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ABSTRACT

‘The Steele-Pecora equation describing the x-ray scattering
behavior of molecular fluids has been investigated. Several
molecular scattering factor coefficients, molecular distribution
functions for chlorine according to the Percus-Yevick theory,
and intensity functions for chlorine have been evaluated using
orthonormal expansion methods.

Molecular scattering factors for HZ’ NZ’ LiH, and HF have
been obtained as spherical harmonic expansions. The coefficients
of the expansions and corresponding gas scattering intensities
have been evaluated using both the molecular orbital and isolated
atom approaches, and significant differences have been found to
exist between the two methods. Chlorine scattering factor
coefficients were calculated for the isolated atom approximation
oﬁly. Expressions for the two-centered Gaussian scattering integral
coefficients were derived, and the harmonic expansion technique
was shown to be a practical method of calculation,

The Percus-Yevick equation was solved for chlorine by an extension
of the Hankel transform method of Chen and Steele. Chlorine was repre-
sented by an appropriate two-centered Lennard-Jones potential, the o
and £ parameters having been determined from second virial data. Higher
order expansions of f(glgz), C(glgz), and H(glga) were used here than
in previous work as well as a more complete representation of

the product of two harmonic series. Pair correlation functions
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were obtained over the density range p* = 0.1 to 1.2 for T* = 0.75,
1.00, and 1.30. It was concluded that the first two expansion coeffi-
cients of f(glgz), C(BIBQ)’ and H(§152) were sufficient to obtain
accurate pair correlation functions over tﬁis range of states. For
certain states, use of the more complete product expression reduced
the error in 8000 by several percent. Evidence for a chlorine critical
point was obtained in the vicinity of (p*,T*) = (0.65, 0.70).

A version of the Steele~Pecora equation suitable for use with
diatomic molecules was derived. Substitution of the chlorine scatter-
ing factor coefficients and Percus-Yevick distribution functions
into this equation led to the determination of total scattered
intensity functions expressed as sums of gas scattering, spherical,
and angular intensity contributions. The angular contributions were
shown to be experimentally significant in the regions of the first
and second peaks at high densities (p* } 1.2). Temperature was shown
to have only a slight effect on total intensity. 8000° £200° and

899 Were found to be the principal contributors to the intensity.
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I. INTRODUCTION

The scattering of x-rays may be used to obtain information
about pair distribution functions in fluids. A rigorous theory1
exists for the treatment of fluids composed of spherical atoms and has
been employed with success for over thirty years. The same theory has
also been applied to fluids composed of nonspherical molecules2 with
the major assumption that the x-ray scattering is determined entirely
by a spherical molecular pair distribution. This application has met
with only partial success because the distribution function of such
molecules is not spherical but is dependent upon orientational corre-
lations as well.

A recent theory developed by W. Steele and R. Pecora3 shows
the details of the correct form of the x-ray scattering cross-section.
In particular, a specific expression for the orientational contribu-
tion of the pair distribution‘function to scattered intensity now
exists. It is of interest to know just how large a contribution
orientation makes to the total scattering, but at present no numerical
information is available. This work therefore undertakes the task of
evaluating the total scattering for a nonspherical system from a
theoretical standpoint. So as not to complicate the equations and
expressions to be evaluated any more than necessary in this initial
treatment, we have restricted our attention to linear diatomic mole-
cules. Although other molecules are discussed, the bulk of the work
which follows is for chlorine.

When one attempts to evaluate the x-ray intensity, one finds

that two quantities must be known as input. The first is the molecular
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scattering factor, defined as the spatial integral over the product of
the electronic density and its phase factor eiEfE-. The second is the
pair distribution function, including its angular correlations over a
large temperature and density range. Two methods exist for the calcu-
lation of the molecular scattering factor. In one, the atoms of the
.molecule are assumed spherical and independent of one anotherA. In the
other, the molecule is viewed as a whole and is treated quantum mechani-
cally in a manner analogous to atomic scattering factors. Bonding
effects are specifically taken into account. As presently formulated,
neither approach presents the molecular scattering factor in the form
of a harmonic expansion, yet the Steele and Pecora equation demands it
to be in this form. We have therefore derived equations for harmoni-
cally expanded scattering factors in both treatments. The quantum
mechanical treatment (at least for small molecules) was expected to be
the most accurate,vas had been indicated by earlier work on hydrogen6’7
and carbon8’9. However, an investigation over a variety of different
molecules and bond types had not been done and the differences between
the two treatments were still largely unknown. Harmonically expanded
factors have thus been calculated for the four first row molecules,

HZ’ N LiH, and HF using both methods of calculation, and differences

22
have been presented and discussed.

Calculation of the pair distribution function for a nonspheri-
cal molecule presents a difficult problem. No such data for a
temperature and density dependent function have been previously cal-

culated, and until quite recently no technique was available that

might be adapted for the determination of such quantities. The recent
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advance that does allow one to calculate these pair distributions is
the work of Chen and SteelelO in which distribution functions in
harmonically expanded form were evaluated for a two-centered hard
sphere (''dumbbell') potential by solving the Percus-Yevick equation.

We have adapted this technique for use with a temperature dependent
two-centered Lennard-Jones potential and have evaluated distribution
function coefficients for three temperatures and a variety of densi-
ties ranging from zero to moderately high values. Behavioral trends of
the coefficients as determined by these temperature and density varia-
tions are presented and discussed.

The x-ray equation itself was adapted for use with diatomics,
both homonuclear and heteronuclear. As indicated above, it was
evaluated by using the molecular scattering factor results and pair
distribution function coefficients previously obtained. The resulting
intensity curves were decomposed into their three main components, the
contribution of each being studied as a function of temperature and
density. Particular attention was paid to the component composed of
the angle-dependent fluid interference terms, the primary interest
being to determine if those terms collectively contribﬁted enough to
the total intensity to be measurable.

Some theoretical background is called for before the detailed
analysis is begun. We therefore devote the remainder of this introduc-
tion to a presentation of that background. Since this research
ultimately reduces to a study of the fluid state and methods useful for

discovering new information about fluid structure, a brief review of

fluid (or liquid) state theory is in order and is found in the section
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immediately following this one. Nearly all the main theoretical equa-
tions evaluated in this work depend on the method of orthonormal
D—function expansion advanced by Steelell. Consequently a section is
devoted to this, followed by results obtained from its application to
hard core Percus-Yevick cluster and integral equations. Lastly, early
work on the x-ray scattering from spherical and nonspherical molecules
is reviewed. Scattering factor treatments are discussed, and some

results for specific systems are considered.



A. Liquid State Review

A continuing problem in statistical mechanics is the prediction
of macroscopic properties from microscopic configurational properties.
Restricting oneself to equilibrium properties, the thermodynamic

.properties typically of interest include pressure and volume relation-
ships, isothermal compressibility, the heat capacities CP or CV »
and ﬁolar free energy. The scattering behavior of visible light,
neutrons, and x-rays is also of interést since this provides detailed
information about the microscopic structure of the fluid as well as
further information about the macroscopic thermodynamic properties.

Predicting these fluid properties from theory has been the sub-
ject of a great number of studies, beginning with Van der Waalslz.

Even the most modern theories still predict certain properties incor-
rectly, notably pressure and critical state phenomena, and it is
apparent that unlike the gaseous or solid states, the liquid state is
still far from being solved.

In the region of low density, the theory of Mayer and coworkers13
has proven quite accurate. This is the cluster expansion approach and
results from an expansion of the configurational integral in Mayer £
functions. Virial coefficients and a density expanded version of the
pair correlation function have been derived and evaluated for a variety
of spherical potentials including the Lennard-Jones (LJ) potential. The
theory is only valid at low densities, however, since at higher densi-

ties the series apparently becomes nonconvergentl4. It is useful for

.evaluating higher density theories by comparing their prediction of
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virial coefficients against the accurate Mayer values.

Tﬁe modern theories which have been developed and applied to the
moderate and high density region are all distribution function
theoriesls, these having replaced the older cell theoriesl6. Distribu-
tion functions are desirable because they have direct integral rela-
tions to the macroscopic equilibrium properties and for certain systems
they are given directly by the Fourier transform of the x-ray scatter-
ing intensity. The accuracy of a particular distribution function may
thus be assessed by carrying forth the required integrations for a bulk
property and comparing the results with experimental data. Within the
error bands of present x-ray data, a point by point comparison might be
made.

The first dense fluid theories included the Born, Green, and
Yvon (BGY) theory17 and the similar Kirkwood theoryls. These theories
led to an open-ended coupled set of integro-differential equations for
the set of nth order distribution functions g(n)(r) . The set of
equations was closed by employing the superposition approximation of
Kirkwood. Unfortunately the theory fails badly in predicting the equa-
tion of state at liquid densities. A recent attempt19 has been made to
revive this theory by using a higher order superposition approximation,
but while an improvement has been made in the results, computation time
is nearly prohibitively high.

One of the most successful and widely investigated theories is
the Percus-Yevick (PY) theoryzo. It is similar to the marginally suc-
cessful hypernetted chain (HNC) theoryZl. In integral form, the PY

theory provides an approximation for the direct correlation function
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which when solved with the Ornstein-Zernike equation provides a solution

for g(r) . In spherical form this approximation is

c(r) = g(x)[1 - exp(Bu(r)]
or

c(r) exp[-Bu(r)] = £(r) g(r)

It has been applied at low and high densitieszz—25 and found to give

distribution functions which generally agree with experimental curves
and which yield thermodynamic properties that agree well with Monte
Carlo and molecular dynamics values. Pressure is a notable exception
to this good agreement. Perhaps significantly it also predicts a
critical point which agrees quite closely with that for fluid argon
and, unlike eariier theories, predicts an infinite isothermal compres-
sibility at the critical point.

Still another approadh to the liquid equation of state is the
perturbation theory originally set forth by Zwanzig26. The theory
expands the Helmholtz free energy as a sum consisting of a contribution
from a hard sphere reference potential and a contribution from a term
which represents the perturbation of the hard sphere potential to a
more complicated potential such as the Lennard-Jones potential.
Originally a high temperature expression, it has been modified by
Barker and Henderson27 and applied to true liquids. Accurate results

(4) ()

require the inclusion of the g(3)(r) and g hard sphere dis-
tribution functions which can be only roughly approximated. Dense

fluid applications are encouraging but a final evaluation awaits

further research.
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The aforementioned theories have been applied to a great extent
to the spherical molecules composing what is usually termed simple
fluids. Theories suitable for application to more complicated fluids
composed of nonspherical polyatomic molecules must be capable of
explaining the quantitative changes which occur from simple fluid
behavior. These include the changes which occur in the equation of
state (particularly in the location of phase boundaries), the small
changes in the virial coefficients (especially third), the increase of
heat capacity values, and the changes in dielectric behavior (especi-
ally in the second dielectric virial coefficient). Orientational
correlations, rotation, and &ibration all contribute to these changes.
The latter two effects may be separated and evaluated by standard
statistical mechanical expressions, whereas orientational effects must
be included specifically in the configuration integral or pair correla-
tion function. If orientation is taken into account, the theories above
can be properly generalized for application to nonspherical systems.

Pople and Buckingham28 have used cluster theory with dipole and
quadrupole forces included in treating second ordinary and dielectric
virial coefficients. They included nonspherical repulsive effects by
adding on an arbitrary r-12 term multiplied by the sum of two
second order Legendre functions depending on orientation angles. More
recently, Levine and McQuarrie29 and Stogryn30 have presented general
treatments for the evaluation of virial coefficients up through the
third for a multipole potential. The repulsive core is spherical,
however. Recently Chen and Steele31 have evaluated the virial coef-

ficients and density expansion coefficients of the pair correlation
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function for linear hard core molecules following cluster theory.

They expanded the pair correlation function and cluster integrals in
harmonic expansions of the orientatiqnal angles, a technique proposed
by Steelell and developed by Sweet and Steele32a in evaluating zero
density pair correlation functions for the two-centered Lennard-Jones
potential. Chen and Steele10 also adapted the Percus-Yevick theory

for use with linear hard core molecules using harmonic expansions. This
work, along with earlier cluster work, was the first to specifically
determine the size of the contributions of the orientational effects at
moderate densities. Most importantly, it is a general theory and may
be further adapted for use with other potentials. It is incapable of
yielding very high density results due to convergence problems. Forms
of perturbation theory have been applied to slightly nonspherical
molecules by Pople33 in early work and more recently by Kong34 in the

calculation of second ordinary and dielectric virial coefficients.
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B. Statistical Mechanics of Linear Molecules

Orthonormal Expansions

If a microscopic pair property of a substance, such as its
potential or pair distribution function, is expressed in terms of the
distance separating two molecules and their mutual Euler angles of
6rientation, then a very complicated expression often develops.
Steele11 advanced a general theory for handling such expressions in
which they are orthonormally expanded in the rotational D-functions
(or symmetric top functions). An important assumption in this approach
is that the molecules are rigid, since if they were to bend freely the
Euler angles would lose their meaning. If the position and Euler
angles of orientation of a molecule are denoted by r and {Q , or
collectively by R = (r,2) , then a general function X(BIEQ) may be

expressed as

2
X(R;R,) = 8T gl »sz Xy1,n2F12) D1 (@)D, (%) (1)

where the coefficients Xglpggfrlz) depend only on thewscalﬁi dls—Jl
tance between molecules. N1 = {K1,M1,J1} and ) = ) Y Yol

N1 -~ J1=0 M1=-J1 K1=-J1
In the case of dealing with linear molecules, the D functions reduce

to the usual spherical harmonics since M1,M2=0, Kl1=-K2, and one

obtains

[o'¢} o

ROLRY = 4w 3 0 F « SURRSE L IR SR Wy ORI (- % B2

where & = {-2,-(2-1),--+5(2-1),2} . (In the harmonics the Qi repre-

sent only two angles instead of a full Euler set of three; i.e.,
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Qi = {Gi,¢i} .) The Euler angles are always expressed relative to a
coordinate system in which the Z axis corresponds to the vector Iy, -
This allows one to make use of molecular symmetry in determining the
allowable values of £,%',m . This work employs the D function

normalization of Steelell and the harmonic definitions of Rose35. The

factor of 47 1is present so that if X(glg

2) is freely averaged over

all orientations, Xooo(r) is equal to this average. The XRQ'm

coefficients may be obtained by multiplying both sides of (2) by

YE m(Ql) and Yz',-m(QZ) and integrating over angles, i.e.,
m™ 2T 27
e L * %
Xogm™ = 77 f j J j R Ry u AeiT gy 1 (058500040, .- (3)
00 0O

where d{ = sin 6 d6d¢ .

Symmetry imposes several additional restrictions on the allow-
able 22'm values. The orientation angles of two linear molecules
are shown in Figure 1. It is clear that the azimuthal functionality
of X(R,R,)) depends only on the absolute difference |¢1- ¢2| . NE
this observation is applied to (3); one can see that the XQZ'm coef-
ficient is invariant to the sign of m . For homonuclear molecules, a
restriction on the allowable values of £,%' may be obtained if it is

noticed that the x(glg should be invariant to an end for end

5)
switch of either molecule provided the molecular center is taken at the

internuclear midpoint. This implies a (0,¢) > (m-0,7+¢) change in

the coordinates of one of the spherical harmonics in (2). Since
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Figure 1
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it is apparent that if X(BiBQ) is to remain invariant, £ (and ')
must be even. In the case of heteronuclear molecules, a similar
approach shows that the sum &+%' must be even.

The usual statistical mechanical expressions for spherical
molecules may be taken over for nonspherical use by including angles
of orientation in the potential, various pair properties, or integrals

involved. The configurational integral becomes

ZN = f exp[-BU(Bl’:R_zs""BN)] dgld_fiz,"',dBN (4)

and the pair distribution function becomes

2
D@z = 5 s @@y =MD [ iy, R
64 N
X dRy ++- dR (5)

In systems whose potential energy derives only from pair interactions,

an ensemble averaged configurational property becomes

x> = [ x@reP @R, v, a, 6)

The standard thermodynamic properties may be obtained by applying (6)

to the usual spherical equations. Some results are:
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2
- sadd
E=E +E ,. ¢ E + L u(R ) g(R )dR dR
trans vib rot 128ﬂ4 —2
2 ou(R.R,.)
P = pkT - _Ll& f J —ai—z g(RlR )r12dedR2
3841V 12
ol -1 1
i Gl = f f [g(R,R,) - 1] dR dR,} )
64T 'V

The isothermal compressibility may be further evaluated by using (1) for
the pair correlation function. Because the DN(Q) are orthogonal func-

tions and Dd(Q) = (8‘IT2)-.1/2 , (7) becomes

K = B{p_1+ J [gOO(r)- 1] 4Wr2dr} (8)

and the isothermal compressibility depends only on the spherical aver-
age of g(R 2)

Sweet32 has applied the method of orthonormal expansion to the
intermolecular potential and zero density pair correlation function.
The Kihara core potential, modified Stockmayer potential, and two-
centered Lennard-Jones potential were treated. The latter was employed

in this work and has its variables defined by Figure 1 and is given by:

&

WRR) = e ) oo (9
k=1
where
g Lk ki

X, = [ak + (=) b cos ¢']

and where
2 R2
a; =r + rR(cos 91- cos 62) + 7T(1~—cos 61 cos 92)-
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2
a, = r2+ rR(cos 61‘ cos 62)-+%?{1:+cos 91 cos 62)
2 R?
ay =1 - rR(cos 91—-cos 62)-+7f(1 - cos 61 cos 62)
2 R?
a, =r- rR(cos 61— cos 62)-+7§(1-+cos 61 cos 62)
o SR e ;
b = 5 R™sin 61 sin 92
and
* = :
r, = rk/O

In this potential, the Lennard-Jones type potentials at all four inter-
action centers are taken to be identical, i.e., have the same 0 and

€ . The o and € values were determined for a variety of substances
by Sweet by fitting theoretical virial data to experimental values.

N CO0, and short chain hydrocarbons were treated.

22 Oy

The u were evaluated for linear molecules beginning with

28'm
(3). The ¢' dintegration was performed analytically and the theta
integrations were done numerically. The zero density 8ogtm Vere done
the same way except that all integrations were done numerically by
Gaussian quadrature. The results, which were obtained for a variety of
R* and T* values, showed that the series were fairly rapidly conver-
gent; even for relative lengthy molecules with R* = 0.6, convergence
required only the 200 and some of the 400 series coefficients. The
W 0X) - and g (r) functions were always the largest terms. As R*
000 000
became longer, the primary effects were to broaden the peaks of the

*

gooo(r) and shift them to higher r and to generally increase the

size of the other gzz,m(r) . The bowl depth of Y00 became shal-
%

lower and shifted to higher r" . The Stockmeyer potential produced
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: 3 % _
glll(r) and gllo(r) functions which for the parameter set R"=0.4 ,
™= 1.0, t¥ = uz//§€ 03 = 1.0 were the largest of the angular cor-

relations and were nearly as large as gooo(r).

Percus-Yevick Solutions

The method of orthonormal expansion has been applied by Chen and

Steelelo’31

to the problem of calculating pair correlation functions for
linear hard core molecules at moderate densities. They were calculated
by two methods, one being the cluster density éxpansion of the pair
correlation function and the other being the integral equation approach.

In each case the Percus-Yevick approximation was employed.

The density expansion for nonspherical systems is

g(R R)) = gO(gl_&Z){1+pA+ QZ(IT’ 2N+ M+%—m)+ .-} (10)

where all Mayer diagrams now include integrations over all the Euler
angles of the field points. Application of the Percus-Yevick approxima-
tion to (10) required that the bridge and parallel diagrams be
neglected, i.e., @x1+£§1) = 0 through second order. Chen and Steele
truncated the expansion after p2 .

To evaluate (10), g(gl§2), golegz), and each of the Mayer
diagrams were expanded according to (2), the indicated summations and
multiplications were carried out, and corresponding coefficients on
either side of the equation were identified with one another. The
diagrams themselves were evaluated by equating the expansion of the

full diagram (expressed relative to 512) to the integral over the
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expansions of the component Mayer fij values (each expressed rela-
tive to a E&j coordinate system), multiplying both sides of the
equation by the 1,2 harmonics, and then integrating over the angles of
these harmonics. Since each fij was expanded in a coordinate system
relative to the Iij vector, each fij had to be transformed to the
1,2 system in which the entire diagram was expanded by using the rota-
tion ﬁatrices of Rose35. The integrations were carried out by a
lengthy Fourier transform process.

These calculations showed that the expressions converged rapidly
at low to moderate densities. The angular dependent contributions from
the cluster integrals were shown to be small at all densities consid-
ered, with the bulk of the angular effects of g(gigz) being
determined by the zero density limit. The 200 coefficient of the JA&
diagram proved to be the 1argest angular contributor, becoming as much
as 10%Z of the 000 coefficient at R* = 0.6 . Thel—l and Ndiagrams
possessed angular coefficients which were negligible. The gooo(r)
term was composed of contributions from go(Blga) and from all the
cluster diagrams. It was found to become a smoother and more long-
ranged function as the molecule became more nonspherical at a fixed
reduced density.

Diatomic hard-core virial coefficients were also determined. It
was found that the virial coefficients, if reduced by a factor propor-
tional to the molecular volume, changed very slowly with increasing

R* . The (PV/nRT - 1) values derived from evaluation of the virial

equation of state showed differences from hard sphere values of 67 for
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R* = 0.4 and 13-14% for R* = 0.6 over the entire density range (to

p* 0.7). The properties of these nonspherical molecules were thus
found to be primarily a function of molecular volume.
The integral equation approach to pair correlation function

calculations involved a generalization of the Percus-Yevick (PY)

approximation and Ornstein-Zernike equation, i.e.,
c(R;R,) = £(R,R,)[H(R;R,) + 1] (1)

R R, ® LB E) L = C®R)) + 4 f°(5153)h(523—3)d33 L2

where H(glgz) + 1 is the density dependent part of the pair correla-
tion function. (11) was substituted in (12), and both sides of the
resulting Percus-Yevick equation were Fourier transformed. By expanding
each Fourier kernel according to (2), the PY transform equation was con-
verted to a form where spherical harmonic expansions appeared on both
sides of the equation. By equating corresponding coefficients, an
infinite series of coupled integral equations was obtained. By trun-
cating the series, a solution was obtained from the remaining series
numerically by iteration techniques similar to those employed in spher-
ical systems.

The H(glgz)+-1 could be identified with the bracketed term of
(10) at low densities. Since the cluster terms were described by just
the 000 and 200 coefficients, only coefficients with these indices were
included in the integral equation calculations. It was noted that a
source of probable error at high densities was the neglect of coeffi-

cients with indices higher than 200.
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Pair correlation functions, inverse isothermal compressibili-
ties, and pressure were calculated for the hard core potential. In
general the results were the same as derived from the cluster expan-
sion. Such differences as did occur were the largest at high density,
where the cluster approach would be expected to be breaking down. The
gOOO(r) function was a bit more structured in the integral-equation
method. The angular gzz,m(r) , however, were in quite close agree-
ment. No critical point was found. The equation of state was only
moderately affected by molecular shape, the difference between hard
sphere and diatomic hard core values being less than 207 at the highest

values of R* = 0.6 and pP* = 1.6 .



e

C. Molecular X-ray Scattering

X-ray scattering data havebeen used to supply information about
distributions of molecular distances for some time. The relation of
the pair distribution function to the diffraction pattern for spheri-
cally symmetric fluid systems was developed by Zernike and Prinsl.
They showed how the Fourier integral theorem could be applied to obtain
the radial distribution function for a single component spherical
fluid. Their treatment is to start with the standard expression for

scattering from any rigid atomic system

N
B lich ~ nzm £ (k) £3(k) exp(ikxr ) (13)

where N is the number of atoms in the system and fn(K) is the
atomic scattering factor. To obtain an expression for a fluid system
in which the atoms are free to move, (13) must be averaged over space
and time. This implies an ensemble average over the n,m pairs. The
terms with n=m are split out of (13) and singlet averaged, whereas

the other terms remain together and are pair averaged. Thus,

<I,()> = N|£() | + f £ |? explixp)o®® (z r,)ar, ar,
= n|£w) |2 + V] |2 f 0@ (x) exp(ix'r) dr (14)
Since p(z)(glgz) = ng(z)(rlgz) and since for spherical fluids the

pair distribution function depends only on scalar distances between
molecules, one may write

¥ €L, ()7 = plf(K)lz-szlf(K)|2 f g(r)jo(Kr)AWrzdr (15)
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where jo(Kr) = sin Kr/Kr and the integration has been carried out
over the angular variables. To insure convergence of the integral, a
term equal to p2|f(K)12 J jo(Kr)Aﬂrzdr (zero or surface scattering)
has been subtracted from (15); the left hand side of (15) remains
unchanged except at very low values of Kk which are outside the exper-

imental range. Thus

v <105 = 0200 + 0'200 [ (8- 113 (eoemelar 16)

In application one often sees the identifications

<1, (K)> - NEZ (k)

i, () = Sl J [g(r)-l]jo(K£)4ﬂr2dr =ph(x)  (7)

NEZ (k)

where () signifies the exponential 3-dimensional Fourier transform of

h(r) . Fourier inversion of (17) leads to

rlg(x) - 1] = é J Kil(K) sin kr' dk (18)
o 2mp 0

Applications of the Zernike and Prins theory have been many, and
reviews by Gingrich36, Furukawa37, Kruh38, and Pings and Paalman39 sum-
marize the results. Some of the most recent work has been done by
Pings, et al.40 on liquid argon in which distribution functions have
been obtained over a relatively large temperature and density range.
Mikolaj and Pings have also derived Percus-Yevick potentials from the
data by noting that the Fourier transform of the direct correlation
function is simply related to il(K) by the Fourier transform of the

Ornstein-Zernike equation, i.e.,
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il(K)

h(x) .
l%—il(K)

e(x) = s
l+€h(|<)

e
e

The potential uPY(r) is obtainable directly from the Percus-Yevick
approximation if the c¢(r) derived from ¢(x) is substituted into it;

Taess

a - &(x)
upe(r) = kI zn’l S

The x-ray scattering from molecules, if given as a function of
molecular distribution functions, requires several modifications of the
Zernike —Prins development since the scattering centers are no longer
spherical and the atoms within molecules are fixed at specific dis-
tances and orientations. Until quite recently the molecular equations
derived by Menke2 were standard. However, orientational effects were
only treated approximately, the more complete treatment being developed
by Steele and Pecora3. We present both derivations and contrast the
two.

Menke began with the atomic sum given by (13) but formed separate
sums over the atoms in each molecule. Thus (13) becomes

N N
L0 = J ] £ £50) explikr,) exp(-igerD) (19)
£,m U,V
where N is the number of molecules and Na is the number of atoms
per molecule. If r, is now the location of the molecular center
(assumed to be as near as possible to a spherical center), bi is the
distance to atom U in molecule £ , and fﬁ is the atomic scatter-

ing factor of atom U in molecule £ .
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Introducing the molecular scattering function
2 : %
Fo (k) = g £,(<) exp(ik-b) , (21)
(19) can be rewritten to give

N
I,(k) = me Fo (k) Fp(k) explik®(ry-r )] (22)

s
Noting the similarity between (22) and (13), one may define FQ(K) as
a molecular scattering factor. In general, it depends on the orienta-
tion of molecule £ (i.e., on the Euler angles 92) since the hﬁ
depend on the orientation.

As in the spherical case, Il(K) must be ensemble averaged to
get the experimentally measurable intensity. Splitting out the £ =m

terms as above, we singlet and pair average over both intermolecular

distances and orientations to obtain

< (k)> = lzf F, (k) FF(x)dR, + f FL(€) FA(K)
8m
) 2),
X exp(;Efziz)p( )(Elﬂlggﬂﬂz)dﬂldﬂzdzldgz (23)

An approximation in the Menke approach is that there is no correlation

between two molecules and their respective orientations. This is

equivalent to stating that p(z)

p(2)

is a function of I and I, only;
=

the angular is replaced by a (8ﬂ2) p(z)(g) spherical term.

Hence in (23) the Ql and Qz integrations are carried out over Fl

and F2 only, each integration corresponding to a random orientational
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average over (21). Thus

—-l—-fF(K) a2 = J £ (<) § (kb )
8n2 u H - H

and defining Fe(K)

102
o R (S—ﬂz—) f F, (k) df, f Fo (k) dQ,

=1L £ £, 3 (b)) 3 (kD) (24)
T
Also
1 % _ 2 : ks
;;E-J Fl(K) Fl(K)dQl B 2 fu(K)'+2 Z 'fu(K) fu,(K)Jo(Kbuu,)-lg(K)
m M H, M
where bUU' = lhﬂ— Eﬂ.] . Thus (23) in the Menke approximation
becomes
L1 (K)> = 1 (&) + 4upF (&) | la(e) - 11x* 3§ (kr)de (25)
N I 4 e fo}
0

where the angular integrations over I have been carried out.

Steele and Pecora begin their derivation with (22) but define
their molecular scattering factor analogous to the way the atomic scat-
tering factors are defined in (13). Using the symbol a(KQK) for this
scattering factor, where the o< are the Euler angles of molecular

orientation relative to K ,

a(kQ) = f 0(x) exp(ik*x)dx (26)

where pP(x) 1is the electronic density within the molecule. Also,

N
I (k) = Q,Zm a, (k07) a_(k5) exp(iker, ) (27)
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The ensemble average of (27) can now be written as in (23) but, unlike
Menke, 0(2)(5132) is left as an orientational dependent function.

In order to carry out the orientational averaging, each of the
functions are expanded using the D function orfhonormal expansion
of Steele. p(z)(gigz) is expanded according to (1); the exponential
of (27) is expanded in spherical waves; and the a(KQK) are expanded

into the harmonic series

k) = (872 ] ad (o) pE7 @ (28)
M,J ’ ]

Both p(z)(glgz) and the pair al(KQi)’ az(KQ;) involve Euler angles
of molecules 1 and 2, but the angles are given relative to two differ-
ent coordinate systems. Hence the votational matrices of Rose must be
employed to express these angles in a common coordinate system. Sub-

(2)

stitution of the resulting scattering factor, p , and exponential

expansions, followed by lengthy integrations over the Euler angles of

Ql . 92 , and the angular variables of Iy lead to the result
l-<I (k) > = 2 IaJ |2+ plao |2 [g . (x) =113 (Kr)4ﬂr2dr
N 1 o,M 00 00 0
M,J il
K,-M J 4
1 [t N | 2 A 2JEL
+0 ) (=) B B ) 1% S ¢(33,3,300) c(JJ.J,;0K,)
NL N2 0,-M, O,M2 3 2J2+l 172 122 %2
#0
Tt T
x f Sin MlK Mz(r) jJ(Kr)ZnTrzdr (29)
21272

Details and corrections of the original work may be found in Appendix
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Ia R E is identified with the Fe(K) of (24), then it is

a5,
00
apparent that the first two terms of (29) are identical with those of
(25). For molecules with nearly spherical symmetry such as methane,
it would thus appear that the Menke equation is adequate, whereas for
less spherical molecules the longer expression of (29) must be employed.
The Steele and Pecora result has been applied to only one system,
water4l. Only the ago(K) scattering coefficient was taken as non-
zero and hence the treatment effectively reduced to the Menke approach.
We now mention another technique which may be used to calculate
the intensity for a molecular fluid. It is to treat the fluid as a
mixture of atomic species in which the intensity is determined by sum-
ming over all the atomic scattering factors, ensemble averaging the
intensity by using the appropriate two species pair correlation func-
tion, i.e., pgg)(r) functions. The assumption is made that the atoms
within the molecules remain as spherically symmetric scattering centers.
Following the work of Waser and Schomaker42 one may scale the intensity
to the gas scattering of a free molecule43 or alternatively to the
square of the sum of atomic scattering factors over a molecular
stoichiometric unit41 and Fourier transform the resulting scaled func-
tion to give a linear combination of convoluted true radial pair dis-

tribution functions. The intensity formula is
B - . 2
I()=]) %, £5(K)+0p E § x % £ L (€ () f (855 (x) - 113 (kr)dme"dr

where 1i,j denote atomic species and Xi’xj are mole fractions
derived from the molecular stoichiometry. If [I(k) - z xifi(K)] /
51

[ Exifi(l()]2 is denoted by im(K) , it can be shown that the Fourier
i
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transform of Kim(K),

orH(r)

—A;-J ki (k) sin kr dk |,
2 m
2m 0

is given by

H(r) = g g xixjHij(r)

where -
Hij(r) =gk J y[gij(y) - 1] Tij(r-y)dy
and s
T,.(r) = lj £ R I) %, E (k) 1%cos krdx
1] m i 3 e
0

The H(r) function is thus not equal to a molecular distribution func-
tion of the type used in (23) and requires some careful and often dif-
ficult interpretation. Furthermore, as discussed by Pings and Waser44,
it is not possible to obtain the component p§§)(r) atomic pair dis-
tributions from one experiment, since it provides only enough informa-
tion to characterize one function. It should be noticed that
orientational variables never appear in this treatment. The Waser and
Schomaker approach has been applied to several systems in slightly vary-
ing form. Carbon tetrachloride, carbon tetrafluoride, bromine, benzene,
water, ammonia, t-butyl ammonium fluoride, and methane are a representa-
tive few.

In (25) and (29), molecular scattering factors are required. In
the former, the molecule is viewed as a collection of independent atoms

and the evaluation proceeds from (21). Accurate atomic scattering fac-

tors have been given by Cromer and Mann45. The most general
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expression, however, is (26) and the electronic density p(x) is to
be determined from quantum mechanics in order to account for molecular
bonding effects. The scattering integrals which result from (26) when
p(r) 1is expanded into Gaussian basis molecular orbitals were first
treated by McWeeny46. By a contour integration he was able to give
integral results for s,s; s,p; and p,p integrals. The same integrals
were treated by Kraussand Miller47 in which the integrals were
expressed as a finite sum of Hermite polynomials. Previous calcula-

tions of molecular scattering factors have been restricted for the most

657

2 and C-H, C-N, C-0, or C-C bond factorss’g. Hydrogen

part to H
represented an extreme case since all the electrons are bonding, and
thus the MO results were greatly different from isolated atom results.
McWeeny showed that good results were obtained by employing just s

and p type basis functions, and that the inclusion of configuration
interaction had no appreciable effect on the scattering factor values.
Stewart was able to show that a good representation for hydrogen was
obtainable by using spherical atomic scattering factors for each H atom
and floating the centers of these spherical factors 0.078 off each
proton into the bond.

The McWeeny work on carbon bond factors pointed out the need to
use the correct valence state (hybrid orbital) when dealing with carbon.
Bond distortions were shown to affect the inner part of the scattering
factor curve most heavily, while temperature and vibrational effects
were greatest in the high kK region. The more recent work of Stewart

confirmed the effects of distortion and pointed out that certain inte-

grals, notably 2p0 integrals, were more anisotropic than indicated
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by McWeeny. The general conclusion was reached that scattering factors
which rigorously included bonding effects had smaller amplitudes than
those calculated from the assumption of independent atomic scatterers.

L

Calculations of molecular scattering factors for complete organic

molecules have not generally been performed.
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PART II

MOLECULAR SCATTERING FACTORS
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Introduction

Molecular scattering factors in X-ray analysis are
most often calculated from the isolated atom equation
originally derived by Debye}’2 In this equation a
polyatomic molecule is viewed as being composed of
independent atoms located at the ends of interatomic
vectors known primarily from spectroscopic data. The
molecular scattering factor is then a weighted sum over
the atomié scattering factors held at these interatomic
distances.

As first discussed by McWeeny3 and most recently

5¢6 and Stewart?'8 this approach ignores

by Tavard
distortions in the electronic density due to bonding.

In this paper we calculate molecular scattering factors

for the ground states of H,, N,, LiH, and HF using Gaussian
Hartree-Fock SCF_results so as to include the effects of
bonding. The factors are expressed as harmonic expansions,
a formalism having several advantages over other approaches,
the principal one being that all orientational information
may be stored in a small number of coefficients. Most

4.7,8 has recalculated the results for each

previous work
orientation of the molecule with respect to the scattering
vector k. The expansion technique was first suggested

by McWeeny4 and was fecently developed as an expansion of

equivalent symmetric top functions by Steele and Pecoraﬁ

Steele and Pecora also derived the most complete fluid
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X-ray scattering equation to date, and in order to be
compatible with their work we have followed their
scattering factor formula closely. We compare our results
to isolated atom results and, in the case of hydrogen,
to the earlier MO results of Stewart.7

These four molecular cases were chosen so as to

represent a great variety of bonding cases. Below we
present the harmonic expanéions for the scattering
factor integrals based on two-center Gaussian wavefunctions
and their relation to Pecora's equation. Specific results
for the scattering factor coefficients for the molecules
studied come next, followed by comparisons with the isolated
atom results. Lastly convergence of the series represen-
tations of the coefficients and the choice of two-center

expansions is discussed.

Theory

It is our primary purpose to evaluate the coefficients

in thg molecular scat;ering factor derived by Steele and

Pecora, i.e., the a, g(z) in
’

J *
a(k,2) = (8n%)1/2 LI A ate) DLy, D

where k is the usual scattering parameter 4msin6/A, o~ is
the set of Euler angles of the molecule giving its

orientation relative to a laboratory coordinate system,
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J 10

K,M
In this paper we study only diatomic molecules and therefore

and D () is the rotational or symmetric top function.

have the symmetry restrictions on (1) that M=0 and that,
for homonuclear diatomics, J is even. Thus D;ﬁ (QK) reduces

to a spherical harmonic and
Br 1o 1/2 K
a(k,R°) = (4m) g agy (k) Y5 o(27) . (2)

In the case of closed shell diatomics we may write an
alternative formula for a(K,QK) in terms of doubly occupied

spatial molecular orbitals.5 By definition,
a(k,0) = j‘p(g) exp(ik-r)dr (3)

where p(r) is the one electron density for the molecule
expressed in a molecular fixed coordinate system. For our
closed-shell cases we may express p(r) in Hartree-Fock

orbitals as

p(x) =27 ¢ ¢f . (4)
n
Thus,
a(k,%) =27 b, lexp(ik-n)| ¢ > . : (5)
n

In this work we have assumed the molecular orbitals
to be expanded in two-center Gaussian basis functions.
This choice was made because, in general, two-center

functions are more accurate than one-center functions, and
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Gaussian scattering factor integrals are analytic. From

(5) we are therefore led to a sum of integrals of the form

alc, ) =27 1] ] <py |ei'5'flsj> g (6)
nij

where Bi represents real s,x,y or z Gaussian basis functions.
Although it is possible to do so, like McWeeny, we have
not included d orbitals as we expect their effect on
electronic density to be minimal. The integrals in (6)
have been evaluated by McWeeny.3

It is our purpose to expand these integrals into
harmonic series. However, McWeeny's results are not in
this form and must be transformed to it. This can be
done most easily for diatomics by taking the center of
the coordinate system as the mid-point of the internuclear
axis, and then noting that each integral of McWeeny's is
a product of a factor of the form elY8*R and a factor

~
expressible as a first or second power function of k-*R.

If the exponential is then plane wave expanded, the

1R

R
function is expressed as a spherical harmonic, and the
resulting product of spherical harmonics is combined
into one by the spherical harmonic coupling rule, then
the desired expansion can be obtained.

We will show this derivation for the single case
of I = <s, Ieif.fizB>. The coordinate system used is
in Figure 1, I is the integral denoted by McWeeny as

(s, a|f|2p,b) and, after allowing for our coordinate

change, is found equal to
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I = A(-20BR°K + ikBR'K)/ (a+B) exp(ik-Rq) (7)
where g and E are unit vectors along the scattering vector
and z-axis respectively, o is the Gaussian exponent on

center A, B is the Gaussian exponent on center B, R is the
internuclear distance,

3
= 212
A= N2 -4aBR" -k
A =38 )(?m) eXP( 4 (atB ) , (8)
and
KR(B-a)
9 = 3ToFE) (9)

i 1 ,
Now notice that Rk = R and K+K = cos@ = (—4—})7%_ 0(9).
Sl ios ~ & ’

If these identities are then substituted into (7) and the

complex exponential is expanded into spherical waves, then

there results

-2AaBR v 1/2
R LZO (4m(22+1)]) Jgla) Y, 4(8) (10)

3 1 “
+ B8 (%)2,20 tan 2041172 5 (@ ¥, 01y (0)

In the second summation in (10) we may use the identity10

[(22,41) (22,+1) 172 '
Yyn{®9 ¥y (00) = § e e (2,2, Mimm,) e (2;2,)500)
(2)

(11)

where the range of 1 is lzl-zzl to £,+%, and the c(2,2,A;mm,)

are Clebsch-Gordon coefficients. These coefficients are
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11

readily available. Thus we obtain

_ =2RaBR ¢ | AN
I= —op- L r@uD1VT §i(@ v, (8
£=0 (12)
L+1 2
+ AxB 1/2 RS [c(21);00)]
(4m) Z (22+1)i i, (@) ¥, o(8)
* e 2T (2041 12 A,0

(2)

Note that because of the symmetry of Clebsch-Gordon
coefficients that A goes in steps of two. Finally, the
second series in (12) can be rearranged to give a single

series by regrouping the indices and one is led to

o  J+1 2
AxB 1/2 [ R+ [C(213;00)]
(4m) 3. (Q)Ynn(8) + (20+41) 171, (@22 oy (eﬂ
o+B 1 00 21 221 " Gager) L T3S0

(2)
(13)
The case J=0 must be treated as a special case since
£=J+1=1 only. Putting (13) into (12) we obtain the desired

single harmonic expansion and the coefficient of a particular

harmonic is'easily identified.

ik.r

Similar expansions to the one for s, |e™<"~| z; ) may be

! ik-r iK-r ik-r
carried out for <s, |e"~"<| s>, &, le™~ =] zp>, <x, le"~ = xp,

(yA |e15'5| yB>, and permutations of these integrals. In the
case of the x and y integrals it is easier to make the
expansions if the linear combination <x, fa i E Xo> +

Yp Ie:U< A4 Y is considered. Since we are dealing only
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with cylindrical diatomics using ¢nx and ¢ﬂy orbitals, this
is the only way the x and y integrals appear in the final
result. In the case of the integrals where the basis
functions share the same center, the results from the
two center calculations may be extended if the inter-
nuclear distance R is set equal to zero and the argument
g of the spherical bessel functions is changed from that
in (9) to -=kR/2 when center A is shared, to +kR/2 when center B
is shared. Table 1 summarizes the results for the integrals
considered in this work,; the Jth coefficient is tabulated.

If the harmonic expansions just obtained for the

integrals are denoted by

{B.

i 8725 B =

J J=0

e~ 8

DJij(K) YJ,O(e) ’

then from (6) and (2) we see that
1./2

g

8y (x) = (1?)

cg <t T ) (A (14)

D..
ni,j 48
(14) was used to calculate the MO scattering coefficients
tabulated in the next section.

We now turn to the form of the molecular scattering
factor obtained from the assumption of independent atom

scatterers. The basic scattering equation is the familiar

weigﬁted sum over atomic scattering factorsl

a(k,05) = J fj(.c)eiE‘Ej (15)
3
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where j is the sum over atoms in the molecule, rj is the
vector distance of atom j from the origin of the system,
and Kk is the z-axis in the laboratory system. Expand the

exponential to give
© 'J. . .
a(c,25) = g fj(K)Jzo [(23+1) an] /2 475, (kry) Y7 o (8 J0J) (16)

where x denotes the laboratory system. We want each atom

expressed in molecular-fixed coordinates rather than

laboratory coordinates. Hence we will use the identity12
2-\1/2
J ol J J 8m
Dem (84) = 122 De,r (%ap) Dg,m (9p) (2J‘+I> 3 f)

where QAB is the set of Euler angles rotating A into B,

Q. is the set rotating A into C, and QB is the set rotating

A

B into C. Our D function normalization convention is

that of Steele, Pecorag. From the general expressionlo
1/2

%*
J _ - J
DKIO(aBO) = (27m) YJ'K(Ba), we note that D00 (¢xex)

1/2

= (2m) " Thus from this last equality and

YJ,O(ex¢x)'
(17) we obtain the molecular fixed expression for YJ o(9x¢x)
s ’

and may substitute it into (16) to yield

J & et
T g 2 1/2°° ] Iz 2 AP e 2. 1/2 %3 K
a(k,2%) = (81%) Jgo Rz g [ £5()1%5;(cx ) Dy o (6700) (817) 7/ "Dyt £ (7)
=0 Reed 1)
(18)
where QF rotates the laboratory axes into the molecular
fixed axes. If we now compare equations (1) and (18), we

see that
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I 45 1/2 = .3
aOM(K) = (4m) g fj(K)l JJ(Krj) YJ,M(em¢m) (19)
This is the general equation for the harmonic expansion
coefficients of the scattering factor for a rigid molecule
of independent scatterers. In the case of heteronuclear
diatomics, using the coordinate system in Figure 1,

(19) reduces to

l/ZiJ

2,5 (k) = aj(x) = (23+1) (()7£, () +E (k) G5(x3)  (20)

If both (13) and (20) are expanded, it will be seen that
the odd J terms drop-out for homonuclear diatomics as
symmetry tells us they should.

We note two other properties of the harmonic scattering
factors. First are the values of the aJ(K) at k=0, 1If
an angular average is taken over the expression (3) we

find

ao(K) = 47 spo(x) 51255 x2 ax 4
where po(x) is the sphérical average of the electron density.
Hence ao(O) equals the number of electrons in the molecule,
N. From a typical expansion such as (13) or (19), we see
that all other aJ(0)=0 because jJ(0)=0. Secondly, we
restate the expression for the scaétering intensity from
a single freely rotating molecule (gas scattering)g,

) % | . |2
I(k) = a, (k) ' (21)
J g

this being equivalent to the expression (9.41) given in James

3t
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Results

We first note the source of the wavefunctions we
have used to calculate the MO scattering factors. Except
for nitrogen, we have begun with previously published
wavefunctions, retained only the s and p basis functions,
and reoptimized the coefficients using a version of
POLYATOMI? The LiH, H2' and HF wavefunctions were
derived from references 14, 15, and 16 respectively.
The LiH and H2 functions were originally given in
Slater-type orbitals which were converted to a Gaussian
set using Huzinaga's results}7 The HF function was given
as a Gaussian set originally but was not at the equilibrium
distance of 1.7328 a.u. and was therefore reoptimized for
this distance. In the case of nitrogen we have used the
recent results of Dunning:.L8 The composition and the total
energies of the final wavefunctions used were: Hz, 7s4p,
-1.133055 a.u.; LiH, <5s5p/3slp), -7.98309 a.u.; N,, {4s3p),
-108.88768 a.u.; HF, 9s5p/3slp, -100.016386 a.u. The sets
for LiH and N2 employ contracted orbitals and if described
by uncontracted orbitals are, respectively, 8s5p/6slp and
9s5p.

The numerical accuracy of the program computing the
MO s;attering coefficients was checked by allowing K to
equal zero and then checking the resulting Gaussian overlap

integrals for equality against those computed in an independent

Hartree-Fock program; the behavior aJ(0)=N6J 0 mentioned
’
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above was also verified. Furthermore, the calculation for
hydrogen allowed us to compare our results to those of
Stewart.7 We did this by taking his results for the best
H-atom spherical density scattering factors and substituting
these into equation (20), using his value of 0.81 R

(Re = 1.4009 a.u.) for the internuclear distance. The 2,
coefficient and gas scattering values obtained in this

way are very close to those obtained by us; the higher
coefficients are less clpse. Exact duplication should not
be expected since we have used Stewart's averaged values;
after taking this into account, the agreement found was
deemed to be a satisfactory check.

In Table 2 are found the first few MO scattering
coefficients calculated from (14) for each of the molecules
studied as well as the corresponding values for gas
scattering from (21). «k is in reciprocal angstroms. The

a., and the gas scattering intensities, originally calculated

J
in electrons and electrons squared, have been reduced by

N (the number of electrons in the molecule) and N2 respec-
tively. Since total scattering amplitude is roughly
proportional to the number of electrons in the molecule, these

scaling factors allow for easy comparisons between molecules.

a, values have been listed as real values and are to be
multiplied by i before use. The gas scattering for HF has
19

been obtained previously by Hake and Banyard; our results

compare well with their one-center (OCE) result. We have
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also obtained isolated atom (IA) scattering coefficients

from (20) where we used the atomic scattering factorszo’21

0 0 0

1° for M., N for M., Li%, B and 5i%, #° for Lin, P and

2 v

Ho, Fo for HF. One should note that the higher aJ(K) coeffic-
ients for F arec not zero since the center of the molecule
does not lie at the F nucleus. The IA and MO aO(K) coeffic-
ients differ by about 3% maximum up to K=S.5A-1; corresponding
differences for each of a,{x) and 2, (<) are about 5% maximum.

Some of the agr @y, a, coefficients obtained by us are
plotted in figures 2-4. We have plotted only those coef-
ficients which differ to a significant degree from the
curves obtained from the IA calculations. The 2, coefficients
for both HZ and N2 differ considerably from IA values but
have not been plotted because of space.

The gas scattering curves from both the IA and MO
calculations are shown in figure 5. The hydrogen values
have not been plotted since they are available elsewhere7.
In the case of LiH we have plotted the IA values from
Li+, H_ as well as Liq, Ho. ‘While differences between
these two are nearly'too small to be seen in the graphs of
the aJ(K), they do become apparent in the gas scattering.
In general, the gas differences are greater in the case of
g although neither is very accurate. If.in the
case of HF one compares the MO gas écattering result to

the IA result for F , it is found that the plots of the

two gas curves are practically indistinguishable. The
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zero valence state treatment leads to maximum gas scattering
errors of 15.8% and 7.3% for LiH and HF respectively,
whereas the ionic states lead to a 21.7% error for LiH
and an error of less than 2.0% for HF. N2 shows much
the same behavior for MO and IA results.

Another result of importance is the determination
of the convergence rate of the series for gas scattering,
(21). In Table 3 we have recorded the largest J value
in aJ(K) required to make I (k) convergent to four
significant figures. As one progresses to higher «
values it can be seen that more coefficients are required.
However, even in the worst case of LiH only thirteen
coefficients are required at k=6.0 a.u. In view of the
fact that it does not take much time to calculate these
coefficients (less than 1 min/molecule on the 360), we see
that (21) is a rapidly converging series presenting no

computational problem.

Discussion

One of the principal results of this work is the
demonstration that the harmonic expansion of the molecular
scattering factor is a truly practical technique. The
convergence data in Table 3 indicate that great, numbers
of the aJ(K) coefficients do not have to be calculated
for 10-4 convergence accuracy, even in the cases of
LiH and HF where the center of the coordinate system is

far from any point which might be taken as the center of
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a spherical system where convergence rates would be
expected to be rapid. When coupled with fast computation
times for each aJ(K), the feasibility of the MO calcu-
lation becomes apparent. It is to be noted that much
of the time for these two-center calculations goes into
the evaluation of the spherical Bessel functions required
in (19) and Table 1, and thus the more efficient this
routine may be made, the more efficient is the entire
calculation.

Perhaps the greatest advantage of having this
harmonic expansion is that data covering the entire
orientational range of the molecule can be easily
tabulated, thereby replacing the long columns of
a(x@®), @ data which would be needed otherwise. It
will be particularly useful for the case where one
wishes to perform an orientational average of some
sort over the scattering factor, as did Pecora and
Steele.9 The expansion allows one to perform an ana-
lytical average over angles and thus avoid the inter-
polation of a(KQK) oVer 2* which would be required if
one had only a(KQK), o* tabulated data.

The differences between the MO calculations and the
isolated atom results plotted in figures 2-4 are large
enough to be significant (i.e. experimentally measurable),
a conclusion reached earlier by McWeeny4 and Stewart8

in their work. It should be noted that the gas scattering
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curves give a better impression of the errors involved
here than do the individual aJ(K) curves. This is due
to the fact that the experimental guantity measured is
the intensity, which is proportional to squares or
products of the aJ(K) rather than the aJ(K) alone.

One is tempted to look for smaller variations between
the two approaches for calculating scattering factors in
the case of N2 and HF. Since these two molecules have
relatively larger percentages of electrons in low lying
orbitals, it might be expected that these electrons would
be less effected by bonding and that the isolated atom
results would be better than for H, or LiH. Since HF has
the least number of its electrons in a primary bonding
orbital, it would be expected to have the best isolated
atom results. We have seen that in the case of nitrogen,
good agreement is found between MO and IA results. In
the case of HF we found relatively good agreement between MO
and F results but poor agreement between MO and Ho, F0 re-
sults. - This difference in agreement for HF implies that mole-
cules composed of first row atoms do not have enough tightly
bonded electrons to overshadow any scattering differences
due to bonding distortions of the valence orbitals. If they
did, both the H’, F¥, and F~ results would be in’ close agree-
ment'with the MO data. Similar observations were made by

4,22

McWeeny in the particular case of carbon compounds and

he was led to stress the importance of choosing the correct
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valence state of an atom if the IA approach were to be used.
It thus appears as though one will have to proceed to second
row atoms before bonding distortions can be ignored.

We note that the relative accuracy of the F  calculation
does not imply that the IA calculation will be reliable for
calculations on other first row molecules. The IA approxi-
métion requires that one represent the atomic scattering by
factors chosen from the commonly tabulated free and ionic
valence state data. While electronegativity considerations
may aid one in selecting the ionic data for the particular
case of HF, generally they will not permit such a selection
in the case of other first row molecules such as Lill.

The use of Debye's equation would then be restricted to
molecules containing predominantly second row or higher atoms.

Of significant consequence is the ability to obtain the
harmonic expansion from two-center Gaussian wavefunctions.
Gaussian wavefunctions are to be preferred over Slater
wavefunctions if two-centers are employed since the
corresponding Slater expansiohs for the scattering coef-

ficients are quite leﬁgthy and slow to compute.23 Two-

center functions are preferred over one i because
these give more accurate scattering results for fewer
basis functions.6 This is especially likely to Be true
as one proceeds to multicenter non-hydride molecules.27

The scattering factors for these molecules will be
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expressed as sums over two-center scattering integrals
and, with the addition of appropriate rotations, our
method should be adaptable to these cases.

In the work of McWeeny,4 it was proposed that the
anisotropic two-center integrals be expanded in principal
factors, one corresponding to a parallel orientation
between R and « and one to a perpendicular orientation,
with the two weighted by c0526 and sinze respectively.

It was later concluded by Stewart® that this approach
would not work for all the integrals involved, especially
2po type orbital products. In the present work we have
confirmed this conclusion and have shown that a full
harmonic expansion of the integrals, a suggestion implicit
in the principal factor approach, leads to accurate
results for all types of orbital products.

We finally mention that these scattering factors
may be used directly in interpreting scattered intensities
from fluids. As noted previously, these results find
direct application in the scattering equation of Pecora
and Steele. While LiH and, to a great extent, Hz do not
form practical fluids for study, nitrogen and hydrogen
fluoride do and thus, of the factors obtained here, those
for these species are most applicable to experiment. In
particular, the MO gas scattering curves are useful since
scattering data are often normalized to this curve and

slight errors in this normalization lead to inaccurate
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distribution functions. An application of harmonically
expanded scattering factors to Steele and Pecora's

equation is presently underway.
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Figure Captions

Figure 1. Coordinate system employed. For heteronuclear
diatomics, center A denotes the heaviest atom.

Figure 2. aO(K)/N coefficient. Curve 1, H,(MO). Curve 2,
HZ(IA) Curve 3, LiH(MO). Curvé 4, LiH (IA
6ng LJ.+ H™ factors). Curve 5, LiH (IA using
HO factors)

Figure 3. aj (k) /N coefficient, real coefficient of i.
Curve 1, LiH(MO). Curve 2, LiH (IA us;ng AT
H- factors). Curve 3, LiH (IA u5189 Li0, HO
factors). Curve 4, HF (IA using HY, FO factors).
Curve 5, HF(MO).

Figure 4. ajy(k)/N coefficient. Curve 1, H3(MO). Curve 2,
Hy (IA). Curve 3, Np(IA). Curve 4, Njp(MO).

Figure 5. Reduced gas scattering intensity I(K)/N Curve 1,
HF (MO). Curve 2, HF (IA using H6 FO factors)
Curve 3, N, (MO and IA). Curve 4, LiH(MO).
Curve 5, LiH (IA u51ng 1i0, HO factors). Curve 6,
LiH (IA using Li*, H™ factors).
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Harmonic Coefficients of Various Scattering Factor Integrals

TABLE 1.
<splelsy> = 62asn M2 (4772 5 (q)
X.R J+1
= 1/2 %" . 302 kG (2L+1) _\(@LH)/2. 2 e i}
Fylelag, = XSEINET g (1@ tongy L i i (@) ¢ (L13;00) ;
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TABLE 1. (cont.)

J+1
Special Cases: )} is replaced by L =1 if J = 0.
L=J-1
(2)
J+2
Y is replaced by L =2 if J=0; by L= 1,3 if J = 1.
L=J-2 i
(2)

If A = B and both centers are at A, then R = 0 and g is replaced

by -—2.

If A = B and both centers are at B, then R

KR
2.

0 and g is replaced

by +



K

0.0000
0.5669
1-1338
1.7008
2.2677
2.8346
3.4015
3.9685
4.5354
5.1023
5.6692
6.2361
6.8031
7.3700
7.9369
8.5038
9.0708
9.6377
10.2046
10.7715
11.3384

TABLE

20
1.0000
0.9325
0.7638
0:5588
0.3653
0.2045
0.0829
0.0000

-0.0482
-0.0680
-0.0672
-0.0535
-0.0340
-0.0142
-0.0021
0.0130
0.0182
0.0184
0.0150
0.0097
0.0041

2. Scattering Factor Coefficients
Units of Quantities are:

electrons</z4.

Lithium Hydride

a;/i
0.0000
-0.0448
-0.1022
-0.1643
-0.2100
-0.2246
-0.2056
-0.1604
-0.1016
-0.0425
0.0068
0.0404
0.0569
0.0583
0.0487
0.0330
0.0158
0.0005
-0.0107

-0.0168

-0.0182

a8z
0.0000
-0.0231
-0.0830
-0.1583
-0.2287
~0.2793
-0.3018
-0.2943
-0.2605
-0.2081
-0.1464
-0.0847
-0.0306
0.0108
0.0375
0.0497
0.0498
0.0414
0.0282
0.0138
0.0009

L
1.0000
0.8725
0.6006
0.3644
0.2316
0.1766
0.1553
0.1401
0.1219
0.1018
0.0829
0.0672
0.0546
0.0446
0.0364
0.0295
0.0238
0.0192
0.0154
0.0124
0.0101

K, A~

ind-Gas Scattering Intensities.
i ay, electrons/z;

29

11.0000
0.9712
0.8904
0.7727
0.6371
0.5008
0.3761
0.2694
0.1825
0.1144
0.0628
0.0250
-0.0020
-0.0204
-0.0321
-0.0387
-0.0413
-0.0408
-0.0379
-0.0332
-0.0272

|3J| ’

Hydrogen Fluoride

a/i
0.0000
-0.1381
-0.2569
-0.3429

-0.3910 -

-0.4040
-0.3896

-0.3569

-0.:3139
-0.2668
-0.2199
-0.1756
-0.1354
-0.0995
-0.0681
-0.0409
=0.0177
0.0016
0.0171
0.0291
0.0375

a2
0.0000
-0.0095
=0.0355
-0.0722
=0.1121
-0.1487
-0.1778
-0.1975
=0 2077
-0.2098
~0.2052
=0.1957
=0.1827
-0.1672
-0.1499
-0.1314
-0.1120
~0.0922
~0.0722
~0:50527
~0.0340

Ilagl?
1.0000
0.9632
0.8600
0.7199
0.5716
0.4371
0.3268
0.2424
0.1805
0.1361
0.1046
0.0824
0.0666
0.0553
0.0470
0.0408
0.0361
0.0324
0.0294
0.0271
0.0251

.—'[ 9-



TABLE 2.

K ao
0.0000 1.0000
0.5669 0.9625
1.1338  0.8615
1.7008  0.7230
2.2677  0.5750
2.8346 0.4395
3.4015 0.3258
3.9685 0.2360
4.5354°  0.1676
5.1023 0.1169
5.6692 0.0801
6.2361  0.0537
6.8031  0.0352
7.3700 0.0223
7.9369 0.0135
8.5038 0.0075
9.0708 0.0036
9.6377 0.0011

10.2046 -0.0004
10.7715 -0.0013
11.3384 -0.0017

(cont.)

deroggg

a2
0.0000
-0.0032
-0.0116
-0.0224
-0.0329

-0.0411 .

-0.0465
-0.0489
-0.0488
-0.0468
-0.0436
-0.0396
-0.0353
~0.0309
-0.0267
-0.0228
-0.0193
-0.0161
-0.0133
-0.0109
-0.0087

ay
0.0000
0.0000
0.0000
0.0001
0.0003
0.0007
0.0011
0.0017
0.0022
0.0028
0.0033
0.0038
0.0042
0.0045
0.0048
0.0050
0.0051
0.0051
0.0051
0.0050
0.0049

Xlale
1.0000
0.9269
0.7426
0.5231
0.3320
0.1949
0.1084
0.0581
0.0305
0.0159
0.0083
0.0045
0.0025
0.0015
0.0009
0.0006
0.0004
0.0003
0.0002
0.0001
0.0001

K

0.0000
0.7559
1.5118
2.2677
3.0236
3.7795
4.5354
5.2913
6.0472
6.8031
7.5590
8.3149
9.0708
9.8267
10.5826
11.3384

29
1.0000
0.9281
0.7468
0.5297
0.3371
0.1929
0.0949
0.0315

-0.0084
-0.0318
-0.0431
-0.0449
-0.0394
-0.0289
-0.0159
-0.0027

Nitrogen
az

0.0000

-0.0269

=0.0912

-0.1588
=0.2051
=0.2251
-0.2249
-0.2126
~0:1929
-0.1679
-0, 1379
-0.1039
-0.0677
-0.0318
0.0006
0.0027

24
0.0000
0.0001
0.0017
0.0067
0.0158
0.0280
0.0420
0.0569
0.0722
0.0875
0.1019
0.1139
0.1219
0.1244
0.1202
0.1091

Ilag]?
1.0000
0.8621
0.5660
0.3058
0.1559
0.0886
0.0613
0.0494
0.0426
037X
0.0317
0.0266
0.0225
0.0199
0.0187
0.0183

_zg_
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TABLE 3. Largest J Value Required for Convergence of Gas
Scattering Intensity

£ =2 22 LiH e
0.0 0 0 0 0
2.27 2 2 4 3
4.54 2 4 7 4
6.80 4 6 9 6
9.07 6 8 10 7

11.34 6 10 12 8
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PART III

PERCUS-YEVICK SOLUTIONS FOR THE TWO-CENTERED LENNARD-JONES POTENTIAL
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Introduction

The Percus-Yevick theory has been established for some time as
a means of obtaining fairly accurate dense fluid properties. Radial
distribution functions seem to be described correctly as are certain
thermodynamic quantities such as the internal energy. The theory pro-
vides less accurate results for the pressure, being in error by as
much as orders of magnitude. It nevertheless does as well and usually
better than other alternatives and thus retains considerable value.

It has been applied to a variety of potentials, mostly of
spherical symmetry. It was applied to the hard-sphere potential by
Wertheiml who was able to develop an analytical solution for this case.
It has been applied to the physically more realiétic Lennard-Jones
potential by a variety of authors. A fairly extensive tabulation of
radial distribution functions has been given by Throop and Bearman2
and Mandel, Bearman, and Bearman3 covering most of the dense gas and
liquid region. Watts4 has applied Baxter's5 treatment of the Percus-
Yevick equation to the critical region using a spherical Lennard-Jones
potential and has shown that it will predict the critical point, yield-
ing values which compare well with the experimental values for argon.

Applications of the theory to nonspherical potentials are rela-
tively recent and do not cover a great variety of potentials. The
Percus-Yevick equation was solved for two tetrahedrally symmetric water
potentials by Ben—Naim6. One of the most significant nonspherical
applications was published by Chen and Steele7a, who applied the Percus-
Yevick theory to a system of diatomic hard-core molecules. Because the

distribution functions for this system were angular dependent, the
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methods of solving the Percus-Yevick equation used for spherical sys-
tems were no longer useful. In order to obtain a tractable form, they
applied the D-orthonormal expansion method of Steele8 to the equation
and were able to derive a system of equations which could be solved
for the expansion coefficients of the angular dependent radial distri-
bution function and direct correlation function. Most significantly,
the method is quite general and may also be applied to other potentials.

This work is a direct extension of the technique developed by
Chen and Steele to the.two-centered Lennard-Jones potential and is
primarily a derivation of the distribution functions determined by
this potential. This choice of potential, of course, allows for attrac-
tive as well as repulsive forces in the intermolecular interaction,
and leads to distribution functions that are temperature dependent.
This introduces a variable not treated previously.

Because this laboratory is concerned with x-ray scattering
from molecules, it became apparent that angular dependent distribution
functions for a real system would eventually be required. Partly
because of scattering properties and partly because heat capacities
seem to indicate a large orientational effect, we have therefore solved
the Percus-Yevick equation for parameters characteristic of chlorine.

We present below the simultaneous equations whose solution
gives the desired Percus-Yevick results. We also show the equations
required for high order evaluation of the pair correlation function
and direct correlation function. The potential parameters for chlorine
are then determined and finally the numerical results for the distribu-

tion functions are presented and discussed.
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A. The Percus-Yevick Solution

We begin this section by reviewing the method used by Chen and
Steele7 to solve the Percus-Yevick equation for a system of diatomic
hard-core molecules. We first write the general expansion developed
by Steele8 which expands any pair property in terms of spherical
harmonics (D~fun¢tion in the general case) whose arguments Qj are the

Euler angles of orientation of the two molecules involved.

BEE) = G B )Ty (1 Ty ) s By {zpfed 1)

29 'm

Ej is the position vector of the center of molecule j . A function
H(§l§2) may be defined in terms of the density dependent part of the

pair correlation function
= oF &
H(BIBZ) g (3132) 1 (2)

By generalization of the usual Percus-Yevick approximation

c(r) = g(xr)[1l - exp(Bu(r))], one may write
C(RR) = f£(RR)[H(RR,) + 1] )
The Ornstein-Zernike equation when combined with (3) gives
H(RR) = 7+ f C(R,Ry) [C(R R,) + H(R;R;)]dr df, (4)

This is the angular-dependent Percus-Yevick equation.
Equation (4) is solved by Fourier transforming both sides of

the equation to yield



-70-

=
g
where le(\)) = J H(§1§2) e dr,, - The H(_gigj) and

C(Bigﬁ) in each transform in (5) are then expanded according to (1),

while each exp(iyjzij) is expanded into spherical waves according to

1/2.s

HE B oty % i oY @)

iver,.) = (41
exp(__,lJ) (4m) L

The various sets of Euler angles which result refer to a variety of
relative coordinate systems and must therefore be rotated to a common
laboratory coordinate system. The rotations are carried out by
repeatedly applying Eq. (2-2) of Appendix 2 and making use of the
orthonormality properties of D functions (see Ref.(7b)for details).
The result of the expansions and rotations is for the left-hand side

of (5):

1

e P
oo = 4o i°p_%, (@)
12 2,,24',8:0 v==0" v'==2" I_H_E&'n& v+v ,0 V

(6)
X YZ,V(Ql)YQ',v'(QZ).H(szms) c(28's3v,v"') c(22's3m,-m)

where Qv is the set of Euler angles describing the orientation of Vv
relative to a laboratory system, Ql and Qz give the orientations
of molecules 1 and 2, c(jlj2j3;mlm2) is a Clebsch-Gordan (CG) coeffi-
cientg, and H(2%'ms) is a Hankel transform defined by

H(22'ms) = J
0

Hy oo (1) js(vr*)r*zdr* (7)
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with inverse

300

20 5 2

szym(r*) T J H(2L'ms) JS(Vr*)V dv (8)
0

also & = {-2,-(2-1),-++,2-1,2} . Similarly the right-hand side of (5)

becomes:
g - 2 Vs A
H),() = (4m)70"p ) 1o X )
2',2/"2!!5,5':0 V=",Q, V'=-2,' V"-_‘—Q;" E‘E‘&n&' E'g&n&'
1 1
x [C(22'ms) + H(22'ms)] C(L"&'m's")1i%"S (-)V
g+5s’ B
X ,z c(ss'jiviv',v'=v") c(ss'j;OO)Di+v" 0(Q\)) c(28's;vv")
j=|s-s' ’

oot L L L LT I | Lo R s [ o e
x' ¢l gim,~n) (L% s " v, =w') c(L"2's" su" ;') YQ,,V(Ql)Y,Q,",V"(QZ)
9)

If one notes the independent harmonics appearing in each of Egs. (6)
and (9), one may generate a series of equations by equating like coef-
ficients according to (5). Simultaneous solution of these equations
for the various H(2%'ms) constitutgs the Percus-Yevick solution.
Expressions for specific H(22'ms) may be derived by letting
the desired Hankel transform subscripts define the spherical harmonic
subscripts in (6) and thus the corresponding subscripts in (9) as well.
It should be noticed, however, that if the transform is specified by
2,%',m,s, then the v,v' subscripts in (6) are in general still left
unspecified. If % (or &') is zero, then the range of v (or v') is
restricted trivially to zero as well; but if £ (or 2') is greater than

zero, several values for v (or v') are allowed. This non-specification



=70

of v or v' appears to be no problem however, in that the same
equations for H(L2'ms) result for all choices of v or v' . This
has been verified for H(2002) and H(2200) .

While solutions for H(0000) and H(2002) were obtained by
Chen for the diatomic hard-core model, it was indicated that errors in
the final values for HOOO and HZOO’ as well as the 890 'm terms
derived from them, might arise from neglect of the higher coefficients
H220, H221, H222, H4OO’ etc. In order to see if these higher terms

did give rise to an error, we have included two of them in our calcula-

tion, H and H400, assuming the others to be negligibly small. Our

220

Percus-Yevick solution thus involved the simultaneous solution of
equations for H(0000), H(2002), H(2200), H(2202), H(2204), and H(4004).
That these are the complete set of transform functions for HOOO’ HZOO’

, and H is proven in Appendix 3.

400

We will now derive the equation for H(2200) as an exemplary

H590

case. The equations for the other transforms will then merely be
listed. For H(2200) it can be seen that in (6) this requires that
=2, '=2, s=0, and m=0; v and v' are not specified. Hence

the coefficient of the harmonics, A, becomes -

A = (4m)20°H(2200) ¢(220;v,v') (220300)

Using (4-6) of Appendix 4, the CG coefficients can be rearranged to

give

A = (4m)20°8(2200) (=) (%a c(202;v,-v=v') ¢(202300)

Equation (4-10) shows that these CG coefficients reduce to dv St
b
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and 1 respectively so that
A = (4m?0 u(2200) ()7 &) (10)

In (9), H(2200) requires that 2=2, 2" =2, and j=0 . Equality of
harmonics requires the v,;v' of (6) to equal the wv,v" of (9)

respectively. Thus from (9) we obtain as coefficient of the harmonics

1
A=¢m®% T ¥ T [c(2%'ms) + H(2'ms)] C(2%'m's')15"S
%' m,m' ss'
1
X z (—)v c(ss'O;vv',v"'=v') c(28's3v,v"') c(28's'";v",-v")
V'
x ¢(ss'0;00) c(2%'s;m,-m) c(22's";m',-m") (11)

By applying (4-6) and (4-10) again we obtain

s—v—v'( i L)

c(ss'Osvtv' ,v'=v") = (=) EE;EQ c(s0s';v+v',-v-v"")
e ST e
and
e(ss'0;00) = (9)° =25,
Note that (12) results in 6V,-V" . This condition had to be present

since a similar GV L' was obtained from (6). (11) now becomes:

]

A= (4n)306p ; z z [C(2£'ms)4—H(22'ms)]C(22'm's)iZS
'"'mm' s

x (—)S(Eéai)(—)v c(22's;m,-m) c(228's;m"',-m")[ g' c(28's3v,v")

X  e(28's:v" ,=v")] (13)
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The coefficiénts depending on v' have been grouped together in this

last equation because this grouping nearly forms the orthogonality

expression of Clebsch-Gordan coefficients. [Equation (4-2) of

Appendix 4.] Substitution of -v for v" and application of (4-4)
'-s

to the summation lead to a value for it of (-)2 “®. Thus equating

(10) and (13) and cancelling terms, one is led to

H(2200) = 20m0>p § J ¥ [C(2&'ms) + H(2%'ms)] C(2L'm's)
''mm' s

X

280 ) 2!
i (8

(23+1)(—) D c(22's3m,-m) c(2%'s;m',-m") (14)

Notice that (14) results with no specifications placed on the harmonic
subscripts wv,v',v" .

Similar derivations may be performed to obtain the other trans-
forms although the simplification introduced by the use of the
orthogonality condition cannot be used in the derivation of H(2202)

and H(2204). The results are as follows:

H(0000) = 4moop § [CC0L'02')+H(0L'0L')] C(0L'0R") (15)
2"
3 A+s s
H(2002) = -4m0”p ) [C(2%ms) +H(2%ms)] C(0202)i~ ~ (=)
L.m,s
) B2 etai00) o295, =) (16)

5

These two are the same as the two expressions used by Chen in the hard

core work.
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H(2202) = -14105p § § ¥ [C(28'ms)+ H(22'ms)] C(2%'m's")

/Ql m' S’S'
1 ]
X is+s [Z (—)V e(ss'2;v',~v')e(28"'s30v")c(24"'s';0;v") ]
v'
X ¢(ss'2;00) c(22's;m,-m) c(28's";m',-m") a7
H(2204) = %? noop J Y ) [Cc(2%'ms) +H(2%'ms)] C(2%'m's")
2" mym"' ss'

|} \J
x 157817 ()Y c(ss'4iv',~v') c(20's;0v")
v'

X c(22's';0,-v')] c(22's";m"',-m"') c(ss'4;00) c(24%'s;m,-m)

(18)

H(4004) = 4100 ] [C(4%'ms) + H(42'ms)] c(on'or’)1%t' (oS
2 ims

X (éé-'i)l/2 c(s%'4;00) c(42's;m,-m) (19)

Each of the equations (14) to (19) may now be expanded over
f£,m,m',s,s', retaining only those terms which include members of the
transform set listed above. These expansions are straightforward but
are quite long and tedious, and we will simply list the results. It
is apparent that sums over a large number of CG coefficients will
result. Those required for these expansions are summarized in Appen-
dix 4. Using the same reducing parameters as Chen,

L 2ﬂ03x 3

& ¥ 1 w3
3 s X = 1+-2

pr=pv , v R* -5 R*” ,

S
and defining K = é&— , we obtain from (15)
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H(0000) = A H(2002) + B H(4004) + C

A ="K C(2002)/Z
B = K C(4004)/z
2 2 2
C = K (C°(0000) + C“(2002) + C“(4004)) /z (20)

where Z =1 - K C(0000). From (19) we obtain
H(4004) = K C(4004) €(0000) / z ¢21)

The results of the expansions of Eqé.(l4),(16)—(18) can be written in

a common form:
AilH(2002)-+A12H(2200)-+A13H(2202)4-Ai4H(2204) = Bi (22)

where i is an index running from 1 to 4 denoting from which of the
equations (14), (16)-(18) the coefficients were derived. Each coeffi-
cient is somewhat lengthy and they have therefore been collected in
Table I. Equations (20), (21), and (22) along with (3) provide the
Percus-Yevick solution.

We now present the methods by which the isothermal compressi-
bility Kp may be calculated. This is of importance in that the com-
pressibility goes to infinity at the critical point of a fluid and
hence may be used to locate it. Two methods of calculation exist.

The first is that developed by Steeles, which is a straightforward

extension of the usual pair distribution equation of spherical systems:

ey i 2401 = L0
Rl R f (8po(r) - 1) 4mrdr] p(BP)T (23)
The second method has been employed by several authorsz’B’7 and for
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angular systems takes the form

% _ 6p* %y k2 g%
Koy 1 . J COOO(r Y)ox™" dr (24)
where K_ = pkTk . We have used both methods in this work.

T



TABLE I

COEFFICIENTS OF SIMULTANEOUS EQUATIONS FOR H(2002), H(2200), H(2202), H(2204)

: Agq Aio Ay o
K 2 18
1(16) 1-K c(0000) - £ ¢(2002) 2 ke (2002) - 3% K C(2002)
2 18
2(14) =K €(2002) 1-K C(2200) # —7-KC(2202) - 25 K c(2204)
3(17) K €(2002) N —153 c(2202) 1 -— C(2200) - 75 K C(2202) zzg c(2202) + K C(2204)
98
- 522 K C(2204)
4(18)  -K C(2002) ’ % C(2204) K 7o c(zzoz) +1< c(2204) 1-% K (2200) +1< c(zzoz)
27
K 5ot C(2204)
B, = K[C(2002) C(0000) +— c(2200) c(2002)—— €(2202) c(2002)+ C(2204) €(2002)]
B, = K[c%(2002) + c2(2200) + 3 c?(2202) + 18 18 c2(2204)]
B, = K[-c2 (2002)+— C(2200) C(2202) +75 3 c? (:>.zoz)+245 C(2202) C(2204) —lﬁ c2(2204) 1]
B, = K[C? (2002) +— C(2200) C(2204) +73 " 02(2202) g C(2202) C(2204) +245 cZ(2204)]

-8/[=

aNumber in parentheses denotes the source equation in text.



~70=
B. Expansions for Pair and Direct Correlation Functions

In order to obtain the direct correlation function expansion

" coefficients which are required in Eqs. (20)-(22) above, an expansion
of (3) must be made. While a partial expansion has been done pre-
viously by Chen7, several terms have been omitted. We present a more
complete expansion here so that higher terms will be included in the
expansion, thus reducing truncation error.

We note that the expression for the expansion of the product of
f(glgz) and [l+-H(§1§2)] gives the expansion for any product of two
harmonically expanded series if the proper identification is made. Such
products occur often in the orthonormal expansion approach to statisti-
cal mechanics, and the expression below is therefore of wide use. In
this work, it is also used to expand the pair correlation function as a
product of [L+f(R;R,))] = g°(R;R)) and [1+H(R;R))] . The (°) denotes
the zero density limit of g(ElBQ)'

To evaluate (3), expand each function according to (1). Then,

Cooo * 4“22 - Coo'nlam @I r, ) = £400[Hyggt 1]
9=2"#0
+ fo004T L Hpge ¥y (@)Y, (@)

2=2"#0

+ (0 F Dér ) £, X, (@)Y, (Q.)
000 2=2740 2'm L,m 1l " y-m 2

2
R () e O SO O SRRl (1 B ANCRERE (o T8 (Rl ) | BTG, SR (v I SR
2’=2l#0 22 'm 'Q/’m 15 s~ 2 ,Q,=2,'#0 29'm ,Q,,m y fe el s M 2

(25)

The last term, involving the product of two series was omitted entirely

in earlier work. If it is denoted by S , and the harmonics are
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combined by using the spherical harmonic coupling rule (Eq. (11), Part

II), then
o o LV 1/2
4 (28+1) (2v+1)
s=<4n>zzzzf.ﬁ,z[, ]
2,2"' m=L'"NL v,v' nsvav' &gl Py=|2-v]| miagel)
2"+v'
i ‘. (22'+1) (2v'+1)]1/2
X C(QVJ,mn)C(QVJ,OO)Yj,m+n(Ql).'— z' ; [ (23D
j'=|8'-v
X e(X'v'i'sm,mn) c(@'V'3'500) Yy, (@) (26)
Equation (26) may be improved by recognizing that
© o 4ty Co oo J+L
2 gt Vg SR (27)
2=0 v=0 j=[2-v| j=0 2=0 v=|j-1|

If this is substituted into (26) and (26) in turn is substituted into
(25), one then obtains an expression from which the coefficients of
specific harmonics are easily identified.

Coefficients have been identified for the set HOOO’ HZOO’

0’ all other H = 0 . Once again several CG coefficients

Hyo00 Hyp 20'm

are required, and these are given in Appendix 4. The results are:

Co00 = Fooo®ooo™ ) * 2f5008200 * £220%220 * 24008400
& 2/5 6
C200 = f000%200 " £200l Fopot 1) * Eyo0F "7 Hogo T 7 Byoo!
2/5 6 900

+ £ 00li00 7 Boa0l ¥ £400l7 Ba00 75935 Ha00!



=

o &5
€ = f 220 7 ] + £

220 OOOHZZO-*-f

EUH! 1

200[2H200 ZZO[HOOO )

4y5 20 12 12

7 Haoo * 29 Ba20 177 B0l t

e 49 T2207 7

=7 f400M220

185 ... 60 o 185 .5 o

* £500035 200t 77 Haoo! T35 £2208220

400 = fooot400

[ég_ 1458 -
400777 7200 ° 1001/5 400

-}

¥ + HOO += 1] (28)

0

As mentioned above, if fzz'm is identified with the zero density
g21'm coefficient and sz,m is identified with 8og'm ° these equa-
tions give the expansion coefficients of the pair distribution function

as well. For future work, we also desire to have the 8291 and 8999

coefficients derived from the Hll'm set above. These are:

G e 5 o

S 200 %9 Hago

(o]
8721 = 8221 Bg00 g

p &5y 20y +2y

- (o)
820 = 8222lHp00 * 7 00 * %9 Ha20 (29)
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C. Potential Parameters for Chlorine

The potential that has been employed in this work is the two-—
centered Lennard-Jones potential. It has been discussed in detail by
Sweet and Steelelo. We have applied it here to the diatomic chlorine,
choosing this substance because it is nonspherical, nonparamagnetic,
and composed of just two atoms which are likely centers for the Lennard-
Jones functions. Furthermore, it apparently has a high configurational
heat capacityll indicating strong orientational correlations in the
fluid state.

Because we are dealing with a homonuclear diatomic, just one set
of 0o and € values characterizes the molecule. A third parameter
R* = R/0 , where R 1is the distance between interaction centers, is
also required. In solving the Percus-Yevick equation for a particular
substance, the R* (and hence 0 ) parameters are required as input. In
this section values for o, €, and R* for chlorine are derived.

The method of solution is that due to Sweetlz. In this method
the parameters are determined from the second virial coefficient.

Reduced virial coefficients and temperatures are written as

B* = B/b, , b, =3 0N (30)

T* = KT/e (31)
or

log]B*] = log]BI - log bo

log|T*| = log|T|- log(e/k)
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If one then has a set of reduced (B*,T*) pairs from theory and a set
of experimental (B,T) pairs, log plots of the two data sets will yield
log bO and log e/k as intercept values if the two curves are super-
imposed. However, unlike spherical systems, the B¥* values are also a
function of R* and one must repeat this determination of intercept
values from new B* curves until a o is found from bo that will
give an R/0 that is self-consistent with the R* on which that B¥
curve depends.

Theoretical B*(T*) values have been calculated from
[e o]
B¥(T*) = =3 | (g% (£*) - 1) r*? dr*
000 :
0

by Sweet for R* = 0.1, 0.2, 0.3, and 0.4 and are reproduced in Appen-
dix 5. Using the same numerical methods, we have extended these cal-
culations for B*(T*) to R* = 0.50, 0.55, and 0.70 for a temperature
range of T* = 0.2 to 1.8 . These values appear in Table II.

Very few experimental values of B(T) exist. Gmelin13 gives
several references to chlorine PVT data, but nearly all refer to A.
Eucken's workl4. These data are suspicious in that the second virial
curves derived from it do not have the same shape as is found for
nearly all other monatomics and diatomics, the Eucken curves being too
steep in the low temperature region. In addition, later Eucken data on
ethane and ethylene has been found in error by McGlashen and Potter15
and Sweet16 respectively.

We have therefore used the data of Kapoor and Martin17. They

have fitted other earlier data and give the empirical equation of

state
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TABLE II

SECOND VIRIAL COEFFICIENTS FOR THE TWO-CENTERED L-J POTENTIAL
R* 0.50 0.55 0.70

- - -25.677538

- -6.685302 - 5.742034

-3.294647 -3.078723 - 2.537592

-1.839501 -1.678720 - 1.259973

-1.076307 -0.941468 - 0.579727

-0.609611 -0.489253 - 0.160139

- - - 0.006307

-0.295928 -0.185074 + 0.122153

-0.072185 +0.032303 0.324136
+0.095208 - -

1.8
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5
RT kT 1.n
A HZZ [A_+BT+C_ exp(- TC)] e,

Tc is the critical temperature and V >> b . If the bracketed quan-
tity is defined as Bn and the (V-b) terms are binomially expanded,

one obtains

5
1 il
-+—z e 1l1%n
RT nep R g0 13

2
.E_+n_(g—_l)%§+...)
v \Y

als .
It
’_l
+
<o
+

from which the second virial may be obtained as the coefficient of the

1/6 term.
& - =
B(T) = b + Zz (A, +B,T + C, exp(-kT/T)) (32)

The constants of (32) are tabulated in Table III.

TABLE III
A2 = -0.46496772246 B2 = 2.129865506'10-4 C2 = -0.098636526
Tc = 7510R(4l7°K) R = 0.010296 b = 0.00608353 k=2.3
Units are atm —'ft3 o e

A list of values of B(T) and T derived from this expression

appears in Table IV, and a plot of the data is found in Figure 1.
The theoretical and experimental curves were superimposed as

discussed above for all the R* and the bo and €/k parameters

were determined. Fits were closest in the region of T = 273 to
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417OK, where much of the original experimental data was concentrated,
and in the region of the "V'" . The results are tabulated in Table V.
Plots of o vs. R* and e/k vs. R* appear as Figures 2 and 3. The
points in Figure 2 were fitted with a straight line by least squares

with the result

o = -1.9016R* +4.76107 (33)

Since R* = R/0 this equation can be solved for 0 once R is known.

Sweet and Steele used 0.577 times the internuclear distance as the
the interaction separation R for diatomics. This resulted from other
work where longer molecules were viewed as a continuum and the two LJ
centers were Gaussian distributed to represent this continuum. While
this seems reasonable for molecules such as propane or butane, it is
not required for diatomics since the two nuclei themselves may serve as
the centers. Recently Kong18 has applied the two-center Lennard-Jones
potential plus dipole and induced dipole terms to the calculation of
ordinary and dielectric second virial coefficients with some success.
. In his potential the separation R is the distance between the centers
of gravity of the two LJ atomic groupings rather than 0.577 times that
distance, encouraging us to use the internuclear distance for R . It
must be added, however, that in light of little other theoretical
justification for this choice of R , it is possible that the best value
for representing the true potential may lie somewhere between the two
extremes discussed here.

We have therefore solved (33) for o with R = 1.9882 and have

carried along the least square error. The result is
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TABLE IV

SECOND VIRIAL DATA FOR CHLORINE (from KAPOOR, MARTIN17)

T(°K) B(cc/mole) log|B]| log T
244.0 -361.60 2558 2. 387
250.4 -348.50 2.542 2.399
27342 -307.00 2.487 2.436
298.2 -269.00 2.430 2.475
32302 -237.20 2+:375 2.509
3752 -187.00 2.272 24572
423.2 -149.20 2+.174 2627
4572 -128.50 2.109 2.660
550.0 - 85.40 1,931 24140
650.0 - 53.30 3 Iy 2.813
750.0 - 30.10 1.479 2.875
850.0 - 12.40 1.093 2.929
860.0 - 10.87 1.036 2.934
870.0 - 9.37 «972 2.939
880.0 - 7.91 .898 2.945
890.0 - 6.48 . 812 ; 2.949
900.0 - 5.08 .706 2.954
910.0 - 3.71 569 2.959
920.0 - 2.38 R 2.964
930.0 =1 107 .029 2.968
940.0 i 021 - .678 2:973

950.0 1.46 + .164 22978



0.10
0.20
0.30
0.40
0.50
0.55

0.70

120.23
109.65
91.20
79.43
69.34
63.10

5272

B8

TABLE V

e/k

292.42
331°%1.3
403.65
481.95
553.4
599.8

724.4

4.568

4.430

4.166

3.978

3.802

3.684

3.470
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= 3.754 * .058

Q
|

R* = 0.53 £ .01

From a quartic fit to Figure 3 and the B* just obtained,

e/k = 581.0°K
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Numerical Evaluation

The general method of numerical solution of the Percus-Yevick
equations for the HQQ'm is that of Chen and Steele7 with appropriate
modifications having been made to handle the longer ranged two-centered
Lennard-Jones potential and the larger number of Hﬂl'm coefficients.
This is an iterative method in which the Mayer f function coeffi-

cients are known beforehand. In the first iteration, an initial

foo'm
guess is made for the Hli'm . Direct correlation function coeffi-
cients are calculated from (28), are Hankel transformed by (7), and are

used to obtain Hankel transforms of the HZQ'm by solution of Eqs. (20)

€6 (22). + The B transforms are then back transformed to a new set

22'm
of Héﬁ'm by (8). A new guess for H

and old H

29 'm is fashioned from the new

and the process repeated until the difference

]
o T 29" m

Iri(H is less than some predetermined value. Once the

' —
2atm Hpgrm) |

H functions are known for a particular density, the pair correla-

28'm
tion function coefficients can be calculated from (28) and (29).

In the earlier hard core work, the Mayer functions were quite
short-ranged since the potential and thus [exp(- u(glgz))-l] went to
zero beyond the largest overlap distance between molecules. Those

5 were zero beyond about r* = 1.60 . When the two-centered

22'm

Lennard-Jones potential is used, however, the fll'm are non-zero as

far out as r* = 4.00 for the higher coefficients and as far out as

*:
6.00 for fOOO . We have therefore computed le'm from r 070 to
4.00 numerically and for fOOO have extended thesedata to r* = 6.00
by using the asymptotic formula for it. The flﬂ'm calculation is
12,19

based on Gaussian quadrature integration of the triple integral



=

—Bu(R )
(e - l)Pz,m(cos Gl)Pl,,_m(cos 62)cos mo

I_Pﬁ
O

Fogrp(®) = 4

O3

X d cos Gld cos 62 d¢ (34)

which results from (1) if f(R 2) is identified with X(R and

R,)
both sides of the equation are multiplied by Y* (Q ) pE m(Qz) and
s

integrated over angle space. The asymptotic formula for fOOO is
given by
Lin £(R,R)) = Lim £, (r) = —— (35)
™ r->™ i el

where the last equality arises from noting that u(R ) - uLJ(r) as
r >« and then retaining the first term of a Maclaurin expansion of
exp[-Bu, ()] - 1 .

The use of these Mayer f coefficients allowed us to calculate

5 * L .
Hll'm and 890'm functions out to r" = 6.00 as well. With an eye
toward obtaining thermodynamic properties from these functions, it was
: . : 2,20
noted that in the case of spherical systems Bearman et al. have

shown that truncation error in thermodynamic integrals over r* is
virtually eliminated if the upper limit of integration is 6.00 or
greater. In particular, those authors showed that the g(r) of
spherical systems may be replaced by 1.00 beyond this value. We have
found that gooo(r) behaves similarly and thus it too has been set
equal to 1.00 beyond r* = 6.00 .

The core of the Percus-Yevick solution is the solution of

Eqs. (20)-(22). This was accomplished here by noting that the equa-

tions of (22) are linear, consisting of four equations in four unknowns.
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It was found that the Aii and Bi terms of Table I were the largest,
thus indicating that the matrix is somewhat diagonal and not ill-
conditioned. The equations were solved simultaneously using the
C(22'ms) calculated beforehand. Equation (21) was solved for H(4004)
directly. Equations (22) were then solved as a group. Next, H(2002)
from (22) and H(4004) from (21) were substituted into (20) to obtain
H(0000). Hence all H transforms were determined. The simultaneous
solution of Egs. (22) was done by the standard method of Gaussian
elimination21, this being chosen because it is straightforward and
rapid. Furthermore the round-off errors in this method have been
studied carefully and are known to be reduced greatly if the technique
of pivotal condensation is included in the programming.

Hankel transforms were obtained by expanding the spherical
Bessel functions in the standard trigonometric representations (see
Appendix 6) and then evaluating the resulting Fourier integrals by
standard techniques. Like Chen and Steele7 we have employed the Fast
Fourier Transform22 (FFT) because if its great speed. Because we have
included H and H

220 400

order Hankel transforms are required. The evaluation of this fourth

terms, fourth order as well as zero and second

order transform requires the summation of five Fourier transforms, two
cosine and three sine transforms. It seemed possible that Fourier
transform errors over a sum this large might begin to build to the
point of introducing significant error in the final result. To test

2
this, calculations were performed on xz’e_x and it was found that the

Fourier summation approach was adequate. When fourth order numerical

results were compared with analytical values, the FFT Hankel transforms
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were accurate to six digits or better up to a transform value of 10—10

(peak value .24). Inverting the transform itself gave the original
function back with negligible error. When applied to the HQZ'm
functions, it was verified that the transform functions were effec-
tively zero at the maximum value of Vv for which the transform was
evaluated. We note that a result of having this higher order trans-
form included in the calculation of H220 and H400 was to slightly
more than double the computation time than when it was omitted and just
HOOO and HZOO were calculated.

It is now necessary to consider the extrapolation procedures
used in this work. There are two extrapolations involved here. The
first is to be able to find initial guesses for the Hll'm at one
density from the results previously obtained at lower densities. The
individual le'm data points form well-behaved and generally monotonic
curves as a function of density, and are thus amenable to a polynomial
fit. Accordingly we have employed a five-point Newton forward extrapo-
lation procedufe.

Since the Newton method requires at least five points, these
first five were treated differently. The first density treated was
p* = 0.1 and was low enough so that all Hll'm input were taken as
zero. This approach was followed quite successfully by WattsA. The
final output for HlZ'm at p* = 0.1 became the input for o* = 0.2
and so forth until the first five densities were evaluated.

The second extrapolation is to determine at fixed density the

HRQ'm required for a particular iteration based upon results from pre-

vious iterations. If this extrapolation is not done, convergence will
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either not be obtained at all or else convergence will be attained so
slowly it will not be acceptable. A variety of schemes are available
for this extrapolation and we have investigated two of them.

The first scheme is a simple linear extrapolation and has been
applied in different forms by Chen7 and Bearman3 in earlier studies.
We denote the Hkl'm(ri) values obtained after the nth iteration by
Hn . Straight linear extrapolation gives as a result for the (n+l)th

iteration,

= + -
H Hn (Hn Hn— )

n+1 1

A modification includes a mixing parameter o and

H =H+ o(H-H 0 o< 1 (36)
n n_ n-

n+1 l)

and is the form employed by Chen. If a = 0 , the new input Hn+1
equals the last output Hn 5

The second method is based upon the ek—transformation described
by Shanks23 and Peterson and McKoy24. It was found by these authors
to be extremely efficient and, if allowed to extrapolate on five points,
to be capable of handling oscillatory and divergent series. In this
work, however, we have employed the three point (el) transformation,
principally so that more extrapolations will be done for a given number
of iterations (typically on the order of 6-9).

This technique views each Hn as the nth partial sum of a con-
vergent series whose limit H 1is the actual value of Hgf m(ri). For

the three point extrapolation the transformation assumes that for any

partial sum
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H=H +¢€ = H + A"
n n

where the truncation error En is composed of an amplitude A and a
ratio q , assumed less than one. Defining AHi = Hi+l_ Hi and form-

ing the differences AHn— and AHn_ by eliminating H from the

1K 2

above equation, one may solve for € in terms of previous partial

sums. The expression for H then becomes

ik

H = Hn_1 + [(1/AHn_l) - (l/AHn_Z)] (37)

A slightly modified form of this equation using the Wynn algorithm24
was used in our program. If the assumed form for €, is close to
the actual truncation error, then the H given by (37) is far better
converged than the last iteration result Hn . It is apparent that
if H 4is taken to be the first of a new series of Hn , then an
extrapolation will be done after every two iterations until conver-
gence is obtained.

All of our final results have used the ek—transformation 37).
It was preferred over linear extrapolation principally because for
many choices of o it allowed convergence in fewer iterations. A
sample hard core PY solution at p* = 0.1, and R* = 0.2 required
one-third more iterations using (36) with o = 0.2 than (37). The
iterations required were nearly the same with a = 0.05 . Since it
is known3 that o is generally a function of density, the ey method

thus offers a way of avoiding excessive iterations due to non-

optimization of this parameter at each density.
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As outlined above, these iterations and extrapolations continue

until the difference between two successive iterations satisfies

|23 Bg 1y = Bogupdl < T

i

For ' H L has been taken as 4Xx10 ', and for other HQZ'm’ zC

000’

has been taken as 10_4. This compares with 10_4 used by Mandel,

Bearman, and Bearman3 and nearly identical values used by Chen.
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Results

Using the numerical procedures just discussed, we have obtained
. . * —
the Hkl'm and 809 'm solutions for the grid given by p 0.1 o' 1.2
(Ap* = 0.1), T* = 0.75, 1.00, 1.30 for the two separation distances

R* = 0.53, 0.68 . Numerical results for the H at p* = 0.6, 1:2

22'm
and T* = 0.75 may be found in Tables VI and VII. The data for

(p*,T*) = (1.2, 0.75) are plotted in Figure 4. Obviously, the functions
are oscillatory and are dominated by H000 and H200 in the r* range
above 0.90. Since, in order to calculate the 89 tm? the Hﬂl'm are
always multiplied by gzz.m which are zero below r* = 0.90, it is only
the r* > .90 range which is eventually important for pair distribution
determination. Below r* = 0.90 , H220 is also quite significant,
especially near r* = 0.0 . We note that the general curve shapes of

these functions agree with those obtained from two-center hard core

cluster results25 when the appropriate sum over cluster diagrams is

taken. Differences between the HOOO curves and H200 curves when

; *
H220 and H400 are and are not included depend on the r  range and
(p*,T*) point under consideration. For H000 at (p*,T*) = (0.7, 0.75)

the differences in the range r* = 0.90 to 2.50 are on the order of 1%
or less, climbing to approximately 47 or less at 3.20. The correspond-

ing differences for H are larger, about 6%.

200
The pair distribution coefficients for the grid p* = 0.4 to
1.2 (Ao* = 0.2), T* = 1.30, 1.00, 0.75 and for R* = 0.53 are tabu-
lated in Tables VIII-XXII. The gooo(r) coefficient has been plotted
in Figure 5 for p* = 0.2 to 1.2 (Ap* = 0.2) at T* = 1.30. The same

densities are also plotted in Figure 6 for T* = 0.75. It is apparent
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T ot TABLE VI e :
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TABLE VI (cont'd)
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TABLE VII (cont'd)
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FRGM PY EWQUATION

R

Qe85
Ce84
0.83
C.92
Ce96
1.00
1004
1.08
1.12
l.16
1.20
1.24
1.28
1.32
l.30
1.4\)
1.44
1.48
1.52
1.56
1.60
l.04
le63
l.72
1.76
1,80
l1.8%
1.88
1.92
1.96
2.00
2.04
2428
2012
2616
2,20
2e24%
2028
232
2‘36
2e47

GU0OOL

00000
0e.0UUZ
0.0042
U.U285
U.0967
Ne2147
Ue 3687
0.5430
N.7277
V65122
1.07S82
1.2119
1.3038
1.357D
1e3112
1.3707
1.3447
1.3050
1.2610
1.2174
1.1173
1.1418
lelll4
1.0856
1.0640
1l.0402
1.0318
1.0203
1.0114
1.0047
Ue 5998
UeS53967
N.995"
0e 99406
09952
Ue 9665
0.9682
1.0041
1.C020
1.0037
1.2954

RHO*=0.40

G2GC G220
=D.0000 D000
-0,0002 0.0003
-0.0043 0.0049
-0e.U283 WU.0310V
-0.0925 0.0953
-N.1545 {.,1839
-0e30CS7 Ue 2593
-0.40S3 0.2845
-0.47C3 D.2359
-0e47S4 0601156
-0.3662 =-0.1664
-0.2760 -0.2408
-N.1827 -N.2523
-0s0966 -062146
-0.0263 =-0.1533
0¢ 0490 =-0.0523
0.C603 =0.0265
0.0621 -0.0123
0.0561 =-0.0051
00540 =0.D017
De U482 -Ues 0003
0.0425 0.0003
00937% G.Q@95
00320 (Ce0607
0.0274 0.0008
0.0231 0.0011
00191 0.0014
N.0154 0.0018
Vs0119 (.0UL23
0.0087 0.0027
N.0057 0.0031
0.U0030 0es0033
0.00C6 0.0034
-0.0014 0.0033
-0.0030 0.0031
-3.0042 0.0028
-0.C050 0Ve0VL26
-0.0054 0.0023
-DeD255 NJNC21

T#=1.30

G221

-0.0000
-0.0000
-0.0001
-000018
-@-326ﬁ
-0+0515
-0.0801
- .1048
~Us 1184
-0.1173
-001027
-0.0800
—0.0553
-0.0335
-000174
-0,0016
0.0010
0.0021
0.0023
0.0022
0.0020
0.0017
V.0U014
Ue0012
0.,0010
0.0008
0.0006
00005
UeV004
0.0004
2.0003
0. 0002
0.0002
0.0002
0.0001
QOQGﬂl
00,0001
U« U001
Ve.u001

k*=0.,53

G222 G400
=-0.u000 UV.ULVO
-0e0003 0.0006
-0.N041 D.O106
~0«0159 VeU566
-DeD354 Ne1812
-06.0339 0.1125
-0.0287 =0.0584
-060164 -0.2481
-J.0111 -N.1312
-0.0069 0.0240
-0.0038 0.1154
-0.0017 2.1117
-0e0004 0V.0553
00002 0.0074
00006 =-0.0117
NON05 =C,0078
0.00UU5 -0e0U043
0.0004 -U.0021
0.0083 =H.0010
000003 -000004
U«0001 0.000¢
0.5001 Q.0000
0.0001 0.0001
0.0001 0V.00UL1
N.0901 0.0001
00000 0.0002
0.0000 0.0002
0.0000 0V.0002
0«0000 0.0001
0.0000 0.D000
U.U000 -0.0000
0.0000 =-0.0001
N.0000 =2.0002
00000 -00002
0«0000 =-0.000
0.0000 =U.0U02



2044
2 ."8
2.52
2.56
2.60
2.64
2.68
ol
2.78
2.80
2'84
2.88
2.92
290
3.00
3.10
320
3 .30
3.40
3.50
3.60
W T
3.80
3.9“;‘
4400
4.20
4.40
4.60
4.80
5400
5.20
S5e&?
5460
5.80
6400

1.0069
1.0C82
1.C063
1.0100
1.0105
1.01C7
1.0107
1.0101
1.0056
1.0050
1.0C83
1.0476
1.0069
1.0063
1.72048
1.0036
1.0028
1.0022
1.0019
1.0C17
1.0016
1.0015
1.8013
1.0012
1.0009
1.60C7
1.0005
1.0004
1.0003
1.0003
1.003

1.0002
1.0001
1.0001

~103-

TABLE VIII (cont'd)

-000053
-0.,0038
-0.0031
‘0.0025
-0.0013
-0,0008
-0.0004
0.0002
f.0004
0. 00C5
0.0606
Q. OON6
0,00C5
0.00C3
G.00C1
00,0000
-0.0601
-0 0001
-0.0001
-0.0001
=-060000
-0.0000
0.0000
-0.0000
-0, 0000
-000000
-0.0000
-0.0000
-0.0C00

U.00189
0.0017
U.0014
0.0011
D.0C07T
0. 00 U4
0.0000
-0 .0002
=-0.0004
-0.0005
-N.,0005
-U.UOU‘t
‘0.0003
-5 .0002
=06 0001
0.0000
0.0001
0.0001
6.0C001
0.0000
0.0000
D.00DD
-0.0000
-0.0000
-0.0000
D.0000
00000
0. 0000
0.0000
-0.0000
=-0.0000

0.0001
0.0001
0.00U0
0.0000
G L LOO
0e 0000
V. U000
H.0000
V0000
U.0000
0.0000
0.0000
8.0000
00000
LC.0000
0.00600
00000
5.0000
V.0000
0.0000
0.0000
060000
0.0000
0.0000
00000
0.0

u.u

U.O

.0

Ue 0

0.0

0.0

0.0

0.9

0.0

0.0000
0.00139
0.0000
0.0000
CD0N0
0.0000
0.U000
0.0000
0.0000
2./900
0.0000
0.0000
D.0000
0.0000
0.0000
0.000U
0.0000
0.0000
00000
00000
2.0000
00000
0.0000
0.0000
U.0C00
0.0

0.0

coccoo0
® o o o »
CCOCWO

D.0

-0.0001
=0.000LU
-0.0000
N .0000
U 0GUO
00000
U U0O0LU
0.0000
LedPs LT ol?)
0e0V0ULCO
Us00GULU
U GO0
00000
U«000U
0.0000
0.0000
0.0C0%
-0e 00UV
-0.0000
=000
-0.0000
-OCUUUU
-0.0U0L0
0.0000
0.0000
U«0000
0.0000
-D.0000
00000
-0.0000
-0.0000
0.0000
0. 00100
Ue0CULO
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FAIR DISTRIBUTION CGE%@%%*%NTS FOR 2 L-J POTENTIAL

FRCM PY EQUATION

R

0.80
0.84
C.88
0092
0.56
1.00
l1.04
1.08
l1.12
l.lb
1.20
l.24
1.28
132
1.36
1.4:}
leb4
1."'8
1.52
1.56
1.60
1.64
1.68
l1.72
1.76
1.80
1.84
1.83
1.92
1.96
2.00
204
2.08
2012
2.!.6
2620
2.24
2.28
2932
236
2040

G000

0. 0000
V.0002
D.NN46
0.0309
0.1039
U.2286
0.3864
De5695
Ce7585
Ve 5457
1.1132
1.2438
1l.3311
1.3780
1.3911
1.3771
1.3430
1.2971
1.2472
1.,1986
1.1545
1.1159

1.0831

1.8557
1.0332
1.0151
1.00M9
Ue 5501
0.5823
09770
05741
NeSG731
UeS739
DeST761
Ne97594
09835
0.5879
06921
0.5960
0.9996
1.0027

RHO*=0.60

G200 G220
-0.0000 (C.0000
‘0'0003 0.,0003
-903046 DQOQSS
-0.0303 U.0344%
-0-C985 0.1042
-0.2063 001986
-0.3271 0.2762
-6043G6 5.2983
°004915 002404
-004953 001077
-004463 ‘ﬂoOSSb
-0e3629 -0.1919
-0.2647 —-0.266%
-0.1662 —-0.2736
-0.C773 =0.2297
-000059 -501628
00424 -06s1004
0.C684 -0.0558
N.N782 -N.0289
0.0784 -000143
0.0737 -0.0069
0.0670 =0.0033
0.0597 =-0.0016
0.0525 -0.0008
000456 ‘000003
0.0362 (0.0001
N.N333 00096
00277 0.0013
0.0225 VL0020
0.0175 (.0028
0.0127 0.0037
D.1082 0.0045
0.0041 0.0050
0.0004 0.0054
-N.0N28 N.0054
-0.0055 0.0051
-0.0075 000047
-0.008S 0Q.0042
-0.0096 0.0038
-0.7068 N.0734
-0.0055 0.,0030

T#=1,30

G221

-0.0000
-00000
-0. 0002
-000021
‘000103
-U. U289
-000565
-000872
-0.1130
-0e.12064
-GOIZQﬂ
’001677
-0.0832
-00570
-0.0342
-0.0176
-0.0073
-0.0016
00001“
0.0021
0.0023
V.0022
0.0019
9.0016
U. 0014
V0011
0.0009
U.0CCSB
0.0006
0.0005
0.0004
0.00C04
0.0003
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
C.0001
0. 0001

R*=1,53
G222 G4U0
-0.0000 0.0000
-0.0004 0.0007
-0.0046 0.0120
-000175 00635
-0.0319 N.1533
'000381 001971
-0.0361 0.1170
-0.0302 -0.G6727
-0e0233 -0,2487
-0.0169 —-0.2758
-0.0114 -0.1484
-00070 0.0177
-01.0038 0.,1148
-0.0017 well20
-0.0004 U.0549
0.0082 0.N369
00005 =-0.0109
0.0005 -000112
0.0005 -0.0071
00004 -0.0026
900394 -5.3915
0.0003 =-0.0004
0.0002 0.0001
00002 0.0003
00002 0.0003
0.0001 0.0CU4
0.0001 0.0004
0.0001 0.0004
0.N001 0.0C05
0.0001 0.0005
0.0U00 0.0006
00000 D.NN06
0,0000 060005
0.0000 ©C.0004
00000 0.0002
0.0000 0.0001
QCQGOQ -3.“301
00000 -0.0002
0.0000 =-0.0003
N.0000 -0.00203
C«0000 -060003



244
248
2.52
2.56
260
2e6%
2.68
2wl?
2.80
2.84
2.88
292
2.96
3.00
3010
3.2V
330
340
3450
3.60
370
3.80
390
4 .00
4.27
4040
4 .60
4.80
5.00
520
5e4U
5.60
587
€400

1.0054
1.0G77
1.0095
1.01u8
1.0115
10117
1.0116
1.0112
10205
1 .0Q§97
1.0087
1.0077
1.0066
1.0056
1.C047
1.0027
1.0015
1.0008
1.0006
1.0007
1.0009
1.0010
1.0011
1.0011
1.0010
1.0007
1.U005
1.00063
1.0003
1.0002
1.0082
1.0002
1.0001
1.000C1
1.0001

=105~

TABLE IX (cont'd)

-0.0088
D078
-0.0055
-0.0043
-0.0031
=N 0020
-0.0011
N.N003
0.0008
0.0012
0.0014
0.0015
D.0016
Ve0O013
0.0009
T .nC‘QS
0.0001
-0.00C3
-0.0003
-N0.0002
-0.0002
-0.0001
0.2000
0.0000
00000
-0.000u
-0.0000
-0 AN00
-0,000C
-0.0000
-D.0020
-0.0000

0.0027
D.N023
0.0018
U.0013
0.0007
0.0002
-0 0007
-0.0009
-0,0010
-0.0010
‘000003
-0.0000
n.nenl
0.0002
0.0002
U.0UVl
0.0001
00000
-0.0000
=-0.0000
=-U.00UJ0
0.0000
0.000u
0.0000
=-0.0000
-0.0000
2.0007
0.0000

0.0001
0.0001
0.0000
0.0000
0.000U
0.0000
0.0000
00000
0.0000
p.0C00
0.0000
0.0000
0.0000V
0. 0000
0.0000
0.00060
0.0000
v.0u0U
0.0000
0.0000
0.0000
U.0000
0. NC0N
0.0000
0.0000
C.0

=l el olall ol ol <N )
s o o o

cCocoocCoCc

0.0000
00000
CeVULOO
2.0000
[V PVIVIOIV)
C.00G0
200D
0. 0000
0.0000
U.0000
0.0000
De DOOD
00000
00000
£.0000
00000
0.0000
U000V
G« 0000
0.0000
0.0000
0.u000
00000
Ge 0000
U.0000
UCO

CCoCIIoCcOoOW

=-L.0003
=-0.u002
=Ue.00UZ
-0.00C1
=0e0ULULU
-0.,0000
Q.N000
00000
U« 0000
0.U00L0
o HD0D
Ue OOUU
J.0000
D A0LT
0.UQ0CO
U 000U
U.0000
0.0000
-0 0NLE
-0 0000
-0.0000
-0.0000
-0.0000
U.U000
0.0000
2.0000
=-00000
-0.0000
e AL 4T
-OOOOUO
U.UU00
U.000U
U.000G0



-106-

PAIR DISTRIBUTION COEP??@I%NTS FOR 2 L-J POTENTIAL
T*=1.30 R*=0.53

FROM PY EQUATICN

R

0.80
fie84
0.92
e96
1.00
1.04
1.08
1.12
1.16
1.20
1l.24
1.36
1.40
1.48
1252
1.56
1.60
l.64
1.68
le72
1.76
1.84
1.88
1.96
270
2004
2.08
2ek2
2elb
262U
2:2%
2428
Z.e 32
2636

GOQu

0.0000
N.0003
00082
0.0342
D.1138
02477
U.4181
Ue 6063
0.8017
79932
1.1619
1.2900
1.3716
1.4107
l.4147
le3912
1.3479
1.2935
l.2362
1.1817
1.1328
1.0906
1.0552
1.0261
1.0028
11,9845
Ce G708
0.3611
0.5549
0.5517
0e.9511
Je 3528
05565
NeG618
Ue G683
0.G754
Ue 5826
0.9893
1.0002
1.0045

RHO*=0 .80

G200 6220
-000000 0.0000
-gogﬂ93 QOQQD4
-0.0051 (.0063
-0.0331 0.0387
-ﬂ.1969 gollbg
-0e2226 0.2182
-003513 002991
-0.4600 0e3169
-0.5209 0.2478
-Go518ﬁ 90&987
-004573 -0.0794
-0.3612 —0c2239
~002527 =0.2987
-0.1474 =-0.3004
=N, N55¢ =0,2486
00C179 -0e1744
N.N99 -(3.0597
000988 -000314
0.0968 —000161
0.0869 -0.0083
OnCSll -0.0044%4
N.L719 -0.0025
00628 =0.0014
0.0543 -0.00006
N.N462 D.D2
0.0387 060011
0.0315 0.0022
0.0247 0.0034
0.0182 0.0046

- 00120 ©0.0059
00061 0.0070
0.C0C8 0.0077
—903346 GCOQBO
-0.0080 0.0079
-0.0112 0.0074
’000134 O 0UBS
-0.0147 0.0057
-0.0152 90.0050
-0e 0148 Oe U044
-0.0138 0.0039

G221

-000000
-0.000C
=-0.0002
-0.0024
-0.0117
-0.0327
-U.0633
-060665
-0.1238
-0.137C
=0s1331
-0.1144
-0.0875
-0.0593
-0.0353
-0.0180
-0.0CT74
-0e.0D16
0.0010
00,0021
00023
0.0021
D.0019
00016
U.0013
0.0011
0.000S
0.0007
V.00C6
0.0005
D004
00003
0.0003
R.0002
00002
0.0002
V.0001
U. 0001
C.0001
00001
0.0001

G222

-0.0004
-0.0052
-0.0156
-U.0354
-0.0418
-ﬁ.0391
-0.,0323
-0.0246
-000176
-000117
-0.00672
-0.0017
'0-9004
0.0002
C.0005
0.0005
0.0005
D.0004
0.0004
0.0003
€.20n2
0.0002
0.0002
0.0001
C.0001
€.0001
0.0001
U.0001
2.0000
G« 0000
0.0000
0.0000
C.0000
0.3000
C.00U0L
G.0000
C 0040
0. 0000
C.0000

G400

0.0000
0.90C9
00139
0.0727
Ue1731
0.2183
0.1233
-0.0910
-0.2849
-003110
-0.1703
0.0104
0e1149
V.1131
0e00548
0.0065
-000108
-0.0062
-Def026
-0.0C06
0.0004
De00(9
0.0010
0.0010
V.0010
V.0011
De02011
0.0012
0.0013
Q.0013
00013
0.0011
0.00uB
0.0005
JeUD02
=0 U0V1
-5 .0006
-0.0007
-0.00G07



2.44
Ze48
252
2456
260
2eb4
263
26712
215
280
284
288
2 .92
2.96
30U
3.10
3.25
3«30
2.40
3.50
36U
3 el
3480
390
4 .00
44,20
4,40
4,60
4480
5620
5.40
5.60
5Se80
6.00

1.008D
1.0109
1.0129
1.G142
1.0146
1.7:145
1.C138
1.0127
1.C113
1.C098
1.0082
1.0C66
1.0050
1.0036
1.0023
0.9699

N +9988

e G586
0.9991
09697
1.0004
1.7075:8
1.C010
1.0010
1.0009
1.0004
1.0002
1.0001
1.0001
1.0001
1.00C)
1.0001
1.0001
1.0001
1.0001

TABLE X (cont'd)

-0.7124
-0. OlOb
-0.0086
"Oo 0066
-0.0029
=0 001 3
V.0001
N.NDG11
0.,C020
0.00206
U.0029
0.0031
0.0031
00025
0.0022
0.0012
0. 0004
-0.00C3
-0, 0006
-0.0007
-0.0006
-0.0004
-0.0002
0.NN00
0.0001
0.0V01
0.u00u
-0.0000
=0 N0
-0.0U00
00000
Do DO
0. 0000
-0.0000

=107~

D33
00028
0. 0021
V.0013
0.0005
-0.0003
-0.0010
-0.0014
-0 .0C17
‘000018
-0 \)017
-0.0015
-0.0013
-0.2010
-Ues0UG8
P.0002
0.00uU3
0. V0UVU4
U.0003
U.0002
20000
-UeUUUUL
-0.0001
-0,0001
=-0e 00VV
0. 0000
0.0000
0.6000
-0.0000
=0.0000
Ue O0UO
0. 0000

J.0001
U 0001
0.069C
U.00U0
0.0000
0.000C
000060
U. 0000
0000
0.C000
U.0000
00000
0.0000
0. 0000
0. 0000
0.0000U
0.u000
00000
0.0000
U.0000
0.0000
0. 0000
00000
0.0000
Q. 0OR0

SococCcOOCCOO
LCcCcCoOOoOBOoOCOoOCC

0.0000
U 0000
DONN0
U0000
G.0000
3 .0000
00000
C.00OUV
Uw000
Ue 0000
J.0000
0.0000
0.0000
2.0000
0« 0000
0.00C0
U.0UGU
0. 0000
LY s Pelale]
00000
s PN Telele)
0. 0000
0.0000
00000
00

QOoOCcCoCoCWwOoCOoO
s
GCCOCCLCOO0O

-00005
-N1.0004
-JelLUCO3
-0.0002
-1.0N01
-OOUUOI
-0.0000
-0.0000
-J.L000
D009
0.00O0U
U.0000
TeACO
00,0001
U.00U01
Ue.00U1
U.0U00
1.0000
UeVULU
-0.000U
= HMC
-U«000LO
0.0000
0.0300
(VP VEVI V)
=0.0000
=Ue00UV0
-U.0000U
Ue.UUuUU

U« 000L0
02700
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_TABLE XI
PAIR DISTRIBUTICON CUEFFICIENTS FOR 2 L-J POTENTIAL

FROM

R

'li‘OBﬁ"
U84
0«88
$e92
Ce96
1.00Q
1.04
1.08
l1.12
1.106
1020
1.24
1.28
1632
1.36
1.40
l.44
1.48
1.52
1.56
1.60
1.6"
1.68
2 (P 7
1.76
1.80
l.84
l1.88
1.92
1.96
2.00
204
208
2el2
2.16
2420
2e24%
228
232
2636
2.40

PY EQUATICN

GIo0

G OO
U.0003
U.uU059
D.N387
01271
0.21738
0.4572
Ue€565
L8605
1.0576
1.2278
1.3526
1le4265
1.4550
1.4470
1.4112
1.3561
1.2910
1.2247
l.1629
1.1G685
l.0é23
1.0242
06937
Ve G696
0.9521
Q09397
{19319
06281
09279
393805
0e 5357
UeG431
0.9522
0e9625
29733
Ce 3836
VeG927
1.08003
1.0065
1.0114

RHO*=1,00

G20 G223
~0.0000 B0.0000
-0.0UC03 0D.00LU4
=N.0370  D0446
-0s.1184 0.132V
-0.2450 V.2447
-0.3843 (0.3302
-0.5001 0.34238
-0.5608 MN.2582
-0e5489 0.U874%
-0.4727 -0.1105
-1e3600 =-0.2656
—062381 =-Ue3404
-0e1242 =-0.3346
-0.02173 =0.2722
000473 -001886
D.0952 -0.1l146
01182 =0.0636
0.1234 -0.0335
301185 -00Q174
001087 -0.0091
0.0972 -0.0049
Q0G853 -000027
000739 '000013
0.0528 0.0011
0.0432 0.0025
D.11340 D.OD4L
00253 0.0U58
0.0169 0.0076
N.0689 0.0093
0.0015 0.0106
-000052 0.0114
-0.0111 U.01ll6
-000158 OoOllu
-N.N193 0.N099
-000215 0.0086
=$.M0220 B.9060
-0.02C7 0.0051
-0.0185 0.U0%4

T%x=1430

G221

-2 .0000
-U«QUOU
-U.0002
-0.0137
-0.U378
-0.C723
-001091
’@01383
-Uel512
-001451
~0el232
-0.0531
-U.0625
-53.0075
-0000l7
0.u010
D.0020
0.0G23
Ue0021
O.uuls
0.0016
0.0613
0.0011
0.00609
D.0007
0. 0006
0.0005
0.0004
0.0003
0.0003
U.u002
V.0002
J.0002
UsVOU1
0.0001
GOGﬁﬂl
Ge UULOL
U.0001

R*=y.53
G222 G4uu
=NNNCH L O0000
-0s0U05 0eGULlV
-0.0061 0.01l¢5
-N.N226 UV.0852
-C. 0401 0.2000
-0.0467 12471
-0.0352 -0.1156
-0.0264 -2.3333
-0,0187 -003591
-0.0123 -001989
-W.Qﬂ74 U.OUll
-0e0039 0.l1ll1l56
-0.0017 5.1149
-0.0004 U.0551
Co 0002 0.0U064
€.0005 -0.00143
00005 =-0,0093
0.0005 =0.0U46
300G =N.001D
C.00C3 0.0010
0.0003 0.0019
0.0uG2 V.lU22
0.0002 0.0023
G.9001 9.0023
0.0001 0.0023
0.0001 0.0023
NDD01  §.0D24
0,0001 0.0025
0.0001 0O.0025
0.0U000 0.0025
00000 0.0023
0.900C 0Q.0920
U«0000 060015
0.0000 U.0GLY
V0000 0Q.0003
C.0000 =0.00G0L3
U.0000 =-0.0CUB.
0.0000 -0.0011
0«0Q00UC -0.0013
BNNNG =N,I13



244
248
252
2.56
260
2.04
268
2.72
276
ZeBU
2.84
2.88
297
296
3400
3.10
B 20
36430
3.40
3.50
3.60
370
3.8V
3690
400
4620
4alU
4,60
4 .80
5 NG
52U
5.4U
5461
580
6.00

1-0153
1.0180
1.0157
1.6202
1.0167
1.0185
1.C166
1.014¢4
1.17119
1,0063
1.0044
1.0022
1.0083
Ue 9987
09963
N,9958
Ve 9567
0.9982
V9997
1.0008
l.0214
s [ e B
1.0012
1 .96’;8
1.0001
0.96¢8
0.5999
1.0001
1.0651
1.0001
1.0000
1.000D
1.0000
1.0000

TABLE XI (cont'd) .

‘000128
-0.00¢66
-0.0038
-D.MM12
0.C0Q09
0.0026
0.C335
0.0048
D.N054
0. 0055
0.CC54
N.NG51
0.004¢6
0.U030
D.0N12
_000002
-N.0011
-0.0014
-0.0013
-N.H009
-0.00C4
-0.0000
N.N003
0.0003
0.00C1
-0 0001
-0.0001
=D A00(
0. 000V
0.000v
D.0000
-0s0000
-0.0000

-109~

U.0037
0.0029
H.0022
00009
-0.000c
-D.2012
-0.0020
-000025
-0.00238
-Q0.0027
-N,0625
—000021
-0.0017
-N.DG13
-0.00U8
0.0001
U.00U6
0.0008
N.0007
V0004
0.0002
-0.0002
-0.0002
-0.0002
-0.0001
00000
0.0001
0.0000
-0 000D
-0.0000
-0.0000
0.2020
0. 000U
00000

U.0001
0.0001
QL0000
U 0000
0.0000
LEPS &0 iR L
C.00CC
UsULUL
U.00C0U
(O PRVIVEIV]
D.00400
00000
0. 0Uu0uU
G.nNCHr
0.C000
0. 00UV
U.00U0U
00000
D060
U« 0000
0.0000
D.H000
G.0GCQ0
0.0000
0.00UU
Oe U
O.U i
U0
VeV
O.u
C."
0.C

Q.0uudl
0.0000
0.0000
U 0000
C.0000
C.00N2
0.0000
00000
C.U000
0.0000
g.0000
Ue 00UV
C.U00U
2.NHC0
U 000U
0.0000
0.00UU
0.0000
q.09008%
0.0000
0.0uGC0
0.9000
06,0000
€.0000
Q.U0UV
0.0

GocCcococeocow
BDoCCCoca3CCO

-0.0012
-000007
-0.0005
=5 NIC4
-0esQUO2
-0.0002
-U.0001
-0.0000
J.20C0
UeUOUL
U.uuol
P.0002
Ce00U2
0.0002
C.0U0L2
0.0001
i« D001
-0e VU0OVLO
-0.00U1
=%.HN"O1
-U.0001
-0.0000
U.0ULO
AB0OLD
Ue GULO
=J.0000
=L 00D
-00000
Ue LUOO
U.U0LU
0.0000
=1 (3G
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- TABLE XII
PAIR DISTRIBUTICGN COEFFICIENTS FOR 2 L-J POTENTIAL

FROM PY EQUATICN

R

!».’;.8""‘
Ceo84%
0.88
3992
096
1500
1.04
l.08
l.12
l.16
1.20
l.24
1.28
1‘32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
l.64
1.68
1,72
176
1.80
1.84
1.88
1.92
1.96
2 A5
204
2.08
i L7
2.16
2203
2e2%
228
232
2436
2."0

GRUC

0.0000
0.0004
0.0069
Del445
Oelé4s
0.30173
U0e5069
Ue716G8
£.9338
1.1370
l.3081
1.4277
1.4G11
1.5058
1.4824
1.4312
1.3618
1.2842
1.2076
1.1379
10717
1.0278
N.9876
09565
0.9332
0.G170
0.5070
He9D25
0e9025
UeS004
Ne9134
Ue G232
06351
Ue3489
0.G638
NeST786
0e5921
1.0034
10122
1.0188
1.C234

RHO*=1,20

G260 G229
-0,0004 000005
-000066 000087
-N.N420 1.0522
-061333 0.1525
-0.2737 0.2787
-004265 003700
-N.6110 00,2778
-0.5872 0e 0721
-0.4G610 -0.15C5
-De3572 -d.3183
-0.2187 —-0e3923
0.0C73 =-0.3002
0.C834 -0.2045
D.1303 -0.1225
01506 =U.U6TU
001522 ‘000347
N.1434 -0.0175
061298 -0.,0088
O-ll#b -000042
0.€995 =-0.0017
00849 00001
0.2712 €.N0017
0.0582 0.0033
0.0460 U.0052
NeN344 UOCT3
0.,0233 00,0096
0.0127 0.0119
0.0U027 0.0140
-0.0065 00155
-0.1147 G.0162
-000215 0.0159
-0.0267 0.0146
-0,9302 0N.N126
-0,0317 0Q.0104
-0.0316 0.0082
-N.N298 0V.0065
-060268 00053
-0.0229 N.0044

T*=1.30

G221

-0, 0000
-OOOUUU
-0.0003
-G.0034
‘000163
-0eCh44
-0.0841
-0.1252
-301567
‘0.1691
-0-1601
-60134ﬁ
-0« C999
-0.0661
-0.0192
-Q.QG77
-0.0017
0.0010
0.0020
C.0022
0.0021
0.0018
0.0015
0.0013
00010
0.000S
D087
0. 0006
0.0005
U.0004
0.0003
0.0073
U.0002
0.0002
DN0C2
0.0001
0.0001
0.0001
Ue 0001
D.0001

R*=0.53
G222 G4UC
-0.0006 0.0013
-0.0072 v.0199
-906264 0.10106
-0.0463 0.2352
-0.0532 902844
-0.0484 001425
-000388 —001479
-D.0287 -N.3957
-0e0199 =0,4197
-0.0129 -0.2350
-N.0076 -0V.U1l04
-00040 Vellb4
-0.0017 0.1l174
-0,0004 U«0559
0.0002 0.00669
U« 0005 =0.0071
0.0005 -0.0020
0.0004 0.0017
C«00C3 0.0036
0.0003 0.0043
C.0002 0.0045
0.0002 0.0045
C.0001 ©.0044
00001 00,0043
0.0001 0.0045
C00C1 R.0)a4
00001 0.0044
C.0001 0U.0044
0.0000 U.0043
C«0000 0.0038
0.0000 ©.0031
00000 0e0022
0.00C00 0.0012
Q.QOQﬁ QoOQOl
Ce 0000 =-U.0QUUY
00000 -0.0017
C.uU00 =0.0022
0.0000 =-0.0025
D.0000 -0.0025



244
2 .48
2e52
2456
2-60
2.64
2468
2ol 2
2eild
280
2.84
288
292
296
30U
3.10
3.20
3.30
34
350
3.60
3.72
3080
3.90
4 4 LU
44,20
4047
4460
4.80
5.0
5620
5.40
560
5«80
- 6O

1.0266
1.(283
1.0286
30275
1.0252
1.2221
1.0184
1.0145
1.0105
1.0066
1.0030
06996
0.5G972
2.9950
069935
09919
Ue9931
09658
De 9887
1.0010
1.0023
1.02026
1.0021
1.0013
U.99S%
0.6994
Ue9999
1.00G62
1.0G0D02
1.00C0
05999
1.0000
1.0000
1.0041

TABLE
-0.0184

-010136
-D.H090
-0.0046
N.NN25
0.0052
0.0071
Ve (84
0«.CO91
D063
0.C090
0.0083
N.N0T4
0.0063
0.0031
0.40003
-0.0017
=0Ue 0026
-0.0020
-0.00C1
0.C005
0.0uCs
0.0006
n.0000
-0s0UGC3
-0.0002
=-0.NN00
0.0001
0.00061
0.00C0
-0.0000
-\J.Qﬁf"f"
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XII (cont'
0.00

35
0.00206
0.0013

- 00000
-0.0027
-0.0036
-0.0038
-N.0C33
-0.0026
-0.0019
-0.0012
-0.0005
0.0008
0.0Ul3
0.0014
0.0010
0. 0005
-0.0000
RS I
=0.00006
0.0000
0.0002
UeUOU1
0.0000
- .’39@{3
-0,0000
0.0000
0.0000
0.0000
-0.0000

d&.dOUl
0.0001
C.COND
CeCQQUU
0.0000U
U.LUO0
G000
0.000U
0.0G00L
0.0030
0.0000
0.0000
0.0000
0. 0000
Q000D
0.0000
U. 0000
C.D000
0.0000
0.0000

0.0000

0. 0000
G..0000
0.0000
D0
0.0
0.0
DD

ococoo
2occc

UeUUUO
U.ULUU
0 NN
0.0000
C.000U
U.V000
C.0000
i) .’3'7’1’)
0.U0UO
0.0UCO
5 PR Fala fe)
G- 0000
C.0000
€C.0000
G0000
0.2000
0.0000
0.0000
0.0000
0.0000
0.00GC0

. 0.0000

C«00CV
300G
C.0000V
G.0
0.0
Ce0
V.0
0.0
Vel
0.0
V.0
0.0
0.0

-0.0024%
-0.0021
-0.9017
-0.,001l4
-UeLLUT7
-0.0005
=L.0002
‘000001
U.0001
NeNG2
U.0003
0.0004
U.0004%
U.0005
0005
VeUUU4
0.0002
D.092901
-0«0001
=-0.0002
-0.0002
-0.0001
-0eD301
-U.0000
U.0001
DNDLD
00000
-0.0000
=-0.0000
-0.0uUu0
00000
00000
0.000U
-0 0300
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TABLE XIII

PAIR DISTRIBUTIGON COEFFICIENTS FOR 2 L-J POTENTIAL
T*=1.00 R*=0.53

FRCM PY EQUATION

R

N .80
Ce84
0.88
Ce92
0.96
1.00
l1.04
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
le.44
1.48
l1.52
1.56
1.60
1.68
1.80
l.84
1.88
1.92
1 .96
2,00
2.04
2.08
Zel2
216
2.20
2424
2.28
2032
2.36
247

G000

J.2000
Ue0001
00020
0.0191
0.0812
e204D
Ue3736
0.5672
N 7702
0.5731
1.1598
1.3068
1.4124
l.4688
1.4864
1.4733
1.4373
1.3866
1.3300
1.2743
12233
1.1786
1.1406
1.1087
103824
1.0610
1.0436
1.0304
1.0201
1.0125
1.0073
1.0040
l.7024
1.0023
1.0034
1.0054
1.0079
1.0185
1.G130
1.0151
1.G170

RHO*=0.40

G200 G220
-0.0000 ©0.0000
-0.0001 Q.0001
-0.0020 0.0024
-0.,0160 0.0218
-0e3249 0.2894
-0.44S5 0.3404
-0.5330 {.3088
-0.5175 0.0035
-0.4343 =-0.1601
-0.2191 -0.3022
-0e1172 =0.2706
-0.0322 -0.2017
D.N288 -1.1282
0.C639 -0.0714
0.0807 -0.01louU
0.G650 -D.NC16
00610 0.0003
0.0532 0V.0009
N.N459 C.AM11
0.03G2 0.001Z
0.0332 0.0013
0.0277 0.0015
0.0226 0.0019
0.0179 C.D024
0. 0135 0.,0030
0.0095 WU.00306
N.DO57 N.NC4l
0.0023 040045
-0.00C7 0.00406
-0.0032 U.U044
-0.N067 D.0D0237
-0.C076 WUsLO033
-D.0G79 N.N026

G221

-0.00C0
-0.00G60
-U.001v
-0.0068
-00505
’001149
-0e134S
-0.1382
-0.09956
-0.C710
-0 0441
-0.0C98
-0.0023
0.0014
V.0028
0.0032
00030
0.C026
0.0022
D1
0. 0015
0.0013
V.0010
U.UCC8
D.OCLT
Ue 00C6
0.0005
0.00U4
0. 0003
0.0003
0.0002
0.0002
¢.0002
0.0001
0.0001
C.0N21

G222

-0.0000
‘0.0001
-0.0023
-0.0134
-0.0311
"!:09419
-U0e 0420
-0.0358
-000278
-0.0203
-0.(0086
-0.0048
-0.0021
-0.0005
0.0003
C.0007
00008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0CC3
0.0002
00002
0.2001
0.0001
C.0001
00001
Ce. 0001
0.0001
U.0000
0.0000
0.0000
0.0000
C.0000
£.0008
0.0000
0.0000
0.0U00

G40l

0.000v
00002
D.0N54
D.0U432
0.1387
Ne2255
Uel930
0.0133
-002139
-Ue3184
-1.2282
0.1083
De1436
00,0910
0.0253
-0.0141
-0.0058
-0.0028
"OQOOUS
-U.0U00U
00000
2.0000
00001
0.0001
feJ002
00003
0.0003
U.0003
0.0003
0.0002
0000V
-000001
-0.0002
-0.0003
-0.uUU03



2e44
2048
252

2656

2060
2.64
2.68
2672
2676
2.80
2.84
2.88
292
2.96
3.00
3.10
3.20
3.30
3.40
350
3.60
3.80
3.90
400
4.20
4047
4060
4.80
5620
540
560
5.80
6.00

1.0185
1.0168
1.2207
1.0212
1.0213
1.0211
1.G206
1.0158
1.0188
1.0178
1.2166
1.0154
1.0142
1.0130
1.0119
1.C094
1.CC76
1.0063
1.0054
1.0048
1.0044
1.0041
1.0037
1.0034
1.0031
1.0024
1.0019
1.,0015
1.0012
1.0010
1.00C8
logﬁﬁb
1.00C5
1.0004
1.0C0C4
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TABLE XIII (cont'd)

-0.0075
-0.0069
-000060
-000051
-0.0041
-0.0032
-0.0023
-0.CC08
“000002
0.0002
0. 0006
c.0008
0.0009
0.0010
0.0009
C. 0007
0.0004
0.N001
‘000001
-2.0002
-0.0002
-0.0002
-0.0001
-0.0001
-0.0000
0.00C0
-0.0000
-0.0000
-0.0000
-000000
-0.0000
-0 0000
=0.0000

00,0023
0.0020
0.0017
0.0014
0.0009
00,0005
0.0001
-0.2003
-0.0005
-000007
-0.0007
-000007
-0.0007
=0 0006
-000005
-.0002
-0.0001
0.0000
C.0001
0.0001
©.0001
0.0000
0.0000
-0.0020
-0.0000
-0.0000
-0.0000
-0.0000
0.0020
0.0000
0.0000
-QOQQQS
-00000
-0.0000
0.0000

0.00601
0.0001
(VPRVIVIVE R
0.0001
G.20400
0.0000
0.00600
C.0N00
0060060
0.0000
0.0000
0.00G00
0.0C8N
Ge0000
0.0000
0000
G.000C
00000
0.0000
0.000¢C
0.009¢
0. U000
0.0000
2.0000
0. 0000
Ue 0

0.0

0.0

0.0

00000
0.0000
0.0uC0
0.0000
3.0000
0.0000
G.0000
Q0.nN0NC
C.0000
U.0000
C.00060
0.0000
0.0000
00000
6.0U00
3.0000
0.0000
0.0000
0.0000
0.0000
0.0000C
0.0000
C.0000
1.9000
0.0000
0.0

ccocOocoooo

cCCcCCI200DBC0C0

=-0.0002
-0.0002
-0.0000
-G.0000
D« 0000
0.0000
N.GH01
U.0000
0.CU00
U.0u000
0.0000
G.N000
00000
0.0000
20000
C.00UL
0.0000
0.00UUU
-0.0000
-OCOOCG
=0.0000
=-0.0000
—G‘DOEG
=0.000v
0.0000
0. 0000V
0.0000
-D.02000
0.00LO
-0.0000
20003
00000
0.0000
0.0000



R

0.80
0.8%
0e92
0.96
1.90
1.04
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1652
1.56
1.60
1.64
1.68
1272
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2 U4
2008
212
2.16
220
2e2%
2.28
232
236
2.40

G000

U« 0000
V0001
NN021
Je U204
0.0857
0.2131
0.3869
05829
Ve 7866
U« S889
1.1734
l1.3164
1.4161
1.4656
1.4760
1.4560
1.4135
Y3571
1.2959
1.2366
1.1829
1.13€5
1.0975
1.0653
1.0393
1.6186
1.0027
Ce SGUY
0.95827
9776
05750
0.5746
0.67¢€1
09753
19837
0.9891
C.9G48
1.7€92
1.0051
1.C093
1.0127
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TABLE XIV
FAIR DISTRIBUTICON COEFFICIENTS FOR 2 L-J POTENTIAL

FRUM PY EQUATION RHO*=0.60

G200

-0.0000
-0.0001
-N.0021
-0.0199
'0.0819
-301960
-0.3358
-004633
-0.5650
-0.5172
-0e4235
-0.3099
-N.1955
-0.0922
-0.0075
0.0521
0.C854
N.5980
0. (S79
0.0914
D.N823
0.0726
0.0631
U.0543
Qe.(0462
0.0387
0.0318
0.0254
N.0193
0.0136
0.0082
0.0033
-0.0012
-0 .3051
-0.0083
-0.01C7
-DN.N123
-000130
-0.0131

G220

Ve 000V
0.0001
2.0026
0.0237
0.0913
0.1999
003034
0.3513
0.3112
0.1769
-009125
-0.1876
-0.2966
-0.3248
=-0.2863
'002112
‘0.1335
-0.0746
-608379
-0.0179
-0.,0078
-0.0031
-000010
-0.0001
0.00U3
0.0007
D.0012
0.0018
0.0027
0.00306
0.0L04T
0.0057
0.0065
0.0065
fi NOTD
U067
0.0061
fl.ON53
0. 0046
00039
U.0034

T*=1.00

G221

=0.0000
-0.3000
-G QAL
'0.0011
-0.0C75
-000252
-0.C548
-G.Q9Ql
-0.1222
’0.1421
_901442
-0.1290
'001024
-0.C721
'0.0445
-0.0234
-000098
-U.0022
D.0014
00028
0.0031
00026
0.0026
C.N022
0.0018
0.0015
D.0012
0.0010
0.00C8
0.0007
0.00006
0.0005
0.000U4
0.0003
Q0003
00002
00002
©0NN2
0.0001
0.0001
Ve 0001

R¥=0.53
G222 G400
-0.0000 U.0U000
-0.0001 0.0002
-0.0025 0.0061
-0e0145 (040479
-0.0333 0.1520
-0.0444 0.2429
-00439 0.2016
-900370 000029
-0.C285 -0.2414
-0.0205 -03499
-000138 -302512
-0.0086 -0,0502
-000047 001040
-0.0021 UV.1l417
-0.0005 0.0895
0.0003 ($.0246
00006 =0,0078
C.U0C7 =-0.0131
N.NDCT -N.0051
00006 =0.0047
0.0UGC4 —-U.00L04
0.,0003 0.0002
3.05C3 QOOQQS
0.0002 0.0UL05
C.0002 0.0005
C.OOQl 0.0005
C. 0001 (0C.0006
C.0001 0.0006
0.0001 0.0007
C.0001 0.00C8
2.000C1 Q.0009
C.0000 0Qe.u008
€C.0000 d.0007
3.09000 0.0005
0.0000 060002
00000 =-0.0004
20.0009 -0.04805
J«0000 =-0.,0U05



2044
2048
2452
2.56
260
264
2.68
2672
276
2.80
2.84
2.88
292
296
3.00
310
3620
3.30
340
350
3.63
3.70
390
4,00
4,20
4,40
4,60
4 .80
5600
5.20
5e47
560
5.80

1.0155
1.¢178
1.0154
1.0204
1.0207
1.0205
1.60168
1.0187
1.0174
1.0144%
1.0128
1.0112
1.0097
1.0084
1.2057
1.0039
1.0031
1.0029
1.0029
1.0030
1.GC31
1.0030
1.0028
1.0026
1.0019
1.0014
1.0011
1..0009
1.0008
1.00086
1.0005
1.0004
1.0004
1.0003

TABLE

-0.0085
-0.00638
-0.0QSZ
-O.CC36
-000022
-0.0C09%
0.0001
D.0099
0.0015
0.0015
N.0022
0.0023
0.0022
0.0018
0.0011
0.C004
-0.0001
-0.0004
-0.00605

-0.0005

-0.0004
—O.Qﬁﬂz
’0-0001

0.0000

0.0000
-0.0000
-0.0000
-0.00040
-000000
=0.9C00
-0.0000
-0.0000
-0.0000

=115~

1
XY 0538 %. 0001
J.0026 {.0001
Ue 0022 000001
0.0016 (.0001
D.R0B9  D.O000
0.0003 0.000C
-0.0003 0.0000
-0.0008 0.0000
-0.0012 0.0000
-QOQGI3 QQOOOG
-0.U014 000000
-0.0013 C.00Q0
-2.0011 ©.0D09C
-0.0010 0.00C00
-0.0008 0.0000
-0.0003 0.0000
00000 0.0000
0.0002 0.0G00
0.0003 0.00CC
0.0002 0.0000
D.0002 ©C.0C00
0.0001 0.00CC
-0.0000 0.0000
-0.0001 0.0000G
-0.0081 0.000O0
-0.0000 0.0
=-0.0000 0.0
0.0000 0.0
0.0000 0.0
0. 0000 U600
-0.0000 V.0
-OOOOGG DQQ
-0,0000 0.0
0.0000 0.0
0.0000 0.0

0.0000
2.2000
U 0000
0.00GCC
QL < 2NGH
C. 0000
U. 0000
G.0000
0.0000
Q.0000
00000
0.000C0
00500
C« 0000
0000
G.0000
0.0000
0.2000
060000
C.0000
€ 00882
C. 0000
Ue0000
C.0000
VU000
N.0

Ue0

-0 0004
-0 UUVU3
-0.0002
-0.03001
-000001
-0.0000
00000
0.0000
0002
Ve 000V
G.CGC00
2472900
0.U000
00000
0.0000
0.0000
0.0600
0.0000
C.0000
-Q.QOCO
=-00000
-000000
=0.0000
=-0.0000
U.0000
0.0000
=3 0D50
-0.0000
=-0.0000
-0.0000
U-0000
5.0000
0.0000
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TABLE XV
PAIR DISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

FROM

R

C.80
U84
G.88
0«92
Ce96
1.00
1.04
1.08
l.12
l.16
1.2D
1.24
1.28
1.32
1536
’..4&
le44
1.48
1.52
le56
1.60
1.64%
1.68
172
1.76
1.80
1.84
1.88
1.92
1.96
2 .00
2.04
2.08
2.12
2416
2420
224
2+28
2e32
2.36
2e4UV

PY EQUATION

GO0O

U« CO00
0.0001
D.0023
0.0222
0.0924
0.2274
Ve4087
N.61C5
0.8177
1.0214
1.2050
13472
1.4373
1.4784
1.4767
1.4505
1.3996
1.3358
1.2684
1.2043
1.1471
1.0683

1.0579 -

1.0252
0.55S54
09797
Q.9652
0.5553
0.5494
0.5470
0.5474
09550
0.9616
Je9665
05783
05872
0.55954
1.0024
1.0081
l.0126

RHO¥=0.,80 T*=1.70 Rx*=(,53
G200 G220 G221 G22¢ 6400
=U0s0000 Ue0000 =0e000VU =0.0000 U.0000
-0.0001 0.0001 -0.0000 -0.0001 (G.0002
-00214 06,0264 -060013 =-00161 060543
-0.C873 0.1004 -0.0085 =-0.0365 Q0.17C2
=0.2C77 0.2170 -0.0282 -0.0481 0.2674
~0e3543 Ue3247 —0.0607 -0.0469 Q.2148
=0e5708 063188 —=0e1325 =0.0287 =0.2770
~Ne5238 =-0.0367 -0.1529 -0.0141 -0.2808
-0.4168 =-0e.2212 -0e1354 -0,C086 -0.0638
-0.2922 =-0.3212 =-0.1064 -0.0047 0.1005
-0.0653 =0.3064 -0.0453 -C.0005 0.08S0
0.0196 =0.2233 -0.5237 N.00C3 <C.2243
0.C780 =061399 -0,0068 (Q.0006 =-0.0072
01094 =0.0779 =-0.0022 0.00C7 -0.0119
0.1165 -N.N398 (0V.0Ul4 0.0006 =-0.0076
01168 =0.0191 0.0027 GCe0006 =-0.0032
0.1078 -0.0088 0.0030 C.N005 -0.00C5
0.0964 -0.0039 0.0028 0.0004 0.0008
0.C845 =0.0017 0.0025 (.0003 0.0013
0.0731 =0.0005 Q.0021 4.0002 3J.0014
00624 0.0002 040017 060002 WV.0014
0.0526 00010 0.0014 0.0002 0.001l4
N.N435 N.O0019 0.0012 G.0001 0.0014
00350 060029 040010 C.0001 0.0014
00269 0.0042 0.0008 J.0CO01 D.ONLS
00163 0.0057 0.0007 0.0001 0.0017
0.0121 0.0072 0.0005 (0.0001 0.0017
0.0054 02.0085 0.0004 0.0001 9D.0017
-060009 00095 0.,0004 0.,0000 0.0016
-0.0064 0.0100 0.0003 (0.0000 0.0013
=-N.0111 G.0699 0D.0003 .0.0000 0.0009
-0.0148 0,0092 U.0002 (0000 0Q.00V4
-0.0174 0.0081 0.0002 C.9300 -0.00C0
-0.0189 0.0069 00002 0.0000 =-060004
-0.0162 0.0057 0.0001 C.0000 =-0.0007
-0.7186 2.0048 0.0001 90.0000 -0.009
-0e0172 Ue0041 0.,0001 Ge0000 =-0.,0010



2044
2 .48
2652
256
2 .6"7!'
2064
2668
2al2
276
280
2.84
2488
292
296
3.00
3.10
3.20
3.30
3e4i
3.50
3.63
370
3.80
3.90
4,00
4,27
4040
4 .60
4080
5.00
52U
Se4U
560
580
6.00

l.0162
1.7188
1.0206
10215
1.0215
1.0207
1.0193
1.0176
10155
1.0133
leCl1l1
1.0090
1.0069
1.0051
1.0035
1.0GC7
0.59S5
1.9565
1.0002
1.0011
1.2218
1.0022
1.0023
1.0021
1.0018
1.0010
1.00C6
1.00C5
1.0005
1.0005
1.0004
1.0003
1.0002
1.0002
1.0002
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TABLE XV (cont'd)

-N.0N128
‘0.0103
-Ov 007°
=0e 0051
'0.0029
0.CCC8
0.0021
£.0031
00037
0.0041
0.C042
0.0C41
0.0038
0.0027
0.0013
€.0002
-0.00C6
-0.0010
-G .ﬂﬁl@
-0.,00C8
-0.0GC5
-0.0002
0.0001
D.0002
C. 0001
-0.0000
’009601
-0.0000
-0.0000
C.0000
0.0000
-0,0000

0.0036
0 .0030
V0024
0.0016
G.0007
-0.0002
-0.0011
-0.0017
-000021
-1 e2022
‘000021
-0.0016
-0.0013
-0.0002
0.0003
0. 0005
0.0004%
0.0002
0,0000
-0.0001
-0.0002
-0.0001
0,0000
0.0000
0.0000
-0,0000
-0.,0000

0.0000

00000
0.0000

0.0001
Q-?QGI
U.0001
0.0001
U. V00U
0.0000
0.000C
Ue V00O
U.0000
2 .N000
C.00QCC
0.0000
0.0000
0. 000U
0.0004G
00000
0.0000
00000
00000
0.0000
0 .0000
00000
0.0000
C.00G0U
0.0000
Ded

0.C

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0000
C.00%
G000V
C.0000
C.0000
C.0000
C3009
00000
0.0000
0 .NN0H
C.0000
0.0000
QeUOGU
0.0000
J.000C
U« 0000
C.0000
S .0000
0.0000
00000
0.0000
C.0000
0.00900
00000
0.0000
Ced

0.0

-00908
=-0.0007
-U.0004
-0.000G2
"000001
-0« GUULO
20000
00000
0.0001
0.0001
0.0001
D.0001
U.00U1
V.0001
20001
0.0000
00000
-0.0000
=4 o000
-UeULOU
D000
00000
0.0000
-0.0000
-0.0000
U.00060
00000
0.,0000
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_ TABLE, XVI
FAIR CISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

FROM PY EQUATICN

R

0.80
0.84
0.88
0.92
N.96
1.00
1.04
1.08
1212
1.16
1.20
1.24
1.28
132
1.36
l.47
lo44
1.48
1.52
1.56
1.60
l.64
1.68
l1.72
l.76
1.80
1.84
1.88
1.92
1.56
200
2.4
2.08
2.12
2.16
2420
224
2028
232
236
2640

GOOO

0.0000
U.0001
0.0026
V.0249
N.1%i22
02486
0.4419
Ne6531
0.8667
1.0739
1.2577
1+3951
1.4776
1.5079
1.4971
1.4559
1.3638
1.3203
1.2449
1.1746
1.1130
l.0614
1.0194
0.9863
05610
0.9425
C«9300
0.9227
0.9199
Ce 5208
0.9249
D.9314
0eS401
Ue9506
U.5626
05751
(.9874
0.5982
1.C070
1.0137
1.0185

RHO*=1.90

G200 G220
-0.,0000 0.,0000
-0.0001 0.0001
‘0.0236 000302
-0.0954¢ ©0.1132
=0e2255 (e2414
-0.3824 0.3558
-N.5225 0.3974
-0.6082 003326
-006132 0.1602
-005382 '0.0670
-004132 —002649
-N,2738 -0.3765
-061438 -0.3914
-0.0338 -0.3327
H.N518 =-0.2387
V61092 -0s1477
0.1381 -0.0813
0.1451 =-C.0412
001390 ‘000197
0.1267 -00009&
001122 -0,0038
0.C0976 -0.0013
N.Ng36 0D.0001
0.07C6 0,001}
0.0585 0.0022
0.0473 U.0035
0.0368 0.0051
N.N268 .0069
0.0174 060089
0.0084 (.0108
H.NN01 D.D125
-0.C076 000136
-0.0142 0.0140
-0.0167 0.0134
-0.0237 0.0120
-ﬂ09262 G-QI“Z
-0.0271 0.0082
-0.0266 0.0065
-0.0248 N.N052
-000220 Qe 0U4&3

T*=1 .00

G221

-0 00CUO0
-0.0000
“0.0001
-0.0015
-Q.qug
-0.0324%
-0.0689
-0.1198
=0e1466
-0.1669
-0.1654
-0014é6
-0.1123
-000774
-0.0099
-0.0022
0.0014
0.0027
0.0030
0. 0028
0.0024
0.0020
0.0017
0.0014
0.0011
0.0006
H.0008
00006
00005
0.0004
0.00C4
0.0003
0.0003
0.0002
N.0002
V.0002
0.0001
f.0071
O.u001

R*=(1, 53

G222 G400
~0.0000 0.0000
-0.0001 (©.0003
-0.00323 0.0082
-0.0184 0.0634
-Qnﬂqll ﬂ.1957
-000534 0630195
-0.0514 0.2342
-000421 '0.0247
-060315 =-0.3250
‘ﬂoQZZI -004472
-0.0145 -0.3204
-U.0088 ~-0.0809
-000047 1 «N1ST76
-0,0020 0.1424
-0.0005 0.0896
0.0003 0V.0246
0.0006 =0.0062
0.0007 -0.G1C0
U.0006 -000054
0.0005 =0.0009
£.0004 U.0016
0.0004 0.,0027
0.00C3 0.0031
0.0002 (.0031
0.0002 0.0030
C.0002 ©G.00029
C.0001 O.vU28
0.0001 U.U0029
N.0001 4.D4U30
0.0001 0.0031
0.0001 0.0032
.0001 0V.0031
0«0000 0.0027
0.0000 0.09222
0.0000 060014
C.0000 0.0006
3.9000 -QOQOOZ
00000 -00009
00000 =0.0014
0.0000 =0.0018
Ce 0000 =-V.0019



244
2.48
2652
2456
2.6U
2.64%
2 .68
2072
276
2.80
284
2.88
2.92
2.96
2.00
3.10
3.20
3.30
340
3.50
3.60
3.70
3.80
3.9V
4,00
440
4,60
4,80
5.00
5«20

5:40.

5.60
580
600

1.0220
1.0243
1.0255
10255
1.C0244
1.0225
1.0198
1.0168
1.0137
1.0104
1.0074
1.2045
1.0019
0.6998
Ne9980
Ue 9956
0.9955
N.9969
09988
1.0006
1.0018
1.0023
1.0022
1.0017
1.0011
1.20071
09999
1.0001
1.0003
1.0003
1.0032
1.0001
1.0001
1.0001
1.0001

TABLE

-0.01438
-0e 0109
-0.0071
-0.0036
00020
0.,0040
0.0055
0.0065
0.0070
0.0071
00068
0.00¢€3
D.N056
00034
00011
-N.00C7
"000017
-0.002%
-0.0017
-0.0011
0.C001
0.00C4
0.0005
0.,0001
-0.0002
-0.0000
N ..HD000
C. 0000
00000
-0.2000
-O.UOOU

=119~

XVI (cont'd ;
0.0037 «00C1
0.0030 0.u001
0.0022 0.0001
0.0012 D.004]
0. 00U0 06000CU

-0.0012 0.000C0

-0.0022 0£.20C0

-0.0029 (0.0000

-0.,0033 0.00C0

-0.0030 0.0000

-0.0026 ©0.0080

-0.0021 060000

-0.0015 0.0000

-0.0009 £.0000
0.0002 (0000
0.0008 0.0000
U.0010 0C.0ULU
00009 0.0000
0.0005 0D.0000
U.0001 0.0000

-0.0003 0Q.0007

-0.0004 0.G06G0

-0.00U3 0.0000

-0.00V1 V.0
0« 0001 0.0
0.0001 2.9
0.0000 Q.0

-0.0000 0.0

-D0000 0.0

-0,0000 0.0
0.0000 0.0
00000 0.0
C. 0000 0.0

£.0008
C.0U00
C.0000
(. NQOO
0.0U00
0.0000
0.N0o0
00000
C.0000
0.0000
C.0000V
Q.2000
00000
C.00C0
00000
C.0000
00000
C.0000
0.0000
. ODO0
0. 0000
0.0000
20000
C.0000
C.0000

CoocouwooLoo
© o 0 5 0 s 8 ¢ o

CtoOCOocolLoo

-Q.QOIB
-0.0014
-D.N011
-0.0uC8
-0.0CCe
-L.0004
-0.0001
UsU0ULU
V.0001
D602
Ue00UL2
0.0002
(3.N0G3
U.0003
U.U003
U.0U02
0.0001
-0 0D
-0eUULOL
-0.0001
-5.0001
'UoOUUl
-0.,0000
0.0000
0.0000
0.6000
-0 000U
-0.0000
"Q.'}Q( Q
0,U000
00000
00000
-0.0000
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TABLE XVII

PAIR DISTRIBUTICN COEFFICIENTS FUOR 2 L-J PCTENTIAL

FROM PY EQUATIOGN

R

080
Q.84
(.‘.88
Ca.92
596
1.00
1.04
1.08
le12
1:16
1.20
1.24
1.28
1l.32
1.36
1.4u
1.44
1.48
p
1.56
1.67
l.64
l1.68
1.72
1.76
1 .8"
l.84
1.88
1.92
196
2.00
2.04
212
216
2620
224
2428
232
2+30
2.4\)

G000

0.0000
N, 0001
Ve 0031
0.0286
De.116N
0.2786
0.4888
Ue 7134
e 9357
1.1478
13319
1.4¢642
1.5351
1.55C6
1.5237
1.4668
1.39G03
1.3045
1.2163
1.1418
1.0753
1.0207
0.9776
054406
C.G2C7
U.8652
0.8917
Ne8932
0.8988
05076
0.5189
0.9323
HeG5475
09640
U.G98C8
e GGEDS
1,0067
1.0167
1.0264
1.0306

RHC*=1,20

G200 G622y
-0.0000 0.0000
=0.0001 0.0601
-0.0C29 000041
-0.0268 0.U354
-N.1071 €.1310
-0e2508 002753
-0.4224 (03993
-005731 0.4368
-0.6610 0.3527
-0.6558 0.1502
-0455G8 =0.1070
-0.4107 -0.3226
-0,2517 -0.4358
-0e1096 -004403
0.0056 -0.3660
0.0922 =0.2574
0.1479 -0.1562
0.1735 -0.0841
0e1762 =0.0413
0.1655 '000187
N.1488 -0.0076
01303 -0.,0023
0.1119 0.0004
U.0946 0.0020
0.C784 0.0033
D.0635 0.0048
0.0496 0.00066
0.0365 0.0087
D.N241 N.D113
000124 0.0136
0.0014 0.0160
-0.0089 0.0179
-000181 000190
-0.2258 0.0189
-000318 060174
-0.0357 0.0150
-N.N375 0N.N120
-000372 00090
-0.0350 0.0065
-0-C313 0.0049
-0.0264 0.0038

T*=1.00

G221

-U. 0000
-0.006H0C
-0.0001
-V.QIIS
—-Ce(C383
-0.0804
-001275
-0.1668
-D.1867
-Ue. 1824
-0.1572
-G.lZGZ
-0,0816
-0.0487
-0.0248
-0.0022
0.0C13
0.0026
0.0029
0.0027
0.0023
0.0020
0.0016
0.0013
0.,0011
0.00C0S
0.0007
0.0CCe
0.0005
0.u0U4
0.0004
0.0003
00003
0.0002
0.00N2
00002
0.0001
0.0001
0.0001

R*=0.53

G222 G400
-0.0000 U.00ULVY
-0.0002 0.0003
-0e0039 UL0100
-0.0216 0.0759
-U0e0476 0V.2312
-00608 063501
-N.0576 (.2615
-0.U0464 -0.0456
-0.0341 -0.3901
-0.M7235 -N.5228
-000152 -003732
-0.00S0 =-0.1026
-0.0047 (.US48
-00020 001451
=0.N0C5  D.71914
0.0003 wvV.U258
0.0006 -0.0040
8.2006 -H.0N68
0.0006 -000017
0.0005 w.0027
0.0004 0.0050
00003 0.0058
0.9063 0.0059
U.0002 060057
0.0002 WV.U0U54
2.0N001 0.0253
0.,0001 0.0052
C.0001 0.0052
0.0001 0U.0053
0.0001 0.0054
C.0001 D.0053
C«0001 U.U050
0.0000 0.0043
B.3000 nN0N32
00000 060019
0.0000 0.0005
C.u000 =-0.0008
0.0000 =-0.0019
0.0000 -). 07128
C.0000 -0es0033
00000 -0.0035



244
2.48
2052

2056

2460
2 6%
2.68
2672
216
2.80
2084
238
292
2.96
3.00
3.10
3.20
3.30
340
3450
3.60
3.70
3.80
3.90
4,00
4,20
4440
4,60
4,80
500
520
5.40
5.60
580
600

1.8329
1.0337
1.0331
1.8313
l.0282
1.0243
1.8197
1.,0150
1.0103
1.0058
1.0018
0.5983

- 0.5654

U.5932
N.9%16
Ue99CH6
0.9G625
Te996N
09995
1.0021
1.0033
1.0033
1.00825
l.C014
1.00u3
Ne99G2
05394
1.0001
1.0004
1.0002
Ue9999
1.0000
1.8C01
1.0001

-0 0%

-0.0152
-0.C096
-N.0044
00,0002
0.0041
C.C072
0.C094
D.0108
N.0114
U.0l114
0.0109
C.0100
0.0087
D072
0.0032
-0.0002
-0,0035
-0.0033
-0.0023
N.0001
0.CCC8
0.0C11
N.NCA7
-0.0004
-0.0002
0.0000
d.00C1
0.0001
-0.0000
-0.0000

-121~

1
XPod§2 ' §aoon
0eUU25 VL0001
0.0016 0.0001
0.0003 0.,0091
-0.0011 0V.0GUC
-0.0026 0.0000
-0.00U37 0.0000
-0.0045 0.0000
-a 096347 0 .Qoaf:
-040039 0.000C0
-0.0031 C.aDGH
-0.0022 0.0000
-0.0013 U.0000
-N.0C04 Q.02030
00,0011 0.000C
0.0018 0.0000
0D.0017 0.00060
00012 0.0000
0.0005 0.0000
-0.0006 0.0000
-0.0007 00,0000
N0.0001 0.0
0. 0002 0.0
0.0001 0.0
-OCUOOO U0
-0.0001 0.0
00000 0.0
0.0000 0.0
N0000 0.0
-0e 0000 0.0

{0000
0.,0000
C.00G00
7 .000n
C.0000
C.0000
C.00G00
U.0000
C.00C0
U.00CU
00000
’: - {"3&{:
Ue Q00U
C.UU00
€. 0000
C. 0000
0.0000
G.0000
C.0000
2.0000
00000
0.0000
2.7000
Ue 0000
0.0000
U .0

occoocwoCoDoO
ccoocoOcoPoO

-0.3633
‘0.003\)
=020
-0.0015
-0.0010
-000006
-{JCQGQQ
0.0002
U.0003
H.0C05
Ve UUOG
U.0006
J.D007
G.0007
0.0005
0.U003
0.0001
-Ue0003
-0.0003
-0,0001
-0.0000
V.00Vl
0.0001
G.00C0
-0.0000
-0.0000
-0.0000
Ce 0000
0.0000
U.0000



FRCM PY EQUATICN

R

080
N84
Ce88
G.92
”.96
1.00
1.04
1.08
1.12
l.16
1.20
1.24
128
1s32
1.36
l.40
1.44
1.48
1+52
156
1.60
1.64
1.68
1.72
 Lear 7
1.87
1.84
1.88
1.92
196
200
2o U&
208
2+12
2016
2.20
224
2428
232
236
240

G000

0.0000
N.CO0D
0. LUCGS8
0.0120
L eN691
02050
0.4080
0.8825
1.1184
133170
1.5144
1.6327
1.6613
1.7004
1.6722
1.6170
1.5446
1.4655
1.3882
1.3183
1l.2578
1.2070
1.1652
11312
1.1040
1.0826
1.0662
1.0540
1.0454
1.6399
1.0368
1.0357
1.0364
1.0385
1.0417
1.0455
1.0454
1.0528
1.0555
10513
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TABLE XVIII
PAIR DISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

RHO*=0 .40

G200 G220
-0.0000 0.0000
-0.00C8 0Q.0010
-0.0118 0.0145
-0s1924 06,2047
-0.6538 0.4288
-0e.6567 060753
-0.5507 -0.1588
-N.4132 -0.3259
-0e2714 -0.3930
-0e1415 -0.3690
-0.0330 -0.2867
0.0470 -0.1878
D.NS45 -0,.1058
0.1159 -0.0227
N.1081 -0.0080
00965 =-0.0014
0.(841 0.0011
0.0722 0.0019
0.0614 0.0020
D.0516 0.0020
000429 00020
0.0351 0.0023
NN2T79 D.0D29
VeU214 00036
0.0153 0.0045
0.CCS6 U.0055
0.0044 0V.0063
-0e.0044 0.0071
-0.CC79 0Q.0069
-0,0123 00055
-0.0123 0.00406
-0,0135 (.0038
-0.0131 0.0033

T*=0.75

G221

-0.0G000
=0.0000
-0.,0000
-0.0005
-2.0G050
-060212
-0.0533
-0.0957
-0.1674
-0.1769
-UeCS5381
-0.0145
-0.0033
Ve (021
0.0041
V.00406
00043
O.0038
U.0032
0.0026
0.0021
0.0018
0.0014
D.0012
00010
0.0008
0.0007
0.0005
L0004
0. 00C4
0.0003
U.0003
0. 0002
0.0002
U.000U2
0.0001

R*¥=0e53
G222 G400
-0.0000 0.0000
=0.3900 D.0000
-0.0011 0.0023
-0e0544 U.2939
-00578 03213
-0.0496 0Vl.1332
-0.C381 -0.1883
-0e0273 -De4193
-0,0184 -0.3892
-0.0063 0V.0776
-0.,0028 0.1827
-0.00087 N.1468
0.0005 0Ul.U0610
0G.0010 0.0011
00010 =-0.0l41
00005 -0.0082
C« 0006 =-0.0015
0.0N05 -0.03C4
C.0004 -0.0000
0.00C3 (C.000L1
D.00C2 L.NND1
0.0002 0.0001
0.0C02 0.0001
0.0001 0.0002
C.0001 0.0003
00001 6.05605
C.0001 U.0ULOG
(0001 Q.0U007
C.A001 L.0C06
Ue0OU00 (C.0005
C.0000 wV.0003
0.0000 0.00U1
Ce0000 -C.0002
C.0000 =U00V4
G.0UUU =-0.0005



244
2.48
2452
256
260
2.64
2.68
2672
2.76
280
2484
2.88
2092
2.96
BOOﬁ
3.10
3.20
3.30
3.40
3.50
3460
3.70
3.80
3.90
4.00
4,20

4 .40,

4 .60
4.80
5.00
5029
540
580
6.00

1.0583
1.0589
1.0589
1.0584
1.0574
1.0558
1.2539
1.0516
1.0491
1.0465
1.0438
1.0412
1.0387
1.0363
1.0341
1.0252
1.C256
1.0229
1.0210
1.0165
1.0182
1.0169
1.0157
1.0145
1.0133
1.0110
1.0052
1.0078
1.0066
1.0056
1.0048
1.0041
1.0035
1.0030
1.0026

ABLE
0.1

=0 0108
-0.0092
-0.,0058
-0.0042
-0.0028
=0 0015
-0.00C04
0.0004
0.0010
N.0015
0.0017
0.0019
0.0019
00,0015
0.0009
0.00C3
-0.0604
-0.0005
-0,0003
-OOOOGI
-0, 0000
-0.0000
-0.00G1
-0.0000
-0,0000
-0. 0000
-0.0000
-0.0000

=123~

X e 55" dhony

00025
0.0022
N.0018
0.0012
0.0006
0.0000
-0.0009
-0.0011
—000612
-000011
-0.0009
-00003
0.0002
0.0002
D.N0D2
0.0001
0.0001
0.0000
-0.0000
-0.00920
=0.0000
-0.0000
N.0000
0.0000
0.0000
-0.0000
-0,0000
-0.0090
0.0000
C.0000

U.0001
0.u0U}
N.00451
0.0001
0.0001
0.0000
0.0000
D.0000
00000
0.0000
N.0000
0.0000
0.0000
0.0000
0.0000
6.0060
0.0000
0.0000
DOGCH
0.0000
0.0000
0.0000
0.0000
0.000C
0.0

0.0

0.9

{.92040
00000
0.0000
0 .0000
Ce.0000
C.0000
00000
C.0000
50000
00000
C.00C0
3 .NHO00
C«00G60
C.0000
G.0000
0.0000
0.0000
00000
G«0000
Q.000n
0.0000
00000
00000
0.0000
0.0000
0.0

0.0

=504
=U. 0004
-0.0001
-0.G6000
0000V
0.0001
0.NN01
0.0001
0.0001
f.fU0U
00,0000
0.0000
U.0000
0.0000
0.0000
(CPRVIVIe]0)
C.0U00
-2.0000
-0.0000
=-U.U000
=0.0000
-0.0000
00000
0.CU00
20000
-0.0000
-0.0000
06000
0.0000
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FAIR DISTRIBUTION c0e§é?€ié£§s FOR 2 L-J POTENTIAL

FROM PY EQUATION

R

0.80
8%
Qe88
0.92
.96
1.00
1.04
1.08
1.12
le16
1.20
1.24
1.238
1.32
1.36
le40
1.44%
1.48
1+52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2e U4
2.08
%
2616
2.24
2428
2232
20306
2.40

GU0O0

00000
J.0000
00008
0.0124
0.07C7
0.2074
De409N
06385
0.8718
1.39%6
1.3068
1.4785
1.5882
1.6386
1.6487
1.6068
1.5474
1.4722
1.3615
1.3139
1.2445
Y1852
1.1362
1.0965
10651
1.0409
1.0227
1.0068
1.00612
0.99067
G952
Qe 9963
0.99S5
1.0043
1.0107
1.0181
1.02640
1.0336
1.2400
10450
1.0486

RHO*=0.60

G200 6220
-0.0000 G.0000
-0.0120 0.0154
-0.,0672 (C.084U8
-0.1924 0.2120
-0.6496 0.4216
-N.6884 00,2793
-0.6382 0.0468
-0.5218 -0.1916
-0.3767 ~0.3559
00000 =-062932
0.0755 =0.1903
0.1352 -0.0531
0.1337 -0.0236
0.1233 =-U.0090
0.1084 -0.0025
D.N950 C.0001
0.C814 0.0011
0.0689 0.0015
N.N575 0.D0018
000473 0.0023
0.0380 0.0031
0.0294 0.0041
0.0214 0.0054
0.0139 0.0C68
0.0068 0.0082
0.0003 0.0094
-N.N055 0N.N1D2
-0s01C6 000103
-0.C147 0.0097
-0.0176 (0.0087
-N.2201 2.06G59
-0e01ST 060047
-0.0185 0.0039

T*=0.75

G221

-0.0000
=0 00CU
-0.0005
=Ue 1000
-0.1430
-0e1723
-0.1803
-0.1657
-C.1348
-0.0972
-Defi6le
-0.0331
-0.0032
00020
0.0040
0.0044
0.0041
C.0036
0.0030
0.0025
L0020
0.0017
0.0014
0.0011
0.0009
C.nN0CS8

0.0005
C.002¢4
0. 00C4
0.00C3
0.0003
0.0002
0.2002
0.0002
0.00d1

R¥=0+53
G222 G430
-0.0000 0.0000
-0.0000 O.0000
-C.0114 0$.N343
-,100588 003312
-0.0379 =0.2164%
-0e0179 -0.4169
‘000110 -ij-l.?"g
-0.0060 UeU669
-0.0027 0Q.1748
-QOQOQ6 ’301434
0.0005 0.0588
C.0009 0.0018
C.U010 -0.0144
0.0009 =-0.0118
0.0007 =0.0021
C.0005 =-0.0001
J0.0004 C.00C7
00004 0.0010
0.00C3 0.0010
U.0002 0.0006
00002 0.00065
3.0002 0.0009
0.0001 0.0010
0.0001 (U.UO012
0.0001 0.0014
0.0001 0.0015
C.0001 0.0015
0.0V00 0.0013
00000 U.0010
C.0000 0.0006
00000 (Geo00UV2
C.00u0 -0.0003
0 .’)QQQ "Q 013’);06
€. 0000 -0.0008
0.0000

-0.0009



Zeb4
2+48
252
256
2460
268
P4
2.76
280
2092
2496
3.00
3.10
3.20
3630
3.40
345D
360
3.70
3.8v
3.90
4000
4020
440
4,60
4680
500
5620
5.40
560
580
6.00

1.0509
1.0524
1.0531
1.0530
1.0521
] .0505
1.0483
1.0457
1.0428
1.0399
1.0369
1.C0340
1.0313
1.0287
1.02¢64
1.6220
1.0192
1.C177
1. 0X%1
1.C167
1.0163
1.0156
1.0148
1.0138
1.0127
1.0106
1.00S0
1.0078
1.0069
1.0060
1.0052
1.0046
1.0040
1.0035
1.0031

-125~

TéBLE XIX ggont qg

‘9. 000‘01
-0.0141 0 0030 Ge 0001
-0.0088 0.0020 0.00U1
-0.00€62 0.0012 0.0001
-N.N039 0.0004 C.00C1
00014 -G.N017 ©.0000
00024 -0.0020 C.000C0
0.0036 =-0.0019 0.0000
00038 -0.0017 0.0000
0.0037 -0.0014 ©.0000
0.0035 =-0.0010 0.0000
0.0025 -0.0003 0.0000
N.0012 C.0002 C.003C
00001 0.0005 0.0000
-N.2010 0.0004 0.0000
-0.0011 00,0002 (0.0000
-0.0006 =-0.0001 0.0000
-0.0003 -0.0001 0.00GQC
00001 -0.0001 0.0
0.0000 (0.0000 0.0
-0.0001 0.0000 0.0
-0,0000 =0.0000 0.0
-0.0000 -0.00006 O.u
-0.0000 0.0000 C.0

0.0050
C-0000
C.DNNOD
0.0000
C.0000
0.0000
U 0000
0.0000
2.0000
00000
00000
C.0000
C.0000
0.0000
Ue 0000
0.00G0
£.0000
00000
00000
C.0000
0.0000
0. D000
00000
00000
L0000

-0,0008
-0.0U0GC7
-0.0005
-0.0004
-0.0001
-0.0000
€ NODL
C.0000
0.0001
C.0001
00,0001
0.0001
0.0001
G.0001
D.0001
00001
U« 000LO
U.00LU
- « NN0E
=0e00UU
-0.0000
=0.0000
G.0000
0.0000
0.00060
=-0.0000
-060000
-000000
20000
00000
0.0000
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TABLE XX
PAIR DISTRIBUTICN COEFFICIENTS FOR 2 L-J POTENTIAL

FRCM PY EQUATICN

R

Ce80
0«84
0.88
n.92
0.96
1.00
1.7%%
1.08
1.12
1.16
1.20
l.24
1.28
1.32
1.36
1.40
1.44
1.48
lebe
1.56
1.60
l.64
1.68
le72
l.76
1.80
l1.84
1.88
1.92
1.96
20D
2004
208
2412
216
2 220
2024
2428
2ea 37
2636
2.40

GenQ

0.0000
0. 0000
0.0008
00131
UeUT36
0.2136
Ge4l68
Ue 6448
1.0650
1.2979
1.4582
1.5585
1.5896
1.593n
1.5519
1.4868
1.4075
1.3242
1.2453
1.1758
l1.1172
1.0696
1.03169
1.0029
0.S5814
0.5663
D.9568
0.9519
09510
fe9534
0e5583
05653
05739
0.9840
$9952
1.0066
1.0171
1.7258
1.0324
1.0368

RHO*=0.,80

G229 G229
-0.00C8 0.0011
-0.0124 D.0166
-0 0689 000860
-0.1960 . 0.2228
-N.3694 .3695
-0e.5374 (e4512
-0.6548 0.4207
-N.4989 -0.2257
-0e3444 —-0,3882
-0.1961 -0e%401
‘00%692 -Qoag 77
0.0317 =0.3002
0.1425 -0.1070
0.1504 -0.0233
0.1372 =0.0089
0.1209 -0-0025
N.1045 00002
0.0889 0.0013
0.C747 0.0020
0.0618 0.0026
0.0500 0.0035
D.N392 0.0046
0.0262 0.0061
0.0198 0.0078
0.0110 D.0097
0.0027 06,0115
-0.0050 0.0129
-0.0118 0.0136
-0.0176 0.0135
-N.N2200 0.0124
-000250 0.0107
-0.0265 0.0086
-0.,0282 0.0051
-0.0228 0.0040

T*=0,75 R*=0.53
G221 G222 G40
=0.0000 =0.0000 GNNWD
=-U«0000 =0.000U VL0000
-0.0000 -0.0012 0.0029
-0.0006 -0.0123 0.2378
-0e 006U =-0.0383 0Ue.1657
-0.0246 -0.0589 wW.3330
-roblp -0.0609 Ue34€4
-041071 -0.0510 O0.ll66
-0.1856 -C.0176 -0.4488
"0.1688 -0001c7 -3.1634
-0e1356 -0.,0058 0.0573
-0.0970 -0.0025 0.1688
-0.0608 -0.0006 0.13683
-060324 060004 0.0574
-0.0137 0.0908 0(.4029
-0.0031 0.0009 -0.0120
0.0019 0.0009 -0.0091
0.0042 0.0006 0.0000
0.0039 0.0005 0.0C17
0.0034 0.0004 UV.0023
0.0028 000003 0.0024
0.0023 $.0003 %5.0022
0.UU19 0.0002 0.0021
0.0016 00,0002 0.0020
0.0013 0.00C1 2£.02c1
0.0011 0.0001 0.0022
0.0009 0.0001 0.0024
0.0097 0.0001 0.0026
00006 Ge0001 0.0027
0.0005 ¢€.0001 G.2N26
Ue0004 (.0000 0.0022
0.0004 0.0000 0.0017
0.0003 f .QQQQ 5eMOS
0.00C3 (Cl.0000 Ue0V0Z2
00002 GCe000V -0.0005
Ce0002 (Ce0000 -0.0015
0.NONL  J.0000 -0.N017



2.44
2643
2452
2456
2.60
2.0%
208
2912
2.76
2480
28%
ZeB8
2492
296
3,00
3.10
3,20
3.30
340
350
3,60
3.72
3480
4,00
4.20
4ol
4460
4480
521
5620
540
5.60
5.80
6,07

1.0367
1.0413
1.7420
1.0417
1.0405
1.7384
1.0357
1.0325
l.0291
1.0256
1.0223
1.C191
1.01¢€2
1.0137
i.0116
1.C080
1.0070
1.0479
1.0088
1.0093
1.£093
1.0088
1.0079
1.0070
1.0053
1.0044
1.0039
1.0036
1.0832
1.0027
1.0023
1.0020
1.0018
1.0C16

TABLE XX (cont'd)

-0.0197
-OOOlbl
‘ﬁ.ﬂlZ“
-0.0087
-0.0052
-QQQQZI
00005
0.0026
0.0053
N.0060
0.CC62
0.00¢1
N.0D058
0.0052
00033
0.0012
-0.0004
-0, NN14
-0.,0018
-0.0016
-N.0012
-0.00U06
-000001
0.0002
0.00C3
0.70001
-0.00C1
-0.00C2
-QQQQQI
-0.0000
0.2000
-0.00C0C
-0.0000
=% ,DNHN

=127

U.0034
0.0030
00025
0.0019
0.0009
—QQQGQZ
-060012
-0.0021
-0.0027
-0.0029
-0 .0029
-0.0026
-Q.Qle
-000011
-000000
U.0006
0.0009
D.0008
0. 0005
0.0002
—V.Oﬁﬂl
-0.0003
-0.0003
0.0001
0.0001
0.0000
-ﬁ.DQQQ
-0.0000
-0.0000
0000V
0.0000
0. 0000

U.U001
0.0001
Y0031
0.0U01
U.0001
C.0001
00,0000
0.0000
0U.0000
0.0000
D0.0000
C.000C
0.0000
0.00C0
0. 00CO
D.CO00
0.0000
0.0000
O.Qﬁaﬂ
00000
0.0000
0 .00H0
U.00CO0
0.0000
0.00U0
0.0

4

o

SGocCccoacCccCcl
s & &5 o & o 4 o
ro B o B o B o 8 o e B oo

0.00060
00,0000
G.000%
0.0000
0.0000
0.0000
00000
Q.00N
0.00600
0.0000
00003
0. 0000
C.0000
C.0000
G.0000
2.0000
0.0000
C.0000
£ 0000
0.00GC0
0.0000
0000V
0.0000
8.0000

[«
C
[ =
(]

Ll

SoCUCCOODOO

DOoOOCDCOCCODC

“000017
-U.0015
-0.0013
-000010
-0.0008
-0.0005
-0.0003
-5 .13002
-0.0001
U.000U
AR ELAIV) |
0.0001
0.0002
0.U002
0.0002
10002
Ue U022
0.ul01
L0501
-Ce QU0
-0.0001
-0.0001
={1e D200
=0e0VOLU
00000
e 000C
00000
-0.0000
-0.0000
=0.0uul
90200
0eUOUU
0.0000
-0 N300
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TABLE XXI
FAIR CISTRIBUTICN CCEFFICIENTS FCR 2 L-J POTENTIAL

FRCM PY EQUATICN

R

Q.80
O.84
0.88
C.592
0.96
1.00
loU4
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
1l.44
le438
152
1.56
1.60
1.04
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
216
2.20
2e24
2.28
232
2.36
2 4T

GOUU

D. 0000
00000
Ve00C9
U.U1l43
00794
De2275
04389
0.6714
N .90 5
l.1164
1.3176
1.47C7
1.5612
1.59€(9
1.5728
1.5211
1.4472
1.3610
1.2728
1.19¢8
1.1166
1.56%48
1.0139
0.6778
n.9510
05323
U.5204
0.9144
0.9135
D.9167
05232
0.9321
{eG43D
0e 5554
0eG6S3
0.5842
Ue5G8G
le122
1,0227
1.0269
1.02343

RHO*=1.00

G200 G220
=0.9CCN D000
-000000 0.0000
-0.0009 0.0013
-0.0133 0.0185
-000732 000946
-Q.2066 0D.2419
-0+3872 063957
-0.5608 0.4751
-0.6795 ©D.4318
-0 7068 De2554
-0.6320 -0.0114
-0.4856 =-0.2696
-003167 -0.4331
-D0e16U4 -0.4765
-0.0318 -0.4216
0.C670 =-0.3127
N.1349 -0.1972
041705 -0.1077
0.1790 -0.0519
U.17C5 =0.0220
0.1537 =-0.0C77
0.1344 -0.C013
001151 (.0014
00971 0.0027
N.N806 D.0G035
00657 060044
0.0520 0.00506
0.0364 0.0071
0.0276 0.0091
0.0165 0.0113
0.0061 0.0136
-000037 0.0157
-n06126 ﬁ00172
-0,0204 Ue0178
-0.,0267 0.0171
‘000314 0.0153
-0.0341 0.0126
-D.1348 D095
-0.0336 0.0068
-0.0309 0V.U048
°00327Q Q.Qﬁ3b

T%*=0.75

G221

- NN
-0.0000
’0.0000
-0.00CL7
-U. 0068
-3.ﬁ279
-0eC678
-0.1177
-0.1633
-001922
-0-1964
-001764
-001402
-00%989
-000612
-000323
-000135
-0.0031
G.2018
0.0037
0.0040
02037
0.0032
0.0027
N.0N22
0.0013
0.0015
0.0010
J.0008
00007
0.000¢
G.Qﬂﬁs
U 0004
UsL003
U.0003
0.u002
L0002
0.0002
U.000¢
0.0001

R*=0.53

G222 G40U
-0.0UU00 00000
-0,0000 0.0000
-N.0014 0.0033
-000137 Ue.0421
-0.0422 0.1886
-3eD€39 De3691
=0.0652 Ge3T744
-0.0537 Ue.lllé
-0.0396 =-U.2897
-060272 —-0.5522
-309177 -0.4962
-Ue0Q1C6 -0e2186
-0.0056 (C.0483
-0.NN24 Del662
-0.0006 0V.1382
0.00C4 0.0575
0.00U8 0.0U4%48
Ce000S -0.0089
C.A00G8 -CL.0056
000007 -Ue0003
0.0006 UV.0030
DIN05 C.D0G43
00004 (U.004%0
0.0003 0.0C044
0.UUC2 0C.uU4l
C.0002 0.003S
C.00C2 (.N038
U.0001 0V.0C38
0.0001 0.0040
NANNY L0042
Ce0001 0Q.U044
U.0U001 (.0043
0.U001 0.0040
00000 0.0034
C.ON00C DNO24
00000 060012
0.0000 WU.UULU
G.0000 -0,.2011
0.0000 -0,0020
0.0000 -0.0026
UU000 -U.0029



2e44
248
2452
256
2.60
264
2068
2 ol 2
276
2080
2.84
2.88
22592
296
3.00
3.1%
3.20
3.30
3.4V
3.50
3.60
3.70
3.80
3.92
4.00
4,20
440
4,60
4,80
5000
520
5060
580
6.00

1.0366
1.0375
1.0373
1.0361
1.0338
1.0306
1.0267
1.2225
1.0181
1.0136
1.0100
1.0066
1.0036
1.0011

0.9992 .

$e997N
Ve9S75
09997
1.€023
1.0043
1.83053
1.0054
1.0047
1.0037
1.0027
15003
1.0011
1+0013
1.GCl4
1.0011
1.0008
1.80006
1.0006
1.0006
1.00U5
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TABLE XXI (cont'd)
-0.0223 0.,0030 0.00C1
-0.0120 0.0023 vUV.0001
-0.0070 0.0015 0.0001
“0.0026 Q.0034 G.0001

0e0G13 -0.0010 0.0001
0.0044 -0.0022 G.ulCO
D.O067 =-0.0032 0.0000
0.C084 -0.0038 U.00C0
0.C067 -0.0037 0.0000
0.0095 -0.0032 (.w0CO
9.0589 '006@25 QQGQQ@
U0.C080 ‘0.0017 U», 0000
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that these functions show much the same variation with density as do
spherical radial distribution functions. The differences resulting
from changing the nonsphericity of the molecule are demonstrated in

%*

Figure 7 where we have compared the curves for R" wvalues of

000
0.53 and 0.68 at the same T* and p* . The peaks are smaller and
are shifted to higher r* for the larger R* value.

The main peak heights of the gOOO’ as well as of the higher

are recorded in Table XXIII. The peak heights follow

€99'm €000

much the same pattern as is found in spherical PY results. At the
isotherm closest to our critical temperature (approx. PY critical
point for R* = 0.53 is pz = 0.65, Tz = 0.70), the main peak
heights decrease with increasing density up to about o* = 0.90 and
then increase. At T* = 1.00 the minimum peak height occurs lower
near p* = 0.60, and is barely observed at T* = 1.30 . Throop and
Bearman's2 spherical results for their T* = 1.40 isotherm show
behavior similar to our 0.75 isotherm in that a peak minimum occurs
above the critical density at about 1.392 . In Figure 8 one may see
the temperature effect on gooo(r) at the constant density of
p* = 1.00 . The results are representative of the increase in peak
height which is found at all densities as the temperature decreases.
The angular correlation functions have been plotted in Figures
9, 10, and 11. In each of these, g222(r) has been neglected because
of its small value. Figure 9 shows curves for the constant tempera-
ture states (p*,T%*) = (0.65 1.3), (1.2, 1.3) . The positions of the
peaks in these curves are not affected greatly by density, nor is the

general curve shape. Figure 10 shows the effect of temperature
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TABLE XXIII

MAIN PEAK HEIGHTS OF THE 809'm FOR R* = 0.53

*

o
fe 40 0.2 0.4 0.6

660 -1,792 . 1.752 1701 - 1.645

2000 i~ <716 = 707 "= 4697 |~ .688
220 .455 .451 448 446
< =300 = 2367 =1.393 .~ J415
400 .303 >3 L7 «332 .348
~ +366 = ,403 = .438 -~ 471

000 1.534 1.507 1.486 1.476

200° = .556 = 554 = .556 - .565
220 .334 .335 .340 .351
- 265 - = ,288 =~ 302 -..324
400 .210 .218 .229 .243
- 270 ~ 292 -~ .318 - .349

000" F1.383" 1.376  1.377 1.391
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= a2l =t 28R = 2588 = 278
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447
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»2 X7
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and indicates that temperature variation has its primary effect on

curve amplitudes. If the peak heights of the higher tabulated

€08 'm
in Table XXIII are studied as a function of density, one can see that
g200 shows an absolute peak minimum near p* w G.70 at ST = 0.5 ..
Similarly €920 shows a peak minimum for its positive peak only near

p* = 0.6. at T* = 0.75 . At our higher isotherms, these functions
effectively show no absolute minima and the other 800'm show no
absolute peak minima at any of our isotherms. It is thus possible to
generalize and state that the angular correlations merely gain size as
the density increases, with the exception of isotherms near the
critical point. A further examination of Table XXIII shows that with-
out exception, a decrease of temperature causes an increase in absolute
peak height.

Because the shapes of the angular correlation functions change
so little with increasing density, it is found that, as in the diatomic
hard core.system, the zero density limit of g(glgz) dgtermines the
general shape for all densities up to 1.2, even for the lowest isotherm.
Plots of angular g, for R* = 0.53 and 0.68 at p* = 1.2,

T* = 1.00 in Figure 11 show the result of changing molecular shape,

*

and indicate that the principal peaks are shifted to larger r* as R¥

increases.
The 800'm coefficients have been calculated from the pair
HOOO’ H200 as well as the longer HOOO’ HZOO’ H220’ H400 set over the

density range of this work. The values differ by no more than

€000
0.4% and 900 by no more than 0.5%. The biggest differences occur in

and range around 1 to 3%. Thus we see that H and

8220 284 E400 220
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H4OO are minor contributions in the calculation of the pair distribu-
tion functions for the density and temperature range studied in this

work.

We have also checked on the changes brought about in the dis-

tribution function coefficients when calculated from the 809'm
expansion of (25) or the shorter expansions of Chen7c. We used Chen's
hard core results for HOOO and H200 (neglecting H220 and H4OO) at

p* = 1.0, R* =' 0,2 as input. The two calculations yield 000 func-
tions differing by about 3% up to r¥ = 2.00 and slightly more at
higher r* . Main peék heights of 500 and 8590 differ by 4-10%
with some relative shifting of small-valued sections of the functions
at large r* . Similar percentages are obtained for the two-centered
Lennard-Jones case. These are significant percentages, particularly
in the case of gooo(r) . If one compares these percentages with
those in the last paragraph, it is apparent that these errors exceed
those arising from neglect of the H220 ahd HAOO funetions. It is
felt therefore that these errors should be reduced by using the longer
expansion of (25) especially since its employment produces an insigni-
ficant increase in computation time.

Using (23) and Simpson's rule we have calculated KT , the iso-
thermal compressibility, for R* = 0.53 . The results are tabulated .
in Table XXIV. These values have been compared at certain states to
»those obtained from (24) using values of 1-K C(000) extrapolated to
Vv = 0 , and the results agree well enough to allow us to search for a

critical point. It is apparent that at the lowest isotherm, T*==O.75,

a strong maximum is occurring near p* = 0.55 . This is indicative of
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a proximate critical point where KT becomes infinite. While our data
do not accurately locate the critical point, it does show that one
exists and an estimate may be made that it lies in the vicinity of
T = 0.70, 9% = 0.65 « We may compare these values with the experi-
mental values for chlorine of T* = 0.72, p* = 0.93 (TC = 417°k 2
OC = 0.573 g/cc). It appears that our estimate of the critical tem-
perature is fairly close to the experimental value, but our estimate
of the critical density is far too low.

Watts4 has shown for the case of spherical systems near the
critical point that two solutions may exist for the distribution func-
tion for certain densities. Because our lowest isotherm was close to
critical, we have checked to make sure that our results do not involve
such multiple solutions of the Percus-Yevick equation. One check we
performed was to solve the Percus-Yevick equation for two paths to the
p* = 1.2, T® = 0.75 state, one from p* = 0.0 to 1.2 aleng T*=1.00
and then down to T* = 0.75 along the constant p* = 1.2 isochore,
and the other from p* = 0.0 to 1.2 along T® = 0.75 . Thé results
agreed, indicating that we had not jumped to another solution along
the lower isotherm. A second check was to verify that the gooo(r)
curves approached 1.0 asymptotically. In the spherical case one of
the multiple solutions is unphysical in that its g(r) is character-

*

ized by values much greater than 1.0 at values of " near 2.5 or 3.0.

No such behavior was found in this work.



Tl

12

ISOTHERMAL COMPRESSIBILITY

0.75

1.2683
1.6215
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2.4596
2.7250
2.7102
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1.9737
1.5063
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0.8038
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TABLE XXIV

VALUES (R* =0.53)

1.00

1.1106

1.2067

1.2699

1.2833

1.238%

1.1401

1.0059

0.8531

0.7024

0.5654

0.4483

0.3529

1.30

1.0307
1.0376
1.0163
0.9667
0.8923
0.8004
0.6997
0.5984
0.5022
0.4158
0.3405

0.2764
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Discussion

One of the primary conclusions to be drawn from the previous
section is that the higher Hll'm that we have included in the PY
solution are indeed quite small contributions to the distribution
function even at high densities and moderately low temperatures where
they might be expected to be appreciable. We have thus confirmed the
choice of Chen and Steele to use just H000 and H200 to describe the
fluid in this temperature-density range. For future studies using
this tecﬁnique and covering the same range of states, it appears as
though an adequate descriptidn may be obtained for temperature depen-
dent systems if just these two are employed along with the extended
series product of (25) and the calculations are carried out to
r* = 6.00 .

While it is felt that the H220 and H functions are suffi-

400
ciently accurate to judge the size of their contributions to the
distribution functions, it must be added that they are not known to a
high degree of accuracy. This is evident when the H220 obtained from
H(2200) is transformed to second and fourth orders and compared to the
H(2202) and H(2204) values computed from Egqs. (22). The curves are
of the same order of magnitude but show only marginal qualitative
agreement.

Several effects contribute to this error, including truncation
errors, transform errors, and incomplete convergence of the iterative
PY solution. Truncation errors have little effect on the determina-
tion of .H(OOOO) and H(2002) since these depend heavily on the very

large C(0000) transform. For the higher H(22'ms) transforms, however,
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truncation is probably the greatest error. Three series, the H(BlBQ)’
C(glgz), and f(glgz) series, have all had X,57 @and X,,, omitted and
have been truncated after the general term XAOO’ thus omitting contri-
butions from the terms X440, X420, etc. X222 is most likely a small

contribution, but the others may be of significance in computing X220

and X The terms where £=2' may be particularly sig-

400 ° Coa'm
nificant, since the zero order Hankel transform of these functions will
be larger than the C(2002) transform, the dominant member of the Bi
terms of Table I, in the region near Vv = 0 . Including these higher
terms, however, is difficult. The expansions required to generate each
member of a new set of simultaneous equations corresponding to Egs.
(14)-(18) are extremely lengthy. Furthermore, the number of simultane-
ous equatioﬁs themselves will increase rapidly and require a large
increase in computing time. If very many coefficients are included,
this results in a prohibitive increase of time.

Our estimate of the critical point location allows us to draw
some tentative conclusions about the choice of potential used to des-
cribe chldrine. Provided the Percus-Yevick theory remains a good
physical representation in the critical region for nonspherical mole-
cules, our estimafe of the critical density implies that the potential
is inadequate either in functional form or in choice of parameters.

R* is the principal variable parameter since it is the most arbitrary.
o and € , once R* is chosen, become fixed and are as accuréte as
the PVT data from which they are derived. A comparison of pc values
calculated from the p

: and o values for R* = 0.0 and R* = 0.53

show little difference between one another (R* = 0.0, pz = 0.59,
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0 = 4.7 ; R" = 0.53, p = 0.65, 0 = 3.75); both are only about 70% of
the actual experimental value of 0.573 g/cc . It appears, therefore,

that if R* were decreased to a lower value, such as by using the
Gaussian weighting of Sweetlz, no improvement would be found in the
ability to predict the critical density. A larger value of R* would
seem too large physically. Thus varying R* holds little hdpe for
improving the prediction of the experimental critical density value
and, within our limited accuracy, one is led to the conclusion that
the functional form of the two-centered Lennard-Jones potential is
only marginally correct. Whether this is true for the calculation of
all thermodynamic properties is yet to be proven and awaits further
study.

The fact that results for the H and . 809'm have been

28'm
obtained from the Percus-Yevick equations developed by Chen and Steele
for hard core potentials shows that their procedure is equally appli-
cable to the temperature dependent two-centered Lennard-Jones
potentials. For similar convergence criteria, solutions were obtained
in about the same number of iterations. Certain restrictions on this
tybe of solution are apparent, however. One is that the required
number of iterations increases rapidly in the vicinity of the criti-
cal point, implying that this may prohibit investigation of states
very close to critical. Extension of the solution to states with den-
sities greater than 1.2 is also restricted because of the large number
of iterations required, a result noted by Chen in his hard core work
as well. The effects of very low temperature are still unknown; we

merely note that the temperature values covered in this work have only
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a slight effect on the number of iterations (other than critical point

increases), generally requiring more iterations as the temperature

gets lower. Increasing the accuracy of the results by including a much
larger number of Xkl'm terms is, as we have seen, also restricted due

to the greatly increased length of the expressions to be solved.

In conclusion, therefore, it is seen that the method employed
here has allowed us to determine pair distribution coefficients
accurate to first order for a given temperature dependent potential.
These may find use in calculating thermodynamic properties. Evaluation
of constant volume heat capacities may be interesting in that it has
been reportedll that chlorine shows a strong orientational contribution.
Application of the coefficients to x-ray scattering from chlorine is

presented in the next section.
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Figure Captions

Figure 1, Chlorine second virial data of Kapoor and Martin.
B is in units of cc/mole. T has units of K.

Figure 2. Reduced internuclear distance versus o as
determined from second virial data. ® denotes
R* = 0,53,

Figure 3. Reduced internuclear distance versus &/k as
determined from second virial data. e denotes
R* = 0,53,

Figure 4. Hlfm(r) functions for moderately high density

of % = 1,20, T* = 0.75, R* = 0.53,

Figurg 5 gooo(r) as a function of density at T* = 1.30.

Figure 6. gooo(r) as a function of density at T* = 0.75.
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