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everything, and to Alexandra, for existing.

My work was supported by the Walter Burke Institute for Theoretical Physics,

and by the United States Department of Energy under Grant DE-SC0011632.



vi

Abstract

We argue that for a spherical region R on the boundary, relative entropy between

the vacuum and an arbitrary holographic excited state can be computed in the bulk

as a quasilocal energy associated to the volume between R and the minimal surface

B̃ ending on the boundary ∂R. Since relative entropy is monotonic and positive

in any well-defined quantum theory, the associated quasilocal energy must also be

positive and monotonic. This gives rise to an infinite number of constraints on the

gravitational bulk, which must be satisfied in any theory of quantum gravity with

a well-defined UV completion. For small regions R, these constraints translate into

integrated positivity conditions of the bulk stress-energy tensor. When the bulk is

Einstein gravity coupled to scalar fields, the boundary relative entropy can be related

to an integral of the bulk action on the minimal surface B̃. Near the boundary, this

expression can be inverted via the inverse Radon transform, to obtain the bulk stress

energy tensor at a point in terms of the boundary relative entropy.
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Chapter 1

Brief introduction

This thesis covers a number of recent results in physics that live at the interface of

gravity and information theory. These results fall under the broad umbrella of holog-

raphy, which is a framework for describing a type of strong-weak duality between

field theories and theories of gravity in one dimension higher. Over the last few years

holography has seen rapid progress, as significant advances have been made toward

better understanding its fundamental aspects. Although we are currently still far

from a fundamental understanding of holography, it is the author’s hope that rapid

progress currently being made in the community will shed considerable more light

in this direction within the next few years.

This thesis deals primarily with gravitational realizations of various types of en-

tropy. Entropy is a macroscopic counting of degrees of freedom, and we will be

concerned mostly with two types of entropy: entanglement entropy and relative en-

tropy. The former can roughly be thought of as given by the degrees of freedom

shared across a (fictitious) boundary, while the latter can be considered as a proxy

for how different the degrees of freedom in a certain state are from those in another.

On the (dual) geometric side, we will be working with asymptotically anti-de

Sitter spaces, which are manifolds obeying the Einstein equations that near the
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boundary asymptote to geometries of constant negative curvature. In this setting

the entropies (and other field-theoretic quantities we will be concerned with) translate

to geometric objects. Based on papers [1, 2], we will see that the relative entropy

associated to a spherical boundary region can be viewed as a form of quasi-local

energy, in the precise sense defined by Wald. The constraints obeyed by relative

entropy map to an infinite family of constraints on the bulk, which hold for arbitrary

spacetimes away from the vacuum. In various perturbative regimes, these constraints

reduce to the linearized Einstein equations around vacuum, integrated positivity of

the bulk stress-energy tensor and positivity of canonical energy.1 Furthermore, our

formula for relative entropy can be recast into a form which is amenable to bulk

reconstruction from the boundary via techniques in integral geometry. While this

cannot be done in general with the current technology, near the boundary inversion

formulas exist and they reconstruct the bulk stress-energy tensor from the boundary,

up to a certain order which will be made precise.

1.1 Outline of the thesis

The thesis proceeds as follows. In Chapter 2 we review some of the salient features

of entanglement entropy, with emphasis on holography. Chapter 3 is the bulk of the

thesis, and proceeds by introducing the necessary formalism (Wald’s formalism), so

that the computations we are interested in become natural. This will quickly get

technical, but once it is established all our results will be readily obtained from one

solid framework. We then present our results, by visiting quasilocal energy, bulk

constraints, and bulk reconstruction, in this order. Finally, in Chapter 4 we present

1The linearized Einstein equations and canonical energy positivity stories have been derived
independently, however our approach presents a unified method for obtaining them.
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some future directions that arise from the work presented in this thesis, as well as

some more speculative directions that could play important roles for holography in

the coming years.
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Chapter 2

Entanglement entropy and
holography

The holographic principle has been around since the 70s, when ’t Hooft noticed

that in the large N limit (with, very importantly, g2N held fixed1), a U(N) gauge

theory can be described in terms of a weakly coupled dual model, with dual coupling

constant 1/N [3]. In its purest form it states that certain weakly coupled theories

living on a spatial domainM have alternate descriptions as strongly coupled theories

living on the boundary ∂M.2 The holographic principle was made much more precise

by Maldacena [4], who suggested that Type IIB string theory on asymptotically

AdS5 × S5 spacetime is the same theory as N = 4 SU(N) SYM in four dimensions.

Paper [4] gave birth to the modern field of holography.

Since the field of holography has by now become a very vast subject, below

we will only focus on the aspects we need. The aim is to give a self-contained

presentation, which does not take too much space. Regarding the general workings

of holography, all that we will need is that states in strongly-coupled CFTs are

1Here g is the gluon’s charge.
2As a technical note, a more precise version would be that quantum gravity on AdSd+1 × C,

with C a compact manifold, is dual to a field theory living on R× Sd−1, but such distinctions will
not be important for the purposes of this thesis.



5

dual to weakly-coupled asymptotically AdS spacetimes, and bulk fields translate to

boundary operators.

2.1 Entanglement entropy

For any quantum field theory (QFT), entanglement is a purely quantum feature

that has no counterpart in classical physics. Given a partitioning of a Hilbert space

H into subspaces H = H1 ⊗ · · · ⊗ Hn, the entanglement measures the failure of

a state |ψ〉 ∈ H to be written as a tensor product over the subspaces Hi. There

are at least two important features that make entanglement “quantum”: (1) it is

nonlocal, since the partitions of the Hilbert space can correspond to subsystems that

are physically separated by large distances, and (2) there are no observables (or

even quantities) that capture the structure of entanglement of a state in a faithful

manner. Entanglement has several important roles in modern physics:3 it is a crucial

ingredient of quantum information theory and computing (for a review see e.g. [5]),

and it is also a key player for topological order, where long-range entanglement is

responsible for rich classes of physical phenomena [6,7]. However, the most important

feature of entanglement is that it may still have things to teach us about fundamental

physics [8].

One popular quantity which characterizes entanglement is entanglement entropy.

For a partition H = HA⊗HB of the Hilbert space and a state |ψ〉 of density matrix

ρψAB, taking the partial trace ρψA = TrBρ
ψ
AB, the entanglement entropy of A is defined

as

SEE(A) = −Tr
(
ρψA ln ρψA

)
. (2.1)

3There exist other equally important applications of entanglement omitted here due to spatial
constraints.
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This is just the Von Neumann entropy for density matrix ρψA. Roughly speaking,

the logic behind this definition is the following: When tracing out over subsystem B,

what is the information in A we forget about? If it is zero then there is no correlation

between A and B, otherwise there will be some.

Entanglement entropy has a number of features. It is non-negative, and for pure

states ρAB it is reflexive, SEE(A) = SEE(B). If the state is not pure then in general

entanglement entropy is not reflexive, with the difference SEE(B)−SEE(A) receiving a

contribution from the classical (thermal) entropy. Finally, for QFTs living on spatial

domains with A and B defined by partitioning the spatial domain into a region and

its complement, entanglement entropy is UV divergent due to the degrees of freedom

infinitesimally close to either side of the codimension-1 entangling surface.

2.2 Entanglement entropy in QFTs

A simple example in which entanglement entropy is easy to compute is that of two

spin-1/2 degrees of freedom with the state given by a Bell pair,

|ψ〉 =
1√
2

(|↑↑〉+ |↓↓〉) , (2.2)

in which case the entanglement entropy comes out to

SEE(A) = SEE(B) = ln 2. (2.3)

However, if the theory at hand is a QFT then entanglement entropy becomes noto-

riously difficult to compute, even for simple states and partitions. There are some

techniques available, such as the replica trick [9], or (for spherical entangling sur-
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faces) a clever mapping of the entanglement entropy to thermal entropy [10], but in

general it remains a nontrivial endeavor.

One situation where the entanglement entropy can be computed via the replica

trick is between a segment of length L and its complement in a (1 + 1)-dimensional

CFT of central charge c, and it is equal to [11]

S =
c

3
ln
L

ε
, (2.4)

with ε an UV cutoff.

It can also be shown that for general QFTs entanglement entropy obeys a number

of inequalities. It is subadditive [12],

S(AB) ≤ S(A) + S(B), (2.5)

where A and B are two disjoint regions and AB is their union.4 In fact, entangle-

ment entropy obeys the considerably more powerful property of strong subadditiv-

ity (SSA) [13],

S(B) + S(ABC) ≤ S(AB) + S(BC). (2.6)

For arbitrary quantum field theories strong subadditivity is notoriously hard to prove

[5, 14].

2.3 Holography: The Ryu-Takayanagi formula

Although entanglement entropy in QFTs is an unwieldy beast, the situation con-

siderably improves if we restrict to theories which admit holographic duals. This

4Throughout this thesis writing A1 . . . An for disjoint regions stands for their union, A1t· · ·tAn.
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happens because holographic theories are a special class of theories living inside the

space of all QFTs, which have more structure in the way the degrees of freedom are

organized.

In the rest of the thesis, when working with holographic theories we will ignore

both stringy α′ corrections and quantum corrections.

Consider a QFT on the boundary of a gravitational bulk, and divide the boundary

into a region A and its complement Ac. Ryu and Takayanagi [15,16] conjectured that

the entanglement entropy of A (with Ac) is given by the area of the bulk minimal

surface ending on the boundary ∂A that is homologous with A (see Figs. 2.1 and

2.2),

SEE(A) =
minA′

4GN

. (2.7)

Figure 2.1: The bulk minimal area A′ for a region A on a planar boundary.

A Ac

A’

There is by now ample evidence behind this conjecture, and it has been proven

to various degrees [10,17–20], although a fundamental understanding of why it holds

is still lacking. We only note that in the case of AdS3/CFT2 (with AdS radius `)

and planar boundary, the length of a geodesic ending on two points separated by

distance L on the boundary is

S = 2` ln
L

ε
, (2.8)
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Figure 2.2: A black hole in the bulk (gray area) corresponds to a mixed (thermal)
state in the CFT. The minimal area A′ for domain A picks up a contribution from
the horizon’s thermal entropy and is no longer equal to the complement’s minimal
area.

A
A’

Ac

so that Eqs. (2.4) and (2.8) agree provided that we identify the CFT central charge

c with

c =
3`

2GN

. (2.9)

Brown and Henneaux [21] have argued from asymptotic symmetry analysis that this

is indeed the correct identification to make.

2.4 Strong subadditivity revisited

The geometric interpretation of entanglement entropy makes manifest many of its

properties. In particular, it is immediate to prove that SSA (2.6) holds, as we now

review [22]. Suppose regions A, B and C are adjacent as in Fig. 2.3. Then it is

possible to partition the minimal surfaces corresponding to S(AB) + S(BC) into a

surface subtending B and a surface subtending ABC; these repartitioned surfaces are

not necessarily minimal, so they will be greater than or equal to S(B) + S(ABC).

This covers the case when the boundary regions are adjacent; the proof proceeds
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similarly when they are not.

While this extra complication is essentially just bookkeeping, and for SSA can

be dealt with by inspection (see [22]), there exists a general method for dealing

with the cutting and pasting of minimal surfaces [23]: For the boundary intervals,

draw all possible pieces of the minimal surfaces, labeling them by intersections of

bulk regions and their complements. The cutting and pasting can be encoded by

making use of a contraction mapping, which is a function with the property that the

distances between any two points it maps get contracted. If such a function can be

found, such that the contraction property holds, then the inequality is valid. This

provides a combinatorial method for proving holographic inequalities; although a

priori it is computationally expensive (doubly exponential complexity in the number

of boundary regions), it turns out to work quite well when the number of regions is

small. See [23] for more details.

Figure 2.3: Pictorial proof of strong subadditivity.

=

≥

A B C A B C

A B C

An interesting feature of this proof is that it only requires the existence of a ge-



11

Figure 2.4: Pictorial proof of mutual information monogamy.

=

≥

A B C A B C

A B C

ometric dual.5 This dual does not have to be physically sound, and in particular it

does not have to satisfy any energy conditions. This is because for static configura-

tions the Ryu-Takayanagi formula only has access to the system at one snapshot in

time, and it does not see any singularities or other problems that may develop when

evolving forward in time. However, in time-dependent situations Wall [24] showed

that SSA is implied by an integrated bulk null energy condition (NEC), and Lashkari

et al. [25] showed that in some situations SSA implies an integrated bulk NEC.6

5What it means for the holographic dual to exist is made precise in [23], as the existence of a
graph model on which cutting and pasting can be done.

6In time-dependent situations the entanglement entropy in the bulk is conjectured to be calcu-
lated via the Hubeny-Rangamani-Takayanagi prescription [26].
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2.5 A holographic inequality: Mutual information

monogamy

It turns out that in the large N limit (and ignoring stringy α′ corrections) entangle-

ment entropy in holographic theories obeys additional inequalities that do not hold

for general CFTs. One such inequality is mutual information monogamy [27], and it

states that

S(AB) + S(BC) + S(CA) ≥ S(A) + S(B) + S(C) + S(ABC), (2.10)

or in terms of the mutual information I(A : B) ≡ S(A) + S(B)− S(AB),

I(A : BC) ≥ I(A : B). (2.11)

The proof of this inequality is similar to that of holographic strong subadditivity, and

we sketch it in Fig. 2.4 for adjacent boundary regions. The general case is covered

in the same manner as for SSA, by carefully labeling the bulk regions and cutting

and pasting minimal regions (see [23, 27]).

The holographic proof of mutual information monogamy shares some features

with the proof of SSA: the static case only relies on the existence of a bulk dual,

and if time evolution is considered it can be derived from an integrated null energy

condition [24]. However, it is not clear if there exist any situations where it implies

any type of integrated bulk NEC.

Quantum entanglement between two parties has the property that it cannot be

shared with a third party. Since mutual information in arbitrary QFTs need not

be monogamous (due to the presence of classical correlations), the fact that holo-
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graphic mutual information is monogamous can be thought of as indicating that the

correlations in holographic theories are quantum.

Another feature of the monogamy inequality is that it provides a way of differ-

entiating states (and theories) which have smooth geometric duals: If a QFT state

admits a partitioning of the spatial domain such that the entanglement entropies do

not obey Eq. (2.10), then it cannot be a holographic state (in the semiclassical limit).
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Chapter 3

Holographic relative entropy and
constraints on geometry

This chapter is based on paper [1], in collaboration with J. Lin, M. Marcolli, and H.

Ooguri, and on paper [2], in collaboration with N. Lashkari, J. Lin, H. Ooguri, and

M. Van Raamsdonk. It has significant overlap with these two papers (although it

may emphasize things differently), and should not be cited without them. Most of

the content comes directly from [1] and [2] with only minor edits.

CFT counterparts to the Einstein equations have also been considered in [28,29],

and other papers which have investigated the connection between relative entropy,

modular Hamiltonians and holography are [25,30–36].

The story in this chapter is built around a holographic computation of boundary

relative entropy. This computation can be performed in two ways: either using

Wald’s formalism, or via a replica trick similar to that in [20]. In this thesis, we will

only cover the Wald method; the replica trick approach is described in [2].

The setup consists of two CFT states, the vacuum and an arbitrary excited state

(with a smooth holographic dual), and a region A in the spatial CFT domain (that is

the same for both states). Using Wald’s formalism, we will find that up to a universal
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offset, the relative entropy between the vacuum and the arbitrary state (for region

A) is given by the integral of the diffeomorphism Noether current on the bulk region

between A and the minimal surface ending on ∂A, plus a boundary term, and can be

interpreted as a form of quasilocal energy associated to region A. Because relative

entropy obeys certain universal properties, this apparently innocuous statement turns

out to have some significant consequences in the bulk, in that it imposes constraints

that any geometry dual to a well-defined CFT state must satisfy. For small regions

these constraints turn into integrated positive energy conditions, and it is possible

to turn them back into the CFT and obtain an additional constraint that relative

entropy must satisfy (in theories with geometric duals). Furthermore, using the

inverse Radon transform near the boundary it is possible to reconstruct the bulk

stress energy tensor from relative entropy, up to a certain order which will be made

precise. The formula we will derive also indicates a possible path to reconstructing

the bulk action from relative entropy at points deep in the bulk, although more

mathematical advances will be required in order to make this work.

3.1 Relative entropy

Relative entropy is an information-theoretic concept which, intuitively speaking, can

be thought of as a proxy for how distinguishable two states are.1 For two density

matrices ρψ and ρφ, it is defined as

S(ρφ|ρψ) = Tr
(
ρφ ln ρφ

)
− Tr

(
ρφ ln ρψ

)
. (3.1)

Relative entropy obeys a number of properties:

1However, it is not reflexive and thus not a metric; the metric on the state space is given by the
Fisher information [25].
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• It is non-negative, S(ρφ|ρψ) ≥ 0, and S(ρφ|ρψ) = 0 iff ρφ = ρψ. In words,

relative entropy vanishes only if the states coincide, otherwise it is positive

because the states have to be at least a little bit distinguishable. The non-

negativity is essentially a convexity statement and can be proven from Jensen’s

inequality.

• It is monotonic under increase of the spatial domain,

S
(
ρφA|ρ

ψ
A

)
≤ S

(
ρφB|ρ

ψ
B

)
, (3.2)

if A ⊆ B. In particular, under an infinitesimal increase of the size R of the

spatial domain A,

∂RS(ρφA|ρ
ψ
A) ≥ 0. (3.3)

This is also clear intuitively: If we look at more of the spatial domain, distin-

guishability between the two states cannot decrease.

• The first law of entanglement entropy. For density matrices ρ and ρ+ ελ that

are infinitesimally close, relative entropy vanishes to first order in the small

parameter ε,

S(ρ|ρ+ ελ) = O(ε1+δ), δ > 0. (3.4)

This happens because S(ρ|ρ) = 0, and moving away from ρ in any direction

increases relative entropy, so that ε = 0 is a local minimum and the gradient

must vanish there.

It will be useful to add and subtract the term Tr
(
ρψ ln ρψ

)
to the definition of



17

relative entropy,

S(ρφ|ρψ) =
[
Tr
(
ρφ ln ρφ

)
− Tr

(
ρψ ln ρψ

)]
−
[
Tr
(
ρφ ln ρψ

)
− Tr

(
ρψ ln ρψ

)]
(3.5)

= −∆SEE + ∆〈Hmod〉. (3.6)

The first bracket is (minus) the difference in entanglement entropy between the

two states, and the second is the difference in expectation value of the modular

Hamiltonian (for state ρψ), which is an operator defined by relation (3.8) below. We

will discuss the modular Hamiltonian in Sec. 3.2. Here, we only note that from Eq.

(3.6) it is immediate to prove that the first law of entanglement entropy holds, since

δSEE(A) = −δTr (ρA ln ρA) = −Tr (δρA ln ρA) = Tr (δρAHmod(A)) = δ〈Hmod(A)〉,

(3.7)

where we have used that the trace of any density matrix is normalized to unity, so

TrδρA = 0.

3.2 The modular Hamiltonian

Since any density matrix ρ is positive-semidefinite, it can be formally written as the

exponential of some operator (normalized by its trace),

ρ =
e−Hmod

Tr e−Hmod
. (3.8)

This defines implicitly the modular Hamiltonian Hmod. In general the modular

Hamiltonian is a nonlocal operator that is hard to compute, but there exist a few

examples where it is tractable.



18

One case for which the modular Hamiltonian can be computed explicitly is that

of a thermal state of temperature T, for which we have

Hmod =
H

T
. (3.9)

Consider now the vacuum state of a QFT restricted to a Rindler wedge. Since the

reduced density matrix is thermal with respect to the boost generator K [37], the

modular Hamiltonian is [38,39]

Hmod = 2πK = 2π

∫
x>0

dd−1xxT00(~x), (3.10)

with Tµν the boundary stress-energy tensor. Since the Rindler wedge can be confor-

mally mapped to the causal development of a ball |~x| < R, expression (3.10) can be

mapped to the modular Hamiltonian corresponding to a reduced density matrix for

the ball |~x| < R in the vacuum state of a CFT [40,41],

Hmod = 2π

∫
|x|<R

dd−1x
R2 − |~x|2

2R
T00(~x). (3.11)

Eq. (3.11) is the expression we will be working with in the rest of the thesis.

3.3 Wald’s formalism

Wald’s formalism loosely refers to a collection of quantities, tools and methods origi-

nally developed by Wald and collaborators as a way of computing black hole entropy

in dynamical settings, for f(R) theories of gravity, and ensuring that it obeys the

first law of thermodynamics. Over time Wald’s formalism has outgrown its origi-
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nal purpose, and it now has a broad range of applicability. In this thesis we will

only be interested in how it can be applied to compute modular Hamiltonians and

entanglement entropies, for which the relevant papers are [42–47].

It should not be surprising that Wald’s formalism can be used to compute en-

tanglement entropies and modular Hamiltonians, since minimal surfaces in aAdS are

reminiscent of black hole horizons, and since for the case we are interested in (Eq.

(3.11)), the modular Hamiltonian is a close cousin of the usual one.

3.3.1 Basics

We now review the aspects of Wald’s formalism we are interested in. Our conventions

are as follows. We work in (d+ 1)-dimensional asymptotically anti-de Sitter, and we

write differential forms in bold. Latin indices a, b, . . . run over the bulk directions,

Greek indices run over the boundary ones, and Latin indices i, j, . . . run over the

spatial boundary indices. We denote the bulk fields (metric + matter) collectively

by g. The (d+ 1)-dimensional volume form is denoted by εεε,

εεε =
1

(d+ 1)!

√
|g|εa1...ad+1

dxa1 ∧ · · · ∧ dxad+1 , (3.12)

with εa1...ad+1
the antisymmetric symbol, and we can also define lower forms,

εεεa =
1

d!

√
|g|εaa1...addxa1 ∧ · · · ∧ dxad , (3.13)

εεεab =
1

(d− 1)!

√
|g|εaba1...ad−1

dxa1 ∧ · · · ∧ dxad−1 , (3.14)

and so on.

Consider a theory of Einstein gravity plus matter specified by Lagrangian L.

Under an arbitrary variation δg of the bulk fields, the variation of the Lagrangian
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vanishes on-shell up to a boundary term Θ,

δL = Egδg + dΘ(δg), (3.15)

where Eg collectively denotes the bulk equations of motion (EOMs).

Using the identity

LXΛ = iXdΛ + d (iXΛ) , (3.16)

which holds for arbitrary vector fields X and differential forms Λ, the variation of

the Lagrangian under a diffeomorphism generated by an arbitrary vector field X is

δXL = LXL = d (iXL) . (3.17)

Here LX is the Lie derivative and iXΛ denotes contraction of Xa on the first index

of an arbitrary form Λ. Defining the Noether current JX for the diffeomorphism

generated by X as

JX = Θ(LXg)− iXL, (3.18)

it will be conserved on-shell,

dJX = −EgδXg. (3.19)

Thus off-shell the Noether current can be written as

JX = dQX + CX , (3.20)

where QX is the diffeomorphism Noether charge and CX are a combination of the

equations of motion called the constraints, which vanish on-shell.
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3.3.2 Symplectic structure

The d-form Θ is a symplectic potential, and can be used to construct the theory’s

conserved charges (when they exist). Starting from Θ, one can define a symplectic

current as

ωωω (δ1g, δ2g) = δ1Θ (δ2g)− δ2Θ (δ1g) , (3.21)

for arbitrary variations δ1, δ2.

We now derive an expression for the symplectic current. The variation of JX is

δJX = δΘ (LXg)− iXδL. (3.22)

Using definition (3.18), off-shell this is

δJX = δΘ (LXg)− iX (Eg · δg)− iXdΘ (δg) . (3.23)

With identity (3.16) for the third term in Eq. (3.23), we have

δJX = δΘ (LXg)− iX (Eg · δg)− LXΘ (δg) + d [iXΘ (δg)] . (3.24)

Employing definition (3.21), with δ1 = δ, δ2 = LX , Eq. (3.24) can be written as

δJX = ωωω (δg,LXg)− iX (Eg · δg) + d [iXΘ (δg)] . (3.25)

Finally, making use of relation (3.20), off-shell the symplectic current becomes

ωωω (δg,LXg) = δCX + iX (Eg · δg) + d [δQX − iXΘ (δg)] . (3.26)
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3.3.3 Conserved charges

For a d-dimensional regionM, the symplectic current can be integrated into a sym-

plectic form,

WM (δ1g, δ2g) =

∫
M

ωωω (δ1g, δ2g) . (3.27)

Provided that certain boundary conditions are met (which will be explained in detail

in Ch. 3), for a diffeomorphism generated by a vector X which is a symmetry the

symplectic form, WM provides the associated conserved charge, denoted HX ,

δHX =

∫
M

ωωω (δg,LXg) , (3.28)

which using Eqs. (3.15), (3.17) and (3.20) can be rewritten as a boundary integral,

δHX =

∫
∂M

(δQX − iXΘ(δg)) . (3.29)

If there exists a d-form B such that on the boundary ∂M we have2

δ

∫
∂M

iXB =

∫
∂M

iXΘ (δg) , (3.30)

then the conserved charge can be integrated to

HX =

∫
∂M

(QX − iXB) . (3.31)

2For asymptotically AdS spaces, the intuitive explanation behind this condition is that due to
the asymptotics of the fields, near the boundary it should be possible to pull the δ out of the Θ
and into a total derivative.
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This equation has multiple uses. For example, if M is a constant-time slice of the

spacetime manifold3 and X = t is an asymptotic time translation, then

E =

∫
∂M

(Qt − itB) (3.32)

is the energy associated to the time translation. Similarly, Eq. (3.31) can also be

used to define angular momentum [43].

Intuitively, Hamiltonian HX can be defined when the integral of Eq. (3.29) in

configuration space is independent of the path in configuration space along which

we integrate. Form B such that Eq. (3.30) is satisfied then exists, and the result

of the integral along any path is Eq. (3.31). To show integrability, it suffices to

construct explicitly a d-form B such that Eq. (3.30) holds for arbitrary variations.

Alternatively, another sufficient (but not necessary condition) for integrability is the

Wald-Zoupas condition ∫
∂M

iX ωωω(δ1g, δ2g) = 0, (3.33)

for any two variations δ1g, δ2g on the boundary ∂M. For more details see Refs.

[45,46].

3.3.4 An example: Einstein gravity

For pure gravity of Lagrangian

L =
1

2κ2
Rεεε, (3.34)

3Since we assume a notion of energy, we also assume that there exists a constant time slice on
which it makes sense to compute it.
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the Noether charge is

QX = − 1

2κ2

(
DaXb

)
εab, (3.35)

the boundary term is

Θ (δg) =
1

2κ2

(
gamDbδgmb − gmnDaδgmn

)
εεεa, (3.36)

and the constraints are

CX = 2Xa (Eg) b
a εεεb, (3.37)

with κ2 ≡ 8πGN .

3.4 Holographic boundary relative entropy

In this section we explain how to compute the boundary relative entropy from the

bulk, for an arbitrary holographic state, using Wald’s formalism. The same result

can be obtained via the replica trick, which will not be explained here, see [2].

Consider a (d+ 1)-dimensional asymptotically AdS spacetime, and a CFT living

on its boundary. Consider a surface of time-reflection symmetry through the space-

time, so that the Ryu-Takayanagi formula applies, and a spherical region B of radius

R on the boundary.4 On the constant-time slice, denote the d-dimensional bulk re-

gion between B and the minimal surface B̃ ending on ∂B by M (see Fig. 3.1). We

are interested in two states (and two corresponding geometries): the CFT vacuum,

dual to empty AdS, and an arbitrary excited state, which has as holographic dual an

asymptotically AdS space with bulk fields turned on. We denote the reduced density

4While the analysis of Sections 3.4 – 3.6 extends in a straightforward manner to maximin surfaces
[24] in time-dependent situations that require the Hubeny-Rangamani-Takayanagi prescription [26],
in this thesis we will only spell out the discussion for minimal surfaces embedded in surfaces of time-
reflection symmetry, so that the Ryu-Takayanagi prescription applies.
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matrix associated to region B by ρvac for the vacuum, and by ρ for the arbitrary

state.

Figure 3.1: Computing the boundary relative entropy geometrically.

Suppose we can define a vector field X and a d-form B such that for both the

vacuum and the arbitrary state we have

∫
B

(QX − iXB) = 〈Hmod〉, (3.38)

and ∫
B̃

(QX − iXB) = SEE. (3.39)

Then the relative entropy between the vacuum and the arbitrary state (for the re-

duced density matrices) is

S (ρ|ρvac) = ∆ (〈Hmod〉 − SEE) (3.40)

= ∆

∫
∂M

(QX − iXB) (3.41)

= ∆

∫
M

[JX − d (iXB)] . (3.42)
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Here ∆ instructs us to take the difference between the excited geometry and empty

AdS, and we have used that on-shell CX = 0.

Eq. (3.42) is one of our main results, expressing the boundary relative entropy in

terms of the diffeomorphism Noether current and a boundary term. Its validity rests

on the existence of X and B with the desired properties, which we will explain in

Sec. 3.4.1 and 3.4.2. Since, apart from satisfying conditions (3.38) and (3.39), vector

field X is unconstrained, we will choose it such that it asymptotes to the conformal

AdS Killing vector near the boundary, and it vanishes on the minimal surface B̃.

Since the d-form B is determined only on the conformal boundary, Eq. (3.42) holds

for all bulk values of B for which condition (3.38) holds.

3.4.1 Vector X on the minimal surface

We now detail the conditions X must satisfy on the minimal surface. Since X

vanishes on B̃, the condition we must impose is

∫
B̃

QX =
2π

κ2
A(B̃) (3.43)

for both the vacuum and the asymptotically AdS geometry, with A(B̃) the area of

B̃. A sufficient (but not necessary) way of achieving this is by constraining the

antisymmetrized derivative of X, so that our minimal surface conditions read5

D[aXb]

∣∣∣
B̃

= 2πnab, (3.44)

X
∣∣∣
B̃

= 0. (3.45)

5As explained by Iyer and Wald [43], using the freedom of adding total derivatives to Θ and to
the Lagrangian L, the Noether charge can always be written as −(1/2κ2)DaXbεεεab, even if the bulk
contains matter.
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Here nab is the binormal to the minimal surface, defined as

nab = naub − nbua, (3.46)

with n and u the spacelike and timelike normals to the surface respectively. Condition

(3.44) ensures that

− 1

2κ2

(
DaXb

)
εεεab =

2π

κ2
dS (3.47)

on the minimal surface, with dS the area (d−1)-form, so that Eq. (3.43) is satisfied.

3.4.2 Vector X on the boundary

When no fields are turned on in the bulk, there exists a bulk Killing vector on region

M,

Xasy = −2π

R
(t− t0)

[
z∂z +

(
xi − xi0

)
∂i
]

+
π

R

[
R2 − z2 − (t− t0)2 −

(
xi − xi0

)2
]
∂t.

(3.48)

Here xi0 is the center of the boundary ball B. This Killing vector can be obtained

from the time translation Killing vector in AdS-Rindler coordinates via a coordinate

transformation [32]. On the boundary Xasy turns into a conformal Killing vector,

which can be mapped to the Rindler wedge time translations [10].

When bulk fields are turned on, vector (3.48) will no longer be Killing, but it

will remain an asymptotic symmetry as we approach the boundary. Specifically, we

demand that in a neighborhood of the boundary we have

X = Xasy +O
(
zδ
)

(3.49)
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with δ > 0.6

With asymptotic condition (3.49) we can impose the precise version of Eq. (3.38),

which reads

∆

∫
B

(QX − iXB) = ∆〈Hmod〉. (3.50)

In words, we require the vacuum-subtracted charge associated to X to give the

vacuum-subtracted modular Hamiltonian expectation value. This is a normalization

issue, as without vacuum-subtraction the left-hand side and right-hand side of Eq.

(3.50) would be off by a universal (divergent) term.

It is possible to argue the validity of Eq. (3.50) on general grounds, at least for

certain matter content. This is because for pure gravity d-form B can be explicitly

constructed as extrinsic curvature plus a cosmological constant (see Eq. (3.85) below,

with F = 0). In order for conformality to be preserved (and for expression (3.11) of

the modular Hamiltonian to remain valid), any matter content must be normalizable;

this implies that the matter fields decay rapidly towards the boundary, and so they

will not contribute to the modular Hamiltonian expectation value in most, if not all,

situations.7

In this section however, we will show Eq. (3.50) from geometry. The idea behind

this method (first proposed in [32]) is that near the boundary the fields asymptote

to their vacuum values, so for small balls the first law of entanglement entropy holds.

This constrains the fields out of which the modular Hamiltonian is built in terms of

the minimal area ending on small balls. For the sake of simplicity, for the rest of this

section only we will work in Fefferman-Graham coordinates.

6This condition is again sufficient but not necessary. It is possible to weaken it somewhat, but
there is no need to do so for our purposes.

7In cases in which the matter fields do contribute (should it be possible to arrange for such
a scenario while respecting conformal symmetry), counterterms would need to be included in B
through F in Eq. (3.11).
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Consider an infinitesimal perturbation δ. From the first law of entanglement

entropy, to leading order in the perturbation, in Fefferman-Graham coordinates we

have8 ∫
V

(δQX − iXΘ(δg)) =
d`d−3

2κ2

∫
V

Xµ
cft δΓµν ε

ν , (3.51)

where the left-hand side is the change in modular Hamiltonian expectation value,

the right-hand side is the change in entanglement entropy, and the integral runs over

the volume V between a small boundary ball and the minimal area ending on it.

Here Xcft is the conformal Killing vector on the boundary,

Xcft = −2π

R
(t− t0)

(
xi − xi0

)
∂i +

π

R

[
R2 − (t− t0)2 −

(
xi − xi0

)2
]
∂t, (3.52)

and δΓµν is the change in induced metric on the minimal surface.

Eq. (3.50) can be recovered from Eq. (3.51) by integrating along any path in

configuration space, from the vacuum to the state we’re interested in. Since the

right-hand side and the first term on the left-hand side are integrable, it follows that

the Θ term is also integrable, i.e. independent of the path in configuration space we

take, and we denote the result of the integral by B. This defines d-form B on the

boundary.

3.5 Relative entropy from quasi-local energy

From Eq. (3.42), we have obtained that for region B the boundary relative entropy

between the vacuum and an arbitrary excited state (with a holographic dual given

8This formula can be shown by explicit computation of both sides; for the details, see [32].
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be a spacetime S) can be expressed in the bulk as

S(ρ|ρvac) = EnergyS (M)− EnergyAdS (M) , (3.53)

where

EnergyS (M) = HX (M) =

∫
M

[JX − d (iXB)] (3.54)

is the quasi-local energy given by expectation value of Hamiltonian HX . Here X is

any vector satisfying the previously mentioned boundary conditions; due to Stokes’

theorem, all such vectors will correspond to the same Hamiltonian. Hamiltonian HX

exists because the Wald-Zoupas integrability condition (3.33) holds.

The existence of Hamiltonian HX can be intuitively motivated by considering

small perturbations of the geometry around vacuum AdS. In this case, M becomes

(diffeomorphic to) a Rindler patch of AdS, and HX(M) becomes the Rindler energy.

Eq. (3.53) leads to an infinite set of constraints that aAdS spacetimes must

satisfy. These come from the fact that in any well-defined CFT, relative entropy

obeys the positivity and monotonicity constraints (3.2), (3.3). Thus, for any well-

defined spacetime, the vacuum-subtracted quasi-local energy must be positive for

any ball of any size,

EnergyS (M)− EnergyAdS (M) ≥ 0, (3.55)

and for any two balls contained in each other, A ⊆ B, the (vacuum-subtracted)

quasi-local energy of the contained ball must be smaller than that of the containing

ball,

EnergyS (MA)− EnergyAdS (MA) ≤ EnergyS (MB)− EnergyAdS (MB) . (3.56)
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Any low-energy effective theories which have as solutions spacetimes not obeying con-

straints (3.55), (3.56) cannot admit well-defined UV completions, and must instead

lie in the swampland.

Conditions (3.55), (3.56) are very different from the constraints usually imposed

on gravitational spacetimes. Indeed, to demand consistency of a spacetime it is

common to demand a (pointwise or integrated) energy condition, which often (but

not always, see [24, 35]) is postulated, rather than derived from some fundamental

theory.9 In contrast, our constraints are obtained by demanding the consistency

of the CFT dual, and a priori have nothing to do with bulk energy conditions.

However, in Sec. 3.6 we will see that in a certain limit, constraints (3.55), (3.56) do

in fact reduce to integrated energy conditions. It remains an open question whether

in general settings our relative entropy constraints can be implied by bulk energy

conditions, and also whether they imply energy conditions when the spacetime is not

close to vacuum.

An interesting connection to our results may be provided by Chen, Wang and

Yau’s work on quasilocal energy and mass [49–51]. Their work introduces a notion

of quasilocal mass for arbitrary regions of spacetime in general relativity that obeys

certain nice properties: (1) it is positive assuming the dominant energy condition, (2)

it asymptotes to the ADM mass at spatial infinity in asymptotically flat spacetimes,

(3) it is monotonic (but not additive) under increase of the spatial domain, and

(4) it reduces to the Bel-Robinson tensor in vacuum, and to the matter density in

non-vacuum. These properties are strongly reminiscent of the properties satisfied by

our notion of quasi-local energy. However, the Wang-Yau mass is defined in a very

different way, by minimizing over isometric embeddings in flat spacetime, so a priori

9In recent literature the null energy condition has been a popular choice, but other variants are
the weak, strong or dominant energy conditions [48].
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the connection to our quantity, if any, is unclear. It would be interesting to pursue

this direction further, as it would help clarify, purely on the geometric side, which

types of spacetimes satisfy our constraints. Quasi-local energy in asymptotically AdS

spacetimes has recently been studied in [52,53].

3.6 Perturbative bulk constraints

In this section we study perturbative consequences of Eqs. (3.55) and (3.56). These

results have appeared in the literature as a series of papers, going to successively

higher orders in the perturbation of the fields around vacuum. We will show how

this hierarchy of results naturally follows from the nonperturbative equations (3.55)

and (3.56).

3.6.1 The entanglement first law is equivalent to the lin-

earized Einstein equations

When state ρ is arbitrarily close to the vacuum, the finite difference ∆ turns into an

infinitesimal difference, δ. The matter fields contribute at quadratic order in δ, thus

to leading order in δ the bulk is pure gravity.

From Eq. (3.42), off-shell we have

S (ρ|ρvac) = δ

∫
M

[dQX − d (iXB)] . (3.57)

To first order in δ, the change in the minimal surface shape can be ignored, so the
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variation passes through the integral and using Eq. (3.26) we obtain

δS (ρ|ρvac) =

∫
M

{ωωω (δg,LXg)− δCX − iX (Eg · δg) + diX [Θ (δg)− δB]} . (3.58)

Since we work around empty AdS, X is given by expression (3.48), which is a Killing

vector for the vacuum. Then LXg = 0 everywhere and ωωω vanishes since it is a bilinear

form. The vacuum Einstein equations are Eg = 0 and by definition10 δB = Θ (δg),

so that Eq. (3.58) drastically simplifies to

δ〈Hmod〉 − δSEE =

∫
M

δCX , (3.59)

where we have used Eq. (3.6). This shows that the linearized Einstein equations

δCX = 0 holding pointwise in the bulk implies the first law of entanglement entropy

for spherical domains in the boundary, δ〈Hmod〉 = δSEE. Since the first law can be

applied to balls of arbitrary size at arbitrary positions in the CFT (which correspond

to minimal surfaces covering the entirety of the bulk), from Eq. (3.59) it also fol-

lows that the first law implies the linearized Einstein equations around the vacuum

pointwise. Thus, the first law of entanglement entropy and the linearized Einstein

equations are equivalent.

The result in this section first appeared in [31, 32]; our analysis reproduces it in

a natural manner.

10For an explicit construction of B see Sec. 3.7.2.
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3.6.2 Positive energy conditions near the boundary

We now add normalizable matter to the discussion in the previous section. This

section is based on paper [1]. We consider the bulk to consist of Einstein gravity

plus matter fields dual to boundary operators of scaling dimension ∆ > d/2. We

allow for the backreaction from the matter fields to be parametrically large, however,

we will restrict our analysis to the bulk region close to the boundary. More precisely,

we take the radius R of the boundary ball to be small compared to the largest energy

scale E of the CFT,

EdRd � 1, (3.60)

so that in this region the bulk metric deviations from vacuum AdS are small.

A priori, under a change in the bulk metric, the change in minimal surface arises

in two ways: (1) from the change of the induced metric, and (2) from the change in

the position of the minimal surface. Because the surface is minimal, to first order

in δg the change in area coming from the change in position vanishes (so we did

not have to worry about it in the previous section), but it does enter at quadratic

order, corresponding to terms of order O
(
E2dR2d

)
and higher. Bulk matter dual to

a boundary operator of dimension ∆ contributes to δg at order O
(
E2R2∆

)
(because

the fields are of order O
(
ER∆

)
, and they backreact at order squared on the metric).

Consequently, without accounting for the change in minimal surface position, we can

keep control over operators of dimension ∆ < d, that is over relevant operators.

Our analysis in this section thus applies to operators with dimension d/2 < ∆ < d.

For matter dual to such operators we can use the result of the previous section,

S (ρ|ρvac) =

∫
M

2Xa
asy (Eg) b

a εεεb, (3.61)
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where Eg is now only the geometric part of the Einstein equation (including the

cosmological constant). From the Einstein equations (Eg) b
a = T ba , with T ba the bulk

stress-energy tensor, so we have

S (ρ|ρvac) =

∫
M

2Xa
asy T

b
a εεεb (3.62)

= 8πGN

∫
M

√
|g|X t

asy E ≥ 0, (3.63)

where E is the energy density in the bulk and
√
|g| is the determinant of the full

metric.

Eq. (3.63) implies that the positivity of relative entropy is equivalent to the inte-

grated positivity of the bulk energy over the region between boundary and minimal

surface. Taking an R derivative brings us to the monotonicity,11

∂RS (ρ|ρvac) = 8π2GN

∫
M

√
|g|
(

1 +
x2 + z2

R2

)
E ≥ 0, (3.64)

where we have used the explicit form (3.48) of Xasy (and that it vanishes on the

minimal surface).

Eqns. (3.63) and (3.64) are dictionary entries between the positivity and mono-

tonicity of relative entropy and an integrated positive energy condition in the bulk.

Because we are working with inequalities, expressions (3.63) and (3.64) cannot be in-

verted to obtain the pointwise positivity of bulk energy density (and indeed the bulk

energy density doesn’t have to be pointwise positive in asymptotically AdS spaces).

We can deduce one more inequality by taking one more R derivative and assuming

11R is the radius of the boundary ball, as before.
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that the bulk energy density is positive,

(
∂2
R +R−1∂R −R−2

)
S (ρ|ρvac) = 16π2GN

∫
∂M2

√
|g|E ≥ 0. (3.65)

Here ∂M2 denotes the minimal surface. Eq. (3.65) is a boundary prediction obtained

from the bulk, for the operators and region sizes to which our analysis applies, and

for holographic states.

Beyond the perturbative order discussed in this subsection, it is possible to push

the analysis to second order in δ. This was done in [25], and the result is that Fisher

information on the boundary is dual to canonical energy on the gravitational side,

δ2S (ρ|ρvac) = WM
(
δg, δ

(
LXasyg

))
. (3.66)

Fisher information is positive, so the canonical energy around the vacuum is positive.

This implies that the bulk (in our case the AdS-Rindler wedge) is stable to linearized

axisymmetric perturbations. For more details see [25,47].

3.7 Towards holographic reconstruction

In this section and the next we discuss to what extent Eq. (3.42) can be inverted to

recover bulk data from the boundary. There are two steps to such a reconstruction:

(1) massaging Eq. (3.42) into a form suitable for inverting, and (2) performing the

inversion. As we will see, step (1) can generally be accomplished. However, for

the second step, only partial results currently exist in the mathematics literature on

integral geometry, so we will only be able to invert our formula near the boundary

(Sec. 3.8). Reconstruction deeper in the bulk will have to await further developments
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on the mathematical side.12

For the rest of section 3, we will restrict our discussion to spacetimes that are

time-reflection symmetric around a slice S of constant time.13

3.7.1 The general argument

We parametrize the minimal surface ending on ∂B, for a spherical domain B of radius

R, by introducing a function f(xa) such that on the minimal surface

f(xa) = R. (3.67)

Since we assume time-reflection symmetry, f is an even function of t. Furthermore,

time-reflection symmetry implies that in a neighborhood of S the metric obeys

∂tgtt = ∂tgαβ = O(t), gtα = gαt = O(t), (3.68)

with the Greek indices running over the spatial directions.

The introduction of f allows us to construct an explicit expression for the vector

field X (that we naturally define through a 1-form),

X(R) = −2πt
√
−gtt

fdf

R||df ||
−
(
R− f(xa)2

R

)
π
√
−gtt dt
||df ||

. (3.69)

12Or bold conjectures from physics.
13The analysis of Sec. 3.7 and 3.8 relies on the parity of fields under t → −t reflections (in

situations of reflection symmetry), and as such it is not as straightforward to generalize to arbitrary
time-dependent situations as it is for the discussion in Sections 3.4 – 3.6. However, it is likely that
an appropriate generalization to time-dependent situations exists.
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Here df is the gradient of (scalar) function field f ,

df = ∂afdx
a, (3.70)

and ||df || is its norm, ||df || =
√
gab∂af∂bf . The gradient vector field ∗df = gab(∂af)∂b

is orthogonal to the minimal surface ending at radius R.

We now check that vector field X (Eq. (3.69)) satisfies the desired properties

on the boundary and minimal surface (vanishing and giving the area element on the

minimal surface, and asymptoting to the AdS Killing vector Xasy (3.48) near the

boundary). First, we note that X is defined such that it vanishes on the minimal

surface at f = R, t = 0. Near the boundary we have

f →
√
t2 + z2 + x2,

√
−gtt||df || → 1, (3.71)

so that Xa → Xa
asy. Finally, with dS the area element (d− 1)-form a direct compu-

tation shows that

− 1

4κ2

(
DaXb −DbXa

)
εεεab

RT
= − π

κ2

(
naub − nbua

)
εεεab =

2π

κ2
dS, (3.72)

where in the last equality we used identity

Aa (n)εεεa = NaA
a (n−1)εεε (3.73)

for arbitrary vector A and unit normal N (see e.g. Appendix B of [54]). Thus,

explicit construction (3.69) satisfies all the required conditions on the boundary and

minimal surface.

Vector X is defined such that it behaves nicely under the action of various com-
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binations of R and its derivatives. In particular, via direct computation we obtain

(
∂R +R−1

)
X = 2πT, (3.74)

where T is a time-like vector defined (through a 1-form) as

T = −
√
−gtt
||df ||

dt. (3.75)

Vector T can be thought of as a kind of red-shifted time flow. Eq. (3.74) immediately

implies (
∂R +R−1

)
JX = 2πJT , (3.76)

so that (since R-derivatives also act on the minimal surface) taking R-derivative of

the integral on M we have

(
∂R +R−1

) ∫
M

JX = 2π

∫
M

JT +

∫
∂M

v · JX . (3.77)

Here v is a vector normal to the minimal surface with normalization given by

gabva(df)b = 1.

Expression (3.77) can be related to the relative entropy. Using Eq. (3.42), we

have (
∂R +R−1

)
S(ρ|ρvac) = 2π∆HT + ∆

∫
∂M

iv (JX − d(iXB)) , (3.78)

with quantity HT defined as

HT =

∫
M

JT −
∫
∂M

iTB. (3.79)
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Although object HT has the form of Eq. (3.31), we write it with a curly H to

emphasize it does not readily have the interpretation of a Hamiltonian associated

to vector field T . This is because T does not vanish on the minimal surface, so

the integrability condition (3.33) doesn’t have to hold. Intuitively, this means that

integrating δHT in configuration space, from the vacuum to the finite state, could

give different answers along different paths, which need not agree with Eq. (3.79).

For the purposes of this thesis it will remain an open problem in which situations,

if any, object HT can be interpreted as a Hamiltonian. What matters for us is that

HT will allow writing a certain combination of R derivatives acting on the relative

entropy as a surface integral, in a form which can be readily inverted using an inverse

Radon transform (when one exists).

Vector T has the property that (with raised indices) it asymptotes to the usual

time translation Killing vector near the boundary, T → ∂t, and it does not depend

on R, although it does depend on the minimal surface. However, the precise physical

meaning of T (other that it is a kind of red-shifted measure of time) is not completely

clear.

We now massage the second term in Eq. (3.78) to show that it equals zero. We

have

d(iXB) = LXB = Θ(LXg), (3.80)

where in the first equality we used that X = 0 on the minimal surface, and in the

second inequality we used that since the Wald-Zoupas integrability condition (3.33)

holds, the Lie derivative can be pulled out of Θ (cf. Eq. (3.30)).14 Thus, using

definition (3.18) for JX and the fact that X vanishes on the minimal surface, we

14The second equality in Eq. (3.80) can be thought of as the definition of B. B so defined equals
the B in Eq. (3.77), since under an infinitesimal variation δHX = δQX − iXΘ (δg).
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have (
∂R +R−1

)
S(ρ|ρvac) = 2π∆HT . (3.81)

Applying one more R derivative to this equation gives15

∂R
(
∂R +R−1

)
S(ρ|ρvac) = 2π∆

∫
B̃

iv (JT − d(iTB)) . (3.82)

The right-hand side of this formula is an integral over the minimal surface, which is

the type of object that can be inverted via the inverse Radon transform, when such

a construction is known to exist. We will cover such a case in Sec. 3.8.

3.7.2 Scalar fields in Einstein gravity

For a bulk theory of Einstein gravity plus scalar fields,

L =
1

2κ2
R− 1

2

(
∂φI
)2 − V (φI), (3.83)

the right-hand side of Eq. (3.82) can be simplified further. We employ the geometric

identity (valid for arbitrary variations δ, and up to a total derivative term we discard)

δ
(
Kεεε(d)

)
=

1

2
εεε(d) (Kab − γabK) δγab +

1

2
εεε(d)na

(
−Dbδgab + gcdDaδgcd

)
. (3.84)

Here γab, Kab, and ε(d) are the induced metric, extrinsic curvature, and volume form

on ∂M embedded in the slice of constant time. Vector na is the spacelike unit normal

15The physical meaning of derivative combination ∂R
(
∂R +R−1

)
is not currently clear. Near the

boundary, this combination annihilates the AdS Killing vector Xasy pointwise, however there is no
obvious reason why this operator remains the correct object to apply to the relative entropy when
the minimal surface goes deep in the bulk.
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to ∂M.16

For this choice of Lagrangian, the boundary term can be chosen to be the usual

Gibbons-Hawking term plus counterterms,

B = − 1

2κ2

(
K +

d− 1

`

)
εεε(d) + F(φI), (3.85)

with F(φI) the scalar counterterms, if any, necessary to obtain ∆〈Hmod〉 when inte-

grating QX − iXB on B.17 With choice (3.85) for the boundary term, we have

δB = Θ
(
δg, δφI

)
+

1

2κ2
εεε(d)

(
Kab − γabK − γabd− 1

`

)
δγab +

(
DaφI

)
δφI εεεa − δF.

(3.86)

In general, the last three terms in this equation need not be zero. However, for the

Lie derivative in the T direction, δ = LT , parity conditions (3.68) (together with

the fact that the φI ’s are scalars, rather than pseudoscalars), ensure that these three

terms do vanish on the time-slice containingM. Thus, only on the Ryu-Takayanagi

surface we have

LTB = Θ
(
LTg,LTφI

)
, (3.87)

such that Eq. (3.82) simplifies to

∂R
(
∂R +R−1

)
S(ρ|ρvac) = −2π∆

∫
B̃

iviT (L− dB) . (3.88)

This shows that for Einstein gravity plus scalar fields, being able to perform the

inverse Radon transform would recover the action at a bulk point (including the

16Identity (3.84) is useful when considering the variation of the Einstein-Hilbert action with
Dirichlet boundary conditions; see e.g. Eq. (34) of [44].

17Since we are only interested in normalizable scalar fields, due to the rapid decay of the φI ’s
towards the boundary, these counterterms should be ignorable in most situations, if not in all.
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Gibbons-Hawking-like term) in terms of the boundary relative entropy.18

3.8 Inverse Radon transform near the boundary

Although Eq. (3.88) cannot generally be inverted with the current mathematical

technology, if we restrict to points close to the boundary it turns out that it is

possible to reconstruct bulk information from the boundary. In this case, the object

recovered is the bulk stress-energy tensor. As in Sec. 3.6.2, we restrict our analysis

to small radii EdRd � 1, and to bulk fields dual to operators with scaling dimension

d/2 < ∆ < d.19

We start from Eq. (3.65),

(
∂2
R +R−1∂R −R−2

)
S (ρ|ρvac) = 16π2GN

∫
∂M2

√
|g|E. (3.89)

When the background is empty AdS, the minimal surface ∂M2 ending on a sphere is

hyperbolic, and so it is totally geodesic (meaning that all geodesics on the minimal

surface are also geodesics on the constant time slice in which the minimal surface

is embedded). When ∂M2 is totally geodesic, the right-hand side of Eq. (3.89) is

the Radon transform, and its inverse for hyperbolic spaces exists in the mathematics

literature [55,56], as we now explain.

18A related subtlety, as explained by Iyer and Wald [44], is that adding to B any function only
dependent on the intrinsic geometry on ∂M does not change Eq. (3.87). On B, this gauge freedom
is fixed by the requirement to recover the modular Hamiltonian expectation value, however there is
no similar requirement on B̃. Any inverse Radon transform reconstruction, if it exists, would have
to somehow perform this gauge fixing on B̃.

19It it not hard to see that in this limit we should recover the boundary stress-energy tensor, and
not the action: Eq. (3.88) holds when the right-hand side is purely geometric (and off-shell), in
which case taking the variation ∆ turns the integrand into the geometric part of the equations of
motion, which equals the bulk stress-energy tensor. This is another way of recovering Eq. (3.65).
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For a D-dimensional space and a function f , the Radon transform Rf integrates

f on a surface that is a totally geodesic submanifold of dimension n < D, and

associates the result to the surface in the space of totally geodesic submanifolds.

The inverse Radon transform R∗Rf works backwards: It integrates over totally

geodesic submanifolds and associates the result to a point in the usual space; the

result is just the value of the function at that point.

For odd d and totally geodesic submanifolds of dimension n = d − 1, according

to [55], the (inverse and direct) Radon transforms obey the identity

f =
1

(−4)(d−1)/2πd/2−1Γ(d/2)
Q (∆)R∗Rf, (3.90)

with f a test function (defined on the usual space) and Q (∆) a polynomial built out

of the Laplace-Beltrami operator ∆,

Q (∆) = [∆ + 1 · (d− 2)] [∆ + 2 · (d− 3)] · . . . · [∆ + (d− 2) · 1] .

Applying Eq. (3.90) to (3.89), we thus obtain the energy density at a point in the

bulk in terms of the boundary relative entropy as

E =
1

(−4)(d+3)/2πd/2+1Γ(d/2)GN

×Q (∆)R∗
(
∂2
R +R−1∂R −R−2

)
S(ρ|ρvac). (3.91)

Eq. (3.91) is a toy (and yet quite complicated) example of bulk data reconstruc-

tion in terms of boundary information. There exists a similar formula for even d,

see [56].

At this point we should remember that Eq. (3.91) is approximate, and the ap-

proximations creep in several places: (1) the formula we inverted, Eq. (3.89), is

approximate and only valid near the boundary, (2) the inversion formula (3.90) is
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valid for hyperbolic spaces (with no backreaction), and (3) there are totally geodesic

surfaces that pass through the reconstruction point at z and go deep into the bulk

(but their contributions are negligible when Ez � 1, with E the typical energy scale

of the CFT). Thus, it would be interesting to obtain an exact inversion formula of

Eq. (3.88).
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Chapter 4

Conclusion

4.1 Future directions

We now discuss some of the natural follow-up directions that arise from the work in

this thesis. Some of these ideas may not be too hard to put in practice, while others

may be considerably more difficult.

• A straightforward (if not too exciting) direction would be to give examples

of some theories that satisfy the inequality constraints derived in this thesis,

and examples that don’t. Apart from answering a very natural question, this

would potentially shed light on what goes wrong when our constraints are

not satisfied. It is tempting to speculate that the pathology has to do with too

much negative energy density in the bulk, and consequently with a Hamiltonian

becoming unbounded from below, but it would be desirable to make this precise.

• Another open thread is generalizing our discussion to time-dependent cases.

Although most of the thesis can be extended to discussions on maximin surfaces

(even if we did not spell this out), Sec. 3.7 on holographic reconstruction will

need considerably more work. However, the computations needed are similar
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in spirit to the computations appearing in the HRT proposal, so there is some

hope this could be made to work.

If the discussion is expanded to the time-dependent case, it will probably in-

crease the discerning power of the constraints, since now they will also explicitly

know about the dynamics of the theory.

• Obtaining the boundary dual of the Einstein equations in the nonlinear regime.

Although this seems like a most natural question to ask, it may turn out to not

be too closely related to the discussion in this thesis, and the linearized result

may turn out to have been some sort of coincidence. This is because answering

it will almost certainly require new ingredients on the CFT side, which reduce

to the first law of entanglement entropy in the linearized regime, and it is not

clear what these ingredients should be. A (possibly related) complication is the

existence of entanglement shadows: bulk regions not probed by any minimal

surface, which exist even in nice geometries (such as AdS stars) [57]. Since the

Einstein equations hold everywhere, it is tempting to conjecture they should

not be associated to minimal surfaces.

• Connecting our results to the Wang-Yau quasilocal energy and mass. This is a

very exciting direction, but it may be hard to put in practice. Our results are

(superficially at least) similar to the features of the Wang-Yau quasilocal mass,

and it is tempting to conjecture they may be related. However, the definition

of the Wang-Yau quasilocal mass is very different from our our definition of

quasilocal energy, and it is not clear the two can be reconciled. It would be

very interesting to do so, or to prove that no reconciliation exists. A related

question is whether our constraints are implied by bulk energy conditions, or

whether they imply some energy condition.
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• Radon transform inversion for asymptotically AdS spaces. This is almost cer-

tainly very hard, but it may not be impossible, at least in certain cases. Since

the mathematics literature on the subject is currently lacking, some radical ap-

proaches would be needed. Two ideas come to mind: (1) Based on expression

(3.90), make some informed guesses as to what the inversion formula should

be in general, and try to check these guesses against some examples, deferring

proof for later, and (2) Try to use advanced number-theoretic machinery, using

as inspiration what was done in [58]. The first approach has the disadvantage

that it is accidental, so even if it works, it will not give immediate understand-

ing, and the second approach has the disadvantage that it will probably be of

considerable difficulty to set up the necessary machinery, if it even is possible.

However, given sufficient time, if this second approach works it will provide a

beautiful connection between general relativity, integral geometry and number

theory.

• Is there a relation between our work and the “Complexity Equals Action”

story [59,60]? The reason to suspect this is that the bulk action plus boundary

term L − dB plays a central role in both stories. However, the ways L − dB

enters are very different, and a priori there is no motivation to connect the

two, since [59, 60] use the action in conjunction with non-minimal extremal

surfaces, for which our results have no predictive power. But it may not be

too far-fetched to speculate that with one more conceptual leap, a natural

connection could be made.
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4.2 The distant landscape

Before concluding, we should take some time to speculate what lies ahead for the

field of holography. This section is highly speculative, and highly heretical. Unlike

in the rest of the thesis, the tone in this section is lighthearted, and the section itself

should not be taken too seriously.

Recent advances [61, 62] have pointed out that there exists a surprising connec-

tion between holography and quantum error-correcting codes (QECs). The reason

for this is natural: bulk reconstruction from the boundary has a redundancy (and

nonlocality) structure which is best captured by a QEC. However, QECs, like any

error-correcting code, are most naturally associated to finite fields Fq. Thus primes

come into play, and an immediate question is whether there exists a natural bulk

structure associated to the discreteness of a finite field, and with number-theoretic

constructs in general. The answer turns out to be positive, and the structure is

known as a Bruhat-Tits tree, which (for no field extensions) can be thought of as a

discrete version of EAdS3. Superficially an infinite tree of uniform valence p+ 1, and

fundamentally a very deep object, a Bruhat-Tits tree can be thought of as the bulk

dual of Qp. It turns out it is possible to do holography on a Bruhat-Tits tree, result-

ing in a p-adic analogue of AdS3/CFT2 [63–65]. Perhaps more surprisingly, it also

turns out that for a QEC of type [[p, 1, (p+1)/2]]p, the HaPPY tensor networks of [62]

can be naturally associated to the Bruhat-Tits tree dual to Qp [65]. Thus, HaPPY

tensor networks naturally encode information about bulk reconstruction at finite

places, and not about the bulk reconstruction of the usual anti-de Sitter space (the

Archimedean place). In some sense, one can think that recovering the Archimedean

place then corresponds to taking the limit p → ∞, but this limit is not continuous

in the usual sense of the word.
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Up to now, all we have done is introduced a (very strange) kind of holography.

However, there are three reasons to think this p-adic holography is worth studying:

1. Paper [65] argues that p-adic holography is as natural as HaPPY tensor net-

works. If we believe tensor networks are a useful tool for studying holography,

then the p-adic version automatically follows.

2. The finite places, together with the Archimedean one, can naturally be grouped

into an adelic structure. It may turn out that by studying finite place hologra-

phy, results (such as entropic inequalities) can be derived at the Archimedean

place via adelic formulas. This type of approach is used in certain branches of

mathematics.

3. It may turn out that without considering the finite places, general relativity

at the Archimedean place is not self-consistent at the quantum level. This

may sound most heretical (and it is!), but it is motivated by the firewall para-

dox [66], and by the lore that in certain examples of AdS3/CFT2, there should

be degrees of freedom not visible in any semi-classical treatment. Adelic holog-

raphy may help here because by equipping each Archimedean place with finite

counterparts, we are introducing additional degrees of freedom, as well as addi-

tional entanglement. If one is willing to entertain such an idea, then a natural

suggestion would be that to obtain quantum gravity at the Archimedean place,

one should first quantize the finite places, and then try to make sense of the

large p limit. We caution the reader that this will still be quite an endeavor.1

Regardless of the veracity of the three points above, if we are willing to accept

that p-adic holography is worth studying, a natural course of action can be outlined:

1As is customary in this type of wishful thinking, many facts presented here have been simplified,
tamed or made to appear friendlier than they actually are.
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1. Reference [65] does not discuss bulk dynamics beyond the probe limit. The

tree should be dynamical, and its equations of motion should be meaningful in

some way. This is a natural starting point, see references [67,68].

2. Reference [65] is also stuck in Euclidean space. It is tempting to conjecture

that going to Lorentzian signature should require imaginary quadratic exten-

sions, and that whatever Lorentzian p-adic holography is, it should map in the

Archimedean limit to the recent developments in kinematic space and tensor

networks of [69–71]. Indeed, the two copies of kinematic space present in [71]

look like they may naturally arise from a quadratic extension. This direction

would marry the two leading tensor network models currently present in the

literature, HaPPY tensor networks and kinematic space tensor networks. Once

Lorentzian p-adic holography has been established, Euclidean holography for

real extensions should be revisited to see if the extension introduces any new

features. Lorentzian p-adic holography would also provide a p-adic window

inside the black hole horizon. This should be interesting in conjunction with

the Firewall, ER = EPR, and “Complexity Equals Action” stories.

3. To go to higher dimensions, one may want to consider Bruhat-Tits buildings,

which have flats, apartments and chambers.

4. Once the interplay between Lorentzian and Euclidean p-adic holography is

understood, one should also visit the dS/CFT correspondence [72], as there

should be a p-adic realization of de Sitter space. The adelic norm comes with

a cutoff, and it would be quite remarkable if a natural (high p) cutoff could be

related to a small cutoff at the Archimedean place via adelic formulas.2

2This is yet more heresy, and up to evidence to the contrary should be treated as wishful thinking.
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5. After p-adic holography is well established, it would be interesting to see how

much of the holographic dictionary can be recast in terms of various types of

trace formulas, both at the finite and Archimedean places. This is motivated

by the fact that certain questions in holography naturally connect to questions

in integral geometry, and both may be amenable to this type of technique (for

an application of trace formulas to integral geometry see [58]).

6. If p-adic holography is to be taken seriously, there should be a string-theoretic

realization of it. The adelic bosonic string has been studied in some detail

(and is as pathological as its Archimedean counterpart), but literature on adelic

strings accounting for fermions is nonexistent. It may be possible to write down

such a theory (at least naively), in which case obvious immediate questions

would be the critical dimension3 and anomaly cancelation. Zabrodin [73] gives

a guess for the fermionic string action; this may be a natural starting point.

7. On-shell scattering amplitudes. If the entanglement entropy cone [23] is remi-

niscent of the Amplituhedron polytope [74], then Bruhat-Tits trees should be

the analogue of on-shell diagrams [75]. There are, of course, some differences:

on-shell diagrams are finite, whereas trees are infinite (this may be because

a diagram describes a local event, while the tree is the analogue of an infi-

nite spacetime). Other differences include the valence of the vertices, and the

connectivity, as well as other elements. But given the deep parallels between

various versions of Yang-Mills theory and of gravity, it should be interesting to

see if this naive analogy can be made precise.

3In the bosonic case an argument can be made that the critical dimensions at all places are
equal, D = 26. It is not clear if this should still be the case for an adelic string admitting fermions.
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