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Chapter 1 

Nickel Catalysis in Cross-Coupling: A Review of Applications in 

Asymmetric Catalysis and the Rise of Reductive Cross-Coupling◊ 

 

1.1 INTRODUCTION 

The stereocontrolled construction of C–C bonds remains one of the foremost 

challenges in organic synthesis. At the heart of any chemical synthesis of a natural 

product or designed small molecule is the need to carefully orchestrate a series of 

chemical reactions to prepare and functionalize a carbon framework. Transition metal 

catalysis, most notably by Pd, has transformed the palette of tools available to the 

synthetic chemist, enabling new disconnections and streamlining access to complex 

scaffolds. While the incredible versatility and reliable predictability of Pd-mediated 

reactions has made them a mainstay of synthetic organic chemistry (and earned their 

inventors a Nobel prize), the unique reactivity of Ni and other base metals has brought 

                                                
◊ Portions of this chapter have been reproduced from a published review coauthored with 
Prof. Sarah E. Reisman and Dr. Alan H. Cherney (see reference 1). 
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about a resurgence of interest in these catalysts as well, particularly to effect 

stereoselective transformations.  

The potential of using transition metal-catalyzed C–C bond formation to prepare 

enantioenriched molecules was immediately recognized by the synthetic chemistry 

community. Indeed, the first forays into enantioselective cross-coupling reactions 

occurred contemporaneously with the development of the transition metal-catalyzed 

reactions themselves. Though some of the earliest and most foundational studies in cross-

coupling (including asymmetric reactions, vide infra) were conducted using Ni catalysis, 

much of this field has been dominated by precious metals until recently. Below we have 

collected the Ni-catalyzed asymmetric cross-coupling reactions reported over the last five 

decades, highlighting the utility of this base metal in catalysis and underscoring its role in 

the history of asymmetric cross-coupling. Here we define Ni-catalyzed cross–coupling 

reactions as C–C bond forming reactions between an organic electrophile (typically an 

organic halide or pseudo halide, such as alcohols, amines, and their derivatives) and an 

organometallic reagent, mediated by a nickel catalyst.  

 Enantio-controlled Ni-catalyzed cross-coupling reactions to form C–C bonds, in 

which the stereogenic unit is defined by the C–C bond forming event, can be organized 

into two general categories. The first group comprises enantioselective Ni-catalyzed 

cross-coupling reactions, which we define as reactions in which there is selective 

formation of one enantiomer over the other as defined by a non-racemic chiral Ni 

catalyst. There are several different types of enantioselective cross-coupling reactions: 

those in which (a) racemic, C(sp)3 organometallic reagents are stereoconvergently 

coupled to organic electrophiles; (b) racemic, C(sp)3 organic electrophiles are 
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stereoconvergently coupled to organometallic reagents; (c) achiral organic electrophiles 

are coupled to achiral organometallic reagents to produce chiral, non-racemic products; 

and (d) a prochiral starting material (either the organic electrophile or organometallic 

reagent) is desymmetrized. These reactions are schematically represented in Figure 1.1. 

These types of enantioselective reactions have been used to prepare molecules exhibiting 

centro, axial, and planar chirality. Our discussion here will encompass enantioselective 

Ni-catalyzed cross-coupling reactions of organic electrophiles and organometallic 

reagents, covering the literature published through the end of the year 2014.1 

Although not discussed further in this chapter, it is important to note that the 

second group comprises enantiospecific Ni-catalyzed alkyl cross-coupling reactions, 

which we define as chirality exchange reactions in which the stereochemistry of a chiral, 

enantioenriched substrate defines the stereochemistry of the product. These reactions can 

be further categorized into those which involve the cross-coupling of (a) a stereodefined 

organometallic reagent with an electrophile, or (b) a stereodefined electrophile with an 

organometallic reagent. While much of this field has been dominated by the 

stereospecific coupling of enantioenriched organometallic reagents by Pd, Ni has 

received significant recent attention for its ability to stereospecifically cross-couple 

pseudohalide electrophiles such as benzylic ethers, carbamates, esters, and ammonium 

salts.2 These reactions are an area of substantial current interest and represent a valuable 

alternative approach to access chiral products. 
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Figure 1.1. Strategies for enantiocontrolled cross-coupling. 

 

Despite promising initial reports, highly enantioselective transition metal-

catalyzed alkyl cross-coupling reactions were slow to develop, in part because of the 

general challenges encountered in Pd-catalyzed alkyl cross-coupling reactions. For Pd 

and other metals that react by polar, two-electron mechanisms, sec-alkyl organometallic 

reagents are typically slower than their n-alkyl or C(sp)2 hybridized counterparts to 

undergo transmetalation.3 Similarly, sec-alkyl electrophiles are frequently slow to 

undergo oxidative addition to Pd.4 Moreover, in either case, the resulting sec-alkyl 

transition metal complexes can suffer from rapid, non-productive β-hydride elimination. 

Thus, the successful realization of enantioselective transition metal-catalyzed alkyl cross-

coupling reactions has resulted from fundamental studies of the factors, especially 

ligands, which control and influence the efficiency of these transformations. In particular, 

a renewed interest in Ni catalysts, which can engage with sec-alkyl halides through single 

electron oxidative addition mechanisms, has resulted in a rapidly increasing number of 

enantioselective alkyl cross-coupling reactions.  

Enantioselective Cross-Coupling

3. Achiral Reagents Produce a Chiral Product

M X

achiral achiral chiral
+

4. Desymmetrization of a Prochiral Starting Material

M X

achiral chiral
+ X

symmetrical

X

1. Racemic C(sp3) Organometallic Nucleophile

2. Racemic C(sp3) (Pseudo)Halide Electrophile

M X

chiral chiral
+

chiral chiral

racemic

racemic

Enantiospecific Cross-Coupling
1. Stereodefined Organometallic Nucleophile

2. Stereodefined (Pseudo)Halide Electrophile

M X

chiral chiral
+

chiral chiral

enantioenriched

enantioenriched

chiral 
catalyst

M X+

chiral 
catalyst

chiral 
catalyst

chiral 
catalyst

achiral 
catalyst

M X+

achiral 
catalyst

enantioenriched

enantioenriched

enantioenriched

enantioenriched

enantioenriched enantioenriched



Chapter 1 – Nickel Catalysis in Cross-Coupling: A Review of Applications in Asymmetric 
Catalysis and the Rise of Reductive Cross-Coupling 

5 

1.2 REACTIONS OF SECONDARY ALKYL ORGANOMETALLIC 
REAGENTS 

 
Early efforts to develop enantioselective transition metal-catalyzed alkyl cross-

coupling reactions focused primarily on the use of configurationally labile sec-alkyl 

organometallic species such as organomagnesium and organozinc reagents. In general, 

the configurational stability of an organometallic reagent correlates to the 

electronegativity of the metal, with less electronegative metals resulting in more 

configurationally labile sec-alkyl reagents.5 For example, sec-alkyl magnesium reagents 

have been shown to racemize above –10 °C, while the corresponding sec-alkyl boron 

reagents are configurationally stable indefinitely at room temperature.6 In principle, fast 

equilibration between the two enantiomers of a sec-alkyl organometallic reagent or 

between two diastereomers of a chiral transition metal complex could enable 

enantioselective cross-coupling through a dynamic kinetic asymmetric transformation 

(DYKAT), in which the newly formed stereogenic center is controlled by the chirality of 

the metal catalyst (Figure 1.2).  

Figure 1.2. Stereochemical outcome of cross-coupling with secondary nucleophiles. 
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relative rates of transmetalation for the two enantiomers of the chiral organometallic 

reagent are substantially different. In this case, an excess of the organometallic reagent 

must be used to obtain the cross-coupled product in good yield. A third possibility 

involves a stereoablative mechanism, in which the initial configuration of the starting 

material is destroyed and then reset by the chiral catalyst during the reaction. 

 

1.2.1 Organomagnesium Reagents 

In 1972 Corriu and Kumada independently reported the Ni-catalyzed cross-

coupling between alkyl organomagnesium halides and aryl or vinyl halides;7 shortly 

thereafter the first studies aimed at utilizing chiral transition metal complexes to catalyze 

these reactions enantioselectively were reported.8 In 1973 and 1974, respectively, 

Consiglio and Kumada independently reported that the complex generated from Ni-halide 

salts and the chiral bidentate phosphine ligand DIOP (L1) catalyzes the reaction between 

sec-butylmagnesium bromide or chloride  and bromo- or chlorobenzene to give product 1 

with promising enantioinduction (Figure 1.3).9 These results were an important proof of 

concept for the area of enantioselective cross-coupling; however, since low yields of 

product were obtained, it remains ambiguous whether these reactions proceed by kinetic 

resolution of the sec-alkylmagnesium reagent or through a DYKAT. It was subsequently 

reported that Prophos (L2) provides improved enantioinduction and higher yields of 1.10 

The identity of the halogen on both the organic halide and the organometallic reagent was 

shown to significantly influence the absolute configuration and the ee of 1. Further 

improvements were observed when Norphos (L4) was employed as the chiral ligand, 
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providing 1 in 50% ee.11 A carbohydrate-derived chiral ligand (L3) was also reported to 

deliver 1 in good ee, although with poor yields.12 

Figure 1.3. Stereoconvergent arylation of sBu Grignard reagents. 
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Figure 1.5. Chiral ligands developed for the enantioselective cross-coupling of α-

methylbenzyl Grignard reagents. 
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substituent was Me (L6) to 94% when this group was tBu (L9). In order to probe the 

origin of asymmetric induction, the isomeric P,N-ligand L10 was designed. Under the 

same reaction conditions, L10 delivered 4 in only 25% ee. Moreover, the analogous bis-

phosphine L11 provided no enantioinduction, suggesting a critical role for the amino 

group. A proposed catalytic cycle for this reaction is shown in Figure 1.6 and involves 

precoordination between Grignard reagent 3 and the amino group of the ligand to give 

complex 5. The authors hypothesize that this coordination could selectively direct the 

transmetalation of a single enantiomer of the organometallic reagent, although the 

importance of this interaction has been debated.16 

Figure 1.6. Proposed catalytic cycle for the enantioselective coupling of α-

methylbenzyl Grignard reagents. 
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the sidechain heteroatom could alter or disrupt the ability of the amino group to direct the 

transmetalation event. 

Figure 1.7. Addition of exogenous zinc halide salts reverses the sense of 

enantioinduction when sulfur-containing ligand L25 is used. 
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similarity of the ee data obtained with L14 and L16 suggests that they both coordinate 

the metal in the same fashion, likely through a P-N mode. Consistent with this 

observation, changing the steric bulk on the amine of L12 gives a range of ee values for 2 

(see L19), while changing the steric environment of the phosphine does not significantly 

perturb the selectivity (see L18). Homologated ligand L17 delivers 2 in poor ee.20 Pd 

catalysts were also investigated and were shown to give comparable results to Ni (Figure 

1.8).18c 

Figure 1.8. The use of the P-N ligand PPFA provides similar results in both Ni- and 

Pd-catalyzed transformations. 
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bromostyrene using PPFA (L12) as the ligand delivered 8 in only 52% ee and moderate 

yield (Figure 1.9).18c,26 While the yield could be improved using the simpler 

aminophosphine L26, the ee of 8 decreased.27 L27, designed to induce axial chirality 

upon coordination to a transition metal, was able to induce 76% ee for 8.28 Moderate ee 

could also be attained with phosphine-oxazoline ligand L28.29 Knochel and coworkers 

reported C2-symmetric ferrocenyl phosphine L29 as being capable of delivering excellent 

ee for the coupling of bromostyrene, although the reaction scope is still limited.30 

Figure 1.9. Asymmetric Kumada–Corriu cross-coupling of bromostyrene. 
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combination of Pd and PPFA (L12) delivered 2 in 85% ee. Despite a growing interest in 

the enantioselective Ni-catalyzed cross-coupling reactions of organozinc reagents over 

the past three decades, successful efforts to further expand upon the enantioselective 

alkyl Negishi cross-coupling have been limited.  

Scheme 1.1. Enantioselective functionalization of pyrrolidine. 
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Figure 1.10. Dual catalysis approach to asymmetric cross-coupling. 
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species that can reductively eliminate the desired product. The resulting NiI can be 

reduced by IrII to complete both catalytic cycles. Additional investigations toward 

asymmetric catalysis would be valuable. 

Figure 1.11. Stereochemical outcome of cross-coupling with 2º electrophiles. 
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complexes can result in preferential transmetalation or reductive elimination of one 

diastereomer over the other (Figure 1.11). 

Scheme 1.2. Primary-to-secondary isomerization in asymmetric cross-coupling. 
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The first synthetically useful enantioselective, stereoconvergent cross-coupling 

between a sec-alkyl electrophile and a Grignard reagent was developed by Fu and 

coworkers in 2010. In this seminal report, the combination of NiCl2(dme) and bidentate 

bis(oxazoline) ligand L32 or L33 was found to promote the coupling of α-haloketones 16 

and arylmagnesium halides to give α-aryl ketones 17 (Figure 1.12).37 Notably, the 

reaction can be run at some of the lowest temperatures reported for the cross-coupling of 

alkyl electrophiles (−60 °C); the low temperature prevents the racemization of ketone 

product 17 through enolization by the Brønsted basic Grignard reagent. Both alkyl and 

aryl ketones can be prepared by this method, and these products can be 

diastereoselectively derivatized to access chiral alcohols and amines.38 

 

1.3.2 With Organozinc Reagents 

 In 2005, two reports from the Fu laboratory demonstrated the first utilization of 

secondary alkyl electrophiles in highly enantioselective cross-coupling reactions. In one 

example, treatment of α-bromo amide 18 with an alkylzinc reagent and a Ni/L34 catalyst 

delivered 19 in good yield and high ee (Figure 1.13, a).39 The identity of the amide 

substituents played a key role in achieving high enantioselectivity. When the organozinc 

reagent is used as a limiting reagent, the α-bromo amide is recovered as a racemate, 

suggesting that the reaction does not proceed by a kinetic resolution. In a second example 

by Fu and coworkers, the Ni/L34-catalyzed coupling of 1-bromoindanes and alkyl 

halides produced chiral indane 20 in good yield and high ee (Figure 1.13, b).40 The use of 

acyclic 1-(1-bromoethyl)-4-methylbenzene furnished 21c with more modest 

enantioselectivity. In both cases, only primary organozinc reagents were compatible with 
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the reaction conditions. A computational investigation by Lin and coworkers proposed 

that a NiI/NiIII mechanism consisting of transmetalation/oxidative addition/reductive 

elimination is more energetically favorable than a Ni0/NiII mechanism.41 The 

enantioselectivity of the reaction was also correlated to the difference in free energy 

between the two transition states for reductive elimination.  

Figure 1.13. Seminal stereoconvergent cross-couplings of secondary alkyl halides. 
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prepared diarylzincs, generated from transmetalation of the corresponding organolithium 

or –magnesium reagent, was unsuccessful. However, the group determined that ArZnEt, 

prepared from ArB(OH)2 and Et2Zn, could react to provide comparable results. In 

contrast to the stereospecific Pd-catalyzed coupling of propargyl halides, no allene 

formation arising from SN2' oxidative addition was observed.43 Fu and coworkers 

reported a detailed mechanistic study of this transformation in 2014, showing that the 

oxidative addition of the propargylic electrophile proceeds via a radical chain pathway, 

with the stabilized prochiral radical intermediate facilitating enantioconvergence.44 

Figure 1.14. Stereoconvergent Negishi cross-coupling of propargylic electrophiles. 
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transformations. However, these substrates performed poorly, producing 23 in low yield 

and ee (Figure 1.14, b).45 On the other hand, simple carbonate 24b underwent cross-

coupling with improved enantioselectivity. Further investigation revealed that both the 

yield and ee could be improved by use of aryl-substituted carbonates, with 24d delivering 

23 in 83% yield and 90% ee. The optimized reaction conditions proved to be general not 

just for propargyl carbonates, but also for the coupling of propargyl halides. 

 In 2013, Fu and coworkers published a stereoconvergent Negishi coupling of 

benzylic mesylates that could be prepared from the corresponding alcohols immediately 

prior to the coupling and used without purification (Figure 1.15).46 Bi-oxazoline L36 was 

identified as the optimal ligand, with more traditional Pybox and Box ligands delivering 

poor enantioselectivity. LiI was employed to allow in situ displacement of the mesylate to 

form a reactive benzylic iodide. A wide substrate scope was demonstrated for the cross-

coupling; a slight erosion of ee is observed when R = Me. Although several stereospecific 

routes to diarylalkanes have been developed to date,47 this reaction provides a 

complementary approach. 

Figure 1.15. Stereoconvergent Negishi cross-coupling of benzyl alcohol derivatives. 
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made a significant advance toward this objective in 2012 when they reported the 

asymmetric Negishi cross-coupling between benzylic bromide 27 and cyclic organozinc 

halides (Figure 1.16).36 Isoquinoline-oxazoline ligand L37 delivered the products in high 

yields and ee’s, in contrast to the more commonly employed PyBox and Box ligands. 

Acyclic secondary organozinc halides resulted in a mixture of branched and linear 

products; surprisingly, primary organozinc halides also resulted in a mixture of branched 

and linear products.  

Figure 1.16. Enantioconvergent Negishi cross-coupling of secondary organozinc 

reagents. 
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has permitted the use of α-halo-α-fluoroketones 31, enabling the asymmetric formation 

of tertiary fluorides 32 (Figure 1.17, b).48 

Figure 1.17. Asymmetric Negishi cross-coupling of α-halo ketones. 
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Figure 1.18. Other directing groups in asymmetric Ni-catalyzed Negishi cross-

coupling. 
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substrate 37 to the reaction conditions provided a mixture of 38, cis-39 and trans-39; the 

ratio of uncyclized product to cyclized product was found to increase linearly with 

increased Ni loading (Figure 1.18, c). These data could suggest that the reaction proceeds 

through a noncaged radical species, and also illustrates the dichotomy between the 

coupling of electrophiles 33 and 35. 

 

1.3.3 With Organoboron Reagents 

 Seminal contributions to the transition metal-catalyzed enantioselective cross-

coupling of sec-alkyl electrophiles with organoboron reagents have been made by the Fu 

laboratory. Shortly after disclosing the Ni-catalyzed cross-coupling of sec-alkyl 

electrophiles with alkylboranes to prepare racemic products,53 Fu and coworkers reported 

that use of catalytic Ni(cod)2 in conjunction with chiral 1,2-diamine ligand L41 enabled 

the enantioselective coupling of homobenzylic bromides (41) with organoboranes (Figure 

1.19, a).54 The Ni catalyst was proposed to engage in a secondary interaction with the 

benzylic substituent on 41, allowing for differentiation between the two alkyl groups of 

the starting material. While a variety of homobenzylic bromides were tolerated, poor 

enantioselectivity was attained in the formation of 42b. Fu hypothesized that the ether 

might also interact with the Ni catalyst, leading to poor asymmetric induction. Based on 

this hypothesis, the group subsequently reported that carbamate-protected halohydrins 

(43) can also be coupled with alkylboranes in high enantioselectivity using a chiral 1,2-

diamine L42 (Figure 1.19, b).55 Modified conditions permitted the enantioselective 

coupling of a homologated halohydrin. Further expansion of the substrate scope 

determined that halides (45) bearing proximal arylamines as directing groups can be 
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coupled with alkylboranes in high enantioselectivity as well (Figure 1.19, c).56 The 

reaction was found to be directed by the nitrogen atom of the arylamine group. 

Figure 1.19. Enantioconvergent Ni-catalyzed alkyl-alkyl Suzuki–Miyaura coupling. 
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sulfonamides, were also optimized toward enantioconvergent cross-coupling.58 After 

confirming that the oxygen of the sulfonamide was the key directing atom, Fu and 

coworkers examined sulfone-containing electrophiles and reported that good 

enantioselectivity can still be maintained for these substrates.58a  

Figure 1.20. Examples of directing groups for the enantioconvergent Suzuki–

Miyaura coupling. 
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Figure 1.21. Asymmetric Suzuki–Miyaura coupling of α-haloamides. 
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Figure 1.22. Asymmetric cascade cyclization/cross-coupling. 
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Figure 1.23. Asymmetric addition into quinolinium ions. 
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1.3.5 With Organozirconium Reagents 

Alkenylzirconium complexes are attractive vinyl organometallic species for use in 

organic synthesis because they can be easily prepared from Schwartz’s reagent and an 

alkyne. While Fu has disclosed a remarkable variety of stereoconvergent arylation 

reactions, most of the reaction conditions could not easily be extended to the cross-

coupling of alkenyl metal species, with alkenyl silicon65 and zinc50 reagents being the 

most promising. In 2010, Fu and coworkers published the Ni/L45-catalyzed asymmetric 

cross-coupling of alkenylzirconium reagents and α-bromoketones, allowing access to 65 

in 93% ee (Figure 1.25, a).66 The versatility of this approach has been exemplified by the 

efficient coupling of both aryl-alkyl ketones and dialkyl ketones under the same 

conditions. Alkenylzirconium complexes have also been shown to react with α-

bromosulfonamides 66 in high yield and ee (Figure 1.25, b).52 

Figure 1.25. Stereoconvergent coupling of alkenylzirconium reagents. 
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1.3.6 With Organoindium Reagents 

 Shortly after the publication of Fu’s seminal examples of Ni-catalyzed 

stereoconvergent cross-coupling reactions between sec-alkyl electrophiles and either 

C(sp3)- or C(sp2)-hybridized organometallic reagents,39-40 Sestelo, Sarandeses, and 

coworkers investigated the asymmetric coupling between C(sp)-hybridized 

organometallic reagents and benzylic bromides. Alkynylindium reagents exhibited clean 

cross-coupling under Ni-catalysis, and were selected for further study. Pybox ligand L34 

was optimal, delivering cross-coupled product 69 in up to 87% ee for several different 

alkynes (Figure 1.26).67 Further work on the asymmetric coupling of C(sp) 

organometallic reagents has not been disclosed. 

Figure 1.26. Alkynyl organometallic reagents in stereoconvergent cross-coupling. 
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symmetry through a catalyst-controlled process, giving rise to a molecule with 

centrochirality. Most of the work in this area has focused on the desymmetrization of 

meso electrophiles; however, some researchers have investigated the desymmetrization of 

meso bis-organometalic reagents or processes that involve desymmetrization by C-H 

functionalization. 

Scheme 1.3. Alkylative desymmetrization of meso-anhydrides. 
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styrene additive reduced the ee to 4%, prompting Rovis and coworkers to more closely 

examine the mechanism of the reaction. 

Figure 1.27. Competing mechanisms in the Ni-catalyzed desymmetrization of 

meso-anhydrides. 
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kinetic analysis determined that cycle A proceeds approximately four times faster than 

cycle B and is roughly consistent with the somewhat modest enantioselectivities obtained 

under these conditions. 

 

1.5 CROSS-ELECTROPHILE COUPLING 
 

The methodologies discussed above are limited to enantioselective cross-

couplings of electrophiles (halides and pseudohalides) with organometallic reagents. 

Indeed, until very recently, all examples of Ni-catalyzed asymmetric cross-coupling fell 

into this category of redox-neutral transformations. However, our group realized that 

mechanisms at play in the stereoconvergent redox-neutral couplings described in the 

previous sections could also be leveraged toward the development of asymmetric 

reductive cross-couplings between two electrophilic partners. Indeed, recent work by our 

laboratory has led to the development of cross-electrophile coupling reactions that afford 

the products in excellent enantioselectivity. These efforts will be the focus of subsequent 

chapters of this thesis. However a brief introduction to the precedents and mechanistic 

hypotheses underlying these campaigns will be provided here.  

 

Scheme 1.4. Selected examples of Ni-catalyzed reductive cross-couplings. 
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While the first disclosure of Ni-mediated reductive homocoupling of halide 

electrophiles was by Semmelhack and coworkers in 1971, renewed interest has seen the 

development of many reductive catalytic cross-couplings over the last ten years.74 

Reductive cross-coupling to form C–C bonds under Ni catalysis and employing chemical 

reductants debuted in 2007, with a seminal report by Durandetti and coworkers.75 

Employing aryl halides and α-haloesters, the cross-coupling is effected by a catalytic NiII 

source and stoichiometric Zn metal. This archetypal transformation has been expounded 

upon by the Weix, Gong, and Molander labs, with new couplings employing many C(sp2) 

(aryl, vinyl, acyl) and C(sp3) (activated and unactivated alkyl) partners (Scheme 1.4).76 

These reactions benefit from their exceedingly mild conditions and from the lack of 

organometallic functionality. As a result, excellent functional group tolerance is routinely 

observed in these reports, which would be incompatible with conventional 

organometallic preparations. It is also worth noting that many organometallic reagents are 

generated from the corresponding halides, in which case reductive cross-coupling offers a 

shorter, streamlined disconnection. 

However a key challenge in the development of reductive cross-couplings, 

especially in contrast to conventional redox-neutral couplings, is the need to achieve 

cross-selectivity.77 Employing two electrophilic partners, some means of differentiation 

between the partners must be identified in order to avoid a statistical mixture of homo- 

and cross-coupled products. While a simple solution to this challenge is to manipulate the 

stoichiometry of the reagents, this does not circumvent the formation of dimers and 

requires an undesirable excess of one coupling partner.76c A preferable means of 

distinguishing the electrophilic partners relies instead on their hybridization. If differently 
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hybridized halides can selectively react with different oxidation states of Ni, then a 

sequencing of oxidative addition events can be envisioned that affords cross-selectivity. 

Scheme 1.5. Two hypothetical mechanisms for asymmetric reductive cross-
couplings (shown with aryl halide as the C(sp2) electrophile for clarity). 
 

 

Computational studies and experimental mechanistic investigations by the Weix, 

Gong, and Reisman groups have led to coalescence about two related mechanistic 

hypotheses for these transformations (Scheme 1.5).76a,78 A sequential reduction 

mechanism can be proposed in which a C(sp2) halide undergoes concerted oxidative 

addition to a Ni0 center (78) (or a primary alkyl halide capable of undergoing an SN2-type 

oxidative addition). Reduction to NiI 80 then facilitates halide abstraction from the C(sp3) 

electrophile (81) to generate a solvent-caged alkyl radical. Recombination of this 

prochiral radical with the NiII center generates a NiIII complex (82). Reductive 

elimination then affords the cross-coupled product (83) and subsequent reduction of the 

resulting NiI halide 84 regenerates Ni0 80 to reenter the catalytic cycle. If the radical 

generated by halide abstraction is sufficiently long-lived to escape the solvent cage (85), 

NiII
P

N

X

Ar
*

1/2 Mn0

1/2 MnX2

NiI
P

N
Ar*

R2

XR1

racemic
C(sp3) electrophile

NiIII
P

N

Ar

X

*

R1

R2Ar R1

R2

NiI
P

N
X*

1/2 Mn0

1/2 MnX2

Ni0

P

N
*

enantioenriched 
product

Ar– X

NiII
P

N Ar
*

R2

XR1

racemic
C(sp3) electrophile

NiII
P

N X
*

Mn0
Ni0

P

N
*

X

MnX2

NiI
P

N
X*

R1

R2

R1

R2

enantioenriched 
product

X

Ar– X

Ar

NiIII
P

N

Ar

X
R1

R2
*

a) Sequential reduction b) Radical chain

78
79

80

818283

84

78

79

8284

83

86

85

81



Chapter 1 – Nickel Catalysis in Cross-Coupling: A Review of Applications in Asymmetric 
Catalysis and the Rise of Reductive Cross-Coupling 

37 

then a radical chain mechanism can be initiated, as shown in Scheme 1.5.79 These are 

essentially two ends of a mechanistic spectrum and we can also imagine them working 

simultaneously for some radicals of intermediate half-life. 

While this mechanistic paradigm provides an entry to cross-selectivity, efforts to 

advance reductive cross-coupling into the realm of asymmetric catalysis require an 

additional level of control. Such reactions must retain cross-selectivity, while also 

achieving stereocontrol via an enantioconvergent transformation of the C(sp3) 

electrophile. In considering this problem, we looked to the stereoconvergent couplings of 

secondary alkyl electrophiles developed by Fu and coworkers, as well as the fundamental 

inorganic chemistry underlying their work. Critically, Vicic and coworkers have shown 

that an isolable NiI complex will abstract a halide to generate an alkyl radical.80 

Subsequent mechanistic work by Fu and coworkers has demonstrated the feasibility of 

this step in catalysis, and recent work by Baran has seen single-electron reduction by 

Ni(I) employed in decarboxylative couplings as well.44,81 Most importantly for 

asymmetric catalysis, the radicals generated by this process have been exploited as an 

entry to stereoconvergence of the racemic halide precursors.  

 

Figure 1.28. Radical chemistry of Ni in recent cross-couplings. 
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In either of the pathways described above, it is the single electron processes 

involved that we hypothesize enable asymmetric Ni-catalyzed reductive cross-couplings. 

Radical intermediates are planar, prochiral species and have been generated via halide 

abstraction (as above),76a decarboxylation,81-82 or fragmentation of suitable nucleophiles83 

(Figure 1.28). In all of these cases, an appropriate chiral ligand has been shown to 

successfully direct its combination with a Ni center to afford a thermodynamically 

preferred diastereomer of the resulting complex that can reductively eliminate the 

enantioenriched product. In this process, the enantiodetermining step may be radical 

combination with the NiII center followed by fast reductive elimination. However, if 

radical combination is reversible, then reductive elimination may be enantiodetermining 

via a Curtin-Hammett-type mechanism.84 This stereoconvergent process has been 

exploited in redox-neutral conventional couplings as described above (Fu), photoredox-

enabled couplings (Molander, Kozlowski, MacMillan/Fu),84-85 and, as detailed in the 

following chapters, reductive cross-electrophile couplings (Reisman).86 

 

1.6 CONCLUDING REMARKS 
 

Figure 1.29. General disconnection for asymmetric reductive cross-couplings. 
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states. This enables Ni to perform radical chemistry not easily replicated by Pd or its 

noble metal cousins, promoting stereoconvergent reactions of C(sp3) electrophiles. More 

recently, a surge of Ni-catalyzed cross-electrophile couplings has been disclosed. These 

reactions obviate the need for organometallic reagents and occur under uncommonly mild 

conditions. However the synthesis of these fields remained unknown until the work 

described herein. We are delighted here to report the successful development of a series 

of Ni-catalyzed asymmetric reductive cross-couplings (Figure 1.29).  
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