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Chapter 4 

Nickel-Catalyzed Asymmetric Reductive Cross-Coupling to Access 1,1-

Di(hetero)arylalkanes◊ 

 

4.1 INTRODUCTION 

4.1.1 Background and catalytic asymmetric approaches 

1,1-Diarylalkanes are a common pharmacophore, present in biologically active 

natural products as well as marketed drugs for a diverse range of indications (Figure 1). 

In many cases, these bioactive molecules exhibit a substantial eudysmic ratio, in which 

one enantiomer is significantly more potent than the other.1 As such, methods for the 

enantioselective preparation of diarylalkanes have become a proving ground in 

asymmetric catalysis, with methods to afford these products being reported by many 

synthetic laboratories.2  

                                                
◊ Portions of this chapter have been reproduced from a manuscript in preparation and the 
supporting information found therein. This work was conducted with Kelsey Poremba, a 
graduate student in the Reisman lab. Preliminary investigations discussed herein were 
conducted by Dr. Alan H. Cherney, then a graduate student in the Reisman lab.  
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Figure 4.1. Selected bioactive chiral 1,1-diarylalkanes. 

 

The pseudosymmetry of these molecules makes them particularly appealing 

targets for cross-coupling. Many methods employing asymmetric hydrogenation of 1,1-

diarylethenes have been reported, affording the corresponding diarylalkanes in excellent 

ee.3 However, these require a proximal desymmetrizing or directing group on one of the 

aryl rings to enable facial differentiation by the catalyst, greatly limiting the accessible 

product scope of these technologies. A cross-coupling disconnection circumvents this 

issue, accessing the product convergently from a C(sp3) benzyl fragment and a C(sp2) aryl 

partner. In redox-neutral couplings, one of these is a halide electrophile, while the other is 

some organometallic nucleophile, with both stereoconvergent2d and stereospecific4 

methods having been reported (Scheme 4.1).2j This disconnection also lends itself to 

reductive cross-coupling logic, with the two electrophilic fragments being differentiable 

by hybridization.  
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Scheme 4.1. Selected recent asymmetric cross-couplings to access 1,1-

diarylalkanes. 

 

4.1.2 Reductive cross-coupling approaches and preliminary investigations 

A racemic reductive cross-coupling strategy to access 1,1-diarylalkanes was first 

reported by Weix and coworkers in 2015, with the majority of the products disclosed 

being achiral diarylmethanes.5 Employing benzylic alcohols, in situ mesylate formation 

generates the active C(sp3) electrophile, which undergoes chemoselective Ni-catalyzed 

reductive coupling with aryl halide partners (Scheme 4.2). Interestingly, the authors 

report a single example of an asymmetric coupling, which requires the benzylic chloride 

substrate 96 to achieve modest enantioinduction, employing BnBiOX (L31) as the chiral 

ligand.2k  
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Scheme 4.2. Weix’s reductive cross-couplings to access 1,1-diarylalkanes. 

 

Concurrent with these efforts by the Weix group, our laboratory also investigated 

formation of these products as a platform for asymmetric catalysis development.6 The 

earliest of these efforts employed conditions derived from the racemic couplings reported 

in the literature, similar to those described in Chapter 2. Employing amide solvents and 

an array of chiral ligands, the cross-coupling of 4-bromobenzonitrile (162) and 1-

(chloroethyl)benzene (96) was targeted (Table 4.1). Unfortunately, these reactions were 

plagued with poor chemoselectivity, delivering homocoupled dimers of both substrates; 

however modest enantioselectivities were observed with both BOX and BiOX ligand 

scaffolds, suggesting promise for this enantioconvergent transformation. Further 

optimization identified NMP as an improved solvent at this stage, which afforded 163 in 

62% yield and 37% ee when employing BnBiOX (L31), the best result achieved with this 

system.  
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Table 4.1. Initial ligand investigation with 4-bromobenzonitrile (162). 
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that this initial investigation held promise, providing proof-of-concept that the proposed 

reductive cross-coupling disconnection was amenable to asymmetric catalysis.  

Table 4.2. Initial ligand investigation with 5-iodo-2-(N-piperidinyl)pyrimidine. 
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coupling conditions is illustrated by Figure 4.2. None of our previously optimized 

conditions were high-performing in any of the other couplings, highlighting the difficulty 

of extending these conditions to new reaction development between novel electrophiles. 

Figure 4.2. Cross-reactions of previously developed electrophile pairs and 

conditions. 
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and b) to arrive at a more general set of conditions as an entry point for future 

asymmetric cross-couplings, in the hope of reducing optimization for each new substrate 

class. Herein we report the successful realization of these goals, with preliminary results 

toward future couplings being reported in Chapter 5. 

Scheme 4.3. Application of previously developed conditions. 
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similar conditions at room temperature. Therefore, we targeted a room temperature 

reaction, in order to improve enantioselectivity as well as chemoselectivity and yield. 

Employing the model system described above (Scheme 4.3), we conducted parallel 

ligand screens at 60 ºC, 40 ºC, and room temperature to assess the effect of temperature 

on this reaction (Table 4.3). 

Table 4.3. Screening temperature versus BiOX ligands. 
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showed the opposite trend, affording 167 in the highest yield at elevated temperature, 

with only slight variation in ee across temperatures.  

Table 4.4. Evaluation of BiOX ligand scaffolds at room temperature. 
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yield is less straightforward. Further studies are required to determine if these groups are 

significantly altering the solvent cage about the catalyst, changing ligand bite angles, or 

influencing some other mechanistic parameter to produce for the observed effects. 

Table 4.5. Evaluation of Ni precatalysts, metal/ligand ratio, and catalyst loading. 
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catalyst loading. This survey revealed a remarkable tolerance for variability in these 

parameters. However a catalyst loading of 10 mol % with a 2:1 ligand: metal ratio gave 

the most reproducible results and was chosen as the standard condition for further studies.  

Table 4.6. Evaluation of solvents and reaction concentration. 
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or less concentrated conditions led to lower conversions and yields. Attempts at lowering 

the reaction temperature through the use of mixed solvent systems containing 1,4-dioxane 

did not prove fruitful, affording only decreased yields with no significant improvement in 

selectivity. Therefore 0.36 M dioxane at room temperature was selected as the optimal 

solvent condition. 

Table 4.7. Evaluation of reductants and activating reagents. 
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reductant TDAE, with lower selectivity. However these entries demonstrate the 

feasibility of the reaction in the absence of stoichiometric metal, suggesting that 

improvement of the organic reductant scaffold may be a useful line of inquiry. 

Scheme 4.4. Comparison of CyBiOX (L110) with 4-HeptylBiOX (L119). 
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4.2.2 Substrate scope and disconnection strategy 

Before investigating a wide range of substrates, we first wanted to assess the 

strategy of substrate selection to access these pseudosymmetric products. That is, to 

prepare any desired mono-substituted 1,1-diarylalkane, substitution may be placed on 

either the benzyl component or the aryl partner. If various classes of functional groups 

perform better on one partner than the other, this knowledge is critical in designing an 

ideal disconnection of the target. This versatility, in which any product can be 

disconnected in two ways, is a significant advantage of this cross-coupling methodology. 

Therefore, we initially explored a small series of simply substituted electrophiles to 

compare their performance in the reaction. Selected examples are shown in Figure 4.3 to 

illustrate the trends we observed.  

Figure 4.3. Possible disconnections of psuedosymmetric 1,1-diarylalkanes.  

 

Benzyl chlorides bearing conjugated electron-withdrawing groups such as nitriles 

(163) underwent rampant decomposition, affording low yields and messy reaction 

profiles. We hypothesize that this may be attributable to the delocalization of benzylic 

radical intermediates, affording a complicated mixture of products. Fortunately, these 
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groups behaved well when incorporated via the aryl iodide partner. The opposite trend 

was observed with ortho-coordinating groups, such as o-methoxy 168. These groups 

afforded good yields and very high ee’s when brought in on the benzyl chloride partner, 

but gave low enantioselectivity when placed on the aryl iodide. Non-conjugated groups at 

the para and meta positions gave only slight and unpredictable variability between the 

two partners, as exemplified by para-methoxy 169. Finally, non-coordinating ortho-

substituents such as methyl performed very poorly on both substrates (not shown).  

Scheme 4.5. (Hetero)aryl iodide scope.a 
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scope. Based on the above results, we selected 1-(chloropropyl)benzene (113a) as a 

representative model benzyl chloride substrate for these studies. Beginning with phenyl-

based arenes, we were very pleased to see that electron-withdrawing (170b) as well as 

electron-donating (170c) substituents afforded products in high yield and ee (Scheme 

4.5). Acidic protons were tolerated, as shown by trifluoroacetanilide 170d, with no 

protodehalogenated side-products observed. The reaction was also orthogonal to 

nucleophilic boronates (170e) as well electrophilic triflates (170f), providing useful 

handles for further functionalization or elaboration via cross-coupling.9  

At this point, we moved on to explore heteroaryl iodides, beginning with 

substituted pyridines. 2-Chloro- and 2-fluoropyridines afforded the cross-coupled 

products (170a, g–i) in excellent ee and moderate to high yields, with the exception of 2-

fluoro-3-iodopyridine, highlighting the difficulty of introducing ortho-substituents via the 

aryl iodide partner. Notably, these substrates coupled with complete chemoselectivity, 

reacting exclusively at the iodo position.10 Electron withdrawing (170j) as well as 

donating (170k) groups performed well, including 2-(N-Boc-piperazinyl)pyridine 170p. 

Gratifyingly, pyrimidine substrates also behaved well in the reaction, generating 2-

aminopyrimidine derivatives 170m–o with excellent enantioselectivity, including 2-(N-

pyrrolo)pyrimidine 170n, which had not been successful in the cross-coupling with 

chloronitriles (Chapter 4.3). We also noted that 4-iodo-2-(N-piperidinyl)pyrimidine 

121m cross-coupled in high yield and excellent ee at room temperature, in contrast to the 

initial studies shown in Table 4.2. This result suggests that L119 is critical to the success 

of these mild conditions with heteroaromatics. Finally, we were pleased to find that N-

Boc-6-iodoindole cross-coupled in very high yield and ee. Importantly, no condition 
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modification was necessary between substrates. This is in contrast to our previous work 

in asymmetric reductive cross-coupling, as well as the work of other groups studying the 

cross-coupling of heteroaromatic electrophiles.11  

Scheme 4.6. Benzyl chloride substrate scope.a 
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performed best in this reaction. Ortho-methoxy 172e and ortho-fluoro 172f were formed 

in high yields and excellent ee’s. This is especially notable in contrast with the scope of 

the aryl iodide partner, where these groups performed very poorly (Figure 4.3 168 and 

Scheme 4.5 170i). Inspired by these results, we also prepared 4-(1-

chloropropyl)dibenzofuran, a bulkier substrate maintaining the ortho oxygen motif of 

171l. Gratifyingly, this substrate also performed very well, coupling to give 172l in 76% 

yield and 87% ee. Finally, we explored a series of benzyl chlorides bearing substitution at 

the α-position, in order to access a more diverse range of diarylalkane products. We were 

very pleased to see that this series behaved well in the reaction, coupling in high yields 

and even better ee’s than many of the simpler previous substrates. Importantly, the 

functional group tolerance at this position was excellent, allowing for the incorporation of 

silyl ether 172g, primary alkyl chloride 172j, and Boc-protected piperidine 172k.  

 

4.3 MECHANISTIC INVESTIGATIONS 

Figure 4.4. Potential mechanisms for the asymmetric reductive cross-coupling. 
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 Having evaluated a wide range of coupling partners for both substrate classes, we 

turned our attention to the mechanism of the asymmetric cross-coupling transformation. 

The two mechanistic hypotheses that guided our reaction development are shown in 

Figure 4.4. For a detailed consideration of the elementary steps, see Chapter 1 and 3, in 

which the mechanisms are discussed generally and for α-chloronitrile C(sp3) 

electrophiles. As in our previous mechanistic explorations, we focused our efforts on 

elucidating the presence and nature of radical intermediates derived from the C(sp3) 

electrophilic component, the benzyl chloride, in the proposed reaction with NiI 175 or 

179. This putative prochiral radical species (180) is expected to be critical to the success 

of the reaction, enabling differentiation of the electrophiles via sequential oxidative 

addition, and facilitating stereoconvergence of the racemic halide precursor. 

Scheme 4.7. Competition experiment between 1º and 2º benzyl chlorides. 

 

 As an initial probe to determine if the benzylic partner is reacting via a stabilized 

radical intermediate, we conducted a competition experiment between primary benzyl 
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transformations at markedly different rates. That is, if the mechanism of benzylic 

oxidative addition were SN2-like, then the less hindered primary chloride would be 

expected to react faster, favoring 183 in the reaction. On the other hand, if the oxidative 

addition step proceeds via halide abstraction to form a benzylic radical, then the more 

stabilized secondary chloride should react faster, forming more 172e. Indeed, upon 

workup after 4 hours, the ratio of products favors the secondary cross-coupled 172e by 

1.45 to 1, suggesting that a radical mechanism may be at play. 

Scheme 4.8. Radical inhibitor studies. 

 

As a follow-up to this experiment, we explored the effect of radical inhibitors on 

the course of the reaction (Scheme 4.8). Employing 50 mol % of either BHT (146) or 

DHA (147), no conversion of either coupling partner was observed. This led us to 

conduct one final set of experiments, utilizing a radical clock substrate, to probe the 
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the reaction conditions, trifluoromethylated versions 184 and 186 allowed for synthesis 
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to the reaction conditions afforded only the rearranged cross-coupled products 185 and 

187, supporting the intermediacy of a cyclopropylcarbinyl radical derived from the 

benzyl chloride. 

Scheme 4.9. Radical clock experiments. 
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mechanisms of these transformations and the differences between them. These results 

suggest an interesting divergence that may serve as an entry point to these studies. 

 

4.4 CONCLUSION 

We have successfully developed a highly enantioselective reductive cross-

coupling between secondary benzylic chlorides and (hetero)aryl iodides to afford a 

diverse range of 1,1-di(hetero)arylalkanes. This marks the conclusion of a longstanding 

effort in our laboratory and presents a novel approach to these valuable chiral molecules 

with unprecedented substrate scope. In so doing, we have demonstrated the second 

application of a dioxane/TMSCl solvent system in asymmetric reductive cross-coupling. 

The extension of these conditions to other substrate classes will be discussed in Chapter 

5. It is our hope that these conditions will provide a useful starting point in the discovery 

of other transformations, facilitating methodology development and streamlining 

optimization for new substrate classes.  

 

4.5 EXPERIMENTAL SECTION 

4.5.1 Materials and methods 

 Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Methylene chloride (CH2Cl2), diethyl ether (Et2O), 

tetrahydrofuran (THF), and toluene (PhMe) were dried by passing through activated 

alumina columns. All other commercially obtained reagents were used as received unless 

specifically indicated. Aryl iodides were purchased from Sigma Aldrich, Combi-Blocks, 

or Astatech. Manganese powder (>99.9%) was purchased from Sigma Aldrich. 
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NiBr2(diglyme) was purchased from Strem. All reactions were monitored by thin-layer 

chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm). 

Silica gel column chromatography was performed as described by Still et al. (W. C. Still, 

M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923) using silica gel (particle size 0.032-

0.063) purchased from Silicycle. 1H and 13C NMR were recorded on a Varian Inova 500 

(at 500 MHz and 125 MHz respectively) or a Varian Inova 600 (at 600 MHz and 150 

MHz respectively, and are reported relative to internal chloroform (1H, δ = 7.26, 13C, δ = 

77.0).  Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier 

abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad. IR spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer and are reported in frequency of absorption (cm–1). Analytical SFC was 

performed with a Mettler SFC supercritical CO2 analytical chromatography system with 

Chiralcel AD-H, OD-H, AS-H, OB-H, and IA columns (4.6 mm x 25 cm).  HRMS were 

acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode 

source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), 

or mixed (MM) ionization mode. Low-temperature X-ray diffraction data (φ-and ω-

scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled 

to a PHOTON 100 CMOS detector with Cu-Kα radiation (λ = 1.54178 Å) from an IµS 

micro-source.  
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4.5.2 Ligand preparation 

A. Preparation of (4S,4'S)-4,4'-dicyclohexyl-4,4',5,5'-tetrahydro-2,2'-bioxazole 

(L110, (S)-CyBiOX) 

 

(S)-2-Amino-2-cyclohexylethan-1-ol (2 equiv, 1.00 g, 6.98 mmol) and 

dimethyloxalate (1 equiv, 0.438 g, 3.7 mmol) were dissolved in PhMe (75 mL) and 

heated to 80 °C. The reaction was allowed to stir overnight with the diamide precipitating 

out of solution as a white solid. Reaction was cooled to room temperature and 

concentrated in vacuo to afford the crude diol (1.260 g, 3.70 mmol). The crude diol was 

dissolved in PhMe (30 mL) and heated to 70 °C whereupon the thionyl chloride (2.2 

equiv, 0.6 mL, 8.22 mmol) was added. Reaction was stirred at 70 °C for 30 minutes then 

heated to 90 °C for 90 minutes. Reaction was cooled to room temperature and poured 

into 20% KOH solution cooled to 0 °C. The aqueous layer was separated and extracted 

(x3) with DCM and the combined organic layers were washed with 20% KOH solution, 

NaHCO3 and brine. The organic layer was dried with Na2SO4, filtered through a pad of 

Celite, and concentrated under reduced pressure. The crude dichloride (1.40 g, 3.71 

mmol) was then dissolved in MeOH (35 mL) and KOH (0.52 g, 9.27 mmol) was added. 

Reaction was heated to reflux for 14 hours. Reaction was cooled to room temperature and 

concentrated to remove the MeOH. Crude mixture was loaded directly onto a silica gel 

column and eluted in 30% EtOAc/Hex to 40% EtOAc/Hex. The pure L110 was obtained 

as a white solid (0.556 g, 49% over 3 steps). 1H NMR (400 MHz, CD3CN) δ 4.40 (dd, J 
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= 9.7, 8.2 Hz, 1H), 4.15–4.00 (m, 2H), 1.93– 1.85 (m, 1H), 1.77 (ddt, J = 9.4, 5.4, 1.4 Hz, 

2H), 1.69 (dtd, J = 9.2, 3.1, 1.5 Hz, 1H), 1.58 (ddt, J = 12.4, 3.4, 1.8 Hz, 1H), 1.45 (tdt, J 

= 11.6, 6.7, 3.4 Hz, 1H), 1.35–1.15 (m, 3H), 1.15–0.94 (m, 2H).  13C NMR (101 MHz, 

CD3CN) δ 154.2, 71.9, 70.7, 42.3, 28.9, 28.8, 26.2, 25.7, 25.6; FTIR (NaCl, thin film): 

2922, 2850, 1614, 1450, 1130, 1103 cm–1; HRMS (MM) calc’d for [M + H3O]+ 323.2329, 

found 323.2319. 

 

B. Preparation of (4S,4'S)-4,4'-diheptan-4-yl)-4,4',5,5'-tetrahydro-2,2'-bioxazole 

(L119, (S)-4-HeptylBiOX) 

 

(S)-2-Amino-3-propylhexan-1-ol (2 equiv, 2.8 g, 17.6 mmol) and dimethyloxalate 

(1 equiv, 1.038 g, 8.8 mmol) were dissolved in PhMe (200 mL) and heated to 80 °C. The 

reaction was allowed to stir overnight with the diamide precipitating out of solution as a 

white solid. Reaction was cooled to room temperature and concentrated in vacuo to 

afford the crude diol (3.3 g, 8.86 mmol). The crude diol was dissolved in PhMe (60 mL) 

and heated to 70 °C whereupon the thionyl chloride (1.4 mL, 19.2 mmol) was added. 

Reaction was stirred at 70 °C for 30 minutes then heated to 90 °C for 90 minutes. 

Reaction was cooled to room temperature and poured into 20% KOH solution cooled to 0 

°C. The aqueous layer was separated and extracted (x3) with DCM and the combined 

organic layers were washed with 20% KOH solution, NaHCO3 and brine. The organic 

layer was dried with Na2SO4, filtered through a pad of Celite, and concentrated under 
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reduced pressure. The crude dichloride (3.6 g, 8.8 mmol) was then dissolved in MeOH 

(90 mL) and KOH (1.23 g, 21.9 mmol) was added. Reaction was heated to reflux for 14 

hours. Reaction was cooled to room temperature and concentrated to remove the MeOH. 

Crude mixture was loaded directly onto a silica gel column and eluted in 10% 

EtOAc/Hex. The pure L119 was obtained as a white solid (1.55 g, 53% over 3 steps). Rf 

=0.58 (50% EtOAc/Hex); 1H NMR (500 MHz, Acetonitrile-d3) δ 4.43 (dd, J = 10.1, 8.3 

Hz, 1H), 4.33 (ddd, J = 10.1, 8.5, 5.9 Hz, 1H), 4.11 (t, J = 8.4 Hz, 1H), 1.65 – 1.54 (m, 

1H), 1.50 – 1.17 (m, 7H), 0.93 (td, J = 7.1, 2.6 Hz, 6H).  

 

C. Preparation of (S)-2-amino-3-propylhexan-1-ol 

 

(Z)-But-2-ene-1,4-diol was benzyl protected under known literature procedure. 

(Z)-1,4-bis(benzyloxy)but-2-ene (1 equiv, 15 g, 56 mmol) was dissolved in 3:1 solution 

of DCM/MeOH (150 mL) and cooled to -78 °C. Ozone was bubbled through the reaction 

until the solution turned blue, signaling O3 saturation. Reaction sparged with O2, then N2 

for 15 minutes. Dimethyl sulfide (12 equiv, 50 mL, 676 mmol) was added and the 

reaction was allowed to warm to room temperature and stir for 14 hours. Reaction was 

concentrated under reduced pressure and purified by column chromatography (30% 

EtOAc/Hex) to afford the aldehyde (16.6 g, 99% yield).  
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2-(benzyloxy)acetaldehyde (1 equiv, 16.6 g, 111 mmol) was dissolved in DCM (225 mL) 

at room temperature. (R)-(+)-tert-butylsulfinamide (1.1 equiv, 14.9 g, 123 mmol) and 

copper (II) sulfate (2.5 equiv, 44.1 g, 276 mmol) were added and the reaction was 

allowed to stir at room temperature for 36 hours. Reaction was filtered through a plug of 

Celite with DCM. Solution concentrated and purified by column chromatography (20% 

EtOAc/Hex) to afford imine product (17 g, 61% yield).  

 

Grignard formation: 

Magnesium (1.3 equiv, 4.00 g, 172 mmol) was activated with 1 M HCl, then 

washed with water, ethanol, and ether before transfer to a flame dried, 500 mL 3-neck 

flask equipped with a reflux condenser and stir bar. The Mg0 was stirred under vacuum 

overnight. THF (170 mL) and a fleck of I2 was added and the stirring mixture was heated 

to reflux with a heat gun periodically over 20 minutes until the brown solution turned 

dark, translucent gray. 4-bromoheptane (1 equiv, 21 mL, 134 mmol) was added slowly, 

portion-wise, with heating to reflux in the intervals between additions. After addition of 

alkyl bromide, reaction was heated to 80 °C for 1 hour, then cooled to room temperature 

and titrated (0.36 M, 49% yield). 

 

 

Sulfinamide (1 equiv, 7.33 g, 28.9 mmol) was dissolved in THF (260 mL) and 

cooled to -78 °C. Freshly prepared, heptan-4-ylmagnesium bromide (1.6 equiv, 9.4 g, 

nPr
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46.2 mmol) was added via cannula. Reaction was stirred at -78 °C for 8 hours then 

allowed to stir overnight while the bath warmed slowly. The reaction mixture was 

quenched with water and Na2SO4 was added. Mixture was filtered through a plug of 

Celite and concentrated. Product was purified by silica gel chromatography (10% 

EtOAc/Hex to 30% EtOAc/Hex) to afford product (9.9 g, 97% yield, 97:3 d.r.). 1H NMR 

(500 MHz, Benzene-d6) δ 7.28 (dd, J = 8.1, 1.4 Hz, 2H), 7.20 – 7.14 (m, 2H), 7.09 – 7.02 

(m, 1H), 4.39 (d, J = 11.9 Hz, 1H), 4.26 (d, J = 11.8 Hz, 1H), 3.64 – 3.56 (m, 2H), 3.52 

(dd, J = 9.5, 4.7 Hz, 1H), 3.40 (dq, J = 8.4, 4.9 Hz, 1H), 1.72 (dtt, J = 10.0, 6.3, 3.6 Hz, 

1H), 1.38 – 1.05 (m, 6H), 1.03 (s, 9H), 0.91 – 0.80 (m, 7H). 

 

To a pale yellow solution of sulfinamine (1 equiv, 9.9 g, 28 mmol) in MeOH (175 

mL) at room temperature, 4 M HCl/Dioxane (10 equiv, 70 mL) was added. Reaction was 

stirred for 1 hour and turned light amber. Reaction mixture was concentrated in vacuo. 

Crude oil was dissolved in minimal 50% EtOAc/Hex and loaded onto a silica gel column. 

1 L of 50% EtOAc/Hex was eluted to remove sulfur impurities, then solvent system was 

switched to 10% MeOH/DCM to elute brown product band from the top of the silica 

(6.2g, 89% yield). 1H NMR (500 MHz, Chloroform-d) δ 8.50 (s, 3H), 7.42 – 7.22 (m, 

5H), 4.59 (d, J = 12.2 Hz, 1H), 4.52 (d, J = 12.1 Hz, 1H), 3.66 (d, J = 5.5 Hz, 2H), 3.34 

(s, 1H), 1.91 – 1.80 (m, 1H), 1.61 – 1.50 (m, 1H), 1.45 – 1.12 (m, 6H), 0.88 (td, J = 7.2, 

4.0 Hz, 6H). 

Pd/C (5.9 g) was added to flask and dissolved in minimal EtOAc and put under 

N2. Amine (1 equiv, 6.0 g, 24.1 mmol) was dissolved in MeOH (50 mL) and added to the 

NH2
BnO
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reaction flask via cannula. 4 M HCl/Dioxane (50 mL) was added and the N2 atmosphere 

was exchanged with H2 and the reaction was allowed to stir 14 h under H2. Upon 

completion, the reaction was sparged with argon and filtered through a pad of Celite with 

EtOAc. The filtrate was concentrated then dissolved in 250mL EtOAc and added to 250 

mL of 4 M NaOH. The organic layer was separated and extracted with 3x 200 mL 

EtOAc. The combined organic layers were dried, filtered, and concentrated under 

reduced pressure to afford pure amino alcohol (2.8 g, 74% yield). 1H NMR (500 MHz, 

Chloroform-d) δ 3.58 (dd, J = 10.4, 4.0 Hz, 1H), 3.30 (dd, J = 10.4, 9.3 Hz, 1H), 2.81 

(dt, J = 8.7, 4.0 Hz, 1H), 1.74 (s, 4H), 1.42 – 1.12 (m, 7H), 0.90 (td, J = 6.9, 2.0 Hz, 7H). 

 

4.5.3 Substrate preparation 

General procedure 1: Benzyl Chloride Synthesis from Benzylic Alcohols 

A flame-dried flask was charged with the benzylic alcohol substrate (1 equiv) and 

chloroform (0.30 M) and sealed with a rubber septum. This solution was cooled to 0 ºC in 

an ice bath and placed under a positive pressure of nitrogen. The flask was vented via a 

Teflon cannula into a saturated solution of NaHCO3 to quench evolved SO2 gas. To the 

cooled solution was slowly added thionyl chloride (1.05 equiv) via syringe. The reaction 

was allowed to stir overnight and the ice bath allowed to melt, unless otherwise noted. 

Reactions were then concentrated to typically afford the crude substrates as yellow oils 

containing a mixture of benzylic chloride and the styrenyl elimination product. Substrates 

were purified by column chromatography on silica gel in 100% hexanes to elute first the 

elimination product (strong staining by KMnO4 and brightly fluorescent) followed by the 

desired chloride product (dimly fluorescent, no staining). 
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1-(1-chloropropyl)-4-(trifluoromethyl)benzene (171c) 

Prepared from 1-(4-(trifluoromethyl)phenyl)propan-1-ol (5.0 mmol, 

1.02 g) following General Procedure 1 to yield 350 mg (31% yield, 

1.57 mmol) of 171c as a mobile clear liquid. 1H NMR (300 MHz, 

Chloroform-d) δ 7.62 (dt, J = 8.1, 0.7 Hz, 2H), 7.53 – 7.47 (m, 2H), 4.81 (dd, J = 7.8, 

6.4 Hz, 1H), 2.23 – 1.96 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H).  

 

1-(1-chloropropyl)-4-(trifluoromethoxy)benzene (171d) 

Prepared from 1-(4-(trifluoromethoxy)phenyl)propan-1-ol (13.1 

mmol, 2.88 g) following General Procedure 1 to yield 2.51 g (80% 

yield, 10.48 mmol) of 171d as a mobile clear liquid. 1H NMR (300 MHz, Chloroform-d) 

δ 7.54 – 7.29 (m, 2H), 7.24 – 7.15 (m, 2H), 4.78 (dd, J = 7.9, 6.5 Hz, 1H), 2.24 – 1.95 

(m, 2H), 1.00 (t, J = 7.3 Hz, 3H).  

 

1-(1-chloropropyl)-2-fluorobenzene (171f) 

Prepared from 1-(2-fluorophenyl)propan-1-ol (19.7 mmol, 3.03 g) 

following General Procedure 1 to yield 2.63 g (77% yield, 15.2 mmol) of 

171f as a mobile clear liquid. 1H NMR (300 MHz, Chloroform-d) δ 7.51 (td, J = 7.6, 1.9 

Hz, 1H), 7.35 – 7.21 (m, 1H), 7.16 (ddd, J = 8.3, 7.4, 1.1 Hz, 1H), 7.11 – 6.97 (m, 1H), 

5.24 – 5.11 (m, 1H), 2.27 – 1.98 (m, 2H), 1.02 (t, J = 7.3 Hz, 3H).  
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tert-butyl 4-(2-chloro-2-phenylethyl)piperidine-1-carboxylate (171k) 

Prepared from tert-butyl 4-(2-hydroxy-2-phenylethyl)piperidine-

1-carboxylate (6.2 mmol, 1.89 g) following General Procedure 1. 

The reaction was concentrated and loaded onto a silica plug. Elution with CHCl3 

delivered degradation products. Subsequent elution with 10% MeOH/DCM afforded the 

deprotected HCl salt of 171k as a tan solid in 68% yield (4.22 mmol, 1.02 g). This 

product was not competent in the cross-coupling reaction. Reprotection with Boc2O (1.05 

equiv) in DCM with Et3N (4 equiv) afforded the desired product cleanly. 1H NMR (300 

MHz, Chloroform-d) δ 7.47 – 7.27 (m, 5H), 4.95 (dd, J = 9.2, 5.9 Hz, 1H), 4.09 (s, 2H), 

2.67 (t, J = 12.9 Hz, 2H), 2.12 (ddd, J = 14.4, 9.2, 5.5 Hz, 1H), 1.88 (ddd, J = 14.0, 7.5, 

5.9 Hz, 1H), 1.81 – 1.56 (m, 2H), 1.45 (s, 9H), 1.30 – 1.00 (m, 3H).  

 

4-(1-chloropropyl)dibenzo[b,d]furan (171l) 

Prepared from 1-(dibenzo[b,d]furan-4-yl)propan-1-ol (9.2 mmol, 

2.08 g) following General Procedure 1 to yield 1.74 g (84% yield, 

7.7 mmol) of 171l as a mobile clear liquid. 1H NMR (300 MHz, 

Chloroform-d) δ 7.96 (ddd, J = 7.7, 1.4, 0.7 Hz, 1H), 7.90 (dd, J = 7.7, 1.3 Hz, 1H), 7.61 

(ddd, J = 8.3, 0.7 Hz, 1H), 7.57 (ddd, J = 7.7, 1.3, 0.5 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.40 

– 7.37 (m, 1H), 7.37 – 7.34 (m, 1H), 2.50 – 2.20 (m, 2H), 1.08 (t, J = 7.3 Hz, 3H).  
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4.5.4 Enantioselective reductive cross-coupling 

General Procedure 2: Enantioselective reductive coupling of benzyl chlorides and 

(hetero)aryl iodides 

On the bench-top, a 20 mL scintillation vial was charged with a cross stirbar, Mn0 

powder (3 equiv, 33 mg, 0.6 mmol), aryl iodide (if solid, 1 equiv, 0.2 mmol), and L119 

(0.2 equiv, 13.5 mg, 0.04 mmol). The vial was transferred into a N2-filled glovebox and 

charged with NiBr2 (diglyme) (10 mol %, 7.1 mg, 0.02 mmol), aryl iodide (if liquid, 1 

equiv, 0.2 mmol) and 1,4-dioxane (0.56 mL, 0.36 M). Reaction was allowed to stir at 100 

rpm for several seconds before addition of TMSCl (20 uL, 0.8 equiv). After a short 

period of stirring, benzyl chloride (1 equiv, 0.2 mmol) was added. The vial was sealed 

with a Teflon cap and removed from the glovebox. The mixture was stirred at 480 rpm 

over a period of 14 hours, over which time the heterogeneous solution turned from dark 

gray to a light green, deep red or light gray color. The reaction was quenched by loading 

directly onto a short plug of silica, using 20% ethyl acetate/hexane eluent. The solution 

was concentrated to afford a clear oil which was then diluted in toluene and loaded onto a 

silica gel column and eluted in a hexane/EtOAc gradient. Remaining benzyl chloride 

could be recovered in the first couple fractions, with biaryl homocoupled product being 

the most polar component. Reaction success is critically dependent on stirring. A stirbar 

too small for the reaction vessel will fail to suspend the Mn powder and lead to low 

conversions. The reaction vessel should be sufficiently large (solvent height should be 

sufficiently low) to allow even distribution of Mn powder with vigorous stirring.  
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2-chloro-5-(1-phenylethyl)pyridine (167) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-(chloroethyl)benzene (1 equiv, 28 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed 

by NMR to give a 84% yield.  The enantiomeric excess was determined to be 78% by 

chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO2, λ = 254 nm): tR(minor) = 6.5 

min, tR(major) = 7.6 min. 1H NMR (300 MHz, Chloroform-d) δ 8.29 (dt, J = 2.6, 0.7 Hz, 

1H), 7.44 (ddd, J = 8.2, 2.6, 0.6 Hz, 1H), 7.38 – 7.27 (m, 2H), 7.25 – 7.14 (m, 5H), 4.16 

(q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 4H). 

 

2-chloro-5-(1-phenylpropyl)pyridine (170a) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed 

by NMR to give a 70% yield.  The enantiomeric excess was determined to be 90% by 

chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO2, λ = 254 nm): tR(major) = 6.4 

min, tR(minor) = 7.6 min. 1H NMR (500 MHz, Chloroform-d) δ 8.30 (d, J = 2.5 Hz, 1H), 

7.47 (dd, J = 8.3, 2.5 Hz, 1H), 7.30 (dd, J = 8.2, 6.9 Hz, 2H), 7.25 – 7.16 (m, 3H), 3.80 

(t, J = 7.8 Hz, 1H), 2.16 – 1.97 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). 13C NMR (126 MHz, 

cdcl3) δ 149.37, 149.30, 143.37, 139.57, 138.24, 128.84, 127.86, 126.80, 124.17, 50.10, 

28.37, 12.67. 
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4-(1-phenylpropyl)benzonitrile (170b) 

Prepared from 4-iodobenzonitrile (1 equiv, 46.0 mg, 0.2 mmol) 

and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed 

by NMR to give a 75% yield.  The enantiomeric excess was determined to be 87% by 

chiral SFC analysis (OB-H, 2.5 mL/min, 10% IPA in CO2, λ = 254 nm): tR(major) = 5.3 

min, tR(minor) = 7.2 min.1H NMR (500 MHz, Chloroform-d) δ 7.59 – 7.54 (m, 2H), 7.36 

– 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 3.84 (t, J = 7.8 Hz, 1H), 2.15 – 

2.01 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 

 

1-methoxy-4-(1-phenylpropyl)benzene (170c) 

Prepared from 4-iodoanisole (1 equiv, 47.0 mg, 0.2 mmol) and 

1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) following 

General Procedure 2. The crude residue was analyzed by NMR 

to give a 77% yield.  The enantiomeric excess was determined to be 83% by chiral SFC 

analysis (OJ-H, 2.5 mL/min, 8% IPA in CO2, λ = 210 nm): tR(minor) = 8.8 min, 

tR(major) = 10.9 min. 1H NMR (500 MHz, Chloroform-d) δ 7.30 – 7.23 (m, 3H), 7.23 – 

7.19 (m, 2H), 7.17 – 7.12 (m, 2H), 6.84 – 6.80 (m, 2H), 3.77 (s, 4H), 3.74 (t, J = 7.8 Hz, 

1H), 2.09 – 1.98 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H). 
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2,2,2-trifluoro-N-(4-(1-phenylpropyl)phenyl)acetamide (170d) 

Prepared from 2,2,2-trifluoro-N-(4-iodophenyl)acetamide (1 

equiv, 63.0 mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 

equiv, 31 mg, 0.2 mmol) following General Procedure 2. The 

crude residue was analyzed by NMR to give a 93% yield.  The enantiomeric excess was 

determined to be 85% by chiral SFC analysis (OD-H, 2.5 mL/min, 10% IPA in CO2, λ = 

254 nm): tR(minor) = 6.5 min, tR(major) = 9.7 min. 1H NMR (500 MHz, Chloroform-d) δ 

7.49 – 7.45 (m, 2H), 7.26 (s, 4H), 7.23 – 7.16 (m, 3H), 3.79 (t, J = 7.8 Hz, 1H), 2.06 (pd, 

J = 7.4, 2.4 Hz, 2H), 0.89 (t, J = 7.3 Hz, 3H). 

 

4,4,5,5-tetramethyl-2-(4-(1-phenylpropyl)phenyl)-1,3,2-dioxaborolane (170e) 

Prepared from 2-(4-iodophenyl)-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (1 equiv, 66.0 mg, 0.2 mmol) and 1-

(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was 

analyzed by NMR to give a 83% yield.  The enantiomeric excess was determined to be 

75% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO2, λ = 254 nm): tR(minor) 

= 5.9 min, tR(major) = 6.5 min. 1H NMR (500 MHz, Chloroform-d) δ 7.77 – 7.69 (m, 

2H), 7.29 – 7.19 (m, 6H), 7.19 – 7.13 (m, 1H), 3.80 (t, J = 7.8 Hz, 1H), 2.12 – 2.04 (m, 

2H), 1.32 (s, 12H), 0.89 (t, J = 7.3 Hz, 3H). 
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3-(1-phenylpropyl)phenyl trifluoromethanesulfonate (170f) 

Prepared from 3-iodophenyl trifluoromethanesulfonate (1 equiv, 

70.0 mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 equiv, 31 

mg, 0.2 mmol) following General Procedure 2. The crude 

residue was analyzed by NMR to give a 95% yield.  The enantiomeric excess was 

determined to be 86% by chiral SFC analysis (OJ-H, 2.5 mL/min, 1% IPA in CO2, λ = 

210 nm): tR(major) = 5.7 min, tR(minor) = 6.4 min. 1H NMR (500 MHz, Chloroform-d) δ 

7.37 – 7.27 (m, 2H), 7.26 – 7.17 (m, 4H), 7.14 (t, J = 2.1 Hz, 1H), 7.09 (ddd, J = 8.2, 2.5, 

1.0 Hz, 1H), 3.83 (t, J = 7.8 Hz, 1H), 2.17 – 1.97 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); 13C 

NMR (126 MHz, cdcl3) δ 149.69, 148.34, 143.67, 130.06, 128.62, 128.05, 127.81, 

126.55, 120.64, 118.81, 77.28, 77.02, 76.77, 52.78, 28.42, 12.57; 19F NMR (282 MHz, 

cdcl3) δ -72.76. 

 

2-fluoro-5-(1-phenylpropyl)pyridine (170g) 

Prepared from 2-fluoro-5-iodopyridine (1 equiv, 45.0 mg, 0.2 

mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed by 

NMR to give a 80% yield.  The enantiomeric excess was determined to be 90% by chiral 

SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 5.5 min, 

tR(minor) = 6.0 min.1H NMR (500 MHz, Chloroform-d) δ 8.11 (ddt, J = 2.5, 1.2, 0.6 Hz, 

1H), 7.59 (dddd, J = 8.3, 7.7, 2.6, 0.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.24 – 7.17 (m, 3H), 

6.87 – 6.80 (m, 1H), 3.82 (t, J = 7.8 Hz, 1H), 2.15 – 2.00 (m, 2H), 0.91 (t, J = 7.3 Hz, 

3H). 

Et
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2-fluoro-4-(1-phenylpropyl)pyridine (170h) 

Prepared from 2-fluoro-4-iodopyridine (1 equiv, 45.0 mg, 0.2 

mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed by 

NMR to give a 51% yield.  The enantiomeric excess was determined to be 91% by chiral 

SFC analysis (OJ-H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(minor) = 4.1 min, 

tR(major) = 4.6 min. 1H NMR (500 MHz, Chloroform-d) δ 8.09 (dt, J = 5.2, 0.7 Hz, 1H), 

7.34 – 7.29 (m, 2H), 7.27 – 7.17 (m, 3H), 7.03 (dddd, J = 5.3, 2.0, 1.4, 0.5 Hz, 1H), 6.79 

(td, J = 1.4, 0.6 Hz, 1H), 3.81 (t, J = 7.8 Hz, 1H), 2.12 – 2.02 (m, 2H), 0.91 (t, J = 7.3 

Hz, 3H). 

 

2-fluoro-3-(1-phenylpropyl)pyridine (170i) 

Prepared from 2-fluoro-3-iodopyridine (1 equiv, 45.0 mg, 0.2 mmol) 

and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) following 

General Procedure 2. The crude residue was analyzed by NMR to 

give a 30% yield.  The enantiomeric excess was determined to be 24% by chiral SFC 

analysis (AD-H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) = 4.2 min, 

tR(minor) = 4.6 min. 1H NMR (500 MHz, Chloroform-d) δ 8.04 (ddd, J = 4.8, 1.9, 1.2 

Hz, 1H), 7.66 (dddd, J = 9.6, 7.5, 2.0, 0.6 Hz, 1H), 7.34 – 7.27 (m, 2H), 7.25 – 7.18 (m, 

3H), 7.13 (ddd, J = 7.5, 4.8, 1.7 Hz, 1H), 4.08 (t, J = 7.9 Hz, 1H), 2.13 – 2.02 (m, 2H), 

0.93 (t, J = 7.3 Hz, 3H). 
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5-(1-phenylpropyl)-2-(trifluoromethyl)pyridine (170j) 

Prepared from 5-iodo-2-(trifluoromethyl)pyridine (1 equiv, 55.0 

mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 

mmol) following General Procedure 2. The crude residue was 

analyzed by NMR to give a 72% yield.  The enantiomeric excess was determined to be 

90% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO2, λ = 254 nm): tR(major) 

= 3.7 min, tR(minor) = 4.1 min. 1H NMR (500 MHz, Chloroform-d) δ 8.63 (d, J = 2.1 Hz, 

1H), 7.68 (dd, J = 8.2, 2.2 Hz, 1H), 7.59 (dd, J = 8.0, 0.8 Hz, 1H), 7.35 – 7.29 (m, 2H), 

7.25 – 7.18 (m, 3H), 3.90 (t, J = 7.8 Hz, 1H), 2.20 – 2.06 (m, 2H), 0.93 (t, J = 7.3 Hz, 

3H). 

 

2-methoxy-5-(1-phenylpropyl)pyridine (170k) 

Prepared from 5-iodo-2-methoxypyridine (1 equiv, 47.0 mg, 0.2 

mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed 

by NMR to give a 86% yield.  The enantiomeric excess was determined to be 89% by 

chiral SFC analysis (OJ-H, 2.5 mL/min, 4% IPA in CO2, λ = 210 nm): tR(minor) = 5.9 

min, tR(major) = 6.4 min. 1H NMR (500 MHz, Chloroform-d) δ 8.06 (d, J = 2.6 Hz, 1H), 

7.40 (dd, J = 8.6, 2.5 Hz, 1H), 7.28 (dd, J = 8.1, 7.1 Hz, 2H), 7.23 – 7.15 (m, 3H), 6.66 

(d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 3.74 (t, J = 7.8 Hz, 1H), 2.12 – 1.97 (m, 2H), 0.90 (t, J 

= 7.3 Hz, 3H). 
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tert-butyl-6-(1-phenylpropyl)-1H-indole-1-carboxylate (170l) 

Prepared from tert-butyl 6-iodo-1H-indole-1-carboxylate (1 equiv, 

69.0 mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 equiv, 31 mg, 

0.2 mmol) following General Procedure 2. The crude residue was 

analyzed by NMR to give a 82% yield.  The enantiomeric excess was determined to be 

82% by chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO2, λ = 254 nm): tR(minor) 

= 7.5 min, tR(major) = 8.7 min. 1H NMR (500 MHz, Chloroform-d) δ 7.33 – 7.26 (m, 

6H), 6.90 – 6.82 (m, 1H), 6.51 (ddd, J = 13.3, 3.7, 0.8 Hz, 3H), 3.92 (t, J = 7.8 Hz, 1H), 

2.15 (pd, J = 7.3, 1.3 Hz, 2H), 1.66 (s, 9H), 0.93 (t, J = 7.3 Hz, 3H). 

 

5-(1-phenylpropyl)-2-(piperidin-1-yl)pyrimidine (170m) 

Prepared from 5-iodo-2-(piperidin-1-yl)pyrimidine (1 equiv, 

58.0 mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 equiv, 31 

mg, 0.2 mmol) following General Procedure 2. The crude 

residue was analyzed by NMR to give a 78% yield.  The enantiomeric excess was 

determined to be 98% by chiral SFC analysis (OB-H, 2.5 mL/min, 15% IPA in CO2, λ = 

254 nm): tR(minor) = 5.8 min, tR(major) = 7.5 min. 1H NMR (500 MHz, Chloroform-d) δ 

8.17 (d, J = 0.5 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.22 – 7.14 (m, 3H), 3.78 – 3.68 (m, 4H), 

3.59 (t, J = 7.8 Hz, 1H), 2.11 – 1.92 (m, 2H), 1.71 – 1.62 (m, 2H), 1.62 – 1.52 (m, 4H), 

0.90 (t, J = 7.3 Hz, 3H). 

 

 

 

N

N

N

Et

Et
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5-(1-phenylpropyl)-2-(1H-pyrrol-1-yl)pyrimidine (170n) 

Prepared from 5-iodo-2-(1H-pyrrol-1-yl)pyrimidine (1 equiv, 

54.0 mg, 0.2 mmol) and 1-(chloropropyl)benzene (1 equiv, 31 

mg, 0.2 mmol) following General Procedure 2. The crude 

residue was analyzed by NMR to give a 54% yield.  The enantiomeric excess was 

determined to be 91% by chiral SFC analysis (OB-H, 2.5 mL/min, 15% IPA in CO2, λ = 

254 nm): tR(minor) = 9.3 min, tR(major) = 11.2 min. 1H NMR (500 MHz, Chloroform-d) 

δ 8.47 (d, J = 0.5 Hz, 2H), 7.75 – 7.70 (m, 2H), 7.32 (tq, J = 7.7, 1.0 Hz, 2H), 7.25 – 

7.18 (m, 3H), 6.33 – 6.29 (m, 2H), 3.79 (t, J = 7.8 Hz, 1H), 2.20 – 2.06 (m, 2H), 0.95 (t, 

J = 7.3 Hz, 3H). 

 

tert-butyl-4-(5-(1-phenylpropyl)pyrimidin-2-yl)piperazine-1-carboxylate (170o) 

Prepared from tert-butyl 4-(5-iodopyrimidin-2-

yl)piperazine-1-carboxylate (1 equiv, 78.0 mg, 0.2 mmol) 

and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed by NMR to give a 56% 

yield.  The enantiomeric excess was determined to be 89% by chiral SFC analysis (AD-

H, 2.5 mL/min, 10% IPA in CO2, λ = 254 nm): tR(major) = 10.3 min, tR(minor) = 11.7 

min. 1H NMR (500 MHz, Chloroform-d) δ 8.20 (s, 2H), 7.29 (dd, J = 8.4, 6.9 Hz, 2H), 

7.19 (d, J = 7.5 Hz, 3H), 3.75 (t, J = 5.2 Hz, 4H), 3.62 (t, J = 7.8 Hz, 1H), 3.47 (t, J = 

5.3 Hz, 4H), 2.10 – 1.95 (m, 3H), 1.48 (s, 9H), 0.91 (t, J = 7.3 Hz, 3H). 
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N
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N
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tert-butyl-4-(5-(1-phenylpropyl)pyridin-2-yl)piperazine-1-carboxylate (170p) 

Prepared from tert-butyl 4-(5-iodopyridin-2-

yl)piperazine-1-carboxylate (1 equiv, 78.0 mg, 0.2 mmol) 

and 1-(chloropropyl)benzene (1 equiv, 31 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was 

analyzed by NMR to give an 85% yield.  The enantiomeric excess was determined to be 

83% by chiral SFC analysis (OJ-H, 2.5 mL/min, 15% IPA in CO2, λ = 254 nm): tR(major) 

= 6.9 min, tR(minor) = 7.7 min. 1H NMR (500 MHz, Chloroform-d) δ 8.11 (d, J = 2.4 Hz, 

1H), 7.33 (dd, J = 8.8, 2.5 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.23 – 7.13 (m, 3H), 6.58 (dd, J 

= 8.7, 0.8 Hz, 1H), 3.69 (t, J = 7.8 Hz, 1H), 3.52 (q, J = 3.9, 3.1 Hz, 4H), 3.49 – 3.44 (m, 

4H), 2.10 – 1.95 (m, 2H), 1.48 (s, 9H), 0.89 (t, J = 7.2 Hz, 3H).  

 

2-chloro-5-(1-(p-tolyl)propyl)pyridine (172a) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-(1-chloropropyl)-4-methylbenzene (1 equiv, 34 

mg, 0.2 mmol) following General Procedure 2. The crude 

residue was analyzed by NMR to give a 70% yield.  The enantiomeric excess was 

determined to be 88% by chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO2, λ = 

254 nm): tR(major) = 6.8 min, tR(minor) = 8.5 min. 1H NMR (400 MHz, Chloroform-d) δ 

8.29 (d, J = 2.6 Hz, 1H), 7.46 (dd, J = 8.2, 2.5 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.15 – 

7.04 (m, 4H), 3.76 (t, J = 7.8 Hz, 1H), 2.31 (s, 3H), 2.05 (qt, J = 13.6, 7.5 Hz, 2H), 0.90 

(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 149.22, 149.11, 140.27, 139.72, 

138.09, 136.27, 129.40, 127.60, 124.02, 49.61, 28.30, 20.98, 12.57. 

N N
NBoc

Et

Et

N ClMe
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2-chloro-5-(1-(4-chlorophenyl)propyl)pyridine (172b) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-chloro-4-(1-chloropropyl)benzene (1 equiv, 38 

mg, 0.2 mmol) following General Procedure 2. The crude 

residue was analyzed by NMR to give a 71% yield.  The enantiomeric excess was 

determined to be 82% by chiral SFC analysis (AD-H, 2.5 mL/min, 12% IPA in CO2, λ = 

210 nm): tR(minor) = 6.1 min, tR(major) = 6.5 min. 1H NMR (500 MHz, Chloroform-d) δ 

8.27 (dt, J = 2.6, 0.7 Hz, 1H), 7.43 (ddd, J = 8.3, 2.6, 0.5 Hz, 1H), 7.31 – 7.26 (m, 2H), 

7.25 – 7.21 (m, 1H), 7.16 – 7.09 (m, 2H), 3.78 (t, J = 7.8 Hz, 1H), 2.10 – 1.97 (m, 2H), 

0.90 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, cdcl3) δ 149.61, 149.31, 141.87, 139.05, 

138.13, 132.64, 129.24, 129.01, 125.60, 124.29, 49.48, 28.35, 12.60. 

 

2-chloro-5-(1-(4-(trifluoromethyl)phenyl)propyl)pyridine (172c) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 

0.2 mmol) and 1-(1-chloropropyl)-4-

(trifluoromethyl)benzene (1 equiv, 45 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed by NMR to give a 74% 

yield.  The enantiomeric excess was determined to be 82% by chiral SFC analysis (AD-

H, 2.5 mL/min, 2% IPA in CO2, λ = 210 nm): tR(minor) = 14.7 min, tR(major) = 15.3 

min. 1H NMR (500 MHz, Chloroform-d) δ 8.29 (dt, J = 2.6, 0.6 Hz, 1H), 7.56 (dt, J = 

7.9, 0.7 Hz, 2H), 7.45 (ddd, J = 8.3, 2.6, 0.5 Hz, 1H), 7.34 – 7.28 (m, 2H), 3.87 (t, J = 

7.8 Hz, 1H), 2.17 – 2.01 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H).; 13C NMR (126 MHz, cdcl3) 

Et

N ClCl

Et

N ClF3C
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149.82, 149.35, 147.43, 138.53, 138.14, 136.99, 128.27, 125.86 (q, J = 3.7 Hz), 124.39, 

119.02, 110.14, 49.95, 28.25, 12.59.  

 

2-chloro-5-(1-(4-(trifluoromethoxy)phenyl)propyl)pyridine (172d) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 

0.2 mmol) and 1-(1-chloropropyl)-4-

(trifluoromethoxy)benzene (1 equiv, 48 mg, 0.2 mmol) 

following General Procedure 2. The crude residue was analyzed by NMR to give a 78% 

yield.  The enantiomeric excess was determined to be 83% by chiral SFC analysis (AD-

H, 2.5 mL/min, 15% IPA in CO2, λ = 210 nm): tR(minor) = 9.8 min, tR(major) = 10.2 min. 

1H NMR (500 MHz, Chloroform-d) δ 8.28 (d, J = 2.4 Hz, 1H), 7.45 (ddd, J = 8.3, 2.5, 

0.5 Hz, 1H), 7.25 – 7.18 (m, 3H), 7.18 – 7.12 (m, 2H), 3.82 (t, J = 7.8 Hz, 1H), 2.14 – 

1.99 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, cdcl3) δ 149.66, 149.34, 

148.00 (q, J = 2.1 Hz), 142.11, 138.93, 138.15, 129.17, 124.34, 121.59, 121.37, 119.55, 

49.46, 28.43, 12.62.  

 

2-chloro-5-(1-(2-methoxyphenyl)propyl)pyridine (172e) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-(1-chloropropyl)-2-methoxybenzene (1 equiv, 37 

mg, 0.2 mmol) following General Procedure 2. The crude residue 

was analyzed by NMR to give a 78% yield.  The enantiomeric excess was determined to 

be 94% by chiral SFC analysis (OJ-H, 2.5 mL/min, 7% IPA in CO2, λ = 210 nm): 

tR(minor) = 4.0 min, tR(major) = 4.4 min. 1H NMR (500 MHz, Chloroform-d) δ 8.30 (d, J 

Et

N ClF3CO
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N Cl
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= 2.5 Hz, 1H), 7.46 (dd, J = 8.3, 2.5 Hz, 1H), 7.25 – 7.15 (m, 3H), 6.95 (td, J = 7.5, 1.2 

Hz, 1H), 6.82 (dd, J = 8.2, 1.1 Hz, 1H), 4.20 (t, J = 7.9 Hz, 1H), 3.74 (s, 3H), 2.14 – 1.92 

(m, 2H), 0.90 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, cdcl3) δ 156.92, 149.83, 148.63, 

139.47, 138.18, 131.65, 127.71, 127.04, 123.70, 120.60, 110.63, 55.27, 42.49, 27.17, 

12.53. 

 

2-chloro-5-(1-(2-fluorophenyl)propyl)pyridine (172f) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and 1-(1-chloropropyl)-2-fluorobenzene (1 equiv, 35 mg, 

0.2 mmol) following General Procedure 3. The crude residue was 

analyzed by NMR to give a 71% yield.  The enantiomeric excess was determined to be 

90% by chiral SFC analysis (AD-H, 2.5 mL/min, 7% IPA in CO2, λ = 254 nm): tR(minor) 

= 5.7 min, tR(major) = 6.6 min. 1H NMR (500 MHz, Chloroform-d) δ 8.35 – 8.27 (m, 

1H), 7.53 – 7.45 (m, 1H), 7.25 – 7.17 (m, 2H), 7.11 (td, J = 7.5, 1.3 Hz, 1H), 7.00 (ddt, J 

= 11.4, 8.2, 1.7 Hz, 1H), 4.15 – 4.10 (m, 1H), 2.19 – 1.97 (m, 2H), 0.97 – 0.88 (m, 3H). 

 

5-(2-((tert-butyldimethylsilyl)oxy)-1-phenylethyl)-2-chloropyridine (172g) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and tert-butyl(2-chloro-2-phenylethoxy)dimethylsilane (1 

equiv, 54.0 mg, 0.2 mmol) following General Procedure 2. The 

crude residue was analyzed by NMR to give a 61% yield.  The enantiomeric excess was 

determined to be 94% by chiral SFC analysis (AD-H, 2.5 mL/min, 5% IPA in CO2, λ = 

210 nm): tR(minor) = 4.5 min, tR(major) = 5.3 min. 1H NMR (500 MHz, Chloroform-d) δ 
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N Cl
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8.33 (dt, J = 2.5, 0.6 Hz, 1H), 7.52 (ddd, J = 8.3, 2.5, 0.5 Hz, 1H), 7.34 – 7.27 (m, 2H), 

7.26 – 7.21 (m, 2H), 7.20 – 7.15 (m, 2H), 4.22 – 4.03 (m, 3H), 0.82 (s, 9H), -0.04 (d, J = 

5.0 Hz, 6H). 

 

2-chloro-5-(1,2-diphenylethyl)pyridine (172h) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and (1-chloroethane-1,2-diyl)dibenzene (1 equiv, 43.0 mg, 

0.2 mmol) following General Procedure 2. The crude residue was 

analyzed by NMR to give a 66% yield.  The enantiomeric excess was determined to be 

93% by chiral SFC analysis (AD-H, 2.5 mL/min, 12% IPA in CO2, λ = 210 nm): 

tR(minor) = 6.3 min, tR(major) = 9.7 min.  1H NMR (500 MHz, Chloroform-d) δ 8.16 (dt, 

J = 2.6, 0.6 Hz, 1H), 7.42 (ddd, J = 8.3, 2.6, 0.5 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.24 – 

7.11 (m, 7H), 7.03 – 6.95 (m, 2H), 4.24 (dd, J = 8.9, 7.0 Hz, 1H), 3.41 (dd, J = 13.7, 7.0 

Hz, 1H), 3.28 (dd, J = 13.6, 8.9 Hz, 1H). 

 

2-chloro-5-(3-methyl-1-phenylbutyl)pyridine (172i) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and (1-chloro-3-methylbutyl)benzene (1 equiv, 37.0 mg, 

0.2 mmol) following General Procedure 2. The crude residue was 

analyzed by NMR to give a 66% yield.  The enantiomeric excess 

was determined to be 87% by chiral SFC analysis (AD-H, 2.5 mL/min, 6% IPA in CO2, λ 

= 210 nm): tR(minor) = 7.3 min, tR(major) = 8.3 min. 1H NMR (500 MHz, Chloroform-d) 

δ 8.30 (dt, J = 2.6, 0.6 Hz, 1H), 7.48 (ddd, J = 8.3, 2.6, 0.5 Hz, 1H), 7.30 (ddd, J = 8.6, 

Ph

N Cl

Me

Me

N Cl
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6.7, 0.6 Hz, 2H), 7.24 – 7.17 (m, 4H), 4.02 (t, J = 8.0 Hz, 1H), 1.90 (dddd, J = 41.4, 

13.7, 8.0, 7.0 Hz, 2H), 1.42 (hept, J = 6.7 Hz, 1H), 0.92 (dd, J = 6.6, 1.6 Hz, 6H). 

 

2-chloro-5-(3-chloro-1-phenylpropyl)pyridine (172j) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and (1,3-dichloropropyl)benzene (1 equiv, 38.0 mg, 0.2 

mmol) following General Procedure 2. The crude residue was 

analyzed by NMR to give a 85% yield.  The enantiomeric excess was determined to be 

90% by chiral SFC analysis (AD-H, 2.5 mL/min, 8% IPA in CO2, λ = 210 nm): tR(minor) 

= 9.7 min, tR(major) = 11.1 min. 1H NMR (500 MHz, Chloroform-d) δ 8.36 – 8.29 (m, 

1H), 7.50 (ddd, J = 8.2, 2.6, 0.6 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.29 – 7.18 (m, 4H), 4.27 

(t, J = 7.8 Hz, 1H), 3.50 – 3.41 (m, 2H), 2.58 – 2.40 (m, 2H). 

 

tert-butyl-4-(2-(6-chloropyridin-3-yl)-2-phenylethyl)piperidine-1-carboxylate (172k) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 0.2 

mmol) and tert-butyl 4-(2-chloro-2-phenylethyl)piperidine-1-

carboxylate (1 equiv, 65.0 mg, 0.2 mmol) following General 

Procedure 2. The crude residue was analyzed by NMR to give a 65% yield.  The 

enantiomeric excess was determined to be 93% by chiral SFC analysis (OJ-H, 2.5 

mL/min, 15% IPA in CO2, λ = 210 nm): tR(minor) = 5.3 min, tR(major) = 10.9 min. 1H 

NMR (500 MHz, Chloroform-d) δ 8.29 (dt, J = 2.6, 0.6 Hz, 1H), 7.47 (ddd, J = 8.3, 2.6, 

0.5 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.25 – 7.17 (m, 4H), 4.05 (t, J = 8.0 Hz, 3H), 2.56 (s, 

Cl

N Cl
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N Cl
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2H), 2.04 – 1.84 (m, 2H), 1.67 (t, J = 12.4 Hz, 2H), 1.44 (s, 9H), 1.32 – 1.22 (m, 1H), 

1.16 (dd, J = 13.1, 9.2 Hz, 2H). 

 

2-chloro-5-(1-(dibenzo[b,d]furan-4-yl)propyl)pyridine (172l) 

Prepared from 2-chloro-5-iodopyridine (1 equiv, 48.0 mg, 

0.2 mmol) and 4-(1-chloropropyl)dibenzo[b,d]furan (1 

equiv, 49.0 mg, 0.2 mmol) following General Procedure 2. 

The crude residue was analyzed by NMR to give a 76% yield.  The enantiomeric excess 

was determined to be 87% by chiral SFC analysis (OB-H, 2.5 mL/min, 10% IPA in CO2, 

λ = 254 nm): tR(minor) = 9.9 min, tR(major) = 11.7 min.  1H NMR (500 MHz, 

Chloroform-d) δ 8.49 (dt, J = 2.5, 0.6 Hz, 1H), 7.93 (ddd, J = 7.7, 1.3, 0.7 Hz, 1H), 7.86 

– 7.80 (m, 1H), 7.64 (ddd, J = 8.3, 2.6, 0.5 Hz, 1H), 7.56 (dt, J = 8.2, 0.8 Hz, 1H), 7.45 

(ddd, J = 8.4, 7.3, 1.4 Hz, 1H), 7.37 – 7.29 (m, 3H), 7.23 – 7.18 (m, 1H), 4.46 (t, J = 7.9 

Hz, 1H), 2.43 – 2.28 (m, 1H), 2.28 – 2.12 (m, 1H), 0.98 (t, J = 7.3 Hz, 3H). 
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4.5.5 Mechanistic experiments 

a. Competition Experiment 

 

 The experiment was conducted according to general procedure 2 for cross-

coupling, except that 1-(1-chloropropyl)-2-methoxybenzene (171e, 0.05 mmol, 9.2 mg, 1 

equiv) was added, followed by 2-methoxybenzyl chloride (182, 0.05 mmol, 7.8 mg, 1 

equiv, Aldrich). After 4 h, the reaction was a cardinal red with some cloudy precipitate. 

The vial was opened and the reaction diluted with 20% EtOAc/hexanes and filtered 

through a short silica plug. Analysis of the crude reaction mixture by 1H NMR showed a 

product ratio of Et/H = 1.45 by integration of the 2-pyridyl protons (δEt 8.31, δH 8.28) in a 

combined yield of 50%. 

 

b. Inhibitor Studies 

 

 The experiment was conducted according to general procedure 2 for cross-

coupling, except that either BHT (0.025 mmol, 4.5 mg, 0.5 equiv) or DHA (0.025 mmol, 

5.5 mg, 0.5 equiv) were added prior to pumping into the glovebox. After 18 h, the 

reactions were light grey with minimal precipitate. The vials were opened and the 

Cl
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I R

N
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NiBr2(diglyme) (10 mol %)
 L119 (20 mol %)

Mn0 (3 equiv)
TMSCl (40 mol %)
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OMe OMe

50% combined yield
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reactions diluted with 20% EtOAc/hexanes and filtered through short silica plugs. 

Analysis of the crude reaction mixture by 1H NMR showed no consumption of either 

coupling partner. 

 

c. Radical Clock Experiment 

 

 In a glovebox, a flame-dried scintillation vial was charged with a cross-shaped 

stirbar, Mg0 turnings (15.3 mmol, 371 mg, 1.1 equiv), LiCl (13.9 mmol, 589 mg, 1 

equiv), and THF (10 mL) and sealed with a septum cap pierced with a vent needle. 3-

Iodobenzotrifluoride (13.9 mmol, 2 mL, 1 equiv) was added in four portions with stirring. 

After each addition of 0.5 mL, the reaction was allowed to stir until a small exotherm was 

noted. After the final addition, the reaction was allowed to stir for 30 min until a muddy 

brown suspension was achieved with visible consumption of the Mg turnings. The vent 

needle was then removed and the vial was taken out of the glovebox. A separate flame-

dried flask was charged with cyclopropylcarboxaldehyde (12 mmol, 0.9 mL, 0.9 equiv) 

and THF (33 mL), placed under N2, and cooled to -78 ºC. The Grignard solution was then 

added dropwise via syringe. The vial was rinsed with additional THF (2 mL) and this was 

also added to the flask. The reaction was stirred overnight while the dry ice bath was 

allowed to warm to room temperature. The reaction was then quenched with 50% sat. 

aqueous NH4Cl (30 mL). The layers were separated and the aqueous phase was extracted 

with Et2O (2x 20 mL). Organics were combined, dried over Na2SO4, and concentrated to 

CF3

I
1) Mg0 (1.1 equiv)
    LiCl (1.0 equiv)
    THF, rt, 30 min

2) cPrCHO (0.9 equiv)
    THF, -78 ºC, 12 h CF3

OH

SOCl2 (1.05 equiv)

CHCl3, 0 ºC, 2 h
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Cl
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afford the known benzylic alcohol as a yellow oil pure by 1H NMR (97% yield, 11.7 

mmol, 2.52 g).1 1H NMR (500 MHz, Chloroform-d) δ 7.71 (tq, J = 1.9, 0.7 Hz, 1H), 7.62 

(dddt, J = 7.7, 1.9, 1.3, 0.6 Hz, 1H), 7.55 (ddt, J = 7.8, 1.8, 0.9 Hz, 1H), 7.47 (tt, J = 7.7, 

0.8 Hz, 1H), 4.06 (dd, J = 8.5, 3.0 Hz, 1H), 1.33 – 1.12 (m, 1H), 0.68 (dddd, J = 9.4, 7.9, 

5.5, 4.1 Hz, 1H), 0.65 – 0.58 (m, 1H), 0.54 – 0.47 (m, 1H), 0.43 (dtd, J = 9.6, 5.3, 4.4 Hz, 

1H).  

 This material was subjected immediately to the chlorination procedure (SOCl2 

(1.05 equiv, 1.0 mL, 12.6 mmol) in CHCl3 (40 mL)) and maintained at 0 ºC for 2 h until 

workup (according to known procedure except for shorter reaction time with monitoring 

by TLC). Care was taken to minimize exposure to light or heat during reaction, 

concentration, and handling. The material was stored at -20 ºC wrapped in foil. The 

product was isolated as a 4:1 inseparable mixture of the desired benzylic chloride 184 and 

the protodehalogenated, rearranged styrene product. This mixture was used as is 

according to literature procedure.2 1H NMR (500 MHz, Chloroform-d) δ 7.70 (dtt, J = 

1.8, 1.2, 0.7 Hz, 1H), 7.64 (dddt, J = 7.7, 1.8, 1.1, 0.6 Hz, 1H), 7.58 (ddd, J = 7.9, 2.3, 

1.0 Hz, 1H), 7.49 (tt, J = 7.9, 0.8 Hz, 1H), 4.32 (d, J = 9.3 Hz, 1H), 1.55 (dtt, J = 9.6, 

8.0, 4.9 Hz, 1H), 0.86 (dddd, J = 9.0, 7.9, 6.0, 4.9 Hz, 1H), 0.73 (dddd, J = 8.9, 8.0, 6.1, 

4.9 Hz, 1H), 0.62 (ddt, J = 9.7, 6.1, 4.9 Hz, 1H), 0.45 (ddt, J = 9.6, 6.0, 4.9 Hz, 1H). 

 

                                                
1 Neckers, D. C., Schaap, A. P., and Hardy J. J. Am. Chem. Soc., 1966, 88 (6), 1265. 
2 Hitchcock, S., Amegadzie, A., Qian, W., Xia, X., and Harried. S. S. Glycine transporter-1 inhibitors. 
WO2008002583 (A1) Jan. 3, 2008. 
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 The cross coupling of radical clock substrate 184 was performed according to 

general procedure 2 employing 2-chloro-5-iodopyridine (1 equiv, 12.0 mg, 0.05 mmol) 

and 1-(chloro(cyclopropyl)methyl)-3-(trifluoromethyl)benzene (1 equiv, 16.0 mg, 0.05 

mmol). The crude reaction mixture contained the rearranged product 185 as the only 

cross-coupled product. No cyclopropyl peaks were remaining in the crude 1H NMR. 185 

was isolated (55% yield, 8.6 mg, 0.028 mmol) by preparative TLC (5% Et2O, 10% PhMe, 

85% hexanes, RF= 0.15). 1H NMR (500 MHz, Chloroform-d) δ 8.21 (dd, J = 2.6, 0.7 Hz, 

1H), 7.51 (q, J = 1.4 Hz, 1H), 7.48 – 7.39 (m, 4H), 7.37 (d, J = 7.6 Hz, 1H), 7.22 (dd, J 

= 8.2, 0.7 Hz, 1H), 6.40 – 6.35 (m, 1H), 6.22 (dt, J = 15.8, 6.9 Hz, 1H), 2.76 (dd, J = 8.4, 

6.9 Hz, 2H), 2.51 (dtd, J = 8.6, 6.9, 1.4 Hz, 2H). 13C NMR (126 MHz, cdcl3) δ 149.62, 

149.26, 138.83, 137.93, 135.50, 130.41, 130.17, 129.17, 128.99, 123.96, 123.79 (q, J = 

3.8 Hz), 122.68, 122.65, 34.23, 31.92. 19F NMR (282 MHz, cdcl3) δ -62.79.  

 

 

  

Cl
+ N

I

Cl

121j

NiBr2(diglyme) (10 mol %)
 L4 (20 mol %)

Mn0 (3 equiv)
TMSCl (40 mol %)
dioxane, rt, 18 h 185CF3

184
55% yield

CF3 N

Cl
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