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ABSTRACT

A precision capillary viscometer with a photoelectric
timer has been designed and bullt for these investigations.
On the assumption that the relative viscosity can be ex-
panded in a power series in concentration, the intrinsic
viscosity and the coefficient of the second order term have
been measured for suspensions of spherical and riglid rod-
like macromolecules, The viscosity of a known heterocgenecus
suspension of rods and spheres has been determined and has

nterpreted in terms of interaction cocefficlients.

Jode

heen
The Einstein theory of viscosity of dilute suspensions
of spheres has been modified to form, together with the ap-
proaches of Burgers and Jeffery, a logically consistent
theory for the intrinsic viscosity of spherical molecules

particular, and ellipsoid particles in general.

N
)

The second order theory in volume fraction for the vis-

cosity of suspensions was reviewed. Previous work in this

6]

field was found to be in error. It was shown that, when
properly interpreted, the linear solution of Burgers to the
problem of the viscosity of dilute suspensions of spheres
fully explains the variation of the relative viscosity with
concentration. The linear theory of Burgers did not ade-
guately explain the variabion of the relative viscoslty of
rod-like molecules with concentration. This was attributed
to mutual orientation effects.  The study of the system
consisting of rods and spheres also indicated that orienta-

tion effects might be important.
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INTRODUCTION

The continued isolation or creation of substances of
very iarge molecular weight b& industry and by the biological
sciences has contributed to the increased interest shown in
the rheoleogy of dilute suspensions, Although it is possible
to disperse large molecules or macromolecules as aerosols,
the most frequent method of dispersion is to dissolve them.
In biological systems the dissolved state is the naturally
occurring one for the macromolecule,

In the dissolved state it is possible to determine the
osmotic pressure, the sedimentation and diffusion rates of
the macromolecule, the streaming birefringence of the solu-
tion and the viscosity of the solution. Additional measure-
ments could include light scattering, dielectric dispersion
and relaxation, X-ray analysis and electrophoresis of the
solution. With proper preparation the macromolecule may be
examined under the electron microscope. These techniques
allow one to determine such important properties as size,
shape, molecular weight, electrical charge and magnetic
characteristics~-of the macromolecule.

Among the important rheological properties of colloidal
solutions and of suspensiong is the variation of the properties
of the solution with the concentration of the macromolecule.
The viscosity, sedimentation coefficient, diffusion rate and

streaming birefringence are all functions of the concentration.



Within the linear region there are more or less satisfactory
theories to explain these variations. In the region of
particle interaction the agreement of experiment with theory
is not so satisfactory. The sedimentation rate and diffusion
rates may be interpreted on the basisg of the existence of a
local viscosity lying between that of the solvent and that
of the solution. The effective or local viscosity seen by
the particle is due to interactions either chemical, hydro-
dynamic or both., It was felt that studies of a heterogeneous
system might be helpful in obtaining a better understanding
of these interactions. It was therefore decided to investi-
gate particle interactions in two homogeneous populationsof
particles and in the heterogeneous system composed of these
two types of particles. The main eéncern of the investiga-
tion was directed towards the hydrodynamic interactions of
certain macromolecules.

Since the diffusion constant is in general only a weakly
varying function of concentration, the viscosity, sedimenta-
tion or ultracentrifuge and streaming birefringence techniques
of’ measurement were considered. Another portion of the labora-
tory has been and 1s conducting an active investigation of
macromolecular sclutions by means of streaming birefringence
so attention was directed towards the ultracentrifuge and
the measurement of viscosity. | |

Some preliminary'investigations were conducted with the

ultracentrifuge. The work led to the conviction that both



and the complexity of the flow
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the experimental difficulti

field made the investigation of particle interactions ex-
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tremely difficult. In addition there were some scheduling

difficulties since the ultracentrifuge was not an integral
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art of the laboratory.
Viscoslty measurements are a widely used method for

characterizing macromolecules. Measurements in the non-

o

linear range, l.e. w
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1igh precision; a precision that 1
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viscometer of a very
found in the normal viscometer apparatus of a typical labora-
tory. It was felt that the construction of this viscometer
aside from affording a wealth of experimental experience

would add a valuable instrument to the laboratory. Such an
instrument could be used in future investigations of anomalous
viscosity effects, electroviscous effects and further inves-
tigations of hydrodynamic interactions.

Ty

fude

The two most extensive methods used to measure viscos
of dilute agueous solutions with viscosities in the nelghbor-
hood of one centipoise are the capillary viscometer and the
couette viscometer, Although the couette viscometer permits
the viscosity of a solution to be measured over a wide range
of shears including very low ghears, and 1s thus ideally
suited to the investigation of the shear dependence of the
viscosity of solutions, the apparatus in itself i1s inherently

complicated and in general it does not have the reproducibllity
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and accuracy of a capillary viscometer. Most precision
viscosity measurements have been made with capillary vis-
cometers., A precisgion capillary viscometer was therefore
designed for the investigation of particle interactions.

In the viscosity of macromolecules we must distinguish
between two general categories: flexible and rigid mo1eeu1es.
The flexible molecule has no definite shape or conflguration
and may bé visualized as a long ehain. ' The chain may be
looéely or tightly coiled depending upon the nature of the
solvent. The analysis of the viscosity of solutions of
flexible molecules ' is difficult and requires assumptions
as to the statistical configuration of the chain.

The rigid molecules behavé, as their name implies, as
rigid bodies. The properties of such molecules can in a
1a?ge‘measure be described by the choice of a suitable geo-
metric model such as a sphere, ellipsoid, cylindrical rod,
pearl string, ete....The appropriateness of a given model is
determined to a large extent by agreement with expefimental
data. We shall confine our investigations to rigid molecules.

The definition of the viscosity of a suspension is based
on an extension of that for a pure fluid. Thus for homo-
geneous incompressible liquids in the case that the terms of
inertia are neglected one obtains the following equation for

amount of energy dissipated per unit time

4

aw _ 1 Wy .
a—%—-é-'}lo (%%E)dv i, k=1, 2, 3

where 010 is the viscosity of the liquid.
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If the same equatlon were used for defining the viscosity
of an heterogeneous medium it is clear that the instantaneous
veloeities would fluctuate with time. These velocity fluc-
tuations are not, however, observable guantities in the
standard viscosity apparatus so thgt ‘ho defined as above
is not an expe&imenﬁally determinable guantity. The meas-
urable experimental quantities are aetaally’the mean valuesg
over time of the velocities of deformation. The above equa~
tion is valid then as a definition for the viscosity of a
kguspenSiom if it is understood that we are referring to
timelaveraged guantities.

There are several terms used in referring to the visg-

cosity of suspensions and flulds. The relative viscosity 1s
_
’)lrel“” /710

where ’H@ is the vigcosity of the calibratimg fluid or
reference fluid and %’ is the viscosity of the suspension
or other measured fluid.

The specific viscosity is

(R S R

ﬁg rel

The reduced specific viscosity is the specific viscosity

divided by concentration

i.e. | Q-sp/é

Finally a very important quantity in the viscosity of

suspensions is the intrinsic viscosity which is the reduced

I4
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specific viscosity extrapolated te zero concentration and

zero shear

q —» O
a ig the shear rate.
It is possible to define an intrinsic viscosity extra-

polated to infinite shear. This will be denoted by

{w%z(%gp/c) .

q —>»Oo

It is possible to expand the relative viscosity of a
suspension at léeast in the dilute range, in a power series
in the cémcent?atiaﬁ. General experimental results and
dimensional arguments indicate that this series is of the

following form

% sp gal}a ¢+ k {‘?Ei ?

It is the purpose of this investigation to determine
the intrinsic viscosities of rigid rods and sphereﬁw The
value of k will be determined for rods and spheres separately
and for a mixture of rods and spheres. The experimental
results are then compared with those that might be expected

from theory.
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SECTION I

The purpose of this section is to review the develop-
ment of the theory of the viscosity of dilute suspensions.
Detailed investigation of physical assumptions and their
mathematical expression will be feuné in the analyslis sec-
tion where applicable. The three theoretical approaches to
the problem are represented by the hydrodynamic theory, the
relaxation theory and the molecular theory of fluids. Sev-

eral excellent reviews (1, 2, 3, 4) exist on the subject.

Hydrodynamic Theory

The hydrodynamic theory of viscosity of dilute solu-
tions and suspensions originated with Albert Einstein (5).
In this theory the molecular structures of the solvent and
of the solute are completely ignored and the solvent is
treated as a continuum. The presence of the macromolecule
in the solvent perturbs the original flow field and this
perturbation causes an increase in the energy dissipated and
correspondingly an increase in the apparent viscosity. The
solvent can, of course, be treated as a continuum only when
the macromolecule dimensions are large with respect to
the solvent molecules. To the first order in volume fraction
good experimental agreement with theory is found for colloidal
solutions and suspensions of rigid particles but not for pure
solutions or mixtures of pure solutions. In the latter case

the molecular structure of both the solvent and solute play
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an important role. The viscosity in the case of pure flulds
can depend on the surface activity of the solute, on the
nature of the solute-solvent combination and on molecular
associations within the liguid.

The development of the hydrodynamic theory of viscosity
which is based on the Stokes approximation to the Navier-
Stokes eqguations may be briefly summarized as follows:

1. Solution to the problem of the increase in viscosity
due to a spherical macromolecule in an infinite flow
field with different types of boundary conditions
and including the case of rigid and non rigid
particles. |

2. Solution of the above problem with rigid ellipsocidal,
dumbbell or pearl string macromolecules in the ab-
sence of Brownlan motion.

3, Inclusion of the effect of Brownian motion in in-
creasing the viscosity for non-spherical particles.

L, Solution to the problem of flexible molecules in an
infinite medium. | |

5., Investigation of the effects of finite concentrations
and the hydrodynamic interaction of the macromolecules.

Einstein solved the problem of a rigid sphere in an
infinite medium. Since Einstein's procedure is fundamental
to the entire hydrodynamic theory of viscogity it is dis-
cussed in some detall in the analysis section. Some of the

assumptions of Einstein have in turn been relaxed by others.
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G. I. Taylor (6) has treated the case of fluid spheres.
Cerf (7) among others has studied the case of elastic par-
ticles. The wall effect has been investigated by Guth and
Simha (8) and Vand (9). Simha {10) and Happel (11) replace
Einstein's condition of tﬁe perturbation velocity vanishing
at Infinity with conditions on & large sphere concentric with
the original sphere.

Jefrery (12) obtained the solution to the motion and
viscosity increase of ellipscidal particles in laminar flow
in the absence of Brownian motion. The case of overwhelming
Brownian motion has been treated by R. Simha (13) and by
Kuhn and Kuhn (14},

The rather intricate calculations for ellipsoid particles
have beeh avoided in several simple model investigations. Of
these the rigid pearl necklace model of Kuhn and Kuhn (14) is
perhaps the most illuminating. This.mcdel was instrumental |
in the development of the pearl necklace representation of
flexible molecules.

Burgers (15) has developed an alternative procedure to
that of Einstein for evaluating the effective viscosity of a
suspénaian by utilizing the formulas originated by Oseen
(16) for the effect of concentrated forces acting on a fluid.
By this method he is able to derive Einstein's original re-
sult and also to treat the problem of the viscosity of

eylindrical rods. Kirkwood and Riseman (17) have extended
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this method to include rods and flexibvle centrosymmetrilc
macromolecules. While Riseman and Ullman (18) in a further,
but somewhat free extension, have usged the method to cal-
culate the concentration dependence of centrosymmetric
macromolecules.

Guth-Simha-Gold (19} in a very involved calculation
have obtained, after a fashion, the coefficient of the
second order in sphere-sphere interactions. Simha (20) has
similarly calculated the concentration dependence of dumb-
bells. The qualifying remarks used in the description of
the theoretically calculated concentration dependence arise
because of the existence of an improper indeterminate in-
tegral in all the above investigations, This 1s discussed
more fully under analysis.

Vand {9) in an entirely different approach has attempted
to calculate the contribution to the viscosity of collisions
between sphericsl macromolecules,

The theoretical difficulties in the calculation of the
concentration dependence of macromolecular solutions have
led to several semiempirical meﬁhods, Thus De Bruyn (21),
Brinkman {(22), Saito (23), Robinson (24} and Vand (9) have

all presented varicus phenomenological approaches.
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The Relaxation Theory

The relaxation theory treats transport phenomena in
condensed systems from the viewpoint of rate processes. The
molecules in a condensed phase occupy positions of equilibrium
and may be considered as vibrating about the minimum of a free
energy well. The structure of all condensed systems may be
thought as possessing a more or less regular lattice arrange-
ment.

The effect of a stress on a body is to cause displace-
ments from equilibrium along the various planes separating
molecular layers. If the body is perfectly elastic then the
stored potential energy is immediately and completely returned
when the stress is released., The result is the return of the
molecular patches to their original minimum positions in the
energy wells., The elasticity modulus, shear modulus, bulk
modulus, and hardness are all functions of the steepness of
the energy wells.

If a relatively large stress acts constantly on a body,
however, the molecular patches on the two sides of a shear
plane Jjump with respect to each other over the energy barrier
and take up new positions of equilibrium. In this way the
stored potential energy 1s released as thermal energy. The
statistical displacement of patches by Jjumping along shear
planes continues as long as the stress acts, l.e. the sub-
stance flows in a direction such as to release the stress.
This relative displacement to new positions along shear planes

is called the relaxation theory of transport phenomena.
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The fundamental equation for the shear rate in terms of
molecular paramebers was developed by Eyring (25). From this
equation follows easily the relationship for the viscosity.
The theory has been generalized to heterogeneous flow units
by Taikyue Ree and Henry Eyring (26). The flow units can be
either different molecules or different complexes of the same
substances. The theory adequately explains both the varia-
tion of viscosity with pressure at constant temperature and

the variation of the viscosity with temperature.

The Molecular Theorv of Fluids

The most fundamental approach to the viscosity problem
is through the method of the molecular theory of liguids.
The theory is vastly more complicated than the corresponding
theory for gases. It has only been recently that some con-
crete results have been obtained with the theory for mona-
tomic liguids. This result is so complicated that its
extension to more comprehensive systems has met with dif-
ficulty.

The molecular theory of liguids attempts to describe
the properties of liguids in terms of the radial distribution
function of nearest neighbors around a given reference mole-~
cule and in terms of the distribution of molecular velocities.

Since the molecules are very closely grouped to each
other these distribution functions are primarily determined

by intermolecular forces.
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SECTION II

This section is divided into three parts:

(1) A prief development of the theory of capillary
viscometry, the necessary corrections to the theory, and
discussion of the possible sources of error in the measuring
of viscosity by means of capillary tubes.

(2} A detailed outline of the experimental equipment
that has been designed and assembled in order to measure the
hydrodynamic interaction of macromolecules in an agueous
solution. The interactions are investigated by means of
precision viscosity measurements. The experimental equip-
ment consists of the viscometer, a precision timing device
using photocells, and the temperature baths. In addition
there is a description of the necessary auxiliary equipment.
The materials tested in the experimental investigations are
agqueous solutions of polystyrene 1atéx (PSL) and tobacco
" mosaic virus (TMV).

(3) Details of the experimental procedure used in ob-
taining the data are explained. Accompanying this descrip-
tion of technigues is a discussion of the calibration of the
viscometer and of the determination of surface tension

correction.
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Part I Theoryv and Error Discussion

Consider laminar flow in a circular pipe such that

where w is the flow along the pipe axis. From the Navier-
Stokes equations

9p . dp _ 4
ox Y

The pressure is therefore constant across the pipe.

AEW%)EWQ 1 dp
éxe ayz ’5 dz

The left hand side of the eguation can be only a func-

tion of x, y, while the right hand side can only be a function
of z., This can only be true if both sides of the equation are
equal to a constant. We can therefore write the pressure

gradient as

= -Ap/1

3e

where A p is the pressure difference between the ends of the
pipe and 1 is the length of the pipe. From symmebtry 1t is
evident that

w(x,y) = w(r)

We have, therefore, in polar coordinates

1.4 (ragw)_ - Ap
r dr dr’ %:ﬁ
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Upon integrating one has

w= "BR 2 Ly log » + ¢

Ey1c

The boundary conditions are
w = finite r =0
W= 0 r o= a

where a is the radius of the pipe. These conditions determine

b and ¢

2 L2
we Ap (2% - %)
4 % 1
The velcoecity distribution is parabolic. The mass Q of fluid

passing per second through the fluid is

a
Q = 27ff2[f v wdr
o

4
Q _TAp p a
8 % 1

This is Poiseuillets formula (29). For the viscosity

and

one has

%uf,.,éi?_ﬁ@i
=5 T 41

Two corrections must be made to this formula. The
kinetic energy correction and the couette correction. Refer-
ence is made to Barr's treatise (30) for a derivation of the

corrections., Briefly the kinetic energy correction relates
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to the fact that the pressure forces also impart kinetic
energy bto the fluid in addition to working against the vis-

cous forces., The true effective pressure is given by
}Tom
Ap =npe - [Ty

where h is the head expressed in terms of the liguid of
dengity f9 in the viscometer. The factor m S 1. The couette
correction accounts for the fact that the liquid entering the
capillary is flowing in a converging stream. The effective
length of the capillary is increased. Introducing these

corrections into the theoretical equation one obtains

hhﬁg‘h - mpvV

qz _TTa ‘
8 V {1 + na) 8wt (1 + na)

& has been replaced by V}% where V is the volume discharged
in the time t. The factor n is slightly greater than 1. Tor

a fixed geometry this equation becomes

o= p (st +B/)

In the measurement of relative viscosities the constants
A and B can be determined by calibration with a liguid of
known viscosity. In absdlute viscosity measurements one
calculates the viscosity from the actual geomebric guantities
in the theoretical equation. Needless to say absolute vis-
cosity measurements are extremely difficult to make accurately
as there exist many sources of error, Barr's treatise has an
excellent discussion of the problems encountered in absolute

viscosity measurements.
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t AV = consgt Y

where AV is volume of liguid clinging to the wall
t is flow through time

Y is the kinematic viscosity

Disregarding the energy correction, the [flow-through
time, when the effective pressure is due to the weight of

the fluid iteelf, 1is given by
t =AY

so the error AV is independent of the viscosity. Inclusion
of the kinetic energy correction gives an error below the
precision of our measurements for the viscoslty measured
in these experiments. This is mainly due to the fact that,
for relative measurements, we are interested in the differ-
ences in the error between the fluid being tested and the
calibrating fluid,
The surface tension correctlion will be discussed later
under experimental procedure,
There are three principal non-systematic sources of
error in viscosity measurements.
These involve:
1. Measurement of flow-through times
2. Variations in orientation of the viscometer
3. Maintenance of constant temperature
Flow-through times are determined by measurement of the

elapsed time for the passage of the meniscus of the liguid
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between fiducial marks above and belcw‘the viscometer bulb.

The standard method is to measure the elapsed time by means

of a stop~watch. This introduces a subgéctive error accord-
ing to Philippoff of from 20 to 30 milliseconds.

The effective pressure acting on the fluid depends on
the mean head of the fluid. This head varies if the orienta-
tion of the viscometer is changed.

The viseosit? of water near room temperature changes
approximately 2% for each degrée change in the tempeﬁ&ture
of the bath;

Thus, controlling the temperature accurately is a prime
requisite for precision viscometry. For accurate viscosity
measurements in present day chemistry and biological labora-
tories the temperature is usually controlled to + .01 %.
Frequently measurements are made with the temperature con-
trolled to only + 0056%.

It’will become evident in the descrip%ion of the experi-
mental equipment how each of the difficulties listed above

hasg been minimized.

Part II Experimental Eguipment

Viscometer

& multigradient viscometer consisting of three bulbs
with mean hydrodynamic heads of 5, 10, and 15 cm was built
for the experimental invesﬁigaﬁians of the interactions of

macromolecules., Reference is made to photographs one and
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two, page 95. The viscometer has the high accuracy charac-
teristic of standard capillary viscometers and at the same
time allows in some measure the shear dependences of the

test solutions to be extr ap@iaueﬁ out. The viscometer was
designed to give moderate mean shears of approximately 180,

-1 . .
120, 60 sec for water at 28 OC. The efflux times for all

L

three bulbs are approximately 200 seconds over the range of

viscosities measured. The capillary is 170 c¢m long and has

[

length reduces the

bt

an inside diameter of 1.15 mm. The lon

0]

shear rate to the moderate values given above,

Zm

+
ba
o
—d
@
AN

The capillary tube was formed into a hellix witl
diameter so that it would fit in a reasonable size temperature
bath. The helix construction also permits a long tube with

a3 small head. The size of the inside diameter of the capll-
lary was chosen to minimize the influence of monolayers that
might adhere to the capillary walls. In order to minimize
surface tension effects and to ellminate the working volume
error characteristic of the Ostwald viscometer an Ubbelchde
hanging level was incorporated iﬁ the viscometer.

The viscometer 1s inseréed and cemented intoc two end
plates made of plexiglass. The end plates are spaced by
three stainless steel rods. The entire unit of end plates,
rods and viscometer forms a ri g d body which is permanently
screwed onto the plexiglass 1id of the temperature bath. The
rigidity of the system eliminates errors due to changes in

the orientation of the viscometer., A spirit level is per-~

manently glued to the top end plate.
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Photocells and Lighting Arrangement

The generally accepted method for determining the
efflux time of a given capillary bulb is to time the transit
of the meniscus between two lines above and below the bulb
by means of a stop;watch. This introduces a subjectlive error
on the part of the operator who must judge the moment the
meniscus passes the fiducial mark. This subjective error
has been eliminated by the introduction of a transistorized
photocell system. Although Jones and Talley (33) have pre-
viously used a photocell arrangement it is believed thaﬁ this
is the first time that transistor photocells have been used
in viscosgity measurements. The use of transitors makes for
a particularly simple and practical arrangement.

Permanently attached to the viscometer are two glass
tubes (see photographs) on either side of the glass column
containing the three viscometer bulbs. These tﬁbes project
through the top end plate and are so oriented that with a
1ight source in one of the tubes and a photocell in the other
the passage of the meniscus in the capillary interrupts the
light falling on the photocell., Thus with a light source
and photocell aligned on the upper fiducial mark and a
similar unit aligned on the lower fiducial mark, the pulses
generated by the passage of the meniscus can be used alternately
to start and stop a timing device. A Beckman 7360 counter was
used to record the transit times, although for less precise

work a simple electric clock could be used.
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The light sources consist of 6 Welsh Allyn No. 2 lamps.
These lamps were chosen because of their small size and rela-
tively high light intensity. They are about .7 inch long
and have a diameter of .2 inches. The lamps were fitted
into an aluminum bar which in turn was inserted into one of
the glass tubes. The openings in the aluminum bar help
channel the light in the direction of the opposing photocell.
. The lamps themselves have, in addition, a built-in focusing
lens. It was found necessary to power the lamps from D, C.
batteries. The aluminum bar was fitted to the glass tube
by means of a rubber stopper. The stopper was in turn glued
and taped to the glass tube., This made a rigid unit but at
the same time 1t was relatively easy to remove the light
sources when needed.

The 6 photocells are N-P-N grown junctlon germanium
transistors type 800 made by the Texas Instrument Company.
Thege transistors, which find application in computers, were
chosgen because ofvtheir small size and reduced power demand.
The photocells are very sensitive to the relative position
of the light on the photosensing bar. They are thus ildeally
suited to responding to the interruption of light due to
the passage of the meniscus of the test fluid. The photo-
cells are attached to a rigid aluminum strip which is in-
serted into the glass tube facing the light source. This
strip is glued and taped to the glass tube in the same manner

as the light sources.
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A11 electrical wiring is brought into two Johnson plugs
which are attached to the top end plate. The leads for the
power of the lamps and for the amplifying circults of the
photocells are simply plugged into the appropriate Johnson
plug. In this manner the photo sensing equipment and the
viscometer form a single assembly which can be removed from
the temperature bath as a unit if it is so desired. The
arrangement further prevents the possibility of relative
motion between the photocells and light sources and between
the sensing eguipment and the viscometer.

The detailed circulitry of the photocell-amplifier

circult is gquite straightforward
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Each photocell was placed in a separate circuit. The
switch indicated in the figure was ganged with the amplifiers
and with the counter. On switching from one photocell to
another the amplifiers were simultanecusly switched into
the circult of the new photocell and the input to the counter
was changed to the appropriate start or stop channel. Due
to noruniformity of the transistor photocells the load re-
sistor varies somewhat for each photocell. In general it
hag a value of about 1 megohm. The transistor photocell is
inherently a high noise device. The signal taken from the
load resistor is passed through an RC network which, when
combined with the input capacitance of the amplifier, re-
moves the white noise. The DC component of the signal is
also removed. Both amplifiers are commercial Hewlett -
Packard 450 A. The first amplifier multiplies the signal
by a factor of 100. The RC network between the amplifiers
serves the purpose of decoupling them. Without this network
there were objectionable oscillations. The second amplifier
again multiplies the signal by a factor of 100. The result-
ing pulse has a rise btime to one volt of the order of 1
millisecond. The final signal alternately starts and stops
the Beckman counter. The counter is set so that negative
excursgions of more than .25 volts in the input signal will
start or stop the counter. It was found necessary, in order
to eliminate stray signals in the amplifier circuits, to

make all connections by shielded cables. The two amplifiers
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and the counter were operated from separate Sola constant
voltage sources. Reference is made to photograph 3 page 96 .
Connected to the viscomebter is the complete sensing and
recording equipment; including counter, amplifiers, cenftral

switch, cables and connectors.

Temperature Bath

Preliminary measureménts showed that a more or less
elaborate system would be necessary to control temperature
to the desired accuracy of a few thousandths of a degree
centigrade. The temperature bath (see photographs 4, 5, 6)
consists of two concentric jafs and the cover assembly formed
by the 1id, and a plexiglass box placed on top of the lid.
Both the exterior and interior Jars have their temperature
regulated by control units. The 1lid of the jars also has
its temperature regulated.

The exterior bath consists of a specially constructed
plexiglass jar 17 inches in diameter, 17 inchés high and 1/2
inch thick. Plexiglass was chosen because it is easily
worked, transparent and a good insulator. The jar is filled
with water and there is space for two inches of coolant
around the sides of the interior Jar and for 1/2 inch at
the base of the jar. A copper cooling coil is placed between
the two jars both on the sides and at the base. Through the
copper coils is pumped water which is regulated to about .01 %c.

A Precision Scientific Instrument Company Control was the
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regulating unit. The thermoregulator in this unit is a
mercury switch with an off-on action. The temperature of
the circulating water was determined by‘a thermometer read-
ing directly to .05 °c. The outside Jar was maintained at
g temperature of about 1 °¢ below that of the interior Jar.
The Jar rests on a balancing board which is used in properly
orienting the viscometer,
The interior bath consists of a water filled glass jJar
12 inches in diameter and 16 inches high. Into this jar is
placed the viscometer, the stirring and heating column and
the sensing element of the interior contrcl. A Sargent
Thermonitor model S W regulator was chosen as the control
unit. This regulator has several advantages. The heating
elements are centrally located in the stirring column. The
sensing element is a thermistor which has a high response
for small changes in temperature. The sensing el@ment is
located close to the SEiPTing column to eliminate temperature
cyeling. Both the stirring column and the stirring motor
are suspended by a special attachment from the ceilling. This
eliminates excessive vibrations of the viscometer.
Electrically the control element consists of an AC
energized Wheatstone bridge,one arm of which is the thermistor.
A temperature change causes the thermistor to unbalance the
bridge. The output of the bridge is fed through two stages
of amplification and is then applied to the grid of a thyra-

ton tube which acts as an electronic switch. The power
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supplied to the heating elements is proportional to the un-
balance of the bridge which in turn is proportional to the
temperature change. This proportional control minimizes
cycling., Under optimum conditions the manufacturer claims
that the contrcl is capable of maintaining the temperature
to 002 C. The results of the experimental investigation
would appear to support this claim., The control temperature
was 28 ¢,

Although it is a high response device, the thermistor
suffers from a lack of long term stability. For this reason
the temperature was determined from a precision thermometer
reading directly to .01 c. By means of a guality thermometer
viewer the temperature was estimated to the nearest .001 °c.

The plexiglass 1id is 1% inches thick and projects

about %:iﬁch over the side of the exterior Jjar. The 1id is

ot

hollow and contains a layer of water one inch thick, excep
for the center portion, where space is left for the insertion
of the stirrer and viscometer in the interior. There are
several turns of copper cooling coll placed in the water and
the 11d's temperature is regulated by the same unlit that
controls the outslde Jjar. The upper surface of the interior
and exterior Jjars liesin a plane and the 1id has two circular
grooves into which the jars are fitted. The viscometer is
screwed down to the center part of the 1id where space is
also supplied for the stirring column, thermistor and read-

ing thermometer., (See photograph 5 page 97 ). Finally the
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1id is attached by means of clamps to the outer plexiglass
Jjar. This again prevents any change in the vertical orien-
tation of the viscometer.

Enclosing the entire upper part of the 1id is a plexi-
glass box which further serves to insulate the interior jar
from the external environment. The control of the exterior
Jar and the control of the lid as well as the plexiglass box
all help to insure that the interior jar seesan essentially

uniform external temperature.

Auxiliary Eguipment

The auxiliary equipment necessary to complete the ac-
curate determination of the viscosity of macromolecules is
associated primarily with the determination of the density
of the solutions. An accurate analytical balance and ap-
propriate pycnometers are needed. Since one of the substances
used in the experiment is a virus it was necessary to con-
trol the Ph of the solutions. In order to fill the viscometer
with dust free solutions a special pipette was also designed.

A semi-micro TCY Ainsworth analytical balance was used
for all weighings. The designation semi-micro means that
the scale is capable of weighing specimens to the nearest
01 mg. Whén weighing to this accuracy it is necessary to
make a buoyancy correction for the specimen. For this
reason, at each weighing the barometric pressure was determined

and the relative humidity measured by a sling psychrometer. A
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simple design was selected for the pycnometers so that they
could be easily cleaned. The pycnometers used were essen-
tially volumetric flasks with a thin etched line around the
capillary neck. This line defines the volume of the pycno-
meter. The pycnometers were bullt to order by the Cal Tech
Chemistry Glass Shop and have a volume of approximately 20 ml
with a capillary of around 1 ml. Attached to the plexiglass
end plate of the viscometer is a platform on which the pycno-
meter rests when in the temperature bath. (See photograph 8
for pycnometer and photograph 1 for the platform.)

A Beckman model G Ph meter was used for all Ph measure-
ments. The Ph was determined to nearest .01l units. Photo-
graph 8 shows the special pipettes used in filling the visco-
meter. The standard volumetric pipette was fitted with a
detachable fritted disc. The liquid entering the pipette
has any dust or extraneous particles filtered out by the
porcelain filter. The filter is then removed and a known

volume of fluid can be introduced into the viscometer.

Experimental Materials

The viscosities of two rigid macromolecules were in-
vestigated. The two test substances consisted of polystyrene
latex and tobacco mosaic virus.

Polystyrene latex is an industrially produced pelymef,
It 1is particularly well suited as a test substance since 1t
is an inert, rigid sphere whose diameter is closely con-

o
trolled. The mean diameter of the PSL used is 880 A with a



tard deviation of 80 A, The sigze distributbtions were
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obtained by electron microscope examination (34). The
sample was supplied by Dow Chemical Company.
Tobacco mogalce virus has been extensively investiga

so that its properties are well known. It has the ghape of

diameter, These dimensions have been cbtained by electron

-

microscope examination (35). One of the difficult
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of UCLA. The uniformity of the population was indicated by a

Hxperimental Procedure
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The preparation of the solutions, measurements of the

under experimental procedures. The method of calibration and

the calibration results as well as the experimentsl determina-

sion of the surface tension corrvectlon are also discussed below.

sSclutions

Some difficulties were encountered in the preparation of
a solution of PSL which was compatible with the TMV. Vhen a
solution of the PSL as received from the Dow Company was mixed

with the TMV a milky white precipitate separated from the
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solution. Th fficulty was traced to the fact that the



emulsifying agent of the PSL was an ionic-sulfonate detergent.
Unfortunately the sulfonate ion reacts with TMV in such a
manner as to strip the protein from the molecule leaving

the nucleic acid. The process is termed denaturization of

the TMV. The milky white precipitate was the protein. Experi-
mental work of Dr. Simmons (36) and others (37) has shown that
nonlonic detergents are compatible with TMV,

In addition to forming a part of the solvent, the emulsi-
fying agent is adsorbed on the surface of the PSL. It was
therefore necessary to replace the sulfonate by repeated
washings in a preparatory centrifuge with a .02 % by volume
nonionic detergent, Tergibtol TMN (trimethyl nonyl ether of
polyethylene glycol). With the new emulsifier the PSL
proved compatible with the TMV,

| The concentration of the PSL was determined by drying a
portion of the original solution to constant welght in an
oven. Further concentrations were determined by dilutlon
of the base solution. The dilutions were made by weighing
and also by diluti@n in the apparatus with pipettes.

Since TMV is & virﬁﬁ orie must be careful in controlling
its environment. TMV tends to denature 1if the Ph is below
7.0 and to aggregate or dimerize if the Ph goes above 7.5.

For this reason the solvent of the TMV contains a buffering
&gent, The buffering agent acts in a direction to oppose
changes in the Eh. The basic szolution for the TMV was a .01 M

phogphate buffer with .001 M versene at Fh 7.34, Higher ionic

.
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strengths than those of the buffer described have a tendency
to cause the TMV to aggregate. Another component of the
buffered solution is .02% tergitol TMN. This insured that
in the preparation of a mixture of PSL and TMV the concen-
tration of the emulsifier was not changed. The solvent for
the PSL was also the same buffered solution consisting of
phosphate, versene and Tergltol TMN.

The addition of the nonionic detergent complicates
matters somewhat as 1t reacts mildly with the phosphate
buffer. It was found necessary first to make a phosgphate
buffer to Ph 7.00. %mnmﬂﬁmgwﬁhtﬁetm@ﬂmlt%&m&
sulting solution had a Ph 7.34 and sti11 displayed good
buffering capacity. The original TMV concentration was
determined by measuring the optical density of the soclution
at 265 m M in a Beckman model DU spectrophotometer (38).
Further concentrations were determined by dilution of the

base solubtion as in the case of the PSL.

Ifluy Times

The presence of dust or extraneous particles is ai@ays
a troublesome preoblem in viscometry. At first all solutions
were [iltered through millipore fiiters directly into the
viscometer in order to eliminate dust particles. It was
found, however, that the filter also removed some of the
TMV and PSL. At this point the pipettes with attached
fritted dises were desligned. With these pipettes it was

pessible to deliver a known amount of dust free solution to
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the viscometer. After the insertion of the solution it
was allowed to stand in the apparatus for approximately an
hour to insure temperature equilibrium.

The system of valves and tubing shown in phﬁt@grﬁgh 5
allowed one to pump the solution into the capillary bulb
Filtered air was forced into the large receiving tube of the
viscometer. This forced the solution up to the suspended
level and into the air vent tube. The air vent was then
cloged and the soclution forced through the capillary and
up into the capillary bulbs. At the beginning of a run the
pressure was released in the filling tube and all three tubes
conglsting of air vent, filling tube and capillary tube were
interconnected by means of tygon btubing. The weight of the
solution caused 1t to flow through the capillary. This method
has the advantage that no outside air, which might have dust
particles, is introduced into the viscometer during a run.

The solution was passed once ﬁh?@&gh the three bulbs
and the capillary without taking m@agzr@ments, This was
done because it 1s an experimental fact that in the first
passage of the test fluid through a dry capillary the meas-
ured Time ls invariably higher than the Tfollowing passages,
In general twoe runs of the same 3@1uti©ﬁ‘wer@ made for each
bulb. The readings for each run often differed by as little
as 1 millisecond. The maximum difference between the two
readings was not in excegs of around 20 milliseconds. The

completion of the two runs usually took about an hour.
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the entire bath had been functioning about four hours before

any tests were conducted.

Density Determination

The accurate determination of density, although a fairly
standard technigue, requires some attention to detall. The
article by N, Bauer (39) contains an excellent discussion of
density determinations and the factors affecting its accuracy.

The density will be defined by
t T
a7 = m/V g (g/ﬁl)

where m is grams of mass
and Vm} is the volume of milliliters.

The weight in grams 1is given by
W=mg

so that if both V and m are measured in gram weights at

ml
the same location the value of the density remains the same.
The standard methed of determining the density is to find
the weight of a known volume of liguid defined by the shape
of a given pycnometer. The pycnometer is calibrated by
determining the weight of pure water that it holds at a
given temperature. From the known density of water it 1s
possible to calculate the volume of the pycnometer. For
any other liquid one simply determines the weight of the

golution and then divides by the calibrated volume to obtain

the density. The density was measured to 5th place accuracy.
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The density of water at room temperature changes about 0.03%
for each degree Qﬁ rise in temperature. Thus the control of
the viscometer bath temperature to about .002 °¢ is more
than adequate for the density determination.

All welighings weré made to an accuracy of .0l mg using
class S metric weights and the TCY analytical balance. A tare
{(dummy pycnometer) was used whose weight matched that of the
pycnometer to within one gram. This eliminated the buoyancy
correction for the weight of the pycnometer. Since the weight
of a glass object can change by several milligrams due to the
adsorption of moisture both tare and pycnometer were wiped
with a moistened chamols to egualize the amount of water ad~
sorbed. Both vessels were then allowed to stand in the
balance case for 3/0 of an hour before weighing. When
weighed empty the stoppers of both vessels were removed and
the air inside flushed out with air from the balance room.

The filled pycnometer was also flushed with balance room

air shortly before weighing. To eliminate erratic weighings
due to electrostatic charge effects a polonium staticmaster
brush was used. After the empty weighing the pycnometer

was filled by means of a hypodermic and placed in the tempera-
ture bath on the special platform provided for it. This
platform insured that the pycnometer was always immersed

to the same depth and could always be oriented in the same
direction. After equilibrium was reached the level of the

meniscus was adjusted to the etched line of the capillary neck.
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This was done under magnification and always on the same
part of the etchéd line. After this adjustment the pycno-
meter was removed and the previously described welighing pro-
cedure was followed. The buoyancy effect of the displaced
air must be considered when accuracy to the fifth place is
sought. In order to determine the density of the air the
barometric pressure and the wet and dry bulb readings of a
sling psychrometer were taken; The density of air may be
obtained from tables (28) or calculated from a formula
given by Bauer. It can be shown that the true weight dif-

ference between the filled pycnometer and tare 1is

W =W +V_ D w!

p “alr ~ 8.5 D

air

where W is the true weight difference

Wt is the sapparent weight difference

Vp is the volume of ?ycn@meter

Eair density of air

This assumes that the density of the weights is approxi-~

mately that of brass 8.5. Repeated measurements showed
that accuracy tobetterthan 1 in the fifth place was obtained.
In the normal case when two dilutions were made in the visg-
cometer, the densities of only the first and third tests were
determined. The density of the second test was obtained by

interpolation. The small changes in the densities of the

solution made this procedure acceptable.
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Calibration

The calibration of the viscometer was accomplished by
measuring the viscosity of water at 5 temperatures. The
range of temperatures was from about 24 °¢ to 28 °c. This
represents a range of relative viscosities based on the vis-
cosity of water at 28 °¢ from 1 to more than 1.09., The

basic viscosity equation derived previously is

72 x(D(At%nE/t}

The viscosity and density of water is known. From the

equation it is evident that if we plot
é5t vs 1/,2

we will obtain a straight line whose intercept is the con-

stant A and whose slope is the constant B that is
/}I
/ .= A + 2
/oy = A + B ( g}

The data for this equation is included in table one page 92 .
- A least square line was fixed to the data. This gave the
following calibration constants.

The viscometer bulbs are numbered consecutively from

the top
A B
bulb # 1 0.00444308 0.5706
bulb # 2 | 0.00378363 0.3784

bulb # 3 - 0.00406509 1.0002



i Tl
)
L

" @ ] o
£ f @O
o] G 7y
n o
o w
o @
oW by G 42
o Q o 173 v
& b
st 4 s 5
[ @ +
s g 1)
W .ﬁ Mm
i [0} - o
i ot 0 w @
0o 0 e =
o Qe 5
o < Mw M.w
3= i,
& o
© L
(S <
e _
7y ’ ”w.m
.
@ y
IS (o)
e e
enest

e
H

o B o
4+ e ko
i <
i
54 Gy
=
o .
oo @
G
N { A
Y ¥ > he 3
m\w «_3.,\ a3 3 [
o © T < BN w
O g, &
ol i I [
- O £y w
o © O o]
qw [ 3
b 0! &
= ] © o
U < O o g
33 oy n =l
" R @] 9 e~
e s
b O ol @
S S 5 o
P i
[ S el 43 o i
1o = e i .
7y e Wu& - Cud
A 20 o]
by o O £y
U] 0 o
£ 2] o -
o Sy I O

H

a7

s

ment

Y

The theoret-
xperi

=
£

e e

]

e

21

810N,

en

1%

&

were no surface

t.x were

F
ES

s

i
rough time is then related to t

)
i

cccur

d

1
cal flow-%

'Y

5

WOU
L



=

3
foq

o3

aced T

o

1

™y

oe rey

me by

Iy

E

e

o
]
€

"

4

ey

s Ay T
netry of the

geo

.

flow=-throug

,

wne

-

a2

o

1

.
i

f=)
i

or

i

L

s
&

7

"
"

1Y

H

Ty
1i
L,
el

Le

1

i
b
&
O




‘s 2 .
dividing by 1 + s expanding and ignoring C~ with

F.mm

regpect to C one has

g 2
L ﬁ o In
tez: = %in (3‘ /02: 1 - {3( (a;: - Pi )

So far the devél@pmeﬂt has been straight forward. We
have ignored, however, the fact that the Ubbelohde viscometer
has a suspended level. The effect of the surface tension in
the suspended level is opposite to that in the upper bulb.

The effect of the surface tension is to increase the mean
head and therefore to decrease the flow-through time. It
would be possible by a proper selection of the size of the
upper and lower bulb te minimize the effect of the surface
tension, This is in fact one of the advantages of the
Ubbelohde suspended level., Essentially the previous theo-
retical development is unchanged except for a difference in
sign. The net effect of the surface tension 1s the difference
between the contributions of the upper and lower bulbs. If
we ignore the kinetic energy correction 1t follows that the
relative viscosity corrected for surface tension {,b?el}th

is related to the actually measured relative wviscoslty

(A

%

by the eguati
rel}meas v the equation

\ 0 9%
( %rel}meas - (’hrezjth 1x fghﬂ fﬁf

The previous development makes this equation plausible. It

is possible to determine the correct sign and the value of



C experimentally. The relative viscosity of the detergent
TMN was determined in a very dilute range (.03% to .07%).
Over this range the relative viscoslty was a linear function

the concentration and the surface tension remained constant.

N

o
A least square line was fitted to the data. By extrapolation
to zero concentration one obtalns

AT

FRR S —

(0

The extrapolation showed that the plus sign is correct. The

]
I+
3

apparatus constants for each of the three bulbs are

bulb C%
1 0.00861
2 0.01476
3 0.01576

These values are about the same as other experimental

values of surface tension constants listed in Philippoff

Jones and Talley 0.0102
Jones and Fornwalt 0. 0005

Ubbelohde with suspended level  0.0058

Surface tension measurements were made with a DuNotly Tensio

meter.

The effect of the surface tension correction may be seen

n the following table of the specific viscosity of the buffer

ol

solution,



T

Bulb Uncorrected Corrected
1 .01105 .00784
2 ‘ .01353 .00794
3 - .01370 .00780

It should be noted, however, that the finally determined
curves for the TMV and PSL and for the mixture are not mater-
ially changed by the surface tension correction. This is due
to the fact that the surface tensions of all solutions except
the highest measured concentration of PSL were the same. The
viscosity of the TMV solution, for example, was obtained by
subtracting the specific viscosity of the buffer from that
of the buffer - TMV solution. Both the surface tension
corrected specifics and the uncorrected specific viscosities
gave to within 3 or 4 in the fifth place the same value for

the specific viscosity of the TMV by itself.
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EXPERIMENTAL RESULTS

The data from which all curves are plotted is included
in tables 2 and 3 pages 93 and 9L, The viscosity of tobacco
mosaic virus was measured in a 0.01 M phosphate, 0.001 M
Versene and 0.2% Tergitol TMN agueous solution at 28 °c. The
range of concentrations wag from approximately 0.4 to 0.025 g
TMV/100 g water.

Graph 8 is a standard plot of reduced specific viscosity

versusconcentration

h

¢
sp/é Vs

The units of concentration are grams TMV per 100 grams water.
The curves for all three bulbs are similar and show a definite
shear dependence, Below a concentration of about 0.06 g

TMV /100 g water there is a distinct break in the experimental
curves. OCraph two is a plot of the logarithm of the specific
viscosity vs shear. The extrapolated zero shear values Ifrom
graph two are plotted on graph 8. The assumption is made

that the specific viscosity can be expanded in & power series

in concenbtration., That is
_ ; 2 3
,h.spw{ql}OC*é’BC 4+ C ¢

the zero shear curve may then be represented by

| | "
°Lsp ~ 0.3892 ¢ + 0.03L2 ¢
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The points below 0.06 g TMV/100 g water are ignored in
this calculation. These points are neglected in the calcula-
tion because, as explained later, it is believed that they
are displaced due to other physical effects. The variations
of the reduced specific viscosity %sp/ ) in the lower con-
centration range were within experimentai error so that the
second order term could not be determined. The intrinsic
viscosity of the TMV in this region was obtained by extrapola-

tion from graph 8
(%1, = 0.372

The units of intrinsic viscosity are 100 g water per g TMV.
The viscosity of polystyrene latex spheres with a mean

diameter of 880 3 was also measured in a 0.01 M phosphate,

0.001 Versene and 0.2% Tergitol TMN aqueous solution at 28 °C.

The range of concentrations was from approximately 1.2 to

0.12 g PSL/100 g water. Graph 3 is a plot of reduced specific

viscosity vs concentration

%Sp/c ve ¢

These curves show a definite shear dependence and an
anomalous viscosity effect at low concentrations. Graph 4
is a plot of log ‘%sp vs shear. Graph five is a plot of
log olsp against inverse shear.

Usging the value of the sgpecific viscosity extrapolated
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to zero shear and to infinite shear, the curves of reduced
specific viscogity vs shear are plotted on graph six., The
zero shear curve still shows the anomalous viscosity be-
havior at low concentration. In the infinite shear curve
the anomalous behavior has disappeared. Disregarding the
ancmalous viscosity behavior for the zero shear case one

has, expanding in a power series in concentration

(infinite shear)

<

M gp = 0.0281 C + 0.0071
hsp

The intrinsic viscosities are thus

(]
0.0344 ¢ + 0.0072 C° {(zero shear)

i

(R, = 0.03uk (%1, = o0.0281

The viscosity of mixtures of polystyrene latex and
tobacco mosale virus was also measured in the previously
described buffered solution at 28 °¢, The range of con-
centrations for the PSL was from approximately 0.3 to 0.6 g
PSL/100 g water and for the TMV from approximately 0.135 to
0.35 g TMV/100 g water. Several tests were made with the
concentration of the PSL at a constant value while the TMV
concentration was varied. Other tests also varied the
concentration of the PSL. The assumption is made that the

specific viscosity of the mixture is given by

&

Mix BSL ™V
Ihsp = Agp 7 lap '}”A/}lsp

wheré,A'%S? is the increment in the specific viscosity due to

interactions. From the specific viscosity of the mixture was
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subtracted the specific viscosity of the TMV and the specific
viscosity of the PSL leaving Z&%Sp. If the assumption is
made that the increase of viscosity due to mixing is bi-

linear in both concentrations one obtains
A =
Ksp £(8) Coyy Cpsr,

The function f(g) is a function of the geometric parameters

of the two molecules. Graph 7 is a plot of

Al%sp Vs Coyy Cpst,

It is seen that

f(g) = 0.0145

is a constant over the range of concentrations considered.

The following summary table is given for the experimental

data
{qllo (21, B x 10
TMYV 0.3892 342
0.3722%
PSL 0.0344 0.0281 7.2
Mixture 145

*Below a concentration of .06 g TMV per 100 g water
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DISCUSSION OF RESULTS

The two significant features of the TMV data are the
variation of the reduced specific viscosity with concen-
tration and the abrupt change in the sgpecific viscosity
| around 0.05 g TMV per 100 g water. Boedtker and Simmons
(44) report that the reduced specific viscosity was in-
dependent of concentration over the concentration range
from 0.6 to 0.12 g/100ce., Yang (45) reports a linear
dependence of the reduced specific viscosgity on the con-~
centration over the concentration range .8 to .3 g/i@@cc,
It is possible that the variations in the reduced specific
viscosity were below the accuracy of measurement in the
case of Boedtker and Simmons.

A better understanding of the variation of the constant
B of the second order term may be had by considering the

hypothesis of Huggins (46) that

- 2
szl i,)l}g
The interaction coefficient kl defined by this relationship

is a dimensionless number. In general one may assume that

’)IS;Q = {0{}0 ¢ %2{1 [’)z]g (’12 aﬁskg E/}l'}g C3

raph one is a plot of the reduced specific viscosity vs
the specific viscosity neglecting the points below 0.06 g

TMV ver 100 g water.

alsp/a Vs qsp
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Clearly on the power series hypothesis one has

L (A1 v e 1R A,

The intercepts on graph 1 are either the reduced specific
viséosiﬁy extrapolated to zero concentration or, in the
case where the shear dependence has been extrapolated out,
the intrinsic viscosity. The slope of the curves is

1%“ @:MC(??

} ®
sp/é ¢ > 0
It is from graph one that the values for | % } and kq

are computed

k., = 0,226

-1
Over the range of experimental shears the factor kl did not
vary. The experimental curves for viscometer bulbs (1) (2)

(3) can thus be represented in a power series in concentration

by

LI 2

sp

¢+ ky ( %

) )
Sp/cc»«—»o gp/cc—«aec

where ( % is taken from graph one and kl = 0,226,

£
sp/é ¢ - 0
Returning to a consideration of Yang's data for TMV we

obtain a value for kl of about

1 —

ky = 0.38
as opposed to our value of

kl = 0.226
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Yang does not interpret the variation of the reduced specific
viscosity with concentration as hydrodynamic interactions. It
would be expected that Yang's value would be higher since his
measured concentrations are somewhat above those in our in-
vestigation. Model experiments (47) on rod-like objects
have given a kl = 6. This high value may be attributed to
the lack of Brownian motion. Although there is extensive
data (48) on the k value for flexible molecules where the
value of kl ranges from about 0.20 to 0.50 there does not
appear to be too much data on rigid rods. It is possible
that the value 0.226 determined in these experiments is the
first accurate experimental determination of the kl coef-
ficient for rigid rods.

The break in the experimental curves of TMV below 0.06 g
per 100 g water for the reduced specific viscosity may be
due to one of two possible effects. In this concentration
range one might expect that such an effect could be due to
adsorption of the TMV either on preparatory glassware or
on the interior surfaces of the viscometer. The process
of adsorption removes some TMV from the solution. The
actual concentration of the TMV in the solution is reduced
and the relative viscosity is lower than that expected for
the original concentration. This process is only important
in extremely dilute solutions. Another possible hypothesis
is that a small fraction of the TMV is dimerized and that

in the very dilute range these dimers disassoclate causing
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the viscosity to drop.

For reasonably monodispersed systems Boedtker and
Simmons (44) report an intrinsic viscosity of 0.367 + 0.000
(in units of 100 cc/g). Schachman and Kauzmann (49) report
0.32 and Watanube 0.365 (50). Other values for non-mono-
dispersed solutions have varied from 0.25 to greater than
0.6. Both values of intrinsic viscosity reported in this
investigation are in good agreement with previous results.
In units of 100 cc/g per g the experimentally measured in-

tringic viscosities are
(71, = 0.39% [% ], = 0.373

In particular the lower value of 0.373 is within the experi-
mental error of the value reported by Boedtker and Simmons.
There are actually three unusual features of the PSL
data. The data shows shear dependence. The intrinsic vis-
cosity {'}]O is higher than the expected Einstein value of
0.025 and there is an anomalous viscosity effect at low
concentrations. The data is subject to at least two inter-
pretations. The viscosity of the nonionic detergent TMN
shows a definite shear dependence when measured by itself.
The buffered base solution which contains TMN does not show
any shear dependence. In the presence of the PSL which is
coated with TMN it is possible that the TMN molecule bhecomes

extended. The effect of this extension would be that the

*
Below 0.06 g 100 per 100 g water.
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sclution would show a shear dependence and the measured in-
trinsic viscosity of the PSL would be higher than that
expected. PFurther since the amount of TMN in the solution
is held constant, an anomalous viscoslty effect would ap-
pear at the lower concentrations of PSL. If this hypothesis
is correct one would further expect that on extrapoclation to
infinite shear the effect of the flexible TMN molecule would
be minimized and one would have only the contribution of the

PSL,

fa

The extrapolation to infinite sghear i1s consistent with
the hypothesis. The anomalous viscosgity effect is no longer
evident and the intrinsic viscoslty is within the range of
that obtained by Maron et al (51, 52, 53). Maron (54) has
shown that for latexes the true volume fraction 2 is related

to the wvolume fraction v Dby the relation
v = 1 + 6Z¥’
t/? @S

where A is the thickness of the adsorbed monolayer of
emulsifier and QS is the volume toc surface avefage diameter
of the dispersed particles as determined by soap titration.
4 typical thickness of the monolayer, which is related to
the end to end distance of the emulsifier molecule, can
range from 18 to 30 2§ Thusg the correction in the case of

o
880 A PSL can amount to values of

= 1,12 to 1.2

vt/m =



Converting the measured

(%41, =o.028%

to units of volume fraction one has
[}, = 0.029”

If we now apply the correction due to the monolayer of

emulsifier one obtains values of
E"Q loo = 0248 to L0265

which is in excellent agreement with the Einstein value of
L0250,

It is possible that an alternate hypothesis dealing,
for example, with the nature of the emulsifier layer on
the surface of the PSL may also explain the data, I the
emulsifier were not completely effective long range ordering
might occur or a tendency to form doublets would become
evident. Extrapolation to infinite shear could in this case
also produce the experimental curve obtained in this experl-
ment. Further investigation with other emulsifiers and
different size PSL particles is perhaps indicated. The

technique of extrapolation to infinite shear would, how-

ot

ever, appear to have considerable merit in the investigation
of polydispersed systems containing spherical particles. It
is quite possible that, as indicated in this investigation,
the anomalous viscosity effects encountered by others (55,

56) may be due to changes in the emulsifier. The range of con-



centrations covered in the experiments i1s about a factor of
ten smaller than previous investigations.

Since the coefficient of the second order term remains
almost constant in the case of the extrapclation to zero

shear and to infinite shear the value of the interaction

k. = 0.61 =zero shear
%0

k., = 0.90 infinite shear

The value .9 is in excellent agreement with previocusly
determined k., values for spheres (57). The value of .61
1s smaller than the value k, = .7 determined by Eiler (58).
A comparison of the values of kl determined for PSL
and for TMV shows that the TMV value is about 1/3 to 1/

that of the PSL. This is contrary to what is generally

saild that one would expect

Fh
P
s
g
.y
o
o
o4}

expected. Philippofl

<t

the value of k. to inerease with increasing nonsphericality.

It is possible that some orientation phenomenon acts gimul-
taneously to decrease the value of ki for rods.

The experimental results for the mixture of TMV and of
PSL may be interpreted along the same lines as the homo-

geneous suspensions. The increment in the specific viscosity

was glven by
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We therefore have

©q APSL . LTV .
ey i%}o gﬁ}@ = 0.0145

It is believed that this is the first measurement of
the interaction coefficient for a known polydispersed
system. The interaction coefficient approaches that of
spherical particles. We had previously postulated that the
low value of kl for TMV might be due to an orientation effect
of the particles. One would expect that this orientation
effect would be disrupted by the presence of the spheres.

This conjecture is supported by the experimental results.

Discussion of Errors

The sources of errors in viscosity measurements have
been discussed previously in Section II pages 18-20. The
efflux times in the neighborhood of 200 seconds show a
standard deviation of

4 milliseconds
The density measurements were accurate to
1 x 1077
The determination of the concentrations of the solution 1s
perhaps the greatest source of error. In the case that
dilutions were made by weighing an accuracy to
0.001 ml

was maintained. Dilution in the viscometer which was
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accomplished by pipettes was estimated to be accurate to
less than

0.004 ml
If all errors were attributed to the determination of the
relative viscosity then the experimental data shows a
standard deviation of approximately

0.00004

in the relative viscosity.



THEORY

We shall consider in detail the Einstein approach to
the hydrodynamic theory of viscosity (of a dilute solution
of spherical particles). It would be well to list again
the physical assumptions:

1. The suspended particles have dimensions large
with respect to the molecules of the solvent
but small with respect to the characteristic
length of the experimental apparatus.

2. The undisturbed flow of solvent is sufficiently
slow so that inertial effects may be neglected,
The flow 1s assumed incompressible.

3. The solvent adheres without slipping to the
spheres,

L, The concentration of the suspended spheres is
infinitely dilute, The action of suspended
spheres is additive.

Since the first assumption permits one to treat the
solvent as a continuum, the Navier-Stokes eguations are
basic to the entire theory. The condition that the
particles be small with respect to the characteristic
length of the apparatus is an experimental reguirement
that must be fulfilled in any verification of the theore-
tical results.

The neglect of inertial effects allows the use of the
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Stokes approximation to the Navier-Stokes equations. The
resulting linearity of the eguations greatly facilitates
the mathematical scolution of the problem.

The adherence condition for viscous fluids has been
extensively verified by experiment. It is reasonable to
suppose that this condition would also be fulfilled by
macromolecules, The last assumption eliminates considera-
tion of particle interaction. Einstein assumed that the
perturbation due to the presence of a sphere vanished at
a great distance from it. Since the dilution is taken as
effectively infinite, the distance between particles is
infinite and there is no particle interaction. From the
solution for & single sphere one then obtainsg the solution
for a very dilute suspension by linear superposition.

We may now formulate the problem mathematically. The
solution of the flow problem will consist of two parts.

1. The unperturbed flow

2. The perturbed flow due to the presence of the gphere.

The perturbed flow is the solution of the Stokes equa-
tions which vanishes at infinity and which, together with
the unperturbed flow, satisfies the rigid adherence condition
on the surface of the particle.

Let the total flow be

where
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is the unperturbed flow and Vqg is the perturbed flow.

The linear tensor % i is assumed to be symmetric. There
is therefore no relative motion of the perturbing sphere with
respect to the fluid.

It is, of course, possible by a coordinate transforma-
tion to diagonalize Oype SO that we deal only with the prin-
cipal dilatations. This will be done later in the analysis
in order to conform exactly with Einstein's calculations.

The basic Stokes equations are
/\ngvi:-jﬁ— i$1:2:3
dx,
i

where

>
V3. = ) RS

+ k B XkZ
and 710 is the pure fluid viscosity.

The incompressibility condition is
vy

%,

(Note the double index summation convention is used)

= 0

From this last condition it is clear that

U, . =
14 ©

The boundary conditions are

2 2 .2 2
r = X t Xy XB



and v = 0 when T = R
where R is the radius of the sphere.

The initial pressure 1s constant and may be taken as
ZETC .,

The solution to the flow problem posed above is

. . R3 ) o R>
Vig = 2= A R 2 k1 My P Mg T % B

a1,

where n 18 a unlt vector in the direction of the radius

At large distances from the particle the perturbed flow

is radial and proportional to the original flow field Osye

. 2 . e o
and the volume of the particle R”. The velocity field falls

i

off with the sguare of the distance from the sgphere.

Having determined the flow field we calculate the in-
crease in eq rgy dissipation due to the presence of the
sphere. As will become evident in the analysis this energy
dissipation may be related to an apparent increase in the vis-
coslity of the suspension.

One may calculate the energy dissipated per unit time
and per unit volume by calculating the rate of working of

the pressure forces on the surface of & large sphere cone-
. &

oximation the

4
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centric with the particle,.

rate of working of the pressure forces must be the energy



dissipated since the change in kinetic energy which is of

second order in the velocities is ignored.

dw 1 6 a
ST /// ik Vi Mg

where the stress tensor

PR Jik“-‘“‘qlc(évi + d v )

ik P %y ) Xy

and

éfk = Ny ar

At this point it would be well to note that had the

standard definition for the dissipation of energy been used

2
aw ‘ Vs 9"1«;
B I £~ ‘5 (/ o av
aw /// )% Tam,

the cross product derivatives between the original flow Vo1

and the perturbed flow v,, would have been of O(1é3) . The
integral would bave therefore been indeterminate upon at-
tempting to integrate over all space. This type of integral
is divergent in the sense that the result of the integration
over all space although finite assumes different values de-
pending upon the method of integration. The surface integral
on the other hand has definite physical meaning and is de-
terminate.

Upon diagonalizing the tensor aik the result of the

integration is
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where Bil are the principal dilatations of the or

podo

Yot

ginal flow.
In the absence of the spheres the energy dissipated per unit

time and volume of the pure solution is

( gi / =2 gig %cz

sol

In the case of n spheres per unit volume one has

n
V, o=V, + .
i ol :£4gg

&

d

ke

and using the additivity assumption one has

aw - o 2 [ Sy %
T--28i A gy
where g = ~4§%§§wm- is the small volume

fraction of the spheres. In analogy

ot

o the pure fluid dis-

gipation of energy we define for the suspension

aw aa* ﬁ% 2
dt - % ii
» susp
% 2 3 5 LR P B o %
where '% is the apparent viscosity of the suspension and aii

are the principal dilatations of the suspension. Thus we

Bod

obtain

7]

O] 1



In order to cobtain the apparent viscosity % of the

+*
suspension we must calculate B 1 in terms of Sgie
N b

i
In the previocus calculations we considered only a single

£

sphere and simply added the effects of the other spheres. In

@‘

o s £y = oy > 3 0%:
crder to evaluate the principal dilatation B.., we must care-
wba ke
fully define our coordinate system. Filrst let ﬁi“ = B.. Let

point %y (j = 1,2,3) be a fixed point in the fluid, Then the

flow at x, due to a sphere at x, is obtained from our previous

€.

7 V 'y -
eguations by substituting (x, - xj} for x,. Summing over all
t} e
-t -5
spheres P and retaining only terms of order O{—=5) and O(R”)
:E"B&“‘

this flow written out in detaill is

G
[2 «‘.,.;l 13 (3]
V., o= Z 533{}‘:?“}'_; - 51/2 .
p & o [3) - v 2 ‘:.} 2
[ 2z,
N J o
3 2 -y R & ,ﬂ% L3
Due to symmetry the principal dilatations gj of the
suspension are parallel to those B, of the original flow.

By definition then

S %

v
and 8 =B, + (avi
na 3 3 Y
) Y a{XJ >3 ) % y=K
v
N Ve
R A
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llowing Einstein we replace the summation of
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ticles by a volume integral over all coordinates of the
particles times the number of particles. Thus

i

n o= wgm the number of particlesg per unit volume and
F’ is the distribvution function of the particles

s

. The distribution function lg normalized

dx. dx,. dx. = 1
//F ‘o 3

dv

The volume integral of &6 i is, as in the case
o

around the point Xj
as

of the energy calculation, of order 9{1553) . We cannot
therefore integrate over all space. Einstein's procedure
of averaging over a large sphere £ of volume V is perhaps
the only method of attack., It will ultimately be supposed
that the sphere tends to infinity. Since nothing 1s known
about the distribution function f? it is agﬁ@mea by Einstein
to be uniform in the whole sgpace.

Applying Gauss's theorem to the volume integral one obtains

AN 4
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Finstein then integrated over the extericr surface of th

sphere to obtain

This calculation is however lncorrect sgince the domain
of integration contains a singularity which was ignored in

a
spplying Gauss's theorem, We must therefore introduce a

small sphere of radius € about the origin and integrate
over this 1uw@?lﬁﬁ mirface and then allow £ —> . It odis

immediately evident however that since u - Oé‘fr } the

integral is independent of r and that therefore the contribu-
tion of the ocuter sphere is the negative ol the contribution
of the interior sphere. The value of the integral ig accord-

sy

ingly zero.
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It has been suggested by Frish and Simha (3) that
Einstein's result would be correct if we were To place a

particle into the origin. The surface integral over the

then because of the boundary conditions This is also in-~
correct since the physical interpretation of the integral

is an integration over all coordinates of the other spheres.

w

3

On placing a particle at the origin no sphere can approach

w3

closer than 2 R to the origin so that the integration must
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extend from 2 B to th
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S. In this case the contributicn of the inner sphere to
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Digregarding for the moment the fact that the principal

dilatations obtained by Einstein are wrong we shall calculat

+he viscosity inecrease of the suspension.

SR 2 2 - .
Byy = B, (1 -2¢) summation convention)
o oo
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s will be shown shortly in a rigorous development due
to Burgers (15) this final result is correct. ERven at this
late date there appears to be some confusgion in the litera-
the real nature of Einstein's result. Several
investigators (59, 60) have tried to justify the Einstein
obtained principal dilatations., This ig perhaps motivated
by a desire to extend the theory to second order in ¢ for
in such an exbension a similar integral occurs. It is be-
ii@v&d that the source of the confusion lies in the fact
that Einstein actually committed two errors which cancelled
each other., If we again consider the energy calculation 1t

nt that Einstein in considering the energy dip-

sipated in a large sphere S concentric with the original

r the perturbation veloclty. It would appear
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regsonable that one should demand thalt the perturbation
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- .2 . ooy o oS - £3 i 1 2 L .
relocity vanishes on the surface of 8. Ve can then Iinterprev

narticle has essentially modified the condition satisfied at
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the extension of S to infinity in the following interesting
way. The growth of the surface of the sphere in the limit-
ing process 1s always slower than the singularities which
thus stay out of the region of integration.

We may satisfly the condition of the vanishing of the
perturbation by superimposing a spherical harmonic such

as to cancel the second term in

on the surface of S, This is exactly the procedure followed

vy Jeffery (12) in his motion of an ellipsoid calculation.

Jeffery does not make a comparison, however, with Einsteint's

calculations nor does he calculate the principal dilatations

of the suspension but tacitly assumes them to be that of

the original solution. Retaining terms to order O(—%r) one
r

has with the summation convention
o 3 B x.2
Vi = Vo T B/2 R xy 5
where 5
% 3 B. x.
p::_5 OR.___.J_.E:.&.Q..
1)
r
When this is combined with the appropriate spherical
harmonic one has
5 p%r?  J

o
P AXi

5 5
v, =v_. -4 x 2 (5/8 R3ij§>+ (5/8 R%Jx?)

5
i oi i pd r5
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wnere P is the radius of the sphere 3. This gives for the

pregsure on the surfsace of S

- . 2%
p = -25 %o 5/4 R B.xy
03/5

If we now calculate the energy dissipated we obtain

awr Ol 2 e oo
=2 1, By [L+2.54]

where @ is the volume fraction of a single particle or upon

fode

use of the additivity assumption, of the whole suspension.

Using now the fact that the dilatational components of the
(e ity

solution and of the suspension are the same to order 0(¢)

we obtain
* Vi LY
o= (1+259)

The above interpretation is internally self consistent.
The results of the calculations are in complete agreement
with the rigorous approach of Burgers. They agree with the
slightly different approach of Landau and Lifshitz (61) and

they are in accord with Jeffery. The above interpretation

ode

removes some ambigulity that had existed in the Einstein

b

by

ti

-

procedure. We shall now turn to a detailed ocutline o© e

£

urgers procedure of calculation of the viscosgity increment
lue to a sphere in shear flow, In this analysis a comparisc

will be made with Einsteint's approach.

s

i
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J. M. Burgers (15) has developed an alternate approach
to the calculation of the viscosity of a suspension of
spheres, We shall outline the approach in detail and then
compare it with that of Einstein,

Tet the undisburbed flow field be

ui = @xg J'

i

In the liguid we consider a small spherdical particle of
radius R which for convenience we place at the origin of our
coordinates. The undisturbed flow induces a rotation of the
sphere equal to D/2. The rotation alone does not fulfill |
the no=-glip condition on the surface of the sphere. The

velocities of a point on the surface are indeed given by
i - . = -
=5 ng Vo = ) Dxl v3 = 0

We must introduce a perturbed flow uj‘ such that on the

surface of the sphere

i i
or
1 1
§ e e o T e e om T 108 e )
ul = 5 JAQ ug = 5 SAE u.t o= O

The perturbed flow uig vanishes at infinity. It is noted
that the relationship between the coordinates and the
velocities is given by a constant symmetric tensor. The

solution to this problem has been given previously in the
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explanation of Einstein's method. Specializing the tensor

Gy q to the case of couette flow and letting

S

Xy =X Xo =¥ XS = 7 one has
2 2 5
RO %y R 1 R
I C-= Sy SR
r~ rT T
R3 ng Rg \ 1 R7x
vi = - 5/2 D = (1 - —=) - 5
2 "l 2 5
r r r
. o RS XYz 9 Rg
Wﬂwﬁ/uﬁ 5 {@“ 2}
r r

We now consider the field of flow toc be bounded by two
planes with coordinates ¥q and Voo At these surfaces the
normal component of the perturbed veloclty must vanish.
Burgers accomplishes this by adding a potential field 5%
satisfying the equation §726% = O in the interior of the

field and satisfying the boundary conditions

o >
Dg” Dxy, dp" . DXYq
y

5 ) :
dv r ¥ r
I2
As will become evident in the development of Burgers!
*
method we do not need to calculate the field B .
With no particles in the fluid the velocities of the

flow in the planes ¥q and Is are given by

Uy = Dy up, = D ¥,
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The change in the x component of velocity due to the
#
field B is given by

The total change in the horizontal component of velocity due

to the potential flow vanishes
OSo
3s*
B dxdz=20

~ to

in consequence of the circumstance that § 1itself vanishes at

In the suspension consider a layer parallel to the x z

plane with coordinate y, Vp ¢ ¥ £ ¥, and thickness d y.
let x , v, Z_, be the coordinates of the center of the sphere
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The additional flow due to the presence of the sphere has

 been calculated above., At the point A
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dts x-component

where the subscript s indicates that we are measuring dis-

tances from the sphere.

he additional flow produced by n dxg dy dz_, particles
P (>3

contained in an element of volume around the point Xys To Zg
1

has the x component u, n dx _ dy dzgg This component pro-
P pel

duces a rebardation of the flow and the total retardation

due to all particles contained in a layer dy obtained by

J = - 5/2D R {y,.g -y} ndy X ;}fsmpﬁ.xgc‘iz

[0}

- oo o
Jﬁ = - 5/37 D R n dy

Tt is important to note that this value is independent of y

and of the position of the peint A

({(\ =+ 5/39T D RS n dy
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The relative horizontal velocity @{yl + ¥4} of the two

i

flow planes v = y, and ¥ = ~¥, is now changed by the amount
L4

d- 4 - J; - - 10/37TD R> n gy

Integrating the effects of all layers from -y, to vy
one finds that the relative horizontal velocity of the ftwo

layers is given by

- D(y, +¥p,) [ 1 -2.5¢]
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If we now consider the change in the velocity gradient

21 N I .
22 at the point A} we find that the changes produced by
¥ '
the particles are partly negative and partly positive and its

integration over all space is zZero.
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The contribution of the potential field ﬁ% alsc vanishes on
iﬁtégration, .

This result has a direct physicai~interpretatien for
the frictional force -ryx per unit area of a plane parallel

to the xz plane 1s given by



If we regard vy nd v~ as the walls of our viscometer

we can see that the btotal value

wall allows us to calculate the effective viscosity.

let V4 Yy = d and let U be the relative VQi@ciﬁy of
the two walls of the viscometer. With a pure solvent and
running at a speed of QQ the shear stress measured on the

walls of the viscometbter 1s

with the introduction of the particles

but from the definition of viscosity one has

since we have shown that ¥ = ‘T we have




Nepr = Ay (1 +259)

which is the well known Einstein formula,

On comparing the modified Einsteln procedure with
that of Burgers one finds that, although the flow lelds are

leulate the increase in
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te region. Einstein does this by consider-
the pressure forces on a large
sphere concentric with the original perturbing sphere.

Burgers considers two parallel planes in the same calcula-

tion. Physically Burgers' geometry is more satisfying since



nite that makes the

;ww’ﬂ

that the volume of integration is T
calculation possible. One musgt, therefore, introduce a
compensatory flow which causes the perturbation flow to
vanish on the boundary. In the corrected Einstein method
this is done.

Burgers introduces a compengational field for the
normal velocities at the surface of the twe planes. In-
stead of introducing a compensational field for the horizon-
tal velocity he, as has been shown, calculateg The total
change in the velocity over the plane, Since the total
frictional force does not change he can then calculate the
effective viscosity.

In the corrected Einstein method we consider a dif-
ferent integral of a derivative of the perturbed velocity,
which 1ls interpreted as the contribution to the principal
dilatation of the suspension of the perturbed flow. This
integral also vanishes. The vanishing of the contribution

of the perturbed flow to the frictional force in Burgers!

ot

he contribution of the perturbed flow tc the

jax)

case and of
principal dilatations in Einstein's case has a definite
significance for any theory of viscosity to the second order
in the volume fraction. It has, perhaps, been the desire

to extend the theory to the second order which has motbtivated

some of the previous rationalization of Einstelint's original

calculations.,
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Second Order Theory of Viscosit

In the second order theory of viscosity an attempt ls

ot

o
[t

a

et

made to relax BEinsteint's fourth assumption, which is

5

the solution is infinitely dilute and that the par

i

iecl

¢

]

o

do not interact. This is accomplished by expanding th
perturbation field of a given sphere in a Taylor's series
in the neighborhood of a second sphere. The Stokes equa-

tions are then solved for the perbturbation flow due to the

second sphere in the modified flow field. The perturbation

!m)m

vanishes at infinity and, together with the original flow

3

field plus terms from the Taylor expansion, fulfills the
condition of no-slip on the surface of the sphere.

In the neighborhood of a given sphere we shall assume
that the perturbation field due to a second sphere at a
fixed locabtion is expanded in terms of a Taylor seriles.
From the original solution that we obtained for the per-
turbed flow of a spherical particle in a symmetrical flow
field, we can cobtain the derivatives of the velocitles.

These are
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The contribution of the terms due to the Taylor!s expansion

is divided into symmetric and antisymmetric parts.
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D x éxi . axm dx.
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the flow due to the second sphere in the neighborhood of the

The second part of this expression causes the sphere to per-
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term., It is seen that the original flow fleld

Vo1 = %k Fi
has been replaced by
? %
Vot = (g Fogl) x,

The quantity (a,, -+ &i%} is a symmetric constant tensor so

2 1
1k

that our original general solution to the perturbation

problem does not change. We have therefore
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The solution is perfectly general and may be specialized
to the case of dilatational flow and couette flow. Some
significant results may be obtained without specialization.
If we obtain the energy dissipated by calculating the rate
of working of the stresses on the surface of a large sphere

we obtain products of the following form

R3 (a., G . + O, O . + Q.. !)
ik Tkl Uik Tkl ik Tkl
o 13 N T 2 o
Only the term R” a,, o, . is of O(R7) 1.e. 0(¢°). This is
the term we are trying to calculate in the second order
H
theory. It is however linear in,akl . We must average
over all orientations of the second particle with respect

to the first. Under the assumption that all orientations

f
are equally likely the average value of Gy q is zero

— ¥

akl =

This is clear mathematically since

— l b
Oy = 7% Oy 4V

The integration is to be performed over the volume bounded

by an interior sphere of radius 2a and a large concentric
sphere. Upon conversion of the volume inteéral to a surface
integral it is seen that the term involving (RB) of the
integrant is of O(—%y} .  The value of the integrand is there-

r
fore independent of r and the contribution of the interilor
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Their calculaticn

W

wre again the integration over

e

ig

[

the interior spherical surface in integrals similar to those
in the Guth, Simha and Gold calculations. Upon proper evalua-
tion the second order term vanishes.

For spherical molecules and rigid and flexible centro-
symmetric molecules the second order term due to hydrodynamic
interactions between the particles vanishes.

Specializing our general solution to the case of couette

flow one finds that the change in velocity at a point on the

plane surface is given by

d1=- 53T (eyp + Byp) 0 dy

% g
Fo e o
where Bio =~ 3 D and @12 is
1 i
L 3“}"2
E}wr) == “2”'
LAY

”§‘
Yo, | %

H
The result is linear in &1?@ We mugt average this

2

uantity over the space defined by the two planes 74 and

C“?“

. It is noted that thils expression, except for a multi-~

&

0

3y
L
1

licative constant, isg iden al to the expression for the

g}

sdditional shear stress on a plane y. On integrating over

11 spheres of the same layer and then over all the layers

s

one finds that the resultant value vanishes. In the Burgers
method one then finds that the second order term also vanishes.
vand (9) has considered successive reflections from one

sphere to another. Thus a given sphere is subject to a flow
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should result,; in the case of no interaction in & horizontal
1

straight line. Asg graph 9 shows this is indeed the case

for the PSL data extrapclated to infinite shear. Interpreted
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It is to be noted that the intercept of graph 9 gilves
essentially the same intrinslc viscoslty as obtained in graph

6., That is

E~

On the bvasis of the Tirst order term there is thus no dis-
tinction either fTheoretically or experimentally between the
Burgers result and the Einstein result. The theory of
Burgers, which ig linear in relative fluidity, adeguately
explains, in addition, the variation of the relative vis-

cosity with concentration. There is no need to postulate

particle interactions for low concentrations to explain the

2
B

onn of the relative viscosglity with concentratio He

Jodo

variat
have shown, indeed, that there are no second order inter-
actionsg at the concentrations studied, or at most they are
of such small magnitude as to be practically undetectable

even with the precision viscometer used in these experiment
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The simple linear theory 1is not adeguate to explain the

b

MV viscosity with concentration. The
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Burgers theory would lead, when considered in terms of rela-
tive viscosity, to ayaea@nﬁ ovder term of about 1500 gg as
cpposed to the measured 350 ﬁgai It is felt that inter-
actions between rod-like molecules would tend to orient
them so a&s to reduce the viscosity. Orientation effects

could not affect the viscosity of spherical particles so

2

1t a linear theory is adeguate for spherical suspensions.
In order to verify the hypothesis that the orientation of
the molecules is the contributing cause in the reduction of
the viscosity, it would be necessary to turn to some other
form of measurement than viscosity. Streaming birefringence
would be an excellent method of lnvestigating the orientation
hypothesis in any continuing program based on these investiga-
ions.

The increment in specific viscosity in the mixture of
rods (TMV) and spheres (PSL) solution may, in the light of
the above, be interpreted as a disruption to some extent of
the orientations of the rodsg by the spheres. In this case
interpreted as an increase in the interaction coefficient kl
of the TMV., This interpretation means that the value of
k., = 0.226 would more than double in the presence of the
spheres. An investigation of the disruption of the orienta-

tion of rods due to the presence of gpheres by flow birefring-
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SUMMARY AND CONCLUSIONS

wde

A precision capilllary viscometer with a photoelectric

¥

timer has been designed and bullt for these investigations.

e

The viscometer is capable of measuring relative viscosities
of dilute macromolecular solutions with a standard deviation
of 0.00004,

The assumption has been made that the specific viscosity

can be expanded in a power series in concentration. That is

%sz g%E@e~%~Ba2

The intrinsic viscosity | %} and the coefficient B have been
determined for a suspension of spherical macromolecules (poly-
tyrene latex)} and for a suspension of rigid rod-like macro-
molecules {tobacco mosaic virus). It is believed that this

investigation is the first accurate determination of the
coefficient of the second order term for rigid rods. The
viscosity of a known heterogeneous suspension of rods (TMV)
and spheres (PSL) has been determined and been interpreted

in terms of interaction coefficients. This is most likely

b

the first viscosity investigation of the interacticn of a
macromolecular solution consisting of spheres and rods. The
assumption was made that the increase in viscosity due to
mixing was bilinear in both concentrations.

The following summary table is glven for the experi-



{%]O ( %}“ B x 10"
TNV 0.3892 342
0.3722%
PSL 0.03L4 0.0281 7.2
Mixture 145

The intrinsic viscosity (extrapolated to infinite shear)
['&]“, was considered to be more significant than E'H}O in
any explanation of the PSL data. It was felt that surface
chemistry effects or changes in the shape of the emulsifier
invalidated the significance of [‘%}O for the PSL. Two
values of the intrinsic viscosity were obtained in the TMV
data. The lower value was attributed to adsorption effects
or to the breaking up of dimers.

The coefficient B was further interpreted in terms of

a hypothesis due to Huggins as
2
B =k [ %]o

where kl ig a dimensionless constant. The value cbtained

for k are

PSL TMV Mixture

Kk 0.90 (infinite shear) 0.226 1.04

0.61 (zero shear)

%Beiow a concentration of .06 g TMV per 100 g water.



A comparison with other experimental data when 1t existed
showed good agreement. The low value of kl for TMV was at-
tributed to mutual orientation effects. The value 1.04 for
the mixture could indicate a disturbance of the orientation

the

iy
b

of the rods by the spheres. It was pointed out that 1.

increment in viscoslty due to mixing were attributed sclely

by

to & change in ki or the TMV the value 0.226 would be more
than doubled in the presence of the spheres.

The Einstein theory of viscosity of dilute suspensions
has been modified to form, together with the approaches of
Burgers and Jeffery, a logically consistent theory for the
intrinsic viscosity of spherical molecules in particular, and

llipscidal particles in general., The modification was neces-
sary in order to remove what had been termed an improper in-
determinate integral in the Einstein procedure.

The second order theory in & of the viscosity of sus-
pensiong was reviewed., Previous work in this field was
shown to be in ervor. The conclusion was reached that for
concentrations up to 1-2%, hydrodynamic interactions for
spherical particles do not exist or if they do exist that
their existence cannot be demonstrated by experimental measure-
mente on dilute solutions. It was demonstrated that no second

order interactions are found in theory and that they are not

xperimental data of dilute suspen-
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sions of spheres.
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it was shown that, when pr @@e%}y interpreted, the linear

solution of Burgers to the problem of the viscosity of spher-

The linear theory of Burgers did not adeguately explain
the variation of the relative viscosity of rod-~like molecules

onecentravion. Thisg was attributed to mubtual

[

(TMV ) with
orientation effects which would tend to decrease the viscosity
of orientable macromolecules. The study of the polydispersed
system consisting of rods and spheres alsco indicated that

ht be important. The suggestion was
made that future investigations of rod-sphere suspensions bhe

made by means of streaming birefringence in order to validate

the orientation hypothesis.



Ve
v
i

Table 1

CALTIBRATION AND SURFACE TENSION
-CORRECTTION DATA

Time

191.852
225.875
211.614
191.318
225,165
210.758
191.020
2oL 727
210.285
191.997
226,026

101.434
225.336
210,884
191.216
224 862
210.453

L0 1O B0 PO B0 DO L0 DD Bl PO BB ) R

Temperature

28.000

]
-3
no
WJ1
-

)®
o
o
2N
O

24,980

24,018

e

L DD LA D 200 PO LA DD Rt ) PO et

nzrel

1.01231
1.01650
1.01954
1.00045
1.01327
1.01535
1.00786
1.01124
1.01304
1.01309
1.01718

1.01007
1.01405
1.01595
1.00891

242,589
226 478

cone.,

Surface Tension
Correction

Ao - uo.0

6-7 i
o0

&
i

TMN = 1.5

Calibration
Water
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Table

EXPERIMENTAL DATA TOBACCO MOSIAC VIRUS

Run Bulb Time p k %?%l COnc .
T, 1 217.316 .00884 - 99682 1.14683 ag?za
+ 2 256,166 . 00453 1.14993
3 239.950 .99418 1.15367 L
T, 1 209.563 . 99856 . 59682 1.10537 L2667
= 2 246,830 .90453 1.,10759
3 231.018 .O9418 1.11004 o
T3 1 201.863 . 99826 . 00682 1.06412 155
2 237.557 99453 1.06551
3 222,325 .90418 1.06756 5
T 1 198.468 .99813 .00682  1,04605 .105
2 233.466 .Q9U53 1.04696
3 218,300 .99418 1.04790 6
T5 1 196,419 . 9080k .09682 1.03509 075
2 230.994 .99453 1.03575
3 215.938 .90418 1.03636 -
T, 1 194,892 . 99800 .90682 1.02694 052!
°© 2 229,018 . 00453 1.02681
3 21l ,011 .90418 1.02696 o
Top 1 193.778 .99706 . 00682 1.02099 .037"
2 227 .808 .99453 1.02134
3 212,884 .90418 1.02145 5
Tg 1 193.138 .99793 .90682 1.01756 027
2 227 .038 . 90453 1.01782
3 212.145 .09418 1.01784 I
To 1 194,413 99798 .99682 1.02438 Nolive
7 2 228,583 .00453 1.02483
3 213.633 .99418 1.02511
Buffer 1 191.324 .99782 . 99682 1.00784
2 o2h ,87h . 904573 1.00794
3 210.096 .00418 1.00780
f’ = density k = surface tension correction



EXPERIMENTAL DATA POLYSTYRENE LATEYXY AND MIXTURE

Lad B B0 PO LAY PO Bt 0 PO 2

5

_=s

i

LA PO B0 PO A0 IO B0 DD L0 PO 2 PO bt

=

Time ‘g k 71 rel conce,
104,465  ,09815  .90682  1.02483  .568°
228,71 99453 1,02561
213,926 90418  1.02670 .
192.329  ,99793  .99682  1.01327  .178%
226,113 L00453  1,01366
211,400 .00418 1.01422 -
102,048  ,99790  ,99682  1.,01175  .1277
225,774 LQ04853  1,01211
211.068 L09418  1.01257 o
197.664  .99840  ,99762  1.04200 1.1587
232,534 .99592  1,04451
217.666 .99565  1,04665

Cone.

210.078 .99874 . 09682 1.10831 959§¥

247,552 LO0k53  1,11104 .22
231,956 L0018 1.,11479 i

205,533  ,00857  ,09682  1.08400 @ .596 5
242,053 L90U53  1,08609 .158
226,713 L0418 1,08917 i

203.875  .99851  .90682  1,07515  .596

240,061 L90Us3  1,07706 .13
225,325 .90418  1.08238 I

219.492  ,99905  .99682  1,15861  .535 }
258,861 .Q0l53  1,16231 , .355"
2h2 ., 781 L0418 1,16765 5

211.090  .99870  .99682  1.11363  ,382 ,
248,723 L90453  1,11626 L2573
233.0806 LO0U18  1,12023

208,200  .99861  .99682  1.09820  .296° .
ol 256 LO0U5B3 T 1,10055 .220
229,773 L90418 1,10406

density k¥ = gurface tension correction
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Photo 1

Side View 6f Viscometer

Photo 2
Top View of

Viscometer




96

Photo 3
Viscometer Connected
to Sensing and Recording

Equipment

Photo 4
Temperature Bath and

Viscometer
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Photo 5

Top of Temperature

Bath

Photo 6
Bath and Temperature

Controls
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Photo 7

Overall View of Equipment

Photo 8
Pycnometer and

Pipettes
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Log Msp VS Shear TMV
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Logarithm Specific Viscosity
vs Shear PSL

Shear (sec™!)
| |

60

120 180
Graph 4




Log (ngp)

Logarithm Specific Viscosity
PSL vs Reciprocal Shear

Normalized Reciprocal Shear (sec) |
| | | | I | ] |

4 .6 .8 1.0
Graph 5
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