconstruction of circuits and recently lower bounds for arith-

metic circuits. There has also been work connecting these three different aspects.

In this thesis, we will primarily be concerned with the reconstruction problem. Even
though it’s connections to identity testing and lower bounds are very exciting, the
problem in itself has drawn a lot of attention because of elegant techniques and

connections to learning theory.

The strongest version of the problem requires that for any f € F[xy,...,x,] with
black-box(query) access given one wants to construct (roughly) most succinct rep-
resentation i.e. the smallest possible arithmetic circuit computing the polynomial.
This general problem appears to be very hard. Most of the work done has dealt with
some special type of polynomials i.e. the ones which exhibit constant depth circuits

with alternating addition and multiplication gates.

Our result adds to this by looking at polynomials computed by circuits of this type
(alternating addition/multiplication gates but of depth 3). Our circuits will have
variables at the leaves, operations (+,X) at the internal gates and scalars at the
edges. We also assume that the top gate(root) has only two children and the "simple
rank" of this polynomial (essential number of variables after removing gcd of the
two multiplication gates at the middle layer) is bigger than a constant. The bottom
most layer has addition gates and so computes linear forms, the middle layer then

multiplies these linear forms together and the top layer adds two such products.

In this work, we assume only homogeneous computation, that is all polynomials
computed at all internal nodes will be homogeneous polynomials. However, we
would also like to remark that we can simulate a depth 3 inhomogeneous polyno-
mial by another depth 3 homogeneous polynomial. For reconstruction purposes,
there is no difference between the two, and so we can assume we are reconstructing

a homogeneous polynomial. We discuss this in more detail in section[I.5]

Given homogeneity, our circuit computes a polynomial of the following form :

C(X) = Mi(X) + My (X)

3

Here, M| and M, are products of equal number of linear forms. Note that we can

further factorize and pull out the gcd of M| and M,.
C(x) = Ged(C)(R+ B)

where gcd(R,B) = 1.

Our condition about the essential number of variables (after removing gcd from the

multiplication gates) is called "simple rank" of the polynomial and is defined as

srank(C) = dim(sp{ linear forms [dividing R, B})

When the underlying field F is of characteristic zero (Q,R or C for simplicity), we
give an efficient randomized algorithm for reconstructing the circuit representation
of such polynomials i.e. finding the two polynomials M, M,. Formally our main

theorem reads :

Theorem 1. Let C be a homogeneous XI1X(2) circuit computing a degree d poly-
nomial C(Xx) in n variables x1,. . .,x,. Assume that black-box access to C has been
given (along with parameters n,d). We give a randomized algorithm that runs in

time poly(n,d) and with probability 1 — o(1) outputs the following:

o When srank(C) = Q(1), the output is a ZI1X(2) circuit computing C(X).

As per our knowledge this is the first algorithm that efficiently reconstructs such
circuits (over characteristic zero fields). Over finite fields, the same problem has
been considered by Shpilka in [27] and our method takes inspiration from their
work. They also generalized this finite field version to circuits with arbitrary (but
constant) top fan-in in [18]. However we need many new tools and techniques as

their methods don’t generalize at a lot of crucial steps. For eg:

e They iterate through linear forms in a finite field which we unfortunately

cannot do.

e They use lower bounds for locally decodable codes given in [8]] which again

does not work in our setup.

We resolve these issues by

4

¢ Constructing candidate linear forms by solving simultaneous polynomial equa-

tions obtained from brill’s equations (chapter 4, [9]).

e Using quantitative versions of the Sylvester Gallai theorems given in [3]] and
[6]. This new method enables us to construct nice subspaces, take projections

onto them and glue the projections back to recover the circuit representation.

1.1 Previous Work and Connections
Efficient reconstruction algorithms are known for some concrete class of circuits.

We list some here:

e Depth 2 ZII circuits (sparse polynomials) in [21]]
e Read-once arithmetic formulas in [28]]
e Non-commutative ABP’s [2]]

e YIIZ(2) circuits over finite fields in [27]], extended to "generalized" 211X (k)
circuits (over finite fields) with k£ = O(1) in [18]].

e Random multi-linear formulas in [[12]]
e Depth 4 (ZTIXIT) multi-linear circuits with top fan-in 2 in [[11]]

e Random arithmetic formulas in [[13]]

All of the above work introduced new ideas and techniques and have been greatly

appreciated.

1.2 Allowing Randomization

It’s easy to observe that a polynomial time deterministic reconstruction algorithm
for a circuit class C also implies a polynomial time deterministic identity testing
algorithm for the same class. The idea is pretty simple. If the reconstruction al-
gorithm outputs any non-trivial circuit then we can claim that the polynomial is
non-zero otherwise we say it is zero. Here is a way to see this. If the polynomial is
identically zero all our queries to the black-box give zero and so we cannot recon-
struct anything non-trivial. Conversely for a non-zero polynomial, the reconstruc-
tion algorithm sees at least one non zero evaluation. If not then it cannot reconstruct

a correct circuit since we get no non-trivial information from evaluations.

5

From the works [[1] and [14] it has been established that black-box identity test-
ing for certain circuit classes imply super-polynomial circuit lower bounds for an
explicit polynomial. Hence the general problem of deterministic reconstruction
cannot be easier than proving super-polynomial lower bounds. So one might first

try and relax the requirements and demand a randomized algorithm.

Another motivation to consider the probabilistic version comes from learning the-
ory. A fundamental question called the exact learning problem using membership
queries asks the following : Given oracle access to a boolean function, compute
a small description for it. This problem has attracted a lot of attention in the last
few decades. For e.g. in [20][10] and [19] a negative result stating that a class
of boolean circuits containing the trapdoor functions or pseudo-random functions
has no efficient learning algorithms. Among positive works [26], [4], [22] show
that when f has a small circuit (inside some restricted class) exact learning from

membership queries is possible.

Our problem is a close cousin as we are looking for exact learning algorithms for
arithmetic functions. Because of these connection with learning theory it makes

sense to also allow randomized algorithms for reconstruction.

1.3 Preliminaries
[n] denotes the set {1,2,...,n}. Throughout the paper we will work over a field F

of characteristic zero. The reader may assume it to be Q,R or C for convenience.

Let V be a finite dimensional F vector space and S C V, sp(S) will denote the linear

span of elements of S. dim(S) is the dimension of the subspace sp(S).
(x) will be used for the tuple (x1,...,x,).

For any set of polynomials S C F[x], we denote by V(S), the set of all complex

simultaneous solutions of polynomials in § (this set is called the variety of §), i.e.

V(S)={aeC: forall feS,f(a)=0}

LI will be the abbreviation for linearly independent and LD will be the abbreviation

for linearly dependent.

Notations - Projective spaces of linear forms
Let V denote the vector space of linear forms in variables x, and P(V) be the cor-

responding projective space. We will see a number of definitions, observations and

lemmas below which will be used throughout the thesis.

Definition 1 (Projectivization of a linear form). For a non-zero linear form [we

denote it’s projectivization as [/] € P(V)) which can be viewed as the set

[[] = sp(I) \ {0}.

So it is the one dimensional vector space generated / without the vector O (i.e. the
additive identity of V). This will also be our working definition for points in the
projective space i.e. for every point p in the projective space there exists / such that

p = [l]. Also if [,]’ are non-zero scalar multiples of each other then [/] = [/’].

Definition 2 (Projective linear forms). Points in the projective space P(V) (cor-
responding to the vector space of linear forms V) will be called projective linear

forms.

Note 1 (Sub projective spaces). Let W C V be a subspace and P(W) be the projec-
tive space of W then
P(W) c P(V).

We will often call P(W) as a sub projective space of P(V).

Definition 3 (Dependent and independent sets in P(V)). Consider points p1,...,px €
P(V). The points are called dependent if for any set of linearly dependent linear
forms l1,...,l; € V we have p; = [[;],i € [k]. It can be checked that this definition
is "well defined" i.e. if py,...,py are dependent then for all llf,i € [k] such that

pi = [I’] the linear forms //,. .. ,l;C are linearly dependent.

If the points are not dependent, they will be called independent.

Definition 4 (Dimension of a multi-set in P(V)). Let P be a finite multi-set of
forms in P(V). The dimension of P denoted as dim(P) is the maximum number of

independent forms in P. It can be checked that this notion is well defined.

Definition 5 (Flat defined by an independent set). Let py,...,px € P(V) be an
independent set of points in the projective space. Let [,. . .,[; be linear forms such

that p; = [/;],i € [k]. We define the flat spanned by p1,...,px as
fl(pt,...,px) ={U]1 € P(V) :l =aily +...arlg: notall @; zero }.

It can be checked that this is well defined i.e. if we started with llf instead of [;, we

get the same set.

7

When we have just two independent points py,p, we will call the flat a line. For

three independent points we call the flat they define a plane and so on.

Definition 6 (Basis). Let P be a finite multi-set of points in P(V). An independent
subset {p1,...,pr} is called a basis for P if every p € P belongs to fl(pi,...,pk)-

Lemma 1. Let P be a finite multi-set in P(V'). The following holds:

{p1,...,pr}is a basis < {p1,...,pr} is a maximal independent set in P.

Proof. Fix l; € V such that p; = [[;].

For =, assume {p1,...,px} is a basis. So by definition they are independent. Pick
any pix+1 € P. By definition of a basis we know that px+1 € fl(p1,...,px) 1.€. there
exists x4 € sp(ly,...,lk) \ {0} such that pyy1 = [lg41]. Clearly ly,..., Ik, 41 are
linearly dependent and thus py,. .., pk, pr+1 are dependent implying that py,. .., px

is a maximal independent set.

For < assume py,...,p; are a maximal independent set in P. Assume there exists
p € Psuchthat p ¢ fl(p1,...,px). Letl € V such that p = [/]. We claim that
P1,- - -Pk,p are independent. If not then /4, .. .,/[;,[are linearly dependent. so there

exists aq,...,ak,a (not all zero) such that
alll+...+aklk+al:0.

If « = O then [4,...,l; become linearly dependent which is not possible. Thus
a # 0. At least one of the @; # 0 otherwise / = 0. This implies that p = [/] €
fL(p1,...,pk) acontradiction to our assumption. Therefore there is no such p and

all p € P belong to fl(p1,...,pk)-

O

Definition 7 (Flat defined by a finite multi-set in P(V)). Let S c P(V) be a finite
multi-set. The flat defined by S denoted by fI(S) will be fl(by,...,b;) where
by,...,brisabasisin S.

Definition 8 (Kernel of a projective linear forms). Let p € P(V) and [= a1x; +
...aux, € V be such that p = [[]. Further assume that i € [n] is such that a; # 0
and a; = 0, for all j < i. Define ker(p) = {(x1,...,x,) €F" : x; = - .Z a—":xj}.

8

For any polynomial f(x) € F[x], we define the restricted polynomial f ()E)|k”(p) as
the polynomial
n
_ aj
f('x)lker(p) = f(xla- ces X1, Z __xj5xi+17' .. 7-xl’l) € F[X],. s Xi—1 Xi+15. - - ’-xl’l]'

a
j=i+l !

It can be checked that this is well defined, i.e. if we started with a different choice

of [, we get the same polynomial.

Definition 9 (Central Projection). Let py,...,px € P(V) be a set of independent
points. Let /; € V be such that p; = [/;],i € [k]. Since the p;’s are independent, the
set {{1,...,l;} 1s linearly independent. Let W = sp([y,...,[;) and extend the basis
to get W+ such that W @ W+ = V. Let p € P(V) \ P(W) be any point. Consider
[€ V such that [I] = p and write [= w + w* such that w € W and wt € W+,
Since p ¢ P(W) we can conclude that w* # 0. We define the central projection of
p (denoted as 7(p)) onto P(W™) as :

n(p) = [w] € P(W™).

It can be checked that this is well defined i.e. if we started with llf s.t. p = [llf] we
get the same space W.

Definition 10 (Projective Factors). For any homogeneous polynomial f we define

the multi-set of "Projective Factors" of f as:

P(f) = {la1x1 +...+a,x,] € P(V) :a1x; +...+a,x, divides f}.

If a p € P(V) belongs to P(f) then we say that p is a projective linear factor of f.

Definition 11. For any point p € P(V) and multi-set S C P(V) we define the

multi-set of lines:

L(p,S) ={fl(p,s) : p,s are independent (same as saying p # s),s € S}

The lemma below says that the line joining independent points p = [[,],q = [I,] is

1.

the same as the line joining p and restriction [lq|k .
er(p

Lemma 2. Let p,q be two independent points in P(V). Let l, € V be such that

q = [l;]. Consider the restricted form | . Since p,q are independent, |
q qlker(p) qlker(p)

is non-zero and therefore [lq|k ()] is a projective linear form in the variables
er(p

XlsevosXic1s Xitls- -, Xn. We have :

fl(p,q) = fl(p,[l)

qlker(p)

9

Note that the above definition is well defined i.e. if we started with I}, (instead of)
such that q = [l;], we would get the same set fl(p,q).

Proof. Let I, € V be a linear form such that p = [l,]. Let [be a linear form in
V such that [/] € fl(p,q). Thenl € sp(l,,l,) \ {0} i.e. | = apl, + ayl, with at
least one of), @, non-zero. It is obvious by definition that [, = 8,1, + Bqlqlk”(p).
T Both @), + @48, = 0 and

a@yfy = 0 imply that either both «,,a, are zero or both g,, 8, are zero. Thus
(1] € sp(p,ll

This implies that [= (@), + ayf,)l, + ayB,!

lore)]). The other direction follows by a similar argument.
er(p

1.4 A quick introduction to arithmetic circuits

In this section we will summarize a number of basic definitions about Arithmetic
Circuits. We will be using a lot of definitions from [29]. Some recent results rele-
vant to this thesis will also be mentioned.

Definition 12 (Arithmetic circuits, adapted from [29]). An arithmetic circuit @ over
the field F and variables X = (x1,...,x,) is a weighted directed acyclic graph as
follows. The vertices of @ are called gates. Every gate in ®@ of in-degree O is labeled
by either a variable x;,i € [n] or a field element from F. Every other gate in @ is
labeled by either X or + and has in-degree 2. Every edge is labeled by a scalar from
F.

For every arithmetic circuit @, we define the following (from [29]) :

Gates of in-degree O are called input gates. Gate(s) of out-degree 0 are called

output gate(s).

— Gates labeled by x are called product gates and gates labeled by + are called

sum gates.
— size(®) (denoted by |D]) is the number of edges in ®

— For every vertex v € @, depth(v) is the length of the longest (directed) path

from an input gate to v.
— depth(®) is the maximal depth of a gate in .

— For gates u and v in @, if (u,v) is an edge in @, then u is called a child of v,

and v is called a parent of u.

10

Polynomial computed by an arithmetic circuit, [29]

There is a natural way to compute a polynomial using an arithmetic circuit. An
input gate (labeled by a variable or field element @) computes the polynomial «.
A product gate (i.e. a gate labeled by X) computes the product of the polynomials
computed by its children. A sum gate computes a linear combination of its children
polynomials, where the weights in the linear combinations are the weights of the
connecting edges. The polynomial(s) computed by the output gate(s) is(are) called
the polynomial(s) computed by the circuit.

Remark 1. In this thesis we will restrict the discussion to bounded depth circuits.
These are arithmetic circuits such that depth(®) < C for a constant C independent

of n (the number of variables).

Depth three circuits, [29]

In this thesis, we will be concerned with we will be concerned with a special class
of bounded-depth circuit called depth three circuits also known as ZIIX circuits. A
2I1X circuit is a depth three circuit with an addition gate at the top, multiplication
gates at the middle layer and addition gates at the bottom most layer. A closer look

at this tells us that a XI1X circuit will compute a polynomial of the form

kK d;
2| [(L.1)
i=1 j=
where [; j(x1,...,x,) are affine forms over the variables x,. .., x,. The number of

summands in the outer most sum (i.e. k) is called the fan-in of the top most gate
or the top fan-in. When the top fan-in is less than or equal to k, we call the circuit
a ZIIX(k) circuit. A polynomial computed by such a circuit is called a ZITX (k)

polynomial.

There are two important classes of XI12(k) circuits, to which every other X112 (k)
can be reduced.

Definition 13 (Simple XI1X (k) circuit). Let C be a XI1Z(k) circuit computing the
polynomial C(X) = M + ...+ My where each M; is a product of affine forms. We
say that C is simple if

ged(My,...,My) =1.

Definition 14 (Minimal XI1X (k) circuit). Let C be a XI1Z(k) circuit computing the
polynomial C(X) = M + ...+ My where each M; is a product of affine forms. We

11

say that C is minimal if for no proper sub collection of polynomials Mj,. .., M

sums to zero.

If one does put any restrictions of the top fan-in, it can be easily checked that any

polynomial can be computed by this class of arithmetic circuits.

A number of interesting results are known when the top fan-in is bounded by a
constant, i.e. when k is a constant. Efficient algorithms for some popular open
problems have been developed over the last decade and we will briefly mention
some of them below, and then add to the pool by solving yet another important

problem when k = 2.

Depth three circuits with top fan-in 2

As mentioned above, when the top fan-in is equal to 2, we call the circuit a ZI1Z(2)
circuit. This will be the class of circuits we will be concerned with. The challenge in
this thesis is to compute the circuit given only a black-box access to the polynomial.
We give a polynomial time randomized algorithm to achieve this goal with a "very
mild" assumption of the number of "free variables” in the circuit (called simple

rank of the circuit).

Definition 15 (Simple rank (srank(C))). Let C be a XI1Z(k) circuit computing the
polynomial C(x) = Mi+...+My. Let Ged(C) denote the polynomial gcd(M;,. .., My).

k d;
It’s easy to see that Sim(C) = #(C) = 2. [1 l;j is also a ZI1X(k) polynomial with
i=1j=1

d d
ged(]_1[Lijsoons]_k[lxj) = 1. The simple rank of C denoted by srank(C) is defined
i=1 =1
as / !
srank(C) = dim(sp{l;;}).

Previous (relevant) results about depth three circuits

Theorem 2 (Theorem 2 in [27]). Let f be an n-variate polynomial computed by a
XI1X(2) circuit of degree d, over a field F. Then there is a randomized interpolation
algorithm that given black box access to f and the parameters d and n runs in

quasi-polynomial time (in n, d, |F|) and has the following properties:

o [f srank(f) = Q(log2 (d) , then with probability 1 — o(1) the algorithm
outputs the (unique) XI1Z(2) circuit for f.

12

o If srank(f) = O(log? (d), then the algorithm outputs, with probability 1 —
o(1), a polynomial Lin(f), a polynomial Q(y1,...,yx) and k linear functions
Ly,...,Ly, where k < rank(f), such that Lin(f) is a the product of all the
linear factors of f and Lin(f).Q(Ly,...,Ly) = f.

Our work extends the above result to characteristic zero fields. While doing so we
also achieve much better time complexity i.e. poly(n,d) as compared to the quasi-
polynomial time algorithm given by the above theorem. Here is a simple table

explaining similarities/ differences between their and our algorithms.

[shpilka, 2007]

Iterate over linear (affine) forms in F[xy, ..., x,] Find “candidate” linear forms using Brill’s equations

Use lower bounds on locally decodable codes to show Use lower bounds on (high dimensional) Sylvester Gallai
existence of certain “good” configurations Theorems from Barak et. al. to show existence of certain
“good” configurations

Use good configurations to reconstruct Use good configurations to reconstruct
Running time — quasipoly(n,d,F) Running Time - poly(n, d)

Depends on field size Independent of field size

Needs simple rank = Q(log? d) Needs simple rank > Q(1)

A further extension of this result was given in [18]. They derandomized the above
algorithm and gave generalizations to "generalized" ZI1Z (k) circuits. The output
of their algorithm is not exactly a XI1X(k) circuit but something close enough. We
do not state the theorem here and instead redirect the reader to their paper. Please
see Theorem I in [[18].

Theorem 3 (Rank-bounds for identically zero ZIIX(k) circuits over F (Q,R,C),
combination of theorem 1.4 in [25] and theorem [6]]). Let C be a simple and min-
imal XI1X(k) circuit in n variables over F such that it computes the identically
zero polynomial, then srank(C) < R(k,F), where R(k,F) just depends on k. In

particular, when k is a constant srank(C) = O(1).

1.5 Homogenization of 11X (2) circuits
Let f(X) = M;+M; be a polynomial such that My, M, are products of affine forms in

variables x1,. . ., x,. We will describe a homogenous polynomial f hom (i, ..., xn,2) €

13

Flxy,...,x,z] associated to f(X) such that the reconstruction problem for f hom
solves the reconstruction problem for f. Assume the degree of f is d and denote by
(%) the degree d homogeneous component of f. From lemma 2.1 in [7] we see
that in poly(n,d) time we can get black-box access to the homogeneous component

£4, given black-box access to f. Define

zdf(%,...,%”) z#0

from(xi,. . xn2) =
fd(xlv-"vxn) Z:O

Lemma 3. Given a black-box B for f and the parameters n,d, in time poly(n,d)

we can simulate a black-box B"™ for fhom,

Proof. Proof is straight-forward. We describe how to query B"*” at point (x1,. . ., X, 2).
If z # 0, we query B at (%,...,%*) and then multiply the result with 24 If

z = 0, lemma 2.1 in [7] computes B"*" at the point (x1,...,x,,z) by computing
fd(xl,...,xn). O

Now suppose we have reconstructed f’w’" (x1,...,Xn,2), We canreconstruct f(xi,...,xy)

by substituting z = 1 in the circuit for f"°".

14
Chapter 2

SOME DEFINITIONS, MAIN TOOLS AND TECHNIQUES

2.1 Introduction

Let F be a field and ¥ = (x1,...,x,) be a tuple of variables.

Definition 16. An arithmetic circuit C is called a ZI1X(2) circuit if it computes a
polynomial C(x) € F[x] of the form:

C(x)=M; + M,.

where M, M, are products of linear forms. In this case we call C(x) a ZI1Z(2)

polynomial.

Definition 17 (Some associated definitions and observations). We define some
other associated polynomials, multi-sets and make certain observations (note that

the polynomials are defined up to scalar multiplication).

— We define Gcd(C) € F[x], to be the g.c.d. (greatest common divisor) of the
two products M1, M, i.e. Ged(C) = gcd(My, M>). We write M| = Ged(C)R
and M, = Gcd(C)B where R, B are products of linear forms and gcd(R, B) =

1. We can factorize the polynomial C(x) as
C(x) = Ged(C)(R + B). (2.1)
If Ged(C) = 1, then we say that the circuit C is "simple".

— Sim(C) = R + B, is called the "simple part" of circuit C, since the two

products R, B don’t have any common factors.

— Let P(R),P(B),P(Gcd(C)) denote the multi-sets of projective linear factors
of R, B,Gcd(C) respectively.

— It is important to note that Sim(C) itself might have more linear factors. As
an example consider the polynomial (x + yy)...(x + y,) — y1 ...y, Where
X,V1,...,Yyn are variables. This polynomial is divisible by x but x does not

divide any of the two products (x + y1)...(x + y,) and y; ... y,.

15

— We define Int(C) as the product of all linear factors (up to scalar multipli-
cation) of Sim(C) and call it "internal factors". Similarly Res(C) (called
"residual factors") is defined to be the product (again up to scalar multiplica-

tion) of all non-linear irreducible factors of Sim(C).
— "Simple rank" of the circuit C denoted by srank(C) is defined as dimension

of the multi-set P(R) U P(B) (see [for definition of dimension).

For any multi-sets S, 7 of projective linear forms in the projective space P(V) we
define a set of projective linear forms called the "intersection set". This set contains
forms in S U 7 along with the forms which lie at the intersection of distinct lines

connecting S and 7 . Formally:

Definition 18 (Intersection set). Let S,7 C P(V) be two multi-sets. The "inter-

section set", I (S,7) comprises of the following:

1. All distinct forms in S, 7.

2. Intersection of distinct lines Zl = fl(s,t) and Zg = fl(s’,t") where s,5" € S
andr,t’ € T .

Note 2. It’s easy to see that |7 (S,7)|< |S|?|7).

In our application we will use S = P(R) and 7 = P(B). But first, let’s prove a
straight-forward lemma about multi-sets P(R),P(B),P(Int(C)):

Lemma 4. The following are true:

P(R)NP(Int(C)) = ¢, P(B) NPUnt(C)) = ¢

Proof. The proofs are similar so we just show one of them. Let p € P(Int(C)).
Since Sim(C) = Int(C)Res(C), by restricting to ker(p) we see that

leer(p) + Blker(p) = 0 = leer(p) = _Blker(p)'

If p € P(R) then clearly R, = 0 and thus B, = 0implying that p € P(B).
Therefore p divides both R, B but gcd(R, B) = 1, a contradiction. m]

16

2.2 Uniqueness of XI1Z(2) Structure

Note that we defined a quantity called srank(C) in definition [15| (and last part of
definition[I7). It has been studied very extensively in the last decade and a number
of efficient algorithms for polynomial identity testing have been devised by proving

clever bounds on it. See theorem 1.5 and 1.7 in [25]] for details.

In this section we will show that high simple rank of a XITIX(2) circuit implies
unique circuit representation. Based on the underlying field we will have different
values for "high". It’s captured by the function R(k,F) mentioned in theorem 3]

Theorem 4 (Follows from Corollary 7 in [27]]). Let C be a XI1X(2) circuit com-
puting the polynomial C(x) such that srank(C) > R(4,F), then the circuit C is
(essentially) the unique XI1Z(2) circuit computing C(X).

Proof. Using equation [2.1]in definition [17] write C(%¥) = Gcd(C)(R + B). Let C’
be another 2I1X(2) circuit also computing C(x). Therefore C(x) also has the form
Ged(C")Y(R'+B') =

Gced(C)(R+ B) = Ged(CY(R' +B) =0

Note that Ged(C),Gced(C’) are products of linear forms. We can remove their
common factors in the above identity i.e. let G = gcd(Ged(C),Ged(C')) and let
Ged(C) = GH,Gced(C’) = GH’ with gcd(H,H’) = 1 giving the identity:

HR+HB-H'R -H'B' =0

The polynomial HR + HB — H'R’ — H’'B’ clearly has a XI1X(4) circuit. It’s easy
to check that gcd(HR,HB,H'R’,H’B") = 1. If not then there exists a linear form /
dividing each of the four polynomials HR,HB,H’R’, H’ B’. In particular [divides
HR = [divides H or [divides R.

e If [divides H then it cannot divide H’ (H,H’ are co-prime). Therefore it
divides both R” and B’ which is not possible as they are co-prime.
e [f [divides R then [does not divide B as R, B are co-prime. [divides HB = [

divides H which is not possible as was just shown.

So we have a simple XI1X(4) circuit which is identically 0. If this is also minimal
then by theorem [3| simple rank of this circuit is < R(4,F) by [25] . But that is not

17

true since srank(C) > R(4,F). Therefore it’s not minimal i.e. some two gates sum

to 0. Going through the several cases we get either

(HR,HB) = (H'R',H'B’") = (Gcd(C)R,Gcd(C)B) = (Ged(C")R',Gcd(C')B')
or

(HR,HB) = (H'B’,H'R") = (Gcd(C)R,Gcd(C)B) = (Gcd(C")B',Gcd(C")R").

Both of these mean that the circuit C was unique (up to relabeling the multiplication
gates). O

2.3 Factoring forms of a polynomial

Definition 19. Let f(xX) € F[x] be a polynomial. We say that a projective linear
form p is a factoring form for f (x) if f (X)), is a non-zero product of linear forms
in the ring F[x1,...,Xi—1,Xi+1,. . ., X,]. See definition [§] for definition of restriction
to ker(p).

The set of factoring forms for a polynomial f(x) will be denoted by P (f).

We will now investigate properties of factoring forms for polynomials associated
with XITX(2) polynomials.

Factoring forms for X112 (2) polynomials

Recall that Sim(C) = R+ B with gcd(R,B) = 1. Let p € P(R) be a projective linear
factor of R. We easily see that Sim(C)y,,,,, = B, # 0 (since gcd(R,B) = 1).
B,,.., 18 a non-zero product of linear forms since B was a product of linear forms,
implying that p is a factoring form for Sim(C). Therefore forms in P(R) (similarly
P(B)) are factoring forms for Sim(C) and thus belong to P (Sim(C)).

This gives us motivation to compute £ (Sim(C)) as an approach to finding the prod-
ucts R, B. However there is a problem. We don’t have access to Sim(C). This prob-
lem can be circumvented by using Res(C) (defined as residual factors in definition
instead. We later discuss how to get black-box access to Res(C).

In the next theorem we will discuss properties of the set of factoring forms of
Res(C). This set turns out to be a subset of the intersection set I (P(R),P(B))

(for definition of intersection set see definition[I8§)).

Theorem 5. Let C be a XI1X(2) circuit computing the polynomial C(x). Every
form p € P(R) UP(B) belongs to the set of factoring forms P (Res(C)). Further if

18

we assume that srank(C) > R(3,F) + 2, then :
P (Res(C)) c I(P(R),P(B))

i.e. the factoring forms are either forms in P(R),P(B) or lie at intersections of

distinct lines joining forms in P(R) with forms in P(B).

Proof. Let p be a factoring form for Res(C). Recall the definition of internal factors
Int(C) from definition On restricting to ker(p) we get (see definition 8]

R|ker(p) + Blker(p) - Int(C)lker(p)Res(c)lker(p) = 0 (22)

p being a factoring form for Res(C) implies that Res(C)y,,,,, is a non-zero product
of linear forms. This gives us an identically zero XI1Z(3) polynomial R, +
Blker(p) - Int(c)lker(p)Res(c)lker(p) = 0

Let’s first pull out the g.c.d. G of the three products (multiplication gates) and define

GR, GB, GF/ = Int(c)lker(p)Res(c)lk@"(ﬂ)'

= leer(p)’ = Blker(p) ’

with gcd(R’,B’,F") = 1. We have two cases:

1. Case1: Set of linear factors of G has dimension more than one : Since G di-
) and Rzlker(p)(~
By, (») are two linearly independent linear factors of G where Ry, R, divides
R and By, B, divides B. So we see that p lies on lines Ly = fI([R{],[B1])
and Zz = fI([R2],[B>]) (recall that [R;], [B;] are projectivizations of R;, B; re-
spectively, see definition E[) Linear independence of Ry, .. R2,,,,, Implies
that the lines are distinct. Therefore p € 7 (R, B).

vides R|,m(p) and B|,m(p), let’s assume R1|ker(p)(~ Bllker(p)

2. Case 2: Set of linear factors of G is one dimensional : Note that we assumed
that srank(C) > R(3,F) + 2 = dimension of the linear factors of R, B is
greater than R(3,F) + 2. Therefore on restricting to the hyperplane the di-

mension goes down at most by one. That is dimension of linear factors of
Ry, v ry> Bliery 18 greater than R(3,F) + 2 — 1. By the assumption in this
case we will get that dimension of linear factors of R’,B’ is greater than
R3,F) +2-1-1 = R(3,F). On simplification (i.e. dividing equation
[2.2]by G) we obtain an identically zero XITX(3) polynomial :

R +B -F =0.

19

The identically zero ZI12(3) circuit computing the above polynomial is sim-
ple (i.e. the product gates are co-prime) and has "simple rank" > R(3,F).
Therefore by theorem 3]it cannot be minimal. Thus two of the products (mul-

tiplication gates) R’, B’, F” must sum to zero = one of R’, B’, F’ is zero.

’ R‘ker(p) _ ’ B‘ker(p) _ LR
o If R = —= =0, 0or B = —z* = 0 then p divides R or B and thus
p € P(R)UP(B) c 1 (P(R),P(B)).

o If F/ =0then R"+ B’ = 0 = R’ = —B’. We know that dimension of
linear factors of R’, B’ is greater than R(3,F) > 2 (if not then we can just
re-define R(3,F) = max(R(3,F),3)). So exactly like case 1 above we
can find projective linear forms Ry, R, dividing R and By, B, dividing
B such that p lies on distinct lines fI(R;, B;j),i € [2] further implying
p € I (P(R),P(B)).

The next lemma will be very crucial in the reconstruction process. It states that if we
have enough projective linear forms from P(R), then every factoring form connects
one of them to some projective linear form in P(B). We call this the matching

lemma. Proof is exactly like the last theorem but we still write it for completion.

Lemma 5 (Matching lemma). Fix k = R(3,F) + 2. Let [Ry],...,[Rx] be indepen-
dent projective linear forms in P(R) and p be any factoring form in P (Res(C)) but
not in P(R) U P(B). Then there exists [R;],i € [k] and [B;] € P(B) such that p lies
on the line fI([R;],[B;]).

Proof. Assume the converse i.e. for some factoring form p there does not exists

such R;, B;. Exactly like the previous theorem we obtain

R|ker(p) + Blker(p) - Int(c)lker(p)Res(c)lker(p) = 0

and then define G, R’, B’, F’ such that

GR’ GB’ GF' = Int (Gl RES (O -

= leer(p)’ = Blker(p)’

with gcd(R’,B’,F’) = 1. Following the previous proof we have the identity

R+B -F =0

20

If for any R;,i € [k], the restriction R divides G, then exactly like the previous

ilker(p)

proof there is a projective linear form [B;] dividing B such that p € fI([R;],[B;])

and we are done.

So assume that all R i € [k] divide R’. We know that the restrictions { R

ilker(p)’ ilker(p) :

i € [k]} have dimension equal to kK — 1 > R(3,F) implying that simple rank of the
YI1Z(3) circuit R+ B’ — F’ is greater than R(3,F) = (exactly like last proof) it can-
not be minimal, otherwise it violates rank bound for identically zero polynomials in
theorem [3] So like the previous proof some product gate is zero. p ¢ P(R) U P(B)
implies R’, B’ are non-zero = F’ = 0 = R’ = —B’ # 0. Hence there exists pro-

jective linear form [B] dividing B such that By, ~ Ri,,, and p lies on line

JUR1],[BiD.

2.4 Good forms and reconstructed multi-set
In this section we explain the main object that accomplishes the goal of reconstruc-
tion in chapter[5] Later in chapter[5] we will show that these objects exist and apply

them to reconstruct our multi-sets P(M;),P(M>).

Definition 20 (Good form). Let p be a projective linear form in P(V), 8,7 be
multi-sets in P(V). We say that p is a "good form" for (S,7") if there exists s €
S,t € 7 such that :

1. p,s,t are pairwise distinct.
2. The forms p, s,t are not collinear.

3. The plane W), 5, = fl(p,s,t) intersects 7 only along the line fI(p,?).

We collect all # € 7 for which there exists some s € S such that p, s,t satisfy the
above requirements. This multi-set will be very special for us. We’ll be able to

reconstruct it. Let’s give it a name.

Definition 21. Suppose p is a "good form" for (S,7) we define the "reconstructed
multi-set" 7, C T as

T, ={t €T :3Is € S: (p,s,1) satisfy bullets[I] 2] and [3]in definition 20]}

21

Later on we will show how we can reconstruct multi-sets when a good form is given.
But first we describe an example of a good form. This example demonstrates two

very important applications of good forms in chapter 5| Here is a lemma.

Lemma 6. Suppose p,s € P(V) are projective linear forms and T~ be a multi-set of

projective linear forms. Assume

—p#*sand fl(p,s)N fI(T) = ¢.
Then p is a good form for ({s},7") and the "reconstructed multi-set" is 7, = 7.
Proof. The proof is particularly simple. Consider any t € 7.

e Since p # s and fl(p,s) N fI(T) = ¢ we get that p, s,¢ are pairwise distinct
and independent. Therefore condition [T]and condition [2]in definition [20] are

satisfied.

e Consider ¥ = fI(p,s,t). Consider any t'(# t) € ¥ N 7. So we may write
t" = a,p + azs + a;t, with at least one of «), @, @; non-zero. If a, # 0, then
we may re-write the equation as ags+a,p = t'—a;t = fl(s,p)Nfl(t,t') # ¢
(as ag # 0). Therefore we arrive at a contradiction to fl(p,s)NfI(T) = ¢ =
a;=0=¥YNT c fl(p,t). Therefore p,s,t satisfy condition [3]in definition
201

Therefore p is a good form for ({s},7). Also since t € 7 was arbitrary, bullets
[1I213]in definition 20| hold for all # € 7~ and thus the reconstructed multi-set in this

caseis 7, = 7. o

Lemma 7. Suppose p € P(V) is a "good form" for (S,7) and let 7, C T be the

"reconstructed multi-set". Further assume the following

1. The form p and the multi-set S are known. Multi-set T is unknown.
2. The multi-set of lines L(p,T") (see definition[l1)) is known.

3. Forevery s € S, the multi-set of lines L(s,T") is known.

Then there exists a deterministic algorithm that runs in poly(|S|,|7 |,n) time and

reconstructs the multi-set 7,.

22

Proof. Let’s first give the algorithm and then discuss correctness and time complex-

ity.

for

end

Initialize 7, = ¢.

for each line L, inside L(p,7) \ {L} do

Return 7;,.

each s(# p) € S do
Let L be the line fI(p,s).

Consider the plane ¥ = f Z(Zp, s) spanned by line ij and form s.
Find lines in L(p,7) lying on Y.

if l_:[, is the only such line then
for each line Zs € L(s,7)\ {Z}, lying on ¥ do
Let 7 be the intersection of lines Ep and L 5

Update ‘f; = 7;'9 U {7} (note that this is multi-set union).

end

end

end

Algorithm 1: Reconstruction using a Good form

Correctness Proof - We will show below that the set 7, computed by the above

algori

1.

thm is the same as the "reconstructed multi-set" i.e. ‘f; =7,

Proof of 7, C ‘f; : Lett € 7,. By the definition of "reconstructed multi-set"
above, we know that there is an s € S such that (p, s,t) satisfy conditions in
definition [20] The first for loop will select s at some point of time. Definition
implies that f/(p,t) does not contain s and so after choosing s, the second
for loop selects the line ij = fl(p,t) at some point of time. Since (p,s,t)
satisfy conditions of definition Zp is the only line from L(p,7) on the
plane Y = fl(p,s,t), and so the if condition inside the second for loop will be

true. Therefore the algorithm will further choose L= f1(s,t) at some point

23

of time. Clearly 7 is the intersection of lines Zp and L. When this happens ¢
gets added to the set ‘f; implying that 7, C ‘i;

2. Proof of 7, c 7, : Consider a form 7 € 7,. We first show that f € 7.
The algorithm constructs 7 as intersection of two lines Zp e L(p,7) and
Zs € L(s,7) for some s € S. Both these lines are different from the line
L = fl(p,s). Clearly L, = fl(s,t) for some t € T".

We show that 7 = ¢. Suppose not, then since 7 € Ly and s # 7 (otherwise
S Zp), we have three distinct forms {s,7,7} on ZS. The line Ijs was chosen to
be on the plane ¥ = f l(ip, s). Therefore there are two distinct lines f/(p,t)
and Zp = fl(p,f) on this plane ¥. This is a contradiction to the choice of Zp,
thus 7 = 1.

e p,s are different by choice of s in the second for loop. 7 is intersection
of two lines Z,,,ZS (different from Z) and thus 7 is different from both
p.s. Thus condition [I]in definition 20]is satisfied for (p, s,7).

e Since Zp was different from the line Z we get that p, 5,7 are not collinear
so condition [2]in definition 20]is satisfied for (p, s,7)

e Lett € 7 be any projective linear form on the plane ¥ = f1 (s,ip) =
fl(p,s,f) =¥, ;. If t lies on line Zp = fl(p,f) we are fine. If not then
fl(p,t) is aline from L(p,7") different from Zp, passing through p and
lying on ¥, which is a contradiction to the choice of Zp. Therefore
Ypsi N T C fl(p,i) and condition 3] in definition [20|is satisfied for
(p,s,f).

Time Complexity : We examine the nested loop structure. First loop runs < |S|
times. Second loop runs < | L(p,7)| times. Inside the second loop finding all lines
in L(p, 7T) takes | L(p,T)|poly(n) steps since testing whether a line lies on a plane
in n dimensions can be solved using linear algebra in poly(n) steps. Inner most loop
runs < | L(s,7)| times and finding intersection of lines again takes poly(n) time
using linear algebra techniques. It’s easy to see that |L(p,7)|,|L(s,7)| are both
< |77| and so overall we take poly (|7 |,|S|,n) time.

So we see that 7),, the "reconstructed multi-set” is actually reconstructed by the

above algorithm in poly(|S|,|7 |,n) time. O

24
Chapter 3

MAIN RESULT AND OVERVIEW

In this chapter we will state our main theorem and also give an outline of the algo-
rithm which the theorem claims. Proof of this theorem is a combination of results
in the next two chapters. The underlying field for this entire work will be F, a field
of characteristic zero. For simplicity we assume it to be Q,R or C. Our tuple of
variables will be denoted by X = (x,...,x,). Fix Ny to be large enough constant

(see beginning of chapter 5 for details). Here is the main theorem:

Theorem 6. Let C be a homogeneous 11X (2) circuit computing a degree d poly-
nomial C(X) in n variables x1,. . .,x,. Assume that black-box access to C has been
given (along with parameters n,d). We give a randomized algorithm that runs in

time poly(n,d) and with probability 1 — o(1) outputs the following:
o When srank(CY(|= Ny, the output is a ZIIZ(2) circuit computing C(%).

3.1 Overview of the algorithm

Recall that we are dealing with a XI1X(2) circuit computing the polynomial:
C(X) = Mi(X) + My (X)

where M|, M, are products of linear forms. Given black-box access to C, we wish

to compute M, M,. Our algorithm has two very broad steps :

Step I - Reconstruct I* layer of the circuit

In this step we try to find a set of linear forms which appear at layer I in the circuit
C. These are precisely the linear factors of M, M,. We end up reconstructing a
few extra linear forms and get rid of them afterwards. At the I*’ layer, we have the

following two categories of linear forms.

1. Linear forms at layer I which divide C(x) - These are precisely the com-
mon linear factors of My, M>. Such linear forms definitely divide the polyno-

mial C(x). However these may not be all linear factors of C(x). Consider the

I'This is just the rank of Sim(C).

25

polynomial (x+y)...(x+Yy,)—y1 ...y, Thelinear form x divides the poly-
nomial but does not divide any of the two products (x + y;)...(x + y,) and
Y1 ...Yn. Instead of computing the set of common linear factors of My, M5,
we compute the set of all linear factors of C(x). Later on during step 2 of
the algorithm, the bad forms get rejected. In order to find all linear factors
of C(x), we use the standard black-box factoring algorithm of [17]. The al-
gorithm gives us access to black-boxes for the factors. We convert them into
explicit coefficient form in algorithm

. Linear forms at layer I which don’t divide C(x) - Let’s write M| =
Ged(My,M>)R and M, = Gcd(Mi,M>)B where R,B are products of lin-
ear forms such that gcd(R,B) = 1. Then the linear forms at layer I which
don’t divide C(x) are precisely the linear factors of R and B. We compute
a set of size poly(n,d) such that it contains all distinct linear factors of R
and B. This is achieved by first making a random invertible transformation
in Section [4.2] to make sure that our variables xi,...,x, become "random".
Next in C(X) we set all but constant many variables to zero. The restriction
of our polynomial to constant many variables can actually be computed in

coeflicient form efficiently using the original black-box.

Now for this restricted polynomial, we find a set of linear forms which con-
tains the (restricted) linear factors of R, B. This is done using brill’s equations
(see appendix [B) which completely characterize the coefficients of polynomi-
als which split into linear factors. We repeat the whole process for different
subsets of constant many variables and compute a set containing restricted
linear factors of R, B in each case. Finally we describe a method to glue
all these sets of restricted linear forms. This gives us a set of linear forms
over xi,...,X, containing linear factors of R, B. The linear forms in this fi-
nal set has certain bad elements (forms which don’t divide R, B). But these
bad forms have certain structure and get rejected during the course of our

algorithm.

. The two multi-sets computed above are then sent to the next part of the al-
gorithm which involves reconstructing the "wiring" of the circuit and finding
the gates at layer II. Along with these sets, as a by-product of algorithm [C| we
also compute a black-box computing the polynomial which is the product of
all non-linear irreducible factors of C(x). This is also used to reconstruct the

gates at layer II.

26

Step II - Reconstruct IT"“ layer of the circuit
In this step we use the linear forms and the black-box (computing product of non-
linear irreducible factors of C(x)) computed above and reconstruct the wiring in the

graph of our circuit.

Suppose r,b are linear forms dividing R, B respectively. Using the outputs from

step I, we can calculate the multi-sets

{Il (mod r) : [is a linear factor of M>}, {/ (mod b) : [is a linear factor of M;}.

Viewing the linear forms as points in space, the above multi-sets enable us to find
multi-sets of lines going from r to linear factors of M, and multi-sets of lines going

from b to linear factors of M;.

Next we look for non-degenerate planes Y = sp{ry,r2,l} (sp{b1,b2,l}) where ri,r;
are linear factors of R and [is a linear factor of M, (resp. by, b, are linear factors of

B and [is a linear factor of M)) satisfying the following condition.

e Linear factors of M, (resp. M) lying on ¥ only lie on the line ry,/ (resp.
—
by,1).

We show that if such a configuration exists, then we can reconstruct / along with
the multiplicity with which it divides M, (resp. M) by considering intersections of
lines in Y. So the whole effort then goes into showing existence of such planes ¥
(and that it can be found efficiently in every iteration of the algorithm). To do this
we use quantitative versions of the Sylvester Gallai theorem given in [3] and it’s

improvements from [6].

During the algorithm one of the problems we encounter is that the set # provided
by step I contains points other than linear factors of R, B. So we need to make sure
that we do not use these bad points. We do this by finding structure (see matching
lemma, [5) in these bad points (due to the way they were constructed) and use this
structure to eliminate them. If we can do this wisely then the reconstruction process

goes smoothly.

Finally, if we have reconstructed all the linear factors for one of the products My, M,
we compute an appropriate constant that we need to multiply to the product of our
linear forms (since all linear forms will be obtained up to scalar multiplication).

This is done by using brill’s equations again and the algorithm has been explained

27

in subsection [5.3] This will be the last step of all our reconstruction algorithms in

step II.

Once we have done the above our reconstruction is complete. For technical reasons
we work with projective linear forms instead of linear forms in the entire discussion
above. This is done to give better exposition by avoiding certain trivial technicalities

that appear when a linear form is known only up to scalar multiplication.

28
Chapter 4

STEP ONE : RECONSTRUCT THE IST LAYER OF C

4.1 Introduction

Recall that we have access to a black-box B for a XIIX(2) circuit C computing
the polynomial C(x) = M| + My = Ged(C)(R + B) = Ged(C)Int(C)Res(C) (see
definition[I7). In this chapter we wish to use B and compute all the projective linear

forms corresponding to linear forms computed at the first layer in circuit C.

On looking closely we can see that the outputs at layer I are just (scalar multiples
of) the linear factors of Ged(C) = gcd(My,M>) and polynomials R, B. Thus our
main objective for this chapter is to find the multi-set of projective linear forms
P(Gced(C)) UP(R) U P(B), where the union is a multi-set union. We will not be

constructing this multi-set exactly but something close enough.

In this section we give algorithms to compute the following:

1. The multi-set P(Gcd(C)Int(C)) which is the multi-set of projective linear
factors of C(x). By abuse of notation we say that a projective linear form
divides a polynomial whenever a corresponding linear form divides the poly-

nomial.

2. A set P c P(V) of projective linear forms containing (distinct) projective
linear forms from P(R) and P(B). We wish to emphasize that this set does
not give us information about multiplicities of forms in their respective sets
P(R)/P(B). For that we develop methods in chapter [5] The set # that we
compute here has size poly(d) where d is the degree of C(X).

The first part of the theorem i.e. computing P(Gcd(C)Int(C)) has already been
done in algorithm [C| of appendix [C| using kaltofen’s black-box factoring algorithm
from [[17]. It also gives us a black-box Bg.; computing Res(C). We just invoke the
algorithm here and move on to solve the second part. Thus our goal becomes:

Goal of this Section. Given a XI1Z(2) circuit C as a black-box, efficiently compute

a set of projective linear forms ¥ such that:

— peP(R)UPB)=> pe®P, and |P|= poly(d).

29

We achieve this goal by computing the set of "factoring forms" (see definition [I9)
for the polynomial Res(C) i.e.

P = P(Res(C)).

As we mentioned before solving the first part using algorithm |C| already gave us
access to a black-box Bg,; computing Res(C). The reasons for choosing this set

are mentioned below.
Note 3 (From theorem[5). For any XITX(2) circuit C computing polynomial
C(x) = Ged(C)(R+ B) = Ged(C)Int(C)Res(C)

we have:

e Any p € P(R) UP(B) belongs to P(Res(C)), i.e. p is a "factoring form" for
the polynomial Res(C).

e if srank(C) is high enough (> R(3,F)+2), then P(Res(C)) c I (P(R),P(B))
and therefore |P (Res(C))|< d*.

So this set satisfies both properties we wanted in . From now onwards we set
P = P(Res(C)) and try to compute it using the black-box.

Let’s summarize our result in the following theorem:

Theorem 7. Let C be a homogeneous XI1X(2) circuit computing a degree d poly-
nomial C(Xx) in n variables x1,. . .,x,. Assume that black-box access to C has been
given (along with parameters n,d). Further assume that srank(C) > max(R(3,F)+
2,R(4,F)). There exists a randomized algorithm that runs in time poly(n,d) and

outputs two multi-sets F and P of projective linear forms such that

Pr(F =P(Gcd(C)Int(C)) and P =P(Res(C))] >1-o0(1)

To compute this set $ we follow a standard "restrict and lift" technique. The broad

idea is:

1. Restriction Step - Restrict C(X) to a number of "random" low dimensional
subspaces of F”" i.e. set many of the variables (they are "random” by the
application of a random transformation on the inputs, see section§.2)) to zero.
Then using the restricted polynomial we compute sets ; which are (or at
least contain) restrictions of . These sets ; can be computed by solving a

system of polynomial equations.

30

2. Lifting Step - Once we have the #;’s we glue them together. This gives us a
set containing %, since restrictions of forms in ¥ are definitely glued. Then
we prune this set to throw away the bad forms using the definition of % i.e.
all forms in P are factoring forms for Res(C). The random subspace is very
important since it makes sure that we glue whatever is needed and we don’t
take too much time gluing. In short it introduces a lot of non-degeneracy

among the restrictions.

4.2 Random Transformation
Before doing any computation with the input black-box B;,, we "apply” a random

transformation Q to it. This has been explained in great detail in appendix

Q is constructed with the help of an n X n matrix Q = (£; ;), where each entry is
chosen uniformly randomly and independently from the a set S € F. On the set
(X1, xn), © maps x; — (Q ¥); (% is treated as a column vector (x,...,x,)7).
This map is then extended to an algebra homomorphism on F[x]. When the matrix
Q is invertible the map Q becomes an isomorphism. We proceed only if Q is invert-
ible which happens with a high probability by lemma [22]in appendix [A] If it’s not

invertible we output "fail".

In order to "apply” Q to our input black-box B;,, we define a new black-box B
such that for every a € F", B(a) = B, (Q7'(a)). This just means that to query the
new black-box B at point @, we query the old black-box at point Q~!(a). If B,
computed the polynomial f (%) then B computes Q(f).

From now onwards we assume that Q is invertible and Q has already been applied
to the input black-box B;,. We will work with the new black-box B which also
represents a XI1X(2) circuit C computing polynomial C(x). We use all definitions

in chapter 2 for this circuit/polynomial.

Assumption - Independence preserving restrictions of the intersection set

Recall the definition of intersection set in definition I8 Using the random transfor-
mation defined above we have created a new "random"” set of variables x1,...,x,.
Applying Q preserves linear independence since it is an algebra isomorphism and
hence a linear isomorphism. In subsectiond.3] we will restrict our polynomial C(X)
to certain subsets of these variables. While doing this restriction, we want to pre-
serve independence for points in the intersection set. If independence is preserved

for restriction of points in Z (P(R),P(B)) then it automatically gets preserved for

31

restrictions of points in multi-sets P(R),P(B) and the set # since they are all sub-
sets of 7 (P(R),P(B)). This turns out to be really beneficial for us when we try to
"glue" the restrictions together.

We first define the subspaces we’ll be restricting to. They will be used frequently

and so we make a separate definition for them.

Definition 22. Define subspaces W,_; = {(wy,...,w,—1,0...,0) : wi,...,w,_| €
F} c F"and W; = {(wi,...,wr—1,0,...,0,w;,0,...,0) : wi,...,w,_1,w; € Flf C
Ftief{r+1,...,n}hL

Restricting a polynomial to W,_; corresponds to plugging x, = ... = x, = 0 and
restricting it to W; corresponds to plugging x, = ... = Xj—1 = Xj41 = ... = x, = 0.
Restriction of any polynomial f to the subspace W; will be denoted by f),,. and that
to Wy_ will be denoted by fj, .

We also define V; as vector space of linear forms in x1,...,x,-1,%; and V,_; as the

vector space of linear forms in xq,...,x,_1.

Definition 23 (Restrictions of points in projective space). Let p € P(V) and con-
sider any [€ V such that p = [/]. When [}, # O (resp. [;,, =~ # 0) we say py,,
(resp py,,) is defined, and define py,, (resp py,) as the point [/},] € P(V;) (resp.
[}y, 1€ P(Vi-1)). Otherwise we say py,, (resp py,) is undefined.

It can be seen that when py,, (resp py,) is defined, it is in fact well defined (i.e. if

we choose [’ instead of / we get the same points as restrictions).

Lemma 8. Let r > 4 and consider subspaces defined in definition |22| above. The
following hold with high probability:

1. Let p € I(P(R),P(B)) be a point, then Plw, is defined and belongs to P(V;)
(see definition [23)).

2. Letpy,...,ps € T(P(R),P(B)), s < r be s independent points (see definition
El), then pyy,, .- . .,ps), aredefined and are independent points in P(V;).

3. Let p1,...,ps € T(P(R),P(B)), s < 3 be s independent points, then the re-

strictions py lw, 2 Dsly, _ are defined and are independent points in P(V,_1).

! The w; is in the i*" location.

32

Proof. Apply corollary |2 in appendix [A| for multi-set 7 (P(R),P(B)). Note that

|7 (P(R),P(B))|< d*, therefore success probability is > 1 — poly(|+d4r) We will

assume |S|>> Q(poly(n,r,d*")) and make the probability > 1 — o(1). From now
onwards we assume that the statements in this lemma are always true i.e. our Q is

always among the good cases. This is done for better exposition. m|

4.3 Restricting the input polynomial
Let r > 4 be any integer. Consider the subspaces W;, i € {r + 1,...,n} defined in
definition [22] We restric?] C(x) to W; giving:

CXy, = My, + Moy,
Clearly this restriction is also a ZI1Z(2) polynomial. We denote the above XI1X(2)
circuit computing it as Cj,, . We can further factorize using definition
C(x)y, = Ged(Cy,)Sim(Cy,,) = Ged(C,,) Int(Cyy,)Res(Cyy,.)

Lemma 9. The following are true (up to multiplication by a scalar):

1 ng(R|Wi’B|Wi) =1= Sim(clwi) = RlWi + B|Wi'
2. srank(C|Wl) = min(r,srank(C)).

3. Res(Cy,.) = Res(C)y,, with high probability.

Proof. The proof is routine and long. See lemma [26]in appendix [D] To not break

continuity we urge the reader to believe the lemma and verify it later. O

Remark 2. We make a few remarks:

1. Note that we have already computed a black-box Bg,.s computing the polyno-
mial Res(C) using algorithm|Clin appendix|C} Part[3|in lemma 9 tells us that
Res(C|Wi) = Res(C)|Wi, and so by feeding the black-box Bg.s inputs from W;

we can obtain a black-box for Res(Cy,,.).

2. Assuming srank(C) > r = R(3,F) + 2, in part 2| of lemma[9 we can say that
rank(C|Wj) =r = R(3,F) +2. Then we can use theorem E|f0r this circuit and
obtain P (Res(Cy,,)) € I(Ry,,,B),). Also part[l]of lemma 9 and theorem
E| together imply that all projective linear forms in P(Ry,.),P(B,,) are in
P(Res(qwl_)).

2 This just means plugging x, = ... =X;_| = Xj43] = ... =X, =0

33

Due to these reasons we try to compute P(Res(C\,,.)) using the black-box for
Res(C|Wi) described above. For shorthand we define P; = P(Res(qwi).

4.4 Computing the sets ;.

To efficiently compute #;, we use brill’s equations which completely characterize
coeflicients of polynomials expressible as product of linear forms. We discuss them
in great detail in appendix [B| Let’s first give the main result about these equations

and then an algorithm to compute the sets P;.

The lemma below says that there exists a family of polynomials F = {F1,..., Fy}
such that coefficients of all totally decomposable polynomials (i.e. product of
linear forms) are given by the variety V(¥). Also this family ¥ can be computed
in poly(d") time as shown in appendix [B]

We first compute coeflicient representation for Res(Cy,.) using part|I|in remark
i.e. we do Lagrange interpolation on Res(C)j,. . This can be done by first restricting
the black-box Bg.s to W; (by feeding inputs only from W;) and then by using O(d")
points from W; to interpolate. Next we consider any projective linear form in the r
variables xy,...,x,_1,x;. Say the coeflicient of x; is non-zero = we may write a
linear form corresponding to this projective form as
Xj— Z ZkXk
kel\{j}

(here I is the set {1,...,r — 1,i}) and then substitute for x; in the polynomial
Res(Cy,,.). We collect the coeflicients of this polynomial as polynomials in the
Zx’s and use them as input into the variety V(¥) described above. The solutions
for these z;’s can then be obtained using any algorithm to compute roots e.g. buch-
berger’s algorithm ([S]). Since r = Q(1), this algorithm works in poly(d) time as

explained below.

Lemma 10 (Brill’s equations, See corollary [3|in appendixB). Let F = C, and s,d
be positive integers. Define the indexing set

Ac={A= (A1, A0) 1 4 2 Oforalli, Y A; < d)

i€[s]

Define t 1= |A|= (S;d). We know that A can be used to index the coefficients of
any multivariate polynomial of degree d in s variables. For any coefficient vector
a = (ay),en we have the polynomial
As

b
fa(x1,. .. x5) = Z ayxy'...xg
A=(A1. - Ag)eA

34

There exists an explicit set of polynomials Fy,...,F, € Cly,...,y:] with m =
poly(d), such that

fa(x1,...,x5) is totally decomposable < Fi(a) =...=F,(a) =0

Also this set {F1,. .., F,} can be computed in poly(t,m) time.

Algorithm. Recall that we’ve already computed a black-box Bg,s for Res(C)
using algorithm [C| Here is the algorithm to compute P;,k € {r,...,n} using these

black-boxes:

for eachi € {r,...,n} do
Initialize P; = ¢.

Using part E| in remark E| and Lagrange interpolation, compute Res(Cjy,)

in coefficient form.
foreachjel=1{1,...,r—1,i}do
Let {2k }xer\;j be variables.

Substitute x; = 3} zxxi in Res(C),) and compute the coeflicient
ke\(j) ’

polynomials (in {zx }xe\(;}) corresponding to monomials in the

variables X.
Let a be the vector of coefficient polynomials calculated above.

Solve polynomial system {F;(a) = 0, € [m]} in C, using
Buchberger’s Algorithm ([S]]).

If a solution (zx)rer\(j) belongs to F~1, add the form corresponding

form x; — > as a projective form to the set #;.
kel\{j}zixk

end
end

Return the sets P, Prit,. .., P

Algorithm 2: Computing sets $; = P(Res(qwi)

35

Note that since the number of solutions were O(d*), the polynomial system has
at most these many solutions and using Buchberger’s algorithm we can find all of

them. Now let’s look at the time complexity of this algorithm.

e When we substitute and expand any monomial in Res(C|Wi), we spend O(d")

time in computing coefficients of all monomials in the X variables.

e Buchberger’s algorithm takes O(d?*") time (See [3]).

Rest of the steps are poly(r,d) time. So overall we take 0(d?*) time. Since r was
set to be a constant (= R(3,F) + 2) in remark 2} the time taken is poly(d). We
will perform this for all i € {r,...,n} and thus in poly(d,n) time we would have
computed our all the sets ; = P (Res(C|Wl_)). Now it’s time to glue them together

and compute the candidate set .

4.5 Gluing #;’s to compute #

We start with the following observation:

Observation 1. Consider projective linear forms p, € P, and p; € P;,i € {r +
r—1 r—1

1,...,n} such that for linear forms [, =) a;x; + a,x,, [; =) Bjx; + Bix; with

~ =

j=1
pr = [l;] and p; = [/;] and

l [(#F0).

rhw,_y ~ litw,
Then there exists a linear form [in variables xi,...,x,,x; which is a lift of both
forms [/, and /;. This can be seen as follows. Clearly there is some j € {1,...,r—1}
such that a; # 0. Without loss of generality let’s assume j = 1 (note that this also
implies that 8 # 0), then we define / as

[=x1 +%x2+...&xr+&xi.
@ @) Bi
and p = [/] can be seen (or defined) to be a lift on (p,,p;). Note that by definition
@, instead of saying [~ 1

defined and are equal points in P(V,_1).

we could have said that p,|, [Dify, _ are

err—l ilwr—l

Definition 24. A pair of projective linear forms (p,,p;) € P, X P; are called "glu-

able" if Priy,_ >Piyy, _, are defined and are equal points in P(V,_;).

For p, € P, our algorithm tries to find p; € P;,i € {r + 1,...,n} such that (p,,p;)
are gluable. If we can successfully find such p;’s for every i € {r + 1,...,n} then

gluing p, with all of them gives us a projective linear form p in variables x1,. .., x,.

36

For our algorithm to work in polynomial time and recover # using gluing we need

to make sure of two requirement:

Lemma 11. The following hold:

1. Foreveryp e P andi € {r,...,n}, Plw, € P;.

2. Forany p, € Py, there is at-most one p; € P;,i € {r+1,...,n} it can be glued
to.
Proof. For cleaner exposition we move these proofs to appendix [D] m|

To not break continuity, we urge the reader to continue reading at this moment and
verify the proof later. Now we are ready to give the gluing algorithm and recover

the set . Let’s summarize it in the following lemma

Lemma 12. Given sets P; and black-box Bg.s, we give a randomized algorithm

that runs in time poly(n,d) and outputs a set P P(V) such that

PriP =P1>1-o0(1).

Proof. Let’s first give the algorithm and then discuss it’s correctness and time com-

plexity.

37

Initialize P = ¢.

for p, € $. do

Pick a linear form /, = ajx; + ... + @,—1X,—1 + a@,x, such that p, = [[,].
Initialize linear form [= L.

fori=r+1tondo

Find p; € P; such that (p,, p;) are "gluable".

If more than one p; exist or no such p; exists then discard p, and break

out of this loop.
Else pick a linear form /; such that p; = [[;].

Find B € Fsuch that 8l; = a1x1 + ...+ @1 + @;x;.

Update [=1+ a;x;.

end

Ifi= a1X1+ ...+ apx,, define p =[x +...+a,x,] € P(V).
Compute Res(C)|ker(p) by restricting the black-box Bg,;.

Check if this restriction factors into a product of linear factors using
algorithm [C]and randomized black-box PIT algorithm (Schwartz Zippel

lemma).

If yes then add p to P.

end

Return P.
Algorithm 3: Gluing the #;’s

Correctness Proof - (£ c #) Consider any p € P. Just before the end of the
outer for loop using algorithm E] we check whether Res(C),,,,,, factors as a prod-
uct of linear factors or not. Algorithm [C| returns the multi-set of projective linear
factors of Res(C) (with substitution) and then using randomized black-box poly-
nomial identity testing(Schwarz-Zippel lemma) we can check whether the product

computes the same polynomial as Bg,s or not. So with probability 1 — o(1) we will

38

be right in checking whether p is a "factoring form" of Res(C) or not and thus with
probability 1 — o(1), p € P. Since the size of P is less than d*, with probability
1-o(1),P cP.

(P c P)Let p € P. By part 1| of lemma [11| we know that Piw, € P for every
i € {r,...,n}. Thus the outer for loop is called for p|,, at some point of time. By
part@of lemma@, there is only one form py,, ineach #;,i € {r +1,...,n} gluable
to py,, and thus we glue py,, with each py,, ,i € {r + 1,...,n} and form p. Since p
is a factoring form with probability > 1 — o(1) it passes all the checks after the for
loop and thus gets included in P. So with probability 1 — o(1) p € P. Since P has
size < d*, with probability 1 — o(1), P c P

Time Complexity - Since |P,|= poly(d), the loops run poly(n,d) times. We use
algorithm |C| which takes poly(n,d) time. All other steps can easily be seen to be
poly(n,d) time.

39
Chapter 5

STEP TWO : RECONSTRUCT LAYER Il OF C

For this chapter we fix ¢ € (0, %), k = max(R(3,F) +2,R(4,F)) and Ny to be a
constant > a% + 2k where « is the constant in theorem

5.1 Introduction
Recall that we are trying to reconstruct the XI1X(2) structure of a polynomial (given
as a black-box) C(x) = M| + M, with M, M, products of linear forms. In chapter

Ml we gave efficient randomized algorithms to compute the following:

1. The set P of "factoring forms" of polynomial Res(C). (See definition[I9] for

definition of factoring form)

2. The multi-set P(Gcd(C)Int(C)) containing the projective linear factors of
Gcd(C)Int(C). These are same as projective linear factors of polynomial
C(x).

3. A black-box Bg.s computing the polynomial Res(C).

(See definition |1 7| for definitions of Int(C), Res(C)).

In this chapter we will use all of the above and compute the polynomials My, M, as

lists of linear forms finishing our reconstruction job.

Let’s summarize the results of this chapter in the following theorem. It uses defini-
tion[I7]and [19]from chapter [2)

Theorem 8. Let C be a homogeneous XI1X(2) circuit computing a degree d poly-
nomial C(X) in n variables xi,...,x,. Assume that srank(C) > Ny (defined at

beginning of this chapter). Further assume we have access to the following:

— parameters n,d.

— black-boxes computing polynomials C(x) and Res(C).

40

— multi-set P(Ged(C)Int(C)) as an explicit list of projective linear forms.

— set P(Res(C)) as an explicit list of projective linear forms.

We give a randomized algorithm that runs in time poly(n,d) and with probability
1 — o(1) outputs (as explicit lists of linear forms) two polynomials My (x), M (X)

which are both products of linear forms such that

C(X) = Mi(X) + My (X)

5.2 Lines connecting forms in P(R) (P(B) resp.) to P(M,)(P(M;) resp.)
Recall definition (11| which defines L(p,S) as the multi-set of lines connecting p
and S, where p € P(V) is a projective linear form and S c P(V) is a multi-set of

projective linear forms.

Lemma 13. Given multi-sets P(Gcd(C)Int(C)), black-box Bg.s (computing poly-
nomial Res(C)) and a form r € P(R), there is a poly(n,d) time algorithm to com-
pute the multi-set of lines L(r,P(M;)) (Recall that P(M,) = P(B) U P(Gcd(C)),

where U denotes the multi-set union).

Proof. Let r¢ be the largest power of r dividing Ged(C)Int(C). This implies that
r¢ divides Ged(C) (By lemma [we know that P(R) N P(Int(C)) = ¢). Thus
Ged(C) = r¢G’ and

P(Ged(C)Int(C)) = {r,...,r} UP(G") UP(Int(C)).
e times

So we iterate through P(Gcd(C)Int(C)) and remove all occurrences of r (this takes
poly(n,d) time). Then we will be left with P(G”) U P(Int(C)). Note that

G'Int(C)Res(C) = G'(R + B).

On restricting both sides to the hyperplane ker(r) (see definition [§) we get

Gl

|ker(r)

Int(C)lker(r) Res(c)lker(r) = G,

|ker(r) Blkgr(r) .

(5.1)

Both sides are non-zero since r does not divide G’, B. Now by lemma 2| for any
p # r and [€ V such that p = [/], line joining r,p is the same as line joining

rs [,]- The multi-set of lines joining r with P(M>) then becomes

L(r,P(M)) = {fl(r,p) : pdividesG, B }, since Mr = r°G’'B. (5.2)

|ker(r) |ker(r)

41

and so using the above two equations we get,
L(r,P(M)) = {fl(r,p) : p divides Gfkmr)lnt(C)|k”(r)Res(C)hm(r)}. (5.3)
={fl(r,p) : p € P(G'Int(C))} U {fl(r,p) : p divides Res(C)hm_(r)}

We know the multi-set of P(G’Int(C)) (by removing instances of » from P(Ged(C)Int(C)))
and so we can compute the lines {fl(r,p) : p € P(G'Int(C))}. Using black-box
Bges for Res(C) we can compute black-box for Res(C)y,,,,, (by feeding the black-
box inputs from ker(r)) and then factorize it using algorithm |C} So we also have
all the projective linear factors of Res(C)y,,,., and we can find all the lines join-
ing r to it’s factors. This process clearly takes poly(n,d) time since algorithm [C|
runs in poly(n,d) time and there are less than or equal to d factors = forming the
lines takes poly(n,d) time. Equation [5.3]implies that this process computes the set
L(r,P(M)). 0

We summarize the whole algorithm below.

Initialize L(r,P(M3)) = ¢.

for each p(# r) € P(Ged(C)Int(C)) do
Add the line fI(r,p) to L(r,P(M,)).

end

Using algorithm [Cin appendix [C|and the black-box Bg, for Res(C), compute
the multi-set of factors P(f) (see definition[I0) where f = Res(C),,,,- fisa

product of linear forms since r is a factoring form.
for each projective linear form p in P(f) do

Add the line fl(r,p) to L(r,P(M3)).
end

Return L(r,P(M>)).
Algorithm 4: Find connecting Lines

Correctness Proof - Same as proof of the lemma above.

42

Time Complexity - Both the for loops run poly(n,d) times and algorithm [C]takes
poly(n,d) time. So the overall complexity is poly(n,d).

Even though we gave the algorithm only for » € P(R), a similar algorithm works
for b € P(B) computing the set of lines L(b,P(My)).

5.3 Termination Case : Reconstructing one of P(M;),P(M,) does the job

We discuss a situation which arises at the end of each reconstruction algorithm
in this chapter. Assume we have been able to reconstruct one of the two multi-sets
P(M;),P(M;). Note that these multi-sets contain projective linear factors of My, M,
respectively. We will give an algorithm to reconstruct both My, M> as explicit lists
of their respective linear factors. Without loss of generality let’s assume we know

the multi-set P(M;). We summarize this in the following lemma.

Lemma 14. Let C be a homogeneous X11X(2) circuit computing a degree d poly-
nomial C(x) = My + M, where both My, M, are products of d linear forms in n
variables xi,...,x,. Assume that srank(C) > Ny (defined at beginning of this
chapter). Further assume that we are given a set S of projective linear forms. We

give an algorithm that works in time poly(n,d) and does the following:

o IfS #P(M)) and S # P(M,), it outputs "fail".

o IfS =P(M) or S = P(M;) with probability 1 — o(1) it outputs two products
(of linear forms) My, M, (each given as a list of its linear factors) such that
C(x) = My + M,. When it does not output the two products it outputs "fail".

Proof. We first give the algorithm and then talk about it’s correctness and time

43

complexity. Here is the algorithm:

1.

2.

LetS = {p1,...,pq}. Fix linear forms /; such that p; = [[;].

Restrict black-box B to W, = {(wq,...,w;,0,...,0)} of dimension
r = R(4,F) and interpolate using O(d") points from W, to get coefficient

representation of Cj;,, .

. Fori € [d], compute /;),, by plugging x,+1 = ... = x, = 0. Compute the

polynomial M (%) = Iy, ...la),, asalistof coefficients by multiplying out

all linear forms.

. Let @ be a variable and compute the coefficient vector of the polynomial

C(x) — aM(x). Note that every entry of the vector is a degree 1 polynomial

in «.

. Plug the coefficient vector of C(X) — @M (X) into the system of polynomials

given by brill’s equations (see lemma [10) giving a polynomial system in one

variable a.

Using your favorite exact root finding algorithm for univariates, solve for .

If no (or multiple) « is found output "fail".

. Else using algorithm [C|compute all projective linear factors (explicitly) of

C(x) — aly...l; (use black-boxes for C(x) and /1 ...[;). If there are d such
forms(with multiplicity), store them in a multi-set S’. Let S’ = {l{/,.. ., l;l}
and repeat all previous steps S’ instead of S and compute all possible @’
such that Cj,, — 'l S

’
Lw, =" " "dlw,

deterministic black-box polynomial identity testing algorithm for ZI1X(4)

is a product of linear forms. Using

circuits, if C(x) —aly...lg —a’l} ...l is an identically zero polynomial.

. If yes then we return the gates of C(X) as

M1=a’11...ld and M2=af’l’1...l:1.

Output is given as two lists of linear forms {a!/1,[>,...,l;} and
’717 7 ’
A TN

. If for none of the a’s, we were able to reconstruct, output "fail".

Algorithm 5: Reconstruction using one of P(M;),P(M;)

44

Correctness Proof - First let’s consider the case when S # P(M;) and S #
P(M,). Assume that S = {pi,...,pqs} and [; are such that p; = [[;]. We show
that the algorithm outputs "fail”. If not then the algorithm would have returned
lists of linear forms and before that it would have checked using deterministic poly-
nomial identity testing algorithm (in [25]) for XI1X(4) circuits whether C(X) —
aly...lg—a'l]...l); = 0. But this implies that S is actually one of the multi-sets

P(M,),P(M;). So we have a contradiction and the algorithm outputs "fail".

For the other part without loss of generality assume that S = P(M;). By step 1 we
would have assumed § = {p1,...,p,} and fixed linear forms /; such that p; = [[;].
Since S = P(M;) we know there exists @ € F such that C(x) = al;...l, + M,
where M, is a product of linear forms. Also srank(C) > R(4,F) = (by theorem4))
that the circuit is unique and thus « is unique. Part[2]in lemma [9]implies that with
probability 1 — o(1), srank(Cy,,) = r = R(4,F), further implying that £ITX(2)
structure of C (), will be unique. This shows that there is a unique « such that
C(X)y, —al llw, - - - lflw, is a product of linear forms. So the coeflicients (in terms
of @) of C(x)y, —alyy, ..., willsatisfy brill’s equations (see appendix [B) and
on solving them we would be able to determine the unique « exactly. If an o was
found then M, = C(X) — !, ...[; factors into a product of linear forms. To find
these linear forms we used the factoring algorithm [C| which outputs a multi-set of
projective linear forms. With high probability this multi-set will be P(M;) since
with probability 1 — o(1) the algorithm |C| outputs the correct factors. Again on
repeating steps 1 — 6 above with this multi-set P(M>) we would be able to compute
(with probability 1 — o(1)) the unique @’ such that C(x) — @'l} .. .1; is a product of
linear forms. So till now we would have computed two products M, M, such that
with probability 1 — o(1), C(x) = M; + M>. We change this into only one sided
error i.e. make sure that if we output M;, M, they are always right by using the
deterministic XI1X(4) polynomial identity testing algorithm in [25]. Therefore in
this case with probability 1 — o(1) we will output My, M, and they will be correct.

Time Complexity - Steps 1—4 are clearly polynomial time since r is constant. Step
5 and 6 involve solving poly(d) polynomials in one variable. This can be easily
done by solving one of them and satisfying the rest. This clearly takes poly(d)
time. To solve one equation we could factorize into irreducibles over F and look
for linear factors. This is also polynomial time. Step 7 invokes algorithm [C] repeats
steps 1 —6 and performs the polynomial time deterministic PIT for XITX(4) circuits,

thus taking poly(n,d) time. Therefore the algorithm takes poly(n,d) time overall.

45

5.4 One of the multi-sets P(R),P(B) is low dimensional

Recall that we’ve assumed srank(C) = dim(P(R) U P(B)) > Ny (defined at the
beginning of this chapter). In this section we show that our task is much easier if
any of the two sets P(R),P(B) has dimension < Ny — 1. Without loss of generality
we assume dim(P(B)) < Ny — 1. Since dim(P(R) U P(B)) > Ny, there exist
independent r{,r, € P(R) such that fi(ry,r2) N fI(P(B)) = ¢.

Our very first result in this case will make life a lot simpler. We claim that the
polynomial /nz(C) is a constant i.e. the only linear factors of C are the ones dividing
Gcd(C), in other words the multi-set P(/nt(C)) is empty and P(Gced(C)) is equal
to P(Ged(C)Int(C)), which has already been computed. This also means Bg,; (to

which we have access) is a black-box for Sim(C).

Claim 1. P(Int(C)) = ¢.

Proof. Assume p € P(Int(C)). Then R+B = Int(C)Res(C) = R,,.,, = ~Blier(p)-
Using lemmaﬁ] we know that P(R) N P(Int(C)) = ¢ and thus both Ry, . Bj..(»)

are non-zero.

By unique factorization there exist By, B, dividing B such that ry), (p),Bl lker(p) AT€
scalar multiples and ry,, . B2, ,, are scalar multiples. A little bit of manipula-
tion implies that ry € fl(p,[B1]). Similarly r, € fl(p,[b>]). We can use these two
to eliminate p and conclude that fI(ry,r2) N fl(b1,by) # ¢ which contradicts the

choice of rq,r. O

Now we need to reconstruct P(R),P(B). The form r; (that we chose above) outside
P(B) turns out to be a good form (see definition [20)) and helps us recover the entire
P(B). Please see section [2.4] for better understanding of the following lemma and

algorithm.

Lemma 15. There exists ri € P(R) and r, € P(R) (different from ry) such that ry
is a good form for ({r2},P(B)) and the "reconstructed multi-set" (see definition[21))
in this case P(B),, = P(B).

Proof. Let ry,r; be as chosen at the beginning of this section (also used in previous
claim). Clearly r; # ry. Also fl(ry,r2) N fI(P(B)) = ¢ by choice of r,r;. There-
fore by lemmal6| we see that r; is a good form for ({r,},P(B)) and the reconstructed
multi-set is P(B),, = P(B). O

46

Now we are ready to give the reconstruction algorithm in this case. We summarize

it in the following lemma.

Lemma 16. Let C be a homogeneous LI1X(2) circuit computing a degree d poly-
nomial C(X) in n variables x1,...,x,. Assume that srank(C) > Ny. Also assume

we have access to the following:

— parameters n,d.
— black-boxes computing polynomials C(X) and Res(C).
— multi-set P(Gced(C)Int(C)) as an explicit list of projective linear forms.

— set P(Res(C)) as an explicit list of projective linear forms.

Further assume that dim(P(B)) < Nog — 1. We give a randomized algorithm that
runs in time poly(n,d) and with probability 1 — o(1) outputs (as explicit lists of lin-
ear forms) two polynomials M\ (x), M, (X) which are both products of linear forms
such that

C(x) = Mi(X) + My (%)

Proof. Let’s first give the algorithm and then discuss correctness and time complex-

ity.

47

for all pairs (ri,r;) € P X P do

Using algorithm [compute the multi-sets L (r;,P(M>)). From this remove
all lines in L(r;,P(Gcd(C))) (Note that P(Gcd(C),Int(C)) = P(Ged(C))
in this case). This gives multi-sets of lines L(r;,P(B)),i € [2].

Using these multi-sets £ (r;,P(B)) and forms ry,r as input to algorithm [I]

compute multi-set P(B),, i.e. the "reconstructed multi-set".

Combine multi-sets P(B),, and P(Gcd(C)). Send this new multi-set
(guessing that it is P(M)) as input to algorithm [5|and try to compute
M, M,.

If successful return My, M. Else continue.

end

Return "fail".
Algorithm 6: P(B) is low dimensional

Correctness Proof - Suppose that the algorithm returns "fail”. We know that the
outer most for loop will at some point of time use rj,r, mentioned in lemma [I5]
For this choice we know that the reconstructed multi-set is P(B) which is actually
reconstructed by algorithm[I] Therefore the input to algorithm[5|was actually P(M5)
but it did not reconstruct My, M,. The probability that this could happen is small.
Therefore the probability that the algorithm outputs "fail" is small.

Suppose the algorithm returns two polynomials M;, M, (as explicit lists of linear
forms), then by the correctness of algorithm [5] it ought to be correct since that is
exactly the step which returns the two products My, M, and always gives the right

answer (uses deterministic polynomial identity testing at end).

Therefore with probability 1 — o(1) we output two polynomials M, M, (as lists of
linear forms) such that C(x) = M| + M.

Time Complexity - The for loop runs poly(n,d) times. Each algorithm called
runs in poly(n,d) time as discussed in their proofs and therefore the algorithm

takes poly(n,d) time.

48

5.5 Both multi-sets P(R),P(B) are high dimensional
Now we assume that dim(P(R)) > No— 1 and dim(P(B)) > Ny — 1. Define the sets

R = supp(P(R)) and B = supp(P(B))] Without loss of generality we also assume
that |R|> |B].

Define a function v(8) = 36 — 462. Here is the main lemma for this section.
Lemma 17. Let C be a homogeneous 11X (2) circuit computing a degree d poly-

nomial C(X) in n variables x1,. ..,x,. Assume that srank(C) > Ny. Also assume

we have access to the following:

— parameters n,d.
— black-boxes computing polynomials C(x) and Res(C).
— multi-set P(Ged(C)Int(C)) as an explicit list of projective linear forms.

— set P(Res(C)) as an explicit list of projective linear forms.

Assume that dim(P(R)) > Ny — 1 and dim(P(B)) > Ny — 1. We give a randomized
algorithm that runs in time poly(n,d) and with probability 1 — o(1) outputs (as ex-
plicit lists of linear forms) two polynomials M\ (x), M,(X) which are both products

of linear forms such that

C(X) = Mi(X) + My (X)

To prove this we follow a number of steps. But first we define a bunch of multi-sets
that will be useful throughout this section. We will try to give an intuition behind
most definitions. Then we will prove lower and upper bounds on the size of multi-
sets we define. Along with this whenever required we will also talk about efficient
computation of these multi-sets and related objects. Finally we give the proof of
the above lemma accomplishing the reconstruction goal.

Definition 25. For every choice of elements ry,...,ry € R and by,...,by € B, we
define the sets

R(riy...,rip)={reR:r¢ fl(ry,...,rx), and
fl(ry,...,re,r) N(RUB) C fl(ry,...,rr) U{r}}, and

! For a multi-set X, supp(X) is the set of distinct elements from X.

49
B(by,...,by) ={beB:b¢ fl(by,...,b), and
fl(by,...,br,,b) N (RUB) C fl(by,...,by) U {b}}.

Basically these are points r € R (b € B resp.) lying outside fI(ry,...,rr) (fl(by,...,by)
resp.) such that the flat r (b resp.) forms with ry,...,ri (by,...,bx resp.) is ordinary
inside the set R U B (for definition of ordinary flat see appendix [F).

Definition 26. We also give names to the complements of R(ry,...,r;) (B(by,...,by)
resp.) inside R (B resp.). Define

R'(riy...,rx) =R\ R(r1,...,rx) and B'(by,....by) = B\ B(by,...,by).

Next we define certain sub multi-sets of points in P(Gcd(C)Int(C)). For any choice
of independent points py,...,pr we look at points p € P(Ged(C)Int(C)) such

that p ¢ fl(pi1,...,pr) and the flat fl(py,...,px,p) \ fL(p1,...,px) contains two
distinct points from the set $ we computed earlier in section 4]

Definition 27. Let py,...,pr € P(V) be independent points, we define

G(p1,....pk) ={p € P(Ged(C)Int(C)) : p & sp{p1,...,pr}, and
[(fl(p1,....pi-p) \ fL(p1,....p)) NP> 2} (5.3)

We will be concerned with the above sets only when py,. . ., py are all inside P(R) or
all inside P(B). The aim will be to show that for appropriate choices of py,...,pk,
central projections of these multi-sets with respect to f/(p1,. .., px) has small size.
We will need to compute lines going in to these sets and to make that work we show
that whenever R(ry,...,rr) (B(by,...,by) resp.) is non-trivial then P(Int(C)) C
G(ri,....,rx) (G(Dy,...,by) resp.).

We define a subset of P(R) (P(B) resp.) and later give an efficient algorithm to
compute this set. This set will give us points which along with an appropriate choice
of ri,...rr (by,...,by resp.) will reconstruct points in P(M;) (P(M;) resp.).

Definition 28. Given independent points ry,...,r; € R and by,...,by € B, we
define the sets

S(ri,....,re)={peP:Vielkl, fli(p,ri)yN(G(r1,...,rx) UB) = ¢}, and

S(by,....by) ={peP:Vielkl,fl(p,bi)) N (G(b1,...,br) UR) = ¢}.

50

Now we are ready to prove results about the multi-sets we defined. Almost all
proofs are long and are given in the appendix. We suggest the reader to believe the

lemmas and proceed to the main theorem and later come back to see the proofs.

Lemma 18. The following holds:

1. Ifry,...,rp € R, then forany p € G(ry,...,r¢)

(fl(r1,....ri,p\fL(r1,...,re)) and R (ry,...,rx)UB intersect non-trivially.

2. Ifby,...,b, € B, then for any p € G(by,...,by)

(fl(by,....bi,p)\fL(b1,...,by)) and B'(by,...,b)UR intersect non-trivially.

3. R(ri,...,rr) # ¢ = P(Unt(C)) C G(r1,...,rr). Similarly B(by,...,by) #
¢ = P(Int(C)) c G(by,...,by).

4. Given independent points ry,...,rx € R (by,...,by € B resp.), r € R
(b € B resp.) the multi-set P(Ged(C)Int(C)) and the set P, there exists
efficient algorithms to compute the multi-set P(M>) \ G(r1,...,rr) (P(My) \

G(by,...,by) resp.) and multi-sets of lines L(r,G(r1,...,rx)) (L(b,G(by,...,by))

resp.).

Proof. Since the proof is long, for better exposition we move it to the appendix.

See 28] O

Lemma 19. The following hold for all independent ry,. . .,r; € R.

1. R(ri,...,rx) € S(r,...,rx) C P(R).
2. B(rl,. . .,}’k) C S(rl,. . .,}’k) C P(B).

3. Given ry,...,rx (by,...,byx resp.), the set P, multi-set P(Gcd(C)Int(C))
and black-box Bpg,;, there exist efficient algorithms to compute S(ry,...,ry)
(S(by,...,by) resp.).

Proof. Since the proof is long, for better exposition we move it to the appendix.
See29 o

51

Now we come to the application of robust high dimensional Sylvester gallai the-
orems from [3]] and [6]. This will tell us about a really good choice for ry,...,r;

(b1,...,by resp.) in all the above lemmas.

Lemma 20. One of the following always holds:

1. Ary,...,rg € R |R(rq,...,r)|= v(O)|R], or

2. dby,....br € R:|B(by,...,bp)|= v(0)IR]|.

Proof. Since the proof is long, for better exposition we move it to the appendix.
See 30 O

Lemma [20] then has the following obvious corollary:

Corollary 1. One of the following always holds:

1. If Part I in LemmalZZ)]holds then |R'(r1,...,ri)|< (1 =v(0))|R|, or
2. If Part Il in Lemma[20\holds then |8’ (by,. . .,by)|< (1 — v(8))IRI.
Proof. 1. Part I of Lemma [20| implies that R(ry,...,rx) = v(6)|R], therefore
R'(r1,....rk) < [RI=v(0)IR]= (1 = v(6)IRI.

2. Similarly Part IT of Lemma 20| implies that B(by,...,br) > v(5)|R], then
B'(by,...,br) < [B]-v(O)IR|< [R|-v(9)IR|= (1 = v(6))IR.

All of these results above were proved to show the existence of certain good forms.
This is the main ingredient in proof of lemma|l/| We discuss the existence of good

forms in the lemma below.

Lemma 21. The following holds:

1. If Part I of Lemma 20| holds, then for any sub multi-set X C G(ri,...,ry)
with dim(X) > Ny — 1, ry is a good form for (S(ry,...,rr),X).

2. If Part Il of Lemma |20, holds, then for any sub multi-set X C G(by,...,by)
with dim(X) > Ny — 1, by is a good form for (S(by,...,b;),X).

52

Proof. We will replace S(ry,...,ri) (S(by,...,by) resp.) in the this lemma with
R(riy...,rx) (B(by,...,br) resp.). It can be easily seen that this implies the re-
quired statements since by lemmaabove R(ry,...,rx) € S(ri,...,re) (B(by,...,by) C
S(by,...,by) resp.).

We will just show one of the two parts given in this lemma, the other follows
identically. Consider the choice of ry,...,r; as in Lemma @ We know that
R(r1,...,rr) = v(6)|R]|. Note that lemma[l8]implies that G (r1, . . .,rx) € R'(r1,...,rg)VU
B. Let X be any sub multi-set of G(ry,...,r) such that dim(X) > Ny — 1. We

want to show that r; is a good point for (R(r1,...,r;),X).

Let’s first fix [,...,ly € V such that r; = [[;]. Let W = sp(ly,...,I;) and W+ be
any subspace of V such that W @ W+ = V. Using definition [9} we consider central
projections of points in X and R(ry,. . .,rx) (note that no pointin X or R(ry,...,rx)
belongs to fI(ry,...,r;)) with respect to the flat fI(ry,...,r;) on to the projective
space P(W+). We will refer to this projection as a map n from here onwards. The

following are easy to see (we leave the verification for the reader).

1. For distinct r,r’ € R(ri,...,rr), n(r) # n(r’) (by definition of the set
R(r1,...,rr)) and thus |7 (R(rq,...,re))|= v(O)|R].

2. Letp e X ¢ G(ry,...,rr). By lemmal[l8] for every p € G(ry,...,rk), there
exists p’ € R'(r1,...,rr) U B such that

p e fl(ri,...,riup) \ fl(r1,....rp).

Thus 7(p’) = n(p) giving us the bound |7 (G (ry,...,rp))| < R (r1,...,r)|+]|B|<
(I =v(OIRI+IRI= (2 = v(6))IRI.

Using lemma [31| we know that Z;Z’g) < %. The two sets 7(X),n(R(r1,...,rr))
are disjoint sets in P(W=). If not, consider ¢, € R(r1,...,rx) such that 7(ryy) €
n(X). This implies that ry.y € fI(ry,...,rk,p) \ fl(ry,...,r;) for some p €
X. Also, since X ¢ G(ry,...,rr), by lemma we know that there is a p’ €

R'(ry,...,rx) UP(B) such that p’ € fl(ry,...,rk,p) \ fl(ri,...,re).

Together these imply that p’ € fl(ry,...,rk,rk+1)\fL(r1,...,rr). Clearly by defini-
tion of R(ry,...,ry) the form p” ¢ R'(ry,...,ry) (since the flat fI(ry,. .., 7k, "k+1)
is ordinary in R U 8B). It also cannot belong to P(B) due to the exact same reason.

Therefore we have a contradiction and 7(X), 7 (R(ry,...,r;)) are disjoint.

53

Since we took a central projection with respect to fI(ry,...,rr), dim(X) > Ny —
1 -k > % inside P(W+). By corollarywe get that there exists a line inside P(W+)
which has exactly one point from 7(X) (say n(p) with p € #) and atleast one point
from R(ry,...,rr) (say m(rgs1) with riyp € R(ryq,. .. ,rr)). We will show the three
conditions in definition 20 hold for the triple (r1,7x+1,p).

1. Since rgy1,p € fl(r1,...,rr), clearly ri,rr4; are distinct and ry, p are dis-

tinct. p,ry4q are distinct as 7(p) and 7 (ry4 1) are distinct points in P(W).

2. r1,rx+1 and p are independent. If not then the central projections n(p) and

n(ri+1) would be equal which is not true.

3. Let ¥ = fI(r1,ri+1,p). Assume there is another form p’ € X such that
p € W. Let li41,0p,1, € V such that iy = [lge1],p = [[p] and p’ = [Iy].
p’ € fl(r1,ri+1,p) = there are scalars a,b,c (not all zero) such that [, =
aly +blis+cly. Ifb=c=0thenl, = al; = p’ = ry, which cannot happen
asp’ ¢ fl(ry,...,ry) (remember it is a point of G(ry,...,rr)). So at least one
of b,c is non-zero. Write [y 41 = Wiy + wi,, With wip € Wowit, e W =
i1 = [wiJand [, = w), + w[f with w, € W and wlﬁ eWt=p= [wlﬂ.
Therefore [, = aly + bwii1 + bwy, | +cw, + cw; = lprle =bwi,, + cw;.

Atleast one of b, ¢ is non-zero and thus 7(p’) = [IP'IWL] € fl([w]trl], [w;]) =

fl(n(rg+1),7(p)). Both n(p’),n(p) are in X and the line fl(n(ri+1),7(p))

contains only one point from 7(X) = n(p) = n(p’) = b = 0 and thus

P’ € fl(r1,p).

Therefore 71,741, p satisfy all requirements in definition 20| and thus r; is a good
form for (R(ry,...,ry),X). O

Now we are ready for the proof of lemma (17| which was the main reconstruction

result of this section.

Proof. We first give the algorithm promised in the lemma and then discuss correct-

54

ness and time complexity.

Fix k = R(3,F) + 2.
for eachry,...,ry € P do

Compute multi-set K = P(M») \ G(r1,...,r) using algorithm in last part of
lemma I8 and define multi-set X = G(ry,...,r) (note that we do not know
X).

Compute the set S(ry,...,rx) using algorithm in last part of lemma[I9)}

Compute multi-set of lines L) = L(r,G(r1,...,rx) UB) and
L(s) = L(s,G(r1,...,rk) UB) forall s € S(ry,...,re) using algorithm in
last part of lemma|[I8§]

while true do

Assume dim(X) < Ny — 1. Since dim(R U B) > Ny, there exists

r1 # rp € R such that sp(ry,r2) N sp(X) = ¢. Therefore r; is a good form
for ({r2},X) by lemma(I5] Using algorithm[I]compute X and update

K =K U X. Using algorithm [5|compute M;, M,. If output is not "fail”
then break out of this while loop and output My, M,. Else continue

Using ry, set S(ry,...,r¢) and lines L), L(s)(¥s € S(ry,...,r)) as

input to algorithm |1 recover a multi-set of points X, .
If X, = ¢. Then break out of this while loop.

Else update K = K UU,,, L(r1) = L(r1) \ L(r1,X;,) and
L(s) = L(s)\ L(5,X,,) (forall s € S(rq,...,1)).

Update X = X'\ X,,.

end
end

Output "fail".
Algorithm 7: Both P(R),P(B) have large dimension

Correctness - The algorithm returns polynomials M;, M, using algorithm [5| and

therefore if an answer is returned it is always correct.

Suppose we output "fail”. We will show that the chances of this happening are
very small (o(1) to be precise). We know by lemma 2] that there exists a choice of

55

ri,...,r, suchthatr is a good form for (S(ry,...,rr),X) forall X € G(ry,...,rk)
and dim(X) > Ny — 1. Since we output "fail” at some point of time we must have

used these ry,. . .,ry in the for loop. Clearly from the algorithm at any point of time
X C g(l”l,. . .,rk).

If dim(X) < Np — 1, then clearly algorithm [[] would not recover X with probability
< o(1). So the probability we output fail is small.

If dim(X) > Ny — 1 then by lemma 21| we would have recovered X,, ¢ X. This
would have gone on until dim(X) < Ny — 1 and then with probability < o(1) we

would not recover X. So we output fail with probability o(1).

Therefore with probability 1 — o(1) we output two products My, M, and our answer

is always right.

Time Complexity - All algorithms used run in poly(n,d) time. The outer for loop
runs poly(n,d) times since k is a constant. So for the entire algorithm to run in
poly(n,d) time we need to show that the while loop runs poly(n,d) times. If at any
stage dim(X) < No—1 then we halt in one step. Else if X, = ¢ we break out of the
loop. Else K = K U X,, and so the size of K grows at least by 1. K C P(M;) and
so it can grow at most poly(n,d) times, thus the while loop runs poly(n,d) times.

O

56
BIBLIOGRAPHY

[1] Manindra Agrawal. “Proving lower bounds via pseudo-random generators”.
In: FSTTCS 2005: Foundations of Software Technology and Theoretical Com-
puter Science, 25th International Conference, Hyderabad, India, December
15-18, 2005, Proceedings, volume 3821 of Lecture. Springer, 2005, pp. 92—
105.

[2] V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. “New Results on
Noncommutative and Commutative Polynomial Identity Testing”. In: 2012
IEEE 27th Conference on Computational Complexity (2008), pp. 268-279.
1ssN: 1093-0159. por: http: //doi . ieeecomputersociety.org/10.
1109/CCC.2008.22.

[3] B. Barak et al. “Rank bounds for design matrices with applications to com-
binatorial geometry and locally correctable codes™. In: Proceedings of the
43rd annual ACM symposium on Theory of computing. STOC ’11. San Jose,
California, USA: ACM, 2011, pp. 519-528. 1sBn: 978-1-4503-0691-1. URL:
./BDWY11.pdf.

[4] Amos Beimel et al. “Learning Functions Represented As Multiplicity Au-
tomata”. In: J. ACM 47.3 (May 2000), pp. 506-530. 1ssn: 0004-5411. por:
10 . 1145 /337244 .337257. vrL: http://doi.acm.org/10.1145/
337244.337257.

[5] B. Buchberger. “A Theoretical Basis for the Reduction of Polynomials to
Canonical Forms”. In: SIGSAM Bull. 10.3 (Aug. 1976), pp. 19-29. 1ssn:
0163-5824. por: 110 .1145/1088216.1088219. urL: http://doi.acm.
org/10.1145/1088216.1088219.

[6] Z.Dvir, S. Saraf, and A. Wigderson. “Improved rank bounds for design ma-
trices and a new proof of Kelly’s theorem”. Forum of mathematics - Sigma
(to appear). 2012. urL: DSW12 . pdf.

[7] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. “Automata, Lan-
guages, and Programming: 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I”’. In: ed. by Javier Es-
parza et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. Chap. Test-
ing Equivalence of Polynomials under Shifts, pp. 417-428. 1sBN: 978-3-662-
43948-7. por:|10.1007/978-3-662-43948-7_35. urL: http://dx.doi.
org/10.1007/978-3-662-43948-7_35.

[8] Zeev Dvir and Amir Shpilka. “Locally decodable codes with 2 queries and
polynomial identity testing for depth 3 circuits”. In: SIAM J. COMPUT 36.5
(2007), pp. 1404-1434.

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
./BDWY11.pdf
http://dx.doi.org/10.1145/337244.337257
http://doi.acm.org/10.1145/337244.337257
http://doi.acm.org/10.1145/337244.337257
http://dx.doi.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
http://doi.acm.org/10.1145/1088216.1088219
DSW12.pdf
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35
http://dx.doi.org/10.1007/978-3-662-43948-7_35

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

57

Izrail Moiseevitch Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky.
Discriminants, resultants, and multidimensional determinants. Mathematics
: theory & applications. Autre tirage de 1’édition Birkhduser chez Springer
Science+ Business Media. Boston, Basel, Berlin: Birkhduser, 1994. 1ssn: O-
8176-3660-9. urL: http://opac.inria.fr/record=b1103027.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct
Random Functions”. In: J. ACM 33.4 (Aug. 1986), pp. 792—807. 1ssn: 0004-
5411. por: 10.1145/6490.6503. urL: http://doi.acm.org/10.1145/
6490.6503.

Ankit Gupta, Neeraj Kayal, and Satya Lokam. “Reconstruction of Depth-4
Multilinear Circuits with Top Fan-in 2”. In: Proceedings of the Forty-fourth
Annual ACM Symposium on Theory of Computing. STOC ’12. New York,
New York, USA: ACM, 2012, pp. 625-642. 1sBN: 978-1-4503-1245-5. por:
10.1145/2213977.2214035. urL: http://doi.acm.org/10.1145/
2213977.2214035.

Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. “Efficient Recon-
struction of Random Multilinear Formulas™. In: IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011. 2011, pp. 778-787. po1:|10.1109/F0CS.2011.
70. urL: http://dx.doi.org/10.1109/F0CS.2011.70.

Ankit Gupta, Neeraj Kayal, and Youming Qiao. “Random arithmetic formu-
las can be reconstructed efficiently”. English. In: computational complexity
23.2 (2014), pp. 207-303. 1ssn: 1016-3328. por: |10 . 1007 /s00037-014 -
0085-0. urL: http://dx.doi.org/10.1007/s00037-014-0085-0.

J. Heintz and C. P. Schnorr. “Testing Polynomials Which Are Easy to Com-
pute (Extended Abstract)”. In: Proceedings of the Twelfth Annual ACM Sym-
posium on Theory of Computing. STOC ’80. Los Angeles, California, USA:
ACM, 1980, pp. 262-272. 1sBN: 0-89791-017-6. por: |10 . 1145 /800141 .
804674. urL: http://doi.acm.org/10.1145/800141.804674.

Begnaud Francis Hildebrand. Introduction to Numerical Analysis: 2Nd Edi-
tion. New York, NY, USA: Dover Publications, Inc., 1987. 1sBN: 0-486-65363-
3.

Erich Kaltofen. “Effective Noether Irreducibility Forms and Applications”.
In: Proceedings of the Twenty-third Annual ACM Symposium on Theory of
Computing. STOC *91. New Orleans, Louisiana, USA: ACM, 1991, pp. 54—
63. 1sBN: 0-89791-397-3. por: |10 . 1145 /103418 . 103431, urL: http://
doi.acm.org/10.1145/103418.103431.

Erich Kaltofen and Barry M. Trager. “Computing with Polynomials Given
Byblack Boxes for Their Evaluations: Greatest Common Divisors, Factor-
ization, Separation of Numerators and Denominators”. In: J. Symb. Com-
put. 9.3 (Mar. 1990), pp. 301-320. 1ssx: 0747-7171. por: 10.1016/S0747 -

http://opac.inria.fr/record=b1103027
http://dx.doi.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://doi.acm.org/10.1145/6490.6503
http://dx.doi.org/10.1145/2213977.2214035
http://doi.acm.org/10.1145/2213977.2214035
http://doi.acm.org/10.1145/2213977.2214035
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1109/FOCS.2011.70
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1007/s00037-014-0085-0
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://doi.acm.org/10.1145/800141.804674
http://dx.doi.org/10.1145/103418.103431
http://doi.acm.org/10.1145/103418.103431
http://doi.acm.org/10.1145/103418.103431
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6

58

7171(08) 80015-6. urL: http://dx.dol.org/10.1016/S0747 -
7171(08)80015-6.

[18] Zohar S. Karnin and Amir Shpilka. “Reconstruction of Generalized Depth-3
Arithmetic Circuits with Bounded Top Fan-in". In: Proceedings of the 24rd
Annual CCC. 2009, pp. 274-285.

[19] Michael Kearns and Leslie Valiant. “Cryptographic Limitations on Learn-
ing Boolean Formulae and Finite Automata”. In: J. ACM 41.1 (Jan. 1994),
pp. 67-95. 1ssn: 0004-5411. por: |10 . 1145/174644 . 174647. urL: http:
//doi.acm.org/10.1145/174644.174647.

[20] Michael Kharitonov. “Cryptographic Lower Bounds for Learnability of Boolean
Functions on the Uniform Distribution”. In: Proceedings of the Fifth Annual
Workshop on Computational Learning Theory. COLT ’92. Pittsburgh, Penn-
sylvania, USA: ACM, 1992, pp. 29-36. 1sBn: 0-89791-497-X. por: 10.1145/
130385.130388. urL: http://doi.acm.org/10.1145/130385.130388.

[21] Adam R. Klivans and Daniel Spielman. “Randomness Efficient Identity Test-
ing of Multivariate Polynomials”. In: Proceedings of the Thirty-third Annual
ACM Symposium on Theory of Computing. STOC ’01. Hersonissos, Greece:
ACM, 2001, pp. 216-223. 1sBN: 1-58113-349-9. por: |10 . 1145 /380752 .
380801. urL: http://doi.acm.org/10.1145/380752.380801.

[22] Adam Klivans and Amir Shpilka. “Learning restricted models of arithmetic
circuits.” In: Theory of computing 2.10 (2006), pp. 185-206.

[23] S. Kopparty, S. Saraf, and A. Shpilka. “Equivalence of Polynomial Identity
Testing and Deterministic Multivariate Polynomial Factorization”. In: Com-
putational Complexity (CCC), 2014 IEEE 29th Conference on. June 2014,
pp- 169-180. por: 18.1109/CCC.2014.25.

[24] Gary L. Mullen and Daniel Panario. Handbook of Finite Fields. 1st. Chap-
man & Hall/CRC, 2013. 1sN: 143987378X, 9781439873786.

[25] Nitin Saxena and C. Seshadhri. “From Sylvester-gallai Configurations to
Rank Bounds: Improved Blackbox Identity Test for Depth-3 Circuits”. In:
J. ACM 60.5 (Oct. 2013), 33:1-33:33. 1ssn: 0004-5411. por: 10 . 1145 /
2528403, urL: http://doi.acm.org/10.1145/2528403.

[26] Robert E. Schapire and Linda M. Sellie. “Learning Sparse Multivariate Poly-
nomials over a Field with Queries and Counterexamples”. In: In Proceed-
ings of the Sixth Annual ACM Workshop on Computational Learning Theory.
1996, pp. 17-26.

[27] Amir Shpilka. “Interpolation of depth-3 arithmetic circuits with two multipli-
cation gates”. In: In STOC ’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing. ACM Press, 2007, pp. 284-293.

[28] Amir Shpilka and Ilya Volkovich. “Improved polynomial identity testing for
read-once formulas”. In: (2009), pp. 700-713.

http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1145/174644.174647
http://doi.acm.org/10.1145/174644.174647
http://doi.acm.org/10.1145/174644.174647
http://dx.doi.org/10.1145/130385.130388
http://dx.doi.org/10.1145/130385.130388
http://doi.acm.org/10.1145/130385.130388
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://doi.acm.org/10.1145/380752.380801
http://dx.doi.org/10.1109/CCC.2014.25
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.1145/2528403
http://doi.acm.org/10.1145/2528403

59

[29] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A Survey of Re-
cent Results and Open Questions”. In: Foundations and Trends in Theoreti-
cal Computer Science 5.3-4 (2010), pp. 207-388. 1ssnx: 1551-305X. por: 10.
1561/0400000039. urL: http://dx.doi.org/10.1561/0400000039.

[30] Madhu Sudan. “Algebra and Computation”. In: 1998. urL: http://people.
csail.mit.edu/madhu/FT98/.

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://people.csail.mit.edu/madhu/FT98/
http://people.csail.mit.edu/madhu/FT98/

60

Appendix A

RANDOM TRANSFORMATION AND RESTRICTIONS

For technical purposes we wish to randomly transform the variables in our poly-
nomial. In order to do this we use an n X n matrix Q = (€; ;). First we define a
map Q : x; > (Qx);, where ¥ is viewed as the n x 1 column vector (x1,...,x,)’.
This can be extended to a linear transformation on V, the vector space of linear
forms in variables ¥ = (xi,...,x;). Once we have such a linear transformation
Q, we extend it further to polynomials in the most natural way i.e. we define
Q) (x1,...,xn) = fF(Q(x1),...,Q(x,)). We leave it to the readers to check that
this map is well defined and is an extension of the linear transformation Q. Note
that by abuse of notation we used Q for both maps. It can be further checked that Q
an algebra homomorphism on F[x].

In our application we choose the matrix Q such that every entry €, ; is picked uni-
formly randomly and independently from a fixed finite set S C F. As a first step of
our algorithm we will apply Q to our input polynomial C. This will ensure that the
new variables we have are "random"” in some sense. A problem we face is that our
input is given as a black-box and so what does "applying” Q mean? This is easily

resolved by augmenting our input black-box i.e. we apply Q to the black-box.

To evaluate the polynomial Q(C) (for some polynomial C) at the pointa = (ay,...,a,),
we query the original black-box for C at the form Q~!(@). Symbolically we define
a new black-box B such that B(a) = B,,(Q'(a)), where B;, is the input black-box
for polynomial C. Note that this needs € to be invertible. We check this just after
choosing Q. It will be invertible with a high probability as shown in lemma [22]
below. If it is not then we output "fail”. We also point out that when Q is invertible,

Q becomes an algebra isomorphism.

The randomness in our algorithms is precisely due to this choice we make at the
beginning. A lot of results we prove in this work will be true with high probability

over the choice of Q.

Lemma 22. Let Q be the matrix chosen above. We can show

Pr{Q is not-invertible | < %

61

Proof. This is equivalent to saying that the determinant de?(£2) = 0. Determinant

of Q is a polynomial of degree n in n?

variables {€;; : (i.j) € [n] X [n]} and is
not identically zero since coeflicient of the monomial Q;;...Q,, is equal to 1.
Therefore by Schwartz-Zippel lemma

PriQ: det(Q) = 0] < |”?|

and hence with high probability 2 is invertible.

Let P(V) be the projective space corresponding to the vector space V of linear forms

in X. For j € {r + 1,...,n}, consider the subspaces:
Wi ={(wi,...,wr1,0,...,0,w;,0,...,0) :w; e Fforj e {l,...,r —1,j}}

Below we show that with high probability a projective form cannot lie in the pro-
jective space of the random subspace above. Therefore when we restrict to this

subspace the form remains non-zero.

Lemma 23. Let 7 C P(V) be a multi-set of forms. The following is true:

PriQ: 3 formt €T : Q1)) =0]< %

Proof. Fixt = [t1x1 + ...+ tyx,]. We know that coeflicient of x; in Q(¢) is equal
to Q(t)1 =) txQk1. This is a polynomial in the variables Qq1,...,Q, . If this
polynomial \i{vere identically zero then all #; = 0,i € [n] = ¢ ¢ P(V). Thus this
polynomial is not identically zero. By the Schwartz-Zippel lemma

1
Pr(Q:Q(); =0] < m

Clearly the variable x; and coeflicient Q(z); appear on restriction of ¢ to W;. Thus

Q1)1 # 0 = Q(1)),, is non-zero . A union bound over forms in 7~ give us:

Pr[Q:3formt € T : Q1) =0< %

Next we show that an independent subset of size r, inside a multi-set 7~ C P(V),

continues to be independent when restricted to certain r variables in the new "ran-

dom" set of variables defined by Q.

62
Lemma 24. Let 7 C P(V) be a multi-set of forms. The following is true:

Pr(3dj € {r,...,n} and independent forms ty,...,t, € T :
(n—r+ Dr|T|"
|S]

Q(t1)|wj,. .. ,Q(tr)|Wj are dependent] <

Proof. Fix independent forms t1,...,t, € 7. Lett; = [tj1x1 + ...tinx,] with
tix € F. Clearly fori € [r] the restrictions of Q(¢;) are:

Qtiy, = [Z L x1 + .. Z ik Qe p—1Xp-1 + Z 1 jQu jX ;]
X X X

The set {Q(t1)|wi yen ,Q(tr)|wi } are dependent if and only if the determinant

% Q1 - % 1k -1 % 115 Q%

% 0xQr1 ... % 125 Q% -1 Zk] 125 Q% j
g(Q) =

% LaQr1 - % Q-1 % bk

is zero. If the above determinant is identically zero (i.e. as a polynomial) then by

plugging in suitable values of Q’s we get that the determinant

5T I S R S
21 Iyl I ~ 0
2 I ot I T

is zero. This is a minor of the matrix formed by coefficients of 71,. .., and there-
fore cannot be zero. So the determinant (polynomial) g(€2) is not identically zero.
Hence by the Schwartz Zippel Lemma :

r
PriQ:g(Q) =0] < m

Now doing a union bound over all {¢,...,7,} € 7 and j € {r,...,n} we get that
Pr[dj € {r,...,n} and forms t1,...,t, € T :

n—-r+Dr|7|
| S|

Q(t1)yy,»- - - »€2(1y)),, are dependent] <

63

Another lemma of the same sort which will be useful is stated below.

Lemma 25. Let W,_1 = {(ay,...,a,-1,0,...,0)} ¢ F*,r > 4. Consider multi-set
T CcP(V). Then:

Pr[d independent forms ty,...,t; € T ,5s <3:
poly(n,r,|T|")
N

Q(t1)|Wr_1 yees ,Q(ts)|Wr_l are dependent] <

Proof. Exactly like the previous proof with some minor changes. We do not repeat

it for cleaner exposition. O

Now we summarize the above lemmas in the way we wish to apply them.

Corollary 2. Let 7 c P(V) and r > 4. The following statements are true with
7 Ly(rl7T17) .

probability > 1 — % :

1. Lett € T be, then with high probability Q(t),,,. is a well defined projective

form i.e. is non-zero.

2. For every independent ty,...,ts € T with s < r, Q(t1)|wj,. .. ,Q(ts)|wf are
independent.
3. For every independent ti,...,ty € T with s < 3, Q(t1)|Wr_1 e ,Q(ts)|Wr_1

are independent.

Proof. For Part[Ijwe use Lemma[23|given in this appendix. For part[2]extend the set
{t1,...,ts} of forms to an independent set of size r inside 7 and then use Lemma
[24] Part 3| follows by Lemma [25|above. We want all three to be true and so we add

their failure probabilities i.e. take a union bound over the bad cases. O

In our application |S|>> Q(poly(n,r,|7|")) and so we will assume that the above

corollary holds deterministically for the set 7 .

64

Appendix B

BRILL’S EQUATIONS - CHARACTERIZING POLYNOMIALS
WHICH ARE PRODUCT OF LINEAR FORMS

Let f(x) € C[x] be a polynomial of degree d in variables X = (x1,...,x,) such that
Jf(x) factors into a product of linear forms. These are called totally decomposable

polynomials. In this chapter we will give a characterization for the coeflicients of
f.

This has been well studied in mathematics literature. The basic idea is to construct
a family of polynomials in many variables which vanish exactly at the coeflicients
of totally decomposable polynomials. A clean mathematical construction is given

by Brill’s Equations given in Chapter 4, [9].

However we still need to calculate the time complexity. But before that we define
some operations on polynomials and calculate the time taken by the operation along
with the size of the output. Note that all polynomials are over the field of complex

numbers C and all computations are also done for the complex polynomial rings.

Let x = (x1,...,x,) and ¥y = (y1,...,Yy,) be variables. For any homogeneous

polynomial f(x) of degree d, define
(d

. —k)! 0 ..
far(E.5) = — (ina—yi)"f(y)

Expanding (Z xiaiy’_)k as a polynomial of differentials takes O ((r+k)") time and has

the same order of terms in it. f(y) has O((r + k)") terms. Taking partial derivatives

of each term takes constant time and therefore overall computing (3] xiaiy)k f()
l~ L

takes O((r+k)?") time. Also the expression obtained will have at most O ((r + k)?)
terms. Computing the external factor takes poly(d) time and so for an arbitrary
f(x) computing all fu«(x,y) for 0 < k < d takes poly((r + d)") time and has
poly((r + d)") terms in it. From Section E., Chapter 4 in [9]] we also know that
Sz (X,¥) is a bi-homogeneous form of degree k in X and degree d — k in y. It is
called the k" polar of f.

65

Next we define an ©® operation between homogeneous forms. Let f(x) and g(x) be

homogeneous polynomials of degrees d, define
1 < d
= 5) — 1 k (5. B o (R 5
(fO8)(E3) = - ;)() (k)fyuy,x)gxk(x,y)

From the discussion above we know that computing fy« (¥, X)gz+ (X, §) takes poly((r+
d)") time and it is obvious that this product has poly((r + d)") terms. Rest of the
operations take poly(d) time and therefore computing (f © g)(x,y) takes poly((r+
d)") time and has poly((r + d)") terms. From the discussion before we may also
easily conclude that the degrees of X,y in (f © g)(X,y) are poly(d). The form
(f © g) is called the vertical(Young) product of f and g. See Section G., Chapter 4
in [9].

Next for k € {0,...,d} and Z = (z1,...,2,) consider homogeneous forms:

d
ey = (k)ka (%,2) f(D)*!

Following arguments from above, it’s straightforward to see that computing ey, takes
poly((r +d)") time and has poly((r + d)") terms. Each ej is a homogeneous form
in X,Z and f. It has degree k in X, degree k(d — 1) in z, and k in coeflicients of f.
See Section H. of Chapter 4 in [9]. Let’s define the following function of X with
parameters f,z

Pro(®)=(-Dfd Y (=p@rrio oA R

i14+2ir+...+ri,=d

Note that {(i{,...,i,) i1 +2i2+...+ri, =d} C {(i1,...,i;) i1 +ir+...+i, < d}
and therefore the number of additions in the above summand is O(poly(r + d)").
For every fixed (iy,...,i,) computing the coefficient W takes O (poly((r +
d)")) time using multinomial coeflicients. Each e; takes poly((r + d)") time to
compute. There are r of them in each summand and so overall we take O(poly((r +
d)")) time. A similar argument shows that number of terms in this polynomial is
O(poly((r + d)")). Some more analysis shows that P, (%) is a form of degree d
in X whose coeflicients are homogeneous polynomials of degree d in f and degree
d(d—-1)in Z. Let

By(%,5,2) = (f © Pr2)(X,7)

66

By the arguments given above calculating this form also takes time poly((r + d)")
and it has poly((r + d)") terms. This is a homogeneous form in (X, y,7) of multi-
degree (d,d,d(d — 1)) and it’s coeflicients are forms of degree (d + 1) in the coef-
ficients of f. See Section H., Chapter 4 in [9]]. So in time poly((r + d)") we can
compute By (X,y,Z7) explicitly.

Now we arrive at the main theorem

Theorem 9 (Brill’s Equation, See 4.H, [9]). A form f(X) is a product of linear
forms if and only if the polynomial By(x,y,Z) is identically O.

We argued above that computing Br(X,y,2) takes O(poly((r + d)")) time. It’s
degrees in X, y, 7 are all poly(d) and so the number of coefficients when written as

a polynomial over the 3r variables

(X1seves Xy V1o e esVrsZls---,27) 18 poly((r + d)"). We mentioned that each coeffi-
cient is a polynomial of degree (d + 1) in the coefficients of f. Therefore we have

the following corollary.

Corollary 3. Let

= {(@1,...a0) Vit 20,) a;=d)

ie[r]
be the set capturing the indices of all possible monomials of degree exactly d in r
variables (x1,...,x;). Let fa(V1,...,Vr) = Daecs GaY® denote an arbitrary homo-
geneous polynomial. The coefficient vector then becomes a = (ay)qci- Then there
exists an explicit set of polynomials Fi(a),. .., Fy,(a) on poly((r + d)") variables
(a = (ag)acr), with m = poly((r + d)"), deg(F;) < poly(d) such that for any
particular value of a, the corresponding polynomial f,(y) € HZ% [¥] if and only
if Fi(a) = ... = Fyu(a) = 0. Also this set {F;,i € [m]} can be computed in time
poly((r +d)") time.

Proof. Clear from the theorem and discussion above.

Note that in our application r = O(1) and so poly((d +r)") = poly(d).

67

Appendix C

BLACK-BOX FACTORING OF POLYNOMIALS

In this section we will develop algorithms to factorize black-boxes of multivari-
ate polynomials and extract all the linear factors explicitly. We also compute the

product of all non-linear irreducible factors.

Consider variables X = (x,...,x,) and field F. Let V be the vector space of linear
forms in F[x] and P(V) be the corresponding projective space. Let f(x) € F[x] be

a degree d polynomial. Factorize f(X) to get the following form:
f(xX) =4L(x) ... [)(X)Res(f)(X). (C.1)

— Every /;(X) is an linear form.
— The polynomial Res(f)(x) called "residual factors" has no linear factors.

— Define the multi-set ¥ = {[[{],...,[l;]} € P(V).

Goals for this chapter. Given black-box access to f(x), we will discuss efficient

(randomized) algorithms to recover:

— The set ¥ explicitly, i.e. all [/;] explicitly.

— Black-box access to polynomial Res(f)(x).

Black-box access to factors. We first compute black-boxes for all irreducible
factors of f(x). An algorithm to do the same was given by Kaltofen and Trager
in [17]]. Even though their algorithm was meant for characteristic zero fields, with
minor changes it works over all finite fields. Details can be found in lecture 9
from MIT’s algebra and computation course lecture notes [30]. A short and sweet

description fulfilling all important details is given in remark 11.5.66 in [24].

The essence of their algorithm is an "effective” Hilbert’s irreducibility theorem (see
theorem I 1)), which says that an irreducible polynomial continues to be irreducible
when restricted to certain random 3— dimensional subspaces. This has been dis-

cussed in great detail in section 4 in [[16]]. In particular the result can be found in

68

corollary 2 of section 4 in [[16]]. The theorem is sometimes also called "quantitative

Bertini theorem'. See Theorem 11.5.33 in [[24]] for details and further references.

Here is the black-box factorization theorem:

Theorem 10 (Black-box factorization, Section 2 in [17]], lecture 9 in [30]], remark
11.5.66 in [24])). Let f(X) € E[x] be an n—variate, degree d polynomial. Assume
f(X) = hi(X)° ... hg(X)%, where {hi()f)};‘zl are distinct irreducible polynomials
in F[X] and let e = (ey,...,e,) denote the tuple of exponents. Then there is a

randomized algorithm, that given black-box access to f(x) (and parameter n), runs

in time poly(d,n) and outputs a tuple of integers e = (e},...,e;) along with a
collection of black-boxes computing h,. .. h, such that
ly(d
Prle’ = e,3y; € F\ {O}.i € [k]: Va € F", (@) = yihi(@)] > 1 - p‘)';l()

Now we are ready to give []1]]

69
BIBLIOGRAPHY

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016,
31:1-31:53. 1sBN: 978-3-95977-008-8. por: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. urL: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

70
PUBLISHED CONTENT AND CONTRIBUTIONS

[Include a bibliography of published articles or other material that are included as
part of the thesis. Describe your role with the each article and its contents. Citations

must include DOIs or publisher URLs if available electronically.

If you are incorporating any third-party material in the thesis, including works that
you have authored/co-authored but for which you have transferred copyright, you
must indicate that permission has been secured to use the material. For example:

“Fig. 2 reprinted with permission from the copyright holder, holder name”

Add the option iknowwhattodo to this environment to dismiss this message.]

[1] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-In
2”. In: 31st Conference on Computational Complexity (CCC 2016). Ed. by
Ran Raz. Vol. 50. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016,
31:1-31:53. 1sBN: 978-3-95977-008-8. por: http://dx.doi.org/10.
4230/LIPIcs.CCC.2016.31. urL: http://drops.dagstuhl.de/opus/
volltexte/2016/5854.

the algorithm. We state it in an informal way and leave the details for the reader to

verify. The algorithm is a very simple application of Theorem |10
Algorithm

1. Using Theorem 10| obtain the tuple of numbers (e},...,e;) and the tuple of
black-boxes (/,. .. ,h;{).

2. Iterate over all irreducible factors (black-boxes) h; and using O(n) queries

interpolate a linear form [; = @g + a1 x1 + ... + @y Xxy,.

3. Then using the randomized black-box polynomial identity testing algorithm
(a.k.a schwartz zippel lemma) we check if /; — [; is an identically zero poly-
nomial. This just involves checking h’(a) — [;(a) for a chosen uniformly

randomly from a large subset S C F.
4. If yes, we add e; copies of the form [/;] to our set F .

5. If no, we add e; copies of the black-box #; to another multi-set .

http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CCC.2016.31
http://drops.dagstuhl.de/opus/volltexte/2016/5854
http://drops.dagstuhl.de/opus/volltexte/2016/5854

6. At the end of the iteration, we define a black-box Res(f) = [] h. This
heF”’
black-box can be simulated by querying each of the black-boxes in ¥’ and

multiplying the outputs.

7. Finally we return the set ¥ and the black-box Res(f).

It’s trivial to see that the time complexity of this algorithm is poly(n,d).

As mentioned before the algorithm in [17] uses the effective Hilbert irreducibility

theorem. This theorem is also useful for us in this thesis and so we state it here.

Theorem 11 (Effective Hilbert irreducibility / Quantitative Bertini theorem). Let
F be a perfect field and g(x) € F[x] be a degree d irreducible polynomial. Pick
tuples, a = (az,...,a,), b = (by,...,b,), ¢ = (c1,...,cp) such that every a;,b;,cy
is chosen uniformly randomly and independently from a set S C F. Consider the

bi-variate restriction
gA(X,Y) = g(X + b1Y +cp,ar X + sz +cp,...axX + bnY + Cn)

Then .
A 2d
Pl(a,b,c) € S" ' x §" x 8" : f(X,Y) is irreducible | < S
Proof. See corollary 2 in [16], remark 11.5.33 and remark 11.5.66 in [24]], theorem

1.1 1n [23].

72

Appendix D
PROOFS FROM CHAPTER IV

Lemma 26. The following are true :

1. ng(lei’Blwi) =1= Sim(C|W,-) = RlWi + BlWi'
2. srank(C|Wl_) = min(r,srank(C)).

3. Res(Cy,.) = Res(C)y, with high probability.
Proof. We prove them one by one below:

1. Let Ry,B; be any linear factors of R, B respectively. By Part [I] and [3] of
Lemma |§| we know that [R; Iw; 1,[B; |Wi] are distinct forms. This implies that
Ry, - Buy,, are LI further implying gcd(Ryy, . By,) = 1. Sim(Cy,) = Sim(C)yy,
follows from this directly.

2. srank(C|W[) < srank(C) since the dimension clearly cannot increase on
restriction. srank(C) < r since it is the dimension of a set of forms which
are projectivisations of linear forms in x,. .., x,_, x;. This set has dimension
r. Thus srank(C|Wi) < min(r,srank(C)).

If s = min(srank(C),r) then there exists py,...,ps forms in P(R) U P(B).
They also belong to 7 (P(R),P(B)), therefore by Parts (1| and [2| of Lemma
EI, Pliy.s- - -+Ps)y,, are independent forms in P(Ry,,) U P(B),.) giving s <

srank(C|W[) and we are done.

3. Consider any irreducible factor of Res(C). Itis non-linear and so by effective
Hilbert irreducibility (see theorem [I1] in appendix [C)) it remains non-linear
(actually irreducible) with high probability as long as » > 3. There are at the
most d such factors and so by a union bound all of them remain non-linear
with high probability. This implies that Res(C)y,. is a product of non-linear
irreducibles dividing C(X)y,,, and thus divides Res(C},,.). The other direction
is simpler. Note that Res(C|Wl_) divides C(X)|W[= GCd(C)lw,- Int(C)|Wl_ Res(C)|Wl_ .
The product Ged(C)yy, Int(C)y,, only has linear factors and thus Res(Cy,,.)
divides Res(C)y, -

73

O

Proof of Part|I{in Lemma ﬂ above also tells us that the multi-set P(Ry,,),P(R),,.)
are the same as the multi-sets P(R)y,, ,P(B)),,,. We will try to reconstruct multi-sets
containing them and then glue these reconstructions. But first we determine what
set to reconstruct. In Part[2] of Lemma 9] above if we assume r to be any constant
> R(3,F) + 2, we get that srank(C|Wi) > R(3,F) + 2. This enables us to use
the Structure Theorem for Factoring Forms of Res(Cy,,). We use the shorthand
P; = P(Res(Cyy,.)) for the factoring forms of Res(Cy,,) .

Lemma 27. The following hold:

1. Foreveryp € P andi € fr,...,n}, p, € P

2. Forany p, € Py, there is at-most one p; € P;,i € {r+1,...,n} it can be glued

to.

Proof. 1. Let p = [l] € P and assume [= ajx; + ...a,x, where a; # 0
and a; = O for all j < i. Recall ker(p) = {(x1,...,x,) € F' : x; =
- i Z—-ij}. By lemma Plw, is defined for all i € {r,...,n}. We show that
p|:vl,=li+sla factoring form for Res(Cj,,.) and therefore belongs to #;. By lemma
EI, Res(Cy,.) = Res(C)y, . Also note that ker(py,) = ker(p) N W;. This

gives us

Res(clwi)lker(P)“Wi = Res(C)|Wi ker(p)nw; - Res(c)lker(p)mwi - Res(c)lk”(”) lkerpynw;

Since Res(C},,.) has no linear factors, none of the expressions above is zero.
1
Also since p € P, Res(C),,,,,, is a non-zero product of linear forms =
Res(C),,, is a non-zero product of linear forms = p,, € %; (by
er(p) |ker(p)ﬁWl- i

the equation above).

2. Let p, € P, and assume there exists distinct p;, p; € P; such that (p,,p;) and
(pr,p}) are gluable. Clearly p;,p € I PRy,). P(By,.)) (using theorem
since r is high enough and also using part 1 of lemmal9). It’s easy to see using
part 2 of lemmathat I(P(R|Wi),P(B|Wi)) C I(P(R),P(B))M. Now part 3
of lemma [8|implies that Pily > pl’.|Wr_l are distinct which is a contradiction to

both (py, pi) and (p;, p;) being gluable.

74

Appendix E

PROOFS FROM CHAPTER V

Lemma 28. The following holds:

1. Ifry,...,rx € R, then for any p € G(ry,...,rr)

(fl(r1ye st P\SL(r1, .o orr)) and R (ry, . . . ,rp)UB intersect non-trivially.

2. Ifby,...,b, € B, then for any p € G(by,...,by)

(fl(by,....bi,p)\fL(b1,...,by)) and B'(by,...,by)UR intersect non-trivially.

3. R(ri,....rx) # ¢ = P(Unt(C)) Cc G(ry,...,ri). Similarly B(by,...,by) +
¢ = P(Int(C)) c G(by,...,by).

4. Given independent points ry,...,rx € R (b1,...,by € B resp.) r € R
(b € B resp.) the multi-set P(Ged(C)Int(C)) and the set P, there exists
efficient algorithms to compute the multi-set P(M>) \ G(r1,...,rr) (P(My) \
G(by,...,by) resp.) and multi-sets of lines L(r,G(r1,...,rx)) (L(b,G(by,...,by))
resp.).

Proof. 1. Let p € G(ry,...,ry). By definition of G(ry,...,ry) there exists at
least two distinct points py,p2 from P on fl(ry,...,.rx,p) \ fl(ri,...,r%).
If any of pi,p, belongs to 8 we are done. If any of them belongs to £ \
R U B, then since k > R(3,F) + 2 by lemma [3] there exists i € [k] such that
f1(ri,p) contains a point b from B. Clearly b then belongs fI(ry,...,rr,p) \
fl(ry,...,r;) and we are done. So the only case left is when both py,p> € R.
If any of py, po (say p1) belongs to R(ry,...,rx) then py & fl(ri,...,re,p1)\
fl(ri,...,rg) = fl(r1,...,re,p) \ flL(ry,...,rgx) (by definition of points in
R(ry,...,rk)). So we arrive at a contradiction and so p; either belongs to 8

or R'(ry,...,rr). Hence proved.
2. This is identical to the above proof.

3. Consider r¢y1 € R(ry,...,rx). By definition riyy ¢ fI(ry,...,rx) and
fl(r1,...,ri,rks1) N (RUB) C fl(ry,...,rx) U {rgs+1}). Consider any point

75

p € P(Int(C)). By restricting to ker(p) and following an argument we’ve
seen multiple times before, there exists by, € B suchthat by.1 € fl(ri+1,p).
It p € fl(r1,...,rr), then this implies that by € fI(r1,...,7k,"k+1) \
fl(ry,...,rr) which is a contradiction since no point from 8 lies on the set
fl(r1,. .. risrks1) \ fL(r1,. .. ,rr). Next since k > 3, by the above argument
there exist three points by, by,b3 € B such that b; € fl(p,r;),i € [3]. Also
note that all p # r; and p # b; fori € [3] (by lemmaf). We claim that at least
two of the b;’s are different, otherwise the set {by, by, b3, p} has dimension
< 2. Let p,q (or just p) be a basis for this set. This is not possible since the
three dimensional flat, fi(ry,r2,r3) C fl(p,q) (asr; € fl(p,b;),i € [3]). So
at least two b;’s are distinct. Also the b;’s don’t lie on fI(ry,...,r;) since p
does not. Therefore we found two distinct points from # on fl(ry,...,r¢,p)\
fl(ry,...,ry) for every p € P(Int(C)) = P(Int(C)) c G(ry,...,rx). The

other part is identical.

4. Iterate through every point p € P(Gced(C)Int(C)). If p ¢ fl(ry,...,1%),
by iterating through ¥ check whether the set fI(ry,...,r¢,p) \ fl(r1,...,r%)
contains at most one distinct points from #. This can be checked by simple

linear algebra. This computes the multi-set P(M3) \ G(r1,...,rk).

Recall that using algorithm @] we already know how to compute the lines
L(r,P(M,)). Start with L(r,G(r1,...,rr) U B) = L(r,P(M;)). Compute
the multi-set L(r,P(M3)) \ (L(r,P(M>)\ G(r1,...,rr))). This computes the
required multi-set of lines L(r,G(r1,...,ry) U B).

Lemma 29. The following hold for all independent ry,. . .,ry € R.

1. R(r1,...,rr) € S(ry,...,rr) C P(R).
2. B(ri,...,rx) € S(ry,...,ry) C P(B).

3. Given ry,...,rg (by,...,bg resp.), the set P, multi-set P(Gcd(C)Int(C))
and black-box Bg.s, there exist efficient algorithms to compute S(ry,. . .,ri)
(S(by,...,by) resp.).

Proof. 1. Let rgs1 € R(ry,...,rr). This implies that rg.; ¢ fI(r1,...,r;) and
fl(ry,...,r,ris1) N (RU B) € fl(ry,...,rg) U {rrs1}. Assume riy; €
S(ry,...,ry) i.e. on one of the lines say fI(rj,rix+1) there is a point p €

76

G(ri,...,rr)UB. p cannot be in B by the choice of ry41. Sop € G(ry,...,rk).
By lemma [I8] there exists p’ € R'(ri,...,rx) U B lying on fI(ry,...,p) \
fl(ry,...,ry). This implies that p” € fl(ri,...,re,rk+1) \ fU(r1,...,rp).
Since p’ € Rry,...,rr) UB c RUB we conclude that p’ = ry,; but thatis a

contradiction since R’(ry,...,r),R(ry,...,rr) were complements inside R.

For the other inclusion, let p € S(ry,...,rx). Then the lines fI(p,r;) do
not intersect G(r1,...,ry) U B for any i. By definition p € . p ¢ B by
definition. If p € £ \ (R U B) then by matching lemma (lemma [5)) there
exists r;,i € [k] such that b € fIl(r;,p) a contradiction to the choice of p.
Thus p € R. Hence proved.

2. Exactly identical to the proof above.

3. First compute the multi-set of lines L(r,G(r1,...,rx) U B) using the algo-
rithm given in the last part of lemma [I8] Iterate through p € # and add
it to the set S(ry,...,rr) if none of the lines fI(r,p) belongs to the set
Lr,G(ri,...,ry) UB).

O

Lemma 30. One of the following always holds:

1. Ary,...,r € R RO, ...,re)|= v(0)|R], or

2. Aby,....,bp € R:|B(by,...,bp)|=v(0)|R].
Proof. The proof is divided into two cases:
Casel - |B|< 46|R]| :
Since dim(R) > % +k > %k, we know by Corollary @ there exist k linearly
independent points rq,...,r; € RsuchthatthesetY = {r e R: fl(ry,...,rg,r) N
R c fl(ry,...,ry) U {r}} has size > (1 — 6)|R]|. That is there are a large number
of points in R forming an ordinary flat with ry,...,r; inside R. From this set
we throw away all those r’s whose flat with ry,...,r; contains a point from 8
outside fI(ry,...,rr). The remaining r’s are such that their flats with {ry,...,r}

are ordinary in R U B. The left over set is exactly the set R(ry,...,rr). We would
have thrown away < |B| points overall and therefore the set the left over set i.e.
R(ri,...,ry) hassize > |Y|=|B|> (1-6)|R|-46|R|= (1-56)|R|> (36-462)|R|=
v(6)|R| (note that when 6 < g, 1 — 56 > 36 — 46?).

7

Case II - 46|R|< |B|< |R]| : In this case we will use Corollary again but with 2k
points. We know that dim(R U B) > % +k > % and therefore there are 2k
linearly independent points py,...,px; € RUB suchthatthesetY = {p e RUB :
fl(p1,....p2k,p) NRUB C fl(p1,...,p2x) U {p}} has size > (1 — §)|R U B|=
(1 = 0)(IR|+|8B]) since R, B are disjoint. Out of the 2k points, by pigeon hole
principle at least k, say pi,...,pi belong to R or B. If py,...,pr € R, we consider
the set R(p1,...,pr) ={re R: fl(p1,...,pk,r) "RUB C fl(p1,...,px)}. This
set clearly contains the set Y/ \ B and thus it has size > |V |—-|B|= (1-0)(|R|+|B])—
B> (1 —06)(1 +406)|R|—|R]| (since 40|R|< |B|< |R]). So we get that the size of
the desired set is > ((1 — 6)(1 + 46) — 1)|R|= (36 — 46%)|R|= v(6)|R|. When
P1,---,Pk € B, we use the same approach to conclude that the set B(py,...,pr) =
{beB:spipi,...,px,bD}NRUB C sp{pi,...,pr}U{b}} contains the set ¥ \ R and
therefore has size > |V |—|R|> (1 = 6)(|R|+|B]) — |R|= ((1 =6)(1 +46) — 1)|R|=
v(0)|R]. So we know that |B(by,...,b;)|= v(d)|R|.

Clearly one of the two cases will hold and we get the desired result.

Lemma 31. Let v(6) = 36 — 46% Then for 6 € (0,3),

(2-v(9)) < -6
v(i) o

Proof. Note that
(2-v(5)) _ 2-36+46*
v(6) 36 -462

We know that § < %andso452<5z25<35—462:>

26 —36%+468% <36 -46%-36%+45° =
5(2 =38 +46%) < (1 = 6)(36 — 45?).

We know that 36 — 462 > 0 and 6 > O as § € (0, 3). Therefore we see that

(2—v(5))_2—35+452<1—5
v(i) 35 -462 5

78

Appendix F

TOOLS FROM INCIDENCE GEOMETRY

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem
from [3]] and [6]. In this subsection we do preparation for the same. The results in

[3]] and [6] are given for linear and affine spaces.

It is well known that all incidence results continue to hold if we consider projective
spaces instead of affine or vector spaces. In this chapter we just state the results as
they were given in [3]], but when we use them we use the projective space analogue.

We encourage the reader to show equivalence of the two results.

Our main application will also involve a corollary we prove towards the end of this

subsection.

Definition 29 ([3]). Let S be a set of n distinct points in complex space C" (or
projective space P(C")). A k- flat is ordinary if its intersection with § is contained

in the union of a (k — 1) flat and a single point.

Definition 30 ([3]]). Let S be a set of n distinct points in C". § is called a 6 — SG;
configuration if for every independent sy,...,s; € § there are at least on points
t € S such that either r € fI({sy,...,sx}) or the k—flat fI({sy,...,sk,t}) contains a
point outside fI({sy,...,s¢}) U {t}.

Theorem 12 ([3]). Let S be a 6 — SGy. configuration then dim(S) < 0((%)2).
This bound on the dimension of S was further improved by Dvir et. al. in [6]. The
latest version now states

Theorem 13 ([6]). Let S be a 6 — SG; configuration then dim(S) < a%for some
a > 0.

Corollary 4. Let dim(S) > a/§ (for C in above theorem) then S is not a 6 — S G;
configuration i.e. there exists a set of independent points {s1,...,s¢} and > (1-9)n

points t such that fl({s1,...,Sk,t}) is an ordinary k — flat. That is:

o t¢ fl({s1,...,5k})

o fl({s1,...,sk,t}) NS C fl({s1,...,8c}) U{t}.

79

Lemma 32 (Bi-chromatic semi-ordinary line). Let X and Y be disjoint finite sets in
C” satisfying the following conditions.

1. dim(Y) > 2.

2. |YI< el X]| with ¢ < 2.
Then there exists a line | such that |INY|=1and |l N X|> 1

Proof. We consider two cases:

Case 1: c|X|= |Y|= | X]|

Since dim(Y) > Cj, using the corollary above for § = X U Y,k = 1 we can get
a point s; € X U Y for which there exist (1 — ¢)(|X|+|Y]) points # in X U Y such
thatr ¢ fl{s;} and fl{sy,t} is elementary. If s; € X then (1 — 6)(|X|+|Y]) — |X|>
(1 —26)|X|> 0O of these flats intersect ¥ and thus we get such a line /. If s € ¥
then (1 — O)(|X|+|Y]) = |Y|= ((1 — 6)(% + 1) — 1)|Y|> 0 of these flats intersect X
giving us the required line / with |/ N X|=1and |/ NY|= 1.

Case 2: |Y|< | X]|

Now choose a subset X; € X such that |X;|= |Y|. Now using the same argument
as above for § = X UY there is a point 51 € X U Y such that (1 —6)(| X [+|Y]) =
2(1 = 9)IY|= 2(1 — 6)|X;| flats through it are elementary in X; U Y. If 51 € ¥
(1 =26)|Y|> 0 of these flats intersect X;. If 51 € X1, (1 —28)|X;|> O of these flats
intersect Y. In both these above possibilities the flat intersects ¥ and X in exactly
one point each. But it may contain more points from X \ X; so we can find a line /
suchthat|/NY|=1and | N X|> 1.

	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Previous Work and Connections
	Allowing Randomization
	Preliminaries
	A quick introduction to arithmetic circuits
	Homogenization of (2) circuits

	Some Definitions, Main Tools and Techniques
	Introduction
	Uniqueness of (2) Structure
	Factoring forms of a polynomial
	 Good forms and reconstructed multi-set

	Main result and overview
	Overview of the algorithm

	Step One : Reconstruct the I^st Layer of C
	Introduction
	Random Transformation
	Restricting the input polynomial
	Computing the sets Metapost_i.
	Gluing Metapost_i's to compute Metapost

	Step Two : Reconstruct Layer II of C
	Introduction
	Lines connecting forms in P(R) (P(B) resp.) to P(M_2)(P(M_1) resp.)
	Termination Case : Reconstructing one of P(M_1),P(M_2) does the job
	One of the multi-sets P(R),P(B) is low dimensional
	Both multi-sets P(R),P(B) are high dimensional

	Bibliography
	Random Transformation and Restrictions
	Brill's Equations - Characterizing polynomials which are product of linear forms
	Black-box Factoring of Polynomials
	Published Content and Contributions
	Proofs from Chapter IV
	Proofs from Chapter V
	Tools from Incidence Geometry
	Consent Form

