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ABSTRACT

‘The Steele-Pecora equation describing the x-ray scattering
behavior of molecular fluids has been investigated. Several
molecular scattering factor coefficients, molecular distribution
functions for chlorine according to the Percus-Yevick theory,
and intensity functions for chlorine have been evaluated using
orthonormal expansion methods.

Molecular scattering factors for HZ’ NZ’ LiH, and HF have
been obtained as spherical harmonic expansions. The coefficients
of the expansions and corresponding gas scattering intensities
have been evaluated using both the molecular orbital and isolated
atom approaches, and significant differences have been found to
exist between the two methods. Chlorine scattering factor
coefficients were calculated for the isolated atom approximation
oﬁly. Expressions for the two-centered Gaussian scattering integral
coefficients were derived, and the harmonic expansion technique
was shown to be a practical method of calculation,

The Percus-Yevick equation was solved for chlorine by an extension
of the Hankel transform method of Chen and Steele. Chlorine was repre-
sented by an appropriate two-centered Lennard-Jones potential, the o
and £ parameters having been determined from second virial data. Higher
order expansions of f(glgz), C(glgz), and H(glga) were used here than
in previous work as well as a more complete representation of

the product of two harmonic series. Pair correlation functions
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were obtained over the density range p* = 0.1 to 1.2 for T* = 0.75,
1.00, and 1.30. It was concluded that the first two expansion coeffi-
cients of f(glgz), C(BIBQ)’ and H(§152) were sufficient to obtain
accurate pair correlation functions over tﬁis range of states. For
certain states, use of the more complete product expression reduced
the error in 8000 by several percent. Evidence for a chlorine critical
point was obtained in the vicinity of (p*,T*) = (0.65, 0.70).

A version of the Steele~Pecora equation suitable for use with
diatomic molecules was derived. Substitution of the chlorine scatter-
ing factor coefficients and Percus-Yevick distribution functions
into this equation led to the determination of total scattered
intensity functions expressed as sums of gas scattering, spherical,
and angular intensity contributions. The angular contributions were
shown to be experimentally significant in the regions of the first
and second peaks at high densities (p* } 1.2). Temperature was shown
to have only a slight effect on total intensity. 8000° £200° and

899 Were found to be the principal contributors to the intensity.
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I. INTRODUCTION

The scattering of x-rays may be used to obtain information
about pair distribution functions in fluids. A rigorous theory1
exists for the treatment of fluids composed of spherical atoms and has
been employed with success for over thirty years. The same theory has
also been applied to fluids composed of nonspherical molecules2 with
the major assumption that the x-ray scattering is determined entirely
by a spherical molecular pair distribution. This application has met
with only partial success because the distribution function of such
molecules is not spherical but is dependent upon orientational corre-
lations as well.

A recent theory developed by W. Steele and R. Pecora3 shows
the details of the correct form of the x-ray scattering cross-section.
In particular, a specific expression for the orientational contribu-
tion of the pair distribution‘function to scattered intensity now
exists. It is of interest to know just how large a contribution
orientation makes to the total scattering, but at present no numerical
information is available. This work therefore undertakes the task of
evaluating the total scattering for a nonspherical system from a
theoretical standpoint. So as not to complicate the equations and
expressions to be evaluated any more than necessary in this initial
treatment, we have restricted our attention to linear diatomic mole-
cules. Although other molecules are discussed, the bulk of the work
which follows is for chlorine.

When one attempts to evaluate the x-ray intensity, one finds

that two quantities must be known as input. The first is the molecular
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scattering factor, defined as the spatial integral over the product of
the electronic density and its phase factor eiEfE-. The second is the
pair distribution function, including its angular correlations over a
large temperature and density range. Two methods exist for the calcu-
lation of the molecular scattering factor. In one, the atoms of the
.molecule are assumed spherical and independent of one anotherA. In the
other, the molecule is viewed as a whole and is treated quantum mechani-
cally in a manner analogous to atomic scattering factors. Bonding
effects are specifically taken into account. As presently formulated,
neither approach presents the molecular scattering factor in the form
of a harmonic expansion, yet the Steele and Pecora equation demands it
to be in this form. We have therefore derived equations for harmoni-
cally expanded scattering factors in both treatments. The quantum
mechanical treatment (at least for small molecules) was expected to be
the most accurate,vas had been indicated by earlier work on hydrogen6’7
and carbon8’9. However, an investigation over a variety of different
molecules and bond types had not been done and the differences between
the two treatments were still largely unknown. Harmonically expanded
factors have thus been calculated for the four first row molecules,

HZ’ N LiH, and HF using both methods of calculation, and differences

22
have been presented and discussed.

Calculation of the pair distribution function for a nonspheri-
cal molecule presents a difficult problem. No such data for a
temperature and density dependent function have been previously cal-

culated, and until quite recently no technique was available that

might be adapted for the determination of such quantities. The recent
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advance that does allow one to calculate these pair distributions is
the work of Chen and SteelelO in which distribution functions in
harmonically expanded form were evaluated for a two-centered hard
sphere (''dumbbell') potential by solving the Percus-Yevick equation.

We have adapted this technique for use with a temperature dependent
two-centered Lennard-Jones potential and have evaluated distribution
function coefficients for three temperatures and a variety of densi-
ties ranging from zero to moderately high values. Behavioral trends of
the coefficients as determined by these temperature and density varia-
tions are presented and discussed.

The x-ray equation itself was adapted for use with diatomics,
both homonuclear and heteronuclear. As indicated above, it was
evaluated by using the molecular scattering factor results and pair
distribution function coefficients previously obtained. The resulting
intensity curves were decomposed into their three main components, the
contribution of each being studied as a function of temperature and
density. Particular attention was paid to the component composed of
the angle-dependent fluid interference terms, the primary interest
being to determine if those terms collectively contribﬁted enough to
the total intensity to be measurable.

Some theoretical background is called for before the detailed
analysis is begun. We therefore devote the remainder of this introduc-
tion to a presentation of that background. Since this research
ultimately reduces to a study of the fluid state and methods useful for

discovering new information about fluid structure, a brief review of

fluid (or liquid) state theory is in order and is found in the section
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immediately following this one. Nearly all the main theoretical equa-
tions evaluated in this work depend on the method of orthonormal
D—function expansion advanced by Steelell. Consequently a section is
devoted to this, followed by results obtained from its application to
hard core Percus-Yevick cluster and integral equations. Lastly, early
work on the x-ray scattering from spherical and nonspherical molecules
is reviewed. Scattering factor treatments are discussed, and some

results for specific systems are considered.



A. Liquid State Review

A continuing problem in statistical mechanics is the prediction
of macroscopic properties from microscopic configurational properties.
Restricting oneself to equilibrium properties, the thermodynamic

.properties typically of interest include pressure and volume relation-
ships, isothermal compressibility, the heat capacities CP or CV »
and ﬁolar free energy. The scattering behavior of visible light,
neutrons, and x-rays is also of interést since this provides detailed
information about the microscopic structure of the fluid as well as
further information about the macroscopic thermodynamic properties.

Predicting these fluid properties from theory has been the sub-
ject of a great number of studies, beginning with Van der Waalslz.

Even the most modern theories still predict certain properties incor-
rectly, notably pressure and critical state phenomena, and it is
apparent that unlike the gaseous or solid states, the liquid state is
still far from being solved.

In the region of low density, the theory of Mayer and coworkers13
has proven quite accurate. This is the cluster expansion approach and
results from an expansion of the configurational integral in Mayer £
functions. Virial coefficients and a density expanded version of the
pair correlation function have been derived and evaluated for a variety
of spherical potentials including the Lennard-Jones (LJ) potential. The
theory is only valid at low densities, however, since at higher densi-

ties the series apparently becomes nonconvergentl4. It is useful for

.evaluating higher density theories by comparing their prediction of
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virial coefficients against the accurate Mayer values.

Tﬁe modern theories which have been developed and applied to the
moderate and high density region are all distribution function
theoriesls, these having replaced the older cell theoriesl6. Distribu-
tion functions are desirable because they have direct integral rela-
tions to the macroscopic equilibrium properties and for certain systems
they are given directly by the Fourier transform of the x-ray scatter-
ing intensity. The accuracy of a particular distribution function may
thus be assessed by carrying forth the required integrations for a bulk
property and comparing the results with experimental data. Within the
error bands of present x-ray data, a point by point comparison might be
made.

The first dense fluid theories included the Born, Green, and
Yvon (BGY) theory17 and the similar Kirkwood theoryls. These theories
led to an open-ended coupled set of integro-differential equations for
the set of nth order distribution functions g(n)(r) . The set of
equations was closed by employing the superposition approximation of
Kirkwood. Unfortunately the theory fails badly in predicting the equa-
tion of state at liquid densities. A recent attempt19 has been made to
revive this theory by using a higher order superposition approximation,
but while an improvement has been made in the results, computation time
is nearly prohibitively high.

One of the most successful and widely investigated theories is
the Percus-Yevick (PY) theoryzo. It is similar to the marginally suc-
cessful hypernetted chain (HNC) theoryZl. In integral form, the PY

theory provides an approximation for the direct correlation function
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which when solved with the Ornstein-Zernike equation provides a solution

for g(r) . In spherical form this approximation is

c(r) = g(x)[1 - exp(Bu(r)]
or

c(r) exp[-Bu(r)] = £(r) g(r)

It has been applied at low and high densitieszz—25 and found to give

distribution functions which generally agree with experimental curves
and which yield thermodynamic properties that agree well with Monte
Carlo and molecular dynamics values. Pressure is a notable exception
to this good agreement. Perhaps significantly it also predicts a
critical point which agrees quite closely with that for fluid argon
and, unlike eariier theories, predicts an infinite isothermal compres-
sibility at the critical point.

Still another approadh to the liquid equation of state is the
perturbation theory originally set forth by Zwanzig26. The theory
expands the Helmholtz free energy as a sum consisting of a contribution
from a hard sphere reference potential and a contribution from a term
which represents the perturbation of the hard sphere potential to a
more complicated potential such as the Lennard-Jones potential.
Originally a high temperature expression, it has been modified by
Barker and Henderson27 and applied to true liquids. Accurate results

(4) ()

require the inclusion of the g(3)(r) and g hard sphere dis-
tribution functions which can be only roughly approximated. Dense

fluid applications are encouraging but a final evaluation awaits

further research.
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The aforementioned theories have been applied to a great extent
to the spherical molecules composing what is usually termed simple
fluids. Theories suitable for application to more complicated fluids
composed of nonspherical polyatomic molecules must be capable of
explaining the quantitative changes which occur from simple fluid
behavior. These include the changes which occur in the equation of
state (particularly in the location of phase boundaries), the small
changes in the virial coefficients (especially third), the increase of
heat capacity values, and the changes in dielectric behavior (especi-
ally in the second dielectric virial coefficient). Orientational
correlations, rotation, and &ibration all contribute to these changes.
The latter two effects may be separated and evaluated by standard
statistical mechanical expressions, whereas orientational effects must
be included specifically in the configuration integral or pair correla-
tion function. If orientation is taken into account, the theories above
can be properly generalized for application to nonspherical systems.

Pople and Buckingham28 have used cluster theory with dipole and
quadrupole forces included in treating second ordinary and dielectric
virial coefficients. They included nonspherical repulsive effects by
adding on an arbitrary r-12 term multiplied by the sum of two
second order Legendre functions depending on orientation angles. More
recently, Levine and McQuarrie29 and Stogryn30 have presented general
treatments for the evaluation of virial coefficients up through the
third for a multipole potential. The repulsive core is spherical,
however. Recently Chen and Steele31 have evaluated the virial coef-

ficients and density expansion coefficients of the pair correlation
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function for linear hard core molecules following cluster theory.

They expanded the pair correlation function and cluster integrals in
harmonic expansions of the orientatiqnal angles, a technique proposed
by Steelell and developed by Sweet and Steele32a in evaluating zero
density pair correlation functions for the two-centered Lennard-Jones
potential. Chen and Steele10 also adapted the Percus-Yevick theory

for use with linear hard core molecules using harmonic expansions. This
work, along with earlier cluster work, was the first to specifically
determine the size of the contributions of the orientational effects at
moderate densities. Most importantly, it is a general theory and may
be further adapted for use with other potentials. It is incapable of
yielding very high density results due to convergence problems. Forms
of perturbation theory have been applied to slightly nonspherical
molecules by Pople33 in early work and more recently by Kong34 in the

calculation of second ordinary and dielectric virial coefficients.
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B. Statistical Mechanics of Linear Molecules

Orthonormal Expansions

If a microscopic pair property of a substance, such as its
potential or pair distribution function, is expressed in terms of the
distance separating two molecules and their mutual Euler angles of
6rientation, then a very complicated expression often develops.
Steele11 advanced a general theory for handling such expressions in
which they are orthonormally expanded in the rotational D-functions
(or symmetric top functions). An important assumption in this approach
is that the molecules are rigid, since if they were to bend freely the
Euler angles would lose their meaning. If the position and Euler
angles of orientation of a molecule are denoted by r and {Q , or
collectively by R = (r,2) , then a general function X(BIEQ) may be

expressed as

2
X(R;R,) = 8T gl »sz Xy1,n2F12) D1 (@)D, (%) (1)

where the coefficients Xglpggfrlz) depend only on thewscalﬁi dls—Jl
tance between molecules. N1 = {K1,M1,J1} and ) = ) Y Yol

N1 -~ J1=0 M1=-J1 K1=-J1
In the case of dealing with linear molecules, the D functions reduce

to the usual spherical harmonics since M1,M2=0, Kl1=-K2, and one

obtains

[o'¢} o

ROLRY = 4w 3 0 F « SURRSE L IR SR Wy ORI (- % B2

where & = {-2,-(2-1),--+5(2-1),2} . (In the harmonics the Qi repre-

sent only two angles instead of a full Euler set of three; i.e.,
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Qi = {Gi,¢i} .) The Euler angles are always expressed relative to a
coordinate system in which the Z axis corresponds to the vector Iy, -
This allows one to make use of molecular symmetry in determining the
allowable values of £,%',m . This work employs the D function

normalization of Steelell and the harmonic definitions of Rose35. The

factor of 47 1is present so that if X(glg

2) is freely averaged over

all orientations, Xooo(r) is equal to this average. The XRQ'm

coefficients may be obtained by multiplying both sides of (2) by

YE m(Ql) and Yz',-m(QZ) and integrating over angles, i.e.,
m™ 2T 27
e L * %
Xogm™ = 77 f j J j R Ry u AeiT gy 1 (058500040, .- (3)
00 0O

where d{ = sin 6 d6d¢ .

Symmetry imposes several additional restrictions on the allow-
able 22'm values. The orientation angles of two linear molecules
are shown in Figure 1. It is clear that the azimuthal functionality
of X(R,R,)) depends only on the absolute difference |¢1- ¢2| . NE
this observation is applied to (3); one can see that the XQZ'm coef-
ficient is invariant to the sign of m . For homonuclear molecules, a
restriction on the allowable values of £,%' may be obtained if it is

noticed that the x(glg should be invariant to an end for end

5)
switch of either molecule provided the molecular center is taken at the

internuclear midpoint. This implies a (0,¢) > (m-0,7+¢) change in

the coordinates of one of the spherical harmonics in (2). Since
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Figure 1
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it is apparent that if X(BiBQ) is to remain invariant, £ (and ')
must be even. In the case of heteronuclear molecules, a similar
approach shows that the sum &+%' must be even.

The usual statistical mechanical expressions for spherical
molecules may be taken over for nonspherical use by including angles
of orientation in the potential, various pair properties, or integrals

involved. The configurational integral becomes

ZN = f exp[-BU(Bl’:R_zs""BN)] dgld_fiz,"',dBN (4)

and the pair distribution function becomes

2
D@z = 5 s @@y =MD [ iy, R
64 N
X dRy ++- dR (5)

In systems whose potential energy derives only from pair interactions,

an ensemble averaged configurational property becomes

x> = [ x@reP @R, v, a, 6)

The standard thermodynamic properties may be obtained by applying (6)

to the usual spherical equations. Some results are:
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2
- sadd
E=E +E ,. ¢ E + L u(R ) g(R )dR dR
trans vib rot 128ﬂ4 —2
2 ou(R.R,.)
P = pkT - _Ll& f J —ai—z g(RlR )r12dedR2
3841V 12
ol -1 1
i Gl = f f [g(R,R,) - 1] dR dR,} )
64T 'V

The isothermal compressibility may be further evaluated by using (1) for
the pair correlation function. Because the DN(Q) are orthogonal func-

tions and Dd(Q) = (8‘IT2)-.1/2 , (7) becomes

K = B{p_1+ J [gOO(r)- 1] 4Wr2dr} (8)

and the isothermal compressibility depends only on the spherical aver-
age of g(R 2)

Sweet32 has applied the method of orthonormal expansion to the
intermolecular potential and zero density pair correlation function.
The Kihara core potential, modified Stockmayer potential, and two-
centered Lennard-Jones potential were treated. The latter was employed

in this work and has its variables defined by Figure 1 and is given by:

&

WRR) = e ) oo (9
k=1
where
g Lk ki

X, = [ak + (=) b cos ¢']

and where
2 R2
a; =r + rR(cos 91- cos 62) + 7T(1~—cos 61 cos 92)-
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2
a, = r2+ rR(cos 61‘ cos 62)-+%?{1:+cos 91 cos 62)
2 R?
ay =1 - rR(cos 91—-cos 62)-+7f(1 - cos 61 cos 62)
2 R?
a, =r- rR(cos 61— cos 62)-+7§(1-+cos 61 cos 62)
o SR e ;
b = 5 R™sin 61 sin 92
and
* = :
r, = rk/O

In this potential, the Lennard-Jones type potentials at all four inter-
action centers are taken to be identical, i.e., have the same 0 and

€ . The o and € values were determined for a variety of substances
by Sweet by fitting theoretical virial data to experimental values.

N CO0, and short chain hydrocarbons were treated.

22 Oy

The u were evaluated for linear molecules beginning with

28'm
(3). The ¢' dintegration was performed analytically and the theta
integrations were done numerically. The zero density 8ogtm Vere done
the same way except that all integrations were done numerically by
Gaussian quadrature. The results, which were obtained for a variety of
R* and T* values, showed that the series were fairly rapidly conver-
gent; even for relative lengthy molecules with R* = 0.6, convergence
required only the 200 and some of the 400 series coefficients. The
W 0X) - and g (r) functions were always the largest terms. As R*
000 000
became longer, the primary effects were to broaden the peaks of the

*

gooo(r) and shift them to higher r and to generally increase the

size of the other gzz,m(r) . The bowl depth of Y00 became shal-
%

lower and shifted to higher r" . The Stockmeyer potential produced
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: 3 % _
glll(r) and gllo(r) functions which for the parameter set R"=0.4 ,
™= 1.0, t¥ = uz//§€ 03 = 1.0 were the largest of the angular cor-

relations and were nearly as large as gooo(r).

Percus-Yevick Solutions

The method of orthonormal expansion has been applied by Chen and

Steelelo’31

to the problem of calculating pair correlation functions for
linear hard core molecules at moderate densities. They were calculated
by two methods, one being the cluster density éxpansion of the pair
correlation function and the other being the integral equation approach.

In each case the Percus-Yevick approximation was employed.

The density expansion for nonspherical systems is

g(R R)) = gO(gl_&Z){1+pA+ QZ(IT’ 2N+ M+%—m)+ .-} (10)

where all Mayer diagrams now include integrations over all the Euler
angles of the field points. Application of the Percus-Yevick approxima-
tion to (10) required that the bridge and parallel diagrams be
neglected, i.e., @x1+£§1) = 0 through second order. Chen and Steele
truncated the expansion after p2 .

To evaluate (10), g(gl§2), golegz), and each of the Mayer
diagrams were expanded according to (2), the indicated summations and
multiplications were carried out, and corresponding coefficients on
either side of the equation were identified with one another. The
diagrams themselves were evaluated by equating the expansion of the

full diagram (expressed relative to 512) to the integral over the
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expansions of the component Mayer fij values (each expressed rela-
tive to a E&j coordinate system), multiplying both sides of the
equation by the 1,2 harmonics, and then integrating over the angles of
these harmonics. Since each fij was expanded in a coordinate system
relative to the Iij vector, each fij had to be transformed to the
1,2 system in which the entire diagram was expanded by using the rota-
tion ﬁatrices of Rose35. The integrations were carried out by a
lengthy Fourier transform process.

These calculations showed that the expressions converged rapidly
at low to moderate densities. The angular dependent contributions from
the cluster integrals were shown to be small at all densities consid-
ered, with the bulk of the angular effects of g(gigz) being
determined by the zero density limit. The 200 coefficient of the JA&
diagram proved to be the 1argest angular contributor, becoming as much
as 10%Z of the 000 coefficient at R* = 0.6 . Thel—l and Ndiagrams
possessed angular coefficients which were negligible. The gooo(r)
term was composed of contributions from go(Blga) and from all the
cluster diagrams. It was found to become a smoother and more long-
ranged function as the molecule became more nonspherical at a fixed
reduced density.

Diatomic hard-core virial coefficients were also determined. It
was found that the virial coefficients, if reduced by a factor propor-
tional to the molecular volume, changed very slowly with increasing

R* . The (PV/nRT - 1) values derived from evaluation of the virial

equation of state showed differences from hard sphere values of 67 for
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R* = 0.4 and 13-14% for R* = 0.6 over the entire density range (to

p* 0.7). The properties of these nonspherical molecules were thus
found to be primarily a function of molecular volume.
The integral equation approach to pair correlation function

calculations involved a generalization of the Percus-Yevick (PY)

approximation and Ornstein-Zernike equation, i.e.,
c(R;R,) = £(R,R,)[H(R;R,) + 1] (1)

R R, ® LB E) L = C®R)) + 4 f°(5153)h(523—3)d33 L2

where H(glgz) + 1 is the density dependent part of the pair correla-
tion function. (11) was substituted in (12), and both sides of the
resulting Percus-Yevick equation were Fourier transformed. By expanding
each Fourier kernel according to (2), the PY transform equation was con-
verted to a form where spherical harmonic expansions appeared on both
sides of the equation. By equating corresponding coefficients, an
infinite series of coupled integral equations was obtained. By trun-
cating the series, a solution was obtained from the remaining series
numerically by iteration techniques similar to those employed in spher-
ical systems.

The H(glgz)+-1 could be identified with the bracketed term of
(10) at low densities. Since the cluster terms were described by just
the 000 and 200 coefficients, only coefficients with these indices were
included in the integral equation calculations. It was noted that a
source of probable error at high densities was the neglect of coeffi-

cients with indices higher than 200.
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Pair correlation functions, inverse isothermal compressibili-
ties, and pressure were calculated for the hard core potential. In
general the results were the same as derived from the cluster expan-
sion. Such differences as did occur were the largest at high density,
where the cluster approach would be expected to be breaking down. The
gOOO(r) function was a bit more structured in the integral-equation
method. The angular gzz,m(r) , however, were in quite close agree-
ment. No critical point was found. The equation of state was only
moderately affected by molecular shape, the difference between hard
sphere and diatomic hard core values being less than 207 at the highest

values of R* = 0.6 and pP* = 1.6 .
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C. Molecular X-ray Scattering

X-ray scattering data havebeen used to supply information about
distributions of molecular distances for some time. The relation of
the pair distribution function to the diffraction pattern for spheri-
cally symmetric fluid systems was developed by Zernike and Prinsl.
They showed how the Fourier integral theorem could be applied to obtain
the radial distribution function for a single component spherical
fluid. Their treatment is to start with the standard expression for

scattering from any rigid atomic system

N
B lich ~ nzm £ (k) £3(k) exp(ikxr ) (13)

where N is the number of atoms in the system and fn(K) is the
atomic scattering factor. To obtain an expression for a fluid system
in which the atoms are free to move, (13) must be averaged over space
and time. This implies an ensemble average over the n,m pairs. The
terms with n=m are split out of (13) and singlet averaged, whereas

the other terms remain together and are pair averaged. Thus,

<I,()> = N|£() | + f £ |? explixp)o®® (z r,)ar, ar,
= n|£w) |2 + V] |2 f 0@ (x) exp(ix'r) dr (14)
Since p(z)(glgz) = ng(z)(rlgz) and since for spherical fluids the

pair distribution function depends only on scalar distances between
molecules, one may write

¥ €L, ()7 = plf(K)lz-szlf(K)|2 f g(r)jo(Kr)AWrzdr (15)
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where jo(Kr) = sin Kr/Kr and the integration has been carried out
over the angular variables. To insure convergence of the integral, a
term equal to p2|f(K)12 J jo(Kr)Aﬂrzdr (zero or surface scattering)
has been subtracted from (15); the left hand side of (15) remains
unchanged except at very low values of Kk which are outside the exper-

imental range. Thus

v <105 = 0200 + 0'200 [ (8- 113 (eoemelar 16)

In application one often sees the identifications

<1, (K)> - NEZ (k)

i, () = Sl J [g(r)-l]jo(K£)4ﬂr2dr =ph(x)  (7)

NEZ (k)

where () signifies the exponential 3-dimensional Fourier transform of

h(r) . Fourier inversion of (17) leads to

rlg(x) - 1] = é J Kil(K) sin kr' dk (18)
o 2mp 0

Applications of the Zernike and Prins theory have been many, and
reviews by Gingrich36, Furukawa37, Kruh38, and Pings and Paalman39 sum-
marize the results. Some of the most recent work has been done by
Pings, et al.40 on liquid argon in which distribution functions have
been obtained over a relatively large temperature and density range.
Mikolaj and Pings have also derived Percus-Yevick potentials from the
data by noting that the Fourier transform of the direct correlation
function is simply related to il(K) by the Fourier transform of the

Ornstein-Zernike equation, i.e.,
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il(K)

h(x) .
l%—il(K)

e(x) = s
l+€h(|<)

e
e

The potential uPY(r) is obtainable directly from the Percus-Yevick
approximation if the c¢(r) derived from ¢(x) is substituted into it;

Taess

a - &(x)
upe(r) = kI zn’l S

The x-ray scattering from molecules, if given as a function of
molecular distribution functions, requires several modifications of the
Zernike —Prins development since the scattering centers are no longer
spherical and the atoms within molecules are fixed at specific dis-
tances and orientations. Until quite recently the molecular equations
derived by Menke2 were standard. However, orientational effects were
only treated approximately, the more complete treatment being developed
by Steele and Pecora3. We present both derivations and contrast the
two.

Menke began with the atomic sum given by (13) but formed separate
sums over the atoms in each molecule. Thus (13) becomes

N N
L0 = J ] £ £50) explikr,) exp(-igerD) (19)
£,m U,V
where N is the number of molecules and Na is the number of atoms
per molecule. If r, is now the location of the molecular center
(assumed to be as near as possible to a spherical center), bi is the
distance to atom U in molecule £ , and fﬁ is the atomic scatter-

ing factor of atom U in molecule £ .
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Introducing the molecular scattering function
2 : %
Fo (k) = g £,(<) exp(ik-b) , (21)
(19) can be rewritten to give

N
I,(k) = me Fo (k) Fp(k) explik®(ry-r )] (22)

s
Noting the similarity between (22) and (13), one may define FQ(K) as
a molecular scattering factor. In general, it depends on the orienta-
tion of molecule £ (i.e., on the Euler angles 92) since the hﬁ
depend on the orientation.

As in the spherical case, Il(K) must be ensemble averaged to
get the experimentally measurable intensity. Splitting out the £ =m

terms as above, we singlet and pair average over both intermolecular

distances and orientations to obtain

< (k)> = lzf F, (k) FF(x)dR, + f FL(€) FA(K)
8m
) 2),
X exp(;Efziz)p( )(Elﬂlggﬂﬂz)dﬂldﬂzdzldgz (23)

An approximation in the Menke approach is that there is no correlation

between two molecules and their respective orientations. This is

equivalent to stating that p(z)

p(2)

is a function of I and I, only;
=

the angular is replaced by a (8ﬂ2) p(z)(g) spherical term.

Hence in (23) the Ql and Qz integrations are carried out over Fl

and F2 only, each integration corresponding to a random orientational
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average over (21). Thus

—-l—-fF(K) a2 = J £ (<) § (kb )
8n2 u H - H

and defining Fe(K)

102
o R (S—ﬂz—) f F, (k) df, f Fo (k) dQ,

=1L £ £, 3 (b)) 3 (kD) (24)
T
Also
1 % _ 2 : ks
;;E-J Fl(K) Fl(K)dQl B 2 fu(K)'+2 Z 'fu(K) fu,(K)Jo(Kbuu,)-lg(K)
m M H, M
where bUU' = lhﬂ— Eﬂ.] . Thus (23) in the Menke approximation
becomes
L1 (K)> = 1 (&) + 4upF (&) | la(e) - 11x* 3§ (kr)de (25)
N I 4 e fo}
0

where the angular integrations over I have been carried out.

Steele and Pecora begin their derivation with (22) but define
their molecular scattering factor analogous to the way the atomic scat-
tering factors are defined in (13). Using the symbol a(KQK) for this
scattering factor, where the o< are the Euler angles of molecular

orientation relative to K ,

a(kQ) = f 0(x) exp(ik*x)dx (26)

where pP(x) 1is the electronic density within the molecule. Also,

N
I (k) = Q,Zm a, (k07) a_(k5) exp(iker, ) (27)
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The ensemble average of (27) can now be written as in (23) but, unlike
Menke, 0(2)(5132) is left as an orientational dependent function.

In order to carry out the orientational averaging, each of the
functions are expanded using the D function orfhonormal expansion
of Steele. p(z)(gigz) is expanded according to (1); the exponential
of (27) is expanded in spherical waves; and the a(KQK) are expanded

into the harmonic series

k) = (872 ] ad (o) pE7 @ (28)
M,J ’ ]

Both p(z)(glgz) and the pair al(KQi)’ az(KQ;) involve Euler angles
of molecules 1 and 2, but the angles are given relative to two differ-
ent coordinate systems. Hence the votational matrices of Rose must be
employed to express these angles in a common coordinate system. Sub-

(2)

stitution of the resulting scattering factor, p , and exponential

expansions, followed by lengthy integrations over the Euler angles of

Ql . 92 , and the angular variables of Iy lead to the result
l-<I (k) > = 2 IaJ |2+ plao |2 [g . (x) =113 (Kr)4ﬂr2dr
N 1 o,M 00 00 0
M,J il
K,-M J 4
1 [t N | 2 A 2JEL
+0 ) (=) B B ) 1% S ¢(33,3,300) c(JJ.J,;0K,)
NL N2 0,-M, O,M2 3 2J2+l 172 122 %2
#0
Tt T
x f Sin MlK Mz(r) jJ(Kr)ZnTrzdr (29)
21272

Details and corrections of the original work may be found in Appendix
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Ia R E is identified with the Fe(K) of (24), then it is

a5,
00
apparent that the first two terms of (29) are identical with those of
(25). For molecules with nearly spherical symmetry such as methane,
it would thus appear that the Menke equation is adequate, whereas for
less spherical molecules the longer expression of (29) must be employed.
The Steele and Pecora result has been applied to only one system,
water4l. Only the ago(K) scattering coefficient was taken as non-
zero and hence the treatment effectively reduced to the Menke approach.
We now mention another technique which may be used to calculate
the intensity for a molecular fluid. It is to treat the fluid as a
mixture of atomic species in which the intensity is determined by sum-
ming over all the atomic scattering factors, ensemble averaging the
intensity by using the appropriate two species pair correlation func-
tion, i.e., pgg)(r) functions. The assumption is made that the atoms
within the molecules remain as spherically symmetric scattering centers.
Following the work of Waser and Schomaker42 one may scale the intensity
to the gas scattering of a free molecule43 or alternatively to the
square of the sum of atomic scattering factors over a molecular
stoichiometric unit41 and Fourier transform the resulting scaled func-
tion to give a linear combination of convoluted true radial pair dis-

tribution functions. The intensity formula is
B - . 2
I()=]) %, £5(K)+0p E § x % £ L (€ () f (855 (x) - 113 (kr)dme"dr

where 1i,j denote atomic species and Xi’xj are mole fractions
derived from the molecular stoichiometry. If [I(k) - z xifi(K)] /
51

[ Exifi(l()]2 is denoted by im(K) , it can be shown that the Fourier
i



-28-~

transform of Kim(K),

orH(r)

—A;-J ki (k) sin kr dk |,
2 m
2m 0

is given by

H(r) = g g xixjHij(r)

where -
Hij(r) =gk J y[gij(y) - 1] Tij(r-y)dy
and s
T,.(r) = lj £ R I) %, E (k) 1%cos krdx
1] m i 3 e
0

The H(r) function is thus not equal to a molecular distribution func-
tion of the type used in (23) and requires some careful and often dif-
ficult interpretation. Furthermore, as discussed by Pings and Waser44,
it is not possible to obtain the component p§§)(r) atomic pair dis-
tributions from one experiment, since it provides only enough informa-
tion to characterize one function. It should be noticed that
orientational variables never appear in this treatment. The Waser and
Schomaker approach has been applied to several systems in slightly vary-
ing form. Carbon tetrachloride, carbon tetrafluoride, bromine, benzene,
water, ammonia, t-butyl ammonium fluoride, and methane are a representa-
tive few.

In (25) and (29), molecular scattering factors are required. In
the former, the molecule is viewed as a collection of independent atoms

and the evaluation proceeds from (21). Accurate atomic scattering fac-

tors have been given by Cromer and Mann45. The most general
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expression, however, is (26) and the electronic density p(x) is to
be determined from quantum mechanics in order to account for molecular
bonding effects. The scattering integrals which result from (26) when
p(r) 1is expanded into Gaussian basis molecular orbitals were first
treated by McWeeny46. By a contour integration he was able to give
integral results for s,s; s,p; and p,p integrals. The same integrals
were treated by Kraussand Miller47 in which the integrals were
expressed as a finite sum of Hermite polynomials. Previous calcula-

tions of molecular scattering factors have been restricted for the most

657

2 and C-H, C-N, C-0, or C-C bond factorss’g. Hydrogen

part to H
represented an extreme case since all the electrons are bonding, and
thus the MO results were greatly different from isolated atom results.
McWeeny showed that good results were obtained by employing just s

and p type basis functions, and that the inclusion of configuration
interaction had no appreciable effect on the scattering factor values.
Stewart was able to show that a good representation for hydrogen was
obtainable by using spherical atomic scattering factors for each H atom
and floating the centers of these spherical factors 0.078 off each
proton into the bond.

The McWeeny work on carbon bond factors pointed out the need to
use the correct valence state (hybrid orbital) when dealing with carbon.
Bond distortions were shown to affect the inner part of the scattering
factor curve most heavily, while temperature and vibrational effects
were greatest in the high kK region. The more recent work of Stewart

confirmed the effects of distortion and pointed out that certain inte-

grals, notably 2p0 integrals, were more anisotropic than indicated
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by McWeeny. The general conclusion was reached that scattering factors
which rigorously included bonding effects had smaller amplitudes than
those calculated from the assumption of independent atomic scatterers.

L

Calculations of molecular scattering factors for complete organic

molecules have not generally been performed.
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PART II

MOLECULAR SCATTERING FACTORS
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Introduction

Molecular scattering factors in X-ray analysis are
most often calculated from the isolated atom equation
originally derived by Debye}’2 In this equation a
polyatomic molecule is viewed as being composed of
independent atoms located at the ends of interatomic
vectors known primarily from spectroscopic data. The
molecular scattering factor is then a weighted sum over
the atomié scattering factors held at these interatomic
distances.

As first discussed by McWeeny3 and most recently

5¢6 and Stewart?'8 this approach ignores

by Tavard
distortions in the electronic density due to bonding.

In this paper we calculate molecular scattering factors

for the ground states of H,, N,, LiH, and HF using Gaussian
Hartree-Fock SCF_results so as to include the effects of
bonding. The factors are expressed as harmonic expansions,
a formalism having several advantages over other approaches,
the principal one being that all orientational information
may be stored in a small number of coefficients. Most

4.7,8 has recalculated the results for each

previous work
orientation of the molecule with respect to the scattering
vector k. The expansion technique was first suggested

by McWeeny4 and was fecently developed as an expansion of

equivalent symmetric top functions by Steele and Pecoraﬁ

Steele and Pecora also derived the most complete fluid
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X-ray scattering equation to date, and in order to be
compatible with their work we have followed their
scattering factor formula closely. We compare our results
to isolated atom results and, in the case of hydrogen,
to the earlier MO results of Stewart.7

These four molecular cases were chosen so as to

represent a great variety of bonding cases. Below we
present the harmonic expanéions for the scattering
factor integrals based on two-center Gaussian wavefunctions
and their relation to Pecora's equation. Specific results
for the scattering factor coefficients for the molecules
studied come next, followed by comparisons with the isolated
atom results. Lastly convergence of the series represen-
tations of the coefficients and the choice of two-center

expansions is discussed.

Theory

It is our primary purpose to evaluate the coefficients

in thg molecular scat;ering factor derived by Steele and

Pecora, i.e., the a, g(z) in
’

J *
a(k,2) = (8n%)1/2 LI A ate) DLy, D

where k is the usual scattering parameter 4msin6/A, o~ is
the set of Euler angles of the molecule giving its

orientation relative to a laboratory coordinate system,
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J 10

K,M
In this paper we study only diatomic molecules and therefore

and D () is the rotational or symmetric top function.

have the symmetry restrictions on (1) that M=0 and that,
for homonuclear diatomics, J is even. Thus D;ﬁ (QK) reduces

to a spherical harmonic and
Br 1o 1/2 K
a(k,R°) = (4m) g agy (k) Y5 o(27) . (2)

In the case of closed shell diatomics we may write an
alternative formula for a(K,QK) in terms of doubly occupied

spatial molecular orbitals.5 By definition,
a(k,0) = j‘p(g) exp(ik-r)dr (3)

where p(r) is the one electron density for the molecule
expressed in a molecular fixed coordinate system. For our
closed-shell cases we may express p(r) in Hartree-Fock

orbitals as

p(x) =27 ¢ ¢f . (4)
n
Thus,
a(k,%) =27 b, lexp(ik-n)| ¢ > . : (5)
n

In this work we have assumed the molecular orbitals
to be expanded in two-center Gaussian basis functions.
This choice was made because, in general, two-center

functions are more accurate than one-center functions, and
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Gaussian scattering factor integrals are analytic. From

(5) we are therefore led to a sum of integrals of the form

alc, ) =27 1] ] <py |ei'5'flsj> g (6)
nij

where Bi represents real s,x,y or z Gaussian basis functions.
Although it is possible to do so, like McWeeny, we have
not included d orbitals as we expect their effect on
electronic density to be minimal. The integrals in (6)
have been evaluated by McWeeny.3

It is our purpose to expand these integrals into
harmonic series. However, McWeeny's results are not in
this form and must be transformed to it. This can be
done most easily for diatomics by taking the center of
the coordinate system as the mid-point of the internuclear
axis, and then noting that each integral of McWeeny's is
a product of a factor of the form elY8*R and a factor

~
expressible as a first or second power function of k-*R.

If the exponential is then plane wave expanded, the

1R

R
function is expressed as a spherical harmonic, and the
resulting product of spherical harmonics is combined
into one by the spherical harmonic coupling rule, then
the desired expansion can be obtained.

We will show this derivation for the single case
of I = <s, Ieif.fizB>. The coordinate system used is
in Figure 1, I is the integral denoted by McWeeny as

(s, a|f|2p,b) and, after allowing for our coordinate

change, is found equal to
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I = A(-20BR°K + ikBR'K)/ (a+B) exp(ik-Rq) (7)
where g and E are unit vectors along the scattering vector
and z-axis respectively, o is the Gaussian exponent on

center A, B is the Gaussian exponent on center B, R is the
internuclear distance,

3
= 212
A= N2 -4aBR" -k
A =38 )(?m) eXP( 4 (atB ) , (8)
and
KR(B-a)
9 = 3ToFE) (9)

i 1 ,
Now notice that Rk = R and K+K = cos@ = (—4—})7%_ 0(9).
Sl ios ~ & ’

If these identities are then substituted into (7) and the

complex exponential is expanded into spherical waves, then

there results

-2AaBR v 1/2
R LZO (4m(22+1)]) Jgla) Y, 4(8) (10)

3 1 “
+ B8 (%)2,20 tan 2041172 5 (@ ¥, 01y (0)

In the second summation in (10) we may use the identity10

[(22,41) (22,+1) 172 '
Yyn{®9 ¥y (00) = § e e (2,2, Mimm,) e (2;2,)500)
(2)

(11)

where the range of 1 is lzl-zzl to £,+%, and the c(2,2,A;mm,)

are Clebsch-Gordon coefficients. These coefficients are
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11

readily available. Thus we obtain

_ =2RaBR ¢ | AN
I= —op- L r@uD1VT §i(@ v, (8
£=0 (12)
L+1 2
+ AxB 1/2 RS [c(21);00)]
(4m) Z (22+1)i i, (@) ¥, o(8)
* e 2T (2041 12 A,0

(2)

Note that because of the symmetry of Clebsch-Gordon
coefficients that A goes in steps of two. Finally, the
second series in (12) can be rearranged to give a single

series by regrouping the indices and one is led to

o  J+1 2
AxB 1/2 [ R+ [C(213;00)]
(4m) 3. (Q)Ynn(8) + (20+41) 171, (@22 oy (eﬂ
o+B 1 00 21 221 " Gager) L T3S0

(2)
(13)
The case J=0 must be treated as a special case since
£=J+1=1 only. Putting (13) into (12) we obtain the desired

single harmonic expansion and the coefficient of a particular

harmonic is'easily identified.

ik.r

Similar expansions to the one for s, |e™<"~| z; ) may be

! ik-r iK-r ik-r
carried out for <s, |e"~"<| s>, &, le™~ =] zp>, <x, le"~ = xp,

(yA |e15'5| yB>, and permutations of these integrals. In the
case of the x and y integrals it is easier to make the
expansions if the linear combination <x, fa i E Xo> +

Yp Ie:U< A4 Y is considered. Since we are dealing only
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with cylindrical diatomics using ¢nx and ¢ﬂy orbitals, this
is the only way the x and y integrals appear in the final
result. In the case of the integrals where the basis
functions share the same center, the results from the
two center calculations may be extended if the inter-
nuclear distance R is set equal to zero and the argument
g of the spherical bessel functions is changed from that
in (9) to -=kR/2 when center A is shared, to +kR/2 when center B
is shared. Table 1 summarizes the results for the integrals
considered in this work,; the Jth coefficient is tabulated.

If the harmonic expansions just obtained for the

integrals are denoted by

{B.

i 8725 B =

J J=0

e~ 8

DJij(K) YJ,O(e) ’

then from (6) and (2) we see that
1./2

g

8y (x) = (1?)

cg <t T ) (A (14)

D..
ni,j 48
(14) was used to calculate the MO scattering coefficients
tabulated in the next section.

We now turn to the form of the molecular scattering
factor obtained from the assumption of independent atom

scatterers. The basic scattering equation is the familiar

weigﬁted sum over atomic scattering factorsl

a(k,05) = J fj(.c)eiE‘Ej (15)
3
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where j is the sum over atoms in the molecule, rj is the
vector distance of atom j from the origin of the system,
and Kk is the z-axis in the laboratory system. Expand the

exponential to give
© 'J. . .
a(c,25) = g fj(K)Jzo [(23+1) an] /2 475, (kry) Y7 o (8 J0J) (16)

where x denotes the laboratory system. We want each atom

expressed in molecular-fixed coordinates rather than

laboratory coordinates. Hence we will use the identity12
2-\1/2
J ol J J 8m
Dem (84) = 122 De,r (%ap) Dg,m (9p) (2J‘+I> 3 f)

where QAB is the set of Euler angles rotating A into B,

Q. is the set rotating A into C, and QB is the set rotating

A

B into C. Our D function normalization convention is

that of Steele, Pecorag. From the general expressionlo
1/2

%*
J _ - J
DKIO(aBO) = (27m) YJ'K(Ba), we note that D00 (¢xex)

1/2

= (2m) " Thus from this last equality and

YJ,O(ex¢x)'
(17) we obtain the molecular fixed expression for YJ o(9x¢x)
s ’

and may substitute it into (16) to yield

J & et
T g 2 1/2°° ] Iz 2 AP e 2. 1/2 %3 K
a(k,2%) = (81%) Jgo Rz g [ £5()1%5;(cx ) Dy o (6700) (817) 7/ "Dyt £ (7)
=0 Reed 1)
(18)
where QF rotates the laboratory axes into the molecular
fixed axes. If we now compare equations (1) and (18), we

see that
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I 45 1/2 = .3
aOM(K) = (4m) g fj(K)l JJ(Krj) YJ,M(em¢m) (19)
This is the general equation for the harmonic expansion
coefficients of the scattering factor for a rigid molecule
of independent scatterers. In the case of heteronuclear
diatomics, using the coordinate system in Figure 1,

(19) reduces to

l/ZiJ

2,5 (k) = aj(x) = (23+1) (()7£, () +E (k) G5(x3)  (20)

If both (13) and (20) are expanded, it will be seen that
the odd J terms drop-out for homonuclear diatomics as
symmetry tells us they should.

We note two other properties of the harmonic scattering
factors. First are the values of the aJ(K) at k=0, 1If
an angular average is taken over the expression (3) we

find

ao(K) = 47 spo(x) 51255 x2 ax 4
where po(x) is the sphérical average of the electron density.
Hence ao(O) equals the number of electrons in the molecule,
N. From a typical expansion such as (13) or (19), we see
that all other aJ(0)=0 because jJ(0)=0. Secondly, we
restate the expression for the scaétering intensity from
a single freely rotating molecule (gas scattering)g,

) % | . |2
I(k) = a, (k) ' (21)
J g

this being equivalent to the expression (9.41) given in James

3t
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Results

We first note the source of the wavefunctions we
have used to calculate the MO scattering factors. Except
for nitrogen, we have begun with previously published
wavefunctions, retained only the s and p basis functions,
and reoptimized the coefficients using a version of
POLYATOMI? The LiH, H2' and HF wavefunctions were
derived from references 14, 15, and 16 respectively.
The LiH and H2 functions were originally given in
Slater-type orbitals which were converted to a Gaussian
set using Huzinaga's results}7 The HF function was given
as a Gaussian set originally but was not at the equilibrium
distance of 1.7328 a.u. and was therefore reoptimized for
this distance. In the case of nitrogen we have used the
recent results of Dunning:.L8 The composition and the total
energies of the final wavefunctions used were: Hz, 7s4p,
-1.133055 a.u.; LiH, <5s5p/3slp), -7.98309 a.u.; N,, {4s3p),
-108.88768 a.u.; HF, 9s5p/3slp, -100.016386 a.u. The sets
for LiH and N2 employ contracted orbitals and if described
by uncontracted orbitals are, respectively, 8s5p/6slp and
9s5p.

The numerical accuracy of the program computing the
MO s;attering coefficients was checked by allowing K to
equal zero and then checking the resulting Gaussian overlap

integrals for equality against those computed in an independent

Hartree-Fock program; the behavior aJ(0)=N6J 0 mentioned
’



Iy
above was also verified. Furthermore, the calculation for
hydrogen allowed us to compare our results to those of
Stewart.7 We did this by taking his results for the best
H-atom spherical density scattering factors and substituting
these into equation (20), using his value of 0.81 R

(Re = 1.4009 a.u.) for the internuclear distance. The 2,
coefficient and gas scattering values obtained in this

way are very close to those obtained by us; the higher
coefficients are less clpse. Exact duplication should not
be expected since we have used Stewart's averaged values;
after taking this into account, the agreement found was
deemed to be a satisfactory check.

In Table 2 are found the first few MO scattering
coefficients calculated from (14) for each of the molecules
studied as well as the corresponding values for gas
scattering from (21). «k is in reciprocal angstroms. The

a., and the gas scattering intensities, originally calculated

J
in electrons and electrons squared, have been reduced by

N (the number of electrons in the molecule) and N2 respec-
tively. Since total scattering amplitude is roughly
proportional to the number of electrons in the molecule, these

scaling factors allow for easy comparisons between molecules.

a, values have been listed as real values and are to be
multiplied by i before use. The gas scattering for HF has
19

been obtained previously by Hake and Banyard; our results

compare well with their one-center (OCE) result. We have
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also obtained isolated atom (IA) scattering coefficients

from (20) where we used the atomic scattering factorszo’21

0 0 0

1° for M., N for M., Li%, B and 5i%, #° for Lin, P and

2 v

Ho, Fo for HF. One should note that the higher aJ(K) coeffic-
ients for F arec not zero since the center of the molecule
does not lie at the F nucleus. The IA and MO aO(K) coeffic-
ients differ by about 3% maximum up to K=S.5A-1; corresponding
differences for each of a,{x) and 2, (<) are about 5% maximum.

Some of the agr @y, a, coefficients obtained by us are
plotted in figures 2-4. We have plotted only those coef-
ficients which differ to a significant degree from the
curves obtained from the IA calculations. The 2, coefficients
for both HZ and N2 differ considerably from IA values but
have not been plotted because of space.

The gas scattering curves from both the IA and MO
calculations are shown in figure 5. The hydrogen values
have not been plotted since they are available elsewhere7.
In the case of LiH we have plotted the IA values from
Li+, H_ as well as Liq, Ho. ‘While differences between
these two are nearly'too small to be seen in the graphs of
the aJ(K), they do become apparent in the gas scattering.
In general, the gas differences are greater in the case of
g although neither is very accurate. If.in the
case of HF one compares the MO gas écattering result to

the IA result for F , it is found that the plots of the

two gas curves are practically indistinguishable. The
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zero valence state treatment leads to maximum gas scattering
errors of 15.8% and 7.3% for LiH and HF respectively,
whereas the ionic states lead to a 21.7% error for LiH
and an error of less than 2.0% for HF. N2 shows much
the same behavior for MO and IA results.

Another result of importance is the determination
of the convergence rate of the series for gas scattering,
(21). In Table 3 we have recorded the largest J value
in aJ(K) required to make I (k) convergent to four
significant figures. As one progresses to higher «
values it can be seen that more coefficients are required.
However, even in the worst case of LiH only thirteen
coefficients are required at k=6.0 a.u. In view of the
fact that it does not take much time to calculate these
coefficients (less than 1 min/molecule on the 360), we see
that (21) is a rapidly converging series presenting no

computational problem.

Discussion

One of the principal results of this work is the
demonstration that the harmonic expansion of the molecular
scattering factor is a truly practical technique. The
convergence data in Table 3 indicate that great, numbers
of the aJ(K) coefficients do not have to be calculated
for 10-4 convergence accuracy, even in the cases of
LiH and HF where the center of the coordinate system is

far from any point which might be taken as the center of
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a spherical system where convergence rates would be
expected to be rapid. When coupled with fast computation
times for each aJ(K), the feasibility of the MO calcu-
lation becomes apparent. It is to be noted that much
of the time for these two-center calculations goes into
the evaluation of the spherical Bessel functions required
in (19) and Table 1, and thus the more efficient this
routine may be made, the more efficient is the entire
calculation.

Perhaps the greatest advantage of having this
harmonic expansion is that data covering the entire
orientational range of the molecule can be easily
tabulated, thereby replacing the long columns of
a(x@®), @ data which would be needed otherwise. It
will be particularly useful for the case where one
wishes to perform an orientational average of some
sort over the scattering factor, as did Pecora and
Steele.9 The expansion allows one to perform an ana-
lytical average over angles and thus avoid the inter-
polation of a(KQK) oVer 2* which would be required if
one had only a(KQK), o* tabulated data.

The differences between the MO calculations and the
isolated atom results plotted in figures 2-4 are large
enough to be significant (i.e. experimentally measurable),
a conclusion reached earlier by McWeeny4 and Stewart8

in their work. It should be noted that the gas scattering
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curves give a better impression of the errors involved
here than do the individual aJ(K) curves. This is due
to the fact that the experimental guantity measured is
the intensity, which is proportional to squares or
products of the aJ(K) rather than the aJ(K) alone.

One is tempted to look for smaller variations between
the two approaches for calculating scattering factors in
the case of N2 and HF. Since these two molecules have
relatively larger percentages of electrons in low lying
orbitals, it might be expected that these electrons would
be less effected by bonding and that the isolated atom
results would be better than for H, or LiH. Since HF has
the least number of its electrons in a primary bonding
orbital, it would be expected to have the best isolated
atom results. We have seen that in the case of nitrogen,
good agreement is found between MO and IA results. In
the case of HF we found relatively good agreement between MO
and F results but poor agreement between MO and Ho, F0 re-
sults. - This difference in agreement for HF implies that mole-
cules composed of first row atoms do not have enough tightly
bonded electrons to overshadow any scattering differences
due to bonding distortions of the valence orbitals. If they
did, both the H’, F¥, and F~ results would be in’ close agree-
ment'with the MO data. Similar observations were made by

4,22

McWeeny in the particular case of carbon compounds and

he was led to stress the importance of choosing the correct
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valence state of an atom if the IA approach were to be used.
It thus appears as though one will have to proceed to second
row atoms before bonding distortions can be ignored.

We note that the relative accuracy of the F  calculation
does not imply that the IA calculation will be reliable for
calculations on other first row molecules. The IA approxi-
métion requires that one represent the atomic scattering by
factors chosen from the commonly tabulated free and ionic
valence state data. While electronegativity considerations
may aid one in selecting the ionic data for the particular
case of HF, generally they will not permit such a selection
in the case of other first row molecules such as Lill.

The use of Debye's equation would then be restricted to
molecules containing predominantly second row or higher atoms.

Of significant consequence is the ability to obtain the
harmonic expansion from two-center Gaussian wavefunctions.
Gaussian wavefunctions are to be preferred over Slater
wavefunctions if two-centers are employed since the
corresponding Slater expansiohs for the scattering coef-

ficients are quite leﬁgthy and slow to compute.23 Two-

center functions are preferred over one i because
these give more accurate scattering results for fewer
basis functions.6 This is especially likely to Be true
as one proceeds to multicenter non-hydride molecules.27

The scattering factors for these molecules will be
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expressed as sums over two-center scattering integrals
and, with the addition of appropriate rotations, our
method should be adaptable to these cases.

In the work of McWeeny,4 it was proposed that the
anisotropic two-center integrals be expanded in principal
factors, one corresponding to a parallel orientation
between R and « and one to a perpendicular orientation,
with the two weighted by c0526 and sinze respectively.

It was later concluded by Stewart® that this approach
would not work for all the integrals involved, especially
2po type orbital products. In the present work we have
confirmed this conclusion and have shown that a full
harmonic expansion of the integrals, a suggestion implicit
in the principal factor approach, leads to accurate
results for all types of orbital products.

We finally mention that these scattering factors
may be used directly in interpreting scattered intensities
from fluids. As noted previously, these results find
direct application in the scattering equation of Pecora
and Steele. While LiH and, to a great extent, Hz do not
form practical fluids for study, nitrogen and hydrogen
fluoride do and thus, of the factors obtained here, those
for these species are most applicable to experiment. In
particular, the MO gas scattering curves are useful since
scattering data are often normalized to this curve and

slight errors in this normalization lead to inaccurate
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distribution functions. An application of harmonically
expanded scattering factors to Steele and Pecora's

equation is presently underway.
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Figure Captions

Figure 1. Coordinate system employed. For heteronuclear
diatomics, center A denotes the heaviest atom.

Figure 2. aO(K)/N coefficient. Curve 1, H,(MO). Curve 2,
HZ(IA) Curve 3, LiH(MO). Curvé 4, LiH (IA
6ng LJ.+ H™ factors). Curve 5, LiH (IA using
HO factors)

Figure 3. aj (k) /N coefficient, real coefficient of i.
Curve 1, LiH(MO). Curve 2, LiH (IA us;ng AT
H- factors). Curve 3, LiH (IA u5189 Li0, HO
factors). Curve 4, HF (IA using HY, FO factors).
Curve 5, HF(MO).

Figure 4. ajy(k)/N coefficient. Curve 1, H3(MO). Curve 2,
Hy (IA). Curve 3, Np(IA). Curve 4, Njp(MO).

Figure 5. Reduced gas scattering intensity I(K)/N Curve 1,
HF (MO). Curve 2, HF (IA using H6 FO factors)
Curve 3, N, (MO and IA). Curve 4, LiH(MO).
Curve 5, LiH (IA u51ng 1i0, HO factors). Curve 6,
LiH (IA using Li*, H™ factors).
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Harmonic Coefficients of Various Scattering Factor Integrals

TABLE 1.
<splelsy> = 62asn M2 (4772 5 (q)
X.R J+1
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1 2 2. . 1/2, .3/2 R (B=a) . 9% (o141
<zplelzp> = —=—— (~1208R“+6 (a+B) -x“)G(20+1) /2 (=) 4y (@)+5 5 G !
J  12(a+B) (a+8) =J-1 (2J+1) '
2 J+2 g7 ¥
2 L+Y/2 K 2L+1 L/2 .2 :
« ¢%(L1J;00) (=) jp@-———=%G ] (=) “c*(L23;00) 3, (q)
ks 6 (a+B) I=3=2' (23+¥1) L
(2)
<xplelxg> +<y,lelyy = —S— {(—x2+s<a+s))(2J+1)1/2(-)"/2jJ(q)
J J 6 (a+B)
J+2
2 2L+1 1/2 2
+ K (=) J= (). '€ (L2J;oo%
L=3-2 (23+1) /2 ¥
(2)
% 3.2
exp [4&258 d ] q = K—zli (24_&; e = exp (if-g)

& 2T
(u+8)5: z



TABLE 1. (cont.)

J+1
Special Cases: )} is replaced by L =1 if J = 0.
L=J-1
(2)
J+2
Y is replaced by L =2 if J=0; by L= 1,3 if J = 1.
L=J-2 i
(2)

If A = B and both centers are at A, then R = 0 and g is replaced

by -—2.

If A = B and both centers are at B, then R

KR
2.

0 and g is replaced

by +



K

0.0000
0.5669
1-1338
1.7008
2.2677
2.8346
3.4015
3.9685
4.5354
5.1023
5.6692
6.2361
6.8031
7.3700
7.9369
8.5038
9.0708
9.6377
10.2046
10.7715
11.3384

TABLE

20
1.0000
0.9325
0.7638
0:5588
0.3653
0.2045
0.0829
0.0000

-0.0482
-0.0680
-0.0672
-0.0535
-0.0340
-0.0142
-0.0021
0.0130
0.0182
0.0184
0.0150
0.0097
0.0041

2. Scattering Factor Coefficients
Units of Quantities are:

electrons</z4.

Lithium Hydride

a;/i
0.0000
-0.0448
-0.1022
-0.1643
-0.2100
-0.2246
-0.2056
-0.1604
-0.1016
-0.0425
0.0068
0.0404
0.0569
0.0583
0.0487
0.0330
0.0158
0.0005
-0.0107

-0.0168

-0.0182

a8z
0.0000
-0.0231
-0.0830
-0.1583
-0.2287
~0.2793
-0.3018
-0.2943
-0.2605
-0.2081
-0.1464
-0.0847
-0.0306
0.0108
0.0375
0.0497
0.0498
0.0414
0.0282
0.0138
0.0009

L
1.0000
0.8725
0.6006
0.3644
0.2316
0.1766
0.1553
0.1401
0.1219
0.1018
0.0829
0.0672
0.0546
0.0446
0.0364
0.0295
0.0238
0.0192
0.0154
0.0124
0.0101

K, A~

ind-Gas Scattering Intensities.
i ay, electrons/z;

29

11.0000
0.9712
0.8904
0.7727
0.6371
0.5008
0.3761
0.2694
0.1825
0.1144
0.0628
0.0250
-0.0020
-0.0204
-0.0321
-0.0387
-0.0413
-0.0408
-0.0379
-0.0332
-0.0272

|3J| ’

Hydrogen Fluoride

a/i
0.0000
-0.1381
-0.2569
-0.3429

-0.3910 -

-0.4040
-0.3896

-0.3569

-0.:3139
-0.2668
-0.2199
-0.1756
-0.1354
-0.0995
-0.0681
-0.0409
=0.0177
0.0016
0.0171
0.0291
0.0375

a2
0.0000
-0.0095
=0.0355
-0.0722
=0.1121
-0.1487
-0.1778
-0.1975
=0 2077
-0.2098
~0.2052
=0.1957
=0.1827
-0.1672
-0.1499
-0.1314
-0.1120
~0.0922
~0.0722
~0:50527
~0.0340

Ilagl?
1.0000
0.9632
0.8600
0.7199
0.5716
0.4371
0.3268
0.2424
0.1805
0.1361
0.1046
0.0824
0.0666
0.0553
0.0470
0.0408
0.0361
0.0324
0.0294
0.0271
0.0251

.—'[ 9-



TABLE 2.

K ao
0.0000 1.0000
0.5669 0.9625
1.1338  0.8615
1.7008  0.7230
2.2677  0.5750
2.8346 0.4395
3.4015 0.3258
3.9685 0.2360
4.5354°  0.1676
5.1023 0.1169
5.6692 0.0801
6.2361  0.0537
6.8031  0.0352
7.3700 0.0223
7.9369 0.0135
8.5038 0.0075
9.0708 0.0036
9.6377 0.0011

10.2046 -0.0004
10.7715 -0.0013
11.3384 -0.0017

(cont.)

deroggg

a2
0.0000
-0.0032
-0.0116
-0.0224
-0.0329

-0.0411 .

-0.0465
-0.0489
-0.0488
-0.0468
-0.0436
-0.0396
-0.0353
~0.0309
-0.0267
-0.0228
-0.0193
-0.0161
-0.0133
-0.0109
-0.0087

ay
0.0000
0.0000
0.0000
0.0001
0.0003
0.0007
0.0011
0.0017
0.0022
0.0028
0.0033
0.0038
0.0042
0.0045
0.0048
0.0050
0.0051
0.0051
0.0051
0.0050
0.0049

Xlale
1.0000
0.9269
0.7426
0.5231
0.3320
0.1949
0.1084
0.0581
0.0305
0.0159
0.0083
0.0045
0.0025
0.0015
0.0009
0.0006
0.0004
0.0003
0.0002
0.0001
0.0001

K

0.0000
0.7559
1.5118
2.2677
3.0236
3.7795
4.5354
5.2913
6.0472
6.8031
7.5590
8.3149
9.0708
9.8267
10.5826
11.3384

29
1.0000
0.9281
0.7468
0.5297
0.3371
0.1929
0.0949
0.0315

-0.0084
-0.0318
-0.0431
-0.0449
-0.0394
-0.0289
-0.0159
-0.0027

Nitrogen
az

0.0000

-0.0269

=0.0912

-0.1588
=0.2051
=0.2251
-0.2249
-0.2126
~0:1929
-0.1679
-0, 1379
-0.1039
-0.0677
-0.0318
0.0006
0.0027

24
0.0000
0.0001
0.0017
0.0067
0.0158
0.0280
0.0420
0.0569
0.0722
0.0875
0.1019
0.1139
0.1219
0.1244
0.1202
0.1091

Ilag]?
1.0000
0.8621
0.5660
0.3058
0.1559
0.0886
0.0613
0.0494
0.0426
037X
0.0317
0.0266
0.0225
0.0199
0.0187
0.0183

_zg_
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TABLE 3. Largest J Value Required for Convergence of Gas
Scattering Intensity

£ =2 22 LiH e
0.0 0 0 0 0
2.27 2 2 4 3
4.54 2 4 7 4
6.80 4 6 9 6
9.07 6 8 10 7

11.34 6 10 12 8
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PART III

PERCUS-YEVICK SOLUTIONS FOR THE TWO-CENTERED LENNARD-JONES POTENTIAL
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Introduction

The Percus-Yevick theory has been established for some time as
a means of obtaining fairly accurate dense fluid properties. Radial
distribution functions seem to be described correctly as are certain
thermodynamic quantities such as the internal energy. The theory pro-
vides less accurate results for the pressure, being in error by as
much as orders of magnitude. It nevertheless does as well and usually
better than other alternatives and thus retains considerable value.

It has been applied to a variety of potentials, mostly of
spherical symmetry. It was applied to the hard-sphere potential by
Wertheiml who was able to develop an analytical solution for this case.
It has been applied to the physically more realiétic Lennard-Jones
potential by a variety of authors. A fairly extensive tabulation of
radial distribution functions has been given by Throop and Bearman2
and Mandel, Bearman, and Bearman3 covering most of the dense gas and
liquid region. Watts4 has applied Baxter's5 treatment of the Percus-
Yevick equation to the critical region using a spherical Lennard-Jones
potential and has shown that it will predict the critical point, yield-
ing values which compare well with the experimental values for argon.

Applications of the theory to nonspherical potentials are rela-
tively recent and do not cover a great variety of potentials. The
Percus-Yevick equation was solved for two tetrahedrally symmetric water
potentials by Ben—Naim6. One of the most significant nonspherical
applications was published by Chen and Steele7a, who applied the Percus-
Yevick theory to a system of diatomic hard-core molecules. Because the

distribution functions for this system were angular dependent, the
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methods of solving the Percus-Yevick equation used for spherical sys-
tems were no longer useful. In order to obtain a tractable form, they
applied the D-orthonormal expansion method of Steele8 to the equation
and were able to derive a system of equations which could be solved
for the expansion coefficients of the angular dependent radial distri-
bution function and direct correlation function. Most significantly,
the method is quite general and may also be applied to other potentials.

This work is a direct extension of the technique developed by
Chen and Steele to the.two-centered Lennard-Jones potential and is
primarily a derivation of the distribution functions determined by
this potential. This choice of potential, of course, allows for attrac-
tive as well as repulsive forces in the intermolecular interaction,
and leads to distribution functions that are temperature dependent.
This introduces a variable not treated previously.

Because this laboratory is concerned with x-ray scattering
from molecules, it became apparent that angular dependent distribution
functions for a real system would eventually be required. Partly
because of scattering properties and partly because heat capacities
seem to indicate a large orientational effect, we have therefore solved
the Percus-Yevick equation for parameters characteristic of chlorine.

We present below the simultaneous equations whose solution
gives the desired Percus-Yevick results. We also show the equations
required for high order evaluation of the pair correlation function
and direct correlation function. The potential parameters for chlorine
are then determined and finally the numerical results for the distribu-

tion functions are presented and discussed.
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A. The Percus-Yevick Solution

We begin this section by reviewing the method used by Chen and
Steele7 to solve the Percus-Yevick equation for a system of diatomic
hard-core molecules. We first write the general expansion developed
by Steele8 which expands any pair property in terms of spherical
harmonics (D~fun¢tion in the general case) whose arguments Qj are the

Euler angles of orientation of the two molecules involved.

BEE) = G B )Ty (1 Ty ) s By {zpfed 1)

29 'm

Ej is the position vector of the center of molecule j . A function
H(§l§2) may be defined in terms of the density dependent part of the

pair correlation function
= oF &
H(BIBZ) g (3132) 1 (2)

By generalization of the usual Percus-Yevick approximation

c(r) = g(xr)[1l - exp(Bu(r))], one may write
C(RR) = f£(RR)[H(RR,) + 1] )
The Ornstein-Zernike equation when combined with (3) gives
H(RR) = 7+ f C(R,Ry) [C(R R,) + H(R;R;)]dr df, (4)

This is the angular-dependent Percus-Yevick equation.
Equation (4) is solved by Fourier transforming both sides of

the equation to yield
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=
g
where le(\)) = J H(§1§2) e dr,, - The H(_gigj) and

C(Bigﬁ) in each transform in (5) are then expanded according to (1),

while each exp(iyjzij) is expanded into spherical waves according to

1/2.s

HE B oty % i oY @)

iver,.) = (41
exp(__,lJ) (4m) L

The various sets of Euler angles which result refer to a variety of
relative coordinate systems and must therefore be rotated to a common
laboratory coordinate system. The rotations are carried out by
repeatedly applying Eq. (2-2) of Appendix 2 and making use of the
orthonormality properties of D functions (see Ref.(7b)for details).
The result of the expansions and rotations is for the left-hand side

of (5):

1

e P
oo = 4o i°p_%, (@)
12 2,,24',8:0 v==0" v'==2" I_H_E&'n& v+v ,0 V

(6)
X YZ,V(Ql)YQ',v'(QZ).H(szms) c(28's3v,v"') c(22's3m,-m)

where Qv is the set of Euler angles describing the orientation of Vv
relative to a laboratory system, Ql and Qz give the orientations
of molecules 1 and 2, c(jlj2j3;mlm2) is a Clebsch-Gordan (CG) coeffi-
cientg, and H(2%'ms) is a Hankel transform defined by

H(22'ms) = J
0

Hy oo (1) js(vr*)r*zdr* (7)
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with inverse

300

20 5 2

szym(r*) T J H(2L'ms) JS(Vr*)V dv (8)
0

also & = {-2,-(2-1),-++,2-1,2} . Similarly the right-hand side of (5)

becomes:
g - 2 Vs A
H),() = (4m)70"p ) 1o X )
2',2/"2!!5,5':0 V=",Q, V'=-2,' V"-_‘—Q;" E‘E‘&n&' E'g&n&'
1 1
x [C(22'ms) + H(22'ms)] C(L"&'m's")1i%"S (-)V
g+5s’ B
X ,z c(ss'jiviv',v'=v") c(ss'j;OO)Di+v" 0(Q\)) c(28's;vv")
j=|s-s' ’

oot L L L LT I | Lo R s [ o e
x' ¢l gim,~n) (L% s " v, =w') c(L"2's" su" ;') YQ,,V(Ql)Y,Q,",V"(QZ)
9)

If one notes the independent harmonics appearing in each of Egs. (6)
and (9), one may generate a series of equations by equating like coef-
ficients according to (5). Simultaneous solution of these equations
for the various H(2%'ms) constitutgs the Percus-Yevick solution.
Expressions for specific H(22'ms) may be derived by letting
the desired Hankel transform subscripts define the spherical harmonic
subscripts in (6) and thus the corresponding subscripts in (9) as well.
It should be noticed, however, that if the transform is specified by
2,%',m,s, then the v,v' subscripts in (6) are in general still left
unspecified. If % (or &') is zero, then the range of v (or v') is
restricted trivially to zero as well; but if £ (or 2') is greater than

zero, several values for v (or v') are allowed. This non-specification
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of v or v' appears to be no problem however, in that the same
equations for H(L2'ms) result for all choices of v or v' . This
has been verified for H(2002) and H(2200) .

While solutions for H(0000) and H(2002) were obtained by
Chen for the diatomic hard-core model, it was indicated that errors in
the final values for HOOO and HZOO’ as well as the 890 'm terms
derived from them, might arise from neglect of the higher coefficients
H220, H221, H222, H4OO’ etc. In order to see if these higher terms

did give rise to an error, we have included two of them in our calcula-

tion, H and H400, assuming the others to be negligibly small. Our

220

Percus-Yevick solution thus involved the simultaneous solution of
equations for H(0000), H(2002), H(2200), H(2202), H(2204), and H(4004).
That these are the complete set of transform functions for HOOO’ HZOO’

, and H is proven in Appendix 3.

400

We will now derive the equation for H(2200) as an exemplary

H590

case. The equations for the other transforms will then merely be
listed. For H(2200) it can be seen that in (6) this requires that
=2, '=2, s=0, and m=0; v and v' are not specified. Hence

the coefficient of the harmonics, A, becomes -

A = (4m)20°H(2200) ¢(220;v,v') (220300)

Using (4-6) of Appendix 4, the CG coefficients can be rearranged to

give

A = (4m)20°8(2200) (=) (%a c(202;v,-v=v') ¢(202300)

Equation (4-10) shows that these CG coefficients reduce to dv St
b
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and 1 respectively so that
A = (4m?0 u(2200) ()7 &) (10)

In (9), H(2200) requires that 2=2, 2" =2, and j=0 . Equality of
harmonics requires the v,;v' of (6) to equal the wv,v" of (9)

respectively. Thus from (9) we obtain as coefficient of the harmonics

1
A=¢m®% T ¥ T [c(2%'ms) + H(2'ms)] C(2%'m's')15"S
%' m,m' ss'
1
X z (—)v c(ss'O;vv',v"'=v') c(28's3v,v"') c(28's'";v",-v")
V'
x ¢(ss'0;00) c(2%'s;m,-m) c(22's";m',-m") (11)

By applying (4-6) and (4-10) again we obtain

s—v—v'( i L)

c(ss'Osvtv' ,v'=v") = (=) EE;EQ c(s0s';v+v',-v-v"")
e ST e
and
e(ss'0;00) = (9)° =25,
Note that (12) results in 6V,-V" . This condition had to be present

since a similar GV L' was obtained from (6). (11) now becomes:

]

A= (4n)306p ; z z [C(2£'ms)4—H(22'ms)]C(22'm's)iZS
'"'mm' s

x (—)S(Eéai)(—)v c(22's;m,-m) c(228's;m"',-m")[ g' c(28's3v,v")

X  e(28's:v" ,=v")] (13)
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The coefficiénts depending on v' have been grouped together in this

last equation because this grouping nearly forms the orthogonality

expression of Clebsch-Gordan coefficients. [Equation (4-2) of

Appendix 4.] Substitution of -v for v" and application of (4-4)
'-s

to the summation lead to a value for it of (-)2 “®. Thus equating

(10) and (13) and cancelling terms, one is led to

H(2200) = 20m0>p § J ¥ [C(2&'ms) + H(2%'ms)] C(2L'm's)
''mm' s

X

280 ) 2!
i (8

(23+1)(—) D c(22's3m,-m) c(2%'s;m',-m") (14)

Notice that (14) results with no specifications placed on the harmonic
subscripts wv,v',v" .

Similar derivations may be performed to obtain the other trans-
forms although the simplification introduced by the use of the
orthogonality condition cannot be used in the derivation of H(2202)

and H(2204). The results are as follows:

H(0000) = 4moop § [CC0L'02')+H(0L'0L')] C(0L'0R") (15)
2"
3 A+s s
H(2002) = -4m0”p ) [C(2%ms) +H(2%ms)] C(0202)i~ ~ (=)
L.m,s
) B2 etai00) o295, =) (16)

5

These two are the same as the two expressions used by Chen in the hard

core work.



=/ 5

H(2202) = -14105p § § ¥ [C(28'ms)+ H(22'ms)] C(2%'m's")

/Ql m' S’S'
1 ]
X is+s [Z (—)V e(ss'2;v',~v')e(28"'s30v")c(24"'s';0;v") ]
v'
X ¢(ss'2;00) c(22's;m,-m) c(28's";m',-m") a7
H(2204) = %? noop J Y ) [Cc(2%'ms) +H(2%'ms)] C(2%'m's")
2" mym"' ss'

|} \J
x 157817 ()Y c(ss'4iv',~v') c(20's;0v")
v'

X c(22's';0,-v')] c(22's";m"',-m"') c(ss'4;00) c(24%'s;m,-m)

(18)

H(4004) = 4100 ] [C(4%'ms) + H(42'ms)] c(on'or’)1%t' (oS
2 ims

X (éé-'i)l/2 c(s%'4;00) c(42's;m,-m) (19)

Each of the equations (14) to (19) may now be expanded over
f£,m,m',s,s', retaining only those terms which include members of the
transform set listed above. These expansions are straightforward but
are quite long and tedious, and we will simply list the results. It
is apparent that sums over a large number of CG coefficients will
result. Those required for these expansions are summarized in Appen-
dix 4. Using the same reducing parameters as Chen,

L 2ﬂ03x 3

& ¥ 1 w3
3 s X = 1+-2

pr=pv , v R* -5 R*” ,

S
and defining K = é&— , we obtain from (15)
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H(0000) = A H(2002) + B H(4004) + C

A ="K C(2002)/Z
B = K C(4004)/z
2 2 2
C = K (C°(0000) + C“(2002) + C“(4004)) /z (20)

where Z =1 - K C(0000). From (19) we obtain
H(4004) = K C(4004) €(0000) / z ¢21)

The results of the expansions of Eqé.(l4),(16)—(18) can be written in

a common form:
AilH(2002)-+A12H(2200)-+A13H(2202)4-Ai4H(2204) = Bi (22)

where i is an index running from 1 to 4 denoting from which of the
equations (14), (16)-(18) the coefficients were derived. Each coeffi-
cient is somewhat lengthy and they have therefore been collected in
Table I. Equations (20), (21), and (22) along with (3) provide the
Percus-Yevick solution.

We now present the methods by which the isothermal compressi-
bility Kp may be calculated. This is of importance in that the com-
pressibility goes to infinity at the critical point of a fluid and
hence may be used to locate it. Two methods of calculation exist.

The first is that developed by Steeles, which is a straightforward

extension of the usual pair distribution equation of spherical systems:

ey i 2401 = L0
Rl R f (8po(r) - 1) 4mrdr] p(BP)T (23)
The second method has been employed by several authorsz’B’7 and for
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angular systems takes the form

% _ 6p* %y k2 g%
Koy 1 . J COOO(r Y)ox™" dr (24)
where K_ = pkTk . We have used both methods in this work.

T



TABLE I

COEFFICIENTS OF SIMULTANEOUS EQUATIONS FOR H(2002), H(2200), H(2202), H(2204)

: Agq Aio Ay o
K 2 18
1(16) 1-K c(0000) - £ ¢(2002) 2 ke (2002) - 3% K C(2002)
2 18
2(14) =K €(2002) 1-K C(2200) # —7-KC(2202) - 25 K c(2204)
3(17) K €(2002) N —153 c(2202) 1 -— C(2200) - 75 K C(2202) zzg c(2202) + K C(2204)
98
- 522 K C(2204)
4(18)  -K C(2002) ’ % C(2204) K 7o c(zzoz) +1< c(2204) 1-% K (2200) +1< c(zzoz)
27
K 5ot C(2204)
B, = K[C(2002) C(0000) +— c(2200) c(2002)—— €(2202) c(2002)+ C(2204) €(2002)]
B, = K[c%(2002) + c2(2200) + 3 c?(2202) + 18 18 c2(2204)]
B, = K[-c2 (2002)+— C(2200) C(2202) +75 3 c? (:>.zoz)+245 C(2202) C(2204) —lﬁ c2(2204) 1]
B, = K[C? (2002) +— C(2200) C(2204) +73 " 02(2202) g C(2202) C(2204) +245 cZ(2204)]

-8/[=

aNumber in parentheses denotes the source equation in text.
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B. Expansions for Pair and Direct Correlation Functions

In order to obtain the direct correlation function expansion

" coefficients which are required in Eqs. (20)-(22) above, an expansion
of (3) must be made. While a partial expansion has been done pre-
viously by Chen7, several terms have been omitted. We present a more
complete expansion here so that higher terms will be included in the
expansion, thus reducing truncation error.

We note that the expression for the expansion of the product of
f(glgz) and [l+-H(§1§2)] gives the expansion for any product of two
harmonically expanded series if the proper identification is made. Such
products occur often in the orthonormal expansion approach to statisti-
cal mechanics, and the expression below is therefore of wide use. In
this work, it is also used to expand the pair correlation function as a
product of [L+f(R;R,))] = g°(R;R)) and [1+H(R;R))] . The (°) denotes
the zero density limit of g(ElBQ)'

To evaluate (3), expand each function according to (1). Then,

Cooo * 4“22 - Coo'nlam @I r, ) = £400[Hyggt 1]
9=2"#0
+ fo004T L Hpge ¥y (@)Y, (@)

2=2"#0

+ (0 F Dér ) £, X, (@)Y, (Q.)
000 2=2740 2'm L,m 1l " y-m 2

2
R () e O SO O SRRl (1 B ANCRERE (o T8 (Rl ) | BTG, SR (v I SR
2’=2l#0 22 'm 'Q/’m 15 s~ 2 ,Q,=2,'#0 29'm ,Q,,m y fe el s M 2

(25)

The last term, involving the product of two series was omitted entirely

in earlier work. If it is denoted by S , and the harmonics are
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combined by using the spherical harmonic coupling rule (Eq. (11), Part

II), then
o o LV 1/2
4 (28+1) (2v+1)
s=<4n>zzzzf.ﬁ,z[, ]
2,2"' m=L'"NL v,v' nsvav' &gl Py=|2-v]| miagel)
2"+v'
i ‘. (22'+1) (2v'+1)]1/2
X C(QVJ,mn)C(QVJ,OO)Yj,m+n(Ql).'— z' ; [ (23D
j'=|8'-v
X e(X'v'i'sm,mn) c(@'V'3'500) Yy, (@) (26)
Equation (26) may be improved by recognizing that
© o 4ty Co oo J+L
2 gt Vg SR (27)
2=0 v=0 j=[2-v| j=0 2=0 v=|j-1|

If this is substituted into (26) and (26) in turn is substituted into
(25), one then obtains an expression from which the coefficients of
specific harmonics are easily identified.

Coefficients have been identified for the set HOOO’ HZOO’

0’ all other H = 0 . Once again several CG coefficients

Hyo00 Hyp 20'm

are required, and these are given in Appendix 4. The results are:

Co00 = Fooo®ooo™ ) * 2f5008200 * £220%220 * 24008400
& 2/5 6
C200 = f000%200 " £200l Fopot 1) * Eyo0F "7 Hogo T 7 Byoo!
2/5 6 900

+ £ 00li00 7 Boa0l ¥ £400l7 Ba00 75935 Ha00!
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o &5
€ = f 220 7 ] + £

220 OOOHZZO-*-f

EUH! 1

200[2H200 ZZO[HOOO )

4y5 20 12 12

7 Haoo * 29 Ba20 177 B0l t

e 49 T2207 7

=7 f400M220

185 ... 60 o 185 .5 o

* £500035 200t 77 Haoo! T35 £2208220

400 = fooot400

[ég_ 1458 -
400777 7200 ° 1001/5 400

-}

¥ + HOO += 1] (28)

0

As mentioned above, if fzz'm is identified with the zero density
g21'm coefficient and sz,m is identified with 8og'm ° these equa-
tions give the expansion coefficients of the pair distribution function

as well. For future work, we also desire to have the 8291 and 8999

coefficients derived from the Hll'm set above. These are:

G e 5 o

S 200 %9 Hago

(o]
8721 = 8221 Bg00 g

p &5y 20y +2y

- (o)
820 = 8222lHp00 * 7 00 * %9 Ha20 (29)
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C. Potential Parameters for Chlorine

The potential that has been employed in this work is the two-—
centered Lennard-Jones potential. It has been discussed in detail by
Sweet and Steelelo. We have applied it here to the diatomic chlorine,
choosing this substance because it is nonspherical, nonparamagnetic,
and composed of just two atoms which are likely centers for the Lennard-
Jones functions. Furthermore, it apparently has a high configurational
heat capacityll indicating strong orientational correlations in the
fluid state.

Because we are dealing with a homonuclear diatomic, just one set
of 0o and € values characterizes the molecule. A third parameter
R* = R/0 , where R 1is the distance between interaction centers, is
also required. In solving the Percus-Yevick equation for a particular
substance, the R* (and hence 0 ) parameters are required as input. In
this section values for o, €, and R* for chlorine are derived.

The method of solution is that due to Sweetlz. In this method
the parameters are determined from the second virial coefficient.

Reduced virial coefficients and temperatures are written as

B* = B/b, , b, =3 0N (30)

T* = KT/e (31)
or

log]B*] = log]BI - log bo

log|T*| = log|T|- log(e/k)
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If one then has a set of reduced (B*,T*) pairs from theory and a set
of experimental (B,T) pairs, log plots of the two data sets will yield
log bO and log e/k as intercept values if the two curves are super-
imposed. However, unlike spherical systems, the B¥* values are also a
function of R* and one must repeat this determination of intercept
values from new B* curves until a o is found from bo that will
give an R/0 that is self-consistent with the R* on which that B¥
curve depends.

Theoretical B*(T*) values have been calculated from
[e o]
B¥(T*) = =3 | (g% (£*) - 1) r*? dr*
000 :
0

by Sweet for R* = 0.1, 0.2, 0.3, and 0.4 and are reproduced in Appen-
dix 5. Using the same numerical methods, we have extended these cal-
culations for B*(T*) to R* = 0.50, 0.55, and 0.70 for a temperature
range of T* = 0.2 to 1.8 . These values appear in Table II.

Very few experimental values of B(T) exist. Gmelin13 gives
several references to chlorine PVT data, but nearly all refer to A.
Eucken's workl4. These data are suspicious in that the second virial
curves derived from it do not have the same shape as is found for
nearly all other monatomics and diatomics, the Eucken curves being too
steep in the low temperature region. In addition, later Eucken data on
ethane and ethylene has been found in error by McGlashen and Potter15
and Sweet16 respectively.

We have therefore used the data of Kapoor and Martin17. They

have fitted other earlier data and give the empirical equation of

state
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TABLE II

SECOND VIRIAL COEFFICIENTS FOR THE TWO-CENTERED L-J POTENTIAL
R* 0.50 0.55 0.70

- - -25.677538

- -6.685302 - 5.742034

-3.294647 -3.078723 - 2.537592

-1.839501 -1.678720 - 1.259973

-1.076307 -0.941468 - 0.579727

-0.609611 -0.489253 - 0.160139

- - - 0.006307

-0.295928 -0.185074 + 0.122153

-0.072185 +0.032303 0.324136
+0.095208 - -

1.8
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5
RT kT 1.n
A HZZ [A_+BT+C_ exp(- TC)] e,

Tc is the critical temperature and V >> b . If the bracketed quan-
tity is defined as Bn and the (V-b) terms are binomially expanded,

one obtains

5
1 il
-+—z e 1l1%n
RT nep R g0 13

2
.E_+n_(g—_l)%§+...)
v \Y

als .
It
’_l
+
<o
+

from which the second virial may be obtained as the coefficient of the

1/6 term.
& - =
B(T) = b + Zz (A, +B,T + C, exp(-kT/T)) (32)

The constants of (32) are tabulated in Table III.

TABLE III
A2 = -0.46496772246 B2 = 2.129865506'10-4 C2 = -0.098636526
Tc = 7510R(4l7°K) R = 0.010296 b = 0.00608353 k=2.3
Units are atm —'ft3 o e

A list of values of B(T) and T derived from this expression

appears in Table IV, and a plot of the data is found in Figure 1.
The theoretical and experimental curves were superimposed as

discussed above for all the R* and the bo and €/k parameters

were determined. Fits were closest in the region of T = 273 to
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417OK, where much of the original experimental data was concentrated,
and in the region of the "V'" . The results are tabulated in Table V.
Plots of o vs. R* and e/k vs. R* appear as Figures 2 and 3. The
points in Figure 2 were fitted with a straight line by least squares

with the result

o = -1.9016R* +4.76107 (33)

Since R* = R/0 this equation can be solved for 0 once R is known.

Sweet and Steele used 0.577 times the internuclear distance as the
the interaction separation R for diatomics. This resulted from other
work where longer molecules were viewed as a continuum and the two LJ
centers were Gaussian distributed to represent this continuum. While
this seems reasonable for molecules such as propane or butane, it is
not required for diatomics since the two nuclei themselves may serve as
the centers. Recently Kong18 has applied the two-center Lennard-Jones
potential plus dipole and induced dipole terms to the calculation of
ordinary and dielectric second virial coefficients with some success.
. In his potential the separation R is the distance between the centers
of gravity of the two LJ atomic groupings rather than 0.577 times that
distance, encouraging us to use the internuclear distance for R . It
must be added, however, that in light of little other theoretical
justification for this choice of R , it is possible that the best value
for representing the true potential may lie somewhere between the two
extremes discussed here.

We have therefore solved (33) for o with R = 1.9882 and have

carried along the least square error. The result is
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TABLE IV

SECOND VIRIAL DATA FOR CHLORINE (from KAPOOR, MARTIN17)

T(°K) B(cc/mole) log|B]| log T
244.0 -361.60 2558 2. 387
250.4 -348.50 2.542 2.399
27342 -307.00 2.487 2.436
298.2 -269.00 2.430 2.475
32302 -237.20 2+:375 2.509
3752 -187.00 2.272 24572
423.2 -149.20 2+.174 2627
4572 -128.50 2.109 2.660
550.0 - 85.40 1,931 24140
650.0 - 53.30 3 Iy 2.813
750.0 - 30.10 1.479 2.875
850.0 - 12.40 1.093 2.929
860.0 - 10.87 1.036 2.934
870.0 - 9.37 «972 2.939
880.0 - 7.91 .898 2.945
890.0 - 6.48 . 812 ; 2.949
900.0 - 5.08 .706 2.954
910.0 - 3.71 569 2.959
920.0 - 2.38 R 2.964
930.0 =1 107 .029 2.968
940.0 i 021 - .678 2:973

950.0 1.46 + .164 22978



0.10
0.20
0.30
0.40
0.50
0.55

0.70

120.23
109.65
91.20
79.43
69.34
63.10

5272

B8

TABLE V

e/k

292.42
331°%1.3
403.65
481.95
553.4
599.8

724.4

4.568

4.430

4.166

3.978

3.802

3.684

3.470
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= 3.754 * .058

Q
|

R* = 0.53 £ .01

From a quartic fit to Figure 3 and the B* just obtained,

e/k = 581.0°K
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Numerical Evaluation

The general method of numerical solution of the Percus-Yevick
equations for the HQQ'm is that of Chen and Steele7 with appropriate
modifications having been made to handle the longer ranged two-centered
Lennard-Jones potential and the larger number of Hﬂl'm coefficients.
This is an iterative method in which the Mayer f function coeffi-

cients are known beforehand. In the first iteration, an initial

foo'm
guess is made for the Hli'm . Direct correlation function coeffi-
cients are calculated from (28), are Hankel transformed by (7), and are

used to obtain Hankel transforms of the HZQ'm by solution of Eqs. (20)

€6 (22). + The B transforms are then back transformed to a new set

22'm
of Héﬁ'm by (8). A new guess for H

and old H

29 'm is fashioned from the new

and the process repeated until the difference

]
o T 29" m

Iri(H is less than some predetermined value. Once the

' —
2atm Hpgrm) |

H functions are known for a particular density, the pair correla-

28'm
tion function coefficients can be calculated from (28) and (29).

In the earlier hard core work, the Mayer functions were quite
short-ranged since the potential and thus [exp(- u(glgz))-l] went to
zero beyond the largest overlap distance between molecules. Those

5 were zero beyond about r* = 1.60 . When the two-centered

22'm

Lennard-Jones potential is used, however, the fll'm are non-zero as

far out as r* = 4.00 for the higher coefficients and as far out as

*:
6.00 for fOOO . We have therefore computed le'm from r 070 to
4.00 numerically and for fOOO have extended thesedata to r* = 6.00
by using the asymptotic formula for it. The flﬂ'm calculation is
12,19

based on Gaussian quadrature integration of the triple integral



=

—Bu(R )
(e - l)Pz,m(cos Gl)Pl,,_m(cos 62)cos mo

I_Pﬁ
O

Fogrp(®) = 4

O3

X d cos Gld cos 62 d¢ (34)

which results from (1) if f(R 2) is identified with X(R and

R,)
both sides of the equation are multiplied by Y* (Q ) pE m(Qz) and
s

integrated over angle space. The asymptotic formula for fOOO is
given by
Lin £(R,R)) = Lim £, (r) = —— (35)
™ r->™ i el

where the last equality arises from noting that u(R ) - uLJ(r) as
r >« and then retaining the first term of a Maclaurin expansion of
exp[-Bu, ()] - 1 .

The use of these Mayer f coefficients allowed us to calculate

5 * L .
Hll'm and 890'm functions out to r" = 6.00 as well. With an eye
toward obtaining thermodynamic properties from these functions, it was
: . : 2,20
noted that in the case of spherical systems Bearman et al. have

shown that truncation error in thermodynamic integrals over r* is
virtually eliminated if the upper limit of integration is 6.00 or
greater. In particular, those authors showed that the g(r) of
spherical systems may be replaced by 1.00 beyond this value. We have
found that gooo(r) behaves similarly and thus it too has been set
equal to 1.00 beyond r* = 6.00 .

The core of the Percus-Yevick solution is the solution of

Eqs. (20)-(22). This was accomplished here by noting that the equa-

tions of (22) are linear, consisting of four equations in four unknowns.
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It was found that the Aii and Bi terms of Table I were the largest,
thus indicating that the matrix is somewhat diagonal and not ill-
conditioned. The equations were solved simultaneously using the
C(22'ms) calculated beforehand. Equation (21) was solved for H(4004)
directly. Equations (22) were then solved as a group. Next, H(2002)
from (22) and H(4004) from (21) were substituted into (20) to obtain
H(0000). Hence all H transforms were determined. The simultaneous
solution of Egs. (22) was done by the standard method of Gaussian
elimination21, this being chosen because it is straightforward and
rapid. Furthermore the round-off errors in this method have been
studied carefully and are known to be reduced greatly if the technique
of pivotal condensation is included in the programming.

Hankel transforms were obtained by expanding the spherical
Bessel functions in the standard trigonometric representations (see
Appendix 6) and then evaluating the resulting Fourier integrals by
standard techniques. Like Chen and Steele7 we have employed the Fast
Fourier Transform22 (FFT) because if its great speed. Because we have
included H and H

220 400

order Hankel transforms are required. The evaluation of this fourth

terms, fourth order as well as zero and second

order transform requires the summation of five Fourier transforms, two
cosine and three sine transforms. It seemed possible that Fourier
transform errors over a sum this large might begin to build to the
point of introducing significant error in the final result. To test

2
this, calculations were performed on xz’e_x and it was found that the

Fourier summation approach was adequate. When fourth order numerical

results were compared with analytical values, the FFT Hankel transforms
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were accurate to six digits or better up to a transform value of 10—10

(peak value .24). Inverting the transform itself gave the original
function back with negligible error. When applied to the HQZ'm
functions, it was verified that the transform functions were effec-
tively zero at the maximum value of Vv for which the transform was
evaluated. We note that a result of having this higher order trans-
form included in the calculation of H220 and H400 was to slightly
more than double the computation time than when it was omitted and just
HOOO and HZOO were calculated.

It is now necessary to consider the extrapolation procedures
used in this work. There are two extrapolations involved here. The
first is to be able to find initial guesses for the Hll'm at one
density from the results previously obtained at lower densities. The
individual le'm data points form well-behaved and generally monotonic
curves as a function of density, and are thus amenable to a polynomial
fit. Accordingly we have employed a five-point Newton forward extrapo-
lation procedufe.

Since the Newton method requires at least five points, these
first five were treated differently. The first density treated was
p* = 0.1 and was low enough so that all Hll'm input were taken as
zero. This approach was followed quite successfully by WattsA. The
final output for HlZ'm at p* = 0.1 became the input for o* = 0.2
and so forth until the first five densities were evaluated.

The second extrapolation is to determine at fixed density the

HRQ'm required for a particular iteration based upon results from pre-

vious iterations. If this extrapolation is not done, convergence will
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either not be obtained at all or else convergence will be attained so
slowly it will not be acceptable. A variety of schemes are available
for this extrapolation and we have investigated two of them.

The first scheme is a simple linear extrapolation and has been
applied in different forms by Chen7 and Bearman3 in earlier studies.
We denote the Hkl'm(ri) values obtained after the nth iteration by
Hn . Straight linear extrapolation gives as a result for the (n+l)th

iteration,

= + -
H Hn (Hn Hn— )

n+1 1

A modification includes a mixing parameter o and

H =H+ o(H-H 0 o< 1 (36)
n n_ n-

n+1 l)

and is the form employed by Chen. If a = 0 , the new input Hn+1
equals the last output Hn 5

The second method is based upon the ek—transformation described
by Shanks23 and Peterson and McKoy24. It was found by these authors
to be extremely efficient and, if allowed to extrapolate on five points,
to be capable of handling oscillatory and divergent series. In this
work, however, we have employed the three point (el) transformation,
principally so that more extrapolations will be done for a given number
of iterations (typically on the order of 6-9).

This technique views each Hn as the nth partial sum of a con-
vergent series whose limit H 1is the actual value of Hgf m(ri). For

the three point extrapolation the transformation assumes that for any

partial sum
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H=H +¢€ = H + A"
n n

where the truncation error En is composed of an amplitude A and a
ratio q , assumed less than one. Defining AHi = Hi+l_ Hi and form-

ing the differences AHn— and AHn_ by eliminating H from the

1K 2

above equation, one may solve for € in terms of previous partial

sums. The expression for H then becomes

ik

H = Hn_1 + [(1/AHn_l) - (l/AHn_Z)] (37)

A slightly modified form of this equation using the Wynn algorithm24
was used in our program. If the assumed form for €, is close to
the actual truncation error, then the H given by (37) is far better
converged than the last iteration result Hn . It is apparent that
if H 4is taken to be the first of a new series of Hn , then an
extrapolation will be done after every two iterations until conver-
gence is obtained.

All of our final results have used the ek—transformation 37).
It was preferred over linear extrapolation principally because for
many choices of o it allowed convergence in fewer iterations. A
sample hard core PY solution at p* = 0.1, and R* = 0.2 required
one-third more iterations using (36) with o = 0.2 than (37). The
iterations required were nearly the same with a = 0.05 . Since it
is known3 that o is generally a function of density, the ey method

thus offers a way of avoiding excessive iterations due to non-

optimization of this parameter at each density.
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As outlined above, these iterations and extrapolations continue

until the difference between two successive iterations satisfies

|23 Bg 1y = Bogupdl < T

i

For ' H L has been taken as 4Xx10 ', and for other HQZ'm’ zC

000’

has been taken as 10_4. This compares with 10_4 used by Mandel,

Bearman, and Bearman3 and nearly identical values used by Chen.
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Results

Using the numerical procedures just discussed, we have obtained
. . * —
the Hkl'm and 809 'm solutions for the grid given by p 0.1 o' 1.2
(Ap* = 0.1), T* = 0.75, 1.00, 1.30 for the two separation distances

R* = 0.53, 0.68 . Numerical results for the H at p* = 0.6, 1:2

22'm
and T* = 0.75 may be found in Tables VI and VII. The data for

(p*,T*) = (1.2, 0.75) are plotted in Figure 4. Obviously, the functions
are oscillatory and are dominated by H000 and H200 in the r* range
above 0.90. Since, in order to calculate the 89 tm? the Hﬂl'm are
always multiplied by gzz.m which are zero below r* = 0.90, it is only
the r* > .90 range which is eventually important for pair distribution
determination. Below r* = 0.90 , H220 is also quite significant,
especially near r* = 0.0 . We note that the general curve shapes of

these functions agree with those obtained from two-center hard core

cluster results25 when the appropriate sum over cluster diagrams is

taken. Differences between the HOOO curves and H200 curves when

; *
H220 and H400 are and are not included depend on the r  range and
(p*,T*) point under consideration. For H000 at (p*,T*) = (0.7, 0.75)

the differences in the range r* = 0.90 to 2.50 are on the order of 1%
or less, climbing to approximately 47 or less at 3.20. The correspond-

ing differences for H are larger, about 6%.

200
The pair distribution coefficients for the grid p* = 0.4 to
1.2 (Ao* = 0.2), T* = 1.30, 1.00, 0.75 and for R* = 0.53 are tabu-
lated in Tables VIII-XXII. The gooo(r) coefficient has been plotted
in Figure 5 for p* = 0.2 to 1.2 (Ap* = 0.2) at T* = 1.30. The same

densities are also plotted in Figure 6 for T* = 0.75. It is apparent
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T ot TABLE VI e :
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TABLE VI (cont'd)
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TABLE VII (cont'd)
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FRGM PY EWQUATION

R

Qe85
Ce84
0.83
C.92
Ce96
1.00
1004
1.08
1.12
l.16
1.20
1.24
1.28
1.32
l.30
1.4\)
1.44
1.48
1.52
1.56
1.60
l.04
le63
l.72
1.76
1,80
l1.8%
1.88
1.92
1.96
2.00
2.04
2428
2012
2616
2,20
2e24%
2028
232
2‘36
2e47

GU0OOL

00000
0e.0UUZ
0.0042
U.U285
U.0967
Ne2147
Ue 3687
0.5430
N.7277
V65122
1.07S82
1.2119
1.3038
1.357D
1e3112
1.3707
1.3447
1.3050
1.2610
1.2174
1.1173
1.1418
lelll4
1.0856
1.0640
1l.0402
1.0318
1.0203
1.0114
1.0047
Ue 5998
UeS53967
N.995"
0e 99406
09952
Ue 9665
0.9682
1.0041
1.C020
1.0037
1.2954

RHO*=0.40

G2GC G220
=D.0000 D000
-0,0002 0.0003
-0.0043 0.0049
-0e.U283 WU.0310V
-0.0925 0.0953
-N.1545 {.,1839
-0e30CS7 Ue 2593
-0.40S3 0.2845
-0.47C3 D.2359
-0e47S4 0601156
-0.3662 =-0.1664
-0.2760 -0.2408
-N.1827 -N.2523
-0s0966 -062146
-0.0263 =-0.1533
0¢ 0490 =-0.0523
0.C603 =0.0265
0.0621 -0.0123
0.0561 =-0.0051
00540 =0.D017
De U482 -Ues 0003
0.0425 0.0003
00937% G.Q@95
00320 (Ce0607
0.0274 0.0008
0.0231 0.0011
00191 0.0014
N.0154 0.0018
Vs0119 (.0UL23
0.0087 0.0027
N.0057 0.0031
0.U0030 0es0033
0.00C6 0.0034
-0.0014 0.0033
-0.0030 0.0031
-3.0042 0.0028
-0.C050 0Ve0VL26
-0.0054 0.0023
-DeD255 NJNC21

T#=1.30

G221

-0.0000
-0.0000
-0.0001
-000018
-@-326ﬁ
-0+0515
-0.0801
- .1048
~Us 1184
-0.1173
-001027
-0.0800
—0.0553
-0.0335
-000174
-0,0016
0.0010
0.0021
0.0023
0.0022
0.0020
0.0017
V.0U014
Ue0012
0.,0010
0.0008
0.0006
00005
UeV004
0.0004
2.0003
0. 0002
0.0002
0.0002
0.0001
QOQGﬂl
00,0001
U« U001
Ve.u001

k*=0.,53

G222 G400
=-0.u000 UV.ULVO
-0e0003 0.0006
-0.N041 D.O106
~0«0159 VeU566
-DeD354 Ne1812
-06.0339 0.1125
-0.0287 =0.0584
-060164 -0.2481
-J.0111 -N.1312
-0.0069 0.0240
-0.0038 0.1154
-0.0017 2.1117
-0e0004 0V.0553
00002 0.0074
00006 =-0.0117
NON05 =C,0078
0.00UU5 -0e0U043
0.0004 -U.0021
0.0083 =H.0010
000003 -000004
U«0001 0.000¢
0.5001 Q.0000
0.0001 0.0001
0.0001 0V.00UL1
N.0901 0.0001
00000 0.0002
0.0000 0.0002
0.0000 0V.0002
0«0000 0.0001
0.0000 0.D000
U.U000 -0.0000
0.0000 =-0.0001
N.0000 =2.0002
00000 -00002
0«0000 =-0.000
0.0000 =U.0U02



2044
2 ."8
2.52
2.56
2.60
2.64
2.68
ol
2.78
2.80
2'84
2.88
2.92
290
3.00
3.10
320
3 .30
3.40
3.50
3.60
W T
3.80
3.9“;‘
4400
4.20
4.40
4.60
4.80
5400
5.20
S5e&?
5460
5.80
6400

1.0069
1.0C82
1.C063
1.0100
1.0105
1.01C7
1.0107
1.0101
1.0056
1.0050
1.0C83
1.0476
1.0069
1.0063
1.72048
1.0036
1.0028
1.0022
1.0019
1.0C17
1.0016
1.0015
1.8013
1.0012
1.0009
1.60C7
1.0005
1.0004
1.0003
1.0003
1.003

1.0002
1.0001
1.0001

~103-

TABLE VIII (cont'd)

-000053
-0.,0038
-0.0031
‘0.0025
-0.0013
-0,0008
-0.0004
0.0002
f.0004
0. 00C5
0.0606
Q. OON6
0,00C5
0.00C3
G.00C1
00,0000
-0.0601
-0 0001
-0.0001
-0.0001
=-060000
-0.0000
0.0000
-0.0000
-0, 0000
-000000
-0.0000
-0.0000
-0.0C00

U.00189
0.0017
U.0014
0.0011
D.0C07T
0. 00 U4
0.0000
-0 .0002
=-0.0004
-0.0005
-N.,0005
-U.UOU‘t
‘0.0003
-5 .0002
=06 0001
0.0000
0.0001
0.0001
6.0C001
0.0000
0.0000
D.00DD
-0.0000
-0.0000
-0.0000
D.0000
00000
0. 0000
0.0000
-0.0000
=-0.0000

0.0001
0.0001
0.00U0
0.0000
G L LOO
0e 0000
V. U000
H.0000
V0000
U.0000
0.0000
0.0000
8.0000
00000
LC.0000
0.00600
00000
5.0000
V.0000
0.0000
0.0000
060000
0.0000
0.0000
00000
0.0

u.u

U.O

.0

Ue 0

0.0

0.0

0.0

0.9

0.0

0.0000
0.00139
0.0000
0.0000
CD0N0
0.0000
0.U000
0.0000
0.0000
2./900
0.0000
0.0000
D.0000
0.0000
0.0000
0.000U
0.0000
0.0000
00000
00000
2.0000
00000
0.0000
0.0000
U.0C00
0.0

0.0

coccoo0
® o o o »
CCOCWO

D.0

-0.0001
=0.000LU
-0.0000
N .0000
U 0GUO
00000
U U0O0LU
0.0000
LedPs LT ol?)
0e0V0ULCO
Us00GULU
U GO0
00000
U«000U
0.0000
0.0000
0.0C0%
-0e 00UV
-0.0000
=000
-0.0000
-OCUUUU
-0.0U0L0
0.0000
0.0000
U«0000
0.0000
-D.0000
00000
-0.0000
-0.0000
0.0000
0. 00100
Ue0CULO
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FAIR DISTRIBUTION CGE%@%%*%NTS FOR 2 L-J POTENTIAL

FRCM PY EQUATION

R

0.80
0.84
C.88
0092
0.56
1.00
l1.04
1.08
l1.12
l.lb
1.20
l.24
1.28
132
1.36
1.4:}
leb4
1."'8
1.52
1.56
1.60
1.64
1.68
l1.72
1.76
1.80
1.84
1.83
1.92
1.96
2.00
204
2.08
2012
2.!.6
2620
2.24
2.28
2932
236
2040

G000

0. 0000
V.0002
D.NN46
0.0309
0.1039
U.2286
0.3864
De5695
Ce7585
Ve 5457
1.1132
1.2438
1l.3311
1.3780
1.3911
1.3771
1.3430
1.2971
1.2472
1.,1986
1.1545
1.1159

1.0831

1.8557
1.0332
1.0151
1.00M9
Ue 5501
0.5823
09770
05741
NeSG731
UeS739
DeST761
Ne97594
09835
0.5879
06921
0.5960
0.9996
1.0027

RHO*=0.60

G200 G220
-0.0000 (C.0000
‘0'0003 0.,0003
-903046 DQOQSS
-0.0303 U.0344%
-0-C985 0.1042
-0.2063 001986
-0.3271 0.2762
-6043G6 5.2983
°004915 002404
-004953 001077
-004463 ‘ﬂoOSSb
-0e3629 -0.1919
-0.2647 —-0.266%
-0.1662 —-0.2736
-0.C773 =0.2297
-000059 -501628
00424 -06s1004
0.C684 -0.0558
N.N782 -N.0289
0.0784 -000143
0.0737 -0.0069
0.0670 =0.0033
0.0597 =-0.0016
0.0525 -0.0008
000456 ‘000003
0.0362 (0.0001
N.N333 00096
00277 0.0013
0.0225 VL0020
0.0175 (.0028
0.0127 0.0037
D.1082 0.0045
0.0041 0.0050
0.0004 0.0054
-N.0N28 N.0054
-0.0055 0.0051
-0.0075 000047
-0.008S 0Q.0042
-0.0096 0.0038
-0.7068 N.0734
-0.0055 0.,0030

T#=1,30

G221

-0.0000
-00000
-0. 0002
-000021
‘000103
-U. U289
-000565
-000872
-0.1130
-0e.12064
-GOIZQﬂ
’001677
-0.0832
-00570
-0.0342
-0.0176
-0.0073
-0.0016
00001“
0.0021
0.0023
V.0022
0.0019
9.0016
U. 0014
V0011
0.0009
U.0CCSB
0.0006
0.0005
0.0004
0.00C04
0.0003
0.0002
0.0002
0.0002
0.0001
0.0001
0.0001
C.0001
0. 0001

R*=1,53
G222 G4U0
-0.0000 0.0000
-0.0004 0.0007
-0.0046 0.0120
-000175 00635
-0.0319 N.1533
'000381 001971
-0.0361 0.1170
-0.0302 -0.G6727
-0e0233 -0,2487
-0.0169 —-0.2758
-0.0114 -0.1484
-00070 0.0177
-01.0038 0.,1148
-0.0017 well20
-0.0004 U.0549
0.0082 0.N369
00005 =-0.0109
0.0005 -000112
0.0005 -0.0071
00004 -0.0026
900394 -5.3915
0.0003 =-0.0004
0.0002 0.0001
00002 0.0003
00002 0.0003
0.0001 0.0CU4
0.0001 0.0004
0.0001 0.0004
0.N001 0.0C05
0.0001 0.0005
0.0U00 0.0006
00000 D.NN06
0,0000 060005
0.0000 ©C.0004
00000 0.0002
0.0000 0.0001
QCQGOQ -3.“301
00000 -0.0002
0.0000 =-0.0003
N.0000 -0.00203
C«0000 -060003



244
248
2.52
2.56
260
2e6%
2.68
2wl?
2.80
2.84
2.88
292
2.96
3.00
3010
3.2V
330
340
3450
3.60
370
3.80
390
4 .00
4.27
4040
4 .60
4.80
5.00
520
5e4U
5.60
587
€400

1.0054
1.0G77
1.0095
1.01u8
1.0115
10117
1.0116
1.0112
10205
1 .0Q§97
1.0087
1.0077
1.0066
1.0056
1.C047
1.0027
1.0015
1.0008
1.0006
1.0007
1.0009
1.0010
1.0011
1.0011
1.0010
1.0007
1.U005
1.00063
1.0003
1.0002
1.0082
1.0002
1.0001
1.000C1
1.0001

=105~

TABLE IX (cont'd)

-0.0088
D078
-0.0055
-0.0043
-0.0031
=N 0020
-0.0011
N.N003
0.0008
0.0012
0.0014
0.0015
D.0016
Ve0O013
0.0009
T .nC‘QS
0.0001
-0.00C3
-0.0003
-N0.0002
-0.0002
-0.0001
0.2000
0.0000
00000
-0.000u
-0.0000
-0 AN00
-0,000C
-0.0000
-D.0020
-0.0000

0.0027
D.N023
0.0018
U.0013
0.0007
0.0002
-0 0007
-0.0009
-0,0010
-0.0010
‘000003
-0.0000
n.nenl
0.0002
0.0002
U.0UVl
0.0001
00000
-0.0000
=-0.0000
=-U.00UJ0
0.0000
0.000u
0.0000
=-0.0000
-0.0000
2.0007
0.0000

0.0001
0.0001
0.0000
0.0000
0.000U
0.0000
0.0000
00000
0.0000
p.0C00
0.0000
0.0000
0.0000V
0. 0000
0.0000
0.00060
0.0000
v.0u0U
0.0000
0.0000
0.0000
U.0000
0. NC0N
0.0000
0.0000
C.0

=l el olall ol ol <N )
s o o o

cCocoocCoCc

0.0000
00000
CeVULOO
2.0000
[V PVIVIOIV)
C.00G0
200D
0. 0000
0.0000
U.0000
0.0000
De DOOD
00000
00000
£.0000
00000
0.0000
U000V
G« 0000
0.0000
0.0000
0.u000
00000
Ge 0000
U.0000
UCO

CCoCIIoCcOoOW

=-L.0003
=-0.u002
=Ue.00UZ
-0.00C1
=0e0ULULU
-0.,0000
Q.N000
00000
U« 0000
0.U00L0
o HD0D
Ue OOUU
J.0000
D A0LT
0.UQ0CO
U 000U
U.0000
0.0000
-0 0NLE
-0 0000
-0.0000
-0.0000
-0.0000
U.U000
0.0000
2.0000
=-00000
-0.0000
e AL 4T
-OOOOUO
U.UU00
U.000U
U.000G0
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PAIR DISTRIBUTION COEP??@I%NTS FOR 2 L-J POTENTIAL
T*=1.30 R*=0.53

FROM PY EQUATICN

R

0.80
fie84
0.92
e96
1.00
1.04
1.08
1.12
1.16
1.20
1l.24
1.36
1.40
1.48
1252
1.56
1.60
l.64
1.68
le72
1.76
1.84
1.88
1.96
270
2004
2.08
2ek2
2elb
262U
2:2%
2428
Z.e 32
2636

GOQu

0.0000
N.0003
00082
0.0342
D.1138
02477
U.4181
Ue 6063
0.8017
79932
1.1619
1.2900
1.3716
1.4107
l.4147
le3912
1.3479
1.2935
l.2362
1.1817
1.1328
1.0906
1.0552
1.0261
1.0028
11,9845
Ce G708
0.3611
0.5549
0.5517
0e.9511
Je 3528
05565
NeG618
Ue G683
0.G754
Ue 5826
0.9893
1.0002
1.0045

RHO*=0 .80

G200 6220
-000000 0.0000
-gogﬂ93 QOQQD4
-0.0051 (.0063
-0.0331 0.0387
-ﬂ.1969 gollbg
-0e2226 0.2182
-003513 002991
-0.4600 0e3169
-0.5209 0.2478
-Go518ﬁ 90&987
-004573 -0.0794
-0.3612 —0c2239
~002527 =0.2987
-0.1474 =-0.3004
=N, N55¢ =0,2486
00C179 -0e1744
N.N99 -(3.0597
000988 -000314
0.0968 —000161
0.0869 -0.0083
OnCSll -0.0044%4
N.L719 -0.0025
00628 =0.0014
0.0543 -0.00006
N.N462 D.D2
0.0387 060011
0.0315 0.0022
0.0247 0.0034
0.0182 0.0046

- 00120 ©0.0059
00061 0.0070
0.C0C8 0.0077
—903346 GCOQBO
-0.0080 0.0079
-0.0112 0.0074
’000134 O 0UBS
-0.0147 0.0057
-0.0152 90.0050
-0e 0148 Oe U044
-0.0138 0.0039

G221

-000000
-0.000C
=-0.0002
-0.0024
-0.0117
-0.0327
-U.0633
-060665
-0.1238
-0.137C
=0s1331
-0.1144
-0.0875
-0.0593
-0.0353
-0.0180
-0.0CT74
-0e.0D16
0.0010
00,0021
00023
0.0021
D.0019
00016
U.0013
0.0011
0.000S
0.0007
V.00C6
0.0005
D004
00003
0.0003
R.0002
00002
0.0002
V.0001
U. 0001
C.0001
00001
0.0001

G222

-0.0004
-0.0052
-0.0156
-U.0354
-0.0418
-ﬁ.0391
-0.,0323
-0.0246
-000176
-000117
-0.00672
-0.0017
'0-9004
0.0002
C.0005
0.0005
0.0005
D.0004
0.0004
0.0003
€.20n2
0.0002
0.0002
0.0001
C.0001
€.0001
0.0001
U.0001
2.0000
G« 0000
0.0000
0.0000
C.0000
0.3000
C.00U0L
G.0000
C 0040
0. 0000
C.0000

G400

0.0000
0.90C9
00139
0.0727
Ue1731
0.2183
0.1233
-0.0910
-0.2849
-003110
-0.1703
0.0104
0e1149
V.1131
0e00548
0.0065
-000108
-0.0062
-Def026
-0.0C06
0.0004
De00(9
0.0010
0.0010
V.0010
V.0011
De02011
0.0012
0.0013
Q.0013
00013
0.0011
0.00uB
0.0005
JeUD02
=0 U0V1
-5 .0006
-0.0007
-0.00G07



2.44
Ze48
252
2456
260
2eb4
263
26712
215
280
284
288
2 .92
2.96
30U
3.10
3.25
3«30
2.40
3.50
36U
3 el
3480
390
4 .00
44,20
4,40
4,60
4480
5620
5.40
5.60
5Se80
6.00

1.008D
1.0109
1.0129
1.G142
1.0146
1.7:145
1.C138
1.0127
1.C113
1.C098
1.0082
1.0C66
1.0050
1.0036
1.0023
0.9699

N +9988

e G586
0.9991
09697
1.0004
1.7075:8
1.C010
1.0010
1.0009
1.0004
1.0002
1.0001
1.0001
1.0001
1.00C)
1.0001
1.0001
1.0001
1.0001

TABLE X (cont'd)

-0.7124
-0. OlOb
-0.0086
"Oo 0066
-0.0029
=0 001 3
V.0001
N.NDG11
0.,C020
0.00206
U.0029
0.0031
0.0031
00025
0.0022
0.0012
0. 0004
-0.00C3
-0, 0006
-0.0007
-0.0006
-0.0004
-0.0002
0.NN00
0.0001
0.0V01
0.u00u
-0.0000
=0 N0
-0.0U00
00000
Do DO
0. 0000
-0.0000

=107~

D33
00028
0. 0021
V.0013
0.0005
-0.0003
-0.0010
-0.0014
-0 .0C17
‘000018
-0 \)017
-0.0015
-0.0013
-0.2010
-Ues0UG8
P.0002
0.00uU3
0. V0UVU4
U.0003
U.0002
20000
-UeUUUUL
-0.0001
-0,0001
=-0e 00VV
0. 0000
0.0000
0.6000
-0.0000
=0.0000
Ue O0UO
0. 0000

J.0001
U 0001
0.069C
U.00U0
0.0000
0.000C
000060
U. 0000
0000
0.C000
U.0000
00000
0.0000
0. 0000
0. 0000
0.0000U
0.u000
00000
0.0000
U.0000
0.0000
0. 0000
00000
0.0000
Q. 0OR0

SococCcOOCCOO
LCcCcCoOOoOBOoOCOoOCC

0.0000
U 0000
DONN0
U0000
G.0000
3 .0000
00000
C.00OUV
Uw000
Ue 0000
J.0000
0.0000
0.0000
2.0000
0« 0000
0.00C0
U.0UGU
0. 0000
LY s Pelale]
00000
s PN Telele)
0. 0000
0.0000
00000
00

QOoOCcCoCoCWwOoCOoO
s
GCCOCCLCOO0O

-00005
-N1.0004
-JelLUCO3
-0.0002
-1.0N01
-OOUUOI
-0.0000
-0.0000
-J.L000
D009
0.00O0U
U.0000
TeACO
00,0001
U.00U01
Ue.00U1
U.0U00
1.0000
UeVULU
-0.000U
= HMC
-U«000LO
0.0000
0.0300
(VP VEVI V)
=0.0000
=Ue00UV0
-U.0000U
Ue.UUuUU

U« 000L0
02700
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_TABLE XI
PAIR DISTRIBUTICON CUEFFICIENTS FOR 2 L-J POTENTIAL

FROM

R

'li‘OBﬁ"
U84
0«88
$e92
Ce96
1.00Q
1.04
1.08
l1.12
1.106
1020
1.24
1.28
1632
1.36
1.40
l.44
1.48
1.52
1.56
1.60
1.6"
1.68
2 (P 7
1.76
1.80
l.84
l1.88
1.92
1.96
2.00
204
208
2el2
2.16
2420
2e24%
228
232
2636
2.40

PY EQUATICN

GIo0

G OO
U.0003
U.uU059
D.N387
01271
0.21738
0.4572
Ue€565
L8605
1.0576
1.2278
1.3526
1le4265
1.4550
1.4470
1.4112
1.3561
1.2910
1.2247
l.1629
1.1G685
l.0é23
1.0242
06937
Ve G696
0.9521
Q09397
{19319
06281
09279
393805
0e 5357
UeG431
0.9522
0e9625
29733
Ce 3836
VeG927
1.08003
1.0065
1.0114

RHO*=1,00

G20 G223
~0.0000 B0.0000
-0.0UC03 0D.00LU4
=N.0370  D0446
-0s.1184 0.132V
-0.2450 V.2447
-0.3843 (0.3302
-0.5001 0.34238
-0.5608 MN.2582
-0e5489 0.U874%
-0.4727 -0.1105
-1e3600 =-0.2656
—062381 =-Ue3404
-0e1242 =-0.3346
-0.02173 =0.2722
000473 -001886
D.0952 -0.1l146
01182 =0.0636
0.1234 -0.0335
301185 -00Q174
001087 -0.0091
0.0972 -0.0049
Q0G853 -000027
000739 '000013
0.0528 0.0011
0.0432 0.0025
D.11340 D.OD4L
00253 0.0U58
0.0169 0.0076
N.0689 0.0093
0.0015 0.0106
-000052 0.0114
-0.0111 U.01ll6
-000158 OoOllu
-N.N193 0.N099
-000215 0.0086
=$.M0220 B.9060
-0.02C7 0.0051
-0.0185 0.U0%4

T%x=1430

G221

-2 .0000
-U«QUOU
-U.0002
-0.0137
-0.U378
-0.C723
-001091
’@01383
-Uel512
-001451
~0el232
-0.0531
-U.0625
-53.0075
-0000l7
0.u010
D.0020
0.0G23
Ue0021
O.uuls
0.0016
0.0613
0.0011
0.00609
D.0007
0. 0006
0.0005
0.0004
0.0003
0.0003
U.u002
V.0002
J.0002
UsVOU1
0.0001
GOGﬁﬂl
Ge UULOL
U.0001

R*=y.53
G222 G4uu
=NNNCH L O0000
-0s0U05 0eGULlV
-0.0061 0.01l¢5
-N.N226 UV.0852
-C. 0401 0.2000
-0.0467 12471
-0.0352 -0.1156
-0.0264 -2.3333
-0,0187 -003591
-0.0123 -001989
-W.Qﬂ74 U.OUll
-0e0039 0.l1ll1l56
-0.0017 5.1149
-0.0004 U.0551
Co 0002 0.0U064
€.0005 -0.00143
00005 =-0,0093
0.0005 =0.0U46
300G =N.001D
C.00C3 0.0010
0.0003 0.0019
0.0uG2 V.lU22
0.0002 0.0023
G.9001 9.0023
0.0001 0.0023
0.0001 0.0023
NDD01  §.0D24
0,0001 0.0025
0.0001 0O.0025
0.0U000 0.0025
00000 0.0023
0.900C 0Q.0920
U«0000 060015
0.0000 U.0GLY
V0000 0Q.0003
C.0000 =0.00G0L3
U.0000 =-0.0CUB.
0.0000 -0.0011
0«0Q00UC -0.0013
BNNNG =N,I13



244
248
252
2.56
260
2.04
268
2.72
276
ZeBU
2.84
2.88
297
296
3400
3.10
B 20
36430
3.40
3.50
3.60
370
3.8V
3690
400
4620
4alU
4,60
4 .80
5 NG
52U
5.4U
5461
580
6.00

1-0153
1.0180
1.0157
1.6202
1.0167
1.0185
1.C166
1.014¢4
1.17119
1,0063
1.0044
1.0022
1.0083
Ue 9987
09963
N,9958
Ve 9567
0.9982
V9997
1.0008
l.0214
s [ e B
1.0012
1 .96’;8
1.0001
0.96¢8
0.5999
1.0001
1.0651
1.0001
1.0000
1.000D
1.0000
1.0000

TABLE XI (cont'd) .

‘000128
-0.00¢66
-0.0038
-D.MM12
0.C0Q09
0.0026
0.C335
0.0048
D.N054
0. 0055
0.CC54
N.NG51
0.004¢6
0.U030
D.0N12
_000002
-N.0011
-0.0014
-0.0013
-N.H009
-0.00C4
-0.0000
N.N003
0.0003
0.00C1
-0 0001
-0.0001
=D A00(
0. 000V
0.000v
D.0000
-0s0000
-0.0000

-109~

U.0037
0.0029
H.0022
00009
-0.000c
-D.2012
-0.0020
-000025
-0.00238
-Q0.0027
-N,0625
—000021
-0.0017
-N.DG13
-0.00U8
0.0001
U.00U6
0.0008
N.0007
V0004
0.0002
-0.0002
-0.0002
-0.0002
-0.0001
00000
0.0001
0.0000
-0 000D
-0.0000
-0.0000
0.2020
0. 000U
00000

U.0001
0.0001
QL0000
U 0000
0.0000
LEPS &0 iR L
C.00CC
UsULUL
U.00C0U
(O PRVIVEIV]
D.00400
00000
0. 0Uu0uU
G.nNCHr
0.C000
0. 00UV
U.00U0U
00000
D060
U« 0000
0.0000
D.H000
G.0GCQ0
0.0000
0.00UU
Oe U
O.U i
U0
VeV
O.u
C."
0.C

Q.0uudl
0.0000
0.0000
U 0000
C.0000
C.00N2
0.0000
00000
C.U000
0.0000
g.0000
Ue 00UV
C.U00U
2.NHC0
U 000U
0.0000
0.00UU
0.0000
q.09008%
0.0000
0.0uGC0
0.9000
06,0000
€.0000
Q.U0UV
0.0

GocCcococeocow
BDoCCCoca3CCO

-0.0012
-000007
-0.0005
=5 NIC4
-0esQUO2
-0.0002
-U.0001
-0.0000
J.20C0
UeUOUL
U.uuol
P.0002
Ce00U2
0.0002
C.0U0L2
0.0001
i« D001
-0e VU0OVLO
-0.00U1
=%.HN"O1
-U.0001
-0.0000
U.0ULO
AB0OLD
Ue GULO
=J.0000
=L 00D
-00000
Ue LUOO
U.U0LU
0.0000
=1 (3G
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- TABLE XII
PAIR DISTRIBUTICGN COEFFICIENTS FOR 2 L-J POTENTIAL

FROM PY EQUATICN

R

!».’;.8""‘
Ceo84%
0.88
3992
096
1500
1.04
l.08
l.12
l.16
1.20
l.24
1.28
1‘32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
l.64
1.68
1,72
176
1.80
1.84
1.88
1.92
1.96
2 A5
204
2.08
i L7
2.16
2203
2e2%
228
232
2436
2."0

GRUC

0.0000
0.0004
0.0069
Del445
Oelé4s
0.30173
U0e5069
Ue716G8
£.9338
1.1370
l.3081
1.4277
1.4G11
1.5058
1.4824
1.4312
1.3618
1.2842
1.2076
1.1379
10717
1.0278
N.9876
09565
0.9332
0.G170
0.5070
He9D25
0e9025
UeS004
Ne9134
Ue G232
06351
Ue3489
0.G638
NeST786
0e5921
1.0034
10122
1.0188
1.C234

RHO*=1,20

G260 G229
-0,0004 000005
-000066 000087
-N.N420 1.0522
-061333 0.1525
-0.2737 0.2787
-004265 003700
-N.6110 00,2778
-0.5872 0e 0721
-0.4G610 -0.15C5
-De3572 -d.3183
-0.2187 —-0e3923
0.0C73 =-0.3002
0.C834 -0.2045
D.1303 -0.1225
01506 =U.U6TU
001522 ‘000347
N.1434 -0.0175
061298 -0.,0088
O-ll#b -000042
0.€995 =-0.0017
00849 00001
0.2712 €.N0017
0.0582 0.0033
0.0460 U.0052
NeN344 UOCT3
0.,0233 00,0096
0.0127 0.0119
0.0U027 0.0140
-0.0065 00155
-0.1147 G.0162
-000215 0.0159
-0.0267 0.0146
-0,9302 0N.N126
-0,0317 0Q.0104
-0.0316 0.0082
-N.N298 0V.0065
-060268 00053
-0.0229 N.0044

T*=1.30

G221

-0, 0000
-OOOUUU
-0.0003
-G.0034
‘000163
-0eCh44
-0.0841
-0.1252
-301567
‘0.1691
-0-1601
-60134ﬁ
-0« C999
-0.0661
-0.0192
-Q.QG77
-0.0017
0.0010
0.0020
C.0022
0.0021
0.0018
0.0015
0.0013
00010
0.000S
D087
0. 0006
0.0005
U.0004
0.0003
0.0073
U.0002
0.0002
DN0C2
0.0001
0.0001
0.0001
Ue 0001
D.0001

R*=0.53
G222 G4UC
-0.0006 0.0013
-0.0072 v.0199
-906264 0.10106
-0.0463 0.2352
-0.0532 902844
-0.0484 001425
-000388 —001479
-D.0287 -N.3957
-0e0199 =0,4197
-0.0129 -0.2350
-N.0076 -0V.U1l04
-00040 Vellb4
-0.0017 0.1l174
-0,0004 U«0559
0.0002 0.00669
U« 0005 =0.0071
0.0005 -0.0020
0.0004 0.0017
C«00C3 0.0036
0.0003 0.0043
C.0002 0.0045
0.0002 0.0045
C.0001 ©.0044
00001 00,0043
0.0001 0.0045
C00C1 R.0)a4
00001 0.0044
C.0001 0U.0044
0.0000 U.0043
C«0000 0.0038
0.0000 ©.0031
00000 0e0022
0.00C00 0.0012
Q.QOQﬁ QoOQOl
Ce 0000 =-U.0QUUY
00000 -0.0017
C.uU00 =0.0022
0.0000 =-0.0025
D.0000 -0.0025



244
2 .48
2e52
2456
2-60
2.64
2468
2ol 2
2eild
280
2.84
288
292
296
30U
3.10
3.20
3.30
34
350
3.60
3.72
3080
3.90
4 4 LU
44,20
4047
4460
4.80
5.0
5620
5.40
560
5«80
- 6O

1.0266
1.(283
1.0286
30275
1.0252
1.2221
1.0184
1.0145
1.0105
1.0066
1.0030
06996
0.5G972
2.9950
069935
09919
Ue9931
09658
De 9887
1.0010
1.0023
1.02026
1.0021
1.0013
U.99S%
0.6994
Ue9999
1.00G62
1.0G0D02
1.00C0
05999
1.0000
1.0000
1.0041

TABLE
-0.0184

-010136
-D.H090
-0.0046
N.NN25
0.0052
0.0071
Ve (84
0«.CO91
D063
0.C090
0.0083
N.N0T4
0.0063
0.0031
0.40003
-0.0017
=0Ue 0026
-0.0020
-0.00C1
0.C005
0.0uCs
0.0006
n.0000
-0s0UGC3
-0.0002
=-0.NN00
0.0001
0.00061
0.00C0
-0.0000
-\J.Qﬁf"f"
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XII (cont'
0.00

35
0.00206
0.0013

- 00000
-0.0027
-0.0036
-0.0038
-N.0C33
-0.0026
-0.0019
-0.0012
-0.0005
0.0008
0.0Ul3
0.0014
0.0010
0. 0005
-0.0000
RS I
=0.00006
0.0000
0.0002
UeUOU1
0.0000
- .’39@{3
-0,0000
0.0000
0.0000
0.0000
-0.0000

d&.dOUl
0.0001
C.COND
CeCQQUU
0.0000U
U.LUO0
G000
0.000U
0.0G00L
0.0030
0.0000
0.0000
0.0000
0. 0000
Q000D
0.0000
U. 0000
C.D000
0.0000
0.0000

0.0000

0. 0000
G..0000
0.0000
D0
0.0
0.0
DD

ococoo
2occc

UeUUUO
U.ULUU
0 NN
0.0000
C.000U
U.V000
C.0000
i) .’3'7’1’)
0.U0UO
0.0UCO
5 PR Fala fe)
G- 0000
C.0000
€C.0000
G0000
0.2000
0.0000
0.0000
0.0000
0.0000
0.00GC0

. 0.0000

C«00CV
300G
C.0000V
G.0
0.0
Ce0
V.0
0.0
Vel
0.0
V.0
0.0
0.0

-0.0024%
-0.0021
-0.9017
-0.,001l4
-UeLLUT7
-0.0005
=L.0002
‘000001
U.0001
NeNG2
U.0003
0.0004
U.0004%
U.0005
0005
VeUUU4
0.0002
D.092901
-0«0001
=-0.0002
-0.0002
-0.0001
-0eD301
-U.0000
U.0001
DNDLD
00000
-0.0000
=-0.0000
-0.0uUu0
00000
00000
0.000U
-0 0300
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TABLE XIII

PAIR DISTRIBUTIGON COEFFICIENTS FOR 2 L-J POTENTIAL
T*=1.00 R*=0.53

FRCM PY EQUATION

R

N .80
Ce84
0.88
Ce92
0.96
1.00
l1.04
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
le.44
1.48
l1.52
1.56
1.60
1.68
1.80
l.84
1.88
1.92
1 .96
2,00
2.04
2.08
Zel2
216
2.20
2424
2.28
2032
2.36
247

G000

J.2000
Ue0001
00020
0.0191
0.0812
e204D
Ue3736
0.5672
N 7702
0.5731
1.1598
1.3068
1.4124
l.4688
1.4864
1.4733
1.4373
1.3866
1.3300
1.2743
12233
1.1786
1.1406
1.1087
103824
1.0610
1.0436
1.0304
1.0201
1.0125
1.0073
1.0040
l.7024
1.0023
1.0034
1.0054
1.0079
1.0185
1.G130
1.0151
1.G170

RHO*=0.40

G200 G220
-0.0000 ©0.0000
-0.0001 Q.0001
-0.0020 0.0024
-0.,0160 0.0218
-0e3249 0.2894
-0.44S5 0.3404
-0.5330 {.3088
-0.5175 0.0035
-0.4343 =-0.1601
-0.2191 -0.3022
-0e1172 =0.2706
-0.0322 -0.2017
D.N288 -1.1282
0.C639 -0.0714
0.0807 -0.01louU
0.G650 -D.NC16
00610 0.0003
0.0532 0V.0009
N.N459 C.AM11
0.03G2 0.001Z
0.0332 0.0013
0.0277 0.0015
0.0226 0.0019
0.0179 C.D024
0. 0135 0.,0030
0.0095 WU.00306
N.DO57 N.NC4l
0.0023 040045
-0.00C7 0.00406
-0.0032 U.U044
-0.N067 D.0D0237
-0.C076 WUsLO033
-D.0G79 N.N026

G221

-0.00C0
-0.00G60
-U.001v
-0.0068
-00505
’001149
-0e134S
-0.1382
-0.09956
-0.C710
-0 0441
-0.0C98
-0.0023
0.0014
V.0028
0.0032
00030
0.C026
0.0022
D1
0. 0015
0.0013
V.0010
U.UCC8
D.OCLT
Ue 00C6
0.0005
0.00U4
0. 0003
0.0003
0.0002
0.0002
¢.0002
0.0001
0.0001
C.0N21

G222

-0.0000
‘0.0001
-0.0023
-0.0134
-0.0311
"!:09419
-U0e 0420
-0.0358
-000278
-0.0203
-0.(0086
-0.0048
-0.0021
-0.0005
0.0003
C.0007
00008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0CC3
0.0002
00002
0.2001
0.0001
C.0001
00001
Ce. 0001
0.0001
U.0000
0.0000
0.0000
0.0000
C.0000
£.0008
0.0000
0.0000
0.0U00

G40l

0.000v
00002
D.0N54
D.0U432
0.1387
Ne2255
Uel930
0.0133
-002139
-Ue3184
-1.2282
0.1083
De1436
00,0910
0.0253
-0.0141
-0.0058
-0.0028
"OQOOUS
-U.0U00U
00000
2.0000
00001
0.0001
feJ002
00003
0.0003
U.0003
0.0003
0.0002
0000V
-000001
-0.0002
-0.0003
-0.uUU03



2e44
2048
252

2656

2060
2.64
2.68
2672
2676
2.80
2.84
2.88
292
2.96
3.00
3.10
3.20
3.30
3.40
350
3.60
3.80
3.90
400
4.20
4047
4060
4.80
5620
540
560
5.80
6.00

1.0185
1.0168
1.2207
1.0212
1.0213
1.0211
1.G206
1.0158
1.0188
1.0178
1.2166
1.0154
1.0142
1.0130
1.0119
1.C094
1.CC76
1.0063
1.0054
1.0048
1.0044
1.0041
1.0037
1.0034
1.0031
1.0024
1.0019
1.,0015
1.0012
1.0010
1.00C8
logﬁﬁb
1.00C5
1.0004
1.0C0C4
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TABLE XIII (cont'd)

-0.0075
-0.0069
-000060
-000051
-0.0041
-0.0032
-0.0023
-0.CC08
“000002
0.0002
0. 0006
c.0008
0.0009
0.0010
0.0009
C. 0007
0.0004
0.N001
‘000001
-2.0002
-0.0002
-0.0002
-0.0001
-0.0001
-0.0000
0.00C0
-0.0000
-0.0000
-0.0000
-000000
-0.0000
-0 0000
=0.0000

00,0023
0.0020
0.0017
0.0014
0.0009
00,0005
0.0001
-0.2003
-0.0005
-000007
-0.0007
-000007
-0.0007
=0 0006
-000005
-.0002
-0.0001
0.0000
C.0001
0.0001
©.0001
0.0000
0.0000
-0.0020
-0.0000
-0.0000
-0.0000
-0.0000
0.0020
0.0000
0.0000
-QOQQQS
-00000
-0.0000
0.0000

0.00601
0.0001
(VPRVIVIVE R
0.0001
G.20400
0.0000
0.00600
C.0N00
0060060
0.0000
0.0000
0.00G00
0.0C8N
Ge0000
0.0000
0000
G.000C
00000
0.0000
0.000¢C
0.009¢
0. U000
0.0000
2.0000
0. 0000
Ue 0

0.0

0.0

0.0

00000
0.0000
0.0uC0
0.0000
3.0000
0.0000
G.0000
Q0.nN0NC
C.0000
U.0000
C.00060
0.0000
0.0000
00000
6.0U00
3.0000
0.0000
0.0000
0.0000
0.0000
0.0000C
0.0000
C.0000
1.9000
0.0000
0.0

ccocOocoooo

cCCcCCI200DBC0C0

=-0.0002
-0.0002
-0.0000
-G.0000
D« 0000
0.0000
N.GH01
U.0000
0.CU00
U.0u000
0.0000
G.N000
00000
0.0000
20000
C.00UL
0.0000
0.00UUU
-0.0000
-OCOOCG
=0.0000
=-0.0000
—G‘DOEG
=0.000v
0.0000
0. 0000V
0.0000
-D.02000
0.00LO
-0.0000
20003
00000
0.0000
0.0000



R

0.80
0.8%
0e92
0.96
1.90
1.04
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1652
1.56
1.60
1.64
1.68
1272
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2 U4
2008
212
2.16
220
2e2%
2.28
232
236
2.40

G000

U« 0000
V0001
NN021
Je U204
0.0857
0.2131
0.3869
05829
Ve 7866
U« S889
1.1734
l1.3164
1.4161
1.4656
1.4760
1.4560
1.4135
Y3571
1.2959
1.2366
1.1829
1.13€5
1.0975
1.0653
1.0393
1.6186
1.0027
Ce SGUY
0.95827
9776
05750
0.5746
0.67¢€1
09753
19837
0.9891
C.9G48
1.7€92
1.0051
1.C093
1.0127
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TABLE XIV
FAIR DISTRIBUTICON COEFFICIENTS FOR 2 L-J POTENTIAL

FRUM PY EQUATION RHO*=0.60

G200

-0.0000
-0.0001
-N.0021
-0.0199
'0.0819
-301960
-0.3358
-004633
-0.5650
-0.5172
-0e4235
-0.3099
-N.1955
-0.0922
-0.0075
0.0521
0.C854
N.5980
0. (S79
0.0914
D.N823
0.0726
0.0631
U.0543
Qe.(0462
0.0387
0.0318
0.0254
N.0193
0.0136
0.0082
0.0033
-0.0012
-0 .3051
-0.0083
-0.01C7
-DN.N123
-000130
-0.0131

G220

Ve 000V
0.0001
2.0026
0.0237
0.0913
0.1999
003034
0.3513
0.3112
0.1769
-009125
-0.1876
-0.2966
-0.3248
=-0.2863
'002112
‘0.1335
-0.0746
-608379
-0.0179
-0.,0078
-0.0031
-000010
-0.0001
0.00U3
0.0007
D.0012
0.0018
0.0027
0.00306
0.0L04T
0.0057
0.0065
0.0065
fi NOTD
U067
0.0061
fl.ON53
0. 0046
00039
U.0034

T*=1.00

G221

=0.0000
-0.3000
-G QAL
'0.0011
-0.0C75
-000252
-0.C548
-G.Q9Ql
-0.1222
’0.1421
_901442
-0.1290
'001024
-0.C721
'0.0445
-0.0234
-000098
-U.0022
D.0014
00028
0.0031
00026
0.0026
C.N022
0.0018
0.0015
D.0012
0.0010
0.00C8
0.0007
0.00006
0.0005
0.000U4
0.0003
Q0003
00002
00002
©0NN2
0.0001
0.0001
Ve 0001

R¥=0.53
G222 G400
-0.0000 U.0U000
-0.0001 0.0002
-0.0025 0.0061
-0e0145 (040479
-0.0333 0.1520
-0.0444 0.2429
-00439 0.2016
-900370 000029
-0.C285 -0.2414
-0.0205 -03499
-000138 -302512
-0.0086 -0,0502
-000047 001040
-0.0021 UV.1l417
-0.0005 0.0895
0.0003 ($.0246
00006 =0,0078
C.U0C7 =-0.0131
N.NDCT -N.0051
00006 =0.0047
0.0UGC4 —-U.00L04
0.,0003 0.0002
3.05C3 QOOQQS
0.0002 0.0UL05
C.0002 0.0005
C.OOQl 0.0005
C. 0001 (0C.0006
C.0001 0.0006
0.0001 0.0007
C.0001 0.00C8
2.000C1 Q.0009
C.0000 0Qe.u008
€C.0000 d.0007
3.09000 0.0005
0.0000 060002
00000 =-0.0004
20.0009 -0.04805
J«0000 =-0.,0U05



2044
2048
2452
2.56
260
264
2.68
2672
276
2.80
2.84
2.88
292
296
3.00
310
3620
3.30
340
350
3.63
3.70
390
4,00
4,20
4,40
4,60
4 .80
5600
5.20
5e47
560
5.80

1.0155
1.¢178
1.0154
1.0204
1.0207
1.0205
1.60168
1.0187
1.0174
1.0144%
1.0128
1.0112
1.0097
1.0084
1.2057
1.0039
1.0031
1.0029
1.0029
1.0030
1.GC31
1.0030
1.0028
1.0026
1.0019
1.0014
1.0011
1..0009
1.0008
1.00086
1.0005
1.0004
1.0004
1.0003

TABLE

-0.0085
-0.00638
-0.0QSZ
-O.CC36
-000022
-0.0C09%
0.0001
D.0099
0.0015
0.0015
N.0022
0.0023
0.0022
0.0018
0.0011
0.C004
-0.0001
-0.0004
-0.00605

-0.0005

-0.0004
—O.Qﬁﬂz
’0-0001

0.0000

0.0000
-0.0000
-0.0000
-0.00040
-000000
=0.9C00
-0.0000
-0.0000
-0.0000

=115~

1
XY 0538 %. 0001
J.0026 {.0001
Ue 0022 000001
0.0016 (.0001
D.R0B9  D.O000
0.0003 0.000C
-0.0003 0.0000
-0.0008 0.0000
-0.0012 0.0000
-QOQGI3 QQOOOG
-0.U014 000000
-0.0013 C.00Q0
-2.0011 ©.0D09C
-0.0010 0.00C00
-0.0008 0.0000
-0.0003 0.0000
00000 0.0000
0.0002 0.0G00
0.0003 0.00CC
0.0002 0.0000
D.0002 ©C.0C00
0.0001 0.00CC
-0.0000 0.0000
-0.0001 0.0000G
-0.0081 0.000O0
-0.0000 0.0
=-0.0000 0.0
0.0000 0.0
0.0000 0.0
0. 0000 U600
-0.0000 V.0
-OOOOGG DQQ
-0,0000 0.0
0.0000 0.0
0.0000 0.0

0.0000
2.2000
U 0000
0.00GCC
QL < 2NGH
C. 0000
U. 0000
G.0000
0.0000
Q.0000
00000
0.000C0
00500
C« 0000
0000
G.0000
0.0000
0.2000
060000
C.0000
€ 00882
C. 0000
Ue0000
C.0000
VU000
N.0

Ue0

-0 0004
-0 UUVU3
-0.0002
-0.03001
-000001
-0.0000
00000
0.0000
0002
Ve 000V
G.CGC00
2472900
0.U000
00000
0.0000
0.0000
0.0600
0.0000
C.0000
-Q.QOCO
=-00000
-000000
=0.0000
=-0.0000
U.0000
0.0000
=3 0D50
-0.0000
=-0.0000
-0.0000
U-0000
5.0000
0.0000
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TABLE XV
PAIR DISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

FROM

R

C.80
U84
G.88
0«92
Ce96
1.00
1.04
1.08
l.12
l.16
1.2D
1.24
1.28
1.32
1536
’..4&
le44
1.48
1.52
le56
1.60
1.64%
1.68
172
1.76
1.80
1.84
1.88
1.92
1.96
2 .00
2.04
2.08
2.12
2416
2420
224
2+28
2e32
2.36
2e4UV

PY EQUATION

GO0O

U« CO00
0.0001
D.0023
0.0222
0.0924
0.2274
Ve4087
N.61C5
0.8177
1.0214
1.2050
13472
1.4373
1.4784
1.4767
1.4505
1.3996
1.3358
1.2684
1.2043
1.1471
1.0683

1.0579 -

1.0252
0.55S54
09797
Q.9652
0.5553
0.5494
0.5470
0.5474
09550
0.9616
Je9665
05783
05872
0.55954
1.0024
1.0081
l.0126

RHO¥=0.,80 T*=1.70 Rx*=(,53
G200 G220 G221 G22¢ 6400
=U0s0000 Ue0000 =0e000VU =0.0000 U.0000
-0.0001 0.0001 -0.0000 -0.0001 (G.0002
-00214 06,0264 -060013 =-00161 060543
-0.C873 0.1004 -0.0085 =-0.0365 Q0.17C2
=0.2C77 0.2170 -0.0282 -0.0481 0.2674
~0e3543 Ue3247 —0.0607 -0.0469 Q.2148
=0e5708 063188 —=0e1325 =0.0287 =0.2770
~Ne5238 =-0.0367 -0.1529 -0.0141 -0.2808
-0.4168 =-0e.2212 -0e1354 -0,C086 -0.0638
-0.2922 =-0.3212 =-0.1064 -0.0047 0.1005
-0.0653 =0.3064 -0.0453 -C.0005 0.08S0
0.0196 =0.2233 -0.5237 N.00C3 <C.2243
0.C780 =061399 -0,0068 (Q.0006 =-0.0072
01094 =0.0779 =-0.0022 0.00C7 -0.0119
0.1165 -N.N398 (0V.0Ul4 0.0006 =-0.0076
01168 =0.0191 0.0027 GCe0006 =-0.0032
0.1078 -0.0088 0.0030 C.N005 -0.00C5
0.0964 -0.0039 0.0028 0.0004 0.0008
0.C845 =0.0017 0.0025 (.0003 0.0013
0.0731 =0.0005 Q.0021 4.0002 3J.0014
00624 0.0002 040017 060002 WV.0014
0.0526 00010 0.0014 0.0002 0.001l4
N.N435 N.O0019 0.0012 G.0001 0.0014
00350 060029 040010 C.0001 0.0014
00269 0.0042 0.0008 J.0CO01 D.ONLS
00163 0.0057 0.0007 0.0001 0.0017
0.0121 0.0072 0.0005 (0.0001 0.0017
0.0054 02.0085 0.0004 0.0001 9D.0017
-060009 00095 0.,0004 0.,0000 0.0016
-0.0064 0.0100 0.0003 (0.0000 0.0013
=-N.0111 G.0699 0D.0003 .0.0000 0.0009
-0.0148 0,0092 U.0002 (0000 0Q.00V4
-0.0174 0.0081 0.0002 C.9300 -0.00C0
-0.0189 0.0069 00002 0.0000 =-060004
-0.0162 0.0057 0.0001 C.0000 =-0.0007
-0.7186 2.0048 0.0001 90.0000 -0.009
-0e0172 Ue0041 0.,0001 Ge0000 =-0.,0010



2044
2 .48
2652
256
2 .6"7!'
2064
2668
2al2
276
280
2.84
2488
292
296
3.00
3.10
3.20
3.30
3e4i
3.50
3.63
370
3.80
3.90
4,00
4,27
4040
4 .60
4080
5.00
52U
Se4U
560
580
6.00

l.0162
1.7188
1.0206
10215
1.0215
1.0207
1.0193
1.0176
10155
1.0133
leCl1l1
1.0090
1.0069
1.0051
1.0035
1.0GC7
0.59S5
1.9565
1.0002
1.0011
1.2218
1.0022
1.0023
1.0021
1.0018
1.0010
1.00C6
1.00C5
1.0005
1.0005
1.0004
1.0003
1.0002
1.0002
1.0002
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TABLE XV (cont'd)

-N.0N128
‘0.0103
-Ov 007°
=0e 0051
'0.0029
0.CCC8
0.0021
£.0031
00037
0.0041
0.C042
0.0C41
0.0038
0.0027
0.0013
€.0002
-0.00C6
-0.0010
-G .ﬂﬁl@
-0.,00C8
-0.0GC5
-0.0002
0.0001
D.0002
C. 0001
-0.0000
’009601
-0.0000
-0.0000
C.0000
0.0000
-0,0000

0.0036
0 .0030
V0024
0.0016
G.0007
-0.0002
-0.0011
-0.0017
-000021
-1 e2022
‘000021
-0.0016
-0.0013
-0.0002
0.0003
0. 0005
0.0004%
0.0002
0,0000
-0.0001
-0.0002
-0.0001
0,0000
0.0000
0.0000
-0,0000
-0.,0000

0.0000

00000
0.0000

0.0001
Q-?QGI
U.0001
0.0001
U. V00U
0.0000
0.000C
Ue V00O
U.0000
2 .N000
C.00QCC
0.0000
0.0000
0. 000U
0.0004G
00000
0.0000
00000
00000
0.0000
0 .0000
00000
0.0000
C.00G0U
0.0000
Ded

0.C

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0000
C.00%
G000V
C.0000
C.0000
C.0000
C3009
00000
0.0000
0 .NN0H
C.0000
0.0000
QeUOGU
0.0000
J.000C
U« 0000
C.0000
S .0000
0.0000
00000
0.0000
C.0000
0.00900
00000
0.0000
Ced

0.0

-00908
=-0.0007
-U.0004
-0.000G2
"000001
-0« GUULO
20000
00000
0.0001
0.0001
0.0001
D.0001
U.00U1
V.0001
20001
0.0000
00000
-0.0000
=4 o000
-UeULOU
D000
00000
0.0000
-0.0000
-0.0000
U.00060
00000
0.,0000
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_ TABLE, XVI
FAIR CISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

FROM PY EQUATICN

R

0.80
0.84
0.88
0.92
N.96
1.00
1.04
1.08
1212
1.16
1.20
1.24
1.28
132
1.36
l.47
lo44
1.48
1.52
1.56
1.60
l.64
1.68
l1.72
l.76
1.80
1.84
1.88
1.92
1.56
200
2.4
2.08
2.12
2.16
2420
224
2028
232
236
2640

GOOO

0.0000
U.0001
0.0026
V.0249
N.1%i22
02486
0.4419
Ne6531
0.8667
1.0739
1.2577
1+3951
1.4776
1.5079
1.4971
1.4559
1.3638
1.3203
1.2449
1.1746
1.1130
l.0614
1.0194
0.9863
05610
0.9425
C«9300
0.9227
0.9199
Ce 5208
0.9249
D.9314
0eS401
Ue9506
U.5626
05751
(.9874
0.5982
1.C070
1.0137
1.0185

RHO*=1.90

G200 G220
-0.,0000 0.,0000
-0.0001 0.0001
‘0.0236 000302
-0.0954¢ ©0.1132
=0e2255 (e2414
-0.3824 0.3558
-N.5225 0.3974
-0.6082 003326
-006132 0.1602
-005382 '0.0670
-004132 —002649
-N,2738 -0.3765
-061438 -0.3914
-0.0338 -0.3327
H.N518 =-0.2387
V61092 -0s1477
0.1381 -0.0813
0.1451 =-C.0412
001390 ‘000197
0.1267 -00009&
001122 -0,0038
0.C0976 -0.0013
N.Ng36 0D.0001
0.07C6 0,001}
0.0585 0.0022
0.0473 U.0035
0.0368 0.0051
N.N268 .0069
0.0174 060089
0.0084 (.0108
H.NN01 D.D125
-0.C076 000136
-0.0142 0.0140
-0.0167 0.0134
-0.0237 0.0120
-ﬂ09262 G-QI“Z
-0.0271 0.0082
-0.0266 0.0065
-0.0248 N.N052
-000220 Qe 0U4&3

T*=1 .00

G221

-0 00CUO0
-0.0000
“0.0001
-0.0015
-Q.qug
-0.0324%
-0.0689
-0.1198
=0e1466
-0.1669
-0.1654
-0014é6
-0.1123
-000774
-0.0099
-0.0022
0.0014
0.0027
0.0030
0. 0028
0.0024
0.0020
0.0017
0.0014
0.0011
0.0006
H.0008
00006
00005
0.0004
0.00C4
0.0003
0.0003
0.0002
N.0002
V.0002
0.0001
f.0071
O.u001

R*=(1, 53

G222 G400
~0.0000 0.0000
-0.0001 (©.0003
-0.00323 0.0082
-0.0184 0.0634
-Qnﬂqll ﬂ.1957
-000534 0630195
-0.0514 0.2342
-000421 '0.0247
-060315 =-0.3250
‘ﬂoQZZI -004472
-0.0145 -0.3204
-U.0088 ~-0.0809
-000047 1 «N1ST76
-0,0020 0.1424
-0.0005 0.0896
0.0003 0V.0246
0.0006 =0.0062
0.0007 -0.G1C0
U.0006 -000054
0.0005 =0.0009
£.0004 U.0016
0.0004 0.,0027
0.00C3 0.0031
0.0002 (.0031
0.0002 0.0030
C.0002 ©G.00029
C.0001 O.vU28
0.0001 U.U0029
N.0001 4.D4U30
0.0001 0.0031
0.0001 0.0032
.0001 0V.0031
0«0000 0.0027
0.0000 0.09222
0.0000 060014
C.0000 0.0006
3.9000 -QOQOOZ
00000 -00009
00000 =0.0014
0.0000 =0.0018
Ce 0000 =-V.0019



244
2.48
2652
2456
2.6U
2.64%
2 .68
2072
276
2.80
284
2.88
2.92
2.96
2.00
3.10
3.20
3.30
340
3.50
3.60
3.70
3.80
3.9V
4,00
440
4,60
4,80
5.00
5«20

5:40.

5.60
580
600

1.0220
1.0243
1.0255
10255
1.C0244
1.0225
1.0198
1.0168
1.0137
1.0104
1.0074
1.2045
1.0019
0.6998
Ne9980
Ue 9956
0.9955
N.9969
09988
1.0006
1.0018
1.0023
1.0022
1.0017
1.0011
1.20071
09999
1.0001
1.0003
1.0003
1.0032
1.0001
1.0001
1.0001
1.0001

TABLE

-0.01438
-0e 0109
-0.0071
-0.0036
00020
0.,0040
0.0055
0.0065
0.0070
0.0071
00068
0.00¢€3
D.N056
00034
00011
-N.00C7
"000017
-0.002%
-0.0017
-0.0011
0.C001
0.00C4
0.0005
0.,0001
-0.0002
-0.0000
N ..HD000
C. 0000
00000
-0.2000
-O.UOOU

=119~

XVI (cont'd ;
0.0037 «00C1
0.0030 0.u001
0.0022 0.0001
0.0012 D.004]
0. 00U0 06000CU

-0.0012 0.000C0

-0.0022 0£.20C0

-0.0029 (0.0000

-0.,0033 0.00C0

-0.0030 0.0000

-0.0026 ©0.0080

-0.0021 060000

-0.0015 0.0000

-0.0009 £.0000
0.0002 (0000
0.0008 0.0000
U.0010 0C.0ULU
00009 0.0000
0.0005 0D.0000
U.0001 0.0000

-0.0003 0Q.0007

-0.0004 0.G06G0

-0.00U3 0.0000

-0.00V1 V.0
0« 0001 0.0
0.0001 2.9
0.0000 Q.0

-0.0000 0.0

-D0000 0.0

-0,0000 0.0
0.0000 0.0
00000 0.0
C. 0000 0.0

£.0008
C.0U00
C.0000
(. NQOO
0.0U00
0.0000
0.N0o0
00000
C.0000
0.0000
C.0000V
Q.2000
00000
C.00C0
00000
C.0000
00000
C.0000
0.0000
. ODO0
0. 0000
0.0000
20000
C.0000
C.0000

CoocouwooLoo
© o 0 5 0 s 8 ¢ o

CtoOCOocolLoo

-Q.QOIB
-0.0014
-D.N011
-0.0uC8
-0.0CCe
-L.0004
-0.0001
UsU0ULU
V.0001
D602
Ue00UL2
0.0002
(3.N0G3
U.0003
U.U003
U.0U02
0.0001
-0 0D
-0eUULOL
-0.0001
-5.0001
'UoOUUl
-0.,0000
0.0000
0.0000
0.6000
-0 000U
-0.0000
"Q.'}Q( Q
0,U000
00000
00000
-0.0000
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TABLE XVII

PAIR DISTRIBUTICN COEFFICIENTS FUOR 2 L-J PCTENTIAL

FROM PY EQUATIOGN

R

080
Q.84
(.‘.88
Ca.92
596
1.00
1.04
1.08
le12
1:16
1.20
1.24
1.28
1l.32
1.36
1.4u
1.44
1.48
p
1.56
1.67
l.64
l1.68
1.72
1.76
1 .8"
l.84
1.88
1.92
196
2.00
2.04
212
216
2620
224
2428
232
2+30
2.4\)

G000

0.0000
N, 0001
Ve 0031
0.0286
De.116N
0.2786
0.4888
Ue 7134
e 9357
1.1478
13319
1.4¢642
1.5351
1.55C6
1.5237
1.4668
1.39G03
1.3045
1.2163
1.1418
1.0753
1.0207
0.9776
054406
C.G2C7
U.8652
0.8917
Ne8932
0.8988
05076
0.5189
0.9323
HeG5475
09640
U.G98C8
e GGEDS
1,0067
1.0167
1.0264
1.0306

RHC*=1,20

G200 G622y
-0.0000 0.0000
=0.0001 0.0601
-0.0C29 000041
-0.0268 0.U354
-N.1071 €.1310
-0e2508 002753
-0.4224 (03993
-005731 0.4368
-0.6610 0.3527
-0.6558 0.1502
-0455G8 =0.1070
-0.4107 -0.3226
-0,2517 -0.4358
-0e1096 -004403
0.0056 -0.3660
0.0922 =0.2574
0.1479 -0.1562
0.1735 -0.0841
0e1762 =0.0413
0.1655 '000187
N.1488 -0.0076
01303 -0.,0023
0.1119 0.0004
U.0946 0.0020
0.C784 0.0033
D.0635 0.0048
0.0496 0.00066
0.0365 0.0087
D.N241 N.D113
000124 0.0136
0.0014 0.0160
-0.0089 0.0179
-000181 000190
-0.2258 0.0189
-000318 060174
-0.0357 0.0150
-N.N375 0N.N120
-000372 00090
-0.0350 0.0065
-0-C313 0.0049
-0.0264 0.0038

T*=1.00

G221

-U. 0000
-0.006H0C
-0.0001
-V.QIIS
—-Ce(C383
-0.0804
-001275
-0.1668
-D.1867
-Ue. 1824
-0.1572
-G.lZGZ
-0,0816
-0.0487
-0.0248
-0.0022
0.0C13
0.0026
0.0029
0.0027
0.0023
0.0020
0.0016
0.0013
0.,0011
0.00C0S
0.0007
0.0CCe
0.0005
0.u0U4
0.0004
0.0003
00003
0.0002
0.00N2
00002
0.0001
0.0001
0.0001

R*=0.53

G222 G400
-0.0000 U.00ULVY
-0.0002 0.0003
-0e0039 UL0100
-0.0216 0.0759
-U0e0476 0V.2312
-00608 063501
-N.0576 (.2615
-0.U0464 -0.0456
-0.0341 -0.3901
-0.M7235 -N.5228
-000152 -003732
-0.00S0 =-0.1026
-0.0047 (.US48
-00020 001451
=0.N0C5  D.71914
0.0003 wvV.U258
0.0006 -0.0040
8.2006 -H.0N68
0.0006 -000017
0.0005 w.0027
0.0004 0.0050
00003 0.0058
0.9063 0.0059
U.0002 060057
0.0002 WV.U0U54
2.0N001 0.0253
0.,0001 0.0052
C.0001 0.0052
0.0001 0U.0053
0.0001 0.0054
C.0001 D.0053
C«0001 U.U050
0.0000 0.0043
B.3000 nN0N32
00000 060019
0.0000 0.0005
C.u000 =-0.0008
0.0000 =-0.0019
0.0000 -). 07128
C.0000 -0es0033
00000 -0.0035



244
2.48
2052

2056

2460
2 6%
2.68
2672
216
2.80
2084
238
292
2.96
3.00
3.10
3.20
3.30
340
3450
3.60
3.70
3.80
3.90
4,00
4,20
4440
4,60
4,80
500
520
5.40
5.60
580
600

1.8329
1.0337
1.0331
1.8313
l.0282
1.0243
1.8197
1.,0150
1.0103
1.0058
1.0018
0.5983

- 0.5654

U.5932
N.9%16
Ue99CH6
0.9G625
Te996N
09995
1.0021
1.0033
1.0033
1.00825
l.C014
1.00u3
Ne99G2
05394
1.0001
1.0004
1.0002
Ue9999
1.0000
1.8C01
1.0001

-0 0%

-0.0152
-0.C096
-N.0044
00,0002
0.0041
C.C072
0.C094
D.0108
N.0114
U.0l114
0.0109
C.0100
0.0087
D072
0.0032
-0.0002
-0,0035
-0.0033
-0.0023
N.0001
0.CCC8
0.0C11
N.NCA7
-0.0004
-0.0002
0.0000
d.00C1
0.0001
-0.0000
-0.0000

-121~

1
XPod§2 ' §aoon
0eUU25 VL0001
0.0016 0.0001
0.0003 0.,0091
-0.0011 0V.0GUC
-0.0026 0.0000
-0.00U37 0.0000
-0.0045 0.0000
-a 096347 0 .Qoaf:
-040039 0.000C0
-0.0031 C.aDGH
-0.0022 0.0000
-0.0013 U.0000
-N.0C04 Q.02030
00,0011 0.000C
0.0018 0.0000
0D.0017 0.00060
00012 0.0000
0.0005 0.0000
-0.0006 0.0000
-0.0007 00,0000
N0.0001 0.0
0. 0002 0.0
0.0001 0.0
-OCUOOO U0
-0.0001 0.0
00000 0.0
0.0000 0.0
N0000 0.0
-0e 0000 0.0

{0000
0.,0000
C.00G00
7 .000n
C.0000
C.0000
C.00G00
U.0000
C.00C0
U.00CU
00000
’: - {"3&{:
Ue Q00U
C.UU00
€. 0000
C. 0000
0.0000
G.0000
C.0000
2.0000
00000
0.0000
2.7000
Ue 0000
0.0000
U .0

occoocwoCoDoO
ccoocoOcoPoO

-0.3633
‘0.003\)
=020
-0.0015
-0.0010
-000006
-{JCQGQQ
0.0002
U.0003
H.0C05
Ve UUOG
U.0006
J.D007
G.0007
0.0005
0.U003
0.0001
-Ue0003
-0.0003
-0,0001
-0.0000
V.00Vl
0.0001
G.00C0
-0.0000
-0.0000
-0.0000
Ce 0000
0.0000
U.0000



FRCM PY EQUATICN

R

080
N84
Ce88
G.92
”.96
1.00
1.04
1.08
1.12
l.16
1.20
1.24
128
1s32
1.36
l.40
1.44
1.48
1+52
156
1.60
1.64
1.68
1.72
 Lear 7
1.87
1.84
1.88
1.92
196
200
2o U&
208
2+12
2016
2.20
224
2428
232
236
240

G000

0.0000
N.CO0D
0. LUCGS8
0.0120
L eN691
02050
0.4080
0.8825
1.1184
133170
1.5144
1.6327
1.6613
1.7004
1.6722
1.6170
1.5446
1.4655
1.3882
1.3183
1l.2578
1.2070
1.1652
11312
1.1040
1.0826
1.0662
1.0540
1.0454
1.6399
1.0368
1.0357
1.0364
1.0385
1.0417
1.0455
1.0454
1.0528
1.0555
10513
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TABLE XVIII
PAIR DISTRIBUTION COEFFICIENTS FOR 2 L-J POTENTIAL

RHO*=0 .40

G200 G220
-0.0000 0.0000
-0.00C8 0Q.0010
-0.0118 0.0145
-0s1924 06,2047
-0.6538 0.4288
-0e.6567 060753
-0.5507 -0.1588
-N.4132 -0.3259
-0e2714 -0.3930
-0e1415 -0.3690
-0.0330 -0.2867
0.0470 -0.1878
D.NS45 -0,.1058
0.1159 -0.0227
N.1081 -0.0080
00965 =-0.0014
0.(841 0.0011
0.0722 0.0019
0.0614 0.0020
D.0516 0.0020
000429 00020
0.0351 0.0023
NN2T79 D.0D29
VeU214 00036
0.0153 0.0045
0.CCS6 U.0055
0.0044 0V.0063
-0e.0044 0.0071
-0.CC79 0Q.0069
-0,0123 00055
-0.0123 0.00406
-0,0135 (.0038
-0.0131 0.0033

T*=0.75

G221

-0.0G000
=0.0000
-0.,0000
-0.0005
-2.0G050
-060212
-0.0533
-0.0957
-0.1674
-0.1769
-UeCS5381
-0.0145
-0.0033
Ve (021
0.0041
V.00406
00043
O.0038
U.0032
0.0026
0.0021
0.0018
0.0014
D.0012
00010
0.0008
0.0007
0.0005
L0004
0. 00C4
0.0003
U.0003
0. 0002
0.0002
U.000U2
0.0001

R*¥=0e53
G222 G400
-0.0000 0.0000
=0.3900 D.0000
-0.0011 0.0023
-0e0544 U.2939
-00578 03213
-0.0496 0Vl.1332
-0.C381 -0.1883
-0e0273 -De4193
-0,0184 -0.3892
-0.0063 0V.0776
-0.,0028 0.1827
-0.00087 N.1468
0.0005 0Ul.U0610
0G.0010 0.0011
00010 =-0.0l41
00005 -0.0082
C« 0006 =-0.0015
0.0N05 -0.03C4
C.0004 -0.0000
0.00C3 (C.000L1
D.00C2 L.NND1
0.0002 0.0001
0.0C02 0.0001
0.0001 0.0002
C.0001 0.0003
00001 6.05605
C.0001 U.0ULOG
(0001 Q.0U007
C.A001 L.0C06
Ue0OU00 (C.0005
C.0000 wV.0003
0.0000 0.00U1
Ce0000 -C.0002
C.0000 =U00V4
G.0UUU =-0.0005



244
2.48
2452
256
260
2.64
2.68
2672
2.76
280
2484
2.88
2092
2.96
BOOﬁ
3.10
3.20
3.30
3.40
3.50
3460
3.70
3.80
3.90
4.00
4,20

4 .40,

4 .60
4.80
5.00
5029
540
580
6.00

1.0583
1.0589
1.0589
1.0584
1.0574
1.0558
1.2539
1.0516
1.0491
1.0465
1.0438
1.0412
1.0387
1.0363
1.0341
1.0252
1.C256
1.0229
1.0210
1.0165
1.0182
1.0169
1.0157
1.0145
1.0133
1.0110
1.0052
1.0078
1.0066
1.0056
1.0048
1.0041
1.0035
1.0030
1.0026

ABLE
0.1

=0 0108
-0.0092
-0.,0058
-0.0042
-0.0028
=0 0015
-0.00C04
0.0004
0.0010
N.0015
0.0017
0.0019
0.0019
00,0015
0.0009
0.00C3
-0.0604
-0.0005
-0,0003
-OOOOGI
-0, 0000
-0.0000
-0.00G1
-0.0000
-0,0000
-0. 0000
-0.0000
-0.0000

=123~

X e 55" dhony

00025
0.0022
N.0018
0.0012
0.0006
0.0000
-0.0009
-0.0011
—000612
-000011
-0.0009
-00003
0.0002
0.0002
D.N0D2
0.0001
0.0001
0.0000
-0.0000
-0.00920
=0.0000
-0.0000
N.0000
0.0000
0.0000
-0.0000
-0,0000
-0.0090
0.0000
C.0000

U.0001
0.u0U}
N.00451
0.0001
0.0001
0.0000
0.0000
D.0000
00000
0.0000
N.0000
0.0000
0.0000
0.0000
0.0000
6.0060
0.0000
0.0000
DOGCH
0.0000
0.0000
0.0000
0.0000
0.000C
0.0

0.0

0.9

{.92040
00000
0.0000
0 .0000
Ce.0000
C.0000
00000
C.0000
50000
00000
C.00C0
3 .NHO00
C«00G60
C.0000
G.0000
0.0000
0.0000
00000
G«0000
Q.000n
0.0000
00000
00000
0.0000
0.0000
0.0

0.0

=504
=U. 0004
-0.0001
-0.G6000
0000V
0.0001
0.NN01
0.0001
0.0001
f.fU0U
00,0000
0.0000
U.0000
0.0000
0.0000
(CPRVIVIe]0)
C.0U00
-2.0000
-0.0000
=-U.U000
=0.0000
-0.0000
00000
0.CU00
20000
-0.0000
-0.0000
06000
0.0000
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FAIR DISTRIBUTION c0e§é?€ié£§s FOR 2 L-J POTENTIAL

FROM PY EQUATION

R

0.80
8%
Qe88
0.92
.96
1.00
1.04
1.08
1.12
le16
1.20
1.24
1.238
1.32
1.36
le40
1.44%
1.48
1+52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2e U4
2.08
%
2616
2.24
2428
2232
20306
2.40

GU0O0

00000
J.0000
00008
0.0124
0.07C7
0.2074
De409N
06385
0.8718
1.39%6
1.3068
1.4785
1.5882
1.6386
1.6487
1.6068
1.5474
1.4722
1.3615
1.3139
1.2445
Y1852
1.1362
1.0965
10651
1.0409
1.0227
1.0068
1.00612
0.99067
G952
Qe 9963
0.99S5
1.0043
1.0107
1.0181
1.02640
1.0336
1.2400
10450
1.0486

RHO*=0.60

G200 6220
-0.0000 G.0000
-0.0120 0.0154
-0.,0672 (C.084U8
-0.1924 0.2120
-0.6496 0.4216
-N.6884 00,2793
-0.6382 0.0468
-0.5218 -0.1916
-0.3767 ~0.3559
00000 =-062932
0.0755 =0.1903
0.1352 -0.0531
0.1337 -0.0236
0.1233 =-U.0090
0.1084 -0.0025
D.N950 C.0001
0.C814 0.0011
0.0689 0.0015
N.N575 0.D0018
000473 0.0023
0.0380 0.0031
0.0294 0.0041
0.0214 0.0054
0.0139 0.0C68
0.0068 0.0082
0.0003 0.0094
-N.N055 0N.N1D2
-0s01C6 000103
-0.C147 0.0097
-0.0176 (0.0087
-N.2201 2.06G59
-0e01ST 060047
-0.0185 0.0039

T*=0.75

G221

-0.0000
=0 00CU
-0.0005
=Ue 1000
-0.1430
-0e1723
-0.1803
-0.1657
-C.1348
-0.0972
-Defi6le
-0.0331
-0.0032
00020
0.0040
0.0044
0.0041
C.0036
0.0030
0.0025
L0020
0.0017
0.0014
0.0011
0.0009
C.nN0CS8

0.0005
C.002¢4
0. 00C4
0.00C3
0.0003
0.0002
0.2002
0.0002
0.00d1

R¥=0+53
G222 G430
-0.0000 0.0000
-0.0000 O.0000
-C.0114 0$.N343
-,100588 003312
-0.0379 =0.2164%
-0e0179 -0.4169
‘000110 -ij-l.?"g
-0.0060 UeU669
-0.0027 0Q.1748
-QOQOQ6 ’301434
0.0005 0.0588
C.0009 0.0018
C.U010 -0.0144
0.0009 =-0.0118
0.0007 =0.0021
C.0005 =-0.0001
J0.0004 C.00C7
00004 0.0010
0.00C3 0.0010
U.0002 0.0006
00002 0.00065
3.0002 0.0009
0.0001 0.0010
0.0001 (U.UO012
0.0001 0.0014
0.0001 0.0015
C.0001 0.0015
0.0V00 0.0013
00000 U.0010
C.0000 0.0006
00000 (Geo00UV2
C.00u0 -0.0003
0 .’)QQQ "Q 013’);06
€. 0000 -0.0008
0.0000

-0.0009



Zeb4
2+48
252
256
2460
268
P4
2.76
280
2092
2496
3.00
3.10
3.20
3630
3.40
345D
360
3.70
3.8v
3.90
4000
4020
440
4,60
4680
500
5620
5.40
560
580
6.00

1.0509
1.0524
1.0531
1.0530
1.0521
] .0505
1.0483
1.0457
1.0428
1.0399
1.0369
1.C0340
1.0313
1.0287
1.02¢64
1.6220
1.0192
1.C177
1. 0X%1
1.C167
1.0163
1.0156
1.0148
1.0138
1.0127
1.0106
1.00S0
1.0078
1.0069
1.0060
1.0052
1.0046
1.0040
1.0035
1.0031

-125~

TéBLE XIX ggont qg

‘9. 000‘01
-0.0141 0 0030 Ge 0001
-0.0088 0.0020 0.00U1
-0.00€62 0.0012 0.0001
-N.N039 0.0004 C.00C1
00014 -G.N017 ©.0000
00024 -0.0020 C.000C0
0.0036 =-0.0019 0.0000
00038 -0.0017 0.0000
0.0037 -0.0014 ©.0000
0.0035 =-0.0010 0.0000
0.0025 -0.0003 0.0000
N.0012 C.0002 C.003C
00001 0.0005 0.0000
-N.2010 0.0004 0.0000
-0.0011 00,0002 (0.0000
-0.0006 =-0.0001 0.0000
-0.0003 -0.0001 0.00GQC
00001 -0.0001 0.0
0.0000 (0.0000 0.0
-0.0001 0.0000 0.0
-0,0000 =0.0000 0.0
-0.0000 -0.00006 O.u
-0.0000 0.0000 C.0

0.0050
C-0000
C.DNNOD
0.0000
C.0000
0.0000
U 0000
0.0000
2.0000
00000
00000
C.0000
C.0000
0.0000
Ue 0000
0.00G0
£.0000
00000
00000
C.0000
0.0000
0. D000
00000
00000
L0000

-0,0008
-0.0U0GC7
-0.0005
-0.0004
-0.0001
-0.0000
€ NODL
C.0000
0.0001
C.0001
00,0001
0.0001
0.0001
G.0001
D.0001
00001
U« 000LO
U.00LU
- « NN0E
=0e00UU
-0.0000
=0.0000
G.0000
0.0000
0.00060
=-0.0000
-060000
-000000
20000
00000
0.0000
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TABLE XX
PAIR DISTRIBUTICN COEFFICIENTS FOR 2 L-J POTENTIAL

FRCM PY EQUATICN

R

Ce80
0«84
0.88
n.92
0.96
1.00
1.7%%
1.08
1.12
1.16
1.20
l.24
1.28
1.32
1.36
1.40
1.44
1.48
lebe
1.56
1.60
l.64
1.68
le72
l.76
1.80
l1.84
1.88
1.92
1.96
20D
2004
208
2412
216
2 220
2024
2428
2ea 37
2636
2.40

GenQ

0.0000
0. 0000
0.0008
00131
UeUT36
0.2136
Ge4l68
Ue 6448
1.0650
1.2979
1.4582
1.5585
1.5896
1.593n
1.5519
1.4868
1.4075
1.3242
1.2453
1.1758
l1.1172
1.0696
1.03169
1.0029
0.S5814
0.5663
D.9568
0.9519
09510
fe9534
0e5583
05653
05739
0.9840
$9952
1.0066
1.0171
1.7258
1.0324
1.0368

RHO*=0.,80

G229 G229
-0.00C8 0.0011
-0.0124 D.0166
-0 0689 000860
-0.1960 . 0.2228
-N.3694 .3695
-0e.5374 (e4512
-0.6548 0.4207
-N.4989 -0.2257
-0e3444 —-0,3882
-0.1961 -0e%401
‘00%692 -Qoag 77
0.0317 =0.3002
0.1425 -0.1070
0.1504 -0.0233
0.1372 =0.0089
0.1209 -0-0025
N.1045 00002
0.0889 0.0013
0.C747 0.0020
0.0618 0.0026
0.0500 0.0035
D.N392 0.0046
0.0262 0.0061
0.0198 0.0078
0.0110 D.0097
0.0027 06,0115
-0.0050 0.0129
-0.0118 0.0136
-0.0176 0.0135
-N.N2200 0.0124
-000250 0.0107
-0.0265 0.0086
-0.,0282 0.0051
-0.0228 0.0040

T*=0,75 R*=0.53
G221 G222 G40
=0.0000 =0.0000 GNNWD
=-U«0000 =0.000U VL0000
-0.0000 -0.0012 0.0029
-0.0006 -0.0123 0.2378
-0e 006U =-0.0383 0Ue.1657
-0.0246 -0.0589 wW.3330
-roblp -0.0609 Ue34€4
-041071 -0.0510 O0.ll66
-0.1856 -C.0176 -0.4488
"0.1688 -0001c7 -3.1634
-0e1356 -0.,0058 0.0573
-0.0970 -0.0025 0.1688
-0.0608 -0.0006 0.13683
-060324 060004 0.0574
-0.0137 0.0908 0(.4029
-0.0031 0.0009 -0.0120
0.0019 0.0009 -0.0091
0.0042 0.0006 0.0000
0.0039 0.0005 0.0C17
0.0034 0.0004 UV.0023
0.0028 000003 0.0024
0.0023 $.0003 %5.0022
0.UU19 0.0002 0.0021
0.0016 00,0002 0.0020
0.0013 0.00C1 2£.02c1
0.0011 0.0001 0.0022
0.0009 0.0001 0.0024
0.0097 0.0001 0.0026
00006 Ge0001 0.0027
0.0005 ¢€.0001 G.2N26
Ue0004 (.0000 0.0022
0.0004 0.0000 0.0017
0.0003 f .QQQQ 5eMOS
0.00C3 (Cl.0000 Ue0V0Z2
00002 GCe000V -0.0005
Ce0002 (Ce0000 -0.0015
0.NONL  J.0000 -0.N017



2.44
2643
2452
2456
2.60
2.0%
208
2912
2.76
2480
28%
ZeB8
2492
296
3,00
3.10
3,20
3.30
340
350
3,60
3.72
3480
4,00
4.20
4ol
4460
4480
521
5620
540
5.60
5.80
6,07

1.0367
1.0413
1.7420
1.0417
1.0405
1.7384
1.0357
1.0325
l.0291
1.0256
1.0223
1.C191
1.01¢€2
1.0137
i.0116
1.C080
1.0070
1.0479
1.0088
1.0093
1.£093
1.0088
1.0079
1.0070
1.0053
1.0044
1.0039
1.0036
1.0832
1.0027
1.0023
1.0020
1.0018
1.0C16

TABLE XX (cont'd)

-0.0197
-OOOlbl
‘ﬁ.ﬂlZ“
-0.0087
-0.0052
-QQQQZI
00005
0.0026
0.0053
N.0060
0.CC62
0.00¢1
N.0D058
0.0052
00033
0.0012
-0.0004
-0, NN14
-0.,0018
-0.0016
-N.0012
-0.00U06
-000001
0.0002
0.00C3
0.70001
-0.00C1
-0.00C2
-QQQQQI
-0.0000
0.2000
-0.00C0C
-0.0000
=% ,DNHN

=127

U.0034
0.0030
00025
0.0019
0.0009
—QQQGQZ
-060012
-0.0021
-0.0027
-0.0029
-0 .0029
-0.0026
-Q.Qle
-000011
-000000
U.0006
0.0009
D.0008
0. 0005
0.0002
—V.Oﬁﬂl
-0.0003
-0.0003
0.0001
0.0001
0.0000
-ﬁ.DQQQ
-0.0000
-0.0000
0000V
0.0000
0. 0000

U.U001
0.0001
Y0031
0.0U01
U.0001
C.0001
00,0000
0.0000
0U.0000
0.0000
D0.0000
C.000C
0.0000
0.00C0
0. 00CO
D.CO00
0.0000
0.0000
O.Qﬁaﬂ
00000
0.0000
0 .00H0
U.00CO0
0.0000
0.00U0
0.0

4

o

SGocCccoacCccCcl
s & &5 o & o 4 o
ro B o B o B o 8 o e B oo

0.00060
00,0000
G.000%
0.0000
0.0000
0.0000
00000
Q.00N
0.00600
0.0000
00003
0. 0000
C.0000
C.0000
G.0000
2.0000
0.0000
C.0000
£ 0000
0.00GC0
0.0000
0000V
0.0000
8.0000

[«
C
[ =
(]

Ll

SoCUCCOODOO

DOoOOCDCOCCODC

“000017
-U.0015
-0.0013
-000010
-0.0008
-0.0005
-0.0003
-5 .13002
-0.0001
U.000U
AR ELAIV) |
0.0001
0.0002
0.U002
0.0002
10002
Ue U022
0.ul01
L0501
-Ce QU0
-0.0001
-0.0001
={1e D200
=0e0VOLU
00000
e 000C
00000
-0.0000
-0.0000
=0.0uul
90200
0eUOUU
0.0000
-0 N300
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TABLE XXI
FAIR CISTRIBUTICN CCEFFICIENTS FCR 2 L-J POTENTIAL

FRCM PY EQUATICN

R

Q.80
O.84
0.88
C.592
0.96
1.00
loU4
1.08
1.12
l.16
1.20
1.24
1.28
1.32
1.36
1.40
1l.44
le438
152
1.56
1.60
1.04
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
216
2.20
2e24
2.28
232
2.36
2 4T

GOUU

D. 0000
00000
Ve00C9
U.U1l43
00794
De2275
04389
0.6714
N .90 5
l.1164
1.3176
1.47C7
1.5612
1.59€(9
1.5728
1.5211
1.4472
1.3610
1.2728
1.19¢8
1.1166
1.56%48
1.0139
0.6778
n.9510
05323
U.5204
0.9144
0.9135
D.9167
05232
0.9321
{eG43D
0e 5554
0eG6S3
0.5842
Ue5G8G
le122
1,0227
1.0269
1.02343

RHO*=1.00

G200 G220
=0.9CCN D000
-000000 0.0000
-0.0009 0.0013
-0.0133 0.0185
-000732 000946
-Q.2066 0D.2419
-0+3872 063957
-0.5608 0.4751
-0.6795 ©D.4318
-0 7068 De2554
-0.6320 -0.0114
-0.4856 =-0.2696
-003167 -0.4331
-D0e16U4 -0.4765
-0.0318 -0.4216
0.C670 =-0.3127
N.1349 -0.1972
041705 -0.1077
0.1790 -0.0519
U.17C5 =0.0220
0.1537 =-0.0C77
0.1344 -0.C013
001151 (.0014
00971 0.0027
N.N806 D.0G035
00657 060044
0.0520 0.00506
0.0364 0.0071
0.0276 0.0091
0.0165 0.0113
0.0061 0.0136
-000037 0.0157
-n06126 ﬁ00172
-0,0204 Ue0178
-0.,0267 0.0171
‘000314 0.0153
-0.0341 0.0126
-D.1348 D095
-0.0336 0.0068
-0.0309 0V.U048
°00327Q Q.Qﬁ3b

T%*=0.75

G221

- NN
-0.0000
’0.0000
-0.00CL7
-U. 0068
-3.ﬁ279
-0eC678
-0.1177
-0.1633
-001922
-0-1964
-001764
-001402
-00%989
-000612
-000323
-000135
-0.0031
G.2018
0.0037
0.0040
02037
0.0032
0.0027
N.0N22
0.0013
0.0015
0.0010
J.0008
00007
0.000¢
G.Qﬂﬁs
U 0004
UsL003
U.0003
0.u002
L0002
0.0002
U.000¢
0.0001

R*=0.53

G222 G40U
-0.0UU00 00000
-0,0000 0.0000
-N.0014 0.0033
-000137 Ue.0421
-0.0422 0.1886
-3eD€39 De3691
=0.0652 Ge3T744
-0.0537 Ue.lllé
-0.0396 =-U.2897
-060272 —-0.5522
-309177 -0.4962
-Ue0Q1C6 -0e2186
-0.0056 (C.0483
-0.NN24 Del662
-0.0006 0V.1382
0.00C4 0.0575
0.00U8 0.0U4%48
Ce000S -0.0089
C.A00G8 -CL.0056
000007 -Ue0003
0.0006 UV.0030
DIN05 C.D0G43
00004 (U.004%0
0.0003 0.0C044
0.UUC2 0C.uU4l
C.0002 0.003S
C.00C2 (.N038
U.0001 0V.0C38
0.0001 0.0040
NANNY L0042
Ce0001 0Q.U044
U.0U001 (.0043
0.U001 0.0040
00000 0.0034
C.ON00C DNO24
00000 060012
0.0000 WU.UULU
G.0000 -0,.2011
0.0000 -0,0020
0.0000 -0.0026
UU000 -U.0029



2e44
248
2452
256
2.60
264
2068
2 ol 2
276
2080
2.84
2.88
22592
296
3.00
3.1%
3.20
3.30
3.4V
3.50
3.60
3.70
3.80
3.92
4.00
4,20
440
4,60
4,80
5000
520
5060
580
6.00

1.0366
1.0375
1.0373
1.0361
1.0338
1.0306
1.0267
1.2225
1.0181
1.0136
1.0100
1.0066
1.0036
1.0011

0.9992 .

$e997N
Ve9S75
09997
1.€023
1.0043
1.83053
1.0054
1.0047
1.0037
1.0027
15003
1.0011
1+0013
1.GCl4
1.0011
1.0008
1.80006
1.0006
1.0006
1.00U5
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TABLE XXI (cont'd)
-0.0223 0.,0030 0.00C1
-0.0120 0.0023 vUV.0001
-0.0070 0.0015 0.0001
“0.0026 Q.0034 G.0001

0e0G13 -0.0010 0.0001
0.0044 -0.0022 G.ulCO
D.O067 =-0.0032 0.0000
0.C084 -0.0038 U.00C0
0.C067 -0.0037 0.0000
0.0095 -0.0032 (.w0CO
9.0589 '006@25 QQGQQ@
U0.C080 ‘0.0017 U», 0000
0.0069 -0.0009 0.00C0
0.M36 NHNODD6  0.0000
00005 00,0013 0.0000
-0.0016 0.0014 0.0000
-0.0028 0.0006 (C.0000
-0s0013 =060004 00000
-0.0003 -0.0006 WV.V0U00
00004 -0.N006 N.ADEN
0.00C8 -0,0004 00000
0.0000 G.00V2 0.0
-0.0003 0.0001 0.0
-0.9002 2.0000 Q.0
-00000 -0e0000 0.0
0.0001 -0.0000 0.0
-0.0000 00000 0.0
-=0.0000 060000 V.0

C.0000
£.N000
U.0U00
C.0000
0.00CH
G. 0000
U.0000
C.0000
G.0000
U000
0.0Uu00
C.0000
8.00C0
0.0000
€.0000
0.00060
C.0000
¢.0N00
G000V
C.0000
00000
0.0000
0.0000
€.0000

)
Cc
(@
o
o

ccCca

-

9 1

CCooOocoOXLOC DO
o & 0 & o & 9 o

cvoOoCCo

-0.00269
-U.0023
-0.0018
-2.M"014
-0,0U10
eI
0. 0U02
(VIVIVIVE
£ 0004
U 0004
U.0C05
U.0005
0.0004
C.0003
UeLOUL
-U.0001
-0.0002
=-0.0002
L NOC0
UeOUULO
00000
-t .'3’30(.*
=-0.0000
=0.0U0C
0.uU00uU
0.0000
G.OD0CE
=U.UJ00



TA
PAIR DISTRIBUTICN COEFF
FROM PY EQUATION

R

Ge80
0.8"’
.88
092
0.%906
1.0V
1004
1.08
1412
le16
1.20
1.24
1.28
132
1.36
1.40
l.44
1'48
152
1.56
1.60
1.64
1.68
1.72
1e76
1.80
1.84
l.838
1.92
1.96
2.00
2.004
2408
ZalZ
2.16
220
2024
2.28
232
2.36
240

G0OOO

Qe CCUU
0.0C00
H.DC11
00162
V0890
0.2517
0.4788
FeT224
VeG563
11755
1.3728
1.5168
1.5955
1.6102
1.5762
1.5897
l.4231
1.3268
le23 11
lel44l
l.0702
1.0105
05642
N.9298
09057
0.8G04
N.8826
0.8811
Ue.8849
U.8531
Ue 9046
D.5182
0«9335
0.9500
Ne968N
05868
1.0050
1.02C7
1eG323
1.2363
1.0423

=130~
BLE XXTII

RHGO*=1.20

G200 6220
-0.0C00 00000
-0.0000 0.0000
-0.0010 0.0015
-0.0148 000213
-0.0806 0.1079
‘0.2260 002725
-0.4203 (.4393
-606949 005177
=-0e7276 0e4571
-0.7474 (0.2502
-De6525 -0.2497
-0.4803 -0632936
‘0-2894 -004968
-001202 -005293
000128 -004570
D.1168 -£.3315
0e1754 -062042
002066 -0.1081
N.2100 =D,0496
01963 -0,0189
0.1747 -U.OO#S
'0.1510 0.0017
0.1278 (G.0043
D.1064 N.NC55
0.C868 00,0064
0.0690 0.0075
N.N527 B£.0C9
0.0377 0.0110
0.0236 0.0134
0.0104 0.0162
-0.0020 0.0190
-N.7135 0.0214
-060239 V60230
-0.0328 0.0230
-N.N396 D.0214
-0.0440 0(l.0182
-000459 000140
-0.0420 0.0060
-0.0371 D.DG35
-0.03C7 Ue0O022

T#=0.75

G221

-00000
-U.0000
-9.0020
-0.0CC8
-0.0080
-0.0326
-0.0783
-601339
-001832
-002126
‘00214ﬂ
-001893
-0.1483
-0.1030
-0.0629
-0.0328
‘000135
-0.,0030
D.0N18
0.0036
000359
00036
0.0031
De0026
U.0021
C.0018
GeN014
0.0012
0.0010
0.0008
0.0007
C.O0006
00005
0.000%
CaNNHN3
0.00C3
0.0002
Ue00U2
0.0002
G002
00,0001

ICIENTS FOR 2 L-J POTENTIAL

R¥*=0,53

G222 G400
-00000 00000
-000000 000001
-0.0Ul6 0.0039
-0.0159 0.0511
-0.0483 71,2184
=0.0722 04246
-0.0723 044157
_3'0585 301082
-0s0423 -0.3498
-0.0286 -0.6381
'000182 ‘005658
-0e0107 =0.2537
-0.0056 D.0391
-0.0U24 Qelb72
0.05‘3“;4 ':03596
0.0007 0e.0082
0.00C8 =-0.0042
U.00U7 -U.0005
0 C006 0.0046
0005 0.I074
0.0004 0.0082
C.0003 0.0C80
0.0003 N.IANT5
0.0002 0eUVTO
0.0002 U.0006
0.,0002 0V.U0UE4
Ce0001 0.0064
g.0001 D.0065
0.0001 v.0U067
C.0001 (0Q.0C69
C.0N0C1 H.0067
0.0001 0.0060
0.0000 0Q.0047
0.0000 0V.0031
Ce0000 0.0012
C.O00506 -0.00006
Us00U0 -040023
0.0000 =-0.0037
D.0000 =2.0046
U« 0000 -U«0050



244
2448
252
2456
267
2064
2468
2102
2076
280
284
2.88
2092
296
BDOD
3.1V
3.20
330
3640
3.50
3.60
370
3.87
3.90
4,00
40,20
be4V
4.60
4.80
5000
5.29
5040
5.60
5.8q
6,00

1.C427
l1.22416
1.0393
1.0361
1.7318
1.0267
10211
1.0153
1.0098
1.0047
1.0002
0.6665
Ue9S835
0.9914
1,9901
09900
Ve 9531
N.9G676
1.0017
1.0043
1.0051
1.0045
1.0031
1.6015
1.0002
Ne9952
0eG5G58
1.0007
1.00C8
1.0004
1.0001
1.0000
1.0001
1.0002
1.0002

TABLE
-0.0237

-0.CCS4
0.0G26
0. 0071
0.0105
0.0129
U.0143
D.N148
0. 0144
0.0135
0.0120
0.0102
DN.N082
0.0030

-0.0039

-0.0047

-0.0041

-0.0026
0.0005
0.0013
0.0016
N.0007

-0.0003

-0.0005

-0.0002
0.0001
0.0002
0.0001

-0.0000

=131~

XXII (cont'd)
.0Cl9 0.0001
D.0019 Q.0001
0.0016 (C.000C1
0.0008 0.0001
-0.0005 0.0001
-0.0021 G.0001
-0.0036 0.0000
=-00047 060000
-0.0052 C.0000
-0.0051 0.O03C
-0.0045 (0.0000C
-0.0035 0.0000
-0.0024 0.0000
-0.0013 0.0000
-0.0002 Q.00°03
00017 0.0000
0.0024 0.0000
N.DL22 N.O0O0
0.0014 0.0000
0.0004 0.0000
-0.0012  G.0000
-0.0009 Us W00V
0.0002 D0
00003 0.C
0.0001 0.0
-0.0001 0.0
00000 0.0
0.0000 0.0
N0.0C00 0.2
-0,0000 0.0

C.0000
o IGT
C.0000
C.0ud0
C.0000
C.0000V
0.N00¢
U 0000
C.0u00
8.000¢
GC.0000
C.0000
0.0000
0.0000
N.0000
00000
C.0060U
20000
Ce0UGO
0.0000
00000
C.0000
0.0000
00,0000
0.0000
0.0

0.0

cOHCcoLocOoC
cUoococcco

=-0.0049
-0.0U38
-0.0031
-0.0023
-0..0009
-0.0004
0.0000
0.0004
Ve 0006
0.0008
0.0009
0.0010
De0010
00010
0.0CC8
De0UU4
0.0001
-0.0402
-0.0004
-0.0004
-0 .N003
=0.00U2
-0.C000
N.0001
0.0001
0.90C0
-G.(-‘O‘JQ
00000
0.0000
0.0000
=0.0000



~132~
that these functions show much the same variation with density as do
spherical radial distribution functions. The differences resulting
from changing the nonsphericity of the molecule are demonstrated in

%*

Figure 7 where we have compared the curves for R" wvalues of

000
0.53 and 0.68 at the same T* and p* . The peaks are smaller and
are shifted to higher r* for the larger R* value.

The main peak heights of the gOOO’ as well as of the higher

are recorded in Table XXIII. The peak heights follow

€99'm €000

much the same pattern as is found in spherical PY results. At the
isotherm closest to our critical temperature (approx. PY critical
point for R* = 0.53 is pz = 0.65, Tz = 0.70), the main peak
heights decrease with increasing density up to about o* = 0.90 and
then increase. At T* = 1.00 the minimum peak height occurs lower
near p* = 0.60, and is barely observed at T* = 1.30 . Throop and
Bearman's2 spherical results for their T* = 1.40 isotherm show
behavior similar to our 0.75 isotherm in that a peak minimum occurs
above the critical density at about 1.392 . In Figure 8 one may see
the temperature effect on gooo(r) at the constant density of
p* = 1.00 . The results are representative of the increase in peak
height which is found at all densities as the temperature decreases.
The angular correlation functions have been plotted in Figures
9, 10, and 11. In each of these, g222(r) has been neglected because
of its small value. Figure 9 shows curves for the constant tempera-
ture states (p*,T%*) = (0.65 1.3), (1.2, 1.3) . The positions of the
peaks in these curves are not affected greatly by density, nor is the

general curve shape. Figure 10 shows the effect of temperature
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TABLE XXIII

MAIN PEAK HEIGHTS OF THE 809'm FOR R* = 0.53

*

o
fe 40 0.2 0.4 0.6

660 -1,792 . 1.752 1701 - 1.645

2000 i~ <716 = 707 "= 4697 |~ .688
220 .455 .451 448 446
< =300 = 2367 =1.393 .~ J415
400 .303 >3 L7 «332 .348
~ +366 = ,403 = .438 -~ 471

000 1.534 1.507 1.486 1.476

200° = .556 = 554 = .556 - .565
220 .334 .335 .340 .351
- 265 - = ,288 =~ 302 -..324
400 .210 .218 .229 .243
- 270 ~ 292 -~ .318 - .349

000" F1.383" 1.376  1.377 1.391
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<324

1.0
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.475
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.564
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.397
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.302
447
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.564

.348
.346
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152
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152

»2 X7
.529

461
.646

L2531

.671

<437
.450

.350
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1.506
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.394
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and indicates that temperature variation has its primary effect on

curve amplitudes. If the peak heights of the higher tabulated

€08 'm
in Table XXIII are studied as a function of density, one can see that
g200 shows an absolute peak minimum near p* w G.70 at ST = 0.5 ..
Similarly €920 shows a peak minimum for its positive peak only near

p* = 0.6. at T* = 0.75 . At our higher isotherms, these functions
effectively show no absolute minima and the other 800'm show no
absolute peak minima at any of our isotherms. It is thus possible to
generalize and state that the angular correlations merely gain size as
the density increases, with the exception of isotherms near the
critical point. A further examination of Table XXIII shows that with-
out exception, a decrease of temperature causes an increase in absolute
peak height.

Because the shapes of the angular correlation functions change
so little with increasing density, it is found that, as in the diatomic
hard core.system, the zero density limit of g(glgz) dgtermines the
general shape for all densities up to 1.2, even for the lowest isotherm.
Plots of angular g, for R* = 0.53 and 0.68 at p* = 1.2,

T* = 1.00 in Figure 11 show the result of changing molecular shape,

*

and indicate that the principal peaks are shifted to larger r* as R¥

increases.
The 800'm coefficients have been calculated from the pair
HOOO’ H200 as well as the longer HOOO’ HZOO’ H220’ H400 set over the

density range of this work. The values differ by no more than

€000
0.4% and 900 by no more than 0.5%. The biggest differences occur in

and range around 1 to 3%. Thus we see that H and

8220 284 E400 220
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H4OO are minor contributions in the calculation of the pair distribu-
tion functions for the density and temperature range studied in this

work.

We have also checked on the changes brought about in the dis-

tribution function coefficients when calculated from the 809'm
expansion of (25) or the shorter expansions of Chen7c. We used Chen's
hard core results for HOOO and H200 (neglecting H220 and H4OO) at

p* = 1.0, R* =' 0,2 as input. The two calculations yield 000 func-
tions differing by about 3% up to r¥ = 2.00 and slightly more at
higher r* . Main peék heights of 500 and 8590 differ by 4-10%
with some relative shifting of small-valued sections of the functions
at large r* . Similar percentages are obtained for the two-centered
Lennard-Jones case. These are significant percentages, particularly
in the case of gooo(r) . If one compares these percentages with
those in the last paragraph, it is apparent that these errors exceed
those arising from neglect of the H220 ahd HAOO funetions. It is
felt therefore that these errors should be reduced by using the longer
expansion of (25) especially since its employment produces an insigni-
ficant increase in computation time.

Using (23) and Simpson's rule we have calculated KT , the iso-
thermal compressibility, for R* = 0.53 . The results are tabulated .
in Table XXIV. These values have been compared at certain states to
»those obtained from (24) using values of 1-K C(000) extrapolated to
Vv = 0 , and the results agree well enough to allow us to search for a

critical point. It is apparent that at the lowest isotherm, T*==O.75,

a strong maximum is occurring near p* = 0.55 . This is indicative of
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a proximate critical point where KT becomes infinite. While our data
do not accurately locate the critical point, it does show that one
exists and an estimate may be made that it lies in the vicinity of
T = 0.70, 9% = 0.65 « We may compare these values with the experi-
mental values for chlorine of T* = 0.72, p* = 0.93 (TC = 417°k 2
OC = 0.573 g/cc). It appears that our estimate of the critical tem-
perature is fairly close to the experimental value, but our estimate
of the critical density is far too low.

Watts4 has shown for the case of spherical systems near the
critical point that two solutions may exist for the distribution func-
tion for certain densities. Because our lowest isotherm was close to
critical, we have checked to make sure that our results do not involve
such multiple solutions of the Percus-Yevick equation. One check we
performed was to solve the Percus-Yevick equation for two paths to the
p* = 1.2, T® = 0.75 state, one from p* = 0.0 to 1.2 aleng T*=1.00
and then down to T* = 0.75 along the constant p* = 1.2 isochore,
and the other from p* = 0.0 to 1.2 along T® = 0.75 . Thé results
agreed, indicating that we had not jumped to another solution along
the lower isotherm. A second check was to verify that the gooo(r)
curves approached 1.0 asymptotically. In the spherical case one of
the multiple solutions is unphysical in that its g(r) is character-

*

ized by values much greater than 1.0 at values of " near 2.5 or 3.0.

No such behavior was found in this work.
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ISOTHERMAL COMPRESSIBILITY

0.75

1.2683
1.6215
2.0443
2.4596
2.7250
2.7102
2.4211
1.9737
1.5063
1.1082
0.8038

0.5790

—1. 30~

TABLE XXIV

VALUES (R* =0.53)

1.00

1.1106

1.2067

1.2699

1.2833

1.238%

1.1401

1.0059

0.8531

0.7024

0.5654

0.4483

0.3529

1.30

1.0307
1.0376
1.0163
0.9667
0.8923
0.8004
0.6997
0.5984
0.5022
0.4158
0.3405

0.2764
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Discussion

One of the primary conclusions to be drawn from the previous
section is that the higher Hll'm that we have included in the PY
solution are indeed quite small contributions to the distribution
function even at high densities and moderately low temperatures where
they might be expected to be appreciable. We have thus confirmed the
choice of Chen and Steele to use just H000 and H200 to describe the
fluid in this temperature-density range. For future studies using
this tecﬁnique and covering the same range of states, it appears as
though an adequate descriptidn may be obtained for temperature depen-
dent systems if just these two are employed along with the extended
series product of (25) and the calculations are carried out to
r* = 6.00 .

While it is felt that the H220 and H functions are suffi-

400
ciently accurate to judge the size of their contributions to the
distribution functions, it must be added that they are not known to a
high degree of accuracy. This is evident when the H220 obtained from
H(2200) is transformed to second and fourth orders and compared to the
H(2202) and H(2204) values computed from Egqs. (22). The curves are
of the same order of magnitude but show only marginal qualitative
agreement.

Several effects contribute to this error, including truncation
errors, transform errors, and incomplete convergence of the iterative
PY solution. Truncation errors have little effect on the determina-
tion of .H(OOOO) and H(2002) since these depend heavily on the very

large C(0000) transform. For the higher H(22'ms) transforms, however,
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truncation is probably the greatest error. Three series, the H(BlBQ)’
C(glgz), and f(glgz) series, have all had X,57 @and X,,, omitted and
have been truncated after the general term XAOO’ thus omitting contri-
butions from the terms X440, X420, etc. X222 is most likely a small

contribution, but the others may be of significance in computing X220

and X The terms where £=2' may be particularly sig-

400 ° Coa'm
nificant, since the zero order Hankel transform of these functions will
be larger than the C(2002) transform, the dominant member of the Bi
terms of Table I, in the region near Vv = 0 . Including these higher
terms, however, is difficult. The expansions required to generate each
member of a new set of simultaneous equations corresponding to Egs.
(14)-(18) are extremely lengthy. Furthermore, the number of simultane-
ous equatioﬁs themselves will increase rapidly and require a large
increase in computing time. If very many coefficients are included,
this results in a prohibitive increase of time.

Our estimate of the critical point location allows us to draw
some tentative conclusions about the choice of potential used to des-
cribe chldrine. Provided the Percus-Yevick theory remains a good
physical representation in the critical region for nonspherical mole-
cules, our estimafe of the critical density implies that the potential
is inadequate either in functional form or in choice of parameters.

R* is the principal variable parameter since it is the most arbitrary.
o and € , once R* is chosen, become fixed and are as accuréte as
the PVT data from which they are derived. A comparison of pc values
calculated from the p

: and o values for R* = 0.0 and R* = 0.53

show little difference between one another (R* = 0.0, pz = 0.59,
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0 = 4.7 ; R" = 0.53, p = 0.65, 0 = 3.75); both are only about 70% of
the actual experimental value of 0.573 g/cc . It appears, therefore,

that if R* were decreased to a lower value, such as by using the
Gaussian weighting of Sweetlz, no improvement would be found in the
ability to predict the critical density. A larger value of R* would
seem too large physically. Thus varying R* holds little hdpe for
improving the prediction of the experimental critical density value
and, within our limited accuracy, one is led to the conclusion that
the functional form of the two-centered Lennard-Jones potential is
only marginally correct. Whether this is true for the calculation of
all thermodynamic properties is yet to be proven and awaits further
study.

The fact that results for the H and . 809'm have been

28'm
obtained from the Percus-Yevick equations developed by Chen and Steele
for hard core potentials shows that their procedure is equally appli-
cable to the temperature dependent two-centered Lennard-Jones
potentials. For similar convergence criteria, solutions were obtained
in about the same number of iterations. Certain restrictions on this
tybe of solution are apparent, however. One is that the required
number of iterations increases rapidly in the vicinity of the criti-
cal point, implying that this may prohibit investigation of states
very close to critical. Extension of the solution to states with den-
sities greater than 1.2 is also restricted because of the large number
of iterations required, a result noted by Chen in his hard core work
as well. The effects of very low temperature are still unknown; we

merely note that the temperature values covered in this work have only
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a slight effect on the number of iterations (other than critical point

increases), generally requiring more iterations as the temperature

gets lower. Increasing the accuracy of the results by including a much
larger number of Xkl'm terms is, as we have seen, also restricted due

to the greatly increased length of the expressions to be solved.

In conclusion, therefore, it is seen that the method employed
here has allowed us to determine pair distribution coefficients
accurate to first order for a given temperature dependent potential.
These may find use in calculating thermodynamic properties. Evaluation
of constant volume heat capacities may be interesting in that it has
been reportedll that chlorine shows a strong orientational contribution.
Application of the coefficients to x-ray scattering from chlorine is

presented in the next section.
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Figure Captions

Figure 1, Chlorine second virial data of Kapoor and Martin.
B is in units of cc/mole. T has units of K.

Figure 2. Reduced internuclear distance versus o as
determined from second virial data. ® denotes
R* = 0,53,

Figure 3. Reduced internuclear distance versus &/k as
determined from second virial data. e denotes
R* = 0,53,

Figure 4. Hlfm(r) functions for moderately high density

of % = 1,20, T* = 0.75, R* = 0.53,

Figurg 5 gooo(r) as a function of density at T* = 1.30.

Figure 6. gooo(r) as a function of density at T* = 0.75.

Figure 7. gooo(r) showing curve shape dependence on R*,

Figure 8. gooo(r) showing dependence on temperature. Curve 1
is for T* = 0,75, curve 2 is for T* = 1.00, and
curve 3 is for T* = 1,.30.

Figure 9. sffh(r) functions showing dependence on density.
Curves 1 are for f* = 0,6; curves 2 are for
p* = 1.20.

Figure 10. gﬂﬂm(r) functions showing dependence on temperature.

Curves 1 are for T*# = 1,30; curves 2 are for T*= 0.75.
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Figure 11. glfh(r) functions showing curve shape dependence on
R*¥, Curves 1 are for R* = 0,68; curves 2 are for

R* = 0,53,
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PART IV

X-RAY SCATTERING FROM DIATOMICS
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Introduction

This paper presents the theoretical x-ray intensity curves for
a single component molecular liquid, taking into account angular
correlations in the liquid. The principal basis for this work is the
Steele and Pecora treatment of scaftering from nonspherical moleculesl.
The manner of appearance of angular effects is investigated, as is the
relative size of such effects. Although other systems are occasionally
referred to, the great majority of the work deals with the fluid chlor-
ine system.

Other methods of calculating the x-ray intensity for molecules
depend on the early work of Menke2 and Zachariasen3, or on the later

work of Waser and Schomaker4. Menke's equation for the intensity

I(k) is
I(k) = ig(K) + 4ﬂpFe(K) f [g(r) - 1] jo(Kr)rzdr (1)
0
where
F (k) = g czl £,00) £(<) 3 (kb ) (kb ) ()

ig(K) is the usual gas scattering, g(r) is the molecular distribu-
tion function with center c¢ , fp(K) is the atomic scattering factor
of atom p , and bp is the distance to atom p from center ¢ 5.
Equation (1) does not include any angles of orientation of the mole-
cules because orientation has been assumed to be random. DeVries6 has
shown that this gssumption leads to a dependence of I(K) on the
coordinate system chosen, i.e., on the location of ¢ . He showed

that Eq(l)is approximately true only if the center of the coordinate
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system lies near the center of symmetry of a nearly spherical particle.
DeVries presented no equations able to handle more nonspherical mole-
cules.

Steele and Pecora1 (henceforth SP) employed the method of
orthonormal D expansion originally developed by Steele7 and obtained
an expression for the total scattered intensity in terms of harmoni-
cally expanded scattering factors and expansion coefficients of an
angular dependent molecular distribution function, g(glgz). Because
angular correlations between molecules are explicitly handled in the
SP approach, the center of symmetry restriction discussed by DeVries
has been removed as a problem in the treatment of complex molecules.
We may therefore replaceEq(l) with the result obtained by Steele and
Pecora and consider the SP result to be currently the best method for
dealing with nonspherical molecules.

We add that the molecular method based on the work of Waser and

S35l 2L is subject to

Schomaker, and applied by several authors
objections on grounds different from the Menke approach, the principal
difficulty being that it in general changes the scattering problem into
that of multicomponent (mixture) atomic scattering. It gives a radial
function which is complexly related through a convolution

to a sum over spherical atomic pair distributions rather than a single
molecular distribution. Angular information does not appear explicitly,
and the study of the effects of angular correlations therefore becomes
much more difficult than in the SP approach.

However, several questions remain unanswered in the SP approach,

and this paper attempts to answer some of them. Steele and Pecora did
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not evaluate their expression for any particular system and so the
relative contribution of the angular dependency of g(glga) was
quantitatively unkncwn. In the first two sections below, we have
adapted their equation for use with diatomics and have specifically

evaluated it for chlorine. Recent work by Sweet and Steelell’lz,

Chen and SteelelB,‘and Morrison and Pingsl4’15

provided the means by
which the quantities required for the SP evaluation could be obtained.
The diatomic was described by the two-centered Lennard-Jones poten-
tialll and Percus-Yevick results15 for g(BIBZ) were used to evaluate
the SP equation. The location and magnitude of the angular contribu-
tions as a function of both density and temperature are presented
below. The significance of these contributions in future x-ray work
is discussed.

In still another section below, we discuss the problem of
inverting molecular x-ray data. Several authors6’16 have stated that
it is difficult or impossible to invertEq() if Fe(K) has zeros. This
problem carries over to the SP equation since a function nearly iden-
tical to Fe(K) occurs there as well. We show that these zeros

represent no theoretical problem but are quite bothersome in an

experimental situation.



-161-
Theogz

We'begin our treatment by recalling that the total scattered
intensity of x-rays from a fluid may be written in terms of the pair
distribution function. In general this distribution depends on the
distances between molecules and their orientation angles. Using

orthonormal D function expansions7, this distribution may be written

2
g(RRy)) = 81 § ; gyt w2 (P Dy (@) Dy @) (3)
where Eﬁ = (Eﬁ’gj) denotes the molecular position of molecule j by
vector Ej and Qj are the Euler angles of orientation.

= {J1,K1,M1} . Applying Eq.3) to the usual elastic scattering theory,
Steele and Pecoral obtained the following expression for the scatter-

ing cross section I(K) :

I(k) = 2 |a0’§|2+ p]a0|2 j [goo(r)-l] i (Kr)4ﬂr dr

M.J
K1-M1 4 J1 J2 J 2J+1 )

pl L %0,-m1 %o,m2 L1 7241 c(J,J1,J20,0)
N1 N2

x  ¢(J,J1,J2;0,K2) JL 3294 (cr)ame’dr (4)

S -K2 Mi,K2, M2 J
The notation used here is the same as that of SP. a0 M denotes a coef-
3

ficient of the D function expansion of the molecular scattering
factor and c(jlj2j3;mlm2) denotes a Clebsch-Gordan coefficientl7.

= 47 sin 6/X . We note that Eq(4) differs somewhat from that published
by SP since we have corrected some index and omission errors. The most

important difference is that the factor (2J+1)/(2 J2+1) was not
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present in the original paper.Eq.{) is useful for nonspherical mole-
cules under the assumption that the molecules are rigid; otherwise the
Euler angles of orientation lose their meaning. It is apparent
therefore, that this equation is useful only for small molecules where
the overall length is somewhere on the order of six atoms or less,
where bending is negligiblels.

If Eq(4)is examined, it can be seen that the first summation
gives the independent molecule or gas scattering. The second term
gives the usual Fourier integral over the (here averaged) pair distri-
bution function. This will be termed the spherical intensity. These

Ol2 is identified

two terms correspond to the Menke equation if |a
with the molecular scattering factor Fe(K) . The remainder of the
terms give the contribution to the intensity from the angular correla-

tions, henceforth collectively termed angular intensity. It is con-

venient to rewrite Fj(4)showing these three parts explicitly.

I(K)‘= ig(K) + dlic), ok iang(K) (5)

In this work we wish to evaluate Eq.(4) for a specific system. We
have chosen to carry out this evaluation for a diatomic and must
therefore adapt Eq.(4) to this system. Following Sweetll we recognize
that, for diatomics, Eq.(3)becomes a sum over spherical harmonics, the
indices M1,M2 = 0, and Kl = -K2 . Thus the summations over N1 and
N2 in both H.(3)and Eq.(4) are restricted to just three indices:

J1,J2,K2. Replacing these with 2, %', m respectively, Eq.(4) becomes
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10 = ] lay1®+0lay|? f [8ggo(X) - 11 3 (kx) 4ar’dr

J
#0371 1O afay, 0 [ G )72 e(3,2,2'500)
2 2" m J
2=4"40 A% Rt
x c(J,2,8";0m) j glg,m(r)jJ(Kr)4ﬂr2dr (6)

where AfL,2' denotes the range IZ -2'| < J<2+L' and m takes on
the values -2 to +& or =-2' to +%' , whichever is the smaller range.

As Eq. (6) stands, it is applicable to both homonuclear and
heteronuclear diatomics. For homonuclears £ and £' must be even
integers and for heteronuclears 2+ %' must be even. Since

c(J,2,2";00) = 0 unless J+L2+2' is even17, J must also be even for

all diatomics. Making use of the symmetry relation c¢(j,j,j,;m,m, m,) =
o s 122~3%"1"2"3
1 %223 g B R te el :
-) C(JlJZJB, m, -m, m3) we see that even J also requires
that
c(J2L'";0m) = c(JLL';0-m) (7)

From these restrictions on £ and &', one may write the first few
gll'm(r) coefficienté. For homonuclear diatomics the first six coeffi-
cients are those with the indices 000,200,220,221,222,400. Higher co-
efficients include those with indices in the 400,600,°°° series. For
heteronuclear diatomics one also has the 110 and 111 coefficients, as
well as higher coefficients in the 300,500,... series. Since Eq.(6) con-
tains an infinite number of terms, some truncation must be made and we

have therefore included only those terms up through g400(r) in the

remainder of this work.
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Expanding Eq.(6)up through 8400 and including only the homo-

nuclear terms, one obtains for the angular intensity:

Bt iZZ:O(K) =~a0(K)a2(K)[c2(202;00)<020;2> + 5¢2(220300)<200;25>]
Yree s oy Pl ok B . B ,
+ aZ(K)[g'c (022;00)<220;0> -c¢ (222,00)<220,2>-+§'C (422;00)<220; 4>

2(%) c(022;00)c(022;01)<221;0>+2c(222;00)c(222;01)<221;2>

zc%) c(422;00)c(422;01)<221;4>-+2(%)c(022;00)c(022;02)<222;0>

2c(222;00)c(222;02)<222;2>-+2C%)c(442;00)c(442;02)<222;4>]

+

aO(K)aA(K)[9c2(440;00)<400;4> +c2(404300)<04034>] (8)

where < 28'm3;J) = J (r) jJ(Kr)d;. The factors of two which appear

€08'm
in front of several terms result from the inclusion of two values of
m,*m, for each set of 2 and &' . Using the identity 8o0'm = 800'-m
and Eq. (7), it is apparent that the plus and minus terms are equal.
All the Clebsch-Gordan coefficients19 required in Eq.(8) are tabulated in
.Appendix 4.

Next it is to be noted that the jJ(Kr) can be expanded in
trigonometric functions. (See Appendix 5 for standard formulas.)
Since substitution of these expansions into each Bessel integral above
causes each one to be expressed as a sum of sine and cosine Fourier

transforms, it is possible to numerically evaluate Eq.(8)at this stage of

development. However, if all the sine transform integrands are grouped
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together as well as all the cosine integrands, then Eq(7)may be
expressed as a function of just two integrals. This results in the

following. Define

17 8220 7 8221 T 28329

LA 4 L
Wy =7 820 27 8221 7 27 8222

Then

p—l ihomo(K> o' B

ang

o 2
raz(K)

f sin krl—5 (8,50~ 2855;% 28,55)

0

g 2 2 105 45 , r
* G - 3 (2a5(K)a,(K)g,yp0t 7 8, (W) + G5 - —3-+ )
Kr Kr |l =

X (lgag(K)wz + 2a,(K)a, (K)g,q0) ] dr + 4T f cos Kr
0

3 o2 10 ) 105
K K K Tr
18 .2

X 67; a2(|<)w2 + ZaO(K)aé(K)g4OO)] dr

Equation (9) is the result for the homonuclear case. If one
wishes to consider the heteronuclear case, then the gllO and glll
terms must be included as well. Proceeding as before, the following

expression for the angular intensity of heteronuclear diatomics may be

derived:
‘hetero _ 2 i . ;
lang (9 = 4P al(K)’ f he Buan T e B! e ke
2 . homo
-+ f Kz (g111+ gllo)cos kr dr } + 1ang (k) (10)

The two new integrals in Eq(lQ)may be combined with the two in
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.h
i omo(K)

to give a final expression involving only two transforms.
ang

It is appropriate at this point to discuss the asymptotic
. 14
behavior of Kg)as k >0 and k + o . In earlier work™ it was
shown that the aJ(K), J# 0 go to zero as g > 0 . One therefore

can see that Eq.(6)reduces to
10) = |a.|? [1+ p [(g.. (r) = 1) 4rridr]
0 €00 (11)

where we have used j.(kr) =1 at k=0 . Steele7 has shown that
0

the isothermal compressibility K, depends only on the average value

T
of g(glgz), i.e., gooo(r), and that kaKT is equal to the bracketed

expression above. Thus

2

I(0) = kaKTN (12)

where N is the number of electrons in the molecule. In the case of
the region where K = © one obtains the usual result that the total
scattering approaches the gas scattering curve. This results from the
fact that for all - J', jJ(Kr) + 0 as K > © and thus all the inte-

grals of Eq(6)go to zero in this limit.
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Numerical Evaluation and Results

It was decided to evaluate Eq.(5) and Eq.(9) for the chlorine mole-
cule. This required a knowledge of the molecular scattering factor
coefficients for chlorine and a knowledge of the various gzz.m(r) as
a function of density and temperature. The aJ(K) can be obtained
either by MO methods or by the Debye method employing the assumption
of independent atomic (IA) scatterersl4. Because of the large atomic
number of the chlorine atom and the small percentage of bonding elec-
trons in the molecule, the Debye method was used. As further assurance
of the IA assumption, one may note that the gas scattering calculated
from the IA approach agrees well with experimental valueszo. The
first three coefficients, aO(K), az(K), and a4(K), and the gas
scattering ig(K) , were calculated; numerical values of these func-
tions are tabulated in Table I and the coefficients have been plotted
in Figure 1. It is to be noted that a,(k) and a4(K) are both much
greater than aO(K) at tbe higher scattering angles.

The ggz,m(r) have been obtained from earlier work15 where
Percus-Yevick solutions were obtained for a two-centered Lennard-Jones
potential appropriate to chlorine. The density and temperature ranges
covered by that data define the ranges of the x-ray data in this paper.
They are: p* = 0.1 to 1.2; T* = 0.75, 1.00, 1.30 . The potential
parameters are O = 3.754A, € = 581.0°K and R* = 0.53 . The reduced

density and temperature are those defined by Chen and Stee1e21:

p* %-w03p(1 + %-R* - %-R*B)

(13)

T = kT/e
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TABLE 1
Molecular Scattering Factor Coefficients
(IA approximation)

ag (k)

0.0
=-0.1779
‘Oo 7012
=1+5392
=2 .6436
~349525
~5+3954
-6.,8988
_908059
-11.0904
-12.2017
-13.,1076
=13, 7881
=142 3%T
=14.4474
-14.4332
-14.2061
-13.7828
=13,1799
-12 .4164
~11+5128
-10.4900
=~9..3700
-8. 1752
‘609286
-5.6534
=44,3732
-3.1119
=1+8933
-0.7396
0.3283
12917
2.1346
28437
3.4097
3.8273
4.,0952

ay (k)
0.0
N.0001
0.0021
00105
0.0323
0.0760
0.1509
02660
0.4288
Deb6451
0.9183
1.2496
1.6376
20185
25670
30963
3.5658¢4
44,2449
4 ,B467
5. 4537
6H.0548
6.6391
T7.1949
T 17103
B«1735
35724
B.8954
9.,1313
9.2706
9.3059
92317
9.0446
8.7438
8:3312
TeB11LY
71929
He4869
51073

ig (k)

1156.0000
1136.840C
1081.670C

996.5640

'890.2390

773.0810
£55.4030
545.9320
450.5750
374.1040
316.1790
275.8390
25041470
235.4740
228.1370
224.7940
222.7430
220.119¢
215.7350
209.0340
199.97430
188.9430
176.5710
163.6040
15048340
138.9710
128.5840
120.0620
113.5930
109.1660
106.5700
165.4330
105.2740
105.5650
105.7970
105.5460
104.5180
102.5580
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The transform integrals in Eq(9 and Eq(5) have been evaluated by
both Filon's method22 and the Fast Fourier Transform23 with equivalent
results. Because of the grouping of many terms in the integrand of
each transform, it appeared possible that functions might occur which
would be difficult to transform. In the case of chlorine, however, we
obtained smoothly oscillating integrands which dropped off to less than
1% of their maximum peak value by r* = 3.00 and which became effec-
tively zero by our upper integration limit of r* = 6.00 . The

transforms were done piecewise, having broken the integrals into the

ranges 0 to X and X to 6.00 . For most calculations X, was
equal to 0.70 . In the 0 > X, range, gooo(r*) -1 was taken as just
%
o
-1.0 and the integral j [gooo(r*)-l]jo(mr*)r*zdr* was done analyti-

cally. The integrals over the angular correlation functions in the

range of 0 to x, were identically zero, since the g,,, (%,2'#0)
22'm

0
were zero in this range. When k = 0, the intensity was calculated by
making use of Eq{l2)and substituting values of Kp from the Percus-
Yevick results.

The final intensity data are collected in Tables II-VII. All
the tables contain the functions of Eq. (5) as well as the ratio of
the angular intensity to the total intensity. Tables II-V summarize
the results for four densities at constant temperature. Tables IV,
VI, VII summarize the results for three different temperatures at con-
stant density.

Plots of I(k) and ig(K)-+i(K) may be found in Figure 2 for

four different densities at T* = 0.75. It is apparent that the

angular correlation functions contribute strongly in the region of
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TABLE II

X~ray Scattering Functions
p*=0,50 T*=Q,75 R*=0,53

1(x)
1964,06
512 19
=272 .44
-400.36
-174,78
58,43
50.6%
14,57
=6.u 18
~2+92
-C.44
O.22
0.12
0.01
0.00
’0001
=-04+03
-0:03
-0.01
0.01
0.02
0.02
0.01
0.00
-0,00
-0.00
"0-00
-0.00
-0.00
0.00
0.00
0,00
0,00
0.00
-0.00

iang(K)
0.0
-0013
=-1.40
%54 859
=13+86

-6, 15
16,29
eLw il
14.66
2.71
~6207
-9510
""7. 21
=3403
1.01
3e 31
3421
1.37

’Oo 57

-1.36
-0.88
0.09
0.66
0.52
-0001
=-0,38
"0;37
’Ool"’_>

0.07.

0.13
0.07
0.01
0.01
0.04
0. 04
0.01

L(k)
3150.06
1649, 50

307.83
590.62
554445
574 .84
60735
598.22
517 .91
411.46
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272327
241.15
225493
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221.88
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ki(k)/
ag? (x)
O.(J
-0 .095
~{) s 228
-0 276
-0.218
-0.044
0155
0.201
D.089
-0.040
=0 +102
-Oo 085
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0,031
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"00 013
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2.004
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0.001
0.001
0,001
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~-0,000

(x)/
B
Qe
-0.000
-0.002
-U.009
—iJa 325
-0.041
~3.029
=0.010
0.031
0.055%
0045
0.010
=0.025
-C.040
-00033
-0. 014
0.005
0.015
C.015
0.007
-0.003
=« D0
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TABLE III

X~ray Scattering Functions
p*=0,80 T*=0,75 R*=0.53

1i(x)
112 5. 587
29 44
-509. 21
=561.26
-449,71
-266.82
59,12
81.09
82.54
25439
=5+79
-9.61
-4 465
-0, 78
0.31
0.18
0.02
0.00
"0.0l
-Ou 05
~0 05
-0.02
0.02
0«04
Qe 03
0.01
0.00
-0. 00
-0.,00
-0.00
-0.00
-0,00
0.00
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0.00
0.00
0.00
-0,00

iang(K)

0,0

=0l &
-1+65
-6 T4
=115
=3341
-40.,29
-16.07
24.25
37.48
24,73
5+ 89
-8459
=14, 52
- =5.67
1s:l]

5.29

542

2046
-0.80
"1.46

0.12

1.08

0.86
-0.00
-0.63
-0.64
-0.24

0.12

0.21

0.12

0,02

0,02

0.06

0.07

0.02

I(x)
228157
1166412

570.81
428456
422.78
472.85
555 «99
610,95
557616
436497
335411
272:12
236491
220« L7
216.21
219,31
223.88
225.41
221.14
211.44
199.13
186.74
17512
163:76
151,94
139,85
128,58
119.43
112.95
108.92
106.69
105.64
105439
105,599
10582
105.61
104.59
10257

ki(k)/
aoz(K)
0.0
0.005
'05178
-0.320
~-0+385
-0, 333
_Oo 107
0.215
0.328
0,156
-0.057
=0«159
-0+135
-0.047
DeD44
0.081
0,061
D014
-0.024
"Oo 034
=0« 022
-0.007
0,005
0.011
2.010
0.005
0.001
-0.001
-0.,003
-0.004
0.000
0.001
0.002
0.003
0.002
-0.000

iang('()/
I(x)
0.0
-0.,C00
-0.003
-0.016
-0.042
-0.071
=0 072
-0.026
0.043
D.086
0.074
0.022
-0.036
-00066
"00057
-0.,026
0.005
0.023
D025
0.012
-C.004
=-0.012
-0.008
0,001
0.007
Ce.NOA
-0.,000
-0.005%
-0.0C6
-0.002
0.001
0.002
0.001
0.000
C. 000
0.001
0.001
0.000



K

\).O

0.189
Ce378
0.567
D.756
0.945
10134
1323
1512
1.701
1.890
2: 079
2.268
20646
2+835
. 3.024
3,213
34402
3591
3,779
3.968
44157
4.346
4e¢535
4. T24
44913
54102
5291
5.480
5669
5.858
6.047
64236
6425
5.614
6.803
66992

ig(K)
1154.,00
11356.84
1081 .67
996,56
890 .24
T3« 08
655,41
545 .93
450.98

374.10

316.18
275. 84
250415
235.47
228.14
224.79
222475
220.12
215.74
209.03
199,98
188.95
176457
163.60
'150083
138.97
128.58
120,06
11359
109.17
106.57
105.43
105.27
105,57
105.80
105.55
104,52
102.56
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TABLE IV
X~-ray Scattering Functions
p*=1,20 T*=0.75 R*=0.53

i(k)
486,67
-669.84
-T71399
~=727+80
-594022
—-392 s 21
-137. 74

88.11
135.61
49.07
-6041
-14.72

-7.60

-1058

0.35

0.28

0.03

0.00

-0002

-0.08

’0008

-0.04

0.01

0.05

0.05

0.02

0.00

-0.00

-0.00

-0,.01

—0.00

-0.00

-0.00

0,00

0.00

0.00

0.00

0.00

: 5 (x)

ang

0.0
-0014
—1056
=feZ29
-20.88
-44,59
“66008
‘42048
32.44
64,69
44,12
13.46
-11014
-23045
‘21.75
-11.45
0.36
8.50
9.61
4,73
-1.00
-3055
—ZCSO
0,10
1.80
1.50
0.02
-1.11
_1015
-0e46
0,19
Q.37
0.22
0. 05
0,04
0.12
013
0,04

I(k)

6659433
466, 8h
306,02
261.47
275,13
336428
451 .59
591,57
619.03
487,87
3532.89
274.58
231.41
210.44
206474
213,563

223,15

228.62
225+33
21369
198.90
185.36
174.908
163.756
152.69
140,49
128.61
118,95
112.44
108.70
106475
105.80
105.49
105.61
105. 84
105.67
104.65
102.60

xi(x)/
aOZ(K)
O.\:)
=Bl 1L
-0e271
-0.%415
~0508
-0+489
-0.249
0.234
U« 539
0.301
-00063
-0.244
-0.228
-0.095
0,049
0.125
0.109
0.034
-00034
-0,053
-0.038
‘00015
0.004
0.016
0.018
0.009
0.002
‘OQOOO
-0.003
-0.007
-00007
-0.003
-0.000
0.001
00004
0.006
0.005
0.001

O £
a?%K)

U0
-0.000
=0+ 005
-0.028
-0+ 076
=0+133
-0.146
~0. 072

06052

0s133

Peldd

U.049
-0.048
=0 11X
-{s105
-0,054

0.002

0.037

0.043

0.022
‘00005
-0.019
‘0.014

0.001

0.012

0.011

0.000
-0.00¢°
-0.010
-0.0C4

0.002

0.004

C.002

0.000

0. 000

0.001

0.001

0.000



940
J.184a
0.378
GuBET
Ja 156
0.945
1.323
1.512
1701
1.890
2.079
2.268
2.457
2,646
7.835
3,024
3.213
3.402
3,591
3,779
3,968
4,157
4e346
4.535
4,724
4,913
5.102
54291
54480
5,669
5.858
64047
b5e236
650425
b.614
5,803
He 392

i_(x)
1156400
1136.84
1081l .67

996,56

R30.24

77308

555.41

545,93

45098

374,10

216.18

275.8%

25015
235.47

228.14

224.79
222+ 715

220:12

215.74

203,03

199,98

1883.65

17657

163.60

150:83

138.97

128.58

12006

11359

109.17

106+.57

105.42

10827

105.57

1054+ 80

105+55

104.52

102,56
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TABLE V

X-ray Scattering Functions
p*=1,50 T*=0.75 R*=0.53

i(x)
=890 .63
=923,66
"QOSQBQ
-824,12
-5684,47
484 4,96
~223e563

55,04

181.94
83.21
-3 67
=19419
=30e.73

-2+69

Del4

0. 37

0.05

0.00

-0.02

=0 1:2

-0.08

-0,01

0.07

NDe08

0.04

0.01

0.00

-O-QO

-0.01

=0,01

-0.00

-0.090

0. 00

0,00

0.00

0.00

0.00

lang(K)
0.0
-7.15
~21+98
—51 ."2
-88.86
~19:91
3011
98.57
68,79
23 .94
'12002
_32068
_33u12
~1936
'1 077
11.66
11.*076
7.83
-0.95
-4,.,58
=269
0,02
259
2425
0. 06
-1.68
-107(?
=-D.76
0.25
0.57
Q.34
0.08
0,07
.22
0.08

I(x)
265537
213.06
174.27
165:29
I 83, 79
236,60
342.32
521,07
663,02
555,88
381.30
280.59
22T atel
200,.,10
195,25
205,80
221.03
23179
230,48
21616
198.91
1R83.88
172 .87
163.69
153,51
141,26
128.:65
118,38
11108")
108440
106.82
106.00
105.62
10565
105,86
105.74
104,74
102 .64

ki(k)/
aOZ(K)
0.0
-0.15%
=0 317
-00470
-0.585%
=0.605
-0.405
O. 146
Ds723
0.510
-0.036
~04+318
-Qa322
=161
0.033
0.162
J.167
0.067
-0.036
~0072
-0.056
-0.030
-0,.,003
0.021
N.028
0.015
0.004
05003
‘00001
-0.,010
-0.013
-0 207
-0.00?
0.001
0.006
0,011
0.9009
0.002

SIS { S F |
e

0.0
-~0.001
-0.0C9
04043
pos 1 ) MG
-0.218
-0.259
-0 153

0,045

Qi BLT

- U« 180

0.08%
-O- 05%
'Co 163
-0«170
-0.094
~-0,008

0.050

Ce V64

0.036
-0.005
=0 D27
=0«021

J.000

0.017

0.016

0.000
-C.014
-0.016
= 6 007

0.002

0.005

0.003

0.001

0.001

0.002

0.002

0,001
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TABLE VI

X-ray Scattering Functions
p*=1.20 T*=1.00 R*=0.53

. . _ xi(x)/ iang('()/
K 1g(K) i(k) lang(K) I(x) a, (k) I(k)

O.0 1156.00 -T748.10 0.0 407.90 0.0 0.0

0.189 1136.84 =795,73 -0.12 340,99 -0.132 -0.000
Q.378 1081.67 ~806.97 -1.56 2T73.14 =-0.282 -0.00C6
0567 996,56 =733.27 -7.05 256,24 =-0.418 -=-0.028
0+ 756 890.24 -589.12 -20.18 280.95 =-0.504 =-0.072
Je.045 773.08 ~380.95 -42 .37 349,76 —-0.,475 -0.121
1.134 65541 =129+21 -60.82 469,38 =-0.227 -0.130
14323 545,93 90.561 -36, 5% 589,70 0.241 -0.061
1512 450.98 126.20 29,00 6506.17 D.502 0.048
1701 374.10 44,76 56430 475,17 0.274 0.118
1.8930 316,18 =5¢52 39,14 346,80 =-0.054 9 B
2879 275.84 -13.37 12.79 2785.26 ~Da222 0.046
20268 250415 -T02 -8.45 234.68 =0.211 -0.036
2e45T 235.47 -1 .52 -194,32 2l4.64 =0.091 -0.090
2646 228.14 0.29 -18+,57 209.85 0.041 -0,089
2«83 224 .79 025 -10.52 214453 O0.111 -0.049
3,024 222715 0.G3 -0.,87 221.91 0,099 =0,004
3213 220412 0,00 6.22 226034 0+035 0.027
3.402 215.74 -0.01 T-99 223,71 ~-0.026 0.036
3.591 209,03 -0.07 4468 213.65 =0.047 0.022
3,779 169.98 -0. 08 -0.07 199.83 =0.,036 -0.000
3.968 188.95 -0.04 -2.74 186,17 =-0.014 -0.015
4,157 1 16:57 0.01 -2.41 174,17 0.003 -0.014
4,346 163.60 0.04 -0.39 163.25 0013 =0,002
40535 150.83 0.04 1.27 152:15 0.015 0.008
4,724 138,97 0.02 le41 140,40 0,009 0.010
4,913 128458 0.01 0.38 128297 0.002 0.003
5.102 120,06 -0.00 -0.65 119.41 =-0.001 -0.005
5.291 113.59 -0 00 -0.,93 112.66 =-0.002 -0.008
5,480 109,17 -0.00 -0.53 108.63 =0.004 -0,005
5.669 106.57 -0.,00 -0.01 106,56 =~0.,005 -0.000
5.858 105.43 -0.,00 0«23 105.67 =0.,003 0.002
60047 105,27 -0.00 0e18 10545 =0.001 0.002
6.236 105:57 0.00 0.05 105461 0.001 0.000
6.425 105.80 0.00 0.02 10%5.82 0.002 0.000
b.61% 105+95 0.00 0.08 105.63 0. 004 0.001
6803 104.52 Qe 00 0 12 104 .63 0,004 0.001

6.992 102.56 0. 00 0,07 102.63 0,002 0,001
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TABLE VII

X-ray Scattering Functions
p*=1,20 T*=1.30 R*=0.53

, : ki(xk)/ 1.0 KD/

< i, (<) i (x) RN T S TV S

040 1156.,00 =R36.47 0.0 319,53 Q0.0 e

0.189 1136,84 =848,956 -0.10 287.78 =-0.141 =-0.000
0e378 108Bl.67 =-826.07 -1.49 254,11 =-0.285 =-0.006
0.567 996,56 =T737.16 -6.83 252.58 -0.420 -0.027
0.756 890.24 =584.96 -19.51 285.77 =0.501 =0.068
N.945 773.08 =371.90 -40,48 360.70 =-0.464 =-0.112
l.134 655.41 =-116.26 -56.82 482,33 -0.210 =-0.118
1.323 545,93 90.00 -33,42 502.51 0.239 =-0.055
1+512 450,98 118.24 25,53 594,74 0.470 Ce043
1.T01 374410 42.13 50.19 466,48 0.259 0.108
1.890 316418 -4,37 35,93 347,74 =-0.043 0.103
2.079 275,84 -12.18 12.75 276.41 =0.,202 0.046
2268 25015 -6459 -6.153 237.37 =-0.197 -0.026
2.457 235.47 -1.51 -16.23 217.73 =-0.090 =0.075
2.646 228.14 s -16.35 212,01 0,031 =-0.,077
2.835 224.79 022 -10.00 215,02 0.09% =-0,046
3.024 222,75 0.03 -1.88 220.90 0.092 -0.009
3,213 270,12 0.00 4452 224464 0,037 0.020
3,407 215.7% -0.01 6.78 222.51 =-0.018 0.030
3.591 229,03 -0.06 4,62 213.59 =-0,042 0.027
3,779 199.98 -0.08 0.63 200.54 =-0.034 0.003
3,968 188.95 -0.04 -2.07 186.84 -0.015 -0.011
44157 176.57 0.00 -2.26 174,31 0,001 =-0.013
be34b 163.60 0.03 -0.74 162.90 0.010 -0.005
44,535 150.83 0.04 0.83 151.71 0.013 0. 005
4,724 138.97. 0.02 12T 140.27 0.009 0.009
4,913 128,58 0.01 0.60 129.19 0. 003 0.005
5102 120.06 -0.00 -0.31 116,75 =-0.000 =-0.003
54291 113.59 -0.00 -0.73 112.86 =0.002 =-0.006
5 ¢4 80 109.17 -0.00 -0.5% 108.62 =-0.003 -0.005
50666 106457 -0.00 -0.13 106.44 =-0.004 -0.,001
54858 105.43 -0.00 0.13 105.56 =-0.003 0.001
6,047 105.27 -0.00 D.14 105.41 =-0.001 0.001
6,236 105.57 0.00 0.05 105.61 0.000 0.000
66425 105.80 0.00 0.01 105.81 0,001 0,000
b.614 105.55 0.00 0.05 105.50 0.002 0.000
64803 104 .52 0.00 0.10 104.61 0.003 0.001

65.992 102.56 0. 00 - 0.08 102.64 0.002 0.001
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K = 1.0 to 3.5 . Shifts of the main peak as iang(K) is included are
noticeable at all densities and always seem to be in the direction of
higher Kk . The main peak height of the io(K)-+i(K) curve is de-

g

creased at lower densities by iang(K) and is increased at higher
densities. To show the differences between intensities including and
excluding iang(K) more clearly, ki(k) vs. K[i(K)-+iang(K)] for
p*¥ = 1.2 , T = 0.75 has been plotted in Figure 3. It is clear that
the spherical intensity contribution occurs only in the region of the
first I(k) peak and the valley which follows. The angular intensity,
however, is a significant contribution out to a small third peak.

Other density effects on the total scattering curve can also be
seen in Figure 2. As expected, the curves show a strong increase in
structure with density. The main peak shifts to higher k with
increasing density, reflecting closer packing of the molecules. It may
also be seen that the I(0) values given by Eq(2) decrease with increas-
ing density over the range covered by these graphs, reflecting the trend
to lower compressibilities of increasingly dense fluids. Although not
shown here, it was also found that decreasing the density below
p* = 0.5 produces a decrease in these intercept values, finally
approaching N2 at zero density. The fact that a maximum occurs in the
intercept values merely reflects a density region where critical beha-
vior is becoming observable.

For all states covered in this work, the percentage contribu-
tion of the angular intensity to the total scattered intensity has been
determined. Experimental errors in liquid diffraction work are in the

range of *2 to 5% and these percentages must be surpassed if angular
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contributions are to be experimentally measurable. From Tables II-V
it can be seen that at T* = 0.75 the angular contributions amount to
4 to 5% maximum at p* = 0.5 , 7 to 8% at p* = 0.8 , 13 to 14% at

p* = 1.2 , and 17 to 20% at p* = 1.5 . These percentages occur pri-
marily on the main peak. The contributions in the region of the
second minima run 2 to 3% less than these figures. It is clear that
these percentages, particularly at higher densities, exceed experimen-
tal error.

In Figure 4 one can observe the effect of temperature on total
intensity. Data have been plotted for p* = 1.2 and T* = 0755 130
and the low k part of T* = 1.00 . Only the lower section of the
T* = 1.00 curve was plotted since this is the only region where the
curve does not fit closely between the other two temperatures. The
small differences that do occur beyond K = 2.2 are primarily due to
changes in the angular intensity since the spherical contribution is
practically zero in this range. Because temperature differences are
relatively small at higher Kk , it was concluded that over our range
of states temperature is a weak variable.

We have selectively included the various angular gzz,m(r) in
the intensity calculations in order to find which ones are most signi-
ficant. The state chosen was p* = 1.2, T* = 0.75 , and the results
are plotted in Figures 5 and 6. Figure 5 shows the fluid intensity
function K[i(K)-+iang(K)] as a function of the 00 'm* Figure 6
shows the dependence of the total intensity on the Bogtm * Tt dis

found that if just is set equal to zero, the K[i(K)-+iang(K)]

€400

curve differs only slightly from the case where all the Bog1y 2re
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included. Compare curves 3 and 4 of Figure 5. The total intensity
curve changed by an amount too small to be seen on the scale of Figure

6. Differences in I(k) were limited to less than 0.67% in the range

1 1

below 4.0A ~; the greatest differences occurred between 4.0 and 6.0A
but at no time exceeded 17%. In the case of iang(K), it was apparent
that large changes occurred beyond 4.0Afl when 8,400 Vas set equal to
zero. These changes, however, did not show up in the total intensity
for our p* = 1.2 state, since beyond 4.0Afl the entire iang(K)
accounted for only 1% or less of the total scattered radiation. At
still higher densities than studied here, it is expected that the con-
tribution of iang(K) will increase and errors in it due to the
omission of g400(r) will become more important.

The 200 series gzz,m(r) contributes most heavily to the
intensity curves in the range K = 0.9 to 3.8Afl. Differences in total
intensity between the curves when all the Bogry are included and when
8591 8729 are zero are quite small, amounting to no more than 17 and
typically being lower at about 0.5%. When 8920 is also zero (Figure
6, curve 3), differences reach as high as 8% and typically run about
4 or 5% in the region of k = 2.0 to 3.0 . Finally when 8500 is set
equal to zero as well (Figure 6, curve 1), the full difference between
I(k) and ig(K)-+i(K) is obtained (except for a negligible 8400
contribution). Note the large effect of 8500 °O" the main peak. One
may therefore view the dense fluid contribution to the chlorine inten-
sity as being determined to first order by just 8000° 8200° and 8520"

Comparison of our intensity curves with presently available

experimental data is quite limited. The only data known to us is the
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work of Gamertsfelder24. Only one state was studied and that was the
liquid along the coexistence curve at ZSOC, a state with a much
higher density and lower temperature than any of our states. Never-
theless a comparison was made in which it was found that our state of
p*¥ = 1.5, T* = 0.75 had peak locations of 1.53, 3.32 whereas
Gamertsfelder's state had locations of 1.53, 3.58 . The agreement of
first peak locations is encouraging, but since extrapolation of either
set of data to a common density is not possible, little more than a
generally correct range is indicated. Furthermore, there are probably
significant errors in the experimental data due to the outdated tech-
niques.

The program we have used was checked in part by calculating the
total intensity curve from a g(r) for one of the thermodynamic
states of argon and comparing it with the results of an earlier calcu-
lationzs. The two calculations were in agreement, indicating that the
spherical intensity terms ig(K) and i(k) were being computed
properly. The mere existence of our I(Kk) second peak in the same
general area as the experimental second peak provides confidence in
the angular section of the program. From Figure 2 one can see that
the spherical intensity does not account for this peak at all and
shows little tendency to do so even at the highest density. Since
the spherical intensity looks so little like the experimental data
and yet the total curve does, it would appear that the angular contri-

butions are qualitatively correct.
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Inversion of Data

If one attempts to obtain a single function of all the
gzz,m(r) from Eq®) by the usual method of Fourier transformation, it
is found that this equation does not easily lend itself to such an
approach. The principal problem is that the trigonometric expansions
of the jJ(Kr) which appear in the angular intensity integrals lead
to sums of terms involving l/Kn sin Kr or l/Kn cos Kr , where n
takes on various values. The equation may not then be separated with
Kk dependence on one side and a typical Fourier integral over an r
dependent function on the other, thereby allowing the Fourier transform
to be taken, since there is no single K™ multiplier which will lead to
this form.

Instead an alternative approach may be taken. It is workable
from a purely theoretical standpoint but will prove difficult to use
in experimental situations. We first describe the approach and then
turn to the practical difficulties of applying it.

V The approach is to calculate the higher gzg,m(r) and iang(K)

from theory and then to determine gooo(r) by Fourier transformation

of the equation

)
K[I(k) - ig(K) - iang(K)] = lmplaolz f r[gooo(r) -1]sin Kr dr
k (14)
It is knéwn that an x-ray experiment will determine only one function
uniquely26, and hence we have written an equation which will yield just
one particular gzl,m(r). We single out gooo(r) for Fourier deter-

mination (rather than direct theoretical evaluation) because it is the
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largest contributor of all the 8gg 1y EO the total scattered intensity.
Setting Ki(K) equal to the left hand side of Eqfl4), Fourier

inversion will lead to

rlg (r) -1] = : 23, sin Kr dk (15)
000 2 2
2T p 0 |ao|

which is the form of the transformation equation used in spherical
systems. The calculation of gooo(r) is possible if Eqll5) can be
evaluated. Certainly if aO(K) has no zeros, as in the case of HZO
with molecular center at the oxygen atom27, the integral can be
evaluated by standard Fourier techniques. 1In general, however, aO(K)
does have zeros14 and it must be shown that they do not mathematically
prevent the inversion.

Rao16 has stated that zeros in the Fe(K) of the Menke equa-
tion lead to singularities in the Fourier kernel and prevent the
inversion of the intensity data. Theoretically, however, such singu-
larities never occur. From Eql4) it can be seen that ki(k) must be
zero whenever aO(K) is zero. The ratio Ki(K)/[aO|2 is therefore
of the form "0/0" and is indeterminate, not singular. The form of
this ratio at the nth root of aO(K) s Ko is determined by recog-
nizing that the ratio is given by the integral on the right hand side
of Eqfl4). If the integral is Taylor expanded about the root K, then
to first order the integral is given by can + Con

If one has extremely accurate data for Kki(k) and |a0|2 .

e and c

In 2n
in the region of the zero. ki(k) may be fitted by Aln(K -Kn)3 +

may be determined numerically from curve fitting the data
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2 2 ) 2
Azn(K-—Kn) and IaO(K)I may be fitted by A3n(K -Kn) . Note that

both curves have zero slope at the root point as is required by the
derivative of lao(K)|2 = F(k) , F'(k) = 2|a0(K)||aO(K)l' . Taking

the ratio of these curves and rearranging, one obtains

c - _1n & = _EE._.ﬁlE K
¢ ] .
1n A3n 2n A3n A3n n

Eq(15)may then be evaluated by breaking the integral into sections,
splitting out the regions around the zeros of ao(K) and representing

them by ¢ o< = = The result is

| 2n °
n “n+17F
2n%orlg, (r) -1] =} RLO) o er ik
000 2
n=0 '+ |a
% n 0
u 2c
+7 | 5 (k_ r sin K_r sin €r -€r cos K_r cos €r+cos K_r sin€r)
n n n n
n=1 r
2
+ 2 sin KT sin Er} (16)

where the interval about each zero is K- € to Kn-+€ s KOSE—e 5

n denotes the upper root considered, and K - € has been chosen

nu+l

as the truncation value of the integral.
While formulas of the type of Eq(l16) may be derived to handle
the Fourier inversion, they are difficult to apply to real experimental

data. The difficulty arises when one realizes that the quantity

.exptl _ -exptl :
i (k) =1 (k) - 1g(|<) —iang(K)

will seldom give zeros at the root points of aO(K) , yet this condi-

tion must be met if inversion is to be accurate. The combination of

Iexptl

experimental and normalization error in (k) and the error due
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to an incorrect theoretical potential in the calculation of iang(K)
are the principal sources of trouble.

In the case of chlorine the situation is quite bad. The
quantity Kki(k) is given by the dotted line of Figure 3 and clearly
becomes a very small number after K = 2.7Afl. However, IaO(K)I2
also becomes quite small beyond this value of K and the ratio
Ki(K) /|a0|2 is considerably longer ranged, as may be seen in Figure
7. Even a slight error in the calculation of iethl(K) will there-
fore lead to great errors in the transform function beyond Kk = 2.7A71.
Since iang(K) accounts for nearly all of the chlorine intensity in
this high K region, accurate inversion would require us to calculate
iang(K) for chlorine to a very high degree of accuracy and with our
present knowledge of angular potentials and fluid equations of state,
this is virtually impossible. We must therefore conclude that while

inversion of Eq(l9)is possible, experimental inversion is not in

general practical.
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Discussion

It has been seen that angular correlations play a significant
role in determining the x-ray scattering pattern of chlorine. The
fact that these correlations become apparent in the case of chlorine
is traceable to the relatively large length to width ratio of the
molecule and an increased likelihood of a rodlike packing arrangement.
It is also related to the forms of the scattering factor coefficients.
As seen in Figure 1, aO(K) drops off rapidly at higher K while
aZ(K) and aa(K) are quite large. From Eq.f)it can be seen that this
causes the spherical intensity to drop off at high «k while the
angular iqtensity increases as its az(K) and aA(K) factors increase. .

In the region of K = 3.2A71, where the second peak appears in
the total intensity spectrum, chlorine is a somewhat special diatomic
in that the aZ(K) term is much larger, by nearly an order of mag-
nitude, than the aO(K) . Even aA(K) is larger than aO(K) in this
range. Other molecules, such as nitrogenl4, do not show this aZ(K)
dominance until well beyond the second peak where fluid structure con-
tributions are diminishing28. A short bond length in nitrogen is
responsible for this occurrence.

Because angular correlations do contribute noticeably to the
spectrum of chlorine, it is to be expected that they will play impor-
tant roles in determining the scattering behavior of certain other
polyatomic molecules. In the case of molecules of more extreme length,
the higher aJ(K) will dominate the ao(K) coefficient in even lower
regions of space provided atoms of great scattering power are not

located near the center of the molecule. Also, the higher order
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should be larger due to increased repulsive overlap in certain

8o 'm
orientations. Polar molecules will have the added contributions to
the angular intensity from gllO(r) and glll(r) type terms as
indicated in Eq(10). Applying the modified Stockmayer potential to a
moderate length and moderate strength molecule (t* = 1.0 , R* = .49,
Sweet29 showed that it would yield gllo(r) and glll(r) functions
which are greater in magnitude than the 8200 term. These should
therefore be strong contributors to the scattering expression, and
preliminary calculations in this laboratory on methyl fluoride show
this to be true.

The angular intensity results for chlorine show that, in
general, one must interpret the total intensity spectra for molecules
in terms of both spherical and angular contributions. In particular
they indicate that one must be quite careful in applying the Menke and
Zachariasen theory since the total intensity expression of that theory
only includes spherical terms. Furthermore the chlorine results show
that the total intensity curve will not necessarily contain features
that will immediately suggest whether or not angular correlation
effects should be taken into account since the total intensity curves
obtained are qualitatively quite similar to those obtained for spheri-
cal systemsBO.

The various sources of error in this calculation must now be
considered. One such source is the original choice of potential. This
choice has been discussed previouslyls, but it should be stressed
again that the particular choice of R (the interaction separation

distance) may be critical. If a much shorter potential separation
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distance such as that used by Sweet12 had been chosen for chlorine,
the percentage contribution of the angular intensity would have been
decreased, possibly down to the region of experimental error. The
shorter separation distance would then have required one to proceed to
longer molecules, particularly those with strong scattering centers
near the ends, in order to find a system from which one could obtain
a percentage contribution of the size found in this work.

Another possible source of error is the basic Percus-Yevick
approximation, but the past agreemeﬁt between the Fourier transforms
of Percus-Yevick spherical distribution fumctions and the correspond-

ing molecular dynamics transformszs’31

implies that the error is small
for our nonspherical case. A more likely source of error for the
present work is the inaccuracy of the computed 800 'm resulting from
truncation of the H(ELBQ) series in numerically.solving the Percus-
Yevick integral equationsls. To determine the size of such truncation
errors in our intensity results, 890 'm functions obtained from two
different H(glgz).truncations were used to calculate the total inten-
sity at p* = 1.0, T* = 0.75 . The two functions differed by less

L and by less than 1% above this K value.

than 2% up to K = 0.35 A
It is possible that the SP equation might be useful in future
research for examining the accuracy of diatomic potentials. One route
of investigation would be to see how well a given potential, assumed
not vastly different from the one used here, would predict the form of
the intensity curve in regions of high angular contribution when com-

bined with a suitable equation of state such as the Percus-Yevick

theory. However, if the intensity for nonspherical molecules shows as
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weak a dependence on the detailed form of the intermolecular potential
as the intensity for argon showsZS, useful information about the
potential may be obtained only with great difficulty. The fact that
the total intensity for chlorine appears qualitatively similar to that
for argon suggests that a potential possessing no angular dependence
at all may be found which will account for the intensity, thus indi-
cating that a weak intensity-potential dependence may indeed be the
case. The alternative route of obtaining gooo(r) from iethl(K)
and Eq(l5) and comparing it with a theoretical gooo(r) will also be
very difficult due to the inversion difficulties.

In summary, we have shown that angular correlations can play
a role in the molecular scattering of x-rays and have indicated some
of the conditions required for this effect to be large. We have also
shown that, presently, the Steele-Pecora equation has the only hope
of treating this scattering, and we have presented the rather

stringent condition for Fourier inversion of the molecular scattering

data.
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Figure Captions
Figure 1. Chlorine molecular scattering factor coefficients. Curves
1, 2, and 3 refer to aO(K), aZ(K), and aA(K) respec-—

tively. Ordinate units are electrons.

Figure 2. Total scattered intensity for four states at constant tem-
perature. The broken curve is ig(K)-+i(K) . The solid

curve is I(k) . Intensity units are square electrons.

Figure 3. Fluid intensity curves for p* = 1.2 , T* = 0.75 . The
spherical contribution ki(k) is given by the broken
curve and the total fluid contribution K[i(K)-+iang(K)]
is given by the solid curve. Ordinate units are square
electrons/A .

Figure 4. Total scattered intensity for varying temperature at

*

o} 1.2 . Curve 1l: T = 0,75; Curve 2: T* = 1.30 .
The dashed curve is the initial part of the T* = 1.00

isotherm. Intensity is in square electrons.

Figure 5. Fluid intensity curves «[i(k) + iang(K)] showing various

contributions of the 8gotm The state is p* = 1.2 ,

* — . . -

T = 0,75 . ©Curve 1: 2000 only; Curve 2: 8000° %200° 8400
included; Curve 3: all 899 'm included (it is nearly un-
changed if 8y91° 8999 = 0). Curve 4 is identical to
Curve 3 except in the dotted region which shows the area
of 400 contribution. Ordinate units are square elec-

trons/A .
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Figure 6. Total intensity showing various contributions of the
80t * Curve 1: 8000 only; Curve 2: all 890'm included.
Curve 3: 8000° 8200° 8400 included. Intensity units are

square electrons.,

Figure 7. The Fourier transform function ki(k)/ aO(K) A . Units

are A_l.
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Appendix 1

SCATTERING INTEGRAL EXPANSIONS

In this appendix details of the harmonic expansions of the
scattering integrals given in Part II are given. In that section the
derivation of the expansion for ‘<sA|exp(i5{£)|zB> was presented but
only the results were given for the other integrals. Thus, the expan-
sions for <sA|exp(iE'£)|sB> R <zA|exp(i5{£)|zB> s <xA|egp(iEf£)|xB>
+-<yA|exp(iEﬂ£|yB> and those where center A = center B will be given
here. Some equations and tables in Part II are used here and are
referred to by number only. e = exp(ik°r), o is the Gaussian exponent

on center A , and B is the exponent on center B .
<sA,e|sB>
This integral is the (ls,alflls,b) integral of McWeeny. Allow-

ing for our coordinate system and using the definitions of G and g

in Table I, this integral becomes

—
I

el 2 1K (B-0)R/2 * K
(4m) exp [ e

-1/2

(4m) G exp(iq cos 6) (1-1)

Spherical wave expand the exponential to give

P - 1/2 J
I, =6 JZO (2J+1) i j;(q) YJ,O(Q,CIJ)

The coefficient of each harmonic is therefore

<sylelsy> . = c2rnt? (7% 3 (a) (1-2)
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<sA|e|sA>’, <sB|e|sB>

These integrals are the same as the last one except that both
Gaussians are now on a common center. The differences between
<sA[e|sB? and <SA,eISA> or <sB|e|sB> are general and hold for all
the integral types treated here.

We first gdapt McWeeny's results, given with the Gaussians on
different centers, to the case where they are on the same center, A .
In his notation A and B are the vectors from the origin to each of
the two Gaussians. Since we are taking the origin to be at the mid-
point of the.internuclear axis (see Fig. 1, Section II), A =-R/2 ,

B = -R/2 , and McWeeny's result becomes

2 2 7
-40B(A-B)"- k't 4ik(cA+BB) * k
I = Q;E—)3/2 exp[ ]

A o+ 4 (0+B)
T (3/2 ~i? R .2
= (aTB-) exp (m) exp(-ik 5= * K) (1-3)

Denote by G0 » G when R =0 . Thus

el B
IA = (4m) Go exp ( 1KTZ- K)

As before, if the exponential is spherical wave expanded, the desired

coefficient may be obtained as

<s,lels,> = Go(2J+l)l/2 (=)7/? - (1-4)

The <SB,elSB>J coefficient is obtained in the same manner except that

A =R/2 and B = R/2 . Hence
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J/

<sglelsy>; = G a2 (T2 5 R (1-5)

We have the rules therefore, that for integrals whose Gaussians share
a common center, R=0 except in q , q being replaced by -kR/2 if

the common center is A and by KR/2 if the common center is B .
< >
zA!e|sB
This integral is the same as that derived in Section II except
that A and B have been reversed. This is the (1s,b|f|2p,a)
integral of McWeeny and is equal to

13 =

Q™

A(20BR + k+ ikok + K) exp(ik + Rq)/(a+B)

this equation being the counterpart of Eq. (7). An inspection of the
constants between the two equations followed by investigation of their
behavior through Eqs. (10-13) easily shows that the final result for

the 13 coefficient is

<zy|e|sy> = ca+1) /2 BR ()32 4

atB J(q)
g. Tet . (aieny 2 2
+ KG___ s (<) © 3. (q)c”(L1I;00)
2ol 105 amnyt/? .
(1-6)

L=1 only if J =20
<zA]e[zB>
This is the (2p,a|f|2p,b) integral of McWeeny and is given by

L, = f z,zp exp(—ari) exp(-Br%) exp(ike*r) dr =
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20.8R * ﬁi—iK&E’ ﬁ
B L _1/2 E /\./\ —— —; W -
= 725 (4™ G exp(igk*R) {( T E )

~20BR- k+ixB<+k  208k* k
. ( a+B ) * o+B

N

and K *k = cos 8 . If the exponential is now ex-

[ >

Note that Kk -°

panded and the bracketed expression is expanded as well, one obtains

—aB R? 1/2 3

G +
(OL+B)2

I, = (23+1) SRICURSIICHY

G
2 (0+B) JZO

+ SEWR 4 T (asyt/? 35(a) cos 8Y, ((6,0)
2 (0+B) 2=0

2 oo
R o B VP 1@ - Y, (6,4) (1-7)

4(a+B) % 2=0

The latter two series each contain a cosn(G)Yg 0(6,¢) type term. If
3

the cosine terms are expressed as spherical harmonics, then the har-

monic product may be coupled to give a single harmonic expansion by

using Eq. (11). Now

2.0~ /16 (3 cos’d - 1)
2. 11 [16r
cos 6 = 3 + 3 5 Yé,O

_ [4m
= T N

So from Eq. (11)

or

Also



-204-

1
242 =
2 Blj 2 2 2841).2 2, .
b WLl BN L S I% 2l[(Zm)] e (221300 Y, (8,0
(2) (1-8)
2+1
cos 0 Yy o(0,8) = lé |(§§Ii)l/2 2 (R1A; 00)Y, ((8,9) (1-9)
: =[2-1
(2)

Substituting these equations into (1-7) yields

2

2 [e's]
-aB R G el ) I e
1, = [=2 G + - 1 ) @AL' 1Y 5 (Y, A(8,9)
40 by 2 20048)  15+8)2 J=0 J 3,0
, KEoRe e

2 2+1
c (21X;00)1 jo ()Y (6,0)
2

+2
K2G o g

B 2041 8
6(o+8)% 220 x=%z—z[ (22+1)
(2)

77 17 350 ¢* (12330001, ((6,0)

The last two series are not arranged so as to immediately yield an
expression for the Jth harmonic coefficient. A study of the summation
indices indicates that a rearrangement is possible however. A and £

in the summation indices (only) may be interchanged. After inter-

A+1
change it is to be noted that whem A = 0, 2 = 1 only in the z
A+2 2=|A-1]
series; when A = 0 in the series, £ = 2 only and when
2=]A-2|
A=1, 2=1and 3 only.
Identifying A with J ,
~af R c e 1/2, \3/2
<z ]e[zB e [ BT T otE) 2](2J+.1) (=3 TH 00 F
(o+B) 12 (o+R)
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J+1 L+l
K(B-Q)RG % -—géigi7§'C2(LlJ;00)(—) 2 jL(q)
2(0+8)% 1=]J-1] (23+1)
(2)
2 J+2
v 2 ‘—‘Z—Lj%ﬁ (--)L/2 i@ CZ(LZJ;OO) (1-10)
6(c+R) " L=[J-2| (2J+1)
(2)

<xA|e|xB> + <yA[e,yB>

<xA|e|xB> and <yA|e]yB> may be calculated independently if
so desired. However, this work is restricted to a study of linear
molecules, and hence cylindrical symmetry must apply to the expression
Eq. (6). This in turn requires that the coefficients of each of these
integrals must be equal and hence one may deal exclusively with the
sum of these two integrals.

These integrals are also given by the (2p,a|f]2p,b) results of

McWeeny but with different projection vectors éB’QA . Hence,

L hosw, [efx,>

20,8R _’1: + iKOLE -

= 40LB(MT) 1/2 G exp(iqk " ﬁ) {( oy )
~20BR+ i + ikBc -1 20811
I ( a+B y & a+B

~ ~ ~

where i, j, k denote unit vectors along the x,y,z axes respectively.
Now R*i (=R*j) =0, i*i(=j*j) =1 . If these values are sub-

stituted in Ix and the exponential is expanded

1o/ 2 %

—KZOLB(E_ . i) 20{,3
) Z (2041)7°7 17 (@) ¥, (8,¢)

a+B

X 4aB®

I
(o+8)?
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A similar expression may be written for Iy with (5_'2)2 replaced

by (K* 1)2. Noting that K +*i and E_-j_ are two of the direction

cosines of K (see figure below),

Ya

one may make use of the identity

cos2 a +Ac0328 + cos26 = 1

to write
D%+ @®-D?% =1 - cos?e

The sum IX + Iy contains this last expression and one may write

2 (o]
-Gk~ afB 2 2% .
I +1 =——"-(1-cos“0) (20-+1) 1° 3,000 %, L0s¢)
XY 4p(arB)? %0 a0
G Tre 8,
Sy zzo (28+1) i7" (@ Y2’0(9,¢)

The term involving cosze YK 0(6,¢) may be expanded by Eq. (1-8), A
b

and £ 1in the summation indices may be interchanged as in <zA|elzB>,

and one has

-K 1/2 iJ

I+1 = G( (2J+1)

J.Cq) ¥, (6,9) +
X y 6 (a+B) g 3130 ¢

il g
AL
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Qi A . Tk 21+1 .

O 2

) i 3. (@)e”(L23;00) Y. (0,¢)
6(a+8)2 J=0 L=%J_2‘ (2J+1)1/2 L 7,0

i (1~11)

The <xA,'e|xB>J + <yAle]yB>J coefficient of Table I follows directly

from this expression.

Other Integrals with Common Gaussian Centers

The integrals <sA|e,zA> s <zA|ele> ’ <xA|e]xA> 03 <yA|e]yA>
and the corresponding ones on center B are evaluated in this part. The
mechanics of the derivations are the same as those used above, but the
beginning expressions are different. The adaptation of McWeeny's
results for each integral above follows.

By definition

& g B 2 o
IA = <sA|e|sA> = J exp ( (u+B)rA) exp ik * r dr

A corresponding expression for IB may be similarly defined. If center
A 1is shifted along a vector §A (commonly in 1, iﬁ or_g direction),

may be replaced by r, - 8, . If the shifted expression for I

2 T2

—A A

is differentiated with respect to § one obtains

L
BIA 2 2. 2
58;-= f (m+B)(2£A . éA + ZGA) exp[-(a+8)(rA-ZEA-.QAi-GA)]
X exp(ik *r) dr (1-12)
Hence -
1 SI pe E
g, lele> miemtm—er Tm = ,4f 5, W k (1-13)
A A 2(a+R) 5 50 BGA A

A
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If Eq. (1-12) is differentiated again wrt. GA , one finds

821, 2 a2 2
1 o= —2(OL+B)IA + 4(a+B) J (EA - GA) exP[-(a+8)rA]
§, >0 368
A A
x exp(ik -+ r)dr
Thus
X X ;—
A A : 321A , A ':
y, le| v s = + I, 4f 6, =04y (1-14)
4 G sorg)? 6, ~0 as2 2B TA o B
z, 25 k

If the Gaussians share center B, identical expressions may be written

in which A 1is merely replaced by B .

The scattering integrals may be further evaluated by carrying

out the operations of Eq. (1-13) and (1-14) on the IA expression

given by Eq. (1-3); A and B are replaced by A + §, . There results
<s,lelz,> = 5r—r~ I, ixc:k
A A 2(04+B) A T—= — g
=1 i
A 2,5 052 A
<z,|lelz,> =—"— K"K D+ 5575 ,
A A 4(a+6)2 2(a+§)
IA IAK

<x,|e|x,> + <y, |e|ly,> = - [+ D2+ D% -15)
A A A A (a+B) 4(&+B)2

with similar expressions for the B center integrals. Each of these may

be evaluated by proceeding through expansions of the same type as used

above for the two center cases. Thus the harmonic coefficients obtained

from Egs. (1-2), (1-4), (1-5), (1—6), (1-10), (1-11) and (1-15) complete

the set of coefficients summarized in Table I of Part II.
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Appendix 2

REDERIVATION OF THE STEELE-PECORA X-RAY SCATTERING EQUATION

Because of the central importance of the Steele and Pecora
molecular x-ray scattering equation1 to this work, the derivation is
presented here. The original derivation contained several algebraic

errors which have been noted and corrected in this presentation.

The D functions used in this appendix are those of Steele2 and
not those of Rose3 as is more common. They are related to the spheri-

cal harmonics by

D§,0(¢,e,0)= (2my M2

J,M(e’(b) (2_1)

The D functions in one coordinate system (system A) are related to
those in another coordinate System (system B) by the Euler angles that

rotate system A into system B by

2 J
3 _ B~ L2 1 J
Dy, k() = [55Tl RZ_J Dy, ap) Dy, (i) (2-2)

Three properties of D functions required below are:

f p*'l g Py (@ do = & 5 8 (2-3)
= 2_.
Myaky My 9Ky MysMy "Kysky 103y
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K 3K M

ae J J
f D;{ 3 (@ DM2 @ Dt ROR:?
3253 ) 15%1

£ C(JlJZJB;MlMZ) C(J1J2J3;K1K2)

(23,+1X23,+1) 1/2
] (2-4)

5 8
M)+, My K KKy (23,+1) g2

J J _ o %xJ R |
D () = Dy 3 (@sBsY) = Dy (~Y,-8,0) = D () (2-5)

M, K

The SP equation is derived in two parts. The first is the scat-
tering factor and the second is the sum over scattering factors for

total intensity.

Scattering Factor

The molecular scattering factor is defined as
a(ic; o) = f o) ‘explin: x) dx (2-6)

where QK are the Euler angles giving the molecular orientation rela-
tive to a laboratory coordinate system and where p(r) is the elec-
tronic density within a molecule and is expressible as
/2

P

ox) = ¥ m?t

*
i g8 Ty (0 0 ) (2.7)

E, qm and ¢m give the positions of the electrons relative to a
molecular fixed coordinate system (m), and x is the same position

vector as r expressed in a laboratory frame where Kk (k= 47 sin 6/))
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is the z-axis (see Fig. 1).

Fig. 1 Fig. 2

In Fig. 2 the polar angles of location of r in different coordinate
systems are rewritten in terms of Euler angles. QK rotates the
laboratory system into the molecular fixed system. From Fig. 2 and

Eq. (2-2) and (2-5), one has the relation

2
J By 12 J ¥ K
D .ul) = G ) Do (%) Dp (8)
J 0y = gn? 1/2 ; J o 2 oK
Dy, ) = G L Dp,k €4) Dp y ()
Qm = {¢memo} s QX = {¢x,exo} (2-8)

The exponential of Eq. (2-6) may be spherical wave expanded using Eq.
(2-1) to give

2)1/2 ) /

i

exp(ik+x) = (8T 17 (o y 356000 (@) (2-9)
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Substituting Egqs. (2-7)and (2-9) into (2-6), one obtains

12 J g .
a(K,QK) = JZM §' 8ﬂ 1 (2J +1) / J QJ,M(X)DM’O(Qm)DOO(QX)JJ,(Kx)d§
(2-10)

where Eq. (2-1) was used to express the harmonic of Eq. (2-7) as a D
function. Setting k =0 in Eq. (2-8) and substituting in (2-10)

yields

3/2 J' 2J'+1

ate, @) = ] I (8% G172 f 5 1 Dy @)

I8 3"

x Dy (@IDI @I k) dx  (2-1D)

The integral in Eq. (2-11) may be evaluated as follows:

Sy
]
o~

M(QK) f DJ’M(X) jJ|(Kx)x2dx ff Di,O(QX)DgO(Qx)sin 6,46 _do_

* K ! o Y J "4
L Dp (@) f Py, ) Ig (R)x7dx o J Dg, 0t 008,060,
From Eq. (2-3) the last integral gives J =J' , R=0 and

f ;ﬂ Do, (@) J 05 3 jJ(Kx)xzdx (2-12)

Substituting Eq. (2-12) into Eq. (2-11)

2)1/2 J D*J

4,M "o, M(QK) (2-13)

a(k, @) =} (8
J,M

where

-t . 2
aO,M =i f QJ’M(K) JJ(KX) 4rxTdx (2-14)
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Note that both of these equations differ from those published by
Steele and Pecora. Equation (2-13) differs by the complex conjugate
and Eq. (2-14) differs by a factor of (2J+l)l/2. We also note that

Eq. (2-1) differs from the corresponding expression in the original

work, the original expression being subject to a typographical mistake.

Elastic Scattering

The derivation of the scattering intensity begins with Eq.
(27) in the Introduction. Several coordinate systems are involved in

this expression and they are diagramed in Fig. 3.

< (2)

2 Yz (2 axis of (3,2) syshen)

Fig. 3

Molecule 1 is at the origin and has a molecular coordinate system
denoted by (1) (dashed lines). Molecule 2 is at the end of the

r =r,, vector and has a molecular coordinate system denoted by (2).

A molecular-pair (1,2) coordinate system is defined with r,, as its

z-axis, and the pair distribution function has angles expressed in

: K
this system rather than a laboratory system. Ql are the orientation

angles of molecule 1 relative to the laboratory (k) system, and le
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is the set of angles which will rotate the laboratory system into the
(1,2) system. Note that the polar coordinates of r are two of the

three Euler angles denoted by le and that

2

S 4
dr = 5= 1 dr dle

The beginning equation may thus be written

~1 Rl *, K K K
V I{Kk) = 3 f al(Ql) al(Ql) dQl

+ L [ at@a, @ e e o® ®r ey a0 e (2-15)

The first term of Eq. (2-15) is easily evaluated by substituting Eq.
(2-13) into the integral twice and applying the orthogonality condition

of Eq. (2-3). One obtains

1 : J 2 =
I(k) = ‘)MZJIaO,MI bt (2-16)

b

where 12 is the second integral of Eq. (2-15).

I2 is more difficult to evaluate. The a(K,QK) factors are

expressed relative to a laboratory coordinate system and must be re-
expressed in the (1,2) frame. From Fig. 3 and Eq. (2-2), the

*
DOJM(QK) of Eq. (2-13) may be rotated to the (1,2) system and
3

8ﬂ2 *Jl Jl

(Q )D
R1,MI,J1 25141y /2 %0,11 "0,R1

%* K 3.
a; (k,Q) = R1, Ml(Q % (2-17)

If Eq. (5) of the Introduction for g(z)(R

—%—2) and Eq. (2-17) are sub-

stituted into the expression for 12 , one obtains
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2 2.2
1 p 8m
By iotey g ! o 172
81° R1,M1,J1 R2,M2,J2 [(2J2+1)(2J1+1)]
xJ1 32 O, U 12,12
2031 20,2 L L J Dr1,m1 %1 Pyy (4%
N1 N2 s
x32 12 O T %32 .
i f Dy 2y IDyp (45 )%, f Do, r1%12) 00, rp (1) exP UK Dy, y, @
X dle rzdr (2-18)

where N1 = {k1,M1',J1'} and where the terms have been grouped accord-
ing to their variables. The first integral must be changed to contain
a complex conjugate by employing the identity

K-M DJ

e, (2-19)

*J
Dy = ()

Once this change has been made, the first two integrals may be evaluated
by using Eq; (2-3). Orthogonality requires J1 = J1' , R1 = -l ,

M1 =-M1' ; J2 =J2' , R2 =2 , and M2 = M2' . Many of the summations
in Eq. (2-18) thus become redundant and may be dropped. Substitution of

the orthogonality relations into Eq. (2-18) and dropping primes leads to

o 4Wp2 #11. J2 k1l-M1
ty'™ 7z %0 2o,m2 )
N1,N2 [(2J1+1)(2J2+1)] ¥
J1 *J2 : 2
® ff DO,—KI(QIZ)DO,KZ(QIZ) exp(ik*r) 3§;_§gfr) dle r-dr (2-20)

The 912 integration in (2-20) may be carried out by spherical

wave expanding the exponential and then employing Eq. (2-4). Thus,

/2 Z /

|

exp(iksr) = (81%) 17 23?5 (er)n] (@) (2-21)
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The integral in Eq. (2-20) becomes

2)1/2 )
J

J o J1 *J2 J
L B f JJ(Kr)[ f DO;Kl(QlZ)DO,KZ(QIZ)DOO(QlZ)dQIZJ

X (r)rzdr

N1 N2

= Y25 1T 2m1)Y? ¢(3,31,32500) c(J,31,3250,-1)
J

(2J+1) (2J1+1)

& 2
8m(2J2+1)

Kl,-k2

]1/2 f J'J(Kr) g1 1\]z(r) r2ar (2-—22).

Substituting ‘Eq. (2-22) into Eq. (2-20) gives

2 *J1  _J2 , k1-ML ¢ .J (2J+1)
L 0" ag o 3w () § 23D

x  ¢(J,J1,J2;00) c(J,J1,J2;0,k2) f 35 (kD)gy Nz(r)4ﬂr2dr, Kl = k2

The term where NI1,N2 = 0 may be split out from I, and written

2
separately.” Since this is the spherical average term, the goo(r)
function is replaced by goo(r)-l so that convergence of tﬂ;_integral
is maintained. Thus this two part expression for I2 can be combined
with Eq. (2-16) to give the total scattered intensity

-1 Ji 2 2 2 2
VI(k) = o ) Iao MI +p IaOI f [8go(r) =11 j,(kr) 4mridr
M,J = =
el ] WML 20 sk Fbda- 1 oy ey
§i1 & o, %o,m2 s=|51mr2) T ITD
#0

X ¢(J,J1,32;00) c(J,J1,J2;0,K2) f gy ng () 3j(kD)amridr, kl=-k2

(2-23)
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If this equation is compared to the published Steele-Pecora results,
certain differences are apparent. The principal difference is the
appearance of the (2J+1)/(2J2+1) term. Other versions are possible by
applying the symmetry properties of Clebsch-Gordan coefficients to
those written here, But they do not agree with the incorrect SP equa-

tion-
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Appendix 3
RESTRICTIONS ON THE PERCUS-YEVICK HANKEL TRANSFORMS

The solution of the Percus-Yevick equation leads to a series of
simultaneous equations involving the Hankel (spherical Bessel) trans-
forms of the coefficients of the spherical harmonic expansion of the
direct correlation function c(glgg) and the density dependent part of
the pair distribution function H(glgz) . The allowed transforms con-
stitute a finite set of even order transforms, and it is the purpose of
this appendix to derive these latter two restrictions.

We begin by noting that equation (6) is a general expression
for the Fourier transform of any pair property. Hence the conclusions

we can draw from it about H(22'ms) will also apply to C(2%'ms) .

In Eq. (6) we may split out the terms depending on m to give
) H(2L'ms) c(RL's;m,-m) (3-1)
m .

Now the m wvalues occur in plus and minus pairs and they take on the
values -2,-(2-1)---(2-1),% except for zero which occurs once. The

terms in (3-1) with m # 0 therefore occur in pairs given by

H(LL'ms) c(22's;m-m) + H(LL'-ms) c(LL's;-m m) ¢33}

From (4-4), Appendix 4, we may rewrite the second Clebsch-

Gordan coefficient according to

248" -s

c(28's;-m m) = (=) c(22's;m-m)

and (3-2) becomes
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4L -5

H(22'ms) c(#%'s;m-m) + (=) H(2%'ms) c(%%'s;-mm) (3-3)

where we have used the identity Hkl'm = HQQ'—m . From symmetry
studies of pair property expansions, it can be shown that 2+2&' must
be even. Thus it is apparent that unless s 1is also even the terms
of (3-3) will cancel. The form in (3-1) which has m =0 occurs by
itself and includes the Clebsch-Gordan coefficient c¢(22's;00) . From

(4-9) we have

c(22's3;00) = 0 unless A+L'+s is even

Since f#+%' is even, s must be even here too. Thus in
order for the entire sum (3-1) to be non-zero, s must be even.

A further restriction on s is also obtained from the
Clebsch-Gordan coefficient in (3-1). The leading three parameters,
i.e., £, %' and s of any Clebsch-Gordan coefficient must satisfy the
triangle rule (4-7). This requires that s must have a value between
|£—2'| and #+%' , and so the allowed s values clearly form a
bounded set. The properties of finiteness and evenness have thus been
proven.

It is important to note that (6) is applied repeatedly in
obtaining equation (10). Therefore, the same restrictions as just
derived for (6) apply to (10) as well. It follows that in equating
coefficients of (6) and (10), the only transforms alloﬁed in either
equation are HOOOO, H2002, H2200, H2202, H2204, H4004, and the corres-
ponding ones for the direct correlation transforms if the Hﬂ%'m set

is restricted to HOOO’ HZOO’ H220, and H400 .



-221-

Appendix 4
CLEBSCH-GORDAN COEFFICIENTS

In both the Percus Yevick equations (Séction ITI, equations
(15)-(20)) and in the x-ray scattering equations (Section IV, equation
(4)), Clebsch-Gordan coefficients appear. The properties of these
coefficients are well known and are discussed in detail by Rose,
reference(9) of Section III. For convenience we tabulate here the
properties which have been used in this work.

An analytical form due to Wigner (Rose, 3.18) exists for the

Clebsch-Gordan coefficients and is given by

sa 120k 1

c(j.j,j,mmm,) = §
1°2¥3°1°2°8 m3,ml 2

gt 3y~ 301 Gamdgtigdt Gitdrdghl sk md! (i )1)1/2
Qo+ LF 3.0 D G- mdt (QpF 1)1 G- 3,00 (354 w01

v+jfm2
(=) (JsF JF m =~ )Y (jo= m+ v)!
2 3 1. 1 1. (4-1)

L VU g A+ 3,7 O (gF mgm 1 (wbdy= 1,- m)!

v assumes all integral values such that none of the factorial argu-
ments are negative. Still another expression exists due to Racah
(Rose, 3.19). Both of these expressions however are quite tedious to
use for evaluation and one therefore performs as much analysis as pos-
sible by using the orthogonality and symmetry relations of these
coefficients. When actual evaluation is required, the tables of

Condon and Shortley (reference 11, Section II) are useful, provided at
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least one of the ji £ 2 .

The orthogonality properties are:

o | A _ g e ail = = s
mz C(J]_JzJ ’ml’m ml) C(JlJZJ ’ml’m ml) 6ij (4-2)
ul
JZ c(jljzj ;ml’m—ml) C(jljzj ;mi,m'-mi) = 6m,m]'_ Gm’ml (4—3)
The symmetry properties are:
: 3113273, i
C(JlJzJ3smlm2m3 = (=) C(J1J233;_ml’—m2’—m3) (4-4)
jl+j2_j3
= (_) c(323133;m2m1m3) (4—5)
j'l—ml 2j4+1 1/2
= (-) 2j2+l) C(J133Jz;ml’-m3)—m2)
(4-6)
The triangle rule for the numbers j,jl,j2 is
i S L EPON, L PR LR W P (4=7)
or, more simply, just A(jljzj) . Using this definition we note that
c(iydpdsmym-m) = 0 unless A(3 3,3). (4-8)

Also
,mll .<_jl 3 'ml ij Im_mll ijz .

The parity c-coefficient is

c(jlj2j3;000) = 0 wunless jl+ it j3 is even. (4-9)
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We now tabulate the Clebsch-Gordan coefficients required in

this work.

A. Those with at least one ji equal to zero. By using equations
(4-4), (4-5), and (4-6) along with (4-10),
c(j1033;m10m3) = ¢ S (4-10)

dydg TyBg ?

all coefficients with at least one zero j may be evaluated.

B. Those with j,

1'2 2 . These are derived from the Condon and

Shortley tables.

Clebsch-Gordan Value of

Index Numbers Coefficient
21100 -V275
21101 Y1710
22200 V277
22201,2220-1 /1714
22202,2220-2,222-22 Y277
222-11 /1%
42200,24200 V277
42201,24210 -/8763
42202 17126
22400 18735
4222-2,242-22 : 5742
22402,2240-2 3714
242-11,422-11 -V/5721
22401 V377
2242-2 Y1770

2241-1 V8735
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Clebsch-Gordan Value of

Index Numbers Coefficient
44200 -10/3 V1777
442-11 17/6 V1/77
442-22 -4/3 V1777
24400 -/20777
2441-1 V37154
2442-2 3 /3777

Those with ji > 4 . These are limited in our work to those
coefficients with jl = j2 = j3 = 4 ., These are not covered by
the Condon and Shortley tables but may be evaluated by the special

formulas for c(L 00) and for c¢(LLv;00) given by Rose 3.32

i
and 3.30, respectively, and the recurrence formula for Clebsch-

Gordan coefficients given by Rose 3.27. These are:

1
N e S (_)2(L1+L2—L3) __7;1:34-_1_)1/2
e L.+L +L.+1
Ay T3
T(Ly+L,+L,)
= N 7 s Li+tL,+L, = even (4-12)
T(L1+L2 L3) T(L1 L2+L3) T( Ll+L2+L3) L2573
(%-x)!
where T(x) = —
VT
c(LLv;00) = 2L(Lil) c(Llv;1-1) , (4-13)

v(v+l) - 2L(L+1)

and the recurrence relation is
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(350440 =+ D= 3,040 - 2m0em)] (33,3 55m,Mm)
= [(3,mmHD) (G p4m) (3w G, 9m) 112 e(3,9,3 4 5me1,Mem )

From (4-12) we obtain

c(444;00) = 9‘/16%1 (4-15a)

From this last result and (4-13) we obtain
c(44b31,-1) = - 2/—2— (4-15b)
A 2v 1001

Finally from (4-14), (4-15a), and (4-15b) we obtain

clhllis 3y = = % /1_020T | (h-15c)
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Appendix 5
SECOND VIRIAL COEFFICIENTS

For convenient reference, the second virial coefficients for
the two-centered Lennard-Jones potential which were derived by Sweet

and Steele (JCP 47, 3029 (1967)) are tabulated here for R* = 0.1 to

0.4 .
R*

> 0.1 0.2 0.3 0.4
0.4 -12.94 -11.08 . -9.38 -8.085
0.6 - 5.89 - 5.16 -4.419 -3.807
0.8 - 3.553 - 3.106 -2.626 -2.201
1.0 - 2.401 - 2.075 -1.707 -1.384
1.4 - 1.283 - 1.053 -0.7889 -0.5317
1.8 - 0.7381 - 0.5522 -0.3326 -0.1123
2.0 - 0.5594 - 0.3874 -0.1821 +0.0262
2.2 - 0.4181 - 0.2568 -0.0622 0.1361
2.4 - 0.3035 - 0.1508 +0.0345 0.2252
2.6 - 0.2090 - 0.0634 0.1143 0.2986
2.8 - 0.1298 + 0.0104 0.1811 0.3606
3.0 - 0.0625 0.0725 0.2378 —
3.2 - 0.0049 0.1258 0.2864 0.4569
3.4 + 0.0450 - 0.3285 -
4.0 0.1611 0.2804 0.4257 0.5843
5.0 0.2848 0.3927 0.5284 0.6759
6.0 0.3620 0

L4627 0.5918 -
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Appendix 6

TRIGONOMETRIC FORMS OF SPHERICAL BESSEL FUNCTIONS

: - sin x
3 (8} = ==
: _s8inx cos x
Jl(x) i 2 X
X
JZ(X) = (g-—'%) sin x - iz-cos x
33(x) = (l% - 959 sin x - (l% B %- cos X
X X
. _ sin x 105 45 _ 205 .10
34(X) il ( Y > + 1) ( 4 5) cos x
X x X X

Asymptotic expression at x = 0 :

x—n. ) - i
¥ 1-35-++(2n+1)

(provides 4 significant figure accuracy for jA(X) at x=0.1)

Recurrence formulas:

fn(x) sin x+(—)n+l £

3 o1 (¥) cos x

=1

X s fl(x) = x'_2

£,(x)

£ +E L) = (o) X T £ (x)
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PROPOSITIONS
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PROPOSITION I
Abstract

Two methods for calculating the third virial
coefficient C(T) for nonspherical molecules are
discussed. One is the direct evaluation of the clus-
ter integral. The other is an application of
statistical mechanical perturbation theory (PT). It
is proposed that both sets of calculations be carried
out to evaluate C(T) for a modified two-centered
Lennard-Jones potential. It is shown that the PT
approach must include the second order term and it is
suggested that the Barker-Henderson macroscopic com-
pressibility approximation for it be used. Comparison
of cluster integral and PT results will allow deter-
mination of the temperature below which the perturba-
tion approach is grossly inaccurate, a result that can
be extended to other potentials. Finally, C(T) may
be expressed as a sum of spherical and nonspherical
contributions and a comparison of the two will give
the first quantitative estimate of the size of the non-
spherical repulsion correlation on C(T) .

A fluid equation of state valid in the moderately dense gas
region is the virial equation of state. The ability of a particular
potential to predict a third virial coefficient that agrees with
experimental data is one of the measures of accuracy of the.potential.
One may note that second virial coefficients are of little or no use
in examining the potential, since they are used to determine the
parameters which characterize the potential. Third virial coeffi-
cients have been studied extensively for spherical potentials of the

2,354

square welll and Lennard-Jones types The calculations of

third virial coefficients for nonspherical potentials have strongly
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emphasized multipole interactions superimposed on a spherically
symmetric repulsive core4’5’6.
Recently work has begun to appear which employs nonspherical

7’8’9. The work of Chen and Steele gave values of the

repulsive cores
second, third, ana Percus Yevick fourth virial coefficients for
dumbell-like two-centered hard core molecules (2HC potential). The
method of calculation is superior to the earlier multipole work in
that the expansions involved do not depend on the particular potential
being used. All expressions are given as a function of the Mayer £
functions and these may be easily obtained in a separate calculation
following the work of Sweetlo. Hence the method may be applied to
potentials other than the 2HC potential. One should note, however,
that this approach has the significant drawback of being a quite
lengthy calculation.

Becéuse of this length a shorter method of calculation would be
desirable. One suggested approach is through statistical mechanical

{312 . :
2 requires that some previous

perturbation theory7. This theory
basis calculation has been carried out providing accurate pair distri-
bution functions. Since diatomic hard core calculations have recently
been performed, such an attack on nonspherical molecules is now pos-
sible.

It is therefore proposed that third virial coefficients be
evaluated for a modified two-centered Lennard-Jones potential
(mod-2LJ), proceeding later to a true 2LJ potential. This may be

accomplished either by applying Chen's cluster integral (CI) method

to the mod-2LJ potential or by developing and applying a perturbation
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equation. The coefficients would be calculated as a function of tem-
perature and expressed as the sum of a spherically symmetric part and
an angular part. Since it has been claimed4 that the temperature
dependence of the third virial coefficient depends on the angular cor-
relations between molecules, a comparison of these two parts of C(T)
would give the first quantitative estimate of the size of nonspherical
repulsive effects.

In the following two sections we will review Chen's procedure
and then develop a possible perturbation approach. The review of
Chen's method will be quite brief, since no modifications are suggested

here and his paper contains a good presentation of the theory.
A. Cluster Integral Evaluation (CI)7

The cluster integral for C(T) is

AT o TR RS |
EA) = = e o f E(RR)) /\ 4R R, (1)

The CI method involves expanding the rooted triangle diagram,J/\\,as
/\f 4o B T @) Yo @) (2)
m
evaluating the coefficients t22'm , and then performing the integra-
tion of (1) for C(T) . The evaluation ofJ/A\x proceeds as follows.
Multiply both sides of (2) by the complex conjugates of the two har-

monics shown and integrate over the Euler angles to give
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1

X dQ,dR,d0, dr, (3)

Harmonic expansions of the two Mayer f functions are substituted into
this last expression. The three pairs of spherical harmonics in (3)
have their angles expressed in different relative coordinate systems
and the angles of each pair must be rotated to a common coordinate
system by use of the extended spherical harmonic addition theorem. The
resulting expression can be evaluated directly only with great diffi-
culty due to the complicated functional form of the angular variables.

Hence t is exponentially Fourier transformed; the complex expon-

22'm
ential is expanded into a set of angular functions which allows the
angular integrations to be performed; and then the expression is back
transformed to give tlﬂ'm(r)

The final expression for tzl'm(r) involves seven summations

over Bessel transforms of the form

B(r) = f bl(T) bz(T) js(Tr) T2dT
0

where bl - and b2 are themselves Bessel transforms over Mayer func-

tion coefficients. The final expression is manageable because the

number of Mayer coefficients that lead to significantly large b

functions is relatively small.

B. Perturbation Theory (PT)

In its usual form first order perturbation theoryll’12 ex-—

presses the configurational free energy as
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A=A +.——'J e j go(glgg) 01(3132) rdr df2,df2, +0(B) (4)

The expression has been generalized to include the Euler angles of
orientation of molecules 1 and 2; go(glgz) is the 2HC radial distri-

bution function; and ul(glgz) is the perturbing potential defined by
B Ro) = Bl R) — 0, (R 85) (5)

where u(glgz) is the total interaction potential and uo(glgz) is
the 2HC potential. ul(glgz) is zero when uo(glgz) is infinite. The
pressure is related to A by

JA

op’T (6)

PV = p(

and so

Np 2
PV = (PV)°+-8—$-—3—5p f J 8, (R;R,)u; (R;R,)r"drdQ,dQ, +0(B) (7)

The virial coefficients may be identified by substituting the density

expansion for go(gigz) into (7). The expansion is

-u (R,R

g, RR,) =e ° _1_2>B{1+ (AN e+ L[], *+2(N),

S MRS s ®

where the root diagrams are orientation dependent. Hence C(T) is

identifiable as the coefficient of p2 in (7) multiplied by RB/N :
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-u_(R,R,)B
o —1—2 2
ul(B&EQ)r drdQldQ2 9)

SR ) T
CytTy = zkaf [ (Do e
The one subscript on Cl(T) signifies first order perturbation theory.
As this integral stands, the integration is over five variables. This
may be improved by expanding each of the orientation dependent members
of the integrand into the orthonormal expansions of SteelelB,
Eq. (2); or
ad ' - 1
ul(glgz) = ul(ree ) 4ﬂ€£§’mu£2.m(r) YZ,m(Ql)Yl',—m(QZ) (10)

—u (R R))B
(JNX)O and e : =] - fo(glgz) have been tabulated in such a

form already by Chen and no new evaluation is required. On the other
. . : 1
hand, the perturbing potential ul(gigz) must have its ugl.m(r)

coefficients computed. From (10) the expression for uiz,m(r) is

27 171
e ' '
ugor (¥) = 52 f J f o, (B8P, L (9P (00D
0 =1

X cosmp d cos 8 d cos 6'dd

For values of r less than the maximum hard core contact distance ro,

N .
it is clear that for certain orientations the hard cores will overlap

and the perturbing potential will become discontinuously zero (while
the total potential becomes infinite). This presents no real computa-

tional problem except that the 6,6',¢ grid may have to be small in
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this region of r space in order to obtain high accuracy.
Substituting (2), (10), and an expansion similar to (2) for
fo(glgz) into (9), one obtains

c (1) = ﬁ%%—f ook ule el [14—f800(r)]r2dr

2
¥ 16T € z

o
kT 221m k-kln jj'p

2
'
f t,Q,,Q,'m(r) ukk'n(r)fjj'p(r)r dr

x J ¥y @Y ()Y, (2))d0 f Yoo @)Y (@)Y (9,)d0,

(11)
’ oo e < 14
The triple harmonic integrals are given by
Y, (DY, (@Y, (@de = (-)P[EED 21, 1/2
m kn ip 4m(2%+1)
X c(jk&;pn-m) c(jk%;000) (12)

where c¢( ) is-a Clebsch-Gordan coefficient.

Equation (11) may be evaluated by performing a Simpson's inte-
gration over the integrals, including as many as is necessary to
achieve a desired accuracy of C(T) . Calculations of the expansion

s 7 ThCs
coefficients’ of (JA\)O have shown that only two coefficients are
s =0 1 . o
significant, t000 and t200’ and hence the £2£8&'m summations in the

second term above may be reduced to include (£4'm) = (2,0,0) and
(0,2,0) only. The Mayer function and most likely ul(glgz) as well

will have expansion coefficients up to 400 that will have to be in-

cluded in the summations above.
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When Smith and Alder2 applied first order perturbation theory
to the third virial calculations of spherical molecules (using a
Mod.~LJ potential), they found that the coefficient was in error by
about 25% at T* = 5.0 with the error growing rapidly larger as the
temperature was decreased. This implied that second order perturba-
tion theory would be required if the temperature range were to be ex-
tended to lower temperatures. From work done by Pople and Alder15
on the mod-LJ potential, one may estimate that C(T) is accurate to
about 10% at T* = 1.67 when the second order term is included. Later
work by Barker and Hendersonl on the square well potential showed
similar results, obtaining an 8% error in C(T) at . gl S [N

1.5 where Ao is the value of the outer wall position. For

A

2.0 , C(T) began to show error below T* = 3.0 . Hence it appears

A

that it will be necessary to include the second order perturbation term
for our modified 2LJ potential.

The rigorous expression for the second order perturbation
involves three and four body distribution functions which are nearly
impossible to evaluate. Fortunately an approximate expression exists
which is easy to use; it is the macroscopic compressibility approxima-
tion (MC) l. Pressure calculations from perturbation_theory have
been performed using this approximation for the square well potential
and most recently for mixtures of spherical molecules interacting via
a Kihara potentiall6. .Both works indicate that the approximation is
quite good, especially the latter work where agreement with experimen-
tal data is excellent.

Using the MC approximation, (4) can be replaced by
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= No | ... 2
A=A+ gr J J g, (B;R)) u; (R;R,)r"dr dQ,d,
_Ben [, 2 .9 ? ,
16T J J [u) (RyR)) 1" KT(5p) 8, (RyR))r dr df,d, +0(R%)
= & +A PH i

where (%9 is the compressibility of the hard core system. -%Q)
F'e P
can be obtained as a density expansion using the Pade approximant7
P(2,2) for the 2HC equation of state or, more simply, by using the
2HC virial expansion. One may write the virial expansion as
P 2 3

£ = s 4 vws
kT ¥ Bop Cop

where 0, Bo’ and Co have number density units; hence by differentia-

tion and division

-8—p~ = — 2_ 2 L
(59) = 1-2B_p + (4B, -3C )p°+ (14)

The first two terms of (13) lead to Cl(T) as before, while the third
term (Az) gives the second order perturbation contribution, C2(T)
- (A

Hence from PV = p(Bp)T 5

eym =L [ . [ ®R1ZL(/\), - 28, (D]

2 8m ul 1) o o
-u_(R.R,)B
e A g 4 4G (15)
12
This integral may be evaluated in the same fashion as was Cl(T)'

The only difference is that the integral over [ul(glgz)]z(JAX)() x
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[f(§1§2)4-l] involves four spherical harmonic expressions and the
expansions, although straightforward, will be considerably longer. An

expression for

I Yzm(Q)Ykn(Q)Yjp(Q)Yiq(Q)dQ

will also have to be derived, but this may easily be accomplished by
combining the harmonics in pairs by using the spherical harmonic coupl-
ing theorem14 followed by application of the harmonic orthogonality
relation. One may note that the 2HC second virial coefficient
required in (15) is known quite accurately, the error apparently run-

0

" ning less than 17 ¥ . The third virial coefficient accurate to second

order is thus given by
c(T) = Cl(T) + CZ(T)

Now that the methods of evaluation have been outlined, only a
few comments remain to be made about the C(T) that are finally ob-
tained. As shown by Smith and Alder, the C(T) obtained from per-
turbation theory will become rapidly divergent from the true C(T)
below some temperature T: . Therefore it will be advantageous to
compare the C(T) values from the CI and PT calculations to determine
what this temperature is. Most likely this Tz will also lie near
the convergence temperature for other nonspherical potentials. 1L,
contrary to expectation, agreement between the CI and PT C(T) values
is poor above T: , then one must doubt the accuracy of the MC approxi-

mation when applied to nonspherical systems.
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Another comment which must be made concerns the separation of
C(T) into spherical and nonspherical parts. Since spherical poten-
tials such as the LJ potential have often been used to describe non-
spherical molecules, it might seem appropriate to separate C(T) into
a part that depends on the spherical average of the potential (uOOO)
and another part that depends on the angular parts of the potential
(ulﬂ'm;2’2'¢ 0). This kind of separation is very difficult, however,
since the spherical average of a given pair function such as A/\b or

f(glgz) does not correspond directly to u Hence it is conveni-

000 °

ent to use another separation. It is proposed that the spherical part

of C(T) be taken as

e el
Catn™) =~ 5% J £000(T12? £000(*13) fopo(F23)dr 9,drs
where fOOO is the spherical average of the Mayer £ function for the

mod-2LJ potential. The nonspherical contribution may then be repre-

sented as

(T) = C(T)[Pert.Theory; T*>T:] S

Cnonsph sph
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PROPOSITION IT
Abstract

It is proposed that the kinetics of the copper (II)-amine
catalyzed decomposition of hydroperoxides in the presence of 2,6-di-t-
butyl-p-cresol be thoroughly investigated since this type of anti-
oxidant behavior has not been studied previously. The reaction is to
be run using different cupric salts and amines as catalysts and the
resulting products are to be analyzed for an expected peroxycyclo-
hexadienone product. Assuming this expected product is formed, a
reaction mechanism is proposed that accounts for presently known
experimental information. The kinetic equations for this mechanism

are derived and the experimental program required for its verification
is discussed.

It is well known that many autoxidations proceed by free-
radical chain reactionsl. Generally hydroperoxides are formed first
and then decompose into alkoxy or peroxy free radicals, these attack-
ing the substrate and propagating the chain reaction. To prevent such
chain reactions, substances which form relatively stable free radicals
are often added to the reacting medium so that these free radicals will
react with the peroxy radicals to form stable decomposition products,
thus terminating the chain reaction. It has been known for some time
that several of these reactions are catalyzed by certain transition
metal ions2 '

More recently it was discovered that very small amounts of
cupric salts and amines in the presence of sterically hindered phenols
were extremely effective catalysts, leading to hydroperoxide decomposi-
tion rates far in excess of those encountered in earlier work3a.
Because of the great speed involved, this reaction becomes important
in that it may be used to develop a very efficient antioxidant oil

additive.
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To date, however, only a minimal amount of information is
available about this reaction. Principally this information includes
the following: (a) the hydroperoxide decomposition rate is rapid;
(b) only catalytic amounts of copper (II) are required; (c) a free
radical from the phenol is formed; and (d) the activity of amines is
in the order primary > secondary >> tertiary. In fact, when ter-
tiary amines are present, no increase in hydroperoxide decomposition
rate is detectable. It is assumed, although not proven for all con-

ditions, that the product of the hydroperoxide, ROOH, and phenol

4 ’

R R

is the peroxycyclohexadienone

Rﬂ:::][d
R‘

%R
Since so little is known about this reaction, it is proposed

that a detailed study be carried out on it. Such a study would have
two parts. The first would be to verify the predominance of the
peroxycyclohexadienone in the product and to see if its contribution
varies when different amounts of cupric salts and amines are used.
The second part would be to propose a reaction mechanism consistent
with the products formed and to conduct experiments to determine its
validity.

Initial work on this system employed 2,6-di-t-butyl-p-cresol
(a common oil additive), oM

(L2

and cumene hydroperoxide,

sp-Lers (TT)
OOH
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and these are proposed for use in this study as well (although (II)
might be replaced by t-butyl hydroperoxide to reduce absorption in the
ultraviolet range [see below]). The solvent material is isooctane. A
readily available cupric salt soluble in these solvents is cupric
octoate and possible amines are dimethyl amine, cyclohexyl amine, and
morpholine.

A reactant which must be excluded however is oxygen, since it
will compete with the hydroperoxide for phenol and lead to its own set
of products. Hewitt4 has recently tabulated the products obtained from
the system oxygen/(I)/CuClZ/morpholine in methanol at various CuCl,
concentrations. These include

Me = e

O@—Cgoﬁ O=(:g=o H:Dd;' o:@OQ Me
Appearance of these compounds in products of the copper amine catalyzed
reactions may be indicative of oxygen contamination. Of note is the
fact that the various proportions of the oxygen products depended

heavily on the CuCl, concentration although for certain ranges of re-

2
actant concentrations a single component product was obtained. It is
possible that such a dependence may also be present in our hydroperox-
ide system aﬁd therefore it is necessary that the products of our
reaction be isolated, principally by fractional crystallization, and
checked for a similar copper dependence.

While Hewitt's work suggests that several products could be
formed, it is expected that this will not be the case if (I) is
employed and that a single cyclohexadienone product will be formed. It

5;6

haé been found that Roi radicals, derived from hydroperoxides such as

(I1), will react in the presence of oxygen with the free radical derived
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0

(IV)

from (I)

to yield

OOR
(IV) was prbduced almost exclusively from (I) under these conditions;

other phenols and their phenoxy radicals such as

i o

give mixtures of products of peroxy-phenoxy couplingl. Thus the study
of the copper amine reaction should be limited to thevuse of (I) in the
hope of keeping the product composition simple.

Another product of the copper amine reaction has been sug-
gested3a which involves the coupling of alkoxy radicals,RO°*,with (III)

to give the ether
i

()

3b ha
It has also been found that if the final copper amine product mix-
ture were reacted with HI, the same amount of iodine was formed as
would be generated from the original hydroperoxide. If one assumed that the
only products possible were (IV) and (V), this result indicated that
(IV) was formed since (V) was not capable of producing iodine. This
does not prove that (IV) is formed since if (V) were formed along with

some other compound that produced I, from HI, the results would be the

2

same. Such other compounds seem unlikely however and it is presumed
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henceforth that (IV) is the principal product.

In order to arrive at a complete understanding of the copper
amine catalyzed reaction, it would be desirable to determine its
reaction mechanism. Based on the information above, a tentative pro-

posal for the mechanism may be made. It is:

%
1 = +
ArOH + NHR, ———> ArO + NH,R, (1)
K
IT 2 T
Cu = nNH.R2 b > Cu (NH.RZ)n (2)
k .
C II(NHR +Ar0~ 23 C I(NHR ) + ArO- '
u 2) r u g) t AT (3)
3 . I ~
> ] ¥ °
Cu” (NHR,) + ROOH Cu™ " (NHR,) +OH +RO (4)
k
RO+ +ROOH > ROH + RO,* (5)
ke
R02°-+Ar0- > OArOZR (6)
k
NE'R. + OH” ——> NHR, + H.0
vt AR

where ArOH = (I) and ROOH = (II). This mechanism satisfies the observ-
ation that increasing the amine concentration increases the rate of
reaction3a since proton abstraction from the phenol is required. It
also explains why tertiary amines do not catalyze the reaction since
the amine alkyl groups and phenolic t-butyl groups would sterically
hinder the abstraction. Reaction (3) is similar to one proposed by
Ogata7 in the polymerization mechanism of o-cresol. Reaction (4) is

well knownl’

and applies to many transition metals. The reactive
catalyst is the copper amine complex and this correlates with the

observation3a that if either the cupric salt or amine is left out of
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the reaction, the hydroperoxide decomposition rate shifts from a matter
of several minutes to several hours. Before reactions (4) and (5) can
begin, some CuI complex must be produced by reaction (3) and this pro-
vides a mechanism for a nearly steady state ArO¢ free radical concen-
tration.
Another mechanism that one must consider includes reactions

(1), (2), (4) and (6) but would replace reaction (3) with

i i +
Cu (NHRZ)n + ROOH % Cu (NHRz)n4-H +RO2 ¢7)
and reaction (5) with
RO* + ArOH > ArO+ + ROH (8)

This alternate route has to be considered at the outset since reactions
corresponding to the copper catalysis reactions of equations (4) and
(7) have been suggested as intermediate steps in a cobalt catalysis of
hydroperoxide decompositiong. However, while these reactions account
for the peroxy radical formation required for the final product, they
seem to lead to difficulty in that they force the ArO- radicals to be
produced from ArOH. This would imply that if the amine concentration
were decreased so that reaction (1) would shift to the left, the overall
rate of hydroperoxide decomposition would increase. As noted above,
this is not what is observed experimentally and it must be concluded
that the latter mechanism is incorrect. It is difficult to develop any
other hierarchy of equations built around reactions (4) and (7) that
will account for the experimental observations, and so it presently

appears that the copper catalysis reactions of equations (3) and (4)
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are to be preferred.

Having proposed a mechanism it is now possible to indicate how
a kinetic study of this reaction would proceed. The first part of
such a kinetic study would involve measuring the time-dependent con-
centrations of two of the reacting compounds. Pérhaps the most
important one to measure is that of (IV). This may be done by ultra-
violet spectroscopy by measuring the dienone absorption peak at 246 mu
(e = 15000 Q/mole/cm)lo. (I) and (II) have absorptions in the ultra-
violet but their peaks lie at different wavelengths. (II) has its
peaks above 246 mu, the first lying near 260 mu ll. (I) has a peak at
280 mu (¢ = 2000) and another below 230 my. It has a minimum at
246 my. Both (I) and (II) have extinction coefficients near 200 %/
mole/cm at 246 mU, obviously far less than that of (IV). The pheno-
late anion of (I) is an interfering compound if its concentration is
high, since it has a peak close enough to 246 mu to account for a high
extinction coefficient of about 2000 at this wavelength. However, in
view of a hydrogen abstraction study carried out by Coggeshall et allz,
it seems safe to assume that this concentration will remain small
because of the blocking effects of the butyl groups (these will even
block OH ). The phenolate concentration may also be kept low by keep-
ing the amine concentration at or just slightly above catalytic levels.
Hence the absorption values at 246 mu are mainly due to (IV), except
near the beginning of the reaction where its concentration is still
small. The possibility of solvent interference is eliminated by using

isooctane as solvent. Note also that this spectral absorption, combined

with evidence for an IR peroxy absorption, could be used to verify the

presence of (IV) in the final product mixture.
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The second component that should be measured is the phenoxy
free radical concentration as a function of time. It has already been
observed that this radical is present in sufficient concentration in
non-flowing systems to be easily measured by electron spin resonance.
If resonance spectra are taken of this radical as a function of time,
the ArO°* concentration can be obtained by calibrating the spectra
against the stable free radical diphenylpicrylhydrazyl.

The remainder of the kinetic study involves deriving the equa-
tion which gives (IV) as a function of time and comparing the predicted
behavior of (IV) against that observed experimentally. Although modi-
fications may be called for in the future, a kinetic treatment of the
mechanism contained in equations (1) to (6) is now presented.

The basic assumptions of the kinetics are: (a) the RO+ and R02-
radical concentrations are steady state; (b) the ArOe¢ concentration is
negligible compared to [OArOZR]+-[ArOH] or [ROOH]-F[OArOzR]; (c) the

RO- and RO,.* concentrations are very small; and (d) the reverse of

2

reactions (3) - (¢) are negligible. Using these assumptions, the
stiochiometric quantities (denoted by s) of cupric salt and (I) and (II)

may be related to other species by:

[ArOH] = [ArOH] + [Ar0"] + [0ArO,R] (9)
[CuII]s = [CuII(NHRz)] + [CuI(NHRz)] + [CuII] (10)
[ROOH] _ = [ROOH] + [OArO,R]-2 (k>ksg) (11)

For simplicity, the amine concentration has been restricted so that
there is only a single copper coordination. Also, by a suitable choice

of amine, reaction (2) may be chosen to have its equilibrium lie far to
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the right, thus rendering [CuII] negligible in (10) . Hence,

LT

[cuty = [culIN] + [CulN] (12)

where N denotes NHRZ.

Steady state conditions lead to:

él%%;l ey - k4[CuIN][R00H] - kg5[RO*] [ROOH] (13)
d[RO,*]
7 = 0 = k;[RO*][ROOH] - k [RO,"][Ar0"] (14)

or by solving (13) and (14)

k (RO, *1[Ar0*] = k,[Cu’N][ROOH] (15)

In addition to the steady state equations, the ESR study of

ArO+ provides one with data for 91%59;1-. Preliminary data3a indi-

cates that the ArO+ concentration changes slowly with time and is

nearly linear. Hence

él%EQLl “ £(E) = k. [Cn NITA20"] = k. [RO.*][4xoe] (16)
t 3 6'2%
Substituting (15) into (16)

[culn] = k;l[ROOH]_l {[CuHN][Aro']k3 - f(t)} (17)

and solving (17) and (12)



-250-

k;l[ROOH]—l {k3[CuII]S[ArO_] - £(t)}

[Cu'N] = ey = - (18)
1+ k4 [ROOH] [ArO ] k3

Now the rate of formation of broduct is described by

d[OArOzR]

S k6[R02‘][ArO']
which from (11), (15), and (18) becomes

EL -
d[0ArO,R] k,[Cu™"] [ArO ] - £(t)
2 3 S
dt = -1 (2

1+ k3kzl[ArO_] { [ROOH] - 2[0ArO,R]}

The only unmeasured quantity in (19) is the [Ar0" ], but this may be

obtained by treating (1) as an equilibrium expression and solving

-t
_ laro ] [NH,R, ]

K, =
[ArOH][NHRZ]

_ [ArO_]2
{[ArOH]S- [Ar0™] - [0ArO,R]} {[NHRZ]S—- [ArO"] - [CuII]s}

(20)

for [ArO ] where use has been made of (9) and [NHZRZJ has been set
equal to [ArO ]. This is a good approximation if k4,k7 >> k3 i

Alternatively, if k3,k7 >> k4 5
may be used in (20) to solve for Ar0 . If k3 = k4 , nearly insuper-

+ -
[NH2R2] = [ArO ]+ [ArO-] and this

able difficulties are encountered in solving for ArO ; in that case,
the only remedy would be to measure [ArO ] spectrophotometrically by

measuring its peak of 320 my 12. However, while (I) will not



~251-
interfere at this wavelength, it is possible, even probable, that (IV)
will.

In summary, one must verify the product (IV) as the main
product of the copper amine reaction. The proposed mechanism for this
reaction may then be checked by comparing the kinetic behavior of (IV)
against that predicted by (19), provided the rate constants allow one
of the [ArO ] approximations above to hold or that [ArO ] may be meas-
ured experimentally. Certainly if (IV) were shown not to be the main
product, the mechanism and kinetics would have tq be changed. In that
event, it is hoped that the study proposed here would serve as an out-

line for future investigation.
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PROPOSITION III
Abstract

It is suggested that various wines be analyzed for their his-
tamine content. The most suitable analytical procedure to be used is
outlined. Finished commercial American wines are to be analyzed simply
to catalog those which run high in the compound. Grape skins or must,
as opposed to grape juice, are to be checked for initial histamine
content. Plots of histamine content and cell growth versus time are
to be made to determine if yeast cell autolysis is required for hista-
mine release. Finally, wines prepared from a common must at different
fermentation temperatures and from different yeast strains are to be

analyzed for histamine to see if either temperature or yeast type is a
variable which may be adjusted to reduce wine histamine content.

The presence of histamine in wine is an important problem from
two standpoints. First, the compound is a known strong Vasodilatorl
which in large doses leads to vascular collapse and death. A chronic
excess of it leads to mastocytosis, characterized by chronic eruption
of brownish papules, headache, dizziness, and hypotension. Certainly
if histamine were present as a minimum physiological dose or larger in
wine, therelcould be a possible health hazard to frequent wine drinkers.
Secondly, should it generally be decided that the histamine in some
wines were physiologically excessive, the sale of wines might be seri-
ously depressed. Since the wine industry is a billion dollar
Californian industryz, a restriction of wine sales would have a signi-
ficant effect on the state economy. Thus, from both a health and
economic standpoint it is important to know how much histamine is
present in various wines and how it is produced.

It has been known for some time that histamine,

ﬁrCHz—_CHL—NHL
N N
\/

is present in wines, one of the first analyses having been carried out
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on Sake3. It contained approximately 1 HUg/ml. Analyses on grape wines
have not been available until comparatively recently. Almost without
exception these analyses have been carried out on standard commercial
German, French, and Swiss wines. Marquardt, Schmidt, and Spaeth4 found
"considerable'" histamine in white and red table wines, sparkling wines,
and beer. De Saint-Blanquat and Derache5 found 0.8-0.9 pg/ml in red
wines and 0.05-0.5 yg/ml in white wines. Quevauviller and Maziere6
analyzed sixty French wines and found values ranging from 0.1 to
30.0 pg/ml. Once again the red wines were found to be highest, with
roses second and whites the lowest. Figures for one hundred forty-
three Swiss wines showed an average of 3.3 ug/ml for reds and 1.2 ug/ml
for whites. It was noted by Hrdlicka and Kubiczek7 in a general study
of amines in wine as well as by some of the experimenﬁalists above,
that the amine content showed a definite dependence on the source of
wine. It is therefore suggested that studies of this sort be carried
out on American wines as well, in order to catalog those which always
run high in histamine.

Analyses of grape juices have also been carried out. Marquardt4,
Quevauviller6, and De Saint-Blanquat have all agreed that little or no
histamine is present in grape juice, the latter authors claiming con-
centrations of less than 0.1 pg/ml. These results apparently refute
the results obtained by Millies8 who claimed that juices contained from
0.4 to 1.9 yg/ml of histamine, practically the same as in wines. The
fact that little histamine is found in grape juices indicates that his-
tamine is formed during fermentation.by decarboxylation of histidine,

this amino acid being present in large quantities since it is present
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in both grapes and yeast.
The histamine concentrations given above are quite useful in
that they allow one to examine the possibility that histamine is pres-
ent in a large enough quantity in wines so as to give the consumer a

"histamine flush"g. The Modern Drug Encyclopedial lists histamine (or

histamine phosphate) as a diagnostic drug and gives its usual dose as
300-700 g and states that 0.1 mg of the base, if absorbed rapidly,
will cause flushing. Since a wine drinker will usually drink between
300 and 700 ml of wine at a sitting, it is apparent that he will imbibe
anywhere from 0.3 to 2.3 mg of histamine. If the drinking is not too
slow, he will absorb enough of this to receive a physiological dose and
thereby a flush. The long term effects of this level of Histamine dose
on the body are not known, but it is suspected that they may be adverse;
‘hence the reason for studying wine histamine chemistry.

Several different kinds of analysis for histamine may be
carried out with the results typically varying from one another by
0.1 pg/ml of more. A bioassaylo method is available in which the blood
pressure of cats is monitored, or isolated ileum contractions are meas-
ured after exposure to the histamine containing solution. Paper
chromatography techniques are also available and these compare reason-
ably well with the bioassay methodslo’ll. These techniques suffer
respectively from being difficult to perform and from lacking repro-
ducibility. The easiest and most accurate technique to use appears to
be a fluorescence methodlz. The results agree with bioassay results to
within about 7%Z. In this technique the histamine is extracted into

n-butanol from an alkaline solution. Any histidine present remains in
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the alkaline aqueous phaée upon extraction. The histamine is then re-
moved from the butanol by extraction with 0.1N HC1l and n-heptane.
Finally the histamine is reacted in strongly alkaline media with

o-phthaldehyde to give a fluorophore according to

@CHO i l=l—cH, cHzNL

CHO h&\/ﬂ g%wév

The fluorophore concentration may be determined by activating the com-
plex at 360 my and obser&ing the fluorescence at 450 mu. Beer's law is
followed by the fluorophore in concentrations not exceeding 1.0 pg/ml.
A variety of amines and amino acids have been checked for interference
reactions. Histidine and ammonia were found to be the only interfering
compounds. These present no real problem in grape or wine analysis,
since ammonia is present in very small quantities in grapes and histi-
dine is removed by the extraction procedure.

While analyses of histamine content in wines of the type men-
tioned above provide one with useful information, much remains to be
answered. The method by which histamine is produced and introduced
into wine still has to be determined. Since this knowledge may be
required before good removal techniques can be found, it is an impor-
-tant problem. One study which must be performed is a histamine analy-
sis on grape skins or must. The difference between histamine contents
of red and white wines suggests that it is possible that histamine may
be extracted from the skins during fermentation over them. It is
felt, however, that histamine most probably is not present in the skins
since grape juice would be expected to contain skin-extracted histamine

in greater concentrations than 0.1 Ug/ml, particularly in pressed
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juice. But since no careful determination has been made, the study
should be made to be absolutely positive that this is not a source of
histamine. To make extraction of components from the skin easier, one
would store the grapes under increased carbon dioxide pressure for a
few daysz, causing the grapeskin cells to die and freeing the internal
components for extraction.

The most likely source of histamine is the action of yeast
histamine decarboxylase on histidine. We note that red wines would be
expected to contain higher histamine concentrations since more histi-
dine is available to enzymatic attack in the fermenting must due to
extraction of the amino acid from the skins. The histamine may be
formed enzymatically in two ways. The first would be for the decarboxy-
lase to react continuously with histidine either interior or external
to the cell membrane but releasing histamine to the solution throughout
the entire fermentation. The second would be for the decarboxylase to
form and store histamine completely within the yeast cell membrane. As
the yeast culture aged and cells began to die; autolysis of these cells
would release histamine to the developing wine.

Assuming that one of these pathways is predominant, a test that
could be applied to distinguish between the two is the following. A
freshly prepared grape juice would be inoculated with the standard
Saccharomyces cerevisiae and the fermentation would be allowed to pro-
ceed. At regular intervals samples would be withdrawn and immediately
filtered through a 1y filter. This would remove the yeast cells
(typically 4-8u in breadth, 5-15u in 1ength)13 and prevent the release

of more decarboxylase and histamine either by diffusion or autolysis
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from the cells. Each sample should be cooled immediately to slow the
histidine-decarboxylase reaction and extracted with butyl alcohol and
analyzed as above. Simultaneously, samples would be withdrawn,
treated with phenol to inhibit further yeast growth, and counted with
the aid of a hemocytometerl4. One could then plot numbers of yeast
and histamine concentration versus time.

Since yeast grow according to the typical S-shaped growth
cﬁrvels, it may be surmised that few cells are autolyzing during the
early fast growth phase whereas a great number are autolyzing in the
later plateau phase. Hence if the histamine content does not increase
until the plateau region is reached, there would be a strong indica-
tion that autolysis must occur for histamine release. On the other
hand, if the histamine content climbs in proportion to the number of
yeast cells in the fast growth region, then a continuous release of
histamine is indicated.

If it were found that autolysis is required for a high histamine
content, this suggests that one may keep the content low in wines by
allowing fermentations to proceed only while the yeast cultures are
young. In fact a procedure bordering on this is used currently in the
preparation of some still wines where temperatures tend to run high
during the racking when excessive temperature encourages unwanted
autolysis. The new wine is separated from the yeast even before the
fermentation is complete. Except for minor clarification problems, no
difficulties are encountered in this approach. The young yeast tech-
nique would not be without problems however, since some wines produced

only from young yeast would lack certain flavors due to the omission of
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the frequently used process of aging on the lees. Champagnes would be
particularly susceptible to this since more favored varieties are
bottle-aged on the yeast for at least a yearz.

Still other studies remain, The effect of fermentation tempera-
ture on the production of histamine is not known. Accordingly, wines
from a common must produced at fermentation temperatures of 45°F to
85°F should be analyzed for histamine content. Especially if cold
fermentations reduce the final histamine content, a very good commer-
cial method for histamine removal would be available.

It is also possible that various yeast strains will produce
varying amounts of histamine when all other factors are held constant.
There certainly are large variations between species as to the amount
of certain chemicals produced such as glycerol and higher alcoholslS.
Studies designed to investigate the behavior of various yeasts have a
great number of yeast sfrains available to them, but relatively few
are as well adapted to wine making as the standard Saccharomyces
cerevisiae var. ellipsoideus. However, a set that will produce as
much alcohol and as quickly as this standard strain includes the fol-
lowing: S. rosei, the S. cerevisiae strains of alpinus, turbidans,
and orasti, S. oviformis, and S. acidifacienslS. Histamine analysis
of finished wines from these yeasts should be performed. Perhaps one
of these yeasts or a combination of them will give the desired flavors

as well as a reduced histamine content.
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PROPOSITION IV

Abstract
A brief review is given of the theories that have

been advanced to explain the behavior of alkali metal am-

monia solutions. Because structural differences

characterize each of the theories, it is proposed that

they be studied by analyzing x-ray scattering data taken

on metal ammonia solutions. A discussion of the Fourier

inverse of the intensity data shows that cesium ammonia

solutions in the 1.5 to 7.0M range provide the most

information about possible metal ion clustering. If

clustering is present, it is argued that Cs-Cs peaks in

the distribution function will show little change in

position as the concentration is changed.

Metal ammonia solutions have been under study for over seventy

. < S - 1-4
years and work is still continuing on them . They are of present
day interest because of their structural uniqueness. In low concen-
trations of dissolved metal, the solutions are ionic in character
and closely resemble salt solutions. As the metal concentration
increases, their properties change in a continuous fashion from ionic
to metallic.

Currently several theories exist that attempt to account for
this behavior. Since different structures of the solutions are sug-
gested in the various theories, it is proposed that these theories be
investigated where possible by studying the x-ray diffraction patterns
of these solutions. The remainder of this proposition includes a
brief summary of the current theories, followed by a description of
how an x-ray experiment might be carried out to examine these theories.

In low concentrations of metal (less than 0.05M), it is thought

that the metal dissociates to metal cations and electronss. The

electrons are then trapped in a spherical cavity formed by ammonia
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molecules (an ey cavity), presumably with the molecules oriented so
that the hydrogens are directed toward the center of the cavity. In
order to account for the volume expansion which occurs when metal is
dissolved in ammonia, the radius of these cavities has been estimated
to be about 4A. Support for the cavity model comes from the fact that
if energies are calculated for a cavity of this radius, it is found
that the lowest transition accounts for the 7000 cm—l absorption band
always found in dilute metal ammonia solutions. Evidence of the
electrons being merely solvated and not bound to other species is found
in the large transference number of the negative carrier in conduction
experiments; the negative carrier accounts for nearly 86% of the total
current.

In intermediate concentrations (0.05M to 1M), the structure is
less well understood. One theory6 (BLA) proposes that the basic unit
is composed of the solvated cation and the electron trapped in the
potential of the cﬁarged cation and its surrounding solvent shell. The
cation-electron unit is termed a monomer. Since the solution is
diamagnetic in this concentration range, the electron spins must be
paired and hence it has been suggested that two monomers are bound
together to form a chemically bonded dimer. Symons1 has indicated
that at low concentrations the dimer must break up into solvated
cations and electrons with very little monomer formation in order to
correctly describe the conductivity of these solutions.

An extension of the cavity theory accounts for the diamagnetism
in this range by assuming that two paired electrons can exist in a

single cavity (an ey cavity). A visible absorption band at 15000 c:m_l
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has been assigned to transitions within the e, cavity. The cations

2
remain solvated and do not pair.

Still another theory, advocated by Jolly3, is that the monomer
unit is an ion pair of solvated cations and electrons bound together
by coulombic attraction and the dimer species is a quadrupolar ionic
assembly of two ammoniated cations and two ammoniated electrons. The
wavefunctions of the two electrons are presumed to overlap sufficiently
to insure pairing. This theory was advanced to account for the fact
that the 7000 cm_l peak unexpectedly followed Beer's law up to 0.05M,
this upper limit being a region where dimer formation was extensive and
changes in the spectrum had been expected as the BLA dimer absorbed
rédiation instead of the e cavity.

At still higher concentrations (greater than 1M), little is
known about the structure of metal ammonia solutions. Electron spin
reéonance data7 shows that sodium ammonia solutions doped with very
small amounts of cesium have relaxation times that are characteristic
of cesium ammonia solutions rather than the sodium solutions. Since
the electrons must all have access to the cesium atoms for this to be
true, a lattice structure.with delocalized electrons is indicated. The
detailed structure of this lattice is unknown.' It may be diffuse with
solvafed cations.spread fairly evenly throughout the solution or it
may consist of reasonably well defined clusters of solvated metal ions.

Since the cavity and BLA theories predicted different spatial
arrangements of the metal ions and thus different x-ray spectra in
intermediate concentrations, Schmidt8 and Brady9 undertook the measure-

ment of the low angle x-ray scattering of sodium ammonia solutions. In
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both works, it was expected that a peak would appear at about 0.05
radians (20) if the dimer species (approximately 15A long) were
present. The peak would be absent if only cavities were present.
Unfortunately, the two experiments are in strong disagreement,
Schmidt's work confirming the existence of dimers and Brady's work
refuting them.

Because of the doubt raised about the existence of groupings
of the metal ions, it is desirable that new x-ray experiments be per-
formed to search for them. Unlike the earlier work, however, it is
suggested that large angle x-ray scattering techniques be empioyed. In
order to obtain the results in the low angle work, the researchers had
to push the method close to its error limit. As will be seen, informa-
tion may be extracted from the large angle data with less error pro-
vided the metal concentration is kept high enough. Besides answering
the general question about whether metal groupings exist, there is
reasonable hope that if they do exist some of the metal-metal distances
in these structures may be determined. Hence, it is expected that the
scattering results will help define jusf what the lattice is that
Chan7 claims must exist in concentrated solutions.

Since the aim of the x-ray experiment is to search for
persistent metal-metal spacings characteristic of clustering, it is
desirable to weight the spectrum with scattering from the metal rather
than solvent. This can be done by choosing a metal with a large
number of electrons since,to first order, scattering is proportional
to the square of the number of electrons. Cesium would thus be the

metal of choice, since it is the highest atomic numbered alkali metal
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that can be readily obtained. Cesium ammonia solutions have the
further advantage of showing no liquid-liquid two phase region as do
sodium or potassium ammonia solutionslo. Hence, separation or
equilibration of phases will not be an important experimental problem.

Two special experimental problems of cesium ammonia solutions
must be considered. First, cesium ammonia solutions are highly reac-
tive and one must be careful to choose a sample cell whose materials
will not be attacked. Beryllium is the standard window material used
in the éonstruction of x-ray cells, but since all other alkaline
earths are known to dissolve in ammonia, there was doubt as to whether
it would be suitable for these solutions. Fortunately, testsll have
shown that Be samples will stand up to sodium—-ammonia solutions for
twenty-four hours with no detectable weight change. Stainless steel
(18-8,304) also resists attack over this time period and may be used
for the non-window parts of the cell.

Secondly, one must check the solutions for possible decomposi-

tion according to

+ -1
s > M + NH, + 5 H

M + NH 2

Since this reaction is quite fast (it is self—catalyzing)lO and since
an x-ray experiment requires containment of the solution for about
twenty—-four hours, it is possible that the solution could be badly
decomposed by the end of the run if the reaction ever got started.
Ordinarily this decomposition is prevented by careful exclusion of
impuritiés, but one should always check to see if it really has been

prevented by condensing the ammonia from the cesium ammonia solution

with liquid nitrogen and measuring any remaining hydrogen with the
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small volume McCloud-Toepler equipment described by Naiditch;z. The

amount of hydrogen produced defines the degree of decomposition by the
equation above.
The experimental data may be obtained by following the rela-

13a,b ; o [ 8
>” used in the data acquisition from argon

tively standard procedures
samples. The methods of temperature control, normalization, and cor-
rection of data for polarization and absorption are quite general and
may be carried over with only minor modification for use with cesium
ammonia solutions.

Once the scattering data is obtained, it must be interpreted and
in order to do this one must know the scattering species in solution.
In the case of cesium ammonia solutions, one may assume that there are

+ 0 . : B
two scatterers, Cs and NH,. Cs may be ignored since it is completely
3
: T 2
dissociated into Cs ions and electrons; the electrons scatter so
little of the radiation relative to other species that they may be
neglected.

An observation of some importance is that the ammonia molecules
are non-spherical and should have their scattering described by
orientation dependent scattering factors. While this is rigorously
true, it appears that the higher coefficients of the harmonic expansion

14 g
of the factor™ , if centered on the nitrogen atom, allow one to
neglect scattering differences due to orientational changes of the
molecule. Hence, to a first order approximation, cesium ammonia solu-

tions may be treated (for x-ray purposes) as a binary mixture composed

of spherical Cs+ and NH3 scatterers.
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The analysis of the scattering data from the mixture may be
carried out by following either one of two formalisms. One is due to
Warren, Krutter, and Morningstar15 (WKM) and the other is due to
Pings and Waserl6 (PW). In either approach,it is impossible to invert
the data for a full description of the mixture. 1In the case of cesium
ammonia solutions, three pair correlation functions appear in the

expression for the intensity g g and 5
P cs*,cet * Scst,Nmg gNH3,NH3

and it is immediately apparent that one experiment will not provide
enough information to determine all of these functions uniquely. At
best some superposition of these functions is all that can be obtained.

Both the WKM and PW formalisms begin with the expression

I(k) =) Xifi(K) <o ) xixjfi(K) fj(K)Pf [gij(r)-l]jo(Kr)4Wr2dr
i ij

for total coherently scattered intensity, where i and j denote the
various scattering species. The WKM approach makes the approximation
that there is a general f(k) curve shape common to all atomic scat-
tering factors and fi(K) = Kif(K) . Ki is approximately the atomic
number of species 1 . The expression above may then be transformed

to give

r g g xiijin[gij(r)"ll

f 3 I(k) - fz(K) E,xiKi

sin(kr)dk = rD(r)

Zﬂzp fz(K)

The PW approach does not make any approximation and by means of a con-

volution analysis gives
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r ; § xinHij(r)

sin(kr)dk = rH(r)

f 9 - x £ ()

CERACHY

In cases where the Morningstar approximation is valid, it can be seen
that the right-hand sides of both of these equations become equal to

2 "
one another except for a factor of ( I xiKi) = F . Hence an inter-
1

pretation for Hij(r) is available which shows that it is closely
related to Kin[gij(r)-l]/ F . Note that inversion of the experi-
mental data only leads to a sum of Hij(r) functions and does not
evaluate each one. Either theory may be applied to cesium ammonia
solutions although care must be taken to verify the Morningstar
approximation if the WKM approach is used. The best check will be to
perform both inversions and check on the agreement between D(r)/F
and H(r)

It is to be noted that there is no difficulty in evaluating
the Fourier transform integrals above. The spherical f(k) that
would be used for ammonia has recently been calculated14 and it con-
tains no zeros provided the center of the scattering factor is placed
on the nitrogen nucleus. Hence the denominator of the Fourier kernel
in the expression above cannot go to zero and the difficulties stem-
ming from such a development may be avoided.

It is apparent that if cesium dimers or large clusters were

present, H would possess peaks at distances corresponding to

cst,cst

cesium-cesium separations. Such peaks should be quite noticeable in
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H(r) or D(r) for concentrated solutions, which may be verified as
follows. At a concentrated solution level of 4N, the NH3/Cs mole ratio

is 7.88 10. Hence —-Z % ox.x.K. K (all g..- 1 are assumed constant
Fgqgj 1117 ij

and equal for this rough calculation) becomes

2
[ ? 652+ 8 2 a0 65y + 4852 10y?)
1 2
7.88 1.00

B.88 C10) S =—or 3.3 (55)

con o3
= (1355 (3025 + 8668 + 6209)

from which one can see that the Cs-Cs contribution is about 177 of the
total. To be more accurate the gij term would have to be included.
Since this function would have peaks at r values corresponding to any
Cs-Cs spacings present in solution and since Cs—NH3 or NH3--NH3 spacings
presumably would occur at different r wvalues, it is likely that the
Cs-Cs contribution could be raised well above this 17% level in the
region of Cs-Cs sepafation distances. If the calculation is repeated
at 1.5N (mole ratio of 25.5), an average contribution of about 3% is
found instead of 17%; gij peak effects may raise this to a measurable
level. It is apparent, however, that concentrations below 1.5N will
yield information on Cs-Cs spacings with rapidly increasing difficulty,
and one must conclude that the large angle x-ray scattering is most
useful for concentrated solutions above 1.5N..

An experimental program would thus involve obtaining scattering

data for solutions near saturation and then for solutions of decreasing

cesium concentration down to about 1.5N. In each case the H(r)
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function would be obtained and the positions of peaks noted. As the
'Concentration is reduced, those peaks corresponding to cesium-cesium
spacings will generally decrease (as xgs decreases) whereas those

corresponding to NH3—NH3 spacings will increase. This will allow one
to make general species assignments to the peaks. Evidence of
clustering (lattice structure) will be found if the locations of the
Cs-Cs peaks change little upon dilution. If no clustering were
present, the cesium ions would be distributed equally throughout the
solution and the average distance between cesium ions would be propor-
tional to the minus one-third power of the concentration. If clusters
were present, at least two of the metal ions would be held at a nearly
constant spacing corresponding to a potential minimum and the Cs-Cs
peak would not be greatly shifted as the concentration was lowered.

Of course, its height may change because of cluster‘dissociation. If
evidence for clustering were found at high concentrations, it may be

viewed as evidence for smaller groupings, such as dimers, existing at

intermediate concentrations.
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PROPOSITION V

Abstract

It is proposed that a sample of bottle-aged champagne
be investigated to determine if the protein colloids
present in it resulting from yeast autolysis are respon-
sible for its increased ability to dissolve and retain
carbon dioxide. The champagne is to be decarbonated and
then divided into two samples. One will retain the
colloid and the other will have it removed by ultracentri-
fugation or ultrafiltration. Each of the resulting
solutions is to be placed in a PVT apparatus, mixed with
known amounts of carbon dioxide, and measured for bubble
point pressures as a function of added carbon dioxide.
Only if the colloid is interacting with the carbon
dioxide/carbonate equilibria will the bubble point pressure-
carbon dioxide curves differ between the colloid present
and colloid free solutionms.

A process that the wine industry would like to develop furtber
is the carbonation of still wines to produce sparkling winesla. The
principal reason for employing this process is fo reduée production
costs. Bottle fermented champagne must be aged for at least a year
during which time much labor goes into the riddling procedure.
Furthermore, the final product is taxed at the rather high rate of
$3.40/gal (1965)2b. Carbonated wine eliminates the riddling labor
and much of the storage time. Perhaps of greatest importance is that

it is taxed at only $2.40/gal.

Carbonation, although used occasionally in the past, is not
widely used presently even though the above-mentioned financial induce-

ments exist. The principal reason for this is that carbonated wines
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have lost sfatus relative to other sparkling wines because they have
historically been priced as high but were inferior in quality. One
of the main quality differences is the ability of champagne type2
wines to dissolve more carbon dioxide at fixed volume and préssure
than carbonated wineslc. Liotta3 has shown that commercial carbonated
wines lose about twice as much carbon dioxide as champagne types if
left open at one atmosphere. »

The cause of the solubility difference is not understood. It

i that the colloidal proteins which are intro-

has been proposed
duced into champagne when the yeast autolyzes are responsible for
binding carbon dioxide or its carbonate derivatives to its surface,
thus increasing the carbon dioxide solubility. ‘A possible mechanism
for this binding is that the carbon dioxide will form hydronium and
bicarbonate ions and the colloid, being gengrally positively charged
in the acidic pH of the wine, will trap some of these bicarbonate
ions in the double layer surrounding it. In a study4 of the differ-
ences between bottle and tank fermented champagnes, some evidence for
this effect has been found. When these two wines were ultrafiltered,
it was found that the carbon-dioxide release ratio changed in rough
proportion to the amount of colloidal nitrogen removed.

Of course other mechanisms are present which may account for
increased carbon dioxide solubility in champagne. Besides adding to
the colloid content of the wine, autolysis also produces increased
levels of other non-colloidal componehts such as amino acids. When
carbon dioxide is added to solutions containing these suBstances, new

acid-base equilibria favoring solubility may be established.
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Furthermore, increased amounts of substances such as glycerol may
change the ability of the solution to retain gas since this would
result in a change in the carbon dioxide Henry's constant.

In order to determine the importance of the colloidal protein
in binding carbon dioxide, it is proposed that the bubble point pres-
sure be measured as a function of carbon dioxide added to two degassed
samples of champagne, one containing colloid and the other lacking it.
. The bubble point pressure depends strongly on the mole fraction of the
most volatile component present in a solution, in this case carbon
dioxide. Of course this mole fraction is not equal to the amount of
gas added to a sample, since there will always be a C02/carbonate
equilibrium. It is known from the work of Jahnke and R'cihr4 that the
amount of colloidal protein present in champagne is relatively small
(less than 9.6 mg colloidal N/2); hence the mole fraction compositions
of the degassed colloid containing and colloid free samples would be
nearly identical. Thus, if on the one hand it is assumed that upon
carbon dioxidé addition no interactions between colloid and C02/
carbonate equilibria occur, the two samples will have nearly identical
equilibria, nearly identical carbon dioxide mole fractions, and hence
nearly identical bubble point pressures. If, on the other hand colloid
interactions do exist, the mole fraction of carbon dioxide will be
reduced as the 002 equilibria shift to accommodate the colloid binding,
and the bubble point pressure will be reduced. The degree of differ-
ence between bubble point pressures of the colloid containing and
colloid free samples will thus serve to determine the significance or,

in fact, the very existence of the carbon dioxide binding action of
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the colloid.

Three steps are involved in carrying out this study. Before
PVT measurements can be carried out on the wine, it is first necessary
to remove all the carbon dioxide from the champagne. This is easily
done by bubbling nitrogen gas through the solution until no more
carbon dioxide comes off. Carbon dioxide may be monitored in the
nitrogen outflow by either chemical means or gas chromatography. Loss
of other volatile components in the nitrogen stream is unimportant
provided the amounts are kept small.

The decarbonated solution must then be divided into two parts
and one part must have its colloid removed. This removal may be
effected by either ultracentrifugation or ultrafiltration. In either
case, the colloid free wine must also be free of nitrogen before pro-
ceeding to the PVT measurements, since nitrogen would pass out of
solution along with the carbon dioxide at the bubble péint if it were
not removed. In the case of ultracentrifugation, nitrogen may be
removed before centrifugation by applying a slight vacuum to the
(undivided) decarbonated wine. Transfers of the wine into and out of
the centrifuge tube would then be done under its own vapor pressure,
taking care not to reintroduce nitrogen into the system. In the case
of ultrafiltration, the wine would be filtered under about 15 atm
compressed nitrogen6 and would then have its nitrogen removed by
vacuum. Loss of components such as water or ethaﬁol in this degassing
procedure would lead to a compositional difference between the fil-
tered and nonfiltered wine and such losses would have to be minimized.

Finally, the PVT measurements would have to be cérried out in

a suitable apparatus. Micro-sized chambers are practically required
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if ultracentrifugation is employed, since the tubes have a maximum
capacity of only a few cubic centimeters. A good micro apparatus has
been developed by Reamer and Sage7 and with minor modifications can
be adapted for use with this system. The carbon dioxide/wine pressure
data of Vogtld is available for equipment design. The data would be
taken in the following way. After a small volume (approx. 0.1 cc) of
degassed nonfiltered wine was introduced into the chamber, a small
amount of carbon dioxide would be added to it. The mixture would be
compressed until a single liquid phase was obtained. The liquid
would then be slowly expanded and a plot of pressure versus volume
made for this composition. A discontinuity would be obtained in the
plot at the bubble point pressure. After obtaining enough data to
adequately determine this pressure, the mixture would be expanded,
more carbon dioxide would be introduced, and the procedure would be
repeated to determine the bubble point pressure of this more concen-
trated carbon dioxide mixture. After several carbon dioxide addi-
tions, one could make a plot of bubble point pressure versus total
carbon dioxide added. The entire procedure would then be repeated for
the degassed filtered wine. The two plots of bubble point pressure
versus carbon dioxide added would be the desired data.

If it should be found that protein colloids do affect the
solubility of carbon dioxide in wine, then a large number of future
experiments would be indicated. The first of these would involve
identifying the colloid size range most responsible for this effect.
Later experiments woqld involve separating these colloids as concen-

trates from sources such as wine and yeast liquors. The colloid
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concentrates would then be added to still wines and the mixture car-
bonated. Carbon dioxide retention in these colloid enriched still

wines could then be compared against that characteristic of tank and
bottle fermented champagnes. Sensory comparisons would also be re-

quired, since the concentrates might contain odorous materials.
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