
Toward realizable quantum computers

Thesis by
Michael Edward Beverland

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2016
Defended (May 20, 2016)



ii

© 2016

Michael Edward Beverland
ORCID: [Author ORCID]

All rights reserved



iii

ACKNOWLEDGEMENTS

I have been very lucky to have been surrounded by many inspiring scientists while
a graduate student at Caltech.

Firstly, I would like to thank my advisor, John Preskill, for always finding time to
hear me out when I wanted to explain my often underdeveloped ideas. He will
always be my role model as a physicist. Along with John, I would also like to thank
the rest of my thesis committee: Xie Chen, Alexei Kitaev, and Gil Refael.

I have also received valuable mentorship from my main collaborators Alexey Gor-
shkov, Gorjan Alagic, Fernando Pastawski, and Krysta Svore. Their guidance has
been invaluable.

Special thanks goes to my officemate, collaborator and good friend Aleksander
Kubica. I have had many other exceptional collaborators deserve a lot of credit for
the work presented in this thesis: Gretchen Campbell, Jeongwan Haah, Ana Maria
Rey, Michael Martin, Andrew Koller, Hector Bombin, Robert Koenig, Sumit Sijher,
and Oliver Buerschaper.

John’s group meetings have been a hub for quantum information and have provided
much inspiration. Regular attendees during my time include, Ning Bao, Mario
Berta, Thom Bohdanowicz, Peter Brooks, Todd Brun, Darrick Chang, Elizabeth
Crosson, Nicolas Delfosse, Andrew Essin, Glen Evenbly, Bill Fefferman, Matthew
Fishman, Steve Flammia, Alexey Gorshkov, David Gosset, Nick Hunter-Jones,
Joe Iverson, Stacey Jeffery, Stephen Jordan, Isaac Kim, Olivier Landon-Cardinal,
Netanel Lindner, Shaun Maguire, Prabha Mandayam, Spiros Michalakis, Roger
Mong, Evgeny Mozgunov, Leonid Pryadko, Kirill Shtengel, Sujeet Shukla, Kristan
Temme, and Beni Yoshida.

Other people in the field I have learned a lot from include, SergeyBravyi, BenBrown,
Dan Browne, Tomas Jochym-OConnnor, David Poulin, and Thomas Vidick.

Overall I had an overwhelmingly positive PhD experience. This has largely been due
to support and friendships frommany friends I have made at Caltech, in Cambridge,
and in Belfast and in Medellin. Eduardo Serna has been particularly influential,
and has taught me a lot about how to code. Of course my family, and my girlfriend
Achiamar, deserve extra thanks for putting up with my slightly unconventional life
choices!



iv

ABSTRACT

The work in this thesis splits naturally into two parts: (1) experimentally oriented
work consisting of experimental proposals for systems that could be used to imple-
ment quantum information tasks with current technology, and (2) theoretical work
focusing on universal fault-tolerant quantum computers whichwe hope can be scaled
as experimental capabilities continue to move forward. Chapters one, three, and
four are based on published work Michael E. Beverland et al., 2016; Koller et al.,
2014; Michael E Beverland et al., 2016; Kubica and M. Beverland, 2015. Chapters
two and three cover currently unpublished work (at the time of writing).

In the first chapter we propose trapping cold atoms in a square-well to robustly
implement a spin hamiltonian which is naturally protected from the dominant source
of noise. The key feature is that the system’s Hamiltonian has parameters which
are independent of the spatial degrees of atomic motion which is not the case
for spin hamiltonians made with other traps or a different type of atom. The
Hamiltonian is highly symmetric (invariant under both on-site spin rotations and
site permutations), and exactly solvable. This highly symmetric spin model should
be experimentally realizable evenwhen the vibrational levels are occupied according
to a high-temperature thermal or an arbitrary non-thermal distribution.

After analyzed the experimental aspects of the proposal and a few direct applications
in the first chapter, in chapter two we focus on a particular application for which
the system is particularly well suited: spectrum estimation of unknown density
matrices. The symmetry group of the Hamiltonian is precisely the group which
is relevant for the Young diagram algorithm to measure density matrices Keyl and
Werner, 2001. The highly entangled Young diagram measurements are performed
naturally via standard Ramsey spectroscopy in our system, when prepared with a
copy of the unknown density matrix in the nuclear spin of each atom.

In the first chapter of second part of the thesis, we consider the important class of
quantum error correcting codes which can be understood as two-dimensional topo-
logical quantum field theories. The most promising implementations for quantum
computers, such as Kitaev’s surface code, are of this type. Importantly, they can be
implemented by using local operations on a two-dimensional lattice, yet they can
store information non-locally, protecting it from the effects of the most common
physical noise (which tends to act locally). These features make such codes ideal
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for storing quantum information and can result in high error thresholds. In chapter
three, we consider the fault-tolerant processing of information in such codes. As
opposed to studying braiding of anyons, about which much was already known, we
considered the action of locally generated unitary logical gates. Locally generated
logical gates of topological codes are intrinsically fault tolerant because spatially
localized errors remain localized, and therefore correctible. They are also expected
to be much easier to implement than braiding in some settings. Unfortunately, we
find severe limitations on the locally generated logical gates. No code in this class
has a universal set of locally generated gates, and topological codes which support
anyons which are universal for braiding have no non-trivial locally generated gates.
Abelian models have locally generated gates restricted to the Clifford group. We
derive these results by relating logical gates of a topological code to automorphisms
of the Verlinde algebra of the corresponding anyon model.

Although are results are negative, there are ways around them. Firstly, braiding
is known to be universal for some topological codes, although they may be hard
to implement in practice. There is a standard approach Sergey Bravyi and Alexei
Kitaev, 2005, using resource states, to complete the universal gate set for a code
which admits the full (but non-universal) Clifford group. These resource states
cannot be fault-tolerantly generated in the code, but they can be distilled so that many
noisy resource states can be traded for fewer resource states with less noise. The
drawback is that this approach involves very significant overhead, which accounts
for the vast majority of the quibits required in the realistic overhead estimates Austin
G Fowler et al., 2012.

Although in chapter threewefind that two-dimensional topological codes have severe
restrictions on the locally generated gates that can occur, in higher dimensional
topological codes there is considerably more freedom. In chapter four we describe a
three-dimensional topological code for which one can use locally generated unitaries
(along with local measurement) to achieve a universal gate set. Our work is based on
ideas fromBombín’s paperGaugeColor Codes [arXiv:1311.0879v3]. We showhow
to transversally implement the generalized phase gate Rn = diag(1, e2πi/2n) in an
n-dimensional color code, which deviates from the method in the aforementioned
paper, allowing an arguably simpler proof. We describe how to implement the
Hadamard gate H fault-tolerantly by fault-tolerantly switching to another code. In
three dimensions, this yields, together with the transversal CNOT , a fault-tolerant
universal gate set {H,CNOT , R3} without using resource states.
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Finally, in chapter five we ask if code switching like that described in chapter four
involves less overhead than its competitor state distillation. Unfortunately we find
that this type of codeswitching does not appear to offer an overhead advantage. This
is because the third dimensionwhichmust be used to construct the three-dimensional
code has to be filled with many qubits – even more qubits than are required to distill
resource states. As a part of this work, we found error thresholds of 0.3 % and 4.2 %
under circuit-level and phenomenological noise for the two-dimensional color code
on the hexagonal lattice using an efficient decoder. These numbers significantly
close the gap with the surface code, which (still) has the best known circuit level
threshold of ∼ 1 %.
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Small quantum computers

1



2

C h a p t e r 1

A NATURALLY PROTECTED SYMMETRIC HAMILTONIAN

In this chapter we propose the use of n thermal fermionic alkaline-earth atoms in
a flat-bottom trap to robustly implement a spin model which is naturally protected
from noise. The key feature is that the system’s Hamiltonian has parameters which
are independent of the spatial degrees of atomic motion which is not the case for spin
hamiltonians made with other traps or a different type of atom. The hamiltonian
displays two symmetries: the Sn symmetry that permutes atoms occupying different
vibrational levels of the trap and the SU(N ) symmetry associated with N nuclear
spin states. The high symmetry makes the model exactly solvable, which, in turn,
enables the analytic study of dynamical processes such as spin diffusion in this
SU(N ) system. We also show how to use this system to generate entangled states
that allow for Heisenberg-limited metrology.

This highly symmetric spin model should be experimentally realizable even when
the vibrational levels are occupied according to a high-temperature thermal or an
arbitrary non-thermal distribution.

1.1 Background and Motivation
The study of quantum spin models with ultracold atoms Bloch, Dalibard, and
Zwerger, 2008; Bloch, Dalibard, and Nascimbene, 2012 promises to give crucial in-
sights into a range of equilibrium and non-equilibrium many-body phenomena from
quantum spin liquids Balents, 2010 and many-body localization Basko, Aleiner,
and Altshuler, 2006 to quantum quenches Polkovnikov et al., 2011; Richerme et al.,
2014; Jurcevic et al., 2014 and quantum annealing Das and Chakrabarti, 2008.
While other approaches exist Wu, 2008; Simon et al., 2011; Pielawa et al., 2011;
Schauß et al., 2012, the most common approach to implementing a quantum spin
model with ultracold atoms relies on preparing a Mott insulator in an optical lat-
tice, where the internal states of atoms on each site define the effective spin Duan,
Demler, and Lukin, 2003; Bloch, Dalibard, and Zwerger, 2008; Trotzky et al., 2008;
Fukuhara et al., 2013; Greif et al., 2013; Hild et al., 2014; Hart et al., 2015; R. C.
Brown et al., 2015. Virtual hopping processes to neighboring sites and back then
give rise to effective superexchange spin-spin interactions. Since the superexchange
interactions are typically very weak (� kHz) Bloch, Dalibard, and Zwerger, 2008
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(unless the traps are operated near surfaces, which can reduce spacings and increase
energy scales Gullans et al., 2012; Romero-Isart et al., 2013; González-Tudela et al.,
2015), it is a significant challenge in experimental cold atom physics to achieve
temperatures and decoherence rates low enough to access superexchange-based
quantum magnetism.

Since ultracold atoms can be prepared in specific internal (i.e. spin) states with
extremely high precision, spin temperatures that can be realized are much lower
than the experimentally achievable motional temperatures. It is therefore tempting
to circumvent the problem of high motional temperature by constructing a spin
model in such a way that the motional and spin degrees of freedom are effectively
decoupled. We provide a recipe for such a decoupling and hence for realizing spin
models with thermal atoms.

The first crucial ingredient for implementing such a spin model is to depart from
second-order superexchange interactions and use contact interactions to first order
Gibble, 2009; A. M. Rey, A. V. Gorshkov, and Rubbo, 2009; Yu and Pethick, 2010;
Pechkis et al., 2013; C. Deutsch et al., 2010; Maineult et al., 2012; Hazlett et al.,
2013; Martin et al., 2013; Swallows et al., 2011; Koller et al., 2014. As shown
in Fig. 1.1(a), this can be achieved if all atoms sit in different orbitals of the same
anharmonic trap and remain in these orbitals throughout the evolution, which is a
good approximation for weak interactions Martin et al., 2013; Swallows et al., 2011;

a) b)
electronic
state

e = 3P0

g = 1S0

1 NN�1

nuclear
spinall-to-all interactions

Figure 1.1: (a) Contact interactions between atoms in the orbitals of a one-
dimensional infinite square well of width L are all-to-all with equal strength. (b)
Thanks to the nuclear spin I , each of the electronic clock states g and e of fermionic
alkaline-earth atoms can offer N degenerate states, with N ≤ 2I + 1.
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Gibble, 2009; A. M. Rey, A. V. Gorshkov, and Rubbo, 2009; Yu and Pethick, 2010.
In that case, the occupied orbitals play the role of the sites of the spin Hamiltonian.
However, because of high motional temperature in such systems, every run of the
experiment typically yields a different set of populated orbitals and hence a different
spin Hamiltonian Martin et al., 2013. Thus, unless the dynamics are constrained to
states symmetric under arbitrary exchanges of spins Martin et al., 2013, every run
of the experiment would lead to different spin dynamics.

The second crucial ingredient of our proposal to decouple spin and motion is
therefore to use an infinite one-dimensional square-well potential as the anharmonic
trap, with the motion frozen along the other two directions. The interaction terms in
the spin Hamiltonian H are proportional to the squared overlap of pairs of distinct
sinusoidal orbitals, and are thus all of equal strength. Therefore Ĥ is independent
of which orbitals are occupied, leading to spin-motion decoupling and temperature
independent predictions, as well as opening up the possibility of precise control.
Moreover, since Ĥ is invariant under any relabeling of the n occupied orbitals, Ĥ
has Sn permutation symmetry.

Alkaline-earth atoms enrich the symmetry. In such atoms, the vanishing electronic
angular momentum J in the electronic clock states g = 1S0 and e = 3P0 results in
the decoupling of the nuclear spin I from J [Fig. 1.1(b)]. This endows Ĥ with an
additional SU(N) spin-rotation symmetry, where N can be tuned between 2 and
2I + 1 by choosing the initial state A. V. Gorshkov, Hermele, et al., 2010; M. A.
Cazalilla, Ho, and Ueda, 2009; X. Zhang et al., 2014; Scazza et al., 2014; Guido
Pagano et al., 2014; Cappellini et al., 2014. Restricted to g, Ĥ is just the sum of
spin-swaps over all pairs of occupied orbitals and can be diagonalized in terms of
irreducible representations of the group of symmetries G = Sn × SU(N).

Motional-temperature-insensitive spin models can also be realized using long-range
interactions between ions in Paul traps Sorensen and Klaus Molmer, 1999, Penning
traps Richerme et al., 2014; Jurcevic et al., 2014; Britton et al., 2012, and also
between molecules Micheli, Brennen, and Zoller, 2006; Barnett et al., 2006; A. V.
Gorshkov, Manmana, et al., 2011; Yan et al., 2013 or Rydberg atoms Schauß et al.,
2012 pinned at different sites of an optical lattice. However, the realization of
SU(N)-symmetric spin models in such systems requires a great deal of fine tuning
Alexey V. Gorshkov, Hazzard, and Ana Maria Rey, 2013.

Motivated by the exploration of howquantum systems evolve after quantumquenches
and whether (or how) they equilibrate and/or thermalize Eisert, Friesdorf, and
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Gogolin, 2015, especially in the presence of long-range interactions Richerme et
al., 2014; Jurcevic et al., 2014, we first study spin diffusion Sommer et al., 2011;
Koschorreck et al., 2013; Yan et al., 2013 in a system of g atoms only. Due to
crucial use of representation-theoretic techniques, our calculations are not only ex-
ponentially faster than naive exact diagonalization but also, for N = 2, yield a
closed-form expression for all n. We then present a protocol that employs both
g and e states to create Greenberger-Horne-Zeilinger (GHZ) states Greenberger,
Horne, and Zeilinger, 1989, which could be used to approach the Heisenberg limit
for metrology and clock precision Bollinger et al., 1996.

1.2 Spin Hamiltonian: ground electronic level only
A single mass-M fermionic alkaline-earth atom (for now, in its ground electronic
state g) trapped in a 1D spin-independent potential V (x) has real orbitals φj(x) with
energies Ej satisfying [−(~2/2M)∂2/∂x2 + V (x)]φj(x) = Ejφj(x). The operator
ĉ†jp creates an atom from the vacuum in φj(x) with nuclear spin state p ∈ 1, 2, ..., N .
For n identical atoms in the same potential with contact s-wave interactions, the
Hamiltonian is Ĥ =

∑
jpEj ĉ

†
jpĉjp +

∑
p<q

∑
jkj′k′ Ujkj′k′ ĉ

†
jpĉj′pĉ

†
kq ĉk′q, where

Ujkj′k′ = 4π~ω⊥agg
∫ ∞
−∞

dxφj(x)φk(x)φj′(x)φk′(x), (1.1)

and agg is the 3D-scattering length, and a potential with frequency ω⊥ freezes out
transverse motion.

To obtain the desired highly symmetric Hamiltonian, we specialize to the case
where V (x) is a width-L infinite square well, with well-known eigenstates φj(x) =√

2/L sin(jπx/L) for 0 ≤ x ≤ L, with energy Ej = (πj/L)2/2M . Then Ujkj′k′
is zero unless (i): (j ± k) = ±(j′ ± k′); to first order in the interaction, we
can also set Ujkj′k′ → 0 unless

∑
jpEj ĉ

†
jpĉjp is conserved, which occurs when

(ii): j2 + k2 = j′2 + k′2. Conditions (i) and (ii) are both satisfied if and only if
(j′, k′) = (j, k) or (k′, j′) = (j, k). As the system conserves orbital occupancies, it
can be described by a spin model. Assuming orbitals are at most singly occupied
(n̂j =

∑
p ĉ
†
jpĉjp ≤ 1 for all j) 1, the spin Hamiltonian is:

Ĥ = −U
∑
j<k

ŝjk, (1.2)

1For temperatures far from degeneracy, the probability of multiple occupancy will be small.
Alternatively, absence of multiple occupancy is guaranteed by Pauli exclusion for nuclear-spin
polarized states.
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where ŝjk ≡
∑

pq ĉ
†
jpĉjq ĉ

†
kq ĉkp swaps spins j and k, and the sum is over occupied

orbitals. Crucially, U ≡ 4πagg~ω⊥/L is independent of j and k. We dropped a
constant

∑
j Ej + n(n− 1)U/2, which will have no effect on spin dynamics. For a

fixed set of occupied orbitals, Ĥ hasNn basis states |p1, p2, ..pn〉with pj ∈ 1, ..., N .

1.3 Exact eigenenergies and eigenstates
ForN = 2, the spin-swap can bewritten in terms of the Pauli operators: ŝjk = 1/2+

(σ̂xj σ̂
x
k+σ̂yj σ̂

y
k+σ̂

z
j σ̂

z
k)/2, allowingEq. (1.2) to bewritten as Ĥ = −U

[
~S2 + n

4
(n− 4)

]
,

where ~S = 1
2

∑
j ~σj . The eigenstates of Ĥ for N = 2 are therefore the well-known

Dicke Dicke, 1954 states |S, Sz, k〉, with energies

E(S) = −U
[
S(S + 1) +

n

4
(n− 4)

]
.

The quantum number k labels distinct states with the same ~S2 and Ŝz eigenvalues.
We now describe the general case for arbitrary N .

The Hamiltonian in equation (1.2) has two obvious symmetries: permutations in Sn
of the n occupied orbitals, and application of the same unitary in SU(N) to all of
the spins. Define a unitary Û(V̂ , σ) which permutes occupied orbitals by σ ∈ Sn
and implements the spin rotation V̂ ∈ SU(N):

Û(V̂ , σ) |p1〉|p2〉...|pn〉 ≡ V̂ |pσ−1(1)〉V̂ |pσ−1(2)〉...V̂ |pσ−1(n)〉. (1.3)

These unitaries (for all V̂ ∈ SU(N) and σ ∈ Sn) form a well-understood repre-
sentation of the group G = Sn × SU(N). Each unitary Û(V̂ , σ) commutes with
Ĥ = −U∑j 6=k ŝjk. Irreps of SU(N) and Sn are both uniquely labeled by Young
diagrams. A Young diagram is a pictorial representation of ~λ consisting of a row of
λ1 boxes above a row of λ2 boxes, which is above a row of λ3 boxes etc. It is also
useful to define ~γ = (γ1, γ2, ..., γλ1) as the column heights of the Young diagram ~λ.
Figure 2.3(a) shows an example with n = 7 and N = 3.



7

a) b) c)
3 1 0 0

6

1

0

1

2

3

4

5

6 7 |1i
|2i
|3i

|1i |1i |1i
|2i

�6U �2U 0U 2Ud)

Sn

SU(N)

de
ge

ne
ra

cy
/N

n

e)

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

-450 -400 -350 -300 -250 -200 -150 -100

10-9

10-6

10-3

Energy E(~�)/U

Figure 1.2: (a) An example Young diagram ~λ = (4, 2, 1) [with ~γ = (3, 2, 1, 1)]
for n = 7, N = 3. (b) A labeling of boxes in ~λ from 1 to n, increasing down
columns, starting at the left. (c) Orbitals associated with boxes in the pth row of the
Young diagram are put in spin state |p〉 to form basis state |T 〉 = |1231211〉 [spins
ordered as in (b)], used to construct eigenstate |~λ〉 = |A{123}〉|A{12}〉|11〉 with
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Young diagrams for n = 4 and N = 3, with energies above. Below each diagram,
every eigenstate is represented by a colored box: starting with any given eigenstate,
rotations in SU(N) generate linear combinations of eigenstates in the same column,
while permutations in Sn generate linear combinations of eigenstates in the same
row. Representative states are found using the prescribed construction to be |1111〉,
(|12〉− |21〉) |11〉, (|12〉− |21〉)(|12〉− |21〉), and (|123〉+ |312〉+ |231〉− |132〉−
|213〉 − |321〉) |1〉, respectively. (e) Spectrum for n = 30 with N = 2 (red), and
N = 3 (blue).
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A Young diagram ~µ labels an Irrep of SU(N) if and only if it has at most N rows:
~µ = (µ1, µ2, ..µN). On the other hand, a Young diagram ~ν, labels an Irrep of Sn if
and only if its elements sum to n:

∑
i νi = n.

Each irrep of the product group G = Sn × SU(N) is the tensor product of an irrep
of SU(N) and an irrep of Sn and is therefore uniquely labeled by a pair (~µ, ~ν). A
consequence of Schur-Weyl duality is that representation (1.3) block-diagonalizes
into exactly one copy of each irrep ofG satisfying ~µ = ~ν, and no other irreps Bacon,
I. L. Chuang, and Harrow, 2007; Fulton and Harris, 1991. Therefore for each Young
diagram ~λ = (λ1, λ2, .., λN) such that

∑
i λi = n, there is a subspace of constant

energy E(~λ). One can form an unnormalized projection operator Π̂L(~λ) into the ~λ
subspace Fulton and Harris, 1991:

Π̂L(~λ) =
∑

c ∈ col(T )
r ∈ row(T )

sgn(c) Û(Î , c) Û(Î , r). (1.4)

Here, L(~λ) is the labeling of boxes in the Young diagram ~λ from 1 to n as shown
in Fig. 2.3(b), and row(L) (col(L)) is the group of all permutations of the numbers
1 to n that preserve the contents of rows (columns) of L(~λ). Applying Π̂L(~λ) to
any state that it does not annihilate returns an eigenstate of energy E(~λ). For
concreteness we use |T 〉 ≡ |1, 2, ..., γ1〉 |1, 2, ..., γ2〉... |1, 2, ..., γλ1〉, where we also
define ~γ = (γ1, γ2, ..., γλ1) as the column heights of the Young diagram ~λ. For each
~λ we obtain an explicit eigenstate: |~λ〉 = Π̂L(~λ)|T 〉. Now we describe how to obtain
the eigenvalue E(~λ) such that:

Ĥ|~λ〉 = E(~λ)|~λ〉. (1.5)

Premultiplying by 〈T | we obtain: E(~λ) = 〈T |Ĥ|~λ〉 = −U∑j 6=k〈T |ŝjk|~λ〉, noting
that 〈T |~λ〉 = 1. For j, k in the same column of the labeled Young diagram L(~λ),
we know that ŝjk|~λ〉 = −|~λ〉. Similarly for j, k in the same row of L(~λ) we have
〈T |ŝjk = 〈T |. Thus pairs (j, k) in columns contribute −1 to E(~λ) and pairs (j, k)

in rows contribute +1. The number of such pairs can be counted, hence:

E(~λ)/(−U) =
N∑
i=1

(
λi
2

)
−

λ1∑
j=1

(
γj
2

)
+

∑
{j 6=k}diagonal

〈T |ŝjk|~λ〉, (1.6)

The swap ŝjk, where j and k are neither in same column nor in same row in L(~λ),
can always be written as ŝjk = ŝjmŝkmŝjm = ŝkmŝjmŝkm, where m is chosen
such that (j,m) and (k,m) lie in a row and a column of L(~λ), respectively (it
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suffices to consider the case j > k). Therefore, 〈T |ŝjk|~λ〉 = 〈T |ŝkmŝjm|~λ〉 =

−〈T |ŝkmŝjm|~λ〉 = 0, implying E(~λ)/(−U) =
∑N

i=1

(
λi
2

)
−∑λ1

j=1

(
γj
2

)
. Therefore

the energy of the Hamiltonian is simply the number of ways of choosing two boxes
in the same row of ~λ, minus the number of ways of choosing two boxes in the
same column. This is in line with the intuition that the swap picks up −U for each
symmetric pair and +U for each antisymmetric pair in the Young diagram. In terms
of ~λ,

E(~λ) = −U
2

N∑
i=1

(λi − 2i+ 1)λi. (1.7)

Figure 2.3(d) illustrates the eigenvalues and eigenstates of Ĥ for the simple case
of n = 4 and N = 3, along with the corresponding Young diagrams. There is
an equivalence for the SU(2) case between Young diagram (λ1, λ2) and angular
momentum quantum number S given by S = (λ1 − λ2)/2 = (2λ1 − n)/2.

Now we show how to create an eigenstate in any ~λ-subspace. First consider the
basis state: |T 〉 ≡ |1, 2, ..., γ1〉 |1, 2, ..., γ2〉... |1, 2, ..., γλ1〉, which is chosen by
associating orbitals with boxes of the Young diagram as in Fig. 2.3(b), and putting
those orbitals in spin states as in Fig. 2.3(c). We form |~λ〉 (which is one of many
eigenstates in the ~λ-subspace) by antisymmetrizing |T 〉 over orbitals associated with
boxes in each column of ~λ:

|~λ〉 = |A{12...γ1}〉|A{12...γ2}〉...|A{12...γλ1}〉, (1.8)

where A{...} antisymmetrizes its argument, for example: |A{123}〉 = |123〉 +

|312〉 + |231〉 − |132〉 − |321〉 − |213〉. The normalization constant is fixed by
〈~λ|~λ〉 = γ1! γ2! ...γλ1 !.

To understand and label the other eigenstates in the ~λ-subspace, we note that there
are three (equivalent) views of how the full Nn dimensional Hilbert space H de-
composes. Firstly, H decomposes into a single copy of each ~λ-irrep of the group
Sn×SU(N) for each valid Young diagram ~λ. Secondly,H decomposes into ‖~λSn‖
copies of each ~λ-irrep of SU(N) for each valid Young diagram ~λ. Thirdly, H de-
composes into ‖~λSU(N)‖ copies of each ~λ-irrep of Sn for each valid Young diagram
~λ. Here, ‖~λSn‖ and ‖~λSU(N)‖ are the dimensions of ~λ irreps of Sn and SU(N),
respectively.

An instructive picture is that of Schur states represented by boxes, and grouped
together into blocks of equal ~λ [Fig. 2.3(d)]. Renaming the state we constructed
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|~λ, 1, 1〉 = |~λ〉 in the ~λ-subspace, one can obtain the set of orthonormal states
{|~λ, 1, b〉} for b = 1, 2, ..., ‖~λSn‖ from linear combinations of Û(Î , σ)|~λ, 1, 1〉 forσ ∈
Sn. Similarly, from each state |~λ, 1, b〉, one can form the set of orthonormal states
{|~λ, a, b〉} for a = 1, 2, ..., ‖~λSU(N)‖ from linear combinations of Û(V̂ , I)|~λ, 1, b〉
for V̂ ∈ SU(N). ForN = 2, this picture is the familiarDicke ladder, in which states
are grouped into blocks of equal S, with Sz increasing downwards and k increasing
to the right.

The dimensions of each block can be calculated using the standard hook-length
formulae Sagan, 2000 for any given Young diagram ~λ. In particular, the ground-
state spaces for U > 0 (ferromagnetic interaction) and U < 0 (antiferromagnetic
interaction) are ~λF = (n, 0, 0, ..., 0) and ~λAF = (n/N, n/N, ..., n/N) and have
dimensions DF and DAF , respectively:

DF =
(n+N − 1)!

n! (N − 1)!
, DAF =

n!

[(n/N)!]N

N−1∏
i=1

i!

[n/N + i]
. (1.9)

1.4 Robustness to imperfections
In this Section, we consider deviation from a perfect infinite square-well potential
V (x). For simplicity, we consider the case in which all atoms are in the ground elec-
tronic state. The interaction Hamiltonian Eq. (1.2) becomes: Ĥ ′ = −∑j<k Ujkŝjk,
where Ujk = (UL/2)

∫
φ2
j(x)φ2

k(x)dx, and φj(x) is a single-particle orbital, which
is a sine function in the ideal case. As Ĥ ′ is a weighted sum of terms ŝjk and there-
fore has SU(N) symmetry, it cannot mix states in different ~λ-subspaces. However
as Ĥ ′ does not exhibit Sn symmetry, the ~λ subspace does not have a single energy -
but breaks intoD(~λ) energy subspaces,D(~λ) is the dimension of the ~λ irrep of Sn.
We write the eigenenergies of Ĥ ′ as E ′(~λ, b), with b labeling distinct energies.

Provided that the inhomogeneity in Ujk is small, i.e. that |Ujk−U | � U , the energy
splittings E ′(~λ, b) within each ~λ subspace will be small compared to energy separa-
tions between different ~λ subspaces. Exact determination of E(~λ, b) can be carried
out by projecting Ĥ ′ onto the ~λ subspace and solving the resulting matrix equation,
which is computationally difficult as the matrices have dimension O(exp(n)). Here
we are satisfied with an indication of the magnitude of deviation from the ideal
energy eigenvalues. We seek the offset: ∆E(~λ) ≡ 1

D(~λ)

∑D(~λ)
b=1

[
E ′(~λ, b)− E(~λ)

]
and the variance: σ2(~λ) ≡ 1

D(~λ)

∑D(~λ)
b=1

[
∆E(~λ, b)−∆E(~λ)

]2

. Defining E(~λ0) =
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−Un(n− 1)/2, where ~λ0 = (n, 0, 0, .., 0), one can show that

∆E(~λ) = −
(
E(~λ)

E(~λ0)

)∑
j<k

(Ujk − U). (1.10)

Note that
∣∣∣ E(~λ)

E(~λ0)

∣∣∣ ≤ 1 for all ~λ. The main technical lemma used to prove this is that

for any operator Ô,

D(~λ)∑
b=1

〈~λ, b|Ô|~λ, b〉 =
D(~λ)

n!

∑
σ∈Sn
〈~λ, b′|σ−1Ôσ|~λ, b′〉, (1.11)

where the latter sum is over all permutations σ in the symmetric group Sn. Modeling
Ujk as a set of n(n − 1)/2 independent random variables with mean U , one can
similarly show that

σ2(~λ) =

1−
(
E(~λ)

E(~λ0)

)2
∑
j<k

〈(Ujk − U)2〉, (1.12)

where 〈〉 indicates that we have taken the ensemble average over realizations
footnote2 of ∆Ujk, which simply allows us to set 〈∆Ujk∆Uj′k′〉 = 0 where
j, k 6= j′, k′. These results indicate that the deviations in energy levels from those
for the exact case caused by inhomogeneity in Ujk generically behave as ∼ n∆U .
This is because, to estimate ∆E(~λ), we assume that

∑
j<k(Ujk − U) is the sum of

n(n− 1)/2 uncorrelated positive and negative terms each of magnitude∼ ∆U , and
similarly for the variance σ2(~λ), except all terms are positive. We therefore expect
that, in order to see p revivals of the kind shown in Fig. 1.3 of the main text, we need
to pick up small phase errors n∆Ut . 1 over time t ∼ p/U , which corresponds to
∆U/U . 1/(np).

However, note that most symmetric ~λ subspaces (which have E(~λ)/E(~λ0) close
to unity), experience less splitting due to inhomogeneity in Ujk, although they do
experience an overall shift. For the GHZ protocol, the ~λ subspaces involved are
(n, 0), (n − 1, 1) and (n − 2, 2), which will shift relative to one another under
inhomogeneity in Ujk by an amount independent of n for large n.

To obtain some concrete estimates of the effects of an imperfect square-well poten-
tial, we consider the following example: a perfect square well, plus an additional
harmonic perturbing potential V1(x) = αx2 (which in effect “rounds off" the bound-
ary of the well somewhat). With first-order corrections, the single-particle wave
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functions φj(x) are

φj(x) =

√
2

L
sin (jπx/L) +

8

π2

(
αL2/

~2π2

2ML2

) ∑
k k 6=j

jk(−1)j+k

(j2 − k2)3

√
2

L
sin (kπx/L).

Substitution intoUjk = UL
∫
φ2
j(x)φ2

k(x)dx yields exact expressions for the first or-
der corrections toU , which (for all j andk) satisfy: |Ujk−U | < 10−2

(
αL2/ ~2π2

2ML2

)
U+

O(α2). The inhomogeneity is therefore strictly less than one percent if the mag-
nitude of the perturbation is approximately of the same order as the characteristic
energy of the square well. The size of the deviations fall off at the fourth power of
j, k, such that for ensembles of atoms, ∆U is typically much better than this bound
suggests.

1.5 Experimental proposal: spin diffusion dynamics
Spin diffusion is the process by which evolution under a generic spin Hamiltonian
causes initially ordered states to diffuse Sommer et al., 2011; Koschorreck et al.,
2013; Yan et al., 2013. We take initial state |ψ(0)〉 = |1〉⊗m1|2〉⊗m2 ...|N〉⊗mN .
Note that any computational basis state can be changed to this form by reordering
occupied orbitals. We consider the time evolution of observable Q̂ =

∑m1

j=1 |1〉j〈1|j:
the number of the firstm1 orbitals in spin-state |1〉. This is the simplest observable
capturing the broken symmetry of the initial state. The expectation of Q̂ evolves
according to: Q(t) ≡ 〈ψ(0)|eiĤtQ̂e−iĤt|ψ(0)〉, omitting ~ where convenient from
here on.

Calculation of such a time evolution for a generic Hamiltonian requires matrix diag-
onalization, which scales exponentially with n (for fixedN ). Using the symmetry of
Hamiltonian (1.2) and the Wigner-Eckart theorem for SU(N), we obtain an explicit
sum (see section 1.6) for Q(t) in terms of Clebsch-Gordan and recoupling coeffi-
cients. For the case ofN = 2, with initial state ofm1 = m spin up andm2 = n−m
spin down orbitals, using well-known closed forms for the Clebsch-Gordan and
recoupling coefficients:

Q(t) = m+

n/2∑
S=|n−2m|/2+1

γ(S)[cos (2SUt)− 1], (1.13)

where γ(S) = 4S2−(n−2m)2

4S

(
n

n/2+S

)
/
(

n
n−m

)
. ForN > 2, closed forms for the required

coefficients are not known to the authors, but can be calculated efficiently using
standard algorithms as in Ref. Alex et al., 2011. In Fig. 1.3, we compare the
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evolution of the same operator and total particle number for initial states withN = 2

spin states and N = 3 spin states. The oscillations are much less pronounced and
spin diffusion occurs more fully (Q drops lower) for the latter state. With this model,
looking at times away from the multiples of the revival time 2π/U , one could study
apparent near-equilibration of some observables (such as Q in the N = 3 case)
acting on the first m1 spins. Perturbations could be added to the system to remove
revivals and potentially allow for the thermalization of the firstm1 spins.

Ut
0 p

2 p 3 p
2 2 p

2

4

6

8

10 SU(2)

SU(3)

Q(t)

Figure 1.3: Exact time evolution under Ĥ of an operator Q̂ =
∑10

j=1 |1〉j〈1|j , which
counts the number of the first ten orbitals in spin state |1〉. Two initial states are
compared: |1〉⊗10|2〉⊗20 for SU(2) and |1〉⊗10|2〉⊗10|3〉⊗10 for SU(3). Although the
evolution is the same for short times, the SU(3) case results in significantly more
diffusion of spin state |1〉 out of the first four orbitals at later times. Since all E(~λ)
are integer multiples of U , complete revival occurs at Ut = 2π. In the SU(2)
case, the oscillation is dominated by the smallest S in Eq. (1.13). This is consistent
with the fact that for fixed Sz, the size of the eigenspaces decreases with S, causing
overlap to be larger with subspaces of small S generically.

1.6 Derivation of spin-diffusion dynamics
In this Section, we present the derivation of the spin-diffusion dynamics, first for
N = 2and then for general N .

We are concerned with observable Q̂ =
∑m1

j=1 |1〉j〈1|j . In this section, we use the
notation that for any operator Â, A(t) ≡ 〈ψ(0)|eiĤtÂe−iĤt|ψ(0)〉, where |ψ(0)〉 =

|1〉⊗m1|2〉⊗m2 ...|N〉⊗mN . As most readers are assumed to be familiar with spin-1/2
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systems, we outline the N = 2 case first before covering the general case more
abstractly.

For N = 2, we can choose the angular momentum (Dicke) basis to span the
Hilbert space: |S, Sz, k〉, which diagonalizes the Hamiltonian: Ĥ|S, Sz, k〉 =

−US(S + 1)|S, Sz, k〉 (dropping a constant energy). The initial state is |ψ(0)〉 =

|↑〉⊗m |↓〉⊗n−m where we used |↑〉 and |↓〉 in place of |1〉 and |2〉. This state can be
understood as a tensor product of two Dicke states on subsets of spins: |ψ(0)〉 =

|m/2,m/2〉⊗|(n−m)/2,−(n−m)/2〉, where there is no need for a k quantumnum-
ber since states with |Sz| = S have no additional degeneracy. The tensor product of
two angular momentum states can be written as a sum of “total” angular momentum
states: |ψ(0)〉 =

∑
S C(S)|S, Sz=m−n/2, α(S)〉, whereC(S) is a Clebsch-Gordan

coefficient, and α(S) represents the fact that |S, Sz=m−n/2, α(S)〉 is some specific
linear combination of Dicke states with the same S and Sz, but different k’s. Hence,
Q(t) =

∑
S,S′ C(S ′)∗C(S)eiUt[S(S+1)−S′(S′+1)]〈S ′, Sz, α(S ′)|Q̂|S, Sz, α(S)〉. Note

that Q̂ = mÎ+ Ŝzm with ~Sm =
∑m

j=1
~Sj , and Ŝzm is the 0-component of the (S = 1)-

spherical tensor T̂ ≡ {Ŝ−1
m , Ŝzm, Ŝ

+1
m }, with Ŝ±1

m = ∓(Ŝxm ± iŜym)/
√

2. We first
apply the Wigner-Eckart theorem to write the matrix element in terms of the re-
duced matrix element and a Clebsch-Gordan coefficient. Then, since T̂ ≡ T̂m ⊗ Î
acts only on the firstm spins, we rewrite Rose, 1957; J. Brown and Carrington, 2003
the reduced matrix element on the full system in terms of one on the first m spins
and a recoupling coefficient:

〈S ′, S ′z, α(S ′)|Q̂|S, Sz, α(S)〉 = mδS,S′ (1.14)

+〈m/2||T̂L||m/2〉
{

1 m/2 m/2

(n−m)/2 S ′ S

}
(〈1, 0| ⊗ 〈S, Sz|) |S ′, S ′z〉,

where (〈1, 0| ⊗ 〈S, Sz|) |S ′, S ′z〉 is aClebsch-Gordan coefficient and 〈m/2||T̂L||m/2〉
is the reduced matrix element of T̂L on the S = m/2 state of the firstm spins. The

recoupling coefficient

{
SA SB SAB

SC S SBC

}
≡ 〈S, Sz, (SAB, SC)|S, Sz, (SA, SBC)〉

is the overlap between two states of given S and Sz formed from the tensor product
of three subsystems with SA, SB and SC in two different ways: by combining A
and B to form SAB first, and by combining B and C to form SBC first. Substitution
of the Clebsch-Gordan and recoupling coefficients into the matrix element gives
Eq. (1.13).

Now we proceed with the calculation for arbitrary N , simplifying our notation
by dropping hats and vectors. The initial state [see Fig. 1.4(a)] can be written
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Figure 1.4: (a) Initial state |ψ(0)〉 can be written in terms of energy eigenstates:
|ψ(0)〉 = |11...1〉|22...2〉...|NN...N〉 =

∑
λ,a,αC(λ, a, α)|λ, a, α〉. (b) Key simpli-

fications arise in the matrix element 〈λ′, a′, α|Q|λ, a, α〉 (which is used to calculate
Q(t)) since: Q̂ is a component of a “spherical tensor” for SU(N) (allowing us to
make use of the Wigner-Eckart theorem) and has support only on the firstm1 sites.
(c) The recoupling coefficient is defined by taking the direct product of three irreps
A, B and C, and finding the overlap between two copies of the same irrep found
in two ways: by combining A and B first (top), and by combining B and C first
(bottom).

as a direct product of spin-symmetric states |ψ(0)〉 = ⊗m1
j=1|1〉 ⊗m2

j=1 |2〉... ⊗mNj=1

|N〉 = |κ1, a1〉|κ2, a2〉...|κN , aN〉, where ai labels the particular state in the κi ≡
(mi, 0, ...0) irrep which corresponds to |i〉⊗mi . The product of κ = (m, 0, ..., 0)

with any irrep λ′ has no multiplicity Bacon, I. L. Chuang, and Harrow, 2007:
|κ, a〉|λ′, a′〉 =

∑
λ′′,a′′ C(λ′′, a′′)|λ′′, a′′〉, where each irrep λ′′ appears at most once

and C(λ′′, a′′) ≡ 〈λ′′, a′′| (|κ, a〉|κ′, a′〉) is a Clebsch-Gordan coefficient. Applying
this iteratively, starting from the right, |ψ(0)〉 =

∑
λ,a,αC(λ, a, α)|λ, a, α〉, where

α labels the set of intermediate irreps, C(λ, a, α) can be expressed in terms of
Clebsch-Gordan coefficients, and |λ, a, α〉 are orthogonal eigenstates: H|λ, a, α〉 =

E(λ)|λ, a, α〉. Note: a ∈ 1, 2, ..., dim[λSU(N)] labels a basis state within the λ-
irrep of SU(N), and each α labels one distinct copy (out of dim[λSn ] copies) of
the λ-irrep of SU(N) in the Hilbert space H = (CN)⊗n (all copies of irrep λ
of SU(N) in H sit inside a single copy of irrep λ of Sn × SU(N)). Therefore:
Q(t) =

∑
λ,λ′,a,a′,αC

∗(λ′, a′, α)C(λ, a, α)ei[E(λ′)−E(λ)]t〈λ′, a′, α|Q|λ, a, α〉, where
we set α′ = α since Q has support only on the firstm1 spins. We now outline tools
to determine the matrix element 〈λ′, a′, α|Q|λ, a, α〉.

The states |λ, a, α〉 transformaccording tomatrix irrepDλ ofSU(N): V ⊗n|λ, a, α〉 =∑
a′ D

λ
a′a(V )|λ, a′, α〉. For each N , there is a set of single-spin operators which

generate SU(N): τ adj ≡ {t1, t2, ..., tN2−1} which transform according to Dadj (the
adjoint irrep λadj): V ⊗ntaV †⊗n =

∑
a′ D

adj
a′a(V )ta′ . The set {t1, t2, ..., tN2−1, Î}

forms a basis for N × N Hermitian matrices: therefore, any single-atom spin ob-
servable can be written as q̂ = c0Î +

∑
a cata for some real constants ca. Therefore
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〈λ′, a′, α|Q|λ, a, α〉 = c0 +
∑

a′′ ca′′〈λ′, a′, α|T
adj
a′′ |λ, a, α〉, where T adj

a =
∑m1

j=1 ta j

and Q =
∑m1

j=1 |1〉j〈1|j ≡
∑m1

j=1 q̂j . We now prove a generalization of Eq. (1.14) to
determine the matrix element 〈λ′, a′, α′|T adj

a′′ |λ, a, α〉 [see Fig. 1.4(b)]. We will need
the Wigner-Eckart theorem and recoupling coefficients for SU(N):

〈λ′, a′, α′|T λ′′a′′ |λ, a, α〉 =
∑
I

(〈λ′, a′, I||λ′′, a′′〉|λ, a〉) 〈λ′, α′||T λ′′ ||λ, α〉I , (1.15){
λA λB λAB

λC λ λBC

}
IAB ,IC ;IBC ,IA

≡ 〈λ, a, (λAB, IAB, IC)|λ, a, (λBC , IBC , IA)〉. (1.16)

Note thatmultiplicityI appears in theWigner Eckart theorem forN > 2 [Eq. (1.15)],
since the tensor product of irreps can includemultiple appearances of the same irrep.
The recoupling coefficient defined in Eq. (1.16) relates two copies of the same irrep
λ formed from the tensor product of three irreps: λA, λB, and λC , but combined
in different orders [see Fig. 1.4(c)]. To define notation: λA and λB are combined
to make λAB, whose different copies are labeled by IAB, while IC labels different
copies of λ when λAB is combined with λC .

One can decompose |λ, a, α〉 =
∑

a1,a2
Cλ,aκ1,a1;λ2,a2

|κ1, a1〉|λ2, a2〉, where λ2 is spec-
ified by α, and

Cλ,aκ1,a1;λ2,a2
≡ (〈κ1, a1|〈λ2, a2|)|λ, a, α〉 (1.17)

Substituting into 〈λ′, a′, α|T adj
a′′ |λ, a, α〉 and applying Eq. (1.15) to the firstm1 spins:

〈λ′, a′, α|T adj
a′′ |λ, a, α〉 = 〈κ1||Tadj||κ1〉

∑
a1,a′1,a2

C̄λ′,a′κ1,a′1;λ2,a2
Cλ,aκ1,a1;λ2,a2

Cκ1,a1

κ1,a′1;λadj,a′′

= 〈κ1||Tadj||κ1〉
∑
I1

{
λadj κ1 κ1

λ2 λ′ λ

}∗
I1

Cλ′,a′,I1λadj,a′′;λ,a. (1.18)

The second line represents the generalization of Eq. (1.14). To derive Eq. (1.18),
we return to the abstract scenario of three irreps λA, λB and λC used to define
recoupling coefficients in Eq. (1.16). First write |λ, a, (λAB)〉 as a linear combination
of |λ, a, (λBC , IA)〉 with Eq. (1.16) as coefficients in the special case where λB =

λAB = κ (allowing us to drop IAB, IC and IBC). Rewriting states on both sides
as the direct product of states in each of the three subsystems, multiplying by
CλC ,aCλ′BC ,aBC ;λB ,aB

, summing over λ′BC , and using orthogonality gives:∑
aAB ,aB ,aC

Cλ,aλAB ,aAB ;λC ,aC
CλAB ,a1AB

λA,aA;λB ,aB
CλC ,aCλBC ,aBC ;λB ,aB

=

∑
IA

{
λA κ κ

λC λ λBC

}∗
IA

Cλ,aλA,aA;λBC ,aBC
. (1.19)
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Using Eq. (1.18), the time evolutionTa(t) ≡ 〈ψ(0)| exp (iHt)Ta exp (−iHt)|ψ(0)〉,
and therefore Q(t), is written as an efficiently computable sum (containing poly(n)

terms Alex et al., 2011, each calculated in poly(n) operations):

Ta(t) = 〈κ1||Tadj||κ1〉
∑

λ′1,a
′
1,λ1,a1;α

C∗(λ′1, a
′
1, α) C(λ1, a1, α)e(i[E(λ′1)−E(λ1)]t) (1.20)

×
∑
I1

{
λadj κ1 κ1

λ2 λ′1 λ1

}
I1

[〈λ′1, a′1, I1| (|λadj, j〉|λ1, a1〉)] .

The group-theoretic method presented in this Section was crucial for obtaining the
analytical result for SU(2) [Eq. (1.13)]. It is also crucial for doing numerics for
SU(N > 2) for large n. However, for sufficiently small n, such as the one shown in
Fig. 3, one can do the SU(N > 2) numerics using the following simpler method.
One first constructs a complete basis of fully symmetric states for the firstm1 spins,
for the next m2 spins, for the next m3 spins, etc... Then one combines them into a
basis for the full system and keeps only those states that have m1 1’s, m2 2’s, m3

3’s, etc... It is straightforward to evaluate the Hamiltonian in this reduced basis and
then numerically exponentiate it to calculate time evolution.

1.7 Spin Hamiltonian: ground and first excited electronic levels
In this section, we derive theHamiltonian describing identical (bosonic or fermionic)
multi-component particles in an infinite square well interacting via s-wave interac-
tions. We then specialize to the case of fermionic alkaline-earth atoms. This section
generalizes the hamiltonian derived in Section 1.2 to the case of multiple energy
levels, which will be needed in the following section on the proposal for producing
GHZ states.

Contact interactions between two identical multi-component fermionic (bosonic)
atoms are described by the Hamiltonian

Ĥ12
int = 4π~ω⊥δ(x1 − x2)⊗ Â, (1.21)

where the operator Â only has a physical effect on exchange antisymmetric (sym-
metric) two-particle internal states because exchange symmetric (antisymmetric)
spatial states do not interact. In second quantized form, where ĉ†jr creates an
atom in internal state r and orbital φj(x) with non-interacting energy Ej , and
Wk′j′jk = (4π~ω⊥)

∫ L
0
dx φk′(x)φj′(x)φj(x)φk(x). The interaction becomes:

Ĥint =
∑

j′,k′,j,kWk′j′jk
∑

r′,s′,r,s〈s′, r′|Â|r, s〉 ĉ†j′r′ ĉ†k′s′ ĉjrĉks. Specializing to the
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infinite square well of width L, to first order in the interaction, only terms satisfying
(j′, k′) = (j, k) or (j′, k′) = (k, j) survive. Additionally assuming no multiple
occupancies, we obtain Wkjjk = Wjkjk = W ≡ (4π~ω⊥)/L for j 6= k, and the
Hamiltonian becomes:

Ĥ =
∑
j,r

Ej ĉ
†
jrĉjr (1.22)

+W
∑
j,k

∑
r′,s′,r,s

〈s′, r′|Â|r, s〉
(
ĉ†jr′ ĉ

†
ks′ ĉjrĉks + ĉ†kr′ ĉ

†
js′ ĉjrĉks

)
.

Now we specialize to the case focused on in our work. For fermionic alkaline-earth
atoms, Â cannot depend on nuclear spin; therefore (denoting the identity on nuclear
spin by ÎN ),

Â =
(
aee|e, e〉〈e, e|+ agg|g, g〉〈g, g|+ a+

eg|e, g〉+〈e, g|+ + a−eg|e, g〉−〈e, g|−
)
⊗ ÎN ,

where |e, g〉± = (|e, g〉 ± |g, e〉)/
√

2 A. V. Gorshkov, Hermele, et al., 2010.
Under these conditions, and applying a strong magnetic field (which to first order
in perturbation theory prevents exchanges |ep, gq〉 ↔ |eq, gp〉 for p 6= q), we
obtain Eq. (5) with U1g2g = U2g1g = Ugg ≡ 4πω⊥agg/L, U1e2e = U2e1e = Uee ≡
4πω⊥aee/L, U1g1e = U2g2e = 4πω⊥a−eg/M , U1g2e = U2g1e = 2πω⊥(a+

eg + a−eg)/M .
Recently discovered orbital Feshbach resonances may be used to further tune the
values of U1g2e and U2g1e R. Zhang et al., 2015; G. Pagano et al., 2015; Höfer et al.,
2015.

1.8 Experimental proposal: GHZ state preparation
Highly entangled states could lead to short-term applications in metrology Bollinger
et al., 1996; Sackett et al., 2000, and long-term applications in quantum information
M. A. Nielsen and I. L. Chuang, 2000; Dutta, Mukherjee, and Sengupta, 2013.
It is particularly timely to design ways for implementing entanglement-assisted
– and hence more accurate – clocks with alkaline-earth atoms Gil et al., 2014;
Olmos et al., 2013 since such atoms recently gave rise to the world’s best clock
and have nearly approached the quantum projection noise limit for unentangled
atoms Bloom et al., 2014; Nicholson et al., 2014. We will now show that the
quantum spinmodels studied in the presentmanuscript offer a natural way to produce
metrologically relevant entanglement (in the form of GHZ states) in alkaline-earth
clock experiments. It is indeed the experimental realization of quantum spin models
in alkaline-earth clock experiments Martin et al., 2013 and the potential application
of these spin models to improve the clocks that motivated this work.
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To create a GHZ state, we allow atoms in the excited electronic state ewith an energy
ωeg above the ground electronic state g [see Fig. 1.1(b)]. First assume N = 2. An
applied magnetic field adds Zeeman spin-splittings Bg 6= Be Boyd, Zelevinsky,
Ludlow, Foreman, et al., 2006 to both g and e states. To first order in the interaction
strength, the spin Hamiltonian is (see section 1.9 for details) :

Ĥ = Ĥsp +
∑
α<β

Uαβ

(
n̂αn̂β −

∑
j 6=k

ĉ†jαĉjβ ĉ
†
kβ ĉkα

)
. (1.23)

The single-particle Hamiltonian is Ĥsp = ωegn̂e +Bg(n̂1g − n̂2g) +Be(n̂1e − n̂2e),
the sum α < β is over distinct pairs of 1g, 1e, 2g and 2e, and the constants Uαβ
are derived in terms of (electronic-state dependent) scattering lengths. Note that
n̂1g, n̂2g, n̂1e and n̂2e are separately conserved by Hamiltonian (1.23). As shown in
Fig. 1.5, to create then-particleGHZ state (|1g1g..1g〉+|2g2g..2g〉) from |1g1g..1g〉,
three consecutive pulses should be applied:

1. Spatially inhomogeneous, weak, many-body π/2 pulse

e−iνegt
∑
j

Ωeg
j (|1e〉j〈1g|j + |2e〉j〈2g|j) + h.c.

with frequency νeg = ωeg + (Be −Bg) + nU1e1g.

2. Spatially uniform, weak, single-atom π pulse e−iν12tΩ12
∑

j(|2g〉j〈1g|j +

|2e〉j〈1e|j) + h.c. with frequency ν12 = 2Bg.

3. Pulse 1, but for pulse area π, not π/2.

The frequency of the first pulse picks out an effective two-level system consisting
of |1g1g..1g〉 and |{1e1g..1g}〉 ∝ ∑

jp(Ω
eg
j − Ω̄eg)|1e〉j〈1g|j|1g1g..1g〉 (we de-

fined Ω̄eg ≡∑j Ωeg
j /n.). The pulse must be spatially inhomogeneous to make Ωeg

j

j-dependent and to be thus able to access eigenstates with interaction-dependent
energies (i.e. not fully symmetric eigenstates). The precise form of the inhomo-
geneity is unimportant, as all n − 1 non-symmetric states with a single e atom are
degenerate in Ĥ due to its Sn symmetry. The curly bracket notation signifies the
state is a linear combination of |1e1g..1g〉 and permutations. No state |{1e1e..1g}〉
is coupled by pulse 1 because the first e atom blockades the addition of another by
energy 2U1e1g. The second pulse has no effect on |{1e1g..1g}〉 because the e atom
blockades transition to any state |{1e2g..1g}〉. The final pulse does not affect the
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|{1e 1e...1g}i

|1g 1g...1gi
(1.)

(2.)

(3.)

|{1e 1g...1g}i + |1g 1g...1gi |{1e 1g...1g}i + |2g 2g...2gi

|1g 1g...1gi + |2g 2g...2gi

a) b) |{1e 1e...1g}i

|1g 1g...1gi

|{1e1g...1g}i

⌫eg

|2g2g...2gi

⌫eg � 2U1e1g

2nBg

Figure 1.5: (a) System is prepared in |1g1g..1g〉, and spatially inhomogeneous pulse
(1.) results in an equal superposition of this state and |{1e1g..1g}〉, which has one e
atom. An interaction blockade prevents coupling to states with two e atoms. Pulse
(2.) flips the spins of the all-g state. The initial pulse is reversed in pulse (3.),
resulting in the GHZ state. (b) Relevant energy levels of the Hamiltonian with e
and g states and the magnetic field. Note that pulses (1.) and (3.), which involve
states |1g1g..1g〉 and |{1e1g..1g}〉, do not couple to state |{1e1e..1g}〉 since there is
a blockade of 2U1e1g. Similarly, during pulse (2.), blockade prevents the excitation
of state |{1e1g..1g}〉.

|2g2g..2g〉 state because the pulse is off-resonant by energy of order (Be − Bg).
Note that although the precise form of the inhomogeneity in the first pulse is unim-
portant, the final pulse and the first pulse must have the same inhomogeneity. Since
all three pulses rely on blockade, each pulse must take time � 1/U . Curiously,
the fact that the interactions in our spin model have effectively infinite range makes
our spins analogous to long-range interacting Rydberg atoms, for which a similar
protocol exists for generating maximally entangled states Saffman and K. Molmer,
2009. Note that we have designed the protocol to have at most one e atom at any
time, which avoids the potential problem of inelastic e-e collisions Traverso et al.,
2009, while g-e losses are negligible Bishof et al., 2011; X. Zhang et al., 2014.

For integer m such that N ≥ 2m, it is possible to create m GHZ states provided
one has sufficient control A. V. Gorshkov, A. M. Rey, et al., 2009 over the
nuclear spin states coupled by the pulses. We describe the procedure here for
m = 2 (which generalizes directly for largerm). First create a regular GHZ state as
described above (|1g1g..1g〉 + |2g2g..2g〉) from initial state |1g...1g〉. Then, apply
pulse 1 of two different frequencies to |1g1g..1g〉 and to |2g2g..2g〉, resulting in
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(|1e1g..1g〉+ |1g1g..1g〉+ |2e2g..2g〉+ |2g2g..2g〉). Now, instead of applying pulse
2, apply a pulse which implements |p〉 7→ |p + 2〉 (for p = 1, 2), but only to atoms
in a many-body state containing no e atoms. The resulting state is (|1e1g..1g〉 +

|3g3g..3g〉 + |2e2g..2g〉 + |4g4g..4g〉). Finally, apply pulse 3 of two different
frequencies to yield (|1g1g..1g〉 + |2g2g..2g〉 + |3g3g..3g〉 + |4g4g..4g〉). This is
precisely equivalent to two GHZ states, which can be seen by defining the basis
{|⇓⇓〉 , |⇓⇑〉 , |⇑⇓〉 , |⇑⇑〉 ≡ {|1〉, |2〉, |3〉, |4〉}}. Then (|11..1〉+ |22..2〉+ |33..3〉+
|44..4〉) = (|⇓⇓ .. ⇓〉 + |⇑⇑ .. ⇑〉)(|⇓⇓ .. ⇓〉 + |⇑⇑ .. ⇑〉). The process could be
continued, where in the ith iteration, the second pulse involves |p〉 7→ |p + 2i〉 (for
p = 1, 2, 3...2i).

Several GHZ states can be used to create a single GHZ state of better fidelity via
entanglement pumping Aschauer, Dur, and Briegel, 2005; A. V. Gorshkov, A. M.
Rey, et al., 2009.

1.9 Derivations for GHZ state preparation
In this Section, we present the details behind the GHZ state preparation protocol.

The state |A〉 = |1g 1g...1g〉 has energy EA = nBg. The state |B〉 = |{1e 1g...1g}〉
lies in the same energy manifold as the state (|1g 1e〉 − |1e 1g〉)|1g...1g〉, which has
energy EB = ωeg + (n − 1)Bg + Be + [(n − 1) − (−1)]U1g 1e. Similarly, |C〉 =

|{1e 1e...1g}〉 has the same energy as (|1g 1e〉−|1e 1g〉)(|1g 1e〉−|1e 1g〉)|1g...1g〉,
with energyEC = 2ωeg + (n−2)Bg + 2Be+ [2(n−2)− (−2)]U1g 1e. Driving with
frequency (EB − EA) forms an effective two-level system: {|A〉 ↔ |B〉 6↔ |C〉}
since (EB − EA) = ωeg − Bg + Be + nU1g 1e 6= (EC − EB) = ωeg − Bg + Be +

(n− 2)U1g 1e.

Now we explain why transition |A〉 → |D〉 ≡ |2g 2g...2g〉 occurs, while the tran-
sition |B〉 6→ |x〉 is blocked for any energy eigenstate |x〉. First note that the
transition |A〉 → |D〉 actually passes through a ladder of intermediate energy
eigenstates: |A〉 ≡ |1g 1g...1g〉 → |S{2g 1g...1g}〉 → |S{2g 2g...1g}〉 → ... →
|2g 2g...2g〉 ≡ |D〉, where S symmetrizes its argument. Each state in the ladder has
energy 2Bg more than the last, and is connected to the previous through the operator
P̂ =

∑
j(|2g〉j〈1g|j + |2e〉j〈1e|j), which is applied as a pulse with frequency 2Bg.

To show that |B〉 does not transition to any other state under the action of this pulse,
we must prove that there exists no state |x〉 such that Ĥ|x〉 = (EB + 2Bg)|x〉 and
〈x|P̂ |B〉 6= 0. We will assume that n > 2, Be 6= Bg and either |Ugg| > 0 or
|Ueg| > 0.
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Our proof has the following structure: we find four orthonormal states such that
P̂ |B〉 ∈ span{|φ1〉, |φ2〉, |φ3〉, |φ4〉} ≡ H0, where subspace H0 is closed under the
action of Ĥ (i.e. for all |ψ〉 ∈ H0, Ĥ|ψ〉 ∈ H0). Any eigenstate |x〉 of Ĥ coupled
to |B〉 through P̂ must be in H0, but we show the four eigenvalues Ei of Ĥ in H0

satisfy Ei 6= (EB − 2Bg).

To complete the proof, we must present {|φ1〉, |φ2〉, |φ3〉, |φ4〉} explicitly, and show
that Ei 6= (EB − 2Bg) for all four eigenstates (i = 1, 2, 3, 4). Without loss of
generality, take |B〉 = (|1g 1e〉 − |1e 1g〉)|1g...1g〉, thus P̂ |B〉 =

√
2(n− 2)|φ1〉+√

2|φ3〉+
√

2|φ4〉, where |φ1〉 ≡ 1√
2(n−2)

(|1g 1e〉− |1e 1g〉)|S{1g2g...1g}〉, |φ2〉 ≡
1√
2
(|2g 1e〉−|1e 2g〉)|1g1g...1g〉, |φ3〉 ≡ 1√

2(n−2)
(|1g 2g〉−|2g 1g〉)|S{1g1e...1g}〉,

and |φ4〉 ≡ 1√
2
(|1g 2e〉− |2e 1g〉)|1g1g...1g〉 (note that |φ4〉 is an energy eigenstate).

Ĥ is closed on subspaceH0 and takes the form:

Ĥ = (EB − 2Bg) + (1.24)
0 −

√
n− 2Ugg −Uge 0

−
√
n− 2Ugg (n− 2)Ugg

√
n− 2Uge 0

−Uge
√
n− 2Uge (n− 1)Ugg − Uge 0

0 0 0 2(Bg −Be)

 .

Thematrixwritten explicitly inEq. (1.24) can be shown to have non-zero determinant
(and therefore no vanishing eigenvalues) provided n > 2, Be 6= Bg and either
|Ugg| > 0 or |Ueg| > 0, which completes our proof.

1.10 Experimental Details
We use the example of 87Sr to describe how to experimentally access the physics we
discuss in this work.

The key requirements of this proposal are as follows. Firstly, the x and y degrees of
freedom must be frozen and the dynamics occur along the z direction, forming a 1D
interacting system. Secondly, U = (4πagg~ω⊥)/L should be less than the single-
particle energy separations, the smallest of which is 3~2(π/L)2/M , thus ensuring
the validity of the first-order perturbation theory in our derivation of Eq. (1.2). This
constrains the relative sizes of L and ω⊥. Thirdly, variations in Ujkjk, with standard
deviation ∆U , give rise to variations in eigenergies∼ n∆U (see below). Therefore,
we also require ∆U/U < 1/n.

To meet these requirements, we propose an optical lattice potential formed by two
magic-wavelength (813 nm) Ye, Kimble, and Katori, 2008 orthogonal standing
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waves in x and y. This could be achieved with a pair of angled beams Nelson, Li,
and Weiss, 2007 for each standing wave, in bow tie configuration [see Fig. 1.6].

✓✓
!?

gravity

L

b)

!z

a)

✓

✓

xy
z

Figure 1.6: Layout of suggested experimental implementation. a) The beam con-
figuration is achieved using a bow tie arrangement (view from above). Two pairs
of beams are aimed at a vacuum chamber. In each pair, the two beams have a
difference in k vector direction of θ = 30o, causing an in-plane standing wave to
form in the direction perpendicular to that pair’s net k vector direction. The pair of
perpendicular standing waves forms an attractive lattice. b) The two-dimensional
lattice of attractive-potential tubes forms with transverse vibrational frequency ω⊥
and lattice constant ∆x. The finite beam width results in a weak potential in the
z direction with vibrational frequency ωz. Gravity is in the beam plane to avoid a
potential gradient along the tubes. Blue-detuned light outside the central region of
width L forms caps for the tubes. We obtain ω⊥ ' 2π × 10 kHz, ∆x ' 3 µm,
ωz ' 2π × 100 Hz, and L ' 10 µm.

An additional blue-detuned optical potential at 394 nm, the Sr blue magic wave-
length, is applied to form approximate 1D square wells from the resulting tubes.
The potential could be formed from a projected image of a Gaussian beam with
waist 30 µm and total power 400 mW screened in the center by a rectangular mask
of width L = 10 µm. Imperfect cap potentials, along with a finite curvature of the
flat potential, contribute to ∆U and are analyzed below.

With these parameters, and agg = 5.1 nm Martinez de Escobar et al., 2008, one
obtains U/~ = (4πaggω⊥)/L ≈ 2π× 10 Hz, and should be able to meet all three of
the aforementioned key requirements with. 20 atoms in a single tube. Such values
of Uαβ ∼ U X. Zhang et al., 2014 can potentially allow for the preparation of the
GHZ state on a time scale comparable to the∼1s experimental cycle time for state-
of-the-art clocks Bloom et al., 2014, and may thus provide a practical advantage
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over the use of unentangled atoms.

To observe spin diffusion, the most straightforward way of preparing the initial state
and measuring observable Q̂ involves cooling a spin-polarized system to the limit
where the lowest n orbitals are occupied. One could also potentially consider taking
advantage of large N for better cooling Hazzard et al., 2012; Taie et al., 2012.
One can then address different orbitals either spatially with spin-changing pulses
which only couple to certain orbitals (for example using pulses focused on the center
of the well and hence decoupled from orbitals that vanish there), or energetically
by temporarily transferring atoms to another electronic state subject to a different
potential. To observe spin diffusion with thermal atoms, one could rely on the fact
that about half of the occupied orbitals are odd, and the other half are even, which
becomes statistically more accurate for larger n. It is possible to address only the
even orbitals by using a beam focused at the center of the well, since the odd orbitals
vanish there. This could be extended to largerN by using additional beams focused
on other points in the well.

The bow tie configuration build-up cavity of attractive magic-wavelength (λ =813
nm) beams shown in Fig. 1.6 results in orthogonal standing waves in the x-y plane,
whose intensity maxima are spaced by ' 3 µm, with beam waist of 100 µm at
the intersection of the two beams. The build-up cavity will increase the beams’
intensity by a factor of ∼ 100 with a circulating power of 25 W. The resulting
1D trap sites have ω⊥ ' 2π × 88 kHz for the initial loading and cooling phase of
the experiment. The (much weaker) longitudinal trapping frequency that results is
ωz ' 2π × 880 Hz.

The additional blue-detuned optical potential at 394 nm, the Sr blue magic wave-
length, creates sharp caps on the resulting tubes. This potential could be formed by
a projected image of a Gaussian beam with waist 30 µm and total power 400 mW
screened in the center by a rectangular mask of width L = 10 µm.

The large ω⊥ enforces a pseudo one-dimensional system as only the lowest ra-
dial energy level will be populated. However, the desired condition that U =

(4πagg~ω⊥)/L < 3~2(π/L)2/M is not satisfied with this large ω⊥. After loading
into the hybrid red- and blue-detuned optical potential, we propose to ramp the
red-detuned optical lattice potentials adiabatically from the 25 W circulating power
to 300 mW, resulting in ω⊥ ' 2π × 10 kHz and ωz ' 2π × 100 Hz. The adiabatic
nature of the ramp ensures that the x and y degrees of freedom remain frozen.
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Imperfections on the mask that creates the flat potential and imperfect edges of
the trap from the blue-detuned potential contribute to ∆U . In Section 1.4 we give
an analytic bound that a harmonic perturbation of frequency ωz small enough that
Mω2

zL
2 < ~2π2

ML2 leads to ∆U/U < 10−2. Exact diagonalization of the 1D potential
confirms that ∆U/U is even less sensitive to ωz: our parameters correspond to
Mω2

zL
2 ≈ 750 ~2π2

2ML2 , yet ∆U/U remains below one percent. The imaging system
used to form the potential contributes much more significantly to ∆U . With an
imaging point spread function of full width at half maximum (FWHM) of 1 µm
with atoms at 1 µK, exact diagonalization results in ∆U/U . 5%.

Therefore with these parameters, one obtains U/~ = (4πaggω⊥)/L ≈ 2π × 10

Hz, and should be able to meet all three of the key requirements stated above with
. 20 atoms in a single tube. In addition, as the pulses in the GHZ protocol should
resolve U , they should have a sufficiently long duration � 0.1 s. With additional
effort, it should be possible to reach a regime of higher U and n while satisfying
these requirements. By shaking the trap during preparation with frequencies low
enough to depopulate the lowest m energy orbitals, the restrictions on L and ω⊥
from the requirement that U = (4πagg~ω⊥)/L < 3~2(π/L)2/M is relaxed to
(4πagg~ω⊥)/L < [(m+2)2−(m+1)2]~2(π/L)2/M . Decreasing the ratio between
the spatial imperfections of the potential and L will reduce ∆U/U . For example,
reducing the FWHM of the point spread function in our numerical calculations
described above from 1 µm to 0.5 µm yields ∆U/U < 2%. Approaches for creating
subwavelength potentials can also be envisioned Jendrzejewski, 2014.

Beyond the three key requirements given at the start of this section, there are a
number of other considerations which we now address. Taking a typical recom-
bination rate constant K3 ≈ 10−28 cm6/s for n = 20 particles, it should take
approximately 1 second before a single particle is lost. This loss time is 10 times
longer than the coherent interaction time 2π~/U , a ratio that is comparable (or even
superior) to the ratio of the decoherence time to the spin-spin interaction time in
superexchange-based systems Trotzky et al., 2008; R. C. Brown et al., 2015. Tun-
neling between the tubes is negligible due to the large 3 µm spacing between tubes.
The approximate magnitude of p-wave terms involving occupied orbitals j and k
is π2(j2 + k2)(bgg/L)2(bgg/agg)U , where b3

gg is the scattering volume for p-wave
interactions. This remains small for j, k < 300, taking bgg ≈ 3.9 nmX. Zhang et al.,
2014 for 87Sr. Vector and tensor light shifts Boyd, Zelevinsky, Ludlow, Blatt, et al.,
2007 in principle break SU(N) symmetry, but tensor polarizability in our system
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is negligible, while vector shifts can be avoided with the use of linear polarization.
Specifically, to ensure any breaking of the SU(N) symmetry is far below a level
which could affect our proposal, beam circularity of below a few percent should be
sufficient. An appropriate choice of linear polarization of the blue-detuned beam
will ensure minimal longitudinal field components (and hence minimal circularity)
induced by imaging the mask.

1.11 Outlook
The proposed system opens a wide range of research and application avenues beyond
those discussed above. For the case of N = 2, our Sn × SU(N)-symmetric
Hamiltonian can be used for decoherence-resistant entanglement generation A. M.
Rey, Jiang, et al., 2008, a method whose generalization to N > 2 we postpone to
future work. Furthermore, by comparing with the exact solutions presented here or
those derived in the limit of strong interactions Volosniev et al., 2015; Deuretzbacher
et al., 2014 one could verify the performance of the proposed experimental system
as a quantum simulator. The system can then be used to reliably study more general
regimes where complexity theory might rule out efficient classical solutions. In
particular, deviations from the square-well potential will break Sn [but not SU(N)]
symmetry. This will for example lift the degeneracy of the most antisymmetric spin
state (highest energy eigenspace for U > 0). Depending on how this degeneracy is
lifted, exotic many-body states might arise Miguel A Cazalilla and Ana Maria Rey,
2014; A. M. Rey, A. V. Gorshkov, Kraus, et al., 2014.

Finally, thanks to its high Sn × SU(N) symmetry, the present system allows one
to implement powerful quantum information protocols, such as the density matrix
spectrum estimation protocol of Keyl and Werner Keyl and Werner, 2001, which is
the topic of Chapter 2.
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C h a p t e r 2

SPECTRUM ESTIMATION

In Chapter 1, we studied an atomic systemwhich gives rise to a highly symmetric nu-
clear spin Hamiltonian which is decoupled from the spatial degrees of freedom. The
decoupling arose because the trap used forces the Hamiltonian to have parameters
which are symmetric under exchange of spatial states.

In this chapter, we argue that standard Ramsey spectroscopy on this system, enabled
by its’ high symmetry, provides an efficient and accurate estimate for the eigenspec-
trum of a density matrix whose n copies are stored in the nuclear spins of n such
atoms.

2.1 Motivation and Background
The eigenspectrum of an N -dimensional density matrix ρ̂ of a system characterizes
the entanglement of the system with its environment Horodecki et al., 2009. As it
gives access to quantities such as purity, entanglement entropy, and more generally
Renyi entropies, the eigenspectrum is an indispensable tool for studying many-body
quantum states and processes in general and quantum information processors in
particular Eisert, Cramer, and Plenio, 2010; M. A. Nielsen and I. L. Chuang, 2000.

One can learn about the spectrum of ρ̂ by making measurements on n copies of the
state. To characterize the efficiency of a particular measurement strategy for this
task, one can consider the sample complexity: i.e. the number n of copies required
to obtain an estimate ~q of the spectrum ~p of an arbitrary N dimensional density
matrix, such that the one-norm deviation is below a certain threshold ||~q− ~p||1 < ε.
Normally one considers the asymptotic scaling of n with N and ε, ignoring pre-
factors. It is not currently known how many copies are necessary and sufficient to
estimate the spectrum of any dimension N density operator to ε-accuracy, but the
best known strategy scales O’Donnell and Wright, 2015 as Θ̃(N2/ε2), where log
factors have been dropped. This strategy is the empirical Young diagram (EYD)
algorithm, performs a single joint entangled measurement on all n copies Alicki,
Rudnicki, and Sadowski, 1988; Keyl and Werner, 2001; Hayashi, 2002; Keyl, 2006;
Christandl and Mitchison, 2006; O’Donnell and Wright, 2015. It is natural that an
optimal measurement should be invariant under arbitrary permutations [symmetry
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group Sn] and arbitrary simultaneous rotations [symmetry group SU(N)] of all n
copies. Indeed the EYD algorithm simply projects the initial state onto irreducible
representations of Sn × SU(N).

The best known strategy for spectrum estimation without joint measurements, is an
adaptive two-stage protocol in which an asymptotically vanishing fraction of the
copies are used with full tomography to estimate the eigenbasis of the state, which is
used as a measurement basis on the remaining copies Ballester, 2006. It is unclear
if this strategy has the same sample complexity as the EYD strategy, but the author
argues to be asymptotically as good under a different notion of performance. In any
case, for the overhead involved for moderate numbers of copies could be prohibitive
in practice.

However prohibitive the number of copies required for spectrum estimation using
separable measurements, one may expect that the difficulty involved in making
joint measurements of many quantum systems renders the EYD scheme highly
impractical. Here we show that, surprisingly, Ramsey spectroscopy of fermionic
alkaline-earth atoms in a square-well trap naturally performs the highly entangled
EYD measurement on n copies of ρ̂ stored in the d-dimensional nuclear spin of n
such atoms.

Spectrum estimation could be a useful tool in these experimental systems. Two
unique features of fermionic alkaline-earth atoms are the metastability of the op-
tically excited state |e〉 = 3P0 and the decoupling of the nuclear spin from the
(J = 0) electrons in both the ground state |g〉 = 1S0 and in |e〉. Thanks to these
two features, alkaline-earth atoms have given rise to the world’s best atomic clocks
Bloom et al., 2014; Nicholson et al., 2014 and hold great promise for quantum
information processing with nuclear and optical electronic qubits Childress et al.,
2005; Reichenbach and I. H. Deutsch, 2007; Hayes, Julienne, and I. H. Deutsch,
2007; Daley et al., 2008; A. V. Gorshkov, A. M. Rey, et al., 2009; Daley, 2011 and
for quantum simulation of two-orbital, high-symmetry magnetism A. V. Gorshkov,
Hermele, et al., 2010; M. A. Cazalilla, Ho, and Ueda, 2009; Miguel A Cazalilla
and Ana Maria Rey, 2014; X. Zhang et al., 2014; Scazza et al., 2014; Cappellini
et al., 2014. Spectrum estimation of ρ̂, using a copy of ρ̂ stored in the nuclear spin
of each of n |g〉 atoms, would be of great value in all of these applications. First, it
can determine whether ρ̂ describes a pure state, in which case the fermions would be
identical and s-wave scattering would not interfere with clock operation. Second,
it can be used to assess how faithfully the nucleus stores quantum information as
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one manipulates the electron Childress et al., 2005; Reichenbach and I. H. Deutsch,
2007; A. V. Gorshkov, A. M. Rey, et al., 2009. Finally, this procedure can be used
to characterize the entanglement of a given nuclear spin with others in a many-atom
state obtained via evolution under a spin Hamiltonian Honerkamp and Hofstetter,
2004; A. V. Gorshkov, Hermele, et al., 2010; M. A. Cazalilla, Ho, and Ueda, 2009;
Miguel A Cazalilla and Ana Maria Rey, 2014; X. Zhang et al., 2014; Scazza et al.,
2014; Cappellini et al., 2014; we would need n copies of the many-atom state.

2.2 Overview of the proposal
As illustrated in Fig. 2.1(a), to estimate the spectrum of ρ̂, whose n copies are stored
in the nuclear spins of n |g〉 atoms, we transfer all n atoms into a single infinite
square well, with at most one atom per single-particle orbital.

As detailed in Chapter 1, for sufficiently weak interactions, due to energy conserva-
tion and the anharmonicity of the trap, the n occupied orbitals of the well remain
unchanged throughout the experiment and play the role of sites. Thanks to the
decoupling of the N -dimensional nuclear spin from the electrons, s-wave interac-
tions give rise to a spin Hamiltonian with nuclear-spin-rotation SU(N) symmetry
A. V. Gorshkov, Hermele, et al., 2010; M. A. Cazalilla, Ho, and Ueda, 2009. Fur-
thermore, the interaction strength between square-well orbitals labeled by positive
integers p 6= q is proportional to

∫ π
0
dx sin2(px) sin2(qx) = π/4 and is thus inde-

pendent of p and q, giving rise to the site-permutation symmetry Sn beverland16
The resulting Sn × SU(N) symmetric Hamiltonian,

Ĥ = U
∑
j<k

(1− ŝjk), (2.1)

is therefore diagonal in the EYD measurement basis, naturally turning Ramsey
spectroscopy of this system into an implementation the EYD algorithm. As in
Chapter 1, ŝjk swaps spins j and k, and the sum is over occupied orbitals. Here, we
have explicitly restored the constantUn(n−1)/2which was omitted in Equation 1.2
as it will be relevant here.

To include the first excited electronic state, one should use the prescription of
Section 1.7. For simplicity, we instead make the modeling assumption that atoms
only interact if they are in the ground electronic state, such that the Hamiltonian is

ĤD = U
∑
j<k

σ̂jggσ̂
k
gg(1− ŝjk)− δ

∑
k

σ̂kee, (2.2)
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where σjgg projects the atom in the jth orbital into the ground electronic state, and δ
is an energy offset of the electronically excited level. This Hamiltonian would occur
for particular (unrealistic) values of the scattering constants, or could be enforced
by using different traps for the ground and excited electronic states, such that the
density in the confined directions is much lower for atoms in the excited (rather than
ground) electronic states.

At the start of the Ramsey sequence, the initial state of the n-atom system is
|G〉〈G| ⊗ ρ⊗n, where |G〉 = |g . . . g〉 and each nuclear spin is in the same state ρ̂.
The first Ramsey pulse of area β between |g〉 and |e〉 [Fig. 2.1(b)] is implemented
over short time tP = β/Ω (so that interactions can be ignored), using Hamiltonian
ĤP = Ω

2

∑
k

(
σ̂keg + σ̂kge

)
with Rabi frequency Ω and σ̂kµν = |µ〉k〈ν|. Then the

system is allowed to evolve under ĤD for a dark time tD. After the second Ramsey
pulse of area −β, the state is

ρ̂′ = Û †p ÛDÛp|G〉〈G|ρ̂⊗n(Û †p ÛDÛp)
†,

where Ûp = exp[−itP ĤP ] and ÛD = exp[−iτĤD]. Finally, the number of |e〉
atoms 〈n̂e〉 = Tr [n̂eρ̂

′] is measured, where n̂e =
∑

j σ̂
j
ee. We will show below that

〈n̂e〉
n

=
sin2 β

2

[
1−

N∑
r=1

pr cos (ωrτ)

]
+O

(
1√
n

)
, (2.3)

t
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Figure 2.1: Optimal spectrum estimation with alkaline-earth atoms. (a) n copies
of an N -dimensional density matrix ρ̂ are stored in the nuclear spin of n fermionic
alkaline-earth atoms trapped in the same square-well trap and prepared in their
ground electronic state |g〉. (b) A Ramsey sequence is applied consisting of two
pulses of area β and −β, respectively, coupling |g〉 to the first excited electronic
state |e〉. (c) The number 〈n̂e〉 of |e〉 atoms is measured for O(N) different dark
times τ (red circles) between the pulses and allows to extract the eigenspectrum of
ρ̂.
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where ωr = Un(1− pr) cos2 β
2

+ δ and (p1, p2, . . . , pN) is the eigenspectrum of ρ̂,
ordered for future convenience as p1 ≥ p2 ≥ · · · ≥ pN . Moreover, as n increases,
the distribution of measurement outcomes n̂e/n becomes tightly peaked about its
expectation value 〈n̂e〉/n. As the measurement destroys ρ̂, we envisage starting
with O(N) sets of n atoms, each with nuclear spin state ρ̂. Performing the Ramsey
protocol on each set for different times τ [Fig. 2.1(c)] and comparing to Eq. (2.3)
allows one to infer the spectrum of ρ̂. Notice an important difference from the usual
Ramsey spectroscopy where the entire 〈n̂e〉 curve as a function of τ is typically
measured and each point on the curve requires many measurements.

The limiting cases of Eq. (2.3) make sense. Indeed, Rabi π-pulses (β = π) give zero
since ĤD → −nδ, so Û †p ÛDÛp = exp[inδτ ]. Similarly, 〈n̂e〉 = 0 in the absence of
Rabi pulses (β = 0) since no |e〉 atoms are ever created. If ρ̂ describes a pure state,
in which case one of the pr is unity while the rest vanish, the interaction U drops
out (as it should for identical fermions) and we recover the familiar non-interacting
expression. When ρ̂ is maximally mixed, the system behaves as a non-interacting
system with a frequency shift −UnN−1

N
cos2 β

2
. When N is large and all pr � 1,

the system behaves as a non-interacting system with a frequency shift −Un cos2 β
2
.

2.3 Spectrum estimation for N = 2

To describe the physics behind our Ramsey-based spectrum estimation protocol
and behind Eq. (2.3), we start by reviewing the original EYD spectrum estimation
algorithm for the familiar case of qubits (N = 2, or, equivalently, spin-1/2). The
algorithm states: Letting (p, 1− p) with p ≥ 1/2 be the spectrum of ρ̂, in the limit
n→∞, a single measurement on ρ̂⊗n of the total spin Ŝ2 [with possible outcomes
S(S + 1) with nonnegative S = n/2, n/2 − 1, . . . ] gives an outcome satisfying
p = 1/2 + S/n + O(1/

√
n). This result follows from the fact that for large n

the measurement outcome distribution Pr(S|n, p) becomes peaked with mean and
standard deviation (p − 1/2)n and

√
p(1− p)n to leading order in n, as shown in

Fig. 2.2(a). The mean value can be understood from the fact that 〈Ŝz〉 = (p−1/2)n

for ρ̂ = p |↑〉 〈↑|+ (1− p) |↓〉 〈↓|.
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Figure 2.2: (a) The normalized probability distribution Pr(S|n, p) for obtaining a
measurement outcome S (and the estimate S/n+1/2 for p) for n = 30 and n = 300
copies of ρ̂ with spectrum (p, 1 − p) with p = 0.8. The standard deviation of the
p estimate scales as ∼ 1/

√
n. (b) The dashed curves represent the Ramsey signal

〈n̂e〉/n, in the limit n→∞, for β = π/2 and N = 2, for different values of p [Eq.
(2.3)]. For finite n, the measurement outcomes ne(τ, S) are distributed around 〈n̂e〉
according to the probability distribution Pr(S|n, p) [Eq. 2.4]. For n = 300 (n = 30),
the blue (blue and red) region around the p = 0.8 asymptotic curve corresponds to
the range of n̂e/n outcomes observed with probability 2/3. For all curves, δ = 0.

In our system, the interaction ĤD has Sn × SU(2) symmetry, implying that, when
all atoms are in |g〉, it can be re-expressed in terms of Ŝ2. So the eigenspaces of
〈G| ĤD |G〉 are in one-to-one correspondence with the EYD measurement basis.
Ramsey spectroscopy, which is known to access properties of many-body systems
Knap et al., 2013, provides a natural tool for accessing these Ŝ2 eigenspaces.

We write the result of the Ramsey measurement as

〈n̂e〉
n

=
Tr (ρ̂⊗n n̂e(τ))

n
=
∑
S

Pr(S|n, p)ne(τ, S)

n
, (2.4)

where n̂e(τ) ≡ 〈G|U †pU †DUpn̂eU †pUDUp|G〉 is the time-evolved measurement oper-
ator projected onto |G〉. As n̂e(τ) acts only on the nuclear spins, and is manifestly
Sn×SU(2) symmetric, it is therefore diagonal in the Ŝ2 eigenbasis, with eigenvalue
ne(τ, S).

Aswewill the expectation value 〈n̂e〉/n is a function of τ that depends on p, allowing
one to learn about the spectrum p through Ramsey spectroscopy [see Fig. 2.2(b)].
We will see that for arbitrary N , the variation of 〈n̂e〉/n with the spectrum ~p is
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Figure 2.3: The Young diagrams ~λ = (λ1, λ2, ..., λN) for n = 6, N = 3. With
all atoms in |g〉, the interaction Hamiltonian 〈G| ĤD |G〉 = U

∑
j<k(1 − ŝjk) has

Sn × SU(N) symmetry and is therefore diagonal in ~λ-subspaces. The energy in
〈G| ĤD |G〉 is displayed above each Young diagram. Notice two of the Young
diagrams correspond to the same energy.

sufficiently rich to allow inference of the spectrum. In addition to the expectation of
the operator n̂e/n, we will also be concerned with its variance (〈n̂2

e〉 − (〈n̂e〉2)/n2,
which provides an estimate for how many repetitions are necessary to estimate
〈n̂e〉/n sufficiently accurately.

2.4 Generalization to arbitrary N
We now describe the EYD and Ramsey-based spectrum estimation protocols for
arbitrary N . Thanks to Schur-Weyl duality Fulton and Harris, 1991, the irreducible
representations (irreps) of Sn×SU(N) in theNn-dimensional nuclear-spin Hilbert
spaceH of n atoms are in one-to-one correspondence withN -row Young diagrams
~λ = (λ1, λ2, . . . , λN)whose row lengths satisfy λ1 ≥ λ2 ≥ · · · ≥ λN and

∑
λi = n

[see Fig. 2.3]. We write H =
⊕

~λH~λ, where ~λ-subspace H~λ ⊂ H supports the
~λ-irrep. Any operator onH with Sn × SU(N) symmetry hasH~λ as eigenspaces.

In the EYD algorithm, one measures the Young diagram on ρ̂⊗n. The distribution
of outcomes ~λ has a single peak near n~p with a typical deviation

∑
i |λin − pi| being

O(n−1/2) Christandl and Mitchison, 2006.

Restricted to the ground electronic state, 〈G| ĤD |G〉 = U
∑

j<k(1 − ŝjk) is an
operator on H with Sn × SU(N) symmetry. The energies E(~λ) = U

2
n(n −

1) − U
2

∑
i λi(λi − 2i + 1) are not in one-to-one correspondence with subspaces

H~λ for N > 2 [see Fig. 2.3 for an example]. Therefore, even if it were possible
experimentally, direct measurement of the energy associatedwith 〈G| ĤD |G〉would
not be sufficient to perform the EYD algorithm. We will see that, remarkably, by
accessing restrictions of ĤD to different subsets of g atoms, Ramsey spectroscopy
is powerful enough to uniquely identify ~λ.
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For arbitrary N , Eq. (2.4) becomes

〈n̂e〉
n

=
Tr (ρ̂⊗n n̂e(τ))

n
=
∑
~λ

Pr(~λ|n, ~p)ne(τ,
~λ)

n
, (2.5)

once again defining n̂e(τ) ≡ 〈G|U †pU †DUpn̂eU †pUDUp|G〉, which acts on H and
exhibits Sn × SU(N) symmetry.

2.5 Expectation value of the number operator
We now evaluate the eigenvalues ne(τ, ~λ) ≡

〈
~λ
∣∣∣ n̂e(τ)

∣∣∣~λ〉 of n̂e(τ). To avoid
clutter, we drop hats on operators and arrows on vectors and introduce abbreviations:
c ≡ cos β

2
, s ≡ sin β

2
. Expanding Up |G〉 in the |E〉 basis,

ne(τ, λ) =
∑

E′,E∈{0,1}n
i|E
′|−|E|c2n−|E|−|E′|s|E|+|E

′|

× 〈λ| 〈E ′|U †Dne(β)UD |E〉 |λ〉 , (2.6)

where ne(β) ≡ UpneU
†
p , and where binary vector E = (E1, E2, ..., En) ∈ {0, 1}n

defines |E〉with kth atom in electronic state |g〉whenEk = 0, and |e〉whenEk = 1.
We denote by |E| the number of 1’s in E. Since ne(β) is a sum of single-atom
operators, terms in which strings E and E ′ differ on more than one site vanish.
When E ′ = E,

〈E|U †Dne(β)UD |E〉 = 〈E|ne(β) |E〉
= (n− |E|)s2 + |E|c2, (2.7)

because |E〉 is an eigenstate ofUDwith eigenvalue eiδ|E|τ exp
[
−iα∑j<k∈E(1− ŝjk)

]
,

which is an operator acting on the nuclear spins. Here α = Uτ , j < k ∈ E means
j < k and j, k ∈ E, and j ∈ E means Ej = 0. Terms with E ′ = E thereby sum to
2nc2s2 = n

2
sin2β in Eq. (2.20).

When E ′ and E only differ on the kth atom such that Ek = 1 and E ′k = 0,

〈E ′|U †Dne(β)UD |E〉 = −ics eiδτeiα
∑
j∈E(1−sjk)︸ ︷︷ ︸
AE

, (2.8)

as e−iα
∑
j<l∈E′ sjleiα

∑
j<l∈E sjl = e−iα

∑
j∈E sjk , which holds since the exponents

commute. Therefore, the contribution to the sum in Eq. (2.20) of E and E ′ that
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differ on a single atom is

−
n∑
k=1

∑
E∈{0, 1}n
Ek=1

c2n−2|E|+2s2|E| 〈λ| AE +A†E |λ〉 . (2.9)

For integerw = 0, 1, ..., n−1, define the operatorAw ≡
∑n

k=1

∑
E;Ek=1,|E|=w+1AE .

Note that Aw consists of n
(
n−1
w

)
terms, and has Sn × SU(N) symmetry. It has

(scaled) eigenvalues

Aw(λ) ≡ 1

n
(
n−1
w

) 〈λ| Aw |λ〉 =
1

n
(
n−1
w

) 1

‖λ‖ trλAw

=
1

‖λ‖ trλ e
iδτeiα

∑n−1−w
j=1 (1−sjn), (2.10)

where ‖λ‖ is the dimension of the λ irrep of Sn, and in the last equality we used
the conjugation invariance of tr to choose a convenient expression. Note that we
ignored the SU(N) Hilbert space and considered Sn alone since AE is written in
terms of elements of Sn, which are each themselves SU(N) symmetric. In terms of
Aw(λ),

ne(τ, λ)

n
=

sin2β

2

[
1−

n−1∑
w=0

Pr(w|n, β) ReAw(λ)

]
, (2.11)

where Pr(w|n, β) ≡
(
n−1
w

)
c2(n−w−1)s2w is the binomial distribution obtained from

expanding (s2 + c2)n−1 = 1. Now we show

Aw(λ)=eiδτ+iα(n−w−1)
∑
ξ

Pr(ξ|w, λ)
N∑
r=1

‖ξ−r‖
‖ξ‖ e−iα(ξr−r), (2.12)

where the sum is over all irreps ξ of Sn−w, and Pr(ξ|w, λ) ≡ m(λ,ξ)‖ξ‖
‖λ‖ is a probability

distribution defined in terms of branching rulesm(λ, ξ) that we define shortly. From
Eq. (2.10), we must evaluate trλ [Bw], where Bw ≡ e−iα

∑n−w−1
j=1 sjn . The operator

Bw is composed of permutations in the subgroup Sn−w of the first n− w − 1 sites,
along with the nth site. From this observation, we regard the representation space
λ as a representation of Sn−w, to obtain a reducible representation λ|nn−w of Sn−w.
This decomposes into a direct sum of irreps ξ of Sn−w as λ|nn−w ∼=

⊕
ξm(λ, ξ)ξ.

The branching rule m(λ, ξ) is the multiplicity, calculated iteratively from the fact
that the restriction of an irrep λ of Sl to Sl−1 consists of distinct irreps λ−r of Sl−1

with multiplicity 1, i.e., λ|ll−1
∼=
⊕

r λ
−r, where λ−r is obtained by removing a box

from the rth row of λDiaconis, 1988. λ−r is zero if the diagram becomes an invalid
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Young diagram after removing the box. Since Bw is invariant under permutation of
the first n − w − 1 sites, we can finally diagonalize Bw by further restricting each
ξ-irrep of Sn−w to subgroup Sn−w−1 ⊂ Sn−w; Bw must have each ξ−r-subspace as
an eigenspace. Below, we show that the eigenvalue of the ξ−r-subspace is e−iα(ξr−r),
resulting in Eq. (2.12).

So far, we have introduced three probability distributionsPr(λ|n, p),Pr(w|n, β), and
Pr(ξ|w, λ), all of which turn out to be unimodal for large n. The first one Pr(λ|n, p)
is concentrated atλ ' n~pwith the deviation of ‖~λ/n−~p‖ beingO(n−

1
2 ) by the result

of the EYD algorithm Keyl andWerner, 2001; Christandl andMitchison, 2006. The
second distribution Pr(w|n, β) is a familiar binomial distribution with the deviation
being O(n−

1
2 ) relative to the mean w = n sin2 β

2
. The third distribution Pr(ξ|w, λ)

is concentrated at ξ ' n−w
n
λ with the deviation of ‖ ~ξ

n−w −
~λ
n
‖ being O(n−

1
2 ) (see

Section ?? for explicit calculations). Thus, the unimodality together with the fact
that ‖ξ

−r‖
‖ξ‖ →

ξr∑
j ξj

for large n imply our main result Eq. (2.3).

Diagonalizing the operator Bw
Here we prove,

trλ [Bw] =
∑
ξ

m(λ, ξ)
N∑
r=1

‖ξ−r‖
‖λ‖ e

−iα(ξr−r), (2.13)

where the sum is over all irreps ξ of Sn−w. Here, ‖X‖ = dimX denotes the
dimension of the vector space.

For completeness, we repeat parts of the argument from above. The operator Bw is
composed of permutations in the subgroup Sn−w of the first n− 1− w sites, along
with the nth site. By regarding the representation space λ of Sn as a representation
of the subgroup Sn−w, one obtains a reducible representation λ|nn−w of Sn−w. This
is a direct sum of irreps ξ of Sn−w as λ|nn−w ∼=

⊕
ξm(λ, ξ)ξ. The branching rules

m(λ, ξ) (multiplicity) are calculated iteratively from the fact for any positive integer
l, the restriction of irrep λ of Sl to Sl−1 yields λ|ll−1

∼=
⊕

r λ
−r, where λ−r is an irrep

of Sl−1 associated with the Young diagram obtained by removing one box from the
row r of the λ-Young diagram. λ−r is zero whenever removing a box from λ-Young
diagram makes the diagram invalid. (Recall that a valid Young diagram is one in
which the number of boxes in a row is non-increasing.) The multiplicity for nonzero
λ−r is precisely 1.

Bw is invariant under permutation of the first n − w − 1 sites. So, within an
irreducible space under these permutations, Bw acts as a scalar. In other words,
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under the further restriction ξ|Sn−wSn−w−1
=
⊕

r ξ
−r, the operator Bw has ξ−r as an

eigenspace, with the eigenvalue vr(ξ) ≡
trξ−r [Bw]

‖ξ−r‖ . Therefore,

trλ [Bw] =
∑
ξ

m(λ, ξ)
N∑
r=1

‖ξ−r‖
‖λ‖ vr(ξ). (2.14)

In order to compute vr(ξ), it is necessary to understand the irrep ξ−r of Sl−1 inside
the irrep ξ of Sl, where l = n − w. To this end, we construct a series of spaces
of tabloids. Recall that given a Young diagram ξ = (ξ1, ..., ξN) with

∑
r ξr = l, a

Young tableau t is formed by inserting integers in the boxes of ξ. Here we consider
those Young tableaux with each number from 1 to l appearing in precisely one
box of ξ. A tabloid {t} is an equivalence class of Young tableaux t, where two
tableaux are equivalent if one is obtained from another by permuting within each
row. In other words, if At is the group of all row-preserving permutations of t,
then {t} = {αt : α ∈ At}. The symmetric group Sl acts on the set of all tabloids
by permuting numbers; it can be verified that {πt} = {παt} for any α ∈ At and
π ∈ Sl, and hence the notation π{t} makes sense. Let Bt be the group of all
column-preserving permutations of t, and define

et =
∑
β∈Bt

sgn(β)β{t},

which is called a polytabloid. The action of Sl on the span of all polytabloids
is isomorphic to the irrep ξ. A basis for this irrep can be chosen to be {et :

t is a standard Young tableau}. (A standard tableau is one in which numbers are
increasing in each row and column.)

Define Vi to be the span of et where t is a standard Young tableau with l in one of the
rows 1, . . . , i. Certainly, V1 ⊆ V2 ⊆ · · ·VN = ξ. Observe that Vi is a representation
space of Sl−1 because the position of the number l is fixed by Sl−1. It is known that
Vi/Vi−1 is isomorphic to ξ−i Fulton and Harris, 1991. Define h ≡∑l−1

j=1 sjl. Note
that h preserves each Vi, because Vi and its orthogonal complement contain distinct
irreps of Sl−1, and the projection ΠVi onto Vi from ξ can be written by some element
of CSl−1, which implies that h commutes with the projector ΠVi .

The eigenvalue vr is determined by het = uret + w, with vr = exp(−iαur), for
some et ∈ Vr \ Vr−1 and w ∈ Vr−1. We will read off the coefficient of {t}, where
‘l’ is placed in the row i of a standard tableau t. (If it is not possible for such t to be
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standard, then Vr/Vr−1 = 0.) Since

het =
∑

τ∈h, β∈Bt
sgn(σ)τβ{t}, (2.15)

we see that the coefficient of {t} in het is

ur =
∑

τ∈h, β∈Bt : τβ{t}={t}
sgn(β) =

∑
τ∈h, β∈Bt : τβ∈At

sgn(β). (2.16)

In order to make a nonzero contribution to the sum, τ must be a member of Bt ·At.
If both α ∈ Bt and β ∈ At are nontrivial, then βα cannot be a transposition. Thus,
τ = βα must be a member of either At, in which case sgn(β = 1) = 1, or Bt, in
which case sgn(β) = sgn(τ) = −1. There are ξr − 1 terms of h that belong to At,
and r − 1 terms of h that belong to Bt. Therefore,

ur = (ξr − 1)(+1) + (r − 1)(−1) = ξr − r. (2.17)

Hence vr(ξ) = e−iα(ξr−r) as promised.

2.6 Variance of the number operator (ongoing work)
We now study the variance of the operator n̂e/n . More precisely, we study (〈n̂2

e〉 −
〈n̂e〉2)/n2, where the expectation value 〈n̂e〉 was the object of study in the previous
section, and

〈n̂2
e〉
n

=
Tr (ρ̂⊗n n̂2

e(τ))

n
=
∑
~λ

Pr(~λ|n, ~p)n
2
e(τ,

~λ)

n
, (2.18)

defining n̂2
e(τ) ≡ 〈G|U †pU †DUpn̂2

eU
†
pUDUp|G〉, which acts on H and exhibits Sn ×

SU(N) symmetry.

We now evaluate the eigenvalues n2
e(τ,

~λ) ≡
〈
~λ
∣∣∣ n̂2

e(τ)
∣∣∣~λ〉 of n̂2

e(τ). We take

abbreviations: c ≡ cos β
2
, s ≡ sin β

2
and drop arrows on vectors and hats on

operators. Expanding Up |G〉 in the |E〉 basis,

n2
e(τ, λ) =

∑
E′,E∈{0,1}n

i|E
′|−|E|c2n−|E|−|E′|s|E|+|E

′|

× 〈λ| 〈E ′|U †Dn2
e(β)UD |E〉 |λ〉 , (2.19)

where n2
e(β) ≡ Upn

2
eU
†
p . Since n2

e(β) = (
∑

j σ
j
ee)

2 is a sum of one- and two-atom
operators, terms in which strings E and E ′ differ on more than two sites vanish.
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Since the expectation of λ is permutation invariant, we can choose those two sites to
be the last two without loss of generality. We also order the remaining n− 2 entries
of E and E ′,

n2
e(τ, λ) =

n−2∑
w=0

(
n− 2

w

)
c2(n−w)s2w

∑
l1,l2,l′1,l

′
2∈{0,1}
il
′
1+l′2−l1−l2c2(l1−l2−l′1−l′2)sl1+l2+l′1+l′2

× 〈λ|
〈
0n−2−w, 1w, l′1, l

′
2

∣∣U †Dn2
e(β)UD

∣∣0n−2−w, 1w, l1, l2
〉
|λ〉 ,
(2.20)

There are 24 cases for the different l values. We make critical use of the fact that |E〉
is an eigenstate of UD with eigenvalue eiδ|E|τ exp

[
−iα∑j<k∈E(1− ŝjk)

]
, which

is an operator acting on the nuclear spins.

In the four terms where (l′1, l
′
2) = (l1, l2), the result has trivial action on the nuclear

spin degrees 〈
0n−2−w, 1w, l1, l2

∣∣U †Dn2
e(β)UD

∣∣0n−2−w, 1w, l1, l2
〉

(2.21)

=(n− w − l1 − l2)s2 + (w + l1 + l2)c2 (2.22)

+ (n− w − l1 − l2)(n− w − l1 − l2 − 1)s4 (2.23)

+ (w + l1 + l2)(w + l1 + l2 − 1)c4. (2.24)

The remaining 12 terms can be split into four cases (up to complex conjugate). The
first two cases have familiar forms,〈

0n−2−w, 1w, 0, 0
∣∣U †Dn2

e(β)UD
∣∣0n−2−w, 1w, 0, 1

〉
=− icseiδτeiα[(1−sn−1,n)+

∑n−2−w
j=1 (1−sjn)]

[
1 + (n− w − 1)s2 + wc2

]
, and,

(2.25)〈
0n−2−w, 1w, 1, 0

∣∣U †Dn2
e(β)UD

∣∣0n−2−w, 1w, 1, 1
〉

=− icseiδτeiα
∑n−2−w
j=1 (1−sjn)

[
1 + (n− w − 2)s2 + (w + 1)c2

]
. (2.26)

These can both be analyzed precisely as in the previous section. Next is〈
0n−2−w, 1w, 0, 0

∣∣U †Dn2
e(β)UD

∣∣0n−2−w, 1w, 1, 1
〉

=− 2s2c2e2iδτeiα[(1−sn−1,n)+
∑

1≤j<k≤n−w−2(1−sjk)+
∑
j≤n−w−2(1−sj,n−1)+

∑
j≤n−w−2(1−sjn)]

× e−iα
∑

1≤j<k≤n−w−2(1−sjk) (2.27)

=− 2s2c2e2iδτ e−iα[−(1−sn−1,n)+
∑n−w−2
j=1 (sj,n−1+sj,n)]︸ ︷︷ ︸

Cw

(2.28)
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To obtain the second equality, note that the second exponent commutes with each
sum in the first exponent, implying that they can be combined. This operator can be
attacked as in the previous section. We defer the evaluation of trλ[Cw] for now, but
it should clear that it can be approached in a similar way to trλ[Bw].

The final (and most problematic) term to be analyzed is,〈
0n−2−w, 1w, 0, 1

∣∣U †Dn2
e(β)UD

∣∣0n−2−w, 1w, 1, 0
〉

=2s2c2eiα[
∑

1≤j<k≤n−w−2(1−sjk)+
∑
j≤n−w−2(1−sj,n−1)]

× e−iα[
∑

1≤j<k≤n−w−2(1−sjk)+
∑
j≤n−w−2(1−sj,n)] (2.29)

=2s2c2e−iα
∑
j≤n−w−2 sj,n−1eiα

∑
j≤n−w−2 sj,n (2.30)

(2.31)

Define bn−1 :=
∑

j≤n−w−2 sj,n−1 and bn :=
∑

j≤n−w−2 sj,n. A barrier to proceed
with an analysis of the previous form is that [bn−1, bn] 6= 0 preventing us from
combining the exponents directly.

2.7 Experimental Considerations
In Chapter 1, we give details on how one could implement this core experimental
system. Here we expand upon the major modifications to that set-up which is that
here we assumed that only g-g interactions contribute, and that there are no e-g or
e-e interactions.

This could in principle be enforced by using a weaker transverse trap for the excited
electronic state than the ground electronic state. Alternatively, to avoid e-e collisions,
instead of temporarily loosening the e trap during the dark time, one could keep
both traps loose but temporarily tighten the g trap during the dark time. The latter
approach allows one to minimize lossy e-e collisions during the counting of e
atoms. We expect that the inclusion of nonzero elastic g-e interactions will modify
the dynamics, but we expect that it would not change the fact that the Ramsey
signal depends strongly on the spectrum of the nuclear spin density matrix, since
the Sn × SU(N) symmetry of the dynamics would still hold.

An experimentally simpler approach is to use β sufficiently small as to make e-e
interactions negligible; this will, however, decrease the signal requiring additional
repetitions of the experiment and will require the inclusion of e-g collisions in our
treatment.
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2.8 Outlook
We have shown that alkaline-earth atoms can be used as a special-purpose quantum
computer capable of performing the highly-entangled EYD measurement for spec-
trum estimation. It is possible that many other useful quantum information tasks
can be accessed in similar systems with special symmetry properties. In particular,
an important extension of our work would be to find an efficient implementation
of full-state tomography in current experimental systems. On the other hand, it
would also be interesting to know if one can improve on our proposal if one seeks
to measure a simpler quantity than the full spectrum O’Donnell and Wright, 2015,
such as the purity.
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C h a p t e r 3

GATES FOR TOPOLOGICAL QUANTUM ERROR
CORRECTING CODES

We study restrictions on locality-preserving unitary logical gates for topological
quantum codes in two spatial dimensions. A locality-preserving operation is one
whichmaps local operators to local operators— for example, a constant-depth quan-
tum circuit of geometrically local gates, or evolution for a constant time governed by
a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical
gates of topological codes are intrinsically fault tolerant because spatially localized
errors remain localized, and hence sufficiently dilute errors remain correctable. By
invoking general properties of two-dimensional topological field theories, we find
that the locality-preserving logical gates are severely limited for codes which ad-
mit non-abelian anyons; in particular, there are no locality-preserving logical gates
on the torus or the sphere with M punctures if the braiding of anyons is compu-
tationally universal. Furthermore, for Ising anyons on the M -punctured sphere,
locality-preserving gates must be elements of the logical Pauli group. We derive
these results by relating logical gates of a topological code to automorphisms of the
Verlinde algebra of the corresponding anyon model, and by requiring the logical
gates to be compatible with basis changes in the logical Hilbert space arising from
local F -moves and the mapping class group.

3.1 Introduction
In order to reliably compute, it is necessary to protect information against noise.
For quantum computations, this is particularly challenging because noise in the
form of decoherence threatens the very quantum nature of the process. Adding
redundancy by encoding information into a quantum error-correcting code is a
natural, conceptually appealing approach towards building noise-resilient scalable
computers based on imperfect hardware.

Among the known quantum error-correcting codes, the class of so-called topolog-
ical codes stands out. Examples in 2D include the toric code and quantum double
models A. Y. Kitaev, 2003, the surface codes S. Bravyi and A. Y. Kitaev, 1998, the
2D color codes H. Bombin andM.Martin-Delgado, 2006, variants of these codes H.
Bombin, 2010; A. G. Fowler, A. M. Stephens, and Groszkowski, 2009, and the
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Levin-Wen model Levin and X.-G. Wen, 2005. In 3D, known examples are Bombin
and Martin-Delgado’s 3D color code H. Bombin and M.A. Martin-Delgado, 2007,
as well as Haah’s Haah, 2011 andMichnicki’sMichnicki, 2012models. These codes
are attractive for a number of reasons: their code space is topologically protected,
meaning that small local deformations or locally acting noise do not affect encoded
information. The degree of this protection (measured in information-theoretic no-
tions in terms of code distance, and manifesting itself in physical properties such
as gap stability) scales with the system size: in other words, robustness essentially
reduces to the question of scalability. Finally, the code space of a topological code
is the degenerate ground space of a geometrically local Hamiltonian: this means
that syndrome information can be extracted by local measurements, an important
feature for actual realizations. Furthermore, this implies that a topological code
is essentially a phase of a many-body system and can be characterized in terms of
its particle content, their statistics, and the quantum field theory emerging in the
continuum limit. In particular, the quantum field theory provides a description of
such systems which captures all universal features, independently of microscopic
details.

While quantum error-correcting codes can provide the necessary protection of infor-
mation against noise, a further requirement for quantum computation is the ability to
execute gates in a robust manner. Again, topological codes stand out: they usually
provide certain intrinsic mechanisms for executing gates in a robust way. More pre-
cisely, there are sequences of local code deformations, under which the information
stays encoded in a code with macroscopic distance, but undergoes some unitary
transformation. In principle, this provides a robust implementation of computations
by sequences of local, and hence, potentially experimentally realizable actions. In
the case of 2D-topological codes described by topological quantum field theories,
this corresponds to adiabatic movement (braiding) of quasi-particle excitations (also
called anyons).

Unfortunately, as is well known, braiding (by which we mean the movement either
around each other or more generally around non-trivial loops) of anyons does not
always give rise to a universal gate set. Rather, the set of gates is model-dependent:
braiding ofD(Z2)-anyons generates only global phases on the sphere, and elements
of the Pauli group on non-zero genus surfaces. Braiding of Ising anyons gives
Clifford gates, whereas braiding of Fibonacci anyons generates a dense subgroup
of the set of unitaries (and is therefore universal within suitable subspaces of the
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code space). In other words, braiding alone, without additional tricks such as
magic state distillation Sergey Bravyi and Alexei Kitaev, 2005 (which has a large
overheadAustinGFowler et al., 2012), is not in general sufficient to provide universal
fault-tolerant computation; unfortunately, the known systemswith universal braiding
behavior are of a rather complex nature, requiring e.g., 12-body interactions among
spins Levin and X.-G. Wen, 2005. Even ignoring the question of universality, the
use of braiding has some potentially significant drawbacks: in general (for non-
abelian anyons), it requires an amount of time which scales with the system size (or
code distance) to execute a single logical gate. (Mathematically, this is reflected by
the fact that string-operators cannot be implemented in constant depth for general
non-abelian anyon models – in contrast to e.g., the toric code1.) This implies that
error-correction steps will be necessary even during the execution of such a gate (see
e.g., Pedrocchi and DiVincenzo, 2015; Hutter and Wootton, 2015; Burton, Brell,
and Flammia, 2015; Brell et al., 2014 for a recent discussion of the robustness of
braiding). This may pose an additional technological challenge, for example, if the
intermediate topologies are different.

Given the limitations of braiding, it is natural to look for other mechanisms for
implementing robust gates in topological codes. For stabilizer quantum codes, the
notion of transversal gates has traditionally been used almost synonymously with
fault-tolerant gates: their key feature is the fact that they do not propagate physical
errors. More generally, for topological stabilizer codes, we can consider logical
gates implementable by constant-depth quantum circuits as a proxy for robust gates:
they can increase the weight of a physical error only by a constant, and are thus
sufficiently robust when combined with suitable error-correction gadgets. Note that
finite-depth local circuits represent a much broader class than transversal gates.

Gate restrictions on transversal, as well as constant-depth local circuits have been
obtained for stabilizer and more general codes. Eastin and Knill Eastin and Knill,
2009 argued that for any code protected against local errors, transversal gates can
only generate a finite group and therefore do not provide universality. Bravyi and
König Sergey Bravyi and König, 2013 consider the group of logical gates that
may be implemented by such constant-depth local circuits on geometrically local
topological stabilizer codes. They found that such gates are contained in PD, the
D-th level of the Clifford hierarchy, where D is the spatial dimension in which the

1In the language of this paper, braiding/mapping class group elements belong to locality-
preserving unitaries if the model is abelian. However, for a general non-abelian model, braiding is
not locality-preserving according to our definition.
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stabilizer code is geometrically local.

In this work, we characterize the set of gates implementable by a locality-preserving
unitary in a system described by a 2D TQFT. By doing so, we both specialize and
generalize the results of Sergey Bravyi and König, 2013: we restrict our attention to
dimension 2, but go beyond the set of local stabilizer codes in two significant ways.

First, we obtain statements which are independent of the particular realization (e.g.,
the toric code model) but are instead phrased in terms of the TQFT (i.e., the anyon
model describing the system). In this way, we obtain a characterization which holds
for a gapped phase of matter, rather than just for a particular code representing
that phase. On a conceptual level, this is similar in spirit to the work of Else
et al., 2012, where statements on the computational power for measurement-based
quantum computation were obtained that hold throughout a certain phase. Here we
use the term phase loosely – we say that two systems are in the same phase if they
have the same particle content. To avoid having to make any direct reference to an
underlying lattice model, we replace the notion of a constant-depth local circuit by
the more general notion of a locality-preserving unitary: this is a unitary operation
which maps local operators to local ones.

Second, our results and techniques also apply to non-abelian anyonmodels (whereas
stabilizer codes only realize certain abelian models, unless e.g., domain walls or
‘twists’ are added H. Bombin, 2010 that break homogeneity). In particular, we
obtain statements that can be applied, e.g., to the Levin-Wen models Levin and X.-
G. Wen, 2005, as well as chiral phases. For such systems, restrictions on protected
gates were previously not known. Again, knowledge of the underlying microscopic
model is unnecessary to apply our results, which only depend on the type of anyons
present in the system. Our approach relates locality-preserving unitaries to certain
symmetries of the underlying anyon model; this imposes constraints on the allowed
operations. We consider the Fibonacci and Ising models as paradigmatic examples
and find that there are no non-trivial gates in the former, and only Pauli operations
in the latter case. Our focus on these anyons models is for concreteness only, but
our methods and conclusions apply more generally. Some of our more general
conclusions are that

(i) protected gates generically (see Section 3.4 discussing the necessity of certain
technical assumptions) form only a finite group and
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(ii) when the representation of the mapping class group is computationally uni-
versal (i.e., forms a dense subgroup), then there are no non-trivial protected
gates.

Our observations are summarized in Table 3.1. According to our results, the class
of locality-preserving unitaries (which is distinguished from the point of view of
error correction) is too restricted and needs to be supplemented with alternative
mechanisms to achieve universality.

Model mapping class group locality-preserving
contained in unitaries contained in

D(Z2) Pauli group restricted Clifford group
abelian anyon model generalized Pauli group generalized Clifford group
Fibonacci model universal global phase (trivial)
general anyon model universal global phase (trivial)
Ising model Clifford group Pauli group
generic anyon model model-dependent finite group

Table 3.1: We study different anyon models (first column). The second column
describes the properties of the unitary group generated by the (projective) represen-
tation of the mapping class group (see Section 3.2) – this corresponds to braiding
for punctured spheres. The third column characterizes the set of protected gates.
Our results suggest a trade-off between the computational power of the mapping
class group representation and that of gates implementable by locality-preserving
unitaries.

Finally, let us comment on limitations, as well as open problems arising from our
work. The first and most obvious one is the dimensionality of the systems un-
der consideration: our methods apply only to 2D TQFTs. The mathematics of
higher-dimensional TQFTs is less developed, and currently an active research area
(see e.g., Kong and X.-G. Wen, 2014). While the techniques of Sergey Bravyi and
König, 2013, which have recently been significantly strengthened by Pastawski and
Yoshida F. Pastawski and B. Yoshida, 2014, also apply to higher-dimensional codes
(such as Haah’s), they are restricted to the stabilizer formalism (but importantly, F.
Pastawski and B. Yoshida, 2014 also obtain statements for subsystem codes). Ob-
taining non-abelian analogues of our results in higher dimensions appears to be
a challenging research problem. A full characterization of the case D = 3 is
particularly desirable from a technological viewpoint.
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Even in 2D, there are obvious limitations of our results: the systems we consider
are essentially “homogenous” lattices with anyonic excitations in the bulk. We are
not considering defect lines, or condensation of anyons at boundaries; for example,
our discussion excludes the quantum double models constructed in Beigi, P. W.
Shor, and Whalen, 2011, which have domain walls constructed from condensation
at boundaries using the folding trick. Again, we expect that obtaining statements
on protected gates for these models requires additional technology in the form of
more refined categorical notions, as discussed by Kitaev and Kong A. Y. Kitaev
and Kong, 2012. Also, although we identify possible locality preserving logical
unitaries, our arguments do not show that these can necessarily be realized, either
in general TQFTs or in specific models that realize TQFTs. Lastly, our work is
based on the (physically motivated) assumption that a TQFT description is possible
and the underlying data is given. For a concrete lattice model of interacting spins,
the problem of identifying this description (or associated invariants A. Kitaev and
J. Preskill, 2006; Levin and X.-G. Wen, 2006; Haah, 2014), as well as constructing
the relevant string-operators (as has been done for quantum double models A. Y.
Kitaev, 2003; H. Bombin andM. A.Martin-Delgado, 2008 as well as the Levin-Wen
models Levin and X.-G. Wen, 2005), is a problem in its own right.

Rough statement of problem

Our results concern families of systems defined on any 2-dimensional orientable
manifold (surface) Σ, which we will take to be closed unless otherwise stated.
Typically, such a family is defined in terms of some local physical degrees of freedom
(spins) associated with sites of a lattice embedded in Σ. We refer to the joint Hilbert
space Hphys,Σ of these spins as the ‘physical’ Hilbert space. The Hamiltonian HΣ

on Hphys,Σ is local, i.e., it consists only of interactions between “neighbors” within
constant-diameter regions on the lattice. More generally, assuming a suitable metric
on Σ is chosen, we may define locality in terms of the distance measure on Σ.

We are interested in the ground spaceHΣ ofHΣ. For a topologically ordered system,
this ground space is degeneratewith dimension growing exponentiallywith the genus
of Σ, and is therefore suitable for storing and manipulating quantum information.
We will give a detailed description of this space below (see Section 3.2); it has a
preferred basis consisting of labelings associated with some set A. This is a finite
set characterizing all distinct types of anyonic quasiparticle excitations ofHΣ in the
relevant low energy sector ofHphys,Σ.
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Importantly, the form of HΣ is independent of the microscopic details (in the
definition of HΣ): it is fully determined by the associated TQFT. In mathematical
terms, it can be described in terms of the data of a modular tensor category, which
also describes fusion, braiding and twists of the anyons. We will refer toHΣ as the
TQFT Hilbert space.

The significance of HΣ is that it is protected: local observables can not distinguish
between states belonging to HΣ. This implies that HΣ is an error-correcting code
with the property that local regions are correctable: any operator supported in a
small region which preserves the code space must act trivially on it (otherwise it
could be used to distinguish between ground states).

To compute fault-tolerantly, one would like to operate on information encoded in
the code space HΣ by acting with a unitary U : Hphys,Σ → Hphys,Σ on the physical
degrees of freedom2. There are a number of features that are desirable for such a
unitary to be useful – physical realizability being an obvious one. For fault-tolerance,
two conditions are particularly natural:

(i) the unitary U should preserve the code space, UHΣ = HΣ so that the informa-
tion stays encoded. We call a unitary U with this property an automorphism of
the code and denote its restriction to HΣ by [U ] : HΣ → HΣ. The action [U ]

defines the logical operation or gate that U realizes.

(ii) typical errors should remain correctable under the application of the unitaryU .
In the context of topological codes, which correct sufficiently local errors, and
where a local error model is usually assumed, this condition is satisfied if
U does not significantly change the locality properties of an operator: if an
operator X has support on a region R ⊂ Σ, then the support of UXU † is
contained within a constant-size neighborhood ofR. We call such a unitary a
locality-preserving unitary.

We call a unitaryU satisfying (i) and (ii) a locality-preserving unitary automorphism
of the code (or simply a topologically protected gate). Our goal is to characterize

2 In principle, we could consider unitaries/isometries (or sequences thereof) of the form
U : Hphys,Σ → H′phys,Σ′ which map between different systems Hphys,Σ and H′phys,Σ′ . By a slight
modification of the arguments here, we could then obtain restrictions on locality-preserving isomor-
phisms (instead of automorphisms, cf. Section 3.3). Such a scenario was discussed in Sergey Bravyi
and König, 2013 in the context of stabilizer codes. Here we restrict to the case where the systems
(and associated ground spaces) are identical for simplicity, since the main conclusions are identical.
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the set of logical operations that have the form [U ] for some locality-preserving3
unitary automorphism U . For example, if HΣ is a topologically ordered subspace
ofHphys,Σ, the Hilbert space of a spin lattice, then (ii) is satisfied if U is a constant-
depth local circuit. Another important example is the constant-time evolution U =

T exp[−i
∫
dtH(t)] of a system through a bounded-strength geometrically-local

Hamiltonian H(t). Here, Lieb-Robinson bounds Lieb and Robinson, 1972; S.
Bravyi, Hastings, and Verstraete, 2006 provide quantitative statements on how the
resulting unitary may be exponentially well approximated by a locality-preserving
unitary. This is relevant since it describes the time evolution of a physical system
and can also be used to model adiabatic transformations of the Hamiltonian Chen,
Gu, and Xiao-Gang Wen, 2010.

From a computational point of view, the group

〈{[U ] | U locality-preserving unitary automorphism}〉

generated by such gates is of particular interest: it determines the computational
power of gates that are implementable fault-tolerantly with locality preserving au-
tomorphisms.

Outline

In Section 3.2, we provide a brief introduction to the relevant concepts of TQFTs. We
then derive our main results on the characterization of protected gates in Section 3.3.
Further restrictions on the allowed protected gates are provided in Sections 3.4 and
3.5. In Section 3.6, we apply our results to particular models, deriving in particular
our characterizations for Ising and Fibonacci anyons. Finally, in Section 3.7 we
use additional properties of abelian models to show that their protected gates must
be contained within a proper subgroup of the generalized Clifford group, which is
similar to the result of Sergey Bravyi and König, 2013, but goes further.

3 As a side remark, we mention that our terminology is chosen with spin lattices in mind.
However, the notion of locality-preservation can be relaxed. As will become obvious below, our
results apply more generally to the set of homology-preserving automorphisms U . The latter can be
defined as follows: if the support of an operatorX is contained in a regionR ⊂ Σwhich deformation
retracts to a closed curve C, then the support of UXU† must be contained in a regionR′ ⊂ Σ which
deformation retracts to a curve C ′ in the same homology class as C. For example, for a translation-
invariant system, translating by a possibly extensive amount realizes such a homology-preserving
(but not locality-preserving) automorphism.
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3.2 TQFTs: background
In this section, we provide the necessary background on topological quantum field
theories (TQFTs). Our discussion will be rather brief; for a more detailed dis-
cussion of topological quantum computation and anyons, we refer to J. Preskill,
2004. Following Witten’s work Witten, 1989, TQFTs have been axiomatized by
Atiyah Atiyah, 1989 based on Segal’s work Segal, 2004 on conformal field theories.
Moore and Seiberg Moore and Seiberg, 1998 derived the relations satisfied by the
basic algebraic data of such theories (or more precisely, a modular functor). Here
we borrow some of the terminology developed in full generality by Walker K., 1991
(see also M. H. Freedman, A. Y. Kitaev, and Z. Wang, 2002). For a thorough
treatment of the category-theoretic concepts, we recommend the appendix of A. Y.
Kitaev, 2006.

Our focus is on theHilbert spaceHΣ spanned by the vacuum states of a TQFTdefined
on the orientable surface Σ. Recall that this is generally a subspace HΣ ⊂ Hphys,Σ

of a Hilbert space of physical degrees of freedom. The TQFT is specified by a finite
set of anyon labels A = {1, a, b, c . . . }, their fusion rules (described using a non-
negative integer N c

ab for each triple of anyons a, b, c, called fusion multiplicities),
along with S, F ,R and T matrices (complex valuedmatrices with columns and rows
indexed by anyon labels). If the TQFT arises from taking continuous limits of a local
Hamiltonian model such as the toric code, the anyons are simply the elementary
excitations of the model, and the fusion rules and matrices can be understood in
terms of creating, combining, moving and annihilating anyons in the surface. The
anyon set must contain a trivial particle 1 ∈ A such that when combined with any
particle, the latter remains unchanged N c

a1 = N c
1a = δca, and each particle a ∈ A

must have an antiparticle a ∈ A such that N1
aa 6= 0. We will restrict our attention to

models where N c
ab ∈ {0, 1} for all a, b, c ∈ A for simplicity (our results generalize

with only minor modifications).

String-like operators and relations
We are interested in the algebra AΣ of operators X : Hphys,Σ → Hphys,Σ which
preserve the subspace HΣ. We call such an element X ∈ AΣ an automorphism
and denote by [X] : HΣ → HΣ the restriction to HΣ. We call X a representative
(or realization) of [X]. Operators of the form [X], where X ∈ AΣ, define an
associative ∗-algebra [AΣ] with unit and multiplication [X][Y ] = [XY ]. The unit
element in [AΣ] is represented by the identity operator id on the whole spaceHphys,Σ.
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Our constraints on protected gates are derived by studying how they transform
certain operators acting on Hphys,Σ (see Fig. 3.1). To define the latter, fix a simple
closed curve C : [0, 1] → Σ on the surface and an “anyon label” a ∈ A. (The
set of labels A is determined by the underlying model.) Then there is a “string-
operator” Fa(C) acting on Hphys,Σ, supported in a constant-diameter neighborhood
of C. It corresponds to the process of creating a particle-antiparticle-pair (a, a),
moving a along C, and subsequently fusing to the vacuum. The last step in this
process involves projection onto the ground space, which is not trivial in general:
the operator Fa(C) can involve post-selection, in which case it is a non-unitary
element of AΣ.

The operators {Fa(C)}a∈A form a closed subalgebra A(C) ⊂ AΣ: they preserve
the ground space and satisfy

Fa(C)Fb(C) =
∑
n

Nn
abFn(C) ,

Fa(C)† = Fa(C)

F1(C) = idHphys (3.1)

for the fusionmultiplicitiesNn
ab (see Section 3.2). In addition, reversing the direction

of C, i.e., considering C−1(t) ≡ C(1− t), is equivalent to exchanging the particle
with its antiparticle, i.e.,

Fa(C
−1) = Fa(C) . (3.2)

Here a 7→ a is an involution on the set of particle labels A, again defined by the
underlying model. Properties (3.1) and (3.2) of the string-operators can be shown
in the diagrammatic formalism mentioned below (but this is not needed here; we
will use them as axioms).

We denote the restriction of Fa(C) to the code space HΣ by [Fa(C)]. Note that,
while [Fa(C)] is unitary in abelian anyon models, this is not the case in general.

Example 3.1 (D(G) and Kitaev’s toric code). As an example, consider a model
described by the quantum double D(G) of a finite group G, for which Kitaev has
constructed a lattice model A. Y. Kitaev, 2003. In the case where G is abelian, we
have D(G) ∼= G × G, i.e., the particles and fusion rules are simply given by the
product group A = G×G.

Specializing to G = Z2 gives the particles commonly denoted by 1 = (0, 0)

(vacuum), m = (1, 0), e = (0, 1) and ε = m × e = (1, 1). For the toric code
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Figure 3.1: Closed 2-manifolds are characterized by their genus g. The figure
illustrates the 3-handled torus Σg corresponding to g = 3. A canonical set of
3g − 1 generators of the mapping class group of the surface Σg can be specified
in terms of a set G = {Cj}3g−1

j=1 of loops (each associated with a Dehn twist).
Dragging an anyon a around such loop C : [0, 1] → Σg and fusing to the vacuum
implements an undetectable operatorFa(C); homologically non-trivial loops realize
logical operations. The full algebra of logical operators is generated by the set of
operators {Fa(C)}a∈A,C∈G . However, these operators are generally not independent.

model, the associated ribbon operators are

F1(C) = id Fe(C) = X̄(C) Fm(C) = Z̄(C) Fε(C) = X̄(C)Z̄(C) ,

where X̄(C) = ⊗j∈∂+CXj and Z̄(C) = ⊗j∈∂−CZj are appropriate tensor products
of Pauli-X and Pauli-Z-operators along C (as specified in A. Y. Kitaev, 2003).

Specializing to G = ZN , with ωN = exp(2πi/N) and generalized N -dit Pauli
operators X and Z (and their inverses), defined by their action

X |j〉 = |j + 1 mod N〉 Z |j〉 = ωjN |j〉

on computational basis states {|j〉}j=0,...,N−1, we can consider such a model (the
ZN -toric code) with generalized ribbon operators. Here

F(a,a′)(C) = X̄(C)aZ̄(C)a
′
,

where X̄(C) is a tensor product of Pauli-X and its inverse depending on the orien-
tation of the underlying lattice, and similarly for Z̄(C).

It is easy to check that operators associated with the same loop commute, i.e.,

[F(a,a′)(C), F(b,b′)(C)] = 0 , (3.3)

and since ZaXb = ωabNX
bZa, we get the commutation relation

F(a,a′)(C1)F(b,b′)(C2) = ωab
′−a′b

N F(b,b′)(C2)F(a,a′)(C1) (3.4)

for any two strings C1, C2 intersecting once.
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Returning to the general case, the algebra of string operators does not necessarily
satisfy relations as simple as (3.3) and (3.4). Nevertheless, some essential features
hold under very general assumptions. We express these as postulates; they can be
seen as a subset of the isotopy-invariant calculus of labeled ribbon graphs associated
with the underlying category (see e.g., M. Freedman et al., 2008 for a discussion
of the latter). That is, the properties expressed by our postulates are a subset of
the axioms formalizing TQFTs, and serve to capture the essential features in an
algebraic manner. For particular systems (such as the toric code or the quantum
double models), these postulates can be rigorously established (see A. Y. Kitaev,
2003; H. Bombin and M. A. Martin-Delgado, 2008), whereas in other cases, only
partial results are known (see e.g., the discussion in Z. Wang, 2010, p. 107)
but they are conjectured to hold. We sidestep the independent important and
challenging problem of rigorously establishing these postulates, and instead derive
some consequences. Throughout our work, we hence assume that the models under
consideration satisfy our postulates.

Postulate 3.1 (Completeness of string-operators). Consider an operator U with
support in some region R which preserves the code space HΣ. Then its action on
the code space is equivalent to that of a linear combination of products of operators
of the form Fa(C), for a closed loop C : [0, 1]→ R which is supported inR. That
is, we have

[U ] =
∑
j

βj
∏
k

[Faj,k(Cj,k)] .

This postulate essentially means that, as far as the logical action is concerned,
we may think of [U ] as a linear combination of products of closed-loop string
operators. Such products Fam(Cm) · · ·Fa1(C1) can conveniently be thought of as
‘labeled’ loop gases embedded in the three-manifold Σ × [0, 1], where, for some
0 < t1 < · · · < tm < 1, the operator Faj(Cj) is applied at ‘time’ tj (and hence a
labeled loop is embedded in the slice Σ× {tj}). Diagrammatically, one represents
such a product by the projection onto Σ with crossings representing temporal order,
as in

Fa2(C2)Fa1(C1) =

Fa2(C2) Fa1(C1)

(3.5)

One may manipulate every term in a linear combination representing U without
changing the logical action according to certain local ‘moves’; in particular, the
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Fa(C)

R
Fa(C′)

R

≡

Figure 3.2: The content of Postulate 3.2: We can deform a line without changing
the logical action of the string-operator.

order of application of these moves is irrelevant (a fact formalized by MacLane’s
theorem Lane, 1998).

For our purposes, we only require the following ‘local’ moves, which relate two
products U and U ′ of string-operators given by diagrams such as (3.5). More
generally, they may be applied term-by-term to any linear combination if each term
contains the same local sub-diagram.

Postulate 3.2 (String deformation (see Fig. 3.2)). Suppose operators U,U ′ ∈ AΣ

are identical on the complement of some region R. Assume further that inside R,
both U and U ′ contain a single string describing the dragging of the same anyon
type along a path C and C ′, respectively, where C ′ can be locally deformed into C.
Then the logical action of U and U ′ must be equivalent: [U ] = eiθ[U ′] for some
unimportant phase eiθ (Fig. 3.2).

In particular, this postulate implies that if C and C ′ are two closed homologically
equivalent loops and a is an arbitrary anyon label, then the operators Fa(C) and
Fa(C

′) realized by “dragging” the specified anyon along C and C ′ respectively have
equivalent logical action on the code space, [Fa(C)] = eiθ[Fa(C

′)].

The next postulate involves local operators, and essentially states that the spaceHΣ

is a quantum error-correcting code protecting against local errors. While we may
state it in a form only referring to local operators, we will find it more intuitive to
combine it with the deformation postulate: this extends correctability from small
regions to contractible loops (i.e., loops that are homotopic to a point).

Postulate 3.3 (Error correction postulate). If C is a contractible loop, then for
each a ∈ A, the operator Fa(C) has trivial action on the space HΣ up to a global
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constant da, that is,

[Fa(C)] = daidHΣ
. (3.6)

This postulate essentially means that we may remove certain closed loops from
diagrams such as (3.5).

An immediate consequence of these postulates is the following statement.

Proposition 3.2.1 (Local completeness of string operators). Consider an opera-
tor O ∈ AΣ whose support is contained within a constant-diameter neighborhood
of a simple loopC. Then [O] = [X̃] for some X̃ ∈ A(C). In other words, the logical
action of O is identical to that of a linear combination of string-operators Fa(C).

This proposition can be seen as a consequence of the completeness condition for
strings (Postulate 3.1), the string deformation Postulate 3.2 and (3.1). A similar
argument leads us to the following conclusion.

Proposition 3.2.2 (Global completeness of few homology classes). The full logical
algebra [AΣ] is generated by the logical algebras [A(C)] associated with a finite
number of inequivalent non-contractible simple loops C.

Proof. That the algebra [AΣ] is finite-dimensional can be seen from the finite di-
mensionality of the code spaceHΣ. By Postulate 3.1, the algebra [AΣ] is generated
by {A(C)}C . Let us start from a trivial algebra and build up [AΣ] from a finite
number of loops. As long as the algebra is not complete, we may include additional
loops C such that [A(C)] is not included in the partially generated algebra. Such a
loop C must be inequivalent to the previously included loops due to Postulate 3.2.
After a number of steps no greater than the square of the ground space dimension,
we will have constructed the complete algebra.

Therefore there exists a finite, minimal set of loops which is sufficient to span [AΣ].

The Verlinde algebra
It is convenient to formally introduce some algebraic data defined by the underlying
anyon model. We will return to the discussion of string-operators in the next section
and relate them to this algebraic language.

As before, let A be the set of particle labels (generally a finite set), and let a 7→ a

be the involution giving the antiparticle associated with particle a. The fusion rules
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of the model are encoded in integers N c
ab, which are called fusion multiplicites.

We will restrict our attention to models where N c
ab ∈ {0, 1} for all a, b, c ∈ A for

simplicity (our results generalize with only minor modifications).

The Verlinde algebra Ver is the commutative associative ∗-algebra spanned by
elements {fa}a∈A satisfying the relations

fafb =
∑
c

N c
abfc and f †a = fa . (3.7)

Note that f1 = id is the identity element because the numbers {N c
ab} satisfy N c

a1 =

N c
1a = δac.

Since every anyon model is braided by definition, one indeed has N c
ab = N c

ba

and the algebra Ver is a finite-dimensional commutative C∗-algebra. Therefore
Ver ∼= C⊕(dimVer) is a direct sum of copies of C. The fusion multiplicity N c

ab may
also be written in terms of the modular S-matrix, whose matrix elements are, in the
diagrammatic calculus, given by the Hopf link and the total quantum dimension D
by

Sab =
1

D a b .

We consider (and restrict our attention to) the case where the S-matrix is unitary:
here the isomorphism Ver ∼= C⊕(dimVer) can be made explicit thanks to the Verlinde
formula Verlinde, 1988

N c
ab =

∑
x

SaxSbxScx
S1x

, (3.8)

as the proof of the following Proposition 3.2.3 shows. (Note that S1x = dx/D where
D =

√∑
a d

2
a.) For this purpose, we define the elements

pa = S1a

∑
b

Sbafb for all a ∈ A . (3.9)

This relation can be inverted by making use of unitarity of the S-matrix

fb =
∑
a

Sba
S1a

pa for all a ∈ A . (3.10)

The main statement we use is the following:

Proposition 3.2.3 (Primitive idempotents). The elements {pa}a∈A are the unique
complete set of orthogonal minimal idempotents spanning the Verlinde algebra,

Ver =
⊕
a

Cpa . (3.11)
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Furthermore, they satisfy ∑
a

pa = f1 = id . (3.12)

Proof. That {pa}a∈A span the algebra Ver is evident from the fact that {fa}a∈A span
the algebra, and each fa can be written in terms of {pa}a∈A via Eq. (3.10). To show
they are orthogonal idempotents papb = δa,bpa, first note that

papb = S1aS1b

∑
g,h

SgaShbfgfh

= S1aS1b

∑
g,h,j

SgaShbN
j
ghfj

= S1aS1b

∑
g,h,j,x

SgaShb
SgxShxSx

S1x

fj

where we used the Verlinde formula (3.8) in the second step. With the unitarity of
the S-matrix, we then obtain

papb = S1aS1b

∑
j,x

δa,xδb,x
Sx
S1x

fj

= δa,bS
2
1a

∑
j

Sa
S1a

fj

= δa,bS1a

∑
j

Safj .

It follows that papb = δa,bpa from the symmetry property Sa = Sja, see e.g., A. Y.
Kitaev, 2006, Eq. (224). It remains to verify that the set of projectors is unique.
Consider qb =

∑
a αbapa for some constants αba ∈ C, such that qaqb = δa,bqa.

This implies

qaqb =
∑
dc

αacαbdpcpd

=
∑
c

αacαbcpc = δa,b
∑
c

αacpc,

which implies αacαbc = δa,bαac for all a, c ∈ A by linear independence of the pa’s.
This implies αac = 0, 1, and can only form a complete basis for the algebra Ver if
αac is a permutation matrix, implying {qa}a∈A ≡ {pa}a∈A.
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As explained in the next section, the string operators of anyons around a loopC give
rise to a representation of the Verlinde algebra. While the projections (introduced
in Eq. (3.14) below) associated with the idempotents are not a basis for the logical
algebra [AΣ], they are a basis of a subalgebra [AΣ(C)] isomorphic to the Verlinde
algebra. This algebra must be respected by the locality-preserving unitaries, and this
is best understood in terms of the idempotents. This is the origin of the non-trivial
constraints we obtain on the realizable logical operators.

Bases of the Hilbert spaceHΣ

Eq. (3.1) shows that the collection of operators {[Fa(C)]}a∈A form a representa-
tion of the Verlinde (fusion) algebra Ver. By linear independence of operators
{[Fa(C)]}a∈A, we see that the representation is faithful, such that the logical loop
algebra is isomorphic to the Verlinde algebra

[A(C)] ∼= Ver. (3.13)

Thiswill be central in the following development. Considering the primitive idempo-
tents (3.9), it is natural to consider the corresponding operators in this representation,
that is, we set

[Pa(C)] = S1a

∑
b

Sba[Fb(C)] . (3.14)

Since the set {[Fa(C)]}a∈A forms a representation of the Verlinde algebra, the
{[Pa(C)]}a∈A are orthogonal projectors as a consequence of Proposition 3.2.3. The
inverse relation to (3.14) is given by

[Fb(C)] =
∑
a

Sba
S1a

[Pa(C)] . (3.15)

While the projectors [Pa(C)] associated with a loop do not span the full logical
algebra, they do span the local logical algebra of operators supported along C

which must be respected by locality preserving unitaries. Intuitively, {Pa(C)}a∈A
are projectors onto the smallest possible sectors of the Hilbert space which can be
distinguished by a measurement supported on C.

A state in the image of Pa(C) has the interpretation of carrying flux a through
the loop C. In particular, since the code space HΣ corresponds to the vacua of a
TQFT, there are no anyons present on Σ, however, there can be flux associated to
non-contractible loops. We can use the operators {Pa(C)}a,C to define bases of the
Hilbert spaceHΣ.
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C2

C1 C3

Figure 3.3: A simple DAP decomposition of a torus utilizing a disc enclosed by
C1, an annulus enclosed by {C2, C3} and a pair of pants enclosed by {C1, C2, C3}.
This decomposition is not minimal in that the same manifold could have been
decomposed using a single loop.

Let us first define the Hilbert spaceHΣ in more detail.

Definition 3.4 (DAP-decomposition). Consider a minimal collection C = {Cj |Cj :

[0, 1] → Σ}j of pairwise non-intersecting non-contractible loops, which cut the
surface Σ into a collection of surfaces homeomorphic to discs, annuli and pants.
We call C a DAP-decomposition.

A labeling ` : C 7→ A is an assignment of an anyon label `(C) to every loop C ∈ C
of a DAP decomposition. We call ` fusion-consistent if it satisfies the following
conditions:

(i) for every loop C ∈ C enclosing a disc on Σ, `(C) = 1, the vacuum label of
the anyon model.

(ii) for every pair of loops {C2, C3} ⊂ C defining an annulus in Σ, `(C2) = `(C3)

assuming the loops are oriented such that the annulus is found to the left.

(iii) for every triple {C1, C2, C3} ⊂ C defining a pair of pants in Σ, the labeling `
satisfies the fusion rule

N
`(C3)
`(C1),`(C2) 6= 0,

where the loops are oriented such that the pair of pants is found to the left.

Here we may assume `(C−1) = `(C), where C−1 denotes the loop coinciding with
C but with opposite orientation.
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Now fix any DAP-decomposition C of Σ and let L(C) ⊂ A|C| be the set of fusion-
consistent labelings. The Hilbert spaceHΣ is the formal span of elements of L(C)

HΣ :=
∑
`∈L(C)

C` =
∑
`∈L(C)

C |`〉 .

Any fusion-consistent labeling ` ∈ L(C) defines an element |`〉 ∈ HΣ such that the
vectors {|`〉}`∈L(C) are an orthonormal basis (which we call BC) of HΣ, and this
defines the inner product.

It is important to remark that this construction of HΣ is independent of the DAP-
decomposition C of Σ in the following sense: if C and C ′ are two distinct DAP-
decompositions, then there is a unitary basis change between the bases BC and BC′ .
In most cases under consideration, this basis change can be obtained as a product
of unitaries associated with local “moves” connecting two DAP decompositions C
and C ′. One such basis change is associated with a four-punctured sphere (the F -
move), and specified by the unitaryF -matrix in Fig. 3.4. Anothermatrix of this kind,
the S-matrix (which also arose in our discussion of the Verlinde algebra), connects
the two bases BC and BC′ of Htorus associated with the first and second non-trivial
cycles on the torus (Fig. 3.4). In this case, writing BC = {|a〉C}a and BC′ = {|a〉C′}a
since each basis element |`〉 is specified by a single label `(C), `(C ′) ∈ A, we have
the relation

|a〉C′ =
∑
b

Sba |b〉C . (3.16)

Other unitary basis changes arise from the representation of themapping class group,
as discussed in Section 3.2. All these basis changes constitute the second ingredient
for the non-trivial constraints we obtain on the realizable logical operators.

A basis element |`〉 ∈ BC associates the anyon label `(C) with each curve C ∈ C.
The vector |`〉 is the (up to a phase) unique simultaneous +1-eigenvector of all the
projections {P`(C)}C∈C . It is also a simultaneous eigenvector with respect to Dehn-
twists along each curve C ∈ C with eigenvalue eiθ`(C) . The action of Dehn-twists
along curves C ′ not belonging to C can be obtained by applying the local moves to
change into a basis BC′ associated with a DAP-decomposition C ′ containing C ′.

Open surfaces: labeled boundaries
So far, we have been discussing the Hilbert space HΣ associated with closed sur-
faces; this does not cover the physically important case of pinned localized excita-
tions (which correspond to punctures/holes in the surface). Here we describe the
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FC C ′

C
C ′

S

Figure 3.4: Two DAP-decompositions C = {C} and C ′ = {C ′} of either the 4-
punctured sphere (left), or the torus (right), are related by an F -move or an S-move,
respectively.

modifications necessary to deal with surfaces with boundaries. We assume that
the boundary ∂Σ =

⋃M
α=1 Ĉα is the disjoint union ofM simple closed curves, and

assume that an orientation Ĉα : [0, 1] → ∂Σ has been chosen for each bound-
ary component Ĉα such that Σ is found to the left. In addition, we fix a label
aα ∈ A for every boundary component Ĉα. We call this a labeling of the boundary.
Let us write Σ(a1, . . . , aM) for the resulting object (i.e., the surfaces, its oriented
boundary components, and the associated labels). We call Σ(a1, . . . , aM) a surface
with labeled boundary components; slightly abusing notation, we sometimes write
Σ = Σ(a1, . . . , aM) when the presence of boundaries is understood/immaterial.

A TQFT associates to every surface Σ(a1, . . . , aM) with labeled boundary compo-
nents a Hilbert space HΣ(a1,...,aM ). The construction is analogous to the case of
closed surfaces and based on DAP-decompositions. The only modification com-
pared to the case of closed surfaces is that only DAP-decompositions including the
curves {Ĉα}Mα=1 are allowed; furthermore, the labeling on these boundary com-
ponents is fixed by {aα}Mα=1. That is, “valid” DAP-decompositions are of the
form C = {C1, . . . , CN , Ĉ1, . . . , ĈM} with curves {Cj}Nj=1 “complementing” the
boundary components, and valid labelings are fusion-consistent, i.e., ` ∈ L(C) with
the additional condition that they agree with the boundary labels, `(Ĉα) = aα for
α = 1, . . . ,M . To simplify the discussion, we will often omit the boundary com-
ponents {Ĉα}α and focus on the remaining degrees of freedom associated with the
curves {Cj}j . It is understood that boundary labelings have to be fusion-consistent
with the labeling {aα}α of the boundary under consideration.

As a final remark, note that boundary components labeledwith the trivial particle 1 ∈
A correspond to contractible loops in a surface without this boundary (i.e., obtained
by “gluing in a disc”). Thismeans that they can be omitted: we have the isomorphism

HΣ(1)
∼= HΣ′ ,
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z z z z

z zC1 C2 C3

S2(z6)

z zz z

zz x1 x2 x3

Figure 3.5: The ‘standard’ DAP-decomposition of the 6-punctured sphere, and the
corresponding fusion-tree notation representing the labeling which assigns `(Ci) =
xi.

where Σ′ is the surface with one boundary component less that of Σ.

Example: theM -anyon Hilbert space

A typical example we are interested in is the labeled surface

S2(zM) = S2(z, . . . , z︸ ︷︷ ︸
M times

) ,

where S2( , , ... , , ) is the punctured sphere, and z ∈ A is some fixed anyon type
(we assume that each boundary component has the same orientation). The Hilbert
space HS2(zM ) is the space of M anyons of type z. When M = N + 3 for some
N ∈ N, we can choose a ‘standard’ DAP-decomposition C = {Cj}Nj=1 as shown
in Fig. 3.5. A fusion-consistent labeling ` of the standard DAP-decomposition C
corresponds to a sequence (x1, . . . , xN) = (`(C1), . . . , `(CN)) such that

Nx1
zz = N z

xNz
= 1 and Nxj+1

xjz
= 1 for all j = 1, . . . , N − 1, (3.17)

as illustrated by Fig. 3.5.

The gluing axiom
Consider a closed curve C embedded in Σ. We will assume that C is an element of
a DAP-decomposition C; although this is not strictly necessary, it will simplify our
discussion. Now consider the surface Σ′ obtained by cutting Σ along C. Compared
to Σ, this is a surface with two boundary components C ′1, C ′2 (both isotopic to C)
added. We will assume that these have opposite orientation. A familiar example is
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Σ

C

C ′
2C ′

1

Σ1 Σ2

Figure 3.6: Cutting a surface Σ along some closed curveC of a DAP-decomposition
yields a disconnected surfaceΣ′ = Σ1∪Σ2 having additional boundary components
C ′1 and C ′2.

the case where cutting Σ alongC results in two disconnected surfaces Σ′ = Σ1∪Σ2,
as depicted in Fig. 3.6 in the case where Σ is the 4-punctured sphere.

Let a be a particle label. We will denote by HΣ′(a,a) the Hilbert space associated
with the open surface Σ′, where boundary C ′1 is labeled by a and boundary C ′2 by a.
The gluing axiom states that the Hilbert space of the surface Σ has the form

HΣ
∼=
⊕
a

HΣ′(a,a) (3.18)

where the direct sum is over all particle labels a that occur in different fusion-
consistent labelings of C. In the special case where cutting along C gives two
components Σ1,Σ2, we haveHΣ

∼=
⊕

aHΣ1(a) ⊗HΣ2(a).

The isomorphism (3.18) can easily be made explicit. A first observation is thatHΣ

decomposes asHΣ =
⊕

aHa,Σ(C), where

Ha,Σ(C) := span{|`〉 | ` ∈ L(C), `(C) = a} (3.19)

is the space spanned by all labelings which assign the label a to C. It therefore
suffices to argue that

Ha,Σ(C) ∼= HΣ′(a,a) . (3.20)

To do so, observe that the DAP-decomposition C of Σ gives rise to a DAP-
decomposition C ′ = C\{C} of Σ′. Any labeling ` ∈ L(C) with `(C) = a

restricts to a labeling `′ ∈ L(C ′) of the labeled surface Σ′(a, a). Conversely,
any labeling `′ ∈ L(C ′) of the surface Σ′(a, a) provides a labeling ` ∈ L(C)
(by setting `(C) = a). This defines the isomorphism (3.20) in terms of basis
states {|`〉}`∈L(C) and {|`′〉}`′∈L(C′).
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z z z z

z zC1 C2 C3

S2(z6)

z z

z C1 a

S2(z3, a) S2(ā, z3)
z z

zC3ā

Figure 3.7: The 6-punctured sphere S2(z6) shown with three curves C1, C2, C3 ∈ C
of a DAP-decomposition. Cutting along C2 with labeling `(C2) = a results in the
two surfaces S2(z3, a) and S2(a, z3).

Example: decomposing theM -anyon Hilbert space

Consider the M -punctured sphere Σ = S2(zM) with the standard DAP decompo-
sition of Fig. 3.5 and boundary labels z (corresponding to M anyons of type z).
Cutting S2(zM) along Cj gives a surface Σ′j which is the disjoint union of two
punctured spheres, with j + 2 and M − j punctures, respectively. The resulting
surface labelings are S2(zj+1, a) and S2(a, zM−1−j). That is, if Σ = S2(zM) is the
original surface and Σ′j(a, a) is the resulting one, then

HΣ′j(a,a) = HS2(zj+1,a) ⊗HS2(a,zM−1−j) . (3.21)

This is illustrated in Fig. 3.7 for the caseM = 6 and j = 2.

The mapping class group
In the following, we denote by MCGΣ the mapping class group of the surface Σ.
Physically, a mapping class group element for a surface Σ gradually deforms the
surface, but returns to the original configuration. For the n-punctured sphere, the
mapping class group includes braiding of the punctures. For the torus, a Dehn twist
is an element of the mapping class group. More formally, elements of MCGΣ are
isotopy classes of orientation-preserving diffeomorphisms of Σ preserving labels
and commuting with boundary parametrization (see e.g., M. H. Freedman, A. Y.
Kitaev, and Z. Wang, 2002). Slightly abusing notation, we will often simply
write ϑ ∈ MCGΣ for an equivalence class represented by a map ϑ : Σ→ Σ. If Σ is
the torus, then themapping class group is generated by two elements, MCGΣ = 〈s, t〉
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where s and t are the standard generators of themodular group. For theM -punctured
sphere S2(zM), we will also need the M − 1 elements {σj}M−1

j=1 , where σj braids
holes j and j + 1.

The Hilbert spaceHΣ is equipped with a projective unitary representation

MCGΣ → U(HΣ)

ϑ 7→ V(ϑ)
(3.22)

of themapping class groupMCGΣ. For example, for the torus,V(s) = S andV(t) =

T are the usual S- and T -matrices defined by the modular tensor category. For the
M -punctured sphere S2(zM) with M = N + 3, we again use the standard DAP-
decomposition with associated basis {|x〉}x. Here the sequences x = (x1, . . . , xN)

are subject to the fusion rules (see (3.17)) and the action on such vectors is

V(σ1) |x〉 = Rzz
x1
|x〉 ,

V(σk) |x〉 =
∑
x′

B(xk−1, xk+1)x′xk |x1, . . . , xk−1, x
′, xk+1, . . . , xN〉

for k = 2, . . . , N + 1,

V(σN+2) |x〉 = Rzz
x1
|x〉 ,

where B(a, b) = F̃−1R̃F̃ is the braid matrix. Here the matrices F̃ and R̃ are given
in terms of the tensors F and R associated with the TQFT4.

3.3 Constraints on locality-preserving automorphisms
In this section, we derive restrictions on topologically protected gates for general
non-abelian models. Our strategy will be to consider what happens to string-
operators. We will first consider operators associated with a single loop C, and
derive restrictions on the map Fa(C) 7→ UFa(C)U †, or, more precisely, its effect on
logical operators, [Fa(C)] 7→ [UFa(C)U †]. We will argue that this map implements
an isomorphism of the Verlinde algebra and exploit this fact to derive a constraint
which is ‘local’ to a specific loop. We will subsequently consider more ‘global’
constraints arising from fusion rules, as well as basis changes.

We would like to characterize locality-preserving unitary automorphisms U ∈ AΣ

in terms of their logical action [U ]. For example in the toric code, where the physical
4More precisely, for B(xk−1, xk+1), the relevant matrices are F̃x′,x = F

zxk−1xk

xk+1zx′
and R̃ is

diagonal with entries R̃x,x = Rzz
x . Here F is the F -matrix associated with basis changes on the

four-punctured sphere (see Section 3.5), whereas Rxy
z determines an isomorphisms between certain

Hilbert spaces associated with the three-punctured sphere. We refer to e.g., J. Preskill, 2004, p. 48
for a derivation of these expressions.
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qubits are imbedded in the edges of the square lattice, the locality preserving unitaries
include the well-known transversal gates of single-qubit unitaries applied to each
qubit. More general examples of locality preserving unitaries in the toric code are
finite depth circuits composed of gates of arbitrary unitaries applied to physical
qubits in geometrically-local patches of fixed diameter.

A first goal is to characterize the map

ρU : [AΣ] → [AΣ]

[X] 7→ [UXU−1] ,
(3.23)

which determines the evolution of logical observables in the Heisenberg picture.
(Clearly, this does not depend on the representative, i.e., if [X] = [X ′], then
ρU([X]) = ρU([X ′]).) In fact, the map (3.23) fully determines U up to a global
phase since [AΣ] contains an operator basis for linear maps onHΣ. However, it will
often be more informative to characterize the action of [U ] on basis elements ofHΣ.
This will require additional effort.

The main observation is that the map (3.23) defines an automorphism of [AΣ], since

ρU([X])ρU([X ′]) = ρU([X][X ′]) for all X,X ′ ∈ AΣ and ρ−1
U = ρU−1 .

(3.24)

Combined with the locality of U , (3.24) severly constrains ρU . Using this fact, we
obtain a number of very general constraints, which will be worked out in more detail
in the following.

A local constraint from a simple closed loop
Specifying the action of ρU on all of [AΣ] completely determines [U ] up to a global
phase. However, this is not entirely straightforward; instead, we fix some simple
closed curve C and characterize the restriction to the subalgebra A(C) ⊂ AΣ, i.e.,
the map

ρU(C) : [A(C)] → [A(C)]

[X] 7→ [UXU−1] ,
(3.25)

Observe that this map is well-defined since UXU−1 is supported in a neighborhood
of C (by the locality-preservation of U ), and hence [UXU−1] = [X ′] for some
operator X ′ ∈ A(C) (here we have used Proposition 3.2.1). It is also easy to see
that it defines an automorphism of the subalgebra [A(C)].
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As we argued above, the algebra A(C) is isomorphic to Ver. This carries over to
[A(C)] ∼= Ver ∼= C⊕|A|. As Ver has idempotents pa∈A, the logical algebra for loop
C has idempotents {[Pa(C)]}a∈A. Note that the idempotents {[Pa(C)]}a∈A in the
logical algebra are unique, in that there is no linear combination of these idempotents
which yields a distinct, complete set of idempotents. At the physical level however,
there can be huge redundency, with many different physical operators corresponding
to the same logical operator, i.e. [Pa(C)] = [P ′a(C)], for Pa(C) 6= P ′a(C). We use
the following fact:

Lemma 3.5. The set of automorphisms of the algebra Ver is in one-to-one corre-
spondence with the permutations S|A|. For π ∈ S|A|, the associated automorphism
ρπ : Ver→ Ver is defined by its action on the central idempotents pa

ρπ(pa) = pπ(a) for a ∈ A (3.26)

Proof. It is clear that (3.26) defines an automorphism for every π ∈ S|A|. Also,
from Eq. (3.24) we see that papb = δabpb implies ρ(pa)ρ(pb) = δabρ(pb), such
that ρ(pa) ∈ Ver are a complete set of projectors (Proposition 3.2.3). As there is a
unique set of complete projectors for Ver, we conclude that ρ(pa) = pπ(a) for some
permutation π ∈ S|A|.

Applying this to [A(C)] shows that a locality-preserving unitary automorphism
realizes, up toimportant phases, a a permutation of labelings. Let us emphasize that
it is the projectors (idempotents) [Pa(C)] which are being permuted, and not the
string operators [Fa(C)].

Proposition 3.3.1 (Local constraint). Let U be a locality-preserving automorphism
of the code, and let ρU([X]) = [UXU−1].

(i) For each simple closed loop C on Σ, there is a permutation πC : A→ A of the
particle labels such that

ρU : [A(C)] → [A(C)]

[Pa(C)] 7→ [PπC(a)(C)] for all a ∈ A ,
(3.27)

(and linearly extended to all of [A(C)]).

(ii) For some anyon model A with an associated S matrix, let Da,b = δa,b · da
be the diagonal matrix with the quantum dimensions on the diagonal. Let
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πC : A→ A be a permutation associated with a loop C as in (i), and let Π be
the matrix defined by Πx,y := δx,πC(y). Define the matrix

Λ := SΠ−1DΠD−1Π−1S−1 . (3.28)

Then

ρU([Fb(C)]) =
∑
b′

Λb,b′ [Fb′(C)] . (3.29)

Proof. We have already argued that (i) holds. For the proof of (ii), we use the rela-
tionship between {Pa(C)}a and {Fa(C)}a (cf. (3.14) and (3.15)) to get (suppressing
the dependence on the loop C)

ρU([Fb]) =
∑
a

Sb,a
S1,a

[PπC(a)] =
∑
b′

(∑
a

Sb,a
S1,a

S1,πC(a)Sb′,πC(a)

)
[Fb′ ] .

The claim (3.29) follows from this using (Π−1S−1)a,b′ = (S−1)πC(a),b′ = Sb′,πC(a)

by the unitarity of S, as well as the fact that S1,a = da/D and hence Sb,a
S1,a

S1,πC(a) =

(SΠ−1DΠD−1)b,a.

Global constraints fromDAP-decompositions, fusion rules and the gluing axiom
For higher-genus surfaces, we can obtain information by applying Proposition 3.3.1
to all loops of a DAP-decomposition; these must then satisfy the following consis-
tency condition.

Proposition 3.3.2 (Global constraint from fusion rules). Let U be a locality-
preserving automorphism of the code. Let C be a DAP-decomposition of Σ, and
consider the family of permutations ~π = {πC}C∈C defined by Proposition 3.3.1.
Then this defines a permutation ~π : L(C) → L(C) of the set of fusion-consistent
labelings via

~π(`)(C) := πC [`(C)] (3.30)

for all C ∈ C. We have

U |`〉 = eiϕ(`) |~π(`)〉 for all ` ∈ L(C) (3.31)

with some phase eiϕ(`) depending on `.

Proof. Let us fix some basis element |`〉 ∈ BC . The vector |`〉 is a +1-eigenvector
of P`(C)(C) for each C ∈ C; hence according to (3.27), the vector U |`〉 is a +1-
eigenvector of PπC [`(C)](C) = P~π(`)(C)(C) for every C ∈ C. This implies that it is
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proportional to |~π(`)〉, hence we obtain (3.31). Fusion-consistency of ~π(`) follows
because U |`〉 must be an element ofHΣ.

Proposition (3.3.2) expresses the requirement that a locality-preserving automor-
phism U maps the set of fusion-consistent labelings into itself.

In fact, we can say more: it must be an isomorphism between the subspaces of HΣ

arising from the gluing axiom (i.e., Eq. (3.18)). This allows us to constrain the set
of allowed permutations ~π = {πC}C∈C arising from locality-preserving automor-
phisms even further:

Proposition 3.3.3 (Global constraint from gluing). Let C be an element of a DAP-
decomposition of Σ. Recall that

HΣ =
⊕
a

Ha,Σ(C) , (3.32)

where the subspaces in the direct sum are defined by labelings associating a to C.
Let U be a locality-preserving automorphism of the code and let πC : A→ A be the
permutation associated withC by Proposition 3.3.1. Then for every a ∈ A occuring
in Eq. (3.32), the restriction of U toHa,Σ(C) defines an isomorphism

Ha,Σ(C) ∼= HπC(a),Σ(C) . (3.33)

In particular, if Σ′ is the surface obtained by cutting Σ along C, then

HΣ′(a,a)
∼= HΣ′(πC(a),πC(a))

(3.34)

for every a ∈ A occuring in the sum (3.32).

The reason we refer to Proposition (3.3.3) as a global constraint (even though it
superficially only concerns a single curve C) is that the surface Σ′ and hence the
spaces (3.34) depend on the global form of the surface Σ outside the support of C.

Proof. Proposition (3.3.2) implies that UHa,Σ(C) ⊂ HπC(a),Σ(C) for any a in
expression (3.32). Since U acts unitarily on the whole spaceHΣ, this is compatible
with (3.32) only if UHa,Σ(C) = HπC(a),Σ(C) for any such a. This proves (3.33).
Statement (3.34) then immediately follows from (3.20).

A simple but useful implication of Proposition 3.3.3 is that

dim
(
HΣ′(a,a)

)
= dim

(
H

Σ′(πC(a),πC(a))

)
(3.35)

is a necessary condition that πC has to satisfy.
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Global constraints from basis changes
Eq. (3.27) essentially tells us that a locality-preserving protected gate U can only
permute particle labels; it indicates that such a gateU is related to certain symmetries
of the anyon model. But (3.27) does not tell us what phases basis states may
acquire. We show how to obtain constraints on these phases by considering basis
changes. This also further constrains the allowed permutations on the labels of the
idempotents.

Consider two DAP-decompositions C and C ′. Expressed in the first basis BC , we
have

U |`〉 = eiϕ(`) |~π(`)〉 (3.36)

for some unknown phase ϕ(`) depending only on the labeling ` ∈ L(C). This
means that with respect to the basis elements of BC , the operator U is described
by a matrix U = ΠD({ϕ(`)}`), where Π is a permutation matrix (acting on the
fusion-consistent labelings L(C)), and D is a diagonal matrix with entries {eiϕ(`)}`
on the diagonal.

Analogously, we can consider the operator U expressed as a matrix U ′ in terms of
the basis elements of BC′ . We conclude that U ′ = Π′D({ϕ′(`)}`), for ` ∈ L(C ′),
with a (potentially different) permutation matrix Π′, and (potentially different)
phases {ϕ′(`)}`.

Let V be the unitary change-of-basis matrix for going from BC to BC′ . Then we
must have

V U = U ′V . (3.37)

We show below that this equation strongly constrains the phases as well as the
permutations in (3.31). More specifically, we will examine constraints arising when
using basis changes V defined by F -moves in Section 3.5. In Section 3.4, we
consider basis changes V defined by elements of the mapping class group.

3.4 Global constraints from the mapping class group
The following is based on the simple observation that we must have consistency
conditions of the form (3.37) for more general basis changes (in particular, basis
changes not made up of F -moves only). We are particularly interested in the case
where the basis change is the result of applying a mapping class group element.
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Basis changes defined by the mapping class group
A key property of the representation (3.22) of the mapping class group MCGΣ is
that it maps idempotents according to

V (ϑ)Pa(C)V (ϑ)† = Pa
(
ϑ(C)

)
. (3.38)

Let us fix a ‘standard’ DAP-decomposition C, and let BC = {|`〉C}` be the corre-
sponding standard basis.

Let ϑ be an arbitrary element of MCGΣ. Consider the basis

Bϑ(C) := {V (ϑ) |`〉}`.

Because of (3.38), this basis is a simultaneous eigenbasis of the complete set of com-
muting observables associated with the DAP decomposition ϑ(C) := {ϑ(Cj)}Mj=1.
The change of basis from BC to Bϑ(C) is given by the image V (ϑ) of the mapping
class group element ϑ.

In particular, if V(ϑ) is the matrix representing V (ϑ) in the standard basis, then
(3.37) implies

V(ϑ)ΠD = Π(ϑ)D(ϑ)V(ϑ) (3.39)

for some permutation matrixΠ(ϑ) and a diagonal matrixD(ϑ) consisting of phases.

Some terminology will be useful: Let ∆ be the set of matrices of the form ΠD,
where Π is a permutation of fusion-consistent labelings, and D is a diagonal matrix
with phases (these are sometimes called unitary monomial matrices). For U ∈ ∆

and ϑ ∈ MCGΣ, we say that U intertwines with ϑ if

V(ϑ)UV(ϑ)† ∈ ∆ .

Let ∆ϑ ⊂ ∆ be the set of matrices that intertwine with ϑ, and let

∆MCGΣ
=

⋂
ϑ∈MCGΣ

∆ϑ

be thematrices that are intertwiners of thewholemapping class group representation.
We have shown the following:

Theorem 3.6. Let U be the matrix representing a protected gate U in the standard
basis. Then U ∈ ∆MCGΣ

.
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As an example, consider the torus: since T = V(t) is diagonal, it is easy to see
that for any ΠD ∈ ∆, we have TΠDT−1 = ΠD′ for some D′. This implies that
∆t = ∆ is generally not interesting, i.e., U ∈ ∆t does not impose an additional
constraint. In contrast, mapping class group elements such as s and st generally
give different non-trivial constraints.

Density of the mapping class group representation and absence of protected
gates
The following statement directly links computational universality of the mapping
class group representation to the non-existence of protected gates.

Corollary 3.7. Suppose the representation of MCGΣ is dense in the projective
unitary group PU(HΣ). Then there is no non-trivial protected gate.

Proof. LetU be an arbitrary protected gate and letU ∈ ∆ be thematrix representing
it in the standard basis. Assume for the sake of contradiction that U is non-trivial.
Then U is a unitary with at least two different eigenvalues λ1, λ2 ∈ U(1). In
particular, there is a diagonalizing unitaryV1 such thatV1UV†1 = diag(λ1, λ2)⊕Ũ

for some matrix Ũ. Setting V2 = H ⊕ I , where H is the Hadamard matrix

H =
1√
2

(
1 1

1 −1

)
,

and V = V2V1, we obtain that

VUV† 6∈ ∆ (3.40)

because this matrix contains both diagonal and off-diagonal elements. Note that if
λ2 = −λ1 one may use the matrix

1

2

(
1 −

√
3√

3 1

)
instead of H .

Observe also that (3.40) stays valid if we replace V by a sufficiently close approx-
imation (up to an irrelevant global phase) Ṽ ≈ V. In particular, by the assumed
density, we may approximate V by a product Ṽ = V(ϑ1) · · ·V(ϑm) of images of
ϑ1, . . . , ϑm ∈ MCGΣ. But then we have

U 6∈ ∆ϑ1···ϑm ,

which contradicts Theorem 3.6.
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Note that in general, the mapping class group is only dense on a subspaceH0 ⊂ HΣ.
This is the case for example when the overall system allows for configurations where
anyons can be present or absent (e.g., a boundary may or may not carry a topological
charge). In such a situation, HΣ decomposes into superselection sectors which are
defined by the gluing axiom (i.e., having fixed labels associated with certain closed
loops associated). Corollary 3.7 can be adapted to this situation, e.g., as explained
in Appendix 3.8 (Lemma 3.22).

Characterizing diagonal protected gates
Fix a DAP-decomposition C and let ϑ ∈ MCGΣ. Let us call two (fusion-consistent)
labelings `1, `2 connected by ϑ (denoted `1 ⇔ϑ `2) if there is a labeling ` such that

0 6= 〈`|V (ϑ)|`m〉 form = 1, 2 .

(Here |`〉 is the associated basis element of BC .) More generally, let us say `1, `2

are connected (written `1 ⇔ `2) if there exists an element ϑ ∈ MCGΣ such that
`1 ⇔ϑ `2. Clearly, this notion is symmetric in `1, `2, and furthermore, it is reflexive,
i.e., `1 ⇔ `1 since `1 ⇔id `1. We can therefore define an equivalence relation on
the set of labelings: we write `1 ∼ `2 if there are labelings k1, . . . , km such that
`1 ⇔ k1 ⇔ · · · ⇔ km ⇔ `2. We point out (for later use) that we can always find
a finite collection {ϑk}Mk=1 ⊂ MCGΣ that generates the relation ∼ in the sense that
`1 ∼ `2 if and only if `1 ⇔ϑk `2 for some k (after all, we only have a finite set of
labelings `).

Observe that if the representation of MCGΣ has a non-trivial invariant subspace,
then there is more than one equivalence class. We discuss an example of this below
(see Section 3.4). However, in important special cases such as the Fibonacci or
Ising models, there is only one equivalence class for the relation ∼, i.e., any pair of
labelings are connected (see Lemma 3.13 and Lemma 3.14 below).

Lemma 3.8. Consider a protected gate U acting diagonally in the basis BC as
U |`〉 = eiϕ(`) |`〉.

(i) Suppose that U also acts diagonally in the basis Bϑ(C). Then ϕ(`1) = ϕ(`2)

for any pair `1 ⇔ϑ `2 connected by ϑ.

(ii) Suppose that {ϑk}Mk=1 ⊂ MCGΣ generates the relation∼, andU acts diagonally
in each basis Bϑk(C). Then ϕ assigns the same value to every element of the
same equivalence class under ∼.



75

We will refer to a protected gate U with property (ii) as a ∼-trivial gate. One
implication of Lemma 3.8 is that any protected gate which is close to the identity
acts as a ∼-trivial gate (see the proof of Theorem 3.10). In Section 3.4, we will
show how to use this statement to prove that the set of protected gates is finite up to
irrelevant phases.

Proof. Consider two labelings `1, `2 satisfying `1 ⇔ϑ `2. Then, writingV = V(ϑ),
we know that

V`,`1 6= 0 and V`,`2 6= 0 (3.41)

for some labeling `, where V`,k = 〈`|V (ϑ)|k〉. Since U acts diagonally in both
bases BC and Bϑ(C) by assumption, (3.39) becomes simply

VDV† = D(ϑ) (3.42)

when written in the standard basis. Here the diagonal matrices are given by D =

diag({ϕ(`)}`) and D(ϑ) = diag({ϕ′(`)}`). Taking the diagonal entry at position
(`, `) in the matrix equation (3.42), we get the identity∑

k

ei(ϕ(k)−ϕ′(`))|V`,k|2 = 1. (3.43)

By unitarity of the mapping class group representation, we also have∑
k

|V`,k|2 = 1. (3.44)

By taking the real part of (3.43), it is straightforward to see that compatibility
with (3.44) imposes that cos

(
ϕ(k)− ϕ′(`)

)
= 1 whenever |V`,k| 6= 0 or

ϕ(k) ≡ ϕ′(`) mod 2π for all k with |V`,k| 6= 0.

With (3.41), we conclude that ϕ(`1) = ϕ′(`) = ϕ(`2), which proves claim (i).

The claim (ii) immediately follows from (i).

We will show how to apply this result to the Fibonacci model in Section 3.6. Note
that Lemma 3.8 does not generally rule out the existence of non-trivial diagonal
protected gates in the standard basis (an example is a Pauli-Z in the Ising model, see
Section 3.6): it is important that the protected gate is diagonal in several different
bases {Bϑk(C)}k.

A simple consequence of Lemma 3.8 is that any protected gate has a finite order up
to certain phases:
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Lemma 3.9. There is a finite n0 (depending only on the dimension ofHΣ) such that
for every protected gate U , there is an n ≤ n0 such that Un is a∼-trivial phase gate.

Proof. Consider an arbitrary DAP-decomposition C and suppose U acts as (3.31) in
the basis BC . Since the permutation ~π acts on the finite set L(C) of fusion-consistent
labelings, it has finite order nC . This means that UnC acts diagonally in the basis BC .

Assume {ϑk}Mk=1 ⊂ MCGΣ generate the relation∼. Settingn = lcm(nϑ1(C), . . . , nϑM (C)),
we can apply Lemma 3.8 to Un to reach the conclusion that Un is ∼-trivial. Fur-
thermore, since the number n depends only on the permutation ~π, and there are only
finitely many such permutations, there is a finite n0 with the claimed property.

Finiteness of the set of protected gates
In the following, we will ignore phase differences that are “global” to subspaces of
vectors defined by the equivalence classes of ∼. That is, we will call two protected
gates U1 and U2 equivalent (written U1 ∼ U2) if

U1 = ΠD1

U2 = ΠD2

and (D2)`,` = eiϕ([`])(D1)`,` ,

i.e., they encode the same permutation of fusion-consistent labels, and their phases
only differ by a phase ϕ([`]) depending on the equivalence class [`] that ` belongs to.
This is equivalent to the statement that U−1

1 U2 = D−1
1 D2 acts as a phase dependent

only on the equivalence class, i.e., U−1
1 U2 is a ∼-trivial phase gate.

We obtain an Eastin and Knill EastinKnill2009 type statement, which is one of our
main conclusions.

Theorem 3.10 (Finite group of protected gates). The number of equivalence classes
of protected gates is finite.

In particular, this means that locality-preserving automorphisms on their own do
not provide quantum computational universality.

Proof. Assume that there are infinitely many equivalence classes of protected gates.
Then we can choose a sequence {Un}n∈N of protected gates indexed by integers and
belonging to different equivalence classes each. Since the number of permutations
of fusion-consistent labels is finite, there exists at least one permutation matrix Π

such that there is an infinite subsequence of protected gatesUnwithUn = ΠDn, i.e.,
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they act with the same permutation. Applying the Bolzano-Weierstrass theorem to
this subsequence, we conclude that there is a convergent subsequence of protected
gates {Unj}j∈N such that Unj = ΠDnj for all j. Let U = limj→∞ Unj be the
corresponding limit, and let us define Ũj := U−1Unj . Clearly, each Ũj is a protected
gate and

Ũ j = D−1Dnj (3.45)

acts non-trivially on subspaces defined by equivalence classes, i.e., Ũj is a ∼-
non-trivial phase gate. This is because of the assumption that the original se-
quence {Un}n∈N has elements belonging to different equivalence classes. Further-
more, we have that

lim
j→∞

Ũ j = I , (3.46)

where I is the identity matrix.

For a mapping class group element ϑ ∈ MCGΣ, the matrix expressing the action of
Ũj in the basis Bϑ(C) is given by V(ϑ)Ũ jV(ϑ)†. Because Ũj is a protected gate, we
get

V(ϑ)Ũ jV(ϑ)† = Π̃jD̃j (3.47)

for some permutation matrix Π̃j and a diagonal matrix D̃j of phases. Combin-
ing (3.46), (3.47), using the unitarity of V(ϑ) and continuity, we conclude that there
exists some N0 = N0(ϑ) such that Π̃j = I for all j ≥ N0, i.e., V(ϑ)Ũ jV(ϑ)† is
diagonal for sufficiently large j. Equivalently, for all j ≥ N0, Ũj acts diagonally in
the basis Bϑ(C), as well as in the basis BC (by (3.45)).

The latter conclusion can be extended uniformly to a finite collection {ϑk}Mk=1 ⊂
MCGΣ of mapping class group elements: there is a constant N = N(ϑ1, . . . , ϑM)

such that for all j ≥ N , the protected gate Ũj acts as a diagonal matrix in all bases
BC , Bϑ1(C), ..., BϑM (C). Taking a finite collection {ϑk}Mk=1 ⊂ MCGΣ that generates
the relation∼ and applying Lemma 3.8, we reach the conclusion that Ũj is a∼-trivial
phase gate for all j ≥ N . This contradicts the fact that each Ũj is a ∼-non-trivial
phase gate, as argued above.

Necessity of restricting to equivalence classes
Here we briefly argue that without imposing ∼-equivalence on protected gates,
one can end up with infinitely many protected gates (that are, however, not very
interesting).
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Concretely, consider a model such as the toric code, with local commuting projector
Hamiltonian Htop = −∑j Πj acting on spins which we collectively denote by A.
Let HΣ be its ground space. We introduce a local spin-degree of freedom Bj

associated with each term in the Hamiltonian, and let B =
⊗

j Bj the space
of these auxiliary degrees of freedom. Define an Ising-like Hamiltonian HI =

−∑〈j,j′〉 ZjZj′ coupling all nearest neighbors in B (according to some notion).
Finally, consider the following Hamiltonian:

H = J ·HI −
∑
j

Πj ⊗ |0〉〈0|Bj −
∑
j

Πj ⊗ |1〉〈1|Bj . (3.48)

This Hamiltonian is local, and for large J , has a ground space of the form

(HΣ ⊗ |00 · · · 0〉)⊕ (HΣ ⊗ |11 · · · 1〉) . (3.49)

In other words, the ground space (and similarly the low-energy subspace) splits
asH(0)

Σ ⊕H
(1)
Σ into two isomorphic copies of the spaceHΣ.

Now take two arbitrary protected gates U (0), U (1) for Htop (these may be global
phases, i.e., trivial), implementing logical operations U (0), U (1). Let us assume that
they are implemented by circuits acting locally, i.e., they can be written (arbitrarily
– the details do not matter) in the form

U (m) = U
(m)
j1

U
(m)
j2
· · ·U (m)

jMm

with each unitary Uj local near the support of Πj . Then we can define the unitary

U =

M0∏
k=1

(
U

(0)
jk
⊗ |0〉〈0|Bjk + id⊗ |1〉〈1|Bjk

) M1∏
k=1

(
id⊗ |0〉〈0|Bjk + U

(1)
jk
⊗ |1〉〈1|Bjk

)
on A⊗B. It is easy to check that U is a protected gate and its logical action is

U = U
(0) ⊕ U (1)

.

In particular, such a unitary can introduce an arbitrary relative phase between the
“superselection” sectors H(0)

Σ , H(1)
Σ : we can choose U (0) = I and U (1) = eiϕI . The

construction here corresponds to the direct sum of two TQFTs; the mapping class
group representation is reducible and basis elements belonging to different sectors
are inequivalent. Imposing the relation ∼ on the set of protected gates renders all
such relative-phase gates equivalent.

A small caveat is in order here concerning the given microscopic example. The
Hamiltonian (3.48) indeed has (3.49) as its ground space. However, the latter is not
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an error-correcting code: whether a state belongs toH(0)
Σ or H(1)

Σ can be determined
by a local measurement. Thus information should only be encoded in either one of
the superselection sectors, and this renders the introduction of (arbitrary) relative
phases between two superselection sectors computationally trivial. The example
given here is mainly intended to give a concrete realization of the space (3.49) as
the ground space of a local Hamiltonian, and to illustrate the fact that reducibility
of the mapping class group representation has important consequences on the form
of protected gates.

3.5 Global constraints from F -moves on the n-punctured sphere
We first consider the four-punctured sphere, where there are two inequivalent DAP-
decompositions related by an F -move (i.e., the basis change V is the F -matrix).
More generally (e.g., for the 5-punctured sphere), we need to consider several
different F -moves and obtain a constraint of the form (3.37) for every pair of bases
related by such moves. We describe such global constraints in Section 3.5. The
results obtained by considering F -moves are summarized in Section 3.5: there we
outline a general procedure for characterizing protected gates.

The consideration of/restriction to n-punctured spheres is motivated by the fact
that they correspond to n − 1 anyons situated on a disc. Realizing such a system
appears to be more feasible experimentally than designing e.g., a higher-genus
surface. For this reason, the n-punctured sphere is most commonly considered in
the context of topological quantum computation. We point out, however, that our
techniques immediately generalize to other (higher-genus) surfaces with or without
punctures (although basis changes other than those given by the F -matrix need to
be considered).

Determining phases for the four-punctured sphere: fixed boundary labels
For a four-punctured sphereΣ, we can fix the labels on the punctures to i, j, k, l ∈ A.
The corresponding space HΣ(i,j,k,l) associated to this open surface with labeled
boundary components is the fusion space V ij

kl . (In the non-abelian case, this space
can have dimension larger than 1.) We have two bases BC , BC′ of this fusion space,
corresponding to two different DAP-decompositions differing by one loop (Fig. 3.4).
We can enumerate basis elements by the label assigned to this loop. Let {|a〉C}a and
{|a〉C′}a be the elements of the bases BC and BC′ , respectively. Note that a ranges
over all elements consistent with the fusion rules.

For the models considered in this article, these are Na
ij = Na

kl = 1. Let Q =
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Q(i, j, k, l) be the set of such elements. The basis change is given by the F -matrix

|m〉C′ =
∑
n

F ijm
kln |n〉C .

Considering a locality-preserving automorphism which preserves the boundary la-
bels (this is reasonable if we think of them as certain boundary conditions of the
system), we can apply the procedure explained above to find the action

U |a〉C = eiϕ(a)
∣∣πC(a)

〉
C

on basis states. Here πC : Q → Q permutes fusion-consistent labels. To apply the
reasoning above, we have to use the |Q × Q|-basis change matrix V defined by
V m,n = F ijm

kln .

Solving the consistency relation (3.37) (for the permutations πC , πC′ and phases
{ϕ(a)}a, {ϕ′(a)}a) shows that for any permutation πC that is part of a solution, the
function ϕ takes the form

ϕ(a) = η + f(a) , (3.50)

where η is a global phase and f belongs to a certain set of functions which we denote

Iso

(
i

j · k
l → i

j πC(·) k
l

)
. (3.51)

(The reason for this notation will become clearer when we discuss isomorphisms in
the next section; here we are concerned with relative phases arising from automor-
phisms.) In summary, we have

U |a〉C = eiηeif(a)
∣∣πC(a)

〉
C (3.52)

where f ∈ Iso

(
i

j · k
l → i

j πC(·) k
l

)
.

Here the set (3.51) can be computed by solving the consistency relation

V ΠD({ϕ(a)}a) = Π′D({ϕ′(a)}a)V (3.53)

with V m,n = F ijm
kln . This scenario is a special case of the commutative diagram

displayed in Fig. 3.8.
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Determining phases for the four-punctured sphere in general
Consider the four-punctured sphereΣwith fixed labels i, j, k, l ∈ A on the punctures.
Let ı̃, ̃, k̃, l̃ be another set of labels such that the spaces HΣ(i,j,k,l) and HΣ(ı̃,̃,k̃,l̃) are
isomorphic. In this situation, we can try to characterize locality-preserving isomor-
phisms between two systems defined on Σ(i, j, k, l) and Σ(̃ı, ̃, k̃, l̃), respectively.
This situation is slightly more general than what we considered before (automor-
phisms of the same system), but it is easy to see that all arguments applied so far
extend to this situation. Note that we could have phrased our whole discussion in
terms of isomorphisms between different spaces. However, we chose not to do so to
minimize the amount of notation required; instead, we only consider this situation
in this section. This generalization for the 4-punctured sphere is all we need to treat
automorphisms on higher-genus surfaces.

For HΣ(i,j,k,l), we have two bases BC , BC′ , corresponding to two different DAP-
decompositions differing by one loop. Similarly, for HΣ(ı̃,̃,k̃,l̃), we have two bases
B̃C , B̃C′ , corresponding to two different DAP-decompositions differing by one loop.
We can enumerate the basis elements by the label assigned to this loop. Let {|a〉C}a
and {|a〉C′}a be the elements of the basisBC andBC′ , respectively. Here a ranges over
the set Q = Q(i, j, k, l) ⊂ A of all elements consistent with the fusion rules, i.e.,
we must haveNa

ij = Na
kl = 1. Similarly, let {|ã〉C}ã and {|ã〉C′}ã be the elements of

the basis B̃C and B̃C′ , respectively, where now ã ∈ Q̃ = Q(̃ı, ̃, k̃, l̃).

In this situation, we have two basis changes,

|m〉C′ =
∑
n

V m,n |n〉C where V m,n = F ijm
kln ,

|m̃〉C′ =
∑
ñ

Ṽm̃,ñ |ñ〉C where Ṽ m̃,ñ = F ı̃̃m̃

k̃l̃ñ
.

Now consider a locality-preserving isomorphism U which takes the boundary labels
(i, j, k, l) to (̃ı, ̃, k̃, l̃). We can then apply the framework above to find the action

U |a〉C = eiϕ(a)
∣∣πC(a)

〉
C or U |a〉C′ = eiϕ′(a)

∣∣∣πC′(a)
〉
C′

on basis states. Here πC , πC′ : Q→ Q̃ take fusion-consistent labels onΣ(i, j, k, l) to
fusion-consistent labels on Σ(̃ı, ̃, k̃, l̃). Because the spaces are isomorphic, we must
have |Q| = |Q̃|, hence πC , πC′ can be represented by permutation matrices Π,Π′

in the basis pairs (BC, B̃C) or (BC′ , B̃C′), respectively. Proceeding similarly with U ,
we get the consistency equation ṼU = U′V or

ṼΠD({ϕ(a)}a) = Π′D({ϕ′(a)}a)V , (3.54)
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F ij
kl

i l

j k
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li

j

F ĩj̃
k̃l̃

ĩ l̃

j̃ k̃

C

k̃

l̃ĩ

j̃

C ′

U U′

C ′

Figure 3.8: An isomorphism HΣ(i,j,k,l) → HΣ(ı̃,̃,k̃,l̃) of two 4-punctured spheres
can be given as either U, which relates the bases BC ofHΣ(i,j,k,l) to B̃C ofHΣ(ı̃,̃,k̃,l̃),
or as U′ relating different bases BC′ of HΣ(i,j,k,l) to B̃C′ of HΣ(ı̃,̃,k̃,l̃). The bases of
HΣ(i,j,k,l) and HΣ(ı̃,̃,k̃,l̃) are related through the F -moves F ij

kl and F
ı̃̃

k̃l̃
, respectively.

The consistency equation (3.54) can be expressed as a commutative diagram. In the
case where Σ(i, j, k, l) = Σ(̃ı, ̃, k̃, l̃) have identical boundary labels such an iso-
morphism becomes an automorphism, and this reduces to the consistency equation
(3.53).

which is expressed in the form of a commutative diagram as in Fig. 3.8. Equation
(3.54) only differs from equation (3.37) in allowing boundary labels to change and
the basis transformation matrix Ṽ must change accordingly.

For a given set of boundary labels (i, j, k, l), (̃ı, ̃, k̃, l̃), and a fixed choice of πC

(which fixes Π), any solution (Π′, {ϕ(a)}a, {ϕ′(a)}a) of (3.54) has phases {ϕ(a)}a
of the “universal” form

ϕ(a) = η + f(a) for all a ∈ Q(i, j, k, l) , (3.55)

where η ∈ [0, 2π) is an arbitrary global phase independent of a, and f belongs to

a set Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
of functions that can be

computed from (3.54) as discussed below.

In summary, we have shown that U acts as

U |a〉C = eiηeif(a)
∣∣πC(a)

〉
C (3.56)

with f ∈ Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
,

and where the latter set can be determined by solving the consistency relation (3.54).
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C3

C4

C2

C1

C

Figure 3.9: For some DAP-decomposition C of a surface Σ, a curve C ∈ C is
considered internal if its neighborsN(C) = {C1, C2, C3, C4} define the boundaries
of a 4-punctured sphere.

Localization of phases for higher-genus surfaces
We now argue that the phases appearing in Eq. (3.31) of Proposition 3.3.2 also
factorize into certain essentially local terms, similar to how the overall permuta-
tion ~π of fusion-consistent labelings decomposes into a collection ~π = {πC}C∈C of
permutations of labels. More precisely, we will argue that conclusion (3.57) can be
extended to more general surfaces.

Consider a fixed DAP-decomposition C of Σ. We call a curve C ∈ C internal if
the intersection of Σ with a ball containing C has the form of a 4-punctured sphere
with boundary components C1, C2, C3, C4 consisting of curves ‘neighboring’ C
in the DAP decomposition. We call N(C) = {C1, C2, C3, C4} the neighbors (or
neighborhood) of C as illustrated in Fig. 3.9. Key to the following observations is
that a basis vector |`〉 whose restriction to these neighbors is given by ` � N(C) =(
`(C1), . . . , `(C4)

)
gets mapped under U to a vector proportional to |~π(`)〉, which

assigns the labels ~π(`) � N(C) =
(
πC1 [`(C1)], . . . , πC4 [`(C4)]

)
to the same curves.

Thismeans that the restriction ofU to this subspace satisfies similar consistency con-
ditions as the isomorphisms between Hilbert spaces associated with the 4-punctured
spheres Σ(` � N(C)) and Σ

(
~π(`) � N(C)

)
studied in Section 3.5. In particular, for

a fixed labeling ` the dependence of the phase ϕ(`) on the label `(C) is given by

a function from the set Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
, where

(i, j, k, l) = ` � N(C) and (̃ı, ̃, k̃, l̃) = ~π(`) � N(C). In the following, we simply
write Iso

(
` � N(C)

πC→ ~π(`) � N(C)
)
for this set.

Proposition 3.5.1 (Localization of internal phases). Let U be a locality-preserving
automorphism. Let C be a DAP-decomposition of Σ, and let ~π = {πC}C∈C be
the family of permutations defined by Proposition 3.3.1. Let ϕ(`) for ` ∈ L(C) be
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defined by (3.31). If C ∈ C is internal, then

ϕ(`) = η(`� C\{C}) + f~π�N(C)(` � N(C), `(C))

for some functions η and f . Furthermore, we have

f~π�N(C)(` � N(C), ·) ∈ Iso
(
` � N(C)

πC→ ~π(`) � N(C)
)
.

In particular, the dependence of ϕ(`) on `(C) is “local” and “controlled” by the
labeling ` � N(C) of the neighbors.

In other words, if we fix a family of permutations ~π, and the labels on the neigh-
borsN(C), then the dependence on the label `(C) of the internal edge is essentially
fixed.

Proof. We will focus our attention on the subspace H(i,j,k,l,?) ⊆ HΣ spanned by
labelings ` with

(`(C1), `(C2), `(C3), `(C4)) = (i, j, k, l), (3.57)

` � C\{C,C1, C2, C3, C4} = ?, (3.58)

fixed (arbitrarily). For the purpose of this proof, it will be convenient to represent
basis vectors |`〉 associated with such a labeling ` ∈ L(C) as a vector

|`〉 = |`(C), `(C1), `(C2), `(C3), `(C4), ?〉 = |a, i, j, k, l, ?〉 .

Defining ı̃ = πC1(i), ̃ = πC2(j), k̃ = πC3(k), l̃ = πC4(l), we can rewrite (3.31) in
the form

U |a, i, j, k, l, ?〉 = eiϕ(a,i,j,k,l,?)
∣∣∣πC(a), ı̃, ̃, k̃, l̃, ?̃

〉
,

where ?̃ = ~π�(?) for some map ~π� taking labelings of the set C\{C,C1, C2, C3, C4}
consistent with (i, j, k, l) to those consistent with (̃ı, ̃, k̃, l̃). We conclude that the
restriction of U to H(i,j,k,l,?) implements an isomorphism H(i,j,k,l,?)

∼= H(ı̃,̃,k̃,l̃,?̃).
Since these spaces are isomorphic to HΣ(i,j,k,l) and HΣ(ı̃,̃,k̃,l̃), respectively, we can
apply the result of Section 3.5. Indeed, the consistency relation imposed by the
F -move is entirely local, not affecting labels associated with curves not belonging
to {C,C1, C2, C3, C4}. We conclude from (3.57) that

ϕ(a, i, j, k, l, ?) = η(i, j, k, l, ?) + f(a),

where f ∈ Iso

(
i

j · k
l → ı̃

̃ πC(·) k̃
l̃

)
.

Since (a, i, j, k, l, ?) were arbitrary, this proves the claim.
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For example, for S2(zN+3) (as described above), we can apply Proposition 3.5.1 to
the j-th internal edge Cj to obtain

ϕ(x) = ηj(x1, . . . , x̂j, . . . , xN) + fj(xj−1, xj, xj+1), (3.59)

where

fj(xj−1, ·, xj+1) ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)
,

and
x̃j−1 = πCj−1(xj−1), x̃j+1 = πCj+1(xj+1).

Here, we use x̂j to indicate that this argument is omitted.

Characterizing protected gates on theM -punctured sphere using F -moves
The results in this section give the following procedure for characterizing protected
gates associated withHS2(zM ), the Hilbert space ofM = N+3 anyons of type z. We
know fromProposition 3.3.2 that the actionU |`〉 = eiϕ(`) |~π(`)〉 on fusion-consistent
labelings is parametrized by certain families ~π = {πC}C∈C of permutations, as well
as a function ϕ describing the phase-dependence. To characterize the latter, we

(i) determine the set of allowed ‘local’ permutations πC and associated phases f
for any occuring internal curve C. This amounts to solving the consistency
equation (3.54) for the four-punctured sphere, with appropriate boundary la-
bels. For the standard pants decomposition of the N + 3-punctured sphere,
this means finding all pairs(
πCj , fj

)
where fj ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)
.

These correspond to isomorphisms between the Hilbert spaces associated
with the labeled surfaces S2(z, xj−1, xj+1, z) and S2(z, x̃j−1, x̃j+1, z), where
xj−1, x̃j−1 ∈ Q(j − 1), xj+1, x̃j+1 ∈ Q(j + 1).

(ii) we constrain the family ~π = {πC}C∈C of allowed permutations by using the
global constraints arising from fusion rules and gluing (Proposition 3.3.3).
In the case of N + 3 Fibonacci anyons on the sphere with standard pants
decomposition C, dimensional arguments show that all πCj = id are equal to
the identity permutation. For Ising anyons, the fusion rules imply that every
permutation with even index is equal to the identity permutation, πC2j = id

(in fact, there is only a single allowed label).
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(iii) we determine the phases ϕ(`) by using the localization property of Proposi-
tion 3.5.1 for internal curves C. For N + 3 anyons of type z on the sphere,
this results in the consistency conditions

ϕ(x) = ηj(x1, . . . , x̂j, . . . , xN) + fj(xj−1, xj, xj+1) where

fj(xj−1, ·, xj+1) ∈ Iso

(
z

xj−1 · xj+1

z → z
x̃j−1 πCj(·) x̃j+1

z
)

for j = 1, . . . , N . (3.60)

In Section 3.6, we apply this procedure to Ising anyons; in this case, the system of
equations (3.60) can be solved explicitly.

3.6 The Fibonacci and Ising models
In what follows, we apply the results of the previous sections to the Fibonacci
and Ising models. These can be considered as representative examples of non-
abelian anyon models. We illustrate the use of the developed constraints in different
scenarios:

In Section 3.6, we show that there is no non-trivial gate for the Fibonacci model
on the torus. This derivation uses the characterization of protected gates in terms
of matrices intertwining with the mapping class group representation obtained in
Section 3.4. Note that we cannot apply Corollary 3.7 because the representation of
the mapping class group on the torus is finite for the Fibonacci model.

In Section 3.6, we then consider a system withM Fibonacci anyons (whereM ≥ 4

so that the space HS2(τM ) has non-zero dimension). We establish the following
statement:

Theorem 3.11 (Fibonacci anyon model). ForM ≥ 4, any locality-preserving auto-
morphism U on theM -punctured sphere S2(τM) is trivial (i.e., proportional to the
identity).

This proof is a direct consequence of Corollary 3.7 and the known density of
braiding Michael H. Freedman, Larsen, and Zhenghan Wang, 2002; Michael H.
Freedman, Alexei Kitaev, et al., 2003. We additionally provide an independent
proof not relying on this result.

Finally, we consider systemswithM Ising anyons; the associatedHilbert spaceHS2(σM )

has non-zero dimension if and only ifM ≥ 4 is even. In this case, there is a natural
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isomorphism HS2(σM )
∼= (C2)⊗M/2−1 (described below, see Eq. (3.66)). Defining

the (M/2 − 1)-qubit Pauli group on the latter space in the usual way, we get the
following statement:

Theorem 3.12 (Ising anyon model). Any locality-preserving automorphism U of
S2(σM), whereM ≥ 4 is even, belongs to the (M/2− 1)-qubit Pauli group.

Our derivation of this result relies on the use ofF -moves, as discussed in Section 3.5.

The Fibonacci model
For the Fibonacci model, we have A = {1, τ} and the only non-trivial fusion rule is
τ × τ = 1 + τ with dτ = φ = (1 +

√
5)/2.

On the torus

We first consider the torus Σ and show that every protected gate is trivial. We do so
by computing some of the sets ∆ϑ, ϑ ∈ MCGΣ defined in Section 3.4. Recall (see
Section 3.2) that the mapping class group of the torus is generated by two elements s,
t.

The matrix V(s) = S representing s is the usual S-matrix (expressed with respect
to the ordering (1, τ))

S =
1√
φ+ 2

(
1 φ

φ −1

)
.

In particular, the consistency condition (3.39) becomes

SΠDS−1 ∈ ∆,

In particular, the consistency condition (3.39) becomes

SΠDS−1 ∈ ∆,

where D = diag(λ1, λτ ) and λa ∈ U(1). We consider the two cases:

1. For Π = I , we get (using φ2 = φ+ 1)

SΠDS−1 =
1

φ+ 2

(
λ1 + λτ (φ+ 1) (λ1 − λτ )φ

(λ1 − λτ )φ λ1(φ+ 1) + λτ

)
.

For this to be a unitary monomial matrix, all entries must have modulus 0

or 1. Since φ/(φ+ 2) < 1/2, the off-diagonal elements always have modulus
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less than 1, and hence must be zero. That is, we must have λ1 = λτ =: λ, and
it follows that the right hand side is in ∆. This implies that ΠD = λI .

2. For Π =

(
0 1

1 0

)
, we get

SΠDS−1 =
1

φ+ 2

(
(λ1 + λτ )φ λ1(φ+ 1)− λτ

λτ (φ+ 1)− λ1 −(λ1 + λτ )φ

)
.

To have the absolute value of the first entry equal to 0 (see above), we must
have λτ = −λ1 and we get

SΠDS−1 = λ1

(
0 1

−1 0

)
,

which is a unitary monomial matrix. That is, we have ΠD = λ

(
0 1

−1 0

)
.

Summarizing, we conclude that

∆s =

{
λI, λ

(
0 1

−1 0

) ∣∣∣∣ λ ∈ U(1)

}
. (3.61)

The element t ∈ MCGΣ defined by twisting along one of the homologically non-
trivial cycles is represented by the matrix V(t) = T = diag(1, e4πi/5). We consider
the consistency condition (3.39) for the composition st ∈ MCGΣ:

(ST )ΠD(ST )−1 ∈ ∆,

where D = diag(λ1, λτ ) and λa ∈ U(1). Again, we consider the following two
cases:

1. For Π = I , we get

(ST )ΠD(ST )−1 =
1

φ+ 2

(
λ1 + λτ (φ+ 1) (λ1 − λτ )φ

(λ1 − λτ )φ λ1(φ+ 1) + λτ

)
.

This is identical to the first case above, thus ΠD = λI .
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2. For Π =

(
0 1

1 0

)
, we get

(ST )ΠD(ST )−1 =
ζ

φ+ 2

(
(ζ3λ1 − λτ )φ ζ3λ1(φ+ 1) + λτ

−ζ3λ1 − λτ (φ+ 1) −(ζ3λ1 − λτ )φ

)
,

where ζ = eiπ/5. Since φ/(φ+ 2) < 1/2, the diagonal elements must vanish,
that is, we have λτ = ζ3λ1. This indeed then gives an element of ∆, and

ΠD = λ

(
0 e3πi/5

1 0

)
.

In summary, we have shown that

∆st =

{
λI, λ

(
0 e3πi/5

1 0

) ∣∣∣∣ λ ∈ U(1)

}
. (3.62)

Combining (3.61) and (3.62), we conclude that

∆s ∩∆st = {λI | λ ∈ U(1)},

and this means that ∆MCGΣ
⊂ ∆s ∩ ∆st = {λI | λ ∈ U(1)}. According to

Theorem 3.6, this implies that there is no non-trivial protected gate on the torus.

Note that this conclusion is consistent with the form of a Dehn twist, given by
the logical unitary U = diag(1, e4πi/5) (with the ‘topological’ phases or twists on
the diagonal): Dehn twists do not preserve locality! For example, for a Dehn twist
alongC1, an operator supported onC2 may end up with support in the neighborhood
of the union C1 ∪ C2 under conjugation by the unitary realizing the Dehn twist.

On theM -punctured sphere

We now provide a proof of Theorem 3.11. As already mentioned, braiding of
M ≥ 4 Fibonacci anyons is known to be universal Michael H. Freedman, Larsen,
and ZhenghanWang, 2002; Michael H. Freedman, Alexei Kitaev, et al., 2003, hence
we could invoke Corollary 3.7. Instead, we give a different proof by exploiting the
equivalence relation introduced in Section 3.4 and analyzing the dimension of the
associated spaces (i.e., using the constraints arising from the gluing axiom, see
Section 3.3).

Consider the M -punctured sphere Σ = S2(τM) corresponding to M Fibonacci
anyons. We will use as our ‘standard’ basis the one arising from the standard DAP
decomposition C of theM -punctured sphere introduced in Section 3.2 (see Fig. 3.5).
We then have the following statement:
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Lemma 3.13. There is only one equivalence class under the relation ∼. Further-
more, the set of braids {σj}M−1

j=1 generates the relation ∼.

Proof. Let x and x′ be two fusion-consistent labelings that are related by interchang-
ing τ = xj and 1 = x′j (or vice versa) in the j-th entry (but are otherwise the same).
Fusion-consistency implies that xj−1 = x′j−1 = xj+1 = x′j+1 = τ . In particular, the
relevant braid matrix describing the action of V (σj) is B(τ, τ) which has non-zero
entries everywhere. We conclude that

〈x′|V (σj)|x〉 6= 0 and 〈x′|V (σj)|x′〉 6= 0 .

This implies that x ⇔σj x
′. Since any fusion-consistent labeling can be obtained

from the sequence τN = (τ, . . . , τ) by such interchanges, we conclude that any two
fusion-consistent labelings are equivalent. That is, there is only one equivalence
class under ∼.

We will now argue that the conditions of Lemma 3.8 (ii) apply in this situation:
that is, any protected gate U acts diagonally in any of the bases Bσj(C) obtained
from the standard DAP-decomposition by applying a braid group generator σj . In
fact, we will argue more generally that U acts diagonally in any basis defined by a
DAP-decomposition.

To do so, consider first the standard DAP-decomposition and the spacesHΣ′j(a,a) for
j ∈ {1, . . . ,M − 3} and a ∈ {1, τ} (cf. (3.21)), where Σ′j is obtained from Σ by
cutting along the curve Cj which leaves a j+ 2-punctured and a (M − j)-punctured
sphere, respectively. Note that τ is its own antiparticle (τ = τ ), and hence it
suffices to consider Σ′j(τ, τ) and Σ′j(1, 1). Our goal is to identify pairs (a, ã)

such that HΣ′j(a,a)
∼= HΣ′j(ã,ã) are isomorphic, this being a necessary condition

for a permutation satisfying πCj(a) = ã (see Proposition (3.3.3) and Eq. (3.35)).
To compute dimHΣ′j(a,a) for a ∈ {1, τ}, we make use of the general fact that
dimHS2(τM ) = ΦM−1 where ΦM denotes the M -th Fibonacci number, starting
with Φ0 = 0 and Φ1 = 1 and satisfying the recurrence relation ΦM+1 = ΦM +

ΦM−1. From (3.21), we obtain dimHΣ′j(1,1) = ΦjΦM−j−2 and dimHΣ′j(τ,τ) =

Φj+1ΦM−j−1, excluding the case j = 1 = M − 3 which satisfies dimHΣ′1(1,1) =

Φ1ΦM−3 = dimHΣ′M−3(1,1) and dimHΣ′1(τ,τ) = Φ2ΦM−2 = dimHΣ′M−3(τ,τ), it
follows from the monotonicity and positivity of Φ that

dimHΣ′j(1,1) < dimHΣ′j(τ,τ) forM > 4, and all j ∈ {1, ...,M − 3}. (3.63)
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Hence, according to the consistency condition (3.35), for M > 4, we only get an
isomorphismHΣ′(a,a)

∼= HΣ′(πC(a),πC(a))
with πC = id being trivial for any internal

loop C in a standard DAP decomposition. This shows that a protected gate acts
diagonally in the standard basis.

Observe that this argument only involved the dimensions of the fusion spaces ob-
tained by cutting along a curve Cj in the pants decomposition. Since it is generally
true that cutting along a curve will decompose the M -punctured sphere into an
j + 2-punctured and a (M − j)-punctured sphere, respectively (for some j), the
argument extends to arbitrary DAP-decompositions. In particular, U is diagonal
with respect to each of the bases Bσj(C), as claimed.

We have shown that the conditions of Lemma 3.8 apply. With Lemma 3.13, Theo-
rem 3.11 is immediate.

The Ising model
The Ising anyon model has label set A = {1, ψ, σ} and non-trivial fusion rules

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ.

On the 4-punctured sphere

Consider the possible spaces HS2(σ,j,k,σ) for {j, k} ∈ A, and observe that fusion
consistency implies

dimHS2(σ,j,k,σ) =


0 if j 6= k = σ or k 6= j = σ

1 if j, k ∈ {1, ψ},
2 if j = k = σ.

Therefore, the only nontrivial case to consider is HS2(σ,σ,σ,σ) = HS2(σ4) with an
ordered basis {|1〉 , |ψ〉}. A locality-preserving automorphism of HS2(σ4) will act
as

U |a〉 = eiηeif(a)
∣∣πC(a)

〉
where f ∈ Iso

(
σ

σ · σ
σ → σ

σ πC(·) σ
σ

)
A valid permutation πC of {1, ψ} that defines the action of U , and the set of phases
can be determined as follows. Let BC = {|1〉C , |ψ〉C} and BC′ = {|1〉C′ , |ψ〉C′} be
corresponding ordered bases of HS2(σ4) for the two DAP-decomposition C and C ′,
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respectively. The F -matrix relating these two bases is given in the ordered basis BC
as

F =
1√
2

(
1 1

1 −1

)
.

Now consider some locality-preserving automorphism U expressed in the bases BC
and BC′ as U = ΠD and U′ = Π′D′ respectively, for some 2 × 2 permutation
matrices Π,Π′ and diagonal matrices D = diag(λ1, λψ) and D′ = diag(λ′1, λ

′
ψ)

with phases λa, λ′a ∈ U(1). Then the consistency relation takes the form U′ =

FUF−1. Next, we find all consistent solutions for a given permutation Π.

1. For Π = I , we get

FΠDF−1 =
1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
= Π′D′. (3.64)

Suppose that Π′ = I . Then the consistency relation (3.64) becomes

1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
=

(
λ′1 0

0 λ′ψ

)
,

which implies λ1 = λψ = λ′1 = λ′ψ =: eiη. Therefore U expressed in the
basis BC is trivial up to a global phase:

U = eiηI.

Suppose instead that Π′ =

(
0 1

1 0

)
. The consistency relation (3.64) then

becomes
1

2

(
λ1 + λψ λ1 − λψ
λ1 − λψ λ1 + λψ

)
=

(
0 λ′ψ
λ′1 0

)
,

which implies λ1 = −λψ and λ′1 = λ′ψ = λ1. Setting eiη := λ1, implies that
U expressed in the basis BC is given by

U = eiη

(
1 0

0 −1

)
.

These two solutions of the consistency relation, for the case Π = I , now
determine the only two functions of the set

Iso

(
σ

σ · σ
σ → σ

σ id(·) σ
σ

)
= {(f(1), f(ψ))} = {(0, 0), (0, π)}.
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2. For Π =

(
0 1

1 0

)
, corresponding to the transposition (ψ, 1), we get

FΠDF−1 =
1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
= Π′D′. (3.65)

By taking Π′ = I , this becomes

1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
=

(
λ′1 0

0 λ′ψ

)
,

which implies λ1 = λψ = λ′1 = −λ′ψ. Letting eiη := λ1 allows U to be
expressed in the basis BC by

U = eiη

(
0 1

1 0

)
.

Instead, suppose now thatΠ′ =

(
0 1

1 0

)
. Then the consistency relation (3.65)

is of the form

1

2

(
λ1 + λψ λ1 − λψ
−λ1 + λψ −λ1 − λψ

)
=

(
0 λ′ψ
λ′1 0

)
,

implying that λ1 = −λψ = −λ′1 = λ′ψ. Let eiη := λ1, then this shows that U
expressed in the basis BC is given by

U = eiη

(
0 −1

1 0

)
.

Furthermore, these two solutions completely determine the relevant set of
functions (which happens to be the same as the previous case for Π = I):

Iso

(
σ

σ · σ
σ → σ

σ (ψ, 1)(·) σ
σ

)
= {(f(1), f(ψ))} = {(0, 0), (0, π)}.

By denoting the single qubit (logical) Pauli group as

P :=
{
λ

(
1 0

0 1

)
, λ

(
1 0

0 −1

)
, λ

(
0 1

1 0

)
, λ

(
0 −i

i 0

) ∣∣∣ λ ∈ U(1)
}
,

these results can be summarized as follows: If U is a locality-preserving automor-
phism of the fusion space HS2(σ4) of the 4-punctured sphere, then U expressed in
the basis BC is in P .
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On theM -punctured sphere

LetM ≥ 4 and consider theM = N+3-punctured sphere S2(σM) and correspond-
ing spaceHS2(σM ). For the ‘standard’DAP-decomposition C ofS2(σM), a consistent
labeling L(C) corresponds to a sequence

(
`(C1), . . . , `(CN)

)
=: (x1, . . . , xN) =: x.

It is readily observed that dimHS2(σM ) = 0 ifM is odd, as there are no consistent
labelings in this case.

Therefore, in what follows we will restrict our discussion to the M = N + 3-
punctured sphere where N is any odd positive integer. In this case, any consistent
labeling ` ∈ L(C) yields a sequence (x1, . . . , xN) where xi ∈ {1, ψ} for odd i and
xi = σ is fixed for even i. Actually any such labeling of this form is consistent,
giving an isomorphism defined in terms of orthonormal basis elements by

W : HS2(σN+3) → (C2)(N+1)/2

|x〉 7→ |x1〉 ⊗ |x3〉 ⊗ · · · ⊗ |xN〉 .
(3.66)

Lemma 3.14. Consider the ‘standard’ basis of the M -punctured sphere S2(σM),
whereM ≥ 4 is even. Then there is only one equivalence class under the relation∼.
Furthermore, the set of braids {σj}M−1

j=1 generates the relation ∼.

Proof. If two fusion-consistent labelings x, x′ differ only in location 2j + 1, they
can be connected by σ2j+1: the relevant braid matrix is

B(σ, σ) =
e−3πi/8

√
2

(
i 1

1 i

)
.

We have x⇔σ2j+1
x′, and it follows that there is only one equivalence class under∼.

Now consider a locality-preserving automorphismU ofHS2(σN+3) and its associated
family ~π = {πCj} of permutations. Because only sequences x with x2j = σ

for all j are fusion-consistent, and ~π is a permutation on L(C), we conclude that
πC2j(σ) = σ for all j. In other words, we can essentially ignore labels carrying
even indices. For odd indices, only labels x2j+1 ∈ {1, ψ} are allowed, which means
that πC2j+1 ∈ {id, (ψ, 1)} either leaves the label invariant or interchanges ψ and
1. In conclusion, ~π = {πCj}Nj=1 are of the form πCj ∈ {id, (ψ, 1)} for odd j, and
πCj = id for even j.

For odd j = 2k + 1, we obtain the constraint

ϕ(x) = η2k+1(x1, . . . , x̂2k+1, . . . , xN) + f2k+1(x2k+1) for k = 0, . . . , (N − 1)/2
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where f2k+1 ∈ Iso

(
σ

σ · σ
σ → σ

σ πC2k+1(·) σ
σ

)
given that for

even labels πC2m(x2m) = x2m = σ. Let us write

ϕ(x) = η(x) +

(N+1)/2∑
m=0

f2m+1(x2m+1) (3.67)

and show that η(x) = η is actually independent of the labeling x. Indeed, we can
write

η(x) =
(
ϕ(x)− f2k+1(x2k+1)

)
−

(N+1)/2∑
m,m 6=k

f2m+1(x2m+1)

= η2k+1(x1, . . . , x̂2k+1, . . . , xN)−
(N+1)/2∑
m,m 6=k

f2m+1(x2m+1)

Since this holds for all k, we conclude that η(x) = η(x̂1, x2, x̂3, x4, . . .) is a function
of the even entries only. But the latter are all fixed as x2m = σ, hence η(x) = η is
simply a global phase.

We can now combine these results into a general statement concerning locality-
preserving automorphisms of the M -punctured sphere S2(σM). Again, since
dimHS2(σM ) = 0 for odd M and dimHS2(σ2) = 1, we are only concerned with
the cases where M = N + 3 ≥ 4 is even. Let {|x〉}x∈L(C) be a basis of HS2(σM ).
Then such an automorphism must act onHS2(σM ) as

U |x〉 = eiϕ(x) |~π(x)〉 , where ϕ(x) = η +

(N+1)/2∑
m=0

f2m+1(x2m+1)

and

f2k+1 ∈ Iso

(
σ

σ · σ
σ → σ

σ πC2k+1(·) σ
σ

)
=
{(
f(1), f(ψ)

)}
= {(0, 0), (0, π)}.

More explicitly, we have

U |x〉 = eiη

(N+1)/2∏
m=1

eif2m+1(x2m+1)

∣∣πC1(x1), x2, π
C3(x3), x4, . . . , π

CN (xN)
〉
.

In particular, under the isomorphism (3.66), we get

WUW−1 = eiη
(N+1)/2⊗
m=1

Um where Um |a〉 = eif2m−1(a)
∣∣πC2m−1(a)

〉
.

From Section 3.6, we know that Um is a single-qubit Pauli for eachm up to a global
phase. This concludes the proof of Theorem 3.12.
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3.7 Abelian anyon models
Our goal in this section is to characterize topologically protected gates in general
abelian anyon models. For simplicity, we will restrict our attention to closed 2-
manifolds Σ (see Fig. 3.1). We have seen in Lemma 3.5 that in an arbitrary anyon
model, protected gates permute the idempotents along closed loops. In this section
we show that for the case of abelian anyon models, the protected gates can only
permute the labels of string operators along closed loops (up to phases), which
refines Lemma 3.5 for abelian models. To formalize this notion, we introduce the
generalized Pauli and Clifford groups in Section 3.7. The main result of this Section,
can then be stated as follows:

Theorem 3.15. For an abelian anyon model, any locality-preserving unitary auto-
morphism U acting onHΣ has logical action [U ] ∈ Clifford?Σ.

For abelian anyon models, the set A of particles is an abelian group and the fusion
rules (i.e., the Verlinde algebra (3.7)) are given by the group product, N c

ab = 1 if
and only if c = ab and N c

ab = 0 otherwise. In other words, any two particles a
and b fuse to a unique particle c = ab, and the identity element 1 ∈ A is the
only particle satisfying 1a = a for all a ∈ A. Another requirement is that the S
matrix is composed entirely of phases (divided by the quantum dimension D), and
S1a = Sa1 = 1/D for all a ∈ A. Furthermore, the involution a 7→ a defining the
antiparticle associated to a ∈ A is simple the inverse a = a−1 with respect to the
group multiplication. Note that, by the fundamental theorem of finitely generated
abelian groups, the groupA is isomorphic to ZN1×ZN2×· · ·×ZNr for some prime
powers Nj . The number N = lcm(N1, . . . , Nr) will play an important role in the
following, determining e.g., the order of a protected gate.

It is well known that for abelian anyons a and b, and two inequivalent loops C and
C ′ whose intersection number is 1 in the manifold Σ the relation

[Fb(C
′)][Fa(C)][Fb(C

′)][Fa(C)] = DSab[id] (3.68)

holds. As we will see, this provides an additional constraint on the logical action of
a protected gate U . The following consistency condition must hold:

Lemma 3.16. Let C and C ′ be two loops on Σ which intersect once. Consider
the action of a locality preserving unitary automorphism of the code on the string
operators on C and C ′, that is

ρU([Fb(C)]) =
∑
d

Λb,d[Fd(C)], ρU([Fb(C
′)]) =

∑
d

Λ′b,d[Fd(C
′)]. (3.69)
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Then the matrices Λ and Λ′ must satisfy the following consistency condition

Λa,c Λ′b,d (Scd − Sab) = 0 ∀a, b, c, d ∈ A. (3.70)

Proof. Since in an abelian anyon model every string operator [Fa(C)] is unitary the
relation (3.68) is equivalent to the commutation relation

[Fb(C
′)][Fa(C)] = DSab[Fa(C)][Fb(C

′)].

Conjugating this by U and rearranging terms yields

0 =
∑
c,d

Λa,c Λ′b,d (DScd −DSab) [Fc(C)][Fd(C
′)]. (3.71)

The claim follows from linear independence of the logical operators [Fc(C)][Fd(C
′)].

Invoking our previous result of Lemma 3.5, the following lemma is implied:

Lemma 3.17. The anyon labels of string operators along the loop are permuted by
U

Λb,d = eiφbδd,π̃(b), (3.72)

for some phase φb, and where π̃ is a permutation of anyon labels.

Proof. Recall from (3.29) that

Λb,d =
∑
a

Sb,a
S1,a

S1,πC(a)Sd,πC(a) =
∑
a

Sb,aSd,πC(a), (3.73)

where πC is the permutation of the central idempotents associated with loop C,
where the second equality holds for abelian anyons. An analogous equation holds
for loop C ′. Now sum over all a ∈ A in (3.70). To evaluate the sum, we require∑

a Λa,c and
∑

a Λa,cSab. Firstly,∑
a

Λa,c =
∑
a,g

Sa,gSc,πC(g) = D
∑
g

δg,1Sc,πC(g) = DSc,πC(1),

where we used unitarity of theS-matrix, δ1z =
∑

x Sx1Sxz =
∑

x Sxz/D. Secondly,∑
a

Λa,cSab =
∑
a,g

Sa,gSc,πC(g)Sab =
∑
a,g

Sa,gSc,πC(g)Sab =
∑
g

δg,bSc,πC(g) = Sc,πC(b).
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Therefore (3.70) implies(
DScdSc,πC(1) − Sc,πC(b)

)
Λ′b,d = 0 ∀b, c, d ∈ A. (3.74)

For any B ∈ A, there must exist at least one anyon D ∈ A such that Λ′B,D 6= 0.
Then

DScDSc,πC(1) − Sc,πC(B) = 0 ∀c ∈ A. (3.75)

For each D′ 6= D, there must be some C ∈ A such that SCD 6= SCD′ . Therefore
substituting into (3.74) the values b = B, c = C and d = D′, the term in brackets
must be non-zero, implying Λ′B,D′ = 0 for all D′ 6= D. Unitarity of U yields the
claim for loop C ′.

The generalized Pauli and Clifford groups
Consider the case where A = ZN1 × · · · × ZNr and set N = lcm(N1, . . . , Nr). We
define the following group associated with the surface Σ.

Definition 3.18 (Pauli group). Consider a genus-g surface Σ and let G = {Cj}3g−1
j=1

be the loops associated with generators of the mapping class group as in Fig. 3.1.
The Pauli group PauliΣ associated with Σ is

PauliΣ :=
〈 {
λ[Fa(C)]

∣∣ λ ∈ 〈e2πi/N〉, a ∈ A, C ∈ G
} 〉

,

i.e., the set of logical operators generated by taking products of string-operators
associated with G, where 〈e2πi/N〉 is the subgroup of U(1) consisting of N -th roots
of unity.

According to Eq. (3.68), we can always reorder and write each element P ∈ PauliΣ

in the standard form

P = λ[Fa1(C1)] · · · [Fa3g−1(C3g−1)] for some λ ∈ 〈e2πi/N〉, aj ∈ A .

This shows that the group PauliΣ is finite. Furthermore, since aN = 1 for every
a ∈ A, we conclude that PN = λ[id] is proportional to the identity up to a phase
λ ∈ 〈e2πi/N〉. That is, every element of the Pauli group PauliΣ has order dividingN .

Given this definition, we can proceed to give the definition of the Clifford group.

Definition 3.19 (Clifford group). The Clifford group associated with Σ is the group
of logical unitaries

CliffordΣ := {λ[U ] | [U ]PauliΣ[U ]−1 ⊂ PauliΣ, λ ∈ 〈e2πi/N〉} .

In this definition, [U ] is any logical unitary on the code space.
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We can define a ‘homology-preserving subgroup’ of CliffordΣ. To do so, we first
introduce the following subgroup of PauliΣ associated with a loop on Σ.

Definition 3.20 (Restricted Pauli group). Let C ∈ G be a single closed loop. We
set

PauliΣ(C) :=
〈 {
λ[Fa(C)]

∣∣ λ ∈ 〈e2πi/N〉, a ∈ A
} 〉

,

i.e., the subgroup generated by string-operators associated with the loop C.

It is straightforward to check that for anyC ∈ G, the subgroupPauliΣg(C) ⊂ PauliΣg

is normal; furthermore, any P ∈ PauliΣg(C) has the simple form of a product
P = λ[Fa1(C)] · · · [Far(C)].

Given this definition, we can define a subgroup of Clifford group elements as follows:

Definition 3.21 (Homology-preserving Clifford group). The homology-preserving
Clifford group associated with Σ is the subgroup

Clifford?Σ := {λ[U ] | [U ]PauliΣ(C)[U ]−1 ⊂ PauliΣ(C) for all C ∈ G, λ ∈ 〈e2πi/N〉} .

Note that this is a proper subgroup, i.e., Clifford?Σ ( CliffordΣ, as can be seen from
the following example.

Example 3.2. Consider for example Kitaev’s D(Z2)-code on a torus Σ2 (cf. Ex-
ample 3.1). In this case, there are two inequivalent homologically non-trivial
cycles C1 and C2. In the language of stabilizer codes, the logical operators
(X̄1, Z̄1) = (Fe(C1), Fm(C2)) and (X̄2, Z̄2) = (Fe(C2), Fm(C1)) are often referred
to as the logical Pauli operators associated with the first and second logical qubit,
respectively. Consider the logical Hadamard H̄1 on the first qubit, which acts as

H̄1X̄1H̄
†
1 = Z̄1 and H̄1Z̄1H̄

†
1 = X̄1

but leaves X̄2 and Z̄2 invariant. Then H̄1 belongs to the Clifford group, H̄1 ∈
CliffordΣ. However, H̄1 6∈ Clifford?Σ because X̄1 and Z̄1 belong to different homology
classes (specified by C1 and C2, respectively).

In the following, we make use of the existence of a loop C ′ which intersects with
a given loop C exactly once. Note that this is not necessarily given, but works
in the special case where C is one of the 3g − 1 curves {Cj}3g−1

j=1 associated with
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the generators of the mapping class group of the genus-g surface Σg (cf. Fig. 1).
We are now ready to prove Theorem 3.15, i.e., that a protected gate U has logical
action [U ] ∈ Clifford?Σ.

Proof. By Lemma 3.17, we have that
∑

c Λa,c[Fc(C)] = λ[Fb(C)] for some λ ∈
U(1) and b ∈ A. It remains to show that λ is an N -th root of unity. We have

λN [id] = λN [Fb(C)N ] = [λFb(C)]N = [U ][Fa(C)]N [U †] = [id]

because the string operators Fa(C) have order dividingN , thus we must have λN =

1. Because a andC were arbitrary, this concludes the proof that [U ] ∈ Clifford?Σ.
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3.8 Density on a subspace and protected gates

Lemma 3.22. Let H0 be an invariant subspace under the mapping class group
representation, and suppose the action of MCGΣ is dense in the projective unitary
group PU(H0). Let H1 be the orthogonal complement of H0 in HΣ. Assume
that the decomposition H0 ⊕ H1 stems from the gluing axiom in the sense that
Hj =

⊕
~a∈Λj
HΣ′(~a) for j = 0, 1, where Λ0,Λ1 are disjoint set of labelings of the

boundary components of the surface Σ′ obtained by cutting Σ along a family ~C of
pairwise non-intersecting curves. If dimH1 < dimH0 (or a similar assumption),
then any protected gate U leavesH0 invariant and acts as a global phase on it.

Proof. Extending ~C to a DAP-decomposition C, the unitary U expressed in the
(suitably ordered) basis BC takes the form

U =

(
U00 U01

U10 U11

)
,
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whereU jk describes the operator PHjUPHk obtained by projecting the domain and
image of U toHk andHj , respectively.

Consider the Schur decomposition U00 = W00ΓW†
00 of U00, i.e., W00 is a unitary

matrix and Γ is upper triangular. There are different cases to consider:

(i) If Γ is diagonal with a single eigenvalue λ, then

U =

(
λI U01

U10 U11

)
.

Assume for the sake of contradiction that λ = 0. Writing dj = dimHj , the
d1 × d0-matrix U10, must have exactly d0 non-zero values, each in a different
row because U ∈ ∆. This is only possible if d1 > d0, contradicting our
assumption.

We conclude that λ 6= 0. But then the conditionU ∈ ∆ requires that λ ∈ U(1)

and U01 = U10 = 0 (since we cannot have more than one non-zero entry in
each column or row).

(ii) Γ has a non-zero off-diagonal element Γj,k, j < k. We will show that this
is not consistent with the fact that U is a protected gate (i.e., leads to a
contradiction). By reordering basis elements of BC , we can assume without
loss of generality that Γ1,2 6= 0. By using, e.g., Solovay-Kitaev onH0, we find
a product Ṽ = V(ϑ1) · · ·V(ϑm) of images of mapping class group elements
approximating V = W†

00 ⊕W11, where W11 is an arbitrary unitary onH1.

Consider thematrixVUV†. Wehave (VUV†)j,k = Γj,k for j, k = 1, . . . , dimH0.
In particular, (VUV†)1,2 6= 0 and (VUV†)2,1 = 0.

We claim that we must have (VUV†)1,1 = (VUV†)2,2 = 0. To show this,
assume for the sake of contradiction that one of these diagonal entries is non-
zero. Then VUV† 6∈ ∆ since it has two non-zero entries in the same row or
column. But this implies ṼUṼ† 6∈ ∆ since ṼUṼ† ≈ VUV†, a contradiction
to the fact that U ∈ ∆ϑ1···ϑm .

Now letXj,k = (VUV†)j,k for j, k ∈ {1, 2} be the principal minor 2× 2 sub-
matrix. We have established that its only non-zero entry is X1,2. Using
the Hadamard matrix H , we then have (HXH†)1,1 = X1,2/2 6= 0 and
(HXH†)1,2 = −X1,2/2 6= 0. Let H = H ⊕ I(dimH0−2). By Solovay-Kitaev,
we can find a product Ṽ′ = V(ϑ′1) · · ·V(ϑ′`) of images of mapping class group
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elements approximating V′ = H ⊕W′
11, where W′

11 is an arbitrary unitary
onH1. Then we have

(V′VUV†(V′)†)1,1 = X1,2/2 6= 0

(V′VUV†(V′)†)1,2 = −X1,2/2 6= 0 ,

which shows that V′VUV†(V′)† 6∈ ∆. By continuity, this shows that
Ṽ′ṼUṼ†(Ṽ′)† 6∈ ∆, contradicting the fact that U ∈ ∆ϑ′1···ϑ′`ϑ1···ϑm .

(iii) Γ is diagonal with distinct eigenvalues: in this case we can apply the same
kind of argument as in the proof of Corollary 3.7.

3.9 Simplifications from excited states
Up until this point, this chapter has presented results from Michael E Beverland et
al., 2016. Nowwemove on to more recent results developed with Gorjan Alagic and
Hector Bombin which go beyond what was presented above, and also significantly
simplify the anyon-model dependent results.

Recall Proposition 3.3.1, which tells us that given an LPU U , the logical operators
associated with loop C transform as

[UPa(C)U †] = [PπC(a)(C)], (3.76)

[UFb(C)U †] =
∑
b′

Λb,b′ [Fb′(C)], (3.77)

where πC is a permutation of anyon labels which can depend on the loop C.

First note that these relations still hold if one extends the notion of a logical operator
for an non-contractible loop to a contractible loop C, by considering excited states
which are have no local excitations near C. Based on this fact, in the remainder of
this section we show that πC must be the same for all contractible loops C, allowing
us to define a permutation σ = πC (for contractible C) which depends only on U .
Next we argue that the string operators can only be transformed by this permutation
up to phase, i.e. that Λb,b′ = eiφbδb′,σ(b). Moreover, we show that permutations σ and
πC for any non-contractible loop C must both preserve the quantum dimension of
every particle, and that σ(1) = 1. The phases eiφb for a loop C are fixed completely
by πC and σ and are given in terms of the S matrix as eiφb = Sb1/Sσ(b)π(1).
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It is clear that these restrictions can be used to simplify many of the previous proofs.
For example, it follows that the Fibonacci model can have no non-trivial gates
since its two particles have different quantum dimensions and therefore cannot be
permuted. Abelian anyons can only have gates in the generalized Clifford group,
since string operators can be permuted, with phases which are powers finite root of
unity (which appear in the S-matrix).

Lemma 3.23. Let U be an LPU. Then there is a unique permutation σ ∈ SA such
that σ = πC for any contractible C.

Proof. Choose a pair of non concentric, non intersecting contractible closed curves
C and C ′, and a contractible closed curve D enclosing C and C ′. Consider here
only states with local excitations deep inside the regions bounded by C and C ′, (i.e.
not near the curves). Consider an excited state |φ〉 is a +1 eigenstate of P1(E) for
all contractible closed curves E which enclose regions that exclude those enclosed
by C and C ′, and is also a simultaneous +1 eigenstate of Pa(C), Pā(C ′) and P1(D).
After the application of U , we obtain |φ′〉 = U |φ〉, which (rom Proposition 3.3.1,
and the fact thatU preserves the groundspace) must be a simultaneous +1 eigenstate
of P1(E), PπC(a)(C), PπC′ (ā)(C) and P1(D). However, to satisfy the fusion rules
it must be the case that for some permutations πC(a) × πC′(ā) = 1, which fixes
πC′ given πC . As this must hold for any choice of closed contractible curve C ′, the
permutation πC′ must be the same for all suchC ′. We name the permutation σ = πC

for any contractible C.

Lemma3.24. LetU be anLPUandσ the permutation applied to projection operators
for contractible curves afforded by Lemma 3.23. Then Λb,b′ = eiφbδb′,σ(b) for some
anyon dependent phase eφb .

Proof. Recall that the string operators are defined in terms of pair creation of b and
b̄, dragging of a around a closed curve C, and then projecting onto the trivial fusion
outcome. We can use the result of Lemma 3.23 to argue that at each step of this
process, the action of U would be to replace b by σ(b). The only remaining freedom
is an overall phase eφb .

The following places restrictions on the permutations and phases achievable by
LPUs.
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Lemma 3.25. Let U be an LPU and fix a simple closed curveC in Σ. Let π, σ ∈ SA

and {φa : a ∈ A} be the permutations and phases (afforded by the above results)
satisfying

[UPa(C)U †] = [Pπ(a)(C)] and [UFa(C)U †] = eφa [Fσ(a)(C)] .

Then for all a ∈ A, we have

dπ(a) = dσ(a) = da and eiφa =
Sa1

Sσ(a)π(1)

. (3.78)

Proof. We first recall the definition of the logical projection operators at a simple
closed curve C : [0, 1]→ Σ.

[Pa(C)] = S1a

∑
b

S̄ba[Fb(C)]. (3.79)

Applying (3.79) both with and without the above action, we get

[Pπ(a)(C)] = S1a

∑
b

S̄bae
iφb [Fσ(b)(C)].

[Pπ(a)(C)] = S1π(a)

∑
b

S̄bπ(a)[Fb(C)].

Setting the right hand sides equal to each other,

S1a

∑
b

S̄bae
iφb [Fσ(b)(C)] = S1π(a)

∑
b

S̄bπ(a)[Fb(C)] .

∑
b

(
S1aS̄bae

iφb − S1π(a)S̄σ(b)π(a)

)
[Fσ(b)(C)] = 0 .

By linear independence of the [Fb(C)], we have that for all a, b ∈ A,

eiφb =
S1π(a)S̄σ(b)π(a)

S1aS̄ba
. (3.80)

Setting b = 1 and making use of σ(1) = 1, it follows that |S1a|2 = |S1π(a)|2.
Recalling that S1b = db/D is real for all b, we conclude that S1b = S1π(a), and
therefore that, da = dπ(a). Substituting S1b = S1π(a) into (3.80),

eiφb =
S̄σ(b)π(a)

S̄ba
=

Sba
Sσ(b)π(a)

.

Setting a = 1 yields the claim that eiφb = Sb1/Sσ(b)π(1).
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To prove that dσ(a) = da, we make the following observation. Consider some
new contractible closed curve C ′ (different from C), along which U implements
permutations π′ and σ′ on the projectors and string operators respectively. We know
by Lemma 3.23 and Lemma 3.25 that σ′ = σ. We also know that, since C ′ is
contractible, π′ = σ′ = σ. But we have just proven that dπ′(a) = da for any loop C ′,
therefore it must be that dσ(a) = da.
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C h a p t e r 4

CODE SWITCHING

In this chapter, we give a simplified, yet rigorous presentation of the ideas from
Bombín’s paperGauge Color Codes [arXiv:1311.0879v3]. Our presentation is self-
contained, and assumes only basic concepts from quantum error correction. We pro-
vide an explicit construction of a family of color codes in arbitrary dimensions and
describe some of their crucial properties. Within this framework, we explicitly show
how to transversally implement the generalized phase gate Rn = diag(1, e2πi/2n).
Our approach differs in aspects from the method in the aforementioned paper, allow-
ing an arguably simpler proof. We describe how to implement the Hadamard gateH
fault-tolerantly using code switching. In three dimensions, this yields, together with
the transversal CNOT , a fault-tolerant universal gate set {H,CNOT , R3} without
state-distillation.

4.1 Introduction
To build a fully functioning quantum computer, it is necessary to encode quantum
information to protect it from noise. In physical systems, one expects noise to act
locally. Therefore, topological codes A. Y. Kitaev, 2003; Levin and X.-G. Wen,
2005; H. Bombin and M. Martin-Delgado, 2006; Bonderson et al., 2010, which
naturally protect against local errors, represent our best hope for storing quantum
information. However, a quantum computer must also be capable of processing
this information. This motivates the search for topological codes allowing the
implementation of a set of gates which (i) can operate in the presence of typical noise
without corrupting the stored information, and (ii) can perform any computation on
the encoded information. A theoretical framework has been developed around
these ideas — a gate which is fault-tolerant does not propagate typical errors into
uncorrectable errors P. Shor, 1996; J. Preskill, 1998, and therefore satisfies (i). A set
of gates which is universal can generate any unitary on the code space with arbitrary
precision AYuKitaev, 1997; M. Nielsen and I. Chuang, 2010, and therefore satisfies
(ii).

The known methods of implementing a universal, fault-tolerant gate set in topolog-
ical codes typically require an enormous amount of overhead. For instance, magic
state distillation Sergey Bravyi and Alexei Kitaev, 2005 with the two-dimensional
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toric code requires many additional ancilla qubits Austin G Fowler et al., 2012,
whereas computing by braiding non-abelian anyons A. Y. Kitaev, 2003; Nayak et
al., 2008 requires additional time to move anyons around macroscopic loops Beck-
man et al., 2001. These forms of overhead can make quantum processing orders of
magnitude less efficient than storage alone in topological codes. This may render
such approaches impractical given the experimental difficulty of scaling up quantum
hardware Austin G Fowler et al., 2012; Devoret and Schoelkopf, 2013; Wecker et al.,
2014. In this paper we focus on a new construction by Bombín H. Bombin, 2013,
for a universal fault-tolerant gate set with topological color codes. This approach
avoids the types of overhead mentioned above. However, a lattice of at least three
dimensions is required, limiting the construction’s practicality, and there may be
other sources of overhead (related to gauge fixing).

Following Bombín’s construction, we use the simplest form of fault-tolerant gate —
the transversal gate, which is a code-space preserving unitary composed of separate
unitaries applied to each physical qubit. However, according to a no-go theorem
by Eastin and Knill Eastin and Knill, 2009, for any code which protects against
arbitrary single-qubit errors, the set of transversal gates forms a finite group and
therefore cannot be universal. Some recent approaches to circumvent this no-go
theorem in order to implement a universal gate set with transversal gates have been
put forward Jochym-O’Connor and Laflamme, 2014; Paetznick andReichardt, 2013;
Jonas T. Anderson, Duclos-Cianci, and Poulin, 2014.

In Ref. H. Bombin, 2013, Bombín applies the approach of gauge fixing Paetznick and
Reichardt, 2013; Jonas T. Anderson, Duclos-Cianci, and Poulin, 2014 to color codes
on a d-dimensional lattice. Color codes were first introduced in two dimensions by
Bombín and Martin-Delgado in Ref. H. Bombin and M. Martin-Delgado, 2006.
They are topological stabilizer codes Gottesman, 1996; Calderbank et al., 1997;
A. Y. Kitaev, 2003; Sergey Bravyi and König, 2013, meaning they are defined on
a lattice and have macroscopic distance together with geometrically local stabilizer
generators. The main new conceptual contribution in Ref. H. Bombin, 2013 is
that gauge fixing allows one to fault-tolerantly switch between a (stabilizer) color
code on a d-dimensional lattice, in which CNOT and Rd = diag

(
1, exp(2πi

2d
)
)
are

transversal, and a different (subsystem) color code on the same lattice, in which H
is transversal. Critically, for d ≥ 3, {H,CNOT , Rd} forms a universal gate set. To
the authors’ knowledge, this represents the first construction using gauge fixing to
achieve a universal gate set in a topological code.
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In Ref. H. Bombin, 2013, Bombín argues that for every d ≥ 2, there exists a d-
dimensional color code with a transversal implementation ofRd ∈ Pd\Pd−1, which
is the main technical contribution therein. Here, Pd is the d th level of the Clifford
hierarchy1 Gottesman and I. L. Chuang, 1999. At the same time, for any topological
stabilizer code, Bravyi and König Sergey Bravyi and König, 2013 showed that the
group of logical gates implemented transversally must be contained in Pd. These
results have been extended beyond the stabilizer code setting Fernando Pastawski
and Beni Yoshida, 2014; Michael E Beverland et al., 2016. Color codes are the only
family of topological stabilizer codes currently known to saturate the Bravyi-König
classification in every dimension d ≥ 2.

In this paper, we provide a simplified yet rigorous presentation of the ideas in
Ref. H. Bombin, 2013. The organization is as follows. First, to build some intuition,
we introduce color codes in two dimensions in Section 4.2. We explain how to
transversally implement the gate set {H,CNOT , R2}, which generates the Clifford
group. Then, we describe the generalization of color codes to d dimensions in
Section 4.3. Next, in Section 4.4 we discuss transversal gates in those codes with
an emphasis on the phase gate Rn, and show that in certain d-dimensional color
codes Rd is transversal. Our construction utilizes the bipartite property of the
lattice allowing for a simpler verification than in Ref. H. Bombin, 2013. Finally, in
Section 4.5 we explain how to switch between color codes fault-tolerantly using the
technique of gauge fixing. In particular, this allows one to implement a fault-tolerant
universal gate set {H,CNOT , R3} in a color code in three dimensions.

4.2 Color code in two dimensions
In this section, we give an explicit construction of a stabilizer color code in two
dimensions H. Bombin and M. Martin-Delgado, 2006; Bombín, 2013. We consider
a 3-valent lattice formed as a tiling of a sphere, such that faces of the lattice are
colored with three colors, where neighboring faces have distinct colors. Qubits
are placed at the vertices of this lattice. To define a color code on this lattice,
we associate an X- and a Z-type stabilizer generator with every face. This code
encodes no logical qubits. A new code, which encodes a single logical qubit, can be
formed through the removal of a single physical qubit. We describe the transversal

1The Clifford hierarchy is defined sequentially for j > 1 according toPj = {unitary U |UPU† ∈
Pj−1 ∀P ∈ P1} with P1 representing the Pauli group. Note that P2 is the well-known Clifford
group.
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implementation of the logical gates CNOT , H and R2 in the new code2.

Color code with no encoded qubits
Color codes in two dimensions are CSS stabilizer codes Gottesman, 1996; Calder-
bank et al., 1997, and are therefore specified by their stabilizer group S gener-
ated by X- and Z-type stabilizer generators. The code space is the simultaneous
+1 eigenspace of every stabilizer generator. In the construction, we use a two-
dimensional lattice L∗0, obtained from a tiling of the 2-sphere, and satisfying the
following requirements

• valence — every vertex is 3-valent, meaning it belongs to exactly 3 edges,

• colorability — faces can be colored with 3 colors: red, green and blue, such
that every two faces sharing an edge have different colors.

An example of such a tiling of the 2-sphere is presented in Fig. 4.1(a). From these
properties alone, one can show that the total number of vertices inL∗0 is even. To see
this, note that the Euler characteristic is V −E +F = 2, where V , E and F denote
the number of vertices, edges and faces in L∗0, respectively. Since every vertex is
3-valent, we obtain E = 3

2
V , and then V = 2(F − 2), which is even.

At every vertex in L∗0 we place a qubit. We refer to the set of all qubits by Q,
whereas by Q(Π) ⊂ Q we denote the set of vertices of a face Π. Alternatively, we
can think of Q(Π) as the set of qubits belonging to Π. To define the color code,
it is sufficient to specify X- and Z-type stabilizer generators. For every face Π,
we define an X-type stabilizer generator X(Π) to be a tensor product of Pauli X
operators supported on qubits Q(Π), similarly for Z-type generators. Then, the
stabilizer group S is generated by

S = 〈X(Π), Z(Π), for every face Π in L∗0〉. (4.1)

To prove that this specifies a well-defined stabilizer code, we must verify that all
the generators of S commute. It is sufficient to check that for any two faces Π1

and Π2 in L∗0, X(Π1) and Z(Π2) commute. First take the case Π1 6= Π2. If Π1

and Π2 share no vertices, then X(Π1) and Z(Π2) trivially commute. If they share
a vertex, then by 3-valence, they also share an edge. Moreover, due to valence and

2We use a bar to indicate action on logical code space. The absence of a bar indicates action on
physical qubits.
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(a) (b)

(c) (d)

Figure 4.1: (Color online) Construction of color codes in two dimensions. In (a)
and (b), qubits are placed at vertices, and X- and Z-type stabilizer generators are
associated with faces. In (c) and (d) (the dual picture), qubits are placed on faces,
and X- and Z-type stabilizer generators are associated with vertices. (a) Take a
lattice L∗0, which is a tilling of the 2-sphere with 3-colorable faces and 3-valent
vertices. The surrounding circle is identified with a vertex v. The color code on L∗0
encodes no logical qubits. (b) To obtain L∗, remove from L∗0 the vertex v, together
with the three edges and three faces containing it. The color code on L∗ encodes
one logical qubit. (c) (Dual) lattice L0 is obtained fromL∗0 by replacing faces, edges
and vertices by vertices, edges and faces, respectively. All faces are triangles, and
the vertices are 3-colorable. The color code on L0 encodes no logical qubits. (d)
Lattice L formed from L0 by removing a single face. No stabilizer generators are
associated with those vertices belonging to the boundary of the removed face. The
color code on L encodes one logical qubit.

colorability conditions, Π1 and Π2 cannot share two consecutive edges, and thus
their intersection has to contain an even number of vertices,

|Q(Π1) ∩Q(Π2)| ≡ 0 mod 2. (4.2)
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For the case Π1 = Π2 = Π, due to 3-colorability and 3-valence, the number of
vertices belonging to a face Π is even,

|Q(Π)| ≡ 0 mod 2. (4.3)

Therefore, we obtain commutation of X(Π1) and Z(Π2) for arbitrary Π1 and Π2.

From the construction of the lattice, one obtains that each vertex belongs to exactly
three faces, colored with three different colors. Thus, one can express the set of
vertices in L∗0 as the disjoint union3 of vertices belonging to red faces, and similarly
for green and blue H. Bombin andM.Martin-Delgado, 2006; Bombín, 2013, namely

Q =
⊔
ΠR

Q(ΠR) =
⊔
ΠG

Q(ΠG) =
⊔
ΠB

Q(ΠB), (4.4)

where {ΠR}, {ΠG} and {ΠB} are the sets of all red, green and blue faces, re-
spectively. This implies that not all the stabilizer generators we have defined are
independent ∏

ΠR

X(ΠR) =
∏
ΠG

X(ΠG) =
∏
ΠB

X(ΠB), (4.5)∏
ΠR

Z(ΠR) =
∏
ΠG

Z(ΠG) =
∏
ΠB

Z(ΠB). (4.6)

In fact, these are the only conditionsBombín andM.Martin-Delgado, 2007; Bombín,
2013 which relate the stabilizer generators to one another.

We can now verify that the color code which we have defined on the lattice L∗0
encodes no logical qubits. As before, using theEuler characteristicwe obtainF−2 =

E−V , and from 3-valence of vertices — E = 3
2
V . We have placed physical qubits

at vertices, thus |Q| = V . There are 2F − 4 independent stabilizer generators, since
there are two stabilizer generators for every face and four conditions (4.5) and (4.6).
The number of logical qubits is equal to the number of physical qubits minus the
number of independent stabilizer generators, and we obtain

|Q| − (2F − 4) = V − 2(E − V ) = 0. (4.7)

Color code with one logical qubit
To obtain a color code with one encoded logical qubit, we can remove one vertex
from the latticeL∗0, togetherwith three edges and three faces it belongs to, obtaining a

3We use the disjoint union A t B in place of the union A ∪ B of two sets A and B when their
intersection is empty, A ∩B = ∅.
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new latticeL∗ (see Fig. 4.1b). By removing one vertex, we also discard six stabilizer
generators associated with the removed faces, and thus the stabilizer generators no
longer have to satisfy (4.5) and (4.6). One can check that this new code encodes one
logical qubit, since there is one qubit more than independent stabilizer generators.
By removing more vertices, one could encode more logical qubits, but we will not
analyze that case. Note that the total number of qubits inL∗ is odd, |Q| ≡ 1 mod 2,
which plays an important role in our considerations.

On physical grounds, it is of interest to consider stabilizer codes with stabilizer
generators which are low-weight and geometrically local. In the construction we
have presented, this can be achieved if each face in the lattice L∗ is geometrically
local and contains a small number of vertices, as in Fig. 4.1b. It can be shown
that following this construction, the resulting color code has macroscopic distance
H. Bombin and M. Martin-Delgado, 2006, and therefore is a topological stabilizer
code.

Later, whenwe discuss color codes in d dimensions, we follow a similar construction.
We briefly outline the procedure here, deferring detailed discussion to Section 4.3.
We start with a tiling of a d-sphere, place qubits at vertices and define (gauge group)
generators to be supported on suitable cells. Then, we remove one vertex and all the
cells containing it. In particular, we discard generators supported on the removed
cells. Such a code encodes only one logical qubit Bombín and M. Martin-Delgado,
2007.

Transversal gates
Consider a stabilizer code encoding one logical qubit, with the stabilizer group S. In
this setting, a transversal gate U on a single logical qubit is implemented as a tensor
product of single physical qubit unitaries U1⊗ . . .⊗U|Q|, which preserves the code
space. On the other hand, a logical gate on two logical qubits requires two copies of
the code, in which case we say that the overall code space is the +1 eigenspace of
the elements in S ⊗ S. A transversal gate on two logical qubits is implemented as
a tensor product of two qubit gates on pairs of corresponding qubits in both copies
of the code, which preserves the overall code space. Observe that transversal gates
are fault-tolerant since they do not spread errors within each copy of the code.

We now show that in the two-dimensional color code described in the previous
subsection, one can transversally implement the gate set {H,CNOT , R2}, which
generates the (non-universal) Clifford group. The Clifford group, combined with
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computational basis state preparation and measurement, can be simulated efficiently
on a classical computer Gottesman, 1998; Aaronson and Gottesman, 2004. For each
gate, H , CNOT and R2, we verify that a particular transversal unitary implements
the logical gate by showing that it has the correct action under conjugation on
generators of the logical Pauli group, and that the stabilizer group is preserved4.

This two-dimensional color code is a CSS stabilizer code encoding a single logical
qubit with logical Pauli operators X = X(Q) and Z = Z(Q). In addition it is a
self-dual CSS stabilizer code — a code with the same support for X- and Z-type
stabilizer group elements (for each face, there is an X- and a Z-type generator).
This implies that the logical Hadamard gate can be implemented transversally, as
under conjugation by H(Q), X 7→ H(Q)X(Q)H(Q)† = Z and similarly Z 7→ X .
Moreover, X(Π) 7→ Z(Π), Z(Π) 7→ X(Π), and thus S is preserved.

The logical gate CNOT can be implemented transversally between two identical
copies of this color code by applying a physical gate CNOT to every pair of
corresponding qubits in the first and the second copy. This can be verified by
checking that under conjugation by CNOT , X I 7→ X X , I X 7→ I X , Z I 7→ Z I ,
I Z 7→ Z Z and S ⊗ S is preserved5.

To show that R2 can be implemented transversally, we use the fact that the set of
vertices in L∗ is bipartite (see Fig. 4.2(a)). In other words, Q can be split into two
subsets, T and T c := Q \T , such that vertices in T are connected only to vertices in
T c and vice versa. To prove this, first note that every face in L∗0 has an even number
of edges. Moreover, every cycle in L∗0 (as a tiling of the 2-sphere) is contractible.
This implies that every cycle in L∗0 is a boundary of faces and is therefore even.
Using the following lemma

Lemma 4.1 (Graph Bipartition). A graph containing only even cycles is bipar-
tite Wilson, 1996.

we see that L∗0 must be bipartite, and so is the lattice L∗ due to its construction from
L∗0.

Now, we can show that R = Rk
2(T )R−k2 (T c) implements R2, for some choice of

integer k. We use the relations R2XR
†
2 = iXZ and R2ZR

†
2 = Z. Since |Q| ≡ 1

4Preservation of the stabilizer group is a sufficient (but not necessary) condition that implies
preservation of the code.

5Notice that generators of S ⊗S are mapped under conjugation to a different generators, namely
X(Π)⊗ I(Π) 7→ X(Π)⊗X(Π), Z(Π)⊗ I(Π) 7→ Z(Π)⊗ I(Π), I(Π)⊗X(Π) 7→ I(Π)⊗X(Π)
and I(Π)⊗ Z(Π) 7→ Z(Π)⊗ Z(Π).
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mod 2, then |T | − |T c| = 2|T | − |Q| ≡ ±1 mod 4, and picking k = |T | − |T c|
mod 4 ensures that k(|T | − |T c|) ≡ 1 mod 4. With this choice of k, the action by
conjugation of R = Rk

2(T )R−k2 (T c) on the logical X and Z is

RX R† = ik(|T |−|T c|)X Z = iX Z, (4.8)

RZ R† = Z. (4.9)

Furthermore, as every face Π in the lattice L∗ has an equal number of vertices in T
and T c, under the action of R the stabilizer generators X(Π) and Z(Π) become:

RX(Π)R† = ik(|T∩Π|−|T c∩Π|)X(Π)Z(Π) (4.10)

= X(Π)Z(Π) ∈ S, (4.11)

RZ(Π)R† = Z(Π), (4.12)

implying that the stabilizer group S is preserved. This completes the verification
that R implements R2.

(a) (b)

Figure 4.2: (Color online) (a) The set of vertices of L∗, the lattice used to define the
color code, is bipartite — it can be split into two subsets: T (hollow circles), and its
compliment T c (filled circles). Vertices in T are only connected to vertices in T c
and vice versa. The logical gate R2 can implemented by applying Rk

2 to qubits in
T , and R−k2 to qubits in T c, where k ≡ |T | − |T c| mod 4. (b) The dual lattice L.
Faces are bipartite.

Dual lattice picture
Wecan alternatively express the construction of color codes in the dual lattice picture,
which we will use extensively for d > 2 dimensions. We use a two-dimensional
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(dual) lattice L0, obtained from a tiling of the 2-sphere, and satisfying the following
requirements

• all faces are triangles,

• vertices are 3-colorable, meaning two vertices belonging to the same edge are
colored with different colors.

See Fig. 4.1(c) for a simple example. Note that these conditions are equivalent to
the conditions of 3-valence of vertices and 3-colorability of faces required for the
tiling L∗0 of the 2-sphere, where lattices L∗0 and L0 are dual to one another.

A qubit is placed on every face of L0, and anX- and a Z-type stabilizer generator is
associated with every vertex, meaning they are supported on qubits corresponding
to faces containing that vertex. The resulting color code is exactly the same as that
described in Section 4.2, and therefore has zero logical qubits. To encode a single
logical qubit, one should remove a face from L0, together with stabilizer generators
associated with the vertices belonging to the removed face, see Fig. 4.1(d).

The bipartition of vertices in L∗ corresponds to a bipartition of faces in L, meaning
that faces in L can be split into two sets, T and its compliment T c, such that faces
in T share an edge only with faces in T c and vice-versa. See Fig. 4.2(b).

4.3 Color code in higher dimensions
Here we present a construction of color codes on d-dimensional lattices. In higher
dimensions it is easier to describe the construction in the language of the dual lattice.
The majority of this section is devoted to defining dual lattices satisfying certain
conditions and analyzing their properties. The discussion is a generalization of that
already presented for two dimensions. The basic idea of how to construct the dual
lattice L is to first tile a d-sphere with d-simplices to form a lattice L0. We require
that every vertex in L0 can be assigned one of d+ 1 distinct colors and two vertices
belonging to the same edge have different colors. The lattice L, used to define the
color code, is formed by removing one d-simplex from L0, which results in a color
code encoding one logical qubit Bombín andM.Martin-Delgado, 2007; H. Bombin,
2013.
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Simplicial complexes and colorability
A d-simplex δ is a d-dimensional polytope which is a convex hull of its d+1 affinely
independent vertices v0, v1, . . . , vd, namely

δ =

{
d∑
i=0

tivi

∣∣∣∣∣ 0 ≤ ti ∧
d∑
i=0

ti = 1

}
. (4.13)

In particular, 0-simplices are vertices, 1-simplices are edges, 2-simplices are trian-
gles, 3-simplices are tetrahedra and so on.

A convex hull of a subset of vertices of size k + 1 ≤ d + 1 is a k-simplex σ,
which we call a k-face of δ, and σ ⊂ δ. For example, the faces of a 3-simplex (a
tetrahedron) are: four 0-simplices, six 1-simplices, four 2-simplices and a single
3-simplex. More generally, δ contains

(
d+1
k+1

)
k-faces, since every k-face is uniquely

determined by the choice of k + 1 vertices spanning it. By ∆k(δ) we call the set of
all k-faces of δ, namely

∆k(δ) = {σ ⊂ δ|σ is a k-simplex}. (4.14)

Instead of having only one simplex, we can consider a collection of them. Moreover,
we can create new objects, called simplicial complexes Hatcher, 2002, by gluing
simplices along their proper faces of matching dimension. We restrict ourselves
to simplicial complexes containing finitely many simplices. We will define a d-
dimensional color code on a lattice L obtained by gluing together d-simplices. The
technical name for such a lattice is a homogeneous simplicial d-complex.

AlthoughL is formally a collection of simplices, by the same symbol we also denote
the union of these simplices as a topological space. Notice that L is a manifold with
a boundary, which we can think of as being embedded in real space. We denote by
∂L the set of simplices belonging to the boundary of L, where the boundary of L
is the set of points in the closure of L not belonging to the interior of L. Moreover,
by ∆′k(L) we understand the set of all k-simplices belonging to L \ ∂L. Note that
∆′d(L) = ∆d(L).

We say that a simplicial d-complex L is (d + 1)-colorable if we can introduce a
function

color : ∆0(L)→ Zd+1, (4.15)

where Zd+1 = {0, 1, . . . , d} is a set of d + 1 colors, and two vertices belonging to
the same edge have different colors. Moreover, by color(δ) we understand the set of
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colors assigned to all the vertices of a simplex δ, namely

color(δ) =
⊔

v∈∆0(δ)

color(v). (4.16)

An example of a 3-colorable, homogeneous, simplicial 2-complex is the lattice L
shown in Fig. 4.1(d). Note in particular that it is composed of nineteen 2-simplices
(triangles). The exact shape of objects in L is not important due to its topological
nature — the lattice is not rigid and can be smoothly deformed. In this example,
∆′0(L) consists of the set of 9 vertices (the three vertices in the boundary are
excluded). ∆′1(L) is the set of 27 edges, (the three edges in the boundary are
excluded). ∆′2(L) is the set of all 19 triangular faces.

Definition of color code
Here we define color codes on a d-dimensional lattice L, which must satisfy the
following conditions

Condition 1. L is a homogeneous simplicial d-complex obtained as a triangulation
of the interior of a d-simplex.

Condition 2. L is (d+ 1)-colorable.

One can obtain such a lattice L from any (d + 1)-colorable tiling of the d-sphere
with d-simplices, followed by the removal of one d-simplex. In d = 2 dimensions,
this is precisely the procedure described in Section 4.2. An explicit construction of
a family of lattices satisfying these conditions is outlined in Appendix ??.

Qubits are placed on each and every d-simplex ofL, and thus the set of all qubitsQ is
equal to ∆d(L). This motivates the next definition, namely for a simplex δ ⊂ L\∂L
we define

Q(δ) = {σ ∈ ∆d(L)|σ ⊃ δ}. (4.17)

In other words, Q(δ) can be thought of as the set of qubits placed on d-simplices
containing δ. We say that qubits Q(δ) are supported on δ. By saying that an
operator is supported on δ we mean that it is supported on the setQ(δ), for example
X(δ) := X(Q(δ)).

A color code is a CSS subsystem code Poulin, 2005; Bacon, 2006. Recall that a
CSS subsystem code is specified by its gauge group G. Each X-type gauge group
generator X(Gx) consists of Pauli X operators applied to qubits Gx; similarly for
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Z-type generators. The stabilizer group S ⊂ G is the group generated by all Pauli
operators X(Sx) and Z(Sz) contained in G, which commute with every element of
G. Note that −I 6∈ S. The codewords are +1 eigenvectors of all elements of S.

We define a d-dimensional color code H. Bombin, 2013 on the lattice L, where
d = dimL, as the CSS subsystem code with X- and Z-type gauge generators
supported on (d− 2− z)- and (d− 2− x)-simplices in L,

G = 〈X(δ), Z(σ)|∀δ ∈ ∆′d−2−z(L), σ ∈ ∆′d−2−x(L)〉, (4.18)

where x + z ≤ d − 2. The X- and Z-type generators of the stabilizer group S are
supported on x- and z-simplices, namely

S=〈X(δ), Z(σ)|∀δ∈ ∆′x(L), σ∈ ∆′z(L)〉. (4.19)

We refer to this code by CCL(x, z). When context makes the lattice unambiguous,
we sometimes useCCd(x, z) to emphasize the dimensionality of the lattice, dimL =

d. Note that the generators of the gauge and stabilizer groups are supported on
simplices which do not belong to ∂L, the boundary of the lattice L.

To illustrate the language introduced in this section, we revisit the two-dimensional
color code described in Sections 4.2 and 4.2. We begin with the lattice L shown
in Fig. 4.1d. Qubits are placed on 2-simplices (triangular faces). Since x + z ≤
dimL − 2 = 0, there is only one color code on the two-dimensional lattice L,
namely CCL(0, 0), which is a stabilizer code. Stabilizer generators are associated
with 0-simplices (vertices). Note that no stabilizer generators are assigned to the
three vertices belonging to the boundary of L.

Properties of the lattice
Here we present some properties of any (d+ 1)-colorable homogeneous simplicial
d-complex L. We use these properties to verify that CCL(x, z) is a valid code, and
later that there is a transversal implementation of Rn. We start with the following
lemmas.

Lemma 4.2 (Intersection). Let δ and σ be two simplices inL\∂L. IfQ(δ)∩Q(σ) 6=
∅, thenQ(δ)∩Q(σ) = Q(τ), where τ is the smallest simplex containing both δ and
σ.

Proof. If Q(δ) ∩ Q(σ) 6= ∅, then there exists ε ∈ ∆d(L) such that ε ⊃ δ, σ. Let
C = color(δ) ∪ color(σ) and set τ to be the unique (|C| − 1)-simplex in ε, colored
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with the set of colors C. Since τ ⊃ δ, then Q(τ) ⊂ Q(δ); similarly Q(τ) ⊂ Q(σ),
and therefore Q(τ) ⊂ Q(δ) ∩ Q(σ). As τ is the smallest simplex containing δ and
σ, then Q(τ) ⊃ Q(δ) ∩Q(σ) and thus Q(δ) ∩Q(σ) = Q(τ).

Lemma 4.3 (Disjoint Union). Let L be a simplicial d-complex which is (d + 1)-
colorable. Then, for a simplex δ ⊂ L \ ∂L and a chosen set of colors C, such that
color(δ) ⊂ C ⊂ Zd+1, there exists a partition of the set of qubits supported on δ
into a disjoint union of sets of qubits supported on (|C| − 1)-simplices containing
δ, namely

Q(δ) =
⊔
σ⊃δ

σ∈∆′|C|−1
(L)

color(σ)=C

Q(σ). (4.20)

Proof. First note, that two different k-simplices δ1 and δ2 in L \ ∂L colored with
the same colors, color(δ1) = color(δ2), cannot belong to the same l-simplex, l ≥ k,
thus do not share a qubit, Q(δ1) ∩ Q(δ2) = ∅. Moreover, if Q(ε) ⊂ Q(δ), where
ε ∈ ∆d(L), then ε ⊃ δ and there exists a unique simplex σ ⊂ ε colored with colors
C. Since color(σ) = C ⊃ color(δ), then σ ⊃ δ, which finishes the proof of the
(Disjoint Union) Lemma 4.3.

As a corollary of the (Disjoint Union) Lemma 4.3 we obtain the following

Lemma 4.4 (Even Support). Let δ be a k-simplex not belonging to the boundary of
the lattice, δ ⊂ ∆′k(L), with 0 ≤ k < d. Then

|Q(δ)| ≡ 0 mod 2. (4.21)

Before we prove the (Even Support) Lemma 4.4, we explain its consequences. For
CCd(x, z) to be a subsystem code, where x+z ≤ d−2, the stabilizer generators have
to commute with each other, as well as with the gauge group generators. Notice that
for two arbitraryX- andZ-type stabilizer generators to commute, the intersection of
their supports has to contain even number of elements. By definition,X- andZ-type
stabilizer generators be supported on δ ⊂ ∆′x(L) andσ ⊂ ∆′z(L), respectively. If the
intersection Q(δ) ∩ Q(σ) is non-empty, then due to the (Intersection) Lemma 4.2
there exists a simplex τ such that Q(δ) ∩ Q(σ) = Q(τ). Moreover, since δ is
spanned by x + 1 vertices and σ by z + 1 vertices, then τ is spanned by at most
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x+ z + 2 ≤ d vertices. Thus, τ is a k-simplex with k < d, and the (Even Support)
Lemma 4.4 applies, |Q(δ) ∩Q(σ)| = |Q(τ)| ≡ 0 mod 2, showing that X(δ) and
Z(σ) commute. The commutation of stabilizer generators with the gauge generators
follows similarly.

Proof. The set of qubits supported on any k-simplex δ in L \ ∂L with k < d

can be decomposed as a disjoint union of qubits supported on (d − 1)-simplices σ
containing δ and colored with a chosen set of d colors, C ⊃ color(δ). Note that
any (d− 1)-simplex σ ∈ ∆′d−1(L) separates two d-simplices, and then |Q(σ)| = 2,
which immediately yields

|Q(δ)| =
∑
σ⊃δ

σ∈∆′d−1(L)

color(σ)=C

|Q(σ)| ≡ 0 mod 2, (4.22)

showing the (Even Support) Lemma 4.4.

The property needed for the transversal implementation of the gate Rn, presented
in Section 4.4, can be encapsulated in the following lemma

Lemma 4.5 (Bipartition of Qubits). The set of d-simplices inL, ∆d(L), is bipartite.

Let us first explain the (Bipartition of Qubits) Lemma 4.5— the d-simplices inL can
be split into two disjoint sets, where d-simplices in the first set share (d− 1)-faces
only with d-simplices from the second set, and vice versa.

Proof. First, construct a graph G = (V,E) with the set of vertices V = ∆d(L) and
the set of edges E = ∆′d−1(L). Two vertices v, w ∈ V are connected by an edge
e ∈ E iff d-simplices corresponding to v and w share a (d− 1)-face corresponding
to e. Since for all δ ∈ ∆′d−2(L) the (Even Support) Lemma 4.4 gives |Q(δ)| ≡ 0

mod 2, and every cycle in L is contractible, we obtain that every cycle in the graph
G is even. Using the (Graph Bipartition) Lemma 4.1 we immediately obtain that G
is bipartite. This shows that the set of d-simplices in L, which is equal to the set of
qubits, ∆d(L) = Q, is bipartite.



121

4.4 Transversal gates in color codes
Asmentioned in the introduction, transversal gates are fault-tolerant. In this section,
we first review some relevant features of a class of CSS subsystem codes, which
includes the color codes defined in Section 4.3. Then, we examine transversal gates
of codes in this class. We show that CNOT is transversal in any such code and
under certain additional conditions the Hadamard and Rn can be transversal, too.
Finally, we show that the additional conditions are satisfied by certain color codes.

Subsystem codes
A CSS subsystem code Poulin, 2005; Bacon, 2006 is specified by its gauge group
G, which is a subgroup of the Pauli group on physical qubits Q. Each X-type
gauge group generator X(Gx) consists of Pauli X operators applied to qubits Gx;
similarly for Z-type generators. The stabilizer group S ⊆ G is the group generated
by all Pauli operatorsX(Sx) and Z(Sz) contained in G, which commute with every
element of G. (Note that a stabilizer code is a special case of a subsystem code,
for which G = S). The codewords are the +1 eigenvectors of all elements of S.
We say that two codewords are equivalent if they differ by application of a linear
combination of elements of G \ S. This allows one to decompose the subspace of
codewords into a tensor product of two spaces: logical qubits and gauge qubits.
Elements of G \ S have no effect on the state of the logical qubits, but may change
that of the gauge qubits.

For a subsystem code, we say a unitary implements a logical gate if it preserves the
space of all codewords, and has an action on the logical qubits which is independent
of any action on the gauge qubits. A logical gate U can be implemented on the
logical qubits |ψ〉 as a bare gate Ubare which leaves gauge qubits |g〉 unchanged,
Ubare : |ψ〉|g〉 7→ (U |ψ〉)|g〉, or more generally as a dressed gate Udressed, which can
affect the gauge qubits too, Udressed : |ψ〉|g〉 7→ (U |ψ〉)|g′〉.

Consider the class of CSS subsystem codes which

• encode one logical qubit,

• have bare logical X and Z implemented by X(Q) and Z(Q).

Note that these codes are defined on an odd number of physical qubits, |Q| ≡ 1

mod 2, since X and Z anti-commute.
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We can define a pair of inequivalent (and not normalized) codewords, which are
representatives of logical

∣∣0〉 and ∣∣1〉, namely

|0〉|gX〉 =
∑

X(G)∈G
X(G) |0〉 , (4.23)

|1〉|gX〉 = X|0〉|gX〉, (4.24)

where |0〉 is a state with every physical qubit set to |0〉, and |gX〉 is a fixed state
of the gauge qubits. One can verify that the states |0〉|gX〉 and |1〉|gX〉 are +1

eigenstates of S, and satisfy Z|0〉|gX〉 = |0〉|gX〉, Z|1〉|gX〉 = −|1〉|gX〉. They
are also +1 eigenstates of every X-type generator of G. All equivalent codewords
can be generated from |0〉|gX〉, |1〉|gX〉 by application of a linear combination of
elements from G \ S. An alternative pair of representatives of logical

∣∣0〉 and ∣∣1〉 is
|0〉|gZ〉 =

∑
X(S)∈S

X(S) |0〉 , (4.25)

|1〉|gZ〉 = X|0〉|gZ〉, (4.26)

which are +1 eigenstates of all Z-type generators of G.

Transversal gates in subsystem codes
Consider a CSS subsystem code with one logical qubit, and X and Z implemented
byX(Q) andZ(Q). To check that a physical unitaryU implements a dressed logical
gate U in such a code, one can verify its action on |0〉|g〉, and |1〉|g〉 for every state
|g〉 of the gauge qubits. Alternatively, it is sufficient to verify that U has the correct
action by conjugation on X and Z, and that it preserves6 the gauge group G.

The logical gate CNOT can be implemented transversally between two identical
copies of this class of CSS subsystem codes by applying a physical gate CNOT to
every pair of corresponding qubits in the first and the second copy. This can be
verified by checking that under conjugation by CNOT , XI 7→ XX , IX 7→ IX ,
ZI 7→ ZI , IZ 7→ ZZ and G ⊗ G is preserved7.

If the CSS subsystem code is also self-dual, namely it has X- and Z-type gauge
group generators supported on the same sets of qubits, G = 〈X(Gi), Z(Gi)〉, then a
dressed logical Hadamard gate can be implemented transversally asH = H(Q). To

6Note that preservation of the gauge group under the action of a physical unitaryU is a sufficient,
but not a necessary condition for U to implement a dressed logical gate.

7Notice, that generators of G ⊗ G are mapped under conjugation to another set of generators,
namely X(G) ⊗ I(G) 7→ X(G) ⊗ X(G), Z(G) ⊗ I(G) 7→ Z(G) ⊗ I(G), I(G) ⊗ X(G) 7→
I(G)⊗X(G) and I(G)⊗ Z(G) 7→ Z(G)⊗ Z(G).
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see this, observe that under conjugation byH(Q),X 7→ Z,Z 7→ X ,X(G) 7→ Z(G)

and Z(G) 7→ X(G), and thus G is preserved.

The last logical gate we analyze is Rn = diag
(

1, e
2πi
2n

)
, for an integer n > 0.

We aim to implement Rn transversally as a bare logical gate by applying the same
single-qubit unitary to some subset T ⊂ Q of the physical qubits, and applying
that unitary’s inverse to the rest of the qubits T c := Q \ T . Specifically, we now
prove that Rn is implemented by R = Rk

n(T )R−kn (T c), for some suitably chosen
k ∈ {1, 2, . . . , 2n − 1}, provided that T and G satisfy

∀X(G) ∈ G : |T ∩G| ≡ |T c ∩G| mod 2n. (4.27)

First, pick k such that

k(|T | − |T c|) ≡ 1 mod 2n. (4.28)

The existence of k is guaranteed by Bezout’s lemma, since |Q| is odd, |T | − |T c| =
2|T | − |Q| ≡ 1 mod 2, and thus
gcd(|T | − |T c|, 2n) = 1. Noting that R±kn |0〉 = |0〉 and R±kn X = e±

2πik
2n XR∓kn , we

obtain

R|0〉|gX〉 =
∑

X(G)∈G
Rk
n(T )R−kn (T c)X(G)|0〉 (4.29)

=
∑

X(G)∈G
e

2πik
2n
|T∩G|e−

2πik
2n
|T c∩G|X(G) |0〉 (4.30)

=
∑

X(G)∈G
X(G)|0〉 = |0〉|gX〉, (4.31)

R|1〉|gX〉 = Rk
n(T )R−kn (T c)X(Q)|0〉|gX〉 (4.32)

= e
2πik
2n
|T |e−

2πik
2n
|T c|X(Q)R|0〉|gX〉 (4.33)

= e
2πi
2n X(Q)|0〉|gX〉 = e

2πi
2n |1〉|gX〉, (4.34)

which shows that R correctly implements logical Rn when the gauge qubits are in
the state |gX〉. It remains to show that R implements Rn for arbitrary states of the
gauge qubits. However, all other states of the gauge qubits can be reached from |gX〉
by application of linear combinations of Z-type operators from G \ S , which all
commute with R (since it is diagonal in the Z-basis). Therefore for any state |g〉 of
the gauge qubits, it must be that R : |0〉|g〉 7→ |0〉|g〉, |1〉|g〉 7→ e

2πi
2n |1〉|g〉, verifying

that R implements the bare logical gate Rn.

It may not be obvious that there exists a set T ⊂ Q satisfying (4.27) for a given
code. Later we will find such a T for color codes in d dimensions, with n ≤ d.
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Condition (4.27) can be inferred from the following condition∣∣∣∣∣T ∩
m⋂
i=1

Gi

∣∣∣∣∣ ≡
∣∣∣∣∣T c ∩

m⋂
i=1

Gi

∣∣∣∣∣ mod 2n−m+1, (4.35)

where m = 1, . . . , n and {X(G1), . . . , X(Gm)} is any subset of the X-type gen-
erators of the gauge group G. To see the implication (4.35) =⇒ (4.27) notice,
that for any X(G) ∈ G, we can write X(G) as a product of generators, namely
X(G) =

∏m
i=1X(Gi). Then

G = G1 YG2 Y . . . YGm, (4.36)

where we used the symmetric difference of sets,AYB := (A\B)∪ (B \A). Using
the Inclusion-Exclusion Principle for symmetric difference8 we obtain

|T ∩G| = |T ∩ (G1 YG2 Y . . . YGm)| (4.37)

=
∑
i

|T ∩Gi| − 2
∑
i 6=j
|T ∩ (Gi ∩Gj)|+

4
∑
i 6=j 6=k

|T ∩ (Gi ∩Gj ∩Gk)| − . . .

+(−2)m−1|T ∩ (G1 ∩G2 ∩ . . . ∩Gm)|, (4.38)

and a similar expression for |T c ∩ G|. Clearly, if condition (4.35) holds, then
|T ∩ G| − |T c ∩ G| ≡ 0 mod 2n, showing (4.27). Moreover, condition (4.35) is
easier to verify than condition (4.27), since we only need to check it for the X-type
generators of G, rather than for every X-type element of G.

We can summarize the discussion of the implementation of transversal Rn in the
following lemma

Lemma 4.6 (Sufficient Condition). Consider a CSS subsystem code encoding one
logical qubit. Let the code be defined on a set of physical qubitsQ, where |Q| is odd
and with bare logical operators X = X(Q) and Z = Z(Q). If there exists T ⊂ Q,
such that for anym = 1, . . . , n:∣∣∣∣∣T ∩

m⋂
i=1

Gi

∣∣∣∣∣ ≡
∣∣∣∣∣T c ∩

m⋂
i=1

Gi

∣∣∣∣∣ mod 2n−m+1, (4.39)

for every subset {X(G1), . . . , X(Gm)} of theX-type gauge generators of the code,
then

R = Rk
n(T )R−kn (T c) (4.40)

8For sets A1, A2, . . . , Am, we have |A1 Y A2 Y . . . Y Am| =
∑

i |Ai| − 2
∑

i6=j |Ai ∩ Aj | +
. . . + (−2)m−1|A1 ∩A2 ∩ . . . ∩Am|.
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implements logical Rn, where k is a solution to k(|T | − |T c|) ≡ 1 mod 2n and
T c = Q \ T .

Transversal implementation of Rn in color code
Here we show how to implement the logical gate Rn transversely in the color code
CCL(x, z), for any integer n ≤ d/(d − 1 − z), where d = dim(L). One applies
R = Rk

n(T )R−kn (T c) for some integer k, where T and its compliment T c = Q \ T
correspond to the bipartite decomposition of qubits Q specified in the (Bipartition
of Qubits) Lemma 4.5. We make use of the following property

Lemma 4.7 (Property of T ). For anym-simplex σ in L \ ∂L withm < d

|T ∩Q(σ)| = |T c ∩Q(σ)|. (4.41)

Proof. By the choice of the set T , every (d − 1)-simplex δ has one qubit in T ,
and one qubit in T c = Q \ T , which is equivalent to |T ∩ Q(δ)| = |T c ∩ Q(δ)|.
Using the (Disjoint Union) Lemma 4.3, we can decompose the set of qubits Q(σ)

supported on anm-simplex σ, wherem < d, as a disjoint union of qubits supported
on (d− 1)-simplices colored with a chosen set of d colors C ⊃ color(σ) , and then
we immediately obtain

|T ∩Q(σ)| −|T c ∩Q(σ)| = (4.42)∑
δ⊃σ

δ∈∆′d−1(L)

color(δ)=C

|T ∩Q(δ)| − |T c ∩Q(δ)| = 0, (4.43)

which shows the (Property of T ) Lemma 4.7.

Note that (4.39) in the (Sufficient Condition) Lemma 4.6 follows form the (Property
of T ) Lemma 4.7. To see this, observe first that every stabilizer generator X(δi) is
supported on a (d − 2 − z)-simplex δi, thus Gi = Q(δi) and for m = 1, . . . , n we
obtain

m⋂
i=1

Q(δi) = ∅ or
m⋂
i=1

Q(δi) = Q(τ), (4.44)

where τ is a simplex colored with colors C =
⋃m
i=1 color(δi), such that τ ⊃

δ1, . . . , δm. The case of an empty intersection is trivial. Since |color(δi)| = d−1−z,
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then obviously |C| ≤ m(d − 1 − z) ≤ n(d − 1 − z), and for τ to be at most a
(d− 1)-simplex, we need n ≤ d/(d− 1− z). Using the (Property of T ) Lemma 4.7
we obtain that for anym = 1, ..., n:∣∣∣∣∣T ∩

m⋂
i=1

Q(δi)

∣∣∣∣∣ −
∣∣∣∣∣T c ∩

m⋂
i=1

Q(δi)

∣∣∣∣∣ = (4.45)

|T ∩Q(τ)| − |T c ∩Q(τ)| = 0, (4.46)

which implies (4.39). The (Sufficient Condition) Lemma 4.6 implies that R im-
plements the logical Rn. In particular, one can implement Rd using the code
CCd(0, d− 2), since z = d− 2, and thus bd/(d− 1− z)c = d.

4.5 Universal transversal gates with color codes
A finite set of gates which is universal can be used to implement any logical
unitary, with arbitrary precision. In particular, due to the Solovay-Kitaev A Yu
Kitaev, 1997; M. Nielsen and I. Chuang, 2010 theorem, the number of applied gates
scales poly-logarithmically with the precision of approximation. Note that the set
{H,CNOT , Rn} is universal for any integer n > 2.

In this section, we show how to achieve a universal transversal gate set with color
codes by using the technique of gauge fixing to switch between different codes. This
technique allows one to take advantage of the transversally implementable gates for
different color codes. We first illustrate the method with a simple example of two
15-qubit codes Paetznick and Reichardt, 2013; Jonas T. Anderson, Duclos-Cianci,
and Poulin, 2014. Then, we define a partial order between color codes. One can
switch between color codes which are comparable with respect to the partial order
to implement a universal gate set in three or higher dimensions.
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Switching between codes using gauge fixing
First, let us define matrices H1 and H2 given by

H1 =


1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

, (4.47)

H2 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0


. (4.48)

These matrices have a property that each row inH1 is orthogonal to every row inH1

andH2 (modulo 2). Moreover, for a binary matrixM , we defineMX to be a matrix
obtained from M by the following substitutions, 0 7→ I and 1 7→ X . Similarly
for MZ , we substitute 0 7→ I and 1 7→ Z. Let CA be the stabilizer code with the
stabilizer group SA generated by rows of HX

1 , HZ
1 and HZ

2 , which we denote by

SA = 〈HX
1 , H

Z
1 , H

Z
2 〉. (4.49)

Let CB be the subsystem code with the stabilizer group SB and the gauge group GB
chosen as follows

SB = 〈HX
1 , H

Z
1 〉, GB = 〈HX

1 , H
X
2 , H

Z
1 , H

Z
2 〉. (4.50)

We can consider both codes CA and CB to be defined on the same 15 physical qubits.
One can check that CA represents the [[15, 1, 3]] quantum Reed-Muller (stabilizer)
code MacWilliams and Sloane, 1977; Steane, 1999; Jonas T. Anderson, Duclos-
Cianci, and Poulin, 2014 and CB is a [[15, 1, 3]] (subsystem) code, which can be
thought of as the [[15, 7, 3]] Hamming code, with six of the seven logical qubits
treated as gauge qubits. Note also that SB ⊂ GA = SA and GB has X- and Z-type
generators supported on the same qubits (i.e. CB is a self-dual subsystem code).

Since the X-type generators of SB coincide with the X-type generators of SA, the
codewords of CA and CB are the same when the latter has a gauge state |gZ〉. In other
words, codewords |0̄〉, |1̄〉 for CA are the same as codewords |0̄〉|gZ〉, |1̄〉|gZ〉 for
CB, as defined in Eqs. (4.25) and (4.26). On the other hand the codewords |0̄〉|gX〉,
|1̄〉|gX〉 for CB (as defined in Eqs. (4.23) and (4.24)), are not valid codewords for CA.
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Now we show that R⊗15
3 implements R3 transversally in CA. Consider any three of

the four X-type generators for GA, and specify their support on subsets of qubits
G1, G2, G3, which correspond to rows of H1. One can verify that |Ga| = 8 ≡ 0

mod 23, |Ga ∩Gb| = 4 ≡ 0 mod 22, and |Ga ∩Gb ∩Gc| = 2 ≡ 0 mod 2, where
{a, b, c} = {1, 2, 3}. Therefore by the (Sufficient Condition) Lemma 4.6, and by
setting T to be an empty set, T = ∅, we see that R⊗15

3 implements R3 transversally
in the code CA. In contrast for the code CB, the extra X-type generators in GB \ GA
do not satisfy these conditions, and thus one cannot show that R3 is implemented
transversally in CB.

It is straightforward to verify thatH is implemented transversally byH⊗15 in CB. It
swapsX and Z on any physical qubit, and therefore acts on the representative states
as H⊗15 : |ψ〉|gZ〉 7→ (H|ψ〉)|gX〉. Since the state of the gauge qubits has changed,
H⊗15 is a dressed implementation of H in CA. Clearly, H⊗15 does not implement
H in CA, since it takes the state |ψ〉|gZ〉 ∈ CA to (H|ψ〉)|gX〉 6∈ CA.

To implement H fault-tolerantly in CA, we use the technique of gauge fixing. First,
one should apply H⊗15, resulting in mapping |ψ〉|gZ〉 to (H|ψ〉)|gX〉, which is a
codeword of CB, but not of CA. Then, to switch from code CB to CA, one should
sequentially measure each of the six Z-type stabilizer generators generated by rows
of HZ

2 , i.e. those in SA \ SB. Note that it is possible to fault-tolerantly measure the
stabilizer generators M. Nielsen and I. Chuang, 2010. If the measurement reveals
that a particular Z-type generator is not satisfied, then one should apply an X-type
Pauli operator which commutes with all generators in HZ

2 and HZ
1 , except for the

violated stabilizer generator (with which it must anti-commute). Such an X-type
Pauli operator always exists. Following this, the Z-type generator will no longer
be violated. Therefore, after this procedure is carried out for all six generators
in HZ

2 , the state will have changed from (H|ψ〉)|gX〉 to (H|ψ〉)|gZ〉, as required.
Specifically, we use the term gauge fixing to refer to the process of measuring and
setting the gauge qubits to a desired state, without affecting the logical qubits.

To recap, in the [[15, 1, 3]] Reed-Muller code CA, one can implement H fault-
tolerantly with the following procedure

|ψ〉 |gZ〉 H⊗15

7−−−→ (H |ψ〉) |gX〉 gauge fixing7−−−−−−→ (H |ψ〉) |gZ〉 . (4.51)

In combination with the transversal gates of CA, this allows one to implement a
fault-tolerant universal gate set {H,CNOT , R3}. We will repeat essentially the
same procedure for color codes later.
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Partial order of color codes
Given a d-dimensional lattice L, dimL = d, satisfying Conditions 1 and 2 in
Section 4.3 B, we can catalog all color codes defined on L. Namely, a pair of
integers x, z ≥ 0, such that x + z ≤ d − 2, corresponds to a color code, denoted
as CCL(x, z), with X- and Z-type gauge generators supported on (d − 2 − z)-
and (d − 2 − x)-simplices. Note that the X- and Z-type stabilizer generators
of CCL(x, z) are supported on x-simplices and z-simplices, respectively. In two
dimensions, d = 2, there is only one color code, CC2(0, 0) — a stabilizer code,
with both X- and Z-type stabilizer generators supported on 0-simplices, whereas
in three dimensions, d = 3, there are three color codes, CC3(1, 0), CC3(0, 1) —
stabilizer codes, and CC3(0, 0) — a subsystem code.

One can define a partial order for subsystem color codes defined on the same lattice
L if each codeword of code C is also a codeword of the other code C ′. In particular,
we say that C � C ′ holds if

• C and C ′ encode the same number of logical qubits, with identical bare logical
Pauli operators,

• the gauge group G of C is contained in the gauge group G ′ of C ′, G ⊂ G ′.

Note that G ⊂ G ′ implies S ′ ⊂ S, thus any codeword of C is also a codeword of C ′,
and since the bare Pauli operators for the logical qubit are the same in both codes,
it actually represents the same logical codeword in both codes. Observe, that the
partial order we have just defined can be succinctly expressed as

CCL(x, z) � CCL(x′, z′) ⇐⇒ x ≥ x′ ∧ z ≥ z′, (4.52)

as illustrated in Fig. 4.3. This follows from the observation that due to the (Disjoint
Union) Lemma 4.3 theX-type gauge generators of CCL(x, z), which are supported
on (d − 2 − z)-simplices, can be expressed as the product of the X-type gauge
generators ofCCL(x′, z′) supported on (d−2−z′)-simplices, since z ≥ z′. Similarly
for Z-type gauge generators. We represent the family of color codes in Fig. 4.3, and
show their partial order using arrows.

Universal fault-tolerant gate set in color codes
Here we apply the techniques just discussed to color codes defined on the same
lattice L. One can switch back and forth between two codes which are comparable,
CCL(x, z) � CCL(x′, z′), as follows
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Figure 4.3: (Color online) Family of color codes. For a given lattice L, only color
codes below the d th diagonal line can be realized, where d = dimL and the point
(x, z) corresponds to the color code CCL(x, z). This constraint holds, since x and
z have to satisfy x+ z ≤ d− 2. An arrow from code C to C ′ indicates partial order
between them, C � C ′. The number placed at (x, z) indicates the maximum gateRn

which can be implemented transversally with the stabilizer color code CCd(x, z),
with d = x+ z + 2, resulting in n = bd/(d− 1− z)c.

• CCL(x, z) 7→ CCL(x′, z′): one does nothing, since codewords of CCL(x, z)

are codewords of CCL(x′, z′),

• CCL(x′, z′) 7→ CCL(x, z): one can view the codewords of CCL(x, z) as
those for CCL(x′, z′) with the additional gauge qubits present in CCL(x, z)

set to a particular state. To switch, one fixes the state of the additional gauge
qubits to the appropriate state.

Given a three-dimensional latticeL, dimL = 3, one can implement a universal gate
set starting with the code CCL(0, 1). As explained earlier, one can transversally
perform the logical CNOT and R3 on that code. To form a universal gate set, it
suffices to also implement logicalH . This gate cannot be implemented transversally
in CCL(0, 1), but can be in CCL(0, 0). Note that CC3(0, 0) ≺ CC3(0, 1), therefore
any codeword in CC3(0, 1) is a valid codeword in CC3(0, 0). In particular, we can
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think of |ψ〉 ∈ CC3(0, 1) as |ψ〉 |g〉 ∈ CC3(0, 0), where |g〉 is a state of the gauge
qubits of CC3(0, 0). By applying H(Q) we perform the logical H on the logical
qubits of CC3(0, 0), which also changes the state of the gauge qubits, namely

H(Q) (|ψ〉 |g〉) =
(
H |ψ〉

)
|g′〉 . (4.53)

Note that the resulting codeword
(
H |ψ〉

)
|g′〉 ∈ CC3(0, 0) is not a valid codeword of

CC3(0, 1), since the gauge qubits are in the state |g′〉 6= |g〉. To return to CC3(0, 1),
one needs to fix the gauge qubits to the correct state, namely |g′〉 7→ |g〉, and we
obtain a codeword H |ψ〉 |g〉 ∈ CC3(0, 1). Since CC3(0, 1) is a stabilizer code, it
is possible to measure and correct the violated stabilizers in a fault-tolerant way,
just as in Section 4.5. Therefore, to fix the gauge, one should first measure all Z-
type stabilizer generators supported on 1-simplices, and then apply the appropriate
X-type Pauli operators in order to correct any violated stabilizer generators. After
this, assuming no errors have occurred, all the stabilizer generators for CC3(0, 1)

are satisfied.

To summarize, we can perform the logical H on CC3(0, 1) by first applying H(Q)

and subsequently fixing the gauge to return to the code space of CC3(0, 1),

|ψ〉 |g〉 H(Q)7−−−→
(
H |ψ〉

)
|g′〉 gauge fixing7−−−−−−→

(
H |ψ〉

)
|g〉 . (4.54)

Since CNOT and R3 can be performed transversally in CC3(0, 1), one can fault-
tolerantly implement a universal gate-set {H,CNOT , R3} in CC3(0, 1). This pro-
cedure can be directly generalized to fault-tolerantly implement the universal gate
set {H,CNOT , Rd} with the code CCd(0, d− 2) in d dimensions.
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C h a p t e r 5

OVERHEAD OF CODE SWITCHING AND STATE
DISTILLATION

In the previous chapter, we explored a system in which a universal set of gates can be
implemented in a three dimensional topological code in a fault-tolerant (transverse)
way. Recall that the motivation for such a scheme was to reduce the large overhead
involved in the known alternatives — in particular magic state distillation Sergey
Bravyi and Alexei Kitaev, 2005; Austin G Fowler et al., 2012. In this chapter we
study whether or not the scheme overcomes the problem that motivated it — does it
significantly reduce the overhead requirements?

There are a number of difficulties to be expected in implementing the three di-
mensional color code described in Chapter 4. Recently, the three-dimensional color
code has been flattened into psuedo two-dimensional schemes which still allow code
switching Sergey Bravyi and Cross, 2015; Jochym-O’Connor and Bartlett, 2015;
Jones, Brooks, and Harrington, 2015 to achieve universal transverse gates. These
schemes seem much more experimentally feasible, but it is still unclear whether
such a scheme has a threshold – in particular measurement errors may cause larger
versions of the doubled color codes to perform worse rather than better than smaller
versions. We will also comment on the resource requirements of these schemes.

Our analysis focuses on the two-dimensional color code, in which the Clifford gates
can be implemented transversely. We also compare these techniques to the overhead
requirements for the surface code. To achieve the non-Clifford π/8-gate that makes
the gate set universal, a variant of code switching can be used to transforming from
the two-dimensional color code to the three-dimensional stabilizer color code. In
the three-dimensional code, the π/8-rotation is applied transversely, and then we
imagine switching back to the two-dimensional code. In magic state distillation,
many noisy magic states are injected into the code, and are distilled into fewer,
higher fidelity magic states which can be used to implement the π/8 gate by an
encoded Clifford circuit reminiscent of that used for teleportation.

As a part of this work, we found error thresholds of 0.3 % and 4.2 % under
circuit-level and phenomenological noise for the two-dimensional color code on
the hexagonal lattice using an efficient decoder based on that of Delfosse Delfosse,
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2014. These are considerably higher than the thresholds for the previously analyzed
4.8.8 lattice, suggesting the performance of the color code may not be as far behind
its cousin the surface code.

5.1 Quantum computing overhead
Accuracy threshold
An accuracy threshold Aharonov and Ben-Or, 1997, or threshold can be defined
for a countably infinite quantum error correcting code family, where each code in
the family is labelled (for example, by its distance d). The threshold is calculated
for a code family assuming a simple specific noise model with a single parameter
characterizing its strength. For example, the most common is to assume a depolar-
izing channel on each qubit, such that X, Y, Z are each applied with (independent)
probability p/3 to each qubit during each time step. Then the threshold is probability
pT , such that provided p < pT , then one can achieve arbitrarily good protection of
the encoded qubits by increasing the distance of the code. For more general noise
models, generalized notions of a threshold exist John Preskill, 2012.

Generically, the logical error probability pL per time step1 meaning of time-step at
the logical level for the circuit level analysis is a for a code in the family of distance
d will follow a form

pL ≈ α(d)(p/pT )d/2, (5.1)

where α(d) is a slow function of d which for practical purposes can sometimes be
taken to be constant over “typical” distances. Clearly, a code family with a large
threshold is advantageous as it means that the physical qubits required to use it for
a code do not need to be as accurate, and the distance does not need to be increased
as much to improve the logical error rate for a given p < pT .

A relation such as Eq. (5.1) which relates the logical error rate to the physical error
rate for eachmember of the code family can be used to infer the overhead. If a logical
error rate of at most pD can be tolerated for a logical qubit during each time step,
then a sufficiently large member dD must be used, such that pD < α(dD)(p/pT )dD/2.
Then the overhead of that logical qubit isn(dD), wheren(d) is the number of physical
qubits of family member d.

1Note that the word "time-step" could be misleading here. By it, we actually mean each round
of stabilizer measurements, which may correspond to a number of physical time-steps in the circuit
level analysis.
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Treatment of measurement errors
Even assuming independent depolarizing noise on each qubit, moremust be specified
to fix the model and calculate a threshold. Such details can affect the threshold
analysis of a code-family, for example the syndrome decoder and the model of the
syndrome measurement process.

In the large class of stabilizer codes, the generic approach to perform error correction
is to measure a set of low-weight stabilizer generators repeatedly, and record the
measurement outcomes. Then, depending on the outcomes, a particular correction
pauli operator is applied. The syndrome decoder is the classical algorithm which is
used to choose which pauli to apply given the measurement outcomes. Typically,
one focuses on either perfect decoders (which are not efficient to implement, but
give an upper bound on the threshold), or on efficient decoders (which are expected
be implementable in practice).

There are a number of standard models for the syndrome measurement process. In
the code capacity model, measurements are assumed to be performed by a perfect
quantummeasurement device. In the phenomenological noisemodel, measurements
are assumed to be performed by a perfect quantummeasurement device, which feeds
the decoder the incorrect syndrome with some probability. In the circuit-level noise
model, additional (measurement) qubits are added to the (data) qubits, and are used
to apply the syndromemeasurements by sequentially applying CNOT gates between
a measurement qubit and the data qubits involved in the syndrome measurement,
before projectively measuring the measurement qubit.

It is generically the case that the syndrome decoder is qualitatively different in
the setting of code capacity compared with phenomenological and circuit level
noise. This is because (much) more information is usually needed to correct for
the fact that measurement errors can occur in the latter two cases. This tends to
significantly increase the classical complexity of the decoder, causing the classical
processing to be quite slow. For example, in the surface code, one uses multiple
rounds of syndromes to infer what correction should be applied when measurement
errors are allowed in the model. In single shot error correction, which has been
suggested occurs in the gauge version of the three-dimensional color code Hector
Bombin, 2015, would avoid needing multiple rounds of syndrome data to identify
the correction pauli. We will not consider single shot error correction in this work.

As an example of how these change the estimates, efficient decoders for Kitaev’s
surface code have been found to have thresholds of ∼ 10 % C. Wang, Harrington,
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and John Preskill, 2003, ∼ 3 % C. Wang, Harrington, and John Preskill, 2003, and
∼ 0.6 % Austin G Fowler et al., 2012 for code-capacity, phenomenological and
circuit-level noise respectively.

Circuit level noise model in our simulations
To give experimentally relevant estimates of performance and overhead, we consider
circuit-level noise using an efficient syndrome decoder. For circuit-level noise, one
must assign probabilities for errors of gates in each time-step in addition to the
probability of errors of single idle qubits. Here we fix the model we will use in this
paper. The precise noise model is defined by taking the original circuit for the code
including syndrome measurements, and replacing gates as follows:

• A single-qubit gate {X, Y, Z,H, S, T}, or a single-qubit preparation, is re-
placed by itself followed by I with probability 1− p, orX , Y , or Z each with
probability p/3.

• A single-qubit measurement is replaced by itself, followed by I with proba-
bility 1− p, or X , Y , or Z each with probability p/3.

• A single-qubit idle step I is replaced by itself, preceded by I with probability
1− p, or X , Y , or Z each with probability p/3. (Note that the probability of
error of an idle gate is often reduced from p to p/10 in threshold analysis. We
will use p unless explicitly stated.)

• A two-qubit CNOT gate is replaced by itself followed by I with probability
1− p, or each of XI , Y I ,..., ZY , or ZZ with probability p/15.

Note that in each time-step, each physical qubit is involved in a location: if no gate
is applied to it then the identity location I is used.

A circuit-level threshold is given for a particularmethod ofmeasuring the syndromes.
The conceptually simplest approach to measure an X-type stabilizer generator is
by preparing a measurement qubit in the |+〉 state, then sequentially applying a
CNOT from the measurement qubit to each data qubit in the stabilizer generator, and
then measuring the measurement qubit in the X basis. Similarly, one can measure
a Z-type stabilizer generator by preparing the ancilla in a |0〉 state, applying a
CNOT from each qubit in the stabilizer generator to the ancilla, and then measuring
the ancilla qubit in the Z basis. Many CNOT gates can be applied in parallel, but to
avoid generating errors, the circuit of CNOT gates must preserve all stabilizers of the
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code state, in which case we say the schedule is ‘valid’. For example, the circuit that
applies CNOT gates between the data and the measurement ancilla qubits should
propagate an X operator applied to any X-type measurement qubit to a stabilizer
of the code space (where the stabilizer group here can act as X or Z on X and
Z-type measurement qubits) Landahl, Jonas T Anderson, and Rice, 2011. Some
valid schedules will propagate errors in a more benign way than others.

It is also possible to use Shor measurement (i.e. prepare and verify an m-qubit cat
state to measures a weight m stabilizer). Hybrid approaches can be used where a
number of smaller cat states are used to measure a single stabilizer. These cat-state
based stabilizer measurement circuits would be expected to improve the threshold
(through improved error propagation properties) but involve much more overhead.

Comparing overhead for state distillation and code switching
The encoded magic state |T 〉 = |0〉 + eiπ/4 |1〉 can be used to implement the
encoded T gate through a small number of encoded Clifford operations. As the T
gate generically dominates the overhead, we focus on the task of producing a magic
state |T 〉 as a proxy for the overall overhead of quantum computing. We compare the
overhead required to produce a magic state of specified fidelity, encoded in a two-
dimensional color code under realistic noise conditions, via: (1) code switching,
and (2) state distillation.

To make this more precise, first consider each of the methods (1) and (2) as quantum
circuits composed of preparation, measurement, and gates involving of the physical
qubits. In particular the operations (locations) allowed are: I , X , Y , Z, H , S and
T single-qubit operations, CNOT gates between pairs of qubits, and single-qubit
measurements and preparations in the X and Z basis. Multi-qubit measurements
are implemented within the circuit through entangling CNOT gates and single-qubit
measurements. Noise is simulated by applying Pauli operators at each location of
the circuit, with independent probabilities with a strength characterized by p (more
details are given later). For each of the two approaches (1) and (2), we consider
the circuit with the lowest width such that the final step in the circuit results in a
magic state |T 〉 encoded the hexagonal color code with logical error probability at
most pD. We are primarily interested in the qubit overhead (circuit width) of each
technique, although to a lesser extent we also consider the time overhead (circuit
depth).
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5.2 Delfosse decoder
First we describe Delfosse’s approach Delfosse, 2014 to decode the two-dimensional
color code in the code capacity setting (i.e. when stabilizer measurements are
assumed to be perfect). Then we describe the generalization of this decoder that can
handle measurement error, which we later use to study the circuit level performance
of the color code. It is neccesary to use an efficient decoder in order to calculate the
threshold for the hexagonal color code and then the overhead requirements.

We use the Delfosse decoder due to its relative simplicity, although other decoders
could be used, for example one could transform the two-dimensional color code by
applying local unitaries into two decoupled copies of the toric code Hector Bombin,
Duclos-Cianci, and Poulin, 2012; Kubica, Beni Yoshida, and Fernando Pastawski,
2015, and then one could running (for example) the renormalization group decoder
Duclos-Cianci and Poulin, 2010 on each copy.

No measurement error
Consider a two-dimensional color code (either the 4.8.8, or the 6.6.6 lattice) with a
triangular boundary [see figure 5.1(a)]. We refer to this as the primal lattice. The
two-dimensional color code is a stabilizer code with qubits placed on vertices of the
primal lattice, and two stabilizer generators for each face in the primal lattice: one
generator consisting ofX on each qubit in the face, and the other of Z on each qubit
in the face. The primal lattices used for the color code have three-colorable faces,
meaning that each face can be assigned one of three colors such that faces sharing
an edge have distinct colors.

It is useful to construct the dual lattice [see figure 5.1(b)] by placing a dual vertex
in each primal face (corresponding to stabilizer generators), connected by dual
edges which intersect primal edges, to enclose dual faces around primal vertices
(corresponding to data qubits). In the bulk, the dual of the regular hexagonal primal
lattice is a regular triangular lattice. We add three "fictitious" vertices to the dual
lattice, to terminate the edges in the dual lattice which intersect boundary edges in
the primal lattice. Note that the vertices of the dual lattice inherit the coloring of
the primal lattice (and therefore the dual lattice has three-colorable vertices). We
describe the dual lattice by a graph G, consisting of the vertices V , and edges E.
Each vertex in V corresponds to one X-type stabilizer generator and to one Z-type
stabilizer generator.

Consider a state |ψ〉 in the codespace C (i.e. the +1 eigenspace of all stabilizer gen-
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Figure 5.1: The dual lattice used to identify errors associated with stabilizer syn-
dromes with the Delfosse decoder on the hexagonal color code with a triangular
boundary. Vertices (corresponding to faces of the primal lattice) represent the mea-
surements for the code, and are colored with three colors. A vertex (which does not
correspond to any stabilizer generator) is added along each of the three boundaries,
represented by a colored star. Edges in the dual lattice are colored with the comple-
ment of the colors of the vertices they connect. Black filled circles are placed in the
faces of the dual lattice and represent data qubits for the code.

erators). Then consider the application of some unknown pauli error PE , resulting
in the state PE |ψ〉 which will typically not be in the codespace. Measurement of
all stabilizer generators gives a subset of "highlighted vertices" for each of X and
Z generators, V h ⊂ V (where each highlighted vertex also comes with a label of
X or Z) which correspond to those stabilizer generators which do not yield a +1

measurement outcome.

A decoder D(V h) = PC is a map from highlighted vertices sets to the Pauli group,
and outputs the correction Pauli operator PC that we should apply. In the setting
of no measurement errors, we require that a decoder satisfies the condition that it
returns the state to the codespace,

D(V h(PE)) ◦ PE |ψ〉 ∈ C ∀PE ∈ Pauli. (5.2)

This is equivalent to the statement that D(V h(PE)) ◦ PE is in the normalizer of the
stabilizer group for all pauli errors PE . A good decoder will have the feature that
D(V h(PE))◦PE is in the stabilizer group for a large class of "probable" pauli errors
PE , meaning that such errors return to the original codestate after the decoder is
applied. An error for which D(V h(PE)) ◦ PE is not in the stabilizer group implies
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that the decoder will fail for that error (as it results in the application of a logical
operator to the initial codestate).

We can divide the verticesV ofG into their colors, and the edges into the complement
of the pairs of colors they connect (i.e. a blue edge connects a green vertex and a
red vertex):

V = Vr ∪ Vg ∪ Vb, (5.3)

E = Er ∪ Eg ∪ Eb. (5.4)

We can consider three (non-disjoint) subgraphs ofG. The "red" graphGr consists of
all green and blue vertices Vg∪Vb fromG, and the edges in which connect them Er.
The "green" and "blue" graphs Gg and Gb are defined analogously. Note that each
vertex from G appears in two sub graphs, but each edge in G appears in precisely
one subgraph.

In the Delfosse decoder, the X and Z errors are treated independently. This is
possible for the color code by virtue of the fact that the generators of the stabilizer
group are purely X or Z type (it is a CSS code). As the X and Z type stabilizer
generators have precisely the same support, the procedure for dealing with each
is exactly the same. It is therefore sufficient to consider pure X-type errors. The
algorithm is as follows:

1. The vertices associated with violated Z-type stabilizers are recorded as V h

and input into the decoder.

2. For the red graph Gr, the green and blue vertices V h
g , V h

b from the set V h are
marked.

3. If the number of marked vertices |V h
g |+ |V h

b | in Gr is odd, the green fictitious
vertex is also marked.

4. The marked vertices in Gr are paired together, and the two marked vertices in
each pair are connected together along a path. All connecting "highlighted"
edges are recorded asEh

r . There real content of the algorithm is how to choose
the pairing and the connecting path (see below).

5. The same process is applied to the other two colored subgraphs (with cyclic
permutation of colors rgb in descriptions).
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6. The set of all highlighted edges Eh = Eh
r ∪Eh

g ∪Eh
b are marked on the graph

G. Note that since every highlighted vertex terminates a connecting string of
edges in precisely two colors, the set of Eh must form a collection of closed
loops.

7. The set of closed loops divides the surface into two disjoint regions. This
divides the vertices of the direct graph (which correspond to qubits) into two
subsets. The output of the decoder is the smaller of the two correction subsets
– the correction Pauli PC consists of X on every qubit in that subset.

For any choice of pairing and connecting paths, this algorithm is a valid decoder, in
that it will return the state to the codespace. To prove this, it is sufficient to show that
the correction pauli PC flips the stabilizer outcomes of precisely those stabilizers
corresponding to the V h, and no others. This is ensured by the fact that a pair of
edges inG connecting to a vertex v bisect the qubits of the stabilizer associated with
v into two even subsets if the edges have the same color, and two odd subsets if the
edges have distinct colors. The algorithm described ensures that highlighted vertices
terminate an edge from two different colors, whereas non highlighted vertices can
only have pairs of same-color edges which are part of connections between two
(other) highlighted vertices.

Now we return to how the pairings and connections are decided. There is in fact
a one-to-one correspondence between highlighted edges Eh in G and X-type pauli
operators on the qubits. Therefore any decoder for the color code can be described in
this framework, with all the differences contained in how the pairing and connection
decisions are made. An efficient implementation of Delfosse’s decoder makes the
pairings by simply minimizing the total number of edges required to connect pairs
through the colored sub graph (where edges to the fictitious vertex do not contribute
to the sum). This set of included edges can be found efficiently (to the fourth power
in the number of violated stabilizer generators) using the well-known Blossom
algorithm.

An optimal decoder finds the most probable equivalence class of errors. In the
surface code, minimum weight matching of pairs of violated stabilizer generators
generates the most probable correction pauli (minimum weight), which may not
be in the most probable equivalence class. Here, for the color code, the minimum
weight matching does not necessarily find the minimum weight error2. Instead it

2However, amodification can be used tomake theDelfosse decoder for the color code amaximum
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find the minimum perimeter error, which of course is correlated with low weight
errors.

With measurement error
Here we modify the above procedure in a similar way as Stephens did in Ashley M
Stephens, 2014, but with some important differences. As we describe later, the
decoder described in Ashley M Stephens, 2014 must fail for large distance codes.

We imagine that at time step t = 0, the code was in the the code space |ψ〉 ∈ C. In
each time step, a set of Pauli errors are applied, and the overall pauli applied up to
the current time step t = T is PE(T ). The input to the decoder is the set of the full
history of (potentially faulty) stabilizer measurements up to the present time step T .

We define a "vertically extended" dual lattice, the graph G̃, which is constructed by
stacking T layers of the graph G, and adding vertical edges to connect like-vertices
(see figure 5.2).

We label vertices in G̃ by the pair ṽ = (v, t), where v is a vertex of G, and t the
time step. The history of stabilizer measurements is given in the form of changes
between round t and t− 1, which is a subset of vertices Ṽ h(T ) ⊂ Ṽ .

The output of the decoder is a correction operator PC(T ) = D(Ṽ h(T )), which
should be applied to the system to try to correct the errors applied PE(T ).

Only in the special case when there were no measurement errors3 in the final round
T of measurements will the decoder satisfyD(Ṽ h(T )) ◦PE(T ) is in the normalizer
of the stabilizer group for all PE(T ). However, the state will only deviate from the
codespace by the effects of a thin layer of errors which occur in the most recent time
steps.

As before, we can consider three (non-disjoint) subgraphs of G̃. The "red" graph G̃r

consists of all green and blue vertices Ṽg∪Ṽb from G̃, and the edges in which connect
them Er (including vertical edges). The "green" and "blue" graphs G̃g and G̃b are

likelihood decoder for this lattice (which importantly has trivial topology). The method would be to
first form a pairing, and then in the full graph, move the connections (keeping their endpoints fixed)
to minimize one of the two subsets, and then the other, and take the minimal subset. Note that any
pairing could be used as the starting point.

3However in practice when measurement errors occur in the last step T , more information is
gained about them - for example if we wanted to measure the logical state at time t = T , then we
could simply measure all the qubits, which provides enough information to accurately identify errors
in the last few rounds.
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Figure 5.2: Two of the layers which are connected together to form a three-
dimensional graph used to decode stabilizer measurement syndromes for the 2D
color code when measurements are allowed to be faulty. The colors of the edges
in-plane indicate which colored subgraph that edge belongs two. The vertical edges
are placed in two of the subgraphs (the two colors that differ from the measurement
site they connect).

defined analogously. Note that each vertex and vertical edge from G̃ appears in two
sub graphs, whereas each horizontal edge in G̃ appears in precisely one subgraph.

Again we can just consider pure X-type errors and then treat the Z errors in an
analogous way. The algorithm is as follows:

1. The vertices in the extended graph G̃ associated with changes in the Z-type
stabilizer measurements are recorded as Ṽ h and input into the decoder.

2. For the red graph G̃r, the green and blue vertices Ṽ h
g , Ṽ h

b from the set Ṽ h are
marked.

3. If the number of marked vertices |Ṽ h
g |+ |Ṽ h

b | in G̃r is odd, the green fictitious
vertex at time t = 0 is also marked.

4. The marked vertices in G̃r are paired together, and the two marked vertices in
each pair are connected together along a path. All connecting "highlighted"
edges are recorded as Ẽh

r . The pairing can be achieved (for example) by
minimizing the number of connecting edges (excluding edges which involve
fictitious sites).
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5. The same process is applied to the other two colored subgraphs (with cyclic
permutation of colors rgb in descriptions).

6. The set of all highlighted edges Ẽh = Ẽh
r ∪ Ẽh

g ∪ Ẽh
b are marked on the graph

G̃. Note that since every highlighted vertex terminates a connecting string of
edges in precisely two colors, the set of Ẽh must form a collection of closed
loops.

7. Each connected component of highlighted edges is "collapsed" to the highest
time step of vertices in the connected component. The meaning of collapse is
that vertical edges are removed, and horizontal edges are added modulo two.
This results in a set of Eh in a single layered graph G.

8. For each time step, the set of collapsed connected components are combined
together (with edges combined modulo two). This gives a set of closed loops
for the time step.

9. For each time step, the set of closed loops divides the surface into two disjoint
regions. This divides the vertices of the direct graph (which correspond to
qubits) into two subsets. The output of the decoder is the smaller of the two
correction subsets – the correction Pauli PC consists of X on every qubit in
that subset.

To show that this is a valid decoder, it is sufficient to prove that the state is returned
to the code space in the case where there are no measurement errors in the final
round.

Comparison with Stephens’ approach
Stephens proposes applying the above procedure, but instead of collapsing connected
components and treating each time step separately as in (6), (7), and (8), he suggests
collapsing the connections for all T times together modulo two, forming two subsets
of qubits, and applying a correction pauli to the smaller of the two. In his paper, he
studies the short time behavior: he considers an initially perfect state at time t = 0,
and includes d rounds of stabilizer measurements, presumably followed by a single
round of perfect syndrome measurements.

This approach clearly does not scale to large times or distances. The reason is that
for a physical error rate p, after a time ∼ 1/p an error will have been applied to any
given qubit with probability greater than half. After this time, the smaller of the two
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subsets will not be correlated with the true correction operator (as both subsets will
generically contain about half of the qubits). The typical error rates that he studied
with this decoder were less than 3 %, and the largest distances were 21, so he did
not explore the regime where this would be a significant problem (although it could
have effected the precise value of his threshold estimates).

5.3 Two-dimensional color code thresholds
Previous analysis has been made for color code thresholds Ashley M Stephens,
2014; Hector Bombin, Duclos-Cianci, and Poulin, 2012; D. S. Wang et al., 2009;
Landahl, Jonas T Anderson, and Rice, 2011; Andrist et al., 2011; Ohzeki, 2009;
Katzgraber, H Bombin, and MA Martin-Delgado, 2009; Delfosse, 2014; Sarvepalli
and Raussendorf, 2012. In Table 5.1 we summarize the threshold constants found
using efficient decoders. Two conspicuous omissions from this list are phenomeno-
logical and circuit-level analysis for the color code on the hexagonal lattice. We
suppose that a number of papers focus on the 4.8.8 lattice rather than the hexagonal
lattice since it was not known during the time of their writing how to implement the
full Clifford group of logical gates transversely in the latter (the S gate was known
only for the color code on the 4.8.8 lattice). As we showed in Chapter 4, it is possible
to implement the logical S gate transversely by applying S to one of the bipartition
subsets of qubits in the color code lattice, and S† to the other.

Code capacity threshold
The numerical simulation to find the threshold in the code capacity setting is very
simple. Errors are applied to each qubit with probability p (i.e. X , Y and Z are
each applied with probability p/3), then the decoder is applied, and the net pauli
(consisting of the error and correction paulis) is identified. The weight of theX part
and theZ will both be even if the decoder succeeded, but not otherwise. This process
is repeated many times to estimate the probability of success, which is plotted for
different distances (see figure 5.3). The threshold appears to be around 12.2 %,
which is a little smaller that the threshold of 13.1 % Delfosse, 2014 calculated for
the hexagonal lattice with the Delfosse decoder on the torus.

Phenomenological threshold
For the phenomenological threshold, the system is run for 10,000 consecutive time
steps, with errors applied to each qubit in each step with probability p (i.e. X , Y
and Z are each applied with probability p/3), and the exact stabilizer outcomes are
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calculated given what errors have been applied, and then these outcomes are each
flipped with probability p before being fed to the decoder.

The decoder is as almost as described in Section 5.2. The number of highlighted
vertices that would occur during 10,000 time steps would make the matching pro-
hibitively slow. Instead, after each time step, the decoder is run, and connected
components of highlighted edges are recorded. After a connected component is
observed d times, it is fixed, and the highlighted vertices in the component are
removed from the history. This essentially implements a soft window through time
to achieve a sub optimal matching but much more quickly.

Logical errors are identified by copying the system after each timestep, and running
an additional round with no measurement errors. This returns the system to the
codespace, and one can identify if the net effect of errors and the correction operation
is a stabilizer or a logical operator. The mean number to time steps before a flip
is calculated for the entire run and inverted to give an estimate of the logical error
probability pL. Repeating the procedure ten times gives a more accurate estimate
of pL along with an indication of its accuracy (via the standard deviation). See
figure 5.4.

Thresholds with efficient decoders
Code Code capacity Phenomen. Circuit
6.6.6 13.1 %∗, [12.2%] [4.2 % ] [0.3 % ]
4.8.8 13.1 %∗∗ 3.12 %∗∗∗∗ 0.143 %∗∗∗∗
4.4.4.4 (Kitaev) 15.46 %∗∗∗ 4.40 %∗∗∗ 1.1 %∗∗∗∗∗

Table 5.1: Threshold probability for 6.6.6 (hexagonal lattice), 4.8.8 (square-octagon
lattice) color codes and the 4.4.4.4 (square lattice) surface code. Only those results
found using efficiently implementable decoders are given. Our results presented in
this paper are provided in square parenthesis. Note the circuit level threshold of
0.143% by Stephens uses a partial cat-state preparation, which trades extra qubits
in order to achieve a higher threshold. (*) Delfosse, 2014, (**) Hector Bombin,
Duclos-Cianci, and Poulin, 2012, (***) C. Wang, Harrington, and John Preskill,
2003, (****) AshleyM Stephens, 2014, (*****) A. G. Fowler, A. M. Stephens, and
Groszkowski, 2009. All thresholds are given for depolarizing channels with strength
p (if originally given for bit-flip channel, the threshold is multiplied by 3/2). This
rescaling actually overestimates the threshold for phenomenological noise since the
measurement errors should not be rescaled, just the qubit errors. There can be no
general formula to take this into account unfortunately.
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Figure 5.3: Logical error rate pL versus physical error rate p under code capacity
(perfect measurement) noise. This indicates the threshold value to be around 12.2
% for the color code. More data is needed to obtain a more accurate estimate.

Circuit level threshold
To measure stabilizers, one can consider using a single measurement qubit placed in
each face of the lattice to measure both theX and theZ stabilizer associated with the
face, one after the other. This requires that the order of the CNOT gates avoids any
qubit being involved in two gates at once. Alternatively, two measurement qubits in
each face allow for two CNOT gates to be applied per time-step in each face (one
associated with the X , and the other with the Z measurement).

First we analyze the case of consecutiveX and Z measurements, which is expected
to have worse performance as it involves more steps in which errors can occur.
The schedule for the CNOT gates is simply clockwise beginning from above. The
analysis of the threshold is precisely the same as for the phenomenological case
(we used the same decoder). During each time step, an error is applied to an idle
qubit with probability p (p/3 for each of X , Y and Z). Measurements are flipped
with probability p, and preparation of a state is replaced by the "flipped" state with
probability p. The control gates are followed by each of the fifteen non-trivial two
qubit paulis with probability p.
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Figure 5.4: Logical error rate pL versus physical error rate p under phenomenological
noise. This indicates the threshold value to be around 4.2% for the color code. More
data is needed to obtain a more accurate estimate.

Circuit schedules
An alternative to measuringX andZ type stabilizers one after the other is to use two
measurement qubits per face and to implement a circuit to measure both X and Z
stabilizers simultaneously. Again, it is essential that each qubit is involved in at most
one gate per time step, and there is an additional condition given in Landahl, Jonas
T Anderson, and Rice, 2011: "any stabilizer generator for an error-free input state
(including ancilla syndrome qubits) must propagate to an element of the stabilizer
group for an error-free output state." For example, we must check that anX operator
applied to an X measurement qubit (which stabilizes the |+〉 preparation state) at
the beginning of the schedule must propagate through the circuit to give a stabilizer.
If a schedule satisfies these conditions, we say it is valid. Note that any schedule
which involves measuringX and Z sequentially (i.e. in each round, all CNOT gates
are applied before all control-Z gates) is valid.

A schedule for the color code can be specified by three pairs of integers for each
physical qubit. Each pair corresponds to one of the three faces in contact with the
qubit (for boundary qubits there can be fewer than three pairs). For a given pair,
the first of the two integers specifies when a CNOT gate is applied between that
qubit and the X-measurement qubit at the center of the corresponding face, and
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Figure 5.5: Logical error rate pL versus physical error rate p under circuit-level
noise. The logical error rate is calculated separately forX andZ type errors to point
out that there is some asymmetry. This indicates the threshold value to be around
0.3 % for the color code. More data is needed to obtain a more accurate estimate.

the second specifies when a control-Z gate is applied between that qubit and the
Z-measurement qubit. We focus on uniform schedules on regular lattices, such that
only the pair for each data qubit in the unit cell of the lattice is specified, and the
others are given by following the tiling.

Some uniform schedules that are valid for the color code are shown in figure 5.6.
For the hexagonal lattice, the schedule for two qubits need to be specified to fix the
schedule for the lattice. The approximate size of the search space for the hexagonal
lattice for all length l schedules is (l!)2, such that exhaustive search can be completed
quickly for lengths l = 6, 7. Unfortunately there are no schedules of length six
which satisfy all these constraints for the hexagonal lattice. However, there are
763 inequivalent schedules of length seven (where we consider two schedules to be
equivalent if mapped by a symmetry of the lattice or by interchangingX and Z). A
pair of integers for each of four qubits are needed to specify a uniform schedule for
the square-octagon lattice. An exhaustive search for all length l schedules involves
checking approximately (l!)4 cases, which was computationally unfeasible for l = 8.

Some valid schedules will perform better than others. One generally expects short
schedules to outperform long schedules since there are fewer opportunities for errors
to occur per round of syndrome measurements. Two schedules of the same length
can have different performance since they propagate errors differently. To compare
the performance of valid schedules of length seven, one could consider the average
total number of errors that result from a single error in the circuit. To calculate
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Figure 5.6: a) and b) Schedules for CNOT operations in the color code. The
minimum number of steps for a valid schedule is 7 for the hexagonal lattice, and
8 for the 4.8.8 lattice. An exhaustive search for the hexagonal lattice yields 763
inequivalent valid schedules of length seven.

this, we should pick out two adjacent data sites in the bulk, and apply all single
location errors to locations which involve the two qubits, propagate through the
remainder of the circuit until measurement, and sum with the appropriate weight
(the relative probability of that error occurring). As of yet, we have not performed
such an analysis, and we hope there could be improvement on the 0.3% circuit level
threshold if an optimized schedule is used.

5.4 Code switching – dimension jump
In chapter 4, we discussed code-switching between two three-dimensional color
codes, one of which was a stabilizer code, and the other a subsystem code. Here we
will be focused on an important variant of this scheme, which was first described
for Reed-Muller codes in Jonas T. Anderson, Duclos-Cianci, and Poulin, 2014 and
described for the topological color codes in H Bombin, 2014. The key observation
is that it is possible to switch between a three-dimensional stabilizer code and a
three-dimensional subsystem code in which the logical and gauge qubits can be
decomposed from each other spatially, such that the logical qubits are completely
confined to a portion of the two-dimensional boundary of the three-dimensional
lattice, and the gauge qubits are completely confined to the remaining bulk. In this
setting, code-switching is sometimes referred to as a "dimensional jump".

We describe the scheme using the example of the smallest three-dimensional color
code, which is precisely the [[15, 1, 3]] Reed-Muller code, which is switched to and
from the smallest two-dimensional color code, the [[7, 1, 3]] Steane code.
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Distance three dimension jump with no errors
The seven qubit Steane and fifteen qubit Reed Muller codes are d = 3 color codes
in two and three dimensions. Both of these codes can be described relatively easily
visually (see figure 5.7).
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Figure 5.7: a) The [[7, 1, 3]] Steane code has X and Z type stabilizer generators
on faces. b) Volumes are X-type stabilizers, and faces are Z-type stabilizers in the
fifteen qubit Reed-Muller code. The code can be interpreted as being constructed
of two copies of the 7-qubit color code (aka the Steane code), one of which (at the
back in this picture) is in a logical cat state |0̄0〉 + |1̄1〉 with a single qubit. (c)
The face operators (for example Z1Z3Z8Z10) have two qubits in the plane shown.
Those which intersect with only a single qubit of the in-plane highlighted face
are circled (corresponding to Z1Z3Z8Z10, Z5Z7Z12Z14, and Z4Z6Z11Z13). Each of
these will have their value flipped if X’s are applied to the highlighted face (i.e.
X11X12X13X14), changing a from 1 to 0.

First we will describe the dimension jump procedure in an ideal error-free setting.
To switch from the [[7, 1, 3]] code (in physical qubits 1 − 7), in some unknown
codestate |ψ〉 = α |0̄〉 + β |1̄〉, to the [[15, 1, 3]] code (in physical qubits 1 − 15),
first prepare an additional eight ancilla qubits in the entangled state |0̄0〉 + |1̄1〉,
where qubits 8 − 14 are encoded in a second [[7, 1, 3]] code, entangled with qubit
15. Notice that this system of fifteen qubits already satisfies many of the stabilizers
of the [[15, 1, 3]] code. Following the labelling of figure 5.7(b), the four X-type
stabilizer generators of the fifteen qubit code are all automatically satisfied, since
three of the four volumes are composed of products of disjoint faces in the original
pair of Steane codes, and the final volume (at the back) is satisfied by virtue of the
state |0̄0〉+ |1̄1〉. Moreover, all the Z-type generators corresponding to faces within
the two Steane codes are satisfied, as are those on the back eight qubits (again since
|0̄0〉 + |1̄1〉). The only stabilizers which may not be satisfied are the nine Z-type
face operators that span from the front [[7, 1, 3]] code to the back [[7, 1, 3]] code in
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figure 5.7(b), such as Z1Z3Z8Z10 and Z6Z7Z13Z14. The strategy then is to measure
these Z-stabilizer generators, and apply X-face operators to correct any which are
not satisfied. As the logical pauli operators for origin [[7, 1, 3]] code and the target
[[15, 1, 3]] code in figure 5.7(b) code can be chosen to be precisely the same, it is
clear that applying these X-face operators will not alter the encoded information.

It is relatively straightforward that some X-face operators can be applied to correct
any possible outcome of the Z-face measurements.. If all the Z-face measurements
are satisfied, then the switch is complete. Only X-face operators for faces within
the planes of the two [[7, 1, 3]] codes in figure 5.7(b) need to be considered, as all
other X-faces commute with the measured Z-faces. Without loss of generality, we
can restrict our attention to X-faces in the front plane, since the parallel X-faces in
the back have precisely the same commutation relations with the measured Z-faces
as those in the front plane. Therefore we only need to consider three independent
X-faces to correct the measured Z-faces. Although there are nine Z-faces we
have discussed measuring, they are not independent as some combinations form
(satisfied) Z-volumes,

Z1Z3Z8Z10 = Z5Z7Z12Z14 = Z4Z6Z11Z13 = a, (5.5)

Z2Z6Z9Z13 = Z3Z7Z10Z14 = Z1Z5Z8Z12 = b, (5.6)

Z2Z3Z9Z10 = Z6Z7Z13Z14 = Z4Z5Z11Z12 = = c. (5.7)

It is enough for us to measure three (one from each row) of these Z-face operators
in order to determine (a, b, c), and then apply the appropriate X-face conditioned
on (a, b, c). In summary, to switch from [[7, 1, 3]] to [[15, 1, 3]],

1. Measure Z-faces:

(Z1Z3Z8Z10, Z2Z6Z9Z13, Z4Z5Z11Z12) = (a, b, c). (5.8)

2. Apply X-faces:

(X9X10X13X14)a (X11X12X13X14)b (X8X10X12X14)c. (5.9)

Similarly, to switch from [[15, 1, 3]] to [[7, 1, 3]],

1. Measure X-faces:

(X1X3X5X7, X2X3X6X7, X4X5X6X7) = (d, e, f). (5.10)
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2. Apply Z-faces:

(Z2Z3Z9Z10)d (Z1Z3Z8Z10)e (Z2Z6Z9Z13)f (5.11)

Distance three dimension jump with errors
We are interested in the procedure of switching from [[7, 1, 3]] to [[15, 1, 3]], then
application of transverse T , followed by a switch from [[15, 1, 3]] back to [[7, 1, 3]].
Now we consider the case where an arbitrary single qubit physical error occurs at
some point throughout the procedure, but no measurement errors.

First note that every action involved in switching is transversal. Provided (a, b, c)

and (d, e, f) are correct, a singe-qubit error at some point in the procedure will
result in the correct final state up to a single qubit error on the same damaged qubit.
The only danger then is that the error leads to an incorrect inference of (a, b, c)

or (d, e, f) which the final state to differ by suppose the initial error occurs before
we measure the three Z-type face operators, causing us to obtain a mistake in one
of three numbers a, b or c. This can be avoided by measuring the redundant face
operators, and then inferring (a, b, c) by majority vote.

For distance three, the code switching procedure can be made fault tolerant to a
single unknown physical or measurement error by performing measurements using
(for example) verified cat states. As this adds considerable overhead and should not
be necessary for larger distances we will not elaborate on this further.

Scalable fault-tolerant dimension jump
These results generalize to arbitrary distance codes. By measuring faces only,
and applying correction operations to fix the gauge, one can implement the switch
between the two-dimensional color code and the three dimensional color code.

5.5 Overhead for code switching
The parameters for the lattices of the 4.8.8 (square-octagon) and 6.6.6 (hexagonal)
two-dimensional color codes on triangular boundaries are given in Table 5.3. Note
that for all distances d > 3, the number of vertices v for the hexagonal lattice is
larger than that of the square-octagon lattice. The number of faces f is also larger
for the hexagonal lattice.

For overhead calculations, the number of data qubits required is v, and the number
of measurement qubits required depends on how one chooses to measure stabilizers.
If there is one measurement qubit per stabilizer generator, then 2f data qubits are
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required, whereas if a single measurement qubit is used to measure both X and Z
stabilizers on the same face one after the other, then only f measurement qubits are
required.

Two-dimensional Lattice parameters
6.6.6 Hex. lattice 4.8.8 lattice

vertices v 3(d2 − 1)/4 + 1 (d− 1)(d+ 3)/2 + 1
faces f 3(d2 − 1)/8 (d− 1)(d+ 3)/4

Three∗-dimensional Lattice parameters
B.C.C lattice Doubled Color code lattice

vertices v d(d+ 1)2/2 (d3 + 5d2 − d− 9)/4
faces f −− −−
volumes c −− −−

Table 5.2: The number of vertices v, faces f and (where relevant) volumes c of the
different lattices we consider as a function of (odd) distance d. In two-dimensions,
we consider the 4.8.8 (square-octagon) and 6.6.6 (hexagonal) lattices used for the
color code. In three-dimensions, we consider the construction by Bombin, and the
psuedo-two-dimensional lattice proposed by Bravyi and Cross Sergey Bravyi and
Cross, 2015. Note that, like the three-dimensional color code, the Bravy-Cross
flattened doubled color code (and the other flattened color code schemes Jochym-
O’Connor and Bartlett, 2015; Jones, Brooks, and Harrington, 2015) have overhead
which is cubic in the distance v ∼ constant× d3.

To estimate the overhead required for code switching with color codes to produce
an encoded magic state of a desired quality (with logical error rate at most pD), we
consider the following steps:

1. Generate an encoded |+〉 state in a two-dimensional hexagonal color code
of distance d. The error associated with this state can be estimated from
p1(d) = α(p/pT )d using the appropriate threshold parameters.

2. Prepare a distance-d three-dimensional color code (with hexagonal boundary)
using ancilla qubits (or a flattened version of it) by measuring the appropri-
ate stabilizers and applying correction operations. The code should have a
boundary sheet missing (in the shape of the distance d, two-dimensional color
code).

3. Apply the appropriate measurements to the two-dimensional color code and
the three-dimensional color code such that they fuse resulting in an encoded
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|+〉 in the three-dimensional color code. We call the error associated with
this state p3(d).

4. Apply the transverse T gate, resulting in the encoded |T 〉 in the three-
dimensional color code. We call the error associated with this state p4(d).

5. Apply the appropriate measurements to "un-fuse" the two-dimensional code,
leaving the encoded |T 〉 in the distance d two-dimensional color code. We
call the error associated with this state p5(d).

As the protection from noise improves with distance, each pi(d) monotonically
decreases with d. To achieve the target state with the required accuracy with as
low overhead as possible, we seek the smallest distance for which p5(d) ≤ pD.
Then the overhead N(d) is the maximum number of physical qubits required at any
time in steps (1) – (5). The most costly step involves the three-dimensional color
code. The precise number of qubits required depends on the details. Taking the
BCC lattice and assuming one measurement qubit per stabilizer generator results in
N(d) = d(d+ 1)2 − 1.

Each step can only reduce the quality of the encoded information, and therefore
p5(d) ≥ p4(d) ≥ p3(d) ≥ p1(d). To estimate a lower bound on the overhead
required for code switching, we make can consider the (unrealistic) case where steps
(2) – (5) are perfect. In this case

p5(d) = p1(d) = α(p/pT )d, (5.12)

andwe see that the lowest distance is d = dD, such that pD = α(p/pT )dD/2 (increased
sufficiently such that it is an odd integer). See figure 5.8. As steps (2) – (5) are
expected to introduce a significant amount of additional noise to the system, we
expect this lower bound to be far from tight.

A more accurate estimate of code-switching overhead
Ideally, to obtain a good estimate of the code-switching overhead, one would need
to implement a fault-tolerant decoder for the three-dimensional color code given
circuit level noise (which is not yet well understood). Then one could simulate the
two-dimensional code, and three dimensional bulk code in equilibrium, and then
could find a threshold for the gadget which switches from one to the other. This
would not account for the errors introduced by the transverse T gate, which cannot
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Figure 5.8: A lower bound on the qubit overhead for forming a magic state with
logical error rate below pL using code switching. In reality the actual overhead is
expected to be significantly greater since here we assume that no additional noise is
introduced by the switching process. The blue points are for the three dimensional
color code, and the yellow points are for the doubled color code, where in each
case we assume that there is one measurement qubit for each stabilizer generator for
the code. [Note one would actually need more measurement qubits for the doubled
color code, since in that case one should measure the (strictly larger) number of
gauge generators as the stabilizer generators are not all local].

be easily simulated classically, but the (Clifford) phase gate could be applied instead
to give an estimate of the behavior.

For the psuedo-three-dimensional color codes ofBravyi-Cross and Jochym-O’Connor-
Bartlett, one would expect that there is no threshold leading to worse performance
above some distance for a given error rate.

Alternatively, tighter bounds than that we have given could be achieved by keeping
most of the three dimensional color code implementation perfect, but adding in extra
noise associated with some of steps (2) – (5).

5.6 Magic state distillation
Universality through magic state distillation relies on the following two facts:
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1. There is a Clifford circuit which takes an input qubit in arbitrary state |φ〉,
along with an ancilla qubit in the magic state (|0〉+eiπ/4 |1〉)/

√
2, and outputs

the state T |φ〉 [see Fig. 5.9(a)].

2. For all sufficiently large min and fin, there is a Clifford circuit which takes
an input of min copies of the (fidelity fin) magic state (|0〉 + eiπ/4 |1〉)/

√
2,

and outputsmout copies of the (fidelity fout) magic state (|0〉+ eiπ/4 |1〉)/
√

2,
such that fout > fin, but where mout < min. Moreover, if the Clifford circuit
is implemented without error, then there is a threshold fidelity fT such that
fout can be made arbitrarily small for fixed mout by increasing min provided
fin < fT [see Fig. 5.9(b)].

It is therefore possible to achieve universal fault-tolerant quantum computing using
a fault-tolerant Clifford computer, provided one has access to a large number of
encoded magic states of sufficiently high fidelity.

|T i |T i |T i

|T i
|T i

|�i
a

T |�i(SX)a

Z

Clifford 

(a) (b) 
|T i |T i |T i |T i |T i |T i

|T i |T i |T i

Figure 5.9: (a) A Clifford circuit that applies the T gate to its input qubit. (b)
Magic state distillation is performed in consecutive rounds, with the output of one
round forming the input to the next. In each round, a larger number of lower fidelity
encoded magic states is transformed by a Clifford circuit into a smaller number of
higher fidelity magic states.

An example of a Clifford circuit which can be used to implement state distillation
is described below and in figure 5.10. In the description, we assume the circuit is
perfect, and any noise is that associated with the noisy magic states.

1. Apply the encoding circuit for the [[15,1,3]] code on fifteen encoded qubits
on one half of a Bell pair. The state of the system is (|0〉 |0̄〉+ |1〉 |1̄〉)/

√
2.

2. Apply the transverse T gate (using 15 copies of the |T 〉 state, each with
an associated error rate p). If p = 0, the state of the system is (|0〉 |0̄〉 +

eiπ/4 |1〉 |1̄〉)/
√

2 = ((|0〉 − ieiπ/4 |1〉) |+̄〉+ (|0〉+ ieiπ/4 |1〉) |+̄〉)/2.
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3. Measure all the qubits comprising the [[15,1,3]] code in the X basis. The
outcomes allow us to infer the measurement of theX-type stabilizers, and the
X-type logical operator, which we denote s = −1, 1.
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Figure 5.10: The circuit used for |T 〉 distillation can be understood by first encoding
one half of a Bell pair in the fifteen qubit code, using fifteen (noisy) |T 〉 states to
apply the transverse T gate in the fifteen qubit code, followed by measurement of the
logical X operator giving outcome s. This forces the state of the other half of the
Bell pair into something which differs from |T 〉 by an s-dependent Clifford gate. By
also measuring theX-stabilizers of the fifteen qubit code, and discarding the output
of the process when the stabilizers are not satisfied, one can improve the fidelity of
the output state. Note that since the encoding circuit is composed of Clifford gates,
and the T gate preserves the Clifford group, we could pull the T gates through the
encoding circuit to give a new circuit with equivalent action but where the ancilla
states for the fifteen qubit code are |T 〉 states rather than stabilizer states, and the
encoding clifford circuit is replaced by a modified clifford circuit.

If p = 0, then the stabilizers must be satisfied, and the state of the only unmeasured
qubit will be (|0〉 + iseiπ/4 |1〉)

√
2, and note that |T 〉 ∝ Ss(|0〉 + iseiπ/4 |1〉)

√
2.

For p > 0, since the fifteen qubit code has distance three, all weight one and two
Z- type errors will result in some unsatisfied stabilizers. No X-type errors will
affect the state since they commute with theX measurement. If we discard the state
unless all the X-type stabilizers are satisfied, there can be contributions only from
the logical Z operators of weight three and above. Neglecting O(p4) terms, the 35

distinct weight-three logical Z operators result in an error rate in the post-selected
state of 35p3. Note that the post-selection results in a reduction of yield: on average,
approximately a fraction 15p of the states will be discarded. This circuit has an
asymptotic rate r = 1/15, since (for p→ 0) fifteen input magic states are replaced
by one magic state of higher fidelity in each round.
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In an implementation one must produce an encoded resource state with a sufficient
fidelity. In a topological stabilizer code such as the toric code or the color code,
one can first prepare an unencoded magic state in a singe qubit, encode this in a
small code, and then grow the code distance while preserving the encoded state.
The result will be a (noisy) encoded magic state.

Note that there will be additional errors introduced by the Clifford circuit which is
used to distill the magic states. The additional errors are reduced by encoding the
information in a larger code, which increases the overhead.

5.7 Overhead for state distillation
We seek to estimate the qubit overhead for state distillation with two schemes the
surface code and the color code. First we fix some notation which are common to
both schemes.

The distillation protocol consists of k rounds, where the code in each round has
distance {d1, d2, ..., dk}, and the encoded magic states at the end of each round have
error rate {p1, p2, ..., pk}. At the beginning of the distillation protocol, the magic
states are encoded into a distance d1 color code, with error rate p0. Each of these are
formed by encoding the state |T 〉with error probability p into a distance d1 code. At
the end of the protocol, we should have a magic state |T 〉 encoded in a distance dk
code with logical error rate at most pD. We imagine that the qubits involved in each
round can be reused - therefore the overhead of the distillation protocol with given
set of distances {d1, d2, ..., dk} is simply the maximum overhead of any round. The
overhead required to distill a pD encoded magic state is simply

max{r−k+1N(d1), r−k+2N(d2), ..., r−1N(dk−1), N(dk)}, (5.13)

minimized over all possible sets {d1, d2, ..., dk}, such that pk ≤ pD (note that the
number of rounds k is also allowed to vary).

To calculate the overhead for each scheme, we need to specify the overhead N(d)

of a single logical qubit at distance d, and a function pi = Pdistillation(di, pi−1) which
relates error rates of consecutive distillation rounds for i = 1, 2, . . . , k. We must
also specify a function which tracks the error introduced by encoding prior to the
first round of distillation p0 = Pencoding(d1, p). After the ith round of distillation, the
magic state will be encoded with error rate pi in a code of distance di. It then needs
to be expanded into a code of distance di+1 ready for the next round of distillation.
We neglect additional noise added by the expansion process.
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To estimate Pencoding(d1, p), we make the assumption that a two-stage process is
used, where first the state |T 〉 is encoded in a distance d = 3 code, and then that
code is expanded to distance d1. We assume that second stage does not contribute
significantly to the noise. Thenwe encode the qubit into a distance d1 color code. We
take the error probability p1 = Lencodingp, where Lencoding is the number of locations
in the encoding circuit.

There are two contributions to error in the final encoded magic state: (1) that
which originates from noise in the undistilled magic states, and (2) that which is
introduced by the distillation circuit itself. We take the simple model that each
contribute independently to pi, such that we can take ideal reduction in noise due
to state distillation to be 35p3

i−1, and that the the error rate associated with the
distillation circuit given di is approximately NL(di)α(p/pT )di/2, where a single
logical qubit encoded at distance di is α(p/pT )di/2, and the number of locations in
which an error can occur in the distillation circuit Ldistillation(di). Then we model the
overall error rate as that consistent with overall success occurring only when there
is no error in either (1) or (2), such that,

1− pi = 1− Pdistillation(di, pi−1) =
[
1− 35p3

i−1

] [
1− Ldistillation(di)α(p/pT )di/2

]
.

(5.14)

In order to estimate the overhead of state distillation, we must fix some details of
the implementation and then identify Lencoding and Ldistillation in order to estimate the
overhead as described above. The parameters we use for the calculation are given
in table 5.3, and the corresponding overhead is plotted in figure 5.11.

Parameters for distillation circuits
Parameter 6.6.6 Color Code 4.8.8 Color Code Surface Code
α 0.01 0.002 0.03
pT 0.003 0.001 0.01
N(d) (9d2 − 1)/8 (3d2 + 6d− 5)/4 (2d)2

Lencoding(d) 5 5 5
Ldistillation(d) 10d 10d 10d

Table 5.3: The constants relevant for estimating the overhead of state distillation
with the hexagonal lattice and square-octagon lattice color codes, and the surface
code. (Based on preliminary data).
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Figure 5.11: Approximate physical qubit overhead for forming a magic state with
logical error rate below pL with physical noise p = 5 × 10−4 by magic state
distillation with (orange) the 6.6.6 color code, (green) the 4.8.8 color code, and
(blue) the 4.4.4.4 Kitaev surface code. (Based on preliminary data).

5.8 Outlook
We have presented an analysis which shows that a lower bound of the overhead
required for code switching for the known topological color codes and the overhead
needed for state distillation are comparable. It is likely that lower bound is far from
tight, suggesting that the overhead of code switching is actually significantly greater
than the lower bound we present.

One would hope that other, currently unknown schemes for code switching exist
with reduced overhead.

Despite the fact that the 4.8.8 code requires fewer qubits for a given distance,
the hexagonal code has better threshold constants resulting in lower overhead for
distillation at all target probabilities examined. On the other hand, the higher density
of quibits required for a given distance for the surface code than the hexagonal color
code overcomes the fact that the surface code has a better threshold for most values
of pT in this range.
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