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Abstract

Memory is a key component of intelligence. In the human brain, physical structure
and functionality jointly provide diverse memory modalities at multiple time scales.
How could we engineer artificial memories with similar faculties? In this thesis, we
attack both hardware and algorithmic aspects of this problem.

A good part is devoted to holographic memory architectures, because they meet
high capacity and parallelism requirements. We develop and fully characterize shift
multiplexing, a novel storage method that simplifies disk head design for holographic
disks. We develop and optimize the design of compact refreshable holographic ran-
dom access memories, showing several ways that 1 Tbit can be stored holographically
in volume less than 1 m®, with surface density more than 20 times higher than con-
ventional silicon DRAM integrated circuits. To address the issue of photorefractive
volatility, we further develop the two-lambda (dual wavelength) method for shift mul-
tiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000
multiplexed fixed holograms. Finally, we propose a noise model and an information
theoretic metric to optimize the imaging system of a holographic memory, in terms
of storage density and error rate.

Motivated by the problem of interfacing sensors and memories to a complex sys-
tem with limited computational resources, we construct a computer game of Desert
Survival, built as a high-dimensional non-stationary virtual environment in a compet-
itive setting. The efficacy of episodic learning, implemented as a reinforced Nearest
Neighbor scheme, and the probability of winning against a control opponent improve
significantly by concentrating the algorithmic effort to the virtual desert neighborhood
that emerges as most significant at any time. The generalized computational model
combines the autonomous neural network and von Neumann paradigms through a
compact, dynamic central representation, which contains the most salient features of

the sensory inputs, fused with relevant recollections, reminiscent of the hypothesized
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cognitive function of awareness. The Declarative Memory is searched both by con-
tent and address, suggesting a holographic implementation. The proposed computer
architecture may lead to a novel paradigm that solves “hard” cognitive problems at

low cost.
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Chapter 1 Introduction

1.1 Memory and intelligence

Memory. .. You gave them memories!

R. Deckard in Blade Runner

What is the significance of memory for human intelligence? Our recollections influ-
ence and enrich our behavior, because they bring experience to our assistance. It is
thanks to the amazingly successful organization of human memory that highly com-
plex cognitive tasks, e.g., face recognition, are possible. On the other hand, this same
memory is deficient for most humans in other types of tasks, such as memorizing long
lists of objects. Understanding human memory organization will probably help treat-
ment and prevention of memory defects. Another exciting possibility is mimicking
human memories in the construction of artificial memories for intelligent machines.
This may result in systems capable of exhibiting, to some extent, the richness and
adaptability of human behavior.

One tends to think of memory as a unified function; however, amnesic patients
are typically deprived of only a limited class of tasks, while maintaining dexterity
in others [1, 2, 3, 4]. This indicates that human memory is organized in specialized
systems and in a highly distributed manner. To appreciate the varsity of human mem-
ory storage, compare learning how to drive a car, memorizing a phone-number, and
understanding how to solve differential equations. Conscious experiences sometimes
enter memory with surprising clarity and stay there for a long time, while others
pass without leaving a trace. There is experimental evidence that the converse is also
true: memories of rather complex relations between a sequence of experiences can be
formed and used without the participation of consciousness [5, 6].

Physiological research on memory started in the early 1880’s [1, 2, 7, 8]; however,
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it was not until the late 1970’s-early 1980’s that definite evidence on the multiple
memory modalities was obtained from psychophysical experiments in normal subjects
and patients with lesions [9]. The human memory systems accepted by researchers

today may be classified in six major categories [3, 4, 9, 10, 11]:

1. Iconic/echoic, which are pre-categorical, fast decaying visual/auditory memories
and can be thought of as scratch-space for perception [12];

2. Short-term, containing very recent cognitive information which needs to be

easily accessible [13];

Perceptual, involved in priming of identification of objects;

Procedural, used in skill learning, and simple conditioning;

Semantic, representing general factual knowledge; and

o Ot W

Episodic, storing factual recollections (events) from the personal past.

Episodic and Semantic memories are sometimes coallesced into the single term Declar-
ative Memory because they have to do with cognitive information, while the rest are
termed Non-Declarative. In the literature there is no specific information about which
subsystems contain consciously formed memories, even though it seems safe to say
that Episodic memories are formed consciously, whereas Semantic memory may be
unconscious (it is also often classified as “implicit” memory along with Procedural
memory).

Examining the “hardware” of human memory, we find that among the brain areas
involved in memory formation, the hippocampus is activated during the formation of
flexible memories, i.e., memories that must be extended to situations substantially
different than the original memorized event. In these cases, the useful information
results from the relations between different memory objects. Evidence towards that
effect has been obtained for humans and animals. For example, it has been shown [9,
14, 15] that rats with hippocampal damage are able to swim to a platform that they
have learnt previously only if they start at the same location as in the learning trial.
They fail if the starting position is different.

The hippocampus is also activated during the presentation of novel stimuli. For
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instance, in a task of detecting unknown sentences compared to a sequence learnt 24
hours earlier, limbic structures such as hippocampus, parahippocampal gyrus, medial
dorsal thalamus, and medial frontal cortex were found to modify their activity in
response to novelty [16]. In a reaction time task, where performance was improving
as result of implicit learning of a finite grammar by the subjects, different areas were
activated: the right ventral striatum responds to novelty, whereas the right prefrontal
area maintains contextual information used for the task [6]. The distinction is very
important, because it indicates that memory formation in some parts of the brain is
conscious whereas in other parts it is not.

There is at least one more occurrence of the prefrontal cortical areas patently
participating in unconscious learning. In a gambling game, where participants did not
know the risks a priori, it was observed that normal subjects were able to improve their
performance and generate anticipatory skin conductance responses (SCR’s) before
they became consciously aware of the risk, whereas patients with prefrontal lesions
were unable to either learn or generate SCR’s [5]. Since the prefrontal cortex is also
strongly involved in macaque monkeys in motor planning together with the posterior
parietal cortex (PPC) [17], it might be the case that the prefrontal cortex becomes
activated in preparation for other brain areas (the PPC in the case of motor planning,
the ventral striatum in the case of novelty detection in implicitly learnt facts, and
possibly the hippocampus in the case of explicit memory — see below), thus acting as
a sort of CPU that assigns tasks to other brain areas.

The significance of attention in the distinction between the two types of learning
is clear. In the case of conscious detection, the subject’s attention is devoted to the
detection task, whereas when learning is implicitly utilized, the subject is perform-
ing a seemingly unrelated reaction task. The presence or absence of attention also
determines the time course of perceptual learning. During the course of learning a
texture discrimination skill, when attention is of course focused to the task, subject
performance saturates; however, after several hours subject performance is found to
improve significantly, indicating latent “consolidating” changes in the primary visual

cortex [18, 19].
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This type of implicit learning is perhaps associated with the transfer of knowledge
between different memory systems. For example, during the learning phase of a new
motor task, such as playing tennis, most of the conscious effort is spent on controlling
the muscles so that they follow the trainer’s instructions, which correspond to specific
events. Therefore, Declarative Memory must be in use during that learning phase.
Later, after training has progressed enough, muscle control is automatic in response
to more complicated considerations, such as trying to predict the opponent’s next
position. For an experienced player, persistence in learning apparently causes the
motor aspects of tennis playing to transfuse into Procedural Memory.

The understanding of human memory is still far from assigning specific neuronal
mechanisms to effects such as transfusion between sub-systems. Neither do artificial
memories have any similar capability, which may be the reason why computers are
currently inefficient in many cognitive tasks (e.g., face recognition or chess').

Some form of memory organization is present in most computers. For example, a

personal computer (PC) has the following hierarchy:

1. Permanent memory (hard-drive, CD-ROM), contains data that are infrequently
or never changed, and trades off a small overhead in retrieval time (typically
10 nsec/bit) for large capacity (typically several GBytes).

2. Random-access memory (RAM), the computer’s working memory where data
are continuously stored and modified by the active programs; it is critical that
the access time to the RAM is small (typically 10 nsec/byte), but despite that
silicon RAM’s as large as 1-2 GBytes are nowadays available.

3. Cache memory, containing copies of the most recently accessed RAM data, mak-
ing them available to the processor for fast re-access; access time is smaller than

the RAM (typically 1 nsec/word) and the capacity is small (256-512 kbytes).

1Tnp May 1997, Garry K. Kasparov, World Chess Champion, lost a match 2!/5 — 3!/5 to Deep
Blue, a massively parallel super-computer constructed by IBM. Until that match, chess-playing had
been considered an exemplary “hard” cognitive task, because human superiority over computers had
been customary at the professional level. Thanks to its superior hardware, at each move Deep Blue
exhaustively considered possible continuations to great depth sufficiently fast to compete successfully
within the allotted time limit. Therefore, the match result shows that chess is actually amenable to
“exhaustive calculation.” IBM has since discontinued the Deep Blue project.
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The memory hierarchy of the PC is diverse in hardware and interconnection between
modules (e.g., cache co-resides with the processor, whereas RAM and hard-drive
are separate modules). However, the hardware does not have the built-in capability
of selectively transfusing stored salient memories between different sub-systems as
happens in the higher primates.

While the demand for ever powerful computers continues to increase, a novel de-
sire for interactive machines is surfacing in various domains. For instance, in industry,
it 1s desirable to use intelligent robots for work in hazardous environments; in mul-
timedia or virtual reality applications, the computer should be able to “interpret”
the user’s behavior using traditional input devices (mouses, keyboards) as little as
possible. In order to demonstrate such levels of computer intelligence, rather than
continuing the current trend of research for incremental improvements in processors
and algorithms, it may be more rewarding to seek novel maximum-efficiency com-
putational architectures where the data organization (the “memory”) is tailored to
the demands of the required applications. This approach is evidently successul in
biological systems, culminating with the human brain.

The focus of this thesis is on constructing memories for intelligent machines. We
focus on novel architectures for holographic memories as hardware solution, because
they have two properties that are apparently present in human memories as well: (1)
they are parallel?, (2) they allow data to be retrieved associatively. Moreover, direct
recall (by address) is also possible in holographic memories. From the algorithmic
viewpoint, we are interested in how multiple sensory modalities may generate rep-
resentations appropriate for efficient storage. We explore this theme in Chapter 7,

having in mind the holographic implementation and its implications.

2For holographic memories, the correct term is “page-oriented.” See the next section for a more
detailed introduction.
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1.2 Holographic databases

Holographic memories [20, 21, 22| are particularly suitable for applications that de-
mand high data capacity, high transfer rate and the presence of both direct and
associative recall. Holography was invented by Gabor in 1948 [23, 24, 25], and vol-
ume holography was proposed as a method for data storage as early as 1963 [20, 26];
however, early efforts [27, 28] did not indicate its viability for large-scale produc-
tion. This opinion was reversed in the early 90’s when Fai Mok demonstrated that it
was possible to store an unprecedented amount of information holographically [29)].
More recently, the Holographic Random Access Memory [30, 31] (HRAM) and the
three-dimensional (3-D) Holographic Disk [32, 33] architectures were proposed and
demonstrated for high capacity digital storage [22, 27, 34]. These achievements were
enabled largely because of several reasons: (i) significant improvements in optoelec-
tronic devices (spatial light modulators, CCD cameras) that were used to interface
the memory with a computer for writing and recording information, (ii) progress
in the understanding of the dynamics of well-known materials such as photorefrac-
tives [35], (iii) the appearance of new materials such as the photopolymers. In turn,
the encouraging results sparked increased activity in the field of holographic storage.
In this thesis we will present several novel architectures, aimed at improved density,
access time, and portability for holographic databases.

Two typical configurations used in holographic memory systems are the transmis-
sion and 90° (90-degree) geometries, shown in Figures 1.1 and 1.2 respectively. The
reference is a plane wave. In the signal arm, a Spatial Light Modulator (SLM) imprints
the information on the wavefront (usually as amplitude modulation), which is then
recorded as a hologram by interfering with the reference. Multiplexing is achieved
by changing the angle of incidence of the reference (angle-multiplexing [26, 36]) us-
ing the mirror and the telescopic 4-F system. The reconstruction is imaged on the
CCD camera for detection. FExcept for angle multiplexing, a number of different
multiplexing techniques have been proposed for holographic storage, such as wave-

length [37, 38], phase-code [39], fractal [40], and peristrophic [41]. In Chapters 3 and
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4 we will describe in detail two novel methods: array and shift multiplexing [42, 43].

Transmission geometry, as in Figure 1.1, is used in the holographic 3D disk [32,
33, 44] architecture, illustrated in Fig. 1.3. High capacity is achieved if two multi-
plexing methods combined (e.g., angle and peristrophic [33]) are used to superimpose
holograms on the same location (in Fig. 1.3 the angle multiplexing mechanism alone
is shown). After the total number of holograms allowed by the geometry and the
medium dynamic range is used up, rotational motion of the disk is utilized to access
different locations on the disk surface where the process is repeated (spatial multi-
plexing). Typically, the size of each location containing multiple holograms is a few
square millimeters. This poses a challenge in the implementation, since disk motion
cannot be continuous during recording or readout; it rather occurs in the form of
“jumps” from one location to the other. Alternatively, a continuously spinning disk
can be used, but the light source needs then to be pulsed. In most multiplexing tech-
niques, some mechanism is needed inside the disk head in order to implement selective
read-out. Angle and peristrophic multiplexing require a beam steering mechanism;

wavelength multiplexing requires an accurate, high resolution tunable laser source;
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phase-code multiplexing requires a second SLM to implement the orthogonal phase
code used for reference. In the cases of array and shift multiplexing, access is easier,
because different holograms become Bragg-matched by utilizing disk rotation alone,
as we will describe in detail later.

If the reference and signal beams illuminate orthogonal faces of the holographic
medium, the 90°-geometry variant of Fig. 1.2 is obtained. In this architecture, the
angular selectivity is very small, allowing very dense packing of the holograms, al-
though this occurs at the expense of dynamic range. The 90°-geometry has been
widely used in high capacity HRAM demonstrations [29, 34, 45, 46]. Again, it is
necessary to combine spatial multiplexing with one or two other techniques (usually
angle+fractal [45, 46]) in order to maximize the capacity.

An important design decision concerns the holographic material. For read-only
(or write-once-read-many, WORM) applications, photopolymers like DuPont’s HRF-
100 are promising [33, 47]. On the other hand, rewrittable holographic memories [48]

are usually implemented with photorefractive materials [49, 50, 51, 52]. Rewrittable
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holographic memories are volatile during readout, and even in the dark (i.e., the stored
information decays even when it is not being read-out, as is the case for CMOS
memories). We will discuss several solutions to this problem in Chapter 6. Other
possible materials include photorefractive polymers [53, 54, 55], but these are still in
the early development phase in terms of the understanding of the physics of recording,
and of practical applications.

Holographic memories are peculiar in the sense that the minimum retrievable unit
is a page (from several Kbits to a few Mbits) rather than a single bit. For direct access,
parallelism is usually an advantage, unless the data within a page are segmented in
small records (of a few bytes each) because then the additional processing needed to
extract the individual records from the page may slow down the memory. Additional
issues are the error rate, the coding scheme and the memory interface. Several of the
trade-offs between memory density, error rate and access method will be discussed in

Chapters 2, 5, and 6.

1.3 Outline of the thesis

We start by developing the mathematical framework for noise in readout from page-
oriented optical memories in Chapter 2. In particular, we are concerned with the
trade-off of pixel size and storage density against bit error rate, and use the measure
of information capacity to derive the upper bound on the useful information that can
be stored in a page-oriented memory.

A novel holographic storage method, using non-planar reference waves, is fully
developed and analyzed in Chapters 3 and 4. We consider two types of reference
beams: first a fan of plane waves (“array” multiplexing, section 3.2), and then a single
spherical wave (“shift” multiplexing, section 3.3). Shift multiplexing is of particular
interest because it is easy to implement and has already been used in experimental
high capacity demonstrations. We devote the entire Chapter 4 on the performance
of shift-multiplexed memories: crosstalk (section 4.1), dynamic range (section 4.2),

image distortion (section 4.3), and surface storage density (section 4.4) for shift-
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multiplexed holographic 3D disks, and finally nonvolatile readout of photorefractive
shift-multiplexed memories (section 4.5).

In Chapter 5 we are concerned with the problem of choosing an imaging system
for a high capacity memory (using surface storage density as metric). We consider the
4-F (in the Fourier and image plane storage geometries) and van der Lugt imaging
systems and analyze the constraints they impose on imaging in section 5.1. We
present in some detail the main derivations for the simplest and best-known case,
angle multiplexing in section 5.2. We then provide the main results for two more
multiplexing methods: wavelength (section 5.3) and shift (section 5.4), in the latter
case using the theory developed in Chapters 3 and 4.

Chapter 6 addresses several other issues in holographic memory design, in partic-
ular volatility (section 6.1, with emphasis on electrical fixing, section 6.1.1), compact-
ness and refreshing, with emphasis on the volume and error rate of a refreshable Thit
HRAM that physically occupies less than 1 m? (section 6.2), and associative access,
with emphasis on shift-multiplexed and compact architectures (section 6.3).

In Chapter 7 we present a computer architecture appropriate for adaptive intelli-
gent systems. The two most interesting aspects in the design, from the point of view of
this thesis are (i) the central concept of “awareness,” a computational bottleneck that
allows the main processor to operate in real time by reducing its input space dimen-
sionality in a dynamic, adaptive fashion; (ii) the declarative memory, which should
provide both direct and associative access; hence, a holographic memory comes to
mind as a good candidate for its implementation. The motivation for the awareness
approach to computation came from a computer game of Desert Survival, described
in section 7.1. The general-purpose awareness-based architecture and its similarities
to physiological and psychological models are presented in section 7.2. The mem-
ory organization and dynamics are studied in section 7.3; ideas on how holographic
memories may be be fused into the field more effectively are given in section 7.3.1,
and the “reinforced Nearest Neighbor” (rNN) learning scheme is introduced and ana-
lyzed in sections 7.3.2-7.3.6. The concluding section 7.4 discusses applications of the

computational paradigm of Chapter 7, and future directions in related research.
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Chapter 2 Noise in page-oriented optical

memories

2.1 Introduction

Intensity detection is used almost exclusively in practical continuous wave optical
systems, because it is by far the cheapest and easiest method. However, the phase
information of the optical signals is lost during the intensity-forming operation. For
example, if the signal is real and the noise contains an imaginary component, then the
imaginary noise will affect the performance of an intensity-detecting system, but not
that of an interferometric (phase-detecting) system. On the other hand, interferomet-
ric systems suffer from severe sensitivity to all kinds of environmental disturbances;
the effect of these on signal quality is so bad that the benefits from extracting phase
information are lost.

In material presented later in this thesis, the noise performance of an optical
memory is important. Therefore, here we concentrate on the analysis of intensity
detecting systems. In particular, we consider digital systems affected by complex
Gaussian noise, and analyze the error performance, using the common metric of
bit error-rate (BER), a fancy way of saying “probability of making an error in the
detection of a single bit.” We also discuss the concept of signal-to-noise ratio (SNR)
in the context of a digital system, describe the properties one would require of such a
quantity, and define a metric that satisfies them in the context of intensity detecting
systems.

An important feature of optical detectors is integration, meaning the incoherent
addition of elementary electric currents induced by the incident intensity. If these
elementary currents are statistically independent to some extent, we expect that the

integration improves error performance. As a quantitative measure of the degree
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of independence, we extend the notion of “effective degrees of freedom” [56] to the
space domain and to stochastic processes with non-zero mean, and indicate how to
measure it experimentally. Statistical independence increases with the surface of the
detector, but at the expense of surface density. This trade-off is treated with the aid
of an information density measure in section 2.3 and is the concluding result of this
chapter.

A legitimate question is: why bother deriving the statistics of the intensity before
and after integration? Since the noise contains a large number of components, one
may invoke the Central Limit Theorem (CLT), and use Gaussian statistics for the
intensity. This is not quite accurate. The CLT of course applies, but is accurate only
in the central mass of the distribution [57]; in many cases (intensity signals derived
from Gaussian-type coherent signals among them) the tails of the true distribution
deviate largely from the CLT approximation. The BER depends on the probability
mass at the distribution tails, where the CLT approximation predicts higher BER
than our more accurate approach.

Notation for Chapter 2

We will use boldface notation for random variables or stochastic processes. Thus
pv(v), EV{V}, Var {V} are the probability density function (pdf), expectation value,
and variance, respectively, of the random variable V. In a good part of this chapter
we will be dealing with estimating the moments of the random variable or stochastic
process V from statistical data; we will denote by my for the statistical estimate of
the mean EV {V}, and by oy the statistical estimate of the standard deviation of
V,ie, 0% = EV{(V - EV{V})?.

All stochastic processes are assumed wide-sense stationary, unless stated other-
wise. It will turn out to be notationally convenient to use vector notation for the

entire ensemble of a stochastic signal. Thus

is a column vector containing the values of the stochastic process V at points z;, ...z k.
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Traditionally, it is more natural to think of a stochastic process as being defined in a
continuum. We will avoid considerable complications by sticking to discrete processes,
even in the case K — oo.
The optical signal E incident on the detector is a stochastic process in the spatial

variable z, defined as

E(z) = S + Ny (z) + iN;(z). (2.1)

S is the signal process, taking values S (“ON” pixel) and 0 (“OFF” pixel) with
equal probabilities. N,, N; are the in-phase and quadrature components of the noise,
respectively. They are assumed statistically independent identically distributed (iid)
Gaussian random processes with mean 0 and variance ¢?; therefore, they both follow

the probability density function

() = — i 22)
n) = —— . 2
PN 2ro P 7952
The normalized joint moments of the noise processes are assumed symmetric and are
denoted as
BV {Ni(z + §)N4() ]
k(&) = e , (2.3)
where o may be “r’ or “1.”
The detector senses the intensity process I, which is defined as
I(z) = [E(2)[" = (S(z) + Ni(2))* + N{(2). (2.4)

We will use the symbol ’y}k(f ) for the autocorrelation of the intensity process I.
The decision whether the detected pixel is “ON” or “OFF” can be taken either
based on the value of I on a single location x inside the pixel or after spatial integration

over the entire pixel. To treat the latter case, we define the integrated intensity W
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as

W = % imn). (2.5)

The quantity p is very interesting: from a mathematical viewpoint, if we let © — oo,
then we obtain the Riemann integral

W —— [1(a")da". (2.6)

L—>00

This integral is well defined as a random variable, but does not shed light on the
physical significance of u. For our purposes, it suffices to consider p as the number of
elementary detector currents contributing incoherently to the overall current produced
by light entering the detector. Thus u is a very large number, so that it is legitimate
to consider it infinite if this turns out to be mathematically convenient; physically it

is reassuring to think that it remains finite.

2.2 Intensity detection of signals in Gaussian noise

2.2.1 Statistical properties of optical intensity

Probability densityv functions

The statistical properties of a random variable are entirely specified if its pdf is
known. The amplitude process |E| follows the Rayleigh distribution for dark pixels
and the Rician distribution for bright pixels [58]; therefore, the respective intensity

processes are exponential and affine x? (chi-square) with two degrees of freedom’:

1 1

pI(I|S=0):’2§eXP{—é§}, (2.7)
1 I+ 52 SVI

pr(I|S=29) = 552 &P {~ 557 }Io < 2 > ; (2.8)

where I,(.) is the modified Bessel function of 1st kind and order v. Equation (2.8) is

! The two degrees of freedom correspond to the independent processes N, and Nj.
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also called Erlang distribution.

The integrated intensity W is the summation of the intensities of 2y Gaussian
random variables (see eq. 2.5). If these variables are independent, then the pdf for
W is the p-fold convolution of individual pdf’s of the form (2.7) for dark pixels, and
(2.8) for bright pixels. This results in the following expressions:

_gy = (I {_ﬂ}
pw (W1 = 0) = () Fo o {5 | (2.9)
gl
1 (W2 W + uS? SV uWw
pW(W]S:S):ﬁ<F§) eXp{_T}I“‘1< o)’
(2.10)

where T'(.) is the Gamma function. We recognize (2.10) as the affine x? distribution
with 2u degrees of freedom. As the Riemann integral limit is approached (i.e., y —
o), the distributions tend to become impulse-like, centered at 20 and S? + 202 for
dark and bright pixels, respectively. The derivation of (2.10) is non-trivial and will
be given in Appendix I.

The independence assumption is very convenient for calculations, but holds for
white noise only; in practice, the spatially bandlimited nature of spatial optical noise
is not negligible, so the approach presented above needs to be modified. We start

with the case S = 0 (dark pixel) and consider the real and imaginary noise vectors

N; = (Ni(zy) ... Ny(z,))" and
N = (Ni(z1) ... Ni(z,))" .

We may express the joint pdf of the ensemble of random variables {N;, N} as follows?:

——— 1 Lopea e
erM(nr,ni)—mexp{-gan nr—é-niE ni}, (2.11)

?Recall that N; and AV, are independent by assumption.
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where ¥ is the correlation matrix, with entries
Emn = 02’711 (-’L‘m - wn) ) (212)

and |X| is the determinant of 3. Since ¥ is symmetric and positive definite, it must
have exactly p real non-negative eigenvalues /\? (7 =1,...,u). Therefore a unitary

transformation () exists such that
A=QTEQ (2.13)
is diagonal (with the eigenvalues as elements). If we now let

N =QN, (2.14)
Ni=QWN, (2.15)

then the components of N,, N; are also normally distributed and they are indepen-

dent [57]. After substituting the transformation into (2.11) we obtain

1 1, 1
A\ ) = o ——T AT, — —_-TA_I"i}. 2.1
P, (P, T03) G Al exp{ 5T AT T — o i (2.16)
Since the above equation is already decoupled into the individual pdf’s of the com-

ponents of vectors N, ./\7}, we can again use the convolution approach to derive the

exact pdf of W. The derivation is carried out in Appendix II and yields the result

R
pw(W|S=0)= ) —= -

o A2\
=0 Hm’;ém (1 - }%‘)

In the Riemann integral limit (z — o0), this approach is formally equivalent to a

(2.17)

Karhunen-Lo¢ve expansion [56], and yields the same result.
This accurate method is expensive computationally, and not very practical if the

correlation function is not known exactly. In many common cases, it is reasonable
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to assume that only a few out of the M eigenvalues of X are appreciably larger
than zero. We will denote the number of “large” eigenvalues by pes (e < ). The
remaining (4 — o) components of N, N; are distributed effectively like strong spikes;
therefore, they do not affect the convolution operation significantly. It follows that
the pdf of W is in effect the result of convolving p.g only independent components.
(This statement is exact if the remaining (4 — pesr) eigenvalues are precisely equal
to zero [57], because then the spikes become delta-functions). Further simplification
follows if we assume that all nonzero eigenvalues are approximately equal to o2
This approximate procedure is justified well for optical systems, as we will show in

section 2.2.2. The result is the much simplified pdf

Heff P/ Hei—1 { Neffl}
ex — .

pw (WS = 0) ~ (’“f) e L

o (2.18)

This is the same as (2.9) but with p.g instead of p.

We will refer to peg as the “effective degrees of freedom” of the variables appear-
ing in summation (2.5). It turns out that if peg is correctly estimated, then (2.9)
approximates the tails of the exact distribution reasonably well [56]. The reason is
that for large W the importance of the omitted terms in (2.17) diminishes, as we will
argue in Appendix IIL

A similar procedure for the bright pixels (S = S) yields an exact integral expres-
sion (eq. 2.50, see Appendix IV) which unfortunately cannot be reduced to closed
form. On the other hand, playing the same trick of approximating the eigenvalues,

we obtain the approximate pdf

pw(W|S=S5)~

. (2.19)

1 w 2 W + ,ueff52 SV pegW
eXpy———————5—— Iueﬂf_l T

202 LegS? 202

which again looks like (2.10) with peg instead of p.
Even though (2.18) and (2.19) look much simpler than (2.17) and (2.50) respec-

tively, they still contain per as a parameter which in principle must be determined
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from the diagonalization procedure outlined above. We now consider this problem
from two viewpoints, one general, and one taking into account the a priori information
from the diffraction-limited properties of the optical system.
Statistical moments

The following statements are straightforward to prove:

EV{I(2)|S = S} = 5% +20%, (2.20)
Var {I(z)|S = S} = 407 (S* + 07), (2.21)
EV{W|S = S} = 5% +20%, (2.22)
402 © H , 9 o
Var{WlS = S} = ';5‘ Z E {S 711($n - xm) +o Vll(xn - xm)}
n=1m=1
(2.23)

For dark pixels (S = 0) equations (2.20-2.23) hold by substituting S = 0. Note that
(2.23) was derived independently of the form of the pdf of W, and therefore is in
general exact even at the Riemann integral limit g — co. In the limiting case where
Zn, T, are uncorrelated for n # m, (2.23) becomes simply

40? (S% + 0?)

indicating a method to obtain u.s from image statistics: First we sample the image
at a rate much higher than the correlation domain, so that 4 >> p.s. Equation
(2.23) holds as is, whereas (2.24) holds with peqs in place of p. By comparing the two

equations, we obtain
_ Var{I(z)|[S=S} p? (S? + o%)

feft = Var {W|S = S} N Z:l St {52711(xn - Tm) + 027%1 (zn — xm)}
(2.25)

In order to be able to use relations (2.20-2.23) above, we must obtain all neces-

sary quantities from experimental intensity measurements. Manipulating the above
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relations we obtain:

S? = mw g5 — Mw s, (2.26)
1
o? = 5w s=0, (2.27)
I
711(5[8 = 0)
S=0)=,|——+———1. 2.2

Again, these calculations are accurate, but not appropriate for practical situations,
because they require many difficult measurements and a lot of computations. In
diffraction-limited optical systems, it is easy to estimate peg directly from the system
apertures using diffraction theory, as we show in section 2.2.2.
Bit error rate

So far we have been concerned only with optical noise, which in a holographic
memory is generated, for example, by light diffracted from neighboring pixels due
to the finite modulation-transfer function of the optical system, by media scattering,
laser speckle, etc. In addition, electrical noise [59, 60] is generated by photoelectric
current fluctuations, shot noise, etc. Let v denote the total electrical signal on the

detector. Similar to previous work [60], we model v as
U = Ugpt + Ve, (2.29)

where v, is the current generated by the optical signal (which contains only optical
noise in the case of a dark — “OFF” — pixel, and mixture of signal plus noise in the
case of a bright — “ON” — pixel) and v, is the excess signal generated by electrical
noise. We assume that the quantities v, vep, Vet are normalized to the amplitude
variance o2 of the optical noise.

We now define the optical Signal-to-Noise Ratio (SNR),, as

(SNR) 5y <M . 1) _ (2.30)

opt =
Pt g2 mw s—o
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A slightly different definition of SNR used often in optical systems is

(SNR) _ Mw =5 — IMw S=¢

opt — ) ) :
\/O'W,S:S + Ow s=0

The two definitions are reconciled through the relation

\/—(SNR)opt (231)

(SNR)opt = (SNR)

opt
We will maintain definition (2.30) in later chapters because it conforms with the
theory of Gaussian detection presented here.

The probability distributions of v, for the dark and bright pixels are given re-
spectively by

Heft \ Heft ’ngeftir ' { ,ueffvopt}
ark\ Vo = " Y y 2.32
Paark (Vopt) ( 2 ) T () P 2 (2:32)
1 Uopt Vopt + /J’EH SNR)opt
pbnght(vopt) 2 ( (SNR Opt> { X
Lot (/e (SNR) o ope. ) - (2.33)
The electrical SNR is defined as
S22 g — _
(SNR), = = = (mw s=s5 _ mw,s_o), (2.34)
Ol Oel

where ¢ is the variance of the electrical noise component. Because of the particular
normalization of the electrical noise signal v, its approximate probability density

function (independent of pixel value) is

__(NR)y ] vE(SNR)y
p(va) = Var(SNR),, p{ (SNR)om} (2.35)

The statistics of v are obtained by convolving p(ve)) With Daark (Vopt) OT Dbright (Vopt)

for dark or bright pixels respectively. The probability of error PE is obtained by
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logl ()(PE)

(SNR)UDI

Figure 2.1: Probability of Error (PE) as function of optical signal to noise ratio

(SNR),,; for (SNR),; = 10 and different values of the noise coherence parameter .

standard Bayesian estimation on the resulting distributions and depends only on the

parameters (SNR)_ ., (SNR),, and peq. Some example plots of PE versus (SNR)

opt’ opt

for (SNR),, = 10 and for various values of pes are given in Fig. 2.1.
Generalizations

The above derivations were facilitated by the assumption that the bright and dark
pixels follow the same statistics, and that the dark pixels have zero mean amplitude.
In practical situations, the contrast ratio of spatial light modulators is finite, which
means that the “dark” pixels are slightly biased in intensity. Also, the pixel statistics
are usually non-stationary, bceause of beam non-uniformities and other nonidealities.
These cases are more complicated, but they can still be treated in straightforward
manner under the framework of this and subsequent sections; therefore, we will not

consider them further in this thesis.

Appendix I: Derivation of the probability distribution for the integrated
intensity of a bright pixel
We will use the method of characteristic functions to derive the probability density

function of the random variable W given by (2.5) where the components I(z,) are
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independent random variables with S = §. Let I denote any one of the intensity

variables. The characteristic function is defined as
Ui(t) = EV {exp {ilt}}. (2.36)
It is convenient to define the auxiliary variables p, @ according to

N, +iN; = pe?®,  where
p* =NZ+ N7, and
N
0 = arctan —.

N,

In the (p, 8) space, eq. 2.36 becomes
Uy(t) = exp {z’Szt} EV {exp {z' (p2 +2Spcos 0) t}} . (2.37)

Under the current assumptions, p is Rayleigh-distributed in [0, 00) and 6 is uniform

in [—m, 7). Therefore ¥y(t) can be written explicitly in integral form as

‘ o w ) .
\I’I(t) — ezszt/O dp /—7T dg%%e—pzﬂﬂezp(p—f-ﬁscose)t' (238)

Using one of the integral definitions of Bessel functions [61],

1 47 i
Jn(z) — % /— e‘m¢>-|-zzsm¢d¢7
we reduce (2.38) to
is2e [P L\ o
Ui(t) =e A ;exp{— (5&_2 —zt)p }Jo (25pt) dp. (2.39)

From standard mathematical tables ([62] formula 6.631-4) and after some manipula-
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Figure 2.2: Path integral used for the evaluation of (2.42).

tion we obtain the characteristic function in closed form

Ui(t) = ——exp {—251—} . (2.40)

1 — 2i02t 1 — 2102t

Since we are assuming here that the p components in (2.5) are independent, the

characteristic function for W is simply

arlt) = (B0 = gz o | g |- (241

We now must calculate the inverse Fourier transform of (2.41) from the integral

1 oo .
pw(W) = 5- / \Ilw(t)e_ZWtdt
. 1S?
- / (1- 2w?t =P {2 <1 —2i0% W> t} ar (2:42)

To calculate this integral we consider the loop integral along the closed path shown
in Fig. 2.2 with ¢y — oo. This integral is zero, because the function is analytic in the
interior. of the path (note that the pole ¢ = —i/20? has been excluded). We recognize
the part of the path that lies on the real axis as the path of integration appearing



24
in (2.42). Consider the integral along the vertical part of the path at ¢. If we let

t = tg + iC along the path, the integral after some manipulation can be written as

~57 1 20%t5 + C(1 4 20%() — it
/ > , 7 €Xp {—,u52 o't + ¢l +2 o°¢) ~ ity _ th} dc¢.
0 (14 202%¢ — 2io?ty) (1 +20%C)" + 4ot}

This clearly goes to zero as to — oo, because the non-oscillatory part of the exponen-
tial tends to one and is therefore dominated by the preceding fraction. For the same
reason the integral along the left-hand side vertical path (¢t = —to + i() goes to zero.

The integral along the remainder of the path is

uS? + W 1 [ pnS?
exp{ 553 }7{ (202 exp {z <404u —Wu | ¢ du,

where -f, denotes integration along the path that excludes the pole 1 — 2i0?t = 0 in

the positive (counter-clockwise) direction, as shown in Fig. 2.2. We can re-write the

integral as follows:

2 1 S 2
B S i
20 + (—2ic%u) 202 202/ Wu VIS

&:l
it WY pS? +w _H S\ uW 1
= 5.3 <;/J§E> exp {——-——202 }]ﬂu exp | —i—— (u ~ E) du.

The last integrand happens to be the generating function of a Laurent series with

Bessel functions J, as coefficients ([63], page 355):

1 z 1
— = ) Zf, -2
T(z) omi i eXp{:z (” u) }d“'

Substituting, and using the relation I,(z) = i7*J,(iz) we obtain (2.10), i.e.,

p=1

=35 (3o 52 ()

202 F 202

Appendix II: Derivation of the exact probability density function for the

integrated intensity of a dark pixel
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We begin by defining the intensity process in the decoupled domain

I(z;) = N¥(z;) + N(z;), Jj=1,...,n (2.43)

The pdf of I(z;) is expressed in form similar to (2.7) as follows:

-1 I
pi(I) = %Eexp{—%—i}. (2.44)
The integrated intensity W can be expressed in terms of the noise vectors as

pW = NTN: + NN
= NI QTQN; + NTQTQN;
= NIN; + NN
‘l‘ ~
=Y I(z;). (2.45)
m=1
In the third step we used the fact that () is unitary. Since the i(xj)’s are independent,

the convolution method can be applied to calculate the pdf of their sum (2.45). The

characteristic function of (2.44) is

1
Ve (t) = ————. 2.4
The characteristic function of W is expressed as a product
m
n!:[1 1- 22/\2 t
i 1
=Y (2.47)

A2\
m=0 (1 2’&)\2 t) Hml#m ( )\2 >

Direct Fourier inversion of (2.47) yields (2.17).

Appendix III: Distribution tails for dark pixels

In this appendix we will argue that the approximations (2.18), (2.19) become
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arbitrarily accurate at the tails of the distributions, i.e., as W — oo for (2.18) and
as W — 0 for (2.19). We begin with the dark pixels, whose exact distribution is
given by (2.17). Suppose that the eigenvalues are unevenly distributed with a few
(= peg) having values close to 20 and the rest with values close to zero. From (2.17)
it follows that the contribution of the p-th component in the decoupled space can be

made smaller than an arbitrary number, say ¢, if

W > —2X2 log [25 II - Afn[} .
m'#£m
As )\, decreases, the lower bound for W decreases as well; therefore, the contribu-
tions of near-zero eigenvalues become insignificant towards the right-hand tail of the
distribution. This claim is also supported by the numerical results presented in [56].
Consider now the integral expression (2.50) for the pdf of the integrated intensity
of a bright pixel. Each exponential contributes most strongly for ¢ being in the region

of stationarity, i.e.,

a{ iS5t th}
I + :0

ot | 1—2M2¢ L
= e S
C2)2, 2,

We can see that as W and )\, decrease, the stationary points move away from the
real axis, while the real parts of the exponents become small. Therefore, the small

eigenvalues contribute negligibly as w — 0.

Appendix IV: Derivation of the exact probability density function for the

integrated intensity of a bright pixel

We define the signal and electric field vectors § and £ respectively as follows:

4 elements

E=E+E=8+N, +iN



27
The pdf for the field vector is Gaussian

1 1 1 1+ 1
pe.s (€, &) = mexp {—— &—-8)"2 (e -S) - -2-eiTE 1ei} .

(2.48)

After diagonalizing ¥ as in the case of dark pixels (eq. 2.13) and defining S =Q8S,
& = QE, we obtain the decoupled pdf

Pi (e &) = @T—)lm exp {-% (e - S)T D %—?’A—léi} .

(2.49)

We then use the property ETE = ETE€ (see Appendix 2.2.1) to obtain W as a sum of
independent intensity variables I(z;). The characteristic function for those is similar
to (2.8) (but with A; instead of ¢) and the characteristic function for uW is obtained
as the product of the y individual pdf’s. Finally, the pdf is obtained in integral form

as

1 o 1 iSZt  dwt
- m 4 220 ar, .
pw(w) 27r/ 11 (1—2A$nteXp{1—2)\,2nt+ u }) (2:50)

~® m=1

2.2.2 Diffraction-limited optical noise

In the previous section we analyzed the spatial optical noise in a page detected by
an optical system, and saw the effect of the band-limited nature of the noise on the
probability of error, through the concept of the “effective degrees of freedom,” pieg-
Here we give an example of the calculation of pes in a simple optical system, and
justify the approximations leading to (2.18) and (2.19). A similar calculation for
time-domain integration is given in [56].

Consider an ideal, noiseless monochromatic point source located distance d behind
a circular aperture of radius R, as in Figure 2.3. The radiation is affected by (spatial)
white noise in the form of a thin transparency located infinitesimally close to the

point source. We are interested in the statistical properties of the noise immediately
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Figure 2.3: Geometry for the calculation of the effect of an aperture on spatial white
noise.

past the aperture, and in particular the size of the “correlation domains,” which we
later use to determine peg-

Each infinitesimal point source on the noise transparency is spatially filtered by
the aperture, producing a diffraction pattern. An immediate result of this statement
is that it is impossible to distinguish the individual noise sources contributing noise
to an area equal to the minimum resolvable spot (MRS) of the aperture. In other
words, despite the fact that the noise sources were originally uncorrelated (since the
noise source was assumed spatially white), still the noise contributions in distinct
points separated by less than the MRS are correlated. We may therefore claim that
the number of effective degrees of freedom per equals the amount of MRS’s fitting
inside one pixel, since this is the amount of effectively uncorrelated random variables
contributing to the integrated detector signal. Our objective in the remainder of this
section is to quantify these statements.

For simplicity, we will still perform the analysis for a one-dimensional noise pattern

beyond an aperture of size 2R, and correct for the circular aperture afterwards. The
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autocorrelation function immediately past the aperture is, by definition,
i1 (21, 725 d%) = BV {B(z1; d*)E* (22;d") | , (2.51)

where in the notation we added the distance d from the point source, and the su-
perscript “+” denotes “immediately after.” The electric field is expressed explicitly

using Fresnel diffraction theory as

+oo /  (p—z)?
E(z;d%) = /_Oo rect (;—R) eI da’, (2.52)

where some constant factors were omitted for simplicity without affecting the calcu-

lation. Substituting into (2.51) we obtain

+o00 , ,
T x
711(331,932; d+) =EV {_/OZ rect (ﬁ) rect (éj_%) E(Ill; 0+)E*(a:2'; O+)

_ N2 _ _ 12
exp {lﬂ' (331 i ) )\d($2 T2 ) }dmlldeI} ) (253)

By the definition of a white noise source, we obtain that at the origin the noise

correlation is
iz, 35";07) = EV {E(xl'; 0 E*(zy"; 0+)} = §(x, — z5’). (2.54)

After exchanging the orders of the expectation value and integration operators in
(2.53), one of the integrations is performed trivially because of the é-function, and

we obtain

!

2 2
;T T%S too T o (z1—z9)’
Y11 (21, To; dT) = €7 X / rect (ﬁ) e ¥ dy! =
—00
2¢6R

Ad

1+ o

)7 gExl'—xQ: g 2

— " Xdsinc (

(2.55)

The “correlation domain” for our simple one-dimensional case is the size of the first
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Figure 2.4: Distribution of eigenvalue magnitudes for an autocorrelation matrix of a
diffraction limited system with input spatial white noise and spatial detector integra-
tion at the output.

diffraction lobe, i.e., Ad/2R. For the circular aperture of Fig. 2.3, repeating the above

calculation in two dimensions yields the diameter of the correlation domain

Ad
(Ag), =1.22%. (2.56)

Note that both formulas are identical to the MRS’s of the corresponding optical
systems.

Now consider an optical system affected by spatial noise with autocorrelation
given by (2.55). We form the autocorrelation matrix ¥ according to (2.12), and
observe that if the pixel size is b = n (A)_, then approximately n eigenvalues of
> are approximately equal to 1 and the rest are approximately equal to zero. An
example is given in Figure 2.4, where the (one-dimensional) pixel size was chosen to
be five times the correlation domain, and |y;(£)| was sampled at p = 50 individual

points. This picture justifies the approximations that led to (2.18), (2.19), and also
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the estimate

pr ((Abﬁ))Q | (257)

2.3 Noise and surface density

From the analysis in the previous section it follows that making the pixel size b large
helps reduce the noise, because then the effective degrees of freedom peg grow thereby
improving the effect of detector integration. At the same time, though, increasing
b reduces the effective space-bandwidth product of the optical system. Therefore a
trade-off emerges: one can design a high density system tolerating some extra noise,
and use error correction to undo noise effects; however, codes produce overhead to
the stored information thereby also decreasing the density. Error correction codes for
page-oriented memories is currently an active research topic [64, 65, 66, 67]. Here
we will confine ourselves to the calculation of the upper limit for the useful informa-
tion that can be stored in a holographic memory3, which is easily calculated using
Shannon’s coding theorem.

We will treat the holographic memory as a binary asymmetric channel, as shown
in Figure 2.5. Each piece of information is stored as either 0, with probability w, or
1, with probability 1 — w. At detection, there are finite probabilities ¢, that 0 turns
into a 1, and 1o that a 1 turns into a 0. Let H(detect) denote the entropy of the
detected bits, and H (detect | store) the a posteriori entropy of the detected bits given
the stored bits (in other words the uncertainty about the output given the input).
The mutual information of the input and output sets (i.e., the amount of information
that we can infer from the detected data about the stored data and vice versa) is

defined as

M (store, detect; w) = H(detect) — H(detect | store). (2.58)

3i.e., the amount of information remaining available after the error correction overhead is sub-
tracted from the raw density.
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Figure 2.5: A holographic memory viewed as an information channel.

The mutual information is maximized if w is selected as

o 1—(v+1)eyp
opt (I/ -+ 1)(1 —&01 — 510)’

(2.59)

%(510) — %(601)

, H(w) = —wlog, w—(1—w) log,(1—w).
1 —¢e01 — €10

where log, v =

This relation simply says that it is better to select a coding scheme that favors the
symbol (0 or 1) that is less likely to flip between storage and detection in the asym-
metric channel. If g5, = €9, then we obtain the intuitive result w = 1/2, which is
common in practical coding schemes. Returning to the optimal result (2.59), Shan-
non’s theorem states that a coding scheme exists such that a maximum amount of
data equal to M (store, detect; wqp) with arbitrarily small probability of error. Thus
M (store, detect; wope) is an upper bound on the amount of useful information (as op-
posed to error correction overhead) that one may store in the memory channel of
Fig. 2.5. |

To understand the trade-off between noise and surface density, let us consider an
extreme case of noisy data, e.g., S/o = 1.9, with optical noise only. The parameters

K, €o1, €10 are calculated using the theory (equations 2.57, 2.18, 2.19) of section 2.2.
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Figure 2.6: Examples of tradeoff between noise and storage density in page-oriented
optical memories. The plots show the upper limits in the amount of information bits
that can be stored in a page of fixed size equal to 1000 wavelengths, and the ratio of
useful information versus error-correction overhead, versus the pixel size b normalized
to the wavelength A. It is assumed that the bandwidth of the optical system is enough
to avoid vigneting or filtering effects. The optical SNR is (a) 1.9, (b) 10.

The effective capacity versus normalized pixel size (relative to the wavelength) is
shown in Fig. 2.6a. We observe that, for small pixel sizes, detector integration is not
sufficient to cancel the noise, hence the error correction overhead limits the density
severely. On the other hand, if the pixel size is large, the overhead is small but the
density is reduced by the fact that not enough pixels fit in one page. An optimum is
found when b ~ 2A.

On the other hand, if the noise level is sufficiently low, e.g., S/o = 10 (Fig. 2.6b),
then the error correcting overhead is never significant. In that case, one is better off
using pixel size as small as possible?.

The above conclusions are true when the memory contains a single page per lo-
cation. In Chapter 5 and section 6.2 we will see that additional considerations must
be taken into account in holographic memories, where several overlapping pages are
multiplexed, because then the density and noise are affected by the pixel size in a
more complicated manner. The information metric developed here will then help in

clearing up the associated trade-offs.

4i.e., as small as allowed by the technology
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Chapter 3 Volume holography with

non-planar reference waves

3.1 Fundamentals of volume holography

Volume holograms are stored as a result of interference between two mutually coherent
light beams, the signal and the reference (Fig. 3.1). The signal carries the information,
typically in the form of amplitude modulation imprinted on the wavefront. In the
simplest case, the reference is a plane wave (in this chapter we discuss two cases of
non-planar references). In a thick medium one needs to reproduce the reference used
for recording as accurately as possible in order to get diffraction from the hologram.
If instead the plane-wave reference deviates in angle or wavelength, then diffraction
contributions from different parts of the hologram become phase mismatched causing
the diffraction efficiency to drop (Bragg mismatch). The amount by which the angle
or wavelength need to change before the reconstructed power drops to zero is called
Bragg selectivity and depends on the geometry and the thickness of the material.
As an example!, consider the transmission geometry of Fig. 3.1, a very common
setup for holographic storage. The plane-wave reference R(r) is incident at angle 0p,
the signal S(r) at s, and they are both at wavelength Az. The hologram is a per-
turbation of the refractive index € by an amount Ae proportional to the intensity, i.e.,
the interference pattern that results from the coherent superposition of the reference

and signal. In the simple example of Fig. 3.1, we have:

2

R(r) =exp{ikg-r}, kr= "/\71 (—sinfg,0,cos0r); (3.1)
2

S(T) =exp {ik:g . ,,,} , kS = Tﬂ— (sin 95, 0, cos 95) ; (3-2)

!The theory of volume holography presented in this section is based on the (unpublished) class
notes and homeworks of APh/EE 133 (Optical Computing), by D. Psaltis, Caltech 1994.
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Figure 3.1: Volume holographic memory in the transmission geometry.

Ae(r) =e1 |R(r) + S(r)]* = 26 {1 +cos (K, - 1)}, K, =ks— kg;

3

2 2
Ae(r) = 2¢ {1 + cos [(sin fs + sinfg) .%f + (cosfs — cos bg) %

(3.3)

Here €, denotes the strength of the hologram, » = (z,y, ) is the position vector, and
K, is the grating vector. For later convenience, we break Ae(r) into three terms as

follows:

Ae(r) = Aeg(r) + Aey (1) + Ae_(r),
Ago(r) =261, Aep(r)=eexp{iK, -1}, Ae(r)=eexp{—iK, r}.

The reconstruction of the recorded hologram is posed as the problem of diffraction
from the pattern Ae(r) upon illumination by a reconstructing reference beam Eg/(7)
(possibly different than R). This problem admits analytical solution under the Born
and paraxial approximations [68, 69, 70]. The first-order distortion introduced to the
hologram by non-paraxial terms is calculated in Appendix I. The paraxial result for

the diffracted field &y is:

400
gd(’l") = //_OO A(kR/; k‘d) exp {de . T‘} dkdzdkdy, (34)
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where A(kg:kq) = a / / Ay () exp {i (kp — kq) -7/} AP, (3.5)
0%

where the constant vector a is given by

a (K,)

T 2iks | e

A K, & A
<0 { 9 © (kRI+K9)~w2pgeei} (3.6)

(&; is the polarization vector of the incident electric field). In (3.4) the integral is over

the space of possible difracted wave-vectors

27\ ?
ky = (kdx, . \/<E> Sy ) .

In contrast to infinitely thin holograms (Raman-Nath diffraction regime), only the

term Ae, contributes to the diffracted field. The other two terms Aey, Ac_ can be
shown to have negligible contribution. The constant vector a of (3.4) and (3.5) is a
result of the vectorial nature of diffraction (details on the calculation of a are given
in [69]). V is the three-dimensional extent of the holographic material. The factor
A(kpr; ky) is interpreted as the 3-D Fourier transform of the hologram calculated at
spatial frequency kr — kq.

This integral formulation is convenient for calculating diffraction from holograms
recorded with a reference beam that is a plane wave or a discrete superposition of plane
waves (see, e.g., section 3.2). For other wavefronts (e.g., spherical), the calculation is
quite formidable. However, using standard properties of Fourier integrals, (3.4) and

(3.5) can be readily re-expressed in convolution form:

Ealr) = ///V Ew (1) Aes (1)G (1 7). (3.7)
1

g(T’I;’I") = mexp{ik}y |T'_"°I|}; 7“757“' (38)

is the scalar form of Green’s function for free space. Eq. (3.7) has an interesting
interpretation [70]: it says that each infinitesimal region inside the hologram acts as

a point-source; the diffracted field is obtained as coherent superposition of all the
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infinitesimal point-sources comprising the hologram. We will use this particular form
later (sections 3.3.1-Appendix, 4.1) for the calculation of diffraction from volume
holograms recorded with a spherical wave reference.
Returning to the simple example of Fig. 3.1, suppose that the holographic material
has thickness L in the z-direction and is infinite in the transverse directions z, y, and
that the incident field is R'(r) with wave-vector kg . Applying (3.4-3.5) we find that

the diffracted wave-vector k, is determined by the following conditions:

kex2 = (kp+K,)x 2, (3.9)

|kd! = kRI = 27T//\R/, (310)

where Z is the unit vector in the z-dimension. The diffraction efficiency, i.e., the

fraction of incident light diffracted off the hologram, is given by the expression

2 N
. .9 ((Skd . Z) L
= 1) sinc <—27r , (3.11)

£a
51{/

where 7 is a constant expressing the hologram strength. The quantity

Sky=kp + K, — kg (3.12)

is referred to as “Bragg-mismatch.” If 6k, = 0, the hologram is said to be “Bragg-
matched,” and the diffraction efficiency is maximum, equal to 9. An equivalent

expression for the Bragg-matching condition is

|Kg + kRI' = kJR/. (313)

The geometrical interpretation of this condition is shown in Fig. 3.2.

If kr is changed so that dky # 0, then the diffraction efficiency drops according
to the sinc-type law of (3.11). The amount Akpg required for the sinc function to
reach its first null is called “Bragg selectivity,” because a new hologram may be

superimposed using kg as reference. For the purposes of the current discussion, it
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suffices to say that the crosstalk between the two holograms is minimal when Akpg
becomes equal to the Bragg selectivity or an integer multiple thereof. We will provide
later (section 4.1, see also [71, 72, 73|) a detailed calculation of crosstalk between
information-bearing holograms.

The explicit expression for the diffracted field in the simple example of Fig. 3.1 is:

.y
sing [2— (ng K = Kl — Ky — Kl — (ks + Koa)” — k%yﬂ
Vb = (bra + Koo)' — Ky,

X

exp {i (kro+ Kgz) o+ kryy+ \/kfz, — (kps + Kggc)2 - k%,y z] } . (3.14)
where ay = ||a(K,)|| and we used the shorthand notation v, = v, - b for the com-

ponents of vector v,. The grating vector is
K,=K, x+ K,z (3.15)

(the y component is ommited without loss of generality because z and y are equiv-
alent). From this condition we may obtain the Bragg selectivities for two important
cases: (a) if Akp is due to a change in angle of the reference beam (Fig. 3.2¢), then

the “angular Bragg selectivity” is:

Acosfsg

Afp =
B = sin(0g + 05)

m=1,2,...; (3.16)

(b) if Akg is due to a change in wavelength of the reference beam (Fig. 3.2d), then
the “wavelength Bragg selectivity” is:

A2 cos g

Adp =
R mZLsinQ%(HR%—@S)’

m=12,... (3.17)

In Appendix II we calculate in detail the effect of crystal rotation in diffraction effi-

ciency in the transmission geometry.
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Figure 3.2: Illustration of Bragg-diffraction on the k-sphere: (a) recording of grat-
ing K, by plane waves with wave-vectors kg, ks; (b) reconstruction by Bragg-
matched beam with kp = kg; (c¢) reconstruction by beam rotated by Afg
(angle-multiplexing); (d) reconstruction by beam at wavelength detuned by AMg
(wavelength-multiplexing).
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In volume holography, the Bragg selectivity is used to record multiple overlapping
holograms sharing the same material volume, in other words for “hologram multi-
plexing.” According to what has been described so far, this is achieved by changing
the angle [36] or the wavelength [37, 38] of the reference beam by an amount equal
to the respective selectivity. For typical parameters 0 = 05 = 30°, L = 5 mm,
A = 488 nm we obtain Afp = 5.6° x 1073, and AXp = 8.2 x 1072 nm. For exam-
ple, if the angular range yielded by typical lenses is 20°, or if the range of a tunable
laser source is 300 nm, we obtain My =~ 3,500, and M, =~ 3,600 for the number of
holograms that can be stored, respectively. Assuming that each hologram contains
approximately 1 Mbit of information, and that the area occupied by the holograms
is 4 mm? (2um pixel size), we obtain the volume density of the holographic memory
as ~18 Gbits/cm3.

Phase-code multiplexing [39, 74] is directly related to angle multiplexing in the
sense that instead of using one plane wave reference at a time, one uses all of them
at once, observing the Bragg-limited angular separation. The phases of the refer-
ence components implement some set of orthogonal functions, e.g., Walsh-Hadamard
codes. Upon reconstruction, each member of the orthogonal reference set reconstructs
its own hologram; orthogonality serves to eliminate all other reconstructions, yielding
minimal crosstalk [75]. The maximum number of superimposed holograms using this
method is equal to the order M, of the system of orthogonal functions. Bragg mis-
match is employed to eliminate multiple reconstructions due to the multiple reference
components. Therefore M, is limited by the number of beams angularly separated by
Afg (eq. 3.16) that fit in the aperture of the reference imaging system. In that sense,
phase code multiplexing offers the same capacity as angle multiplexing (M, = M,)
for the same optics. In practice, the space—bandwidth product of the available SLM’s
currently limits My to < 2,000.

The capacity offered by holographic storage can be further augmented by combin-
ing angle and wavelength multiplexing [76], or either one of the two techniques with
methods that do not utilize Bragg mismatch [40]. These methods are based on the

property of reconstructed holograms to follow the motion of the reference beam when
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Bragg mismatch is not present. For example, rotating the reference beam around
the optical axis causes the reconstruction to rotate similarly until either it becomes
Bragg-mismatched or moves out of the detector plane (which one of the two occurs
first is determined by the spatial signal bandwidth). This effect is utilized in the
method of peristrophic multiplexing [41] (in Greek, “peristrophic” means rotational).
A more detailed discussion on the Bragg selectivity properties of peristrophic mul-
tiplexing is given in Appendix II of this section. Recently, surface storage density
of 10bits/um? without any observed errors in the reconstructions was demonstrated
using combination of angle and peristrophic multiplexing [77]. The thickness of the
material used for this experiment was 100um, and volume density of 100 Gbits/cm?®

was achieved.

Appendix I: Validity of the paraxial approximation in volume diffraction

The electric field FE satisfies the wave equation

V(V-E)-V*E —uw*puyecE = 0, (3.18)

e(r') = o + Aeg (). (3.19)

The perturbation of the dielectric index inside the volume holographic material is

expressed in Fourier space as

Aey (r) = Aey (r) e BoT = [ Ae(k ) e BT K, (3.20)

JVk

where K ;o is the carrier wave-vector and Vx is the portion of Fourier space where the
hologram spectrum has significant values. The bandlimited nature of the hologram

is expressed by the conditions

K, - Ky,=AK, |AK,|<<|Ky] VAK, € Vk.
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The A(kp,kq) factor is computed easily as superposition of the individual Fourier

components of the perturbation, and is given by

A(kR’vkd) = / a(Kg) Ag(Kg) (/ ei(kR/—’rKg“kd)-T"d:STI) dgKg,
Vi %
(3.21)
where
1 . A«
a(Ky) = g (K + AK) 6] (kn + Ko+ AK,) = o piocols,
0fvdz
K,-é& AK,- &
= ag+ ____QP__E_AKg 4 2Ry 8 (kR’ +K90)
€0 €
+ O (|AK,P) (3.22)
1
ay — - (Kg() . é,) (’CRI + KgO) - wzuoeoéi. (323)
QZeokdz
Each term in (3.22) can be integrated separately, yielding
A(le, kd) — CLO/ AG(T") ei(kigkd).'r"d:sr/ _
v
o / (eiK o’ VAeo(r’)) eikn — k) T g3 _
2€Okdz v
(kr + KgO) / (eiKgo-r’ VAeo(r) 'éi> ei(kR/fkd)-T’dS r!
26()de v
+0(|AK,P). (3.24)

The first term in (3.24) is the approximate solution of (3.5), while the remaining terms
express the first-order corrections, which depend on the gradient of the perturbation.

If we further assume that the gradient is bounded above, as in

IVAGO(’I"I)‘ S |A01 VTIEV,
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then we obtain an upper bound on the first-order error in (3.5):

|0A (kg ,kqg)| <

AK ) A
}—ﬁ { |Kgo-eil|A0’ + I kR/—FKgo‘ [max]VAeO.ei[]}. (325)

Note that the first-order distortion is eliminated if the conditions K, L &; and

VAegy L &; are satisfied.

Appendix II: Bragg mismatch effects from crystal rotation

As a more complete example of calculating diffraction from Bragg-mismatched vol-
ume gratings, we now consider the effect of rotation on volume diffraction. Consider
a volume hologram of thickness L in the z direction, infinite in the z, y directions,

expressed as

!

Ae (r') = Aegrect (%) o r’ (3.26)

The grating vector is given by (3.15) and the diffracted field by (3.14) according to
the theory of the main part of this section. We will now consider the three possible
rotations in sequence.
(a) z-rotation (Peristrophic multiplexing) [41]

To treat rotation around the z-axis, we express the readout reference wavevector
as

kRI = kR/zi + kL.

Assume that kg is rotated by a small angle 1/, relative to the Bragg-matched position.

This small rotation causes no change in kg,. The transverse components change by
AkR’x ~ _kR’y 1/)2 AkR’y ~ kpy 1/)2-

Substituting in (3.14), we find that the diffracted intensity varies with 1., to order
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Figure 3.3: Symmetric recording geometry.

O (4. ), like

L kp, K
Luge o sinc? [ — —By oz ) ) 3.27
diffe OX sinc <27r P 1/)> (3.27)

The first Bragg null occurs when the argument to the sinc in the above expression

becomes one; therefore, the selectivity for rotation around z is

_27r

kR’z + ng
17 e |,

Ay,
w kR’y ng

(3.28)

This calculation is valid only if the denominator in (3.28) is non-zero. In the singular
case kg, = 0 (i.e., when the input wave vector and the grating vector are co-planar),

then keeping O (1, %) terms in the Taylor expansion yields

}1/2 . (3.29)

It is interesting to examine the transition between the usual Bragg mismatch

2T

L

kR’z + ng

Ay, =
w { kR’z ng

effect and the singular case of kg, K, co-planar. For the moment we will consider

the symmetric geometry of Figure 3.3 and we will generalize later. The recording
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reference, signal and grating wave-vectors are

kr = k(—sin8,cosfsin ¢, cosbcos @) (3.30)
ks = k(sinf,cosfsing,cosfcos @) (3.31)
K, = ks—kg=k(2sin0,0,0). (3.32)

The peristrophic Bragg-mismatch for the symmetric geometry, keeping two orders of

w27 iS

Ak, =

kryKpo | kraKy k2 Ko
By 9+ — 9(1 it )W (3.33)

K, T ok, k2 km

By requiring LAk,/(27) = 41 we obtain for the Bragg mismatch the following

quadratic condition:

A(AY,)> —BAY, £C =0,  where (3.34)
tan® ¢ )
A__m§¢@+um¢) (3.35)
2tanftan ¢
Bo= = (3.36)
A
¢ = LcosfOcos¢’ (3.37)

If ¢ is not negligible, the approximate solution to the quadratic equation (3.34) is

Acot ¢

Ny

(3.38)

in agreement with (3.28), as can be verified easily. On the other hand, if ¢ ~ 0, the

linear term in (3.34) vanishes and we obtain

Acost
[Ava| = [T (3.39)
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Figure 3.4: Transition from non-singular to singular Bragg selectivity (solid curve) as
¢ — 0 for A = 488 nm, L = 38um, 0 = 30°. The dotted curve is the Bragg selectivity
approximation (3.28), which breaks down for small ¢.

in agreement with (3.29). The transition is illustrated in Figure 3.4 using both the
exact solution of (3.34) and the approximation (3.28).

Now consider the case of a reflection grating K, = K2. We can see that then all
terms in (3.33) vanish, which means that relative rotation of the hologram around z
does not cause Bragg mismatch. The physical interpretation is that the hologram is
symmetric around the axis of rotation, and therefore does not “sense” the rotating
reference. This is a case of a “degenerate” grating (for the particular type of rotation).
(b) x-rotation

Similarly to the case of z-rotation, and omitting the details, we obtain

Ay, = 2% Aot Rac )

3.40
kR’y ng ( )
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Figure 3.5: General (asymmetric) recording geometry for a grating lying on the zz-

plane.

The selectivity becomes singular when kg, = 0, and is given by
1/2
A, = { 2| ks Ky } .

L kR’z ng

The grating becomes degenerate when K, , = 0.
(¢) y-rotation

In this case we obtain

_2’1T

Awy——l-/—

kR’z +ng
kR’z Kgac - kR’x ng .

The singularity occurs when kg, ~ Ky, ~ 0, and the selectivity is then

Rotational selectivities for the asymmetric geometry

(3.41)

(3.42)

(3.43)

We conclude this Appendix with the expressions for the rotational Bragg selectiv-

ities of the general asymmetric geometry of Figure 3.5. The derivations are straight-
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forward from the preceding theory.

z-Rotation
A cos g cot gr + cos g sin(ps — dr)
Ay, = — - - 3.44
v L cos Op(sin fs + sin Og) ( )
Singularity (¢r =~ ¢s =~ 0):
2A cos g 12
A, = 422 3.45
vs { L sinfg(sinfs + sin HR)} (3.45)
Degeneracy condition: Ky, = 0.
x-Rotation
A 0 05 si ' —
Ay = 2 cos O cos ;]53 —%—'C(;S 58}11 prsin(ps — or) (3.46)
L cos? fg sin® pgsin(gs — dr)
Singularity (¢r =~ ¢5 ~ 0):
A cos 8¢ 1/2
A, == 3.47
v {L cos Or(cos O — cosby) } (3.47)
Degeneracy condition: Ky, = 0.
y-Rotation
A, = }_ cos fg cos ¢p + cos fg sin dp sin(¢ps — dr)
V" L cosfgcos ¢r(sinfg + sin f) + sin g cos s sin ¢ sin(ds — dr)
(3.48)
Singularity:
V2
Ath, = {Z} (3.49)

No degeneracy.
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3.2 Array multiplexing
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Figure 3.6: Geometry for shift multiplexing in the Fourier Plane.

In this section, we introduce array multiplexing [42] as a method for holographic
storage. To implement this method, the reference beam must consist of a spectrum of
plane waves (similar to phase code multiplexing [39, 78], for example). Multiplexing
is achieved by shifting the recording medium with respect to the signal and reference
beams. Alternatively the two beams can be translated in tandem with respect to the
stationary medium.

The geometry for array multiplexing is shown in Fig. 3.6 for the case of storing
Fourier transform holograms. The reference originates from an array of M point
sources located in the front focal plane of a Fourier lens, and centered around the
optical axis z. The lens transforms the field into a fan of M plane waves. The angular

separation is uniform, given by Af =~ d/F, where d is the distance between successive
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point sources and F) is the focal length. Thus the angle of incidence of the m-th

component, is

M—1
9mz(m— : )AQ m=0,. . ,M-1 (3.50)

The angle of incidence of the central component of the signal with respect to the
z—axis is denoted by 8s.

Because the reference consists of M plane waves, we can think of the recording as
consisting of M separate holograms recorded simultaneously. Upon reconstruction,
each plane wave in the reference fan reads out not only the hologram it recorded,
but also all the holograms recorded by the other plane waves of the reference fan.
These additional reconstructions, or “ghosts,” produce images that are shifted with
respect to the primary reconstruction, due to the change in read-out angle relative
to the recording angle. The ghosts are Bragg mismatched by an amount roughly
proportional to the angular separation between the plane wave component that orig-
inally recorded the hologram and the component that is reconstructing it. For the
hologram recorded between the central signal component and the m = 0-th reference
component, the amount of Bragg mismatch is Ak, = 27l tan §sAf/\ when read out
by the +I-th reference component. The same relation holds approximately for the
other holograms. The diffraction efficiency of these Bragg mismatched holograms is

proportional to

(3.51)

n(Ak) = sinc? (Akz L>

s

where sinc (z) = sinwz/(nz) and L is the thickness of the recording medium. It
follows that by choosing the angular separation Af between the reference components
such that the sinc function of (3.51) vanishes, the ghosts will be eliminated, leaving

a clean reconstruction. From (3.51) the required separation is:

A

A~ ——
L tanfOg

(3.52)
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Having eliminated the ghosts, we now examine what happens to the diffracted
light if the hologram is shifted by a distance ¢ in the z—direction (see Fig. 3.6). The
diffracted field &; is obtained by multiplying the illuminating reference (consisting of
M plane waves) by the expression for the A/ recorded holograms shifted by 4. For a

single plane wave signal beam of incidence angle g, we have:

Ab
E, = Zexp{i%rm)\ x} X
"AB(x — —
3 exp {_ZQWT._()\—:EE)_}exp {1271' Sin@Sx 3 6} (3.53)

~ <Z exp {i27r mﬁ@é }) exp {i27r sin O ; 5} (3.54)

The three-dimensional nature of the hologram (i.e., the z dependence) serves
to eliminate the cross—terms m # m’' (ghosts) from the double summation. When
a signal with finite bandwidth is reconstructed, a detailed calculation (not given
here) shows that the cross-terms are not eliminated completely, but the signal is
still reconstructed with a high signal to noise ratio. From (3.54), the diffracted field
consists of the reconstruction of the signal at angle fg, weighted by a sum leading
to the familiar Helmholtz function [79], encountered often in the theory of antenna

arrays. For notational simplicity, we define:

- sin(m7w)
ar(w;m) = Tsin(re) (3.55)
Then the diffracted intensity as function of shift is:
YA
1(6) x ar? (T ; M) (3.56)
The zeros of the Helmholtz function occur at
o = l—)\—- [=1 M-1 (3.57)
| = VAD =1,..., . .

Multiplexing is performed by recording each hologram with a shift §; = A\/M A8 with
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Figure 3.7: Holographic 3-D disk with array-multiplexed holograms.

respect to its two neighbors. Because of the periodicity of the array function, at

maximum M holograms can be superimposed on the same location. The period is:

A
ou = 35 (3.58)

The array multiplexing method is particularly well suited for the implementation
of holographic 3-D disks [32, 44]. A schematic diagram is given in Fig. 3.7. The
fan of reference waves, arranged along the tangential component of disk motion, is
produced by a Diffractive Optical Element (DOE), optimized for the desired sepa-
ration angle and equal intensities for the diffracted orders. Recording and accessing
array-multiplexed holograms are readily implemented by simply using the disk rota-
tion (which is already part of the system intended to allow accessing of information
on different locations on the disk surface) in order to shift the disk until the correct

location within a track is reached. Radial head motion (also present in optical disk
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Figure 3.8: Experimental demonstra- Figure 3.9: Multiplexing of three holo-
tion of the array function with a single grams (A, B, C) of random bit patterns
hologram of a random bit pattern. using the shift method.

mechanisms) is used to access different tracks. This simplifies the design of the head
since no additional components are required for selective readout. Comparing the
array-multiplexed disk and the angle-multiplexed disk of Fig. 1.3, we see that the
beam-steering mecahnism of the latter is replaced by a simple DOE in the former,
making the system much more simple and robust. The design of the DOE, however,
may be expensive.

The storage density D per unit area that we can achieve using the device of Fig. 3.7
is limited by the thickness dependent angular selectivity (eq. 3.52), the number of
beams M allowed by the optics, the page size N,b (b is the pixel size and N, the

number of pixels) and the periodicity of the array function. An approximate formula

for the density is:

M cosfOg

D= .
b2(1 + M6y cos bs/Nyb)

(3.59)

For L = 100pm and signal incidence angle s = 30°, usage of F/1 optics allows
M = 100 holograms. Then, for typical page parameters N, = 1000, b = 2um,
eq. 3.59 yields D = 21.1bits/pm?.
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Array multiplexing was demonstrated? using a reference fan of 20 plane waves
angularly separated by 0.5°. The recording material was DuPont HRF-150 polymer
of thickness L = 38um. The DOE in this case was 20 plane wave holograms recorded
on another sheet of polymer with a common reference, such that upon reconstruction
they produced the desired plane wave fan. Thus the architecture was similar to
Fig. 3.7 with the sheet of polymer acting as DOE.

The effect of shift on the reconstruction of a single hologram is shown in Fig. 3.8.
The signal image was a 100 x 100 random bit pattern. For the particular parameters
the theoretical shift selectivity is 2.8um and the period is 55um, in good agreement
with the experiment. The reason for the deviation from the theoretically predicted
periodicity is the finite transverse size of the recording region. Three holograms
array-multiplexed with the same setup are shown in Fig. 3.9. Each hologram is
reconstructed almost periodically, following its own array factor. Because of the
very small thickness of the recording medium in this experiment, we used angular
separation smaller than that predicted by eq. 3.52. Therefore the ghosts had to be

filtered out in the Fourier plane.

3.3 Shift multiplexing

Shift multiplexing [42, 43] is a holographic storage method particularly suitable
for holographic 3-D disks [32, 44]. The design of a shift multiplexed disk is shown
in Fig. 3.10. It is similar to the architecture of the array-multiplexed disk except the
reference is a spherical wave produced by a lens of high numerical aperture. The data
is stored on the disk as a hologram recorded by the interference of the signal and the
spherical reference.

As in the case of the array reference, the non-planar phase-front of the reference
beam allows one to multiplex and selectively retrieve holograms simply by translating
the disk relative to the recording head, as shown in the figure. The shift selectivity,

i.e., the translation required to resolve shift multiplexed holograms, is typically in

2The experiments in Figs. 3.8 and 3.9 were conducted by Allen Pu.
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Figure 3.10: Holographic 3-D disk with shift-multiplexed holograms.

the order of a few microns, much less than the transverse size of the holograms (the
latter is typically a few millimeters). In this way multiple overlapping holograms are
superimposed. To selectively reconstruct holograms belonging to the same track, the
disk is rotatced relative to the stationary head. The head needs to move only in the
radial direction to access different tracks on the disk. No additional multiplexing
mechanism is needed. Since both disk rotation and radial head translation are an
integral part of the optical disk configuration, a shift multiplexed disk is a very simple
implementation.

In this section we derive the selectivity properties of shift-multiplexed holograms in
the transmission, 90°, and fractal geometries (sections 3.3.1, 3.3.2, and sec:shift-fractal
respectively). Further analysis of the properties of shift-multiplexed holographic 3-D

disks is given in the next chapter.

3.3.1 Transmission geometry
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Figure 3.11: Geometry for shift multiplexing using a spherical reference wave.

The use of spherical reference beams in volume holography was treated in [80, 81,
82, 83]. In [80], a spherical reference was used for a holographic correlator, and the
shift invariance curves were obtained theoretically and experimentally. Here we use
a similar approach to derive the shift selectivity of shift multiplexed memories.

The geometry for shift multiplexing using spherical waves is shown in Fig. 3.11.
The hologram is recorded in the region |2| < L/2 and is assumed infinite in the
transverse directions z, y. The spherical reference wave is produced by a spherical
lens of high numerical aperture. The focus is located at z = —z;. The expression
for the reference beam in the chosen system of coordinates, and under the paraxial

approximation, is:

vty } . (3.60)

R(z,y,z) = ! ex {72 m}ex i
WA= Xz + 2) P P Az + 20)

We consider a plane wave component of the signal beam propagating on the zz-
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plane, making angle 65 with the z axis, expressed as:
S( ) =e 127 *"gj + 27 |1 — —2 - (3 61)
xTr,z X 3 .
) p U’S/\ 2 )\ 3

where ug = sinfls =~ s << 1 (paraxial approximation). If we neglect the varia-
tion of the modulation depth throughout the hologram due to the defocusing of the
spherical wave, then the hologram can be expressed by the term R*(x,y, 2)S(z, 2)
in the resulting interference pattern. We now consider the expression for the field
diffracted from a thin layer of the hologram located at z using a displaced reference

beam R(zx — 4,y, 2):

R(z —4,y,2)R*(x,y,2)S(z,2) =
e 3 20z e T & X
Xp § — T ————— » €X _
P Azt z) [ TPV A+ )

2
exp {732771;5%} exp {i27r ( — %) :Z\—} : (3.62)

The signal beam is reconstructed if § = 0. For ¢ # 0, the first term in (3.62) causes
the reconstruction to deviate angularly with respect to the original signal S(z, z) by

an amount

0

Abg ~ ————,
57 (2 + z) cosfs

(3.63)

Since this angular deviation has a z dependence, reconstructions coming from suc-
cessive thin slices of the hologram are phase mismatched. The amount of shift §
required to exactly cancel the reconstruction is calculated in the Appendix to this
section (under the paraxial, Born, and constant modulation depth approximations)

and it is given by:

o )\ZO
OBragg = L_US (364)

It is interesting that, in the geometry of Fig. 3.11, if the reference were a plane wave
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incident along the z axis instead of the spherical wave, then the angular selectivity

would be

A A
" Ltanfs  Lug

ABO (3.65)

Thus we obtain the useful formula

Oprage = A0 X 2. (3.66)

The finite spot size Az = A/2(NA) of a truncated spherical wave introduces
ambiguity in the location of the point source with respect to the hologram. This

ambiguity must be added to the shift selectivity, giving the final expression:

6 = 6Bragg+A$

/\ZO A
= Ltanfy  2(NA) (3.67)

So far we assumed a holographic medium with index of refraction equal to 1.
Unless an index—matching liquid is used, the change in refraction index ny at the
interface of the holographic material causes the apparent location of the point source
(as seen by an observer inside the holographic medium) to move away from the
hologram. If we let z, denote the distance of the point source from the center of the
holographic material, measured in air, then the apparent z, relates to z, (paraxially)
as:

L L
20 — —2' = Ny (Za - 5) . (368)

Therefore the modified selectivity equation is:

R e et »

= +
Ltan), 2 (NA)
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where Ay denotes the wavelength of light in vacuum, and 64 is the angle of incidence
of the signal inside the material, determined from Snell’s law.

The experimental geometry used for all the shift multiplexing experiments de-
scribed in this paper is shown in Fig. 3.12. The experimental parameters were
Ao = 488 nm, L = 4.5 mm, 65 = 40° (measured outside the crystal), z, = 1 cm
(distance from focus of the spherical reference to the center of the crystal, measured
in air), and numerical aperture NA=0.6. The recording material (iron-doped LiNbOs)
has index of refraction ng ~ 2.24. The signal was a chessboard pattern, recorded as a
Fresnel region hologram. The size of each square in the chessboard at the SLM plane
was approximately 0.5 mm. For the parameters used in the experiment, eq. (3.69)
yields 6 = 3.58um. The experimental selectivity curve is shown in Fig. 3.13. The
first null occurred at approximately 3.7 + 0.2um (the margin of error is mainly due

to stage inaccuracy and backlash), deviating by 3.6% from the theoretical prediction.

Appendix: Derivation of the Bragg shift selectivity

In this appendix we derive the diffraction efficiency of a spherical volume hologram

as a function of the shift & of the reference relative to the hologram. We consider
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again the geometry of Fig. 3.11. Under the Born approximation, the diffracted field
at the observation point r, is given by the 3-D convolution integral (3.7) which is

repeated here with some changes in notation:
Ealrp) = / Ei(r)Ae(r)G(r;r,)d’r. (3.70)
v

V denotes the volume of the hologram, &;, the incident field, Ae(r), the phase holo-

gram, and G(r;rp) is the scalar Green’s function for free space [84]:

L 1 o T =]
G(rrp) = Y exp {127’( ) }
1 =z (2= 1) 4 (Y — y)®
s _ o P P £ . (371
FY P exp{l T + 4T N = 2) (3.71)

The last relation follows by expressing a spherical wave in the paraxial approximation.
We assumed that z, > z for all pairs of integration-observation points z,, 2.
Similarly, the spherical reference wave (upon recording) is expressed in the paraxial

approximation as in (3.60), repeated here for convenience,

1 - 2t 2 BT
R(r) = ——— { 2 } rry 3.72
(r) iMz + 2p) PP {m)\(z + 2) (3:72)
and the propagating signal is expressed as

S(r) = exp {i27ru5§} exp {m (1 - “2—25> ;} . (3.73)

Then we have

Ae(r) = R'(z,y,2)S(z, z), (3.74)
Ei(r) = R(z—94,y,2). (3.75)

We will also assume that the spherical wave and the recording material are infinite

in the transverse (z, y) directions, and that the thickness of the hologram is L in the
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z direction. Substituting into (3.70), we obtain the following expression:

o 2
exp 4927~ ¢ 4o +o0 +o0
Ea(ry) =~ M/ dx/_ dy/~ dz rect (%)

/\223 —00

exp § —im uQE—a—Q\ exp i2n s Uug — 0
S\ Az + 20) A Zo+ 2

ﬁ exp {ZQ?TZP; z } exp {iﬂ (zp — /S\Egz:_(?g - 9)2}  (3.76)

The volume integral is calculated analytically as follows: The x and y integrals are
readily obtained by using the following lemma from complex analysis [85]:

/+°° exp {i(aw? + 2bw) }dw = [ exp {i <Sgn(a)% - f) } ,

—00 \al a

(3.77)

7

for a, b real and a # 0. Then we expand the denominators of the form (z + 2z;)™
(m = 1,2) in the exponents, keeping terms of order (z/z,) only. The resulting z

integral yields:

2 —_—
exp {z'_.Q/(T. [usazp + (1 — %5> zp} + Z‘QTWW}
5,1(?" ) ~

222
, oL Ty — UGZ
Sinc {)\—Zg (Us - -'E—“—;;)—'S‘—]D)} . (378)

The first term in (3.78) is explained as follows: if § = 0, the diffracted far field is

X

a plane wave propagating in the direction ug of the original signal. For § # 0, the
direction of the reconstruction deviates by ¢/z (paraxially) from ug. The direction-
dependent sinc term suppresses the diffracted power, a result of phase-mismatch
among wavelets produced in different positions along the volume hologram (Bragg
mismatch). In the far field we can make the stationary phase assumption (i.e., assume

that significant diffraction is obtained only at z, &~ ugz,) to obtain for the diffraction



62

A :
(Shift direction) § l _

Point
Source )

Signal |
Beam ;!

Figure 3.14: Geometry for shift multiplexing in the 90° geometry using a spherical
reference wave.

efficiency

2
L
n(é) = % ~ sinc? <5§\LS > : (3.79)
| 20

Therefore, under the above assumptions, the Bragg nulls in diffraction efficiency occur

at

/\Z()
0= m5Bragg = mL—uS m = 1, 2, C (380)

3.3.2 90-degree geometry

In the context of angle multiplexing, 90° (90-degree) geometry refers to the arrange-
ment where the reference and signal beam during recording are perpendicular to each
other and illuminate adjacent crystal faces [86]. Here we apply the idea of using a

spherical reference beam to a similar arrangement, as shown in Fig. 3.14.
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The reference is a spherical wave propagating along the z-axis, expressed as

xo}exp {m%—%—} (3.81)

The signal is a plane wave propagating along the z axis,

R(z,y,z) =

o {,2 T+
e €X 14T
Nz + o) ¥

S(z) = exp {mw;} . (3.82)

As in the case of transmission geometry, we perform shift multiplexing by translating
the hologram by § relative to the reference beam, except in the 90° geometry the
translation must happen along the direction of the signal beam, i.e., in the z direction.
A straightforward calculation along the lines of the Appendix of section 3.3.1 yields

the following result for the diffraction efficiency as function of 4,

n(6) = sinc? <@> | (3.83)

)\130
Therefore, the shift selectivity in the 90° geometry is

Ao A
S R B =1,..., .
é mor 2(NA) m (3.84)

where the second component was added to account for the finite extent of the point

source, as in the case of transmission geometry.

3.3.3 Fractal shift multiplexing

So far we assumed that shift multiplexing is performed by translating the reference
relative to the hologram in the plane defined by the optical axis of the reference
and the optical axis of the signal. In the previous two sections we showed that the
translation results in Bragg mismatch. This effect allows us to multiplex holograms
by translating by integer multiples of the Bragg selectivity between successive expo-
sures. One wonders if something similar happens when the reference is translated

with respect to the hologram in the perpendicular y-direction, as shown in Fig. 3.15.
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Figure 3.15: Geometry for fractal shift multiplexing.

The answer in that case is that the Bragg shift selectivity is very poor, because of
the “Bragg-degeneracy” occurring in the perpendicular direction, an effect similar to
the degeneracy in out-of-plane angle multiplexing (see section 3.1 — Appendix II).
The expression for the Bragg selectivity is calculated with the same method used in

section 3.3.1 for the in-plane selectivity. The result is

2
5y = 20\ T (3.85)

Comparing (3.67) and (3.85) we observe that the out-of-plane selectivity may be
orders of magnitude larger than the Bragg selectivity; therefore, shift multiplexing in
the orthogonal (y) direction is much sparser than in the regular (z) in-plane case. In
most situations, we can increase the number of holograms that can be superimposed

in the y-direction by using the property of spherical-reference holograms to rotate
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when the recontructing reference is translated in any direction. In section 3.3.1 we
saw that this rotation produces Bragg mismatch when the reference translates in the
x direction. If the reference translation is in the y direction, we can use this property
to multiplex holograms as shown in Fig. 3.15, by inserting to the reconstruction path a
lens and an aperture in the Fourier plane. The lens transforms rotation to translation,
and the reconstruction is blocked completely when the rotation is enough to move
the reconstructed spectrum out of the aperture. A new hologram may be recorded
in the translated position, because the contribution from the previous hologram is
minimal (corresponding only to the higher-order diffraction lobes). This method of
shift multiplexing is reminiscent of the fractal and peristrophic methods when the
reference is a plane wave, and we will call it “fractal shift multiplexing.” The fractal
shift selectivity, i.e., the required amount of y-translation before the reconstructed

spectrum is blocked by the aperture, is given by

5, = Nybzo/F  for Fourier plane holograms | (3.86)
20z9/b  for image plane holograms
where N, is the number of pixels and b is the pixel size of the stored image.

Usually ¢," < d,; therefore, the fractal method is preferrable to the Bragg selec-
tivity method in the y direction. If é," and ¢, are comparable, the fractal method is
still preferrable because usually there is strong crosstalk between holograms multi-
plexed in the out-of-plane direction [87]. The reason is that the motion of holograms
on the k-sphere in response to y translation is such that Bragg mismatch does not
occur simultaneously to the entire image®. The Bragg method is preferrable only if
dy << 4,/, which, however, occurs only rarely in practical situations. Experimentally,
the fractal method was used to increase the capacity of shift multiplexed holographic

disks by a factor of approximately 2 in [33, 87].

3This is not entirely true even for z translation; see section 4.1. However, the crosstalk in that
case is first order, i.e., at least one order of magnitude smaller than the reconstruction. In the case
of fractals, crosstalk is of the same order of magnitude as the reconstruction [88] (zero-th order!).
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Chapter 4 Shift multiplexed storage

systems

In this chapter we concentrate on the implementation of shift multiplexing using a
spherical wave reference. In section 4.1 we derive theoretically and present experimen-
tal results on crosstalk between holograms superimposed using the shift multiplexing
method, and show that crosstalk behaves approximately the same as in the case of
angle multiplexed holograms. In section 4.2 we address the issue of dynamic range
for shift-multiplexed memories in photorefractive materials, and give two alternative
exposure schedules, sequential and interleaved recording. We demonstrated the se-
quential technique by storing 600 holograms in lithium niobate. A peculiar effect
of sequential recording on the spectral properties of shift-multiplexed holograms is
described in section 4.3.

The storage density of angle and wavelength multiplexed holographic 3-D disks
was derived in [44]. It was shown that uniformity considerations for the edges
of the stored holograms cause the density to peak at a theoretical maximum of
117.2bits/um? (for typical SLM parameters and optical apertures) for a 16.7 mm
thick lithium niobate disk, using four symmetric reference angles for recording. In
section 4.4 we present the corresponding derivation for shift multiplexing. We show
that the density of a shift multiplexed disk increases monotonically with thickness,
and eventually saturates. Finally, in section 4.5 we analyze diffraction from a volume
hologram recorded with a spherical reference when the readout wavelength is other

than the recording wavelength.
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Figure 4.1: Geometry for the theoretical calculation of crosstalk in shift multiplexing
using a spherical reference wave.

4.1 Cross-talk in shift-multiplexed holographic mem-
ories

The approximate theory presented in the Appendix to section 3.3.1 predicts that the
diffraction efficiency 7 of spherical volume holograms as function of shift has nulls at
integer multiples of dgrage. This holds for the ideal situation of a hologram that is
infinite in the transverse directions, recorded using a spherical wave of zero spot size as
reference and a plane wave as signal. We also neglected the variable modulation depth
effects due to the variation in intensity of the reference and the signal throughout the
volume of the hologram. Finally, the calculation was performed for a single signal
component incident at #s. In general, the signal occupies a finite-size bandwidth in
reciprocal space, and hence each component Bragg-mismatches at different 4.

In this section, we develop a theoretical model for the crosstalk induced by the
finite signal bandwidth in the case of shift multiplexing in the Fourier plane. In the

calculation we will drop the dependence of the selectivity on numerical aperture (i.e.,
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the Az correction). The assumption of an infinite spherical wave for shift multiplexing
is equivalent to assuming infinite plane wave reference for other methods, as was done
in calculations of crosstalk for angle [71], wavelength [73, 72] and phase code [75]
multiplexing in the Fourier plane, and for image plane holograms [89]. We show that,
under these assumptions, the results for shift multiplexing are consistent with the
angle multiplexing analysis. Then we characterize the crosstalk experimentally and
compare the results with the theory.

Consider the Fourier plane geometry of Fig. 4.1. Let f,(&,n), m = 1,... M
denote the pattern stored as the m-th page. M is the maximum number of overlapping
pages on any location. The signal corresponding to the m-th hologram is expressed

as:

Su(e,,2) = [ [ dengutem)

exp {—iQW)\iF (—sinfgz + cosfgx) — iQW%}
21 £2 4+ n? .
exp {17 (1 Y (cosfsz + sinfsx) ¢ . (4.1)

In order to reconstruct hologram m/’, the recording area is illuminated by a spher-

ical beam displaced by m/'é:

1 z +
- N = 2
Ei(m') ) exp {z s

20 C{x—m'6)? + 4
exp § 7T . 4.2

} P { Az + zo) (4.2)
The diffracted field is obtained using the theory of Appendix I with the paraxial
approximation sinflg = ug << 1, cosfls ~ 1 — u%/2, and neglecting refraction. A
lengthy but straightforward calculation yields for the detector plane the following

expression:

Em (€1
> (5' L (m=m)s n,> e {M (us _ %)} (4.3)
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A straightforward calculation along the lines of [71] shows that a similar expression
holds approximately for the crosstalk in the geometry of Fig. 4.1 (in the paraxial
approximation) if we replace the spherical reference wave with a plane wave parallel to
the 2z axis and perform angle multiplexing instead of shift multiplexing. A significant
difference between the cases of shift and the exact solution for angle multiplexing is
that, in the former, symmetry makes crosstalk depend on the difference m — m’ only.

When reconstructing hologram m/, the fact that the remaining multiplexed holo-
grams were recorded displaced by a multiple of the shift selectivity ¢ guarantees only
that their central component, i.e., the central pixel £ = 0, will be Bragg mismatched.
All other locations in the multiplexed images still diffract weakly, because their shift
selectivity is given by (3.64) with ugs — &'/ F rather than ug. These contributions
appear as crosstalk around the noise-free central pixel.

Let us assume that a large number M of Fourier plane holograms are shift multi-
plexed, and are separated by p shift Bragg nulls, i.e., the relative translation between
successive recordings is pd, where ¢ is the shift selectivity. Under the image statistics
assumed in [71, 72, 75], the expected value of the crosstalk noise power is given by

the expression

Pxn =~ i sinc? {p(m —m') (1 — ui’)} : (4.4)

m=0

where the signal power was taken equal to 1. If

pl¢|
USF

<<1 and M — oo, (4.5)

then the summation can be carried out analytically, and yields

€]

. 4.

PXN%

Therefore, at pixels lying close to the carrier ug, the noise increases linearly with
distance from the image center, and is inversely proportional to the null order p.

Theoretical plots of the exact relation (4.4) are given in Fig. 4.2. As the pixel
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Figure 4.2: Theoretical plots of expected crosstalk power versus pixel location for
Fourier plane shift multiplexed holograms. The parameters used for the plots were:
hologram thickness L = 1 mm, angle of incidence of the signal 85 = 20°, wavelength
A = 488 nm, focal length F' = 5 cm, pixel size b = 10um.

value increases, (4.5) is violated, and the noise pattern becomes asymmetric. Pixels
with large positive values are closer to the z-axis and suffer from higher noise. The
same curves hold approximately for angle multiplexing in the off-axis geometry, if
the same parameters (including the number of holograms M) are used.

In order to characterize the crosstalk effects for shift-multiplexed volume holo-
grams recorded with spherical reference beams, we performed the following experi-
ment: We stored 20 holograms of rotated versions of the same chessboard pattern
in 21 shift multiplexed positions, leaving position #11 blank. Therefore, excess light
measured in the location of hologram #11 is due to crosstalk contributions from the
neighboring holograms. The shift separation between adjacent holograms was chosen
equal to 6,26, 36, and 46 (i.e., p = 1,2, 3,4, respectively), where for 6 we used the
experimentally determined value 3.7um. The holograms were stored in the Fresnel
region. The crosstalk theory developed for Fourier plane holograms also applies to
Fresnel holograms recorded anywhere between the two lenses in a 4F imaging system.

Behavior consistent with that predicted in Fig. 4.2 is observed in Fig. 4.3, where

the cross section of the reconstruction of location #11 is plotted (in the absence
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Figure 4.3: Cross sections of the diffracted pattern at shift location #11 (originally
left blank) when the surrounding holograms are multiplexed (a) in the 1st Bragg null
and (b) in the 2nd Bragg null. The units on both axes are arbitrary, but horizontal
and vertical scales are the same in both plots.

of crosstalk, this would contain only scatter and detector noise contributions). The
asymmetry predicted in (4.3) is evident for storage in the 1st null. In the case of using
the 2nd null, the noise power decreases considerably and the asymmetry becomes less
pronounced, in agreement with the theoretical curves of Fig. 4.2.

SNR results are given in Fig. 4.4 for the cases of a single hologram and 21 mul-
tiplexed holograms. In the case of a single hologram, we calculated the SNR by
measuring the spatially averaged diffracted power from the hologram at zero transla-
tion, and dividing by the diffracted power at shifts equal to §, 29, 34, and 4. For
the multiple holograms, we calculated the SNR by dividing the diffraction efficiency
at location #10 with the diffraction efficiency at location #11 (empty slot) for the
four cases of null separation.

In the same plot we also give the theoretical values of the ratio between the
expected total signal power and the expected total noise power, for each case of null
separation. The three curves show the same qualitative behavior, although there is a
noticeable discrepancy between the theoretical and experimental values of crosstalk—
induced SNR. The saturating behavior of the experimental data indicates that the

discrepancy is mainly due to noise sources unrelated to crosstalk, such as scatter
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Figure 4.4: Signal-to-Noise ratio (SNR) versus null order p (in multiples of § =
3.7 pm) for two experiments: single hologram and 21 holograms. Shown also is the
theoretical SNR prediction for the maximum number M of allowable shift multiplexed
holograms at the respective null orders.

noise and multiple reflections off the uncoated crystal surfaces. In addition, small
contributions are present from crosstalk sources such as finite numerical aperture and

variable modulation depth that we neglected in the theory.

4.2 Exposure schedule and dynamic range issues

The diffraction efliciency n of holograms recorded in diffusion dominated photore-
fractive materials is described as a function of the recording time ¢ by a saturating

exponential of the form (see, e.g., [35, 90]):

n(t) =m0 (1 = exp {~t/7})", (4.7)

where 7 is the saturation diffraction efficiency and 7, is the recording time con-
stant. On the other hand, when a hologram of strength 7, is illuminated, it decays

exponentially as

n(t) =m exp{-2t/7}, (4.8)
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where 7, is the erasure time constant. The parameters 7, 7. depend on the geometry,
the total exposure power, the modulation depth and the absorption coefficient. A
detailed calculation of the time constants is outside the scope of this thesis. Instead,
we will assume that the exponential models of (4.7) and (4.8) hold, and we will
determine the value of 7, experimentally.

In multiplexing techniques based on recording over the same spot (e.g., angle
multiplexing), holograms recorded early are erased by their successors. The first
holograms are erased more, thus they must be initially stronger; this requirement was
used in [51, 91, 92] to derive hologram recording times as function of hologram order.
This function is referred to as “exposure schedule.” The exposure times depend on
Tw, Te and the number of holograms M.

We will now describe the “sequential” recording exposure schedule for shift mul-
tiplexed holograms. With this method, shift-multiplexed holograms are recorded by
rotating the disk by an angle ¢q;s sufficient to produce translation equal to the shift
selectivity d between successive exposures. Let R be the radius of the track being

recorded. Then ¢qisk is given by

¢. . é - )\ZO i A
W7 R T RLtanfs  2R(NA)

(4.9)

Fig. 4.5(a) shows how the sequential exposure schedule evolves in time and space.
M is the number of shift multiplexed holograms that overlap within one spot. It is
equal to the hologram aperture along the shift direction divided by ¢ (see section 4.4

for a derivation). The total number of holograms fitting in the track is given by

N=228 (4.10)

A hologram is erased by its neighbors that start to its right and overlap vertically
in the plot; thus A,, is erased by A,41, ..., Anyam—1 but not by the subsequent
holograms. This is true for all indices m running from M + 1 to N — M. Holograms

Ay, ..., Ay will be further erased by holograms Ay_p41, ..., Ay when the disk
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Figure 4.5: (a) Exposure schedule for sequential recording. Horizontal axis is shift,
vertical is recording time. Bars A;, Ay, ... denote holograms; the index corresponds
to location on the disk; the horizontal location of a hologram in the graph denotes its
shift with respect to the origin (left edge of the first hologram A;), and the vertical
location, the beginning of its exposure in the schedule. The horizontal separation is
equal to the shift selectivity d; the vertical separation is equal to the constant exposure
time t, (see text). (b) Non-uniform erasure of hologram A,, by its successors A,,,1,

-y Apya—1. The diffraction efficiency curve follows the profile of A,, after recording
of all its shift multiplexed neighbors is complete (see also section 4.3 and Figure 4.8).
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completes one full revolution, whereas holograms Ax_ 41, ..., Ay will be erased
less than the other holograms. Neglecting these edge effects, all other holograms are
erased in the same manner, hence their diffraction efficiencies are equalized if they
are recorded with the same exposure time ;.
A consequence of the sequential approach is transverse non—uniformity as shown
in Fig. 4.5(b). Consider any hologram A,,, except for the first M and the last M.

The diffraction efficiency of A,, immediately after recording is given by

n' =mno (1 —exp{—to/7u})”. (4.11)

The next hologram in the sequential schedule is A,,;; and it is recorded after shifting
by 6. Thus it will erase A,, for a time %y, except for a strip of width §, which is denoted
as strip 1 in Fig. 4.5(b); this strip will retain diffraction efficiency n!. In general, after
the end of the recording process, strip [ of any hologram will have reached diffraction

efficiency

= (1 —exp {—tO/TW})2 exp{—2(l — 1)to/7e} . (4.12)

Maximum erasure is suffered by strip M. The diffraction efficiency n™ of this strip

1s maximized if we choose

t In(1+4-—¢ e (4.13)
= Ty, 1 —_— | & —, .
o= (M-1)r) M
and is given by
T, 2 T M T2e7?
Mep| ) 14+ ——— O 4.14
= () [ ot e 41

The approximations hold for M >> 1. We now define the average diffraction effi-

ciency of the non-uniform holograms as:

_ nlz)dr
nav — fT, (415)
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where the integrals are along the aperture of the holograms in the shift direction.

This results in

sinh? t—o sinh ]\Jt—O
4770 1 M —~1 2T Te 116
= 48 —to | — .
Nav M exp 0 Tu + T ) tO ( )
sinh —
151
7"62 (1 — e_2>

~ (4.17)

2M27‘V%
Eq. (4.17) results from (4.16) if we substitute the optimal value of ¢y calculated in
(4.13). Thus, in the sequential schedule the average diffraction efficiency follows the
1/M? rule but it is actually weaker than the diffraction efficiency of angle multiplexed
holograms by a factor of (1 —e™?)/2 =~ 0.432. On the other hand, from (4.16) we
observe that if we let t, — 00, 1., behaves like 1/M. This expresses the fact that
if we overexpose the holograms in the sequential method, then only the first strip
of each hologram will survive, and the rest of the hologram will be erased. This
situation is undesirable, since it restricts the recording area to a strip of width 4 only,
and degenerates shift multiplexing to spatial multiplexing, resulting in severe losses
in storage density.

At the leading edge, holograms Aj, ..., Ay, have uniform diffraction efficiency
equal to n™, because they receive additional exposure at the end of the schedule,
when the disk is about to complete one revolution. At the trailing edge, the worst
affected strip of hologram Ay_,,,, m =M —1,... ,1,isl = m+ 1, and has diffraction
efficiency n' = nyr2e2=1/M /72 p1?2 Hologram Ay is uniform, since it is never erased,
and has diffraction efficiency n'.

The non-uniformity can be cancelled in Image plane holograms by recording with
the inverse intensity dependence. Alternatively, for digital storage, one can record
uniform holograms and use variable decision thresholds. Either method will yield good
results if the diffraction efficiency of the most affected areas is kept sufficiently strong

compared to the noise level by using the optimal ¢ of (4.13). On the other hand, the
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Figure 4.6: Plot of measured diffraction efficiency (after spatial integration by a
single detector) of 50 out of 600 holograms stored with the sequential method. For
the shift separation dgnir = 7.4pum (second null), and aperture size s ~ 3 mm, we
have M = 400. Therefore only the first 200 holograms received equal exposure. The
exposure time used in this experiment was ¢, = 10 sec.

non-uniformity has severe effects on Fourier holograms, since it shapes the hologram
spectrum asymmetrically. This non—uniform filtering effect causes pixel broadening
(intra—page noise); therefore, the contrast ratio of the reconstruction decreases with
respect to the unfiltered case. For holograms recorded in the Fresnel region, image
and Fourier plane effects are combined in the sense that one observes non—uniformity
across the reconstruction and also a decrease in the contrast ratio. In section 4.3 we
characterize theoretically the erasure induced by non—uniform filtering.

We used the sequential exposure schedule to record 600 holograms in the exper-
imental set-up of Fig. 3.12. We set the separation between adjacent holograms to
7.4 pm, which equals twice the measured shift selectivity 6 = 3.7 um. The size of
the signal beam projected onto the crystal surface was approximately 3 mm. There-
fore, the number of overlapping holograms in this experiment was M =~ 400. For the
crystal we used and the given geometry, we measured 7, &~ 3,500 sec. For recording

we used ?p=10 sec as the constant exposure time. Each reconstruction was spatially
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integrated onto a single detector in order to measure the diffraction efficiency. The
results are plotted in Fig. 4.6. It is seen that the first 200 holograms were success-
fully equalized in terms of the total diffraction efficiency, as they all received equal
exposure. From then on, diffraction efficiency vs. hologram number attains an up-
ward slope, as expected, since as the order of holograms increases, the number of

overlapping holograms decreases.

(c) (d)

Figure 4.7: Reconstructions of holograms (a) 1, (b) 200, (c¢) 400, (d) 600 from the

3

experiment of Figure 4.6. Shift direction was from left to right.
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In Fig. 4.7 we show a few reconstructions from the 600 holograms. All holograms
(with the exception of the last few) exhibit non—uniformity towards the shift direction.
Since the image features were quite large in this experiment, the pixel broadening
effect was not observed.

We can eliminate the non—uniformity through the use of a different, “interleaved,”
exposure schedule. In this scheme, we record one complete track of non—overlapping
(spatially multiplexed) holograms before moving to the next shift multiplexed posi-
tion. This method is well matched to the disk configuration since we can record a
new set of slightly shifted spatially multiplexed holograms during each disk rotation.
Interleaving works perfectly if N + 1 is an integer multiple of M, otherwise the first
M and last M holograms suffer from over— and under—exposure respectively, as in
the sequential method. These small edge effects can be ignored in practice.

As described, recording consists of M epochs. At epoch ¢ (¢ =0,...,M —1) we
record holograms Ag, Apriq, -, An—maq- The recording time for all holograms at
epoch ¢ is t,. Because full tracks are recorded so that they completely overlap (but
still they are displaced by & with respect to each other), all holograms are erased
uniformly; moreover, tracks recorded later are erased less than their predecessors.
The uniform diffraction efficiency of the holograms after recording epoch ¢ is given

by

n(g) = o (1 — exp {—i—q}Yexp { Mz_:l 2y } : (4.18)

This same equation holds for methods of complete overlap, e.g., angle multiplex-
ing [91]. Therefore, the exposure schedule is determined identically. The optimal

diffraction efficiency is given by

7_2

e (4.19)

n=To

It is the same for all holograms, and equal to the diffraction efficiency yielded by

the exposure schedule for angle multiplexed holograms. The price to pay for the
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OlOgram  diffraction efficiency

Figure 4.8: Geometry for the calculation of the distortion occurring in shift multi-
plexed holograms recorded in photorefractive materials, due to partial erasure in the
Fourier or Fresnel regions. The filter is shift variant if the hologram is not centered
with respect to the Fourier plane. See also Figure 4.5.

equalization provided by the interleaving method is considerable complication in the

recording process.

4.3 Distortion due to non-uniform erasure

Shift-multiplexed holograms in photorefractive crystals stored using the sequential
schedule suffer non—uniform erasure (see Section 4.2). We will now characterize this
effect for holograms stored in the Fresnel region, and in the Fourier plane as a special
case.

The geometry used for the calculation is shown in Figure 4.8. The hologram is
tilted with respect to the signal beam path by angle 63, and is located distance f
from the Fourier transforming lens (focal length F'). For simplicity we will ignore the
thickness of the recording material, and the possible aberrations introduced by the
tilted path. The shift selectivity is J, and the pixel size is b. We assume that during
recording, the signal is low—pass filtered at the Nyquist cut—off frequency 2AF/b so
that the area it takes on the disk is minimized without any loss in information content.
Because of the shift multiplexing mechanism, successive slices of the hologram suffer

exponential erasure by an amount ¢y compared to their neighbors. Thus the diffraction
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efficiency is given by the staircase-like function:

n(z",z) = mi exp{~z’27rm:“}exp{-(lo+l)t0/re} X
= pya
v (] — mo=1) g§
mct{aj ( T 2 )ﬁ }, (4.20)

where the indices [y and mg indicate which part of the staircase corresponds to the
point source located at z, and f is a correction factor for the tilt. These parameters

are obtained directly from the geometry of Figure 4.8, and are given by the following

expressions:
——, if f < F -2 ¢tandg,
\F Fécosts
lo(ZU,f) = |F— f — ———tan@s X (421)
b
Npb
B
———, if f > F — 2 tan#s,
Fécosbg
Blx) = 00805+—;—sin95, (4.22)
2AF
= . 4.2

The total number of strips M is needed in order to determine the optimum recording
time according to the theory of section 4.2. M depends on the defocusing distance f

and is given by

( 2
ﬂ(l%—’l—f‘%ﬁ—ﬂ), if|F—f|>¥tan95,

bd cos s I 2)\F
M(f) =
2AE <1 + /L tan95> : if [F— f]< 2Ftands. (4.24)
L bdcosbg 2F
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The transfer function is then determined as:

h(z',z) = sinc(k) ar (k + 1(;mg) exp {—-27r (lo + m02— 1) C} , (4.25)
(& — )8

to
¢ = , (4.27)
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Figure 4.9: Effects of shift-induced non-uniformity on Fourier and Fresnel holograms.
(a) Original chessboard pattern. (b) Nyquist filter (cut—off at +AF/b) without ab-
sorption (7, = 00), located at f = F = 5 cm. (c¢) Nyquist filter with ¢,/7, = 0.011,
[ = F =5 cm (Fourier filter). (d) Nyquist filter with ¢y/7. = 0.0092, f = 4 cm
(Fresnel filter).
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where the array function ar(u;!) was defined in eq. 3.55 in section 3.2. Note that the
filter represented by this transfer function is shift variant (unless f = F and 05 = 0,
which would yield very bad shift selectivity). In general, the diffraction efficiency
is asymmetric (except when f = F'), in agreement with experiment (see Fig. 4.7).
The weaker edge is towards the shift direction if f < F" and in the opposite direction
otherwise. The resolution is worse than the case of no erasure (7. = o) and decreases
uniformly towards the weaker edges.

Some sample simulated reconstructions are shown in Fig. 4.9. The parameters
used for this numerical example were A = 488 nm, F' =5 cm, N, = 10, b = 100 pm,
fs = 40°, 6 = 7 pum. The original pattern used for the simulations is shown in
Fig. 4.9(a). In Fig. 4.9(b) we have plotted the reconstruction for f = 4 cm with
no absorption (tp/7. = 0). In that case simple low—pass filtering takes place, with
cut-off frequency equal to the Nyquist frequency 2AF/b determined for intensity
detection. The contrast ratio is g = 91.41 in this example. For a Fourier filter with
to/Te = 0.011 (approximately equal to 1/M, where M = 92 for this case), Fig. 4.9(c),
the contrast ratio drops to p ~ 72, 21.2% down with respect to the simple Nyquist
filter. Finally, in Fig. 4.9(d) the result of a Fresnel filter with f = 4 cm, M = 109 and
to/Te = 1/M = 0.0092 is shown. The contrast ratio is u = 72.15 at the weak edge
and p = 83.04 at the strong edge. Even though p improved, the average diffraction
efficiency 7,, decreased according to the theory of section 4.2, since M increased, and
therefore other noise sources degrade the total SNR. If, however, we were to keep
to/7e = 0.011 for the Fresnel filter, then 7,, would improve, but p would drop to
66.61 and 78.8 at the weak and strong edges, respectively.

4.4 Surface storage density of shift-multiplexed holo-
graphic 3—D disks

The surface storage density of a holographic disk is defined [44] as the number of bits

of information (in the form of binary pixels) that are stored per unit area. Data is
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stored so that every page, containing N, x NN, pixels (N, per dimension), occupies
area 4 on the disk. In volume holographic memories, the page density is multiplied
by M, the number of overlapping holograms per location. Therefore, the surface
storage density D of any holographic disk is

_ Mz

D
A

(4.28)

The storage density for angle— and wavelength—multiplexed disks was calculated and
optimized in [44]. In this section we will do the analogous calculation for shift-
multiplexed disks when a spherical wave is used as reference.

First we consider the case when holograms are stored in the image plane. Specif-
ically, we assume that the central pixel of the stored page is imaged at the center of
the holographic medium. We denote by b the size of the pixels in the image. Then
the area is A = (N,b)?/ cos s where 05 is the angle of incidence of the central signal
component, as in the previous sections. The number of overlapping shift multiplexed
holograms along a single page is M = N,b/2§ cos 6, where ¢ is the shift selectivity
given by (3.67), and we assume that successive holograms are stored at the 2nd Bragg
null. This was justified in section 4.1. Therefore, we obtain for the density:

N N,
Dimage = éb_fs = _ ( - L i ) : (4.29)
Ltanfs = 2(NA)

For Fourier plane storage, the size of the first lobe (which contains all the infor-
mation, according to the sampling theorem) is 2AF/b, where F is the focal length
of the Fourier-transforming lens and b is the pixel size. The lobe size was derived
assuming intensity detection. The result for the density is:

NZb NZb
4\Fo

DFourier - (430)

1
5 0
INE <Ltan65 + 2(NA)>

Equations (4.29) and (4.30) give the density provided the distance z, has been



85

%y

signal beam
recording

material

Figure 4.10: Geometry for the calculation of storage density in shift multiplexing
geometry (spherical reference incident normally on the material, signal incident off-
axis). The case s'sinf's < L, ¢ < 05 is shown (see text).

already selected properly such that the reference and signal completely overlap inside
the volume of the recording material. In general, the minimum z; is determined
in terms of the hologram thickness and the geometry. We will show that z, varies

linearly with L, according to the relation

%(L) = A+ BL. (4.31)

Increasing the thickness beyond a certain point does not lead to the expected gain in
density, because the reduction in Bragg selectivity due to the increased interaction
length competes with the simultaneous increase in zy. In what follows, we will derive
the coefficients A, B of (4.31) and the maximum achievable density with optimally
selected zg, as functions of thickness L.

We use ¢ for the angular spread of the reference beam, i.e., NA = sin ¢. We will

do the calculation simultaneously for the image and Fourier planes. For this reason,
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we use the symbol s for the page size in both cases, given respectively by

Npb image plane
5= : (4.32)
2MoF'/b Fourier plane

where Ag is the wavelength of light in vacuum. The angular spread of the signal beam

outside the holographic material is

Ao/b image plane
sin x = : (4.33)
Nyb/2F Fourier plane

Let ny denote the refractive index of the holographic material. The reference spread
@', the angle of signal incidence 65, the signal spread x' and the page size s’ inside

the material are recalculated using Snell’s law as follows:

sing = mngsind’, (4.34)
sinfs = ngsinfy, (4.35)
siny = mngsiny’, (4.36)
scosfy = s cosbs. (4.37)

Because the signal beam is tilted with respect to the normal to the recording
material, it is possible that the tilted image of the data page does not fit inside the
medium. This will happen if the medium is very thin and/or the tilt is large enough.
Therefore, we need to consider two separate cases for thick and thin media. We start
with the case of a thick medium so that the condition §'sinfy < L is satisfied, i.e.,
the whole focused page fits inside the hologram, as shown in Fig. 4.10. The geometry
we chose for this analysis is conservative in the sense that we restricted the reference
aperture according to ¢ < fs. This guarantees that the signal eventually separates

itself from the reference cone, and thus the design of the imaging system that delivers
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the signal to the hologram is simplified. This restriction could be relaxed, and the
density would increase, but the optical design would become more complicated. We
will not consider this optimization problem in this thesis.
A geometrical calculation based on Fig. 4.10 shows that the minimum z, required

for the reference and signal to overlap is given by (4.31) with coefficients

s cos X' cos 0

= — 4.3
2 cos(8 + X') tan ¢’ cos O (4.38)
1 tan(6: !

_ 1tan(6s +x) (4.39)

2 tan¢’

Recall that 2, is the apparent focal distance of the spherical wave, as seen by an
observer inside the holographic medium. In order to convert z; to z, (focal distance
measured in air), we apply (3.68). In the case of a thick medium, z, always increases

with L, and the surface density saturates to

pmax _ 19Ny sin ¢’ (4.40)
image " <1 N tan(fg + x') cos ¢'> '
0
tan 0
for the image plane, and
pmax _ noN7bsin ¢’ (4.41)
Fourier = o\2F (1 . tan(0s + x') cos ¢I> .
0 tan 65

for the Fourier plane.
For the case s'sinfy > L (thin medium), the geometrical calculation is more

complicated. Using the same restrictions as before, the result is:

cos Y

s
A= 4.42
2 tan ¢ cos(fs + x) (4.42)
1 1 cos fg cos y
= 2tan(fs + x') — :
2tan ¢’ | tan + 2tan(fs + X) sin 6% cos 0% cos(0s + x)
(4.43)

Note that the coefficient B for a thin medium may become negative, and then the
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optimal zy decreases with L. This is due to the bending of the signal rays induced by
refraction.

In a recent experiment [33], surface storage density in excess of 10bits/um? with
raw bit error rate of 107* was demonstrated in a holographic disk configuration using
Du Pont’s HRF-150-100 photopolymer as the recording material. The parameters
used in this experiment were A = 532 nm, ny = 1.525, N, = 768, b = 45um,
F = 5.46 cm. 32 Fresnel region holograms were superimposed on the same spot using
a combination of angle (8 locations, separated by 4 Bragg nulls) and peristrophic [41]
(4 holograms per angular location) multiplexing.

Shift multiplexing can also be combined with other techniques, such as peri-
strophic and fractal [30], in order to increase the storage density at the cost of compli-
cating page access. Better yet, it is possible to apply the spherical-reference analog
to the angle plus fractal/peristrophic methods, which consists of shift multiplexing
holograms in both x and y directions (see Fig. 3.11). In the disk configuration, y-shift
multiplexing corresponds to overlapping hologram tracks. The y-shift selectivity for
high-bandwidth signal beams was calculated in section 3.3.3. For the same parame-
ters of the experiment of [33], y—shift multiplexing increases the density by a factor
of at least 3.

Using the combination of y—shift multiplexing with z—shift multiplexing at the 4th
shift Bragg null (consistent with [33]), ¢ = 45°, 65 = 60°, and assuming Fourier plane
storage, we obtain the theoretical density prediction for shift multiplexing, given in
Fig. 4.11. Notice that, for the thickness L = 100um of the Du Pont photopolymer,
z + y-shift multiplexing is expected to yield D = 11.8bits/um?, slightly higher than
the 10.7bits/um? of the high density experiment reported in [33]. This result has
since been verified experimentally [93, 94]. The point (L = 1 mm, D = 100bits/um?)
has also been verified experimentally [87]. Shift density increases almost linearly with
thickness, reaching 163.4bits/um? for L = 1.2 mm, when it begins to saturate. Thus
shift multiplexing utilizes the area of holographic 3D disks more efficiently.
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Figure 4.11: Theoretical shift multiplexing surface storage density in the Fourier
plane, using parameters A = 0.532 nm, ng = 1.525, N, = 768, b = 45um, F' = 5.46 cm,
consistent with the angle+peristrophic experiment. The reference spread used for the
shift multiplexing density calculation is ¢ = 45°, and the signal beam is incident at
fs = 60°.

4.5 Readout with slow erasure

When photorefractive crystals are used to implement rewritable shift multiplexed
memories, an issue of concern is the undesired erasure of the recorded holograms
during read-out. Techniques have been developed for fixing holograms thermally [95]
or electrically [96, 97], and sustaining holograms by periodic refreshing [98] (see sec-
tion 6.1). Here we consider the two-lambda method, in which the recording and
read—out wavelengths are different [99]. The allowable read-out time is prolonged
if the read—out wavelength is selected such that the absorption is lower and hence
erasure is reduced. Because the Bragg matching condition at the new wavelength
is modified, only a portion of the angular spectrum of the recorded holograms can
be Bragg-matched with a single plane wave. It is possible, however, to reconstruct
in its entirety a single hologram recorded with a plane wave, by reading it out with

a spherical beam [82]. In this section, we show how the two-lambda technique ap-
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plies to shift multiplexed memories, where holograms are recorded and read—out with

spherical wave references.

D S signal

Figure 4.12: Geometry for the two-lambda technique with shift-multiplexing.

We will use subscript 1 for quantities associated with the recording wavelength )\,
and subscript 2 for the read—-out wavelength ;. The geometry is shown in Fig. 4.12.
The holographic material occupies the region —oo < z,y < 400, |2] < L/2. The
recording reference beam (at wavelength ;) is a spherical wave originating from
(0,0, —21). For now, we consider the signal beam to be a single plane wave com-
ponent propagating at angle u; ~ sinu; (paraxial approximation) with respect to
the hologram normal. The read-out spherical wave (at wavelength )\,) originates at
(6,0, —2). Under the Born, paraxial, and constant modulation depth approxima-
tions [70, 43] the diffracted field can be calculated analytically (see also the Appendix

to section 3.3.1). The reconstruction is a plane wave if

)\121 = /\222. (444)

This change in focal distance compensates for the curvature mismatch between the
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recording and read-out reference wavefronts. The plane wave hologram is Bragg
matched at the read—out wavelength, if it is translated relative to the read—out refer-
ence by

1 /A

If Eqs. (4.44) and (4.45) are both satisfied, the reconstruction is a plane wave propa-

gating at angle uy satisfying (in the paraxial approximation) the condition

U2 Ao
(31 )\1 ‘

(4.46)

Once the hologram is Bragg matched after shifting by dg, an additional translation
by the shift Bragg selectivity

)\222 )\1
= =25 4.4
UQL /\2 ! ( 7)

02

will eliminate the reconstruction. A separate plane wave hologram recorded at that
shifted position can be observed without interference. In Eq. (4.47), 61 = A1z /(uy L)
is the shift selectivity at the recording wavelength [43]. Note that if Ay > A, then
02 is smaller than d;. Since holograms are recorded d, apart, packing is more dense
compared to the case when read-out is intended to be at wavelength ;.

In the analysis so far we have neglected refraction and dispersion effects, and
the finite numerical apertures (NA);, (NA), of the spherical waves. The properly
modified formulas are given in Table 4.1, where the primed quantities are measured
in air, and ny, ny are the refractive indices. In general, (NA), < (NA); because the
required shift dg introduces edge effects.

These theoretical predictions were verified experimentally using a thin Fe-doped
LiNbO; crystal grown by Deltronics. The experimental parameters were: X, =
488 nm, A; = 632.8 nm, v} ~ 40° = 0.698 rad, n; = 2.3533, ny = 2.2935, L = 250 um,
(NA); ~ 0.1. The quoted values of refractive index were calculated by interpolating

the data given in [100]. This experiment was done with a plane wave signal beam.
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Table 4.1: Two~lambda equations including refraction and dispersion.

The measured values of dg, 41, d2 are plotted in Fig. 4.13 together with the theoretical
predictions derived from the formulas of Table 4.1. (NA), was estimated to 0.014.
The measurements for A, read-out were made by first refocusing the read—out beam
according to the theoretical prediction for z.

An information-bearing signal occupies a finite angular bandwidth around the
carrier ujc. Since dp (eq. 4.45) is different for each spatial frequency component,
the entire hologram cannot be Bragg—matched at the same time. The reconstruction

consists of the portion of the angular spectrum lying in the range

: (4.48)
)\1 lc

For Fourier transform holograms, Eq. (4.48) implies that a slice of size Az = 2Au,F
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Figure 4.13: Experimental results for the Bragg matching and selectivity properties
of the two-lambda method applied to shift multiplexed holograms.

(where F is the focal length of the lens used for the Fourier transformation) is recon-
structed. For Image plane holograms, the reconstruction is low-pass filtered with a
cut-off Aw = Auy/Xy. The modified version for Eq. (4.48) accounting for dispersion
is given in Table 4.1.

We used the same experimental setup to record a single Fourier plane hologram
(focal length F' = 20 cm) of a transparency with 2/=22.5 mm. The reconstruction
at wavelength A, is shown in Fig. 4.14(a). Two reconstructions at Ay (obtained by
changing ¢g) are shown in Fig. 4.14(b,c). As predicted, only a slice of the stored

-image is obtained at one time. The width of the slice was measured to be 0.7 mm, in
agreement with Eq. (4.48). If we continuously shift the medium, a sliding window of
the stored image will appear on the CCD. In addition, the reconstruction as viewed
through this sliding window is also shifting due to the motion of the medium. A
time-delay-and-integrate (TDI) detector array can compensate for this motion and
integrate the response to produce a complete, unblurred image. A TDI detector was
simulated in software to produce the complete reconstruction shown in Fig. 4.14(d).
Alternatively, we can set the size of the recorded images in the x-direction equal to the
width of the reconstructed slice. Either method results in the complete reconstruction

of the stored images at the expense of reduced storage density.
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Slice #1  Slice #2

Figure 4.14: Hologram reconstructions obtained with the two-lambda method.

The surface storage density of a shift multiplexed memory can be expressed as:

— prpr

D
8162

(4.49)

where N, and N, are the number of SLM pixels in the z and y directions, respec-
tively, and s; is the transverse size of the signal beam. For Fourier plane recording,
we can relate Ny, to the geometry of the holographic system by imposing the require-
ment that the angular bandwidth of the stored holograms (and hence the hologram
thickness) is matched to the width of the allowable reconstructed angles (the SLM
size). Substituting Eq. (4.48) and Eq. (4.49), we obtain:

2N,
D= ——2 (4.50)

(% - 1) /\121 .

The above equation is valid only if the SLM size is large enough to accommodate the
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entire strip. Notice that when Ay = A, the strip is infinite, and therefore Eq. (4.50)
does not hold. As an example, if N, = 1,000, 2{ = 1.3 mm, \] = 488 nm, )\, =
633 nm, then D = 10.6bits/um?. A similar derivation can be carried out for the

density of the Image plane geometry and it leads to the same expression as Eq. (4.50).
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Chapter 5 Imaging systems for

holographic memories

5.1 The two basic imaging systems

5.1.1 The 4-F imaging system

The 4-F system is a simple, commonly used optical system for imaging. It is com-
prised of two lenses with focal length F', separated by distance 2F. The input is
placed F' in front of the first lens and illuminated with a plane wave. Then the
Fourier transform of the input appears mid-way between the two lenses. The second
lens applies yet one more Fourier transform, and the input, reversed, is obtained. In
the context of holographic memories, imaging is needed to re-focus the reconstruc-
tion on the detector (e.g., a CCD camera). The hologram can be in principle placed
anywhere between the spatial light modulator (SLM) and CCD planes; however, it
makes sense to place it at the focal points to minimize the area occupied in the stor-
age medium. Then, depending on the exact location of the hologram, we obtain two
different geometries, Fourier and Image plane, shown in Figure 5.1.

In the case of Fourier plane storage, there is a caveat to placing the hologram
exactly at the Fourier plane: because the signal comes to a sharp focus, the intensity
non-uniformity during recording degrades severely the quality of the holograms. Thus
it is necessary to defocus the hologram, at the expense of areal storage density. The
remaining analysis that will follow is still valid for the defocused holograms.

To understand the trade-offs involved in using the 4-F system for holographic
storage, we must study the effects of imaging restrictions (i.e., the requirement of
resolvable reconstruction at the output plane) on the storage density and crosstalk.

Here we state the imaging restrictions for the case of 4-F systems. Consider the
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subset of the imaging system shown in Figure 5.2.

4-F system, Fourier plane storage

Holographic
medium

Reconstruction

Reference

4-F system, Image plane storage

Holographic

medium CcCD

Reconstruction

Reference

Figure 5.1: Holographic storage architectures with the 4-F imaging system.
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Figure 5.2: Imaging restrictions on a 4-F system.
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The SLM has N, pixels, and each has size b (for simplicity, we assume that the
fill-factor is 1). The lens has focal length F', and aperture A (therefore, the F-number
is (F'/#) = F'/2A). The diffraction spreads before and after the lens are, respectively

X == (5.1)

Y , Nyb
X%

Note that at the second arm of the 4-F system, x’ and x are interchanged. The imag-
ing restriction follows from the requirement that the entire diffraction lobe contained

in 'y, X' be contained in the lens aperture. Thus we obtain

IAF
N,b+ AT < A, (5.2)

with equality in the optimal case of full utilization of the system aperture (beyond
some point, this degrades image quality because of aberrations at the lens edges; for

a detailed account of these issues, see [101, 102]). From (5.2) we obtain the following

conditions:
AQ
N, <N, pax = 5.3
p Npmas = )
bmin Sb S bmax (54)
AN Np max N,
min =1 1- .
bmin =4~ < Ny ) (5:5)

ANF Ny max / N,
max =———11 1- .
b A Np < + Np,max ) (5 6)

According to these conditions, the parameters N,, b are not free, but are constrained

to belong to a parabolic-shaped region, as shown in Figure 5.3.

5.1.2 The van der Lugt imaging system

Observing the schematics for the 4-F imaging system, it is natural to wonder if it
might be possible to reduce the diffraction spread by illuminating the SLM with a

focused wavefront rather than a plane wave. This method would attain more efficient
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Figure 5.3: Shape of the allowable region for V,, b in a 4-F system.
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Figure 5.4: Imaging system proposed by van der Lugt.

usage of the system aperture. The answer was given by van der Lugt [103], who
proposed the architecture shown in Figure 5.4.
The imaging condition and magnification of this system are calculated using simple

Fourier optics, and are given by:

1 1 1 F 13!
= Ml="2_—1=22 5.7
Like in the case of the 4-F system, we must require that the first diffraction

lobe from the SLM pass completely through the apertures. This yields the following
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Figure 5.5: Shape of the allowable region for N,, b in a van der Lugt system.

constraints:
=) 5:9)
R(F/#) _ FR(F/#)
Ny < b= 2X(1 + |M|) (5:9)
bmin Sb S bmax (510)
_2A(1 + |M])
min ‘—W)__ (511)
bmax =2F1(F/#) = Ay (5.12)

The resulting allowable region is larger than that of the 4-F system and has a trian-

gular shape, as shown in Figure 5.5.

5.2 Angle-multiplexed memories

We will now compare the three imaging architectures (Fourier plane, image plane, and
van der Lugt) described in the previous section for the case of an angle-multiplexed
memory. The comparison is usually made on the basis of two metrics: surface storage
density, and crosstalk. We will see that optimizing one of the two contradicts the

optimization of the other. Then using the information capacity metric developed in
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Figure 5.6: Angle-multiplexed system used for the subsequent storage density and
crosstalk calculations.

section 2.3, we will unify the two metrics, making the comparison easier.

The architecture is described schematically in Figure 5.6. The signal is normally
incident on the holographic material, which has thickness L. The reference beam is
incident at angle 6, and M angular locations are available for multiplexing. If A# is
the angular separation between adjacent holograms (e.g., equal to one, two or more

Bragg nulls) and © is the total angular spread of the reference, then

Here and in the subsequent analysis we will ignore for simplicity refraction effects and

lens aberrations.

5.2.1 Raw surface storage density

We assume that adjacent, spatially multiplexed holograms are separated by the area

a occupied by the signal beam at the surface of the holographic material, as shown
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Figure 5.7: Geometry for the calculation of the hologram area in a 4-F holographic
storage system: (a) Fourier plane geometry, (b) image plane geometry, and (c) the
van der Lugt system.

in Figure 5.7. This ignores the area taken by the reference (which is incident at an
angle; see Fig. 5.6). In principle, this is not a problem. However, if the reference
illuminates adjacent holograms at any stage during recording or reconstruction, it
will erase them, thereby reducing the overall dynamic range of the system. We will
not consider this effect here.

The raw® surface storage density is defined in terms of the area a occupied by the

hologram (see Figure 5.6) as

D=—"2 (5.14)

The geometrical calculation (Fig. 5.7) of the area yields the following results:

R
ap_(b+2F , ar = (Nyb+ ALY and

_[2aF M_A)r
W [b+2<2F b))

lRaw density refers to the number of bits that can be stored before error correction. An upper
bound for the capacity, taking noise into account, will be derived in section 5.2.3.
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Figure 5.8: Surface storage density versus N, and b. The brightness in the images
is proportional to the density. The calculation was made for material thickness L =
100um, angle of incidence 8 = 30°, reference angular spread © = 20°, focal length

F = 20 c¢m, and lens aperture A = 15 cm.

where the subscripts “F,” “I,” “V” denote Fourier plane, Image plane and van der
Lugt storage respectively. Substituting into the density equation (5.14), we can cal-
culate the density for any pair N,, b. An example is given in Figure 5.8 for the three
cases of Image plane, Fourier plane and van der Lugt systems. We observe that (as
perhaps was expected) the density in the 4-F Fourier plane and van der Lugt systems
improves as the product N,b increases, while the 4-F image plane density is high for

small b.
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Figure 5.9: Explanation of crosstalk with the aid of the k-sphere (see also Figure 3.2):
the reference beam with wavevector ks always has Bragg selectivity curve narrower
than k;, but the width depends on the position along the hologram.

5.2.2 Inter-page and intra-page crosstalk

Two sources of crosstalk have been identified in holographic memories: inter-page,
and intra-page. Interpage crosstalk is explained in Figure 5.9: the Bragg selectivity is
not the same along a wideband hologram. Therefore, when the carrier component of
a hologram is Bragg-mismatched, some other components still diffract contributing
to crosstalk. It follows that inter-page crosstalk affects worse the edges of a Fourier
transform hologram, and the high frequency components of an image plane hologram.

The crosstalk for angle-multiplexed Fourier plane holograms was derived in [71].

The electric field amplitude of the reconstruction of the j-th hologram is

M !
g;(z',y) = Z fon (=2" + AQmj, —y') sinc <(m - 7) [ij + ij%]> ,
m=0

(5.15)

where f,, are the stored images, (z',v’), the output coordinates, and the constants
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are defined as

(m —j)Fcotd (m?— j2)\F
@y L + L?sin @ Fmj = cot

(m+j)A
Lsin®

Crnj =1 -

(m—j)Acos’d 1(m+ j)Acosd - (m+ )\
Lsinf 2 Lsin?@ Lsin® |~

The only desired term in the summation of (5.15) is the one with m = j. The
remaining terms are crosstalk. By assuming that the crosstalk contributions from
different holograms add incoherently, i.e., that the relative phases of the holograms

are randomly distributed in [0, 27), we obtain the SNR as

1
SNRF,inter (-’El ’ y/) B

> sinc? ((m —7) {ij + ij%D : (5.16)
m#j

We observe that the argument to the sinc function of (5.16) contains two terms: one
constant, due to the fact that the selectivities of the holograms are not all the same?
(since they are recorded at different angles #), and one that depends on the transverse
location z’, due to the fact that pixels located off-axis also have different selectivity
than the carrier of the hologram (for a demonstration of this effect in the equivalent
case of shift multiplexing, see Figures 4.2 and 4.3).

The expression derived above for Fourier-plane crosstalk holds approximately for
the van der Lugt system, except the dependence on the transverse coordinate z’/F
must be scaled by (A;/2F; — A/b) to correct for the reduced signal beam spread at
the Fourier plane. This in general results in lower crosstalk than the regular Fourier
plane.

The crosstalk for low-bandwidth image plane holograms in the 90° geometry was
calculated in [89]. Here we will modify the analysis for transmission geometry, and
in order to take into account high-bandwidth images. The amplitude contribution is

obtained simply by taking the Fourier transform of the Fourier plane result (5.15).

2Note that this problem does not exist in the case of shift and wavelength multiplexing: indeed,
in the analysis of sections 4.1, 5.3, and 5.4, Cy,; simplifies to 1.
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Subsequently, we assume that the spatial cross-correlation of the stored holograms is

Rfjfj’ (f) = 5jleiIlC (wf) y (517)

where w is the bandwidth of the stored images (loosely defined as 1/b). Then the

spatial auto-correlation of the reconstruction of the j-th hologram is obtained as

Ry (€)= Ry (€ + X [ (1= I sinc? (w A — )R’ — €]

m#£j

exp {i127(m — j)Cp;€'}dE',  (5.18)

where Ry, (§) is the autocorrelation of the originally stored j-th hologram, given by
(5.17). The variance added to the reconstruction due to crosstalk noise is obtained by

calculating the autocorrelation at zero displacement, £ = 0 (see also [104]). Therefore,

we obtain:
1 +1
s = % [ (A= 1gsine® (Qwo(m = ) Bni€’) exp {i2n(m — )Gy} A&
Iinter mii? 1
& (5.19)
For small w (i.e., b >> ), the above expression reduces to
~ Y sine® ((m — 5)Cry) - (5.20)

SNRI ,Jinter

m#j

If we further assume 6§ = 90° (i.e., 90°-geometry), then we obtain the result derived

by K. Curtis [89, 105]:

s~ Do (=) [1- =47 ] ). G2

m#j

It is important to take the bandwidth into account, because typically (5.19) gives
SNR 6-7 orders of magnitude lower than (5.20).

Intra-page crosstalk results from the finite point-spread function of the optical
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system. A straightforward calculation [106] yields

2 Np/2 " _mb " 2
mz Z (/rect(x bn)sinc<2x:x>dx") )

n=—Np/2

(5.22)

Assuming Gaussian noise distributions, the overall SNR is

1 1 1

= 59.23
SNRa SNRa,inter * SNRintra ( )

for a=F, V, or 1. Using all the results so far, we can perform the SNR calculation
for every pair of N,, b as in the case of surface density. An example is given in
Figure 5.10.

We notice immediately that the high SNR areas in all architectures correspond to
low surface storage densities, and vice versa. Thus to pursue high raw density, one
should expect to pay the price of low SNR. The overhead of error correction in the
case of strong noise reduces the effective density. The trade-off is quantified with the

aid of the concept of information density (defined in section 2.3) in the next section.

5.2.3 Information density

The information density C of a holographic memory is determined with the help
of the noise theory presented in Chapter 2. The density calculation yields the number
of raw bits that can be stored per unit area in the memory. The crosstalk calculation
yields the SNR, from which the error rate is deduced according to section 2.2. Finally,
the information metric of section 2.3 provides the trade-off between the raw density
and noise performance as the upper limit in useful information that can be stored per
unit area in the memory, according to Shannon’s theorem. The result for the case
considered in the previous two sections (Figures 5.8 and 5.10) is given in Figure 5.11.
We observe that the plots are very similar to the density plots, but the information
density is always smaller than the raw density. Additional noise sources that do not

depend on the parameters b, IV, of the imaging system and were neglected would
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Figure 5.10: Combined inter- and intra-page crosstalk SNR versus IV, and b. The
brightness in the images is proportional to the SNR. The calculation was made for
the same parameters as in Figure 5.8.

reduce the information density further compared to the raw density; however, they

would not alter the trends shown in Figures 5.8, 5.10, and 5.11.

5.2.4 Conclusions

The calculations of the previous sections are summarized in Table 5.1, where the
maximum information density C (in bits/um?) for each imaging system is shown along
with the values of N,,, b for which it is attained, for two values of material thickness L.
We see that the van der Lugt system consistently yields higher information density

than the other two systems. However, the optimal values of N,, b are somewhat
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Figure 5.11: Shannon information density versus N, and b. The brightness in the
images is proportional to the information density. The calculation was made for the
same parameters as in Figures 5.8 and 5.10.

unrealistic. If we use the more realistic values N, = 1,000, b ~ 10um, then the
Fourier plane system is superior. Indeed, so far Fourier plane holography with the
material slightly displaced from the Fourier plane has been used in all experimental
high surface storage density demonstrations [33, 94, 93, 87]. In these experiments,
fractal storage was combined with either angle or shift multiplexing to further increase

the capacity.
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Thin medium, L = 100pum

maxC (bits/pm?) | bop(ppm) | Npopt || C(b = 10.2um, N, = 1000)
16.49 14.29 956 7.76
I 13.70 1.43 956 0.39
\Y% 20.43 491 3657 6.22

Thick medium, L = Imm

maxC (bits/pm?) | bops(pm) | Npopt || C(b = 10.2pum, N, = 1000)
116.5 9.16 1399 64.0
I 88.7 1.66 1862 3.78
\Y% 176.1 2.73 3763 48.0

Table 5.1: Summary of the results for angle multiplexed holographic memories and
different imaging systems and thicknesses. “F)” “I,” “V” stand for Fourier plane,
image plane, and van der Lugt system, respectively.

5.3 Wavelength-multiplexed memories

Wavelength-multiplexed holographic memories [37, 38] will undoubtedly become more
popular as compact wavelength-tunable sources (laser diodes and vertical-cavity
surface-emitting lasers, VCSEL’s) in the visible region of the spectrum become widely
available. The wavelength selectivity of a general holographic multiplexing geome-
try is given by (3.17). Most commonly, wavelength multiplexed memories are imple-
mented in the reflection geometry (reference and signal counter-propagating, 85 = 0°,
6r = 180°), which yields optimal selectivity?,

/\2

AN = —, 5.24

5T (5.24)

where ) is the average wavelength and A\ << \.

The storage density of wavelength mutiplexing is the same as that of angle multi-

3For angle multiplexing, optimal selectivity is obtained in the 90° geometry (also for shift multi-
plexing, see 3.3.2). Interestingly, the two geometries are symmetric,

A (A/\)reﬁ‘ _ A

T A
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plexing (under our assumptions — in [69] the additional volume taken by the reference
beam differentiated the two cases); therefore, the equations of section 5.2.1 hold. The

number of superimposed wavelength-multiplexed holograms is given by

M= (—A—A%t-@i, (5.25)

where (A)), . is the total tunable range of the laser. Intra-page crosstalk is also

tot
obviously the same as for angle multiplexing.
The inter-page crosstalk calculation for wavelength multiplexing in the Fourier

geometry was done in [73, 72]. The result is summarized in the following formula:

M 2 2
9;i(z,y) = m;M fm (=, —y) sinc <(m - j)zli\‘;A (1 _ 332;22/ )) |

(5.26)

with the same notation as in section 5.2.2. Using wavelength separation equal to the

Bragg selectivity (5.24), we obtain the inter-page SNR

1

2 2
— a2 o _ ¢ty
SNRF,inter(x7 y) B n; S ((m ]) <1 2F2 >> ) (527)

This indicates that the SNR becomes worse quadratically, and in a radially symmetric
fashion away from the center of the hologram, in contrast to angle multiplexing where
the degradation is linear and in one direction only (along the intersection of the plane
defined by the reference and signal beams and the surface of the holographic medium).

The derivation of the inter-page crosstalk for image plane wavelength-multiplexed
holograms is considerably more complicated than the case of angle-multiplexing;
therefore, we will present it in some detail. We begin by Fourier transforming the

reconstruction given by the Fourier-plane system of (5.26), obtaining

oo 1 " " " P "y, "
g](-T,y): Z //fm(‘xy_y)Bm—J(x —Jf_m7’3/1—}“y,)da7 dy7
(5.28)
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where

+oo
_ - ur+oy) . % + 2
B, (u,v) :—/O[ exp {—2277 Ya }smc (n (1 ~ 5 )) dzdy.

(5.29)

The following property of B will prove useful:

/ B, (u, v) B (u + uq, v + vy )dudv =

+00
. 9 . ular—l—vly} .9 _:E2+y2
= (A\F) —/Olexp {ZQW—-)\F sinc (n (1 N dzdy. (5.30)

The proof is straightforward by noting that integrating for u, v yields J-functions,

which then allow two more integrations to reduce the sixfold integral to a double one.

Subsequently, we form the quantity

Ry, (€,n) = EV {gj(x', y)gi(a' — &y — 77)}
1 M M +00
=or o 2 ] dm @ f )

Bm—j (33'1” + 27,, y1” +vy ) B* (SL' + ' — f, y2” + y’ - 77) da:l"dyl"dxg”dyg". (531)

This expression is simplified by using (5.30) and the correlation property (5.17) of
the stored holograms. The result, after setting (£,17) = (0,0) (as explained in sec-
tion 5.2.2) is

Ry, (0,0) = Ry, (0,0) + AF vy Z //{//exp{ gﬁny}sinc (w¢') sinc (wr')

2y 2
d{’dn'} sinc? <n (1 - x2;2y )) dzdy. (5.32)

The internal integral evaluates to rect (z/(wAF))rect (y/(wAF)). To simplify the

calculation further, we approximate the square domain of integration with a disk of
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radius (wAF)/y/7 (hence the disk and the square have equal areas). The integrand
then becomes radially symmetric, and after some scaling transformations, and using

the same definition of image plane SNR as in section 5.2.2, we finally obtain

SNRI inter =22 / p sinc ( —J) [1 - %U—:—ED dp. (5.33)

m#£j

Note that setting w = 0 earlier would have led to the approximate expression derived
by K. Curtis [89, 105] for wavelength multiplexing. However, for our purposes it is
important to maintain the dependence of SNR, on the pixel size b ~ 1/w.

We are now fully equipped to repeat for wavelength multiplexing the calculations
for density (which is identical to the density of angle multiplexing), crosstalk, and

information density. The results are summarized in Table 5.2.

Thin medium, L = 100pm

maxC (bits/pum?) | bopt (um) | Npopy | C(b = 10.2um, N, = 900)
F 20.85 22.93 593 0.40
I 19.70 2.10 335 18.50
\Y 4.95 3.10 4830 1.65

Thick medium, L = 1lmm

maxC (bits/pum?) | bopt(um) | Npopt || C(b = 10.2pm, N, = 900)
F 145.76 14.78 869 3.92
I 117.27 2.55 1272 108.13
\Y% 48.18 2.1 7072 14.01

Table 5.2: Information density of wavelength multiplexed holographic memories for
different imaging systems and thicknesses. “F”, “I,” “V” stand for Fourier plane,
image plane, and van der Lugt system, respectively. The parameters used for the
calculation were A = 750 nm, and (AM),,, = 300 nm, and the rest were the same as

in section 5.1.



114

Comparing to Table 5.1, we see that the conclusions regarding the optimal config-
uration are quite different for wavelength multiplexing: Fourier plane yields consis-
tently better optimal density, whereas image plane yields consistently higher achiev-
able density with reasonable parameters®. The reason is that, at the high wave-
length where tunable lasers operate, the penalty to Fourier-type geometries because
of crosstalk compared to image-plane geometry is reduced, and also the diffraction
spread becomes much more dominant because the pixel size becomes effectively
smaller (compared to wavelength). On the other hand, the van der Lugt geome-
try is penalized because the effect of the diffraction spread doubles since the focus is
not in the center of the holographic medium (see Fig. 5.7¢). For this reason, Van der
Lugt imaging performs worse than the other two types for wavelength-multiplexed
memories.

Reflection geometry allows wavelength-multiplexed holograms to be packed most
densely, and with minimal crosstalk. However, very expensive polarization optics
are also required to minimize optical noise coming from the reference beam leaking
into the detector. Alternatively, the transmission and 90° geometries can be used for
wavelength multiplexing at the expense of storage density. The above calculations
should be modified to account for the decreased density and increased inter-page

crosstalk in these sub-optimal geometries.

5.4 Shift-multiplexed memories

The physics of shift multiplexing was described in detail in Chapters 3 and 4. Here
we are interested in repeating the imaging system evaluation of sections 5.2 and 5.3
for shift-multiplexed memories.

One feature of shift multiplexing that we must take into account is that the signal
is not normally incident at the holographic material (as we assumed for angle and
wavelength systems), but is rather incident at angle . The storage density of shift

multiplexing was rigorously calculated in section 4.4. To keep the analysis tractable

4Note that the point (b, Np) = (10.2um, 1000) is outside the allowable region for this wavelength.
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in this section, we will approximate the density by assuming that the area taken
up by overlapping shift multiplexed holograms in the Fourier, image, and van der
Lugt systems is the area taken by an angle/wavelength multiplexed holograms in the
corresponding system (i.e., ar, ar, ay respectively; see section 5.2.1) divided by cos @

to account for the signal beam tilt. The number of overlapping holograms is therefore

M= (5.34)

where the correct @ must be used depending on the geometry, and ¢ is the shift se-
lectivity, given by (3.67). Another feature of shift multiplexing important for the
calculation is that the focal distance zy is not arbitrary but is determined by the re-
quirement that the reference and signal beams totally overlap inside the holographic
material (see egs. 4.31 and 4.39 in section 4.4). Here we will use the simple ap-

proximation

VLY
I cosd (5.35)

20 —

where (F/#) is the F-number of the lens used at the reference arm. We will always
assume that the reference and signal lenses have the same (F/#).

The interpage crosstalk calculation for shift multiplexing is straightforward. For
Fourier plane holograms we use directly (4.4). For image plane holograms the calcu-

lation is similar to the angle multiplexing case, and yields

3 9) exp {i2n(m — )€} €'
(5.36)

SNRI — Z/ (1 — |&'|) sinc ()\w( ——])

m#j

The storage density, crosstalk and information density comparisons of different
imaging systems for shift multiplexing are now straightforward. The results are sum-
marized in Table 5.3.

Concluding, we observe that overall the shift multiplexing method yields higher

capacities than angle or wavelength, because it allows more efficient usage of the
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maxC (bits/um?) | bop, (um) | Npopt || C(b = 10.2pm, N, = 1000)

F 34.22 14.21 956 17.87

I 27.26 1.51 1272 0.75

\Y 43.95 4.58 3048 20.85

Thick medium, L = 1lmm

maxC (bits/pum?) | bopt (um) | Npopt || C(b = 10.2um, N, = 1000)

208.0 9.16 1399 120.7

I 165.3 1.66 1862 7.02

\Y 371.9 1253 73 194.5

Table 5.3: Shannon information density of shift multiplexed holographic memories
for different imaging systems and thicknesses. “F)” “I” “V” stand for Fourier plane,
image plane, and van der Lugt system, respectively. All parameters are the same as

in section 5.1.

apertures, and also has reduced crosstalk. The van der Lugt system is preferrable
in all cases. One possible limitation of shift multiplexing that we did not take into
account is the leakage of the wide-angle reference beam into the detector during
reconstruction thereby increasing the noise and decreasing the capacity. In practice

so far this was not a problem [87]; however, pushing the system to the limits as we

attempt to do here might make this consideration significant.
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Chapter 6 Issues in holographic memory

design

In this chapter we discuss practical issues in holographic memory design. In sec-
tion 6.1 we describe two methods for non-volatile storage in photorefractives, namely
electrical fixing (section 6.1.1) and periodic refreshing with the aid of phase conjuga-
tion (section 6.1.2). In section 6.2 we elaborate further on a compact architecture for
dynamic holographic memories and design a Terabit holographic memory that can fit
in a volume quite smaller than 1 m?. Finally, in section 6.3 we begin the treatment of
the issue of access to the database by presenting various architectures for associative
storage. The topic of memory design and interface will be treated fully in the next

chapter.

6.1 Volatility in photorefractive holographic mem-
ories

Volatility in photorefractive storage is a major concern, in the same fashion as
in silicon DRAM memories. Erasure in photorefractive materials is well under-
stood [35, 107], and is closely related to the recording process itself. We will give
a brief description here before we discuss in more detail two techniques, namely elec-
trical fixing and periodic refreshing for overcoming the volatility problem.

The photorefractive effect is based on photo-induced band-transport of electrons,
as shown in Fig. 6.1. The photorefractive crystal is illuminated by a sinusoidal light
pattern I(x). Electrons that happen to lie in energy levels between the valence band
and the conduction band (i.e., electrons that belong to deep traps) and were initially

located at illuminated regions are excited to the conduction band, and move freely
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Figure 6.1: Simple diagram explaining the photorefractive effect in the diffusion-
dominated case.

to the dark regions, because of diffusion. There they recombine with ions at acceptor
sites. (For simplicity we assume that there are no external electric fields or photo-
voltaic fields, i.e., there is no drift.) When steady-state is reached, excess electrons
will have accumulated in the dark regions, generating a space-charge field Eg.(z) out
of phase by 7/2 with respect to the illumination. In turn, E, locally modulates the
refractive index of the crystal via the electro-optic effect, generating a phase hologram.
When drift is present, the recording mechanism is very similar, except the phase-shift
between Eg.(z) and I(z) is different than 7/2. The quantitative treatment of this
process is based on the band-transport equations [35, 90, 107, 108].

The phase hologram would be stable if the space-charge pattern developed during
the recording phase could be maintained. Unfortunately, this is not true even in
the dark, because some of the recombined electrons are thermally excited back to
the conduction band, and the space-charge field decays. The dark-storage lifetime
depends on the doping species and concentration, and can be as low as a few seconds
(typically in BaTiOs3) or as high as a few weeks (in lightly doped LiNbO3). When the
hologram is illuminated, the thermal excitation of recombined electrons is enhanced
by photoexcitation, and the decay is stronger. Therefore, photorefractive holograms
are optically erasable. This is convenient for the HRAM application. However, two

situations exist when optical erasure is undesirable: hologram readout, and recording
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of multiple holograms.

To record multiple holograms, one must determine appropriate recording times,
i.e., follow an “exposure schedule,” [51, 91, 109] so that, after each exposure, all the
stored holograms have equal diffraction efficiency!. As a result of the simultaneous
recording and erasure of previously recorded holograms, the diffraction efficiency after
superimposing M holograms in the same location of a photorefractive medium varies

with M as [110]

- (ﬁ%ﬁ) (6.1)

where the M/# (M-number) is a system metric, determined by the material constants
(refractive index, absorption coefficient, dopant concentrations, electron mobilities),
the beam intensities, and the optical system used for the measurement. (For the
calculation of (M/#) in the case of photorefractive shift-multiplexed memory, see
section 4.2).

Several methods have been devised against erasure in the cases of readout and
long-term dark storage in photorefractive materials. Historically, the first attempt
was to fix the holograms by generating gratings that are not optically or thermally
sensitive. One method is to induce ionic gratings by heating up the crystal [95], since
then the mobility of hydrogen ions increases. Alternatively, ferroelectric gratings are
formed when a negative (with respect to the dielectric polarization) electrical pulse
is applied [96], because the ferroelectric domains are locally destabilized. The topic
of electrical fixing is discussed in more detail in section 6.1.1.

Instead of fixing the holograms thermally or electrically, another idea is to try
to sustain them as long as possible by reading out using a wavelength where the
material absorption is low. For example, Fe-doped LiNbOj3 has high absorption in
the green and blue wavelengths, but is relatively insensitive to red. This two-lambda

technique [82] involves trade-offs in the achievable density, because multiple scalar

1The complete discussion of exposure schedule for shift-multiplexed photorefractive memories
was given in section 4.2.
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volume holograms cannot be entirely Bragg-matched in a wavelength other than that
used for recording [99, 111], except at the expense of allowing Bragg degeneracies.
Section 4.5 provides a full account of the two-lambda method in shift-multiplexed
mermories.

Holograms may be recorded in Fe-doped LiNbOj; with infrared light by using
sensitizing high-intensity green pulses [112]. Commonly, LiNbO3; materials possess
shallow traps, i.e., energy levels very close to the conduction band. Electrons from the
deep traps are “pushed” to those levels by the sensitization pulses, and can easily be
excited to the neighboring conduction band by the low-energy low-absorption infrared
light (two-photon process). Since the hologram is recorded and reconstructed in the
same long wavelength, the two-lambda readout limitations are eliminated.

Finally, a method that requires neither a complicating fixing process nor multiple
wavelengths is periodic copying [98], as in silicon dynamic random access memories.
Holograms that coexist in the holographic memory are periodically read-out, fed-back
and re-recorded continuously, each for time long enough to maintain a stable system.
This technique requires very robust alignment, since any slight deviation in the di-
rection of the fed-back signal results in the opposite effect of efficiently erasing the
stored hologram. A natural way of side-stepping the alignment issue is by replac-
ing the resonator with an optoelectronic latch, which is used to detect and re-record
the holograms. This idea led to the development of a lens-less compact holographic

memory module design and is discussed more fully in sections 6.1.2 and 6.2.

6.1.1 Electrical fixing

Electrical fixing was developed in the early 70’s by Micheron and Bismuth as an
alternative and hopefully more practical method for non-volatile storage. The method
is based on the reversibility of ferroelectric domains in photorefractive crystals. It was
first applied in iron-doped barium titanate [96] (Fe:BaTiO3) and then to strontium
barium niobate [113] (SBN:z, Sr,Ba;_,NbyOg).

Electrical fixing of a single hologram is very simple to implement: during the
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poling process of the ferroelectric crystal, the optical ¢-axis is defined, and is parallel
to the spontaneous polarization axis, i.e., the direction in which the ferroelectric
domains point. In the simplest version, the holograms are recorded without any
applied field; after recording is complete, the hologram is fixed by applying a negative,
i.e., antiparallel to the ¢-axis electric field E,. Micheron and Bismuth observed [113]
in the SBN specimen used in their experiments the following effects: the field had
little effect if |E,| <700 V; for 700 V< |E,| <1000 V the hologram was not optically
erasable and the diffraction efficiency 7 was enhanced; for |E,| >1000 V, n dropped
as |E,| increased. By applying a positive electric field to the crystal, the hologram
became optically erasable again.

Recently, this fixing process in SBN was revisited and studied extensively [97, 114,
115, 116, 117], with emphasis on the application to practical angularly multiplexed
memories. Our current understanding of the fixing process is based on the switching
of ferroelectric domains when electric fields are applied [113, 114]. We will describe
the physics of fixing based on a typical fixing experiment [97] shown in Figure 6.2.

Consider a photorefractive crystal like SBN, with relatively low coercive field.
During holographic recording, the photorefractive space-charge field Eq. builds up
and reaches steady state inside the crystal. After recording is complete, the negative
pulse E, is applied and achieves the following effects: In locations where the total field
|Es. + E,| exceeds the coercive field E.,, the domains are reversed under the electric
force applied to them. If E, is strong enough, the switching condition is fulfilled
only in regions with negative space-charge field. Thus the space-charge grating field
triggers the generation of a polarization grating inside the crystal. The additional
electric field generated by the reversed electric dipoles screens the photorefractive
space charge field resulting in re-distribution of the space-charge (point C in Fig. 6.2).

Under constant illumination, excess charges that are not trapped by the polar-
ization field are re-distributed. During this time, the electric field experiences a sign
reversal (point D in Fig. 6.2). The total electric field in equilibrium E (point F
in Fig. 6.2) can be decomposed into two distinct contributions, one due to the po-

larization grating, and one due to the re-distributed free carriers (electrons). Both
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Figure 6.2: A typical fixing-revealing experiment. A: recording begins; B: writing
beams are blocked, and negative voltage pulse is applied; C: optical erasure with non-
Bragg-matched beam begins; D: phase reversal in the optical field; E: fixed grating
reaches peak value; F: fixed grating reaches steady state; G: positive pulse is applied;
H: revealed (compensating) grating; I: optical erasure.

components are proportional to the amplitude P, of the polarization grating [114].

When a positive pulse is applied to the crystal with the fixed hologram (point G in
Fig. 6.2), the ferroelectric domains are switched back in the direction of the ¢-axis (if
the applied field exceeds the coercive field) and thus the ferroelectric domain grating
is destroyed. This results in the revealing of the compensating charges and enhanced
diffraction efficiency, since screening is cancelled. The revealed hologram is electronic;
therefore, it is optically erasable (point I in Fig. 6.2).

The explanation of the fixing effect given so far agrees with the observations
of Micheron and Bismuth [113] and Qiao et al. [97]. The fixing efficiency depends
strongly on the grating spacing A. This is expected, since the efficiency of switching
should depend on the relative sizes of the ferroelectric domains and the space-charge
field period. The ratio of the efficiency of the compensating grating to the efficiency
of the fixed grating increases as (A/Ap)*, where Ap is the Debye length. This de-

pendence is predicted theoretically from the charge transport equations, and is also
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Relative diffraction efficiency

fixed hologram | revealed hologram
E, = —2.2¢ kV/cm 0.74no 0.067
E,=-3.0¢ kV/cm | <1 x 1073 0.40m,

Table 6.1: Fixing efficiency versus fixing pulse amplitude. 7y denotes the diffraction
efficiency of the hologram before fixing (~ 30% in most experiments) for grating
spacing A = 10pum. The data show that there is a sharp threshold at approximately
2.6kV/cm; below, fixing is very inefficient, as shown by the low-efficiency revealed
hologram. Above, the opposite happens, since a single positive pulse is sufficient to
reveal significant portion of the original hologram. After 12 pulses, as much as 0.57,
was revealed in the same experiment.

verified experimentally independent of the recording and erasing intensities [114].

The diffraction efficiency of the fixed hologram in steady state for small grating
spacings A increases [115] as AP with p = 1.3 ~ 2.1 (p decreases with recording/erasing
intensity) and peaks at A ~ 7um. Adding to this effect the A* dependence of the
relative compensating-to-fixed grating efficiency, we find that the compensating grat-
ing increases like A>3~%1 and this is more or less verified experimentally [115]. The
revealed grating itself has maximum diffraction efficiency at A ~ 11.2um.

These observations depend critically on the dynamics of the formation of the
ferroelectric domain grating. Recently, it was shown that the fixing/revealing fields
also have a strong effect on the fixing efficiency [116]. Applying a small amplitude
negative pulse in general has the effect of creating a weak domain grating. In that
case, the fixed hologram has appreciable efficiency, but the revealed hologram is weak.
On the contrary, a high-amplitude negative pulse creates a strong domain grating,
which results in a very weakly diffracting fixed grating (since all or most of the space-
charges are screened through compensating the domain grating), and a very strong
revealed grating (up to 50% of the diffraction efficiency of the grating before fixing).
These results are summarized in the data of Table 6.1.

The understanding of the physics of electrical fixing made it possible to fix angu-

larly multiplexed holograms in SBN:75 [116]. The multiplexing setup is very similar to
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that of Fig. 1.1. The angle # between the reference and signal beams has to be in the
order of a few degrees for efficient fixing to occur (the optimal A = 7um corresponds
to # = 1.6°). This requirement leads to the following trade-offs: (1) the number of
holograms increases as 6 is made larger, because the angle selectivity A goes approx-
imately like A@ ~ \/n@; (2) the signal-to-noise ratio improves as 6 increases, because
the reconstruction is less affected by scatter noise coming from the reference and
crosstalk noise coming from partial reconstruction of overlapping holograms; (3) the
individual capacity of the holograms increases with € because the available angular
bandwidth becomes larger.

Very recently, 1,000 holograms were multiplexed and electrically fixed [117, 118]
in SBN:75 (0.02% Ce-doped, thickness 1 ¢cm) using the method described above.
The holograms were arranged in 5 fractal rows [40, 31}, each containing 200 angle-
multiplexed holograms. The signal-reference interbeam angle was chosen 6 ~ 3°.
The holograms were recorded initially using the usual recording schedule [91], and a
negative fixing pulse was applied immediately afterwards. The diffraction efficiency
of the individual fixed holograms was below noise level. After revealing, the aver-
age diffraction efficiency was = 0.005% with 80% uniformity. No degradation was
observed after several fixing-revealing cycles.

We described in detail one method of domain fixing in ferroelectric materials.
Variants of this idea also exist. For instance, applying a negative field during recording
has been reported in both SBN [97] and barium titanate [119]. In the former case,
the diffraction efficiency of the fixed grating was found to be higher than if the fixing
pulse were applied after recording. It is even possible to obtain fixed holograms in
SBN:75 by applying the negative pulse before recording, i.e., by preliminary partial
de-poling of the crystal [117].

One potential limitation in the long term stability of fixed domain gratings is the
electrostatic energy stored in the domain walls, which occurs because of the non-zero
polarization gradient V - P (the spontaneous polarization is along the direction of the
grating vector). By recording gratings perpendicular to the ¢-axis while applying an

electric field anti-parallel to the ¢-axis, Horowitz et al. demonstrated a new domain
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fixing technique based on the screening field [120]. The screening field cooperates
with the external field in regions of high light intensity to cause domain reversal and
works even though the domains are perpendicular to the grating vector. This method
can be applied to fix patterns without the presence of a reference beam, and also to
weakly photorefractive crystals. According to the authors, features as small as 1pym
can be fixed. To our knowledge, no multiplexing results using this method have been

reported to-date.

6.1.2 Periodic refreshing

The decay of holograms in photorefractive materials during illumination or even in
the dark is reminiscent of the effect of leakage current through the output capacitors
in silicon memories. In the latter, the data decay problem is solved with a peri-
odic read /re-write sequence, called refreshing. The periodic refreshing idea may also
be applied to holographic memories and several refreshing architectures have been
devised [121, 122, 123, 124]. The general refreshing idea is to incorporate the recon-
struction into a feedback loop; if the fed back signal is strong enough and of sufficient
fidelity, then it can be recorded on top of already existing holograms in order to rein-
force them. Usually distortion-free feedback is obtained by the well-known technique
of phase conjugation [125, 126, 127].

In a phase-conjugate system, distortion correction is obtained as follows [128]:
suppose that a hologram is recorded by a reference beam R and a signal (object)
beam Se’® (Fig. 6.3a), where S is the actual signal and ¢ is the phase aberration in-
troduced by the beam propagation? (including Fresnel diffraction). The interference

*. When R is used for reconstruction (Fig. 6.3b),

pattern is expressed as 'R + Set?
Se'® is obtained on the signal axis as a continuation of the signal beam, carrying over
all the phase aberrations introduced in the signal path during recording. Therefore,
the forward reconstruction is distorted and needs correction by using the appropriate

imaging optics. If, however, the phase-conjugated reference R* is used for reconstruc-

2Tt is usually safe to ignore the effects of absorption on the phase-conjugation process.
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Figure 6.3: Obtaining distortion-free hologram reconstruction with a phase-
conjugated reference.

tion (Fig. 6.3c), the on-axis reconstruction produced by the hologram contains the
term S*e™*®. The reciprocal aberrator introduces an additional phase term e to the
counterpropagating reconstruction, and, as a result, a distortion-free intensity image
|S|? is obtained at the location of the original signal.

More recently, the phase-conjugate reconstruction method has been used in the
design of a compact refreshable dynamic holographic memory with liquid-crystal op-
toelectronic interface [129, 130]. In this design, an optoelectronic circuit, the Dynamic
Hologram Refresher (DHR) participates in the feedback loop by detecting, threshold-
ing, and re-recording holograms periodically. Phase conjugation contributes to the

compactness of the system because it eliminates the need for imaging optics in the
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design. The relevant design and optimization issues are presented in detail in the

next section.

6.2 Compact design of a Terabit Random-Access
Memory

Compared with commercial optical memories (e.g., digital video disks), holographic
memories offer provably at least equal capacity [33], and potentially both higher
capacity and faster access time, by several orders of magnitude. However, holographic
storage also poses more stringent requirements on the quality of the recording and
readout optical systems, and may take more space because of the bulky laser, optics,
and vibration isolation equipment. It is therefore desirable to design holographic
memories of physical size much smaller than currently available. Ideally, maximum
robustness and compactness are achieved if the optical elements are placed close
enough so that they can be glued to each other. Miniaturized optical sources (e.g.,
vertical-cavity surface-emitting lasers, VCSEL’s) and components (beam-splitters,
mirrors, waveplates) are readily available today, and optoelectronic technology is
mature enough to provide reliable, high-performance integrated interfaces such as
Spatial Light Modulators [131, 132, 133] (SLM’s) and detector arrays. However, the
imaging requirements [103, 44, 134] for high-capacity holographic storage usually force
the designer to use expensive and bulky aberration-corrected lenses [33]. The phase
conjugation technique (section 6.1.2, [125, 126, 127]) allows wave-front distortion
recovery without imaging in a properly designed architecture. It has been used, for
example, to design a read-only holographic memory with a conventional detector
interface [135].

In this section we are interested in compact dynamic refreshable holographic mem-
ories, and in particular in the implementation of a Tbit holographic memory with
volume comparable to that of a desktop personal computer. This corresponds to

system volume density of several Thbits/m®. To get an idea of the orders of magni-
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tude involved, consider that the volume density of the Merriam-Webster dictionary
is 60 Gbits/m3, and the Millikan Memorial Library at Caltech stores approximately
3 Thits of information in 450,000 volumes. Therefore, our proposed system is capable
of storing the contents of the entire library in a box smaller than a cubic meter!

We begin with the design of the basic compact memory module and some related
experimental results in section 6.2.1. Subsequently we consider some of the basic
issues in holographic memory design for our particular architecture, namely multi-
plexing method (section 6.2.2), system density optimization (sections 6.2.3, 6.2.5),
and the trade-off between power, noise, error rate, and access time (section 6.2.4).

Discussion, improvements, and some general comments are given in section 6.2.6.

6.2.1 Compact dynamic holographic memory architecture

The basic module used in dynamic compact holographic memories is shown in Fig-
ure 6.4. It consists of a photorefractive crystal, which acts as a re-writable holographic
material, a polarizing beam-splitter, and an optoelectronic integrated circuit, the Dy-
namic Hologram Refresher [129, 130, 136] (DHR). The plane-wave reference beam is
directly incident to the crystal through a liquid-crystal beam-steerer [137] for angle
multiplexing. The signal beam is first deflected by the beam-splitter towards the opti-
cally active surface of the DHR die, where the signal information intensity-modulates
the waveform. The modulated signal beam is reflected back to the photorefractive
crystal where it records a hologram with the reference beam. The phase-conjugate
method (see section 6.1.2) is employed for reconstruction. A counter-propagating ref-
erence beam passing through an identical beam-steerer (neither is visible in Fig. 6.4a)
reconstructs the phase-conjugated signal which counter-propagates towards the DHR.

The counter-propagating beam may be provided by a mirror coating at the back
face of the photorefractive crystal; in that case, the input beam must be steered
at the complement of the desired readout angle. Yet another way to provide the
phase-conjugate beam is by using a self-pumped phbase conjugator in a separate

crystal [130]. This solution is very elegant but it adds to the volume of the module
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Figure 6.4: (a) Basic module of a compact holographic memory. (b) Operation char-
acteristics of the Dynamic Hologram Refresher.

and is expensive. In our experimental demonstration we used a Sagnac interferometer
configuration to provide the phase-conjugated reference. In the theoretical derivations
and volume optimization (section 6.2.3), we will assume that the mirror solution is
used.

The surface of the DHR is organized as a grid of pixels, each containing a metal
pad and a phototransistor. A layer of hybrid-aligned nematic (HAN) liquid crystal is
sandwiched between the silicon die and a transparent grounding electrode coated with
indium-tin oxide (ITO). When a voltage is applied to the metal pad of a particular
pixel, the phase of light incident to and reflected by the metal pad is modulated due
to the electro-optic effect in the intervening liquid crystal [133]. Thus, with the aid
of a polarizer, this device acts as an intensity modulator for each individual pixel.

The operating characteristics of the DHR are given in Figure 6.4b. The DHR

functionality is threefold:

(i) In the hologram recording phase, the DHR modulates incident light and re-
flects the modulated beam onto the photorefractive crystal, where a hologram
is recorded by interfering with the reference.

(ii) In the hologram reconstruction phase, the diffracted beam obtained by the
phase-conjugate method counterpropagates back onto the phototransistors, where

the reconstructed pattern is detected by the DHR. Note that since the detec-
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tors are not collocated with the metal pad modulators, a truly phase-conjugated
beam cannot be detected in the way we described so far. This problem is solved
by introducing a small tilt in the reference beam along the degenerate direction,
and has been proven to work in practice [129].

(iii) In the hologram refreshing phase, the two previous operations are combined
inside the DHR without external influence as follows: first the hologram is
reconstructed by the phase-conjugated reference, detected as described in (ii),
and latched in the internal memory of the DHR; then the detected pattern is
transferred to the modulators and is used as signal to re-record a hologram with

the forward reference thus reinforcing the original hologram.

The capacity of the basic module described so far is of the order of 1 Gbit, assuming
that roughly 1,000 holograms can be stored in the photorefractive crystal, and each
one contains approximately 1 Mbit (1000 x 1000 pixels). This goal is somewhat
optimistic given the current state-of-the-art in integrated optoelectronic technology
and holographic materials; however, it is not far from being realizable [136]. We will
pick up on this point in sections 6.2.3 and 6.2.4.

The experimental setup used® for testing the basic dynamic memory module is
shown in Figure 6.5. Polarizing beam splitter PBS1 splits the input beam into two
arms, the reference and signal. The reference is directed into the Sagnac interferom-
eter formed by PBS2 and mirrors M1, M2, M3. When the interferometer is aligned,
the two counterpropagating beams are phase-conjugated. The signal, after passing
through PBS3, is incident on the DHR where it gets modulated as described in sec-
tion 6.2.1 before being reflected back towards the photorefractive crystal PRC, 30°-cut
BaTiO; for this experiment. The arm of the reference beam reflected by PBS2 is used
for recording, while the transmitted beam is used for phase-conjugate reconstruction.

Mechanical rotation of the crystal in the plane of the figure is used to implement

3Preliminary experiments with this architecture were performed by the author with Jean-Jacques
P. Drolet, who also designed and fabricated the DHR chip. These experiments were published
in [130]. The more conclusive results presented here and in [129] were obtained by Jean-Jacques P.
Drolet and Ernest Chuang. Currently working on this project are Ernest Chuang, Xu Wang, and
Wenhai Liu.
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angle multiplexing. In addition to detecting the reconstruction on the DHR, we
also used two CCD cameras to observe both the forward and the phase-conjugated
reconstruction for characterization purposes.

The operation of the DHR as refresher with multiple holograms is shown in Fig-
ure 6.6. In this experiment we stored three holograms and used the refreshing method
described above to sustain and amplify them to saturation for 100 cycles. No errors
were observed in any of the reconstructions. The probability of error, estimated from
the pixel intensity statistics, was of the order of 1073. Sample images obtained by
the DHR from the experimental setup of Figure 6.5 are given in Figure 6.7. The cal-
culated error probabilities for images a, b, ¢, d (please see caption) were 1.1 x 1074,
2.2 x 1073, 6.9 x 1074, 1.0 x 1073 respectively. This shows not only that the phase-
conjugated reconstruction is more reliable than the forward reconstruction (this was
expected because of the self-correcting properties of phase-conjugation), but also that
the deterioration resulting from multiple refreshing cycles is minimal. As of the writ-
ing of this thesis, up to 25 sustained holograms have been demonstrated with similar

performance.
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Figure 6.7: (a) DHR display; (b) reconstruction obtained with the forward reference,
and conjugated reconstructions after (c) 1 and (d) 50 refreshing cycles.

6.2.2 Selection of multiplexing method

Angle multiplexing (along with fractal and peristrophic) has been widely used in high-
capacity holographic memory demonstrations [22, 31, 33, 34]; therefore, it is the first
candidate that comes to mind for the compact memory as well. The main challenge
in the compact angle-multiplexing implementation is beam deflection. Since mechan-
ical or acousto-optical deflectors are unacceptable, liquid-crystal beam-steerers [137]
are one solution. Reflective liquid-crystal beam-steerers operating in the wavelength
range of the final compact memory (670 nm, see section 6.2.3) are currently under
development by Xu Wang in the Psaltis Laboratory. Alternative solutions utilizing
VCSEL (or diode) arrays for angle multiplexing have been proposed?, but will not be
described in this thesis.

Multiplexing methods other than angle alleviate the need for beam deflection;

however, they suffer from other disadvantages. More specifically:

1. wavelength multiplexing requires a tunable source over a broad spectral range

in order to achieve high capacity;

4Ernest Chuang, private communication
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2. phase-code multiplexing requires a Fourier-transforming system which would
increase the volume; the Fourier transform may be omitted, but then phase-
conjugation cannot be achieved with a simple mirror (the only way is a self-
pumped phase-conjugator which would worsen the volume and optical power
requirements of the system);

3. shift multiplexing so far was described as requiring mechanical translation; how-
ever, in section 6.2.5 we will describe a compact implementation with a VCSEL
(or diode) array, which competes closely with the angle multiplexing setup,

because it yields comparable density without requiring the beam-steerer.

We will consider in detail angle multiplexing with a reflective beam-steerer as a po-
tentially practical solution. Before concluding this section, we will describe the shift-

multiplexed implementation.

6.2.3 System volume optimization

One of the advantages of the modular architecture described in the previous sections is
that several of these modules may be combined in order to achieve high capacity. For
example, if each module holds 1 Gbit (see section 6.2.1), then one may arrange 1,000
modules in a 10 x 10 x 10 grid to obtain a Tbit memory. This calculation, however,
is deceptively simple. During the high-capacity memory construction, several other
issues must be taken into consideration, e.g., the location, number, and distribution
of laser sources, power dissipation, mechanical stability, and system cost [136]. In this
section we do a detailed optimization of the volume of the Tbit system versus certain
design parameters, taking into consideration constraints imposed by technology.
The modular architecture that we consider in this section is shown in Figure 6.8.
The basic module is identical to the angle-multiplexed module of Figure 6.4a, except
with reflective liquid-crystal beam-steerers. The optics have been arranged carefully
so that the spatial bandwidth is sufficient, i.e., that no significant amount of light is
lost from any first-order diffraction beam, at the same time without wasting any extra

space. Phase conjugation is achieved by means of a mirror coated on the crystal sur-
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face (not shown in the figures). Also, several waveplates (some of them implemented
as liquid-crystal cells so that the phase rotation can be externally controlled) are in
place to ensure the appropriate polarizations.

The active DHR surface contains N x N pixels, each one of size b x b. The fill
factor (which takes into account supporting circuitry surrounding the pixel metal
pad) is ¢; therefore, the entire die area is N?b%/¢*. The height of the DHR chip
(perpendicular to the page level in Fig. 6.8b) is h. The beam diameter is L, and
because of the special 90°-geometry arrangement, it is also equal to the hologram
thickness, needed for the purpose of determining the Bragg selectivity. The sizes of
the optical elements are L; x L1, Ly X L3, and L4 x Ly for polarizing beam splitter
PBS1, photorefractive crystal, and PBS2, respectively. Additional lengths needed for
the volume calculation are the integrated circuit thickness /1, and the liquid-crystal
variable waveplate thickness [s.

The beam-steerer has angular resolution A# equal to the Bragg selectivity, which
(in air) is given by Af = 2)\/L for 2nd-null separation, where X is the wavelength in
vacuum. The total angular swing allowed by the beam-steerer is § in air. Because of
Snell refraction, this angle is transformed into , and 6. inside the beam-splitter and
crystal respectively (refractive indices ng, nc). Therefore, the number of holograms
that can be stored inside the crystal in this architecture is

0. _ nglg L

M = AG. 2\

(6.2)

The signal beam undergoes appreciable Fresnel diffraction because of the small
pixel size. The diffraction spreads xg, x. (in glass and crystal, respectively) are

determined by scalar diffraction theory according to

A . A
neb sin Xe = (6.3)

sin xg =

The sizes of the optical components can now be determined in terms of the DHR
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and beam-steerer parameters as follows:

L
I, = — 4
! 1 —2tan6,’ 64
1 2L tan . Nb
L, = :
2 1 —4tanf.tan 0, <1—2tan0g+¢(1“2tanXg))’ (09
1 L 2Nbtan 6
Ly = : :
3 1 —4tand.tan b, <1—2tan9g+¢(1“2tanXg)>’ (66)
Nb
L — (6.7)

é(1—2tany,)

Let Lynz, Lmy, Lm,. denote the dimensions of the basic module. From Figure 6.8b

we obtain

mx ll + Ll + L27 (68)
Ly, = max{Ly, h}, (6.9)
I+ Ls + Ly, if12<#,
L+l + =2+ L, otherwise.

2

The modules are arranged in grids as shown in Figure 6.8c, each grid sharing
the same laser diode (or VCSEL) source. The grid contains G, basic modules in
the z direction and G, in the z direction (see figure). The density and access time
would be better in an arrangement with one source per basic module, because some
excessive optical components (the peripheral beam-splitters delivering the beams to
the modules in Fig. 6.8c) would not be required, and in addition it would be possible
to read out each individual module simultaneously. However, source sharing alleviates
problems due to excessive heat dissipation in the system, and also reduces the cost.
Thus it seems that a small grid such as G, x G, = 2 X 2 is conservative enough for
the heat and cost concerns without degrading the density and access time by much.

The grid volume is straightforward to calculate from Figure 6.8c. If we let w

denote the size of the laser source, then

‘/grid = (L + GJ:Lm,z) Lm,y (w + L + Gsz,z) . (611)
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[ Parameter ” Upper bound ] value H Lower bound l value ’
N complexity of the circuitry 2000 1
b maximum die size L 1 cm minimum feature size | 4um
L maximum aperture, 1em N/A
maximum DHR die size
0 minimum feature size 10° (in air) 0°

Table 6.2: Constraint bounds for the volume optimization parameters.

The total number of (raw) bits that can be stored in the G, x G, grid is G,G, M N?;

therefore, the volume density of the memory is

_ G,G.MN?

D
Vria

(6.12)

This is our final result for the density. We seek to optimize D against the parameters
N, b, 6, and L. Each one of them is constrained by technological limitations. A

summary is given in Table 6.2.

| Parameter [ Value ]

) 670nm [ Parameter | Value [
ng 15 Number of DHR pixels N 1,250
e 2.3 DHR pixel size b 4pum
w 5mm Beam-steerer angular swing 6 10° (in air)
L 3mm Laser beam diameter L lem
Iy 1.5mm System density D 36.0 Thits m~—3
) 0.5 1 Thbit system volume (30.3¢m)?
Gy xG, | 2x2 Number of grids and lasers IV, 123
Number of basic modules 492

Table 6.3: Parameters
used for the density and Table 6.4: Results of constrained density optimization.
volume calculations.

The remaining parameters were considered fixed and are given in Table 6.3. It is
instructive to calculate the required volume of a Tbit system constructed with our
proposed architecture. Figure 6.9 shows the result versus NV and b, obtained by fixing
L and # to their maximum values of 1cm and 10° respectively, and ignoring (for the
moment) the technological limitations on N and b. As we observe, the volume is

minimized for the optimal combination N = 3,278, b = 1.53um. The density at this
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Forbidden region

Pixel size (um)

Number of pixels N (><103 )

Figure 6.9: Volume of a Thit modular memory constructed according to the archi-
tecture of Fig. 6.8 and the parameters of Table 6.3.

point is 119.5 Thits m~3, and the system occupies a volume equivalent to that of a
cube of dimension 20.3cm. If b decreased from its optimal value, then the overhead
due to the diffraction spread would overcome the gain in density because of the larger
number of pixels that would fit within the DHR die, and hence the density would
decrease. If, on the other hand, b increased to more than its optimal value, then D
would again decrease, this time because N would decrease fast enough to overcome
the reduced diffraction spread.

Unfortunately, the optimum found above is outside the feasible range of current
technology. By solving the fully-constrained optimization problem, we find that it is
best to fix b to its minimum value, 0 to its maximum value, and set N = ¢L/b. The

complete results are given in Table 6.4.
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6.2.4 Noise, probability of error, and data rate

Here we consider the effects of optical and electrical noise on the compact holographic
memory (see also section 2.2.1). The optical noise has p effective degrees of freedom
determined by the DHR pixel size b, the crystal half-aperture R = L4/2, and the
distance d = L, separating the aperture from the detector (see section 2.2.2). Sub-

stituting into (2.56) and (2.57), we obtain

= (&)2 (6.13)

For the optimal b = 4um calculated above, we have y = 1.5. The optical SNR is fixed
by the properties of the optical system and the holographic material. For the data
of Fig. 6.7d, using definition (2.30) we measured (SNR),, ~ 38.6. We will consider
this to be the upper limit on the optical noise performance.

The electrical SNR. is determined by the noise behavior of the DHR circuit [136]

and depends on the laser readout power P and the detector integration time 7 as

(M/#)* L 2 _7 9 5208
W) 2\ por =136 %1077 x (SNR)? [ 1+ |1+ —=r |,
( MN o . (SRR (SNR)
(6.14)

where P, is expressed in mWatts, and 7 in usec. Here (M/#)" is a system parameter
that we call “specific M-number.” It expresses the (M/#) system metric [91, 110]
for a holographic medium of unit-length. Since in the regime of weak holograms the

diffraction efficiency increases with hologram thickness approximately as L? [138], the

relation
(M/#) = (M/#)" L (6.15)

provides a convenient means of expressing the effect of material thickness on the
dynamic range of an otherwise invariant optical system. Fixing the electrical SNR to

(SNR),, = 10 (a realistic value for good noise performance), we can calculate the bit
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Figure 6.10: Probability of Error (PE) as function of signal to noise ratio (SNR) for
different pixel sizes.

error rate versus (SNR)_ . and b according to the theory of sections 2.2.1 and 2.2.2.

opt
The result is given in Figure 6.10. Observing the numerical values we note that, for
the value of b (b = 4um = p = 1.5) obtained from the volume optimization, (SNR),,
must be significantly high in order to achieve reasonably low PE. For example, if we

set PE=10"* as threshold, we would require (SNR)_ . ~ 55. This is rather optimistic.

opt
We can make the design more realistic by trading off some density for better error
rate. From Figure 2.1 we observe that u = 2 (b = 4.6um) allows PE=10"* to be
achieved with only (SNR),, ~ 30.
We are now ready to calculate the data rate by considering that only one module
per grid may be read out at one time, but that all grids may be read out in parallel.

The result is

M 2 .
R = 32.3 x ( (M/3#)" A > NoFret <Gblt8> , (6.16)
el 1+

6:(SNR) 5208 sec
1
T BNR)]

where N, is the number of grids in the entire system, and the units are mm~! for

(M/#)", pm for A and mWatts for P Collecting all the results of the previous
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[ Parameter [ Value ” Parameter [ Value |
N 1,081 D 27.9 Thits m~3
b 4.6pm 1 Thit system volume (33.0cm)?
0 10° (in air) N, 164
L lem R 708.1 Gbits/sec

Table 6.5: Final design of 1 Tbit compact holographic memory.

optimizations, we obtain the final design summarized in Table 6.5.
Note that the above calculations refer to the instantaneous rather than the sus-
tained data rate. They do not take into account the settling times for the liquid crystal

devices, and the speed of the data bus connected to the DHR’s of the modules.

6.2.5 Shift-multiplexed compact module

As mentioned already, beam-steerers are expensive and difficult to fabricate. In addi-
tion, they have other practical problems, e.g., they are slow (because they are limited
by the response time of the liquid crystals), and they diffract at all orders thus intro-
ducing significant first-order crosstalk between holograms. A very good alternative
to beam steerers is laser (VCSEL or diode) arrays. Then instead of steering a sin-
gle beam to access different holograms, we associate one source with each hologram
and use them one at a time. Apart from solving the beam steering problem, the
laser array opens some interesting possibilities: e.g., we can do simultaneous angle
and wavelength multiplexing in the compact architecture, and increase the sustained
data rate of the system, since the lasers can be switched very fast (at GHz rate).
One problem with using multiple sources is producing the signal beam for recording?,
which of course must originate at the same source that produces the reference®. Fig-
ure 6.11 gives an example of a compact architecture with a laser array that employs
shift multiplexing.

Let d denote the spatial separation between adjacent laser sources in the array,

SRead-only architectures with laser arrays are very compact and easy to design, but we will not
consider them in this thesis.

5Two different phase-locked sources may be used; however, phase-locking requires additional
bulky optical elements, e.g., isolators.
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Figure 6.11: Compact holographic memory design utilizing a laser source array and
shift multiplexing. (a) Beam paths for the hologram corresponding to the central
laser source; (b) Beam paths for the edge source.
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and a the aperture of the sources. Using the theory of section 3.3.1, we find that
the shift selectivity in the arrangement is 6 = 4\F/L. It is straightforward then to
derive the number of sources M that can be accommodated by the optical system,

and therefore the number M of stored holograms:
L/1 1
M=— (— — —) (6.17)

If we assume that the sources can be packed as densely as allowed by a = d/2, then
we obtain that the capacity is maximized when F' = 2L to the value My, = L/4A.

The volume density of this system is given by:

L*¢* (1 - 1) | (6.18)

TR\ a

Using the optimal F derived above, b = 2um, and ¢ = 0.5 we find that D =
60.73 Thits/m3 can be achieved by this system with M = M., = 3,731 holograms.
Such a system would have surface density ~ 233 times higher than a silicon DRAM
with the same pixel size (2um). The large number of holograms is, however, a concern
for two reasons: (a) it would be challenging to fabricate such a large array of vcsels;
(b) the dynamic range of the holograms would be very bad unless a high-(M/#) ma-
terial were available. It is more reasonable to reduce the number of holograms (and

the density) by a factor of, say, 10, obtaining
M = 373, D = 6.07 Thits/m>.

This design offers surface density higher than silicon DRAM by a factor of 23. The

required system volume for 1 Thit is a cube of side 54.8 cm.

6.2.6 Discussion

The cost of the basic dynamic memory module has been calculated and optimized ver-

sus current and projected industry standards in very similar architectures [136]. For
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the angle-multiplexed architecture, we estimate roughly $170 per module; therefore,
the cost of the optimized Thit system’ would be $518,000, or $4.14/MByte. It turns
out that the beam-steerer is a major component (approximately 50%) of the cost.
We do hope that the reflective beam-steerer design will reduce this cost, thus making
the entire system cheaper. It is harder to estimate the cost of the shift-multiplexed
architecture, because the vcsel with the requirements we posed are not commercially
available yet.

Several improvements may be made on the designs we presented in sections 6.2.3
and 6.2.5. For example, rather than the grid architecture of Figure 6.8c, one may
arrange a linear architecture, where each laser is feeding a row of basic memory mod-
ules. This saves space because the peripheral beam splitters of Figure 6.8c that deliver
the reference and signal beams to the modules would not be needed. A calculation
along the lines of section 6.2.3 shows that the achievable density with the same pa-
rameters of Table 6.3 is 38.9 Tbits m~2, in other words a memory of 1 Thit would fit
in a cube of dimension 29.5 cm. However, the linear architecture does not have the
nice property of equalized path lengths that we observe in Figure 6.8c. Therefore, a
bulkier and/or more expensive source might be required for higher coherence, which
would offset the density improvement.

Further improvement may be obtained by inserting a lens in the signal beam
path, between DHR and PBS2, or between PBS2 and the storage crystal, as shown
in Figure 6.12. This makes the optical system similar to the one we analyzed in
section 5.1.2; proposed by van der Lugt [103] in 1975 for optimizing holographic
storage. The lens may be of very poor quality, since the phase-conjugation process
will undo all the aberrations it might induce in the signal beam. Therefore, the
volume taken by this lens, and the cost it adds to the system, would be immaterial.
On the other hand, big gains are made in density and cost (since the volume of the
photorefractive crystal would decrease) because the lens would reduce the signal beam

spread.

"The cost calculation does not include interfaces, packaging, or marketing.
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Figure 6.12: Compact holographic memory utilizing van der Lugt’s idea for reducing
the signal beam spread.

Referring to Fig. 6.12, we assume that the following conditions hold:

N

F_W Ls+ Ly <2F.

This assures us that the signal beam never defocuses beyond L until it reaches the edge
of the hologram, and that we can use Ly, = Ly = L. The remaining two dimensions

are calculated as

L
L, = —ouv 1
! 1—2tan6,’ (6.19)

Ls + 2 tan 9c> : (6.20)

|
(1 — 2tant,

Repeating the volume optimization we find that this system offers maximal (under the
constraints of section 6.2.4) density D = 34.2 Tbits/m? if the modules are arranged
in grids, and D = 49.4 Tbits/m? if they are arranged in rows. The volume of a Tbit
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Figure 6.13: Volume holographic correlator in the 90° geometry.

system is (30.8 cm)® and (27.2 cm)?, respectively.

Finally, one should mention that the analysis presented in section 6.2.3 contains
several implicit approximations. For example, we did not take into account the effects
on selectivity and diffraction efficiency of the displacement introduced to the phase-
conjugate reference by the mirror coating. Several issues about the approximations

will become clearer as the practical implementations progress further.

6.3 Associative memory access

6.3.1 Van-der-Lugt correlators

Consider® the 90° geometry layout of Figure 6.13. Each hologram is recorded using
the SLM to display the signal beam, and one of the reference beams generated in the
reference plane, e.g., by a rotating mirror and a lens (not shown). Let S, = fn denote

the Fourier transform of the n-th stored image, and R, = e*»% the n-th reference.

8T thank Michael Levene for many illuminating discussions on the topic of shift invariance in
volume holographic correlators.
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The n-th hologram is then expressed as the inteference pattern

<12 . ~ . ~
IRy + Sn|” =1+ |fu| +e*"fr +e %7 f, (6.21)

During the readout phase, rather than illuminating the hologram with one of the
reference beams, we use the SLM to illuminate the hologram with an image g. Then
the 3rd term in (6.21) is Bragg-matched for all holograms® (n =1,..., N), yielding

on the detector plane (z',y’) the reconstruction

AFk,
(@, y) =D Ry (x' - '> , (6.22)
where R, is the cross-correlation of two functions, defined as
+00
Ryg(z',y) = // F(z9)g" (2 — o',y — y')dedy. (6.23)

Therefore, the holographic memory in this mode acts as a matched filter that com-
pares the input with all stored templates simultaneously. Since (6.22) is a linear
relationship, we can think of the holographic correlator as interconnecting the input
(SLM) plane with the output (correlation) plane via weights determined by the holo-
grams. Typically, the detector outputs are passed to a winner-take-all circuit which
determines the pattern f,, that matches the input g most closely. Therefore, the
system of Figure 6.13 is a general-purpose pattern recognition device. Variants of
this system have been used in a variety of applications, e.g., face recognition, target
detection, fingerprint recognition, cryptography, and robot navigation.

Important for the characterization of a pattern recognition system are its in-
variances, 1.e., the set of transformations that can be applied to the input without
altering the result of the matching operation. Neglecting volume diffraction effects
for the moment, the volume holographic correlator of Figure 6.13 is shift-invariant in

the y direction. Indeed, assume that the input is g(z,y) = fu, (@, ¥ — ¢y). Then from

9The 1st, 2nd, and 4th terms are, to good approximation, Bragg-mismatched in a volume
hologram.
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Figure 6.14: Correlator grid in the 90° geometry.

(6.22) we deduce that the output is simply Ry, (z',3" — ), which is maximized at
(«',y') = (0,,). On the other hand, the shift invariance in the z direction is limited
by the spacing of the correlators, because if the input is shifted by a large amount,
then it would enter the domain of a different filter thus yielding the wrong result.
Volume diffraction modifies the properties of the optical correlator because of
the effect of Bragg mismatch. The simplest way to understand the effect of Bragg
mismatch on shift invariance is to reverse the réles of signal and reference beams. If
the input image is shifted by an amount (o, o) at the SLM plane, then its Fourier
transform is angularly detuned by (A8, Af,) = (a/(AF), oy /(AF)), where F is the
focal length of the lenses in the reference beam path. The correlation results from
reconstruction of the hologram by the signal beam; therefore, Bragg mismatch occurs
when the signal is shifted. The shift invariance is equivalent to the angular Bragg

selectivity of the reference beam, and is asymmetric in the z, y directions:

Aoy ==  Aay,=/=F (6.24)
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Figure 6.15: Shift-multiplexed volume holographic correlator.

Thus the shift invariance domains of an angle-multiplexed 90° correlator are arranged
like a rectangular grid of elipses, as shown in Figure 6.14. Notice the asymmetry in
the two directions, due to the different Bragg selectivities, and also the length L that
enters the calculation and is measured in the direction perpendicular to the one used

for angular selectivity in memories (measured along the signal axis).

6.3.2 Shift-multiplexed holographic correlators

The idea of shift multiplexing is applied to correlator design simply by replacing the
plane wave reference beam with a spherical beam, as shown in Figure 6.15. During
recording, the reference beam is translated relative to the recording medium by a fixed
amount d, in the z direction, as in the case of a shift-multiplexed memory. If we now
read out the hologram with an input pattern g projected in the SLM, then we obtain
the correlation of ¢ with all the stored templates f, simultaneously at the detector
plane, in similar fashion as in the angle-multiplexed case, with one major difference:
the correlation is formed without the need for an additional Fourier transforming lens
(compare Figures 6.13 and 6.15).

It is straightforward to prove, using the theory of section 3.3.2, that the shift in-
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variances in the system of Figure 6.15 are also'® given by (6.24). If we perform shift
multiplexing along both the z and y directions, then we obtain an asymmetric rect-
angular correlator grid identical to that of Figure 6.14. Therefore, shift multiplexing
offers an interesting method of building optical correlators saving one lens compared
to the “usual” angle-multiplexed design. Experimental shift-multiplexed correlator

systems have not been built yet.

6.3.3 Compact architectures

We now combine the ideas of holographic correlators (section 6.3.1) and compact
memories (section 6.2) to design an architecture that fits in a reasonable volume and
combines the capabilities of recording, refreshing, and recalling holograms both by
address (as a memory) and by content (as a correlator combined with a winner-take-
all function). The architecture is sketched out in Figure 6.16.

Recording is performed using beams R and S. S is spatially modulated by
DHR #1. Because of the presence of lens #1, the hologram is Fourier-transform
type. The beam steerer is used to select the angle of incidence of the reference beam,
so angular multiplexing can be performed. The geometry is chosen such that for every
distinct angle of incidence of the reference, the reference beam R comes to a focus on a
different pixel of DHR #2 after passing through lens #2. To reconstruct a particular
hologram, the beam steerer is used to select the appropriate angle, and the corre-
sponding pixel of DHR #2 is turned on. As a result, the conjugated reference beam
R* (counter-propagating with respect to R) is generated and illuminates the holo-
gram giving rise to the phase-conjugated reconstruction S* which counterpropagates
and comes to a focus on DHR #1, where it is detected according to the description
given earlier. Refreshing is performed by detecting a page from the reconstruction of
beam S*, generating a stronger signal S and re-recording a hologram with S and R.
Associative recall requires two steps: first the pattern g to be associated is generated

on DHR #1 and illuminates the hologram. It is well known that, in this case, the

1ONote, however, that the quantity F has a different interpretation.
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Figure 6.16: Compact architecture for a holographic memory with recording, refresh-
ing, direct and associative recall capabilities.

correlations R; between g and the stored images f; will form simultaneously on the
back focal plane of lens #2. According to the design restriction stated earlier, each
correlation peak forms on the corresponding pixel of DHR #2, where the intensity is
detected. Then a winner-take-all operation is performed to determine which stored
pattern matches g best. This completes the first step. In the second step, the winning
pixel of DHR #2 is turned on and the beam steerer is configured appropriately to
generate a conjugated reference R* that will read out the best match to pattern g, and
will form the conjugated reconstruction S* back onto DHR #1 where it is detected,
and constitutes the result of the associative recall operation. Additional features,
e.g., thresholding, multiple associations, etc., are easily added by programming the
DHR’s properly, or with external circuitry.

The presence of two lenses makes the architecture a bit less compact than that of

the pure memory; however, the additional capability of associative recall is very useful
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in high-performance computing applications. Many variations of this architecture
using, e.g., different multiplexing techniques, removing one or both of the lenses for
reduced size at the expense of density (if lens #1 is removed) or shift invariance (if
lens #2 is removed), etc., are possible. An exhaustive analysis is beyond the scope

of this work.

6.3.4 Space and time-domain correlators

So far we have described holographic memories with at most three degrees of freedom:
“in-plane” multiplexing, “out-of-plane” (fractal) multiplexing, and spatial multiplex-
ing (or using multiple modules as in section 6.2). An exciting possibility for enhancing
the capacity of holographic memories is to introduce time-domain holography. We will
describe one simple case, the three-photon echo. Many extentions and alternatives
are possible [139, 140, 141, 142, 143].

Suppose!! that two optical pulses with relative time delay 7 illuminate a photo-

sensitive medium. The pulse amplitudes are described by

ar(r,t) = vg(r)u(t), (6.25)

as(r,t) = vs(r)u(t — 1), (6.26)

where vg(r) and vg(r) are the spatial variations of the two pulses, and u(t) is a simple
pulse shape, e.g., a Gaussian or a hyperbolic secant (sech). In a particular location

79, the electric field is described as
a(To, t) = [UR("'O) + US(TO)] [U(t) -+ ’U,(t — 7')] i} [UR(TO) + 'US(TO)] U(w) (1 + e—iu'r) ’

where F; denotes Fourier transformation in the time variable. Suppose also that
the medium absorbs over a broad band of optical frequencies, and the absorption is

proportional to optical intensity. This is the case in spectral hole-burning materi-

1T thank Tom Mossberg, Alan Johnson, Roger McFarlane, and Christophe Moser for help on the
contents of this section.
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als [140, 144]. Assume that u(t) is ultra-short so that the pulse spectrum is approxi-
mately flat over the entire absorption bandwidth of the optical medium. Then after
exposure to the two pulses, the frequency spectrum of the absorption at 7y will have

the form
a(ry) = ag + a; cos (wr), (6.27)

where all the constants were lumped into o and ;. This looks like a grating in the
frequency domain, and indeed it acts as one: suppose that we illuminate the exposed
material with a third pulse u(t — T'), which also has a flat spectrum. As the pulse
propagates in the medium, some of its frequencies are selectively suppressed according
to (6.27). In the thin film approximation, the spectrum V' (w) at the output equals the
product of the pulse spectrum and the absorption spectrum of the optical material,

resulting in

Q(w) = [ap + a; cos(wT)] e ™7 o e ™7 + oy (ei“’(t_T_T) + e_i“’(t_T+T)) .

(6.28)

Taking the Hilbert transform (so that causality is obeyed) we obtain the output
q(t) = aou(t = T) + cqu(t =T — 7). (6.29)

Therefore the frequency grating recorded by the two pulses interacted with the third
pulse to generate a fourth pulse, a replica of the second pulse. In other words, we
obtained in the time domain the equivalent of hologram reconstruction!

Two important restrictions on the time scales must be mentioned. The separation
7 between the first pulses must be short enough so that the fringes of (6.27) are not
finer than the frequency selectivity of the medium, i.e., the homogeneous bandwidth of
the absorbing particles. On the other hand, 7" must not be longer than the dephasing
time of the medium, because if the coherence between different frequency components

of the time-domain hologram is destroyed, then the scattered light cannot take the
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form of a delayed pulse, but would rather look random, like speckle in the time
domain.

Information can be stored in time-domain holograms in one or both of two ways:
(a) in the time domain by using a pulsetrain rather than a single pulse as signal ag;
(b) in the space domain by using, e.g., vg(r) = e*#* and vs(r) = f(r)e?*s®, when
two gratings are recorded simultaneously: one in the time domain as described imme-
diately before, and one in the space domain according to section 3.1. All properties
of volume holograms, e.g., Bragg selectivity, carry over to time-domain holograms.
Thus it is possible, for example, to angle-multiplex several pulsetrains, so that each
pulse contains a different page of data. In this memory, time takes the place of a
fourth dimension for storage. A pulsetrain may be correlated simultaneously with
all stored waveforms in time and space and the correlations obtained simultaneously.
Without getting into details, the possibility of performing associative recall in the
time domain was first mentioned by Longuet-Higgins and Gabor in a series of articles
in 1968 [145, 146, 147]. Several interesting possibilities exist of storing time sequences
of events and recovering them from partial realizations.

Before concluding this section, we must mention some challenges in time-domain
memories. Currently it seems that the spectral hole-burning property occurs only in
temperatures of a few Kelvin; therefore, the complication of a cryostat is unavoidable
for the experiments. The storage lifetimes of most spectral hole-burning materials
are only in the order of a few milliseconds. Ultra-fast spatial light modulators do not
currently exist that could modulate pulsetrains of M~GHz repetition rates. Similarly,
ultra-fast detection is usually performed with autocorrelators, which have poor spatial
resolution. Still, research in time-domain holographic memories is currently very

active because of their fascinating and elegant properties.
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Chapter 7 Awareness-based computation

In this chapter!, we are interested in designing intelligent systems that can monitor
and interact with complex, variable, and poorly modeled environments. This task
remains a challenge, particularly for systems that need to be controlled in real-time,
such as autonomous robots, automated buildings, and traffic control in metropolitan
areas. We describe an approach that sacrifices the time-consuming (and, for many
physical systems, ill-defined) goal of searching for the global optimum in favor of a
locally optimal solution in a small, restricted subset of the system space. This “re-
gion of interest” is determined in real-time as the best representation of the system
status given limited computational resources, and changes as the system and the
environment evolve. The organization of our model is reminiscent of the cognitive ar-
chitecture of the primate brain, and makes use of a notion similar to the hypothesized
function of awareness [148, 149].

We experimented with computation in unknown environments of high complexity
using a computer game of Desert Survival as testbed. As we describe in section 7.1,
the computer game is too complex to admit a solution (i.e., a consistently winning
strategy) with traditional optimization techniques [150, 151, 152] in reasonable time.
Instead, we produced interesting behavior by using a selective attention technique
to dynamically identify important regions of the input space. The computational
resources were subsequently concentrated at any given time in the currently selected
region. The real-time contraint imposed an optimum on the size of the region of
interest in terms of algorithm performance. The generalization of the model to wide-

purpose computational problems is given in section 7.2, along with a comparison with

'T am grateful to R. A. Andersen, A. Batista, F. Crick, R. Denkewalter, P. Perona, and S.
Shimojo, for numerous helpful discussions and suggestions on the contents of this chapter.
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the primate cognitive system. The learning aspects of awareness-based computation,
the connection to holographic memories, and a simplified theoretical analysis of the
Desert Survival learning model are discussed next in section 7.3. A short discussion
on future directions in the design of intelligent systems is given in the concluding

section 7.4.

7.1 The Desert Survival simulation

7.1.1 Description of the computer game

We are seeking design principles for intelligent systems that can interact with highly
complex and dynamic environments in the presence of high-dimensional inputs and
massive memory. A common theme in these applications is that, at any given moment,
numerous sub-functions, seemingly un-related to each other, are running in parallel to
cope with a specific aspect of the problem at hand; yet, when viewed in its entirety, the
system should display unified behavior, emerging from the cooperative interactions
of the sub-functions or agents [153].

We generated an artificial complex environment in the form of a computer game
of Desert Survival® taking place in a virtual desert, described in Figure 7.1. The
players are two Sheiks, who fight to conquer as many oases as possible, and become
richer as a result. Each Sheik has an army of camels at his disposal. Each camel is
capable of navigating in the desert towards some oasis, managing its water (if a camel
runs out of water, it dies) and trading water for money (each camel starts out with
some money and water). An oasis switches its allegiance to one particular Sheik if the
number of camels belonging to that Sheik in that oasis at this point in time exceeds
the camels of the opposing Sheik by a fixed amount 7" = 1. If left alone, the camels
are not capable of organizing their behavior as a team; the strategy that coordinates

the actions of the camels is provided by the Sheiks.

2The Desert Survival simulation was programmed in C for X Windows version 11 release 6 under
the Solaris 2.4 environment, and ran on a SparcStation 2. Movies taken from sample simulation runs
are available at http://sunoptics.caltech.edu/"george/DesertSurvival. Robert Denkewater
and Petru-Nicolae Chebeleu contributed to the graphics and animation.



2N
control 4R
Shelk et

oasis W l
PP ¥
camel ﬁ ﬁ
F\ Wﬁm T
A
Window of a
Attention
e .

G
j‘u}‘

ﬂ test zj’f\‘;%‘;}, F -
4N sheik TP Desent

Figure 7.1: The Desert Survival simulation.

The implementation of Desert Survival presented in this chapter is played on a
100 x 100 grid, with 288 regularly-arranged oases, initially divided equally between
the two Sheiks. Each oasis starts with $2,000 in cash and accumulates more money
when it sells water to opponent’s camels. Time advances in steps of two virtual
hours, with the two Sheiks alternating their moves as in chess (the Sheik to move
first is determined at random). At the beginning of the simulation, each Sheik has
50 camels, and each camel is given 100 gallons of water and $200. The camels are
free to spend water and money as they please (the Sheik does not interfere with
these decisions). The camels do not move continuously, but hesitate at each step:

they advance initially with probability 0.1 and stay otherwise. Every time the camels
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reach an oasis, their moving probability is increased by 5%, simulating procedural
learning (that is, improving agent performance through individual experience). Once
a camel is within an oasis, it likes to stay inside, and moves out with probability
0.2. As the camels move, they drink water from their supplies at a rate that depends
on the time of day and their activity (the rate varies from 0.1 gallon per hour when
they rest at midnight to 1 gallon per hour when they walk during the hot afternoon
hours). They refill their supplies with water that they find at oases, but have to pay
for it ($10 per gallon) if the oasis belongs to the opponent Sheik. If a camel runs
out of water in the desert, it dies. When both Sheiks are equivalent, the death rate
is 0.05 camels per day. It can be much higher, though, if one of the Sheiks is at a
serious disadvantage compared to his opponent.

The complexity of this game seems at first overwhelming, because of the numbers
of agents (see the previous paragraph) and the long duration (typically several virtual
weeks). To solve Desert Survival, we developed a new computational method that
could lead to substantial improvements over existing techniques, in poorly modeled,
non-stationary environments, where overwhelming rates of information are received
from sensors and memory, as it often happens in the real world. Rather than looking
at the entire desert, the Sheiks use a reduced amount of information which they
extract and process in a two-step procedure.

The first step involves the formation of a so-called saliency map [154], computed

on the oasis locations. The saliency of an oasis is a real number defined as

c-Cc-T if the oasis belongs to the Sheik,
S = ~
C — C + T if the oasis belongs to the Sheik’s opponent, (7.1)

where C' is the number of Sheik’s camels in a 3 x 3 window around the oasis, and C
is the number of the opponent’s camels within the same neighbourhood.
From definition (7.1), it follows that the saliency s, of oasis k expresses the likeli-

hood that the oasis will be overtaken within a few (typically two to three) time steps.

The saliency values s are computed according to (7.1), and are subsequently aver-
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aged over an A x A moving window. The most salient A x A region is then selected,
and an A x A “window of attention” is formed at the same location. Typically, A
is far smaller than 100, as we will discuss later. Oasis ownership changes as camels
move in and out of them, thus affecting saliency. The window of attention moves
freely in response, keeping up with the changes.

In the second step, the Sheiks concentrate their efforts to the most salient region
selected by attention. For each of his camels ¢, the Sheik computes a set of navigation
instructions, expressed as the probabilities p;; that the camel ¢ will visit oasis k
(located within the window of attention). The probabilities p;, are computed from

the heuristic formula

1 eask

= o 7.2
Pk po 1+ Bdi (72)

where d;; is the Euclidean distance between the current position of the camel and
the oasis, and py ensures that > . pyx = 1. Each camel within the window then
selects an oasis to head for, according to the probabilities p; that it was assigned
by the Sheik. The parameter « controls territorial aggression by giving preference
to salient locations; 3 determines how reluctant the camels are to undertake remote
trips where they may perish from lack of water. The simulation experiments are
divided into two classes: experiments without memory (section 7.1.2), where o and
[ are constants, optimized experimentally; and experiments with episodic learning
(section 7.1.3), where the Sheiks are allowed to dynamically learn by experience the
appropriate values of «, § in response to their inputs.

An additional requirement for the Sheiks is that they must complete all processing
in limited time (like speed chess, and many other situations in the real world). The
time limitation is implemented as follows: at the beginning of each time step, each
Sheik is given 125 “tokens.” The test Sheik spends 5A tokens to process the contents
of his attention window, and in addition 5 tokens to update each camel (calculate
the set of p;’s and transmit them). If during the calculations the Sheik runs out of

¢

tokens, he must abandon all processing; therefore, he is forced to “neglect” some of
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his camels within the window of attention. These neglected camels are not assigned
navigation instructions ps; they are either left to wander the desert at random, or
continue to follow previously given but now outdated instructions.

What is the optimal size A of the attentional window? As indicated by the choice
of name, its usage is reminiscent of the action of selective visual attention in focussing
resources to a restricted portion of the visual scene [155, 156, 157]. The window size
A controls how much information (the positions of the oases and camels®) is available
to the Sheik in determining his strategy. Thus the Sheik is only “aware” of the values
of the saliences s;, and the distances d;; within the window of attention. Two extreme
cases are obviously bad: if A is too small, the attentional window does not contain
enough information and the algorithm is not effective. If, on the other hand, A is too
large, the algorithm can work well (since more and more information is available to

the Sheiks) but not sufficient time is available to evaluate this information.

7.1.2 Experiments without learning

To study the effect of A in the Desert Survival computer game, we disable one of the
two opponents, the “control” Sheik (that is, we let his camels roam around unguided),
and apply the probabilistic navigation algorithm described above with different A
values to the second “test” Sheik only. We evaluate performance with the metric
P, defined as the relative cash advantage of the test Sheik compared to the control

Sheik:

P =100 x Mytest — Meontrol (%) ’ (73)

Myest + Meontrol

where myest, Meontrol are the total cash quantities available to the test or control Sheiks
(summed over the camels and oases they own), respectively, after a fixed duration ¢
of simulation time.

In this section we describe the first experiment, where no learning occurs; i.e.,

all Sheik functions are pre-programmed as described in the previous section, and no

3In principle, other quantities, such as the amounts of money and water, could be used as well.
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Figure 7.2: Performance P of the test Sheik without any learning (o = 0.1 and
3 = 1.0) whose attention window size A is given by the abscissa, against the control
Sheik, whose camels wander randomly. The error bars correspond to the standard
deviation of P in 100 independent trials.

adaptation is allowed. The game duration is ¢t = 35 days (=420 two-hour steps). The
data for each A are derived from 100 independent trials of the same duration ¢. The
results are shown in Figure 7.2. As expected, P is at or below chance for small A,
peaks at around 15 ~ 17, and drops to chance again for larger A. The peak shifts to
the right if the test Sheik carries out the computations associated with (7.2) faster.
This experiment demonstrates the main point of restricting computation to a
prudently selected “region of interest” when the computational resources are limited.
The mechanism is reminiscent of the information reduction occuring in the primate

brain thourgh the effect of attention, as we discuss in more detail in section 7.2.

7.1.3 Experiments with Episodic Memory

Next we describe two experiments involving learning in the virtual world of Desert
Survival. In particular, we are interested in the impact of attention window size A

on the effectiveness of a mechanism similar to the psychological concept of Episodic
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Memory.

In the second Desert Survival experiment, we endow the test Sheik with the ca-
pability of adapting « and § by evaluating past decisions and associating them with
current inputs. He learns which values perform optimally for each camel depending
on the circumstances (e.g., number of oases in the window, and how far the camel
is located from the high saliency oases), and the parameters « and § are stored in
memory as functions of the distances d;; and the saliences s;. Since learning pro-
ceeds by storing and evaluating snapshots of past events, it corresponds to Episodic
Memory [3].

More specifically, the adaptive Sheik learns by associating the set of input pa-
rameters u = (sy,...,8k;d;1,. .. ,dig), where K is the total number of oases within
the window (K is roughly proportional to A?), with a pair of output parameters
(e, B) chosen from the sets o € {0.005,0.1}, § € {2,10}. The effectiveness of the
output parameters (whether they increase or decrease the well-being of the Sheik)
is expressed by two “evaluation” parameters r,, 73, which are computed from the
Sheik performance within a few time steps following the action taken. The parameter
o encourages more aggression (larger «) if no life losses occured as a result of the
action currently under evaluation. The parameter rz encourages more demanding
camel assignments (smaller §) if no territorial gains were obtained, and better life
preservation if the territory improved during the monitoring period.

The learning procedure is as follows: let up, denote the vector corresponding
to the camel that the Sheik is currently considering, and let uxy denote the nearest
neighbor situation stored in Memory, i.e. the entry with minimum distance B =
|| unew — unn||? from Upew. If B < By, then any and fyy are used and ro ny, TgNN are
re-evaluated; if By < B < By, axy and fyn are still used but a new memory entry
with coordinates upe, is created and evaluated; if B > B, the values of o, 3 are
selected at random (i.e. the nearest neighbor is not used), and a new entry is again
created and evaluated. We call this technique “reinforced Nearest Neighbor” (rNN)
learning. A simplified theoretical model of rNN learning is given in sections 7.3.2-

7.3.6. The parameters used in the experiments are B; = 10 and B, = 25. Memory
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Figure 7.3: Performance P of the test Sheik who can learn episodically, and whose
attentional window size A is varied against a non-learning control Sheik who uses the
algorithm of (7.2) with a constant attentional window size A = 15.

access costs 1 memory token per search to the test Sheik, and he is given 1,875
memory tokens at every time.step. There is no computational overhead assigned to
learning.

The test Sheik, with variable window size, is paired against a non-learning control
Sheik who applies the navigational algorithm (eq. 7.2) with fixed & = 0.1 and § = 1.0
and fixed window size A = 15. These experiments last 200 virtual days per trial. The
longer duration compared to the experiments of section 7.1.2 is necessary in order to
allow the learning algorithm to reach saturation. See also section 7.3.6.

Two basic effects govern how P (defined as in section 7.1.2, eq. 7.3) changes with
increasing window size (Figure 7.3). As A of the test Sheik increases, his memory
stores a larger and larger fraction of the entire system, and his performance improves.
Counteracting this trend, however, is the fact that evaluating all the associated prob-
abilities for the camels and oases within this window takes up precious time and,
as A increases, an increasingly smaller fraction of camels within the window become

updated, decreasing performance. Thus, P peaks sharply at A = 15.
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Figure 7.4: Performance P of the test Sheik, with variable attentional window size
A, against a control Sheik, with fixed attentional window A = 15. Both Sheiks have
episodic learning enabled.

In the final third experiment, both test and control Sheiks are allowed to adapt as
described before; the only difference between them is that the size of the attentional
window of the control Sheik is fixed at A = 15. In this experiment, memory search
is free, since it is available to both Sheiks. Trials also last 200 virtual days each. As
Figure 7.4 indicates, performance improves if the test Sheik has a larger window than
the control Sheik, but only up to a point (15 < A < 23). Beyond this value, the time
needed to update all camels with new sets of p;;’s, that is with new marching orders,
exceeds the total time allocated to each player. In this regime, the control Sheik has
less information available for planning, but he is able to put it to more efficient use.

Concluding the discussion of the Desert Survival game, it is worth noting that an
explicit, globally optimal strategy is not known. It is possible that a Nash equilib-
rium [158, 159, 160] exists, where the two opponents respond optimally to each other’s
strategy. If we eliminated the distinction between test and control, we stipulate that,
aided by their attentional mechanisms, they would evolve (i.e., adaptively learn) their

a and S in accordance with game-theoretic adaptive strategy models? [161], trying

4The parameters «, 8 determine the payoff matrices in our game.
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to dynamically approximate the Nash equilibrium. In an experimental situation like
the third simulation that we just described above, with the test Sheik having a non-
optimal A, he should fail to adapt his strategy according to the demands of the
position, because of information processing limitations (i.e., either too little or too
much information, as explained above); hence, he would perform worse than the con-
trol Sheik. Experimental verification of this claim is made difficult by the fact that
the Nash equilibrium (or even its existence) in Desert Survival is not known; yet,
the claim presents an interesting topic of research, perhaps using a different complex

game, designed so that a Nash equilibrium can be firmly established.

7.2 A biologically inspired computation model

Organisms living in time-varying, multi-dimensional environments face the problem
of responding to real-time situations, and constructing viable plans for the near-
or long-term future. At the same time, they must maintain maximum efficiency
in computational apparatus and power consumption. We stipulate that advanced
organisms (e.g., humans and primates in general) manage so by using the mechanism
of awareness.

An enormous amount of variables describe the state of a complex organism at
any given moment. On the one hand, sensors produce visual, auditory, tactile, and
olfactory signals. For example, if we count the number of rods and cones in the
retinas, we find that the dimension of the space on which the visual system alone can
be described is, at a first glance, 250 x 10%. On the other hand, we also know that
sensory experiences are continuously stored as memories, which are recalled to aid the
formulation of responses. Since each sensory event is described in a high dimensional
space, the complexity of storing many of them, and in addition their sequences and
associations, is clearly intractable.

Yet, in every day life, we do not sense the presence of so many variables in our
behavior; indeed, it is very unlikely that we use all of them. If we did, the 10'2 neu-

rons in our nervous system would not suffice to exhaust the combinatorial explosion
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of possibilities even for simple tasks, such as picking up a pencil, not to mention
abstract reasoning and long-term planning. The hierarchical structure of the nervous
system (probably a by-product of evolution [162, 163]) helps to organize cognitive
tasks in systematic fashion [164]. For example, plans and intentions formed at the
pre-frontal cortex of the brain elicit responses in the motor cortex, cerebellum, and
basal ganglia, which in turn instruct the limbs to perform simple functions (such as
“grabbing”). The peripheral knowledge about automated tasks is called Procedural
Memory. Similarly, sensory inputs are not simultaneously processed at their entirety,
but rather in a layered fashion, which has been studied most extensively in the visual
system [165, 166]. Visual processing starts with the detection of very simple features,
such as horizontal and vertical line segments, in the first layer (striate cortex, or area
V1). In higher layers, more complicated tasks are performed, such as detection of
object motion in area V4, and so on [165].

The results of the lower levels of sensory processing are sorted for significance with
the aid of the mechanism of Attention [155, 156, 157]. The key function of Attention
is to detect the most salient features in the input space [154, 167], thus restricting the
amount of information to be processed by higher layers. The decision about saliency
is either automatic (“bottom-up”), which serves to detect novelty and potential profit
or danger in the environment; or deliberate ( “top-down”), which serves to concentrate
resources on a particular goal [168]. This filtering process is sometimes described as a
“window” (or “spotlight”) in sensory space. The result of attentional processing, or, in
other words, what a human is “aware of” at any given moment, most often determines
the human’s subsequent response. Plausibly, therefore, Attention is Nature’s solution
to the dilemma of efficient biological computation with limited resources. Crick and

Koch [148, 149] proposed that the function of awareness is

“to produce the best current interpretation of the visual scene, in the light
of past experience either of ourselves or of our ancestors (embodied in our
genes), and to make it available, for a sufficient time, to the parts of the
brain that contemplate, plan and execute voluntary motor outputs (of one

sort or another).”
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Figure 7.5: Block diagram of a computational architecture which is capable of forming
efficient dynamic representations of the environment in real time.

The principle of limiting computational resources to the most significant subset
of the input space at any given time was applied successfully to the Desert Survival
game, as we saw in the previous section. A more general-purpose computational ar-
chitecture, motivated by the same principles, is shown in Figure 7.5. It consists of
two computational paradigms combined and running in parallel. The low-level mod-
ules are the Sensors, Early Processing, Error Module, and Actuators. Under normal
conditions, this portion of the system operates autonomously, quickly responding to
sensory inputs to perform familiar tasks. The higher-level system, comprised of Logic
(a powerful CPU) and Declarative Memory [3, 9, 10, 169, 170, 171], implements emer-
gency handling and long-term planning, by issuing command signals to the Actuators

directly and configuration signals to all other modules. This portion of the system is
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reminiscent of a von-Neumann architecture, except its inputs and outputs are routed
via the low-level computing structure.

The Attentional module acts as a central information exchange. It selects the most
salient subset of the pre-processed sensory inputs and then submits search requests to
the Declarative Memory, in order to retrieve the most relevant past recollections. In
turn, the memory returns a “memory window” of relevant facts. The memory should
be organized in hierarchically to facilitate the search (see section 7.3.1). The results of
sensory and memory window searches are fused to produce a compact representation,
labeled Awareness. This is made accessible to the Logic unit, which then makes
executive decisions in real-time. In this view, Awareness can be thought of as the
state of the cache memory of the Logic, containing the information that is currently
of most relevance to the system. In a world of unlimited computational resources,
the system’s Logic should have access to all information collected by the cooperating
agents (the camels) for optimal behavior. In Desert Survival, Awareness represents
the compromise needed to achieve better than chance performance in real-time (albeit
most likely not optimal in a global sense) by providing the central processor with the
most relevant information only.

The correspondence between the modules of Figure 7.5 and brain anatomy is well
defined in some cases. Referring to the visual system, Early Processing is performed
at the early levels of visual cortex (V1 through V4, with some IT functions possibly
added in). The Actuators correspond to the motor cortex, basal ganglia and cerebel-
lum, which control and coordinate movements and synchronize input/output from the
limbs. Procedural memories are maintained locally in these modules [4]. Attention
is believed to reside in the posterior parietal cortex (PPC) [172], although neuronal
recordings indicate that visual responses are modulated by activity from most visual
cortical areas [173, 174, 175, 176]. PPC perhaps acts as interface between attention
and intention [17], equivalent to the connection between Logic and Attention in Fig-
ure 7.5. Logic and long-term planning in the brain are usually identified with the
pre-frontal cortical areas [177].

By contrast, episodic and semantic (i.e., declarative) memory storage are not well
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localized in the brain [3]; however, the hippocampus appears to be a switch controlling
the passage of explicit (conscious) experiences into permanent storage. For instance,
hippocampus is activated when explicit relational memories are formed [15, 178, 179,
180], but not if storage is implicit [6]. The neural correlate of awareness is not
known, although several hypotheses have been made [181, 182, 183, 184, 185]. In the
computational model, this problem is bypassed by defining the Awareness module as
a cache memory, the contents of which are dynamically defined by the competition
of inputs from Attention, Memory, and directives from Logic.

Returning to the model of Desert Survival, the camels perform simultaneously
the functions of Sensors, Actuators, and Early Processing. The results of sensory
processing produce the map of the desert, as in Figure 7.1. The actuations are water
trading and oasis take-over. The Error Module calculates the set of saliences s; and
averages them over a running A x A window. The Attentional mechanism imple-
ments the selection of the most salient region in the desert and brings a compacted
representation of the information about camels located inside the window (i.e., the
saliences s; and the distances dy;) into the Awareness module. The Sheik corresponds
to the Logic, which processes the Awareness information according to its own rules
(the pre-programmed values of «, 3, and eq. 7.2) to produce instructions (the p;’s)
for the agents. If episodic learning is enabled, it re-configures the Logic at every
step by providing values for o and § dependent on the Awareness information (the
sx’s and dy’s). In turn, the Logic reconfigures memory by calculating the evaluation

parameters r,, rg (see section 7.1.3).

7.3 Memory organization in the awareness model

7.3.1 Memory hierarchy

Taking a closer look at the awareness-based computational architecture, Figure 7.5,
we observe that, in accordance to the biological evidence, there are two types of

memory: procedural and declarative. The Procedural Memory is incorporated in the
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Processing Modules themselves. This memory provides the necessary information for
performing the specialized tasks that each module performs. Procedural Memory is
accumulated through learning using supervised training algorithms with the help of
the error signals. The pathway from the sensory input through the Early Processing
leading to the Processing Modules can be thought of as a multi-layer neural network
that can be trained with techniques such as back-propagation and variants. The
Procedural Memory is then the set of adaptable weights in these networks.

The Declarative Memory is a large mass-memory that stores information which
can be centrally accessed. This memory interacts with the rest of the system through
command signals it receives from the Logic module and a two-way interaction pathway
with the Attention module. The command signal from Logic can be thought of as an
address signal that defines an accessible window or windows in the memory onto which
the pathway between Declarative Memory and Attention operates. For instance, if
the Awareness module indicates to the Logic that a face is present in the input visual
scene, then the Logic elicits the part of the memory where faces are stored to come
to the forefront. The pathway to the Attention module is used for associative recall.
A pattern received from the Early Processing module is routed by Attention to the
Declarative Memory, where it is compared to the contents of the accessible window.
Once a match is found, the result is reported back to the Attention module. The data
that is returned can be a compact representation, such as the address of the item
that yielded a match, or a more detailed description of the same item. The Attention
passes on this result to the Awareness and therefore makes the information (combined
with the filtered input — see section 7.2) available to the Logic. The Logic then plans
its next action which may include repositioning of the accessible window. The new
information to the Attention box from the sensory inputs and leftover information
received from memory are then compared with the new accessible window. In this
way complex tasks requiring multiple memory access steps can be executed.

The organization of the Declarative Memory is both hierarchical and clustered.
The hierarchical organization allows coarse categorization of inputs. Shifting the

accessible window allows the system to zoom-in to make finer assignments. For in-
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Figure 7.6: Hierarchical organization of the Declarative Memory.

stance, the top level of the memory can contain information that classifies an object
as a face; lower levels store specific faces of familiar individuals. The clustered or-
ganization forces similar objects to be stored contiguously. This makes the search
through an accessible window an efficient operation.

The database contained in the Declarative Memory is created through a learning
process. If an object does not yield a sufficiently strong match, it is then added to the
accessible window closest to the location that yielded the best match (the next few
sections provide a detailed description). This way clustering is achieved. Data that
need to be transferred from the Declarative Memory to the Processing Modules are
routed in a compact representation through the Attention-Awareness-Logic pathway.

A generic design for the Declarative Memory is given in Figure 7.6. In the con-



172

text of holographic memories, we can imagine “data pages” as individual holograms,
e.g., angle- or shift-multiplexed, whereas a section is a fractal row (recorded using
peristrophic or fractal-angle or fractal-shift multiplexing, for example). Multiple sec-
tions are stored in spatially separated locations (space multiplexing). Many different
schemes are possible, for example the compact module of section 6.3.3. Another
possibility is recording the pages in the time-domain (see section 6.3.4), and using
fractals for the sections. Notwithstanding the practical problem of capturing and
processing the reconstructions (typically time-multiplexed holograms come out as
ultra-short pulses at a rate of GHz), this organization may be appropriate for storing
time sequences. Readout can be performed in one of two modes: Data requested by
the Logic can be retrieved both directly (by-address) or associatively (by-content),
whereas Attention communicates with Memory exclusively associatively.

The “memory window” is defined for associative search by the competition of Logic
and Memory, by looking at a fraction of the correlations. Awareness can be thought
of as occurring at multiple levels if there is a fixed number of detectors looking at
the correlators. If the window “zooms out,” a bigger portion of the Memory becomes
visible but at a lower resolution. The degree of zoom and the location of the window
are controlled by input saliency through Attention (similar to “bottom-up” attention)
and by Logic when high level operations can be performed safely while ignoring the

environment (“top-down” attention).

7.3.2 Learning uncertain environments

In section 7.1.3, we described episodic learning (or learning-by-experience) in the
Desert Survival game, and showed how learning efficiency versus a non-learning (Fig-
ure 7.3) or learning (Figure 7.4) opponent is affected by the attentional window size
A. For the purposes of the present discussion, the virtual desert is a random envi-
ronment, meaning an environment where a specific action in response to a specific
situation (captured by the input signals) produces a random result, sometimes ben-

eficial and sometimes harmful. In a random environment, the purpose of learning is
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to determine the probability distributions of the results conditioned on actions and
situations, and the optimal (in Bayesian sense) response strategy. Our model is a sim-
plification of the actual scheme used in Desert Survival, yet it captures the associated
trade-offs well.

Lacking a model for the random environment, the learning algorithm must nec-
essarily start with a randomized strategy; i.e., the algorithm is initialized with each
possible decision being equally probable in response to any signal. As time evolves,
the algorithm should evaluate the results of past decisions to find the one statisti-
cally most profitable as fast as possible, and segment the signal space by finding the
boundaries where the optimal decision changes. We are interested both in the degree
of approximation to the Bayesian strategy that the learning scheme can achieve, as
well as the amount of time required to do so.

More specifically, let S C R? denote the signal space®, and

p(x), x€8

the a-priori probability that x occurs. Let

YV={y1,9,...,yp}

denote the set of decisions. We assume that functions 7 (x;y) € Rand q (x;y;7 (x;9)) €
[0,1] exist such that, Vx € § and y € Y, return r occurs with probability ¢ if action
y is taken in response to signal x. All the distributions are assumed to have at worst
a countable number of step discontinuities. Let r be a utility function with » > 0
denoting gain and r < 0 denoting loss. The objective of the algorithm can now be

restated as finding action yop(x) which optimizes the expected return

F=EV{r|x, yop(x)}, (7.4)

5In a simple system, S is simply the space spanned by the input signals. In the computational
model of Figure 7.5, S is the space where the contents of the Awareness module take their values
from.
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where EV denotes expectation value over the distributions p, ¢.

7.3.3 The rNN algorithm

The reinforced Nearest Neighbor (rNN) algorithm is a variant of the nearest-neighbor
algorithm that uses reinforcement, since no labelling of the data is available. In
particular, the algorithm constructs a memory space M homologous to the sensory
space S. Initially, M is empty. When a signal x € § arrives (drawn from the
distribution p), the algorithm checks a d-dimensional sphere of radius b around x €
M. We will refer to b as the proximity radius. If no memory is found within that
sphere, a random decision is drawn from Y according to some distribution s. If
a memory X' € M is found within distance b from x, then the algorithm checks
the decision y stored in x’ and its history of returns r. If the history shows that
y is profitable according to the utility criterion, then y is repeated in response to
x, otherwise another action is drawn from Y according to a rejection rule. In the
case when Y contains only D = 2 actions, the rejection rule is to take simply the
alternative action. In addition, if the distance of “recollection” x’ from x is more
than b/2, then a new memory element is created at position x € M. Clearly, this is
a simplification of the Desert Survival model (section 7.1.3) with B; = By = b.

We seek to understand reinforcement rules for the rNN algorithm, and determine
the optimal learning rate, expressed by the proximity radius b. Indeed, the efficiency
and accuracy of the process of filling up the memory space are conflicting as we will
show in detail later. If b is large, then the memory space is filled up fast; however, the
decision boundary is blurred. In the opposite case of small b, the decision boundary
may be determined very accurately; however, random decisions are taken very often,
since the space is filled very slowly. Therefore, each one of these extremes may result
in ruin with high probability.

To keep the analysis simple, we will restrict ourselves to the simple 2 x 2 x 2
configuration shown in Figure 7.7. The two-dimensional parameter space is segmented

in two regions by a straight decision boundary. In addition, there are only two possible
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Region I:
Decision y _ is better
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Decision y _ is better

Parameter space

Figure 7.7: Description of the decision problem in the 2 x 2 x 2 configuration (two-
dimensional space, two possible decisions, two possible results).

actions: Y = {y4,y_}, and two possible returns: r € {+1, —1}. The causal relation

between actions and results is the following:

r = +1 with probability 1 —5 £

Y, causes 12 (7.5)
r = —1 with probability 5 £
r = +1 with probability 1 ; 2

y_ causes , (7.6)
1+¢

r = —1 with probability 5

where ¢ € [0, 1] is the certainty parameter (¢ = 1 makes the problem deterministic).

7

Clearly action y, is “preferrable,” since it produces positive » “more often.” In fact
it is easy to see that the optimal (Bayesian) strategy consists of picking action y,

always, which we will denote as

P —Pr(y=—y,) =1 (7.7)
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Then the probability of winning is

1+e¢
2 ?

P =Pr(r=+1)= (7.8)

and the expected return is
F= P x (1) + (1—¢P) x (-1) == (7.9)

Generalizations such as piecewise linear or non-linear decision boundary, higher
dimensional input space, and more than two possible decisions are straightforward,
based on the framework presented in the subsequent sections and will not be presented
here. Extention to the Desert Survival model (section 7.1.3) is also straightforward,

and will be omitted.

7.3.4 Reinforcement algorithms

We seek to develop an algorithm for deciding what the optimal strategy is by observing
the response of the environment. At time ¢ = 1 the algorithm picks either one of i, ,_
with probability 1/2. Beyond that point, the algorithm should asymptotically (i.e.,
as t — +oo) achieve performance equal to qﬁipt. We will present four algorithms, and
show that only by looking back at the entire past is it possible to achieve Bayesian

performance.

Algorithm A: Single-step look-back

At each step ¢ the system examines the action and result 7(¢ — 1) incurred at the
latest step. If r(t — 1) = +1, then the system takes the same action [y(¢) = y(t — 1)],
otherwise the latest action is reversed. We will now prove the following

Proposition: The expected performance of algorithm A at step ¢ (t > 2) is

1+¢?

B4l(t) = ——. (7.10)
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Proof: From the definition of algorithm A we have:

Y.(t) = Pr([y(t—1)=ys and r(t —1) = +1] or
[y(t—1) =y, and r(t — 1

)
= Pr(r(t—1)=+1|y(t-1)=y,)P r(yt—1) =y ) +
)

1 1-—
+8 (t—l) €

Pr(r(t—1)=-1]yt—1) =y )Pr(y(t—1) =y
= -1+ Sy - )
= Wl )y 1] = 2
6+(t) = Pr(r(t)=+11y(t) =vs) Pr(v(t) =v:) +
Pr(r(t) =+1|y(t) = y-) Pr (y(t) = y-)
byt

) 2
N 2
_ (1+€) +<1 5) :1—!-5' A
2 2 2

Therefore, algorithm A fails to satisfy the requirement of asymptotic convergence

to ¢°*'. The expected gain is 7 = &2,

Algorithm B: Linear randomization

At time t, the system examines the results at all previous steps. Let’s denote by
m the number of “favorable” outcomes, i.e., occurrences of y, resulting in r = +1
and y_ resulting in 7 = —1. The action y(¢) at step t (¢ > 2) is chosen according to

the following rule:

y.  with probability E-T_—r—L—T
y(t) = m (7.11)
y_  with probability 1 — T—1

This randomized strategy seems more reasonable than algorithm A; however, it turns
out to yield the same sub-optimal result:
Proposition: The expected performance of algorithm B at step ¢ (¢t > 2) is

1+¢?
5

¢+ (t) = (7.12)
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Proof: The probability of m “favorable” outcomes occurring in ¢ steps is given by the

Bernoulli distribution

(1) = ; " () (7.13)

Therefore, the probability of taking the correct action y, at step ¢t + 1 is

i (t+1) = Xt:_?_ ; (1—;—5)m<1;5>t—m

m=1

1+€n t—1 1+€ m—1 1—¢ t—m
B 2Z (2) (2)

m=1 m—1

_ 1+et§‘:1 t—1 (1+s)m(1—e>t‘1—m
2 m 2 2

m=0
_ 1+5[<1+5>+(1—5>]t“1_1+6
2 2 2 2

¢ (t) is then calculated according to the last step of the proof for algorithm A. A

Algorithm C: Infinite Majority vote

This is similar to algorithm B, except the decision follows a majority rule: y, is
taken if m > t/2, and y_ is taken if m < t/2. If ¢ is even and m = t/2, then either
yy or y_ is picked randomly with equal probabilities 1/2. The probability of having

a majority of “favorable” occurrences at step t + 1 (¢ > 2, even) is

Uit +1) = fiﬂ ; (1;5)"1(1;5)’5%. (7.14)

Random walk theory (section XI.3, p. 242 of [186]) states that as t increases, sooner
or later the “favorable” occurrences m overtake the unfavorable ones, and therefore
Y, (t + 1) tends to one as t — oo. This is verified in the plots of ¥, ¢, given in
Figure 7.8. From the plots we also infer that the convergence time is approximately

inversely proportional to €.
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Figure 7.8: Convergence of the majority vote rule.
The evolution of ¥, can be approximated well by the following heuristic expres-

sion:
1
vy (t) =~ 1— 5 €XP {~/11tC1 - K,gt<2} (7.15)

The parameters x4, (1, K2, (2 as functions of € are determined by least-squares fit. The

result is shown in Figure 7.9. With this approximation, the probability of winning at
time ¢ is

—_ e S C2
bo(t) ~ 1+¢ (1 exp {2 K1t Kot }) . (7.16)

Algorithm D: Truncated Majority vote

Suppose that the memory does not have the capacity to perform a majority deci-
sion over the entire past, but only over the most recent M steps at any give time step.

We call this algorithm Truncated Majority. During the first M time steps after the
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Figure 7.9: Parameters k1, (1, K2, (2 of the exponential fit (7.15) as functions of the
certainty parameter €.

original creation of the memory, the algorithm performs exactly as Algorithm C, i.e.,
(7.14) applies. However, for times ¢t > M the performance saturates and ¥, cannot

increase beyond

Yyt > M) =9 (M) = f: ‘:[ (1;—6)"'(1;5)75—7%.

=t (7.17)
For instance, in the examples of Figure 7.8, with M = 60 ¢, would be limited to
~ 0.77 for ¢ = 0.1 and = 0.92 for ¢ = 0.2, never approaching 1 as in the unforgetful
case. However, if the environment changes with a time scale approximately equal to
M, then forgetting may be beneficial because it helps the system adapt faster. This
was certainly the case in Desert Survival where forgetting was implicitly imposed by

the constraints of real-time operation (see section 7.1.3).

7.3.5 Dynamics of memory occupancy

In this section we determine the time evolution of memory occupancy and the optimal

learning rate, in other words the optimal proximity radius bopi. As in the previous
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Figure 7.10: Increased uncertainty at the decision boundary.

section, we will restrict ourselves to the simple 2 x 2 case, and, moreover, we will
use Algorithm C (“infinite majority vote”) for reinforcement. The result depends on
the a-priori distribution p which we will assume to be uniform in [0, a]”. We break
the calculation down into two steps: first we calculate the dependence of saturation
performance (after each point has converged to 1, = 1) on b; then we can calculate
approximately the learning rate as function of b, and determine the ratio b/a that

maximizes the learning rate as function of €.
Saturation learning efficiency

Let M = [0,a] x [0,a] C R? and let the separatrix be a straight line making angle
f with the zo-axis (see Figure 7.10). Consider the three memorized points x,, Xp,
x. of Figure 7.10, and assume that reinforcement learning is performed according to
Algorithm C (infinite majority rule) of the previous section. Also, assume that the
action-result relationship to the left of the separatrix is given by (7.5-7.6), whereas
to the right of the separatrix, the relationship is the same but with y, and y_ in-
terchanged. Point x, will achieve optimal performance equal to 7 = €. However,
the memory located at x;,, will not perform that well, since the shaded part of the
proximity circle falls on the opposite side of the decision boundary. The same is

true for point x. and any other point falling inside the strip extending one proximity
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distance around the separatrix. The evaluation of memories xy,, X, is made more
difficult because the effective certainty decreases. If g, |g| < b/2, is the distance from
the memory point x to the separatrix, then a simple geometrical calculation shows

that the effective certainty is

cei(g) =€ [1 -~ ;8; (%arccos?l—)‘(Z — % 1- (?Bg—) )} . (7.18)

By integrating over the possible distances 0 < g < b/2, we find the effective certainty

over the entire strip

Eeff(strip) = € <1 - %) . (7.19)

Over the entire parameter space,

(M) = ¢ <1 — 4—b> . (7.20)

3racosf

Therefore, the probability of winning decreases with b as

6, (00) = % [1 e (1 L)} . (7.21)

"~ 3rmacosf

This result verifies the intuitive notion that the larger b is, the more unlikely it be-

comes that the reinforcement algorithm approximates the decision boundary correctly.
Learning rate

Proposition: The expected memory occupancy at time ¢ (¢ > 1), i.e., the expected

number of stored memories, is

n(t) = i—‘;z- { - (1 - gﬂ (7.22)

Proof: At time ¢t = 1, the occupancy is n(1) = 1. Let n(t) be the occupancy at time ¢.

Each disk occupies area wb?/4; therefore, the probability that a new memory element
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will occur inside the area occupied by the disks is

n(t)mb?
4a?

It follows that the expected number of disks at the next time step is

n(t+1) = n(t)n(Z;er + (n(t) +1) (1 - ”(Z;b ) (7.23)
= n(t) (1 - g;) +1. (7.24)

By a simple induction we obtain that n(t) is given for ¢t > 1 by (7.22). A
We will now show that the average learning progress at time ¢ (¢ > 1), is, to good

approximation,

1 wb2\"  wp? =L b2\ * 1
iﬂ(t) ~ 5 (1 — Z(_]/-—?:> -+ Z‘(‘Z—Q- Z (1 - @ (1 - 5 exp {—lﬂlltg — K)thz}> .
k=0

(7.25)

Indeed, from the previous result we can derive that the expected number of memories

added at step ¢ + 1 is

n(t+1) —n(t) = (1 - Tf)t. (7.26)

42

Therefore, when a new input appears, the probability that it will coincide with a

h? a2\t
A R
42 < 4a2> ’

and the probability that it will not coincide with any existing memories is

I b Uit N (R ¥
= 4a? 4a? B 4a2 )

In the former case, 1 is given approximately by (7.15); in the latter, it is simply 1/2

memory of age k is

(randomized decision). Combining these results we obtain (7.25). Strictly speaking,
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k1, (1, K2, (2 must be calculated separately for e.¢(g) to account for the edge effects
at the decision boundary, and then (7.25) must be averaged over g to obtain the
learning rate. However, to keep the analysis tractable, in the calculations we will use
the k1, (1, ko, (o corresponding to e.g(M) (eq. 7.20). The probability of winning as
time progresses is, therefore,

¢ (t) = —;— + eeft(M) ( ey — 5) : (7.27)

(Generalizations

Several generalizations are possible and straightforward in terms of the framework
given above. Generalization to higher dimensions is straightforward using existing
analyses of the problem of intersecting spheres inside a cube in d dimensions (e.g.,
[187]). The case of a piecewise linear or non-linear separatrix is treated easily with the
same theory presented above, by modifying the integration at the boundary. Other
interesting possibilities arise if the a-priori distribution is other than uniform (e.g.,
Gaussian), or non-stationary (in the latter case forgetting, as in Algorithm D, would

have to be employed).

7.3.6 Optimization of the learning rate

Figure 7.11 shows the dynamics (7.27) of rNN learning for two different values of
the certainty parameter . It is clear from the figures that the optimum b depends on
the time ¢ when we want to achieve the goal of optimum performance. For example,
for the case ¢ = 0.2 (Figure 7.11a), if we can afford to wait until £ = 700 to achieve
maximum performance, then b = 0.075 is the best choice. However, the price to pay
for this choise is sub-optimal performance for a long initial time period, ¢t < 650. If the
long wait has disastrous consequences, because of the losses that will incur during the
long learning period, then one has to settle for a larger b (e.g., b = 0.1 or b = 0.13),
which yields faster learning rate but also lower value of 1, at saturation. Similar

reasoning holds for ¢ = 0.5 (Figure 7.11b), except as € increases, the performance of
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Figure 7.11: Memory dynamics: evolution of the probability v, of taking the correct
decision with time ¢ for different values of b, and (a) ¢ = 0.2, (b) € = 0.5.

larger b improves because the residual errors at the boundary become less significant.

The conclusion from this discussion and the analysis of the previous sections for
the simple 2 x 2 x 2 case is that learning in an uncertain environment must be carefully
tuned to the required time pace and learning efficiency. Systems with reasonable con-
figurations manage to survive by performing well enough in time (although perhaps
sub-optimally in the long run), whereas any other configuration would be eliminated

through evolution.

7.4 Conclusions, discussion, and future extensions

Several cognitive functions, apart from those discussed herein, may be studied with
the aid of the Desert Survival simulation. For example, inhibition/facilitation of re-
turn to the attentional focus may improve or deteriorate performance depending on
various desert parameters. Prediction of the opponent is a significant feature of intel-
ligence. Currently, each Sheik predicts the future by assuming that his counterpart
is similar to himself. Possibly, Awareness may allow better performance by classify-
ing the opponent into one of several categories based on his observed behavior, and

then adjusting one’s own strategy accordingly. Finally, forgetting deserves some more
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consideration as a means of adaptation, as we mentioned in section 7.3.4.

Potential applications of the awareness-based approach to computation involve
situations where machines are required to solve computationally overwhelming prob-
lems, yet problems which humans manage to solve satisfactorily with “sub-optimal”
reasoning. Examples of applications are interactive automated office assistants, au-
tonomous agents for hazardous industrial or extra-terrestrial environments, traffic
control in metropolitan areas, air traffic control, and managing large physical plants
(e.g. oil refineries, hospitals, aircraft carriers and so on).

As a specific application example with immediate commercial interest, consider
an Intelligent Building. Referring to Figure 7.5, the Processing Modules correspond
to face- and voice-recognition modules at the doors, cameras and PCs tracking the
movement of humans inside the building, temperature and humidity sensors in every
room, and so on. This vast data stream is transcribed into a detailed representation
of the entire building. An attentional mechanism needs to select a subset of this data
and generate a more compact representation—corresponding to the current contents
of awareness—which is made available to the Logic unit (a central CPU). The error
signals assign higher priority to events such as the detection of an intruder or a fire,
compared to the routine identification of an employee walking through the front door.
Many situations require access to Memory: for instance, comparing an unknown face
against the faces of known criminals stored in a database or checking whether a
high occupancy in one of the lecture rooms corresponds to a regularly scheduled
seminar. A compact, dynamic and flexible “awareness” representation implemented
on an inexpensive personal computer might be sufficient to help manage such a large-
scale system. Alternatively, the contents of the Awareness module may be forwarded
directly to a human operator, who in that case would be performing the function of
the Logic module.

Another application example is computer chess. Like Desert Survival, chess re-
quires no complicated sensory processing or actuation control algorithms. The inputs
are the locations of at most 32 pieces (including those of the player and those of the

opponent) on an 8 x 8 grid (the “chessboard”), and the response is a single move at
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a time. Commercial chess computers typically calculate their response by evaluating
an expanding tree of possibilities, starting from the current position and searching a
depth of a few moves. Because of the nature of chess rules, the number of possibili-
ties that result from this search grows exponentially with search depth. By contrast,
the best human players usually evaluate explicitly very few possible future positions,
however they are very selective in the move sequences they consider. It seems, there-
fore, that an attentional mechanism exists, which can be trained by experience®, and
suggests moves that should be considered as the most “reasonable” when the com-
putational resources are limited (the thinking time in competitive chess is typically 2
hours for 40 moves; in a different format, “speed chess,” only 5 minutes are allowed
for the entire game). The applicability of the computational model of Figure 7.5 is
now clear, although the details of the implementation are beyond the scope of this
work. A chess computer built along the lines of the awareness-based model would be
readily comparable to traditional architectures, in terms of a cost (or complexity) vs.
performance quotient.

Many challenging computational tasks can be successfully attacked by concen-
trating sufficient computational resources. For example, IBM recently assembled a
massively parallel computer to evaluate 200 million chess positions per second. This
sufficed to overcome the problem of combinatorial explosion of possibilities with search
depth, and the computer defeated the world champion’. If, however, resources are
limited, as in most physical systems, a method is needed to compromise performance
for efficiency in terms of power, size, time, and cost. The approach used in the Desert
Survival game, inspired by the cognitive architecture of the primate brain, can provide
one answer. It can lead to a novel computational paradigm appropriate for solving
complex problems efficiently by taking decisions based on a compact representation
of the most salient features of the environment and the relevant information from

memory.

5Typically, untrained players try to consider all possibilities, to no avail.
"For information on Deep Blue and the match against Grandmaster Garry K. Kasparov, consult
http://www.chess.ibm.com, and http://www.rs6000.ibm. com.
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