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Abstract

The basic principles are outlined concerning the existence
of a configurational emf. Such an emf is expected from energy
conservation principles as applied to the flow of the electron gas
in the form of an electric current. The experimental details are
described relatihg to the effort to detect thié .effect in thin films
of bismuth., Quantitative results of this effort are discussed. A
theoreticaianaljrsis, with application to bismuth, follows from
which are derived the equations describing the phenomenon. These

equations are discussed with respect to the experimental results,
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I. INTRODUCTION

The phrase ''electron gas' has been a familiar one to physicists
for over half a century. It was first introduced by Drude (1) in 1900
to explain the apparent transport properties of the electrons in a
metal. These properties are evidenced by the thermal and electrical
conductivity of metals. The theoretical description of the properties
of the electron gas and of the internal collision mechanisms which
result in a mean free path or mean collision time have undergone
considerable metamorphosis with the advent of quantum mechanics.
But the picture of a gas of relafively free electrons bound to the mac-
roscopic volume of the solid rather than to individual ion cores has
survived as a useful physical model,

The phrase '"electron gas' and the accompanying physical
picture suggest the possible existence of electronic fluid hydrodynamic
properties in addition to the well-known dissipative transport proper-
ties. In particular, one is led to speculate on the possible existence
of a Bernoulli effect in electron flow.

In classical fluids this effect manifests itself as a drop in
pressure in a constricted region of flow. The physical basis for this
drop in pressure lies in the conservation of mechanical energy. A
decrease in the potential energy of the fluid is required to balance

the increase in kinetic energy. The increase in kinetic energy is



associated with the higher flow rate in a constriction. The pressure,
being a measure of the potential energy, must be lower in the con-
stricted region of flow where the kinetic energy is large.

In a classical fluid the presence of dissipation effects due to
collisions of the particles of the fluid with the walls of the container
does not erase the Bernoulli effect. -Rather, it tends to mask it.

The dissipative effects, as manifested in the viscosity of the fluid,
add to the inertial ones in determining the motion of the fluid. How-
ever, if the viscosity is high, clearly, the dissipative effects will
dominate in determining the motion. The inertial effects, although
still present, will be of higher order relative to the dissipative ones.
For example, in a viscous fluid there must be a pressure gradient
throughout to maintain a constant flow rate. If the flow is caused to
move through a constricted region there must be an additional gradient
in the constricting region to accelerate the fluid into the constriction.
Depending upon the viscosity of the fluid the latter gradient may be
quite small compared to the viscous pressure gradient which must
exist just to keep fluid moving. The Bernoulli gradient accelerates
the fluid and that is therefore here called "inertial." The viscous
gradient is proportienal to the flow velocity and merely counteracts
the dissipative effects in the fluid which tend to stop the flow. Since

by the conservation of mass or the continuity equation the fluid must



move faster in a constricted region there must be an accelerating
pressure gradient in the constricting region to speed up the flow.
Regardless of the magnitude of the viscosity, this accelerating pres-
sure gradient is present and simply adds to the velocity-proportional
gradient which maintains the flow in the face of the dissipative effects
of viscosity.

It seems reasonable that a similar analysis should apply to
electron gas flow. In the theoretical section a detailed mathematical
description of the problem will be given which indicates that this is,
in fact, the case. An indication of the physical reasoning which
underlies the analysis may be obtained from the following consider-
ations.

In the electron gas of a metal the dissipative effects dominate
over the inertial ones. Unlike a viscous fluid, however, the dissipation
arises from the transfer of momentum and energy to the lattice vibra-
tions rather than to the walls. The electrons collide with phonons
and lattice imperfections predominantly. Regardless of the nature of
the collisions, however, the two fluids have in common the need for
the presence of a force merely to maintain the flow or current. The
force is needed to counteract the continual scattering of the forward
momentum into random motion by the collisions. In the electron fluid

this force is the applied electric field which by Ohm's law is



proportional to the flow velocity or to the current. The electric field
in the electron gas is the analogue of the pressure gradient in vis-
cous : fluid flow.

Suppose that the electric current flow passes through a con-
stricted region. By virtue of the equation of continuity and the relative
incompressibility of the electron gas the flow velocity of the electrons
must be greater in the constricted region. The incompressibility
property of the electron gas is imposed by the uniform background
density of positive charge from the ion cores. They keep the electron
density uniform on penalty of building up high internal electric fields
in the metal. Since the current must be higher in a constriction as
indicated by the equation of continuity, and the density of electrons
must be relatively constant because of the positive ion core background,
it follows that the electron flow velocity must be higher in a constricted
region of flow.

Now in analogy with the hydrodynamic problem the question
is posed: What accelerates the electrons over the constricﬁng or
narrowing region so that they move faster, as they must, while travel-
ing in the constriction? Unless there is some unusual interaction
between the lattice and the electrons in the constricting region so that
the lattice provides the flowing electrons with thé accelerating kick

which they need to move faster, there is no solution but that there



must be an extra inertial field present to provide this acceleration.
As in the case of viscous fluid flow this field is superimposed on the
Ohmic one already present to counteract the electrical resistance of
the metal.

An idealized expected potential distribution is indicated in
figure 1. The step shown in the potential at the constriction cor-
responds to the inertial impulse field which must accelerate the elec-
trons from the low velocity they have while moving in the wide region
to the higher flow velocity characteristic of the narrow region.

The whole concept may be summarized in the statement that
Ohms law is approximate. A more complete statement of Ohms law
should include an inertial term. The modified single parameter law

might read

J£ T ?-“/—'J (1)

where &€ is the electric field, jk the current density and ¢ the con-
ductivity. The first term on the right constitutes the additional inertial
term which should be included and comes from a simple statement of
Newton's law. . In dealing with a steady state none of the quantities

are time varying so that the equation becomes
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Hlere the inertial term takes the form of a spatial derivative because
of the apparent time variation of current seen by the flowing electrons
due to their spatially non-uniform drift. Itis based on the assump-
tion that the current density, j, is proportional to the flow velocity

of the electron gas. The first term on the right yields the configura-
tional emf on constricting the current flow in exact analogy to the
classical hydrodynamic case. Clearly a first guess regarding
constant, C, of equation 2 follows from application of Newton's law

to the electrons. This yields

- L.
5'"‘ ‘2*77163

(3)

where n is the number of electron current carriers per unit volume,
‘@ is the electljonic charge and m is the electronic mass. This
estimate is not unreasonable providing the quantities n and m are
properly interpreted.

It should be mentioned here that equation 1 does not represent
the only possible modification of Ohm's law which might conceivably
give rise to a configurational emf. At least one other reasonable
modification might cause such an emf. This revision stems from
the’ idea that the current deknsity should be guided by the total electric
field seen by the current carriers. They see the applied field, 5 ,

plus the magnetic deflection field uxB. The vector e represents



the flow velocity, and is related to the current density j.

— / —
*xe (4)

and B is the magnetic field due to the current flowing in the medium.
This magnetic field is related to the current density through one of
Maxwell's equations
— —_
e f = VXD (5)
where the c‘oefficient’ By is the permeability of free space. The

further modification of Ohm's law is contained in the equation
7.—_— Q-(E——;—/é-fxg) (6)

The net two-fold effect of this self -magnetic deflection emf
is as follows: (a) It causes a slight lateral build-up of charge on the
surface and in the core of a current carrying cylinder which charge
provides a field that cancels the magnetic lateral deflection field.
(b) This surface charge permits the current flow lines to cross the
electric field flux lines at a small angle everywhere in the current
carrying region so that there is a small component of electric field

perpendicular to the current flow which just balances the magnetic

deflection force on the current carriers,



Both of the modifications of Chm's law - those of equations 1
and 2 and that of equation 6 - follow from the application of the Boltz-
mann transport equation to the conduction electron distribution in a
metal. In a succeeding section a detailed analysis will be made to
derive these modifications using the Boltzmann transport equation
and the proper statistics for an electron gas in a metal. The fore-
going arguments are not meant, therefore, as proofs but have been
given rather to indicate the motivation for this research project and
the general lines along which work was undertaken. The actual proofs
lie 1n the detailed theoretical analysis and in the experimental veri-
fications, discussions of which will follow.

Before continuing with the more esoteric features of the dis-
cussion, however, two very elementary preliminary calculations will
be made, They will be useful as a basis for comparison throughout
the pages that follow.

Using the simple hydrodynamic analogue point of view, as
exhibited by equations 2 and 3, it is evident that the voltage, ’A—[/‘ ;

of figure 1 may be calculated from
/
A(—G’V)-}- A(Z—mu‘?')::O' (7)

The speed of flow u is proportional to the current density j as
shown in equation 4. If the current density in the wider area of flow

is effectively zero in comparison with that in the narrower constricted



region - and this will generally be the case in the experimental
arrangements - then the configurational voltage due to this hydro-

dynamic cause may be written

- - __-Z_-z__ y Yot fz'
aVe=Te=- Chu = 357,53 (8)

where Vc refers to the hydrodynamic electrical potential in the
narrow region relative to that in the unconstricted region. In egqua-
tion 8,1 is the total current and A is the cross-sectional area of

. the constricted region of flow.

The second calculation concerns the apparent configurational
emf due to the self-magnetic field force shown in equation 6. The
net effect of this term is to cause the equipotentials to have a slight
curvature evenin a region of uniform current flow. This character-
istic is shown in figure 2. The curvature will be negligible in the
wider flow regions compared to that in the constricted region where
the magnetic fields are higher. An infinitely thin potential - sensing
probe which touches the surface of the conductor in the constricted
region will be at an electrical potential which differs from the ex-

pected ohmic potential by the amount

e

ﬂ S
V. =~5s ffxB-c/r' (9)
O
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The potential Vm is thatat thé surface of the conductor - where
the probe makes contact with the conductor - relative to that at the
center of the conductor where the potential is just the ohmic one.
This potential difference is caused by a lateral chaige distribution,
the field of which just cancels the effect of the magnetic deflection
forces on the current carriers. The distance R is the radius of the
conductor and the integral is taken from the center of the conductor
where the magnetic field is zero along a path perpendicular to the
current flow lines out to the point where the idealized potential probe
meets the cc»n’duc‘tm'°

For the case of the right circular cylinder of figure 2 the

integral of equation 9 reduces to

2
Z/ N S 4 |
w .fr e»n g (10)

where Mo is the pérmeability of free space. Because in a sig-
nificantly wider region of flow the potential, Vm, between the center
and the surface of the flow will be negligible compared with that dif-
ference in a narrow flow region the entire configurational emf due

to this "self-Hall-effect'' will ir. general be given by

o L~

The quantity vy is introduced as a dimensionless geometrical factor
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to account for the dependence of this voltage upon the shape of the
specimen cross-section. The factor vy is unity, of course, for a
right circular cylinder. As in the hydrodynamic case the voltage

Vm will be the potential of the narrow region probe with respect to a
probe at the wider region of flow. The area A in the formula repre-
sents the cross-sectional area of the constricted region of flow.

The essential quality which makes the configurational emf
detectable is its dependence on the square of the current. Itis true
both for the magnetic and for the hydrodynamic effects that the
associated configurational emf has the same polarity regardless of
the direction of current flow. The polarity of these emf's depends
only upon thé sign of the charge of the current carriers. The basic
equations 8 and 11 have been derived assuming the carriers to be
negatively charged.

The constant polarity makes the experimental detection of the
configurational emf quite simple in principle. Itis necessary only
to send an a.c. signal through a stepped specimen like the one of
figure 1 and to put a d.c. voltmeter across the step. The ohmic part
of the potential drop is not recorded by the d.c. meter because its
average is zero due to polarity reversal each half cycle. This meter
will therefore read the configurational emf directly since its average

is not zero.
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II. EXPERIMENTAL PARTICULARS

1, Specimen Material

The primary experimental objective was the detection of the
existence of a configurational emf. Therefore the major considera-
tion regarding specimen material revolved about obtaining as large a
signal as possible. Equation 8 clearly indicates that, insofar as the
specimen material is concerned, it is desirable to have n as small
as possible. Among the metallic elements cesium has the largest
atomic volume, i.e., 7l cm™ /gm. atom (2). If n is to be interpreted
as the literal number of valence electrons per unit volume then cesium
would be the best specimen material to use. It may be deduced from
equation 8 that the order of magnitude of the expected result for
cesium would be

Z ~ ~2Z .2
c . . o 2
where Vc is in volts if the current density j is in amperes/cm .
For this case then one would expect an emf of only about 10 milli-

. R . 7 2
microvolts for a current density input as high as 10 amperes/cm .
Such high current densities are obtainable under proper conditions.,
And equipment has been developed to detect signals as small as 10~

volts. It is clear, however, that the technological task of doing the
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experiment in an ordinary conductor would be formidable.

If n referred to the effective number of current carriers
present in the material rather than to the total number of valence
electrons then new possibilities present themselves. In semicon-
ductors, for example, the effective number of current carriers, as
deduced from the Hall coefficient, may be quite small., In terms of

the Hall coefficient for ideal metals equation 8 may be written
_ / 73v 4 4
7/(“ - 2 e /7/ / (13)

where H = -1/en is the Hall coefficient.

Although the Hall coefficient for cesium is only 8X10—4
cm3/coulomb {2), that for bismuth is one thousand times larger.,
For some semiconductors at low temperatures the Hall coefficient
may reach 1O7cm3/coulo:mb or higher, Of all the metals, however,
it is clear that bismuth should give the largest effect with antimony
running a close second. For bismuth the Hall coefficient is about
0.6 cm3/coulomb. The expected order of magnitude of the configura-

tional emf for bismuth would be

%'(B,') = /ﬁ—/“/z (14)

c e 2 ‘o
where again j is an amperes/cm”~ and Vc is in volts. A current

density of 105 amperes/cm2 would be necessary to produce a microvolt
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signal. Experience with tin whiskers had shown that current densities
7 2 . N

up to 10 amperes/cm” can be sustained in filaments of 0.5 square

micron cross-section, With these facts in mind, in conjunction with

considerations on the relative ease of handling, the element bismuth

was chosen for preliminary investigation.

2. Specimen Design

The easiest way to obtain the small sample dimensions which
are required is through the elvaporation of thin films. Bismuth lends
itself nicely to this process. It vaporizes’at a relatively low tem-
perature. The bismuth was evaporated from a molybdenum boat in
a vacuum of about 5x10—5 mm of ,fnercury,, The bismuth beam fell
onto a glass microscope slide through a mask which determined the
physical shape of the final specimen.

In the regions where external electrical contacts were to be
made hot indium was bonded to the glass before evaporation. The
bismuth was then evaporated through the mask onto the glass and
onto the indium smears. Wires were indium-soldered to the smeared
regions after the evaporatién was completed. Figure 3 shows a typical
specimen evaporation on a microscope slide with the evaporation
mask next to it.

The evaporation layer depth was estimated generally to be of

the order of 100 A . The width of the constricted region varied among
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the various voltage sensing points from 20 to 50 u. In effect, then,
the constricted cross-sectional area was of the order of 3 x 10'9cm2.

The evaporation mask was constructed out of a 40 mil thick
brass plate. The wider sections were cut through the plate on a mill-
ing machine. The constricted sections required more elaborate
technique. The constriction slits were of the order of 1 mil wide.

The process used to make the slits was sirnply to scribe a
"V" cut into the plate with an end-mill held at a 45° angle. The cut
was made as deeply as possible but care was taken to avoid penetra-
tion through the plate at the bottom of the "V' cut. The end-mill was
allowed to penetrate only to a depth such that the bottom of the "V"
cut lay 2 or 3 mils above the underside of the brass plate. The
final cut was ac;omplished chemically.

A slow. etch of dilute HNO3 was prepared. A volume ratio of
about 2 parts of water to 1 part of concentrated HNO3 removed brass
at a rate slow enough so that the.process was easily controlled. The
slit was made by very careful local etching with continual inspection
of progress under a microscope. In the final stages one drop of etch
solution at a time was applied to the brass masking plate which was set

under the microscope. This way the chemical milling could be stopped

as soon as the etch broke through. One of the brass masking plates is
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shown in figure 3, together with a sample‘evaporated specimen.
The constriction slits of this particular mask have been widened in
order to make them clearly visible in the photograph.

Figure 4 shows a schematic diagram of the specimen configu-
ration. Those contact points markéd "C'' are for the curr’ént leads.
The contact points marked ""M'' are potential probe contact points for
sensing the constricted region potentials. And the "E'' contacts are
for potential probe leads to the unconstricted flow region. kIn prin-
ciple there should be a configurational emf between any "E' and
any "M'' contact but none between any pair of ""E'' contacts or pair
of "M'" contacts when a signal is applied between the points ""C''. If
the constricted flow region has a variable width so that the ""M"
potential sensing arms intersect three different widths,then, of course,
there would be a configurational emf between each of the "M.!" arms.,
There is a simple additive relation, in this case, between the "M -M"
potentials and the "E-M'" configurational potentials (_gi_ fig. 8).

Particular note should be taken of the placing of the wire lead
contact points., All external wire leads meet the specimen at regions
of wide extended area. Because of the relative massiveness of these
regions they act as heat sinks. They are, therefore, all at the same
temperature even though the constricted current flow region may be
akt quite a high temperature due to Joule heating. As a result the net

thermal emf between any two of the external lead contact points is
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zero. This follows from the temperature equality of those points and
from the fact that there is no change in material composition between
those points. The design of the specimen eliminates possible inter -

ference with the desired signal from thermal voltages.

3. Circuitry

As has been mentioned, the principle ‘of the detecti‘on procedure
is quite simple. However, there are a number of extraneous effects
which must be nulled out to insure that the detected signal i\s the con-
figurational emf. Therefore the circuit used was the bridge érrange-
ment of figure 5.

The object of the particular circuit shown in figure 5, in addi-
tion to detecting-the configurational emf, is twofold. First, the pres-
ence of possible rectifying contacts in the bridge circuit is revealed
by alternating between the high (100 K) and the low (10 K) bridge balanc-
ing resistances. Secondly, a preliminary rough a.c. balance using
the a.c. detector eliminates possible spurious signals in the d.c.
electronic microvoltmeter .. These signals arise in the presence of
large a.c. voltages‘o

In principle, for sufficiently low frequencies, if the bridge is
balanced at the signal generator frequency it would be balanced for all

low frequencies down to d, c. provided all the bridge arms are ideal
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pure resistances. Suppose that some part of the circuit inside the
bridge contains an element whose voltage-current relation is not
linear. If this non-linearity were odd in the current then the bridgé
would be found to be unbalanced at odd multiples of the signal gener-
ator frequency. If the non-linearity were even in the current the bridge
would be unbalanced at even multiples of the input frequency and un-
balanced at d.c. A non-linearity outside of the bridge circuit proper -
as,{for example, may be present in the signal generator - does not
affect the balance 1n the limit of low frequencies, To operate at fre-
guencies up to several kilocycles it is necessary to approximate a
Maxwell bridge (3) by inserting some capacitors, variable between

100 wuuf and 1000 wuuf, across each leg of the balancing resistance. A
Maxwell bridge is characterized by the fact that the balance condition
is independent of the frequency.

The configurational emf constitutes an even non-linearity in
the voltage~current curve of the specimen. It acts, essentially, like
a variable emf battery situated at a fegion of constricting current
flow. The emf is variable by virtue of its dependence upon the mag-
nitude of the applied current. There are two such configurational bat-
teries in the bridge circuit, one at each end of the narrow constricted
current flow region of the specimen. They are so oriented that they
are in parallel across the detector. For the polarity of the d.c. meter

shown in figure 5 a positive signal would indicate negative carriers.
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If there are any other even non-linear elements inside the
bridge circuit then they too would contribute a signal which may be
confused with the configurational signal. Because Of, the expected
isotropy of the specimen and because of its design, no even non-
linearity in the specimen proper other ‘than the configuraﬁonal one
is possible. In the rest of the bridge circuit and especially in the
contacts it is not improbable that ‘thére may be even non-linearities,
For example, the phenomenon of non-ohmic rectifying contacts is
familiar in solid state physics. The presence of rectifying contacts
internal to the bridge circuit would certainly cause a spurious d.c.
signal in the detector.

In order to insure that the signal comes from the body of the
specimen and not from elsewhere a special procedure-is used. The
bridge is first balanced at the signal generator frequency using the
higher resistance (100K) balancing potentiometer., The signal is then
picked up on the d.c. detector. Itis observed to increase with increas-
ing current from the signal generator. k’NO\’V the bridge is rebalanced
at the input signal frequency using the lower resistance (10 K) balancing
potentiometer. The signal generator is adjusted so as to drive the
bridge with the same total current as drawn with the previous balance.
If the observed d.c. signal is less than that obtained with the previous

balance then it comes from the specimen because there is now less
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current going through the specimen. On the other hand an increased
output signal indicates that the signal is coming from the specimen‘
contacts or from some other point of the bridge external to the specimen
proper because that is the part of the bridge which is now drawing more
current. This whole procedure can be put on a gquantitative basis, of
course, if the specimen resistance is measured preliminarily. One
can predict the change which should take place in the observed signal
when the balancing potentiometer is changed. Deviations from this
prediction indicate the extent to which the desired signal is being
obscured by other non-linearities in the bridge. If necessary, a
lengthy subtraction procedure may be used on the data to subtract out
the specimen-external signal from the total signal. In practice, how-
ever, it was never found necessary to do this,

In the few cases where the interchanged-balancing-potentiometer
test showed the presence of interfering signals these were easily
eliminated by checking and repairing the specimen contacts. In general,
this test showed quite clearly that the detected signals were indeed

emanating from the specimen proper.

4, Experimental Controls and Procedure

The procedure for taking data was as follows: After all con-

nections are made and the interchanged-balancing-potentiometer test
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is carried out the larger of the potentiometer resistances is switched
into the circuit. The bridge is balanced at the signal generator fre-
quency which was generally 400 cps. The balance detector was either

a General Radio amplifier-detector with an auxiliary narrow band

filter centered at 400 cps or a wide band Hewlett-Packard electronic
voltometer. After the variable bridge condensers and the bridge
potentiometer are set for an a.c. minimum the d.c. detector is switched
into the circuit. This detector is a Hewlett-Packard d.c. electronic volt-
meter. The voltage picked up on this meter corresponds directly to

the configurational emf in the case of the circuit of figure 5. If the
resistance of the balancing potentiometer is sufficiently greater than
that of the specimen, the current through the specimen is essentially
that which is read on the signal generator ammeter. The expectation

is that the d.c. signal as a function of the ammeter reading should
correspond to equation 8 if the ammeter reads the r.m.s. value of

the current.

In general, for most well-behaved Specimens, the square law
dependence of equation 8 was indeed observed. A summary of the data
taken on one such specimen is shown in figure 6. In this graph the
observed emf is plotted against the square of the specimen current.
The data were taken over a range of signal generator frequencies and

over several days,
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The specimen resistance in this case was 5.1 x 103 ohms which
was about equally divided on both sides of the center tap. With this
knowledge the fraction of the total ammeter current which is channeled
through the specimen is calculable for the two different balancing
potentiometers. Points are plotted on the graph for both the case of
the 10 K balancing potentiometer and the 100 K potentiometer. Since
the ordinate represents the square of the calculated specimen current
and not the bridge current, the consistency of the points for the two
cases demonstrates the fact that the physical origin of the emf must
lie in the specimen proper.

Not all of the specimens tested showed such a uniform square
law dependence out to the highest currents available. In some cases
the measured pdtential climbed less rapidly than by the square of
the current for the higher current values. The @rop—off would begin
at currents of about 2.5 to 3 ma. The graph of figure 7 shows such
a specimen. To within the accuracy of measurement, however, it
can be stated that for currents less than 2 ma , in every negative
‘carrier specimen in which there was an observable effect, the measured
potential went as the square of the current. In itself, of course, this
fact cannot be taken as profound evidence for the configurational emf
because the circuitry is so designed that it detects even non-linearities
and the term in the square of the current would be the first in a series

expansion of any even non-linear effect.
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A number of control experiments were undertaken. Some of
these merely provided checks and balances on the working of the equip-
ment. Others were devised to check out the implications of equation 8
to the extent allowed by the limitations of the equipment.

To check the working of the circuit the specimen of figure 5
was replaced by a set of precision wire wound resistors of approxi-
mately the same resistance as each of the branches of a typical speci-
men. This simulated specimen exhibited a signal of less than 1.0
microvkolt out to currents of 4 ma in contrast to signals of the order
of 100 uv from the bismuth specimens at this current level.

An evaporated tin specimen was prepared under the same con-
ditions as were the bismuth specimens. The tin specimen had a con-
striction, It was inserted into the circuit in place of the usual bismuth
specimen. Since the Hall coefficient for tin is of the order of 10—5
cm3/coulo:mb, the expected configurational signal would be something
like one billionth of that expected from a bismuth specimen of the
same dimensions. Clearly the tin sample should exhibit a null effect.
And, in fact, the control tin specimen did yield a null effect to within
the accuracy of measurement.

An important and definitive test is one which directly detects
the dependence of the measured emf on the cross-sectional area of
the constricted flow region. Such a test should distinguish between

the possible magnetic and hydrodynamic causes of a configurational
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emf. The theoretical distinction is manifested by the two:different
dependences on area exhibited by equations 8 and 11. The hydro-
dynamic effect goes inversely as the square of the area whereas the
~magnetic effect goes as the inverse of the first power of the area.

It was for the express purpose of making this test that the extra
potential sensing probes on the constriction were added to the one
central one. The schematic diagram of figure 4 is somewhat mis-
leading in that the constricted current flow region of an actual specimen
is not uniformly wide along the whole of its length as is the case with
the schematic shown. In the limit of infinitely thin potential probes,
it is clear, that the proper area which should go into equation 8 or 11
is the local one at the point at which the potential probe meets the
flow region. In practice the evaporation mask which determines the
shape of the specimen was purposely designed to produce three dif-
ferent effective widths at the three different potential probe points of
the fingers labelled '"M'" in figure 4. On the reasonable assumption
that the mean thickness of the film is uniform throughout, the three
different widths correspond to three different effective cross-sectional
areas., The projected procedure involved taking three different sets
of data using each of the three ""M' potential probes in turn as the
"center' tap on the specimen. Figure 5 shows the circuitry for one
such arrangement. In turn, each of the other '""M' contacts was con-

nected into the bridge in place of the one which is shown so connected



25

in the figure in an effort to obtain variable area data.

Unfortunately this series of tests was inconclusive. The dif-
ficulty arises from three sources. The firstis that the masks were
made to obtain the smallest widths possible subject to the technology
used in their fabrication. Cross-sectional widths significantly less
than about 1 mil could not be obtained. Secondly, even with this lower
limit of cross-section the signal to noise ratio was not much higher
than about 2 for the best cases. The result of these two factors is
that: (1) The only technologically allowable variation of width was an
increase which in turn would decrease the output signal. (2) A
relatively slight decrease ’in signal would submerge it below the noise
level or at least decrease the data accuracy markedly.

The thirfi difficulty which nullified all possibility of obtaining
the area dependence was the fact that the cross-sectional width could
not be defined and measured under the microscope to an accuracy of
better than about 40%. This low precision is due mostly to the local
fluctuations and variations in width that result from the crudeness of
the mask fabrication. Under a microscope the constricted flow region
appears quite ragged, though to the naked eye it seems relatively
uniform. Since it is not clear what sort of average to take over the
width fluctuations, the width is ill-defined.

Combined with the first two difficulties this third one implies

that it is not enough to make the width slightly wider at two of the '"M"
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probes but considerably wider so that the difference in width is ap~
parent beyond the 40% inaccuracy. Since even an increase of width

by a factor of 1.4 (not to speak of doubling the width), would submerge
the signal completely, the experimental results could not be ihterpr eted
with any confidence. It is only possible to state qualitatively that a
definite increase in cross-sectional area was always associated with

a decrease in signal. A quantitative dependence of the emf on area
was not obtained.

The extra ""M' contacts did, at least, provide a method of
ascertaining the consistency of the measured results. Suppose, for
example, the balancing potentiometer of the bridge circuit of figure 6
were hooked up to the two side '"M'" contacts and the central one instead
of to two "E'" contacts and to an UM" contact. If there were no variation
in cross-section along the constriction a null signal would result. Due
to the variations that do exist, however, itis clear that a small signal
should appear. What the signal should be can be calculated in terms of
the individual measured signals from each of the "M'" contacts sépar-—
ately in conjunction with the known bridge resistances. Invariably
there was good correlation between the experimental data and the
expected result in tests such as these,

Another contact switching test of interest is one in which the

other available pair of "E' contacts are used in place of those which
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are hooked into the circuit of figure 5. As expected, this procedure
had no detectable effect on the signal,

In general there are 35 aistinct arrangements of the central
and end pair of bridge leads onto the seven specimen contact points.
Each of these will yield a signal which is predictable in terms of the
signals from three of the arrangements and a knowledge of the resistances
of the specimen and potentiometer. The predictions are founded upon
the assumption that there are effectively four sources of emf present
inside the specimen along the length of the constricted region. Each
such source is between a pair of ""M' probes or between such a probe
and the end of the constricted region. The predictions further assume
that the sum of these emf's from one end of the constriction to the
other is zero. This fundamental idea which forms the basis for
estimating the signals for thirty-five contact arrangements from the
signals from three such arrangements is indicated schematically in
figur’e 8.

The contact switching experiments already described are but
two examples of the large number of contact switching experiments
which can be done. In every such experiment actually undertaken the
results always agreed with that deduced from the basic assumption
illustrated in figure 8. Such agreement strongly indicates that the seat

of the voltage detected lies, indeed, in the configuration of the specimen
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so that it may be termed a configurational emf. These experiments
do not, however, confirm the view as to the hydrodynamic cause of
the emif.

There was a set of specimens which yielded unexpected signals.
These specimens exhibited a signal polarity associated with positive
current carriers instead of negative ones. Since bismuth generally
shows a negative carrier Hall effect, this result was at first very
disturbing. Happily, further investigation turned this apparent incon-
sistency into strong evidence that the measured emf is indeed asso-
ciated with the properties of the electron gas in the specimen. The
further investigation consisted in making direct Hall measurements
on the samples. In every case, without exceptién, the sign of the
Hall coefficient’agreed in its implications with the sign of the configu-
rational emf. Those specimens which showed positive carriers by
the configurational emf showed positive carriers in Hall measure-
ments and similarly for negative carrier specimens.,

The positive carrier specimens were unusual in more resypects
than mer ely being positive carrier specimens. These specimens
generally yielded erratic signals which were hard to reproduce in that
there appeared to be a hysteresis present. The signal depended to
some extent upon what level of current had just been passed through
the specimen. The signals from these specimens were markedly

noisier than those from negative carrier specimens. Generally the
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positive carrier signals were an order of magnitude stronger than
those from negative specimens and these signals usually did not follow
anything like a square law in the current. In short, the positive
carrier specimens yielded quite unexpected results which do not
correspond at all to the theories of equations 8 or 11 except in that the
sign of the signal agrees with that predicted by the Hall effect.

It was decided, in the light of the original purpose of this
research which was primarily to detect and verify empirically the
existence of a configurational emf, that the positive carrier anomalies
should be relegated to future investigations after the more consistent
results fromsimpler specimens are understood quite fully. All
specimens which appeared excessively noisy and erratic and which
showed positive carriers were therefore set aside and only the well-
behaved specimens were examined. In mitigation of this procedure it
should be stated that, in practice, the class of noisy specimens alone
constituted the same set of specimens as did the class of positive
carrier specimens. All positive carrier specimens were noisy and
vice versa,

Since it is known that bismuth, like the semiconductors ger-
manium and silicon, is exceedingly sensitive in its electrical properties
to the type and amount of impurity present, it is not too surprising that

unusual effects arose in some samples. Little care was taken to obtain



30

the highest purity bismuth nor was any effort made to keep the bismuth
contamination-free during evaporation or during other steps in the
sample preparation. The anomalies are attributed at present to the
variation in preparation and in impurity from sample to sample. It
seemed reasonable to postpone a full investigation of the positive car-
rier configurational emf until the time at which the simple effect is
understood. These specimens were, therefore, discounted as effectively

faulty specimens and were not used for data gathering.

5. Quantitative Results

We next examine the quantitative correlation between the
empirical results aﬁd the theories exhibited in equations 8 and 11,
To do this we first take notice of the information obtainable from the
direct Hall effect measurements,

The measured Hall voltage, VH , may be written in terms of

the applied magnetic induction B and the thickness of the specimen,

b, as follows:
V= (H/6)T B (15)

where I is the total current passing through the specimen and H is
the Hall coefficient. Empirical values of (H/b) as deduced from measure-
ments by virtue of equation 15 are recorded in line 2 of table 1 for the

two specimens of figures 6 and 7.
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It is also possible to obtain direct empirical estimates of the
quantity (o b) - by properly combining the measured values of re-
sistance, length and width, w, of the various construction arms of
the specimens. The quantity o then represents the actual effective
conductivity of the specimen material in each of the constriction arms.
Mean values for (0"b>-1 are recorded in line 1 of table 1. The uncer-
tainties in these estimates amount to about + 60% primarily because of
the difficulty in determining the average width of the constriction arms.

We note next that the self-magnetic emf of equation 11 may be
rewritten in terms of the directly measurable quantities (H/b) and

the width w as follows:

Z
Vou = },;-/% (4/%) % (16)
For current through a very thin flat plate of width w and thickness b
where b << w it may be shown that the coefficient y of equation 16
is approximately y =1.4. Using values of (H/b) from direct determina-
tion on specimens I and II' and the measured widths w of these two
specimens at the potential probe a prediction of (Vm/IZ) may be ob-
tained. This prediction may be compar ea with the measured (V/IZ)
exhibited in figures 6 and 7. The calculation yields Vm/.’[2 = 10—3

microvolts/( ma)2 and Vm/I2 = 2x 10—3 microvolts/(ma)Z respectively

for the two specimens under consideration. Both of these numbers are
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three orders of magnitude sméller than the measured effect plotted
in figures 6 and 7.

This prorounced discrepancy eliminates the self-magnetic
deflection emf as the primary cause of the observed effect. As willi
be discussed in a succeeding paragraph, the discrepancy between the
predictions of equation 8 or 13 and the observed results are even more
pronouncedq Nevertheless, it is only the magnetic theory that is
eliminated by the lack of quantitative correlation at this point. The
reason for this lies in the fact that equation 8 is quite crude. Several
of the quantities which enter into it are not clearly defined nor are they
directly measurable. A quick comparison of equation 3 with equation 88
will serve to exhibit this fact. On the other hand, equation 16 is quite
exact as it stands. That is to say the coefficient (H/b) obtained from
a direct Hall measurement should indeed be exactly the same coefficient
which occurs in the configurational self-magnetic deflection emf,

This is independent of the conditions under which the Hall coefficient
represents the quantity 1/ne or sorﬁe other more complex quantity.

Equation 15 represents an emf induced by the application of
an external magnetic field to the current flowing in the specimen.
Equation 16 represents an emf induced by the application of a self-
produced magnetic field to the current flowing in the specimen. Regard-

less of the source of the magnetic field it is the quantity (H/b) which
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describes the strength of the effect of this magnetic field on the cur-
rent. Itis for this reason that the comparison between equations 15
and 16 as they stand is exact. Hence the discrepancy between equation
16 and the empirical result does indeed eliminate the self-Hall-effect
explanation of the observed configurational emf.

We now examine the correlation between the empirical results
and the predictions of the electron hydrodynramic hypothesis of equa-
tions 3, 7, and 8. On this theory the slope éf the lines in figures 6
and 7 effectively represent the value of the coefficient C/A,2 = C/bZWZ
in equation 8. In order to compare theory with experiment we must
make some hypothesis about the value of C as given in equation 3
or 8. Itis here that difficulty arises because we assume that 1/ne = H.
Although it is true for ideal metals that the strength of a magnetically-
induced current deflection, H, is indeed a measure of the density of
current carriers, this relation is certainly not generally true. In
particular for bismuth this relation is known to yield anomalies
especially in thin films. In addition it is not even clear at this stage
that equation 3 is correct as it stands nor is the exact meaning of n
or m clear in that equation even if it were correct. Itis precisely
for these reasons that lack of direct quantitative corr elationvwith
experiment is not as decisive in the case of equation 13 as it is in the

case of equation 16.
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Notwithstanding the preceding discussion, however, it is
clearly not unreasonable at this stage to compare theory with experiment
using the relation of eéu.atien 8 in conjunction with the estimate H = 1/en
where H represents the empirically measured effect of a magnetic
field on the current. On this basis, then, equation 8 or 13 may be

rewritten as follows:

70/:.—;’1-2(('/1’;),_71:16":/3_ (%)L_Z’z' (17)

If we proceed as before to predict the slope of the lines in
figures 6 and 7 using equation 17 in conjunction with the empirically

. ‘ 2 -4 2
determined values of w and H/b, the results are VC/I =10 ‘uv/ma

2 -4 2 : -
and VC/I =3 x10 " pv/ma for specimens I and Il respectively,
These predictions disagree quite plainly with the slopes recorded on
the respective graphs.

This result indicates that the crude theory eof equations 3, 8,
and 17 is certainly inapplicable as an eﬁcplanation of the observed results.
Before embarking on an extended analysis of the possible causes for
the quantitative discrepancy between theory and experiment it is
clearly expedient to have a more definitive and less ambiguous theory
on which to base the discussion., Itis to this end that the next section
is devoted. It should be understood that from this point on we will
concern ourselves primarily with examining the hydrodynamic basis

for the configurational emf rather than the self-magnetic one.
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Therefore, the term configurational emf in what follows will be
reserved for reference to the electron hydrodynamic concept only.
The self-Hall effect emf will be mentioned explicitly when necessity

arises to distinguish it from the configurational emf.



III. THEORY

1. Macroscopic Equations

The first step in constructing a theoretical analysis of the
configurational emf lies in an appreciation of the fact that Ohm's law
is an approximation to a much more elaborate equation. Some of the
complexity of this more general description of current flow in a

medium is shown in equation 18,

2T )-Gr7+ fo3+¢""..5_’_f= o g

s

In this equation é' répresents the externally applied electric field,
¢ is the conductivity of the medium, T is the temperature and the
symbol PV is ghe usual spatial gradient operator. The coefficients
C and G, like the Hall coefficient H, indiate the strength of each of
the terms they multiply. They are constants which depend upon the
material medium inlwhich the current flows. It is clear that, in the
limit of time independent spatially uniform current flow in the absence
of thermal gradients and strong magnetic fields, therfirst three terms
on the left are zero. And the equation reduces to Ohm's law as
expected.

The second term in equation 18 which contains the temperature

T, corresponds to the thermo-electric property of metals.
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The coefficient G is the thermo-electric "

power,'" And the term
(-GV'T ) represents the electric field set up by virtue of the presence
of a thermal gradient in the material.

The third term represents the familiar Hall field. The quantity
HTXT?: iﬁdicates the magnitude of the electric field induced by the
action of é magnetic field on the moving charges Which constitute the
current.

The neXt term is the’electric field applied from some external
source as, for example, from a storage battery. All of the terms
may be looked upon as effective fields. In this view the term (———O{- i)
is the ohmic pseudo-electric field. In the form shown the equation
states thaf the sum total of all the electric fields present is always
zero, This view of equation 18 is not purely academic but has a
physical basis. It is quite clear that the terms associated with each of
the fourlfields - thermal, Hall, applied and ohmic - are directly
measurable as voltages. In fact, the coefficients G, H, and ¢ are
determined empirically by measuring these voltages.

The first térm, which is the cbnfigurational\one? like the other
terms represents an effective electric field. It describes the field
which exists in the medium by virtue of the non-uniformity of current

flow, To exhibit the emf or voltage associated with this field we

note the following:
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ve(ji)=(j-v] )= x(vx] )+ vf£i?) (19)

oy

Here use has been made of the equation of continuity, -/ = O ,
in the absence of time varying conditions and the remainder is just
vector identity.

To obtain the emf associated with any of the fields in equation
18 it is merely necessary to integrate that field along a path connect-
ing the two points between which the potential difference is desired.
For the configurational case this integration is complicated by the tensor
nature of the configurational emf. The complications are intimately
related to the measurability of this emf in a single specimen, If the
configurational field could be written generally as the gradient of a
scalar, as, for example, the thermo-electric field may be written,
then it would not be measurable in a single metal. Because of the
scalar nature of temperature with which the thermal voltage is asso-
ciated, at least a pair of metal elements (a thermocouple) is needed
to detect the thermal emf. The thermal emf around a complete
circult in a single metal must be zero even though some part of the
metal is at a higher temperature than the remainder of the specimen.
Completing the circuit guarantees that’the potential is being measured
between two points at the same temperature in the same metal. Since
there is no thermal or metallic difference, there cannot be a potential

difference,.
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If, however, the field cénnot be written as the gradient of a
scalar, the resultant potential has tensor properties. Then the
associated emf will depend upon the direction or path of integration
and the effect does not necessarily cancel out in a single metal. The
configurational field varies, in general, with current direction as well
as with the magnitude of the current. Itis this very property which
allows the thermal emf's due to Joule heating by the current to be
distinguished experimentally from the direct effect of the current
exhibited in the configurational emf.

With these precepts in mind we may write down the configura-
tional emf for the case of the actual experimental arrangements
described in the previous sections., To do this we note that the con-

= e
figurational field é:. = =2 (JVT is present only in those regiors
of space where the current density varies along the current flowdirec-
tion and not where the current density varies perpendicular to the flow
direction. For example, if the current is in the X direction but
the current density varies spatially only in the y or z direction, then
the field 50: is zero. This fact implies that an integration path per-
pendicular to the flow lines crossing the boundary of the flow region
will contribute essentially nothing to the integration. However, an
integration into the high flow region along a path parallel to the flow
lines will contribute considerably to the integral.

With reference to figure 9 we see that the experimental arrange-~

ment measures the configurational potential Vc = V4 -V where
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the integration is taken along the path indicated. In the idealized case
where the flow lines are undisturbed by the presence of the potential

probes at points 1 and 4, we have VZ-V = V4—V3 = 0. This may be

1

verified by noting that in crossing a flow boundary from a region of

uniform flow to a region of zero flow, such as is crossed in the path

between points 3 and 4 or between points 1 and 2, we have

= - 7 -2

JX(V'XJ)= Vé,‘/ ) over the boundary. However, along the path

between points 2 and 3, the flow is irrotational and ij = O .

And in part of the region between 2 and 3 the current density varies
- =~

spatially so that jev¥j = V[ELJ"') # O along this path. As a

result, for the experiment under consideration we have
+ -
Vi=—2C [ dF(fr])
3 . .
==2Z f;fa’f- vi#i)=AECTY)

(20)

By way of clarification and contrast we note that

4
/fa"?' vi%j*) = o (2

Up to this point the experiment has been based on a crude
estimate of the value of the coefficient C. Equation 8 shows that

the value of C was taken to be
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where the sign indicates negatively charged current carriers. Itis

the coefficient C which must be compared with the experimental
results, Aside from a factor which represents the square of the cross-
sectional area, the slope of the lines in figures 6 and 7 are directly
relevant to the theoretical value of C if the measured effect is indeed
the one which is under theoretical consideration here.

In the light of this preliminary discussion, the theoretical
program is quite clear. The first step consists in demonstrating that
equation 18 does, indeed, represent a proper extension of Ohm's law,
In this respect it is only necessary to demonstrate the existence of
the configurational term, the other terms being more or less familiar.
It may be reiterated here that even equation 18 is an incomplete state-
ment. Consideljably more elaborate equations may be written down
which allow for the tensor nature of the coefficients o and H, for
example, or for their temperature dependence. Only those terms
were written down which were easy to interpret and which had some
relationship, illustratively or directly, to the configurational term.

The second requirement of the theoretical discussion is to
obtain an expression for the coefficient C from which numerical

estimates may be obtained for comparison with experiment.

2. Microscopic Treatment with Relaxation Time Assumption

To proceed with the calculation then we note first that basically
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we are considering one of the transport properties of an ensemble
of particles (the valence electrons in the solid). These particles are
distributed in phase space over momentum and position. For this
analysis the particles are envisioned as being described by wave

et . N
packets. By the momentum, f;k (or just k) and position, T, of a
particle is meant the mean of the quantity averaged over the wave
packet.

o -

Let the function f(kx,ky,kz,x,y, z) = {(k,r) represent the
probability that the point (kx’ky’ kz,x,y, z) of phase space is fully
occupied. Then the number of particles with momentum between kX
andk +dk , k andk +dk -+, .k and k + dk and located at a

x x’ Ty v Ty _ z z z
point between x and x + dx, etc. is

- - - e Rl 3 J
o (R, PSR, P)dhydby dha dx dyde = plr)Flh,r)d k dr,

- ade ‘
The function p{k, r) represents the density of states available in
the volume of phase space d3k d3r . Alternatively the quantity

3 3 ob ol
o{k,r) d"kd"r is the degeneracy of states at the point (k,r) of phase
space.

For Bloch wave functions or plane wave functions the momen-

— ot
tum or wave vector k is quantized. In fact, k is simply a form of
quantum number representation. For example, in the simple one-
A7 L
dimensional case we have A& = Z"VJ Y= ”j .‘."/} Z2... fz@ :

Here /Z is the length of the solid and a is the lattic constant. The

values that are indicated for the quantum number v describe the limits
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of the first Billouin zone. A general extension of this one-dimensional
case yields the result that the number of wave states per unit volume
of k-spaceis given by c/37/-‘= [1-71;)30/3,6 x volume. Upon introduc-
ing the degeneracy due to the spin of the electron the density of states
in phase space becomes simply (0(/;’;:) = 2 X/j’l,.f“)s.:{';fig

The normalization of the probability f(l?,?') comes from the

statement that the spatial density of particles is given by

/V=7,/,//3/7[(Z’:7)a/3'€ (23)

where here N represents the actual number of particles under con-
sideration per unit volume; not an effective number. For the case of
the electron gas in equilibrium the distribution probability f is the

Fermi distribution

-7
ek E~ Ex
£ (R = (/+ exp S ) -

The Fermi level EF is fixed by the no‘rmal‘ization of equation 23,
The symbol E I;epresents the énergy of an electron and Ij is
Boltzmann's constant.

The basic equation of state for the transport properties of a
fluid is the Boltzmann transport equation (4,5, 6). This equation says

that in the steady state the time rate of change of the density of particles

at a point in phase space -due to the drift of particles under the influence
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of external forces is just compensated by the rate at which particle

collisions change this density.

= [ = 3 f
Fov fr—Fov f = (T{

% (25)

Codd.

The left-hand side of this equation represents the time rate

of change of f due to spatial drift and to momentum drift under the
e s
influence of the generalized applied force F. The force F is gener-
ey el e
ally given by # = — e(é°+.4_/"x B); The vector ¥ represents the
o

velocity of a particle and is a function of the wave vector k through

the equatiorn:.

N / e
v= 0 E(k) (26)
The symbol Vk represents the gradient in k-space. The constant
} is Planck's constant divided by 27; B =h/2m,

The right-hand side of the equation represents the time rate of
increase of the particle density at (lt,?) due to collisions. For Fermi

SN

particles this is given by the following equation where -\A/ (K) lﬂ)
is the probability per unit time that on collision a particle with momen-

iy - s [N
tum K will find itself with 2 momentum between k and k + dk.,

(32),.,. = [/= #BDT[WE D LRDLE @

J
— SR [WER)[1— FR,P]dK
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To gain an appreciation for the overall calculat:ion procedure
and for the approximations and omissions found necessary to arrive
atamalleable result we resort temporarily to an oversimplified model.
It is provisionally assumed, as is often done in the literature, that
the total effect of collisions may be condensed into a mean collision

time or relaxation time 7 .
(3 =~ FL[FEGH - £e)])

Equation 28 embodies the idea that if the distribution of particles
1n phase space is disturbed froﬁ its equilibrium value fO(E), then it
will decay back to that value exponentially with time. The relaxation
time for this process is 7 . By the equilibrium distribution is meant
the one which obtains in the absence of transport processes. For the
case under cons)ideration this would be the Fermi distribution of equa-
tion 24 so that fO(E) = fF(E) . In a later section we shall return to
this point and examine the consequences of this overall relaxation time
constraint,

The general program of procedure is the following. We first
imagine f(l?,-l:) expanded in a sequence of terms of decreasing orders
of magnitude, f(l_;,;) = fO(E) + gl(l':,-;) + gz(l'?,_;) t eeos
Expressions for the functions g(ﬁ,*r) are then obtained using the Boltz-
mann transport equation successively for each order. Next, the ex-~

panded solution for the transport-modified distribution function,



47

f(l‘:,;) is used to find the current density, T , created by the thermal

gradients and the electric and magnetic fields in the metal.

s

k'/.:_" 4;—3/4}'][(/(”‘)0/316
= -(e/4rr3)fa* [£E)+3g, (k,7)+ g,(, r}+...]r/’é
The emf associated with each of the various terms contributing to the

current is then given simply by the following integral connecting two

points between which the emif is desired.
, ) == -
= — . 0
emf f JjrdF (30

Employing the simplification of equation 28 in conjunction with
b = NN
the Boltzmann relation in equation 25 the functions gl(k, ), gZ(k, r)

JENY
and gB(k, r) are obtained successively from

(Fv+itFoo ) £ =-;;§4r77*32_‘o-—e£,27}fz=_%£3,(7€?) -

(- ?+§L '*.a)g, =—()z7-7+;¢ﬁ AL é—?'%)fa (32)
= - ;a—_,'-— 2 ( J?)
(7 v )f.z = -

it
!

& [-t(Fr FFR)
7 Jal
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Use has been made in equation 31 of the expression for the

velocity v exhibited in equation 26 and the shorthand notation
§ = }-f—{-_;_(E—' EF) -+ —é‘ i}"i{f- has been employed
for convenience.

By virtue of the presence of the Y in the integrand of equation
29 it is clear that only distribution function terms with odd symmetry
in k space can produce non-zero currents from the integral of equa-
tion 29, This is, of course, not unreasonable since symmetrical terms
would not be expected to give rise to directional properties as exemplified
by the current. That the current due to the equilibrium distribution,
fO(E), is zero is clear both mathematically from symmetry and physic-
ally from the meaning of fO(E) as the distribution obtaining in the
absence of a cuifrent.

From the form of gl(l—z,_;) exhibited in equation 31 it may be

deduced that both terms give rise to non-zero currents.
T PR RL S 7
‘/]:'—(e}ff $3 JE 473 14
+ VYL B A
JE 47f3 f

In this equation it has been assumed that the medium is microscopic-

(34)

ally isotropic by which is meant the assumption that E is a function

of the magnitﬁde of k only.
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Itis clear on compariﬁg equation 18 with equation 34 that the

e ‘

coefficient of the applied field é' in the latter equation is o and

the coefficient of |7 7 1is related to the thermoelectric power G.

The integral coefficient of ¥ 7 in equation 34 must be simply o G.
. N ‘

The second order function gz(k, r) is composed of at least

nine terms. These result from the two consecutive operations of the

three-term operator (ﬁ; | r— —?— C.P'V/; e —:%— ;XB' 7;,) .

Because the % operator operates on both fO(E) and on the
velocity terms, in addition to its operation on 7, if the relaxation
time is a function of k, and because the spatial gradient V¥V operates

N el B
on T and on F , since F 1s assumed to have a spatial variation,
the basic nine terms may be expanded to a considerable number of
terms. However, a careful inspection of all of these terms shows that
the great majority of them contribute nothing to the current integral,

g b . . . .

All of the terms in gz(k, r) which involve a combination of
thermal and electric terms exclusive of the magnetic terms will
involve the operator Vk and the function v an even number of
times, But both the operator Vk and the vector v will always
produce an odd symmetry in k space when present in conjunction
with an even function. And the energy E must be even in k space
even though it is not necessarily isotropic. The resultis that all of

.
the non-magnetic terms in gz(k, r) will have even symmetry in k
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space or odd symmetry in two different directions simultaneously.

In either case, when these functions are multiplied by ¥ to form the
integrand for the current calculation, this integrand will be inherently
odd in -k space and the integral must be zero,

Because the magnetic term involves an extra velocity, the
integrand with the magnetic force term in conjunction with the electric
and thermal fields does not result in a zero integral. Allowing for the
possibility that 7 varies with E, the only part of gz(l‘{, -1:) which can

contribute a non-zero term to the current integral is

2.

I — 2 =) 2k
:»J/"J’)L,,f AN Ok, ax»,,(éofh'*"f) JE (35)

s
All other terms are either identically zero because VxB:vV = 0 or
they possess symmetry properties such that their current integral will
be zero. In equation 35 the direction indices X and v are to be summed
over, since they appear twice, in accordance with the usual summation
o
convention, The pseudo-electric field, é‘tb , is merely a shorthand
= A
notation for the field induced by thermal gradients, éoﬁ, =& (3 vy
The origin of this expression is clear from equation 3l.
wh b - k3 *
The current created by the gz(k, r) correction to the distri-

bution function may be written down as follows:
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— A st v 3
= e“”7g E B =i p2d sANYE SY
(36)

+eM Vg e* 2
A{VT) Bvﬁ“;‘}ﬁ)?zfa/“/ﬁf“ A_.(ﬂ/‘)«)?ﬁ %

ARV

It is to be understood, in equation 36, that the symbol € is to take

on the value +1 or -1 depending upon whether Apv is an even or an
odd permutation of the three space direction indices.,’ And eM‘w = 0
if any pair of the indices Aupv are equal. The symbol 'é; is a unit
vector in the A direction. In 'o‘btaining equation 36 extensive use
was made of the energy gradient formula for the velocity and of the
even symmetry properties of E in k-space,

The secgnd term on the right in equation 36 is a thermomagnetic
emf, If the magnetic field which causes the emf is produced by the
current present in the medium, then the associated voltage reverses
direction with a current direction reversal, As a result this effect
could not compete with the configurational one which does not reverse
direction with a current reversal,

The first term represents the Hall effect. If itis assumed
that the medium is perfectly isotropic so that the energy E is a

function of the magnitude of k only the Hall effect term reduces to

the simpler form

J= ExB —5’5/?14 2E ok S (5)




52

From the form of equation 18 it is clear that the integral coefficient
of ?X_g in equation 37 is a representation of O'ZHo
| In order to finally arrive at a term in f which corresponds

to the configurational emf we must proceed to third order., The third
order correction gB(E,.-:;) consists, basically, of twenty-seven terms.
It is the result of a triple operation of a three-term operator. This
formidable elaborateness makes it worthwhile to undertake some
preliminary reflection in lieu of simply writing down all of the terms,

The most important obkskervation to make is that within each
order of calculation there are sub-orders. For example, in the cal-
culation of gl(ﬁ,?) it is clear that the ohmic term is considerably
more important than the thermal emf term. This is evidenced empir-
ically by the fact that, in the experiment, applied ohmic potential drops
approaching one hundred volts may exist in the specimen, This is to
be compared with possible thermo-electric voltages of the order of
millivolts at the very moste Equivalently, one may say that (2':;)<<€
where (8;’) = —e—ﬁ—’)(f)/v 7/ is an effective thermo-electric field.
By (f) is meant some reasonable average such as that indicated
by equation 34.

b

Similarly in the calculation of [; there is again a relatively
large term - the Hall effect - in addition to a higher sub-order term
which is quantitatively small - a thermomagnetic effecte Both of these

arise in the second order calculation, Again, the two terms are
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distinguished by Z’; L E.

Since the third order is th‘e highest one to which the calculation
will be extended, it is not unreasonable to neglect all of the higher sub-
orders in this last calculation, Only the terms with the greatest weight
are desired in the highest order, Those terms containing effectively
an éb,;./, must be smaller than those containing (‘: with which they
are in competition in this order. This is not withstanding the fact that
terms involving é‘ﬁ, from first or second order may, indeed, com-
pete with & terms of third order, It was precisely to investigate
the nature of such a competition that the thermal terms were carried
as far as second order. Now, however, all terms involving thermal
gradients will be dropped in the calculation of gs(E,;) as effectively
constituting higher sub-order terms,

Omitting the thermal terms, keeping in mind the necessary
symmetry properties for a non-zero current integral contribution in
conjunction with the even symmetry of E‘ in k-space, and remember -
ing the k-space definition of ¥ and the identity TxB-Vz0 the

oly e
whole effect of k,r}] may be condensed into the following four parts:
g3 Yy g P

957, = v 2F (B ) (E )

v - e = F L4

(38)
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In this equation the spatial operator [” operates on all of
—
the electric field terms, (¢ , following it multiplicatively, The
k-space gradient operator, V, , operates on ’all of the functions of
-1-; which follow multiplicatively,

The first term of equation 38 gives rise to a current which
existsr by virtue of the spatial rate of change of electric field inhomo-
geneity. The associa‘ted emf depends upon the difference between the
spatial gradients of the applied field at two different points in the
medium. To sense this emf a potential probe would have to tap directly
into a region of rapidly converging or diverging current flow. Noting
the occurrence of T ¥ in conjunction with the V¥ operator leads to
the speculation that this term would be small unless the applied field
varied significantly over a distance comparable with the mean free path.
In any case, this term could not obscure the configurational one in the
experiment under consideration because its associated efnf changes
direction upon reversal of the applied field unlike the configurational
emf,

The second term of equation 38 is the effect known as magneto-
resistance, Inspection of this term shows that it is zero if micro-
scopic isotropy obtains in the medium. By microscopic isotropy is
meant the stipulation that the energy, E, is a function only of the

magnitude of k. Again, even if magneto-resistance is present, it
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could not interfere with configurational emf measurements since,
as is implied by the term '""magneto-resistance,' the associated volt-
age changes sign with a reversal in the direction of the applied field
or equivalently a reversal of the input current direction.

The next term of equation 38, by analogy with the second term,
may be called an electro-resistive effect. This term gives rise to a
resistance which is proportional to the square of the electric field just
as the magneto-resistance varies as the square of the magnetic field,
Again the associated voltage changes on current reversal unlike the
configurational emf,

The final term of equation 38 yields the configurational effect,
Only that part of the current ‘73 due to this configuratioﬁal term
will be examined, The currents produced by the other three third
order effects, although they may be of general interest, are notim-
mediately related to the configurational emf problem.

Unfortunately, the general expression for the configurational
current is excéedingly lengthy and complicated. Itis recorded here

-+

for completeness., In obtaining the expression for [, an integration
by parts is necessary and careful account is taken of the symmetry
properties of the various integrands in order to eliminate immediately
those terms which would contribute nothing to the current integral,
Allowing for a possible variation of 7 with energy, the final expression

may be summarized in terms of three tensor integrals, These are
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L&l fps2fe TE JE 2 1 p
KW~—-;4/"-"°, 37;‘1(95..)473J'4 (39)
e 335 TE  IE YE 4 3
Ly 7t | COE Sk ik, Ok, Ok d 5 /% (40)
- 191' P 3

In terms of these integrals the configurational current, by which is
meant the current arising from the configurational or final part of

s ah

g3(k r) in equation 38, may be written as

7. [ ; 92§« (,z Hout +z[,;“+ My«)

+

Qéo-u
( J}“-f~/§w+3£ + /‘7,,/‘)
(42)

e %
+(;§—~ (O/Z-,}“ + /‘7;/)

+ 3}% (54 + %V)J

The prime on the summation sign indicates that only terms for which

the indices p and v are not equal are to be included. The symbol

T is a unit vector in the v direction.
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In order to arrive at a tractable expression for the configura-
tional emf we consider the special case of microscopic isotropy for
which the energy E 1is a function of the magnitude of k only. For
this case all of the tensor integrals Kvp‘, L and M may be

Vi Vi

written in terms of the three scalar integrals

it

. E’ 333‘ / 2
7 EZ fr 52 57 (5% )-frra ok (43)

oLl [ 3 9F 28 200k o3
| (44)

_~4_§_3/13T3fo 3£ 1 3
AETE G ¢ JE JE (Jle 473 d % (45)

The configurational current for an isotropic medium, in terms of

these integrals, falls into the form

'7:=‘ (2 2+ g+4)f;7.g

S

+(7U+)z+,d)5';76 (46)

Z

cFC R VE



58

-
To a very good approximation we may take ¥ ¢¢& = O since

the field may be represented in terms of the applied current by
> ’ ......_.\.
CQ = &= J o From the discussion around equations 19, 20,

and 21, itis clear that for the experiment under consideration the

configurational coefficient C 1is given by

C=-5(P+g+=) (4)

3. Removal of Relaxation Time Assumption

Before undertaking an analysis of C in terms of other phy-
sically measurable properties of matter, some comment is necessary
on the collision time approximation of equation 28 on which the deriva-~
tlon of C in equation 47 is based.

We go back to the original equation, 27, to which the collision
time equation, 28, is an approximation. We represent by the function
g(l_:,;) the difference between the distribution function in the presence
of transport processes and the equilibrium distribution function

fo(E)" Equation 27 may then be rewritten as follows:
(24) =~ g F7 4, JWIRE £[Ew] 47K
+ gg[E(A)]ﬁ,,/(;;/?)Vq(/?};‘) J3K
+[1= £(8)] [WRE) gUR, ) 7K

(48)

9 & 7) [Tk k) =ik 1) o3, 7 K
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In deriving this equation, use has been made of the fact that in equi-
librium the time rate of change of the distribution function due to col-
lisions must be zero,

Since in this calculation we are interested primarily in cor-
recting for the effect of the relaxation time approximation, we will
consider only the case of negligibly small thermal gradients and mag-
netic fields., In equation 25, then, we take F:‘ - g and allow
the spatial gradient operator ¢ to operate on the electric field
only. As will be clear from what follows, these approximations will
not disturb the configurational emf calculation., Furthermore, té
avoid the complexity of allowing for anisotropy, we assume from the
outset that the energy E 1s a function of the magnitude of k only,

The pro'«gram to be followed is simply to expand the functions
gl(lz,;), gZ(E,;) and g3(1-2,;) in terms of surface spherical harmonics
Z{m% 50) = 73):2,() e datd . The relationship between the
vector k and the angles co's_lp and ¢ is shown in figure 10, In
addition, the scattering probability W(‘f(,-f{) may be expanded also.
We then solve the complete Boltzmann equation, 25 plus 27 or 48,
successively by orders., We will find that the only essential difference
between this procedure and the one used previously is that a set of
relaxation times, T 0’ T ., T ... enter the calculation instead of

1 2

the single one, 7, used previously. There is one such time associated
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m . PRSI
with each f-order of the Y (i, &) expansion of g (k,r) .
The scattering probability W(ﬁ,ﬁ) may be expanded as follows:

A L+ /
Wik K) = 2. 57 th <) Biy)

=5 g a0 gy ) )

i
A m
The symbol Nﬂm represents the normalization.

M= S ) Yisp? Y tpr g d?

_ 47 (£+/m))]
T24t1 (P-1m])!

and the function W, (k,K) is given by
+/ s
G K)= 27 [T/ RI D7) 47 (s1)
: -7

For the first order calculation we may write the left~hand
side of equation 25 as follows upon choosing our coordinate axes so

that the =z direction is that of the field locally:

s —)’97(0 >7Co @ Df
~ey.€E=~eM€E—X%f)= (ﬁmu. (52)
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Since the right-hand side is an integral operator upon the unknown

= . . .,
function gl(k, r) we are faced with an integral equation to solve where
the forcing function is given by equation 52, The particular solution
to this equation requires that the right-hand side have the same spatial

dependence as does the left. We therefore choose
Hikr) = G, (4,7) )//(/‘9/) (53)

The function Gl(k,_f') is then found in principle by solving the integral

equation

-e/y(f’;-’c—’-: — C;—,(é}}? J%[:[%%%]J%(/Gé)}(z‘/k

Ay AT

(54)

+[/- -75(5)]/@;(/(, F)wlk k) KK

The non-linear last term of equation 48 is omitted because the multi-~
=3
plication of two g(.lz, r) functions makes this a higher order terms,
In the second order calculation, this term enters as part of the forcing
. L3 = o el »
function when the substitution g(k,r) = gl(k,r) is made.
For phonon scattering, as for impurity scattering, the electron
exchanges only a very small fraction of its total momentum with the

scatterer. This is true for electrons near the top of the Fermi sea

which are the ones which participate in transport processes.
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Generally, the elastic scattering approximation is not at all a bad

one. This approximation is embodied in the statement
[ e
WK, k) = (K- k) Flk,7) (55)

It is to be understood in this equation that the delta function in the
magnitude of k is meant to be used with the weighting function K

as follows:

S AU - koiak = Alk) (s

By virtue of equation 51, the elastic scattering approximation may

also be written

w (hk) = S(K-k) 2y (k) (57)
where

/
2w, (k) = -277://"’//@)7) 2(7) 5/7 (58)

The function F(k»,n) is the probability per unit time that an electron
) =, -1 .

with momentum k is scattered through an angle cos mn. This

function is closely related to the scattering cross-section o(k,n)

through the density of scatterers and the scattered electron velocity

v(k).



63

Under the elastic scattering approximation equation 54 becomes

— e & 2= —[wth) - wk)] G (4, ) (59)

This equation enables us to define a relaxation time, 7'1 , where
L= 2, - )
_— — = ﬂ‘/ —
z 2 , =27 J( y)Fley)dy (60)

whereupon the solution of the Boltzmann equation to first order

becomes

k= L5576 £ (61)

A little reflection on the fact that this relaxation time depends only

upon the order £ of Y (w,$) and not upon m indicates that the
ho eoltn, .

original more elaborate equation 31 for gl(k, r) is quite correct as it

@

1

In going to second order, the form of the left-hand side of

stands if we merely replace 7 by 7

the Boltzmann equation
= b . .
- e - AL L2 _?_f_. .
(4/‘-7—-;(0'5;)0?,(4}"‘)—(4"7‘;; & X,;- Y- Ce VE) (62)
suggests that we take gz(l‘z,-;) to be of the form

2, e N
5BF)= R+ 0, G (k7)) 1 p) (63)
WMo- 2

This is because equation 62 may be expanded into a spherically sym-

metric part plus second order spherical surface harmonic parts. In
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dealing with these latter parts we find, in applying the elastic scatter-
ing approximation to the resulting integral equation, that a new time

T is introduced where

/
/ — = 77 -
F= = 27 Jl- 0] Fky) oy (64)

:372/(//— 7%) Flky) dy

In trying to apply the elastic scattering approximation to the
spherically symmetric integral. equation a difficulty arises. From
the form of 1/‘1"1 =W -w, and 1/7 , W, it is clear that for the

spherically symmetrical integral operator we would obtain

/T, = w,.-w_ =0 or arelaxation time,7 . , which is infinite. This

0 70 70 0

would imply thz%t a finite forcing function on the left is equal to zero
on the right. Therefore, in order to obtain the function R{k, ;) of
gZ(E, ;) , we may not assume that the scattering is elastic and it is
necessary to solve the complete integral equation for R(k,?)g This

integral equation is:

QJ‘ r - 7 3 2 J£ 2
/ 2 4 ¢ & = e Cj
3_.e,,/- TIJ__.. v.é — e (’g,kﬂ/'e)f)

R [EEWT ) Kk
ik )a/ai[f(é)] (k)

(65)

+ f(fffw(,éjk))emj FIN K

+[r- :iff)]/;?(»g 7) w5, k) K d K
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-
The first term on the left may be taken to be zero, since W/ = O

and the non-linear integral part of (-§£

ot )coll. is zero, because there

we may apply the elastic approximation safely, Substitution into
equation 65 of the elastic scattering approximation of equation 57 will
exhibit immediately the inconsistency mentioned.

In order to obtain ultimately a pliable solution to the problem
we expand the functien R(k,?) in terms of the eigenfunctions of the
homogeneous counterpart of equation 65, We then assume that R(k,;)
may be represented in large part by just one of these eigenfunctions.
But for each eigenfunction there corresponds an eigenvalue. For that
function which most closely approximates R(k,?) we call the eigen-
value {—1/7‘0)'

Clearly, the relaxation tirne T 0 "must be very large since in
first approxim;;tion it was found to be infinite., It is also apparent,
by virtue of the connection with scattering elasticity, thatythis relaxa-
tion time is intimately related to the extent‘ to which collisions are
inelastic or equivalently to the extent to which energy is transferred
from the electrons to the scatterers on collisions.,

It may be further noted that 7 . is associated with the spher -

0

ically symmetric part of the increase in the distribution function

ety

o z ==
f(lz,_;) which in turn varies as & or je & . Both of these

is related to the heating of the electron gas due
IR §

to the rate at which electrical energy is impressed upon it, J - £ .

facts suggest that 7 0
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Credit is due Professor Richard P. Feynman both for the discovery
and for the very penetrating analysis of the physical significance of
the relaxation time 7T 0°
In the light of the pljeceding discussion we may write down the

second order correction to the distribution function

9% T) =~ T (- ? )(——z‘,;f—-’ VE)

Hrm 5) F S L S (g0 )™ (68)

It may be mentioned as an aside here that the function gz(lz,_;)
in equation 66 cannot give rise to any current because of its symmetry
properties. But if we had included the magnetic field terms in addition
to the electric field we would have obtained an‘additional term which is
the aﬂalogue of .equation 35, Now even if there were orders £ = 0,1, 2,
and 3 in the spherickal harmonic expansion of this term, only the order
g =1 would give a current. This is because in the current integrand
the function g(g,-;) is multiplied by the velocity vector, each component
of which is expandable in terms of £ =1 spherical harmonics. It is
clear therefore that the value of the Hall coefficient H from equation
36 or 37 is quite correct j‘ust as it stands.if we merely rgplacg 7 by
T |

" We proceed next to third order. The left-hand side of the
Boltzmann equation in this order is
—_

(47»?— %5.7;);&(/(’)r) = (}?),,u. (67)
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An expansion of this expression in terms of surface spherical har-
monics suggests that orders £ =1 and £ =3 be included in the
- A A I3 13 - .
expression for g3(k, r) . In this case no difficulty arises from the
-1
elastic scattering assumption and a new relaxation time 7 3" (wo—wB)
. b o
enters. However, only that part of g3§k,r) with £ =1 will give rise
to a current because, as mentioned previously, the current integrand
contains the velocity which depends only upon £ =1 spherical har-
s ad .
monics, The £ = 3 part of g3(k,r) will integrate out to zero when
multiplied by the vector ¥ . As a result, we may calculate the cur-
rent directly from the forcing function expression of equation 67

multiplied by [(— 'rl) since the 7T 5 part of g3(§,-1t) will yield zero

automatically.

= 3 - = 3
3‘ w/’”“(’""’ £E%)g k) d k (68)

If we keep only those terms which contain the field 6 twice and

the }/ operator once, equation 68 leads directly to the configurational
4 sty [N . [N =

. _ 7 . e e T

field C:' = o= Je . Upon taking V& = > V-] =

the results of the operation in equation 68 may be summarized in

terms of five integrals,three of which are the direct analogues of those

in equations 43, 44, and 45.

3 [~
= - E./z.lzg_;‘f.;’«-dk ’éo/ré (69)

3
el S sk yeEV E K gh
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= L = ® s 3/s ) 3 2/ 4
K-35 57 SE(EIRT)IR LE) Bk (n)
AT ShDEV IPE 4t
%o==3 5 [t (2] 1L £ )

In terms of these integrals, the configurational current may be written

as

-

= (50+58)ve”
+(?+ﬁ+,§’)8’+.\75 (74)
+2’-(—-?+ & + 5)7(5’2'

This expression may be compared with that of 46. In the limit

et
0 T T, 7T equation 74 reduces to equation 46 when V- &= 0.

By virtue of the discussion around equations 18, 19, 20, and

21, it is clear that in the experiment reported here the terms involv-

ing the relaxation time T g Wwere not measured, The corrected con-

figurational coefficient is given by

; —',é—é:3 (’P-l— é-/—/_y) (75)
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and this is the quantity to be compared with the experimental curves.

4, Connection with Familiar Measurable Quantities

To arrive at an expression for the configurational coefficient
in terms of other known quantities, we will evaluaté the integrals
P, Q, and S for special cases. First, we note that it is not unreason-
able to assume that the energy dependence of T4 and of 7 > is the
same even though they may differ numerically because of the angular'
dependence of the differential scattering cross—ksection. On this

assumption we expect the ratio 7 Z/T to be simply a number of the

1

order of unity and independent of energy. In this case we have simply

T T, T, :
that P= — p, Q= — g, and S = — s . Itis to be understood
T T T
1 1 1
that 7 and T, are used interchangeably now. We further assume
' -¥ dr T L
that 7(E) = const, x E so that —— = “VE - This is not unreason-

able, since the energy dependence of 7 usually comes from the density
. ~ 1/2 e . .

of states which goes as E for the usual limiting cases which will

be considered here. Since it is only necessary to know this energy

dependence at the Fermi surface, the latitude afforded by the exponent

v is more than sufficient, For phonon scattering of relatively free

electrons at temperatures below the Debye temperature of the metal

‘generally v =1/2 because of the inverse dependence of ¢ on the

density of states as mentioned above. For higher temperatures

v =3/2 (7).
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The most general case we will consider is that of a metal
with energy bands of standard form (8). This is the case of a metal
in which there are two overlapping bands. One conduction band is
neatrly full. The next band up has some states of lower energy than
the energy of the highest states in the lower band, so that electrons
which would ordinarily fill up the lowér band spi‘ll over into the higher
band. They occupy the states at the bottom of the higher band, If
these bands were separated by a distinct energy gap, the material
would be an insulator, a semiconductor, or an ideal metal, depending
upon the width of the gap and upon whether, after filling the lower
band, there are still electrons available to occupy states in the higher
band. The details of the principles involved in exploiting this very
common model are explained quite' nicely in several places in the
literature (8, 9).

In this model for the isotropic case we assume that in the upper

band, which is the one which conducts with negative carriers, we have

_ —j,;i 2 ;
£ = 4, ; V4 (76)

In the positive carrier band, which is almost full, we have

£ = £, — o zi £° (77)
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The energy EO denotes the energy at the top of the band., The con-
stants a reflect the curvature in k-space of the energy surfaces in
each of the two bands, Using the same notation as that of Mott and
Jones (9) we have a = m/m%* whére m* 1is the effective mass, Elec-
trons in each of the two different bands have different effective masses.

Keeping in mind the fundamental two-overlapping-band picture,
the P integral may be obtained in terms of E and E' = EO—uE’ as

follows '
2 Po (D) < [udle) £ M E]F3E)4E

T 2 (3 s ,13% (78)
~ ()% [Geve e 3 ie

Here NP(E‘) refers to the number of unoccupied states per unit volume
in the lower band between the energy surface E and the limiting energy

EOG The number N (E) is the number of states occupied by electrons
n

out to the energy E in the upper band. The N(E) are densities in

physical space, not in k-space. The density of states in energy is

?1%3 N(E) . Since N (E') represents unoccupied states or holes in the
P
distribution and the effects associated with it will generally act as if

F) Np

they were caused by positive carriers, we may associate NP(EO—E
with the total effective number of positive carriers per unit volume.
Similarly, N (EF) z Nn is the effective number of negative or elec-
n

tronic carriers per unit volume.
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Both the Q and S integrals may be put in a form similar to
that of equation 78. The integrals in equation 78 are of a form which
may be evaluated by means of a well-known formula involving the

Fermi distribution fo(E). This is given by (10)

afg BED+ F(17) 2 JEz /E+... (79)

=
For IS EF which is usually the case, the Fermi distribution is

close enough to a unit step function so that only the first term in this

formula is needed.

Since in k-space the energy surfaces E and E' are spheres,

d
both of the densities s N{E) may be obtained from

[ e gt (e e

Surface E= eonst,

where for the hole ‘density we merely replace E by E' and use the
subscript p were applicable. Equation 80 yields the convenient

formula
N _ 3 M w1
dE 2 E (77‘)4;* (81)

Using these results we may evaluate the P integral and the Q

integral. For these we find

Pt g=2P = ,z————[(z")"t AN, - (% N, | (82
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To evaluate the S integral we note that 1/7(E) is related to
the a priori probability per unit time that a collision increases the

population of states with energy E. This probability is generally pro-

dN{E
portional to the density of states —d—EL—-) at E. Therefore, one expects

that if the density of states increases with increasing E, then 7(E)
will decrease with increasing E and vice versa. As a result, we
dr dr

dEn g dEP < 0 since the density of states increases

expect that
with E in one band and decreases with E (not E') in the other. If we
understand the quantity v to indicate the extent of this energy dependence

by virtue of

d% __d%_ _, % | 4T ___, Tn
dE = 45/“742&’/ AF - 7/"7;:" (83)

then the S integral may be written

A= g (2) a0 M, — (B) A/] (84)
- m*[?,’)., "% 1, n"(f),,'z;odfvp P

By a process of evaluation exactly analogous to that used for
the P, Q, and S integrals, the conductivity may be evaluated from

equation 34 to yield the well-known formula
e &

Similarly the Hall coefficient may be obtained from equation 37 to

give the familiar formula
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3
H == (B0 ¥, -2l ) (86)

In terms of these same parameters, the additional relaxation time

T > and the numbers

2, =

d_Ln T / and U, = ‘{j"?”/g’;/ (87)
£y-E

d bn £ g, T d b £ -

the configurational coefficient is given as

3 2
C{: -—O%—’:‘ [(/‘K)(%ﬁ)hz"'z"(n M’(/—%X%XT;K;MP] (88)

For all the cases considered by Wilson (7) the quantity v
varies between 1/2 and -3/2, depending upon the band structure. Since
it is expected that 7 2/'1"1 is of the order of 1, we will lump into the

T

symbol vy the rough average of both of the multipliers (l—v);_——g = Yo

1
The number vy is of the order of unity,
If one of the carrier types predominates over the other, then

the equations 85, 86, and 88 reduce to simpler form., For example,

if the negative carriers predominate, the following relationship holds.

W { 2 M
= e _—— 4 = A 89
- Y e & YT = (89)
In the special case that T > = 7 and v =1/2, equation 89 reduces

exactly to equation 3 if, in the latter m is replaced by m* and the
particle density n is understood to mean the effective carrier density

N used above. If we use for the quantity n in equation 22 the definition
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given in Mott and Jones (11) for the effective number of free electrons,

2
then we must replace m by m /m¥% .
Equation 89 shows that, in general, a measurement of the three
coefficients ¢, H, and C will yield directly the relaxation time and

the effective mass m¥* = m/a of carriers.
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IV. DISCUSSION
1. Application to Bismuth

In the case of bismuth the five valence electrons per atom are
just sufficient to fill a Brillouin zone corresponding to the rhombo-
hedral lattice of the bismuth structure (12,13). If the next higher zone
were separated by an energy gap, bismuth would be a semiconductor
or an insulator, depending upon the width of the gap. In fact, though,
there is no energy gap and the next higher zone contains some levels
‘which are lower in energy than the highest levels in the primary zone.
Therefore, some of the electrons which would have gone to complete
the filling up of the lower zone spill over ainto the higher zone. These
act as negative carriers because they are now at the bottom of a
conduction band. The empty levels in the depleted primary zone act
as positive carriers. Itis this exchange number, N, of levels depleted
or extra levels occupied in the higher band which defines the number

of carriers. For bismuth then

No= My =N

(90)

We may define the ratio x to indicate the relative difference in

mobility between the electrons and the holes so that

2—” q," ""'z'p °(p

X =



T

The ratio x varies between the limits -1 through zero to +1 in
the case of very high mobility of the negative carriers as compared to
that of the holes. In terms of the quantity x and the condition

Np = Nn = N, the Hall coefficient for bi"smuth‘may be written from

equation 86

'L/:"‘e‘ii% (92)

{ \
[N

2. Three Alternate Assumptions for Relating C, ¢ and H.

With regard to the coefficient C in the presence of two carrier
types, there are a number of possibilities. Itis possible that the

effective mass of each of the carrier types is about the same, so that

we may take a = ap =a . In this case the coefficient C becomes
- z '
o H T oy Tpdp
(’= - = [/ - g 2 {93)
€ o X (Tuel), + Tp )
1

where the number in brackets can only be between [1 -3 1 =3/4 and
unity. In this case, we should get an estimate of the quantity 1l/ax
from the experimental data by evaluating the ratio [—(e/m)(C/HZ)]
given in line four of table l. If x is taken to be of the order of unity,
the implied values of m*/m differ considerably from those obtained
by magnetic susceptibility measurements. The si:rong diamagnetic
properties of bisrr;uth are usually attributed to a ver\/} small effective
mass for the electrons (14,15). This is because the Landau diamag-
netism of the electron gé,s depends upon the reciprocal of the effective

mass. The spin paramagnetic properties depend linearly upon the
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effective mass. Since the electronic part of the susceptibility is nega-
tive or diamagnetic, the conclusion is that a or the reciprocal effective
mass is large. If a were unity, then the electroﬁ gas would be para-
magnetic because the Liandau diamagnetism is just one-third of the

spin paramagnetic susceptibility.

The formulas for the Landau diamagnetic susceptibility of the
electron gas depend heavily upon the directional properties of the
crystal. Mott and Jones (14) conclude from the measurements that the
effective mass along the principal axis is several orders of magnitude
larger than the effective mass in directions perpendicular to this axis.
By further argument they conclude that a ~1 along the principal axis,
making a ~ 102 in the lateral directions, They aiso point out, how-
ever, that the formula is such thatif a were assumed to be about unity
in the lateral. di;t'ections, then the same magnitude of the diamagnetic
susceptibility would result if along the principal axis a were quite
small. In this case the average a would lie between 10—6 and unity.
And considerably better agreement would result with the configurational
estimates of table 1.

The alternative to the implication that o is considerably smaller
than all previous estimates of this quantity for bulk bismuth is that the
mobility of positive carriers is very close to that for negative carriers
so that x is very small. The relative difference, x, would have to be

-4
of the order of x ~ 10 if a~1,
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A second possible basis on which to evaluate C 1is on the
assumption that the relaxation times for positive and negative carriers
are about the same, so that Tnm 7 ~ 7, In this case, the second
equality of equation 89 holds for C. Line 5 of table 1 gives the values
of this relaxation time calculated for this case. These relaxation times
are about two orders of magnitude larger than that usually estimated
for bismuth and about four orde‘rs of magnitude larger than those for
more ideal metals,

The next assumption to consider is that whereas the relaxation
times or the effective masses in the two bands may be quite different,
tile mean free path for collision is about the same for either band,
This case has a better physical basis than the preceding two cases.
This condition corresponds to the assumption that x is very small
or, equivalently, that T 0vT @ because the mean free path is

PP

proportional to the product of 7 and a .
A =T = Ez/_—; ﬁ/Vl/a |
= F'3(3) T (94)

Now even though x is small, the respective relaxation times for the
two bands probably differ considerably, If this is the case, the fact
that the ‘measurements show the same sign of carrier for both H and
C indicates that T, > Tp. In this event, the coefficient C may be

written approximately as
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v H_ X m 2
(’”4)( o T Tixre w1 (95)

Referring to table 1, it may be shown that a value of x = 002
will yield a 1 and T, 2x10° seconds, both of which values
are in reasonable agreement with fhe usual estimated rough averages
for bismuth., Unfortunately, the point of view that coincidentally the
difference in mobilities of each of the carrier types just happens to be
exceedingly small for the particular material of which the specimens
were made seems rather ad hoc and therefore unsatisfactory. Itis
interesting to note, however, the following correlation. With the
value x = .002 and the assumption that the effective number of car-
riers pei' atom is about 3 x 10—4, which is just the usual number for
bismuth, ‘the film thickness b may be estimated. The values of b
so obtained are shown in line 6 of tablel. These estimates agree
reasonably well with those obtained from the resistance estimate of b
if the bulk resistivity of g = 10—4ohm—cm is used. The values of b
calculated in the latter way are on line 7 of table 1.

To appreciate the fact that this correlation is not simply a
property of the measurables independent of x we note that both the
quantities (1/ob) and (H/b) are directly measurable and are listed
on lines 1 and 2 of table 1, If we assume that the specimen conductivity,

o, is equal to the bulk conductivity of bismuth, then b is found to be

of the order of 100 A , as shown in the table., However, if H is also
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assumed to correspond to the value for bulk bismuth so that
H=0.6 cm3/coulomb, the implication would be that the same thickness
b, by this estimate, is of the order of 30,000 A . Taking the value
x = ,002, therefore, not only brings 7 and a into better coincidence
with accepted values but also brings the Hall effect measurement into

coincidence with the conductivity measurements.

3. Relation between Theory and Experiment.

The preceding discussion serves a two-fold purpose. First,
it indicates that the specimen material does not act at all like bulk bis-
muth. This is independent of the configurational measurements. Either
the conductivity or the Hall coefficient or both are not that of bulk bismuth.

Secondly, itis clear from the multiplicity of possible assump-
tions on how to‘ evaluate the coefficient C in terms of o and H that
the number of theoretical parameters available exceeds the number of
measurable quantities through which theory and experiment may be com-
pared. In this connection it should be noted that the oversimplified rela-
tion of equation 17 is only applicable in special cases. Therefore, the
direct comparison given in the discussion around that equation is not
generaily valid as was intimated in that section.

These two dyiffi‘j;ulties are magnified considerably by the nec-
essity of dealing with bismuth which is characteristically anomalous.

The formulas would be more amenable to interpretation in the case of



82

a more ideal metal. However, the experiment is considerably more
difficult in metals like sodium or potassium.

On the first three lines of table 1 is a summary of the directly
measurable quantities relevant to this experiment. On the following
two lines are listed those combinations of the measurables which,
theory suggests, should yield significant numbers relevant to the
properties of the specimen material. In general, the ratio (—eC/mHZ)
of line 4 should yield some effective weighted mean of the reciprocal
of the curvature, a , of the energy surfaces in k-space. And the
ratio (o C/H) shoulci yield some effective weighted mean relaxatiobn
time. The weighting factor or the averaging procedure will depend
upon the particular substance. It will depend upon the number and
type of carriers present and upon their relative mobilities.

Now er pure bulk bismuth the usual estimates of m*/m = 1/a
lie between 0.0l and 1.0, depending heavily upon crystal orientation(l4).
And T 1is thought to be of the order of 10—12 seconds. A considerable
divergence exists between these numbers and those derived on lines
4 and 5 of table 1. If the latter set of empirically derived numbers
did approximate the expected values for bulk bismuth, then this would
be taken as strong evidence that the theory given in the preceding pages
does indeed describe the observed effect. Because of the discrepancy,
however, we are left with three alternatives regarding the interpretation

of the experimental and theoretical results.
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4. Alternative Interpretations of Results,

The first alternative is simply to accept the experimental
results as relating directly to the theory given here and to throw the
entire burden of producing quantitative agreement upon the adjustable
and relatively unknown parameter x. As has been pointed out, it is
possible to achieve some measure of quantitative consistency by
choosing x properly. On this view the experiment is nothing more
than a way of obtaining the relative mobility of the two carrier types.

Unfortunately, this outlook is unsatisfactory on two counts.
First, the value that is demanded for x is rather extreme. It seems
improbable that the specimen rﬁaterial is such that, by coincidence,
the mobility or mean free path of holes differs by only two parts in
one thousand from that of negative carriers. The second count against
the view under :‘consideration is the following. Basically there is really
no a priori reason to adjust x so as to bring the measured a and 7T
into coincidence with the values for bulk bismuth. Since it has been
shown by the measurements of (H/b) and (1/ob) that the specimen does
not behave like bulk bismuth, the point of comparing a and 7 with
the accepted values for bismuth loses its strength. This is especially
true since the indications are that a discrepancy of almost three orders
of magnitude exists between the specimen properties and those accepted
for bismuth in areas which do‘ not invelve the configurational emf.

The second alternative which is available for interpreting the
experimental results with regard to the theory is to recognize:that

the results are inconclusive.
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The specimen is a thin film so that all the usual anomalies of
thin films add to the confusion of trying to correlate the observed
effects with the known properties of the bulk material. The bismuth
used in the experiment was‘k'n’own to be quite impure even before
evaporation. And special precautions were not taken in preparing the
glass substrate nor in very careful cleaning of the evaporation boat nor
in controlling the time, rate, or temperature of evaporation. As a
result, the composition of the final specimen could hardly be expected
to be pure bismuth. Now the properties of bismuth are known to be
quite sensitive to the amount and kind of impurities in it. A change of
resistance in bismuth by an order of magnitude due to alloying with a
ffaction of a percent of tin is realizable. There is some possibility,
then, that the di/écrepancy between theory and experiment is due to
the inapplicability of the theory to the particular specimen used.

The basic reason for this view is that there are too many
factors involved whose relation to the investigation at hand is indetermin-
ate. For eﬁample, it would seem reasonable to understand the large
divergence between the properties of the thin film evaporated bismuth
specimens and those of bulk bismuth before attempting to interpret
experiments which purport to yield new information on bismgth., Per-
haps the bulk bismuth model - using 'Np = Nn =N etc. - on which
the theory is based may not be applicable to impure thin film speci-

mens. Perhaps there are unusual surface scattering mechanisms to
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be included in the theorye. Or perhaps surface energy states play an im-
portant role. These have been completely omitted from the theory. Im-
purities also affect the results because the concentrations Nn and N are
changed by impurities, In addition, impurities affect the mobilities or,
equivalently, 7 n%n and 'rpap, In connection with these qualities, but
independent of the thin film nature of the specimen, some of the discrep-
ancy may be attributable to failure to include in the theory any account
of hole-electron annihilation or what might be called interband scattering.

On this view then all that has been established here is the qual-
itative existence of the expected effect. This was done in such a way,
however, as to eliminate other possible explanations for the observed
result, Further experimental evidence is needed on substances which
are more consistent in their properties and which are more amenable
to theoretical analysis to verify the quantitative features. Unfortunately,
these substances are the very ones on which it is most difficult to mea~
sure the configurational emf.

The third and last alternative open for consideration is the view
that the observed results are not related to the effect for which a theory
has been given here, The obvious inference is that there is some other
cause. However, on examining other possible explanations, nothing
has yet appeared which can be said to fit the observed results. The
self-Hall effect or self-magnetic current deflection hypothesis, for
example, has been shown to be untenable in a previous section. Thermo-
electric origins have been discussed., And spurious signals from rec-

tifying contacts in the bridge are distinguishable from the desired signal,
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Before concluding the discussion on this last alternative,
however, it is well to mention some considerations involving anisotropy.
A conceivable explanation of the observed effects lies in the possibility
that the evaporated specimen consists of large enough crystallites to
exhibit the anisotropies common to bulk bismuth crystals. If anisotropy
obtained, then the ordiﬁary first order thermal effects would not nec-
essarily cancel out around the circuit of figure 9 and neither would
the 7T o bpart of the configurational emf. Both of these would then
produce a square law current depeﬁdence as is observed.: However,
for this to be the case, there would have to be crystallites present of
a size approaching the width of the potential probe or of the constrict-
ing region.

In fact, it is not uncommon to find some structure and grain
in an evaporated specimen. The evaporation then consists of a large
number of small crystallites oriented at random. However, investiga-
tions carried out on thin films indicate that the grain size is usually
no larger than about 500 A (16). Even if crystal flakes of the order of
1000 & in diameter were formed, about 200 of these would be needed
to span the probe region or the constricting region. One would expect,
therefore, that the anisotropy exhibited by the film should certainly
be no more than about 1/2% of that exhibited by the bulk material.

Since the thermoelectric power of bismuth is of the order of 70

microvolts per degree and the resistance of each of the constriction
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arms of the specimen is of the order of 1,000 ohms énd the observed
effect is of the order of 7 ‘p.v/{rna)z,‘ one may make the following
estimate. If the effect were due to the anisotropic thermoelectric
emf , then the above numbers lead to a heating efficiency in the speci-
men of the order of 20,000 degrees/watt of electric power input. This
is an untenably high rate of temperature increase with electrical power
input. Furthermore, since the melting point of bismuth is 544° K,
observed signals as high as 100 pv in specimen I of figure 6 would
imply, on the hypothesis of a 1/2% anisotropy thermoelectric emf,
that the specimen attained tempe.icatur es over 30° aiaove its melting
point. This strongly suggests that the slight specimen anisotropy that
may be present is not sufficient to account for the results except under
very unusual circumstances.

In addition to the above evidence against thermoelectric origins,
there is the additional fact that one experimental run was done with
the specimen immersed in liquid helium II at about 1°* K. By virtue
of the well-known superfluid properties of helium below the A point,
it is expected that the temperature of the specimen should be relatively
uniform regardless of the non-uniformity of the current density ioe—
cause of the extraordinary heat transport properties of helium II. A
large configurational signal was detectable from the specimen in this

condition as well as at room temperature. The signal was quite different
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in magnitude, of course, from the one received at room temperature.
This result does not conclusively deny thermoelectric origins because
of the possibility of very local heating in a film of liquid around the
specimén,even in liquid helium II. However, itis strong evidence
against the thermoelectric hypothesis and, togethe;' with the preceding

calculation, all but eliminates this explanation of the observed effect.
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V. SUMMARY AND CONCLUSION

An experiment was undertaken to detect a configurational emf
due to a Bernoulli effect in the electron gas in evaporated thin films of
bismuth. The experiment was successful in that (a) a definite configu-
rational emf- was observed, (b) this emf varied as the square of
the current and, (c) there was the expected correlation between the
sign of the emf and the sign of carriers as established by Hall mea-
surements. The experimental investigation was unsuccessful in determin-
ing the dependence of the emf upon area and in establishing quantitative
agreement with the theory given here.

Upon consideration of the discussion of the previous section
the indications are that the observed emf didindeed arise from the
hypothesized Bernoulli effect. The lack of correlation between theory
and experiment is attributed to the inapplicability of the theory to the
particular specimens used. The reasons for this conclusion may be
summarized as follows: Another equally tenable explanation for the
observed effect is not evident and there is considerable reason to sus-
pect that the special nature of the specimens alters the apparent mag-
nitude of the effect.

With regard to the first of these reasons attention has been
devoted to other conceivable hypotheses and they have all been found

wanting on either experimental or theoretical grounds.
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The special attributes of the specimens are contained in their
thin film nature and in the fact that they are evaporated (and therefore
contaminated or oxidized). The theory applies only to bulk material i‘n
which all dimensions are considerably larger than a mean free electron
path and to pure bismuth - not, for example, to oxides of bismuth. The
latter may actually constitute a large fraction of the sample. These fac-
tors have a considerable effect on the apparent properties of the sample
often extending to orders of magnitude differences from bulk material
properties(lﬂ. Since‘ the theory does not include size or impurity ef-
fects the possibility exists that the lack of correlétion is due to this
omission.

By far the most important attribute of thin evaporated films
which may cause an experimental mis-estimate of the configurational
coefficient C is the phenomenon of coagulation upon evaporation. Films
that are evaporated at room temperature are often found to consist of
an intricéte matrix of tiny islands of material connected only intermit-
tently to one another (18,19). A current flow line through the film must
follow a tortuous path leading from island to island rather than the
straight line estimated from a macroscopic view of the specimen. The
net result of this phenomenon is that the actual effective cross-sectional
flow area presented to a current is considerably smaller than that’
estimated by a visual observation of the film. Such an effect implies

that the observed configurational emf will appear to be considerably
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larger than that estimated from a calculation using the apparent macro-
scopic cross-sectional width of the specimen. Alternatively, this means
that the experimental estimate of C based on the visual width of the
specimen will exceed the actual value by a factor (apparent width/actual
effective width) ;f2 ‘. This factor could easily approach 104 or more.
The coagulation phenomenon would produce an effect, therefore, such
as to cause an apparent discrepahcy between theory and experiment just
like that observed both qﬁali‘tatively and quantitatively. Itis to such
effects that the discr epancy is attributed.

The lack of a definite quantitative verification of the Bernoulli
origin of the configurational emf is unfortunate in that us\e of this
effect as an auxiliary tool in solid state measurements must await
such a verification. Itis hoped that the final confirmation will come

in the near future, and that this effort will have contributed in some

measure to that confirmation.
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Vi. TABLE AND FIGURES



Table 1.

L.
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Summary of data on the specimens of figure 6

(Specimen I) and of figure 7 (Specimen II).

Specimen I

1/ob

= b
VH/IB H/

w?v /1% = c/b
— 2
{(m*/m) ==eC/mH

T = oC/H

b =—(x/eN)G{/b)"1

b = p/(1/cb)

90
-12
- 3. 8X103

4, 8X104

3°5x10-10

120

110

Specimen II

70
-25

- 3. 8x103

4
1.1x10

z.leo“lo

60

180

Units and Comments

ohms
pvolts/ma-kilogauss

pvolts —(microns)z/ ma2

seconds

©

A where x = 0,002

o -4
A where p =10 ohm-cm



3= F lectron Drift

+

AV (configurational)
-l

/
4 Potential modified by
7 configurational emf.

{—— Classical idealized potential

Fig. 1.- Expected potential vs. distance due to constricted
current flow in the conducting specimen shown.



Potential Probe

Current
— = 1
. |

Equipotentials

Current
— — — I
N {
(b) NI\
Fig. 2. - a. kquipotentials in a current carrying cylinder
as deduced from Ohm's law, j= o¢& . The

probe at P senses the potential V.

b, Equipotentials for Ohm's law as modified by

the magnetic field of the current, j=o|{€-(1/ne) jxB 1.

A potential probe at P senses the voltage V+V .
m
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Fig. 8. - Lumped emf schematic of the configurational pote~ii
in a specimen of non-uniform cross section.
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Fig. 9.- Integration path to obtain the configurational emf from

the configurational field.



Fig. 10. - Coordinate definitions for the k-vectors.
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