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ABSTRACT 

Methods are developed for electromagnetic field calculations 

in nonuniform lossless transmission lines which support quasi-one 

dimensional propagation of a single baseband wave species. Approx­

imate solutions are obtained in perturbation series for smoothly 

tapered lines by expanding Maxwell's equations and boundary conditions 

in the dimensionless parameter n, given by the ratio of typical 

cross-section dimension to the length of the tapered .section. The 

method emphasizes construction of a single "warped" field descrip­

tion rather than the local modal expansions of Schelkunoff's gen­

eralized telegraphist's equations. 

Expansions in Cartesian coordinates yield the traditional 

distributed circuit parameter equations in the lowest approximation. 

Correction terms appear in even powers of n, and their effects are 

shown most clearly by calculating waveform aberrations introduced by 

line transitions of nominally constant characteristic impedance. 

Improved field descriptions in nonuniform regions are obtained by 

reformulating the exact equations in special nonorthogonal coordi­

nate systems more closely related to the essential structure of the 

field problem. The · lowest term of the ordered expansion is now 

exact for a uniform finite angle taper. New circuit level non­

uniform line equations are obtained which reduce to the well-known 

forms for gradual tapers. 

These techniques are extended to treat tapered plate lines 

with curved center lines and then to give a description of coaxial 

lines in which the field pattern is locally dominated by the 
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boundaries, and the electrical center line is located in the pro-

pagation region. Odd-sequence field distortion terms now appear 

in third and higher orders . In all the systems investigated, 

distributed circuit equations give results, outside the nonuniform 

region, that are valid to within second order terms in the taper 

scale parameter. 
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I. INTRODUCTION 

Every student of electrical engineering today acquires as 

part of his technical armory, a knowledge of the properties of 

uniform lossless transmission lines and waveguides and of how the 

engineering description of fields and wave propagation in these 

idealized systems is founded on rigorous solutions of the Maxwell 

equations and appropriate boundary conditions. In real life, for 

reasons which may be intentional or unavoidable, or both, the ideal­

ized conditions are never found, but the simple theory is of ten still 

adequate or provides a basis for a perturbation approximation. As 

an example conductor losses are adequately handled for many purposes 

by introducing appropriate loss constants into the mode propag~tion 

factors whereas a rigorous treatment would wash out the whole mode 

classification scheme. Yet it is still clear that for small losses, 

only slight distortions of the lossless description are needed to give 

useful results. 

We shall be concerned here with lossless nonuniform trans­

mission lines, a class of intentional disruptions of the framework 

of the simple theory, in which the boundary cross-section and direction 

of the basic axis of propagation are allowed to vary with distance 

along the axis, but where we wish to retain the basic sense of one­

dimensional propagation, forward and reflected, of a single baseband 

wave species, corresponding to the well-known TEM mode in uniform 

two-conductor lines. Such transmission lines have found extensive 

applications for purposes such as impedance matching, pulse shaping, 

transitions between uniform lines of differing sizes, shapes and 
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directions, and in microwave components such as directional couplers, 

filters and resonators. The problems of long distance information 

transmission through over-moded waveguides for millimeter wave 

communications, where deleterious effects arise from nonuniformities 

such as unintentional manufacturing and installation tolerances and 

deliberate bends, have led to extensive development of nonuniform 

waveguide theory based on Maxwell's equations. In contrast, beyond 

this, the foundation of baseband nonuniform line theory in Maxwell's 

equations is in a hazy almost non-existent state. 

In Chapter II we survey the existing theoretical develop­

ments relevant to baseband nonuniform lines. Almost all the litera­

ture directly concerned with this class of problem uses a distributed 

circuit theory approach which is only approximate and does not con­

tain enough physics to show the way to better approximations. The 

ideas of voltage and current measurement, rigorously justifiable in 

uniform line theory, need close re-examination in nonuniform lines. 

The generalized telegraphist equations, derived from the Maxwell 

equations are rigorous, given sufficient care with nonuniform con­

vergence and coefficient singularities, and contain the circuit 

theory equations as the simplest approximation, when applied to this 

case. The main strength of the theory is that it provides a complete 

formalism for multimode problems to this same order of approximation, 

but it does not readily yield systematic improved approximations for 

even a single propagating mode. Convergence in the generalized tele­

graphist equation approach has been improved by use of better local 

basis functions . We then propose a systematic perturbation ex­

pansion procedure, starting from Maxwell's equations and boundary 
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conditions, using as expansion parameter the dimensionless ratio of 

typical cross-sectional dimension to length . of the nonuniform region, 

in order to describe the propagation of a single warped dominant mode. 

Chapter III contains the development in Cartesian coordinates 

of the procedure for two-dimensional tapered plate transmission lines 

with straight center lines. It is shown that this yields the dis­

tributed circuit equations in the lowest order of approximation and 

higher order approximate equations are derived. An exact solution 

is available for the uniform wedge and it is shown that the per­

turbation series reproduces at least the first few terms of the con­

vergent series expansion of the exact solution, term by term. When 

the plates remain equidistant, the line is uniform and reflectionless 

in the distributed circuit theory, but the perturbation approach 

generates higher order correction equations . . The first correction is 

evaluated to show transmission aberrations and reflections in terms 

of the line profile. 

The uniform wedge solution shows how successive approxi­

mations bend the calculated wave-front shape back from straight 

transverse towards a circular arc. In Chapter IV we formulate the 

approximation procedure in a way which gives exact results for a 

uniform finite angle wedge in its lowest order, thus telescoping an 

infinite number of terms of the Cartesian expansion. This is achieved 

by using a non-orthogonal "warped cylindrical" coordinate system 

which provides a better fi t to the inherent structure of the electro­

magnetic problem.. The geometry of this system is studied and it is 

used to express the Maxwell equations and boundary conditions before 

applying the expansion procedure. A modified sequence of approxi-
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mate equations describing one dimensional s ingle warped mode pro­

pagation is obtained. Perhaps even more important is the inve rs e 

view point, that for roughly the same effort in solving the lowest 

order approximate propagation equation, very much i mproved cal­

culations of electric and magnetic fields are available, expecially 

off-axis and near the boundaries. A curious by-product of this 

investigation is that it shows that the simple distributed circuit 

equations work as well as they do because the wrong quantity is 

evaluated in the wrong place in such a way that the errors cancel 

for a uniform finite angle wedge line. 

So far the expansions have proceeded in even powers of 

the length scale parameter. Two dimensional transmission lines 

with curved center lines are treated in Chapter V and it is shown 

that odd power terms now appear. Planar section theory is devel­

oped for transmission lines with boundaries defined symmetrically on 

the normals of a curved center line. The problem of defining an 

appropriate center line when only the boundaries are given is con­

sidered and a warped cylindrical description is developed. It is 

in fact easier and more natural to define than the normal center 

line planar description when only the boundaries are given . For a 

curved but otherwise uniform line the distinctions vanish. 

In Chapter VI these techniques are applied to the analysis 

of the nonuniform coaxial line. The planar section expansion generates 

the traditional distributed circuit equation as the basic approxi­

mation . Higher order corrections are calculated and used to solve 

the important practical problem of finding waveform aberrations in­

troduced by a transition with nominally constant characteristic 
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i mpedance between coaxial lines of different sizes. A warped spher­

ical coordinate system is then generated to give improved field 

descriptions, and the lowest term of this expansion is exact for 

concentric conical transmission lines. In ~his expansion the field 

pattern is maintained through the second order only for a constant 

impedance line. Especially in low impedance lines the influence of 

the walls locally dominates the fields rather more than does the 

coaxial center line. 1he curved center line descriptions of an 

earlier chapter are extended to provide a propagation region centered 

description of coaxial line. 
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II. BACKGROUND AND REVIEW 

2.1 The Distributed Circuit Parameter Theory 

The traditional method for the investigation of nonuniform 

lossless transmission lines hasr been the distributed circuit para-

meter approach, in which the low frequency circuit parameters, -in-

ductance L(z) and capacitance C(z), are defined for the element 

of transmission line between successive normal planar cross-sections 

at z and z + dz, with the field lines assumed to remain in the 

transverse plane. This method was first used by Kelvin to treat 

uniform lines, and later extended by Heaviside to nonuniform trans-

mission lines, where Land C may vary with axial position z. An 

extensive bibliography, from Heaviside onward's, is given by Kaufman 

(1955). The circuit equations are 

av _ L(z) ar a-z = at 

ar ·"v - = - C(z) ::____ 
'dz . 'dt 

(2.1) 

(2. 2) 

These first order coupled equations yield a pair of second 

order equations which are often more convenient to work with. 

(2.3) 
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1 dC dI -- - - µE: 0 (2. 4) 
C dz dZ 

When the line is unifonn, these equations may be given an 

exact interpretation in terms of the principal TEM mode on a two 

conductor line. When applied to nonunifonn lines the equations can 

only be regarded as an heuristic approximation to the exact field 

solution, of unknown nature and accuracy. Despite these shaky 

foundations, much effort continues to be devoted to the study of 

these equations. We may instan'Ce the construction of wide classes 

of analytic solutions by Holt and Ahmed (1968), studies of synthesis 

techniques and mathematical properties by Youla (1964), Gopinath and 

Sondhi (1971), and techniques for numerical solution, Gruner (1970). 

In particular, Gruner takes care to point out the limitations of the 

theoretical basis of the circuit equations. 

In essence, the circuit parameter calculations assume a 

purely transverse field distribution like that of a TEM mode in 

uniform lines, and this is obviously not so in a nonuniform line even 

if the field variation with time is slow enough to give quasistatic 

behaviour over the cross-section. Secondly the axial rate of change 

of transverse dimensions, and so of characteristic impedance, must 

be small in some ill-defined sense. 

We can show by an example that some restrictions are 

essential. Consider a transition between two coaxial lines which 

maintains a constant ratio of inner and outer diameters at each 

cross-section as shown in Figure 2.1. We expect, from practical 
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experience, little or no reflections from the gradual part of t9e 

transition, but significant reflections from the rapid transition, 

even though the distributed circuit theory predicts no reflections 

in either case. in the limit of a sharp transition there is a dis­

continuity capacitance which may be calculated by well-known methods. 

Thus a gradual taper is essential. It will be found in later chapters 

that the restriction to planar transverse fields can be lifted very 

profitably. 

Gruner then suggests that the resolution of these problems 

is to be found in application of the generalized teiegraphist's equa­

tions but does not attempt to carry this program through. In the 

next section we shall describe this formalism, and show that it does 

not provide a useful way to improve the distributed circuit analysis. 

2.2 The Generalized Telegraphist's Equations 

Widespread interest in mode conversion at the inevitable 

nonuniformities in highly overmoded circular waveguide was inspired 

by the lure of applications to wide-band long-haul communications. 

The best known version of the theories of mode conversion is due to 

Schelkunoff (1955) who popularized the terminology we are using. 

Similar developments took place in the Soviet Union by Katsenelenbaum 

(1955), where the term "method of cross-sections" is preferred, and 

also in Hungary by Reiter (1959). The method had been anticipated 

by Stevenson (1951) in his theory of electromagnetic horns. An 

extensive review of mode conversion effects and waveguide transitions 

is given by Tang (1969). The derivation of these equations will not 

be rehashed here, and the reader is referred to Reiter's exposition 
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which is the easiest to follow. 

At each cross-section the set of vector mode functions e. 
-J.. 

with propagation coefficients Si and wave impedances K. 
l. 

that 

would exist in an infinite waveguide of the same cross-section, are 

calculated. Write V. and I. for the equivalent voltage and 
l. ]._ 

current for each suitably normalized mode. Then the generalized 

telegraphist's equations can be written in the form 

av. L 
d 

1 
= + i 13. K. I. + T .. V z ]._ ]._ ]._ . Jl j 

J 

(2.Sa) 

dI. Bi v. 
]._ 

+ i 
]._ 2: T .. I. (2. Sb) --= 

dz K. J..J J 
]._ 

j 

where 

f ~ross-section) ej 

ae. 
T .. 

-]._ as (2.6) 
Jl 

. az 

If this is applied to a two conductor line and everything 

neglected except the single dominant mode for each cross-section then 

we recover the ordinary circuit equations. 

An interesting result is proved under reasonable conditions 

by Solymar (1959).. He shows that if a single mode is incident on a 

gradual taper then the levels of any other modes generated in the 

taper can be made smaller than any given magnitude by increasing the 
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length scale of the taper. Thus, if the taper profile is sufficiently 

gradual, a single nonuniform transmission line is an adequate re­

presentation . The result may be looked at from another point of view; 

that the standard nonuniform line equations yield the first term in 

an asymptotic expansion of the exact solution in terms of the length 

scale parameter. Further in a multimode guide, applying the coupled 

set of equations (2-5) to the modes of interest and neglecting terms 

for other modes, gives a similar lowest order asymptotic approxi­

mation for the multimode problem. 

There are some difficulties associated with this treatment. 

Tile mode functions of an infinite cylindrical guide do not, in 

general, satisfy the boundary conditions, so convergence of the modal 

series is nonuniform at the boundary of each cross-section. The 

coupling coefficients are singular at cross-sections where the corres­

ponding cylindrical modes are at cut off. A nlllilber of authors have 

presented modified theories to alleviate these problems. The basic 

scheme is to use local basis functions which individually satisfy 

the boundary conditions and so eliminate the nonuniform convergence . 

For tapered plate and circular waveguides explicit representations 

are available as the radially propagating modes of wedges and cones 

respectively. Pokrovskii, Ulinich, and Savvinykh (1959.) use "natural 

coordinates" which locally are approximately cylindrical or spherical 

to obtain mode and amplitude solutions, while Amitay, Lavi, and 

Young (1961) and Bahar (1968) assume local modal expansions and match 

across the boundaries of successive elementary sections, thus gen­

eralizing Schelkunoff's treatment. Since wedge and cone modes in­

herently contain cut off phenomena, it might be tho.ught that co-
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efficient singularity difficulties are solved in principle, but as 

pointed out by Tang (1969), all these authors make approximations 

which bound the solution away from cut off transition regions. 

Amitay et al. in fact analyze a quasi- TEM problem that we also shall 

investigate, but their results are limited to a high frequency 

solution, which is adequate for some purposes . 

Thus none of the extant treatments have really come to 

grips with the problems outlined in Section 2.1 and so a new outlook 

is in order. 

2.3 Warped Mode Propagation 

The standard derivation of transmission line ideas from 

cylindrical waveguide solutions leans heavily on the symmetry of the 

infinite guide theory, to the extent that it is both extremely rigid 

and misleadingly simple. Engineers and physicists know however, that 

their transmission line ideas hold quite well for flexible and non­

uniform lines and cheerfully think in terms of field patterns that go 

around corners, and expand and contract while locally seeming like 

ideal modes. This concept has been dubbed ''warped mode" or "quasi­

normal" mode by Fox (1955) and Louisell (1955) in related work. In 

the generalized .telegraphist's equations approach, the allowable form 

of the mode "warping" is specified ahead of time in terms of the 

running amplitudes of uni f orm waveguide modes redefined at each cross­

section. It is this inflexibility that limits the description. Why 

should one expect· the warping corrections to a lowest order si_ngle 

dominant mode solution to be well described by a sum of non-propaga­

ting modes? What is needed is a more free-form approach to building 
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up the description of the warped mode species with t he righ t prop­

erties, even if this does limit the class of problems solved . 

The technique which will be employed is to use a pe rturb­

ation expansion to reduce the two- or three-dimens ional f ield 

description given by the full Maxwell equations to a basic one­

dimensional propagation equation, with the warping corrections 

falling out as further one-dimensional propagating waves. The 

formulation involves scaling the space and time variables in the 

governing equations so that the ratio of transverse and axial scale 

lengths appears explicitly and can be used as the parameter in 

power series expansions. Cole (1968) has used a similar technique 

in a simpler problem of steady heat conduction, completed only to 

the lowest term. We assume, where necessary, sufficiently smooth 

transitions to uniform input and output lines. Section and slope 

discontinuities as shown in Fig. 2.3 would need to be incorporated 

by a local quasistatic analysis. 

The perturbation method separates the problem into a quasi­

static transverse variation and a longitudinal wave description, and 

so applies to the baseband mode in multiconductor lines or to wave­

guides just above cut off of their lowest mode. We do not expect 

the method to work for multimode waveguide problems. Thus there is 

no direct competition between the perturbation method and the gen­

eralized telegraphist's equation method, since they are each an 

optimum description of a physically distinct class of problems. 

An entirely different method should also be mentioned. 

This is the use of conformal mappings to relate nonuniform boundary 

problems to nonuniform medium problems as reviewed by Borgnis and 
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Papas (1958) . This correspondence has been generalized by Baum (1968) 

with the use of three dimensional orthogonal coordinate system trans ­

formations and applied , among other things, to the synthesis of ideal 

line transitions . Tne aim of this work will instead be to obtain, 

with a minimum of calculation, good approximate answers for problems 

involving arbitrarily given nonuniform transmission line profiles . 
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III. PLANAR SECTION EXPANSIONS 

3.1 The Symmetrical Tapered Plate Transmission Line 

In this section the perturbation expansion is formulated 

fo r a bvo-dimensional tapered plate line as shown in Fig. 3.1. The 

line has perfectly conducting boundaries symmetrical about a center 

plane x = 0, and is uniform in the y-direction with the wave pro-

pagation in the z-direction. This is the simplest example which 

contains the essential features of nonuniform transmission line 

behaviour. With this boundary symmetry, the dominant solution will 

remain TM to z, reducing to the standard TEM dominant two conductor 

mode when the plate spacing is constant. The fields inside the line 

will have the form 

E = e E (x,z,t) + e E (x ,z,t) . x x . z z 

H = e H (x,z,t) 
y y 

The Maxwell equations then reduce to 

(3.1) 

(3.2) 

(3.3) 

and the electric field components may be calculated from this single 

magnetic field component by 
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ciE ciH 
x ___J_ 

- E: ~ = dZ (3. 4) 

ciE ciH 
e: __ z = ___J_ 

dt dX 
(3.5) 

The boundary condition for perfectly conducting plates is that the 

tangential component electric field Et vanishes on the boundary. 

E 
-t 

Then certainly also 

= 0 on x = ± a 
0 

z a(-) 
Q, 

0 

ciE 
-t 

at 0 on x ± a 
0 

z a(-) 
Q, 

0 

(3. 6) 

(3. 7) 

From symmetry, the lower half x .< 0 of the structure is 

just the image of the upper half x > 0 in a .perfectly conducting 

center plane, and we shall for convenience, consider only the region 

between the upper plane and the center plane where the -electric field 

must also be normal. 

The boundary conditions then reduce , to 

ciH a ciH 
_:;f_ 0 z ___J_ 
dX = r · a' Cr) dZ on 

z 
x = a a(-) 

0 Q, 
(3. 8). 

0 0 0 

and 

on x = 0 (3.9) 

where the prime, as usua~ denotes differentiation with respect to the 
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argument of the function . 

Now introduce normalized variables 

t x x 
a 

0 

t z 
z =r t//ilE Q, 

0 
0 

(3.10) 

The time scale is normalized to the wave transit time through the 

length of the nonuniform section. The dimensionless ratio 

n = a /Q, measures the length scale of the taper, and is used as 
0 0 

the expansion parameter in the perturbation series, in the limit 

n-+ O. Then in terms of the normalized variables equations (3.3), 

and (3.8,9) become 

(3.11) 

with 

oH 
2 

oH t t ___y = n a' _J_ on x a(z ) (3.12) 
axt azt 

and oH 
0 t 

0 (3.13) --= on · x 
axt 

The limit n -+ 0 of the taper parameter may be thought of 

as either a -+ 0 or .Q, -+ 00 • In this chapter there will be no real 
0 0 

reason to prefer one over the other. The version a . -+ 0 
0 

emphasizes 
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directly the approach to transverse quasistatic behaviour for a fixed 

wavelength and nonuniform section length, while the limit i -+ 00 
0 

shows the behaviour for a given typical cross-section as the taper is 

made more gradual by stretching out its length uniformly. 

The reason for our choice of time normalization is now 

apparent, as it couples axial and time derivatives in a wave operator, 

independently of n. In frequency domain language, the number of 

wavelengths in the nonuniform section is held constant as n is varied. 

This number, however, is not restricted except by the need to avoid 

waveguide mode propagation effects when the wavele.ngth becomes 

comparable to the transverse dimension. 

Assume that .H may be expanded in a regular series in n2 
y 

and that the extent and smoothness of the nonuniformity are such that 

the correction terins do not blow up: 

H (x,z,t) 
y 

2 ttt 4 ttt + n ·H
2

Cx ,z ,t) + n H4(x ,z ,t) + ... 
" (3.14) 

Substitute this series into the equation (3 . 11) and its 

boundary conditions (3.12,13) to obtain, after classification by 

powers of n, an ordered sequence of problems 

O(n°) 0 

with 0 on 
. t 

a(z ) 

0 

(3.15) 

(3~16) 

(3.17) 
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(3.18) 

with 8H
2 t 8H 

t t 0 

dXt = 
a' (z ) 

dZ t 
on x = a(z ) (3.19) 

0 on x t 0 (3.20) 

with subsequent entries for O(n 4) and higher orders similar to that 

for O(n 2). We now obtain a selfconsistent set of solutions of 

equations (3.15-20) such that the lowest term H is identical to the 
0 

circuit solution and higher order solutions yield corrections to 

this. 

()Ho t t 
-.i. = B (z ,.t ) 
ax' 0 

0 

Integrate once more to obtain 

where A 
0 

t t t 
H (x , z , t ) 

0 

is an as yet arbitrary function of 

(3.21) 

(3.22) 

and and 

independent of t x • It can already be seen that the lowest approxi-

mation is constant across each planar cross-section just as 

envisaged in the distributed circuit approximation for this structure. 

To determine A
0 

more precisely, we need to consider the next 

higher approximation. Only a partial solution is necessary for this 
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purpose. Substitute in (3.18) and (3.19) to obtain 

(3.23) 

C1H C1A (zt,tt) 
t ' t z a' 0 (3.24) with --= 

Clzt 
on x = a(z ) 

dX 

0 
t 0 on x = 

Equation (3.23) may be integrated immediately to give 

--= - A (zt,tt) + B ( t t) 
0 2 z , t (3.25) 

From the lower boundary condition B2 = 0, and the upper 

boundary condition yields 

' t 
a' (z ) ~ 2 2 J ' t d d t t 

a(z) --2 - --2 A
0

(z ,t ). 

. dZt dtt 

A little rearrangement yields .a familiar equation 

(3.26) 



2 t a A a'(z) aA __ o + ____ o __ 
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dZ t a(z ) 
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which becomes when the variables are denormalized 

a2H a'(z/i) aH 
__ o + ~---o__ o 

az2 i a(z/i ) az 
0 0 

(3.27) 

(3.28) 

In the distributed circuit analysis the distributed capacity 

C is inversely related to the spacing and so 

1 dC 
- --= = 

C dz 

a' 

i a 
0 

(3.29) 

and so the nonuniform transmission line equation for the current is 

ar 
(3.30) 

i a(z/i ) 
0 0 

dZ 

Since the longitudinal currents are .proportional . to the magnetic field 

given by (3.28) and are equal and opposite on the two plates at each 

planar section, then equation (3.28) for the lowest order approxi-

mation in the perturbation theory recreates exactly the distributed 
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circuit parameter nonuniform line equation . Observe also from equa-

tion (3.5) that the electric field remains purely transverse in this 

approximation as assumed in the circuit theory, and the voltage can 

be defined by integrating the electric field across the section. 

The circuit version stops at equation (3.30) and goes no 

further but the present theory leads onward. Integration of (3.25) 

yields 

A (zt,tt ) +A ( t t ) 
0 2 z , t 

(3.31) 

where is a new arbitrary function that remains to be 

determined . It can already be seen in the ~econd approximation (3.31), 

that the magnetic field is no longer constant over the planar cross-

section, and so from (3.5) a longitudinal electric field component 

appears also. Alternatively, wavefronts in this approximation are 

no longer in the nonnal plane. In the half-problem, currents at 

the ends of a nonnal plane section are no longer equal and opposite, 

or in the full symmetrical problem where this is necessarily true, 

the ready identification with axial propagation distance has been 

lost. 

Now continue with the analysis of the fourth order equations, 

writing L for the normalized wave operator for the sake of brevity. 

We find 

--= -
.2 

Clxr 

x t

2 J::_ dA~ ( 
2 ~a Clz ) 

- LA 
2 (3.32) 
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with 

C3H4 a' [a2 
. -; {~ dA~} + dA~J t a (3.33) a)· = on x = 

2 dZ a dZ dZT 

0 
t 

0 on x = 

This yields, after some manipulations, an equation for the 

second function 

t a(z ) 

= - _< a_<_z_t )_)_
2 [-a_2_2 + 3 _a_' c_z_t _) _a_ -

t t t 6 ()z a(z ) ()z 

This equation has the form 

(3.36) 

{

nonuniform line} = 

operator {

Source terms depending on lo~er l 
order solution and taper prof ilJ 

The homogeneous solution of this equation will add nothing 

that is not already contained in the lower order solution and so may 

be set to zero without loss of generality. It does not seem to be 

a profitable exercise to attempt to identify the inhomogeneous terms 

explicitly as equivalent voltage or current sources in a nonuniform 

distributed circuit. Also we see that the leading term in E will z 
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be O(n) as expected on physical grounds. 

The analysis can be extended in this fashion to higher 

orders at the eh~ense of r apidly escalating complexity. The results 

through the next order of approximation are given in Appendix A. For 

a uniform line, t 
a(z ) = constant, the equation (3.27) for A 

0 
reduces 

to the simple wave equation for the uniform line, and the inhomo-

geneous terms in (3.34) vanish, leaving the simple wave equation 

again. A more stringent and non-trivial test is furnished by the 

finite angle uniform wedge, for which an exact solution is available. 

3.2 Exact and ~roximate Solutions for the Uniform Wedge 

A uniform finite angle wedge is shown in Fig. 3.3 defined 

in both Cartesian and cylindrical coordinates. For simplicity in 

. -iwt this section we assume a harmonic time dependence e In terms 

t -frt~ 
of normalized time t this can be written e where 

10€ - w = . 2 - (3.35) 
0 

The well-known solution for an outgoing wave in cylindrical 

coordinates for the ¢-in.dependent TM
0 

wave with components 

and Ep(p) is 

H (p) = H(l)(kp) . 
y 0 

H (p) 
y 

(3.36) 

where denotes a zero order Hankel function of the first kind 

and "outgoing" is interpreted as the direction in which the wedge 
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opens out, in this case the t z axis direction. The phase fronts 

for this solution are circles with center at the wedge apex. Fig. 

3.4. Expressed in terms of normalized Cartesian coordinates this 

becomes 

(3.37) 

in the region z > 0, Since in normalized coordinates the upper 

boundary is t x t 
z then for any interior point 

Hence we may expand (3.37) by the multiplication theorem for Bessel 

functions for n < 1 (see Abramowitz and Stegun, section 9.1.74) : 

t 2 t 
t4 .i..2 

H(l)(ktzt) 
2 

Hil) (ktzt) 
4 x k 1 

H·~l) (kt zt) H - .!)___ x k +IL 
y 0 2 t 8 t2 z 

z 

6 t6 t3 
H;l)(ktzt) - .!)___ x k + .... (3.38) 

t3 
48 z 

The .extreme n = 1, the steepest wedge for which the 

series (3.38) converges at all interior points, represents a wedge 

with interior angle of 45°. 

We now p~oceed to the calculation of the first few terms 

of the perturbation series expansion for the uniform wedge. First 

note for reference the identity, with n int.egral 
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(2n+l)k H(l) (kz) 
n+l n+l 

z 
(3.39) 

The function A is given by the equation (for harmonic time 
0 

variation) 

d2A l dA 
__ o+---o+ 

d t
2 

t d t z z z 

t2 
k A 

0 
0 (3.40) 

The appropriate solution to this equation is just 

A 
0 

h ·xt -- 0 w ich on-axis 

H (l) (kz) 
0 

(3. 41) 

is identical with the exact solution. The 

exact solution maintains this value on the circular arc while the 

approximate solution says the phase front is the normal plane. 

The equation for A
2 

becomes 

2 
d A2 l dA2 
--2+-+--+ 

d t t d t z z z 

Since 

d 
dz 

= - 2t 2 }f ~ a d 3 d 2 1 d tt 
---

2
+--+k. ---. (H~(kz)) 

6 d t tdt tdt z z . z z z 

(3.42) 

H(l) (kz) 
0 

k H(l) (kz) 
1 
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application of (3.39) with n = 1 shows that the inhomogeneous term 

in (3.42) vanishes. Hence without losing anything essential we may 

take A2 = O. 

The next higher order arbitrary function is defined 

by the equation, modified from (Al.2) 

3 d 
---+ 

t d t z z 

t2} f t2f d
2 

3 d t2'~{1 ~A01 t2 t t t t k z--+---+k)---

dz . z dz z dz 

(3. 43) 

Of the inhomogeneous terms, the first vanishes since A2 = 0, 

and the third term vanishes also, the argument being exactly similar 

to that used for the A2 equation. A double application of (3.39), 

first with n = 1 and then with n = 2 shows that the middle term 

vanishes as well. Hence A4 also satisfies the homogeneous non-

uniform line equation and may be taken as zero. 

Further calculation indicates that the equation for A6 
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will also turn out to be homogeneous, then we can complete the first 

f our terms of the perturbation expansion, omitting all but the A 
0 

terms from equation (Al.3) 

t t H(x , z ) t
2 {l dA} 2 x 0 

+ n ;---- zt dzt 
t

4

f d
2 

2}{1 dA} -n4~--+kt __ o 
24 ' 2 t d t T · z z dz 

t

6 l 2 ~' ~ ' 2 1 ~ } 6 x d t2 d t 1 dA 
+n -- --2 +k --2 +k -~ 

720 dzt dzt zt dzt 
\ 

_ n6 xt

4 

i~ + kt
2
} fzt 2i~ + !__ _d + kt

2}}i-=- dAo} 
t 2 t 2 t ' t t t 144 dz , dz z dz z dz 

(3.44) 

The identity (3.39) may be employed to show that . the last 

O(n 6) term vanishes and that the others reduce to give 

t t H(x , z ) 

6 - n + ... 

t
4 .2 

x kT 

t2 
8z 

H(l)(k'z') 
2 

(3. 45) 

This matches term by term the convergent series expansion (3.38) of 

the exact solution. The higher order terms progressively correct the 
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off -axis field distribution and can be regarded as successively bend-

ing back the predicted fronts towards the exact position. So far 

wave fronts have been clearly predicted in two cases, one the planar 

sections of the lowest approximation and second the cylindrical 

surfaces in the uniform wedge only. It is worthy of note that the 

lowest approximation, the circuit equation , gives exact results along 

the axis of a uniform wedge. We can see how this might happen by 

looking at the sbape of the electric field lines (Fig. 3 . 3) in this 

exact solution. If the incremental capacitance is calculated with 

this circular field pattern then C ~ l/p and 

1 dC 1 
- --= c dp p 

1 when ¢ 0 (3.46) 
z 

giving a circuit equation in the radial coordinate, which on axis 

is identical with the usual version. This process can be thought of 

as automatically incorporating the effects of neighboring capacitance 

elements, and for a uniform we.dge it gives the exact solution, curved 

wavefront and all. 

Amitay et al (1961) give a solution for the nonuniform 

wedge in which this idea is applied locally and the Hankel function 

solutions are matched from section to section as the wedge angle 

varies. They construct solutions in the process of their analysis 

but make the assumption kr >> 1 for asymptotic expansion of the 

H(l) , (2) 
0 

functions. For a finite angle we.dge, 8, at a half spacing 

a , the free space wavelength must lie in the range 
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TI 
>> ~a >> 1 (3.47) sin e 

There is thus only limited overlap between the theories. 

The lower bound on wavelength is to avoid higher mode effects and 

is a common limitation. 

We shall show in a later chapter how this kind of solution 

may be imbedded in a new more powerful perturbation expansion. In 

the next section we shall consider a further example of a planar 

section expansion. 

3.3 The Constant Impedance Tapered Plate Line 

If the spacing between the plates of a tapered two dimen-

sional transmission line is maintained constant in the x- direction 

(Fig. 3.5), then in the standard distributed circuit theory it is a 

constant impedance line which gives no reflections or transmission 

aberrations on an incident waveform. It is much easier to show the 

effects of higher order corrections in such a nominally perfectly 

transparent situation than it is when superimposed on already complex 

nonuniform line solutions. The notation and procedures will be very 

similar to those of 4.1 and will not be shown in detail . In normal-

ized coordinates the new boundaries are 

t x (3.48) 

In the lowest order O(n°) we find again that 
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(3.49) 

where A now satisfies the uniform line wave equation 
0 

t t A ( z , t ) . = 0 
0 

(3.50) 

In the next order O(n2
) we have 

where 

t t t H
2 

(x , z , t ) (3. 51) 

-a(zt) {-a2_ + _a'_Cz_t) _a - _a2_f fa' (zt)_aAo)l 

t 2 t t t 2 t 
dZ a ( Z ) dZ · dt dZ 

(3. 52) 

Thus the .first correction term H2 is composed of a field 

distortion term and a new propagating term which satisfies an in-

homogeneous uniform line equation. The complexity of the equations 

increase rapidly as we move on to higher order systems . We expect 

in any case that _the theory of this section will apply well only to 

small deviations a << 1, with larger deviations being better 

described by the curved center line theory to be developed in a later 
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chapter. 

This problem has the great virtue that it is simple enough, 

even for an arbitrary profile, to allow an explicit, easily inter-

pretable solution. A typical measurement set-up using a time d_omain 

reflectometer is shown in Fig. 3.5. The TDR applies a unit step to 

the line and monitors the sum of incident and reflected waves at the 

point z = 0 whi.ch is taken as the beginning of the nonuniform 

section. Adequate smoothness of transition is obtained if the pro-

file t a(z ) and its derivatives a' , a" vanish at The 

solution· for A
0

, a uniform line problem may be taken as a pro-

pagating unit step. 

(3.53) 

The equation for the new propagating term A2 , in the next 

approximation is of the form 

t2 
dZ 

(3.54) 

an inhomogeneous one dimensional wave equation, which also has zero 

initial conditions. It is well-known that the solution to this 

equation may be written 

-f ·f J f(~,T) <ls dT 

D 

(3.55) 
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where D is the triangular domain of dependence shown in Fig. 3 . 6. 

The inhomogeneous term from (3.52) may be written, on plugging in 

(3.53) as 

(3.56) 

where the a's are all functions of t 
z • This exists along the line 

t t 
t -z =0 Fig. 3.6 and vanishes elsewhere. For the choice of 

D shown the solution is evaluated at time at position 
. t 
z = 0 

and it is easily seen that there are no contributions to the solution 

from t 
T > t /2. Thus the reflected wave seen on the reflectometer 

is given by 

A2(0t,tt) 2 (a I (r)) cS I (T-<;;) dT cl<;; 

+ ~ f f~-2a'(<;;) .a"(<;;)cS'(T-<;;) + ~<;;(a(<;;)a"(<;;))cS(T- <;;)f dT d<;; 

D 
(3 . 57) 

the need to make the substitutions 

u ~(T + <;;) T = u + V (3 . 58) 

<;; = u - v 

to bring the integrals to a form where integrals involving 

cS-functions may be given a standard interpretation . 



-3 8-

The Jacobian of this transformation has the value J = 2 

and the argument of the a-functions is now T - ~ = 2v. Use the 

results, with a > o, for integrals involving a - functions 

J a(ax) f(-x) dx 

f 6' (ax) f(-x) dx 

l f(O) 
a 

..!..._ f I (0) 
2 

a 

(3.59) 

The second term in (3 . 57) then vanishes after the v- integration 

leaving 

= (~~)2 
x = 

( 3 .-60) 

The reflected wave A2 observed on the reflectometer at 

time tt is given by equation (3.60) as proportional to the square 
.1. 

of the line profile slope at a round trip propagation time of t 1 

down the line. 

In later chapters other examples involving the simple wave 

operator for a nominally transparent line are solved by transform 

methods, which are better .adapted to finding a general solution for 

any point in the line. 

It should be remarked that A
0 

and A2 are magnetic field 
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components which are proportional to the conductor currents an~ could 

be directly observed with a current transformer. Present day re­

flectomete r techniques for fast time domain observations generally 

use voltage sampling techniques. Since the transverse electric field 

is obtained by a taking a z-derivative, the relative sign of the 

voltage contribution of a reflected wave will be reversed compared 

to that for the forward wave, for currents in the same direction. 

Thus (3.60) predicts a dip in the reflectometer trace. This is 

certainly consistent with the well-known quasistatic representation 

of a sudden discontinuity as a extra shunt capacitance due to 

fringing fields . 
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IV. CYLINDRICAL SECTION APPROXIMATIONS 

4.1 The Tapered Plate Line Revisited 

In the Cartesian expansions of Chapter 3, only the lowest 

term provides universal wavefront, voltage, and current definitions 

that may be readily disentangled from the details of particular 

solutions. Higher order terms cannot be readily described in this 

fashion, but only as field distributions and by their contributions 

to the waves in uniform line sections at input and output. The 

uniform wedge, either in an infinite sum of approximate terms, or 

exactly, or from highly heuristic circuit considerations, has been 

shown to admit voltage and current definitions on the supports of 

cylindrical wavefronts. We might hope then, for a nonuniform wedge, 

to find an approximation sequence, whose lowest term reproduces the 

cylindrical wavefronts of the uniform wedge, just as the lowest term 

of the Cartesian expansion becomes exact for a uniform line . The 

technique for generating this expansion will be based on the con­

struction of a nonorthogonal coordinate system, which is close to a 

cylindrical geometry in any small section. Unger (1965) has 

attempted to use a ·closely related system of locally spherical 

coordinates in setting up generalized telegraphist's equations, but 

his treatment contains errors in both principle and detail. Appendix 

C gives some details for this and related systems . 

4.2 'Nature of Warped Cylindrical 'Coordinates 

Once again we consider the upper half of a symmetrical 
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taper profile as shown in Fig. 4 . 1. At any point P on the curve, 

construct the tangent to its intersection with the z-axis at O. Then 

draw an arc with center 0 and radius OP to meet the axis at S. This 

is done for each point on the taper profile, and the resulting family 

of arcs is used to define one set of coordinate surfaces, each of 

which is a longitudinal section of a cylindrical surface. These sur­

faces can be labelled in a variety of ways, the most useful being the 

z-coordinate of the foot S of the arc PS. The lateral coordinates 

now need to be defined. The principal choice for this work will be 

the arc length s from the axis measured along each arc with plus 

sign in the upper half. A closely related choice is the angle 

8 = s/r. It is worthy of note, that with neither choice is the 

boundary a coordinate surface, except in very special cases. Pre­

vious authors seem always to have been constrained by the desire to 

use the boundary profile as a coordinate surface. This is found to 

be an unnecessary and even hobbling restriction in the present 

development. 

The (z,8) system for a uniform wedge is exactly equi­

valent to cylindrical coordinates when the z-origin is chosen at the 

apex of the wedge. · The (z,s) systems becomes Cartesian for plane 

parallel boundaries and is closely related to cylindrical coordinates 

for a uniform wedge. The scaling procedure used in setting up the 

perturbation expansion requires that both coordinates have dimension 

length,so that the ratio of typical dimensions in each coordinate 

will form the dimensionless expansion parameter n. Thus we expect 

the (z,s) system to be a more natural description for our purposes 

than (z,8) despite the increased algebraic complexity of the metric . 
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Also in the limit of parallel-plane boundaries the 6 coordinate 

becomes indeterminate and this limit is almost always included in 

input and output lines. Obviously the possible coordinate choices 

have by no means been exhausted. 

The introduction of exotic coordinate systems does bring 

some new apparent problems. In a concave inwards section of the 

profile there is the possibility that coordinate arcs may overlap 

as shown in Figure 4.3. For a smooth profile the condition that this 

does not occur is that at every point dz/dz > 0 which will be 
0 

shown later to imply that the circle of curvature at each boundary 

point must intersect the center line. This leaves a useful range 

of profiles, and the statement of Bahar (1968) on this point is in 

error. 

If this condition is violated in a large scale sense, then 

a plausible interpretation is that such regions should be treated with 

a new center line or as special end-zones. Compare this to a 

T-junction in rectangular _coordinates. When we apply the coordinate 

analysis to a specific situation at finite n, then there may be 

local small scale irregularities that would be smoothed out in the 

limit n + 0, but which break the coordinate . uniqueness condition. 

Physical considerations would indicate that the field behaviour over 
; 

most of the line cross-section is largely determined by the general 

trend of the boundary. We then define the arc coordinate system on 

some smooth average curve as shown in Fig. 4.4. and evaluate the 

boundary conditions on the actual profile in terms of the smoothed 

coordinate system. The coordinate arc system is extended a small 
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distance as necessary outside its defining boundary to intersect the 

irregular boundary. This will set a lower bound on the radius of 

curvature of concave outwards sections if the irregular boundary is 

outside such a segment of the smoothed boundary. 

4.3 Geometry~ Warped Cylindrical Coordinates 

Let z
0 

be the Cartesian z-coordinate of point P on the 

boundary profile and z be the z-coordinate of the foot S of the 

new coordinate arc through P as shown in Fig . 4 . 1. Also let the 

taper profile be given by 

(4.2) 

and let r be the length of the tangent intercept OP . Then the 

slope of the tangent is given by 

tan 8 = 
db 
dz 

0 

na' (4.3) 

and also,with primes denoting differentiation with respect to z 
0 

and 

b 
r = ----

sin 8 

z - z 
0 

c. b 
b tan~= r - -2 b I 

(4. 4) 
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(4.5) 

Formulas for the derivative dr/dz will be useful for future 

application . From (4.5) we find 

· ·dz dr bb" 
az=az- +b,2 

0 0 

and by an indirect calculation 

so then 

dr 
dz 

dr 
dz 

0 

dr 
dz 

0 

·dr · bb" --+--
dzo b'2 

bb II 

- b'2 

. dr bb II 
--+--
dzo b'2 

2 
r bb II 

= -

b 
2 

(l + b I 2) dz 
dz 

0 

Note that his expression vanishes for a uniform wedge. 

( 4. 6) 

(4. 7) 

(4. 8) 

(4.9) 

The derivative dz/dz
0 

that determines the uniquene?s of 

the coordinate description can be written as 
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b tl . b + sgn 
r 

c 

1 
l + s gn b " r

2 

r b 
c 

(1 - cos e )~ (4.10) 

where r is the radius of curvature of the taper profile at P: 
c 

/ 

1 
-= 
r c 

b II 
( 4.11) 

From (4.10) it is easily seen that for b11 > O, a ccmcave 

outwar ds profile, dz/dz > O always. If the taper profile is 
0 

concave inwards b" < 0 and for coordinate .uniqueness the radius of 

curvature is limited to the range 

r > c 

2 
r 
b 

(1 - cos e ) (4.12) 

The radius of a circle tangent to OP at P that is also 

tangent to the z axis is; in t e rms of the half angle 

and so from (4.4) 

r 
c 

e 
r tan 2 

. 2 
r 

r 0 b ( 1 - cos e ) r c min. (4.13) 
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Hence a necessary and sufficient condition that the warped 

coordinate system be unique, when the profile is concave inwards, is 

that the circle of curvature at any point on the profile intersects 

the center line axis. Then we can write 

dr _ 
1 dz 

r 2 b · · 

b
2 

(r s gn b" + r . ) 
(4.14) 

c c min 

It can be seen that r and dr/dz blow up when the line 

is locally parallel. In future calculations these infinities will be 

cancelled by zeros of angular terms to give very well behaved re-

sults, but it means that fairly large groups of terms must be treated 

as a whole. 

We have now collected enough definitions and results to 

proceed directly with the calculation of metric coefficients for the 

warped cylindrical system. It can be seen that the Cartesian coordi-

nates (x
1

,z
1

) of a point Q are related to the warped cylindrical 

coordinates (z,s) by 

s i. r sin -

z - "+ r cos -"-o r 

in terms of the intermediary functions z and r. 
0 

(4 .15) 

Note that 8 is 

not explicitly involved. First calculate the derivatives 
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azl 
1 - dr + dr ~ + ~ dr s az- = cos sin -dz dz r r dz 

ax dr 1 --= 
dz sin az 

azl s 
as= - sin r 

-~- = 
OS 

s 
cos r 

s s dr s ---- cos r r dz r 

The metric coefficients are then found from 

gzz = (::1)

2 

+ (::1)
2 

gss (::1)
2 

+ (::1)2 

az1 azl axl axl 
gzs --+-- . -- = gsz az as az as 

and the determinant of the metric g by 

g 

r 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

These can be written explicitly, after much tiresome algebra, in a 

f orm where the individual terms are well behaved, even though this 
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does not correspond to a maximal algebraic reduction 

gss = 

gzs = 

;g 

2 
s 
2 
r 

+ 2 (:: - 1) {1 - cos 
s 
- -
r 

+ 2(dr _ 1) 2{1 s 
- cos - -dz 

r 

1 

- ~ - (~~ - 1) { 1 cos ~} 

1 + (~~ - 1) {1 - cos ~} 

1 2} s . s s 
- sin - + - 2 
r r 2 r 

2} s s 1 s 
- sin - + -2 
r r 2 r 

(4.20) 

( 4 . 21) 

(4.22) 

(4 . 23) 

These expressions are easily shown to be well behaved for 

small slopes, since then, for example 

and since s/r :::. e 

j1 - cos ~ 2 ( s . s 1 s r sin r + 2 r2 

4 
.l~+ 
8 4 

r 
(4 . 24) 

Thus even the final term of (4.20) remains finite under all condi-

tions. For a uniform finite angle wedge these expressions reduce to 

a metric closely related to cylindrical coordinates . 



and g 

. 2 
1 + s 

2 
r 

s 
r 
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(4.25) 

1 

As a further simplification, for a parallel plate line 

r + 00 and we are left with a simple Cartesian metric. From the 

expression for gzs it is seen that only in this special case is 

gzs = O. Thus in general the (z,s) warped coordinate system is 

nonorthogonal. The ( z, 8) version reduces to ordinary orthogonal 

cylindrical coordinates for a uniform finite angle wedge. The 

metric properties of this and related systems are given iri 

Appendix B. 

4.4 The Field Equations in Warped Coordinates 

The use of nonorthogonal coordinate systems is relatively 

rare in the electrical engineering literature, so we shall derive 

from first principles expressions for the Maxwell equations and 

boundary conditions in the warped coordinate system. A review of 

tensor analysis adequate to handle field computation problems in 

stationary media is given in the classic text of Stratton (1941). 

For the purposes of this section we shall follow Stratton in writing 

the various sets of components of a vector E as 

E , E , E physical components z s y 
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z s y 

e , e , e contravariant components 

e , e 
s y 

covarian t components _ 

The covariant and contravariant components in the (?,s,y) 

system of a vector F are related by 

f = g f 2 + g fs 
Z ZZ ZS 

f 
z 

f = fy 
y 

(4.26) 

The contravariant components i 
g of a vector G = V x F are 

z 
g 

1 
{ 

Clf Clf } . s z ------
lg Clz Cls 

(4. 27) 

In the tapered two-dimensional wedge line problem, all the 

fields are assumed y-independent and also E = 0 , and H = H = 0. 
y z s 

So then the first Maxwell equation 

ClH 
V'xE=-µ­

Cl t 

transforms to 

1 
{

Cle Cle } s z ------= 
/g Clz Cls 

Clhy -. Clh . ClH 
-µ-=-µ-Y=-µ-Z 

Clt Clt Clt 

(4 . 28) 

(4.29) 



The second MaA-well equation 

oE 
\7 x H = e: 

at 
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may be written as the two equations 

.. 1 aH aez 
. _ _y= t.-
;g as at 

1 aH aes 
__ _J_=e: 

/g az at 

(4. 30) 

(4.31) 

(4.32) 

Now transform '(4.31) and (4.32) to the covariant components of E 

and then substitute into the first Maxwell equation (4.29). The 

divergence equations have already been used up in the assumptions 

on the form of the solution and provide no further simplification. 

We obtain 

a {g aH } a { g aH } . a {g aH } a {g aH } - -2._S___:J._ + - _E__:j_ - - ~ ___:J._ - - _E_J_ 

. Clz ;g az as rg as Clz rg Cls Cls rg az 

ClH 
- )JE: ;g _J_ = 0 

Clt
2 

(4.33) 

Next consider the boundary conditions on the curved 

boundary. Figure 4.5 shows the covariant and contravariant basis 

vectors at a point on the boundary. The definiton of the (z,s) 

coordinate system is such that the tangent vector . t to the bound­

ary curve at P is parallel to the covariant basis vector ~[z]. 
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Figure 4 . 5 Basis Vector Sets on Boundary 

ACTUA.1. OU ~DARY SMOOTHf.O ~OU~OARY 

Figure 4.6 Boundary Conditions for an Irregular Boundary 
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For a perfectly conducting boundary the tangential component 

of the electric field on the boundary must vanish. · Then 

" 0 t • E 

[ z] { z es} = e • . ~[z] e + ~[s] 

z 
e (4. 34) 

Hence the boundary condition is equivalent to a re-

quirement that the contravariant z-component of the electric field 

vanish on the boundary. From equation 4.31 it follows that the 

boundary condition may be written 

ClH 
_L = 0 as on s = upper boundary 

centerline (4.35) 

This is simpler than the condition (3.8,9) in Cartesian 

coordinates and is more akin to a cylindrical coordinate expression. 

4.5 Expansions in the Taper Parameter 

The transmission line problem is now rigorously described 

by the complicated equation (4.33) and the simple boundary condition 

(4.35). The need for simplifying approximations is apparent, pre-

ferably based on a systematic procedure. This scaling procedure 

will no longer be as simple as that used for the Cartesian expansions 
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where we considered a family of taper profiles differing only on 

length scale. The transverse description is now no longer purely 

transverse, so the shape similarity will have to be sacrificed. 

Introduce the normalized variables by 

t z = z ~ . Then from (4.5) 
0 

t t 
z - z = 

0 

z 
0 

and 

(4.36) 

Suppose we consider the familiar set of similar shapes obtained by 

scaling z . Then from 
0 

(4.36) it is evident that z _will not scale 
.l. 

uniformly with n for a given basic shape function a(z 1). A first 
0 

approach is to do just this and let z fall where it may, but j:hen 

t he z-derivatives in the differential equation (4.33) must undergo 

the full transformation (4.36) and even in power series expansion 

this is excessively complicated and restrictive. 

An alternative view is to consider the particular problem 

under consideration as giving a specification for the shape function 

t a(z ) 
0 

at some particular value of n = n . 
0 

Then under scaling of 

zt to be solved in z we can regard (4.36) as an equation for 
0 

terms of t z and n. In general this process will result in a 

change of the nonuniform profile by a topological distortion of the 

support of a(zt). If na' « 1 then approximately 
0 

t t 1 2 a a' (4.37) z z -n 
0 2 
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and so the relative shifts of t and t 
will be . of second order z z 

0 

2 
If both t t keep their places O(n ) • we were to insist that z and z 

0 

in then (4. 36) shows that a would have to scale in the 

same proportion, thus defeating the whole purpose. 

With this viewpoint we now can simply scale the derivatives 

in (4.33). The scaling procedure can be regarded as basically a 

device for ordering the approximation sequence when a given problem 

is described in normalized variables, and once the approximation 

sequence is established the variables may be denormalized and the 

original profile inserted in the solutions. 

In its Cartesian version the expansion proceeded strictly 

in powers of n, the taper scale parameter. In this section that 

purist approach will be abandoned and the terms ordered in the limit 

of small n by the dominant power that they contain, with the form 

of the terms being chosen to give the best description of the physics 

at finite n. The principle here is that perturbation procedures 

are generally improved by including all available structural and 

progress information as early as possible in the proceedings. It is 

well-known from elementary analysis that in general a convergent 

power series gives only a limited description of a function and it 

certainly seems preferable to modify the formulation from the begin-

ning to improve the radius of convergence, rather than by arbitrary 

telescoping transformations, when, as is almost always the case in 

perturbation expansions, only the first few terms are available. 

The criterion to · be adopted for selecti.ng the lowest order approxi-

mation will be that it give the exact solution for a uniform finite 

~ngle wedge independently of n. 
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Now examine the order of magnitude for small n, of the 

various intermediary functions that occur in the metric calculations. 

Introduce the normalized variables t r = r/i 
0 

and T r = r /i , then 

a a 
0 

aoa /i + 2 a'2 
na' n 

c c 0 

-1 
O(n ) as n + 0. (4.38) 

-2 
+ O(n ) as n + 0 (4.39) 

G=tan1 na' + O(n) as n+O (4.40) 

dr 
dz 

1 
2 

r 
- b2 re 

b sgn 

1 
r . 

b" + min 
b 

' -2 
+ O(n ) as n + 0 

(4. 41) 

Note also that s/r ~ G on any arc z. The next part of 

the program is to expand the metric quantities. The function 

-~ g of the metric determinant occurs frequently so we expand in a 

geometric series 

1 1 - = ~~~~~~~~~~~~ 
lg 

(
dr 

1 + - -dz 
. s' 

- cos -r) 

= 1 - (~: - 1) (1 - cos ;) + (~~ - 1) 2 (1 - cos ~)2 ... 
(4.42) 
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This expansion is conve r gent provi ded 

(4.43) 

This condition may be written using (4.13) as 

I re sgn b" + r . j c min 

2 

> re min - ~ (cos ~ cos e) (4.44) 

For a concave outwards line, with sgn b" = + 1 this is always 

true. For a concave inwards line, sgn b" = - 1 and the inequality 

becomes 

2 
r > 2 r - br (cos s cos e) c c min r (4.45) 

When s = 0 the second term is equal to r min 
. Hence a suf f i-

c 

cient condition for the series (4.42) to be convergent is that the 

line profile be concave outwards, or, if it is concave inwards that 

t he radius of curvature of the boundary at the same z-coordinate 

be > twice the minimum allow ab le radius of curvature, r c min, 

for no coordinate overlap, where r is the radius of a circle 
c min 

that touches the boundary at z and also the center line. 

Several assortments of tr.igonometric functions occur in 

the metric expressions (4.20) to (4.22). These have convergent 

power series expansion for all s/r 
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2 4 
1 - cos ~ = s - 8

- + 
r 2r2 - 24r4 

3 5 
s 
r 

sin ~ = 8 ~-s __ 
r 6r3 - 120 r 5 + ... 

1 - cos s 
r 

2 4 6 
s . s ls s s r sin r + 2 r2 = 8r 4 - _1_4_4_r_6 + ... 

(4.46) 

The series (4.42) and (4.46) are then used in the metric 

expressions to expand them into enough terms to allow a solution of 

Maxwell's equation through O(n 4). These expansions are, for reference 

lg = 1 -__£ {---b----} + 
2b 2 r b 11 + r c s_gn c min 

1 
-= 
lg 

2 { 1 +-s-. 2 
2b r sgn 

c · 

b 

b" + r 
c 

+ ... 

r { r c sgn : " + r c min } 

s 

2 2 

rmiJ 
gzz +:2 - 2:2 t b 
--= 1 
lg sgn b 11 + c 

+ 2__ _s_ b +-s- b " 4 { 
24 r;2 r · c sgn b 11 + 

} 4 { 
r . 2b 4 r min c sgn .b 11 

( 4. 4 7) 

( 4. 48) 

(4.49) 

(4.50) 

y+ ... 
+ r . min 
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The propagation equation for H 
y 

can now be written down 

with the terms grouped by dominant order though still written in 

unnormalized coordinates . . The only extra condition needed for this 

ordering to be valid is that r is finite, that is no sharp kinks 
c 

in the taper profile. For the sake of brevity we write 

F(z) b 
(4. 51) 

r b" + r c sgn c min 

and from (4.39) the behaivour under scale change is given by 

F - n2 Ft - for the dominant behaviour. 

a2H 1 aH a2H a s aH 
_J_ + - _:J_ - )JE __y + - - _:J_ 

az2 . r az 2 r as at az 

+ 

a 
2 2 aH s a aH s . s 

+- 2- 2 F(z) _:J_ +-- _:J_ 

as r 2b as r az as 



+ 

aH 
_:t_ + 
az 
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+---F_:t_ +--F-_:t_ 1 a ~ 3 
aH ~ 1 s

3 
a aH 

3 az rb
2 

as 3 rb
2 az as 

+ higher order terms. (4.52) 

Since the basic equation is ordered in even powers we 

again expand H 
y 

in a series of even powers .of 

H (z,s,t) 
y . 

t tt 2 ttt 
= ho(z ,s ,t ) + n h2(z ,s ,t ) + ... 

Ho + H2 + ... 

The boundary condition becomes, with 

integral 

ah 
2n -t-= 0 

as 
on 

s 
0 

r0 and 

(4.53) 

n 

(4.54) 

Rather than write out the complete set of equations, 

separated by order, we shall work through them term by term, taking 
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advantage of simplifications as they arise. In the lowest order 

O(n o) h we ave 

with 
ah 

0 0 
as t = 

t 
on s = J 0 

{st 
0 

This implies aH /as = o everywhere and H 
0 0 

is an as yet undetermined function of t and z 

these results in the Q <n2) equation to obtain 

{ 

a
2

A 1 aA a
2

A } ___ o+ __ o ____ o 

.2 t ..!.. t2 
"I I° "I I 'I oz r oz ot 

with 
t on s 

(4.55) 

A (zt,tt) where A 
0 

t 
t . Substitute 

(4.56) 

Tne inhomogeneous term is independent of s. Integrate once and 

apply the boundary conditions. This and another integration yield 

(4.57) 

0 
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and (4.58) 

In the original variables, (4.57) becomes 

a2H 1 aH 
0 0 

-2-+----
dZ r dZ 

( 4. 59) 

This is the new nonuniform transmission line equation, 

rather similar in form to the distributed circuit nonuniform line 

equation also obtained in the Cartesian expansion, and identical 

when applied to a uniform wedge although the content is different. 

The first term solution given by (4.59) yields the exact fields 

everywhere in a uniform finite angle wedge, while the Cartesian 

expansion has to generate an infinite series of terms to get this 

result everywhere in the wedge, and this series converges off-axis 

only in a wedge of 45 ° half angle. On axis the series has only one 

term, identical to the solution of (4.59) evaluated on axis . 

The first correction term in the earlier formulation for 

a general profile contains field warping terms as well as a new 

propagation correction which has the original plane wave fronts. 

Equation (4.58) shows the new nonuniform line equation in warped 

coordinates leaves a first correction term with the same transverse 

field distribution as the basic solution, so that the des cription 

of wave fronts on coordinate arcs is good through 
2 

O(n ) • Thus 

suitably modified distributed circuit current and voltage inter-

pretations can be extended to this order . · 
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A curious feature worth noting is that the new nonuniform 

line equation shows that the par t of the taper profile at z = z 
1 0 

determines the local propagation behaviour at on axis. If 

the coefficient -1 
r had been expanded strictly in powers of n' 

then the exact solution for the uniform wedge would not have been 

reproduced by the lowest term, though the phase fronts would have 

remained correct to the same order. In this light we must regard 

the on-axis success for the uniform wedge obtained from the standard 

nonuniform line equation or Cartesian expansion as somewhat fortuitous, 

the result of the wrong quantity being evaluated at the wrong .place, 

so that the errors cancel exactly for a uniform wedge only. 

We now return to the perturbation series. In physical 

variables the fourth order equation is 

F } 'dA F 

+ 2rb 2 'dz 

0 

+ b 2 

{
a2:2 + :. 3H2 -

'dz r 'dz 
(4.60) 

Integrate once and apply the boundary condition to find 

'd
2
H 1 ClH __ 2+ __ 2_ 

'dz
2 

r 'dz 3 

(4 . 61) 



-66-

One more integration yields 

We see that the second order _term satisfied the same improved non-

uniform line equation, now with source terms depending on the line 

profile and lowest order solution. The expression for H
4 

itself 

contains field distortion terms and a new propagating component 

The new nonuniform line equation (4.59) has much the same 

form as the well-known less accurate circuit or planar section version 

(3.28). This means that analysis and synthesis techniques developed 

in recent years will still be applicable in so far as they do not 

depend critically on treating the coefficient of the first order 

derivative as a logarithmic derivative. We shall regard this type 

of calculation as largely _outside the scope of the present investi-

gation . 

When the circuit equation is used for computations i~ can 

be regarded as describing a nonuniform line other than the one in-

tended. We have aiready seen that the coefficients differ in second 

order of the taper scale parameter. The exponential line with 

a ~ exp(z/m~ ) gives a constant coefficient in the circuit level 
0 

equation and is thus a popular example . We now find the family of 

line profiles which has this same equation in the circular section 

approximation. 
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1 ----------------

01..----------------------------P-
0 

Figure 4 .7 Line Profiles for r = Q, 
0 

1 

constant with n as parameter 
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r = mi 
0 

(4.63) 

The solution of this differential equation is given by (4.64) in 

which the constant of integration has been chosen so that the 

profiles for any n > 0 all pass through z = 0 , a = 1 

n
2a2 2m - 1 m l 

1 - -- - 1 + R.n - - cash _\r (4 . 64) 
2 n 

m na 

This equation may be expanded for small n to show the second 

order deviations clearly 

~ o • m l tn a + n 2 2: ~ i (4 . 65) 

Figure 4. 7 shows a normalized plot of the line profiles in the 

range 0 ~ z/.Q, ~ 1 
0 

for several values of n 

convenience and with m = 1. 

with a = l/e 
0 

for 

Now consider an irregular outline of the kind illustrated 

in Figure 4.4. The dominant field pattern over most - of the interior 

is described by the warped cylindrical coordinates based on the 

smoothed boundary curve s = re. 
c 

Let the irregular real boundary · 

be s = s
1

(z) . Figure 4.6 shows that the tangent vector to the 

real boundary is parallel to the vector T 

T = lg ~ [ z] + tan 1jJ ~[ s ] (4.66) 
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where 1/i is the angle measured from the covariant basis vector 

[ z] 
~ , normal to the arc, to T. The result gss = 1 is used in 

finding the lengths of the basis vectors. Ynen the boundary condi-

tion may be written 

T • E = 0 (4.67) 

From this, with E expressed in contravariant components, we find 

tan 1/i aH 
~~~~~~~__:f_ (4.68) 

as vg + gSZ tan 1/J az 

Under scaling 1/J will be at most O(n) so that the boundary 

condition (4.68) is analogous to the inhomogeneous condition (3.12) 

in the Cartesian analysis. We find on expanding the denominator 

in (4.68) to terms in O(n2
) that 

aH tan 1/1 aH 
__:f_ = --2 
as s

2
F az 

1 -
s 

1/1 
2b 2 -

tan 
r 

(4.69) 

or more simply in 0 (1) 

aH au 
__:t_ = tan ''' __:t_ as 'I' az (4. 70) 

The perturbation analysis will not be repeated here in detail. The 

new two-dimensional nonuniform transmission line equation for the 
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basic solution becomes 

(4. 71) 
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V. TRANSMISSION LINES WITH CURVED CENTERLINES 

5.1 Line Profiles Defined on~ ~ormal Centerline 

The examples studied so far of nonuniform transmission lines 

have been such that the essential feature of one dimensional wave 

propagation could be interpreted as occurring along a straight center-

line axis. In this chapter we shall be concerned with the effects of 

gradual bends of the centerline, suitably defined, on wave propagation 

in our two dimensional tapered plate transmission line. Thus the 

theory will be extended to treat that important class of practical 

problems where the direction of the transmission line axis is changed 

deliberately. 

The procedure that will be adopted in this section is first 

to specify a centerline and then to define the profile of the trans-

mission line S):'IDIIletrically on the normals of this centerline . This 

gives the curved centerline version of the Cartesian definitions of 

Chapter III. 

Figure 5.1 shows a smooth open curve C , a transition curve 
n 

between straight line segments at either end. C is defined by its 
n 

parametric equations x = x
0

(s); z = z
0

(s) where s is the arc length 

measured along C . At each point of C the normal is constructed and 
n n 

the signed distance ~ measured along each normal can then be used 

to define a point in a Cs.~) coordinate system. The smooth curves 

Cn and c2 defined . by~=± a
0
a(s/i

0
) respectively, are used to define 
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Fi gure 5.1 Transmission Line Profile with Normal Center Line 
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the upper and lower boundaries of the curved nonuniform transmission 

line profile. It is assumed that the successive normals to the 

normal centerline C do not intersect within the area containing C , 
n n 

enclosed by c
1 

and c2 . Then a (s,s) description of the transmission 

line profile and interior is locally unique. 

The slope tan 1jJ of the tangent to the centerline at l,; 

is given by 

dx 
sin 1¥ Cs) 

= __ o 
ds 

ciz 
(5.1) 

cos '¥(s) = _Q 

ds 

and the Cartesian coordinates (x,z) of a point (s,s) are given by 

x = x0 (l,;) + s cos 1¥(l,;)\ 

z = z (l,;) - s sin 1¥(l,;) 
0 

(5.2) 

We can follow, with appropriate simplifications, the formal -

ism of Chapter IV. · In fact it is easily shoWn that the metric coeffi-

cient gss = 0 so the (l,;,s) coordinate system is orthogonal everywhere. 

We also find 

gss 1 (5.3) 

gss (1 - s\f'' Cz;))2 (5 .4) 

~ g2 = . c 1 - sl¥ ' c z;) ) (5. 5) 

The derivative '¥'(t;), the arc rate of turning of the tangent, 

is just the centerline curvature . We can then write the Maxwell 
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equation for the transverse magnetic field as 

1 L ~ cl-sll'') aHl + 1 L~ 1 aHl _ 11e: a
2
H = 0 

<1-slf ') a; I a ;~ {1-sll' ') ar,; I <1-slf') ar,; \ at2 · 

(5. 6) 

From the insert picture in Figure 5.1 we see that when 

l:" di!' 1 
"'o dl,; = (5.7) 

successive normals intersect. We have already assumed that s < s 
max o 

everywhere on and inside the line profile, so that the denominator 

terms in equation (5.6) can always be expanded in a convergent geo-

metric series. 

In general the line boundary c1 or c2 will intersect the 

lines of constants at some . angle e given by 

b' ( l;) tan e = ~~-'--.......... ..__~ (5. 8) 
c1- s1¥ '<z:)) 

where the factor in the denominator takes into account the relation 

between the coordinate differential ds and the corresponding arc 

length element. From equations 4.31 and 4.32 we find 

'dH ~ -= (5 . 9) 
a; dt 

'dH 'd E 

82" = -(1 - s'±' , Cr,;)> =.r.. 
'dt 

(5 .10) 

The des.ired boundary condition. as ever, for perfectly con-

ducting boundaries is that the .tangential component of electric field 
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vanish there. This becomes 

/ 

()H ±b I(/';) dH 

al= (1 - ~~ '(1';))2 di'; 
(5 .11) 

Now apply scaling procedures to equations (5.6) and (5.11) 

to obtain solutions for quasi-one dimensional propagation along the 

curved center line. As before, we introduce normalized variables 

by ~ = ~ta and ~ 
. 0 

~ti with the angle of the tangent written as 
0 

~ (1';/i ). Then we have, with n =a /i 
0 0 0 

with 

() H 
--= 

.J.. 

d~ I , 

± n2a'(l'; t ) 

(l - n~ t iµ I) 2 

() H 

(5.12) 

(5.13) 

The scali~g procedure can be thought of as either a shrink-

ing .of the transverse dimensions a on a given centerline or a 
0 

stretching of the centerline scale i . It can be seen from .these 
' 0 

equations (5.12) and (5.13) that odd powers of n will occur in the 

expansions of both differential equation and boundary conditions, so 

the appropriate perturbation expansion for H will contain a new 
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odd-power sequence of terms that did not appear in the straight 

centerline analysis. We shall not reproduce all the details but 

.simply give the equations for each order as it arises. 

H 

0 In the lowest order O(n ) 

with 

0 

(5.14) 

(5.15) 

t 
on t; = ± a (5 .16) 

This has the solution H = A (t; t ,tt) where the function A 
0 0 0 

has yet to be determined. The problem for the O(n) term H1 also has 

the form 

a2H 
1 

0 = 2 
ac;t 

(5.17) 

C1Hl 
0 

t = + a with 
ac; t 

on E; (5.18) 

. t t 
This also has a solution in the form H1 = Ai(s ,t ) another unknown 

function which has to be carried in the analysis until its governing 

equation is determined. 
. 2 

In the second order of n O(n ) we find that curvature terms , 

have vanishing coefficients 

(5. 19) 
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with 

. on l; t = + a (5.20) 

These last equations are still identical to those in the 

straight centerline analysis. We find then the standard nonuniform 

line equation. 

and 

a2
A o a' --+-
t2 a 

at; 

a' 
a 

0 (5.21) 

()Ho t t 
--:;:- + A

2 
( <';; , t ) 

(3£;1 
(5.22) 

The centerline curvature makes its first explicit appearance 

in the O(n3) system, that is not eliminated by lower order results. 

(5.23) 

with 

t on l; = + a (5.24) 

The operators L and M are written solely for brevity and are 

easily identified. The boundary condition and differential equation 

now for the first time introduce even sequence source and boundary 
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terms into the new odd sequence terms. Integrate (5.23) once and 

apply the boundary condition (5.24) to obtain 

-a LA 
1 

(5.25) 

Thus H
1 

satisfies exactly the same homogeneous equation as 

H
0

, and adds no new information, so we may take H1 = 0. Then after 

another integration we obtain 

(5. 26) 

The third order term consists of field distortion terms 

proportional to the centerline curvature and depending on the basic 

solution A
0

, and a new undetermined propagating. term A
3

(1;;t,tt). We 

shall briefly look at the fourth and fifth order problems in enough 

detail to fix the undetermined propagators in second and third order. 

The fourth order problem is 

a2H .aH3 _ 
{LH2 t '2 OH2 } 4 --= 1.Ji' ~1.Ji -..t.2 a~t a~t di; I 

with (5. 27) 

dH
4 H2 2 

dH 
--= a' t+ 3a a' 

__ o 

a~t 
..t. 

a~ d S I 
on ~t =±a (5.28) 

By the familiar process we find 
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{
a2Ao + f3a I + ~) 

t 2 \a ~' 
az;; 

(3A l 
az;; ~ r 

(5.29) 

which is again an inhomogeneous nonuniform line equation, which now 

contains source terms depending on the centerline curvature as well 

as the familiar nonuniformity sources. Note that the curvature source 

terms in (5.29) are independent of the sign of the curvature. Physi-

cally, a bend in one direction should produce the same reflections as 

the same bend in the opposite · sense. 

From the s -synunetry of the fifth order equations it is 

quickly seen that A3 also satisfies a homogeneous nonuniform line 

equation, and may be taken as zero, leaving just the first two terms 

of equation (5.26). The synunetry argument can be extended easily to 

show that the new propagating terms vanish in all odd sequence terms, 

leaving only local field distortion terms. 

We can give a qualitative summary of the effects of center-

line curvature as follows, remembering that (l;;,s) are no longer just 

simpl e Cartesian coordinates, but a more general orthogonal system 

that follows the center line curve. The basic zero order solution 

still satisfies the formal homogeneous nonuniform line equation, 

wi th no explicit appearance of center line curvature. The second 

order term looks the same formally as the straight line version; but 
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now the inhomogeneous line equation governing the new propagating 

term contains source terms with explicit dependence on centerline 

· curvature. Higher order even terms will contain field distortion 

and propagation terms that both explicitly depend on curvature. In 

addition a new odd sequence of terms appears, containing only local 

field distortions depending on curvature and which do not introduce 

any new propagating terms which could be distinguished from outside 

the curved section. Furthermore the first odd term vanishes altogether. 

A special case of some interest is the curved uniform line. 

Then we have the simplified results, with the uniform line operator. 

and 

H = 
3 

2 12 
a JjJ 

3 

{ 2 t -s t3} {d2Ho L dHo t 
a~ 3 .2 + 2 tl 

di;; T di;; } 

(S.30) 

(5.31) 

where H is the solution of the ordinary wave equation and as before 
0 

H
1 

= 0. Hence reflections seen outside a curved uniform section are 

of second order in the length scale parameter n. Even for a uniform 

circular centerline the reflected second order wave does not vanish. 

Consider for example, a curved transition section which 

blends in gradually with uniform straight lines at either end ·such 

that l/J' I is continuous. An example of such a centerline curvature 

function t liT - 1;;t2 
would be l/J' (/;; ) =2 e which turns the centerline 

through a right angle. A circular section butted to the straight 
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sections would not be acceptable since the discontinuity in radius 

of curvature at the junction would give a a-function in the source 

. term coefficients. This is outside the gradual taper scheme of 

things and would have to be treated by a local expansion. Let 

the zero order solution be a wave propagating in the +s direction 

with arbitrary waveform A (t t - st). Introduce the Laplace transform 
0 

<X> 

I 
0-

Then the transform of equation (5.30) can be written 

1 2 
= - a s 

3 
- a 
A 

0 as-r 

(5.32) 

(5.33) 

Assume that 1jJ' = 0 as s = 0 and t .hat 1jJ' 'exist.s. Then the solution of 

equation (5.33) at s = 0 may be written as 

<X> - t ' 1 2 -
f 

a }C1JJ' (x)) 2 e-sxfdx A2 Cs , s) .,.. 6 a A 
ax 0 

0-
<X> 

1 2 -
f (ljJ I (X)) 2 -2sx dx - - a sA e 

6 0 

0 

<X> 

1 2 - I {L . iµ(~)} 2 -sx 
dx (5. 34) = ·- - a sA e 3 0 dx 2 

0 

The integral in (5.34) has been massaged into the form of a 

Laplace transform, so that the inverse transform of A
2 

may be immedi-

ately written as a convolution integral. We can take this calculation 

as a model of a time domain reflectometer (TDR) connected to the line 
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at negative s with monitoring point at s = 0. Then we can idealize 

A as a perfectly sharp unit step in the calculation leading to 
0 

(5.34) without any distress and find 

1 2 {d . x }
2 

- - a ~ • ~(-) 3 dx · 2 (5.35) 

x 

The effect of curvature of a uniform line defined in this 

way is always to produce a dip in the reflectometer trace whose 

amplitude is proportional to the square of the curvature at a round 

. 1 . t d h l' trip trave time t own t e ine. 

5.2 Alternat ive Centerline Definitions 

The line profiles considered in Section 5.1 are defined in 

terms of a centerline which is specified from the start. In the 

analysis of arbitrary curved line profiles, be it a physical line or 

a table of values in a computer memory, only the boundaries are 

known and the centerline must be calculated from these before the 

analysis already developed can be applied. The normal centerline 

shown in figure 5.4 has the property that the line profiles are sym-

metrically disposed along its normals. Hence the elementary increases 

in length at each ·end between neighboring normal sections, must be 

equal. This condition may be expressed as 

(5.36) 

where ds
1 

and ds2 are increments of the profile arc lengths s
1 

and 

s 2 and t
1 

and t 2 are the respective tangent vectors. This equation 
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(5.36) can be regarded as a differential equation for s1 Cs2) or 

s2 Cs1). If there is somewhere where the normal section is known, 

such as in a straight section, then this provides an initial con­

dition for the integration of the different~al equation (5.36). 

From equation (5.8) it is evident that, in general, the boundary 

curves do not make equal angles with a normal section. 

We might also adopt another point of view, more akin to 

that of Chapter III and look for cross sections that l ocally look 

like short segments of symmetrical wedge . For this we need cross 

section lines that make equal angles at each end with the boundary 

curves. Then an arc can be drawn normal to the boundary at each 

end, with its center on the normal bisector of the equiangular 

section . We then define the ends of this section by 

0 (5 . 37) 

This relation can be used by taking a point x
1 

Cs1) and 

solving the algebraic equ~tion (5.37) for s 2 . 

Then we define the locus of the center points of this family 

of arcs as the. equiangular arc centerline . The centerline. thus defined 

is in general not coincident with the normal centerline already used . 

For straight centerlines or uniform curved lines, where the arcs 

are straight lines, the normal and equiangular centerlines are identi­

cal. The arc length s is measured along this line . When the center­

line is straight this reduces to the warped cylindrical coordinates 

introduced in Chapter IV. 
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The geometry of the equiangular arc centerline and the 

coordinate system based on it, are studied in Appendix B. The local 

wedge axis is not tangent . to t he centerline and it is shown there 

that the deviation angle is O(n
2

) in the taper scale parameter. 

5.3 Field Solutions in the Eq u i angul ar Centerline Description 

The general discussion of the two dimensional electromagnetic 

field problem in Section 4. 4 is entirely adequate to handle the 

curved transmission line problem, when it is expressed, as shown in 

detail in Appendix B, in terms of warped cylindrical coordinates based 

on the curved equiangular centerline. In particular the differential 

equation (4.33) and boundary condition (4.35) are still valid, of 

course with (s,a) written instead of the space variables (z,s). As 

is shown in Appendix B, equations (B-31) to (B""-34), curvature depen-

dent odd-sequence terms again make an appearance, with an effect 

analogous to that found in Section 5.1. 

As in Section 4. 5, we are more interested, because of the 

complex behavior of the coefficients under scaling, in obtaining 

solutions in physical variables for the particular profile being 

analyzed, using the scaling ideas only to establish the approximation 

sequence. So we expand 

H(s,a,t) 

where the term H is of order O(nn). The boundary condition 
n 

(5.38) 



-87-

ah aH 
n n 

---:i:" = -- 0 
aa 1 aa 

(n 0,1, ... ) (5. 39) 

is true for all orders and will not be repeated each time. The 

basic equation is 

which again implies 

The first order equation is 

H 
0 

0 

A (l;,t) 
0 

(5.40) 

(5. 41) 

(5. 42) 

so that by the arguments of section 5.1, H1 can be set to zero . 

The nonvanishing terms in the second order equation are 

(5. 43) 

The solution of this equation yields 

a
2
H 1 aH __ o_ + ___ o _ 

az.;2 
r az.; 

. (5.44) 

and 

(5 . 45) 

This last pair of results shows that the basic lowest approx-

imation satisfies an equation formally similar to the improved non-

uniform line equation, and that the first correction term is of second 

order in the nonuniformity parameter and still has the same wave-

fronts as the basic solution. These important properties carry over 
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unchanged from straight center line case. In the third order 

-a MA 
0 

where M is the operator defined by 

The first integration .yields with a 
0 

;:rn3 = .l (a 2 - a2) MA 
2 0 0 

(5.46) 

(5.47) 

= r H 

(5.48) 

The symmetry arguments again will apply to show that no new propaga-

ting term occurs. From the fourth order equation, the propagation 

equation that determines the second order correction can be found as 

l (;A 

-o~'\ aso (5.49) 

In the limit of a curved uniform line r -+ 00 , o, a'+ 0 this 

equation becomes identical with the limit of equation (5.29) in ortho-

gonal coordinates. The sources contributing new waves have been split 

up into straight line terms plus center line curvature terms. In 

the next section we shall apply (5.50) to analysis of the fields in 
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a uniformly curved wedge, a relatively simple but definitely non-

trivial example. 

5.4 The Uniformly Curved Wedge 

We define a uniformly curved wedge in terms of the equiangu-

lar arc center line analysis. If we have a line profile such that, 

when the analysis from equation (5. 37) is made, 8 = 8 = constant 
0 

and the local centerline axis rotates uniformly in space with change 

of arc centerline coordinate s, ~ ' = constant = l/R , then we des­
o 

cribe this profile as a uniformly curved wedge. Since the local 

centerline axis is not tangent to the arc centerline, it follows that 

t he arc centerline is not necessarily a circle, though it will be 

close for small n• We take the origin of s to be the point where 

r = 0 and confine attention to some region starting at r = r > O. 
0 

to avoid Hankel function singularities. Since 

(B.14) as 

tan cS 

which gives cS = 

tan 
8 

--2. 
2 

r 8 
2 

--
0 {l + 0 (cS 2)} 

2R 
0 

d8 = 0 we can write 

(5.50) 

(5 . 51) 

which follows from the geometry of the figure. Hence the final group 

of terms in (5.50) vanishes to a higher order than any of the indivi-

dual terms, and so may be omitted entirely. The first group of terms 

vanishes for a. uniform wedge so we are left with 
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2 e 
0 

3R 2 
0 

where t he solution f or the lowest or der 

s i ngle outward propaga ting wave of form 

harmonic time dep endence. 

2 
• I:; (5.52) 

t er m A can be taken a s a 
0 

H(l)(kl:;) when we assume 
0 

The homogeneous solution of (5.52) adds nothing new. It may 

be verified that the particular integral of (5.52) is given by 

(5.53) 

Since (5.52) is a linear second order equation, the particular 

solution ma y be obtained in a systematic fashion by the method of 

variation of parameters, or alternatively by the traditional guess and 

check me thod. The solution (5.53) was, in fact, obtained in part by 

trial and the more stubborn remainder by variation of parameters. 

Integrals of the form 

I . J 

z 

x3 c2 
(x) dx 

0 
(5.54) 

where C is a zero order cylinder function, were evaluated by 
0 

Schafheitlin's reduction .formula as quoted by Watson (1958). 

Thus the second order correction term to the basic solution, 

showing the effects of axis curvature, is given by (5.53). As expected 

it depends only on the magnitude and not the sign of the curvature. 

A more subtle and interesting feature is that the Hankel functions in 

(5.54) are all of the first kind, representing outward propagation only, 
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there being no reflected waves in the second order correction. Since 

the third order correction introduces field distortion terms only, 

the reflected wave in this profile geometry can be at most of fourth 

order magnitude O(n4) in the taper and curvature scale parameter n. 



-92-

VI. THE NONUNIFORi.'1 COAXIAL LINE 

6.1 Introduction 

In previous chapters we have analyzed two dimensional 

nonuniform transmission lines. The two dimensional treatment has 

had the advantage of allowing the essential features of the coordi­

nate systems and perturbation expansions to be exhibited with a 

minimum of distracting complications. Of course a price has been 

paid in the sense that strictly two dimensional probl~ms _ rarely if 

ever occur in this three dimensional world,. although it has been 

found from experience that a statement of two-dimensional results 

per unit width gives a good description of finite width lines, pro­

vided the spacing is much less than the width. 

In this chapter we shall extend our methods to three­

dimensional problems. A possible class of problems would be the 

practical completion of the two-dimensional.theory to describe 

finite width strip lines, by including an estimate of edge effects. 

Even for uniform strip lines however, calculation of fringing fields 

requires considerable theoretical elaboration. Instead we shall 

make a natural extension of the techniques developed in previous 

chapters, to treat the coaxial line, an example of great technical 

importance. This treatment will be more realistic than the two­

dimensional analysis in the sense that convenient laboratory reali­

zations of coaxial lines require very little idealization to obtain 

a soluble theoretical model. The coaxial line also has the property, 

absent in two dimensions, that a grossly nonuniform line on a straight 
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x 

Fi gure 6.1 Nonuniform Coaxial Line with Planar Cross-sections 
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centerline can have constant impedance in the distributed circuit 

analysis . 

6.2 Planar Section Approximations 

The coaxial nonuniform line to be analyzed is shown in 

Figure 6 . 1. Define cylindrical coordinates (p,¢,z) with the 

z-axis along the common axis of the inner and outer conductors. 

We assume that all excitations and fields are ¢-independent, and 

so the only nonzero field components are Ep(p,z), 

H¢(p,z) . Maxwell' s equations may be written 

E (p , z ) 
z . 

and 

a ("' A ) E:~ eE +eE 
ot p p . z z 

(6 .1) 

(6. 2) 

Let the inner and outer boundaries of the line be given by 

respectively 

p a(z/i ) 
0 

b (z/i ) 
0 

(6 . 3) 

where a 
0 

is a typical cross-section radius, and i 
. 0 

the length 

scale of the nonuniform section, giving the familiar dimensionless 

taper parameter n = a /i . 
0 0 

In terms of normalized variables 

t ;-:-:-::-- . 
and t = t/vµE: i , Maxwell's equations and 

0 . 

the boundary condition of zero tangential electric field can be 
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written as 

(6. 4) 

with 

on 

(6.5) 

The electric field components can both be calculated 

from the single transverse magnetic field component H¢ by means 

of equation (6.1). The differential equation (6.4) and its bou?dary 

condition (6.5) contain even powers only of n, so that a perturbation 

expansion of H¢ in even powers of n is appropriate. 

(6. 6) 

t t t 2 t t t 
h

0
(p ,z ,t) + n h

2
(p ,z ,t) + ... 

We shall not write out the collection of equations that 

define the perturbation series, but shall just quote and solve them 

as necessary. Then in order unity, 

(6.7) 
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with on a orb 

One integration yields 

and a second integration 

h = .!___ A (z t t t) 
0 t 0 , 

p 

where t t 
A (z ,t ) 

0 
is an as yet arbitrary function of 

The equation for h 2 becomes 

with 

(6. 8) 

(6.9) 

(6.10) 

t 
z and 

(6 .11) 

(6.12) 

We find after one integration of (6.11) and application of the 

boundary conditions (6.12) that 
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l
b I t I 

- £n Q_ - ~£ 
t b a a 

£n b - £n a 

ClA 
0 

£n b - £n a 

Cl A 
0 

dZ t 
(6.13) 

(6 .14) 

The equation (6.14) that determines the lowest order approximation 

to the transverse magnetic field may be compared to the distributed 

circuit equation for the current. The capacitance per unit length 

of an elementary plane transverse section of the coaxial line is 

given by 

2 TIE: 
C(z) = ---­

b1 (z) 
£.n --­

a1 (z) 

(6 .15) 

so that the coefficient of ClI/oz in the circuit equation is given 

by 

b' 
1 

a' 
1 

1 dy bl al 
--= 

b1 (z) (6 .16) Y dz 
£n 

a1 (z) 

and is identical to the coefficient of ClA /Clz in (6.14) after 
0 

physical variables have been restored. 
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If the ratio of inner and outer conductor radii at any given 

cross-section remains constant, then the coefficient (6.16) vanishes 

and the line equation reduces to a simple wave equation . . This is the 

well known constant impedance coaxial line transition, which is re-

flectionless in the distributed circuit theory. In general, the 

perturbation expansion will correct this with higher order terms 

that will show field distortions and new propagating waves, forward 

and reflected. 

Equation (6.13) may be integrated again to give 

b' a' a' b' 
- 8A p .R.n b .R.n a ClA 

(
.R.n p _ l)b a __ o + _a ____ b ____ o + .l A

2
(zt,tt) 

2 £n £. a z t 2 .R.n £. a z p 
a a 

(6.17) 

The complexity of the equations in higher order approxi-

mations escalates even more rapidly than it does in the tapered 

plate line calculations. The now familiar process may be used to 

find the equation satisfied by the first new propagating wave 

correction This equation is given in its full glory in 

Appendix A(A.4). We shall concentrate in the main text on the 

nominal constant impedance line since the results are easier to 

interpret, and because it provides a go od bench mark for evaluating 

the effects of higher order corrections. It also represents an 

important practical application in its own right. The equation 

for h2 in the· constant impedance line simplifies to 
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t 
p a' aAo l t t 
- - -- +--::;:-A (z , t ) 
2 '\ t I 2 a oz p 

(6.18) 

' 2 2 ( { l 2 t d 2a 1 d d a 1 dA 
a (z ) ~- + - - _ - ___ o 

t 2 t t2 ( .I. 

dZ a dZ dt ) a az 1 

(6.19) 

where b/a = d > 1 is the constant ratio of outer to inner radius. 

Since A is a solution of the homogeneous wave equation, (6.19) 
0 

can be reduced to 

a2
A 

__ o_+ 
J. 2 

dZ 1 

(6.20) 

An even .simpler case occurs when the line boundaries are 

concentric cones. Then a"= b" = 0 and equation (6.20) is homo-

geneous, so its solution may be taken as zero. Then 

(6. 21) 

This problem in fact has an exact solution for the principal mode 

in normalized coordinates 

H (6.22) 
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whe r e r and z are measured from the same origin. If we expand 

rt in terms of zt and pt and t hen expand the function A in 
0 

the Taylor series, we recover the first two terms of the perturbation 

expansion. The behaviour of the perturbation series here is similar 

to that in the uniform wedge analysis, comprising a propagating 

term in lowest order, with field distortions based on this alone 

in higher orders . . The lowest order solution · predicts fields on the 

normal planes z = constant as wave fronts. The exact solution for 

a uniform conical line shows that the wavefronts are spherical 

annuli, which coincide nowhere in the propagation region with the 

approximate predictions. This situation is analogous to that found 

for the uniform wedge, except that there the lowest order approximate 

solution was exact along the center plane. In later sections we 

s hall remedy this situation by an extension of the nonorthogonal 

coordinate expansions and curved center line descriptions developed 

in earlier chap.ters. 

6.3 Waveform Aberrations from Constant Impedance Transitions 

An important application of nonuniform coaxial line sections 

is to provide transitions between uniform coaxial lines of the same 

characteristic impedance but different dimensions, while introducing 

a minimum of undesired reflections and transmission aberrations. 

The perturbation theory developed in the previous section for smooth 

transitions shows that if b/a is constant, the first visible effects 

of the nonuniformi ty appear in the second order equations as inhomo-

geneous terms. We now proceed to calculate by Laplace transform 

methods, from equation (6.19), the waveform aberrations that would 
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be obs e rved with TDR equipment. Rewrite equation (6.19) in physical 

variables 

{ a
2 

a
2 

} ~ 2 
- - µe: - n A Cz, t)\ = -
az2 at2 2 I 

( o2A 
)2a a" --0 +(Ca a")' 
( 1 1 az2 1 1 

(6.23) 

where a
1 

is the inner boundary (as a function of z). Let the 

lowest order solution be a waveform A Ct - /il£ z) traveling in 
0 

the positive z direction, for instance the fast step output from 

the pulse generator in a TDR system. Define the Laplace transform as 

00 

A2 Cz,s) J A2 Cz, t) 
-st 'dt C6.24) e 

0-

Then we can write 

00 

A Cz,s) A -liIB ZS 

J A 
-st dt C6.25) e = e 

0 0 0 

0 

where A is the t~ansform of the incident signal as viewed at the 
0 

origin of z, which is the start of the transition section as shown 

in Figure 6.2. It will be necessary to assume that the first and 

second derivatives of a1 Cz) vanish at the end points z = 0, 

z = i . This will give a smooth enough joint to the nonuniform 
0 

section for present purposes. The transform version of equation C6.28) 

is 
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i - 1 
4 .R.n d 

r-7" . -/ilE ZS A­
V' l.lt.: s e 

x ~ 2 /ilE s a a" - (a a" -
( 1 1 1 1 

0 

a'a")/ 
1 1 \ 

(6.26) 

T'ne solution of thi.s ordinary differential equation may be 

found by means of the Green's function G(z,z') which satisfies 

the equation 

(d
2 2) dz2 - µ£ s G(z,z') o(z - z') 

and is given by . 

G(z,z') 1 
= - ---

2/µSs 

-lilE s I z - z • I e 

(6.27) 

(6.28) 

We shall evaluate the solution of (6.31) at the generator 

end of the transition z = 0 to find the reflected wave, and at 

the far end, z = .R. , to find the aberrations on the transmitted 
0 

wave. So we find at the far end 

(6.29) 
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wh ere t h e integrand is a function of z'. All terms but one drop out 

af t er integration because of t h e assume d smoothness at z = 9, 
o' 

l eaving 

(6.30) 

0 

Since the definite integral in (6.35) is just a constant 

once the taper profile is specified, the new transmitted waveform 

is proportional to the derivative of the incident waveform. In order 

t hen to have the correction remain small in comparison with the 

l owest order term, the rise time of the incident waveform mus t be 

r estricted to a slow enough value. An ideal step transition of 

the incident waveform would lead to a o-function in the transmitted 

correction term. So we choose the incident waveform as a single 

time constant approximation to an ideal step function. 

A ( 0, t) 
0 

-t/T 
1 - e (6.31) 

with time constant T and rise time 2.2-r. Then the transmitted 

waveform aberration ·is given by 

/il€ a a 
. 0 0 

T • r 
0 

-( t-9, ;µ€) /T 
. 0 

e 
(6.32) 

where a(z) is t he normalized taper profile of the inner conductor. 

The quantity -r//µ£ is the distance A that a plane wave would 

travel in the medium filling the coaxial line in one time constant 

of the incident pulse front. In wide band pulse techniques using 
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coaxial lines, a /A << 1 is maintained to avoid higher mode 
0 

effects. The sign of the correction term (6.37) it such that is 

will always introduce a preshoot on the transmitted waveform as 

depicted in Figure 6.3. 

In calculating the reflected wave, a different grouping 

of terms is appropriate. At z = 0 we find 

00 

d
2 

- 1 J 1 = A
0 

2/il€ s a
1

a
1
" -

8 .Q..n d 
a a"' 

1 1 ~ 
-2/il€ ZS - a'a" + 2a'a " e dz 

1 1 1 1 

0 (6.33) 

The first three terms of the integrand may be grouped as 

d/dz{aa" e -z/il€ zs } and with the assumed boundary terms, this 

vanishes upon integration 

d
2 

- 1 
=+4ind A 

0 

0 

Integrate by parts, and make variable changes to obtain 

where x 

d
2 

- 1 
4 in d 

t 

2 9,, lil€ 
0 

2 
a 

0 
-s 
.Q,2 

0 

00 

A 
0 

f{~x a(I)} 2 
-st 

e dt 

0 

(6.34) 

(6.35) 

The inverse transform is easily read off as a convolution. 

It is not necessary here to restrict the rise time of the incident 
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wave and if A is a unit step function the reflected wave can 
0 

immediately be written down as 

(6.36) 

where t x 
2 v'µE.Q, 

0 

and a(z/.Q, ) is the normalized inner conductor profile . If we were 
0 

to calculate the ·reflected wave when the incident pulse has finite 

rise time, theconvolution process would smear out the details of 

(6.41) over a time interval ~ T, but no problems arise in the 

limit T -+ 0 as they do in the transmitted wave. The reflected 

waveform shows a point by point dependence on the taper profile, 

while the transmitted waveform distortion depends only on the mean 

square of the slope of the taper profile. 

An interesting diversion is furnished by the observation 

that, in the perturbation theory, second order variations of the 

taper profile will first appear in the second order results. Again 

we consider a nominally constant impedance coaxial transition 

b/a .= constant 

is altered to 

d, where the taper profile of the inner conductor 

2 
a+na. The formulation of the problem in the 

perturbation description remains exactly the same through the fourth 

order equations with the exception that the fourth order boundary 

condition on the inner conductor becomes 
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3h ah 
a' -2+ a.' o 

dZT dZt 
(6.37) 

and the equation defining the second order wave correction becomes 

' 

---
.i.2 

3A ~ a.' 3A 0 0 (aa'' '-a'a")-- + -- --
3z 1 

If we choose 

a.' = - !(d
2 

- l)a'a" 
2 

t t 
dZ _, ind dZ 

(6.38) 

(6.39) 

then the term responsible for the reflected wave is cancelled. This 

may be written after integration 

The boundary shift t a. (z ) 

(6.40) 

for no reflections vanishes 

when the line is uniform as would be expected. It is also seen 

that the aberrations on the transmitted waveform cannot be cancelled 

in this manner, and are not even affected in this order. Thus the 

absence of measured reflected waves does not guarantee perfect fidelity 

of the transmitted waveform to the same order. 
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6.4 Analysis in Axially Centered Warped Spherical Coordinates -

The problem of poor wavefront prediction in the tapered 

plate line analysis was large ly solved by introduction of the warped 

cylindrical coordinate system, which enabled finding of much improved 

field solutions for substantially the same effort applied to solving 

propagation equations. In Section 6.2 we have seen that the problem 

of poor field descriptions is even more acute in nonuniform coaxial 

line analysis, so we now develop a warped spherical coordinate 

description which merges into cylindrical coordinates for uniform 

coax in a fashion an?logous to the passage from warped cylindrical 

to Cartesian coordinates. 

The warped spherical coordinates will be based on the idea 

of rotating the two dimensional system about the center line axis as 

shown in Figure 6.4. The arc coordinate system (z,s) in a plane 

containing the axis is defined in terms of the outer conductor 

profile b(z
1

) after the fashion of Chapter IV, and then rotated 

about the center line to generate the azimuthal coordinate, ¢. We 

can then write the .Cartesian coordinates of an interior point in 

terms of its warped spherical coordinates 

r(l -
s 

. zl = z - cos-) 
r 

r sin 
s 

¢ (6. 41) xl - cos 
r 

r sin 
s 

¢ Y1 - sin 
r 

The metric now has the form 
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g .. gzz gzs 0 
l.J 

gzs 8ss 0 

0 0 g<P<P (6.42) 

where 
2 

sin 
2 s (6.43) g<P<P r 

r 

and the other components are identical to their two dimensional 

counterparts given by (4.20) to (4.22). The metric determinant 

is given in terms of the two dimensional version g2 by 

2( . 2 s) r sin r g2 

The transverse magnetic field H 
y 

is replaced by 

(6. 44) 

Hep and the 

symmetries are otherwise unchanged. Since the off diagonal <P 

terms in the metric (6.42) are zero, the contravariant and covariant 

components of H<P are parallel and are related by 

(6.45) 

With the assumed rotational symmetry, the first Maxwell equation 

becomes 

1 (6.46) 

Yg") 

and the derivation thereafter is similar to that in Section 4.4. We 
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obtain, in terms of familiar quantities, the propagation equation 

for the covariant component of transverse magnetic field 

~ J 
dS l r 

l ~} d { 
sin ; ;g;- az + ;-:- r 

-:s {-r-s-:-:-s-~-/£:-g2- :: 
2} 

r- "'2h· vg2 o ··ii, 

- µe: --- __i = 0 
r sin s <Jt2 

r 

(6.47) 

The boundary condition on the outer conductor, which is also the 

defining boundary for the arc system, is 

~= dS Q on = r 8 
b 

(6.48) 

The inner boundary has not yet been specified. The choice 

of inner conductor profile that most closely corresponds to the 

constant impedance line in planar transverse sections, is that which 

defines the same set of arcs as the outer boundary in their common 

interior region. Elementary sections of line on each spherical 

cross-section then belong to concentric cones. The inner boundary 

condition is then also 

on s = s a r 8 a 
(6. 49) 
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In any longitudinal axial section, the set of such inner 

boundaries comprises the orthogonal trajectories of the arc system 

and, in principle, could be used to define an orthogonal coordinate 

system. In reality, exact calculations have proved prohibitively 

complex, and the nonorthogonal coordinate systems are far more 

practical. 

The local geometry of the inner boundary when it is not 

orthogonal to an arc is shown in Figure 6.4. The contravariant 

basis vector e 
-(s] 

is a unit vector tangent to the arc. Let the 

inner boundary make an angle ~ with the normal to the arc which is 

parallel to the covariant basis vector e 
[ z] 

which has length 

/gss g¢¢/g3 = ·1/;g;_ which is the same as in the two-dimensional version 

of Chapter IV. The boundary condition that tangential electric field 

vanish on the inner conductor can then be expressed as 

or in terms of 

~= ta,.n~ 

dS lg-::-2 + g tan ~ 
ZS 

0 

on s = s a 

(6.50) 

(6. 51) 

When tan ~ = O, the boundary is locally coincident with an ortho-

gonal trajectory of the arc system, and the boundary condition re-

duces to the homogeneous form (6.50). 

The propagation equation (6.48) will now be solved by the 
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approxima te methods of Section 4.5 with similar interpretation of the 

scaling procedure . Some use ful coefficient expansions are given by 

(6.52) to (6.55) where b ~ b(z1) is the outer conductor profile . 

. s r sin -
r 

___ l_.-s- = sl {1 + 
~ r sin r 

gzz 
1 

{ -----= - 1 + 
~ r sin~ s . 

~ r sin~ 

+ .• ·} (6.52) 

2 2F s s --+--
6r2 2b 2 + .. ·} (6.53) 

7 
+ .. }(6.54) 

6 

s
2 

s
2

F } 
-3 + --2 + .. . (6.55) 
6r 3rb 

The expansions have the convergence properties discussed 

in Section 4.5. The. propagation equation, arranged by dominant 

orders of n, becomes 
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'5 ~{~~lJ+ I~ _ L as s as ) Gz 
s ~ {(7__ 

as 6 

. s 
2 

_ sF 
2

) ah cpl + ~ ~sahcjl}J 
r 2b as ) r a z l-as 

[ 

2 2 ' 2 2 

+~Si(-;- s ~Jahcp} + s ~{o<n 4) ah<P} + s ~{f~ + s F~~} 
az 11 

6r 2b /az as as as \6r 3rb y az 

+ s ~f( s: + s\\~} -µe: {s2 2 -s2:} a2~~J + o(n6) = O 
az l~r 3rb J as 6r 2b at . 

(6.56) . 

The angle ~ is of order at most O(n). This corresponds 

to a coaxial line with gross impedance variations along its length 

or else small scale variations about a smooth profile. The boundary 

condition (6.52) will then be homogeneous only in the lowest order. 

If is of order 
3 O(n ) , the boundary condition is also homo-

geneous in second order 
2 O(n ), which corresponds to a constant 

impedance nonuniform line. The fourth order boundary condition 

then contains the 0(1) solution, A , which appears as an extra 
0 

inhomogeneous term in the defining equation for A2 . Such an inner 

conductor profile can depart from a particular orthogonal trajectory 

of the arc system over t h e length of the taper, only by a spacing 

of order 
2 O(n ) . This is very reminiscent of the effects of second 

order profile deviations noted in the previous section. 

The lowest order problem in the perturbation sequence in 

order 0(1) is 
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This has solution 
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a ) 1 ah pol 
s as l; as ) = 0 

ah po -
as - 0 on S = Sa, Sb 

where A 
0 

(6.57) 

(6.58) 

is an undetermined 

function independent of s, which is to be found in solving the 

o(n2
) problem 

(6.59) 
as S as 

with 

ah<P2 = 
0 on s = Sb as 

tan ljJ ()hpo 
on s = s 

j1 ljJ _ s 2F~ az a s (6.60) tan 
r 2b 2 

where the denominator of the inner boundary condition has been ex-

panded to order 2 
O(n ) • For consistency of ordering, it is sufficient 

to ignore even . the O(n) denominator term, but the more accurate 

version (6.61) still contains only quantities that will be calculated 

anyway. Integrate (6.60) once and apply the boundary conditions to 

find 

- .Q.n s) 1 
a2A 

0 l 
]JE -

2
- r (6.61) 

at ) 
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and 

Cl
2

A tan 1jJ ClA Cl
2

A 
0 0 0 --- -- -µE --= 0 

Clz
2 Sb s _ s!Frz Clt

2 

1 
a 

tan 1jJ s .R.n-
a s r 2b

2 a 
. 1 

Equation (6.63) is the new improved model nonuniform transmission line 

equation for circular coaxial transmission line. It can be seen from 

the geometry of the line that, as n + 0 

b I a' 

.Um 
- tan ~ b a (6.63) 

5a~ -

. s
2F) b n-+0 s Sb . .Q.n -

a tan 1jJ - __!!___ .Q.n 
r 

2b
2 s a 

which implies that both the defining equation for 

a 

A 
0 

and the 

coordinate system reduce to the Cartesian versions. The condition 

that (6.62) reduces to a homogeneous simple wave equation is that 

1jJ = 0, independently of n. As already discussed 1jJ = O(n
3

) is 

a sufficient condition in the perturbation expansion for this to 

be true. In the special case of a uniform concentric conical line, 

1jJ = 0 everywhere and the solutions for the physical component of 

magnetic field are 

(6.62) 
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A (t ± /i£" z) 
0 

r sin e on z = r (6.64) 

which are identical with the exact solutions. The warped spherical 

coordinate analysis telescopes into one term an infinite number of 

terms of the planar section expansion, yielding the exact solution 

in this special case. 

Our foray into the next order of approximation, in the 

name of simplicity, will be limited to constant impedance lines with 

~ = 0. From equation (6.62) it is seen that in this special case, 

that h~2 = A
2
(z,t) only. This important result shows that for a 

constant impedance coaxial line, the second order correction has 

exactly the same wavefronts, spherical annuli r=consta?t, and 

transverse behaviour as the basic solution. Thus we can assign a 

transmission line interpretation with equal and opposite currents 

where the spherical sections intersect the conductors that is va lid 

through second order corrections in the taper scale parameter. In 

the tapered plate analysis, this was true for all smooth profiles, 

but in the three-dimensional example of the coaxial line it is true 

only for the class of constant impedance lines 
3 

- O(n ) • This 

restrictive result may be attributed to the loss of symmetry in an 

axial section even for a smooth gradual taper. Compare this with the 

irregular boundary analysis in two dimensions. In both this and the 

varying impedance coax line the local boundary does not fit exactly 

into the dominant behaviour. 

The fourth order equation now reduces to 
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s !___{.:_ ah¢4} = _f~2 - µe a2~2 ( _ ~la__q 1 
ass as 1az at ) 2 ~az~l J 

+ 2F J aAO + .::.__ a
2 
Ao} 

2 2 2 
rb az bl az 

(6.65) 

with ah¢4 = 0 on 

1: 
= s = r e 

as a a 

= Sb = r e (6. 66) 
b 

Integrate and apply the boundary conditions to obtain an equation 

for A 
z 

(6.67) 

This equation h.as the same form as equation (6 . 23) for the planar 

section approximation and the solution methods developed there can be 

applied here also. · Note that the term is still responsible 

for transmitted waveform distortions and in the limit n + 0 the 

coefficients of this term in (6.23) and (6.68) become identical. 

The coordinate system used in this section has been based 

on t he outer conductor profile, since the system, which has 

essentially interior definition, ·then has validity independent of 

t he inner conductor profile. In later sections we treat low 

impedance lines where inner and outer conductors are of almost equal 

significance. In the extreme of a high impedance line with a uniform 

cylinder for outer conductor, the transverse sections are planar 
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which expresses the field behaviour over most of the region and gives 

results identical to the original Cartesian expansions since then 

b' = 0, tan~= a' and r = oo, 

The principal result of this section can be summarized 

in the new nonuniform line equation 

8
2
A tan ~ (:)A (:)2A 

0 0 0 0 (6.68) --- --- µE --= 

dZ
2 

in 
Sb 

dZ at
2 

s a s a 

6.5 Low Impedance Coaxial Line in ~Warped Conical Description 

Coaxial lines of low impedance have inner and outer con-

ductor radii almost equal so that locally, from an azimuthal point 

of view, they look like strips of parallel plate line with spacing 

b - a, which may be paralleled to a total width equal to the mean 

circumference . . A low impedance coaxial line of variable mean 

radius and spacing is illustrated in Figure 6.5. It would seem 

from an intuitive look at the propagation behaviour in such a line, 

that it would be best described by a curved center line axis in the 

propagation region, in an axial longitudinal section, rather than 

by the relatively distant coaxial center line axis, and with the 

field pattern dominated by the neighboring walls rather than by 

some construction based on a distant axis. 

We have in fact met an analogous situation before. In 

Chapter II the constant impedance tapered plate line was treated 

with the restriction that the parallel undulations be only a small 

fraction of the plate spacing. This restriction was lifted in the 
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later chapter treating profiles with arbitrary curved center lines. 

The symmetrical tapered plate had a natural center line, a fact re-

fle eted in the correctness of the on-axis approximate solution, but 

in the extension to coaxial lines, it was an off axis section that 

was rotated to generate the coaxial line profile. We might expect 

then, that in low impedance coax lines, the off-axis asymmetrical 

behaviour of the generating section will be predominant. 

The geometry for describing coaxial lines will now be 

generated by rotation of the planar curved center line figure about 

some axis which does not intersect the line profile, say the z-axis. 

In this section we shall use planar normal center line description, 

so that each transverse coordinate surface is a normal slice of a 

cone with axis along the coaxial center line• These could be called 

warped conical coordinates by extension of our earlier terminology . 

The axial section coordinates Cs,s) are as defined in 

Section 5.1 and the azimuthal coordinate angle ¢ is generated by 

rotation about the z-axis as in Figure 6.6. Then we have now 

writing p
0 

for x
0 

z = z Cs) - s sin '¥cs) 
0 

x = CpoCs) +s cos '¥Cs)) cos ¢ C6.69) 

y = Cp 
0 

Cs) + s cos '¥Cs)) sin ¢ 

The diagonal metric of this orthogonal coordinate system is now 

given by -
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gz;;z;; (1 - E;, 'l' '(z;;))2 

gE;,E;, 1 

g<P<P = (po + E;, cos '¥ )2 = 

The quantity p = (p + E;, cos '¥) 
0 

2 
p 

k 
= pg 2 

2 

(6.70) 

( 6. 71) 

(6 .. 72) 

(6. 73) 

is simply the cylindrical 

radius of a point (z;;,E;,,¢) from the coax line axis . The conditions 

of Section 5.1 for good behaviour of the coordinates applies un-

changed, and there is the additional condition that the z-axis not 

intersect the profile. We can then use the general formalism leading 

to equation (6.48) to write the equations for the covariant component 

of magnetic field h<P, where the physical component Hep is given 

First consider the choice of normalization of the mean 

radius p
0

, to avoid repetition in writing out of long equations. 

We shall adopt so that for small n the line is 

of the kind discussed at the start of the section. The mean radius 

could be allowed to scale at some rate intermediate between a and 
0 

~ and still yield. the low impedance limit but the version stated 
0 

is the most convenient. We expect from this that the results will 

be good for a wide range of t With this choice of normalization p • 
0 

the governing equations can be written 
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()2h cos '¥ ~ 1/J' ~ ~ - n 2 - n 
at,;t xt + nst cos 1/J at,;t 1 - ns ti/J , at,;t 

0 

1 
2 a h n-. 2 

------ _...:r_ - n 
2 

sin '¥ oh¢ 

ac::t 

with 

t t t t 
(1 - ns 1/J ')(x + ns cos'¥) dl; 

0 

(6. 74) 

(6 ·. 7 5) 

The expansion of hep needs to contain both even and odd powers of n 

+ ... (6. 76) 

It is soon established by reasoning similar to that of Section 4.1 

that h
0 

and h
1 

A (/';t tt) and 0 , 

blem is 

are given by as yet undetermined functions 

Al.(rt,tt) . 1 Th d d ~ respective y. e secon or er pro-

(6. 77) 
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with 

± a I on t,:t (6. 78) 

From these we find 

(6.79) 

and 

(6.80) 

It can further be shown that A
1 

satisfies this same homogeneous 

equation and so adds nothing new and may be taken as zero, and that 

higher order odd sequence terms contribute only local field dis-

tortions on lower order even sequence solutions and so remain 

invisible from outside the nonuniform section. It can also be shown 

that A2 satisfies an inhomogeneous version of the nonuniform line 

equation (6.82). Detailed statements of these results will be held 

over to Appendix A.· 

A physical interpretation of the new nonuniform line 

equation (6.80) is not difficult to find provided we recall that 

sin ~ = dp /d~. Since the mean circumference is proportional to 
0 

p
0

, this term measures the logarithmic rate of change of cir-

cumference. In view of our picture of a low impedance line as a 

tapered plate line section curled up transversely to a total width 
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2np we can interpret the condition for a perfectly transparent 
0 

nonuniform line 

a' 
(6. 81) 

a 

as signifying that the increase in impedance due to increased spacing 

is offset by extra effective width due to increase in mean radius. 

Heuristic reasoning like this is frequently applied to variable width 

strip lines neglecting edge effects, but in this version edge effects 

take care of themselves . 

Another special case where comparisons are easily made is 

when a is constant and ~ TI/2, a radial transmission line between 

parallel plates. The exact equation may be written for this symmetry 

a 1 a · a2 
(pH) 

.-
2 

(pH) - - -(pH) - µe: - = 0 
ap p ap at 

2 
(6.82) 

In this case s + p and sin ~ + 1 leading to an identical equation, 

when it is recalled that A is a covariant component, 
0 

The 

new nonuniform line thus gives an exact description of the radial 

transmission line between parallel plates. It also gives a dis-

tributed circuit level description even when the local propagation 

axis bends back over. 

From equation (A.5) for the second order correction term 

we see that the equation has the same general form as equation (6.23) 

and the solution method of Section 6. 3 is directly applicable. No 

qualitatively new results are obtained so we shall not give al~ the 
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details here. We remark that the coefficient of the derivative-in 

transmitted correction is proportional to 

2 
+a' ) dz (6.83) 

This expression vanishes only for a uniform line, in agreement with 

our previous conclusion. 

6.6 Low Impedance Coaxial ·Line in~ Warped Toroidal Description 

The normal center line description of a curved axis problem 

is known from earlier chapters to have the difficulty that if .only 

the boundaries are given, that in general a differential equation 

must be solved to find the center line, though for gradual changes 

of spacing, the position differs only in second order from the 

equiangular arc center line of Section 5.2. It is also known that 

the predicted plane wavefronts are much inferior to the warped 

cylindrical version as a prediction of the true fields even in the 

lowest order approximation. 

In the previous section the normal center line description 

has been extended to coaxial geometries giving conical transverse 

coordinate surfaces. The cylindrical description can be extended 

in the same fashion to give transverse coordinate surfaces that are 

sections around the major circumference of some toroid. This is a 

warped toroidal coordinate description in terminology consistent 

with our earlier usage. The system will in general be nonorthogonal. 

We refer to the two dimensional calculations given in 
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Figure 6.6 Warped Toroidal Coordinates for Low Impedance 

Coaxial Line 
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Appendix B. The rotation process, under the same conditions as in 

t he last chapter, introduces a new diagonal term g~~ 

with no cross terms (6.42). Then 

Write 

. s sin -
2r 

A 1 + 2r . s 
= - sin - cos 

p 2r 
0 

= 1 + O(n) 

(~r + 1/J) 

into the metric 

(6.84) 

(6.85) 

(6. 86) 

with measured on the ~ 
0 

scale as discussed in the previous 

discussion. The full equations for propagation can then be written 

with 

~= 
dd 0 on a= ·± r 0 (I:;) 

0 

(6.87) 

(6.88) 
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We shall only briefly summarize the results of applying t he 

perturbation procedure to t h es e equations. Expand in a full sequence 

miss i ng only an O(n) term 

Then we find 

hep 

h = A (l;;, t) 
0 0 

(6.89) 

(6 . 90) 

(6 . 91) 

where A is defined by the homogeneous nonuniform line equation 
0 

(6.92) 

and the second order correction h2 has the same wave fronts 

l;; = constant and is defined by an inhomogeneous version of equation 

(6.93). The simple wavefront prediction is now good through second 

order whether the line is constant impedance or not , We recall that 

in t he spherical version based on t he coaxial center line, this is 

valid in second order only for a constant impedance line. 

A special case of interest occurs when ~ = ~/2 and the 

boundary angle is ·constant. Then r = p = l;; and 
0 
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(6.93) 

which has solutions 

A = pH 
0 0 

f (l; ± µc:t) (6. 94) 

This is identical to the exact solution for a biconical transmission 

line. 
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VII. CONCLUSIONS 

The classical distributed circuit analysis of nonuniform 

transmission lines is an ad hoc approximation. We have developed 

a perturbation expansion of the exact propagation equations and 

boundary conditions in a small dimensionless parameter n, which 

measures the length scale of a gradual taper . This yields equa­

tions essentially equivalent to the circuit equations in the lowest 

approximation and can be continued to provide systematic corrections. 

The physical nature of the approximation sequence is that it empha­

sizes quasistatic behaviour in transverse sections while preserving 

a one dimensional propagation description along the axis. This has 

been done in detail for the special geometries, which have great 

practical importance, of tapered plate lines and nonuniform coaxial 

line. The higher order terms are used to calculate aberrations on 

an incident waveform, beyond those calculated from the circuit equa­

tions. These are especially significant when the nonuniform line 

section is perfectly transparent in the distributed circuit theory . 

It is shown that the generalized telegraphist's equation 

analysis of Schelkunoff and others, which has been suggested as the 

way to improve the.circuit equations, is qualitatively unsuited for 

fin.ding better approximations or for aiding physical interpretation 

in this class of problem, though it is the natural method for solv­

ing multimode waveguide problems. The different methods solve 

different problems with only a small region of overlap . . 

We then develop nonorthogonal coordinate techniques which 

lead to very much improved field descriptions .:i:P. the nonuniform re-
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gion, so that just the first term is exact ~or uniform finite angle 

profiles. The first propagating correction is also found to be the 

same basic wave species as the lowest order solution in this de­

scription. The analysis also leads to improved versions of the basic 

one-dimensional circuit type nonuniform line equations, which reduce 

to the well-known equations for very gradual transitions. The 

classical equation for the tapered wedge, for no apparent deep 

reason, gives the correct coefficient for a uniform wedge, but in 

the wrong coordinate system. With the improved understanding of the 

field solutions we can better attack problems such as making a 

clean, short circuit of well defined position in a nonuniform line. 

The expansion techniques are also extended to tapered 

wedge lines with curved center lines and these results are later 

applied to generate conical and toroidal transverse field de­

scriptions for low impedance coaxial lines where field behaviour 

is locally dominated by the closely spaced conductors. It . is also 

seen that this analysis can be applied to stripline of variable 

height and width, provided edge effects can be neglected. 

There are a number of ways open for extension of this work. 

Adequate smoothness has been assumed for line profiles and if this 

is not so, quasistatic boundary layer type calculations are required 

with matching to the wave solutions. We have also treated only 

cases where the basic field symmetry is maintained and so have not, 

for instance, treated transitions between coaxial lines of various 

cross-sectional shapes, where even more mode warping occurs. We 

can also anticipate the general nature of results for three dimen­

sional curved lines such as flexible coax. In a more subtle ~xten-
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sion, a class of nonuniform dielectric problems becomes amenable to 

approximate solution, when the dielectric constant varies only in 

directions normal to the transverse coordinate surfaces. The view 

from outside the nonuniform section will now be different depending 

on whether the dielectric distribution has been fitted to planar or 

to curved sections. 

Further application of the nonorthogonal coordinate 

techniques for quasi-one-dimensional problems is not restricted to 

electromagnetic fields but looks promising for such diverse pro­

blems as heat conduction or wide angle deflection of electron beams. 
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APPENDIX A 

Some Higher Order Perturbation Equations 

The details of some higher order perturbation results, referred 

to in the main text, are given here in more detail, with the notation 

being that for the appropriate section. 

In the planar section analysis of the two dimensional tapered 

plate line, we have, in normalized variables 

4 ( v ~ ~ t t t d2 d2 I dA 
H (x ,z ) = - ~ -- - -- ~ __ o 

4 24 t2 .1.2 a .., t 
dZ dt 1 oz 

(A.l) 

where the sixth order analysis shows that A4 is given by 

_ a
2 {L + 3a'. _a ___ a_} 

36 t2 a Cl t t2 
. dZ · z dt 

(A. 2) 

Equation (A.2) is an inhomogeneous nonuniform line equation. Also 
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6 
{ aA } _ ~ L2 ~'--o 

- 720 a azt 

6 { , aA1 1 2 x a l x 
- - L - -s- - LA 

24 ,a az t 2 2 

X 2 3a I d a I 0 t t 4 { ( J~ A)} - 144 L a L + 7 dZ t -;- dZ t + A3 (z .' t ) (A.3) 

where 

L::: 

In the planar section analysis of the general coaxial line, the 

first propagating correction A2 is given by 

= 

~ 
b' a' 

2 - - -_a_+ b a 

t 2 
b az ln -
a 

(A.4) 

{
a2 a2 } -----

t2 t 2 
dZ dt 

+2 {b 
1
binb - a' atna _ 1} ~l. 

b
2 

- a
2 az s f

.Q.' - ~' aA } b a __ o 

b t 
Q,n - dZ a . 

2(b'b - a'a) 

b2 - a2 } ~
·~, inb - 12.' tna aA ~\ _a_ a b __ o 

azt £n 12. dzt 
a 

The simplified version for a constant impedance line is given by (6.19). 

In the special case of nominally uniform impedance coaxial line 

in the warped .conical description of Section 6.5 the second order 
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propagating correction A2 is given by 

Using the relation (6.83) we find the coefficient 

- ~a2~ 12 + a'
2 

- (aa')'}. 

(A. 5) 

to be 
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APPENDIX B 

Geometry Associated with the Equiangular Arc Centerline 

In this section we shall establish some geometrical proper-

ties of the arc coordinate system defined in. Chapter V, where the 

properties have been quoted and used without proof. Refer to figure 

B.l for details of point labelling. The typical transverse arc P
1

RP 2 

makes equal angles with the boundary curves c1 and c2 . The governing 

equation for selection of points P1 (?:S.1 ) and P2 (?:S.2) is 

0 (B-1) 

where 

(B-2) 

is a unit vector along the local axis OQRS and t 1 and t 2 arc tangent 

vectors at P
1 

and P2 respectively. We measure arc length s along the 

locus C of the arc centerpoint R and arc lengths sl and sz along the 

boundary curves c1 and c2 . Then the vector description of the arc 

center R is given by 

(B-3) 

A A 

A unit vector n normal to t is given by 

A 
n (B-4) 

In general OR will not be tangent to the locus of R, the 

equiangular centerline C. Let o be the defect angle between OR and 
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;r. , 

Figure B-1 The Equiangular Arc Center Line 
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the tangent to C at R. 

8 = ¢ - 1jJ (B-5) 

If we calculate the shift ~R in the position of R on a 

nearby arc then we have 

!R • n tan 8 = ---
!R 

(B-6) 
. t 

!R is obtained by differentiating (B-3). " Since t is a unit 
A A 

vector the change .int will be normal tot and so parallel ton. Then 

" 0 " 0 + ~t a tan 2 + t ~(a tan 2 ) (B-7) 

We find by differentiation of (B-1), that, after a little algebra 

cos0 
n . flt 

2a 

so that, with the third term dropping out 

!R • n = ; sin 8 

This is, in general, non-zero unless e 

e 
tan 2 ) 

o, 

(B-8) 

(B-9) 

(B-10) 
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an equal spacing line, or ds1 = ds2 which implies a straight center 

line, so that o # 0 except in these special cases. A little re-

flection on the derivation will reveal that the point S where the 

normals intersect from the boundary curves at P1 and P2 on OR has 

its locus tangent to OR. This elegant property does not appear to 

have any direct relevance to electromagnetic field calculations. 

It can also be readily shown that 

(B-11) 

and 

(B-12) 

where K is the curvature of the boundary. Then 

(B-13) 

Substitute back into (B-6) to obtain 

(B-14) 

Application of ordering estimate for n + 0 shows that o - O(n 2) 

The coordinates for the extended warped cylindrical 
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coordinate system on a curved center line are defined as follows. Let 

the label for choosing the particular transverse arc be s, the arc 

length measured along the equiangular center line C , and let a be 
a 

the angle measured along each arc s from the center line. Then we 

can write the Cartesian coordinates (x,z) of a point Q(s,cr) by 

using equation (4.15) followed by rotation and translation. 

a 
cos lJJ - r(l -

a 
1JJ x = x + r sin cos -) sin 

0 r r 

(B-15) 

a a 
cos 1JJ z = z - r sin - sin 1JJ - r(l - cos -) 

0 r r 

The slope of the tangent -to the equiangular center line is given by 

dX 
0 

~=sin¢ 
dZ 

0 
cos ¢ (B-16) 

It has been found by grinding experience that calculations go more 

smoothly when we work almost to the end in terms of half angle 

functions . If we write for brevity s = sin cr/2r, S = sin(cr/2r+1JJ) 

etc, then 

x = :x + 2r sin Q__ cos(Q_ + 1JJ) 
0 2r 2r 

(B-17) 

- 2r sin 
a (Q__ + iJJ) x x - sin 

0 2r 2r 

and the partial derivatives become, with a prime denoting an 

ordinary s derivative 
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ax ao = sin¢+ 2r'sC + (8r' - 2r~')sS - 8r'cC 

(B-18) 

az 
~ = cos ¢ - 2r'sS + (8r' - 2r~')sC + 8r'cS 

ax aa = cC - sS cos (8 + ~) 

(B-19) 

~a =-sc - cS = - sin(8 + ~) 

After much algebraic manipulation we surface with the metric quantities 

2 a 1 + 2r' (1 - cos 
2 a . a la a a 

r sin r + 2 ----x)- 2r'(cos6-cos8-rsin(r - 6) r 
r 

+ 2(r~') 2 (1 - cos 8) - 2(r 1 8)(r~')(l - cos 8) 

- 2r~'(sin 6 + sin(Q. - 6)) 
r 

. (a ~) '(a . a)+ ''''(l a)· = - sin - - u - · r - - sin - ro/ - cos -r r r r 

= 1 

cos(
0 

- 6) + r'(l - cos 
0

) - r~' 
r r 

. a sin -
r 

(B-20) 

(B-21) 

(B-22) 

(B-23) 

No approximations have been made in deriving these ex-

pressions. Note that if we set ~' = 6 = O, then we recover the 
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expressions for a nonuniform line with straight center line. The 

limit 6 + 0, r + 00 represents an equally spaced line on a curved 

center line and the orthogonal coordinate expressions of Chapter 

V are recovered. For example 

2 2 
2 a 

grr + 1 + 2r ~' Q___ - 2r~' 
.,,.,, 2r2 r 

= (1 - cr~ 1 ) 2 (B-24) 

The expressions just given for the metric quantities have 

been separated into straight center line terms, curved axis terms, 

and correction terms in the defect angle 6. We now examine the 

series expansions required. The geometric series 

1 - (r' - 1)(1 - cos~)+ r~' sin a+ O(n 3) + .•. 
r r 

(B-25) 

will be convergent provided 

I (r' - 1) (1 cr) r . al 1 - cos - - - sin - < 
r R r 

(B-26) 

neglecting the O(n3
) terms in o. This is true provided 

I <r' - ~)<1 - cos ~)I < i - l~I (B-27) 

where R is the center line radius of curvature. 
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Expansions of the metric quantities in increasing order of 

n may be written 

(g = 1 - mµ' - ~ + crcS 
2 

6r r 

2 
-~ ,,, , cr F + cr2,1,,2 

g = 1 + cr'I' + 'I' 
2b

2 + ... 

cS - ff -
2r 

+ ... (B-28) 

(B-29) 

(B-30) 

+ ..• (B-31) 

New terms, depending on center line curvature and angular 

offset, have appeared and these will give rise to odd order terms 

when substituted into the differential equation. 
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APPENDIX C 

The Natural Coordinate System 

Unger (1965) uses a coordinate system, related to our 

warped cylindrical coordinates, which he calls natural coordinates. 

The coordinate arcs are defined as in Chapter IV with s as para-

meter. Instead of arc length s, Unger uses the normalized angle 

u E(-1,1) where u = ± 1 are the line boundaries 

e u=e . (C-1) 

Unger treats these coordinates as though they were orthogonal. The 

coordinate transformation is 

x = r sin Gu 
0 

z = z - r + r cos Gu 
0 

(C-2) 

Then we find, correcting Unger's version, with primes denoting 

z-derivatives in a two dimensional version 

2 2 G' Gu} gzz 1 + r G' + 2(r'-l){rJ(l-cos Gu) + ur sin 

(C--3) 

2 G2 (C-4) guu = r 

' 2 
gzu = ur GG' + r(r'-1)8 sin Gu (C-5) 
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This latter expression may be written 

dz 
0 e---

b'2 dz { 
sin Gu} 

u - sin e (C-6) 

Equation (C-6) makes it apparent that in general when 

b" :/- 0 that gzu vanishes only on axis or on the boundaries and so 

Unger's natural coordinate system is really nonorthogonal almost 

everywhere. 
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