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ABSTRACT 

The Steele-Pecora equation describing the x-ray scattering 

behavior of molecular fl~tds has been investigated. Several 

molecular scattering factor coefficients, molecular distribution 

functions for chlorine according to the Percus-Yevick theory, 

and intensity functions for chlorine have been evaluated using 

orthonormal expansion methods. 

Molecular scattering factors for H
2

, N
2

, LiH, and HF have 

been obtained as spherical harmonic expansions. The coefficients 

of the expansions and corresponding gas scattering intensities 

have been evaluated using both the molecular orbital and isolated 

atom approaches, and significant differences have been found to 

exist between the two methods. Chlorine scattering factor 

coefficients were calculated for the isolated atom approximation 

only. Expressions for the two-centered Gaussian scattering integral 

coefficients were derived, and the harmonic expansion technique 

was shown to be a practical method of calculation. 

The Percus-Yevick equation was solved for chlorine by an extension 

of the Hankel transform method of Chen and Steele. Chlorine was repre

sented by an appropriate two-centered Lennard-Jones potential, the o

and E parameters having been determined from second virial data. Higher 

order expansions of f(!,1~), C(R1~), and H(R1R2) were used here than 

in previous work as well as a more complete representation of 

the product of two harmonic series. Pair correlation functions 
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were obtained over the density range p* = 0.1 to 1.2 for T* = 0.75, 

1.00, and 1.30. It was concluded that the first two expansion coeffi

cients of f(!1! 2), C(!1! 2), and H(!1! 2) were sufficient to obtain 

accurate pair correlation functions over this range of states. For 

certain states, use of the more complete product expression reduced 

the error in g000 by several percent. Evidence for a chlorine critical 

point was obtained in the vicinity of (p*,T*) = (0.65, 0.70). 

A version of the Steele-Pecora equation suitable for use with 

diatomic molecules was derived. Substitution of the chlorine scatter

ing factor coefficients and Percus-Yevick distribution functions 

into this equation led to the determination of total scattered 

intensity functions expressed as sums of gas scattering, spherical, 

and angular intensity contributions. The angular contributions were 

shown to be experimentally significant in the regions of the first 

and second peaks at high densities (p* ~ 1.2). Temperature was shown 

to have only a slight effect on total intensity. g000 , g200 , and 

g220 were found to be the principal contributors to .the intensity. 
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PART I 

INTRODUCTION 



1. INTRODUCTION 

The scattering of x-rays may be used to obtain information 

about pair distribution functions in fluids. 1 A rigorous theory 

exists for the treatment of fluids composed of spherical atoms and has 

been empl oyed with success for over thirty years. The same theory has 

also been applied to fluids composed of nonspherical molecules 2 with 

the major assumption that the x-ray scattering is determined entirely 

by a spherical molecular pair distribution. This application has met 

with only partial success because the distribution function of such 

molecules is not spherical but is dependent upon orientational corre-

lations as well. 

3 A recent theory developed by W. Steele and R. Pecora shows 

the details of the correct form of the x-ray scattering cross-section. 

In particular, a specific expression for the orientational contribu-

tion of the pair distribution function to scattered intensity now 

exists. It is of interest to know just how large a contribution 

orientation makes to the total scattering, but at present no numerical 

informat i on is available. This work therefore undertakes the task of 

evaluating the total scattering for a nonspherical system from a 

theoretical standpoint. So as not to complicate the equations and 

expressions to be evaluated any more than necessary in this initial 

treatment, we have restricted our attention to linear diatomic mole-

cules. Although other molecules are discussed, the bulk of the work 

which follows is for chlorine. 

When one attempts to evaluate the x-ray intensity, one finds 

that two quantities must be known as input. The first is the molecular 
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scattering factor, defined as the spatial integral over the product of 

the electronic density and its phase factor 
iK•r 

e-- The second is the 

pair distribution function, including its angular correlations over a 

large temperature and density range. Two methods exist for the calcu-

lation of the molecular scattering factor. In one, the atoms of the 

4 . molecule are assumed spherical and independent of one another . In the 

other, the molecule is viewed as a whole and is treated quantum mechani-

cally in a manner analogous to atomic scattering factors. Bonding 

effects are specifically taken into account. As presently formulated, 

neither approach presents the molecular scattering factor in the form 

of a harmonic expansion, yet the Steele and Pecora equation demands it 

to be in this form. We have therefore derived equations for harmoni-

cally expanded scattering factors in both treatments. The quantum 

mechanical treatment (at least for small molecules) was expected to be 

6 7 the most accurate, as had been indicated by earlier work on hydrogen ' 

and carbon8 • 9 . However, an investigation over a variety of different 

molecules and bond types had not been done and the differences between 

the two treatments were still largely unknown. Harmonically expanded 

factors have thus been calculated for the four first row molecules, 

H
2

, N
2

, LiH, and HF using both methods of calculation, and differences 

have been presented and discussed. 

Calculation of the pair distribution function for a nonspheri-

cal molecule presents a difficult problem. No such data for a 

temperature and density dependent function have been previously cal-

culated, and until quite recently no technique was available that 

might be adapted for the determination of such quantities. The recent 
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advance that does allow one to calculate these pair distributions is 

the work of Chen and Steele
10 

in which distribution functions in 

harmonically expanded form were evaluated for a two-centered hard 

sphere ("dumbbell'~ potential by solving the Percus-Yevick equation. 

We have adapted this technique for use with a temperature dependent 

two-centered Lennard-Jones potential and have evaluated distribution 

function coefficients for three temperatures and a variety of densi

ties ranging from zero to moderately high values. Behavioral trends of 

the coefficients as determined by these temperature and density varia

tions are presented and discussed. 

The x-ray equation itself was adapted for use with diatomics, 

both homonuclear and heteronuclear. As indicated above, it was 

evaluated by using the molecular scattering factor results and pair 

distribution function coefficients previously obtained. The resulting 

intensity curves were decomposed into their three main components, the 

contribution of each being studied as a function of temperature and 

density. Particular attention was paid to the component composed of 

the angle-dependent fluid interference terms, the primary interest 

being to determine if those terms collectively contributed enough to 

the total intensity to be measurable. 

Some theoretical background is called for before the detailed 

analysis is begun. We therefore devote the remainder of this introduc

tion to a presentation of that background. Since this research 

ultimately reduces to a study of the fluid state and methods us eful for 

discovering new information about fluid structure, a brief review of 

fluid (or liquid) state theory is in order and is found in the section 
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immediately following this one. Nearly all the main theoretical equa

tions evaluated in this work depend on the method of orthonormal 

D-function expansion advanced by Steele11 Consequently a section is 

devoted to this, followed by results obtained from its application to 

hard core Percus-Yevick cluster and integral equations. Lastly, early 

work on the x-ray scattering from spherical and nonspherical molecules 

is reviewed. Scattering factor treatments are discussed, and some 

results for specific systems are considered. 
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A. Liquid State Review 

A continuing problem in statistical mechanics is the prediction 

of macroscopic properties from microscopic configurational properties. 

Restricting oneself to equilibrium properties, the thermodynamic 

properties typically of interest include pressure and volume relation-

ships, isothermal compressibility, the heat capacities CP or CV , 

and molar free energy. The scattering behavior of visible light, 

neutrons, and x-rays is also of interest since this provides detailed 

information about the microscopic structure of the fluid as well as 

further information about the macroscopic thermodynamic properties. 

Predicting these fluid properties from theory has been the sub

ject of a great number of studies, beginning with Van der Waals 12 . 

Even the most modern theories still predict certain properties incor-

rectly, notably pressure and critical state phenomena, and it is 

apparent that unlike the gaseous or solid states, the liquid state is 

still far from being solved. 

13 In the region of low density, the theory of Mayer and coworkers 

has proven quite accurate. This is the cluster expansion approach and 

results from an expansion of the configurational integral in Mayer f 

functions. Virial coefficients and a density expanded version of the 

pair correlation function have been derived and evaluated for a variety 

of spherical potentials including the Lennard-Jones (LJ) potential. The 

theory is only valid at low densities, however, since at higher densi-

14 ties the series apparently becomes nonconvergent . It is useful for 

evaluating higher density theories by comparing their prediction of 
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virial coefficients against the accurate Mayer values. 

The modern theories which have been developed and applied to the 

moderate and high density region are all distribution function 

theories15 , these having replaced the older cell theories16 • Distribu-

tion functions are desirable because they have direct integral rela-

tions to the macroscopic equilibrium properties and for certain systems 

they are given directly by the Fourier transform of the x-ray scatter-

ing intensity. The accuracy of a particular distribution function may 

thus be assessed by carrying forth the required integrations for a bulk 

property and comparing the results with experimental data. Within the 

error bands of present x-ray data, a point by point comparison might be 

made. 

The first dense fluid theories included the Born, Green, and 

Yvon (BGY) theory17 and the similar Kirkwood theory
18

. These theories 

led to an open-ended coupled set of integro-dif f erential equations for 

th the set of n order distribution functions The set of 

equations was closed by employing the superposition approximation of 

Kirkwood. Unfortunately the theory fails badly in predicting the equa-

tion of state at liquid densities. 19 A recent attempt has been made to 

revive this theory by using a higher order superposition approximation, 

but while an improvement has been made in the results, computation time 

is nearly prohibitively high. 

One of the most successful and widely investigated theories is 

20 the Percus-Yevick (PY) theory • It is similar to the marginally suc-

21 
cessful hypernetted chain (HNC) theory In integral form, the PY 

theory provides an approximation for the direct correlation function 
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which when solved with ~Ornstein-Zernike equation provides a solution 

for g(r) . In spherical form this approximation is 

c(r) g(r)[l - exp(Su(r)] 

or 

c(r) exp[-Su(r)] f(r) g(r) 

It has been applied at low and high densities22- 25 and found to give 

distribution functions which generally agree with experimental curves 

and which yield thermodynamic properties that agree well with Monte 

Carlo and molecular dynamics values. Pressure is a notable exception 

to this good agreement. Perhaps significantly it also predicts a 

critical point which agrees quite closely with that for fluid argon 

and, unlike earlier theories, predicts an infinite isothermal compres-

sibility at the critical point. 

Still another approach to the liquid equation of state is the 

perturbation theory originally set forth by Zwanzig26 The theory 

expands the Helmholtz free energy as a sum consisting of a contribution 

from a hard sphere reference potential and a contribution from a term 

which represents the perturbation of the hard sphere potential to a 

more complicated potential such as the Lennard-Jones potential. 

Originally a high temperature expression, it has been modified by 

Barker and Henderson27 and applied to true liquids. Accurate results 

require the inclusion of the g( 3)(r) and g( 4)(r) hard sphere dis-

tribution functions which can be only roughly approximated. Dense 

fluid applications are encouraging but a final evaluation awaits 

further research. 
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The aforementioned theories have been applied to a great extent 

to the spherical molecules composing what is usually termed simple 

fluids. Theories suitable for application to more complicated fluids 

composed of nonspherical polyatomic molecules must be capable of 

explaining the quantitative changes which occur from simple fluid 

behavior . . These include the changes which occur in the equation of 

state (particularly in the location of phase boundaries), the small 

changes in the virial coefficients (especially third), the increase of 

heat capacity values, and the changes in dielectric behavior (especi-

ally in the second dielectric virial coefficient). Orientational 

correlations, rotation, and vibration all contribute to these changes. 

The latter two effects may be separated and evaluated by standard 

statistical mechanical expressions, whereas orientational effects must 

be included specifically in the configuration integral or pair correla-

tion function. If orientation is taken into account, the theories above 

can be properly generalized for application to nonspherical systems. 

Pople and Buckingham28 have used cluster theory with dipole and 

quadrupole forces included in treating second ordinary and dielectric 

virial coefficients. They included nonspherical repulsive effects by 

adding on an arbitrary r-12 term multiplied by the sum of two 

second order Legendre functions depending on orientation angles. More 

recently, Levine and McQuarrie29 and Stogryn30 have presented general 

treatments for the evaluation of virial coefficients up through the 

third for a multipole potential. The repulsive core is spherical, 

however. 31 Recently Chen and Steele have evaluated the virial coef-

ficients and density expansion coefficients of the pair correlation 



-10-

function for linear hard core molecules following cluster theory. 

They expanded the pair correlation function and cluster integrals in 

harmonic expansions of the orientational angles, a technique proposed 

by Steele11 and developed by Sweet and Steele32a in evaluating zero 

density pair correlation functions for the two-centered Lennard-Jones 

potential. Chen and Steele10 also adapted the Percus-Yevick theory 

for use with linear hard core molecules using harmonic expansions. This 

work, along with earlier cluster work, was the first to specifically 

determine the size of the contributions of the orientational effects at 

moderate densities. Most importantly, it is a general theory and may 

be further adapted for use with other potentials. It is incapable of 

yielding very high density results due to convergence problems. Forms 

of perturbation theory have been applied to slightly nonspherical 

33 34 molecules by Pople in early work and more recently by Kong in the 

calculation of second ordinary and dielectric virial coefficients. 
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B. Statistical Mechanics of Linear Molecules 

Orthonormal Expansions 

If a microscopic pair property of a substance, such as its 

potential or pair distribution function, is expressed in terms of the 

distance separating two molecules and their mutual Euler angles of 

orientation, then a very complicated expression often develops. 

11 Steele advanced a general theory for handling such expressions in 

which they are orthonormally expanded in the rotational D-functions 

(or synnnetric top functions). An important assumption in this approach 

is that the molecules are rigid, since if they were to bend freely the 

Euler angles would lose their meaning. If the position and Euler 

angles of orientation of a molecule are denoted by r and n , or 

collectively by B: = (.E_,n) , then a general function X(R
1

B:
2

) may be 

expressed as 

(1) 

where the coefficients depend only on the scalar dis-
oo Jl Jl 

tance between molecules. Nl = {Kl,Ml,Jl} and l l l l 
Nl Jl=O Ml=-Jl Kl=-Jl 

In the case of dealing with linear molecules, the D functions reduce 

to the usual spherical harmonics since Ml ,M2 = 0, Kl= -K2, and one 

obtains 

00 00 

where .& = {-£,-(£-1),···,(£-l),£} . 

(2) 

(In the harmonics the n. repre-
1 

sent only two angles instead of a full Euler set of three; i.e., 
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~ . = {8., ¢ .} .) The Euler angles are always expressed relative to a 
l l l 

coordinate system in which the Z axis corresponds to the vector .£
12 

. 

This allows one to make use of molecular synunetry in determining the 

allowable values of £ ,£',m This work employs the D function 

1 . . f S 1 ll d h h . d f. . . f R 35 
norma 1zat i on o tee e an t e armonic e initions o ose . The 

factor of 4TI is present so that if X(~1~2 ) is freely averaged over 

all orientations, x000 (r) is equal to this average. The X££ 'm 

coefficients may be obtained by multiplying both sides of (2) by 

Y~,m(~1 ) and Y~, ,-m(~2 ) and integrating over angles, i.e., 

TI TI 2TI 2TI 

X££ 'm(r) = 4~ J J J J X(RlR2)Y~,m( \j_ ¢l)Y~',-m(82¢2)d~ld~2 (3) 

0 0 0 0 

where d~ = sin e d8d¢ 

Synunetry imposes several additional restrictions on the allow-

able ££'m values. The orientation angles of two linear molecules 

are shown in Figure 1. It is clear that the azimuthal functionality 

of X(~1~2 ) depends only on the absolute difference 1¢1- ¢
2

1 . If 

t h is observation is applied to (3), one can see that the X££ 'm coef-

ficient is invariant to the sign of m • For homonuclear molecules, a 

restriction on the allowable values of £ , £ ' may be obtained if it is 

noticed t hat the X(R
1

R
2

) should be invariant to an end for end 

switch o f either molecule provided the molecular center is taken at the 

internuclear midpoint. This implies a (8, ¢ ) + (TI-8,TI+¢ ) change in 

· the coordinates of one of the spherical harmonics in (2). Since 
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/ 

+ 
"'-"' / / 
/ 
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Y0 (7T-8,7T+¢) 
x..,m 
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P
0 

(-cos 8)eim¢ 
x..,m 

im7T 
e 

(-)£+2m P (cos 8) eim¢ 
£,m 

Q, 
(-) Y0 (8,¢) x..,m 

it is apparent that if X(B:.
1

R
2

) is to remain invariant, £ (and £') 

must be even. In the case of heteronuclear molecules, a similar 

approach shows that the sum £+£' must be even. 

The usual statistical mechanical expressions for spherical 

molecules may be taken over for nonspherical use by including angles 

of orientation in the potential, various pair properties, or integrals 

involved. The configurational integral becomes 

and the pair distribution function becomes 

p( 2 )(R R) 
-1-2 

2 
_P_ (2)(R R) 

4 g -1-2 
647T 

x dR • • • -3 

(4) 

d~ (5) 

In systems whose potential energy derives only from pair interactions, 

an ensemble averaged configurational property becomes 

(6) 

The standard thermodynamic properties may be obtained by applying (6) 

to the usual spherical equations. Some results are: 
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2 

I I 
au(!1!2) 

p pkT - !2 g(RlR2)rl2d!1d!2 
384n4v arl2 

B{p-1+ 1 
I I [g(!1!2) - l] d!1d!2} (7) K = 

64n4V 

The isothermal compressibility may be further evaluated by using (1) for 

the pair correlation function. Because the DN(D) are orthogonal func

tions and DQ(D) = (8n2)-l/Z , (7) becomes 

K (8) 

and the isothermal compressibility depends only on the spherical aver-

age of g(~1!2 ) 

Sweet32 has applied the method of orthonormal expansion to the 

intermolecular potential and zero density pair correlation function. 

The Kihara core potential, modified Stockmayer potential, and two-

centered Lennard-Jones potential were treated. The latter was employed 

in this work and has its variables defined by Figure 1 and is given by: 

(9) 

where 

and where 



a2 

a3 

a4 

b 

and 

2 8 -r + rR(cos 1 cos 

2 rR(cos 81-. cos r -

2 rR(cos 8 -r - 1 
cos 

1 R2 · e · e = 2 sin 1 sin 2 
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R2 
81 82) 82) +z-Cl +cos cos 

R2 
e1 82) e 2) +z-Cl - cos cos 

R2 
82) +-z(l +cos 81 cos 82) 

In this potential, the Lennard-Jones type potentials at all four inter-

action centers are taken to be identical, i.e., have the same a and 

E • The a and E values were determined for a variety of substances 

by Sweet by fitting theoretical virial data to experimental values. 

N
2

, o
2

, CO, and short chain hydrocarbons were treated. 

The u££'m were evaluated for linear molecules beginning with 

(3). The ¢' integration was performed analytically and the theta 

integrations were done numerically. The zero density were done 

the same way except that all integrations were done numerically by 

Gaussian quadrature. The results, which were obtained for a variety of 

R* and T* values, showed that the series were fairly rapidly conver-

gent; even for relative lengthy molecules with R* = 0.6, convergence 

required only the 200 and some of the 400 series coefficients. The 

u
000

(r) and g
000

(r) functions were always the largest terms. As R* 

became longer, the primary effects were to broaden the peaks of the 

g
000

(r) and shift them to higher r* and to generally increase the 

size of the other The bowl depth of became shal-

lower and shifted to higher r* The Stockmeyer potential produced 
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g111 (r) and g110 (r) functions which for the parameter set R* = 0.4 

T* = 1.0 , t* = µ2
/18£ cr3 

= 1.0 were the largest of the angular cor-

relations and were nearly as large as g
000

(r). 

Percus-Yevick Solutions 

The method of orthonormal expansion has been applied by Chen and 

Steele
10

•31 to the problem of calculating pair correlation functions for 

linear hard core molecules at moderate densities. They were calculated 

by two methods, one being the cluster density expansion of the pair 

correlation function and the other being the integral equation approach. 

In each case the Percus-Yevick approximation was employed. 

The density expansion for nonspherical systems is 

where all Mayer diagrams now include integrations over all the Euler 

angles of the field points. Application of the Percus-Yevick approxima-

tion to (10) required that the bridge and parallel diagrams be 

neglected, i.e., (J><'.l +,~) 0 through second order. Chen and Steele 

truncated the expansion after p
2 

diagrams were expanded according to (2), the indicated summations and 

multiplications were carried out, and corresponding coefficients on 

either side of the equation were identified with one another. The 

diagrams themselves were evaluated by equating the expansion of the 

full diagram (expressed relative to _£12 ) to the integral over the 



expansions of the component Mayer 

-18-

f .. 
l.J 

values (each expressed rela-

tive to a r .. coordinate system), multiplying both sides of the 
-iJ 

equation by the 1,2 harmonics, and then integrating over the angles of 

these harmonics. Since each f .. was expanded in a coordinate system 
l.J 

relative to the r .. 
-iJ 

vector, each f .. 
l.J 

had to be transformed to the 

1,2 system in which the entire diagram was expanded by using the rota-

35 tion matrices of Rose • The integrations were carried out by a 

lengthy Fourier transform process. 

These calculations showed that the expressions converged rapidly 

at low to moderate densities. The angular dependent contributions from 

the cluster integrals were shown to be small at all densities consid-

ered, with the bulk of the angular effects of g(!1! 2) being 

determined by the zero density limit. The 200 coefficient of the .J\ 
diagram proved to be the largest angular contributor, becoming as much 

as 10% of the 000 coefficient at R* = 0. 6 • Then and N diagrams 

possessed angular coefficients which were negligible. The g
000

(r) 

term was composed of contributions from and from all the 

cluster diagrams. It was found to become a smoother and more long-

ranged function as the molecule became more nonspherical at a fixed 

reduced density. 

Diatomic hard-core virial coefficients were also determined. It 

was found that the virial coefficients, if reduced by a factor propor-

tional to the molecular volume, changed very slowly with increasing 

R* • The (PV/nRT - 1) values derived from evaluation of the virial 

equation of state showed differences from hard sphere values of 6% for 
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R* 0.4 and 13-14% for R* = 0.6 over the entire density range (to 

p* 0.7). The properties of these nonspherical molecules were thus 

found to be primarily a function of molecular volume. 

The integral equation approach to pair correlation function 

calculations involved a generalization of the Percus-Yevick (PY) 

approximation and Ornstein-Zernike equation, i.e., 

(11) 

where H(~1~2 ) + 1 is the density dependent part of the pair correla

tion function. (11) was substituted in (12), and both sides of the 

resulting Percus-Yevick equation were Fourier transformed. By expanding 

each Fourier kernel according to (2), the PY transform equation was con

verted to a form where spherical harmonic expansions appeared on both 

sides of the equation. By equating corresponding coef f icients, an 

infinite series of coupled integral equations was obtained. By trun

cating the series, a solution was obtained from the remaining series 

numerically by iteration techniques similar to those employed in spher

ical systems. 

The H(R1R
2

) + 1 could be identified with the bracketed term of 

(10) at low densities. Since the cluster terms were described by just 

the 000 and 200 coefficients, only coefficients with these indices were 

included in the integral equation calculations. It was noted that a 

source of probable error at high densities was the neglect of coeff i

cients with indices higher than 200. 
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Pair correlation functions, inverse isothermal compressibili

ties, and pressure were calculated for the hard core potential. In 

general the results were the same as derived from the cluster expan

sion. Such differences as did occur were the largest at high density, 

where the cluster approach would be expected to be breaking down. The 

g
000

(r) function was a bit more structured in the integral-equation 

method. The angular gtt'm(r) , however, were in quite close agree

ment. No critical point was found. The equation of state was only 

moderately affected by molecular shape, the difference between hard 

sphere and diatomic hard core values being less than 20% at the highest 

values of R* = 0.6 and p* = 1.6 . 
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C. Molecular X-ray Scattering 

X-ray scattering data have.been used to supply infonnation about 

distributions of molecular distances for some time. The relation of 

the pair distribution function to the diffraction pattern for spheri

cally synunetric fluid systems was developed by Zernike and Prins1
. 

They showed how the Fourier integral theorem could be applied to obtain 

the radial distribution function for a single component spherical 

fluid. Their treatment is to start with the standard expression for 

scattering from any rigid atomic system 

N 

l f (K) f*(K) exp(iK•r ) 
n m --run 

(13) 
n,m 

where N is the number of atoms in the system and f (K) 
n 

is the 

atomic scattering factor. To obtain an expression for a fluid system 

in which the atoms are free to move, (13) must be averaged over space 

and time. This implies an ensemble average over the n,m pairs . The 

terms with n = m are split out of (13) and singlet averaged, whereas 

the other terms remain together and are pair averaged. Thus, 

Njf(K)j
2 + f jf(K)j

2 exp(i~·!_)P(Z)(!_l£z)d.E_ld.E.z 

Njf(K)j 2 + v jf( K)j 2 J p(Z)(!_) exp(iK•.£) dr (14) 

Since and since for spherical fluids the 

pair distribution function depends only on scalar distances between 

molecules, one may write 



-22-

where j (Kr) = sin Kr/Kr and the integration has been carried out 
0 

over the angular variables. To insure convergence of the integral, a 

1 P
2

if(K) l
2 f J'

0
(Kr)4Tir

2
dr ( f · ) term equa to zero or sur ace scattering 

has been subtracted from (15); the left hand side of (15) remains 

unchanged except at very low values of K which are outside the exper-

imental range. Thus 

-1 2 2 2 J . 2 V <I
1 

(K)> = pf (K) + p f (K) [g(r) - l)J
0

(Kr)47fr dr 

In application one often sees the identifications 

<Il (K)> - Nf2 (K) 

Nf 2 (K) 
[g(r) - l]j (Kr)47fr2dr 

0 

"' ph(K) 

(16) 

(17) 

where ("') signifies the exponential 3-dimensional Fourier transform of 

h(r) . Fourier inversion of (17) leads to 

r[g(r) - l] 

00 

~ f Kil(K) sin Kr dK 
27f p 0 

(18) 

Applications of the Zernike and Prins theory have been many, and 

. b G' . h36 F k 37 v h38 d p· d p 1 39 reviews y ingric , uru awa , ~ru , an ings an aa man sum-

marize the results. Some of the most recent work has been done by 

40 Pings, et al. on liquid argon in which distribution functions have 

been obtained over a relatively large temperature and density range. 

Mikolaj and Pings have also derived Percus-Yevick potentials from the 

data by noting that the Fourier transform of the direct correlation 

function is simply related to i 1 (K) by the Fourier transform of the 

Ornstein-Zernike equation, i.e., 
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" h(K) 1 il (K) 

= p 1 +fl (K) 

The potential upy(r) is obtainable directly from the Percus-Yevick 

approximation if the c(r) derived from c(K) is substituted into it; 

i.e., 

The x-ray scattering from molecules, if given as a function of 

molecular distribution fun~tions, requires several modifications of the 

Zernike -Prins development since the scattering centers are no longer 

spherical and the atoms within molecules are fixed at specific dis-

tances and orientations. Until quite recently the molecular equations 

2 derived by Menke were standard. However, orientational effects were 

only treated approximately, the more complete treatment being developed 

3 by Steele and Pecora • We present both derivations and contrast the 

two. 

Menke began with the atomic sum given by (13) but formed separate 

sums over the atoms in each molecule. Thus (13) becomes 

(19) 

where N is the number of molecules and N is the number of atoms 
a 

per molecule. If is now the location of the molecular center 

9, 
(assumed to be as near as possible to a spherical center), b is the 

µ 

distance to atom µ in molecule 9, is the atomic scatter-

ing factor of atom µ in molecule 9, 
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(20) 

Introducing the molecular scattering function 

l (21) 
µ 

(19) can be rewritten to give 

N 
l Fi(K) F:(K) exp(i~·(..!:_£-Ero)) 

i,m 
(22) 

Noting the similarity between (22) and (13), one may define F£ (K) as 

a molecular scattering factor. In general, it depends on the orienta

tion of molecule i (i.e., on the Euler angles Qi) since the ~ 

depend on the orientation. 

As in the spherical case, I 1 (K) must be ensemble averaged to 

get the experimentally measurable intensity. Splitting out the £ =m 

terms as above, we singlet and pair average over both intermolecular 

distances and orientations to obtain 

(23) 

An approximation in the Menke approach is that there is no correlation 

between two molecules and their respective orientations. This is 

equivalent to stating that 

the angular 
(2) 

p 

is a function of and .E.2 only; 

spherical term. 

Hence in (23) the n1 and n2 integrations are carried out over · F1 

and F2 only, each integration corresponding to a random orientational 
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average over (21). Thus 

~I F(K) drt 
8TI 

l f).l (K) j (Kb ) 
).1 0 ).1 

and defining F (K) 
e 

F (K) 
e 

l l f (K) f (K) j (Kb ) j (Kb ) 
).1 v 0 µ 0 v 

).1 v 
(24) 

Also 

1 I * ~2 F1 (K) F1 (K)d0l 
8TI 

l f~(K) +2 l f (K) f].1 1 (K)j
0 

(Kb].1).1') = ig(K) 
).1 ).1, ).1 I ).1 

where lb - b I I . 
-).1 -µ Thus (23) in the Menke approximation 

becomes 
00 

~ <I1 (K)> = ig(K) + 4npFe(K) f [g(r)- l]r
2 

j
0

(Kr)dr 

0 

where the angular integrations over .£12 have been carried out. 

(25) 

Steele and Pecora begin their derivation with (22) but define 

their molecular scattering factor analogous to the way the atomic scat-

tering factors are defined in (13). Using the symbol K a(KO ) for this 

scattering factor, where the OK are the Euler angles of molecular 

orientation relative to K 

(26) 

where P(x) is the electronic density within the molecule. Also, 

(27) 
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The ensemble average of (27) can now be written as in (23) but, unlike 

Menke, p ( 2 )c_~1B:_2 ) is left as an orientational dependent function. 

In order to carry out the orientational averaging, each of the 

functions are expanded using the D function ortho~ormal expansion 

of Steele. p( 2 )CR1~;2 ) is expanded according to (l); the exponential 

of (27) is expanded in spherical waves; and the 

into the harmonic series 

Both p( 2)(R R) 
-1-2 

K 
a(KS°"2 ) 

and the pair 

K 
a(KS°"2 ) are expanded 

(28) 

involve Euler angles 

of molecules 1 and 2, but the angles are given relative to two differ-

ent coordinate systems. Hence the r.otational matrices of Rose must be 

employed to express these angles in a conunon coordinate system. Sub

stitution of the resulting scattering factor, p( 2), and exponential 

expansions, followed by lengthy integrations over the Euler angles of 

n
1 

, n
2 

, and the angular variables of .£12 , lead to the result 

1_ <I (K) > 
N 1 

+ p l 
Nl N2 
7o 

(29) 

Details and corrections of the original work may be found in Appendix 
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is identified with t h e F (K) 
e 

of (24), then it is 

apparent that the first two terms of (29) are identical with those of 

(25). For molecules with nearly spherical symmetry such as methane, 

it would t hus appear that the Menke equation is adequate, whereas for 

less spher i cal molecules the longer expression of (29) must be employed. 

The Steele and Pecora result has been applied to only one system, 

41 water Only the scattering coefficient was taken as non-

zero and hence the treatment effectively reduced to the Menke approach. 

We now mention another technique which may be used to calculate 

the intensity for a molecular fluid. It is to treat the fluid as a 

mixture of atomic species in which the intensity is determined by sum-

ming over all the atomic scattering factors, ensemble averaging the 

intensity by using the appropriate two species pair correlation func-

t . . (2)( ) ion, i.e., p .. r 
i] 

functions. The assumption is made that the atoms 

within the molecules remain as spherically symmetric scattering centers. 

42 Following the work of Waser and Schomaker one may scale the intensity 

to the gas scattering of a free molecule43 or alternatively to the 

square of the sum of atomic scattering factors over a molecular 

stoichiometric unit 41 and Fourier transform the resulting scaled func-

tion to give a linear combination of convoluted true radial pair dis-

tribution functions. The intensity formula is 

where 

I(K)=l x . f:(K)+p l l x.x.f.(K)f.(K) J ii .. iJi J 
i J 

i,j denote atomic species and x. ,x. 
i J 

[ g . . ( r) - 1 ] j ( Kr) 4 nr 
2 

d r 
i] 0 

are mole fractions 

derived from the molecular stoichiometry. If [I(K) - l x.f:(K)] I 
i i 

[ 2.x.f.(K))
2 

i i i 
is denoted by 

i 
i (K) , it can be shown that the Fourier 
m 



transfonn of Ki (K), 
m 

is given by 

where 

and 

prH(r) 

H(r) 

H .. (r) 
1.J 

T .. (r) 
1.J 
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00 

l l x.x.H .. (r) 
i j 1. J 1.J 

00 

-1 I y[g .. (y) - 1) T .. (r-y)dy r 
1.J 1.J 

-00 

00 

f.( K) f.( K)/ [L x.f.(K)J
2
cos KrdK 

1. J i 1.1. 

The H(r) function is thus not equal to a molecular distribution func-

tion of the type used in (23) and requires some careful and often dif

ficult interpretation. Furthennore, as discussed by Pings and Waser44 , 

it is not possible to obtain the component p~:)(r) atomic pa~r dis-
1.J 

tributions from one experiment, since it provides only enough informa-

tion to characterize one function. It should be noticed that 

orientational variables never appear in this treatment. The Waser and 

Schomaker approach has been applied to several systems in slightly vary-

ing form. Carbon tetrachloride, carbon tetrafluoride, bromine, benzene, 

water, ammonia, t-butyl anunonium fluoride, and methane are a representa-

tive few. 

In (25) and (29), molecular scattering factors ar~ required. In 

the former, the molecule is viewed as a collection of independent atoms 

and the evaluation proceeds from (21). Accurate atomic scattering fac-

45 
tors have been given by Cromer and Mann . The most general 
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expression, however, is (26) and the electronic density P(E_) is to 

be determined from quantum mechanics in order to account for molecular 

bonding effects. The scattering integrals which result from (26) when 

p(_~) is expanded into Gaussian basis molecular orbitals were first 

46 
treated by McWeeny . By a contour integration he was able to give 

integral results for s,s; s,p; and p,p integrals. The same integrals 

were treated by Kraussand Miller
47 

in which the integrals were 

expressed as a finite sum of Hermite polynomials. Previous calcula-

tions of molecular scattering factors have been restricted for the most 

part to H1' 7 and C-H, C-N, C-0, or C-C bond factors
8

•9 . Hydrogen 

represented an extreme case since all the electrons are bonding, and 

thus the MO results were greatly different from isolated atom results. 

McWeeny showed that good results were obtained by employing just s 

and p type basis functions, and that the inclusion of configuration 

interaction had no appreciable effect on the scattering factor values. 

Stewart was able to show that a good representation for hydrogen was 

obtainable by using spherical atomic scattering factors for each H atom 

and floating the centers of these spherical factors 0.07R off each 

proton into the bond. 

The McWeeny work on carbon bond factors pointed out the need to 

use the correct valence state (hybrid orbital) when dealing with carbon. 

Bond distortions were shown to affect the inner part of the scattering 

factor curve most heavily, while temperature and vibrational effects 

were greatest in the high K region. The more recent work of Stewart 

confirmed the effects of distortion and pointed out that certain inte-

grals, notably 2pa integrals, were more anisotropic than indicated 
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by McWeeny. The general conclusion was reached that scattering factors 

which rigorously included bonding effects had smaller amplitudes than 

those calculated from the assumption of independent atomic scatterers . 
• 

Calculations of molecular scattering factors for complete organic 

molecules have not generally been performed. 
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PART II 

MOLECULAR SCATTERING FACTORS 
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Introduction 

Molecular scattering factors in X-ray analysis are 

most of ten calculated from the isolated atom equation 

originally derived by Debye~' 2 In this equation a 

polyatomic molecule is viewed as being composed of 

independent atoms located at the ends of interatomic 

vectors known primarily from spectroscopic data. The 

molecular scattering factor is then a weighted sum over 

the atomic scattering factors held at these interatomic 

distances. 

As first discussed by Mcweeny3 and most recently 

by Tavard516 and Stewart? 18 this approach ignores 

distortions in the electronic density due to bonding. 

In this paper we calculate molecular scattering factors 

for the ground states of H2 , N2 , LiH, and HF using Gaussian 

Hartree-Fock SCF results so as to include the effects of 

bonding. The factors are expressed as harmonic expansions, 

a formalism having several advantages over other approaches, 

the principal one being that all orientational information 

may be stored in a small number of coefficients. Most 

previous work4 •7 • 8 has recalculated the results for each 

orientation of the molecule with respect to the scattering 

vector K. The expansion technique was first suggested 
. 4 

by McWeeny and was recently developed as an expansion of 

equivalent symmetric top functions by Steele and Pecora.9 

Steele and Pecora also derived the most complete fluid 
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X-ray scattering equation to date, and in order to be 

compatible with their work we have followed their 

scattering factor formula closely. We compare our results 

to isolated atom results and, in the case of hydrogen, 

to the earlier MO results of Stewart. 7 

These four molecular cases were chosen so as to 

represent a great variety of bonding cases. Below we 

present the harmonic expansions for the scattering 

factor integrals based on two-center Gaussian wavefunctions 

and their relation to Pecora's equation. Specific results 

for the scattering factor coefficients for the molecules 

studied come next, followed by comparisons with the isolated 

atom results. Lastly convergence of the series represen-

tations of the coefficients and the choice of two-center 

expansions is discussed. 

Theory 

It is our primary purpose to evaluate the coefficients 

in the molecular scattering factor derived by Steele and 

J Pecora, i.e., the a0 ,M(K) in 

where K is the usual scattering parameter 4'1Tsin6/A, n" is 

the set of Euler angles of the molecule giving its 

orientation relative to a laboratory coordinate system, 
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and D JM (n) is the rotational or symmetric top function. 10 
K, 

In this paper we study only diatomic molecules and therefore 

have the symmetry restrictions on (1) that M=O and that, 

for homonuclear diatomics, J is even. *J K Thus DOM (n ) reduces 

to a spherical harmonic and 

(2) 

In the case of closed shell diatomics we may write an 

alternative formula for a(K,nK) in terms of doubly occupied 

spatial molecular orbitals. 5 By definition, 

(3) 

where P<:> is the one' electron density for the molecule 

expressed in a molecular fixed coordinate system. For our 

closed-shell cases we may express p(r) in Hartree-Fock 

orbitals as 

Thus, 

a(ic,n"> = 2 I (4> lexp(iK•r) I 4>) • 
n n - - n 

(4) 

(5) 

In this work we have assumed the molecular orbitals 

to be expanded in two-center Gaussian basis functions. 
. . 

This choice was made because, in general, two-center 

functions are more accurate than one-center functions, and 
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Gaussian scattering factor integrals are analytic. From 

(5 ) we are therefore led to a sum of integrals of the form 

K \ \ n n iK • r a (K, n ) = 2 I l l c . c . <B. I e - - I B .> , 
n i j i J i J 

(6) 

where Bi represents real s,x,y or z Gaussian basis functions. 

Although it is possible to do so, like .McWeeny, we have 

not included d orbitals as we expect their effect on 

electronic density to be minimal. The integrals in (6) 

3 have been evaluated by McWeeny. 

It is our purpose to expand these integrals into 

harmonic series. However, McWeeny's results are not in 

this form and must be transformed to it. This can be 

done most easily for diatomics by taking the center of 

the coordinate system as the mid-point of the internuclear 

axis, and then noting that each integral of McWeeny's is 

iyK•R a product of a factor of the form e - - and a factor 

expressible as a first or second power function of K·R. 
A 

If the exponential is then plane wave expanded, the K"R 

function is expressed as a spherical harmonic, and the · 

resulting product of spherical harmonics is combined 

into one by the spherical harmonic coupling rule, then 

t he desired expansion can be obtained. 

we will show this derivation for the single case 

The coordinate system used is 

in Figure 1. I is the integral denoted by McWeeny as 

(ls, ajfj2p,b) and, after allowing for our coordinate 

change, is found equal to 
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I = A(-2a$~·€ + iK8§•g)/ (a+$) expCi§·~q) (7) 
,.. ,. 

where ~ and ~ are unit vectors along the scattering vector 

and z-axis respectively, a is the Gaussian exponent on 

center A, ~ is the Gaussian exponent on center B, R is the 

internuclear distance, 

and 

A = ~-lf_!!_)~ 
2 \{'+8 

-4a$R -K ~ 2 2) 
exp 4(a+8) ' 

KR($-a) 
q = 2 (a+$) 

" f4.rr) .!. · Now notice tnat R·lt = R and ~·8 = cose = \3 2 Y:i.,o (9). 

(8) 

(9) 

If these identities are then substituted into (7) and the 

complex exponential is expanded into spherical waves, then 

there results 

I .,. -2Aal3R 
a+e (10) 

In the second summation in (10) we may use the identity10 

(11) 

where the range of A is lt1-t2 1 to i 1+i 2 and the c(t1t 2A;m1rn2) 

are Clebsch-Gordon coefficients. Thes~ coefficients are 
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re adi l y available. 11 Thus we obtain 

I = -2Aa$R 
(a+ f3) 

00 

l 
R.=O 

co 

+AK$ (4n)l/2 l (2R.+l)iR.+l 
a+S R.=O 

Note that because of the symmetry of Clebsch-Gordon 

coefficients that A goes in steps of two. Finally, the 

second series in (12) can be rearranged to give a single 

series by regrouping the indices and one is led to 

(12) 

~~~ (4'1r)l/2 r_jl(q)Yoo(8) + I l J=l 
I ( 2 .e.+ 1 > i.e.+ 1 j < q > l c ( HJ ; o o > l Y < a l J+l 2 ~ 

R.=J-1 .e. (2J+l) 1/2 J ,0 
(2) 

(13) 

The case J=O must be treated as a special case since 

i=J+l=l only. Putting (13) into (12) we obtain the desired 

single harmonic expansion and the coefficient of a particular 

harmonic is easily identified. 

I iK•i:'1 Similar expansions to the one for (sA e - - zB) may be 

< I iK•rl I iK•rl I iK·rl carried out for sA e - - sB)' (zA e - - zB)' (xA e - - xB), 

iK•r1 (:/A le - - yB), and permutations of these integrals. 

case of the x and y integrals it is easier to make the 

I iK•r1 expansions if the linear combination (xA e - - xB) + 

In the 

/.. I iK • r I ) · · d d S · d l' l -vA e - - Ya is cons1 ere • 1nce we are ea 1ng on y 
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with cylindrical diatomics using ~nx and ~ny orbitals, this 

is the only way the x and y integrals appear in the final 

result. In the case of the integrals where the basis 

functions share the same center, the results from the 

two center calculations may be extended if the inter-

nuclear distance R is set equal to zero and the argument 

q of the spherical bessel functions is changed from that 

in (9) to -KR/2 when center A is shared, to +KR/2 when center B 

is shared. Table 1 surranarizes the results for the integrals 

considered in this work; the Jth coefficient is tabulated. 

If the harmonic expansions just obtained for the 

integrals are denoted by 

= 
OD 

l DJiJ. (K) YJ,0(0) , 
J=O 

then from (6) and (2) we see that 

(14) 

(14) was used to calculate the MO scattering coefficients 

tabulated in the next section. 

We now turn to the form of the molecular scattering 

factor obtained from the assumption of independent atom 

scatterers. The basic scattering equation is t~e familiar 

weighted sum over atomic scattering factors 1 

(15) 
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where j is the sum over atoms in the molecule, r. is the 
J 

vector distance of atom j from the origin of the system, 

and K is the z-axis in the laboratory system. Expand the 

exponential to give 

Q) 

a(K,S'{) = l f.(K) l [C2J+l)41T] 1/ 2 iJjJ (Kr). ) YJ,0 (6 j<P j) (16) 
j J J=o x x 

where x denotes the laboratory system. We want each atom 

expressed in molecular-fixed coordinates rather than 

laboratory coordinates. Hence we will use the identity12 

D J 
K,R 

where OAB is the set of Euler angles rotating A into B, 

(17) 

OA is the set rotating A into C, and n8 is the set rotating 

B into c. Our D function normalization convention is 

that of Steele, Pecora9 • From the general expression10 

DK~0 (a80) = (21T)-l/2 YJ:K(8a), we note that o0~ <<Px6x) 

= (21T)-l/2 YJ 0 ce <P ). Thus from this last equality and , x x 
(17) we obtain the molecular fixed expression .for YJ 0 ce <P ) , x x 
and may substitute it into (16) to yield 

where OK rotates the l ·aboratory axes into the molecular 

fixed axes. If we now compare equations (l) and (18), we 

see that 

(18) 
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= (4n) 112 l f. (K)iJjJ(Kr.) YJ,Mce~~~> 
j J J 

(19) 

Th i s is the general equation for the harmonic expansion 

coefficients of the scattering factor for a rigid molecule 

of independent scatterers. In the case of heteronuclear 

diatomics, using the coordinate system in Figure l, 

(19) reduces to 

If both (13) and (20) are expanded, it will be seen that 

the odd J terms drop · out for homonuclear diatomics as 

symmetry tells us they should. 

We note two other properties of the harmonic scattering 

factors. First are the values of the aJ(K) at K=O. If 

an angular average is taken over the expression (3) we 

find 

J sinKx 2 = 4n p 0 (x) x dx , 
KX 

where p
0

(x) is the spherical average of the electron density. 

Hence a 0 (0) equals the number of electrons in the molecule, 

N. From a typical expansion such as (13) or (19), we see 

that all other aJ(O)=O because jJ(O)=O. Secondly, we 

restate the expression for the scattering intensity from 

a single freely rotating molecule (gas scattering) 9 , 

l(K) = l 
J 

J J 2 
l la0M(K)I , 

M=-J 
(21) . 

this being equivalent to the expression (9.41) given in James 1 . 
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Re s ult s 

We first note the source of the wavefunctions we 

have used to calculate the MO scattering factors. Except 

for nitrogen, we have begun with previously published 

wavefunctions, retained only the s and p basis functions, 

and reoptimized the coefficients using a version of 

POLYATOM1 ~ The LiH, H2 , and HF wavefunctions were 

derived from references 14, 15, and 16 respectively. 

The LiH and H2 functions were originally given in 

Slater-type orbitals which were converted to a Gaussian 

set using Huzinaga's results~7 The HF function was given 

as a Gaussian set originally but was not at the equilibrium 

distance of 1.7328 a.u. and was therefore reoptimized for 

this distance. In the case of nitrogen we have used the 

recent results of Dunning~8 The composition and the total 

energies of the final wavefunctions used were: H2 , 7s4p, 

-l.133055 a.u.; LiH, (5s5p/3slp), -7.98309 a.u.; N2 , (4s3p), 

-108.88768 a.u.; HF, 9s5p/3slp, -100.016386 a.u. The sets 

for LiH and N2 employ contracted orbitals and if described 

by uncontracted orbitals are, respectively, 8s5p/6slp and 

9s5p. 

The numerical accuracy of the program computing the 

MO scattering coefficients was checked by allowing K to 

equal zero and then checking the resulting Gaussian overlap 

integrals for equality against those computed in an independent 

Hartree-Fock program; the behavior aJ(O)=N6J,O mentioned 
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abo ve was also verified. Furthermore, the calculation for 

hydrogen allowed us to compare our results to those of 

Stewart. 7 We did this by taking his results for the best 

H-atom spherical density scattering factors and substituting 

these into equation (20), using his value of 0.81 Re 

(Ra= 1.4009 a.u.) for the internuclear distance. The a
0 

coefficient and gas scattering values obtained in this 

way are very close to those obtained by us; the higher 

coefficients are less close. Exact duplication should not 

be expected since we have used Stewart's averaged values; 

after taking this into account, the agreement found was 

deemed to be a satisfactory check. 

In Table 2 are found the first few MO scattering 

coefficients calculated from (14) for each of the molecules 

studied as well as the corresponding values for gas 

scattering from (21). K is in reciprocal angstroms . The 

aJ and the gas scattering intensities, originally calculated 

in electrons and electrons squared, have been reduced by 

N (the number of elect~ons in the molecule) and N2 respec

tively. Since total scattering amplitude is roughly 

proportional to the number of electrons in the molecule, these 

scaling factors allow for easy comparisons between molecules. 

a
1 

values have been listed as real values and a:r:e to be 

multiplied by i before use. The gas scattering for HF has 

been obtained previously by Hake and Banyard; 19 our results 

compare well with their one-center (OCE) result. We have 
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also obtained isolated atom (IA) scattering coefficients 

20 ?l from (20) where we used the atomic scattering factors ,_ 

0 0 + - 0 0 -H for H2 , N for N2 , Li , H and Li , !I for LiH, F and 

u0 , FO for HF. One should note that the higher aJ(K) coeffic

ients for F arc not zero since the center of the molecule 

does not lie at the F nucleus. The IA and MO a 0 (K) coeffic

ients differ by about 3% maximum up to K=S.SA- 1 ; corresponding 

differences for each of a 1 (K) and a 2 (K) are about 5% maximwn. 

Some of the a 0 , a
1

, a 2 coefficients obtained by us are 

plotted in figures 2-4. We have plotted only those coef-

ficients which differ to a significant degree from the 

curves obtained from the IA calculations. The a 4 coefficients 

for both H2 and N2 differ considerably from IA values but 

have not been plotted because of space. 

The gas scattering curves from both the IA and MO 

calculations are shown in figure 5. The hydrogen values 

have not been plotted since they are available elsewhere7 • 

In the case of LiH we have plotted the IA values from 

Li+, H- as well as Lio, u0 While differences between 

these two are nearly too small to be seen in the graphs of 

the aJ(K), they do become apparent in the gas scattering. 

In general, the gas differences are greater in the case of 

L
.+ 
J. , H-, although neither is very_accurate. If.in the 

case of HF one compares the MO gas scattering result to 

the IA result for F-, it is found that the plots of the 

two gas curves are practically indistinguishable . The 
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zero valence state treatment leads to maximum gas scattering 

errors of 15.8% and 7.3% for LiH and HF respectively, 

whereas the ionic states lead to a 21.7% error for LiH 

and an error of less than 2.0% for HF. N2 shows much 

the same behavior for MO and IA results. 

Another result of importance is the determination 

of the convergence rate of the series for gas scattering, 

(21). In Table 3 we have recorded the largest J value 

in aJ(K) required to make I(K) convergent to four 

significant figures. As one progresses to higher K 

values it can be seen that more coefficients are required. 

However, even in the worst case of LiH only thirteen 

coefficients are required at K=6.0 a.u. In view of the 

fact that it does not take much time to calculate these 

coefficients (less than 1 min/molecule on the 360), we see 

that (21) is a rapidly converging series presenting no 

computational problem. 

Discussion 

One of the principal results of this work is the 

demonstration that the harmonic expansion of the molecular 

scattering factor is a truly practical technique. The 

convergence data in Table 3 indicate that great.numbers 

of the aJ(K) coefficients do not have to be calculated 

-4 for 10 convergence accuracy, even in the cases of 

Lili and HF where the center of the coordinate system is 

far from any point which might be taken as the center of 
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a spherical system where convergence rates would be 

expected to be rapid. When coupled with fast computation 

t i mes for each aJ(K), the feasibility of the MO calcu

lation becomes apparent. It is to be noted that much 

of the time for these two-center calculations goes into 

the evaluation of the spherical Bessel functions required 

in (19) and Table 1, and thus the more efficient this 

routine may be made, the more efficient is the entire 

calculation. 

Perhaps the greatest advantage of having this 

harmonic expansion is that data covering the entire 

orientational range of the molecule can be easily 

tabulated, thereby replacing the long columns of 

a(KOK), nK data which would be needed otherwise. It 

will be particularly useful for the case where one 

wishes to perform an orientational average of some 

sort over the scattering factor, as did Pecora and 

9 Steele. The expansion allows one to perform an ana-

lytical average over angles and thus avoid the inter

polation of a(KOK) over nK which would be required if 

K K one had only a(KO ) , n tabulated data. 

The differences between the MO calculations and the 

isolated atom results plotted in ~igures 2-4 are large 

enough to be significant (i.e. experimentally measurable), 

a conclusion reached earlier by McWeeny4 and Stewart8 

in their work. It should be noted that the gas scattering 
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curves give a better impression of the errors involved 

here than do the individual aJ(K) curves. This is due 

to the fact that the experimental quantity measured is 

the intensity, which is proportional to squares or 

products of the aJ(K) rather than the aJ(K) alone. 

One is tempted to look for smaller variations between 

the two approaches for calculating scattering factors in 

the case of N2 and HF. Since these two molecules have 

relatively larger percentages of electrons in low lying 

orbitals, it might be expected that these electrons would 

be less effected by bonding and that the isolated atom 

results would be better than for H2 or LiH. Since HF has 

the least number of its electrons in a primary bonding 

orbital, it would be expected to have the best isolated 

atom results. We have seen that in the case of nitrogen, 

good agreement is found between MO and IA results. In 

the case of HF we found relatively good agreement between MO 

and F results but poor agreement between MO and HO, FO re

sults. This difference in agreement for HF implies that mole

cules composed of first row atoms do not have enough tightly 

bonded electrons to overshadow any scattering differences 

due to bonding distortions of the valence orbitals. If they 

did, both the Ho, Fo, and F- results would be i~ close agree

ment with the MO data. Similar observations were made by 

McWeeny 4 • 22 in the particular case of carbon compounds and 

he was led to stress the importance of choosing the correct 
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valence state of an atom if the IA approach were to be used. 

It thus appears as though one will have to proc'eed to second 

row atoms before bonding distortions can be ignored. 

We note that the relative accuracy of the F calculation 

does not imply that the IA calculation will be reliable for 

calculations on other first row molecules. The IA approxi-

rr~tion requires that one represent the atomic scattering by 

factors chosen from the commonly tabulated free and ionic 

valence state data. While electronegativity considerations 

may aid one in selecting the ionic data for the particular 

case of HF, generally they will not permit such a selection 

in the case of other first row molecules such as Lill. 

The use of Debye's equation would then be restricted to 

molecules containing predominantly second row or higher atoms. 

Of significant consequence is the ability to obtain the 

harmonic expansion from two-center Gaussian wavefunctions. 

Gaussian wavefunctions are to be preferred over Slater 

wavefunctions if two-centers are employed since the 

corresponding Slater expansions for the scattering coef

ficients are quite lengthy and slow to cornpute. 23 Two-

t f t . f d over one 24 - 26 because cen er unc ions are pre erre 

these give more accurate scattering results for fewer 

basis functions. 6 This is especially likely to tle true 

as one proceeds to multicenter non-hydride molecules. 27 

The scattering factors for these molecules will be 
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expressed as sums over two-center scattering integrals 

and, with the addition of appropriate rotations, our 

method should be adaptable to these cases. 

In the work of McWeeny, 4 it was proposed that the 

anisotropic two-center integrals be expanded in principal 

factors, one corresponding to a parallel orientation 

between ~ and ~ and one to a perpendicular orientation, 

with the two weighted by cos2 e and sin2e respectively. 

It was later concluded by Stewart8 that this approach 

would not work for all the integrals involved, especially 

2pa type orbital products. In the present work we have 

confirmed this conclusion and have shown that a full 

harmonic expansion of the integrals, a suggestion implicit 

in the principal factor approach, leads to accurate 

results for all types of orbital products. 

We finally mention that these scattering factors 

may be used directly in interpreting scattered intensities 

from fluids. As noted previously, these results find 

direct application in the scattering equation of Pecora 

and Steele. While LiH and, to a great extent, H
2 

do not 

form practical fluids for study, nitrogen and hydrogen 

fluoride do and thus, of the factors obtained here, those 

for these species are most applicable to experiment. In 

particular, the MO gas scattering curves are useful since 

scattering data are often normalized to this curve and 

slight errors in this normalization lead to inaccurate 
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di st r ibu ti on functions. An application of harmonically 

expanded scattering factors to Steele and Pecora's 

equation is presently underway. 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 
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Figure Captions 

Coordinate system employed. For heteronuclear 
diatomics, center A denotes the heaviest atom. 

a 0 (K)/N coefficient. Curve 1, H2 (MO). Curve 2, 
H2(!A). Curve 3, LiH(MO). curve 4, LiH (IA 
using Li+, H- factors). Curve 5, LiH (IA using 
Lio, Ho ·factors). 

a1(K)/N coefficient, real coefficient of i. 
Curve 1, LiH(MO). Curve 2, LiH (IA using Li+, 
H- factors). curve 3, LiH (IA using Lio, HO 
factors). Curve 4, HF (IA using Ho, Fo factors). 
Curve 5, HF (MO) • 

a 2 (K)/N coefficient. Curve 1, H2(MO). Curve 2, 
H2(IA). Curve 3, N2(IA). Curve 4, Ni(MO). 

Reduced gas scattering intensity6 I(K)/N2. Curve 1, 
HF(MO). Curve 2, HF (IA using H , FO factors). 
Curve 3, Ni (MO and IA). Curve 4, LiH(MO). 
curve 5, LiH (IA using Lio, HO factors). Curve 6, 
LiH (IA using Li+, H- factors). 
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Figure 1. 
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TABLE 1. Harmonic Coefficients of Various Scattering Factor Integrals 

<sAlelsB>J = G(2J+l) 112 (-)J/2 jJ(q) 

X R J+l 
<sAlelzs> = XlG(2J+l)l/2 a~$ (-)J/2j (q) + KG l (2L+l) (-)(L+l)/2j (q)C2(L1J;OO). 

J J 2 (a+S) L=J-l (2J+l) 1/2 L ' 
(2) 

x1 = -1, x2 = a 

<sB I e I z A> J = <s A I e I zB> J ; J.C1 = +l, x2 = a 

<zAlelza> = 1 2 (-12aBR2+6(a+e)-K2)G(2J+l)l/2(-)J/2j (q)+KR (B-a) G Jil (2L+l) 
J 12(a+B) . J 2 (a+B)2 L=J-l (2J+l)l/2 

(2) 

2 J+2 
• C2(LlJ;OO) (-)CL+l)/2 j (q)- K G I 2L+l (-)L/2C2(L2J;OO)j (q) 

L 6 (a+B) 2 L=J-2 (2J+l) l/2 L 
(2) 

<xAlelxB> + <YAlelys> = G 2 j(-K2+6(a+B)) (2J+l) 112 (-)J/2 jJ(q) 
J J 6 (a+B) ( 

2 
G = 2ir ex [-4af3R2~K2J 

{a+B)3/2 P 4Ca+e) 

2 J+2 
+ K I 2L+ 1 L/2 2 } 

L=J-2 (2J+l)l/2 (-) jL(q) C (L2J;OO) 

KR ($-a) 
q = 2 (a+B) 

(2) 

e = exp (iK•r) 

I 
V1 
l.O 
I 



TABLE 1. (cont.) 

J+l 
Special Cases: l is replaced by L = 1 if J = O. 

L=J-1 
(2) 

J+2 
l is replaced by L = 2 if J = O; by L = 1,3 if J = 1. 

L=J-2 
(2) 

If A = B and both centers are at A, then R = 0 and q is replaced 
KR 

~~ 

If A = B and both centers are at B, then R = 0 and q is repl aced 
KR 

by +"""2. 
I 

(J\ 
0 
l 



TABLE 2. Scattering Factor Coefficients f_ld Gas Scattering Intensiti es. 
Units of ~uantities are: K, A- ; aJ, electrons/Z; IlaJl2, 
electrons ;z2. 

Lithium Hydride Hydro gen Fluoride 

K ao a 1/i a2 i: laJ1
2 

ao a 1/i a2 II aJI 
2 

0.0000 1.0000 0.0000 0.0000 1. 0000 . l.0000 0.0000 0.0000 1.0000 
0.5669 0.9325 -0.0448 -0.0231 0. 8725 0.9712 -0.1381 -0.0095 0.9632 
1.1338 0.7638 -0.1022 -0.0830 0.6006 0.8904 -0.2569 -0.0355 0.8600 
1. 7008 0~5588 -0.1643 -0.1583 0.3644 0.7727 -0.3429 -0.0 72 2 0. 7199 
2.2677 0.3653 -0.2100 -0.2287 0.2316 0.6371 -0.3910 . - 0 .1121 0.57 16 
2.8346 0.2045 -0.2246 -0.2793 0.1766 0.5008 -0.4040 -0.1487 0 . 4371 
3.4015 0.0829 -0.2056 -0.3018 0.1553 0.3761 -0.3896 -0 .1778 0 . 32 6 8 
.3.9685 0.0000 -0.1604 - 0.2943 0 .140.l 0.2694 -0.3569 -0.1975 0.2424 
4.5354 - 0.0482 -0 .1016 - 0.2605 0.1219 0.1825 -0.3139 -0.2077 0.1805 I 

0\ 
5.1023 -0. 0680 -0.0425 -0.2081 0.1018 0 .1144 -0.2668 -0.2098 0 . 1361 ..... 

I 

5.6692 -0.0672 0.0068 -0.1464 0.0829 0.0628 -0.2199 -0.2052 0.1046 
6.2361 -0.0535 0.0404 -0.0847 0.0672 0.0250 -0.1756 - 0 . 19 57 0.0824 
6.8031 - 0.0340 0.0569 -0.0306 0.0546 -0.0020 -0.1354 - 0.1827 0 . 0666 
7.3700 -o. 0142 0. 05 83 0.0108 0.0446 -0.0204 -0.0995 - o .16 72 0.0553 
7.9369 -0.0021 0.0487 0.0375 0.0364 -0.0321 -0.0681 -0.1499 0.0470 
8.5038 0 .0130 0.0330 0.0497 0.0295 -0.0387 -0.0409 -0.1314 0.0408 
9.0708 0 .·0182 0.0158 0.0498 0.0238 -0.0413 -0. 0177 -0.1120 0.0361 
9.6377 0.0184 0.0005 0.0414 0.0192 -0.0408 0. 0016 -0.0922 0.0324 

10.2046 0.0150 -0.0107 0.0282 0. 0154 -0.0379 0. 0171 -0.0722 0.0294 
10. 7715 0.0097 -0.0168 0.0138 0.0124 -0.0332 0.0291 -0.0527 0. 0271 
11. 3384 0.0041 -0.0182 0.0009 0.0101 -0.0272 0.0375 -0.0340 0.0251 



' 

TABLE 2. (cont.) 

Hydrogen 
Nitrosen 

K ao a2 a4 I I aJI 
2 

K ao a2 a4 LI aJI 
2 

0.0000 1. 0000 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 1. 0000 
0.5669 0.9625 -0.0032 o.ciooo 0.9269 0.7559 0.9281 -0.0269 0.0001 0. 86 21 
1.1338 0.8615 -o. 0116 0.0000 0.7426 1. 5118 0.7468 -0.0912 0.0017 0.5660 
1.7008 0. 7230 -0.0224 0.0001 0.5231 2.2677 0.5297 -0.1588 0.0067 0.3058 
2.2677 0.5750 -0.0329 0.0003 0.3320 3.0236 0.3371 -0.2051 0.0158 0.1559 
2.8346 0.4395 -0.0411 0.0007 0.1949 3. 7795 0.1929 -0.2251 0.0280 0.0886 
3.4015 0.3258 -0.0465 0.0011 0 .10 84 4.5354 0.0949 -0.2249 0.0420 0.0613 
3. 96 85 0.2360 -0.0489 0.0017 0.0581 5.2913 0. 0315 -0.2126 0.0569 0.0494 
4.5354 0 .16 76 -0.0488 0.0022 0.0305 6.0472 -0.0084 -0.1929 0.0722 0.0426 
5.1023 0 .1169 -0.0468 0.0028 0.0159 6.8031 

I 
-0.0318 -0.1679 0.0875 0.0371 0\ 

N 

5. 6692 0.0801 -0.0436 0.0033 0.0083 7.5590 -0.0431 -0.1379 0.1019 
I 

0.0317 
6.2361 0.0537 -0.0396 0.0038 0.0045 8. 3149 -0.0449 -0.1039 0 .1139 0.0266 
6. 80 31 0.0352 -0.0353 0.0042 0.0025 9.0708 -0.0394 -0.0677 0.1219 0.0225 
7.3700 0.0223 -0.0309 0.0045 0.0015 9.8267 -0.0289 -0.0318 0 .12 44 0.0199 
7.9369 0.0135 -0.0267 0.0048 0.0009 10.5826 -0.0159 0.0006 0.1202 0.0187 
8.5038 0.0075 -0.0228 0.0050 0.0006 11.3384 -0.0027 0.0027 0.1091 0.0183 
9.0708 0.0036 -0.0193 0.0051 0.0004 

9.6377 0.0011 -0.0161 0.0051 0.0003 

10.2046 -0.0004 -0.0133 0.0051 0.0002 

10. 7715 -0.0013 -0.0109 0.0050 0.0001 

11. 3384 -0.0017 -0.0087 0.0049 0.0001 
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TABLE 3. Largest J Value Required for Convergence of Gas 
Scattering Intensity 

IC !!2 ~ LiH HF -
o.o 0 0 0 0 

2.27 2 2 4 3 

4.54 2 4 7 4 

6.80 4 6 9 6 

9.07 6 8 10 7 

11.34 6 10 12 8 
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PART III 

PERCUS-YEVICK SOLUTIONS FOR THE TWO-CENTERED LENNARD-JONES POTENTIAL 
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Introduction 

The Percus-Yevick theory has been established for some time as 

a means of obtaining fairly accurate dense fluid properties. Radial 

distribution functions seem to be described correctly as are certain 

thermodynamic quantities such as the internal energy. The theory pro-

vides less accurate results for the pressure, being in error by as 

much as orders of magnitude. It nevertheless does as well and usually 

better than other alternatives and thus retains considerable value. 

It has been applied to a variety of potentials, mostly of 

spherical symmetry. It was applied to the hard-sphere potential by 

Wertheim1 who was able to develop an analytical solution for this case. 

It has been applied to the physically more realistic Lennard-Jones 

potential by a variety of authors. A fairly extensive tabulation of 

2 
radial distribution functions has been given by Throop and Bearman 

3 and Mandel, Bearman, and Bearman covering most of the dense gas and 

liquid region. Watts 4 has applied Baxter 1s 5 treatment of the Percus-

Yevick equation to the critical region using a spherical Lennard-Jones 

potential and has shown that it will predict the critical point, yield-

ing values which compare well with the experimental values for argon. 

Applications of the theory to nonspherical potentials are rela-

tively recent and do not cover a great variety of potentials. The 

Percus-Yevick equation was solved for two tetrahedrally symmetric water 

potentials by Ben-Naim6 ~ One of the most significant nonspherical 

7a applications was published by Chen and Steele , who applied the Percus-

Yevick theory to a system of diatomic hard-core molecules. Because the 

distribution functions for this system were angular dependent, the 
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methods of solving the Percus-Yevick equation used for spherical sys-

tems were no longer useful. In order to obtain a tractable form, they 

applied the D-orthonormal expansion method of Steele8 to the equation 

and were able to derive a system of equations which could be solved 

for the expansion coefficients of the angular dependent radial distri

bution function and direct correlation function. Most significantly, 

the method is quite general and may also be applied to other potentials. 

This work is a direct extension of the technique developed by 

Chen and Steele to the two-centered Lennard-Jones potential and is 

primarily a derivation of the distribution functions determined by 

this potential. This choice of potential, of course, allows for attrac

tive as well as repulsive forces in the intermolecular interaction, 

and leads to distribution functions that are temperature dependent. 

This introduces a variable not treated previously. 

Because this laboratory is concerned with x- ray scattering 

from molecules, it became apparent that angular dependent distribution 

functions for a real system would eventually be required. Partly 

because of scattering properties and partly because heat capacities 

seem to indicate a large orientational effect, we have therefore solved 

the Percus-Yevick equation for parameters characteristic of chlorine. 

We present below the simultaneous equations whose solution 

gives the desired Percus-Yevick results. We also show the equations 

required for high order evaluation of the pair correlation function 

and direct correlation function. The potential parameters for chlorine 

are then determined and finally the numerical results for the distribu

tion functions are presented and discussed. 
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Theory 

A. The Percus-Yevick So l ution 

We begin this section by reviewing the method used by Chen and 

7 Steele to solve the Percus-Yevick e quat ion for a system of diatomic . 

hard-core molecules. We first write the general expansion developed 

by Steele8 which expands any pair property in terms of spherical 

harmonics (D-function in the general case) whose arguments n. 
J 

are the 

Euler angles of orientation of the two molecules involved. 

R= {r.,n.} (1) 
-j -] J 

r. is the position vector of the center of molecule j 
J 

A function 

H(~1~) may be defined in terms of the density dependent part of the 

pair correlation function 

(2) 

By generalization of the usual Percus-Yevick approxima tion 

c(r) = g(r)[l - exp( Su(r))], one may write 

(3) 

The Ornstein-Zernike equation when combined with (3) gives 

(4) 

This is the angular-dependent Percus-Yevick equation. 

Equation (4) is solved by Fourier transforming both sides of 

the equation to yield 



where 

p 
4TI 
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f 
i~·.!.12 

H12 (v) = H(~1!z) e d_!.12 • The H(!i!j) and 

(5) 

C(R.R.) in each transform in (5) are then expanded according to (1), 
-i-:i 

while each exp(iv•r .. ) is expanded into spherical waves according to 
--iJ 

exp(iv•r .. ) 
---i.J 

The various sets of Euler angles which result refer to a variety of 

relative coordinate systems and must therefore be rotated to a common 

laboratory coordinate system. The rotations are carried out by 

repeatedly applying Eq. (2-2) of Appendix 2 and making use of the 

orthonormality properties of D functions (see Ref.(7b)for details). 

The result of the expansions and rotations is for the left-hand side 

of (5): 

00 1 1' 
Hl2(v) (4n) 2 03 l l l l .s s 

1. n + , 0 ca ) 
1,1', s=O v=-1' v'=-1' m\0:1'n1 v v , \) 

-- -
(6) 

x Y1 ,vca1)Y1 ,,v,ca2) H(11'ms) c(11's;v,v') c(11's;m,-m) 

where s-2\J is the set of Euler angles describing the orientation of v 

relative to a laboratory system, Ql and a2 give the orientations 

of molecules 1 and 2, c(j 1j 2j
3

;m1m2) is a Clebsch-Gordan (CG) coeffi-

. 9 d c1ent , an H(11'ms) is a Hankel transform defined by 

H(11'ms) 

00 

I H11 ,m(r*) js(vr*)r*
2
dr* 

0 

(7) 
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H(££'ms) j (vr*)v2 dv 
s 

(8) 

also Q, = {-£,-(£-1),···,£-l,£} Similarly the right-hand side of (5) 

becomes: 

~ i 
3 6 00 

..t 

(4n) a P L L l 
l 
I I I 

Q,,Q,',£11 s,s'=O v=-Q, v'=-Q, ' VII=-£ II ms:Q,f'\Q,' m'sQ,OQ,' 

x 

x 

x + ' ' [C(Q,Q,'ms) + H(Q,Q,'ms)] C(Q,"Q,'m's')is s (-)v 

I 
S+-.5 

L c ( s s ' j ; v+v ' , v 11 -v ' ) 
j=/ s-s I I 

c(ss'j;OO)Dj+ II o<r2) c(Q,Q,'s;vv') 
v v ' v 

(9) 

If one notes the independent harmonics appearing in each of Eqs. (6) 

and (9), one may generate a series of equations by equating like coef-

ficients according to (5). Simultaneous solution of these equations 

for the various H(Q,Q,'ms) constitutes the Percus-Yevick solution. 

Expressions for specific H(Q,Q,'ms) may be derived by letting 

the desired Hankel transform subscripts define the spherical harmonic 

subscripts in (6) and thus the corresponding subscripts in (9) as well. 

It should be noticed, however, that if the transform is specified by 

Q,,Q,' ,m,s, then the v,v' subscripts in (6) are in general still left 

unspecified. If Q, (or£') is zero, then the range of v (or v') is 

restricted trivially to zero as well; but if Q, (or £') is greater than 

zero, several values for v (or v') are allowed. This non-specification 
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of v or v' appears to be no problem however, in t hat the same 

equations for H( .Q,.Q, ' ms) result for all choices of v or v' . This 

has been verified for H(2002) and H(2200) . 

While solutions for H(OOOO) and H(2002) were obtained by 

Chen for the diatomic hard-core model, it was indicated that errors in 

the final values for H000 and H200 , as well as the g.Q, .Q, 'm terms 

derived f rom them, might arise from neglect of the higher coefficients 

H220 , H
221

, H
222

, H
400

, etc. In order to see if these higher terms 

did give rise to an error, we have included two of them in our calcula-

tion, H220 and H
400

, assuming the others to be negligibly small. Our 

Percus-Yevick solution thus involved the simultaneous solution of 

equations for H(OOOO), H(2002), H(2200), H(2202), H(2204), and H(4004). 

That these are the complete set of transform functions for H
000

, H200 , 

H
220

, and H
400 

is proven in Appendix 3. 

We will now derive the equation for H(2200) as an exemplary 

case. The equations for the other transforms will then merely be 

listed. For H(2200) it can be seen that in (6) this requires that 

.Q, = 2, .Q,' = 2, s = 0, and m =O; v and v' are not specified. Hence 

the coefficient of the harmonics, A , becomes 

A ~ (4rr)
2a3H(2200) c(220;v,v') c(220;00) 

Using (4-6) of Appendix 4, the CG coefficients can be rearranged to 

give 

A (4rr) 2a 3H(2200)(-)v (l) c(202;v,-v-v') c(202;00) 
5 

Equation (4-10) shows that these CG coefficients reduce to o v -v' , 
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and 1 respectively so that 

(10) 

In (9), H(2200) requires that t = 2, t" = 2, and j = 0 . Equality of 

hannonics requires the v;v' of (6) to equal the v,v" of (9) 

respectively. Thus from (9) we obtain as coefficient of the harmonics 

A l l 
· s+s' 

[C(2t'ms) + H(2t'ms)] C(2t'm's')i 
m,m' ss' 

' x l (-)v c(ss'O;v+v' ,v"-v') c(2t's;v,v') c(2t's' ;v",-v') 
v' 

x c(ss'O;OO) c(2:Q,'s;m,-m) c(2i's';m',-m') (11) 

By applying (4-6) and (4-10) again we obtain 

c(ss'O;v+v' ,v"-v') 

and 

c(ss'O;OO) 

Note that (12) results in 

(-)s-v-v' (-1-) 112 c(sOs' ;v+v' ,-v-v") 
2s+l 

(-) s-v-v' (-1-) 1/2 0 0 (12) 
2s+l ss' v,-v" 

(-)s (-1-)1/2 0 2s+l ss' 

Q 11 • v,-v This condition had to be present 

since a similar ov -v' was obtained from (6). (11) now becomes: , 

s 1 v l x (-) (--)(-) c(2i's;m,-m) c(2t's;m',-m')[ 2s+l v' 
c(2t's;v,v') 

x c(2t's;v",-v')] (13) 
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The coefficients depending on v' have been grouped together in this 

last equation because this grouping nearly forms the orthogonality 

expression of Clebsch-Gordan coefficients. [Equation (4-2) of 

Appendix 4.] Substitution of -v for v" and application of (4-4) 

to the summation lead to a value for it of (-) .R, '-s. Thus equating 

(10) and (13) and cancelling terms, one is led to 

H(2200) 

x 

20ncr3
p l l l [C(2£'ms) + H(2£'ms)] C(2£'m's) 

£' mm' s 

i 2s(
2
:+l)(-).R,'-s c(2£'s;m,-m) c(2£'s;m' ,-m') (14) 

Notice that (14) results with no specifications placed on the harmonic 

subscripts v, v' , v" . 

Similar derivations may be performed to obtain the other trans-

forms although the simplification introduced by the use of the 

orthogonality condition cannot be used in the derivation of H(2202) 

and H(2204). The results are as follows: 

H(OOOO) 

H(2002) 

x 

4ncr3
p l [C(Ot'Ot')+H(Ot'Ot')] C(Ot'Ot') 

.R, ' 

-4ncr3p l [C(2£ms) +H(2£ms)] C(Otot)it+s(-)s 
£,m, s 

( 2s+l)l/2 c(s.R.2;00) c(2.R,s;m,-m) 
5 

(15) 

(16) 

These two are the same as the two expressions used by Chen in the hard 

core work. 
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H(2202 ) = -14na3
p I I L [ C ( 2 .Q, 'ms) + H ( 2 .Q, 'ms) ] C ( 2 .Q, 'm' s ' ) 

.Q, ' II1fil ' S,S I 

x is+s' [L (-)v
1

c(ss'2;v',-v')c(2.Q.'s;Ov')c(2 .Q. 's';07v')] 
v' 

x c(ss'2;00) c(2.Q.'s;m,-m) c(2 .Q. 's';m' ,-m') (17) 

H( 2204) l L [ C ( 2 .Q, 'ms) + H ( 2 .Q, 'ms) ] C ( 2 .Q, 'm' s ' ) 
m,m' S,S I 

s+s' \ v' 
x i [l (-) c(ss'4;v' ,-v') c(2.Q.'s;Ov') 

v' 

x c(Z.Q.'s' ;0,-v')] c(2.Q.'s';m' ,-m') c(ss'4;00) c(2.Q.'s;m,-m) 

(18) 

H( 4004) 4na3p L [C(4.Q.'ms) + H(4.Q.'ms)] C(O.Q.'O.Q.')is+.Q.' (-)s 
.Q, ~nys 

(19) 

Each of the equations (14) to (19) may now be expanded over 

i,m,m' ,s,s', retaining only those terms which include members of the 

transform set listed above. These expansions are straightforward but 

are quite long and tedious, and we will simply list the results. It 

is apparent that sums over a large number of CG coefficients will 

result. Those required for these expansions are sunnnarized in Appen-

dix 4. Using the same reducing parameters as Chen, 

p* = pv , 

and defining 

v 
3 2m:r x 

3 
x = 1+1 R*-l R*3 

2 2 

6n* 
K = ...:::.t::- , we obtain from (15) 

x 
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H(OOOO) = A H(2002) + B H(4004) + C 

A K C(2002)/Z 

B K C(4004)/Z 

c K cc2 coooo) + c2 (2002) + c2 (4004)) I z (20) 

where Z 1 - K C(OOOO). From (19) we obtain 

H(4004) K C(4004) C(OOOO) I z (21) 

The results of the expansions of Eqs. (14), (16)-(18) can be written in 

a common form: 

A. 1H(2002) +A. 2H(2200) +A. 3H(2202)+A. 4H(2204) = B. (22) 
l 1 l 1 1 

where i is an index running from 1 to 4 denoting from which of the 

equations (14), (16)-(18) the coefficients were derived. Each coeffi-

cient is somewhat lengthy and they have therefore been collected in 

Table I. Equations (20), (21), and (22) along with (3) provide the 

Percus-Yevick solution. 

We now present the methods by which the isothermal compressi-

bility KT may be calculated. This is of importance in that the com

pressibility goes to infinity at the critical point of a fluid and 

hence may be used to locate it. Two methods of calculation exist. 

The first is that developed by Steele8 , which is a straightforward 

extension of the usual pair distribution equation of spherical systems: 

K = B[p-1 +I (g000 (r) -1) 4Tir2drJ = l(~) 
p ()P T 

(23) 

The second method has been employed by several authors 2 •3 •7 and for 
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angular systems takes the form 

1 - ~ J C (r*) r* 2 dr* x 000 
(24) 

where pkTK . We have used both methods in this work. 



.a 
1 

1(16) 

2(14) 

3(17) 

4(18) 

TABLE I 

COEFFICIENTS OF SIMULTANEOUS EQUATIONS FOR H(2002), H(2200), H(2202), H(2204) 

Ail Ai2 Ai3 Ai4 

1- K C(OOOO) 
K 

tKC(2002) - ~~ K C(2002) - - C(2002) 
5 

-K C(2002) 1 - K C(2200) - tKC(2202) - ~~ K C(2204) 

K C(2002) 
K 

1 - ~ C(2200) - 4~ K C(2202) 
36 18 

- - C(2202) - K 
245 

C(2202) + 
49 

K C(2204) 
5 

36 -
245 

K C(2204) 

K 
-K 4~ C(2202) +K ~~ C(2204) 1 -~ C(2200) +K ~~ C(2202) -K C(2002) - - C(2204) 

5 
27 

-K 
245 

C(2204) 

B
1 

= K[C(2002) C(OOOO) +i C(2200) C(2002) -1 C(2202) C(2002) +;~ C(2204) C(2002)] 

B
2 

= K[C
2

(2002) + c2
(2200) + t c2

(2202) + ~~ c2
(2204)] 

B
3 

= K[-C
2

(2002) +i C(2200) C(2202) + 4~ c2
(2202) + 2~~ C(2202) C(2204) - ~~ c2

(2204)] 

B4 = K[C
2

(2002) +i C(2200) C(2204) + 4~ c2
(2202) -z~ C(2202) C(2204) +2z~ c2

(2204)] 

~umber in parentheses denotes the source equation in text. 

I 
........ 
co 
I 
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B. Expansions for Pair and Direct Correlation Functions 

In order to obtain the direct correlation function expansion 

' coefficients which are required in Eqs. (20)-(22) above, an expansion 

of (3) must be made. While a partial expansion has been done pre-

7 viously by Chen , several terms have been omitted. We present a more 

complete expansion here so that higher terms will be included in the 

expansion, thus reducing truncation error. 

We note that the expression for the expansion of the product of 

f(!
1

R
2

) and [l+ H(!
1
! 2)J gives the expansion for any product of two 

harmonically expanded series if the proper identification is made. Such 

products occur often in the orthonormal expansion approach to statisti-

cal mechanics, and the expression below is therefore of wide use. In 

this work, it is also used to expand the pair correlation function as a 

0 product of [l + f C!
1

R2)] = g (R
1

R2) and 0 The ( ) denotes 

the zero density limit of g(!1! 2). 

To evaluate (3), expand each function according to (1). 

cooo + 4rrii~m cii'myim(Qi)Yi' ··,-mcn2) 

i=i'f:.O 

+ fooo4~=i~f:.O Hii'mYi,m(Ql)Yi, ,-m<n2) 

+ (H000+ 1)4TI l f 001 Y0 (n1)Y 01 _ (Q2) 
i=i'f:.O NN m N,m N ' m 

Then, 

+ (4rr)
2 l fnnl Y0 (Ql)Yn1 _ (Q2) l Hnn1 Yn (Ql)Yn, _ (Q2) 
i=iJf:.O NN m N,m N ' m i=i'f:.O NN m N,m N ' m 

(25) 

The last term, involving the product of two series was omitted entirely 

in earlier work. If it is denoted by S , and the harmonics are 
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combined by using the spherical harmonic coupling rule (Eq. (11), Part 

II), then 

s [
(2i +l)(2v+l)1· 

112 

4rr(2j+l) 

i'+v' 

[
(2£'+1) (2v'+l)Jl/2 

x c(tvj;mn)c(tvj;OO)Y. +n(n1) I 4n( 2j+l) 
J 'm j ' = I £ ' -v ' I 

x c(t'v'j';-m,-n) c(t'v'j';OO) Yj',-m-n(n2) (26) 

Equation (26) may be improved by recognizing that 

00 00 i+v 00 00 ·+i 

I I r = I I JI (27) 
£=0 v=O j= £-vi j=O i=O v= I j-tl 

If this is substituted into (26) and (26) in turn is substituted into 

(25), one then obtains an expression from which the coefficients of 

specific harmonics are easily identified. 

Coefficients have been identified for the set H
000

, H200 , 

H220 , H400 , all other Hti'm = 0 . Once again several CG coefficients 

are required, and these are given in Appendix 4. The results are: 



-81-

60 1458 
+ f4oo[77 H200 + 10011.5 H4oo + Hooo + l] (28) 

As mentioned above, if f ii'm is identified with the zero density 

0 coefficient and cii'm is identified with these gii'm gii'm , equa-

tions give the expansion coefficients of the pair distribution function 

as well. For future work, we also desire to have the g221 and g222 

coefficients derived from the Hii'm set above. These are: 

0 2/5 5 8 
g221 g221 [Hooo + 1 + -7- H200 + 49 H220 - l H400] 

0 4/5 20 2 
(29) g222 = g222 [Hooo + 1 - -7- H200 + 49 H220 + 7 H400] 
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C. Potential Parameters for Chlorine 

The potential that has been employed in this work is the two-

centered Lennard-Jones potential. It has been discussed in detail by 

10 Sweet and Steele • We have applied it here to the diatomic chlorine, 

choosing this substance because it is nonspherical, nonparamagnetic, 

and composed of just two atoms which are likely centers for the Lennard-

Jones functions. Furthermore, it apparently has a high configurational 

heat capacity11 indicating strong orientational correlations in the 

fluid state. 

Because we are dealing with a homonuclear diatomic, just one set 

of 0 and E values characterizes the molecule. A third parameter 

R* R/0 , where R is the distance between interaction centers, is 

also required. In solving the Percus-Yevick equation for a particular 

substance, the R* (and hence 0) parameters are required as input. In 

this section values for 0, E , and R* for chlorine are derived. 

The method of solution is that due to Sweet
12

• In this method 

the parameters are determined from the second virial coefficient. 

Reduced virial coefficients and temperatures are written as 

B* B/b b = ±_ 7T03N (30) 
0 0 3 

T* kT/E (31) 

or 

logJB''cl logJBI - log b 
. 0 

logJT*i logJTJ- log(E/k) 
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If one then has a set of reduced (B*,T*) pairs from theory and a set 

of experimental (B,T) pairs, log plots of the two data sets will yield 

log b and log E/k as intercept values if the two curves are super
o 

imposed. However, unlike spherical systems, the B* values are also a 

function of R* and one must repeat this determination of intercept 

values from new B* curves until a a is found from b that will 
0 

give an R/a that is self-consistent with the R* on which that B* 

curve depends. 

Theoretical B*(T*) values have been calculated from 

00 

-3 J (g~00 (r*) - 1) r*
2 

dr*. 

0 

by Sweet for R* = 0.1, 0.2, 0.3, and 0.4 and are reproduced in Appen-

dix 5. Using the same numerical methods, we have extended these cal-

culations for B*(T*) to R* = 0.50, 0.55, and 0.70 for a temperature 

range of T* = 0.2 to 1.8 . These values appear in Table II. 

Very few experimental values of B(T) exist. Gmelin
13 

gives 

several references to chlorine PVT data, but nearly all refer to A. 

14 Eucken' s work . These data are suspicious in that the second virial 

curves derived from it do not have the same shape as is found for 

nearly all other monatomics and diatomics, the Eucken curves being too 

steep in the low temperature region. In addition, later Eucken data on 

15 ethane and ethylene has been found in error by McGlashen and Potter 

d S 16 . 1 an weet respective y. 

We have therefore used the data of Kapoor and Martin
17

. They 

have fitted other earlier data and give the empirical equation of 

state 
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TABLE II 

SECOND VIRIAL COEFFICIENTS FOR THE TWO-CENTERED L-J POTENTIAL 

R* 0.50 0.55 0.70 
T* 

0.2 -25.677538 

0.4 -6.685302 - 5.742034 

0.6 -3.294647 -3.078723 - 2.537592 

0.8 -1.839501 -1. 678720 - 1. 259973 

1.0 -1. 076307 -0.941468 - 0.579727 

1. 2 -0. 609611 -0.489253 - 0.160139 

1. 3 - 0.006307 

1. 4 -0.295928 -0.185074 + 0.122153 

1.6 -0. 072185 +0.032303 0.324136 

1. 8 +0.095208 



p = RT + 
V- b 

5 

r 
n=2 
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[A + B T + C 
n n n 

exp ( _ kT) ] ( _l_) n 
T V-b 

c 

T is t he critical temperature and V >> b . If the bracketed quan
c 

tity is defined as 0 and the µn (V-b) terms are binomially expanded, 

one obtains 

PV 
-= 
RT l+~+ 

v 
S 1 (l+ E..+n(n-1) b

2
+···) 

n -n-1 n - 2 -2 v v v 

from which the second virial may be obtained as the coefficient of the 

l/V . term. 

B( T) (32) 

The cons tants of (32) are tabulated in Table III. 

TABLE III 

-0.46496772246 B
2 

= 2.129865506·10-4 c
2 

= -0.098636526 

T 
c 

751°R(417°K) R = 0.010296 b 0.00608353 k 2.3 

Units are 
. 3 0 

atm - ft - t b - R 

A list of values of B(T) and T derived from this expression 

appears i n Table IV, and a plot of the data is found in Figure 1. 

The theoretical and experimental curves were superimposed as 

discussed above for all the R* and the b and E/k parameters 
0 

were determined. Fits were closest in the region of T = 273 to 
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417°K, where much of the original experimental data was concentrated, 

and in t h e r egion of the "V" • The results are tabulated in Table V. 

Plots of 0 vs. R* and £/k vs. R* appear as Figures 2 and 3. The 

points i n Figure 2 were fitted with a straight line by least squares 

with the result 

0 -l.9016R* +4.76107 (33) 

Since R* = R/0 this equation can be solved for 0 once R is known. 

Sweet and Steele used 0.577 times the internuclear distance as the 

the interaction separation R for diatomics. This resulted from other 

work where longer molecules were viewed as a continuum and the two LJ 

centers were Gaussian distributed to represent this continuum. While 

this seems reasonable for molecules such as propane or butane, it is 

not required for diatomics since the two nuclei themselves may serve as 

the centers. 
18 

Recently Kong has applied the two-center Lennard-Jones 

potential plus dipole and induced dipole terms to the calculation of 

ordinary and dielectric second virial coefficients with some success. 

In his potential the separation R is the distance between the centers 

of gravi ty of the two LJ atomic groupings rather than 0.577 times that 

distance, encouraging us to use the internuclear distance for R . It 

must be added , however, t hat in light of little other theoretical 

justification for this choice of R it is possible that the best value 

for representing the true potential may lie somewhere between the two 

extremes discussed here. 

We have therefore solved (33) for 0 with R 1.988.R and have 

carried along the least square error. The result is 
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TABLE IV 

SECOND VIRIAL DATA FOR CHLORINE (from KAPOOR, MARTIN17) 

T(°K) B(cc/mole) log JBJ log T 

244.0 -361. 60 2.558 2.387 

250.4 -348.50 2.542 2.399 

273.2 -307.00 2.487 2.436 

298.2 -269.00 2.430 2.475 

323.2 -237.20 2.375 2.509 

373.2 -187.00 2.272 2.572 

423.2 -149.20 2.174 2.627 

457.2 -128.50 2.109 2.660 

550.0 - 85.40 1. 931 2.740 

650.0 - 53.30 1. 727 2.813 

750.0 - 30.10 1. 479 2.875 

850.0 - 12.40 1.093 2.929 

860.0 - 10.87 1.036 2.934 

870.0 - 9.37 .972 2.939 

880.0 - 7.91 .898 2.945 

890.0 6.48 .812 2.949 

900.0 - 5.08 .706 2.954 

910.0 - 3. 71 .569 2.959 

920.0 - 2.38 . 377 2.964 

930.0 - 1.07 .029 2.968 

940.0 + 0.21 .678 2.973 

950.0 1. 46 + .164 2.978 
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TABLE V 

R* b E/k 0 
0 

0.10 120.23 292. 42 4.568 

0.20 109.65 331.13 4.430 

0.30 91.20 403.65 4.166 

0.40 79.43 481. 95 3.978 

0.50 69.34 553.4 3.802 

0.55 63.10 599.8 3.684 

0.70 52. 72 724.4 3.470 
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a = 3.754 ± .05~ 
cl

2 

R* 0.53 ± .01 

From a quartic fit to Figure 3 and the R* just obtained, 

0 
E/k = 581.0 K 
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Numerical Evaluation 

The general method of numerical solution of the Percus-Yevick 

equations for the H.Q,.Q,'m is that of Chen and Steele7 with appropriate 

modifications having been made to handle the longer ranged two-centered 

Lennard-Jones potential and the larger number of H.Q,.Q,'m coefficients. 

This is an iterative method in which the Mayer f function coeffi-

cients f.Q,.Q,'m are known beforehand. In the first iteration, an initial 

guess is made for the H.Q,.Q,'m . Direct correlation function coeffi-

cients are calculated from (28), are Hankel transformed by (7), and are 

used to obtain Hankel transforms of the H.Q,.Q,'m by solution of Eqs. (20) 

to (22). The H.Q,.Q,'m transforms are then back transformed to a new set 

of H.R_i'm by (8). A new guess for H.Q,.Q,'m is fashioned from the new 

H.R_i'm and old H.Q,.Q,'m and the process repeated until the difference 

Ir i (H_R,.Q,, m - H.Q,.Q,, m) I is less than some predetermined value.. Once the 

H.Q,.Q,'m functions are known for a particular density, the pair correla

tion function coefficients can be calculated from (28) and (29). 

In the earlier hard core work, the Mayer functions were quite 

short-ranged since the potential and thus [exp(- u(R
1

B:_
2
)) - l] went to 

zero beyond the largest overlap distance between molecules. Those 

f.Q,.Q,'m were zero beyond about r* = 1.60 . When the two-centered 

Lennard-Jones potential is used, however, the f .Q,.Q,'m are non-zero as 

far out as r* = 4.00 for the higher coefficients and as far out as 

6.00 for f
000 

. We have therefore computed f.Q,.Q,'m from r* = 0.70 to 

4.00 numerically and for f
000 

have extended thesedata to r* = 6.00 

by using the asymptotic formula for it. The f .Q,£'m calculation is 

b d G . d . . 12 ,19 f h . 1 . 1 ase on aussian qua rature integration o t e trip e integra 
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7T 1 1 

4 I J f 
-Su(Rl~2) 

(e - l)Pi ,m(cos 81}Pi ',-m(cos 82)cos m¢ 

0 0 0 

x d cos e1 d cos e2 d¢ (34) 

which results from (1) if f(R1R2) is identified with X(R1~2 ) and 

both sides of the equation are multiplied by Y~,m(~1 ) Y~ , ,-m(~2 ) and 

integrated over angle space. The asymptotic formula for f 000 is 

given by 

4 
(35) 

where the last equality arises from noting that u(~1R2 ) + u11 (r) as 

r + oo and then retaining the first term of a Maclaurin expansion of 

exp[-Sl\1 (r)] - 1 . 

The use of these Mayer f coefficients allowed us to calculate 

Hi£'m and gi£ 'm functions out to r* = 6.00 as well. With an eye 

toward obtaining th~rmodynamic properties from these functions, it was 

noted that in the case of spherical systems Bearman et al. 2 ' 20 have 

shown that truncation error in thermodynamic integrals over r* is 

virtually eliminated if the upper limit of integration is 6.00 or 

greater. In particular, those authors showed that the g(r) of 

spherical systems may be replaced by 1.00 beyond this value. We have 

found that g
000

(r) behaves similarly and thus it too has been set 

equal to 1.00 beyond r* = 6.00 . 

The core of the Percus-Yevick solution is the solution of 

Eqs. (20)-(22). This was accomplished here by noting that the equa-

tions of (22) are linear, consisting of four equations in four unknowns. 
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It was found that the A .. and B. terms of Table I were the largest, 
ii i 

thus indicating that the matrix is somewhat diagonal and not ill-

conditioned. The equations were solved simultaneously using the 

C(ii'ms) calculated beforehand. Equation (21) was solved for H(4004) 

directly. Equations (22) were then solved as a group. Next, H(2002) 

from (22) and H(4004) from (21) were substituted into (20) to obtain 

H(OOOO). Hence all H transforms were determined. The simultaneous 

solution of Eqs. (22) was done by the standard method of Gaussian 

1 . . . 21 h. b . h b i•t . . h f d d e imination , t is eing c osen ecause is straig t orwar an 

rapid. Furthermore the round-off errors in this method have been 

studied carefully and are known to be reduced greatly if the technique 

of pivotal condensation is included in the programming. 

Hankel transforms were obtained by expanding the spherical 

Bessel functions in the standard trigonometric representations (see 

Appendix 6) and then evaluating the resulting Fourier integrals by 

standard techniques. Like Chen and Steele7 we have employed the Fast 

Fourier Transform22 (FFT) because if its great speed. Because we have 

included H
220 

and H
400 

terms, fourth order as well as zero and second 

order Hankel transforms are required. The evaluation of this fourth 

order transform requires the summation of five Fourier transforms, two 

cosine and three sine transforms. It seemed possible that Fourier 

transform errors over a sum this large might begin to build to the 

point of introducing significant error in the final result. To test 

4 -x2 
this, calculations were performed on x e and it was found that the 

Fourier summation approach was adequate. When fourth order numerical 

results were compared with analytical values, the FFT Hankel transforms 
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-10 

were accurate to six digits or better up to a transform value of 10 

(peak value .24). Inverting the transform itself gave the original 

function back with negligible error. When applied to the H££ 'm 

functions , it was verified that the transform functions were effec-

tively zero at the maximum value of V for which the transform was 

evaluated. We note that a result of having this higher order trans-

. form included in the calculation of H
220 

and H
400 

was to slightly 

more than double the computation time than when it was omitted and just 

H
000 

and H
200 

were calculated. 

It is now necessary to consider the extrapolation procedures 

used in t his work. There are two extrapolations involved here. The 

first is to be able to find initial guesses for the H££'m at one 

density from the results previously obtained at lower densities. The 

individual H££'m data points form well-behaved and generally monotonic 

curves as a function of density, and are thus amenable to a polynomial 

fit. Accordingly we have employed a five-point Newton forward extrapo-

lation procedure. 

Since the Newton method requires at least five points, these 

first five were treated differently. The first density treated was 

p* = 0.1 and was low enough so that all Htt'm input were taken as 

4 
zero. This approach was followed quite successfully by Watts The 

final output for Htt'm at p* = 0.1 became the input for p* = 0.2 

and so forth until the first five densities were evaluated. 

The second extrapolation is to determine at fixed density the 

Htt'm required for a particular iteration based upon results from pre

vious iterations. If this extrapolation is not done, convergence will 
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either not be obtained at all or else convergence will be attained so 

slowly it will not be acceptable. A variety of schemes are available 

for this extrapolation and we have investigated two of them. 

The first scheme is a simple linear extrapolation and has been 

applied in different forms by Chen 7 and Bearman3 in earlier studies. 

We denote the Hii'm(ri) values obtained after the nth iteration by 

H Straight linear extrapolation gives as a result for the (n+l)th 
n 

iteration, 

H + (H - H 
1

) 
n n n-

A modification includes a mixing parameter a and 

H + a(H - H 
1

) 
n n n-

and is the form employed by Chen. If a 

equals the last output H 
n 

0 < Cl < 1 

0 , the new input Hn+l 

(36) 

The second method is based upon the ek-transformation described 

23 24 
by Shanks and Peterson and McKay • It was found by these authors 

to be extremely efficient and, if allowed to extrapolate on five points, 

to be capable of handling oscillatory and divergent series. In this 

work, however, we have employed the three point (e
1

) transformation, 

principally so that more extrapolations will be done for a given number 

of iterations (typically on the order of 6-9) . 

This technique views each H 
n 

as the nth partial sum of a con-

vergent series whose limit H is the actual value of I-Iii' m(ri). For 

the three point extrapolation the transformation assumes that for any 

partial sum 
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where the truncation error E: is composed of an amplitude A and a 
n 

ratio q , asstnned less than one. Defining 6H. = H.+1- H. and form-
l. l. l. 

ing the di fferences 6Hn-l and 6Hn_2 by eliminating H from the 

above equation, one may solve for E: 
n 

in terms of previous partial 

sums. The expression for H then becomes 

H (37) 

A 1 . h 1 d"f" d f f h" . . h w 1 . h 24 
s ig t y mo 1 ie orm o t is equation using t e ynn a gorit m 

was used i n our program. If the assumed form for E: is close to 
n 

the actual truncation error, then the H given by (37) is far better 

converged than the last iteration result H 
n 

It is apparent that 

if H is taken to be the first of a new series of H , then an 
n 

extrapola tion will be done after every two iterations until conver-

gence is obtained. 

All of our final results have used the ek-transformation (37). 

It was preferred over linear extrapolation principally because for 

many choices of a it allowed convergence in fewer iterations. A 

sample ha rd core PY solution at p* = 0.1, and R* = 0.2 required 

one-third more iterations using (36) with a = 0.2 than (37). The 

iterations required were nearly the same with a= 0.05 . Since it 

is known 3 that a is generally a function of density, the method 

thus of f ers a way of avoiding excessive iterations due to non-

optimization of this parameter at each density. 
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As outlined above, these iterations and extrapolations continue 

until t he difference between two successive iterations satisfies 

For H000 , I'; has been taken as 4 x 10-
4

, and for other H~J~,'m' I'; 

4 -4 has been t aken as 10- . This compares with 10 used by Mandel, 

3 Bearman, and Beannan and nearly identical values used by Chen. 
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Results 

Using the numerical procedures just discussed, we have obtained 

the H.Q,9,, m and g 9,9, 'm solutions for the grid given by p* = 0 .1 to 1. 2 

(6p* = 0.1), T* = 0.75, 1.00, 1.30 for the two separation distances 

R* = 0.53, 0.68 . Numerical results for the H.Q,9,'m at p* = 0.6, 1.2 

and T* = 0.75 may be found in Tables VI and VII. The data for 

(p*,T*) = (1.2, 0.75) are plotted in Figure 4. Obviously, the functions 

are oscillatory and are dominated by H000 and H200 in the r* range 

above 0.90. Since, in order to calculate the g.Q,R.'m' the HR.R.'m are 

always multiplied by g~.t'm which are zero below r* = 0.90, it is only 

the r* > .90 range which is eventually important for pair distribution 

determination. Below r* 0.90 , H220 is also quite significant, 

especially near r* = 0.0 We note that the general curve shapes of 

these functions agree with those obtained from two-center hard core 

25 cluster results when the appropriate sum over cluster diagrams is 

taken. Differences between the H000 curves and H200 curves when 

H
220 

and H
400 

are and are not included depend on the * r range and 

(p*,T*) point under consideration. For H
000 

at (p*,T*) = (0.7, 0.75) 

the differences in the range r* = 0.90 to 2.50 are on the order of 1% 

or less, climbing to approximately 4% or less at 3.20. The correspond-

ing differences for H200 are larger, about 6%. 

The pair distribution coefficients for the grid p* = 0.4 to 

1. 2 (6p* 0.2), T* = 1.30, 1.00, 0.75 and for R* = 0.53 are tabu-

lated in Tables VIII-XXII. The g000 (r) coefficient has been plotted 

in Figure 5 for p* = 0.2 to 1.2 (~p* = 0.2) at T* = 1.30. The same 

densities are also plotted in Figure 6 for T* = 0.75. It is apparent 
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TABLE VI 

rt ( R) CJt:fflL.ltNTS OF 2 L-J PuTt;~TlAL FRC M 1-'Y £: lJU AT I U I~ 

KHU>!<=u. 60 T•=O. 7 ':> k*= O.'.).:> 

R 1-luOO H.lJU H22U H4v0 

u.J4 Z..J77 7 o.oul8 u.:> ::U l -0. J\.JV\.J 
0 .J8 2.0239 0.0011 u. 5v2/ -J. iJULlG 

0 .12 1.9455 0 . 0150 0.4?15 - 0 .0001 
l) .1 b l. d '.:>3 7 u. U2<to .J . 39uS -u. OUJS 
u .20 1.7569 u. l.)3 :::i<t 0.3.26b -u.uuG7 
0.2 4 l.u5b6 a. u4 St> 0.2bo5 -J.0014 
0.20 1 .. 5593 0.0556 ~.2134 -u.uu2;; 
0.32 l.45b9 0.0642 G .l 691 - 0 .003 <:: 
u .3o l.~577 o.011s u.l3j7 -u.uu4v 
o.4u l.25 70 0.0774 J. luS-j -u. i.JU46 
Oe<t4 1.1?85 O.Ot322 0.064~ - u .OO':>O 
0 .48 l.Oo34 u. Otb9 u.0672 -u.uos2 
o.::iz 0.9 .726 o.ucl87 u.u537 -u.Ju52 
o.so o .tJuo3 0.0907 0.01.tL.7 -0.00:>0 
o.6u u.b046 0.0921 u.U3Jb -J.Jl.47 
u .u4 0.1213 0.09.::,1 u.02s9 -O.u043 
O.b8 0 . 6 5"1-3 0.0935 O. Ul 94 -u.0039 
;;.72 J.':>854 0.0937 u.Ol3b -u.uu34 
0. 10 o. '.:>2u4 0.0935 0.0090 -0.0029 
o.au Je't'.:>91 0.0931 o.Ou49 -0.uOZ<t 
a.s't J.4ul4 o.J92<t u.uOl4 -u.Jul9 
O.i:s B 0 .3470 O.OYlS -0. 00 10 -0.0015 
i..l. -~2 J.29'.)9 o. 09 04 -J.uU<tl -0.Uvll 
u.9o J . 2 4tl i.) o.Cti'72 -v.OOoL -Ll. JCG7 
1.00 O.£: C32 o. 06 78 - 0 .007-7 -0. 00 03 
leU4 u .. l6l<t u.J86 2 -J.Llu-11.t -u.JuUCJ 
1.05 0.12.l') u.OB45 -0.0lU.':> u.uouz 
1.12 u.utJ66 o.o82b -u.Ull<t u.uou4 
1.16 u.u')35 0.0801.t -J.0121 u. JLl06 
l.2Ll 0.023:; o.01ao - 0 .0125 O.OOOb 
l .24 -o. 00~2 u. 07 ':)';) -J.i.Jl£'.7 U.JOJ7 
l.2d -O. C2b9 0.0121 -J.0127 o.oou7 
1. 32 - 0 .0':> 0 9 O.C697 - O .OL~7 0 .0006 
l.3b -u.0703 o.Oobb -v.ul2? 0.uuu') 
le4U - O. Jd72 o.0634 -u.ul2 2 u. uu05 
1.44 - 0 .1 0 10 O.ObO O - 0 .01.i.d o.uou4 
l.4d -U.llj7 0.05o'.:> -u.,JllJ \JeuOLlj 
1.52 -0.123 5 o.u53v -u. u lOd 0.0002 
l..5o -0.~311 O. G49j -J.0102 0. uuOl 
1.60 -v.l36o o.045:> -Ll.OOY::> u.ooou 
l.o4 -J.l4U2 0. C4 l 7 - () .(1007 -o.uo oo 



-99-

1. 0 cl 
TABLE VI Cjon t 1 d) 

-0.141~ 0.03 7 - 0.007b -u.000u 
1.72 -0.l<tlB JeU33u -U.v0b 8 -0. uuuo 
1.76 -J.1 4JO O.OZY<t - () • (. ["::> () O. L.C0C· 

l.oJ -J.1 :,6~ 0.02?1 - U. J U-i-'~ u. ou ul 
l.d4 -u.1314 o.u2.07 ·- 0.0U5J u.uOO£'. 
.L. 0 ci -O.l 2<t'i 0.0161 - O .. CC14 o.c o0 .... 
1.92 -0.1109 O. Ul 14 u.Jv0j u.uuu7 
1.96 --J.lU7o O.UU67 u.0u21 J.Ju09 
2.00 -0. 09l2 O.OOlb O. C O<tu 0.0012 
i.U4 -J.U8?9 -u.uu31 u.uU::> ci u.uul4 
2.0d -u.u739 -u.OJ78 U.Ju73 u.0014 
2.. 12 -u. l.614 -u. 0122 J. VVc> • ., u.0013 
.2 .16 -u. lJ'-td4 -0.0161 0.uut>o u. J(Jll 

2.2u -J.0351 -0. 0 192 o. oos'.:> 0.0001 
2.2't -0. u~;d -0.021~ u.GU17 u.0003 
z.2d -u. cc 'j9 -o. l.JL.27 u.006:, - 0 . 0001 
2.32 O.OC07 -0. 02 29 ·J.OC''.:>3 - 0.0005 
2.Jo O. GU94 -o. 02.22 0.UU-t<:: -u.0001 
2. 't0 u.ulo3 -0.0206 J.uu;,~ - c.uo~o 

2.44- u.0210 -0.0185 0. JJ 3u -J.vUU9 
2.'t3 u.u.258 -0.0159 0.uu20 -u. uOOtl 
2 • .::>2 0.029C -0.0131 0.002.:> -0.0COb 
2.5o J.J.3!.l -u.ulu3 J.uU17 - u.JUU? 
2.6J ().l)j2~ -0. 00 7b u.vulJ -u.uuo3 
2.04 O.C.5 2 '+- -0.00~1 u. UUU(:: -u.UUU2 

2ebH u.u3lb -0.002 9 - 0 • (.; lJ Ub -u.J JUl 

2.12 0.0.307 -o.001u -u.001,, -0.00 00 
2.76 o. J2 9 1 u.000? -0.uult3 u.uuuJ 
2.80 u. J2 74 O.U016 -u.uu21 o.uoou 
2.84 u.u2?5 0.0024 -o .t,o.:: l u.0001 
2.88 u. 02 3 5 o. 0029 -u .0020 u. OUUl 
2.'-12 U. C.d 7 Ue!JU32 -J.JU17 JeUUUl 
2..9o O.ClS.9 0.00.:) L - 0.001~ o.oool. 
3.Uu 0,,1Jl84 O.UOjU -0.0011 u. JUUl 
3.10 v.Ul54 u.uu21 - 0. Uu G3 u.uuu1 
j.20 0 • (j .i.::Hl 0.0010 c.coaz o.oou1 
3.Ju u.1..il3.::i -0.0JJl v.uOu't U.LH.lUl 
j.4U u.uL'.14 -u.UOUd u.uuu? u.ooou 
3.50 u. JlJo -u.u011 u. vUu4 u.uuuu 
3.ou u.Oljb - J .UUl~ J. uuu2 - U.00uU 
3 .70 o. OL>4 -0. 00 10 C . OLOJ - G.GCUO 
3. 8u u.ulL9 -U. uuu0 -u.Ul-Jl -u. OUuu 
3.'1u u.Jl21 -O.JJJ5 -U.UuJ1 -u.uuuu 
4.00 0.0113 - 1) . 0001 - 0 . 001J l -0. 0000 
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TABLE VII 
r-l ( R) COEFFICIENTS Of 2 L-J PUTtNTIAL FkUM PY Ei.IUATION 

RHU*= l. 2 0 T*=0.7? R*=0.53 

R HOQO H2 i)O H22J H400 

o .u4 5.':>424 0.0048 l.4533 -0.0000 
O.Od ? • .:)697 0.0ld? l.35Ud -u.uo00 
l) .12 5.1711 0. \.JJ g l l.2t..J<t -u.0002 
C.16 4.9216 O.Oo4l 1.0241 -u.OG 0 7 
0.20 4.6658 0.09Ub o.8430 -0.00Ll 
0.24 4.~136 o.llb4 Ll.6741 -0.0043 
0.28 4.lo44 0.131d Oe5Zd0 -0.0073 
0.32 3.91~1 o. 1600 0.40d4 -O.Ul07 
Oe3b 3.6b48 o.l7b7 u.3143 -0.0137 
0 .40 3.4156 0.1900 0.2411 -0.0162 
Lle44 3.1708 0.2Ll04 U.1860 -U.0179 
0 .4-8 2.9334 o.2oa3 u.l42ti -O.CH89 
0 .5Z 2.7051 0.2141 u.ludo -u.0192 
0.56 z.4866 0.2181 O.l.blU -0.0190 
o.oo 2 .2 7 79 0.2206 0.0584 -0.0184 
o.64 . 2.0788 0.2220 o.u39:> -u.ul73 
0 .68 1.8889 0.2224 0.0231 -u.Ol6ll 

0.12 1.7079 o.22zo 0.0105 -0.0145 
o .76 l.?354 0.2201 -o.uuu4 -o. 0128 
0.80 1.371~ 0.2189 -0. 0094 -u.0110 
O.d4 1.21?2 0.2lo4 -U.Ulb"t -U.UU92 
Ued8 l.uo71 0.2133 -u. L.:'.ld -u.0074 
u.92 J.9269 0.2099 -0. 025 7 -0.0057 
u.96 o.7944 0.200£:. -u.02d3 -O.J040 
l.uu o.uo98 0.2023 -J.U3Uu -0.0024 
1.04 0 . 5 ?31 o.1980 -0. 0309 - 0 .0001:1 
1 .08 u.4443 0.1933 -0.031L v.UOJ7 
1 .12 0 .343 7 o.ld7Y -u.u309 o.uu2u 
le lo o . 2 512 O.l!::!ld -0.0300 o.0030 
l .2J 0.1008 O.l74ti -U.u28b O.OC3tl 
1 .24 u.o9o7 u.1672 -0.0268 u.ou42 
l.Ld 0.0221 0.15Sl -U.U24b 0.0044 
1.3.i:'. -U.0374 o.1su0 -0.0227 u.0045 
1.36 -O.Ot198 O.l4J.8 - 0 .0207 0.0045 
l .4J -0.1348 0.132d -u.Jldd O.OU45 
1.44 -u.172cl o.L:'.37 -0.0169 0.0044 
1.48 - 0 . 20 40 0.1144 -0.0151 0.0043 
1 .52 -u.zt:.9u o.lu?u -U.UlJ~ 0.0042 
l .5o -0. 2481 O.U95b -J.0117 0.0041 
l.60 - 0 . 2ol8 O.ObbO - 0 . 0 10 0 0.0040 
1.64 -u.2705 u.IJ7t>4 -O.LlOtiJ o.J039 
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1.68 
TABLE VI I ~cont 1 d) 

-0.2745 O.Ob6 -u.uvo4 u.OuJ9 
1.72 -0.2742 o.05o9 -o.oo .... ~ 0 .0040 
1. 76 -0.2100 UaG47i_ -o.uu~3 u.uu41 
1.80 -u.2b22 0.0374 u.UOJl 0.0044 
l.b4 -0.2?09 o. 02 75 o.ou21 o.uu47 
1. 8 a -u • .236«:> o. 01 n o.uoso u.oo5u 
l.92 -o.2195 0.0019 OaOOi:H o.ooss 
la96 -ll.LUul -o.cu2u 0.0121 u.0059 
2.00 -u.1791 -0.0111 u.ul~'+ u.JUb3 
2.04 -0.1571 -0.0211 0.018.:: 0.0062 
2.od -u.1347 -0.0297 0.0202 o.oos1 
2.12 -0.1117 -0.0373 0.0201 u.0041 
.2.lo -0.0882 -0.0431 O.Ol9o 0.0032 
2.2u -J.0645 -0.046d u.ulo8 u.0014 
2.L4 -0.0418 -0.0482 0.013u -u.0004 
2.28 -c.0220 -0.0472 o. 00 90 -0.0020 
2.32 -u.0006 -0.0439 0.uu::>5 -o.uu33 
2.36 u.00.Vi -o. 03 89 o.uo31 -O.OU4,j 
2.40 0.0103 -o.u32S u. uO-".v -O.OO't7 
.2.44 u.uL;7 -0.0254 u.uul7 -u.0047 
2.4d 0.Jl?3 -0.0181 O.OOlo -0.0043 
2.52 0.01;5 -o. 01 l u o.oOl<.t -O.OCJ31 
2.50 J.0145 -u.0046 u.ouu& -0.0030 
2.00 0.0123 0.0011 -0.0001 -0.002~ 
2.04 0.0090 o.oo?7 -o.uo22 -o.uu1s 
2.08 u.uu5u OeOU93 -u.u037 -u.OU09 
2. 72 o. 0007 0.0111 -0.0047 -0.0004 
2.76 -o.uu3? o.ul.~2 -u.0052 0.0000 
2.do -u.uu74 Oe013ti -0.00:>1 u.U003 
2.84 -0.0108 0.0136 -o.uo45 o.uou6 
2.ba -O.ul3b u.u121 - u. U03o u.00ua 
2.92 -0.u1s1 0.0113 -O.U02:> 0.0009 
2.96 -0. Ul 71 O.CU9b -U.0013 0.0010 
3.ou -U.0177 0.0011 -o.ouu3 u.uu10 
3.10 -O.Olo4 0.0026 0.0011 0.0010 
3.2U -J.Cl22 -o.uulo 0.0024 i.Je \.H)Ob 

3.30 -J.U0o8 -O.OU4l u.0021 u.uuo4 
3.40 -0.0019 -0.00't8 O.OOl<t 0.0001 
3.So o.ou12 -u.uu4L u.uuJ4 -u.ouoz 
3.60 o.ou2s -0.0021 -u.OOU4 -0.0004 
3.70 0.0023 -0.0010 -u.uo.io -o .• ouu4 
3.au 0.uo12 O. l.U04 -O.UU12. -o.uuo3 
3.9u -0.0001 u.uu13 -u.OOJ9 -0.0002 
4.00 -u.0011 0.0015 -u.OOJ:> -o.ooou 
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PAIR DIS TRIBUTI ON c ci~lf1 lH:1Nr s FOR 2 L-J PuTEl\Tl AL 
FRG M PY :;QUATION RH0*=0.40 T*=l.30 K.*=0.53 

R GuOO G20C G220 G221 G222 G400 

D .s:, ~ . f)rJ L .: - r; . noor:.1 t~ . OOO'J - 0 . 00" t~ -0.uOOO l) .ouuo 
0.84 0.0002 -0.0002 o.ouu3 -0.0000 -0.0003 0.0006 
0.3 '3 0 .0042 -0.0043 o. 0049 -u.0001 - 0 . ')0 41 :~ . (jl('l 6 

C.92 u.U285 -O.u2B3 o.o3lu -O.u0l8 -0.0159 O.U566 
0.96 0.0967 -0.0925 u.0953 -O.U092 -0.0293 o.1384 
1.0 0 ') .2147 - t') .1945 0 .1839 - 0 . 0 26{'.! - (~ . {) 354 0 .1812 
i.o .:. u.3687 -0.3CS7 u. 2593 -0.0515 -0.0339 0 .112 5 
l.08 0.5430 -0. 40S3 0.2845 -0.08Ul -0.0287 -0.0584 
1.12 "' . 12 11 - o . 4 7 (; 3 0 .23 59 - C.lf\ 49 -0.0224 -U.2207 
1.1 0 o.9122 -o.47<i4 0.11 56 -o.1184 -0.0164 -0.2481 
1.2 0 1 .07<12 -0.4396 -0.0364 -0.1 1 73 - 1) . it' lll -t~ .1312 
1.24 1.2119 -0.3662 -0.1664 -0.1027 -0.0069 O.U24ll 
l.2 8 1.3038 -0.2760 -0.2408 -0.0800 -0.0038 0.1154 
1.32 l.3s1n - 0 .1827 - 0 .2523 - 0 . 0 553 - O.Oi.1 17 ;J .111 7 
1.3 6 1.3772 -O.G966 -0.2146 -0.0335 -0.0004 U.0553 
l.4U 1.3707 -0.0263 -0.1533 -0.01 74 0.0002 u.0074 
1.44 1.344" 0 . 0 220 - 0 . 0 947 - 0 .00 72 O.OOU5 -0.0109 
1.48 1.3050 o. 0490 -0.0523 -0.0016 0.0006 -0.0117 
1.52 1.261 0 O.C603 -o. 0265 0.0010 ~ . Q(JC'l 5 - (). . 00 78 
1.56 1.2174 O.C62l -0.0123 0.0021 o.ouos -0.0043 
l.60 1.1773 0.0551 -0.0051 0.0023 0.0004 -u.0021 
l.64 1.141 9 0 . 0 540 - 0 . 0CH 7 0 . 0022 IJ . QOe3 3 -.~ . nc 1 0 

l.6 8 1.1114 0.0482 -u. oou3 0.0020 0.0003 -J.0004 
1.72 1.0856 0.0425 0.0003 0.0011 0.0002 -0.0001 
1.76 l . 0 64f! 0 . !) 3 7f) C. 000 5 0.0014 0.0002 -o.oouo 
l.80 l.0462 0.032 0 0.0007 0.0012 0.0001 0.0000 
l.8 4 l. 0318 0.0274 0.0008 0.0010 0 . 000 1 0 .. f.)(}C\Q 

1.88 l.02U3 0.0231 0.0011 0.0008 0.0001 0.0001 
}..92 1.0114 0.0191 O.OOl.4 0.0006 0.0001 ll.OOUl 
l.96 1.0047 .l") . tH 54 Q. 00 18 0 . 000 5 fl . O.,fJ l 0 . 000 1 
2.o u 0.9998 0.0119 0.0023 u.0004 0.0000 0.0002 
2.04 u. S96 7 0.0087 0.0021 0.0004 0.0000 o.OOQ2 
2 . 'J 8 (} .995!' 1 . 110 57 0 . 0(·31 ~ . 0('0 3 0.0000 0.0002 
2.1 2 o. 9946 0.0030 0.0033 0.0002 0.0000 0.0001 
2.1 6 0.9952 o.uoc6 0.0034 0.0002 0 • ..;)00t? O . l)OO\) 

2.2 J u. 9S65 -0.0014 u.0033 0.0002 o.uooo -0.0000 
2.24 Q.9'782 -0.0030 0.0031 0.0001 0.0000 -o.uuo1 
2.2 8 i . rio , n - ;) • f) ;~ 42 (\ . 00 28 1) . {l(hJl f).0000 - o . 1')1)0 2 

2.3 2 1. CU20 -o.cos o u.0020 0.0001 0.0000 -0.0002 
2.3 6 1.0037 -O.OU54 O.tW23 o. 0001 o.oouo -0.0002 
2.41 l. ')>'.) 54 - ·) . i)(•55 !) . :)0 21 0.0001 o.ooou -u.0002 
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TABLE VIII (cont'd) 
2.44 l . 0 0 6 9 - 0 .0053 0 .0 01 9 o.ouo1 0.0000 -0.uOOl 
2 .48 1 . 008 2 -0.0049 0.0011 u.0001 O. OOl'lfl -0 . 0~0 l 

2.5 2 l .COS 3 -0.0044 0.00 14 o.uouo 0.0000 -0.0000 
2.56 1. 0 100 -0.0038 0.0 011 0.0000 0.0000 -0.0000 
2. 6 0 l . ,;H 5 - 0 . "l0 31 o. o(nn 0 . (J(it,)('· t; . l)Ot;O r.:i . o-Or'O 
2.64 l.Cl C7 -0.0025 o. 0 0 04 0.0000 0.0000 u.oooo 
2.68 1 .0107 -0.0018 0.0 000 0 .0000 o.ouoo 0.0000 
2.1 2 1 . 0 10 4 - ? . f>O l 3 -o . c~o.:n 0 . 000~ o.uooo u.uouo 
2.76 1.0101 -0.0008 -0.0 0 04 u.oooo 0.0000 0.0000 
2.8 0 l. UO S6 -0.0004 -o.oou5 0.0000 0 · "'"00 <'l . 1')f.1('IO 

2.84 1.0090 -0.0000 -o.oous 0.0000 0.0000 o.oovo 
2.88 l.0083 0.0002 -0.00 05 0.0000 0.0000 o.OOuO 
2.9 2 l. flCl 76 o . on,0 4 - 0 . 00Cl 5 ~ . oooP O. l30CO 0 . 0QOC 
2.9 6 l.{;069 0.00 05 -0.0004 0.0000 0.0000 0.0000 
3.00 1.0063 O.OG06 -0.0003 u.oooo 0.0000 o.ooou 
3.1 0 1 • .00 48 O . Q~l) o - 0 . 000 2 o.ooou o.uuou 0.0000 
3.2 0 1.0036 o.oo c 5 -u. 0001 0.0000 0.0000 0.0000 
3.3J 1. 002 8 0.0003 o.ouoo 0 . 0000 0 . !)1)00 o.ocoo 
3.40 l.0022 0.0001 o.uoo1 u.oooo o.uooo -o.ouou 
3.50 1.0019 0.0000 0.0001 0.0000 0.0000 -0.0000 
3.60 1 . O{..l 7 - 0 . 000 1 Q. 0001 c.oooo !J . 0 01)0 - IJ • t'!i:;OfJ 
3.7 0 1 .001 6 -o. 0001 0.0000 0.0000 0.0000 -o.ouoo 
3.80 1.001 5 -0.0001 0.0000 0.0000 0.0000 -0.0000 
3.91) 1.00 13 - 0 . 0001 o."ooo o.ooor 0.0000 -o.ouoo 
4.00 1.0012 -0.0000 -0.0000 0.0000 0.0000 0.0000 
4.2 0 1.0009 -0.0000 -0.0000 o.o o • . 0 . 0000 
4.4 u 1 . i.JOG 7 -0.0000 -0.0000 o.u o.o 0.0000 
4.6 0 1.0005 0.0000 -0.0000 o.o o.o 0.0000 
4.80 1.0004 - 0 . 0000 0 . 0000 o.o o.o -o. 0 1)(.{.) 

5.00 1.0003 -0.0000 0.0000 o.o o.o 0.0000 
5.2 v 1.000 3 -0.0000 0.0000 o.o o.o -0.0000 
5.41) l . OC t:l 2 -c.oocc (J . OOl)O o.o o.o -o.oouo 
5.60 1.0002 -0.0000 -0.0000 o.o o.o o.ouoo 
5.8 () 1.0001 -0.0000 -0.0000 o.o o. o O. O;)C' u 
6. ou 1.0001 -0.00 00 -0.0000 o.o o.o 0.0000 
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PAI R DI S TR IB UTIO N coEWfcHNTS FOR 2 L-J POTEf\lTIAL 
FROM PY EQUATI ON Rh0 *=0.60 T*=l.30 R•=0 .53 

R 

0.8 0 
o. 84 
C . 88 
0. 92 
0.9 6 
l.00 
1.04 
1.0 8 
1.1 2 
1.16 
1.20 
1.24 
1.2 8 
1.3 2 
1 .3 6 
1 .4) 
1.44 
1.48 
1.52 
1.56 
1 .60 
1.64 
1.6 ~ 
1.72 
1.76 
1.80 
1 .8 4 
1 .88 
1.92 
1.96 
2.00 
2.0 4 
2. 08 
2. 12 
2 . l 6 
2.2 0 
2 .2 4 
2.2 8 
2.32 
2.36 
2.4u 

GOOO 

0.0000 
u.0002 
O. f:lrl46 
0.0309 
0.1039 
0.2286 
0.3894 
0 .5695 
o .7585 
0.9457 
1.1132 
1. 243 8 
1.3311 
1.3780 
1 .391 1 
1. 3 771 
1.343 0 
1. 29 71 
1.2472 
1.198 6 
1.1545 
l.1159 
l.0831 
1.0 557 
1.0332 
1.0151 
l . \){)09 
O. S90l 
o.c;a2 3 
0.9770 
o.c;141 
!1 .9731 
o.9739 
O.S761 
t; .9794 
0.9835 
0.9879 
0.9921 
O. S960 
0 .9996 
1. 0 02 7 

G200 G220 G221 G222 G4u0 

-0.0000 0.0000 -o.uooo -0.0000 0.0000 
-0. 0003 0.0 0 03 -o. ooou -0.0004 0.0001 
-Q . ~046 0 . 00 55 - ~ . 0002 -0.0046 0.0120 
-0.0303 o.0344 -0.0021 -o.011s 0.0635 
-O.C985 0.1 04l -0.0103 - 0 . 0 319 " -1533 
-0.2063 0~1 9 86 -O.U289 -0.0381 0.1971 
-0.3271 0.2762 -0.0565 -0.0361 0.1170 
- Q.430 6 0 .2980 -0 . ~ 812 - 0 . 0 30 2 - Q. 0 727 
-0.4915 0.2404 -0.1130 -0.0233 -0.2487 
-0.4953 0.1 0 77 -0.1264 -0.0169 -0.275& 
- Q.4463 - 0 . 0 556 -0 .124~ -0.0114 -0.1484 
-0.3629 -0.1919 -0. 1 077 -0.0010 0.0111 
-0.2647 -0.2664 -0.0832 - 0 . ~0 38 0 .1148 
-0.1662 -0.2736 -0.0570 -0.0011 0.1120 
-O.C?73 -0.2 2 97 -O.G342 -0.0004 0.0549 
- 0 . 00 59 - 0 .1628 - 0 . 0 116 0 . 000 2 o .~0 69 

0.0424 -0.10 04 -0.0013 o.ooos -0.0109 
O.C684 - 0 .0558 -0.0016 0.0005 -0.0112 
Q. 0 782 -~ - 0 289 0 .00 1~ 0.0005 -0.0071 
0. 0104 ~0.0 1 43 0.0021 0.0004 -0.0036 
0.0131 -0.0069 0.0023 o.oon4 - o . on 1s 
0.0670 -0.0033 0.0022 0.0003 -0.0004 
o.0597 -0.0016 0.0019 0.0002 0.0001 
0 . 0 525 -o.ooca 0 . 00 16 0 .0002 0 .0003 
0.0456 -0.0003 0.0014 0.0002 0.0003 
0.03~2 0.0001 0.0011 0.0001 0.0004 
n ~ o 333 0 . 0006 o.oon9 0.0001 0.0004 
0.0277 0.0013 o.OCGS 0.0001 0.0004 
o.022s u. 0 020 0.0006 0 . 0~0 1 o . oco 5 
o.ul75 o.002a 0.0005 0.0001 o.ooos 
0.0127 0.0037 0.0004 o.ouoo 0.0006 
o . oo a2 D. 00 45 0 . 0004 0 . 0000 o . n~~ 6 
0.0041 o.oosu 0.0003 0.0000 0.0005 
0.0004 0.0 0 54 0.0002 0.0000 0.0004 

- o . ryo 2a 0 . 00 54 o . C;oo 2 o.ooou 0.0002 
-o.ooss u.oos1 0.0002 0.0000 0.0001 
-o.001s 0.0047 0.0001 0 . 0000 - o . noo1 
-o.oosg 0.0042 0.0001 0.0000 -0.0002 
-0.0096 0.0038 0.0001 0.0000 -0.0003 
-o.~0 ~8 D. 0? 34 O. OOQ l O. OOOC - C. 0003 
-O.COS5 0.0030 0.0001 0.0000 -U.0003 
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TABLE lX (cont'd} 
2.44 1.0054 -0.0088 0.0 0 21 0.0001 0.0000 -u.OUU3 
2.48 1. !!!$ 77 -0 . ()~ 78 C. '10 23 0.0001 o.ouou -O.uOU2 
2.5 2 1.009 5 -0.0067 O.OOl8 0.0000 o.uooo -u.OOU2 
2.56 l.OlU8 -0.0055 0.0013 o.ouuo o.oorm - (.; . 0'1f' 1 
2.6 0 l.Ul l 5 -0.0043 0.0001 o.oouu o.uuoo -u.ouuu 
2.6 4 l.0117 -0.0031 0.0002 0.0000 0.0000 -o.oouo 
2.68 1.0 11 6 - o . no 20 - 0 . 00'.) 3 o.ooon C . Qt)f)Q o .onor,i 
2.1 2 1. 0 112 -0.0011 -0.0007 0.0000 0.0000 o.oouo 
2.76 )..0105 -0.000:3 -0.0009 0.0000 0.0000 o.oouo 
2.80 1. 0 \) 97 o. oocn - r. . 00 1n O. Ol'OC 0.0000 o.ouoo 
2.84 1.0087 o.oooa -0.0010 0.0000 0.0000 0.0000 
2.88 1.0011 0.0012 -0.0010 0.0000 '°· 000() ;J . 0 0:){) 

2.92 1.0066 0.0014 -o.ouoa o.ouou 0.0000 o.oouo 
2.9 6 1.0056 0.0015 -0.0001 0.0000 0.0000 o.oouo 
3.0 G 1.0047 O. O<.H6 -0 . 00~1 6 o.oono C . l)'IJOO 0 . OOC;C 
3.lU 1.co21 u.0013 -U.OOU3 0.0000 o.ouoo o.oOGO 
3.20 1. 0015 0.0009 -o.ooou 0.0000 0.0000 o.oouo 
3.30 1. <'O<rn n.oocs f) . 001' 1 u.ouoo u.ooou o.oouo 
3.40 1.0006 0.0001 0.0002 0.0000 0.0000 o.ooou 
3.50 1.0007 -u.0002 0.0002 o.ouoo C . OO(l\\ -o . fJl)t10 
3.60 1.0009 -0.0003 o.uoul 0.0000 0.0000 -o.oouo 
3.70 1.0010 -0.0003 0.0001 0.0000 o.uooo -0.0000 
3 .at' l.OJll -o.~00 2 0 . OO.f10 (; .f){H) O Q . Ot.) 0 1) - fJ . COf.l~ 
3.90 1.0011 -o. 0002 -0.0000 0.0000 0.0000 -0.0000 
4.00 l. 0010 -0.0001 -0.0000 o.uooo u.oooo -0.0000 
4.2 "' l.D(Jl,) 7 f") • 000~) - 0 .001):') c . ~1 o.u o.uooo 
4.40 l.U005 0.0000 -u~OOOO o.o o.o 0.0000 
4.6u l.0003 0.0000 0.0000 o.o o.n Q.OOOQ 
4.8 0 l.U003 -o.ooou O.OOOJ o.u o.o -u.ooou 
5.00 l.000 2 -0.0000 0.0000 o.o o.o -o.oouu 
5.2 ~ 1.no c 2 - 0 . 0flO<' o.oo 0 O. fl (I . ~ - ') . Cf'CO 
5.4 u i.0002 -0.0000 -o.uuoo o. l) u.o -o.oouo 
5.60 1.0001 -0.0000 -0.0000 o.o o.o o.u000 
5.8 :'1 l . OOi)l - 0 . i)NJ f) ~ . QO O':' o.u o.o u.oouu 
6.00 i.0001 -0.0000 o.ooou o.o o.o 0.0000 
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PAIR DISTRIBUTION coe'Wfc1iNTS FOR 2 L-J POTEt-iTIAL 
FRO M PY EQUATION RHO*=f'1 .8 ~ T*==l.30 R*==0.53 

R GOOU G200 G220 G221 G222 G400 

a.so o.oouo -0.0000 0.0000 -0.0000 -u.oooo o.ooou 
( i .84 1) . 000 3 - t) . 1')00 3 0 . 0004 - 0 . 000!J: - 0 . Ql)04 0 . 01)( 9 

0.88 0.0052 -0.0051 0.0063 -0.0002 -0.0052 0.0139 
0.92 0.0342 -0.0331 0.0387 -o. 0024 -0.0196 o.u121 
Q.96 0 .1138 - 0 .10 69 0 .1160 - 0 . Cll 7 -u.0354 o.1731 
1.00 0.2477 -0.2226 0.2182 -0.0327 -0.0418 0.2183 
1.04 0.4181 -0.3513 0.2991 -0.0633 -0. (' 391 0 .1233 
1.08 u.6063 -0.4600 0.3169 -o.OS65 -0.0323 -0.0910 
1.12 0.0011 -0.5209 0.2478 -0.1238 -0.0246 -0.2849 
1.16 ') .9932 -0 .518~ 0.0987 - 0 .137() -0.0176 -0.3116 
1.20 1. 1614 -0.4573 -0.0794 -0.1331 -0.0111 -0.1703 
1.24 1.2900 -0.3612 -o. 2239 -0.1144 -0.00 72 O. OH.>4 
1.2 8 1.3716 -0.2527 -0.2987 -0.0875 -o. 0039 o.1149 
1.32 l.41G7 -0.1414 -0.3004 -0.0593 -0.0017 0.1131 
1.36 1.4147 - n . 0 55r - 0 .2486 -C. 0 353 -0.00t'l 4 ~J .0548 

1.40 l.3912 O. Cl 79 -0.1744 -O.Ul80 0.0002 0.0065 
1.44 1.3479 0.0661 -O.l07U -0.0074 0.0005 -O.Ul08 
1.48 1.2935 O . d) q(-9 -l} . ~ 597 - Ci . OtH 6 0.0005 -O.OlU6 
1.52 1.2362 O.CS88 -0.0314 0.0010 o.0005 -0.0062 
1.56 1.181 7 0.0968 -u.0161 0.0021 0 . 0004 - 0 . {'0 26 
1.60 1.132 8 0.0899 -0.0083 (J.0023 0.0004 -O.G006 
1.64 1.0906 0.0011 -0.0044 0.0021 0.0003 0.0004 
1.68 1.0 552 <fl . C719 - 0 . 00 25 \' . OC' l 9 o.1'lcn2 Q . ')0( 9 
1.72 1.0261 0.0628 -0.0014 0.0016 0.0002 0.0010 
1.76 l.U028 0.0543 -0.0006 0.0013 O.Ou02 0.0010 
1.8') 0 .9845 () . f) 462 0 . 0('0 2 0.0011 0.0001 u.OOlU 
1.84 o.c;1oa 0.0387 0.0011 o.oooc; 0.0001 0.0011 
1.8 8 0.9611 0.0315 0.0022 0.0001 0.0001 o . •Jo11 
l.92 o.s549 0.0247 (J.()034 0.0006 0.0001 0.0012 
1.96 o. S51 7 O.Olf:~2 0.0046 0.0005 0.0001 0.0013 
2.~? 0 .95 1 1 . 0 . 0 12{1 () . 00 59 . • 00,) 4 0 . 0000 •) .()0 13 
2.04 J.9528 0.0061 0.0010 0.0003 0.0000 0.0013 
2.0 8 o.c;s65 o.ooca 0.0011 0.0003 0.0000 0.0011 
2.12 :Q .9618 - O. iJ0 4f' o.onao 0 . 0('02 0.0000 0.0008 
2. l 6 o. S683 -0.0080 o. 0079 0.0002 0.0000 o.ooos 
2.2 0 O. c1754 -0.0112 0.0074 0.0002 0 . :0000 o. ur,0 2 
2.24 0.c;026 -o. 0134 0.0066 U.OOOl 0.0000 -v.UOUl 
2 .2 8 0.9893 -0.0147 0.0057 0.0001 0.0000 -0.0004 
2.3 2 0 .9951 - 0 . (ll 52 o. rm so c; .oon 1 a .o~Joo - C.0006 
2.3 6 l.oou2 -o. 0148 0.0044 0.0001 0.0000 -0.0007 
2.40 1.0045 -0.0138 0.0039 o. 0001 G.0000 -0.0001 
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TABLE. X (_cont \d} 
2.44 l. !10 80 - O. "J l 24 0 . )0 3 3 O . vO~ l o.uooo -O.OUU6 
2.48 1 .0109 -0.0106 o.00 2 a o. 0001 u.oooo -o.ouo5 
2. 52 l.0129 -o.ooe6 0.00 2 1 O.OC-OC il . ern"1o _ (, . ('H1~ 4 

2.5 6 1. 0142 -0. 0066 u.0 0 13 u.oouu 0.0000 -U.0003 
2.60 1.0146 -0.0047 0.0 0 05 o.ooou 0.0000 -u.0002 
2.64 l . fl l 45 -o . rJ.i 29 - t:t . Jt'.'10 3 -:i • .., !) (l r. lJ . r;)f)Qi) - n . f}l) O l 
2.6 8 l.Cl38 -0.0013 -0.001 0 0.0000 0.0000 -0.0001 
2.1 2 1 .0127 u. 0001 -0.0014 0 .0000 o.uouu -O.OL,,00 
2.7 6 l. Cll3 0 . 00 11 - 0 . 00 17 ~ . ooco o.uooo -o.uoou 
2.ao l.C098 0.0020 -0.0018 0.0000 0.0000 -o.uooo 
2.84 1.0082 0.0020 -0.uOl 7 u.oooo 0 . 0000 O . Ot.) l ~) 

2.88 l.OG66 0.0029 -0.0015 0.0000 o.uooo 0.0000 
2.92 1.0050 0.0031 -0.0013 0.0000 o.ooou 0.0000 
2.9 6 l.OQ36 o . -nn 31 - !) . 00 10 0 . OOIJl'i fJ . ():Q f.) 0 ~ . fl!JCO 

3.uu 1.0023 o. 002 9 -o.oooa 0.0000 0.0000 O.OllOl 
3. lu 0.9999 0.0022 -o. OOJ2 o.ooou 0.0000 o.oou1 
3.2 ') ') .9988 0 . 0012 i) . ~)l)j 2 o.uooo 0.0000 u.0001 
3.3 0 0 .9986 0.0004 o.oou3 o . 0 0 0 0 0.0000 u.UJCJO 
3.40 o. 999 l -0.0 0 03 o.uo u4 o.ouoo a . 000 (; ') . ['1100 

3 .s u 0.9997 -o.ouo6 u.0003 u.o o oo o.ouou u.ouoo 
3.60 l.0004 -0.0001 O.U00.2 o.ooou 0.0000 -0.00LO 
3. 7 ~) i . m~t; a -0 . 00~6 0 . 00.JO o. oo<Jn 2:> . 0l."C!) - C . t) ~)t1C 

3.8 0 1. 0010 -0.0004 -u.ooou 0.0000 0.0000 -0.0000 
3.9 0 l.OOlu -o.uoo2 -0.0001 0.0000 o.uooo -0.0000 
4.DO 1.000 9 o.nooo - 0 . 000 1 c . 0 0 111) 0.0000 -O.ChH..10 

4.2 0 1.0004 0.0001 -o. 0001 o.o o.o 0.0000 
4.40 1.0002 u.ouo1 -o.oouo o.o o. o o.onoo 
4.6 0 1.0001 o.uoou 0.00 00 o.o o.o 0.0000 
4.8 0 i.0901 -0.0000 0.0000 o.o o.o -0.0000 
5.0 0 · l.OCu l. _ ., . ~\)(l~j (' . 0000 D . >1 o.o - n. r:1cc 
s.2 0 1.ooc1 -o.ouoo -o.voou o.o o.o -o.ouuo 
5.40 1.0001 0.0000 -o.uooo o.o o.o -0.0000 
5.6 13 1.0 0 0 1 Q . ~vOC -o . m:o u u.u . o.o o.uuuu 
5.80 l.0001 0.0000 o.o o uo o.o o.u o.oouo 
6.00 l.UOUl -0.0000 0.0000 n . t.l l) . ~~ t) • 4"}") f) (l 
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PAIR DISTRIBUTION 
TABLE XI 

COEFFICIENTS FOR 2 L-J POTENTIAL 
FR OM PY EQlJATIGN RHO*=l.00 T*=l. 30 R*=u.53 

R G j~O G2f)~ G22 :) G221 G222 G40u 

(' .8 ~} ~j • ')f'(\i'J - (J . 0(!•)\; 0 . 00\:1'1 - C . t)fH)f' - 0 .!') ,1CO r, . n -~ J li ~} 

0.84 U.0003 -o.ouo3 o.oou4 -u. ouoo -o.ouu5 o.001u 
0.8 d O.u059 -0.0058 0.0074 -0.0002 -0.0061 o .u le 5 
(; .92 1) . 0 387 -n .o 37f! O. C446 - 0 . 0(i 28 - 1) . 0 226 u.oa52 
u.96 0.1271 -0.1184 O.l32u -0.0137 -o. 0401 0 .2 000 
1.00 0.2738 -0.2450 U.2447 -o.u378 -0.0467 0 .2471 
l.04 0.4572 -0.3843 0.3302 -0.0723 -o .0432 o.1319 
1.08 o.6565 -0.5001 o. 342 8 -0.1091 -0.0352 -0.1156 
1.12 t,; .86D5 - 0 .560 8 n .2582 - 0 .1383 -o • .!') 264 -:-0 .3333 
1.16 l.0576 -o. 5489 0.0874 -u.1512 -0.0187 -0.3591 
1.20 1.2278 -0.4727 -0.1105 -0.1451 -0.0123 -0.1989 
1.24 1.3526 - 0 .3600 -l).2656 - C.1232 - 0 .0"174 0.0011 
1.28 1.4265 -0.2381 -o. 3404 -0.0931 -0.0039 0.1156 
l.32 1.4550 -0.1242 -0.3346 -o. 0625 -0.0017 J .1149 
1.36 1.4470 -0.0273 -0.2122 -0.0368 -0.0004 u.u551 
1.40 1.4112 0.0473 -0.1886 -0.0186 0.0002 0.0064 
1.44 1.3561 0 . 0 952 - 0 .1146 -~] . (11115 !l . 000 5 - ;J . 0 10 3 
1.4 8 1. 2910 0.1182 -O.U636 -U.0017 0.0005 -O.OU93 
1.52 1.2247 0.1234 -0.0335 o.uo10 0.0005 -0.0046 
1.56 l .162 9 D.1185 - 0 . 0 174 1). 1{) ZC i} . '.) •) iJ 4 - '!) • {J~) 1 i) 

l.60 1.1085 O.l087 -0.0091 0.0023 c.0003 0.0010 
l.64 l.U623 0. 09 72 -0.0049 0.0021 0.0003 O. OUl 9 
l.68 1.0 242 0 . 0 853 -O.u027 o.uul8 0.0002 o.ou22 
l.7 2 o.s937 0.0739 -0.0013 0.0016 0.0002 0.0023 
1.76 o. <;69<7 0.0630 - ~ .ODl>l 0 . 00 13 n .noo 1 O. l'l0 23 
l.8U 0.9521 0.0528 0.0011 0.0011 0.0001 0.0023 
l.8 4 0.<;397 o.0432 0.0025 0.000<1 0.0001 0.0023 
1.88 'l .9319 ft . fl 340 O.t'h')41 0 . 0001 o. 0 0 1 {).()0 24 

1.92 o.s28t 0.0253 0.0058 0.0006 0.0001 0.0025 
1.96 0. 92 79 o. 0169 0.0076 0.0005 0.0001 0.0025 
2 . f) t11 ;; . 93-0 5 ') . IJ0 89 0 . 00 93 0.0004 0.0000 0.0025 
2.0 4 o.<;357 0.0015 0.0106 0.0003 0.0000 0.0023 
2.08 O.S43l -Q.0052 0.0114 0.0003 O.QOOO f.l . fJ :)20 
2.1 2 0.9522 -0.Ulll u.Oll6 0.0002 0.0000 0.0015 
2.16 0.9625 -0.0158 0.01 1 0 u.0002 0.0000 u.0009 
2 .2 r:i ::i .s733 - '!) . Ol 9 3 0 . 00 99 .o . oc1 02 O. Oi)OO 0 . •) 00 3 
2.24 l.l. ~836 -0.0215 0.0086 0.0001 c.oooo -0.0003 
2.2 8 0.9927 -U.0223 0.0012 0.0001 0.0000 -0.CJOOl:l . 
2.3 2 l. 11r.~) 3 - v .·) 22 0 o . {)0 6"' 1) . ~>"':1 1'.! l o.ooou -0.0011 
2.3 6 l.U065 -o.02c1 0.0051 o.uuo1 0.0000 -0.0013 
2.40 1. 0114 -0.0185 o.u044 0.0001 ii') . !lnnry - '> . YH3 
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TABLE XI (cont'd) 
2.44 l.vl53 -u.ol58 0.0031 0.0001 o.ouuo -o.ou12 
2.48 l. 0180 -u. 0128 o.ou29 0.0001 0.0000 -0.0011 
2.5 2 l .OlS7 - ') . 00 97 0 . 00 20 \i . OOtlf•. o. noao - 1) . ooc: 9 

2.56 l.C2U2 -0.0066 o. 0 009 0.0000 o.oouo -0.0001 
2.60 1.019 7 -O.OL38 -o.ouoz o.ooou c.oooo -0.(}005 
2.64 l.Ul85 - t) . ·00 12 -~) . 00 12 i) . ~ r.; !) ( ' 0.0!)0~ - t; . 0004 
2.6 8 1 .• Cl 66 0.0009 -0.0020 0.0000 0.0000 -0.0002 
2.12 1.0144 0.0026 -0.0025 o.oouo o.ouoo -0.0002 
2.76 i. ra 19 O.C039 -o.uoza o.uoou o.uooo -u.ouul 
2. 8 0 l.0093 o.0048 -0.0027 o.uuou o.ouoo -0.0000 
2.84 1.0068 ('\ . ()(' 5 4 - 1'1 . oo 2 5 o . nN3C o . 00n~ ·'.) . lj O( ') 

2.8B l.0044 0.0055 -0.0021 o.uooo o.oouo o.uuu1 
2.9 2 l.0022 O.C054 -0.0 011 o.uooo 0.0000 o.uuol 
2.9 6 l.OC0 3 n. 0051 - 1' . 00 13 o . 0crJr: n • 'l •'lt:~ ~ .(. ')t1 2 

3.oo o.9987 0.0046 -o.ooua o.cooo o.oouo o.oou2 
3 .1 0 0.9963 O.tJ03U o.ouo1 o.ouuu o.ouou 0.0002 
3.20 0 .9958 0 . 00 12 0.0006 u.uuou o.oouu o.ouo2 
3.3 0 u. 996 7 -0.0002 0.0008 0.0000 o.uuoo 0.0001 
3.40 0.9982 - 1) . '00 11 0 . 00·;, 1 0 . i)(<C') () . O~(H"l <i . llOD 1 
3.5 u 1.).9997 -0.0014 0.0004 u.oooo 0.0000 -u.uouo 
3.60 l.UOG8 -0.0013 0.0002 0.0000 o.ouoo -o.oou1 
3. 7( ; l. •]·) 14 - i;i . q~')() 9 - 0 . ONH (J . 0 (\(i() Q. 000<? -1). 1)~0 1 

3.8 0 l.C015 -O.OOG4 -0.0002 0.0000 0.0000 -u.0001 
3.90 l.0012 -0.0000 -0.0002 0.0000 0.0000 -u.oouu 
4. f.'1 0 l . ~(·0 8 1) . 000 3 -0.0002 o.oouu o.ouuu -o.oouo 
4.2 0 l.0001 0.0003 -o. 0001 o.u o.o o.ouuo 
4.4 u 0.9998 0.0001 O.OOiJO •J . J o . .. ., J . 00(. 0 
4.6 0 0.<1999 -0.000l 0.0001 o.u o.u u.oouo 
4.ao 1.0001 -0.0001 0.0000 o.o o.o -0.0000 
5 . or.1 i. no~Jl -Q . ri~ r. i...~ -o.o t) O b . {. ') . n - 1, . (.1 1 ( 1) 

s.2 0 l.0001 o.ooou -0.0000 o.u o.o -0.UOLO 
5.4 0 1.0000 o.ooou -o.oouo o.u o.u u.cuoo 
5.6r' l. il0':''1 0 . !'.)')() f o.ooco 0 {\ . , o.u u.0000 
5.d u i.uuuo -0.0000 0.0000 o.c o.o o.oouo 
6.00 i.oooo -0.JOOO 0.0000 -n . :1 o.o - iJ • ('; !);.,'.) ('; 
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TABLE XII 
PAIR DISTRI BUTION COEFFICIENTS FOR 2 L-J POTENTIAL 

FROM PY EWUATION RHO*=l.20 T*=l.30 R*=0.53 

R GOOC· G2t.Q G220 G221 G222 G4UO 

(! . a r1 O. OOt'O - <) . tHH>t~ o. ooo;' - 0 . OO()(i - o.ooon r. .QOOO 
0.84 0.0004 -0.0004 o. 0005 -o.oouu -0.0006 0.0013 
0.88 o.u069 -0.0066 0.0087 -0.0003 -0.0072 u.0199 
0 .92 0 . 0 445 - Q. 1)420 n . o s22 - O. f.)() 34 - 0 . 0 264 0.1010 
0.96 o.1444 -0.1333 0.1525 -0.0163 -0.0463 0.2352 
1.00 0.3073 -0.2737 0.2787 -0.0444 -0.0532 !.) .2844 
l.U4 o. 5 069 -0.4265 0.3700 -0.0841 -0.0484 0.1425 
l.O d u.71'98 -o. 5508 o.3756 -0.1252 -0.0388 -0.1479 
1.12 Q.9338 -0.6110 0 .271 8 - 0 .1567 - 0 . 0 287 - 0 .3957 
1.16 1.1370 -0.5872 0.0121 -0.169.l -0.0199 -0.4197 
1.20 l.3U8l -0.4910 -0.1505 -0.1601 -0.0129 -0.2350 
1.24 1.4277 - :) . 35 7 2 - i) . 3183 - 0 .1340 - 0 .0076 -O.Lll04 
1.28 l.4911 -0.2187 -0.3923 -O.G999 -0.0040 u.1164 
l.32 1.5058 -0.0946 -0.3 761 -o. 0661 -0.0017 0 .1174 
1.36 1.4824 o.OC73 -o. 3002 -0.0384 -0.0004 0.0559 
l.40 1.4312 O.C834 -0.2045 -0.0192 0.0002 0.0069 
1.44 t.3618 0 .130 3 - 0 .12.25 - 0 . oo 77 l) . '.h104 -O . ~lJ 89 

l.48 1. 2842 0.1506 -U.0670 -0.0011 u.ooos -0.0011 
1. 52 1.2076 0.1522 -0.0347 0.0010 O.OOll5 -o.uo20 
l.5 6 1.1379 0.1434 - 1) . 0 175 0 . 002(.) 0 .000 4 (j . f.} 01 7 
1.6 0 1.0777 0•1298 -0.0088 0.0022 0.0003 0.0036 
l.64 1.0278 0.1146 -0.0042 0.0021 0.0003 0.0043 
1.6 8 ~, . 98 76 O.C995 -0.0011 o.001a 0.0002 0.0045 
1.72 0.9565 0.0849 0.0001 0.0015 0.0002 0.0045 
1.76 0.9332 0 . -1 712 O . r'!tH 1 0 . 0013 0 • 11)()(11 0 . 00 44 
l.80 0.9170 0.0582 0.0033 0.0010 0.0001 0.0043 
1.84 0.<1070 0.0460 u.oos2 0.0009 0.0001 0.0043 
1.88 Q.90 25 0 . 0 344 0 . 00 73 O. OO'J 1 c. ooc1 i2 . () :')'+4 

l .9 2 o.9025 0.0233 0.0096 0.0006 0.0001 0.0044 
1.96 o.90o4 0.0121 0.0119 O.Ou05 G.0001 0.0044 
2.on ') .9134 0.0021 0.0140 U.0004 0.0000 u.0043 
2.04 o.9232 -0.0065 0.0155 0.0003 0.0000 O.Ov38 
2.o a o.<;351 -0. !') 147 O. Dl62 o. oor.u 0 .0000 0 .00 31 
2.1 2 u.9489 -0.0215 0.0159 0.0002 0.0000 0.0022 
2.1 6 o.S63B -0.0267 0.014·6 0.0002 0.0000 0.0012 
2.20 ;--, . 9786 - Q. c,) 30 2 !j . 0 126 O. t)OC 2 .0 . 0 00 0 0 .0001 
2 .24 o.<;921 -0.0317 0.0 1 04 0.0001 0.0000 -0.0009 
2.2 8 l.0034 -0.0316 0.()082 0.0001 0.0000 -0.0011 
2.3 2 l. ') 122 - n . 0 290 u.uc65 0.0001 c.ouoo -0.0022 
2.36 1.0188 -0.0268 0.0053 O. OOUl 0.0000 -o .002 5 
2.40 1.0234 -0.0229 1) . ()044 ~ . OQO l Q. 00-00 - O. f"l 025 
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2.44 l.G266 
TABLE XII (cont'd6 

-0.0184 0.0035 .uOUl o.uuoo -0.0024 
2.48 l.~283 -0.0136 0.0020 0.0001 o.uoou -0.0021 
2. 52 1. 0 286 - D. 0090 0 . 00 13 0 . :000(} .Q • ')f.\fF) - 1) . J)!J l 7 
2.56 l.0275 -0.0046 -o. ouoo o.oouo 0.0000 -O.Oul4 
2.60 l.0252 -0.0008 -0.0014 o.ooou 0.0000 -0.0010 
2.64 ). • f' 22 l fl .():)25 -0.0027 u.oooo o.uouo -u.LU07 
2.68 l.0184 0.0052 -0.0036 o.ouuo C.JOOO -0.0005 
2.1 2 1.0145 0.0071 - 0 . 00 4D (: •• ry~· ")t'l U • r1•)r..:1 - r: . QQD2 
2.76 1.0105 u. 0084 -u.0041 0.0000 o.uouo -0.0001 
2.ao 1.0066 0.0091 -0.0038 o.aGOO o.ouco u.0001 
2.84 l.Q03{} 0 . ".ll 9 3 - t? . OC3 3 o . ~r.no 1) . 1()\".'i) ri . Of)0 2 
2.88 o.c;999 O.C090 -0.0026 0.0000 a.ouoo 0.0003 
2.92 0.9972 0.0083 - 0 .0019 0.0000 c.oooo 0.0004 
2.96 J.995('1 t}.1)0 74 - 0 .00 12 o.ooou c.oooo 0.0004 
3.Uu 0.9935 o.OU63 -u. 0005 0.0000 G.0000 U.0005 
3.1 0 0.9919 0.0031 o.oooa 0 . 0("1.lD Q. 000 0 .0005 
3.20 U.9931 0.0003 o.oul3 0.0000 0.0000 u.U004 
3.30 o. 995 8 -0.0011 0.0014 0.0000 0.0000 0.0002 
3.4j () .9987 -o .00 26 «) . Ol°' lD O . OCHll~ Q. QQOO l) . OIJ~l 

3.5 0 1. OUl U -0.0026 0.0005 0.0000 0.0000 -0.0001 
3.60 1.0023 -0.0020 -0.0000 0.0000 0.0000 -0.0002 
3. 7 1.} l.C0 26 -0. '10 10 -o . 0(',) 4 0.0000 . 0.0000 -u.0002 
3.80 1.0021 -0.0001 -0.0006 0.0000 c.ooou -0.0001 
3.90 1.0013 a.coos -0.0005 0 . -000(i o • .oa(in - 0 . 0Jt, l 
4.uu l.OU05 o.ooos -0.0003 o.ouoo o.ooou -u.ouoo 
4.20 0.99S4 0.0006 0.0000 o.o o.o u.0001 
4.4" 0 .9994 n . 11000 o . oon2 o.o o.o 4) .onon 
4.6u 0.9999 -0. Ou03 u.0001 o.o o.o 0.0000 
4.80 1.0002 -0.0002 0.0000 o.o o.o -0.0000 
5 . r)C l . fJ(}l;J 2 -ri.onoo -0.,, t'OO O. Q o.o -o .ooou 
s.20 t.ooao 0.0001 -0.0000 o.o o.o -o.ouuo 
5.4u 0.9999 O.OOvl 0.0000 o.o o.o 0 . 01100 
5.oO 1.0000 o.ooou o.uooo o.o o.o 0.0000 
5.80 l.0000 -0.0000 0.0000 o.o o.o 0.0000 
6.0D l . f)l)(ll -u . •l00(' - 0.0000 o.o o.o - C . OtJOO 
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TABLE XIII 
PAIR DISTRIBUTION COEFFICIENTS FOR 2 L-J POTE1'Tl.4L 

FR OM PY EQUATION RH0*=0.40 T*=l .00 R*=0.53 

R GOOO G200 G220 G221 G222 G4UCJ 

(.~ . 80 O. JOOO - 0 . 0000 0 . 0000 - 0 . 0000 -0.0000 o.oouu 
0.84 0.0001 -0.0001 0.0001 -0.0000 -0.0001 0.0002 
0.8 ~ o. 0020 -0.0020 0.0024 -0.0000 - 0 . 00 23 o.on 54 
G.92 o. 0191 -0.0190 0.0218 -0.001~ -0.0134 o.0432 
0.96 0.0812 -0.0786 0.0848 -0.0068 -0.0311 0.1387 
l . t O <l . 204() - o .1890 0 .1881 - Q. 0 230 - ~ . 0 419 0 .2255 
1.04 o.3736 -0.3249 0.2894 -0.0505 -0.0420 0.1930 
1.08 0.5672 -0.44<;5 0.3404 -O.C839 -0.0358 0.0133 
i.12 I') . 11 r: 2 - 0 .5330 (J .30 88 - 0 .1149 -0.0278 -0.2139 
1.16 o.c;131 -0.5561 0.1866 -0.1349 - 0.0203 -U.3184 
i.20 1.1598 -0.5175 o.ooas -0.1382 -0. 0 138 - 'l .2282 
1.24 1.3098 -0.4343 -0.1601 -0.1248 -0.0086 -O.U387 
1.28 1.4124 -0.3289 -0.2691 -0.0999 -0.0048 0.1083 
l.32 1.4688 -0.2191 -0 .30 22 -o.c 710 -0.0021 o .1436 
1.36 1.4864 -0.1172 -0.271)6 -o. 0441 -o. 0005 0.0910 
1.40 l • 4 7 3 3 - 0 • 03 2 2 -0.201 7 -0.0234 o.0003 0.0253 
l.44 l.4373 0 . !)288 - Q.1282 -0.0098 0.0001 -0.0081 
1.48 1.3866 O.C639 -0.0714 -o. 0023 0.0008 -0.0141 
1.52 l.3300 0.0101 -0.0357 0 . 0<>14 o.ono1 - 0 .0103 
1.56 1.2743 0.0807 -O.Ul6U 0.0026 0.0006 -0.0058 
l.60 1.2233 O.C763 -0.0062 0.0032 0.0005 -0.0028 
l.64 l. l 786 0. 069(\ -o.ocH6 0 .oo 3('1 C.0004 - P .()012 
1.6 8 1.1406 o. 06 l 0 u.0003 0.0026 0.0003 -0.0005 
l.72 1.1087 0.0532 0.0009 0.0022 o.ooc3 -0.0001 
1.76 1.0 824 o . " 459 r; . Of." l l 0 . l'f' l <; 0.0002 -o.ooou 
1.80 l.0610 0.03<72 0.0012 0.0015 0.0002 u.0000 
l.84 1.0439 0.0332 0.0013 o.uo13 0 . !)OCH ~ . (l l)f {) 

1.88 1.0304 0.0211 0.0015 0.0010 0.0001 0.0001 
l.92 l.0201 0.0226 0.0019 o.occs 0.0001 0.0001 
1.96 l. tH25 0 . 0 179 C . OC·24 o. or. ~ 1 (I .')Cf' 1 r· . ,:> 0 02 
2.00 1.0073 o.013s 0.0030 0.0006 0.0001 u.0003 
2.04 l.OC40 0.0095 u.0036 0.0005 O. OOCJl 0.0003 
2.08 l. ~G24 1) . 00 57 0 . OC 41 O.OOU4 0.0000 0.0003 
2.12 1.0023 Q.0023 0.0045 o.oou3 0.0000 0.0003 
2.16 1.0034 -0.0007 0.0046 0.0003 Cl . tH>OO 0. 000 2 
2.2 0 t.U054 -0.0032 o. 004'• 0.0002 0.0000 0.0000 
2.24 1.0079 -0.0052 0.0041 u.0002 0.0000 -0.UUOl 
2.28 l . fn n 5 - 0 • .0067 0.00 37 0 . 000 2 o.oooc - c .0002 
2.32 l.Gl30 -O.C076 u.uo33 0.0001 0.0000 -0.0002 
2.36 l.Cl5l -0.0080 o.uoz9 0.0001 0.0000 -0.0003 
2.4".l 1.0 1 70 - o . 7)0 79 0 . 0026 0 .00~1 o.ouoo -o.uu03 



-113-

TABLE XIII (cont'd) 
2.44 1. 018 5 -0.0075 0.0023 0.0001 0.0000 -0.0002 
2.48 1 .019 8 -0. 0 069 0.00 20 0.0001 0.0000 -0.0002 
2.5 2 l . !l 20 7 -O.C060 0.001 7 o.uou1 o.ouou -0.0001 
2.5 6 1.0212 -0.0051 0.0014 0.00 01 o.ouoo -0.0000 
2.6 0 1 .021 3 - 0 . 004 1 0 . 000 9 O. OOOl'I 0 . 00'30 - c.oooo 
2.64 1. 021 1 -o. 0032 0.0005 o.oouo 0.0000 J.oooo 
2.68 l.0206 -0.0023 0.0 0 01 0.0000 G.0000 0.0000 
2.1 2 1 . (. 198 - 0 . ')0 15 - 0 . 000 3 c . (h')(}(l <t . ~o"c n . Ofll' l 
2.76 i.01as -o.cooa -o.ooos 0.0000 c.oooo 0.0000 
2.8 0 1.0178 -0.0002 -O.OOJ7 0.0000 0.0000 o.ouoo 
2.8 4 1.1) 166 0.0002 -0.0007 0.0000 0.0000 0.0000 
2.aa 1.0154 o.0006 -0.0007 o.ooou 0.0000 0.0000 
2.92 l.0142 0 . 000 8 - 0 .000 7 o.oron 0 . 0000 v.oooo 
2.96 1.0130 0.0009 -o. 0006 0.0000 o.oouu o.uoou 
3.00 1.0119 0.0010 -o.oovs 0.0000 0.0000 o.oouo 
3 .l C\ 1. OG 94 O. OIJ09 - {) . 000 2 t:' . OOOC f) . 0000 0 . !)t:'OC 

3.2 0 l.C076 O. OOCH -0.0001 0.0000 0.0000 0.0000 
3.30 l.0063 0.0004 0.0000 0.0000 0.0000 0.0000 
3.40 l. CC54 0 . 1)00 1 0.0001 0.0000 0.0000 0.0000 
3.5 0 1.0048 -0.0001 0;,,0001 O.OOOG 0.0000 -0.0000 
3.60 1.0044 - 0 . 000 2 0 . 0001 0 . 0000 0.0000 -o.ooco 
3.70 1.0041 -0.0002 0.0000 o. uooo 0.0000 -o.ouCJo 
3.80 1.0037 -0.0002 0.0000 0.0000 0.0000 -0.0000 
3.90 l . Cl0 34 - 0 . 0001 -o .oo~o 0 . -0000 t) . ?000 - i) . iJl)CO 

4.00 l.OU3l -0.0001 -o. 0000 0.0000 0.0000 -o.ooou 
4.2 0 1.0024 -0.0000 -0.00 00 o.o o.o 0.0000 
4.4D l.OC19 0 . 0000 -o. 0 0 00 o.o o.o 0.0000 
4.60 1.0015 -0.0000 -0.0000 o.o o.o 0.0000 
4.8 0 1.0012 -0.0000 0 . 0000 o.o •J . o - Q. i')OOO 

s.uo 1.001 0 -0.0000 0.0000 o.o o.o u.oouo 
5.20 l.OOC8 -0.0000 0.0 0 00 o.o a.a -0.0000 
5.40 l . 00f ,6 - 0 . 0000 - 0 . IJOOO I) . •) o.n \) • I) f)Q ,;) 

5.6 v 1.00 0 5 -0.0000 -0.0000 o.o o.o o.uooo 
5. 80 l.0004 -0.0000 -0.00 00 o.o o.o O.OOGO 
6. f:'u l. ~C04 - 'l . 0000 o.oouo o.o o.o 0.0000 
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TABLE XIV 

FAIR DI STRIBUTION COEFF I CIE NTS FOR 2 L-J POTENTIAL 
fR GM PY EQUATI ON RH0*=0.6U T*=l.OU R*=0.53 

R 

0.0 0 
0.8 4 
~ .8 8 
0.92 
0.96 
l.QO 
1.04 
1.08 
1.12 
1.1 6 
1.20 
1.24 
1.2 8 
1.3 2 
1.36 
1.40 
1.44 
1.48 
1.52 
1.56 
l .6 u 
1.64 
1.68 
1.72 
1.76 
1.80 
1.84 
1.88 
1.92 
1.96 
2.00 
2 .04 
2. 08 
2.1 2 
2.1 6 
2.2 u 
2.24 
2 .2 8 
2.3 2 
2.3 0 
2.40 

GOOO 

0.0000 
u.0001 
'1 . 1lC2 1 
u.U204 
0.0657 
0 .2131 
o.3869 
o. 582 9 
o.7866 
O.S889 
1.1734 
l.31S4 
1.4161 
1.4656 
1.4760 
1.4560 
1.4135 
1.3571 
1.2959 
1.2366 
1.182 9 
l.1365 
l.U975 
1.0653 
1. 0 393 
l.Gl86 
1. 0~2 7 
C.9909 
o. 9 82 7 
~ .9776 
o.9750 
O.S746 
0.9761 
0.97S3 
~' . 9 83 7 
0.9891 
0.9948 
l. ~O 'J 2 
1 .0051 
!.C093 
l. 0127 

G200 G220 G221 G222 

-0.0000 0.0000 -o.ooou -o.ooou 
-0.0001 0.0001 -0.JOOO -0.0001 
- " . 00 2 1 0 . 00 26 -o . c~o~ -~ .0~2s 
-0.0199 0.0231 -0.0011 -0.0145 
-0.0819 0.0913 -0.0075 -0.0333 
- 0 .1960 0.1999 -0.0252 -0.0444 
-0.3358 0.3034 -O.C548 -0.0439 
-0.4633 0 .3513 - 0 . 0 90 1 - 0 . 0 370 
-0.5467 0.3112 -0.1222 -O.C285 
-0.5650 0.1769 -0.1421 -0.0205 
- 0 .5172 -0.0 125 - 0 .1442 - O. Ql38 
-o.4235 -o.1876 -o.12qo -o.ooa6 
-0.3099 -0.2966 -0.1024 -0.0047 
- 0 .1955 -0.3248 -O.C721 -0.0021 
-0.0922 -0.2863 -0.0445 -0.0005 
-0.0075 - 0 .2112 - 0 . 0 234 0 . 000 3 

0.0521 -0.1335 --0.0098 0.0006 
o.C854 -0.0746 - 0 .0022 o.ooc7 
o . 0 9an - 0 . 0 319 o . o n 14 ~ . ryoo 1 
o.c~79 -0.0119 o.002s o.ooob 
0.0914 -U.0078 0.0031 0.0005 
o . 0 823 - 0 . 0 0 31 o.ou2s 0.0004 
0.0726 -0.0010 0.0026 0.0003 
0.0631 -0.00 01 o . n o 22 a . noa 3 
0.0543 O.U U03 U.0Ul8 0.0002 
0.0462 0.0001 0.0015 0.0002 
0 . 0 301 0 . 00 12 a . 0012 a . 00~ 1 
0.0318 o.001a u.0010 0.0001 
0.0254 0.0021 0.0008 0.0001 
~ . 0 193 0 . 0036 0.0007 0.0001 
o.ul36 0.0047 0.0006 0.0001 
0.0082 0.0057 0.0005 O. OQC l 
0.0033 0.0065 0.0004 c.oooo 

-0.0012 0.0069 0.0003 c.oooo 
- 0 . 00 51 a . n~ 1n o. nnn3 o . ooon 
-u.ooa3 o.uo67 o.uoo2 0.0000 
-O.OlG7 u.0061 0.0002 0.0000 
-o . ~ 123 0 . 00 53 c . on~ 2 o.uooo 
-0.0130 0.0046 0.0001 0.0000 
-0.0131 0.003; 0.0001 . ooo~ 
-0.0126 U.0034 v.O OUl u.0000 

G400 

u.oooo 
0.0002 
0 . ()f.) 61 
0.0479 
0.1520 
0.2429 
0.2016 
O.Ou29 

-0.2414 
-0.3499 
- () .2 512 
-0.0502 

0.1040 
0.1417 
o.0895 
0 . 0 246 

-0.0078 
-0.0131 
- 0 . OC 91 
-0.0047 
-0.0019 
-0.0004 

0.0002 
0 .')0 05 
o.ouo5 
o.ooos 
0 . 0005 
o.0006 
0.0006 
0.0001 
0.0008 
0 . 1")0( 9 
o.ooos 
0.0001 
I) . ')00 5 
o.ooo~ 

-o.oouo 
-u.0002 
-0.00 04 
- 0 . (1()0 5 
-o.uuos 
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2.44 l .0155 
TABLE XIV ~ont' d) 

-o.01 1s o.o 30 u.0001 0.0000 -0.0005 
2.48 l . Cl78 -o. nun t) . 00 26 o . or.:io 1 I'} . i')I)!)!} - 0 . ,')004 
2.5 2 l.0194 -O.G085 0.0022 O. UOOl o.oouo -0.0003 
2.56 1. .0204 -0.0068 0.001 6 0.0001 0.0000 -C.ll002 
2.60 1 . 0 2ff7 - 0 . 01? 52 0 . 0~0 9 0 . 0000 ~ . •)f)Qf) - 0 . 01)0 1 
2.64 1 .02 0 5 -0.0036 0.0003 0.0000 o.oouo -0.0001 
2.6 8 1 . 0 198 -0. 0022 -0.0003 0.0000 o.ouoo -o. 0000 
2.12 1. 01 87 -0. 0 009 -0.00 08 0.0000 c.ouoo o.uouu 
2.76 1.0174 0.0001 -0.0012 0.0000 0.0000 o.ooou 
2.8 0 1 . 0 159 0 . 0009 - 0 . 001 3 0 . 0000 0. 0000 11 . ooo:) 
2.84 1.0144 O.U015 -0.0014 0.0000 0.0000 u.0000 
2.88 1.0128 0.001<7 -0.0013 0.000() o.oouo O.GOOO 
2.92 1.0 112 n . 0022 - ? . 00 11 O .QOO~ O. Q-OCO c. lJf) 0tj 

2.9 6 l. 009 7 0.0023 -0.0010 0.0000 0.0000 0.0000 
3.00 1.0084 0.0022 -o. 0008 0.0000 0.0000 0.0000 
3. 1,• l.Ort 57 0.0018 -0.0003 0.0000 G.0000 0.0000 
3.2 0 l.0039 0.0011 0.0000 0.0000 0.0000 0.0000 
3.30 l.0031 0. 0004 0 . 000 2 o.ooon 0 . 0000 o.ocoo 
3.40 1.0029 -0.0001 0.0003 0.0000 0.0000 o.uooo 
3.50 1.0029 -0.0004 0.0002 0.0000 0.0000 c.oooo 
3.6 :J 1.0030 - 0 . 000 5 t) . 000 2 o. oooc 0 . 0001'.} -o.ooco 
3.7 U l .G031 -0.0005 0.0001 o.oooc 0.0000 -0.0000 
3.8 0 1.0030 -0.0004 -o.ooou o.ouoo 0.0000 -0.0000 
3.9Q 1.0028 - o . 00f) 2 -0.0001 o.oouG 0.0000 -o.uouo 
4.00 1.0026 -o. 0001 -0.0001 0.0000 u.oooo -0.0000 
4.2 0 l. 0019 0.0000 - 0 . 0000 o.o o.o o . nricv 
4.40 1.0014 0.0000 -0.0000 o.o o.o o.oouo 
4.60 l. 001 1 -0.0000 0.0000 o.o o.o 0.0000 
4.8~ 1.000 9 - 0 . 0000 0 . 0000 o.o o.o - C . tJOOO 
5. 00 1. o ooa -0.0000 0.0000 o.o o.o -o.ooou 
5.20 1.00 06 -0.0000 -0.0000 o.o 0 .o -0.0000 
5.40 l . OC<'l 5 - () . QCOO - 0 . 0000 0 . 1) o.o -0.0000 
5.60 1.0004 -0.0000 -0.0000 o.o o.o 0.0000 
5.80 1.0004 -0.0000 0.0000 o.o u.o o. o.aoo 
6. 00 1 .00 0 3 -0.0000 0.0000 o.o o.o 0.0000 
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TABLE XV 
PAIR DI STRIB0T ION COEF FICI ENTS FOR 2 L-J POTENTIAL 

FROM PY EQ UAT ION RH 0*=0.80 T•=1.no R*=~ -53 

R 

c.ao 
o.8 4 
0 .88 
0.92 
0.9 6 
l.oo 
1.04 
1.08 
1.12 
1.16 
1-2 ' 
1.24 
1.2 8 
1.32 
1 . 36 
1 .40 
l.44 
l.48 
1.52 
1.56 
1.60 
l.64 
l.b 8 
1.72 
1.76 
1. 80 
1 .84 
1.88 
1.92 
1.96 
2.00 
2.04 
2. os 
2.12 
2.16 
2.2 0 
2.24 
2 . 28 
2. 32 
2.3 6 
2.40 

GOOO G200 G220 

0.0000 -u.oooo 0.0000 
0.00 01 -0. 0001 0.0001 
D. OQ 23 ~ • 1 0 23 0 . 0030 
0.0222 -0.0214 o.0264 
0 .0924 -0.0873 0.1 0 04 
0.2274 -0.2C77 0.2170 
U.4087 -0.3543 0.3247 
0 .61C5 - 0 .4867 0 .3696 
0.0111 -o.5708 o.3188 
1.0214 -0.5833 0.1685 
i.20 5n - 0 .5238 - 0 . 0367 
1.3472 -0.4168 -0.2212 
1.4373 -0.2922 -0.33 12 
1.4784 -0.1713 -0.3536 
i.47g7 -0.0653 -0.3064 
1.450 5 0 . 0 196 - 0 .2233 
1.3996 O.C780 -0.1399 
1.3358 0.1094 -0.0 779 
i.2684 o .11gs - o . 0 39a 
1.2043 0.1168 -0.01 91 
1.1471 0.1078 -0.00 88 
l.OS83 0.0964 -0.0039 
1.0579 · O.G845 -0.0017 
l.C252 0 . 0 731 - 0 . 000 5 
0.9994 0.0624 0.0002 
0.9797 0.0526 0.0010 
o .9652 o . ~435 o . o 19 
o.sss3 o.03so 0.0029 
0.9494 0.0269 0.0042 
o.~470 o.01s3 0.0057 
0.9474 0.0121 0.0072 
0 .95C2 0 . 00 54 0 . 0085 
o .9550 - 0.0009 0.0095 
0.961 6 -0.0064 0.01 00 
0 .9695 - n . ry 111 o . oC 99 
O.S7 8 3 -0.0148 0.0092 
0 .9872 -0.0174 0.0081 
o .9954 - o .01a9 0.0069 
1.0024 -0. 0192 0.0 057 
1 . 00 81 -0 . ~186 0 . 00 48 
1 . 0126 -0.0112 u.0041 

G221 G222 G400 

-0.0000 -0.0000 0.0000 
-0.0000 -0.0001 0.0002 
- 0 . 00b l -0.0028 0.0010 
-0.0013 -0.0161 0.0543 
-0.0085 - 0 . 0 365 0 .17C2 
-0.0282 -0.0481 0.2674 
-0.0607 -0.0469 0.2148 
- 0 . 0 987 - 0 . 0 390 - 0 . 00 92 
-0.1325 -0.0297 -0.2110 
-0.1523 -0.0211 -0.3912 
- 0 .1529 -0.0141 -0.2808 
-0.1354 -0.0086 -0.0638 
-0.1064 - 0 . 0047 0 .1005 
-O.G742 -0.0021 0.1412 
-0.0453 -0.0005 0.0890 
- 0 . 0 237 O. OOC 3 C. J 243 
-0.0098 0.0006 -0.0012 
-0.0022 0.0001 -0.0119 

0.0014 0.0006 -0.0076 
0.0021 0.0006 -0.0032 
0 . 0030 c . 0Qq 5 - o . ncc 5 
0.0028 0.0004 0.0000 
0.0025 0.0003 0.0013 
0 . 0021 o . ooc 2 0 . 0014 
0.0017 0.0002 u.OU14 
0.0014 0.0002 0.0014 
0 . 0012 0.0001 0.0014 
0.0010 0.0001 0.0014 
u.oooa 0 . 000 1 0 . 0015 
O.OOU7 O.OOOl 0.0017 
0.0005 0.0001 u.0011 
O. OOC 4 ~ .000 1 0 . 0017 
0.0004 0.0000 0.0016 
0.0003 0.0000 0.0013 
o . oOD 3 0.0000 o.ouu9 
0.0002 0.0000 0.0004 
0.0002 c.oooo - 0 .000 0 
0.0002 0.0000 -0.0004 
0.0001 o.ooou -0.0001 
o.oon1 ~.oooo -o.oot9 
0.0001 0.0000 -0.0010 
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TABLE XV (cont'd) 
2.44 l.0162 -0.0152 o.oo3o 0.0001 0.0000 -0.0010 
2.48 l . !)188 - 0 . 0 128 () . 00 3{) o . ;JOIH C . t;i)t')O - () . OJO 8 
2.5 2 1.0206 -0.0103 0.0024 0.0001 o.ooou -0.0001 
2.56 1. 02 1 5 -0.0076 0.00 16 0.0001 c.oooo -0.0005 
2.6~ l.C 215 -O.OC51 0.0 0 01 u.oooo c.oouu -u.0004 
2.64 1.0207 -o. 0029 -0.00 02 0.0000 0.0000 -0.0003 
2.6 8 1.0193 - () . 1)009 - 0 . 0CHl O. OOOG O. fJO OO - 0 . OOCJ2 
2.12 1 . 01 76 o.ccoa -0.00 11 u.oooo 0.0000 -0.0001 
2.10 . l.01 55 0.0021 -0.0021 0.0000 0.0000 -G.OOuO 
2.80 1. rH 33 n . 00 31 - f} . :10 22 C . OfJ fJ(J " .()f)Of) o. oono 
2.84 l.Cll l 0.0031 -0.0021 o.oooc 0.0000 o.ooou 
2.8 8 1.0090 0.0041 -0.0019 0.0000 0.0000 0.0001 
2.9 2 1. 0'"'." 69 O.C042 -0.0016 0.0000 o.uo\Ju o.ouo1 
2.96 l.J051 0.0041 -0.0013 o.ooou 0.0000 0.0001 
3.00 1. 003 5 0 . 00 38 - 0 . 000 9 0 . 00-00 0 .0000 D . O!'>vl 
3.1 0 l.OOC7 0.0021 -0.0002 0.0000 0.0000 o.oou1 
3.2 0 o.c;9c;s 0.0013 0.0003 o.ouoo c.oooo u.0001 
3.30 :;'l .9995 0 . 000 2 0 .00 ")5 0 . 0•)00 IJ .OflOO i) . nf)C l 
3.4u l.uooz -O.OOG6 o.ooos 0.0000 0.0000 0.0000 
3.50 t.0011 -0.0010 0.0004 0.0000 0.0000 0.0000 
3. 6 Z: 1.QO lS - 0 . 00 10 0 .0002 () . 0001! 0.0000 -0.0000 
3.70 l.0022 -o.ooca 0.0000 0.0000 c.oooo -u.oooo 
3.8 0 l.Ou23 -o.oocs -0.0001 o.ooon o.ouno - 0 .00 00 
3.90 1.0021 -0.0002 -0.0002 0.0000 0.0000 -u.uoou 
4.00 1.0018 0.0001 -0.0001 0.0000 o.uooo -O.OvUO 
4.2 1) l.DO l n o.noo 2 -0.0001 O . t) {j • '') O. Oi)(' -J 
4.40 l.OOC6 0.0001 0.0000 o.c o.o 0.0000 
4.6 0 l.0005 -0.0000 0.0000 o.o u.o u.oooo 
4.8C 1.000 5 -0. 'lOf.H 0 . 0000 O. D u.o -u.uOOO 
5.00 t.0005 -0.0000 -0.0000 o.o o.o -o.ouoo 
5.2 0 l. 0004 -0.0000 -0.0000 o.o Q. O - O. f 1:f'IOO 
5.4 u l.u003 0.0000 -o.ooou o.o o.o -o.uooo 
5.60 1.0002 0.0000 0.0000 o.o o.o 0.0000 
5.80 1.000 2 - o. rinoo O. OOJO {) . ·- ~ . o 'J .tJQOC 
6.00 i.0002 -0.0000 0.0000 o.o o.o 0.0000 
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TABLE XVI 
FAIR DIS TRIBUTION COE FFI CI ENTS FOR 2 L-J POTE~TIAL 

FROM PV EQ UATI ON RH0•= 1 . on T*= l .O~ R•=C.53 

R 

o.ao 
0. 84 
0.88 
0.92 
0 .9 6 
i.ou 
1.04 
l.~8 
1.1 2 
1.16 
1.2 0 
1.24 
l.2 8 
1.32 
l.3o 
l .4r 
1.44 
1.48 
1.52 
1.56 
l.6f) 
1.64 
1.08 
1. 72 
1.76 
1.80 
1.84 
1.88 
1 .92 
1 .96 
2.00 
2 . •14 
2. os 
2.12 
2. 16 
2.2 0 
2.2 4 
2.2 8 
2.3 2 
2.36 
2.40 

GOOO 

0 . 0 000 
0 .00 01 
U. 0 026 
u.024 9 
0 .10 22 
o.2486 
0.4419 
n .6531 
0.8667 
1.0739 
1 .2577 
1 .3957 
1 .4776 
1.5079 
1.4971 
1.4559 
1.3938 
l.3203 
1.2449 
1.1746 
1. 1 13() 
1.0614 
1.0194 
0 .9863 
o.9e l O 
0.9425 
~.9300 
o . 9227 
C.9199 
C.9208 
U.9249 
o. 9314 
O.<i'tOl 
0 .95 06 
o .9626 
0.9751 
0 .9874 
0.9982 
l.C070 
l. fH 37 
1 .01 8 5 

G200 

-0.0000 
-0.0001 
-0.0025 
-0.0236 
-0 . 0 954 
-0.2255 
-0.3824 
- 0 .5225 
-0.6082 
-0.6132 
-0.5382 
-o. 4132 
- 0 .2738 
-0.1438 
-0.0338 

f) . 0 518 
O.lOC12 
0.1381 
0.1451 
0.1390 
0 .1267 
0.1122 
O.C976 
o.ne36 
0.0106 
0.0585 
0.0473 
0.0368 
0 . 0 268 
o. 01 74 
0.0084 
0 . 1)00 1 

-0.0076 
-0.0142 
-O.OlS7 
-0.0237 
- n . 0 262 
-0.0211 
-0.0266 
- o . ()248 
-0.0220 

G220 

0.0000 
0.0001 
0.00 34 
0.0302 
0 .1132 
0.2414 
0.3558 
0 .3974 
o.3326 
0.1602 

-0.0670 
-0.2649 
- 0 .3765 
-0.3914 
-0.3327 
-0.2387 
-0.14 77 
-0.0813 
-0.0412 
-0.0197 
- 0 . 009 '1 
-0.0038 
-0.0013 

0 . 0001 
0.001 1 
0.0022 
u.0035 
0.0051 
o.o 69 
0.0089 
0.0108 
0 . 0 125 
0.0136 
0.0140 
U.0134 
0.0120 
0 . 0 1~ 2 
0.0082 
0.0065 
IJ . 0052 
0.0043 

G221 G222 

-0.0000 -0.0000 
-0.0000 - 0 . 000 1 
-0.0001 -0 .. 0033 
-0.0015 -o. 0184 
- 0 . 0{1 99 - o .~ 411 
-0.0324 -0.0534 
-0.0689 -0.0514 
- 0 .l F'\ 8 -0.0421 
-0.1469 -0.0315 
-o .1669 -o .o 221 
- 0 .16 54 - 0 • 0 14 5 
-0.1446 -0.0088 
- 0 .1123 - O. fJ0 47 
-o. 0 774 - o. 0020 
-o. 0468 -o. ooos 
-0.0241 0.0003 
-0.0099 0.0006 
- 0 . 0022 0 . 000 1 

0.0014 0.0006 
0.0021 0.0005 
0 . 00 3<' /J . OOC 4 
0.0028 0.0004 
0.0024 0.0003 
0.0020 0.0002 
0.0011 0.0002 
0.0014 c . 000 2 
u.0011 0.0001 
O.OOO'i 0.0001 
0 . (l0tj 8 0 . 000 1 
0.0006 0.0001 
0.0005 0.0001 
o. o uo4 c.0001 
0.0004 0.0000 
0.0003 0 . 0000 
0.0003 0.0000 
0.0002 0.0000 
0 . 000 2 #J . 0'.)1)0 
0.0002 0.0000 
0.0001 0.0000 
0 . 000 1 0.0000 
o.uoo! 0.0000 

G4UO 

0.0000 
0 . 0003 
0.0082 
0.0634 
r.i .1957 
0.3019 
0.2342 

-0.0247 
-0.3250 
- 0 .4472 
-0.3204 
-0.0809 

f) . fl 976 
o.1424 
o.oss6 
0.0246 

-0.0062 
-o.ouo 
-u.0054 
-0.0009 

O. \>Ql6 
0.0021 
0.0031 
0.0031 
U.0030 
C; . l'Q29 
o.uu2a 
U.0029 
0 . 1>0 3C 
0.0031 
0.0032 
0.0031 
0.0021 
{) . 0022 
u.0014 
0.0006 

-·~ . 1''30 2 
-0.0009 
-0.0014 
-0.0018 
-U.0019 
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2.44 1.0220 
TABLE XVI (cont'd3 

-0.0186 0.0037 .0001 C. 0001) - :) . (JO l 8 

2.48 l .0243 -O.Ul 48 0.00 30 0.0001 o.ouoo -0.0016 
2.5 2 l .0255 -o. 0109 0.0022 0.0001 0.0000 -0.0014 
2.56 1 .0255 - 0 . 00 7 1 0 . 0012 O. O!HH 0 . 0000 - O. fl<H 1 
2.6u 1.0244 -o. 0(136 o.oouo o.oouo o.uuoo -o.ouos 
2.64 1 .022 5 -O.COC6 -0.0012 o. 0000 . 0.0000 -0.0006 
2. 68 1 . -0 198 0 . 1020 - 0 . 00 22 0 . 00\10 C. QOO.O - C. 000 4 
2.1 2 1.0168 0.0040 -0.0029 0.0000 0.0000 -o.ouo2 
2.76 l.0137 0.0055 -0.0032 0.0000 0.0000 -u.000 1 
2.8!'.! 1.0104 0.0065 -0.0033 0.0000 0.0000 u.uouu 
2.84 1.0074 0.0010 -0.0030 0.0000 0.0000 u.0001 
2.8 8 1.00 45 0 . 00 71 - 0 . 00 26 O. OO<iO <l . ~000 0 . ('1}~ 2 

2.92 1. 0019 0.0068 -0.0021 0.0000 0.0000 u.0002 
2.96 o. g 998 0.0063 -0.0015 0.0000 0.0000 0.0002 · 
3.':lO 1) .998€' 1) . 00 56 - f) . 0009 o.cooo 0 . 0000 ~J . oor; 3 
3.1 0 0.9956 0.0034 0.0002 0.0000 c.oooo 0.0003 
3.20 o.9955 0.0011 o.oooa 0.0000 0.0000 u.U003 
3.31) (1 .9969 -n.ooc1 0.0010 0.0000 o.ooou u.OiJ02 
3.40 0.9988 -0.0011 0.0009 0.0000 0.0000 0.0001 
3.50 l.0006 -0.0020 0 . 000 5 o.ooon 0 . t1t'H)\' - >fJ . tH'O~) 

3.60 l. 0018 -0.0017 0.0001 0.0000 0.0000 -0.0001 
3.70 1.0023 -0.0011 -0.0002 0.0000 0.0000 -0.0001 
3.80 1.00 22 - O. Ot?t?4 - 0 .00'J 3 o.ocor: ~ . c~oo - !') . 1)1)0 1 
3.9 1) 1.0017 0.0001 -0.0004 0.0000 c.oooo -0.0001 
4.00 l.0011 O.OCC4 -o.oov3 0.0000 c.oooo -0.0000 
4.20 1.00'11 O . ()f!O 5 -0.00Ul u.o o.o o.ooou 
4.4 0 o.9999 0.0001 0.0001 o.o o.o O.QOOU 
4.60 1.0001 -0.0001 0.0001 o.o 0 . :) t,1 . 00ClO 

4.B u l.00 03 -0.0002 o.oouo o.o o.o -o.oouu 
5.00 1.000 3 -o.ouoo -0.0000 o.o 0. () -0.0000 
5.2 ':1 1 . 00.:>2 n. oaor:i -~') . 00~\) 0 . i) fl . Q - 0 . 0 fl ( 0 
5.4 0 . l.OOGl 0.0000 -0.0000 o.o o.o o.uooo 
5.6 0 1.0001 0.0000 o.uooo o.o o.o o.oouo 
5. 8f.1 l.0')01 - o . ry()t)(\ () .• QO !') o.o o.o 0.0000 
6.00 1.0001 -0.0000 0.0000 o.o o.o -0.0000 
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TABLE XVII 
FAIR DISTRIBUTIGN COEFF IC! HHS FOR 2 L-J PGTEf'.TIAL 

FR OM PY EQUAT I ON RHC*= l .2t~ T*= l .OO R*=0.53 

R GOOO G200 G22U G221 G222 G400 

o.so o.oouo -0.0000 0.0000 -u.oouo -0.0000 O.OO(Ju 
0 .84 o.oo·:a - 0 . 000 1 0 . 0001 - o. ncor: - t;) . 01)f) 2 o.<mo 3 
(). 8 8 u.GG~l -O.OC29 0.0041 -0.0001 -0.0039 u.0100 
C.92 0.0286 -0.0268 o.u354 -O.U018 -0.0216 0.0759 
C .96 O.ll6fl - 0 .10 71 o .131v -o. tn 18 -U.0476 0.2312 
1.00 0.2786 -0.2508 o. 2753 -c. C383 -0.0608 o.3501 
1.04 0.4888 -0.4224 0.3993 -0.0804 - r.t . ~)576 {} .2615 
1.08 u.7134 -0.5731 0.4368 -0.1275 -0.0464 -0.0456 
1.1 2 u.9357 -0.6610 0.3527 -0.1668 -0.0341 -0.3901 
1.16 l.1478 - 0 .6558 0 .150 2 - 0 .1867 - 0 . f) 235 -~ .5228 
1.20 1.3319 -0.55~8 -0.1070 -0.1824 -0.0152 -0.3732 
l.2 4 1.4642 -0.4107 -0.3226 -0.1572 -0.0090 -o.1c.;2s 
1.28 1.5351 - Q.2517 - 0 .4358 - c .120 2 -0.0047 (.). 0948 
l.32 1.5506 -0.1096 -0.4403 -0.0816 -0.0020 0.1451 
1.36 1.5237 O.OC56 -0.3660 -u.0487 -0.0 005 ') . lJ 914 
1.40 1.4668 0.0922 -0.2574 -0.0248 0.0003 u.u2sa 
l.44 1.3903 0.14 79 -0.1562 -0.0101 0.0006 -0.0040 
1.48 1.30 45 () .1735 - 0 . 0 841 - C. Ofl 22 0. ,')#)06 - 1). ')!) 68 
1.52 1.2193 0.1762 -0.0413 0.0013 0.0006 -0.0011 
1.56 1.1418 0.1655 -0.0187 0.0026 O.OOC5 l).0027 
l.61'ti 1.0 753 0 .1488 - 0 .00 76 0.0029 0.0004 o.uoso 
1.64 l.0207 0.1303 -0.0023 0.0021 0.0003 0.0058 
1.68 o.9776 0.1119 0.0004 0 . 00 23 n . 000 3 n . ~)0 59 

l. 72 0.9446 0.0946 0.0020 0.0020 u.0002 u.0057 
1.76 o.s2c1 O.G784 0.0033 0.0016 0.0002 0.0054 
l .8 t:' :.> .90 46 (.) . 0 635 0 .00 48 O. CHH3 1:? .om:n l) •') I= 5 3 
1.84 o.8952 o.o4<J6 0.0066 0.0011 0.0001 0.0052 
1.88 0.8917 0.0365 0.0087 0.0009 0.0001 0.0052 
1.92 ~ .8932 O. l' 241 t) . f.'11 0 O. Ot,0 7 0.0001 0.0053 
1.96 0.8988 0.0124 0.0136 O.OOG6 0.0001 0.0054 
2.00 0.9076 0.0014 0.0160 0.0005 c . 0001 /) . (.)0 53 

2.04 o.<;189 -0.0089 o.ul79 0.0004 0.0001 0.0050 
2.oe o. 932 3 -0.0181 0.0190 0.0004 0.0000 0.0043 
2.12 0 .<7475 - 0 . 0 258 o . Ol89 o.oo<?3 Q. ;)000 1} .(.!)32 

2.16 0.9640 -o. 0318 0.0174 0.0003 0.0000 0.0019 
2.2 0 0.98C8 -0.0357 0.0150 0.0002 0.0000 0.0005 
2.2 4 !l .99l5 - () . 1)375 0 . tH 2 l~ C . 001) 2 o.uooo -0.0008 
2.2 a l.OOS7 -0.0372 0.0090 0.0002 0.0000 -0.0019 
2.3 2 1.0197 -0.0350 0.0065 0.0001 0. 0001') - H.0 '1 28 
2.36 1.G264 -O.C313 0.0049 o.uoo1 0.0000 -0.0033 
2.4U 1.0306 -0.0264 0.0038 0.0001 0.0000 -0.0035 
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2.44 1 . £)329 - o . o~\\f x~1.~J3~nt '8~000 1 O. QOOO - 0 . 1r;3 3 
2.48 1 .0337 -0.0152 o.uu2s u.ouo:i. 0.0000 -O.Oll30 
2.52 1 .0331 -0.0096 O.OOlb 0.0001 0.0000 -U.U025 
2.56 l. {1 313 - O. 'l044 0 . OOr} 3 n . £."i <F l 1 

'l -~""" - ") . ()~ 2(\ 

2.60 l .0282 0.0002 -0.0011 o.oouc c.ooov -0.0015 
2.64 l.02 4 3 0.004 1 -0.0020 0.0000 0.0000 -0.0010 
2.68 l . 1": 197 0.0012 -o .uu31 0. 0000 0.0000 -0.0006 
2.1 2 1.0150 0.0094 -0.0045 o.uuuo 0.0000 -u.0003 
2.76 1.0103 0 . 0 1Cl 8 - .0 . 00 47 0 . 00{)0 0 . 0000 - 0 . {Hl!'O 
2.so l. <'0 58 0 . 0 114 -O.U 045 0.0000 0.0000 0.0002 
2.84 l.0018 0.0114 -0.0039 0.0000 0.0000 0.0003 
2.8 8 0.9983 0.0109 -o . (110 31 0 . 0000 ~~ . ~HlCO o.cuos 
2.92 0.9954 c.0100 -0.0022 o.ouoo o.ooou o.ouo6 
2.96 u.9932 0.0087 -o. 0013 u.oooo c.oooo 0.0006 
3.0 ' (\ .9916 0 . 00 12 - 0 . 0004 o .oe· a~ C. 01)00 iJ . IJC0 7 
3.1 0 u.9906 0.0032 0.0011 0.0000 c.oooo a.0001 
3.20 o. 992 5 -0.0002 0.0018 0.0000 0.0000 o.ooos 
3.30 1.) . 996''1 - O. OC 25 0 .00 11 0.0000 0.0000 O.U003 
3.40 0.9995 -0.0035 0.0012 0.0000 0.0000 0.0001 
3.5 0 1.0021 -0.0033 o.ooos 0.0000 0 . 000 0 - iO . OOul 
3.60 l .Ou33 -0.0023 -0.0002 0.0000 0.0000 -0.0003 
3.7 0 l. 0033 -0.0011 -0.0006 0.0000 0.0000 -0.0003 
3.80 l . tH)2 5 0 . 000 1 -o. ooo a o.ooon 0 . 0!)0~ - 0 . 0002 
3.9 0 1.001 4 a.ceca -0.0001 o.ooou 0.0000 -0.0001 
4.00 1.0003 0.0011 -0.0004 0.0000 0.0000 -0.0000 
4.20 0 .9992 .0 . 0Ci0 7 0 . 0001 o.o o.o o.oou1 
4.40 o.<1994 -0.0001 0.0002 o.o o.o 0.0001 
4.60 l.000 1 -0.0004 0.0001 o.o {\ . Ct o.ooc: o 
4.8 U 1.0004 -0.0002 -0.00 00 o.o o.o -0.0000 
5.00 1.0002 0.0000 -0.0001 o.o o.o -0.0000 
5.20 1.000 0 . 000 1 - 0 . 0000 c . o Q. O - O. <WOO 
5.4 0 0.9999 0.0001 0.0000 o.o o.o 0.0000 
5.6 0 1.0000 -0.0000 0.0000 o.o o.o 0.0000 
5.80 1.000 1 - 0 . 1)00() 0 . 0000 o.o ().0 J.OOOU 
6. 00 i.0001 -0.0000 -0.0000 o.o o.o -0.0000 
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TABLE XVIII 
PA IR OI STR! BUT!ON COEFF ICIENTS FOR 2 L-J POTEf\TIAL 

FROM PY EQUATION RH0*=0 .4C T *=O. 75 R*=0.53 

R GOOO G200 G22U G22l G222 G40U 

o.ao 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 
~ .8 4 o.oor.r. - 0 . 0000 0 . 0000 - 0 . 0000 - IJ . 0000 o .nocin 
c.88 o.oooa -o.ooce 0.0010 -0.0000 -0.0011 0.0023 
u.92 0.0120 -0.0118 0.0145 -0.0005 -0.0108 0.0314 
f! .96 t' . 0 691 - f) . 0 669 0 . 07 70 - C. 0050 -0.0344 o.1417 
1.00 0.2050 -0.1924 0.2041 -0.0212 -0.0544 0.2939 
1.04 0.4080 -0.3649 0.3490 -0.0533 - 0 . 0 578 0 .3213 
1.08 0.6421 -0.5.333 0.4399 -0.0957 -0.0496 0.1332 
1.1 2 o.es25 -o.653 e 0.4288 -0.1314 -C.0381 -0.1883 
l. 16 1.1184 - 0 .6976 a .29so - 0 .1674 - 0 . 0 273 - t) . 4193 
1.20 1.3370 -0.6567 0.0753 -0.1769 -0.0184 -0.3892 
1.24 l.5144 -0.5507 -0.1588 -o.lt43 -0.0115 -u.1577 
1.2 8 1. c 32 7 - f.1 .4132 - C .3259 - 0 .1349 -0.0063 0.0776 
l.3 2 1.6913 -0.2714 -0.3930 -O.C'i81 -0.0028 o.1827 
1.36 1.7004 -0.1415 -0.3690 -U.0625 - {) . 001) 7 n .1488 
l.4 U l.6722 -0.033LJ -0.2867 -0.0339 o.ooos o.u610 
1.44 l .6170 0.0470 -0.1878 -0.0145 o.ou10 0.0011 
1.48 1.5446 O. tl 945 - 0 .10 58 - C. tl0 33 Q. ·1)011 - 0 . 0 165 
1.5 2 1.4655 0.1143 -0.0524 0.0021 0.0010 -O.Ul4l 
i.so l.3882 0.1159 -0.0221 0.0041 o.ooos -0.0082 
l. 6 r. 1.3183 >1 .10 81 -o . 1)(•8 0 0.0046 0.0001 -u.Ou38 
l.64 1.2578 o. 096 5 -0.0014 0.0043 c.0006 -0.0015 
1.68 1.2070 0.ce41 0.0011 O. CW 38 0.000 5 - 0 . Ot)C4 
1.72 1.1652 0. 0122 0.0019 0.0032 0.0004 -u.oooo 
1.76 1 .1312 o. 0614 0.0020 0.0026 0.0 0 03 O.UOOl 
1.8() 1.10 4\'.l 0 . '1 516 o. oo 20 0 . (~{) 21 o . ooc 2 ·t: . 1' i') rn 
1.8 4 1.0826 o. 042 9 0.0020 0.0018 0.0002 0.0001 
1.88 1.0662 0.0351 0.0 0 23 0.0014 o.uc.02 0.0001 
1.92 1.0 540 i) . ll 279 0 . 0029 o .~Q 12 0.0001 u.0002 
1.9 6 1.0454 0.0214 0.0036 0.0010 0.0001 0.0003 
2.00 1.(1399 o. 0153 0.0045 0.0008 0 . <)00 1 fj . ooc 5 
2.u4 l.C368 O.CC'i6 u.0055 0.0001 0.0001 u.0006 
2.0 8 l.0357 0.0044 0.0063 0.0005 0.0001 0.0007 
2.1 2 1.0 364 - l) . 00.0 3 o . <i~ 69 0 . 0~11 4 f.l . !)IJ~ l ·C . OC ,0 6 
2. 16 1.0385 -0.0044 0.00 11 0.0004 0.0000 0.0005 
2.2 0 1. 041 7 -O.C 0 79 0.000 9 0.0003 0 .. 0000 0.0003 
2.24 l.C455 - 0 . 0 10 5 i) . 'Jf'·o3 0.0003 0.0000 0.0001 
2.2 8 1. 04 94 -0.0123 0.0055 0.0002 0.0000 -0.0002 
2.3 2 l.052 8 -0.0133 u.o o4o 0.0002 0 . 0000 -c . Qf){i 3 

2.3 6 1.0555 -0.0135 0 .0038 0.00 02 0.0000 -o.oou4 
2.40 1.0573 -0. 0 131 0.0033 0.0001 o.oouu - o .uoos 
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2.44 l . 0 583 
OABLE X~III £cont'db - O. Jl 21 . OC 8 {"; . ·00 1 O. OJQKj - n. :i'J0 4 

2 .48 1 . 0 5 89 -0. 010 8 0. 0025 u.0001 o.ouoo -0.0004 
2.52 1. 058 9 -0.0092 o. uo22 o.uou1 o.ooou -0.0003 
2. 56 1 . 0 584 - {) . \)t) 75 0 . 00 18 o.onr;i Q . omJo -c . l )()TJ 2 
2.6 u 1 .0574 -0.0058 0.0 0 12 0.0001 c.oooo -0.0001 
2.64 1. 0 558 -0.0042 0.0 0 06 0.0001 0.0000 -0.0000 
2.68 1 . 0 539 -0.0028 0.00 00 u.oooo 0.0000 o.ooou 
2.1 2 l .0516 -0.001 5 -o.ooos 0.0 0 00 0.0000 0.0001 
2.76 1 .0491 - O. OOC 4 - 0 . 0009 0 . 0000 0 . 0000 0 . 000 1 
2.00 l. 0465 0.0004 -0.0011 0.0000 0.0000 0.0001 
2.84 1.0438 0.0010 -0.0012 0.0000 c.oooo 0.0001 
2.8 8 1.0 412 O. Q0 15 - 0 . 0012 o.ooco 0 . 0000 O. fhJUO 
2.92 1.0387 0.0011 -0.0011 0.0000 0.0000 o.uooo 
2.96 1.0363 0.0019 -0.00 09 0.0000 o.ouoo 0.0000 
3.o n 1.0 341 0.0019 -0.0000 u.oooo o.ooao 0.0000 
3.1 0 l.02'i2 0.0015 -0.0003 o.aooo 0.0000 0.0000 
3.2 0 1.0256 0.0009 -o.ooao 0 . 0000 0 . 0000 0 . 0000 
3.3 0 1.0229 0.0003 0.0002 0.0000 0.0000 o. 1.JOOO 
3.40 1.0210 -0.0001 0.00 02 0.0000 0.0000 0.0000 
3 .SC' i . cn 95 - O. Q004 o. noo2 0 . 0000 o .ooon - 1) . 1)1)00 
3.60 1.0182 -0.0005 0.0001 0.0000 0.0000 -0.0000 
3.70 1.0169 -0.0005 0.0001 0.0000 0.0000 -0.0000 
3.8(' 1. 0 157 - 0 . 0004 0.0000 0.0000 0.0000 -0.0000 
3.90 t.0145 -0.0003 -0.0000 0.0000 0.0000 -0.0000 
4.00 1.0133 - 0 .000 1 - 0 . 0000 0 . 0000 (l . 0000 - 0 . 0000 
4.2 0 i.0110 -0.0000 -0.0000 o.o o.o o.uuoo 
4.40 . 1.0092 -0.0000 -0.0000 O.L> o.o o.cooo 
4.60 1.00 78 - 0 . 0000 0 . 0000 o . r) o.o 1) . QCOO 

4.8 0 1.0066 -0.0001 0.0000 o.o o.o -o.oouo 
5.00 1.0056 -0.0001 0.0000 o.o o.o -0.0000 
5.20 l.1'048 - 0 . 0000 -o.oouu o.o o.o -o.oouo 
5.40 l.0041 -0.0000 -0.0000 o.o o.o -o.cuoo 
5.6 U 1.0035 -0. 00 00 - 0 . 0000 o. o o. o . O .OflUO 
5.80 1.0030 -o. ooou 0.0000 o.u u. 0 0.0000 
6.ou 1.0026 -0.0000 0.0000 o.o o.o 0.0000 
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PAIR DI STRIB UT IO N C 0 Ei~~tEI ~~ S FOR 2 L-J POTEl\TIAL 
FRO M P¥ EQUA TI ON RH0*=0.60 T*=U.75 R*=0.53 

R GUOO G20 0 G220 G221 G222 G4JO 

0.8 0 0.0000 -o.ou 00 0.0000 -0.0000 -0.0000 0.0000 
(; .84 Q. QCOO - 1) . 00 00 f) . 0000 -0.0000 -0.0000 0.0000 
a.a s o.oooa -0.0008 0.0 0 1 0 -0.00 00 -0.0011 O.OU26 
0.9 2 0.0124 -0.012 0 0.01 54 - 0 . 0 005 - O. (Hl4 0 . 0 343 
U.9 6 0. 0 101 -0.0672 o.oaua -O.u054 -0.0360 0.1523 
1.00 0 .2074 -0.1924 0.2120 -0.0228 -0.0561 o. 310 8 
1.0 4 ;') .40 90 - 0 .3640 0 .3564 - () . o 56 7 - 1) _,, 58 8 tl.3312 
1. 08 0.6385 -0.5312 o.4421 -0.1006 -0.04<;19 0.1240 
1.12 0.8718 -0.6496 0.4216 -0.1430 -0.0379 -0.2164 
1.16 l. 0 9S6 - 0 .6884 0.2793 - 0 .1723 -0.0268 -0.4538 
1.20 l.30S8 -0.6382 0.0468 -0.1803 -0.0179 -0.4169 
1.24 1.4785 -0.5218 -0.1916 -0.1657 - 0 . 0 110 - (J .1 749 
1.2 8 1.5882 -0.3767 -0.3559 - 0 .1 3 4 8 - 0 • 0 06 0 0.0669 
1.32 1.6386 -0.2323 -0.41 55 -0.0972 -O.OG27 0.1748 
1 .3 6 l.64v 7 -~l .1043 - 0 .3827 - O. G614 - ~ . f:;00 6 0 .1434 
l.4u 1.0068 0.0000 -0.2932 -0.0331 o.ooos 0.0588 
1.44 1.5474 0. 0 755 -o.19u3 -0.0140 0.0009 0.0018 
l.48 1.4722 IJ .1189 - 0 .10 68 - 0 . 00 32 0.0010 -0.0144 
1.5 2 1.3915 0.1352 -0.0531 0.0020 0.0009 -0.0118 
1.56 l.3139 0.1337 -0.0236 0 . 0040 o. oooa - 0 .0061 
l.6 u 1.2445 0.1233 -0.0090 0.0044 0.0001 -0.0021 
1.64 1.1852 0.1094 -0.0025 0.0041 0.0005 -0.0001 
1.68 1.1362 0 . ') 950 o . 0 0 1J 1 0 . 0 0 36 0 . 1 0 C4 0 . 00(.7 
1.7 2 1.0965 o. G814 0.0011 0.0030 0.0004 0.0010 
1.76 l .0651 o. 0689 0.0015 0.0025 0.0003 0.0010 
i.sn 1 . 0 4!;9 0 . 0 575 0 . 0 0 18 0 . 00 20 0.0002 o.oooc; 
1 .84 1. 0 22 7 0.0473 0.00 23 0.0011 0.0002 0.0009 
1.88 l.0098 0.0380 0.00 31 0.0014 0 . 0002 0 . 0Ci0 9 
1.92 l .UOl3 0.0294 0.0 041 0.0011 0.0001 0.0010 
l.96 0.9967 0.0214 0. 0 054 0.0009 0.0001 o.vo12 
2 . O') <J .9952 0 . 0 139 0 . !'0 68 o . ooc 8 0.0001 0 . ')0 14 
2. u4 o. 9963 0.0068 0.0002 0.0006 0.0001 o.001s 
2. ua 0.9995 0. 00 03 0.0094 0.0005 0.0001 U.0015 
z. 12 l . ,f)0 43 - f) . 1)0 55 0 . 0 10 2 O. OOIJ4 o.ouoo 0.0013 
2. 16 1 . 0 1 0 7 -O.OlC6 0.0103 o. 0004 0.0000 o. 0010 
2.2 0 l . 0 1 81 -O.Cl47 0.0097 0 . 0 0 0 3 c.oooo 0 . 000 6 
2.2 4 l .ll2 6 0 - 0 . 0176 0 .0087 0 .0003 0.0000 0.0002 
2 .2 8 1 .0336 -0.01 94 0.0073 0.0002 o.oouo -0.0003 
2.3 2 l . 0 4 C"(l - '1 . l 20 1 j . OC 59 0 . 000 2 0 . tJi)On - (} . l) /)0 6 

2.3b 1 .0450 - O.OlS7 o. 004 7 0.0002 0.0000 -0.0008 
2.4 u l.0486 ~o.01s5 0.0039 0.0001 0.0000 -0.000<;l 
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2.44 1 . 0 50 9 
TABLE XIX ~ont'd~ 

- O. ti l65 O. O 34 . • 000 1 u.oooo -O.OUU9 
2.48 1.0524 -0.0141 0.003U 0.0001 0.0000 -o.oooe 
2.52 l. C53 l -0.0115 0.0025 0.0001 0. 0000 - C. OOC7 
2.56 1 .0530 -0.0088 0.0020 o.uou1 0.0000 -u.ooos 
2.60 1.0521 -0.0062 0.0012 o. 0001 0.0000 -0.0004 
2.64 1 .0505 - 0 . 0039 0 . 0004 0 . 000 1 0 . Ol'CW - 0 . !)00 2 
2.68 1.0483 -0.0018 -o.ooos 0.0000 0.0000 -o.uoo1 
2.12 1.0457 - 0. 00 0 0 - o • 0012 0.0000 0.0000 -0.0000 
2.7 6 l . t'i 42 8 0 . 00 14 - 0 . 00 17 o.cooc O. l)CfJO f: . Otl.l)f) 

2.e o l.0399 0.0024 -0.0020 0.0000 0.0000 c.oooo 
2.84 l. 03 69 0.0032 -0.0021 0.0000 0.0000 0.0001 
2.8 8 1.0340 0.0036 -0.0019 o.uooo 0.0000 0.0001 
2.•n 1.0313 0.0038 -0.0017 o. 0000 0.0000 0.0001 
2.96 1.0287 0.0037 - 0 . 00 14 o . oo~o 0 .00 00 0 .000 1 
3.00 1.0264 0.0035 -0.0010 0.0000 0.0000 0.0001 
3.1 0 1.0220 o. 0025 -0.0003 0.0000 0.0000 0.0001 
3.2 0 1.0 192 0 . 00 12 c .0002 o.oooc o.ooco 0 . Cf) lH 
3.3 0 l.Cl77 a.0001 0.0005 0.0000 0.0000 0.0001 
3.40 l.0171 -0.0006 0.0005 0.0000 0.0000 u.oooo 
3.5 ~ 1.0 167 -0 .00 10 0.0004 0.0000 c.oooo u.oouu 
3.60 1.0163 -0.0011 o. 0002 0.0000 0.0000 -u.oooo 
3.7 0 l.0156 -0.0009 0 . 0000 c. 0(~ (l0 o . ~ooo - C . OftO{J 
3.8 v 1.0148 -o. 0006 -0.0001 0.0000 u.oooo -o.oouo 
3.90 l.0138 -0.0003 -o .0001 o.ooco 0.0000 -o.ouoo 
4.u:l l.CH27 -(J.000 1 - 0 .0001 t) . ~)(J00 0 . 0000 -o.oooc 
4.2 0 1.0106 0.0001 -0.0001 o.o o.o o.oouo 
4.40 1.0090 0.0000 0.0000 o.o o.o 0.0000 
4.60 1.00 78 -0.0001 0.0000 o.o o.o o.uoou 
4.80 1.0069 -0.0001 0.0000 o.o o.o -o.ouoo 
5.00 1.0060 -0.0001 o. o 00 o .~ (3 . 0 -0.0000 
5.2 0 1.0052 -0.0000 -o.oouo o.o u.o -0.0000 
5.40 1.0046 -0.0000 -0.0000 o.o o.o -0.0000 
5 .c:> ·) 1.00 40 - 0 . 0000 -o.ocoo c.o (J • • ) O. QOOC' 
5.8 0 1.0035 -0.0000 0.0000 o.o o.o 0.0000 
6.00 1.0031 -0.0000 0.0000 o.o o.o 0.0000 
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PAIR DISTRIBUTION 
TABLE XX 

COEFFICIENTS FOR 2 L-J POTENTIAL 
FR OM PY EQUATION RH0*=0.80 T*=0.75 R*=0.53 

R GOOO G20J G22 0 G221 G222 G400 

o.ao 0.0000 -o.ooco 0.0000 - 0 . ();')0D - O. f\{'00 ~..i . nirri 
0.84 0.0000 -0.0000 0.0000 -u.uOUO -o.ooou o. uooo 
0.8 8 0.0008 -o.oocs 0.0011 -0.0000 -0.0012 0.0029 
l} .92 0 . 0 131 -0.0 124 0 . 0 16.6 - O. ll006 - O. CH23 r~ . :l 378 

0.9 6 0.0736 -O.G689 0.0860 -0.0060 -0.0383 o.1657 
1.00 0.2136 -0.1960 ' 0.2228 -0.0246 -0.0589 u.3330 
1.04 0 .4168 - 0 .3694 0 .3695 - () . 0 61 "1 -0.0609 o.34e4 
l.0 8 0.6448 -0.5374 0.4512 -0.1011 -0.0510 O.l l6t.:> 
1.12 o. 8736 -0.6548 0.4207 -0.1505 - 0 . 0 382 - 0 .2474 
1.16 l.O<;SO -0.6881 0.2646 -0.1 794 -0.0267 -u.4937 
1.20 1.2979 -0.6275 0.0192 -0.1856 -C.0176 -0.4488 
1.24 1.4582 -0.4989 -0.2257 -0.1688 -t.oicn - -0 .1934 
1.28 1. 558 5 -0.3444 -0.3882 -0.135<; -0.0058 0.0573 
l.32 1.5996 -0.1961 -0.4401 -0.0970 -0.0025 o.1688 
1.36 l.593f' - 0 . 0 692 - 0 .39 77 -0.0 6!\ 8 -O.u006 0.1393 
1.40 l. 5519 0.0317 -0.3002 -o. 0324 o.ooG4 0.0574 
1.44 1.4868 0.1029 -0.1925 -0.0137 O.Q~08 o . vo29 
1.48 1.4075 0.1425 -0.1070 -0.0031 0.00-09 -0.0120 
1.52 1.3242 0.1551 -0.0528 0.0019 0.0009 -0.0091 
1.56 1.2453 0.1504 -0.0233 0 .00 30 0.0007 - r; .1)!)3 6 
l.6 J l. l 758 9.1372 -0.0089 0.0042 0.0006 0.0000 
1.64 1.11 72 0.1209 -0.0025 0.0039 0.0005 O.OC17 
1.68 1.0 696 0 .10 45 0 .000 2 0.0034 0.0004 u.0023 
1.72 1.0319 0.0889 0.0013 0.0028 0.0003 0 .0024 
1.76 1.0029 0.0747 0.0020 0.0023 U. 000 3 Q.1')0 22 

1.80 o.s014 o. 0618 0.0026 0.0019 0.0002 0.0021 
1.84 o.s663 0.0500 0.0035 0.0016 0.0002 0.0020 
1.88 0 .9568 0.?)392 0.00 46 0 . 00 13 0 . 000 1 ~ . OOZl 

l.92 0.9519 o.02s2 o. 0061 0.0011 0.0001 0.0022 
1.96 o.951 o 0.0198 o.001a 0.0009 0.0001 0.0024 
2 • .,~ C.9534 0 . 0 11 0 O. OC 97 o.001'l1 0.0001 O.OJ26 
2.04 O.S583 0.0021 0.0115 0.0006 0.0001 0.0021 
2.08 o.s653 -0.0050 0.0129 o.ooos 0 .0001 O. Q'l2b 
2.1 2 o. <;73 9 -0.0118 Q.01 36 U.0004 0.0000 0.0022 
2.16 0.9840 -0.0176 0.01 35 0.0004 o.uooo 0.0017 
2.20 0 .9952 - o . ll 22t 0 . 01 24 0 . 000 3 n.oooo !) • . ')()( g 

2.24 1.0066 -o. 0250 0.0101 0.0003 0.0000 0.0002 
2 .2 8 l.0171 -0.0265 0.0086 0.0002 o.ooou -0.0005 
2.3 2 l. (' 25<1 - 0 . 0 265 0 . 1)0 67 O.OOu2 0.0000 -0.0011 
2.36 l.0324 -0.0252 0.0051 0.0002 c.oooo -0.0015 
2.40 1. 03 68 -0.0228 0.0040 0 . 0001 1J . OOOi'.' - n . 1n11 



-127-

TABLE XX (cont'd) 
2.44 l.C3S7 -O.G1Si7 U.0 0 34 u.0001 O.OJOO -O.OU17 
2.48 1.041 3 -0.0161 0.0030 O.UOOl o.oouo -U.0015 
2.5 2 l. !' 42 t) - () . ')124 o . n o 2s 'J . OCiOl o.ooor; - IJ . J'.} !)13 
2.56 1 .041 7 -O.C087 0.0 0 19 o.uuo1 0.0000 -0.0010 
2.6 0 l.0405 -0.0052 0.0009 0.0001 0.0000 -0.0008 
2.04 1. 1 384 -0.0 11 21 - f.) . OCH ' 2 O . ~t:HH o.ouoo -O.GuU5 
2.0 8 l. 035 7 0.0005 -0.0012 0.0000 0.0000 -0.0003 
2.1 2 1.0325 0.0026 -0.0021 0.0000 o . rMflO - ij . ntH)2 
2.76 l.G29l 0.0042 -0.0021 0.0000 0.0000 -0.0001 
2.8 0 l.0256 0.0053 -0.0029 0.0000 0.0000 o.ooou 
2.84 l. •0 223 0 .00 60 - o . or. 29 () .0000 () . ooc.l ~ . •J~\) 1 
2.88 l.Cl91 O.OC62 -0.0026 0.0000 0.0000 0.0001 
2.9 2 1.0162 0.0061 -0.0021 0.0000 o.ouoo 0.0002 
Z.9 6 1.0 137 ,, • iJt) 5 8 - 0 . 00 16 0.0000 0.0000 0.0002 
3.oo l.0116 0.0052 -0.0011 0.0000 0.0000 o.oou2 
3.1 0 l.C080 O.OU33 -0.0000 O. C\.100 n.o~oo O. <W 02 
3.2 1.) l.G067 0.0012 0.0006 o.000u o.uooo 0.0002 
3.30 l.0070 -o. ()004 0.0009 0.0000 0.0000 0.0001 
3.40 l . O~H 9 - 0 . 00 14 n.ocn a O. QO() .1 1 . !JOC') {: . l) .'j() 1 

3.5 u l.OG88 -0.0018 0.0005 0.0000 0.0000 -o.ouoo 
3.6U l.G093 -0.0016 0.0002 o.uooo 0.0000 -0.0001 
3. 7·) 1. fJC 9 3 - 0 . 0012 - 0 . 0 0 0 1 O . i)") ~)f" o.ouou -0.0001 
3.80 l.0088 -0.0006 -O.OOU3 0.0000 0.0000 -0.0001 
3.90 1.0()79 -0.0001 -0.0003 0.0000 0 . 0 000 - ri . o ~ r::i <~ 

4.00 1.0070 0.0002 -0.0003 o.ouuo 0.0000 -o.uuuu 
4.2 0 1.0053 O.OOC3 -0.0001 o.o o.u O.OuOO 
4.40 1.00 44 o . ~00 1 0 . 0001 o.o "·0 ,.. • () l)Q(-

4.6 0 l.OU39 -0.00Cl 0.0001 u.o o.o 0.0000 
4.8 0 1.0036 -o.ooc2 0.0000 o.o o.o -o.oouu 
5 . ~, ": 1.00 32 - C. ))OC 1 - 0 . 0000 o .n o.o -0.0000 
5.20 1.0027 -0.0000 -0.0000 o.o o.o -0. lilJuO 

5.40 1.0023 U.JOOO -u.oooo o.o o . ~ 0 . O•!}( 0 

5.60 1.0020 -o.ooco o.uoov o.o u.o o.uooo 
5.80 J..0018 -0.0000 0.0000 o.o o.o o.ouoo 
6.oc~ l.0 (':1 6 - *1 . 0()00 o.or··:w 0 . r:. o.o -c .rNOC 
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TABLE XXI 

PAIR C!STRlbUTtCN CCEFFICIENTS FOR 2 L-J POTEt\TIAL 
FRC M PY E: QU.ATIGN RHO*=l.00 T*= O. 75 R*=0.53 

R GOOU G200 G220 G221 G222 G40U 

() .8 I ;, . ooo.n - o. 'JCt)~ o .oo~o - 0 . Ot"H~l'l -o.uuoo u.ouuu 
o.a4 o.ooou -0.0000 0.0000 -0.0000 -0.0000 0.0000 
0.8 8 0.0009 -0.0009 0.0013 -0.0000 - f.? . (.>1'14 t) . fl fl 3 3 
C.92 U.0143 -o. 0133 0.0185 -0.ooc.;1 -0.0137 u.o43l 
0.96 0.07S4 -0.0732 0.0946 -0.0068 -0.0422 0.1866 
1.0') n .221s - 0 .2<1 66 0 .2419 - :) . 0 279 - 0 . '} 639 1J .3691 
l.U4 0.4389 -U.3872 0.3957 -o. 06 78 -0.0652 0.3 744 
l.U 8 0.6714 -0.56C8 0.4751 -0.1177 -0.0537 0.1116 
1.12 ~ . 9(J(j s -0.6795 Q.4318 - tl .1633 -0.0396 -U.2897 
1.16 t.11c;4 -0.7068 0.2554 -0.1922 -0.0212 -0.5522 
1.2 0 1.3176 -0.6320 -0.0114 - 0 .1S64 - ~'l. rn 11 -0.4<162 
1.24 l.47C7 -0.4856 -0.2696 -0.1764 -O. OlG6 -0.2lb6 
1.28 1.5612 -0.3167 -0.4331 -0.1402 -0.0056 C.0483 
1.32 l.59C9 -0.160 4 - 0 .4765 -0. 0 989 -0. 1)024 0 .1662 
1.36 t. 572 8 -0.0318 -0.4216 -0.0612 -0.0006 0.1382 
1.40 l.5211 O.C670 -0.3127 -0.0323 O.OOC4 0.0575 
l.44 1.4472 0.1349 - 0 .1972 -O.Gl35 O.OG08 O.OU48 
1.48 1.3610 o.1705 -0.1077 -0.0031 0.0009 -0.0089 
1.52 1.2 72 8 0.1190 -0.0519 C.'l0 18 0.1'~0 8 -0. (1 !)56 
1. 56 l. l 9U8 0.1705 -0.0220 0.0037 u.0001 -u.uoo3 
l.6u 1.1196 0.1537 -0.0011 0.0040 0.0006 U.0030 
l.o4 l.C6 ':':: 8 0 .1344 - C. 00 13 n . tW 37 l) .01)05 () . :')-04 3 
1.6 8 l.,Jl39 0.1151 0.0014 0.0032 0.0004 0.0046 
1.12 0.<1778 0.0971 0.0021 0.0021 0.0003 0.0044 
1.76 r'l.95l r' ?). 0 80 6 0 . 01) 35 0 . 00 22 0.0002 o.uu4l 
i.ao o.c;3z3 0.0657 0.0044 0.00113 0.0002 O.U039 
1. 84 G.9204 o.os20 o.ooso 0.0015 o . -0uc2 D.11 .Cl 38 
1.88 0.9144 u.03'i4 0.0011 u.0012 0.0001 u.OC.:38 
l.9 2 0.9135 0.0276 0.0091 0.0010 0.0001 0.0040 
1.96 0 .9167 0.0165 0 . () 113 o. ,ooo 8 f) .~t)(~ l c .1)::)42 
2.00 0.9232 0.0061 0.0136 0.0001 0.0001 0.0044 
2.04 0.9321 -0.0037 0.0157 o.ooot 0.0001 0.0043 
2.ca O .'i43 f~ - () . Ql26 ('\ .0172 o.onos o.uoo1 O.U04U 
2.1 2 O.S554 -0.0204 o.011a 0.0004 0.0000 0.0034 
2 .1 6 0.9693 -U.0267 0.0111 0.0003 0.0 000 f) . tH'.)24 
2.2 0 0.9842 -0.0314 o.ul53 0.0003 0.0000 0.0012 
2.24 u.<;989 -0.0341 0.0126 o.uoo2 0.0000 u.ouoo 
2.28 l. fH22 - 0 . 0 348 l) . C'C- 9 5 0 . 0 0'J2 v .OOt::! O - 1) . ;JOl l 
2.3 2 1. 022 7 -o. 03 36 o.oo6B o.ouo2 o.ouou -0.0020 
2.36 l.C299 -0.0309 u.0048 0.0002 0.0000 -O.OU26 
2 .4 ~; 1.0 343 - !') . '') 2 7«':' C . 1)0 36 0.0001 o.uooo -0.0029 
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2.44 l. 0366 
TABLE XXI (cont'd) 

-0.022 3 0.0 030 0.0001 c.oooo -0.0029 
2.48 1.0375 -0.0171 0.0021 0.0001 tJ . itHH'l - ·tfi . 0-02 7 
2.52 1 . 0 373 -o. 0120 0.0023 O.OOUl 0.0000 -u.0023 
2.56 1 . 0361 -0.0070 0.001 5 0.0001 c.oooo -O.U018 
2.60 1 . 0 33 8 -o . ·~0 26 o . roe; :1 4 o. oo<n ~ . oncn - e . r·r)l4 
2.6 4 1 . 0 30 6 0.0013 -0.0010 0.0 0 01 0.0000 -o.ou10 
2.68 l . 02 6 7 o.0044 -0.0022 G.uO GO 0.0000 -O.i.J006 
2.1 2 l . Q225 I) . 0$) 6 7 - 0 . 00 32 D . IJ')Qt' 0.0000 -o.oou3 
2.76 1.0181 0.0084 -0.0038 o.ouoo 0.0000 -u.COOl 
2.s o 1 .0139 0.00<;3 -o.oo4u 0.0000 O. tH10iJ 0 . 0:)0 1 
2.84 1 .0100 O.C0477 -0.0037 0.00 00 o.uuoo 0.0002 
2.88 l.0066 0.0095 -0.0032 o.uOOO c.oooo u.ouu3 
2.92 l . 0t'}3 6 0 . 0089 - 0 . 00 25 c . 00·1c t'J . ooco '.;·. 00'.";4 
2.96 1. 0 011 o.coso -0.0011 0.0000 0.0000 0.0004 
3.00 0.9992 0.0069 -0.0009 o.uuoo c.oooo u.0005 
3.1 1'1 0 .9970 0 . !')036 0 . '>00 6 0.0000 o.ouoo o.oous 
3.20 0.9S75 o.ooos 0.0013 0.0000 c.oooo O.C004 
3.3 0 0.9997 -0.0016 U.0014 0.0000 c. oooo O. ti()D 3 
3.40 l. C023 -0.0021 0.0011 O. (JOQO u.ooou u.uoul 
3.50 1.0043 -0.0028 0.0006 o.ooou c.oooo -0.0001 
3.60 1.00 53 - D. 00 22 0 . 0001 \) . •)01')0 tJ . ·l}Q".!t} - -O . t>1'U 2 
3.7 0 1.0054 -0.0013 -o. 0004 0.0000 0.0000 -0.0002 
3.8 0 1.0047 -0.0003 -0.0006 u.uooo 0.0000 -0.0002 
3.90 1 . 0()3 7 0 . 0004 - O. t:\00 6 (} . ()001' 0.0000 -o.uou1 
4.00 1.0021 o.oocs -0.0004 0.0000 0.0000 -o.oouo 
4.2 0 l. 0013 0.0006 -o.ooou o.o n. n 1: . ·l) OC'O 
4.40 l. 0 011 0 .0000 o.uovz o.u o.o u.oouo 
4.60 l.0013 -0.0003 0.0001 o.o o.o 0.0000 
4.8 J 1.001 4 - 0 . 0002 o.ooon O. () f} . 0 -~ . 1)1)0~ 

5. ou i.001 1 -u.oooo -0.0000 o.o o. 0 -0.0000 
5.2 0 1 .00~8 0.0001 -0.0000 o.u o.o -o.cuoo 
5.4) l.{';0!] 6 O. Ql) ,')0 - iJ . ocoo ~ ,, ... o.o o.oouo 
5.60 l.0006 -0.0000 0.0000 o.o o.o 0.0000 
5. 80 1.0006 -0. 0 000 0.0000 o.o o. ,, 1.) . ooc:.o 
6.00 l.OOU5 -o.oouu -0.0000 o.o o.o -0.uu00 
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TABLE XXII 
PAIR DISTRIBUTlGN COEFFICIENTS FOR 2 L-J POTENTIAL 

FRO M PY EQUATION RHO*=l.20 T-*=0.75 R*=O. 5 3 

R GOOO G200 G220 G22l G222 G400 

G.8 0 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 
o.84 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0001 
r.- .a s 0 . i}Cll -0 . ~)0 10 O. (JQ 15 -0 . 0(' ~)(' -0.0Ul6 U.Ol.l39 
0.92 o.0162 -0.0148 0.0213 -o.ooca -0.0159 0.0511 
0.9t> o.C890 -0.0809 O. l U79 -0.0080 -0.0 483 '-l .2184 
l.OJ o. 2 51 7 -0.2260 0.2725 -0.0326 -O.U722 u.4249 
1.04 o.4788 -0.4203 0.4393 -0.0783 -0.0723 0.4197 
l .Ca "'. . 7 22 4 - 0 .60 49 0 .5177 -G.1339 -0.0585 0 . Hi 82 
1.12 0.9563 -0.12 76 o.4571 -0.1832 -0.0423 -0.3498 
l.16 1.1755 -0.7414 0 • . 2502 -0.2126 -0.0286 -0.6381 
l.2 0 l. 3 7*'.' 8 - 0 .6525 - 0 . ? 497 -0.2141' -0.0182 -0.5658 
1.24 1.5168 -0.4803 -0.3296 -o.10c;3 -0.0101 -0.2537 
1.28 l.5955 -0.2894 -0.4968 -0.1483 -0.00 56 0 .0391 
1.32 l.61U2 -0.1202 -o. 5293 -u.1030 -0.0024 o.1672 
1.36 1.5762 o.012s -0.4570 -0.0629 -O.OOC5 0.1403 
1.40 1.50 97 f) .llf.i 8 - 0 .3315 -~ . 0 328 0 . 004"J 4 !~ . ~} 596 

1.44 1.4231 o.1154 -0. 2U42 -0.0135 0.0001 o.uo02 
l.48 1.3268 0.2066 -0.1081 -0.0030 0.0008 -0.0042 
1.52 1.2311 l) .2ll"lf'I - 0 . 0 496 f . • oc 18 0.0001 -O.U005 
1.56 1.1441 0.1963 -0.0189 0.0036 0.0006 O.OU46 
l.6 0 1.0102 o.1747 -0.0045 0.0039 O.OOC 5 0 .:)074 
l.64 1.0105 0.1510 0.0011 0.0036 0.0004 0.0002 
1.68 o.9642 0.1278 0.0043 0.0031 0.0003 0.0080 
1.72 0 .9298 o .t0 64 !) . 00 55 0 .00 26 l.l. 00~ 3 0 . 1 1~ 75 

l.76 0.9057 o. C868 0.0064 u.0021 o. 0002 o.uu7o 
1.80 0.8904 0.0690 0.0075 0.0015 0.0002 U.0Ut>6 
1.84 I) . 8 82 6 n . fJ 527 o . 00 9f) n .00. 14 0.0002 u.U064 
l.8 8 0.8811 0.0377 0.0110 0.0012 0.0001 0.0064 
1.92 0.8849 0.0236 0.0134 0.0010 0.0001 0 . 0065 
1.96 U.8<;31 0.0104 0.0162 0.0008 0.0001 0.0067 
2.uo U.9040 -0.0020 0. 0190 0.0001 c.0001 0.0069 
2.0 4 ·0 .<;182 - 0 . 1) 135 0 . 0 214 Ct .OO<l 6 tJ .0001 i). (.} "16 7 
2.L 8 o.9335 -o. 0239 0.0230 o.ooos 0.0001 0.0060 
2.12 0.9500 -0.0328 0.0230 0.0004 0.0000 0.0047 
2.16 i~. 9681'1 _,, . 1, 396 0 . () 214 0 .OQ1) 3 0.0000 0.0031 
2.2 0 o. c; 86 8 -0.0440 0.0182 O.OOC3 0.0000 0.0012 
2.24 t.0050 -0.0459 0.0140 0.0002 c. ooco -o .n ~Joo 

2 •• rn l.02C7 -o. 0451 0.0096 0.0002 o.oouo -0.0023 
2.3 2 l.C323 -0.0420 0.0060 0.0002 0.0000 -0.0037 
2.36 l. a 393 - 0 . 0 371 n. o<: 3s () . 0(·1J2 0 . !)O(j(J - 'J • .1)1")46 

2.40 1.0423 -0.03(.7 u.0022 0.0001 0.0000 -ll.0050 
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TABLE XXII (cont'd) 
2.44 1.0427 -0.0237 O.O Cl 9 O.OOUl 0.0000 -U.0049 
Z.48 1.0 416 - 0 . 4)164 Q . l)O 19 0 . 00~1 tj . (}1)(10 - t . '1')045 
2.52 1.0393 -O.COS4 0.0010 c.0001 0.0000 -0.0038 
2.56 1.0361 -0.0030 0.0008 0.0001 c.0000 -0.0031 
2.6 f) 1 . 1) 318 0.0026 -o.oou5 0.0001 0.0000 -0.0023 
2.64 l.0267 0.0011 -0.0021 u.0001 o.ooou -0.0015 
2.6 8 1 .0211 O. fH05 - 0 . OC. 36 c . oe:~<Q 0 . 0000 - 0 . 0Ci0 9 
2.1 2 1 .0153 0.0129 -0.0047 o.oouo o.uouo -0.0004 
2.7 6 1.0098 U.0143 -0.0052 0.0000 c.ouoo 0.0000 
2.80 1.0047 o . r.n4s -o .oo 51 t) . 0,, !J(~ Q. QQOC 0 .0004 
2.84 1.0002 0.0144 -0.0045 0.0000 c.oooo 0.0006 
2.88 O.S965 0.0135 -0.0035 0.0000 0.0000 0.0008 
2.92 0.9''35 0.0120 -0.0024 0.0000 0.0000 0.0009 
2.96 0.9914 0.0102 -0.0013 0.0000 0.0000 0.0010 
3.00 0 .990 1 0 . 00 82 - 0 . 0002 o.o~o<:l 0 . 0000 -!') .0010 
3.lu 0.9900 . o. 0030 0.0011 0.0000 0.0000 0.0010 
3.2 0 u.9931 -0.0013 0.0024 0.0000 c.ooou o.occs 
3.3D '1 .9'176 - 0 . 0 0 39 I) . 00 22 0 . 0000 •'l .oooo fJ .OUU4 
3.40 1.0017 -0.0047 0.0014 0.0000 o.ouoo 0.0001 
3.50 1.0043 -0.0041 0.0004 0.0000 0.0000 -0. 0 1J02 
3.60 l.0051 -o. 0026 -0.0004 o.oouo 0.0000 -0.0004 
3.70 1.0045 -0.0010 -0.0010 0.0000 0.0000 -0.0004 
3 .8· 1.0031 0 . 01 0 5 - 0 . 00 12 . n.oooo 0.0000 - 0 .1)003 
3.9 0 1. 0015 0.0013 -0.0009 o.ooou 0.0000 -0.0002 
4.00 l.U002 0.0016 -0.0005 0.0000 0.0000 -0.0000 
4.2f.' L) .9992 f) . 0007 0.()002 (J . () o.o 0.0001 
4.4u 0.99'i8 -0.0003 0.0003 a.a o.o 0.0001 
4.6 0 1.0007 -o. 0005 0.0001 o.o o.o o. ooc:o 
4.8 0 l.UuC8 -0.0002 -0.0001 o.o o.o -0.0001 
5.oo 1.0004 0.0001 -0.0001 o.o o.o -0.0000 
5.21"1 1.0001 0 . 000 2 -0.00ilO o.o o.o -0.NJC•O 
5.4 0 1.0000 0.0001 0.0000 o.u o.o 0.0000 
5.6 0 1.0001 -0.0000 0.0000 o.o o.o 0.0000 
5.80 1.000 2 - 0 . 00Q l 0.0000 o. I) • I) 0.0000 
6.oo i.0002 -0.0000 -0.0000 o.o o.o -0.0000 
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that these functions show much the same variation with density as do 

spherical radial distribution functions. The differences resulting 

from changing the nonsphericity of the molecule are demonstrated in 

Figure 7 where we have compared the g
000 

curves for R* values of 

0.53 and 0.68 at the same T* and p* . The peaks are smaller and 

are shifted to higher r* for the larger R* value. 

The main peak heights of the g000 , as well as of the higher 

are recorded in Table XXIII. The g
000 

peak heights follow 

much the same pattern as is found in spherical PY results. At the 

isotherm closest to our critical temperature (approx. PY critical 

point for R* = 0.53 is p* = 0.65, T* = 0.70), the main peak 
c c 

heights decrease with increasing density up to about p* = 0.90 and 

then increase. At T* = 1.00 the minimum peak height occurs lower 

near p* = 0.60, and is barely observed at T* = 1.30 . Throop and 

Bearman's 2 spherical results for their T* = 1.40 isotherm show 

behavior similar to our 0.75 isotherm in that a peak minimum occurs 

above the critical density at about l.3p* . In Figure 8 one may see 
c 

the temperature effect on g
000

(r) at the constant density of 

p* = 1.00 . The results are representative of the increase in peak 

height which is found at all densities as the temperature decreases. 

The angular correlation functions have been plotted in Figures 

9, 10, and 11. In each of these, g222 (r) has been neglected because 

of its small value. Fi~ure 9 shows curves for the constant tempera-

ture states (p*,T*) (0.6, 1.3), (1.2, 1.3) . The positions of the 

peaks in these curves are not affected greatly by density, nor is the 

general curve shape. Figure 10 shows the effect of temperature 
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TABLE XXIII 

MAIN PEAK HEIGHTS OF THE g~ . ..R,'m FOR R* = 0.53 

_L o.o 0.2 0.4 0.6 0.8 1.0 1. 2 
T* 

.Q,£ 'm 

000 1. 792 1. 752 1.701 1. 645 1.601 1.591 1. 610 

200 - .716 - .707 - .697 - .688 - .688 - .706 - .752 

220 .455 .451 .448 .446 .451 .475 .517 
0.75 - • 340 - .367 .393 - .415 .440 .476 .529 - - - -

400 .303 .317 .332 .348 .369 .404 .461 

- .366 - .403 - .438 - .471 - .508 - .564 - .646 

000 1.534 1.507 1.486 1.476 1.483 1.508 1.551 

200 - .556 - .554 - .556 - .565 - .587 - . 622 - .671 

1.00 220 .334 .335 .340 .351 .370 .397 .437 

- .265 - .283 - .302 - .324 - .354 - .395 - .450 

400 .210 .218 .229 .243 .267 .302 .350 

- .270 - .292 - .318 - . 349 - .391 - .447 - .522 

000 1. 383 1.376 1. 377 1.391 1.417 1.455 1. 506 

200 - .465 - .470 - .481 - .501 - . 528 - .564 - .611 

1. 30 220 .270 .276 .284 .298 .318 .348 .386 

- .221 - .235 - .254 - .278 - .308 - .346 - .394 

400 .161 .169 .181 .197 .218 .247 .284 

- .214 - .232 - .255 - .285 - .324 - .375 - .440 
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and indicates that temperature variation has its primary effect on 

curve amplitudes. If the peak heights of the higher gt£'m tabulated 

in Table XXIII are studied as a function of density, one can see that 

g
200 

shows an absolute peak minimum near p* = 0.70 at T* = 0.75 . 

Similarly g220 shows a peak minimum for its positive peak only near 

p* = 0.6 at T* = 0.75 At our higher isotherms, these functions 

effectively show no absolute minima and the other g££'m show no 

absolute peak minima at any of our isotherms. It is thus possible to 

generalize and state that the angular correlations merely gain size as 

the density increases, with the exception of isotherms near the 

critical point. A further examination of Table XXIII shows that with

out exception, a decrease of temperature causes an increase in absolute 

peak height. 

Because the shapes of the angular correlation functions change 

so little with increasing density, it is found that, as in the diatomic 

hard core system, the zero density limit of g(g1B:2) determines the 

general shape for all densities up to 1.2, even for the lowest isotherm. 

Plots of angular gtt'm for R* = 0.53 and 0.68 at p* = 1.2, 

T* = 1.00 in Figure 11 show the result of changing molecular shape, 

and indicate that the principal peaks are shifted to larger r* as R* 

increases. 

The gtt'm coefficients have been calculated from the pair 

H
000

, n
200 

as well as the longer H
000

, H
200

, H
220

, H
400 

set over the 

density range of this work. The g
000 

values differ by no more than 

0.4% and g200 by no ~ore than 0.5%. The biggest differences occur in 

g220 and g400 and range around 1 to 3%. Thus we see that H
220 

and 
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H
400 

are minor contributions in the calculation of the pair distribu

tion functions for the density and temperature range studied in this 

work. 

We have also checked on the changes brought about in the dis-

tribution function coefficients when calculated from the 

expansion of (25) or the shorter expansions of Chen7c 

gtt'm 

We used Chen's 

hard core results for H000 and H200 (neglecting H
220 

and H
400

) at 

p* = 1.0, R* = 0.2 as input. The two calculations yield g
000 

func

tions differing by about 3% up to r* = 2.00 and slightly more at 

higher r* . Main peak heights of g200 and g220 differ by 4-10% 

with some relative shifting of small-valued sections of the functions 

at large r* . Similar percentages are obtained for the two-centered 

Lennard-Jones case. These are significant percentages, particularly 

in the case of g
000

(r) . If one compares these percentages with 

those in the last paragraph, it is apparent that these errors exceed 

those arising from neglect of the H220 and H
400 

functions. It is 

felt therefore that these errors should be reduced by using the longer 

expansion of (25) especially since its employment produces an insigni-

ficant increase in computation time. 

Using (23) and Simpson's rule we have calculated KT , the iso

thermal compressibility, for R* = 0.53 . The results are tabulated 

in Table XXIV. These values have been compared at certain states to 

those obtained from (24) using values of 1- K C(OOO) extrapolated to 

v = 0 , and the results agree well enough to allow us to search for a 

critical point. * It is apparent that at the lowest isotherm, T = O. 75, 

a strong maximum is occurring near p* = 0.55 • This is indicative of 
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a proximate critical point where KT becomes infinite. While our data 

do not accurately locate the critical point, it does show t hat one 

exists and an estimate may be made that it lies in the vicinity of 

T* = 0.70, p* = 0.65 . We may compare these values with the experi-

mental values for chlorine of T* = 0.72, p* = 0.93 (T = 417°K , 
c 

p = 0.573 g/cc). It appears that our estimate of the critical t em
c 

perature is fairly close to the experimental value, but our estimate 

of the critical density is far too low. 

4 Watts has shown for the case of spherical systems near the 

critical point that two solutions may exist for the distribution func-

tion for certain densities. Because our lowest isotherm was close to 

critical, we have checked to make sure that our results do not involve 

such multiple solutions of the Percus-Yevick equation. One check we 

performed was to solve the Percus-Yevick equation for two paths to the 

p* = 1.2, T* = 0. 75 state, one from p* = 0.0 to 1.2 along T* = 1.00 

and then down to T* = 0.75 along the constant p* = 1.2 isochore, 

and the other from p* = 0.0 to 1.2 along T* = 0.75. The results 

agreed, indicating that we had not jumped to another solution along 

the lower isotherm. A second check was to verify that the g
000

(r) 

curves approached 1.0 asymptotically. In the spherical case one of 

the multiple solutions is unphysical in that its g(r) is character-

ized by values much greater than 1.0 at values of r* near 2.5 or 3.0. 

No such behavior was found in this work. 
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TABLE XXIV 

ISOTHERMAL COMPRESSIBILITY VALUES (R* = 0. 53) 

T* 0.75 1.00 

1. 2683 1.1106 

1. 6215 1. 2067 

2.0443 1. 2699 

2.4596 1. 2833 

2.7250 1.2381 

2. 7102 1.1401 

2.4211 1. 0059 

1. 9737 0.8531 

1. 5063 0.7024 

1.1082 0.5654 

0.8038 0.4483 

0.5790 0.3529 

1.30 

1.0307 

1. 0376 

1.0163 

0.9667 

0.8923 

0.8004 

0.6997 

0.5984 

0.5022 

0.4158 

0.3405 

0.2764 
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Discussion 

One of the primary conclusions to be drawn from the previous 

section is that the higher Hii 'm that we have included in the PY 

solution are indeed quite small contributions to the distribution 

function even at high densities and moderately low temperatures where 

they migh t be expected to be appreciable. We have thus confirmed the 

choice of Chen and Steele to use just H
000 

and H200 to describe the 

fluid in this temperature-density range. For future studies using 

this technique and covering the same range of states, it appears as 

though an adequate description may be obtained for temperature depen

dent systems if just these two are employed along with the extended 

series pr oduct of (25) and the calculations are carried out to 

r* = 6.00 • 

Whi le it is felt that the H220 and H400 functions are suffi

ciently accurate to judge the size of their contributions to the 

distribution functions, it must be added ·that they are not known to a 

high degr ee of accuracy. This is evident when the H220 obtained from 

H(2200) i s transformed to second and fourth orders and compared to the 

H(2202) and H(2204) values computed from Eqs. (22). The curves are 

of the same order of magnitude but show only marginal qualitative 

agreement . 

Several effects contribute to this error, including truncation 

errors, t ransform errors, and incomplete convergence of the iterative 

PY solut i on. Truncation errors have little effect on the determina

tion of H(OOOO) and H(2002) since these depend heavily on the very 

large C( OOOO) transform. For the higher H(i£ 'ms) transforms, however, 
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truncation is probably the greatest error. Three series, the H(~1~2 ), 

C(~1R2 ), and f(~1~2 ) series, have all had x221 and x 222 omitted and 

have been truncated after the general term x400' thus omitting contri

butions from the terms x440' x420' etc. x222 is most likely a small 

contribution, but the others may be of significance in computing x
220 

and x400 • The C££'m terms where £=£' may be particularly sig-

nificant, since the zero order Hankel transform of these functions will 

be larger than the C(2002) transform, the dominant member of the B. 
l 

terms of Table I, in the region near v = 0 . Including these higher 

terms, however, is difficult. The expansions required to generate each 

member of a new set of simultaneous equations corresponding to Eqs. 

(14)-(18) are extremely lengthy. Furthermore, the number of simultane-

ous equations themselves will increase rapidly and require a large 

increase in computing time. If very many coefficients are included, 

this results in a prohibitive increase of time. 

Our estimate of the critical point location allows us to draw 

some tentative conclusions about the choice of potential used to des-

cribe chlorine. Provided the Percus-Yevick theory remains a good 

physical representation in the critical region for nonspherical mole-

cules, our estimate of the critical density implies that the potential 

is inadequate either in functional form or in choice of parameters. 

R* is the principal variable parameter since it is the most arbitrary. 

a and E , once R* is chosen, become fixed and are as accurate as 

the PVT data from which they are derived. A comparison of values 

calculated from the p* and a values for R* = 0.0 and R* = 0.53 
c 

show little difference between one another (R* = 0.0 , p* 
c 

o.59, 

) 

l < 
~J.J 

~I 

r 
~ 

l~ 
, ) 

P. ; ) 
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a= 4.7; R* = 0.53, p* = 0.65, a= 3.75); both are only about 70% of . c 

the actual experimental value of 0.573 g/cc . It appears, therefore, 

that if R* were decreased to a lower value, such as by using the 

12 Gaussian weighting of Sweet , no improvement would be found in the 

ability to predict the critical density. A larger value of R* would 

seem too large physically. Thus varying R* holds little hope for 

improving the prediction of the experimental critical density value 

and, within our limited accuracy, one is led to the conclusion that 

the functional form of the two-centered Lennard-Jones potential is 

only marginally correct. Whether this is true for the calculation of 

all thermodynamic properties is yet to be proven and awaits further 

study. 

The fact that results for the Htt'm and . gii'm have been 

obtained from the Percus-Yevick equations developed by Chen and Steele 

for hard core potentials shows that their procedure is equally appli-

cable to the temperature dependent two-centered Lennard-Jones 

potentials. For similar convergence criteria, solutions were obtained 

in about the same number of iterations. Certain restrictions on this 

type of solution are apparent, however. One is that the required 

number of iterations increases rapidly in the vicinity of the criti-

cal point, implying that this may prohibit investigation of states 

very close to critical. Extension of the solution to states with den-

sities greater than 1.2 is also restricted because of the large number 

of iterations required, a result noted by Chen in his hard core work 

as well. The effects of very low temperature are still unknown; we 

merely note that the temperature values covered in this work have only 
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a slight effect on the number of iterations (other than critical point 

increases), generally requiring more iterations as the temperature 

gets lower. Increasing the accuracy of the results by including a much 

larger number of X££'m terms is, as we have seen, also restricted due 

to the greatly increased length of the expressions to be solved. 

In conclusion, therefore, it is seen that the method employed 

here has allowed us to determine pair distribution coefficients 

accurate to first order for a given temperature dependent potential. 

These may find use in calculating thermodynamic properties. Evaluation 

of constant volume heat capacities may be interesting in that it has 

11 been reported that chlorine shows a strong ori~ntational contribution. 

Application of the coefficients to x-ray scattering from chlorine is 

presented in the next section. 
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Figure Captions 

Chlorine second virial data of Kapoor and Martin. 

B is in units of cc/mole. T has units of °K. 

Reduced internuclear distance versus u as 

detennined from second virial data. • denotes · 

R* = 0.53. 

Reduced internuclear distance versus e/k as 

detennined from second virial data. • denotes 

R* = 0.53. 

Hil'm (r) functions for moderately high density 

off*= 1.20, T* = 0.75, R* = 0.53. 

g
000

(r) as a function of density at T* = 1.30. 

g
000

(r) as a function of density at T* 0.75. 

g
000

(r) showing curve shape dependence on R*. 

g
000

(r) showing dependence on temperature. Curve 1 

is for T* = 0.75, curve 2 is for T* = 1.00, and 

curve 3 is for T* = 1.30. 

gii~(r) functions showing dependence on density. 

Curves 1 are for \* = 0.6; curves 2 are for 

f * = 1. 20. 

g~i'm (r) functions showing dependence on temperature. 

Curves 1 are for T* = 1.30; curves 2 are for T*= 0.75. 
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gifm(r) functions showing curve shape dependence on 

R*. Curves 1 are for R* = 0.68; curves 2 are for 

R* =0.53. 
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PART IV 

X-RAY SCATTERING FROM DIATOMICS 
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Introduction 

This paper presents the theoretical x-ray intensity curves for 

a single component molecular liquid, taking into account angular 

correlations in the liquid. The principal basis for this work is the 

Steele and Pecora treatment of scattering from nonspherical molecules1 • 

The manner of appearance of angular effects is investigated, as is the 

relative size of such effects. Although other systems are occasionally 

referred to, the great majority of the work deals with the fluid chlor-

ine system. 

Other methods of calculating the x-ray intensity for molecules 

depend on the early work of Menke2 and Zachariasen3, or on the later 

work of Waser and Schomaker4 • Menke's equation for the intensity 

I(K) is 

where 

l(K) 

F (K) 
e 

ig(K) + 4rrpFe(K) J [g(r) - l] j
0

(Kr)r2dr 

0 

I I f (K) f (K) j (Kb ) j (Kb ) 
p q p q 0 q 0 p 

(1) 

(2) 

i (K) is the usual gas scattering, g(r) is the molecular distribu
g 

tion function with center c , f (K) is the atomic scattering factor 
p 

of atom and b is the distance to atom from center 5 p , p c 
p 

Equation (1) does not include any angles of orientation of the mole-

cules because orientation has been asst.lllled to be random. DeVries 6 has 

shown that this assumption leads to a dependence of I(K) on the 

coordinate system chosen, i.e., on the location of c • He showed 

that F.q.(l)is approximately true only if the center of the coordinate 



-159-

system lies near the center of syn:nnetry of a nearly spherical particle. 

DeVries presented no equations able to handle more nonspherical mole-

cules. 

1 Steele and Pecora (henceforth SP) employed the method of 

orthonormal D 
7 expansion originally developed by Steele and obtained 

an expression for the total scattered intensity in terms of harmoni-

cally expanded scattering factors and expansion coefficients of an 

angular dependent molecular distribution function, g(~1~). Because 

angular correlations between molecules are explicitly handled in the 

SP approach, the center of symmetry restriction discussed by DeVries 

has been removed as a problem in the treatment of complex molecules. 

We may therefore replace F.q.(l) with the result obtained by Steele and 

Pecora and consider the SP result to be currently the best method for 

dealing with nonspherical molecules. 

We add that the molecular method based on the work of Waser and 

8 9 10 11 Schomaker, and applied by several authors ' ' ' is subject to 

objections on grounds different from the Menke approach, the principal 

difficulty being that it in general changes the scattering problem into 

that of multicomponent (mixture) atomic scattering. It gives a radial 

function which is complexly related through a convolution 

to a Stml over spherical atomic pair distributions rather than a single 

molecular distribution. Angular information does not appear explicitly , 

and the study of the effects of angular correlations therefore becomes 

much more difficult than in the SP approach. 

However, several questions remain unanswered in the SP approach, 

and this paper attempts to answer some of them. Steele and Pecora did 
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not evaluate their expression for any particular system and so the 

relative contribution of the angular dependency of g(~!:z,) was 

quantitatively unknown. In the first two sections below, we have 

adapted their equation for use with diatomics and have specifically 

evaluated it for chlorine. 11 12 Recent work by Sweet and Steele ' , 

Chen and Steele13 , and Morrison and Pings 14 , 15 provided the means by 

which the quantities required for the SP evaluation could be obtained. 

The diatomic was described by the two-centered Lennard-Jones poten

tial 11 and Percus-Yevick results15 for g(~1!:z,) were used to evaluate 

the SP equation. The location and magnitude of the angular contribu-

tions as a function of both density and temperature are presented 

below. The significance of these contributions in future x-ray work 

is discussed. 

In still another section below, we discuss the problem of 

inverting molecular x-ray data. 6 16 Several authors ' have stated that 

it is difficult or impossible to invert Fq.(l) if F (K) 
e 

has zeros. This 

problem carries over to the SP equation since a function nearly iden-

tical to F (K) occurs there as well. We show that these zeros 
e 

represent no theoretical problem but are quite bothersome in an 

experimental situation. 
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Theory 

We begin our treatment by recalling that the total scattered 

intensity of x-rays from a fluid may be written in terms of the pair 

distribution function. In general this distribution depends on the 

distances between molecules and their orientation angles. Using 

orthonormal D function expansions 7, this distribution may be written 

where R = 
-j 

vector r. 
J 

( r. ,n.) 
J J 

and n. 
J 

( 3) 

denotes the molecular position of molecule j by 

are the Euler angles of orientation. 

Nl = {Jl, Kl,Ml} • Applying Fq.(3) to the usual elastic scattering theory, 

1 Steele and Pecora obtained the following expression for the scatter-

ing cross section I(K) : 

+ p l l 
Nl N2 

( -)Kl-Ml * Jl J2 \ .J 2J+l ( z O O) 
aO -Ml aO M2 l 1 2 J2+1 c J,Jl,J ; ' 

' ' J 

x 
f 

Jl J2 . 2 
c(J,Jl,J2;0,K2) g_K2 ,Ml,K2,M2(r)JJ(Kr)4Tir dr (4) 

The notation used here is the same as that of SP. a0 M denotes a coef-
' 

ficient of the D function expansion of the molecular scattering 

factor and c(j
1

j 2j
3

;m
1
m2) denotes a Clebsch-Gordan coefficient17 • 

K = 4TI sin 8/1.. We note that Fq.{4) differs somewhat from that published 

by SP since we have corrected some index and omission errors. The most 

important difference is that the factor (2J+l)/(2 J2+1) was not 
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present in the original paper. Eq. ~) is useful for nonspherical mole-

cules under the assumption that the molecules are rigid; otherwise the 

Euler angles of orientation lose their meaning. It is apparent 

therefore, that this equation is useful only for small molecules where 

the overall length is somewhere on the order of six atoms or less, 

h b d . . l" "bl 18 w ere en ing is neg igi e • 

If Fq.(4)is examined, it can be seen that the first surranation 

gives the independent molecule or gas scattering. The second term 

gives the usual Fourier integral over the (here averaged) pair distri-

bution function. This will be termed the spherical intensity. These 

two terms correspond to the Menke equation if ja
0
!2 

is identified 

with the molecular scattering factor F (K) • The remainder of the 
e 

terms give the contribution to the intensity from the angular correla-

tions, henceforth collectively termed angular intensity. It is con-

venient to rewrite Fq:(4)showing these three parts explicitly. 

I(K) i (K) + i(K) + i (K) 
g ang 

(5) 

In this work we wish to evaluate Eq.(4) for a specific system. We 

have chosen to carry out this evaluation for a diatomic and must 

therefore adaptE4(4) to this system. Following Sweet 11 we recognize 

that,for diatomics,Eq,(]becomes a sum over spherical harmonics, the 

indices Ml,M2 = 0, and Kl = -K2 • Thus the summations over Nl and 

N2 in both Eq.(3)and Fq.(4) are restricted to just three indices: 

Jl,J2,K2. Replacing these with £, £', m respectively, Eq. (4) becomes 
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1 ( K) J laJJ
2

+pJa
0

1

2 J [g000 (r)-l] j
0

(icr) 41fr
2

dr 

C ( J, Q,, Q, I ; QQ) 

(6) 

where /J. Q, , Q, ' denotes the range J Q, - Q. ' I 2_ J ~ Q, +Q,' and m takes on 

the values - t to +t or -t' to +t' , whichever is the smaller range. 

As Eq. (6) stands, it is applicable to both homonuclear and 

heteronuclear diatomics. For homonuclears Q, and t' must be even 

integers and for heteronuclears Q, + Q,' must be even. Since 

c(J, t ,t';OO) = 0 tmless J+t+t' 
17 

is even , J must also be even for 

all diatomics. Making use of the symmetry relation c(j
1

j 2j
3

;m
1
m2m

3
) 

jl+j2-j 3 
(-) c(j

1
j 2j

3
;-m

1
-m2-m

3
) we see that even J also requires 

that 

c(JQ,Q,' ;Om)= c(JQ,Q,';O-m) (7) 

From these restrictions on Q, and t', one may write the first few 

gQ,Q, 'm(r) coefficients. For homonuclear diatomics the first six coeffi-

cients are those with the indices 000,200,220,221,222,400. Higher co-

efficients include those with indices in the 400,600,··· series. For 

heteronucl ear diatomics one also has the 110 and 111 coefficients, as 

well as hi gher coefficients in the 300,500,··· series. Since Eq.(6) con· 

tains an i nfinite number of terms, some truncation must be made and we 

have therefore included only those terms up through g400 (r) in the 

remainder of this work. 
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Expanding Fq.(6)up through g400 and including only the homo-

nuclear terms, one obtains for the angular intensity: 

2 1 2 2 9 2 
+ a

2
(K) [Sc (022;00)<220;0> - c (222;00)<220;2> +Sc (422;00)<220;4> 

- 2(i) c(022;00)c(022;01)<221;0> + 2c(222;00)c(222;01)<221;2> 

- 2(}) c(422;00)c(422;01)<221;4>+2(i)c(022;00)c(022;02)<222;0> 

- 2c(222;00)c(222;02)<222;2>+2(;)c(442;00)c(442;02)<222;4>] 

2 2 + a
0

(K)a
4

(K)[9c (440;00)<400;4> +c (404;00)<040;4>) (8) 

where<H'm;J) = J gU,'m(r) j/Kr)dr. The factors of two which appear 

in front of several terms result from the inclusion of two values of 

m,±m, for each set of i and i' . Using the identity gii'm = gii'-m 

and Eq. (7), it is apparent that the plus and minus terms are equal. 

All h Cl b h G d ff . . 19 . d . H',.,(8) b 1 d . t e e sc - or an coe icients require in'-'!.. are tau ate in 

Appendix 4. 

Next it is to be noted that the jJ(Kr) can be expanded in 

trigonometric functions. (See Appendix 5 for standard formulas.) 

Since substitution of these expansions into each Bessel integral above 

causes each one to be expressed as a sum of sine and cosine Fourier 

transforms, it is possible to numerically evaluate Eq.(8) at this stage of 

development. However, if all the sine transform integrands are grouped 
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together a s well as all the cosine integrands, then Eq.(7)may be 

expressed as a function of just two integrals. This results in the 

following . Define 

Then 

wl = g220 - g221 - 2g222 

1 4 1 
w2 = 7 g220 + 21 g221 + 21 g222 

00 

4rr J sin 

0 

r 3 2 2 105 45 r 
+ Ci( - -3-) <2ao(K)a2(K)g200+ 7 a2(K)Wl) + (53 - -3- +IC) 

K r K r K r 
00 

X (1s8a~(K)W2 + 2a0 (K)a4 (K)g400 )J dr + 47T J cos Kr 

0 

x [~(2ao( K)a2( K)g200 +; a;(K)Wl) + (l~ - 1~52) 
K K K r 

Equation (9) is the result for the homonuclear case. If one 

wishes to consider the heteronuclear case, then the and 

terms must be included as well. Proceeding as before, the following 

expression for the angular intensity of heteronuclear diatomics may be 

derived: 

+ J 
2 (g + g )cos Kr dr l + l..homo(K) 2 111 110 K ang 

The two new integrals in Eq.(lO)may be combined with the two in 

(10) 
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ihomo( ) to give a final expression involving only two transforms. 
ang K 

It is appropriate at this point to discuss the asymptotic 

behavior of F.q.(6) as K -+ 0 and K -+ oo • 1 . kl4 . In ear ier wor it was 

shown that the aJ(K), JI 0 go to zero as K-+ 0 . One therefore 

can see that Eq.(6)reduces to 

(11) 

where we have used j 0 (Kr) = 1 at K = 0 • Steele7 has shown that 

the isothermal compressibility KT depends only on the average value 

of g(~1R2), i.e., g
000

(r), and that pkTKT is equal to the bracketed 

expression above. Thus 

(12) 

where N is the number of electrons in the molecule. In the case of 

the region where K -+ 00 one obtains the usual result that the total 

scattering approaches the gas scattering curve. This results from the 

fact that for all J , jJ(Kr) -+ 0 as K -+ 00 and thus all the inte

grals of Eq.(6)go to zero in this limit. 
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Numerical Evaluation and Results 

It was decided to evaluate Eq,(5) and Eq.(9) for the chlorine mole-

cule. This required a knowledge of the molecular scattering factor 

coefficients for chlorine and a knowledge of the various gii'm(r) as 

a function of density and temperature. The aJ(K) can be obtained 

either by MO methods or by the Debye method employing the assumption 

14 of independent atomic (IA) scatterers Because of the large atomic 

number of the chlorine atom and the small percentage of bonding elec-

trons in the molecule, the Debye method was used. As further assurance 

of the IA assumption, one may note that the gas scattering calculated 

f h IA h 11 . h . 1 1 20 rom t e approac agrees we wit experimenta va ues • The 

first three coefficients, a
0

(K), a 2 (K), and a 4(K), and the gas 

scattering i (K) , were calculated; numerical values of these func
g 

tions are tabulated in Table I and the coefficients have been plotted 

in Figure 1. It is to be noted that and a 4 (K) are both much 

greater than a
0

(K) at the higher scattering angles. 

The gii'm(r) have been obtained from earlier work
15 

where 

Percus-Yevick solutions were obtained for a two-centered Lennard-Jones 

potential appropriate to chlorine. The density and temperature ranges 

covered by that data define the ranges of the x-ray data in this paper. 

They are: p* = 0.1 to 1. 2; T* = 0.75, 1.00, 1.30 . The potential 

3.754A, 
0 and R* = 0.53 The reduced parameters are 0 = E: = 581. 0 K . 

density and those defined by 21 temperature are Chen and Steele : 

p* 

T* kT/t: (13) 
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TABLE I 
c12 Molecular Scattering Factor Coefficients 

(IA approximation) 
K ao (K) az (K) a4 (K) ig(K) 

o.o 34.0000 o.o o.o 1156.0000 
o.1sg 31.7166 -0.1779 0.0001 1116. 8408 
0.17'd 32.8813 -0.7012 u.0021 1081.67\JC 
0.567 31.5309 -1.5392 0.0105 996. 5640 
0.756 29.7195 -2. 6436 0.0323 890.2390 
0.94 5 27.5219 -3.9525 0.0760 773.0BlO 
1.134 25.0255 -5.3954 0. l 50 9 655.408(' 
1.32 3 22.3219 -6.A988 0.2660 545.93?0 
1.51 2 19.5036 - 8. 3906 0.4288 450.G750 
1.701 16.6593 -9.sosq 0.6451 374.1040 
l.89l) 13.8686 -11.0904 0.9183 316.1790 
2.079 11.1980 -12.2011 1. 2 49 6 21s.83go 
2.268 8.6977 -13.1076 1.6376 250.llt70 
2.457 6 .4055 -13. 7881 2.0785 235.4740 
2.646 4.3468 -14.2347 2. 56 70 228.1370 
2.835 2.5354 -14.4474 3.0963 ?24. 7'-} 1t0 
3.024 0.9753 -14.4332 3.6584 ?. 2 2. 74 '10 
3.213 -0.3368 -14.2061 4.2449 220.119Q 
3. 402 -1.4102 -13.7828 4.8467 215.73 9 0 
3.591 -2.25R2 -13.179<1 5.4537 209.0340 
3.779 -2.8960 -12.4164 6.0548 lq9.97'l0 
3.968 -3.~404 -11.5128 6.6391 ld8.9430 
4.157 -3.6091 -10.4900 7.1949 176.?710 
4.346 -3.7202 -9.3700 7.7103 163.6040 
4.535 -3.6922 -8.1752 8.1735 150.8340 
4.724 -3.5435 -6.9286 a.5724 138.'HlO 
4.913 -3.2926 -5.6534 8.8954 128.5840 
5.10 2 -2.9579 -4.3732 9.1313 120.0620 
5.29 1 -2.5579 -1.1119 9.2706 113.5930 
'i.480 -2.1110 -1.8933 9.3059 109.1660 
5.669 -1.6351 -o. 7396 9.2317 106.5700 
5.858 -1. 14 73 0.3283 9.0446 105.4330 
6.047 -0.6637 1.2917 8.7438 105.2740 
6.236 -0.1091 2.1346 8.3312 105.5650 
6.425 0.2332 2.8437 7.8115 105.7970 
6.614 0 .6216 3.4097 7.1929 105.5460 
6.1303 0.9570 3. 82 73 6.4869 104.5180 
6.992 1.2323 4.0952 5.7073 102.558() 
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The transform integrals in Eq.(9) and Eq.(5) have been evaluated by 

both Filon's method
22 

and the Fast Fourier Transform
23 

with equivalent 

results. Because of the grouping of many terms in the integrand of 

each transform, it appeared possible that functions might occur which 

would be difficult to transform. In the case of chlorine, however, we 

obtained smoothly oscillating integrands which dropped off to less than 

1% of their maximum peak value by r* = 3.00 and which became effec-

tively zero by our upper integration limit of r* = 6.00 • The 

transforms were done piecewise, having broken the integrals into the 

ranges 0 to and x
0 

to 6.00 . For most calculations was 

equal to 0. 70 . In the 0 + x
0 

range, g
000 

( r*) - 1 was taken as just 

-1.0 and the integral Jxfg (r*)-l]j (Kr*)r*2dr* was done analyti-
000 0 

0 
cally. The integrals over the angular correlation functions in the 

range of 0 to x0 were identically zero, since the g££'m (£,£'# 0) 

were zero in this range. When K = 0, the intensity was calculated by 

making use of Eq.(12) and substituting values of KT from the Percus-

Ye vi ck results. 

The final intensity data are collected in Tables II-VII. All 

the tables contain the functions of Eq. (5) as well as the ratio of 

the angular intensity to the total intensity. Tables II-V summarize 

the results for four densities at constant temperature. Tables IV, 

VI, VII summarize the results for three different temperatures at con-

stant density. 

Plots of I(K) and i (K) + i (K) may b.e found in Figure 2 for g 

four different densities at T* = 0.75. It is apparent that the 

angular correlation functions contribute strongly in the region of 
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TABLE II 
X~ray Scattering Functions 

p*=0.50 T*=0.75 R*=0.53 
Ki (K) I ia(_g (K) I 

K ig(K) i(K) iang (K) l (K) ao2 (K) I K) 

o.o 11S6.00 1994.06 o.o 3150.06 o.o o.o 
0. 189 11 ~6.84 512.79 -0.13 1649.50 0.08') -o.ooo 
0.37b 1081.67 -272.44 -1.40 B07.H3 -0.09? - 0. 002 
0.567 9g6.56 -400.36 -5. 59 590.62 -0.228 -0.000 
().756 8Y0.24 -321.94 -13.86 554.45 -0.276 - 0. 02 5 
0.945 773.08 -174.78 -23.46 5 74. 84 -0.218 -0.041 
1.134 655.41 -24.08 -23.98 607.35 -0.044 - 0 .039 
1.32~ 5 1t5.93 58.43 -6.15 598.22 0.155 -0.01 0 
1.512 450.98 50.64 16.29 517.ql 0.201 0.031 
1.701 37't.10 14.57 22.79 411.46 0.084 0.055 
l.R90 31h.18 -4.10 14.66 326.74 -0.040 0 .045 
2.079 275.84 -6.18 2.11 272.37 -0.102 0.010 
?.268 2 50 .15 -2.92 -6.07 241.15 - 0.088 -0.025 
2.457 235.47 -0.44 -9 .10 22'>.93 - 0.026 - G. 040 
2.646 ?28.14 0.22 -7.21 221.15 0.011 -0.033 
2.835 224.79 0.12 -3.03 221.88 0.051 -0.014 
3.024 222.75 0.01 1.01 223.77 0.037 0.005 
3.213 220.12 o.oo 3. 31 ?23.43 0.001 0.015 
3.402 215.74 -0.01 3.21 218.94 -0.0lf_) c.01:. 
1.591 2og.03 -0.03 l. 37 210.18 -0.022 0.007 
3.779 19CJ.98 -o.o' -o. 57 199.38 -0.013 -0.003 
1.968 188.95 -0.01 -1. 36 187.~7 -0.004 -0.007 
4.157 176.57 0.01 -0.88 175.70 0.004 - 0 .005 
4.346 163.60 0.02 0.09 163.72 0.007 0.001 
4.535 150.83 0.02 0.66 l 'j 1 • 5 1 0 .006 0.004 
4. 724 13~.97 0. 01 0.52 139.49 0.003 0.004 
4 .913 1211.58 o.oo -0.01 128.?8 0.001 - o. 000 
5.102 120.06 -o.oo -0.38 119.68 -0.001 -0.003 
5.291 11 3. 59 -o.oo -0.37 113.22 -0.002 -0.003 
5.480 109.17 -o. oo -0. 14 109 . 03 -0.002 -0.001 
5.669 1 Qb. 5 7 -o.oo 0.01 106.64 -0.002 0.001 
5.858 105.43 -o.oo o. 13 105.5b -0.001 0~001 
6.047 105.27 o.oo 0.01 10 5. 34 0.001 0 .001 
6.236 105.57 o.oo 0.01 105.58 0.001 o.ooo 
6.425 105.80 o.oo 0.01 105. 81 o. 001 o.ooo 
6.614 105.55 o.oo 0.04 105.58 0.002 o.ooo 
6.803 104.52 o.oo 0.04 104.56 0. 001 0.000 
6.992 102.56 -o.oo 0.01 102.57 - 0. 000 o.occ 
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TABLE III 

x~ray Scattering functtons 
p*=0.80 T*=0.75 R*=0.53 

-,:. i (K) I iang(K)/ 
K ig(K) i(K) iang (K) I (K) aQ2 (K) I ( K) 

l). 0 115':>.00 11?5.57 l). 0 2281.57 o.o o.o 
0 .189 1136.84 29.44 - o .16 1166.12 0.005 - o. ooo 
0.378 1031.67 - 509. 21 -1.65 570.81 - 0.178 -0. 0 03 
0.567 996.56 -561.26 -6.74 4?8.56 -o. 320 -0.016 
0 .756 890.24 - 4ttG. 71 -17.75 422.78 -0.385 -0.04? 
0.9 45 77"3.08 - 266. 82 -33.41 472.85 -0.33 3 -0. 0 71 
1 . 134 655.41 -59.12 -40.29 555 . 99 - 0 .107 - 0 . 0 72 
1.323 545.93 81.09 -16.07 610.95 0.215 -0.0?6 
1. 512 450.98 82.54 24.25 557.76 0.328 o. 043 
1. 701 3 74 .10 25.39 37.48 436 . 97 0.156 0 . 086 
1.890 316.18 - 5.79 24. 7 3 335.11 -0.057 0.074 
?.079 27">.84 - 9.61 5.89 27 2. 12 -0.15S 0.022 
2.268 2 50. 1 5 -4.65 - s.sg 236.91 -0.139 - 0 .036 
2.457 ?.35.47 -0.78 -14.5 2 2 20. 1 7 -0.047 -0.066 
2.646 228.14 0.31 -12.24 216.21 0 . 04 4 - 0 .057 
?. • 8 3 5 224 .7 9 0.18 -5.67 219 .31 0.081 -0.026 
-~ . 0 24 227..75 0.02 1 . 11 223.88 0.061 0.005 
~.213 220.12 o. oo 5.2 9 225.41 0 .014 0.023 
3.402 215.74 - 0.01 5.42 221 . 14 -0. 0 24 0.025 
3.591 ?.oq.03 -0.05 2.46 211. 44 - o . 034 0.012 
~. 779 199.98 - 0.05 - 0.80 199.13 - 0.0 22 - 0 .004 
3.968 188.95 -0.02 -2.19 1 86. 74 -0.001 -0.012 
4.157 176.57 0.02 -1.46 175.12 0.005 -0.008 
4.346 163.60 0.04 0.12 163.76 0.011 0 .001 
4.535 150.83 o.Q3 1.08 151. 0 4 0.0 10 0.007 
4.724 138.97 0.01 0.86 139.85 0.005 O.()Ofi 

4.913 128 .5 8 o.oo -o.oo 128.58 0.001 -o.ooo 
5.102 120.06 -o. 00 -0.63 119. 43 -o. 001 -0.005 
5.291 113.59 - o.oo -0.64 11 2.95 -0.003 -O.OC6 
5.480 109.17 -o. oo -0.24 108.92 -0.004 -0.002 
5.669 106.57 -o.oo 0.12 106 .69 -0.003 0.001 
5.858 105.43 -1). 00 0.21 105.64 -0.002 0.002 
6.047 105.27 o.oo 0.12 105 .39 o.ooo 0.001 
6.236 105.57 o.oo 0.02 105 .59 0.001 o.ooo 
6.425 105.80 o.oo 0 . 02 105 . 82 0.002 o.ooo 
6.614 105 . 5 5 o.oo 0.06 105.61 0.003 0.001 
6.803 104 .52 o.oo 0.01 104.59 o. 002 0.001 
6.992 102.56 -o.oo 0.02 102.57 -o.ooo o.ooo 
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TABLE IV 
X-ray Scattering Functions 

p*=l.20 T*=0.75 R*=0.53 

K ig (K) i (K) iang ( K) I (K) 
Ki(K)/ 

ao2(K) 
ian~(K)/ 

I K) 

o. o 11s ~ .oo -4 86.67 o. o t-.S9 . 3 3 o. o l.). 0 
().1 89 11 36.84 - 669. 84 -o. 14 4t:. 6. 86 -0.111 -0.000 
0 . 3 78 1081 . 6 7 -7 73 .99 -l. 66 306 . 0 2 - 0 .271 -o. 0(' ':) 

J.567 9 g6 .S6 -7 27.80 -7. 29 261.47 -0.415 -0.028 
0 ~ 756 8 '·W.24 -594.22 -20. 8R 27?.13 -u.509 -0.076 
0 .945 773.08 -392.21 -44.59 3 36.28 -0.489 -0.131 
1.134 655.41 -137.74 -66.08 451.59 -0.24Ci -0.146 
1.323 545.93 88 .11 -42.48 591. 57 0.2,4 -0.01? 
l. 512 45u.98 135.61 32.44 619.01 0.539 0.052 
1 .701 3 74. l u 49.07 64.69 487.87 0.301 0.133 
1.890 316.18 -6.41 44.12 353.89 -0.063 0.125 
2.079 275.84 -14.72 13.46 274.58 -0.244 u. 049 
2.268 2 50 .1 s -7.60 -11.14 231.41 -0.228 -0.048 
2.457 235.47 -1.58 -23.4? 210.44 -0.095 -0.111 
2.646 228.14 0.35 -21.75 206.74 0.049 -0.105 
2.835 224.79 0.28 -11.45 213.63 0.125 - o. O"i4 
3.024 222.75 0.03 0.36 223.15 0.109 0.002 
3.213 220.12 o.oo 8.50 228.62 0.0~4 0.037 
3.402 215.74 -0.02 9.61 Z25.33 -0.034 0.04~ 

,.591 209.03 -o.og 4.73 713.69 -0.053 0.022 
3.779 199.98 -o. 08 -1.00 198.90 -0.038 -0.005 
3.968 188.95 -0. 0 4 -3.55 185.36 -0.015 -0.019 
4.157 176.57 0.01 -2.50 174.0 8 0.004 -0.014 
4 .• 346 163.60 0.05 0.10 163.7~ 0.016 0.001 
,._ 53 5 . 150.83 0.05 1.80 152.69 0 .018 0.012 
4.724 138.97 0.02 1.50 140.49 0.009 0. 01 l 
4.913 128.58 o.oo 0.02 128.61 0.002 o.ooo 
':>.102 120.06 -o.oo -1.11 118.95 -o.ooo -0.009 
5.291 11,.59 -o. 00 -1.15 112.44 -0.003 -0.010 
5. 480 109.17 -0.01 -o. '+6 108.70 -0.007 -O.OC4 
5.669 l 06. 5 7 -o. oo 0.19 106.75 -0.001 0.002 
5.858 105.43 -o.oo 0.37 105.RO -0.003 0.004 
6.047 105.27 - o. oo 0.22 105.49 -o.ooo 0.002 
6.236 10':>.57 o.oo 0.05 105.61 0.001 o.ooo 
6.425 105.80 0. 0 0 0.04 105.84 0.004 o.ooo 
6.614 105.55 o. oo 0.12 105.67 0.006 0.001 
6.80 3 104.52 o.oo 0.13 104.65 0.005 0.001 
6.992 102.56 o.oo 0.04 102.60 0.001 o.ooo 
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TABLE v 
X-ray Scattering Functions 

p*=l.50 T*=0.75 R*=0.53 
~ i (K) I ian~(K)/ 

K i (K) i (K) iang(K) I (K) a02 (K) I K) 
g 

'J . 0 11')6.00 - 800.63 o.o 265.37 o.o o.o 
j • }FF.J 1136.84 -qz3.66 - 0.17- 21 3.06 -0.154 -0.001 
0.378 1081.67 -905.89 -1. 52 174.2 7 -0.317 -0.0QQ 

0.567 9G6.5o -824.12 -7.15 165.29 -0.470 -0.041 
0.75o Rg0.24 - 684.47 -21.98 183.79 -o. 58"' -0. l ~ 0 

0.94'-1 773.08 -484.96 -51.52 ?36.60 -0.605 -0.218 
l. 134 655.41 -223.63 -88.86 342.92 -0.405 -0.259 
l • 3 2 3 545.93 55.04 -79. 91 521.07 0.146 -0.153 
1. 512 _;.50. 98 181.94 30. 11 A63.0? 0.723 0.045 
1.701 3 7<-t. 10 83.21 98.?7 555.88 0.510 0.177 
1.890 316. 18 -3.67 68.79 381.30 -0.036 0.180 
2 • fJ 79 2 75. 84 -19. 19 23.94 2so.sq -0.318 0.085 
2.268 250.15 -10.73 -12.02 227.41 -0.3:?2 -0.053 
2.457 235.47 -2.69 -32.68 200.10 -0.161 -G.163 
?..646 2?8.14 0.24 -33.12 195.25 0.033 -0.170 
?.835 ?.?.4.79 0.37 -19.36 ?05.RO 0.162 -0.094 
3.024 222.75 0.05 -1.77 221.03 0.167 -().008 

3.213 220.12 o.oo 11.66 ?.31.79 0.067 0.050 
3.402 215.74 -0.02 l'+· 76 230.48 -0.036 0.064 
3.591 209.03 -0.10 7.83 216.7.S -0.072 0.036 
3.77q 199.98 -0.12 -o. g5 198.Cll -0. 0'?6 -0.005 
3.968 188.g5 -0.013 -4.98 183.88 -0.010 -o.n21 
4.157 l 76. 5 7 -0.01 ~3.69 172.87 -O.OJ3 -0.021 
4.346 1 63. 60 0.07 a.oz 163.69 0.021 o.ooo 
4.535 150.83 0.08 2.5q 153.51 0.')28 0.017 
4.724 138.97 0.04 2.2s 141. 26 0 .015 0.016 
4 • 9 l '3 l?.8.58 0.01 0.06 128.65 0.004 o.ooo 
5.10? 120.06 o.ao -l.68 ll8.3R 0. 0 'J3 -C.014 
5.291 113.5g -o.oo -1.79 111.80 -0.001 -0.0lfi 
5 .4.80 109.17 -0.01 -0.76 108.40 -0.010 -0.007 
5.669 106.57 -0. 01 0.25 1J6 .82 -0.013 0.002 
5.858 105.43 -o.oo 0.57 106.00 -o. ;)07 0.005 
6.047 105.27 -o.oo 0.34 105.62 -0.00? 0.003 
6.236 105.':i7 o.oo O.OH 105.65 0.001 0.001 . 

0.07 6.425 lJ':). ~o o.oo 105.86 0.006 0.001 
6.614 l 0 5 • s ') o. oo J.19 105.74 ·~.011 0.002 
6.803 104.52 o.oo 0.22 104.74 0.009 0.002 
6.gqz 102.56 o.oo 0.08 102.()4 0.002 0.001 
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TABLE VI 
X-ray Scattering Functions 

p*=l.20 T*=l.00 R*=0.53 

ig (K) i (K) iang (K) I (K) 
tcifK)/ iang (K) I 

K a
0 

(K) I (K) · 

o.o 1156.00 -748.10 o.o 4 0 7. GO o.o o.o 
0. 189 1136.84 -7q5. 73 -0.12 340.99 -0.132 -o.ooo 
C.378 1081.67 -806.97 - l.5n 273.14 -0. 2 82 -O.OC6 
o.567 996.56 -733.27 -7.05 256.24 -0.41 8 -0.028 
0.756 aqo.24 -589.12 -20.1 8 2so.g5 -o. 504 -0.012 
C1. G45 777>.08 -380.95 -42. 7i7 349.76 -0.475 -0.121 
1.134 655.41 -125.21 -60. 82 469.38 -0.227 -0.130 
1.323 545. 9 3 90.61 -36. 84 5.99. 70 0.241 -0.061 
1. 512 450.98 126.20 29.00 606.17 0.502 0.048 
1.701 374.10 44.76 56.30 4 75. l 7 0.274 0.118 
1.890 316.18 -5 • .52 39. 14 -;49. 80 -0.054 0.112 
2. 079 275.84 -13. 37 12.79 275.26 -0.222 0.046 
2.268 250.15 -7.02 -8.45 234.68 - o. 211 -0.036 
2.457 235 .47 -1.52 -19. 32 214.64 -0.091 - o. 090 
2.646 228.14 0.29 -18.57 209.85 0.041 -0.089 
2.835 224.79 o.25 -10.52 214.'H 0. 111 -o. 049 
3.024 222.75 0.03 -0. 87 221.91 0.099 -0.004 
3.213 220.12 o.oo 6.22 226.34 0.035 0.021 
3.402 215.74 -0.01 7.9G 223.71 -0.026 0.036 
3.591 zoo.03 -0.01 4.68 213.65 -0.047 0.022 
3.779 199.98 -o. 08 -0.01 i9g.s3 -o. 036 -o.ooo 
~.968 188.95 -0.04 -2.74 186.17 -0.014 -0.015 
4.157 1 76.57 0.01 -2.41 174.17 0.003 -0.014 
4.346 163.60 0.04 -0.39 163.25 0.013 -o. 002 
4.535 150. 83 0.04 1.27 152.15 0.01 5 0.008 
4.724 138.97 0.02 1. 41 140.40 0.009 0.010 
4 • . 913 128.58 0.01 0. 31:3 128.97 0.002 0.003 
~.102 120.06 -o.oo -0.65 119.41 -0.001 -0.005 
5. 2<H 113.59 -o. 00 -o. 93 112 .66 -0.002 -0.008 
5.480 lJq.17 -o.oo -0.5'3 108.63 -0.004 -0.005 
5.669 106.57 -o.oo -0.01 106.56 -0.005 -o.ooo 
5.858 105.43 -o. oo o.?1 105.67 -0.003 0.002 
6.047 lOS.27 - o. :)0 0. lf3 10 5. 45 -0.001 0.002 
6.236 105.57 o.oo 0.05 105.61 0.001 o.ooo 
6.42? 1 05. 80 o.oo 0.02 lO'":i.82 0.002 o.voo 
A.614 105.55 o.oa 0.08 105.63 o. 004 0.001 
6.803 104.52 o.oo 0.12 104.63 0.004 0.001 
6.992 102.56 o.oo 0.07 102.63 0.002 0.001 
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TABLE VII 

X-ray Scattering Functions 
p*=l. 20 T*=l. 30 R*=0.53 

i (K) i (K) . iang( K) I (K) 
d~K)/ ~~~1(K)/ K a0 (K) g 

o. o ll':> o . 00 -1316.47 o.o Hg. 53 o . o (). 0 
0. 189 ll36.R4 - 848.'16 -o. 10 287.7R -0.141 -u.ooo 
0 .378 1081.67 - 626 .07 -1. 1.q ?54.ll - 0 .Z RS - 0 .0 06 
0 . 5 i:, 7 99 6 .56 -737.16 -6. 83 252 . 513 -0.420 -0.027 
0.756 890.24 -584. 96 -19.51 285 .77 -o. 501 -0.06il 
8 .945 77 3.08 -371. 90 -40.4!3 360.70 -0.464 -0.112 
1. 1 34 655.41 -116. 26 -56. 82 482.33 -0.210 - 1J .ll8 
1 .323 51~ 5. 9 3 90.00 -33.42 602.51 0.23S -o. 055 
1 • 512 45 0 .q8 118.24 25.53 5g4.74 0.470 O.C43 
1 .701 374 .10 42.13 50.19 466.'t8 0.259 O.lOR 
1.890 316.18 -4.37 35.93 347.74 -o. 043 0.103 
2.079 275.84 -12.18 12.75 276.41 -0.202 0.046 
2 .268 250.15 -6.59 -6.19 237.17 -0.197 -0.026 
2.457 235.47 -1.51 -16.21 217.73 -0.090 -0.()75 
2 . 646 22R.14 0.22 -16.35 212.01 0.031 -0.077 
2.835 224.79 0.22 -10.00 215.02 0.0<19 -0.046 
3.024 2 22. 75 0.03 -l.88 220.90 0.092 -0.009 
3. 21 3 220.12 o.oo 4.52 224 .. 64 0.037 O.O?O 
3 .40? 215.74 -0.01 6.78 2 2 2. 51 -0.018 0.030 
3.591 2 <')9 .03 -0.06 4.62 213.5g -0.042 0.022 
3 .779 199.98 -o. 08 0.63 200.54 -0.034 0.003 
3 .q68 189.95 -0.04 -2.07 186. 84 -0.015 -0.011 
4.157 176.57 o.oo -2.26 174.31 0.001 -0.011 
4.346 163.60 0.03 -0.74 162.90 0.01 0 -0.005 
4.515 150.83 0.04 0 .83 151.71 0.01 3 o. 00':5 
4. 7 .24 138.97 0.02 1.27 140.27 0.009 0.009 
4.913 128.58 0.01 0.60 129.l<;l 0.003 0.005 
s.102 lZQ.06 -o. oo -0.31 119.75 -o.ooo -0.003 
s.2q1 113.5q -o.oo -0.73 1 12.86 -0.002 -0.006 
5.480 109.17 -o.oo -0.54 108 .62 -0.003 -0.005 
5.66Q 106.57 -o.oo -0.13 106.44 -0.004 -0.001 
5.858 105 .43 -o. 00 0.13 105.56 -0.003 0.001 
6.047 105.27 - o.oo 0 .14 10?.41 -0.001 0 .001 
6 .236 l 05. 5 7 o.oo 0.05 105.61 o.ooo o.ooo 
6 .425 l 05. 80 o.oo 0.01 l 05. f\ l 0.001 o.ooo 
6 .614 105.55 o.oo 0.05 105.60 0.002 o.ooo 
6.803 104.52 o. oo 0.10 104.61 0.003 c.001 
6.992 102.56 o.oo 0.08 102.64 0.002 0.001 
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K = 1.0 to 3.5 • Shifts of the main peak as i (K) 
ang is in cl ude d are 

noticeable at all densities and always seem to be in the direction of 

higher K . The main peak height of the 

creased at lower densities by i (K) 
ang 

i (K) +i(K) curve is de-
g 

and is increased at higher 

densities. To show the differences between intensities including and 

excluding i (K) 
ang 

p* = 1.2 , T* = 0. 75 

more clearly, Ki(K) vs. K[i(K) +i (K)] for 
ang 

has been plotted in Figure 3. It is clear that 

the spherical intensity contribution occurs only in the region of the 

first I(K) peak and the valley which follows. The angular intensity, 

however, is a significant contribution out to a small third peak. 

Other density effects on the total scattering curve can also be 

seen in Figure 2. As expected, the curves show a strong increase in 

structure with density. The main peak shifts to higher K with 

increasing density, reflecting closer packing of the molecules. It may 

also be seen that the I(O) values given byEq(l~ decrease with increas-

ing density over the range covered by these graphs, reflecting the trend 

to lower compressibilities of increasingly dense fluids. Although not 

shown here, it was also found that decreasing the density below 

p* = 0.5 produces a decrease in these intercept values, finally 

approaching N2 at zero density. The fact that a maximum occurs in the 

intercept values merely reflects a density region where critical beha-

vior is becoming observable. 

For all states covered in this work, the percentage contribu-

tion of the angular intensity to the total scattered intensity has been 

determined. Experimental errors in liquid diffraction work are in the 

range of ±2 to 5% and these percentages must be surpassed if angular 
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contributions are to be experimentally measurable. From Tables II-V 

it can be seen that at T* = 0.75 the angular contributions amount to 

4 to 5% maximum at p* 0.5 , 7 to 8% at p* = 0.8 , 13 to 14% at 

p* = 1.2 , and 17 to 20% at p* = 1.5 . These percentages occur pri-

marily on the main peak. The contributions in the region of the 

second minima run 2 to 3% less than these figures. It is clear that 

these percentages, particularly at higher densities, exceed experimen-

tal error. 

In Figure 4 one can observe the effect of temperature on total 

intensity. Data have been plotted for p* = 1.2 and T* = 0.75, 1.30, 

and the low K part of T* = 1.00 . Only the lower section of the 

T* = 1.00 curve was plotted since this is the only region where the 

curve does not fit closely between the other two temperatures. The 

small differences that do occur beyond K = 2.2 are primarily due to 

changes in the angular intensity since the spherical contribution is 

practically zero in this range. Because temperature differences are 

relatively small at higher K , it was concluded that over our range 

of states temperature is a weak variable. 

We have selectively included the various angular g££'m(r) in 

the intensity calculations in order to find which ones are most signi-

ficant. The state chosen was p* 1.2 , T* = 0.75 , and the results 

are plotted in Figures 5 and 6. Figure 5 shows the fluid intensity 

fmi.ction K[i(K) +i (K)] 
ang 

as a function of the Figure 6 

shows the dependence of the total intensity on the g££'m It is 

found that if just g400 is set equal to zero, the K[i(K) +i (K)] 
ang 

curve differs only slightly from the case where all the g££ •m are 
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included. Compare curves 3 and 4 of Figure 5. The total intensity 

curve changed by an amount too small to be seen on the scale of Figure 

6. Differences in l(K) were limited to less than 0.6% in the range 

-1 1 
below 4.0A ; the greatest differences occurred between 4.0 and 6.0A-

but at no time exceeded 1%. In the case of i (K), it was apparent 
ang 

-1 
that large changes occurred beyond 4.0A when g400 was set equal to 

zero. These changes, however, did not show up in the total intensity 

for our p* = 1.2 
-1 

state, since beyond 4.0A the entire i (K) 
ang 

accounted for only 1% or less of the total scattered radiation. At 

still higher densities than studied here, it is expected that the con-

tribution of iang(K) 

omission of g400 (r) 

will increase and errors in it due to the 

will become more important. 

The 200 series g££'m(r) contributes most heavily to the 

intensity curves in the range 
-1 

K = 0.9 to 3.8A . 

intensity between the curves when all the 

Differences in total 

are included and when 

g
221

, g
222 

are zero are quite small, amounting to no more than 1% and 

typically being lower at about 0.5%. When g220 is also zero (Figure 

6, curve 3), differences reach as high as 8% and typically run about 

4 or 5% in the region of K = 2.0 to 3.0 . Finally when g
200 

is set 

equal to zero as well (Figure 6, curve 1), the full difference between 

l(K) and ig(K) +i(K) is obtained (except for a negligible g
400 

contribution). Note the large effect of g200 on the main peak. One 

may therefore view the dense fluid contribution to the chlorine inten-

sity as being determined to first order by just g
000

, g200 , and g220 . 

Comparison of our intensity curves with presently available 

experimental data is quite limited. The only data known to us is the 
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24 
work of Gamertsfelder • Only one state was studied and that was the 

0 liquid along the coexistence curve at 25 C, a state with a much 

higher density and lower temperature than any of our states. Never-

theless a comparison was made in which it was found that our state of 

p* = 1.5 , T* = 0.75 had peak locations of 1.53, 3.32 whereas 

Gamertsfelder's state had locations of 1.53, 3.58 • The agreement of 

first peak locations is encouraging, but since extrapolation of either 

set of data to a common density is not possible, little more than a 

generally correct range is indicated. Furthermore, there are probably 

significant errors in the experimental data due to the outdated tech-

niques. 

The program we have used was checked in part by calculating the 

total intensity curve from a g(r) for one of the thermodynamic 

states of argon and comparing it with the results of an earlier calcu-

1 
. 25 ation • The two calculations were in agreement, indicating that the 

spherical intensity terms i (K) 
g 

and i(K) were being computed 

properly. The mere existence of our l(K) second peak in the same 

general area as the experimental second peak provides confidence in 

the angular section of the program. From Figure 2 one can see that 

the spherical intensity does not account for this peak at all and 

shows little tendency to do so even at the highest density. Since 

the spherical intensity looks so little like the experimental data 

and yet the total curve does, it would appear that the angular contri-

butions are qualitatively correct. 
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Inversion of Data 

If one attempts to obtain a single function of all the 

g.Q,.Q, 'm (r) from Eq.(4) by the usual method of Fourier transformation, it 

is found that this equation does not easily lend itself to such an 

approach. The principal problem is that the trigonometric expansions 

of the j
1

(Kr) which appear in the angular intensity integrals lead 

to sums of terms involving !/Kn sin Kr or n l/K cos Kr , where n 

takes on various values. The equation may not then be separated with 

K dependence on one side and a typical Fourie.r integral over an r 

dependent function on the other, thereby allowing the Fourier transform 

to be taken, since there is no single Kn multiplier which will lead to 

this form. 

Instead an alternative approach may be taken. It is workable 

from a purely theoretical standpoint but will prove difficult to use 

in experimental situations. We first describe the approach and then 

turn to the practical difficulties of applying it. 

The approach is to calculate the higher g.Q,.Q,'m(r) and i (K) 
ang 

from theory and then to determine g000 (r) by Fourier transformation 

of the equation 

00 

0 (14) 

It is known that an x-ray experiment will determine only one function 

. 1 26 d h h . i h. h ·11 • ld . unique y , an ence we ave written an equat on w ic wi + yie Just 

one particular g.Q,.Q,'m(r). We single out g000 (r) for Fourier deter

mination (rather than direct theoretical evaluation) because it is the 
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largest contributor of all the gtt'm to the total scattered intensity. 

Setting Ki(K) equal to the left hand side of Eql14), Fourier 

inversion will lead to 

00 

r [ gooo ( r) - 1 J (15) 

which is the form of the transformation equation used in spherical 

systems. The calculation of g000 (r) is possible if EqQ.SJ can be 

evaluated. Certainly if a0 (K) has no zeros, as in the case of H2o 

. h 1 1 h 27 h . 1 b wit mo ecu ar center at t e oxygen atom , t e integra can e 

evaluated by standard Fourier techniques. In general, however, a0 (K) 

14 does have zeros and it must be shown that they do not mathematically 

prevent the inve~sion. 

Rao16 has stated that zeros in the F (K) of the Menke equa
e 

tion lead to singularities in the Fourier kernel and prevent the 

inversion of the intensity data. Theoretically, however, such singu-

larities never occur. From Eq.(1~ it can be seen that Ki(K) must be 

zero whenever a
0

(K) is zero. The ratio Ki(K)/la0 i2 is therefore 

of the form "O /O" and is indeterminate, not singular. The form of 

this ratio at the nth root of a
0

(K) , K , is determined by recog
n 

nizing that the ratio is given by the integral on the right hand side 

of Eq(14). If the integral is Taylor expanded about the root K , then 
n 

to first order the integral is given by c1nK + c2n. 

If one has extremely accurate data for Ki(K) and ia0 i
2 

, 

and c2n may be determined numerically from curve fitting the data 

in the region of the zero. Ki(K) may be fitted by A_ (K -K ) 
3 + 

--in n 
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2 

A_ (K - K ) 
--zn n and may be fitted by 2 

A
3 

(K - K ) • Note that n n 

both curves have zero slope at the root point as is required by the 

derivative of I ao (K) 1
2 

= F(K) , F' (K) = 21 ao (K) II ao (K) I' Taking 

the ratio of these curves and rearranging, one obtains 

cln = 

Eq.(15)may then be evaluated by breaking the integral into sections, 

splitting out the regions arotm.d the zeros of a
0

(K) and representing 

them by c
1

nK + c2n . The result is 

n Kn+l-E 
2 u 

KJ+E 

Ki(K) 
27T pr [gooo ( r) - l] = l sin Kr dK 

n=O I aol2 n n 2c
1 

u 
+ l {--f-CKnr sin K r sin Er -er cos K r cos Er+ cos K r sin Er) 

n n n n=l r 

2c2n 
+ -- sin K r sin Er} 

r n 
(16) 

where the interval about each zero is K - E to K +E , K =-E 
n n o 

n denotes the upper root considered, and K +l - E has been chosen 
u nu 

as the trtm.cation value of the integral. 

While formulas of the type of Eq,(16) may be derived to handle 

the Fourier inversion, they are difficult to apply to real experimental 

data. The difficulty arises when one realizes that the quantity 

iexptl(K) = Iexptl(K) - i (K) - i (K) 
g ang 

will seldom give zeros at the root points of a
0

(K) , yet this condi-

tion must be met if inversion is to be accurate. The combination of 

experimental and normalization error in exptl I (K) and the error due 
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to an incorrect theoretical potential in the calculation of 

are the principal sources of trouble. 

i (K) 
ang 

In the case of chlorine the situation is quite bad. The 

quantity Ki(K) is given by the dotted line of Figure 3 and clearly 

becomes a very small number after 
-1 

K = 2.7A . However, 

also becomes quite small beyond this value of K and the ratio 

Ki(K) I la
0

J
2 is considerably longer ranged, as may be seen in Figure 

7. Even a slight error in the calculation of iexptl(K) will there-

fore lead to great errors in the transform function beyond -1 
K = 2.7A . 

Since i (K) accounts for nearly all of the chlorine intensity in 
ang 

this high K region, accurate inversion would require us to calculate 

i . (K) for chlorine to a very high degree of accuracy and with our 
ang 

present knowledge of angular potentials and fluid equations of state, 

this is virtually impossible. We must therefore conclude that while 

inversion of Eajl~is possible, experimental inversion is not in 

general practical. 
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Discussion 

It has been seen that angular correlations play a significant 

role in determining the x-ray scattering pattern of chlorine. The 

fact that these correlations become apparent in the case of chlorine 

is traceable to the relatively large length to width ratio of the 

molecule and an increased likelihood of a rodlike packing arrangement. 

It is also related to the forms of the scattering factor coefficients. 

As seen in Figure 1, a0 (K) drops off rapidly at higher K while 

a
2 

(K) and a
4 

(K) are quite large. From Rq.(6)it can be seen that this 

causes the spherical intensity to drop off at high K while the 

angular intensity increases as its a2 (K) and a
4

(K) factors increase. 

In the region of 
-1 

K = 3.2A , where the second peak appears in 

the total intensity spectrum, chlorine is a somewhat special diatomic 

in that the a2 (K) term is much larger, by nearly an order of mag

nitude, than the a
0

(K) . Even a
4

(K) is larger than a0 (K) in this 

range. 0 h 1 1 h . 14 d h h" t er mo ecu es, sue as nitrogen , o not s ow t is 

dominance lID.til well beyond the second peak where fluid structure con-

"b . d" . . h. 28 
tr1 ut1ons are 1m1n1s 1ng • A short bond length in nitrogen is 

responsible for this occurrence. 

Because angular correlations do con tribute noticeably to the 

spectrum of chlorine, it is to be expected that they will play impor-

tant roles in determining the scattering behavior of certain other 

polyatomic molecules. In the case of molecules of more extreme length, 

the higher aJ(K) will dominate the a0 (K) coefficient in even lower 

regions of space provided atoms of great scattering power are not 

located near the center of the molecule. Also, the higher order 
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gii 'm should be larger due to increased repulsive overlap in certain 

orientati ons. Polar molecules will have the added contributions to 

the angul ar intensity from g110 (r) and g111 (r) type terms as 

indicated in Eq,(10). Applying the modified Stockmayer potential to a 

* * moderate l ength and moderate strength molecule (t = 1.0 , R = 0.4), 

Sweet 29 showed that it would yield g110 (r) and g111 (r) functions 

which are greater in magnitude than the g
200 

term. These should 

therefore be strong contributors to the scattering expression, and 

preliminary calculations in this laboratory on methyl fluoride show 

this to be true. 

The pngular intensity results for chlorine show that, in 

general, one must interpret the total intensity spectra for molecules 

in terms of both spherical and angular contributions. In particular 

they indicate that one must be quite careful in applying the Menke and 

Zachariasen theory since the total intensity expression of that theory 

only includes spherical terms. Furthermore the chlorine results show 

that the total intensity curve will not necessarily contain features 

that will immediately suggest whether or not angular correlation 

effects should be taken into account since the total intensity curves 

obtained are qualitatively quite similar to those obtained for spheri-

30 
cal systems 

The various sources of error in this calculation must now be 

considered. One such source is the original choice of potential. This 

choice has been discussed previously
15

, but it should be stressed 

again that the particular choice of R (the interaction separation 

distance) may be critical. If a much shorter potential separation 
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12 

distance such as that used by Sweet had been chosen for chlorine, 

the percentage contribution of the angular intensity would have been 

decreased, possibly down to the region of experimental error. The 

shorter separation distance would then have required one to proceed to 

longer molecules, particularly those with strong scattering centers 

near the ends, in order to find a system from which one could obtain 

a percentage contribution of the size found in this work. 

Another possible source of error is the basic Percus-Yevick 

approximation, but the past agreement between the Fourier transforms 

of Percus-Yevick spherical distribution functions and the correspond-

. 25 31 ing molecular dynamics transforms ' implies that the error is small 

for our nonspherical case. A more likely source of error for the 

present work is the inaccuracy of the computed g££'m resulting from 

truncation of the H(_g
1
!-i_) series in numerically solving the Percus-

Y . k . 1 . 15 evic integra equations • To determine the size of such truncation 

errors in our intensity results, g££'m functions obtained from two 

different H(g
1
!-i_) truncations were used to calculate the total inten

sity at p* = 1.0 , T* = 0.75 • The two functions differed by less 

than 2% up to K = 0.35 A-l and by less than 1% above this K value. 

· It is possible that the SP equation might be useful in future 

research for examining the accuracy of diatomic potentials. One route 

of investigation would be to see how well a given potential, assumed 

not vastly different from the one used here, would predict the form of 

the intensity curve in regions of high angular contribution when com-

bined with a suitable equation of state such as the Percus-Yevick 

theory. However, if the intensity for nonspherical molecules shows as 
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weak a dependence on the detailed form of the intermolecular potential 

25 as the intensity for argon shows , useful information about the 

potential may be obtained only with great difficulty. The fact that 

the total intensity for chlorine appears qualitatively similar to that 

for argon suggests that a potential possessing no angular dependence 

at all may be fotmd which will account for the intensity, thus indi-

eating that a weak intensity-potential dependence may indeed be the 

Th lt t · t f bt · · ( ) from 1.exptl(K) case. e a erna ive rou e o o aining g
000 

r 

and Eq0.5) and comparing it with a theoretical g
000

(r) will also be 

very difficult due to the inversion difficulties. 

In summary, we have shown that angular correlations can play 

a role in the molecular scattering of x-rays and have indicated some 

of the conditions required for this effect to be large. We have also 

shown that, presently, the Steele-Pecora equation has the only hope 

of treating this scattering, and we have presented the rather 

stringent condition for Fourier inversion of the molecular scattering 

data. 
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Figure Captions 

Figure 1. Chlorine molecular scattering factor coefficients. Curves 

1, 2, and 3 refer to a0 (K), a2 (K), and a
4

(K) respec

tively. Ordinate tmits are electrons. 

Figure 2. Total scattered intensity for four states at constant tern-

perature. The broken curve is i g(K) + i (K) . The solid 

curve is l(K) Intensity tmits are square electrons. 

Figure 3. Fluid intensity curves for p* = 1.2 , T* = 0.75 . The 

spherical contribution Ki(K) is given by the broken 

curve and the total fluid contribution K[i(K) +i (K)] 
ang 

is given by the solid curve. Ordinate units are square 

electrons/A • 

Figure 4. Total scattered intensity for varying temperature at 

.Figure 5. 

p*= 1.2. Curve 1: T*= 0.75; Curve 2: T*= 1.30. 

The dashed curve is the initial part of the T* = 1.00 

isotherm. Intensity is in square electrons. 

Fluid intensity curves 

contributions of the 

K[i(K) + i (K)) 
ang 

gU,'m ' The state is 

showing various 

* p = 1.2 , 

T* = 0.75 . Curve 1: g000 only; Curve 2: g000 , g200 , g
400 

included; Curve 3: all gi~'m included (it is nearly un

changed if g221 , g222 = O). Curve 4 is identical to 

Curve 3 except in the dotted region which shows the area 

of g
400 

contribution. Ordinate units are square elec

trons/ A . 
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Figure 6. Total intensity showing various contributions of the 

Figure 7. 

Curve 1: g000 only; Curve 2: all gii'm included. 

Curve 3: g000 , g200 , g400 included. Intensity units are 

square electrons. 

The Fourier transform function 

-1 
are A . 

Units 
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Appendix 1 

SCATTERING INTEGRAL EXPANSIONS 

In this appendix details of the harmonic expansions of the 

scattering integrals given in Part II are given. In that section the 

derivation of the expansion for <sAlexp(iK".E.)lzB> was presented but 

only the results were given for the other integrals. Thus, the expan-

sions for <sAlexp(i~·_!.) lsB> , <zAlexp(iK•_!.) lzB> , <xAlexp(i~·.E.) lxB> 

+ < y A I exp (i~·.!.I yB> and those where center A = center B will be given 

here. Some equations and tables in Part II are used here and are 

referred to by number only. e - exp(i~·_!.), a is the Gaussian exponent 

on center A , and S is the exponent on center B . 

This integral is the (ls,alflls,b) integral of McWeeny. Allow-

ing for our coordinate system and using the definitions of G and q 

in Table I, this integral becomes 

( 4 ) -1/2 G [ iK(S-a)R/2 • ~ TI exp - -
(a+S) 

-1/2 
(4n) G exp(iq cos 6) (1-1) 

Spherical wave expand the exponential to give 

The coefficient of each harmonic is therefore 

(1-2) 
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<s lels >, <s lels > 
A A B B 

These integrals are the same as the last one except that both 

Gaussians are now on a common center. The differences between 

<sAlelsB> and <sAlelsA> or <sBlelsB> are general and hold for all 

the integral types treated here. 

We first adapt McWeeny's results, given with the Gaussians on 

different centers, to the case where they are on the same center, A 

In his notation A and B are the vectors from the origin to each of 

the two Gaussians. Since we are taking the origin to be at the mid-

point of the internuclear axis (see Fig. 1, Section II), A =-B:/2 , 

B -B:/2 , and McWeeny's result becomes 

(~)3/2 
a+S 

Denote by G 
0 

[ -4af3(!-~) 2 - K
2
+ 4iK(a! + S~) 

exp 
4(a+S) 

G when R = 0 Thus 

( 4 7T) - l I 2 G exp ( -iK R • K) 
0 2 -

(1-3) 

As before, if the exponential is spherical wave expanded, the desired 

coefficient may be obtained as 

<s lels > = 
A A J 

G ( 2J+l)l/2 (-)J/2 j (- KR) 
0 J 2 (1-4) 

The <sBlelsB>J coefficient is obtained in the same manner except that 

A = R/2 and B = !_/2 . Hence 
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< SB/ e / sB > J = Go(2J+l)l/2 (-)J/2 jJ(~R) (1-5) 

We have the rules therefore, that for integrals whose Gaussians share 

a common center, R = 0 except in q , q being replaced by -KR/2 if 

the common center is A and by KR/2 if the common center is B 

<z /e/s > 
A B 

This integral is the same as that derived in Section II except 

that A and B have been reversed. This is the (ls,b/f/2p,a) 

integral of McWeeny and is equal to 

s A A A A A 

I
3 

= a A(2af3R • ~ + iKa~ • k) exp (i~ • ~q) I (a+S) 

this equation being the counterpart of Eq. (7). An inspection of the 

constants between the two equations followed by investigation of their 

behavior through Eqs. (10-13) easily shows that the final result for 

the I
3 

coefficient is 

G( 2J+l)l/2 SR (-)J/2 jJ(q) 
a+S 

J+l 
+ KG l 

2(a+S) L=J-l 

L 1 only if J = 0 

L+l 

(2L+l) (-) 2 jL(q)c2(LlJ;OO) 
(2J+l)l/2 

(1-6) 

This is the (2p,a/f /2p,b) integral of McWeeny and is given by 
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A A A 

= 
4
;S (4n)-l/Z G exp(i~·R) 

2aSR • k + iKaK • k {< - - - -) 
a+S 

A A A 

-2aSR • k+ iKSK • k 2aSk • ~ 
x ( - ~ + S - -) + a+ S } 

A A 

Note that K • R and K • k = cos 8 . If the exponential is now ex-

panded and the bracketed expression is expanded as well, one obtains 

2 
[-as R G + G ] 

(a+S)2 2(a+S) 

00 

l (2J+l)l/Z iJ jJ(q) YJ,0(8,¢) 
J=O 

+ K(S-a)R 

2(a+S) 2 

00 

G l (2£+1) 1 / 2 i£+l j£(q) cos 8 Y£,0(8,¢) 
£=0 

K2G ~ (2n+l)l/2 i£ J' n(q) 2 
2 l )(, )(, cos 8 Y i ,o<8,¢) 

4(a+B) £=0 
(1-7) 

The latter two series each contain a n 
cos (8)Yi,o(8,¢ ) type term. If 

the cosine terms are expressed as spherical harmonics, then the har-

manic product may be coupled to give a single harmonic expansion by 

using Eq. (11). Now 

or 

2 1 lff6n cos 8 = - + - ~- Y 
3 3 5 2,0 

Also 

r;;;-
cos 8 = V 3 \,o 

So from Eq. (11) 



-204-

£+2 l 
28 y (8 ,+, ) 1 y (8 ,+,) +~ \ [ (2£+1)] 2 

cos n,o ,'t' = -3 n,o ,'t' 3 l (2' 1) 
N N ;\=I i-21 /\+ 

2 
c (£2;\;00)YA,0(8,cjl) 

i+l 2i+1 1/2 
= l (-) 

>-=li-11 2A+l 

(2) 

(2) 

Substituting these equations into (1-7) yields 

co 

(1-8) 

(1-9) 

2 2 
I = [-as R G + G - K G ] 

4 (a+S)2 2(a+S) 12(a+S)2 
l (2J+l)

1
/

2 
iJ jJ(q)YJ,0(8,cjl) 

J=O 

+ K(S-a)RG 

2(a+S) 2 

co 

2£+1 .i. () 2(£2A ) (8 cjl) 
(2A+l)l/2 i Ji q c ;00 YA,0 , 

The last two series are not arranged so as to immediately yield an 

expression for the Jth harmonic coefficient. A study of the summation 

indices indicates that a rearrangement is possible however. A and £ 

in the summation indices (only) may be interchanged. After inter-
l.+l 

change it is to be noted that when A. = O, Q, = 1 only in the l 
;\+2 £=1>--11 

series; when A = 0 in the r series, i = 2 only and when 
£= A-21 

;\ = 1 , Q, = 1 and 3 only. 

Identifying A with J , 

2 K2G 
[-aB R G G ](2J+l)l/2(-)J/2j (q) + 

(a+S)2 + 2(a+S) - 12(a+S)2 J 



+ K(S-a)RG Jil 21+1 

2(a+B) 2 L=TJ-11 (2J+l) 1/ 2 

(2) 

J+2 21+1 

1=tJ-21 (2J+l)l/2 
(2) 
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L+l 

c
2

(11J;OO)(-) 2 j
1

(q) 

(-)1 / 2 j (q) c2 (12J;OO) 
L 

(1-10) 

so desired. However, this work is restricted to a study of linear 

molecules, and hence cylindrical symmetry must apply to the expression 

Eq. (6). This in turn requires that the coefficients of each of these 

integrals must be equal and hence one may deal exclusively with the 

sum of these two integrals. 

These integrals are also given by the (2p,alfl2p,b) results of 

McWeeny but with different projection vectors _§_B,~ Hence, 

"' "' "' 2aBR • i + iKaK • i 
1 -1/2 "' "' {C - - -) 

= 4aS(47T) Gexp(i'l!S_•B) a+S 

"' "' "' "' "' -2aSR • i + iKSK • i 2aSi • i 
x ( - ~+S - -) + a~S - } 

where i, i• k denote unit vectors along the x,y,z axes respectively. 
A A A A 

Now ~ • i_ (=R • i) = 0 , i_ • i_(=i • i) = 1 If these values are sub-

stituted in I and the exponential is expanded 
x 

2 "' "' 2 
-K a8(K • i) oo 

I = _Q_( - - + 2aS) \ ( 2t+l)l/2 .t . ( ) y (e ¢) 
x 4aB (a+S)2 a+S t~O i Jt q t,O ' 
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A similar expression may be written for "' "' 2 I with (~ • i) replaced 
y 

"' "' 2 by (~. i) . "' Noting that K • i and _!5. • i are two of the direction 

cosines of K (see figure below), 

'Z.A 

~-
Ze 

I 
I 

I . 
I J 

YA Ye 

one may make use of the identity 

to write 

"' "' 2 "' "' 2 2 <.!5. • 2) + <~ • i) = 1 - cos e 

The sum I + I contains this last expression and one may write 
x y 

-GK
2 aS 

00 

(2£+1)1/2 I + I (1- cos28) l .i 
j i < q) Yi, o < 8, <t>) 

4aS(a+S) 2 1 x y £=0 

00 

+ (a~S) £~0 (2£+1)1/2 i.Q, j.Q,(q) Y_i,0(8,¢) 

The term involving 
2 

cos 8 Y.Q,,0(8,¢) may be expanded by Eq. (1-8), 

and .Q, in the summation indices may be interchanged as in <zAJeJzB>, 

and one has 

I + I 
x y 

2 00 

G( -K + 1 ) l (2J+l)l/2 iJ j/q) y J,0(8,¢) + 
6(a+S) 2 (a+S) J=O 
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J+2 

L=L-21 
(2) 

21+1 L 2 
112 

i j 1 (q)c (L2J;OO)YJ 0 (8,¢) 
(2J +l) , 

(1-11) 

The <xA lelxB>J + <yAje/yB>J coefficient of Table I follows directly 

from this expression. 

Other Integrals with Common Gaussian Centers 

and the corresponding ones on center B are evaluated in this part. The 

mechanics of the derivations are the same as those used above, but the 

beginning expressions are different. The adaptation of McWeeny's 

results for each integral above follows. 

By definition 

J exp (-(a.+8) ri) exp i~ • E. d.£ 

A corresponding expression for IB may be similarly defined. If center 
A A 

A is shifted along a vector .§_A (commonly in i, i• or k direction), 

.£A may be replaced by .!:.A_ - ~ • If the shifted expression for IA 

is differentiated with respect to ~ one obtains 

x exp(i~ • .£) dr (1-12) 

Hence 

1 A A 

~ = k (1-13) 2 (a.+8) 
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If Eq. (1-12) is differentiated again wrt. oA , one finds 

a2I 
lim ~ -

0 + 0 ao 2 -
A A 

Thus 

x exp(i~ • . .E)d..E. 

a2I 
l lim ~-A- + ~-1~- I 

2 2 2(a+B) A 
4(a+B) oA+O ooA 

(1-14) 

If the Gaussians share center B, identical expressions may be written 

in which A is merely replaced by B • 

The scattering integrals may be further evaluated by carrying 

out the operations of Eq. (1-13) and (1-14) on the IA expression 

given by Eq. (1-3); A and ]l are replaced by !=_ + ~ There results 

<sA lelzA> 
1 

2(a+B) 

-I 
< zA I e I zA> 

A 

4(a+B)
2 

"' "' 
IA iKK • k 

2 A A 2 
K (K • ~) + 2 (a+B) 

I K2 
A "' A 2 "' "' 2 [ (~ . i) + (~ • i) ] ( 1-15) 

4(a+B)
2 

with similar expressions for the B center integrals. Each of these may 

be evaluated by proceeding through expansions of the same type as used 

above for the two center cases. Thus the harmonic coefficients obtained 

from Eqs. (1-2), (1-4), (1-5), (1-6), (1-10), (1-11) and (1-15) complete 

the set of coefficients summarized in Table I of Part II. 
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Appendix 2 

REDERIVATION OF THE STEELE-PECORA X-RAY SCATTERING EQUATION 

Because of the central importance of the Steele and Pecora 

1 1 . . 1 h. k h d . mo ecu ar x-ray scattering equation to t is wor , t e erivation is 

presented here. The original derivation contained several algebraic 

errors which have been noted and corrected in this presentation. 

The D functions used in this appendix are those of Steele2 and 

3 not those of Rose as is more common. They are related to the spheri-

cal harmonics by 

(2-1) 

The D functions in one coordinate system (system A) are related to 

those in another coordinate system (system B) by the Euler angles that 

rotate . system A into system B by 

(2-2) 

Three properties of D functions required below are: 

(2-3) 
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x (2-4) 

DM*J (-r2) 
,K 

(2-5) 

The SP equation is derived in two parts. The first is the scat-

tering factor and the second is the sum over scattering factors for 

total intensity. 

Scattering Factor 

The molecular scattering factor is defined as 

K 
a(K,r2 ) J P(!) exp ( iK • x) d~ (2-6) 

where r2K are the Euler angles giving the molecular orientation rela-

tive to a laboratory coordinate system and where p(.£) is the elec-

tronic density within a molecule and is expressible as 

(2. 7) 

r, em and ¢m give the positions of the electrons relative to a 

molecular fixed coordinate system (m), and x is the same position 

vector as r expressed in a laboratory frame where K (K= 4n sin 8/A) 



is the z-axis (see Fig. 1). 
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In Fig. 2 the polar angles of location of r in different coordinate 

systems are rewritten in terms of Euler angles. nK rotates the 

laboratory system into the molecular fixed system. From Fig. 2 and 

Eq. (2-2) and (2-5), one has the relation 

DJ M(-n ) ( 87T\ 1/2 l DJ R(-n ) DJ (nK) 
K, m 2J+l 

R 
K, x R,M 

D~ (n ) 
87T2 1/2 

l J D*J (nK) 
<2J+l) DR K(n ) ,K m R , x · R,M 

n 
m 

{¢ e o} , n 
mm x 

{¢ ,e O} 
x x (2-8) 

The exponential of Eq. (2-6) may be spherical wave expanded using Eq. 

(2-1) to give 

exp (i.!S_• .£) (2-9) 
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Substituting Eqs. (2-7)and (2-9) into (2-6), one obtains 

(2-10) 

where Eq. (2-1) was used to express the harmonic of Eq. (2-7) as a D 

function. Setting K = 0 in Eq. (2-8) and substituting in (2-10) 

yields 

K 
a(K,~ ) 

The integral in Eq. (2-11) may be evaluated as follows: 

I = 

From Eq. (2-3) the last integral gives J J' , R = 0 and 

Substituting Eq. (2-12) into Eq. (2-11) 

where 

(2-11) 

(2-12) 

(2-13) 

(2-14) 
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Note that both of these equations differ from those published by 

Steele and Pecora. Equation (2-13) differs by the complex conjugate 

and Eq. (2-14) differs by a factor of (2J+l) 112 • We also note that 

Eq. (2-1) differs from the corresponding expression in the original 

work, the original expression being subject to a typographical mistake. 

Elastic Scattering 

The derivation of the scattering intensity begins with Eq. 

(27) in the Introduction. Several coordinate systems are involved in 

this expression and they are diagramed in Fig. 3. 

~ (Z) 

b_~ 
12.~·~; ~ 

,'I: 
' .11t, - _(t) 

I 
I 
\ 
\ 

Fig. 3 

(:z. axis "J (J,Z) sys.,_,) 

Molecule 1 is at the origin and has a molecular coordinate system 

denoted by (1) (dashed lines). Molecule 2 is at the end of the 

..E_ = ..E.
12 

vector and has a molecular coordinate system denoted by (2). 

A molecular-pair (1,2) coordinate system is defined with ..E.12 as its 

z-axis, and the pair distribution function has angles expressed in 

this system rather than a laboratory system. are the orientation 

angles of molecule 1 relative to the laboratory (~) system, and ~12 
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is the set of angles which will rotate the laboratory system into the 

(1,2) system. Note that the polar coordinates of r are two of the 

three Euler angles denoted by n12 and that 

The beginning equation may thus be written 

+ 1 J 2TI 

The first term of Eq. (2-15) is easily evaluated by substituting Eq. 

(2-13) into the integral twice and applying the orthogonality condition 

of Eq. (2-3). One obtains 

(2-16) 

where I
2 

is the second integral of Eq. (2-15). 

is more difficult to evaluate. The 
K a(K,n ) factors are 

expressed relative to a laboratory coordinate system and must be re-

expressed in the (1,2) frame. From Fig. 3 and Eq. (2-2), the 

D*J (nK) of Eq. (2-13) may be rotated to the (1,2) system and 
O,M 

If Eq. (5) of the Introduction for g( 2)(R~2 ) and Eq. (2-17) are sub-

stituted into the expression for I 2 , one obtains 



-215-

= l_ L I I < 87f2 > 2 
12 27f 8n2 Rl,Ml,Jl R2,M2,J2 [(2J2+1)(2Jl+l)J 1 / 2 

x 

x 

x (2-18) 

where Nl = {Kl,Ml' ,Jl'} and where the terms have been grouped accord-

ing to their variables. The first integral must be changed to contain 

a complex conjugate by employing the identity 

D *JM(r2) 
K, 

(2-19) 

Once this change has been made, the first two integrals may be evaluated 

by using Eq. (2-3). Orthogonality requires Jl = Jl' 

Ml =-Ml' , J2 = J2' , R2 = K2 , and M2 = M2' . Many of the summations 

in Eq. (2-18) thus become redundant and may be dropped. Substitution of 

the orthogonality relations into Eq. (2-18) and dropping primes leads to 

2 I 4np *Jl J2 (-)Kl-Ml 
12 Nl,N2 [(2Jl+l)(2J2+1)]1/2 aO a0,M2 

(2-20) 

The 012 integration in (2-20) may be carried out by spherical 

wave expanding the exponential and then employing Eq. (2-4). Thus, 

exp (i~·.!:.) (2-21) 
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The integral in Eq. (2-20) becomes 

(Bn2)1/2 ~ iJ (2J+l)l/2 J j /Krl [ J n~~l cn12lD~~~2(n12lD~o(n12)dn12] 
2 

x gNl N2(r)r dr 

(8n2) 1/ 2 L i 3 (2J+l) 112 c(J,Jl,J2;00) c(J,Jl,J2;0,-Kl) 
J 

6 [(2J+l)(2Jl+l)]l/2 J jJ(Kr) gNl N2(r) r2dr 
Kl,-K2 8TI2(2J2+1) ~~ 

Substituting Eq. (2-22) into Eq. (2-20) gives 

I 
Nl N2 

P2 *Jl J2 (-)Kl-Ml \ .J (2J+l) 
aO,-Ml a0,M2 J 1 (2J2+1) 

(2-22) 

x c(J ,Jl,J2;00) c(J ,Jl,J2;0,K2) J j/Kr)gNl N2(r)4nr
2
dr, Kl= -K2 

The term where Nl,N2 = 0 may be split out from 1
2 

and written 

separately. Since this is the spherical average term, the g
00

(r) 

function is replaced by g00 (r) - 1 so that convergence of the integral 

is maintained. Thus this two part expression for 1
2 

can be combined 

with Eq. (2-16) to give the total scattered intensity 

x c(J ,Jl,J2;00) c(J ,Jl,J2;0,K2) f gNl N2 (r) j 3 (Kr)4nr2dr, Kl= -K2 

(2-23) 
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If this equation is compared to the published Steele-Pecora results, 

certain differences are apparent. The principal difference is the 

appearance of the (2J+l)/(2J2+1) term. Other versions are possible by 

applying the symmetry properties of Clebsch-Gordan coefficients to 

those written here, but they do not agree with the incorrect SP equa

tion. 
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Appendix 3 

RESTRICTIONS ON THE PERCUS-YEVICK HANKEL TRANSFORMS 

The solution of the Percus-Yevick equation leads to a series of 

simultaneous equations involving the Hankel (spherical Bessel) trans-

forms of the coefficients of the spherical harmonic expansion of the 

direct correlation function c(R
1

R2) and the density dependent part of 

the pair distribution function H(~1~2 ) . The allowed transforms con-

stitute a finite set of even order transforms, and it is the purpose of 

this appendix to derive these latter two restrictions. 

We begin by noting that equation (6) is a general expression 

for the Fourier transform of any pair property. Hence the conclusions 

we can draw from it about H(tt'ms) will also apply to C(tt'ms) • 

In Eq. (6) we may split out the terms depending on m to give 

l H(tt'ms) c(tt's;m,-m) 
m 

(3-1) 

Now the m values occur in plus and minus pairs and they take on the 

values - t, -(t-l)···(i-1),t except for zero which occurs once. The 

terms in (3-1) with m I 0 therefore occur in pairs given by 

H(tt'ms) c(tt's;m-m) + H(tt'-ms) c(tt's;-m m) (3-2) 

From (4-4), Appendix 4, we may rewrite the second Clebsch-

Gordan coefficient according to 

c(tt's;-m m) 
t+t'-s 

(-) c(££'s;m-m) 

and (3-2) becomes 
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- .Q,+.Q,'-s -
H(.Q,.Q,'ms) c(.Q,.Q,'s;m-m) + (-) H(.Q,.Q,'ms) c(.Q,.Q,'s;-mm) (3-3) 

where we have used the identity H.Q,.Q,'m = H.Q,.Q,'-m • From symmetry 

studies of pair property expansions, it can be shown that .Q,+.Q,' must 

be even. Thus it is apparent that unless s is also even the terms 

of (3-3) will cancel. The form in (3-1) which has m=O occurs by 

itself and includes the Clebsch-Gordan coefficient c(.Q,.Q,'s;OO) . From 

(4-9) we have 

c(.Q,.Q,'s;OO) = 0 unless .Q,+.Q,' +s is even 

Since .Q,+.Q,' is even, s must be even here too. Thus in 

order for the entire sum (3-1) to be non-zero, s must be even. 

A further restriction on s is also obtained from the 

Clebsch-Gordan coefficient in (3-1). The leading three parameters, 

i.e. , .Q, , .Q, ' and s of any Clebsch-Gordan coefficient must satisfy the 

triangle rule (4-7). This requires that s must have a value between 

l.Q,-.Q,' I and .Q,+.Q,' , and so the allowed s values clearly form a 

bounded set. The properties of finiteness and evenness have thus been 

proven. 

It is important to note that (6) is applied repeatedly in 

obtaining equation (10). Therefore, the same restrictions as just 

derived for (6) apply to (10) as well. It follows that in equating 

coefficients of (6) and (10), the only transforms allowed in either 

equation are HOOOO, H2002, H2200, H2202, H2204, H4004, and the corres-

ponding ones for the direct correlation transforms if the H.Q,.Q,'m set 

is restricteq to tt000 , H200 , H220 , and H400 · 
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Appendix 4 

CLEBSCH-GORDAN COEFFICIENTS 

In both the Percus Yevick equations (Section III, equations 

(15)-(20) ) and in the x-ray scattering equations (Section IV, equation 

(4)), Clebsch-Gordan coefficients appear. The properties of these 

coefficients are well known and are discussed in detail by Rose, 

reference(9)of Section III. For convenience we tabulate here the 

properties which have been used in this work. 

An analytical form due to Wigner (Rose, 3.18) exists for the 

Clebsch-Gordan coefficients and is given by 

0 +m [ (2j3+ 1) 
m3,ml 2 

x [ (j3+ jl- j2)! (j3-jl+j2)! (jl+j2-j3)! (j3+ m3)! (j3-m3)!]l/Z 

(jl+ j2+ j3+ l) ! (jl- ml)! (jl+ ml)! (j2- m2) ! (j2+ m2) ! 

x l (4-1) 
v 

v assumes all integral values such that none of the factorial argu-

ments are negative. Still another expression exists due to Racah 

(Rose, 3.19). Both of these expressions however are quite tedious to 

use for evaluation and one therefore performs as much analysis as pos-

sible by using the orthogonality and symmetry relations of these 

coefficients. When actual evaluation is required, the tables of 

Condon and Shortley (reference 11, Section II) are useful, provided at 



least one of the J' • < 2 . 
i-
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The orthogonality properties are: 

The synnnetry properties are: 

0 .. ' 
JJ 

0 ' om m' m,m1 , 

The triangle rule for the numbers j,j 1 ,j 2 is 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

or, more simply, just ~(j 1j 2j) . Using this definition we note that 

(4-8) 

Also 

The parity c-coef f icient is 
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We now tabulate the Clebsch-Gordan coefficients required in 

.this work. 

A. Those with at least one ji equal to zero. By using equations 

(4-4), (4-5), and (4-6) along with (4-10), 

all coefficients with at least one zero j may be evaluated. 

B. Those with J0

• > 2 
]_ - These are derived from the Condon and 

Short ley tables. 

Clebsch-Gordan Value of 
Index Numbers Coefficient 

21100 -1215 
21101 11/10 

22200 -1277 
22201,2220-1 -IVI4 
22202,2220-2,222-22 1277 
222-11 -lfTf4 

42200,24200 /ITT 
42201,24210 -./8/63 

42202 11/126 

22400 ./18/35 

4222-2,242-22 15{42 

22402,2240-2 l37IT 
242-11, 422-11 -ISTIT 
22401 13/f 
2242-2 lfT70 

2241-1 mTS 

(4-10) 



Clebsch-Gordan 
Index Numbers 

44200 

442-11 

442-22 

24400 

2441-1 

2442-2 
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Value of 
Coefficient 

-10/3 h/77 

17/6 11/77 

-4/3 ll7Ti" 
-/20/77 

13/154 

3 /3ITT 

C. Those with J .. > 4 • These are limited in our work to those 
1-

coefficients with jl = j 2 = j 3 = 4 . These are not covered by 

the Condon and Shortley tables but may be evaluated by the special 

formulas for c(L
1

L2L
3

;00) and for c(LLv;OO) given by Rose 3.32 

and 3.30, respectively, and the recurrence formula for Clebsch-

Gordan coefficients given by Rose 3.27. These are: 

x even (4-12) 

where T(x) 

1 C-z x) ! 

IX! 

c(LLv;OO) 2L(L+l) 
v(v+l) - 2L(L+l) c(LLv;l-l) ' (4-13) 

and the recurrence relation is 
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(4-14) 

From (4-12) we obtain 

c(444;00) = 9,/1~01 (4-!Sa) 

From this last result and (4-13) we obtain 

9) 2 c(444;1,-l) = - 2 1001 (4-lSb) 

Finally from (4-14), (4-lSa), and (4-lSb) we obtain 

11; 2 c(444;2-2) = - ~ 1001 (4-lSc) 
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Appendix 5 

SECOND VIRIAL COEFFICIENTS 

For convenient reference, the second virial coefficients for 

the two-centered Lennard-Jones potential which were derived by Sweet 

and Steele (JCP £, 3029 (1967)) are tabulated here for R* = 0.1 to 

0.4 

* R 

T* 0.1 0.2 0.3 0.4 

0.4 -12.94 -11.08 -9.38 -8.085 

0.6 - 5.89 - 5.16 -4.419 -3.807 

0.8 - 3.553 - 3.106 -2.626 -2.201 

1.0 - 2.401 - 2.075 -1. 707 -1. 384 

1.4 - 1. 283 - 1.053 -0.7889 -0.5317 

1.8 - 0.7381 - 0.5522 -0.3326 -0.1123 

2.0 - 0.5594 - 0.3874 -0.1821 +0.0262 

2.2 - 0.4181 - 0.2568 -0.0622 0.1361 

2.4 - 0.3035 - 0.1508 +0.0345 0.2252 

2.6 - 0.2090 - 0.0634 0.1143 0.2986 

2.8 - 0.1298 + 0.0104 0.1811 0.3606 

3.0 - 0.0625 0. 0725 0.2378 

3.2 - 0.0049 0.1258 0.2864 0.4569 

3.4 + 0.0450 0.3285 

4.0 0.1611 0.2804 0.4257 0.5843 

5.0 0.2848 0.3927 0.5284 0.6759 

6.0 0.3620 0.4627 0.5918 
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Appendix 6 

TRIGONOMETRIC FORMS OF SPHERICAL BESSEL FUNCTIONS 

j (x) 
0 

j 1 (x) 

sin x 
x 

sin x 
2 x 

3 1 

cos x 
x 

3 
j 2 (x) sin x (- - -) - 2 cos x x x x 

j 3 (x) (15 - _§__) 
4 2 sin x - (15 - l) 

3 x x x x 

j4 (x) 
sin x 

x 
(105 - 45 + 1) 

4 2 x x 

Asymptotic expression at x = 0 

-n 1 
x jn(x) = 1•3•5·· ·(2n+l) 

cos x 

cos x 

(provides 4 significant figure accuracy for j 
4 

(x) at x = 0 .1) 

Recurrence formulas: 

j (x) 
n 

f (x) 
0 

f (x) sin x+ (-)n+l f (x) 
n -n-1 

-1 
x 

-2 
x 

= (2n+l) x-l f (x) 
n 

cos x 
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PROPOSITIONS 
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PROPOSITION I 

Abstract 

Two methods for calculating the third virial 
coefficient C(T) for nonspherical molecules are 
discussed. One is the direct evaluation of the clus
ter integral. The other is an application of 
statistical mechanical perturbation theory (PT). It 
is proposed that both sets of calculations be carried 
out to evaluate C(T) for a modified two-centered 
Lennard-Jones potential. It is shown that the PT 
approach must include the second order term and it is 
suggested that the Barker-Henderson macroscopic com
pressibility approximation for it be used. Comparison 
of cluster integral and PT results will allow deter
mination of the temperature below which the perturba
tion approach is grossly inaccurate, a result that can 
be extended to other potentials. Finally, C(T) may 
be expressed as a sum of spherical and nonspherical 
contributions and a comparison of the two will give 
t he first quantitative estimate of the size of the non
spherical repulsion correlation on C(T) . 

A fluid equation of state valid in the moderately dense gas 

region is the virial equation of state. The ability of a particular 

potential to predict a third virial coefficient that agrees with 

experimental data is one of the measures of accuracy of the potential. 

One may note that second virial coefficients are of little or no use 

in examining the potential, since they are used to determine the 

parameters which characterize the potential. Third virial coeffi-

cients have been studied extensively for spherical potentials of the 

square well1 and Lennard-Jones types 2 •3 •4 . The calculations of 

third virial coefficients for nonspherical potentials have strongly 
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emphasized multipole interactions superimposed on a spherically 

. 1 . 4,5,6 symmetric repu sive core 

Recently work has begun to appear which employs nonspherical 

1 . 7,8,9 repu s1ve cores The work of Chen and Steele gave values of the 

second, t h ird, and Percus Yevick fourth virial coefficients for 

dumbell-like two-centered hard core molecules (2HC potential). The 

method of calculation is superior to the earlier multipole work in 

that the expansions involved do not depend on the particular potential 

being used. All expressions are given as a function of the Mayer f 

functions and these may be easily obtained in a separate calculation 

10 
following the work of Sweet • Hence the method may be applied to 

potentials other than the 2HC potential. One should note, however, 

that this approach has the significant drawback of being a quite 

lengthy calculation. 

Because of this length a shorter method of calculation would be 

desirable. One suggested approach is through statistical mechanical 

7 perturbation theory • 
11 12 This theory ' requires that some previous 

basis calculation has been carried out providing accurate pair distri-

bution functions. Since diatomic hard core calculations have recently 

been performed, such an attack on nonspherical molecules is now pos-

sible. 

It is therefore proposed that third virial coefficients be 

evaluated for a modified two-centered Lennard-Jones potential 

(mod-2LJ), proceeding later to a true 2LJ potential. This may be 

accomplished either by applying Chen's cluster integral (CI) method 

to the mod-2LJ potential or by developing and applying a perturbation 
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equation. The coefficients would be calculated as a function of tern-

perature and expressed as the sum of a spherically symmetric part and 

an angular part. Since it has been claimed4 that the temperature 

dependence of the third virial coefficient depends on the angular cor-

relations between molecules, a comparison of these two parts of C(T) 

would give the first quantitative estimate of the size of nonspherical 

repulsive effects. 

In the following two sections we will review Chen's procedure 

and then develop a possible perturbation approach. The review of 

Chen's method will be quite brief, since no modifications are suggested 

here and his paper contains a good presentation of the theory. 

A. Cluster Integral Evaluation (CI) 7 

The cluster integral for C(T) is 

c (T) = - 3~ L = - 48~2v J f (!~-1B:2) /\ dB:1 dB:2 (1) 

The CI method involves expanding the .rooted triangle diagram,~ 1 as 

A= 4TI (2) 

evaluating the coefficients t££'m , and then performing the integra

tion of (1) for C(T) • The evaluation off'..o proceeds as follows. 

Multiply both sides of (2) by the complex conjugates of the two har-

monies shown and integrate over the Euler angles to give 
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x (3) 

Hannonic expansions of the two Mayer f functions are substituted into 

this l a s t expression. The three pairs of spherical harmonics in (3) 

have their angles expressed in different relative coordinate systems 

and t he angles of each pair must be rotated to a common coordinate 

system by use of the extended spherical hannonic addition theorem. The 

resulting expression can be evaluated directly only with great diffi-

culty due to the complicated functional form of the angular variables. 

Hence is exponentially Fourier transfonned; the complex expon-

ential is expanded into a set of angular functions which allows the 

angular integrations to be perfonned; and then the expression is back 

transformed to give t££'m(r) . 

The final expression for t££'m(r) involves seven summations 

over Bessel transfonns of the form 

()() 

B(r) = J b1 (T) b2 (T) js(Tr) T
2

dT 

0 

where b
1 

and b
2 

are themselves Bessel transforms over Mayer func-

tion coef ficients. The final expression is manageable because the 

number of Mayer coefficients that lead to significantly large b 

functions is relatively small. 

B. Perturbation Theory (PT) 

11 12 In its usual form first order perturbation theory ' ex-

presses the configura ti..onal frcl' enE' r p, y :rn 
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The expression has been generalized to include the Euler angles of 

orientation of molecules 1 and 2; g0 (~1~2 ) is the 2HC radial distri

bution function; and u1 (~1~2 ) is the perturbing potential defined by 

(5) 

where u(R1~2 ) is the total interaction potential and u0 (R1~2 ) is 

the 2HC potential. u1 (~1R2 ) is zero when u0 (R1~2 ) is infinite. The 

pressure is related to A by 

and so 

PV (PV) +~ j_ p 
0 81T Clp J . . . J 

(6) 

(7) 

The virial coefficients may be identified by substituting the density 

expansion for g0 (~1~2 ) into (7). The expansion is 

where the root diagrams are orientation dependent. Hence C(T) is 

identifiable as the coefficient of 2 
p in (7) multiplied by BIN : 

(8) 



1 
4TikT 
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f ··· f (j\)o (9) 

The one subscript on c1 (T) signifies first order perturbation theory. 

As this integral stands, the integration is over five variables. This 

may be improved by expanding each of the orientation dependent members 

13 of the integrand into the orthonormal expansions of Steele , 

Eq. (2), or 

-u (RR )8 

(10) 

and e o -l..,....2 - 1 = f (R R ) 
0 -1-2 

have been tabulated in such a 

form already by Chen and no new evaluation is required. On the other 

hand, the perturbing potential u1 CB:.1R2) must have its uii'm(r) 

coefficients computed. From (10) the expression for uii'm(r) is 

2TI 1 1 

uii'm(r) = ~E J J J u1 (r88'¢)P£,m(8)P£' ,-m(8') 
0 -1-1 

x cos m¢ d cos e d cos 8'd¢ 

For values of r less than the maximum hard core contact distance 

~t;-4' 
it is clear that for certain orientations the hard cores will overlap 

and the perturbing potential will become discontinuously zero (while 

the total potential becomes infinite). This presents no real computa-

tional problem except that the e,e',¢ grid may have to be small in 
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this region of r space in order to obtain high accuracy. 

Substituting (2), (10), and an expansion similar to (2) for 

= 4TIE: I 
kT 

+ _1_6_TI_
2 

_E: 
kT l l l f t tt 'm(r) ukk'n(r)f

0
J.J.,P(r)r

2
dr 

tt 'm kk'n jj'p 

x J Yt ,m(Ol)Ykn(Ol)Yjp(Ol)dOl J Yt',-mC02)Yk' ,-n(Oz)Yj',-pCOz)d02 

(11) 

The triple harmonic integrals are given by
14 

x c(jkt;pn-m) c(jkt;OOO) (12) 

where c( ) is a Clebsch-Gordan coefficient. 

Equation (11) may be evaluated by performing a Simpson's inte-

gration over the integrals, including as many as is necessary to 

achieve a desired accuracy of C(T) . Calculations of the expansion 

ff . . 7 coe 1c1ents have shown that only two coefficients are 

significant, t
000 

and t 200 , and hence the tt'm summations in the 

second term above may be reduced to include (tt'm) = (2,0,0) and 

(0,2,0) only. The Mayer function and most likely u
1

(R1,g_2) as well 

will have expansion coefficients up to 400 that will have to be in-

eluded in the summations above. 
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When Smith and Alder
2 

applied first order perturbation theory 

to the t hird virial calculations of s pherical molecules (using a 

Mod.-LJ potential), they found that the coefficient was in error by 

about 25% at T* = 5.0 with the error growing rapidly larger as the 

temperature was decreased. This implied that second order perturba-

tion theory would be required if the temperature range were to be ex

tended to lower temperatures. From work done by Pople and Alder15 

on the mod-LJ potential, one may estimate that C(T) is accurate to 

about 10% at T* = 1.67 when the second order term is included. Lat er 

work by Barker and Henderson1 on the square well potential showed 

similar results, obtaining an 8% error in C(T) at T* = 1. 4 

A 1.5 where AO is the value of the outer wall position. For 

2.0 , C(T) began to show error below T* 3.0 . Hence it appears 

that it will be necessary to include the second order perturbation term 

for our modified 2LJ potential. 

The rigorous expression for the second order perturbation 

involves three and four body distribution functions which are nearly 

impossible to evaluate. Fortunately an approximate expression exists 

which is easy to use; it is the macroscopic compressibility approxima-

tion (MC) 1 . Pressure calculations from perturbation theory have 

been performed using this approximation for the square well potential 

and most recently for mixtures of spherical molecules interacting via 

K'h . 116 a i ara potentia • Both works indicate that the approximation is 

quite good, especially the latter work where agreement with experimen-

tal data is excellent. 

Using the MC approximation, (4) can be replaced by 



A = A + Np J 
0 87T 
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I go(R1!2) u1(!1!2)r2dr dQldQ2 

- (3pN I ... I 2 ap 2 2 
[u1 (R1! 2)J kT(a-p) g

0
(R1! 2)r dr dQ1dQ2 +0( f3 ) . 167T 0 

(13) 

where is the compressibility of the hard core system. 
,,. 

can be obtained as a density expansion using the Pade 

P(2,2) for the 2HC equation of state or, more simply, by using the 

2HC virial expansion. One may write the virial expansion as 

R..__ = p + B p2 + C p3 + .. • 
kT o o 

where p, B, and C have number density units; hence by differentia-
o 0 

tion and division 

B-l(le_) = 1- 2B p + (4B2 - 3C ) p2 + ... oP 0 o o o (14) 

The first two terms of (13) lead to c1 (T) as before, while the third 

term (A
2

) gives the second order perturbation contribution, c2 (T) . 

oA 
Hence from PV = P(a-p)T , 

C2(T) = -~; J ... I [u1(!1!2)]2f(j\)o -2Bo(T)] 

x 
-uo(R1!2)B 2 

e r dr dQ
1

dQ
2 (15) 

This integral may be evaluated in the same fashion as was c
1

(T). 

The only difference is that the integral over [u1 (!
1
! 2)J 2 (j'\)

0 
x 
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[f(R1R2)+1] involves four spherical harmonic expressions and the 

expansions, although straightforward, will be considerably longer. An 

expression for 

I Yn (Q)Ykn(Q)Y. (Q)Y. (Q)dQ 
Nm JP iq 

will also have to be derived, but this may easily be accomplished by 

combining the harmonics in pairs by using the spherical harmonic coupl-

. h 14 ing t eorem followed by application of the harmonic orthogonality 

relation. One may note that the 2HC second virial coefficient 

required in (15) is known quite accurately, the error apparently run

ning less than 1% lO The third virial coefficient accurate to second 

order is thus given by 

Now that the methods of evaluation have been outlined, only a 

few comments remain to be made about the C(T) that are finally ob-

tained. As shown by Smith and Alder, the C(T) obtained from per-

turbation theory will become rapidly divergent from the true C(T) 

below some temperature T* • 
0 

Therefore it will be advantageous to 

compare the C(T) values from the CI and PT calculations to determine 

what this temperature is. Most likely this T* will also lie near 
0 

the convergence temperature for other nonspherical potentials. If, 

contrary to expectation, agreement between the CI and PT C(T) values 

is poor ahove T~ , then one must doubt the accuracy of the MC approxi-

mation when applied to nonspherical systems. 
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Another comment which must be made concerns the separation of 

C(T) into spherical and nonspherical parts. Since spherical poten-

tials such as the LJ potential have often been used to describe non-

spherical molecules, it might seem appropriate to separate C(T) into 

a part t hat depends on the spherical average of the potential (u000 ) 

and an~ther part that depends on the angular parts of the potential 

(uii'm; i , i '# 0). This kind of separation is very difficult, however, 

since the spherical average of a given pair function such as J\ or 

f(!~1B:.2 ) does not correspond directly to u000 • Hence it is conveni

ent to use another separation. It is proposed that the spherical part 

of C(T) be taken as 

where f
000 

is the spherical average of the Mayer f function for the 

mod-2LJ potential. The nonspherical contribution may then be repre-

sented as 

cnonsph(T) C(T) [Pert. Theory; T* > T*] - C h(T) 
o sp 
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PROPOSITION II 

Abstract 

It is proposed that the kinetics of the copper (II)-amine 
catalyzed decomposition of hydroperoxides in the presence of 2,6-di-t
butyl-p-cresol be thoroughly investigated since this type of anti
oxidant behavior has not been studied previously. The reaction is to 
be run using different cupric salts and amines as catalysts and the 
resulting products are to be analyzed for an expected peroxycyclo
hexadienone product. Assuming this expected product is formed, a 
reaction mechanism is proposed that accounts for presently known 
experimental information. The kinetic equations for this mechanism 
are derived and the experimental program required for its verification 
is discussed. 

It is well known that many autoxidations proceed by free

radical chain reactions
1

• Generally hydroperoxides are formed first 

and then decompose into alkoxy or peroxy free radicals, these attack-

ing the substrate and propagating the chain reaction. To prevent such 

chain reactions, substances which form relatively stable free radicals 

are often added to the reacting medium so that these free radicals will 

react with the peroxy radicals to form stable decomposition products, 

thus terminating the chain reaction. It has been known for some time 

that several of these reactions are catalyzed by certain transition 

1 . 2 
meta ions . 

More recently it was discovered that very small amounts of 

cupric salts and amines in the presence of sterically hindered phenols 

were extremely effective catalysts, leading to hydroperoxide decomposi

tion rates far in excess of those encountered in earlier work3a. 

Because of the great speed involved, this reaction becomes important 

in that it may be used to develop a very efficient antioxidant oil 

additive. 
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To date, however, only a minimal amount of information is 

available about this reaction. Principally this information includes 

the following: (a) the hydroperoxide decomposition rate is rapid; 

(b) only catalytic amounts of copper (II) are required; (c) a free 

radical from the phenol is formed; and (d) the activity of amines is 

in t he order primary > secondary >> tertiary. In fact, when ter-

tiary amines are present, no increase in hydroperoxide decomposition 

rate is detectable. It is assumed, although not proven for all con-

ditions, that the product of the hydroperoxide, ROOH, and phenol 

~¢•' 
is the peroxycyclohexadie~?one0 , 

.. .,,: 
Since so little is known about this reaction, it is proposed 

that a detailed study be carried out on it. Such a study would have 

two parts. The first would be to verify the predominance of the 

peroxycyclohexadienone in the product and to see if its contribution 

varies when different amounts of cupric salts and amines are used. 

The second part would be to propose a reaction mechanism consistent 

with the products formed and to conduct experiments to determine its 

validity. 

Initial work on this system employed 2,6-di-t-butyl-p-cresol 

(a common oil additive), 

(I) 
and cumene hydroperoxide, 
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and these are proposed for use in this study as well (although (II) 

might be replaced by t-butyl hydroperoxide to reduce absorption in the 

ultraviole t range [see below]). The solvent material is isooctane. A 

readily available cupric salt soluble in these solvents is cupric 

octoate and possible amines are dimethyl amine, cyclohexyl amine, and 

morpholine. 

A reactant which must be excluded however is oxygen, since it 

will compete with the hydroperoxide for phenol and lead to its own set 

of products. Hewitt 4 has recently tabulated the products obtained from 

the system oxygen/(I)/CuC1
2

/morpholine in methanol at various CuC1
2 

concentrations. These include 

Appearance of these compounds in products of the copper amine catalyzed 

reactions may be indicative of oxygen contamination. Of note is the 

fact that the various proportions of the oxygen products depended 

heavily on the CuC1
2 

concentration although for certain ranges of re-

actant concentrations a single component product was obtained. It is 

possible that such a dependence may also be present in our hydroperox-

ide system and therefore it is necessary that ·the products of our 

reaction be isolated, principally by fractional crystallization, and 

checked for a similar copper dependence. 

While Hewitt's work suggests that several products could be 

formed, it is expected that this will not be the case if (I) is 

employed and that a single cyclohexadienone product will be formed. It 

has been found 5 •6 that ROi radicals, derived from hydroperoxides such as 

(II~ will react in the presence 6f oxygen with the free radical derived 
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from (I) 

(III) 

to yield 

(IV) 

(IV) was produced almost exclusively from (I) under these conditions; 

other phenols and their phenoxy radicals such as 

~-~ 
f d f h 1 . 1 give mixtures o pro ucts o peroxy-p enoxy coup ing Thus the study 

of the copper amine reaction should be limited to the use of {I) in the 

hope of keeping the product composition simple. 

Another product of the copper amine reaction has been sug

gested3a which involves the coupling of alkoxy radicals,RO•,with (III) 

to give the ether 0 

~ 
It has also been found 3b that if the final copper amine product mix-

(V) 

ture were reacted with HI, the same amount of iodine was formed as 

would be generated from the original hydroperoxide. If on~ ass1.lllled that the 

only products possible were (IV) and (V), this result indicated that 

(IV) was formed since (V) was not capable of producing iodine. This 

does not prove that (IV) is formed since if (V) were formed along with 

some other compound that produced I 2 from HI, the results would be the 

same. Such other compounds seem unlikely however and it is presumed 
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henceforth that (IV) is the principal product. 

In order to arrive at a complete understanding of the copper 

amine catalyzed reaction, it would be desirable to determine its 

reaction mechanism. Based on the information above, a tentative pro-

posal for the mechanism may be made. It is: 

Kl 
ArOH + NHR2 ~ > Aro 

Kz 
Cu II + nNI-IR2 <---2_ Cu II (NHR

2
) n 

II - k3 1 
Cu (NHR

2
) + ArO --:> Cu (NHR

2
) n + ArO • 

. k 
Cu I (NHR

2
) n + ROOH -

4
-» Cu II (NHR2) n + OH +RO• 

ks 
RO• + ROOH --:> ROH + RO z • 

k6 
R0

2
• +Aro.--> 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where ArOH = (I) and ROOH = (II). This mechanism satisfies the observ-

ation that increasing the amine concentration increases the rate of 

reaction3a since proton abstraction from the phenol is required. It 

also explains why tertiary amines do not catalyze the reaction since 

the amine alkyl groups and phenolic t-butyl groups would sterically 

hinder the abstraction. Reaction (3) is similar to one proposed by 

7 Ogata in the polymerization mechanism of o-cresol. Reaction (4) is 

1 8 well known ' and applies to many transition metals. The reactive 

catalyst is the copper amine complex and this correlates with the 

observation3a that if either the cupric salt or amine is left out of 
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the reaction, the hydroperoxide decomposition rate shifts from a matter 

of several minutes to several hours. Before reactions (4) and (5) can 

begin, some Cu1 complex must be produced by reaction (3) and this pro

vides a mechanism for a nearly steady state ArO• free radical concen-

tration. 

Another mechanism that one must consider includes reactions 

(1), (2), (4) and (6) but would replace reaction (3) with 

(7) 

and reaction (5) with 

RO. + ArOH --» Aro. + ROH (8) 

This alternate route has to be considered at the outset since reactions 

corresponding to the copper catalysis reactions of equations (4) and 

(7) have been suggested as intermediate steps in a cobalt catalysis of 

hydroperoxide decomposition9 However, while these reactions account 

for the peroxy radical formation required for the final product, they 

seem to lead to difficulty in that they force the ArO· radicals to be 

produced from ArOH. This would imply that if the amine concentration 

were decreased so that reaction (1) would shift to the left, the overall 

rate of hydroperoxide decomposition would increase. As noted above, 

this is not what is observed experimentally and it must be concluded 

that the latter mechanism is incorrect. It is difficult to develop any 

other hierarchy of equations built around reactions (4) and (7) that 

will account for the experimental observations, and so it presently 

appears that the copper catalysis reactions of equations (3) and (4) 
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are to be preferred. 

Having proposed a mechanism it is now possible to indicate how 

a kinetic study of this reaction would proceed. The first part of 

such a kinetic study would involve measuring the time-dependent con-

centrations of two of the reacting compounds. Perhaps the most 

important one to measure is that of (IV). This may be done by ultra-

violet spectroscopy by measuring the dienone absorption peak at 246 mµ 

10 
(£ = 15000 i /mole/cm) • (I) and (II) have absorptions in the ultra-

violet but their peaks lie at different wavelengths. (II) has its 

peaks above 246 mµ, the first lying near 260 mµ 11 (I) has a peak at 

280 mµ ( £ = 2000) and another below 230 mµ. It has a minimum at 

246 mµ. Both (I) and (II) have extinction coefficients near 200 i; 

mole/cm at 246 mµ, obviously far less than that of (IV). The pheno-

late anion of (I) is an interfering compound if its concentration is 

high, since it has a peak close enough to 246 mµ to acc9unt for a high 

extinction coefficient of about 2000 at this wavelength. However, in 

view of a hydrogen abstraction study carried out by Coggeshall et a1
12

, 

it seems safe to assume that this concentration will remain small 

because of the blocking effects of the butyl groups (these will even 

block OH-). The phenolate concentration may also be kept low by keep-

ing the amine concentration at or just slightly above catalytic levels. 

Hence the absorption values at 246 mµ are mainly due to (IV), except 

near the beginning of the reaction where its concentration is still 

small. The possibility of solvent interference is eliminated by using 

isooctane as solvent. Note also that this spectral absorption, combined 

with evidence for an IR peroxy absorption, could be used to verify the 

presence of (IV) in the final product mixture. 
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The second component that should be measured is the phenoxy 

free radical concentration as a function of time. It has already been 

observed that this radical is present in sufficient concentration in 

non-flowing systems to be easily measured by electron spin resonance. 

If resonance spectra are taken of this radical as a function of time, 

the Aro• concentration can be obtained by calibrating the spectra 

against the stable free radical diphenylpicrylhydrazyl. 

The remainder of the kinetic study involves deriving the equa

tion which gives (IV) as a function of time and comparing the predicted 

behavior of (IV) against that observed experimentally. Although modi

fications may be called for in the future, a kinetic treatment of the 

mechanism contained in equations (1) to (6) is now presented. 

The basic assumptions of the kinetics are: (a) the RO• and R0
2

• 

radical concentrations are steady state; (b) the ArO• concentration is 

negligible compared to [OAr02RJ + [ArOH) or [ROOH] + [OAr02RJ; (c) the 

RO• and R0
2

• concentrations are very small; and (d) the reverse of 

reactions (3) - (6) are negligible. Using these assumptions, the 

stiochiometric quantities (denoted by s) of cupric salt and (I) and (II) 

may be related to other species by: 

[ArOH] 
s 

[ROOH] 
s 

[ArOH] + [ArO-] + [OAr0
2

RJ 

[CuII(NHR2)] + [Cu1 (NHR
2
)] + [Cu11 J 

[ROOH] + [OAr02RJ•2 

(9) 

(10) 

(11) 

For simplicity, the amine concentration has been restricted so that 

there is only a single copper coordination. Also, by a suitable choice 

of amine, reaction (2) may be chosen to have its equilibrium lie far to 
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the right, thus rendering [Cu
11J negligible in (10) . Hence, 

where N denotes NHR.
2

• 

Steady state conditions lead to: 

d [RO·] 
dt 

or by solving (13) and (14) 

(12) 

(13) 

(14) 

(15) 

In addition to the steady state equations, the ESR study of 

ArO• provides one with data for d [Aro• J 
dt P 1 . . d 3a . d" re iminary ata in 1-

cates that the Aro .• concentration changes slowly with time and is 

nearly linear. Hence 

d[ArO•) 
dt 

Substituting (15) into (16) 

I -1 -1 { II - } [Cu N] = k4 [ROOH] [Cu N][ArO ]k
3 

- f(t) 

and solving (17) and (12) 

(16) 

(17) 
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k:1 [ROOH]-l {k
3

[cu
11

Js[Ar0-] - f(t)} 

1 + k:1 [ROOH]-l [ArO-] k
3 

Now the rate of formation of product is described by 

d[OAr0 2R] 
---- = k [RO • ] [Aro•] 

dt 6 2 

which from (11), (15), and (18) becomes 

(18) 

(19) 

The only unmeasured quantity in (19) is the [ArO-], but this may be 

obtained by treating (1) as an equilibrium expression and solving 

- + 
[Aro ] [NH2R2] 

[ArOH] [NHR2] 

[ArO-] - [Cu II] s 1 
(20) 

for [ArO- where use has been made of (9) 

equal to [ArO-]. This is a good approximation if k4 ,k
7 

>> k
3 

. 

Alternatively, if k3 ,k
7 

» k
4 

, [NH;R2J = [ArO-] + [ArO·] and this 

may be used in (20) to solve for ArO If k3 ~ k4 , nearly insuper-

able difficulties are encountered in solving for Aro ; in that case, 

the only remedy would be to measure [ArO-] spectrophotometrically by 

12 measuring its peak of 320 mµ . However, while (I) will not 
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interfere at this wavelength, it is possible, even probable, that (IV) 

will. 

In summary, one must verify the product (IV) as the main 

product of the copper amine reaction. The proposed mechanism for this 

reaction may then be checked by comparing the kinetic behavior of (IV) 

against t hat predicted by .(19), provided the rate constants allow one 

of the [ArO-] approximations above to hold or that [ArO-] may be meas

ured exper imentally. Certainly if (IV) were shown not to be the main 

product, t he mechanism and kinetics would have to be changed. In that 

event, it is hoped that the study proposed here would serve as an out

line for future investigation. 
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PROPOSITION III 

Abstract 

It is suggested that various wines be analyzed for their his
tamine content. The most suitable analytical procedure to be used is 
outlined. Finished commercial American wines are to be analyzed simply 
to catalog those which run high in the compound. Grape skins or must, 
as opposed to grape juice, are to be checked for initial histamine 
content. Plots of histamine content and cell growth versus time are 
to be made to determine if yeast cell autolysis is required for hista
mine release. Finally, wines prepared from a common must at different 
fermentation temperatures and from different yeast strains are to be 
analyzed for histamine to see if either temperature or yeast type is a 
variable which may be adjusted to reduce wine histamine content. 

The presence of histamine in wine is an important problem from 

two standpoints. First, the compound is a known strong vasodilator
1 

which in large doses leads to vascular collapse and death. A chronic 

excess of it leads to mastocytosis, characterized by chronic eruption 

of brownish papules, headache, dizziness, and hypotension. Certainly 

if histamine were present as a minimum physiological dose or larger in 

wine, there could be a possible health hazard to frequent wine drinkers. 

Secondly, should it generally be decided that the histamine in some 

wines were physiologically excessive, the sale of wines might be seri-

ously depressed. Since the wine industry is a billion dollar 

Californian industry
2

, a restriction of wine sales would have a signi-

ficant effect on the state economy. Thus, from both a health and 

economic standpoint it is important to know how much histamine is 

present in various wines and how it is produced. 

It has been known for some time that histamine, 

f""I == .... 

1

-cHz.-CHz.--NHL 

N~N 

is present in wines, one of the first analyses having been carried out 



-254-

3 on Sake . It contained approximately 1 µg/ml. Analyses on grape wines 

have not been available until comparatively recently. Almost without 

exception these analyses have been carried out on standard connnercial 

German, French, and Swiss wines. 
4 Marquardt, Schmidt, and Spaeth found 

"considerable" histamine in white and red table wines, sparkling wines, 

and beer. De Saint-Blanquat and Derache5 found 0.8-0.9 µg/ml in red 

wines and 0.05-0.5 µg/ml in white wines. Quevauviller and Maziere6 

analyzed sixty French wines and found values ranging from 0.1 to 

30.0 µg/ml. Once again the red wines were found to be highest, with 

roses second and whites the lowest. Figures for one hundred forty-

three Swiss wines showed an average of 3.3 µg/ml for reds and 1.2 µg/ml 

for whites. It was noted by Hrdlicka and Kubiczek7 in a general study 

of amines in wine as well as by some of the experimentalists above, 

that the amine content showed a definite dependence on the source of 

wine. It is therefore suggested that studies of this sort be carried 

out on American wines as well, in order to catalog those which always 

run high in histamine. 

4 
Analyses of grape juices have also been carried out. Marquardt , 

Quevauviller6 , and De Saint-Blanquat have all agreed that little or no 

histamine is present in grape juice, the latter authors claiming con-

centrations of less than 0.1 µg/ml. These results apparently refute 

the results obtained by Millies 8 who claimed that juices contained from 

0.4 to 1.9 µg/ml of histamine, practically the same as in wines. The 

fact that little histamine is found in grape juices indicates that his-

tamine is formed during fermentation by decarboxylation of histidine, 

this amino acid being present in large quantities since it is present 
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in both grapes and yeast. 

The histamine concentrations given above are quite useful in 

that they allow one to examine the possibility that histamine is pres-

ent in a large enough quantity in wines so as to give the constnner a 

"histamine flush 119 • The Modern Drug Encyclopedia
1 

lists histamine (or 

histamine phosphate) as a diagnostic drug and gives its usual dose as 

300-700 µg and states that 0.1 mg of the base, if absorbed rapidly, 

will cause flushing. Since a wine drinker will usually drink between 

300 and 700 ml of wine at a sitting, it is apparent that he will imbibe 

anywhere from 0.3 to 2.3 mg of histamine. If the drinking is not too 

slow, he will absorb enough of this to receive a physiological dose and 

thereby a flush. The long term effects of this level of histamine dose 

on the body are not known, but it is suspected that they may be adverse; 

hence the reason for studying wine histamine chemistry. 

Several different kinds of analysis for histamine may be 

carried out with the results typically varying from one another by 

0.1 µg/ml or more. 
10 

A bioassay method is available in which the blood 

pressure of cats is monitored, or isolated ileum contractions are meas-

ured after exposure to the histamine containing solution. Paper 

chromatography techniques are also available and these compare reason-

. 10 11 ably well with the bioassay methods ' • These techniques suffer 

respectively from being difficult to perform and from lacking repro-

ducibility. The easiest and most accurate technique to use appears to 

12 
be a fluorescence method • The results agree with bioassay results to 

within about 7%. In this technique the histamine is extracted into 

n-butano l f rom an alkaline solution. Any histidine present remains in 
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the alkaline aqueous phase upon extraction. The histamine is then re-

moved from the butanol by extraction with O.lN HCl and n-heptane. 

Finally the histamine is reacted in strongly alkaline media with 

o-phthaldehyde to give a fluorophore according to 

OCHO + nCH2CHzHHL oc()=? 
CHO rJ., fl ~ "1 "' v @"'../ 

The fluorophore concentration may be determined by activating the com-

plex at 360 mµ and observing the fluorescence at 450 mµ. Beer's law is 

followed by the fluorophore in concentrations not exceeding 1.0 µg/ml. 

A variety of amines and amino acids have been checked for interference 

reactions. Histidine and ammonia were found to be the only interfering 

compounds. These present no real problem in grape or wine analysis, 

since ammonia is present in very small quantities in grapes and histi-

dine is removed by the extraction procedure. 

While analyses of histamine content in wines of the type men-

tioned above provide one with useful information, much remains to be 

answered. The method by which histamine is produced and introduced 

into wine still has to be determined. Since this knowledge may be 

required before good removal techniques can be found, it is an impor-

-tant problem. One study which must be performed is a histamine analy-

sis on grape skins or must. The difference between histamine contents 

of red and white wines suggests that it is possible that histamine may 

be extracted from the skins during fermentation over them. It is 

felt, however, that histamine most probably is not present in the skins 

since grape juice would be expected to contain skin-extracted histamine 

in greater con~entrations than 0.1 µg/ml, particularly in pressed 
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juice. But since no careful determination has been made, the study 

should be made to be absolutely positive that this is not a source of 

histamine. To make extraction of components from the skin easier, one 

would store the grapes under increased carbon dioxide pressure for a 

2 
few days , causing the grapeskin cells to die and freeing the internal 

components for extraction. 

The most likely source of histamine is the action of yeast 

histamine decarboxylase on histidine. We note that red wines would be 

expected to contain higher histamine concentrations since more histi-

dine is available to enzymatic attack in the fermenting must due to 

extraction of the amino acid from the skins. The histamine may be 

formed enzymatically in two ways. The first would be for the decarboxy-

lase to react continuously with histidine either interior or external 

to the cell membrane but releasing histamine to the solution throughout 

the entire fermentation. The second would be for the decarboxylase to 

form and store histamine completely within the yeast cell membrane. As 

the yeast culture aged and cells began to die, autolysis of these cells 

would release histamine to the developing wine. 

Assuming that one of these pathways is predominant, a test that 

could be applied to distinguish between the two is the following. A 

freshly prepared grape juice would be inoculated with the standard 

Saccharomyces cerevisiae and the fermentation would be allowed to pro-

ceed. At regular intervals samples would be withdrawn and immediately 

filtered through a lµ filter. This would remove the yeast cells 

(typically 4-8µ in breadth, 5-15µ in length) 13 and prevent the release 

of more decarboxylase and histamine either by diffusion or autolysis 
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from the cells. Each sample should be cooled immediately to slow the 

histidine-decarboxylase reaction and extracted with butyl alcohol and 

analyzed as above. Simultaneously, samples would be withdrawn, 

treated with phenol to inhibit further yeast growth, and counted with 

the aid of a hemocytometer
14 

One could then plot numbers of yeast 

and histamine concentration versus time. 

Since yeast grow according to the typical S-shaped growth 

curve15 , it may be surmised that few cells are autolyzing during the 

early fast growth phase whereas a great number are autolyzing in the 

later plateau phase. Hence if the histamine content does not increase 

until the plateau region is reached, there would be a strong indica

tion that autolysis must occur for histamine release. On the other 

hand, if the histamine content climbs in proportion to the number of 

yeast cells in the fast growth region, then a continuous release of 

histamine is indicated. 

If it were found that autolysis is required for a high histamine 

content, this suggests that one may keep the content low in wines by 

allowing fermentations to proceed only while the yeast cultures are 

young. In fact a procedure bordering on this is used currently in the 

preparation of some still wines where temperatures tend to run high 

during the racking when excessive temperature encourages unwanted 

autolysis. The new wine is separated from the yeast even before the 

fermentation is complete. Except for minor clarification problems, no 

difficulties are encountered in this approach. The young yeast tech-

nique would not be without problems however, since some wines produced 

only from young yeast would lack certain flavors due to the omission of 
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the frequently used process of aging on the lees. Champagnes would be 

particularly susceptible to this since more favored varieties are 

bottle-aged on the yeast for at least a year 2 

Still other studies remain~ The effect of fermentation tempera

ture on the production of histamine is not known. Accordingly, wines 

from a common must produced at fermentation temperatures of 45°F to 

85°F should be analyzed for histamine content. Especially if cold 

fermentations reduce the final histamine content, a very good cornrner-

cial method for histamine removal would be available. 

It is also possible that various yeast strains will produce 

varying amounts of histamine when all other factors are held constant. 

There certainly are large variations between species as to the amount 

of certain chemicals produced such as glycerol and higher alcohols15 

Studies designed to investigate the behavior of various yeasts have a 

great number of yeast strains available to them, but relatively few 

are as well adapted to wine making as the standard Saccharomyces 

cerevisiae v~r. ellipsoideus. However, a set that will produce as 

much alcohol and as quickly as this standard strain includes the fol

lowing: S. rosei, the S. cerevisiae strains of alpinus, turbidans, 

and orasti, S. oviforrnis, and S. acidifaciens15 • Histamine analysis 

of finished wines from these yeasts should be performed. Perhaps one 

of these yeasts or a combination of them will give the desired flavors 

as well as a reduced histamine content. 
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PROPOSITION IV 

Abstract 

A brief review is given of the theories that have 
been advanced to explain the behavior of alkali metal am
monia solutions. Because structural differences 
characterize each of the theories, it is proposed that 
t hey be studied by analyzing x-ray scattering data taken 
on metal ammonia solutions. A discussion of the Fourier 
inverse of the intensity data shows that cesium ammonia 
solutions in the 1. 5 to 7. OM range provide the most 
info rmation about possible metal ion clustering. If 
clus t ering is present, it is argued that Cs-Cs peaks in 
t he distribution function will show little change in 
position as t h e concentration is changed. 

Metal ammonia solutions have been under study for over seventy 

. 1-4 
years and work is still continuing on them . They are of present 

day interest because of their structural uniqueness. In low concen-

trations of dissolved metal, the solutions are ionic in character 

and closely resemble salt solutions. As the metal concentration 

increases, their properties change in a continuous fashion from ionic 

to metallic. 

Currently several theories exist that attempt to account for 

this behavior. Since different structures of the solutions are sug-

gested in the various theories, it is proposed that these theories be 

investigated where possible by studying the x-ray diffraction patterns 

of these solutions. The remainder of this proposition includes a 

brief summary of the current theories, followed by a description of 

how an x-ray experiment might be carried out to examine these theories. 

In low concentrations of metal (less than O.OSM), it is thought 

that the metal dissociates to metal cations and electrons 5 . The 

electrons are then trapped in a spherical cavity formed by armnonia 
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molecules (an e1 cavity), presumably with the molecules oriented so 

that the hydrogens are directed toward the center of the cavity. In 

order to account for the volume expansion which occurs when metal is 

dissolved in ammonia, the radius of these cavities has been estimated 

to be about 4A. Support for the cavity model comes from the fact that 

if energies are calculated for a cavity of this radius, it is found 

-1 
that the lowest transition accounts for the 7000 cm absorption band 

always found in dilute metal ammonia solutions. Evidence of the 

electrons being merely solvated and not bound to other species is found 

in the large transference number of the negative carrier in conduction 

experiments; the negative carrier accounts for nearly 86% of the total 

current. 

In intermediate concentrations (O.OSM to lM), the structure is 

less well understood. 
6 One theory (BLA) proposes that the basic unit 

is composed of the solvated cation and the electron trapped in the 

potential of the charged cation and its surrounding solvent shell. The 

cation-electron unit is termed a monomer. Since the solution is 

diamagnetic in this concentration range, the electron spins must be 

paired and hence it has been suggested that two monomers are bound 

together to form a chemically bonded dimer. 1 Symons has indicated 

that at low concentrations the dimer must break up into solvated 

cations and electrons with very little monomer formation in order to 

correctly describe the conductivity of these solutions. 

An extension of the cavity theory accounts for tqe diamagnetism 

in this range by assuming that two paired electrons can exist in a 

single cavity (an e2 cavity). A visible absorption band at 15000 
-1 

cm 
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has been as signed to transitions within the e2 cavity. The cations 

r ema in so l vated and do not pair. 

3 Still another theory, advocated by Jolly , is that the monomer 

unit is an ion pair of solvated cations and electrons bound together 

by coulombic a ttraction and the dimer species is a quadrupolar ionic 

assembly of two ammoniated cations and two ammoniated electrons. The 

wavefunctions of the two electrons are presumed to overlap sufficiently 

to insure pairing . This theory was advanced to account for the fact 

-1 
that the 7000 cm peak unexpectedly followed Beer's law up to O.OSM, 

this upper limit being a region where dimer formation was extensive and 

changes in the spectrum had been expected as the BLA dimer absorbed 

radiation instead of the e1 cavity. 

At still higher concentrations (greater than lM), little is 

known about the structure of metal ammonia solutions. Electron spin 

7 resonance data shows that sodium ammonia solutions doped with very 

small amounts of cesium have relaxation times that are characteristic 

of cesium ammonia solutions rather than the sodium solutions. Since 

the electrons must all have access to the cesium atoms for this to be 

true, a lattice structure with delocalized electrons is indicated. The 

detailed structure of this lattice is unknown. It may be diffuse with 

solvated cations spread fairly evenly throughout the solution or it 

may consist of reasonably well defined clusters of solvated metal ions. 

Si nce the cavity and BLA theories predicted different spatial 

arrangements of the metal ions and thus different x-ray spectra in 

intermediate concentrations, Schmidt 8 and Brady9 undertook the measure -

mcnt of t he low angle x-ray scatte r i ng of sodium ammonia solutions. In 
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both works , it was expected that a peak would appear at about 0.05 

radians (28) if the dimer . species (approximately 15A long) were 

present. The peak would be absent if only cavities were present. 

Unfortunately, the two experiments are in strong disagreement, 

Schmidt's work confinning the existence of dimers and Brady's work 

refuting them. 

Because of the doubt raised about the existence of groupings 

of the metal ions, it is desirable that new x-ray experiments be per

formed to search for them. Unlike the earlier work, however, it is 

suggested that large angle x-ray scattering techniques be employed. In 

order to obtain the results in the low angle work, the researchers had 

to push the method close to its error limit. As will be seen, informa

tion may be extracted from the large angle data with less error pro

vided the metal concentration is kept high enough. Besides answering 

the general question about whether metal groupings exist, there is 

reasonable hope that if they do exist some of the metal-metal distances 

in these structures may be determined. Hence, it is expected that the 

scattering results will help define just what the lattice is that 

Chan7 claims must exist in concentrated solutions. 

Since the aim of the x-ray experiment is to search for 

persistent metal-metal spacings characteristic of clustering, it is 

desirable to weight the spectrum with scattering from the metal rather 

than solvent. This can be done by choosing a metal with a large 

number of electrons since,to first order, scattering is proportional 

to the square of the number of electrons. Cesium would thus be the 

metal of choice, since it is the highest atomic numbered alkali metal 
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that can be readily obtained. Cesium ammonia solutions have the 

further advantage of showing no liquid-liquid two phase region as do 

d . . . 1 . 10 so ium or potassium anunonia so utions Hence, separation or 

equilibration of phases will not be an important experimental problem. 

Two special experimental problems of cesium anunonia solutions 

must be considered. First, cesium anunonia solutions are highly reac-

tive and one must be careful to choose a sample cell whose materials 

will not be attacked. Beryllium is the standard window material used 

in the construction of x-ray cells, but since all other alkaline 

earths are known to dissolve in anunonia, there was doubt as to whether 

it would be suitab.le for these solutions. 11 Fortunately, tests have 

shown that Be samples will stand up to sodium-anunonia solutions for 

twenty-four hours with no detectable weight change. Stainless steel 

(18-8,304) also resists attack over this time period and may be used 

for the non-window parts of the cell. 

Secondly, one must check the solutio~s for possible decomposi-

tion according to 

+ - 1 
M + NH3 --> M + NH2 + z-H 2 

Since this reaction is quite fast (it is self-catalyzing)lO and since 

an x-ray experiment requires containment of the solution for about 

twenty-four hours, it is possible that the solution could be badly 

decomposed by the end of the run if the reaction ever got started. 

Ordinarily this decomposition is prevented by careful exclusion of 

impurities, but one should always check to see if it really has been 

prevented by condensing the anunonia from the cesium ammonia solution 

with liquid nitrogen and measuring any remaining hydrogen with the 
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small volume McCloud-Toepler equipment described by Naiditch12 The 

amount of hydrogen produced defines the degree of decomposition by the 

equation above . 

The experimental data may be obtained by following the rela-

13a b 
tively standard procedures ' used in the data acquisition from argon 

samples. The methods of temperature control, normalization, and cor-

rection of data for polarization and absorption are quite general and 

may be carried over with only minor modification for use with cesium 

ammonia solutions. 

Once th e scattering data is obtained, it must be interpreted and 

in order to do this one must know the scattering species in solution. 

In the case of cesium ammonia solutions, one may assume that there are 

+ 0 
two scatterers, Cs and NH

3
• Cs may be ignored since it is completely 

dissociated into Cs+ ions and electrons; the electrons scatter so 

little of the radiation relative to other species that they may be 

neglected. 

An observation of some importance is that the ammonia molecules 

are non-spherical and should have their scattering described by 

orientation dependent scattering factors. While this is rigorously 

true, it appears that the higher coefficients of the harmonic expansion 

14 
of the factor , if centered on the nitrogen atom, allow one to 

neglect scattering differences due to orientational changes of the 

molecule. Hence, to a first order approximation, cesium ammonia solu-

tions may be treated (for x-ray purposes) as a binary mixture composed 

+ of spherical Cs and NH
3 

scatterers. 
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The analysis of the scattering data from the mixture may be 

carried out by following either one of two formalisms. One is due to 

Warren, Krutter, and Morningstar
15 

(WKM) and the other is due to 

Pings and Waser
16 

(PW). In either approach, it is impossible to invert 

the data for a full description of the mixture. In the case of cesium 

ammonia solutions, three pair correlation functions appear in the 

expression for the intensity g g and g 
cs+,cs+ , Cs+,NH3 NH3,NH3 , 

and it is immediately apparent that one experiment will not provide 

enough information to determine all of these functions uniquely. At 

best some superposition of these functions is all that can be obtained. 

Both the WKM and PW formalisms begin with the expression 

I(K) I x.f~(K) + I I x.x.f. (K) f. (K)pf [g .. (r) - l]j (Kr)4nr2dr 
l
. l l . . l J l J lJ 0 

l J 

for total coherently scattered intensity, where i and j denote the 

various scattering species. The WKM approach makes the approximation 

that there is a general f(K) curve shape common to all atomic scat-

tering factors and f. (K) = K.f(K) . 
l l 

K. 
l 

is approximately the atomic 

number of species i . The expression above may then be transformed 

to give 

r I I 
i j 

x.x.K.K.[g .. (r)-1] 
l J l J lJ 

2 
I(K) - f (K) E 2 x.K. 

i l l sin(Kr)dK rD(r) 

The PW approach does not make any approximation and by means of a con-

volution analysis gives 



r \. \ x.x.H .. (r) 
l L; l J lJ 
l J 
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l(K) - l: x.f~(K) 

J 
i l l 

K---=--

2 
(l: x.f.(K)] 
i l l 

rH(r) 

In cases where the Morningstar approximation is valid, it can be seen 

that the right-hand sides of both of these equations become equal to 

2 
one another except for a factor of ( L: x.K.) = F . Hence an inter

. l l 
l 

pretation for H .. (r) is available which shows that it is closely 
lJ 

related to K.K. [g .. (r) - l] I F . Note that inversion of the experi-
1 J lJ 

mental data only leads to a sum of Hij(r) functions and does not 

evaluate each one. Either theory may be applied to cesium ammonia 

solutions although care must be taken to verify the Morningstar 

approximation if the WKM approach is used. The best check will be to 

perform both inversions and check on the agreement between D(r)/F 

and H(r) 

It is to be noted that there is no difficulty in evaluating 

the Fourier transform integrals above. The spherical f (K) that 

would be used for ammonia has recently been calculated
14 

and it con-

tains no zeros provided the center of the scattering factor is placed 

on the nitrogen nucleus. Hence the denominator of the Fourier kernel 

in the expression above cannot go to zero and the difficulties stem-

ming from such a development may be avoided. 

It is apparent that if cesium dimers or large clusters were 

present, H + + would possess peaks at distances corresponding to 
Cs ,Cs 

cesium-cesium separations. Such peaks should be quite noticeable in 
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H(r) or D(r) for concentrated solutions, which may be verified as 

follows. At a concentrated solution level of 4N, the NH
3
/cs mole ratio 

is 7.88 10 . Hence 
1 
F EE x.x.K.K. (all g .. - 1 

1 J i J 1] i j 
are assumed constant 

and equal for this rough calculation) becomes 

x 1 ] 2 
7.88 (10) + 1.00 (55) 
8.88 8 .. 88 

1 2 
<133, 8) (3025 + 8668 + 6209) 

from which one can see that the Cs-Cs contribution is about 17% of the 

total. To be more accurate the term would have to be included. 

Since this function would have peaks at r values corresponding to any 

Cs-Cs spacings present in solution and since Cs-NH3 or NH3-NH3 spacings 

presumably would occur at different r values, it is likely that the 

Cs-Cs contribution could be raised well above this 17% level in the 

region of Cs-Cs separation distances. If the calculation is repeated 

at l.5N (mole ratio of 25.5), an average contribution of about 3% is 

found instead of 17%; g,. peak effects may raise this to a measurable 
1] 

level. It is apparent, however, that concentrations below l.5N will 

yield information on Cs-Cs spacings with rapidly increasing difficulty, 

and one must conclude that the large angle x-ray scattering is most 

useful for concentrated solutions above l.5N. 

An experimental program would thus involve obtaining scattering 

data for solutions near saturation and then for solutions of decreasing 

cesium concentration down to about l.5N. In each case the H(r) 
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function would be obtained and the positions of peaks noted. As the 

concentration is reduced, those peaks corresponding to cesium-cesium 

spacings will generally decrease (as 2 
xCs decreases) whereas those 

corresponding to NH
3

-NH
3 

spacings will increase. This will allow one 

to make general species assignments to the peaks. Evidence of 

clustering (lattice structure) will be found if the locations of the 

Cs-Cs peaks change little upon dilution. If no clustering were 

present, the cesium ions would be distributed equally throughout the 

solution and the average distance between cesium ions would be propor-

tional to the minus one-third power of the concentration. If clusters 

were present, at least two of the metal ions would be held at a nearly 

constant spacing corresponding to a potential minimum and the Cs-Cs 

peak would not be greatly shifted as the concentration was lowered. 

Of course, its height may change because of cluster dissociation. If 

evidence for clustering were found at high concentrations, it may be 

viewed as evidence for smaller groupings, such as dimers, existing at 

intermediate concentrations. 
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PROPOSLTION V 

Abstract 

It is proposed that a sample of bottle-aged champagne 
be investigated to determine if the protein colloids 
present in it resulting from yeast autolysis are respon
sible for its increased ability to dissolve and retain 
carbon dioxide. The champagne is to be decarbonated and 
then divided into two samples. One will retain the 
colloid and the other will have it removed by ultracentri
fugation or ultrafiltration. Each of the resulting 
solutions is to be placed in a PVT apparatus, mixed with 
known amounts of carbon dioxide, and measured for bubble 
point pressures as a function of added carbon dioxide. 
Only if the colloid is interacting with the carbon 
dioxide/carbonate equilibria will the bubble point pressure
carbon dioxide curves differ between the colloid present 
and colloid free solutions. 

A process that the wine industry would like to develop further 

is the carbonation of still wines to produce sparkling wines1a The 

principal reason for employing this process is to reduce production 

costs. Bottle fermented champagne must be aged for at least a year 

during which time much labor goes into the riddling procedure. 

Furthermore, the final product is taxed at the rather high rate of 

2b $3.40/gal (1965) . Carbonated wine eliminates the riddling labor 

and much of the storage time. Perhaps of greatest importance is that 

it is taxed at only $2.40/gal. 

Carbonation, although used occasionally in the past, is not 

widely used presently even though the above-mentioned financial induce-

ments exist. The principal reason for this is that carbonated wines 
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have lost status relative to other sparkling wines because they have 

historically been priced as high but were inferior in quality. One 

2 of the main quality differences is the ability of champagne type 

wines to dissolve more carbon dioxide at fixed volume and pressure 

than carbonated wines1c. Liotta3 has shown that conunercial carbonated 

wines lose about twice as much carbon dioxide as champagne types if 

left open at one atmosphere. 

The cause of the solubility difference is not understood. It 

lc,4 5 
has been proposed ' that the colloidal proteins which are intro-

duced into champagne when the yeast autolyzes are responsible for 

binding carbon dioxide or its carbonate derivatives to its surface, 

thus increasing the carbon dioxide solubility. A possible mechanism 

for this binding is that the carbon dioxide will form hydronium and 

bicarbonate ions and the colloid, being generally positively charged 

in the acidic pH of the wine, will trap some of these bicarbonate 

ions in the double layer surrounding it. 4 In a study of the differ-

ences between bottle and tank fermented champagnes, some evidence for 

this effect has been found. When these two wines were ultrafiltered, 

it was found that the carbon-dioxide release ratio changed in rough 

proportion to the amount of colloidal nitrogen removed. 

Of course other mechanisms are present which may account for 

increased carbon dioxide solubility in champagne. Besides adding to 

the colloid content of the wine, autolysis also produces increased 

levels of other non-colloidal components such as amino acids. When 

carbon dioxide is added to solutions containing these substances, new 

acid-bns e equilibria favoring solubility may be estahlished. 
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Furthermore, increased amounts of suostances such as glycerol may 

change the ability of the solution to retain gas since this would 

result in a change in the carbon dioxide Henry's constant. 

In order to determine the importance of the colloidal protein 

in binding carbon dioxide, it is proposed that the bubble point pres-

sure be measured as a function of carbon dioxide added to two degassed 

samples of champagne, one containing colloid and the other lacking it. 

The bubble point pressure depends strongly on the mole fraction of the 

most volatile component present in a solution, in this case carbon 

dioxide. Of course this mole fraction is not equal to the amount of 

gas added to a sample, since there will always be 

equilibrium. It is known from the work of Jahnke 

a CO/carbonate 

.. 4 
and Rohr that the 

amount of colloidal protein present in champagne is relatively small 

(less than 9.6 mg colloidal N/£); hence the mole fraction compositions 

of the degassed colloid containing and colloid free samples would be 

nearly identical. Thus, if on the one hand it is assumed that upon 

carbon dioxide addition no interactions between colloid and co
2

/ 

carbonate equilibria occur, the two samples will have nearly identical 

equilibria, nearly identical carbon dioxide mole fractions, and hence 

nearly identical bubble point pressures. If, on the other hand colloid 

interactions do exist, the mole fraction of carbon dioxide will be 

reduced as the co2 equilibria shift to accommodate the colloid binding, 

and the bubble point pressure will be reduced. The degree of differ-

ence between bubble point pressures of the colloid containing and 

colloid free samples will thus serve to determine the significance or, 

in fact, the very existence of the carbon dioxide binding action of 
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Three steps are involved in carrying out this study. Before 

PVT measurements can be carried out on the wine, it is first necessary 

to remove all the carbon dioxide from the champagne. This is easily 

done by bubbling nitrogen gas through the solution until no more 

carbon dioxide comes off. Carbon dioxide may be monitored in the 

nitrogen outflow by either chemical means or gas chromatography. Loss 

of other volatile components in the nitrogen stream is unimportant 

provided the amounts are kept small. 

The decarbonated solution must then be divided into two parts 

and one part must have its colloid removed. This removal may be 

effected by either ultracentrifugation or ultraf iltration. In either 

case, the colloid free wine must also be free of nitrogen before pro

ceeding to the PVT measurements, since nitrogen would pass out of 

solution along with the carbon dioxide at the bubble point if it were 

not removed. In the case of ultracentrifugation, nitrogen may be 

removed before centrifugation by applying a slight vacuum to the 

(undivided) decarbonated wine. Transfers of the wine into and out of 

the centrifuge tube would then be done under its own vapor pressure, 

taking care not to reintroduce nitrogen into the system. In the case 

of ultrafiltration, the wine would be filtered under about 15 atm 

compressed nitrogen6 and would then have its nitrogen removed by 

vacuum. Loss of components such as water or ethanol in this degassing 

procedure would lead to a compositional difference between the fil

tered and nonfiltered wine and such losses would have to be minimized. 

Finally, the PVT measurements would have to be carried out in 

a suitable apparatus. Micro-sized chambers are practically required 
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if ultracentrifugation is employed, since the tubes have a maximum 

capacity of only a few cubic centimeters. A good micro apparatus has 

been developed by Reamer and Sage 7 and with minor modifications can 

be adapted for use with this system. The carbon dioxide/wine pressure 

ld data of Vogt is available for equipment design. The data would be 

taken in the following way. After a small volume (approx. 0.1 cc) of 

degassed nonfiltered wine was introduced into the chamber, a small 

amount of carbon dioxide would be added to it. The mixture would be 

compressed until a single liquid phase was obtained. The liquid 

would then be slowly expanded and a plot of pressure versus volume 

made for this composition. A discontinuity would be obtained in the 

plot at the bubble point pressure. After obtaining enough data to 

adequately determine this pressure, the mixture would be expanded, 

more carbon dioxide would be introduced, and the procedure would be 

repeated to determine the bubble point pressure of this more concen-

trated carbon dioxide mixture. After several carbon dioxide addi-

tions, one could make a plot of bubble point pressure versus total 

carbon dioxide added. The entire procedure would then be repeated for 

the degassed filtered wine. The two plots of bubble point pressure 

versus carbon dioxide added would be the desired data. 

If it should be found that protein colloids do affect the 

solubility of carbon dioxide in wine, then a large number of future 

experiments would be indicated. The first of these would involve 

identifying the colloid size range most responsible for this effect. 

Later experiments would involve separating these colloids as concen-

trates from sources such as wine and yeast liquors. The colloid 
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concentrates would then be added to still wines and the mixture car-

bonated. Carbon dioxide retention in these colloid enriched still 

wines could then be compared against that characteristic of tank and 

bottle fermented champagnes. Sensory comparisons would also be re

quired, since the concentrates might contain odorous materials. 
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