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Chapter 3 

Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between 

Heteroaryl Iodides and α-Chloronitriles◊ 

 

3.1 INTRODUCTION 

Benzylic nitriles are a chemically rich and important functionality in organic 

synthesis. These structural motifs and their derivatives are represented in natural products 

and bioactive compounds, including pharmaceuticals. They can also serve as valuable 

synthetic intermediates, being diversifiable to a wide range of more sensitive 

functionality, such as aldehydes and primary amines. As such, chiral benzylic nitriles 

present an entry point to enantioenriched products bearing many useful functional groups, 

as well as being present in desirable targets (Figure 3.1). Their hydrolysis to chiral 

carboxylic acids has been employed in the synthesis of nonsteroidal anti-inflammatories 

such as naproxen, and their reduction has enabled numerous total syntheses. 

                                                
◊ Portions of this chapter have been reproduced from published studies (see reference 34) 
and the supporting information found therein.  
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Figure 3.1. Bioactive compounds accessible from chiral benzylic nitriles. 

 

Routes to access these valuable chiral intermediates via asymmetric catalysis have 

been the focus of numerous research efforts.1 These approaches have taken two major 

forms: a) hydrocyanation, including formal conjugate additions, and b) cross-coupling of 

cyanoelectrophiles. Asymmetric hydrocyanation has been the most widely explored 

catalytic approach to enantioenriched nitriles, employing HCN (or some surrogate, such 

as acetone cyanohydrin) and suitable olefin substrates. These reactions can proceed in 

excellent yield and selectivity, however the substrate scopes of these methods are limited 

when employing styrenyl olefins. Hydrocyanation of simple styrenes is not amenable to 

olefin substitution, giving only the α-methyl nitriles in high enantioselectivity. Conjugate 

cyanation, on the other hand, has been sparingly developed with β-aryl groups, giving 

sparse access to the benzylic nitrile class of products. In addition, these methods all 
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employ some stoichiometric HCN source, making these especially hazardous reactions to 

conduct.   

The cross-coupling of α-halonitriles represents a complementary approach to 

alkene hydrocyanation. Appealingly, this disconnection introduces the cyano moiety 

covalently bonded to a substrate, thereby precluding use of an exogenous, potentially 

hazardous source of cyanide. While asymmetric entries have been reported only recently, 

the utility of α-halonitrile electrophiles in cross-coupling was first established in 1987 by 

Frejd and coworkers (Scheme 3.1).2 The Ni-catalyzed Negishi coupling of 

bromoacetonitrile with arylzinc reagents proceeds with good to excellent yields to afford 

the benzylic nitrile products, setting a precedent that went unexplored for another two 

decades. The next report of these electrophilic partners was by Fu and coworkers in 

2007.3 Importantly, this Hiyama coupling employed a secondary α-chloronitrile to afford 

a stereogenic product, albeit in a racemic sense. A similar Suzuki coupling has also been 

reported by Lei and coworkers with wider substrate scopes for both coupling partners.4 

Scheme 3.1. Racemic cross-coupling of α-halonitrile electrophiles. 
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 Examples of α-halonitriles participating in asymmetric cross-coupling reactions 

have emerged still more recently. Interestingly, both stereospecific and stereoselective 

examples have been disclosed (Scheme 3.2). Falck and coworkers reported the 

stereospecific Pd-catalyzed Suzuki coupling of enantioenriched cyanohydrin triflates 

(themselves accessible by asymmetric cyanosilylation of aldehyde precursors).5 While 

only a handful of the substrates were prepared asymmetrically, the products of these 

couplings were furnished with excellent enantiospecificity. In 2012, Fu and coworkers 

developed a related stereoconvergent transformation: a Negishi coupling employing 

racemic α-bromonitriles.6 Importantly, this report demonstrated the feasibility of a 

stereoconvergent coupling of halonitrile electrophiles, affording access to the benzylic 

nitrile products via a chiral Ni catalyst. 

Scheme 3.2. Asymmetric cross-coupling of α-halonitrile electrophiles 
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mechanistic hypotheses developed for these reactions, the aryl moiety is believed to serve 

as a radical stabilizing group: the benzylic halides are more susceptible to halide 

abstraction, generating a prochiral radical intermediate and enabling differentiation of the 

electrophilic partners (see Chapter 1). We hypothesized that a nitrile, while possessing a 

lower radical stabilization energy than an aryl group, could still facilitate cross-selective 

coupling with a C(sp2) electrophile to afford enantioenriched cyano products (Scheme 

3.3).7  

Scheme 3.3. Target asymmetric reductive cross-coupling α-halonitriles. 
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exploration employing achiral ligands to identify conditions capable of affording the 

desired products. We selected a hydrocinnamaldehyde-derived halonitrile (117 or 118) as 

the C(sp3) partner and p-iodotoluene (119) as the aryl electrophilic component. Based on 

the conditions employed for the asymmetric reductive cross-coupling of benzylic 

chlorides with acyl chlorides (see Chapter 2), early optimization efforts were conducted 

employing NiCl2(dme) as the precatalyst, Mn0 as the reductant, polar amide/urea 

solvents, and various achiral ligands.  

Table 3.1. Initial exploration with achiral ligands. 
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Durandetti and coworkers, enabled some product formation at room temperature (entries 

8-12).10 Taking these results and switching to the analogous chloronitrile 118 proved to 

be more promising. In the presence of TFA or TMSCl, product could be observed at 

room temperature, and in excess of 20% yield at 50 ºC. In every case, complete 

consumption of the halonitrile was observed, with protodehalogenated starting material 

accounting for the remainder of the mass balance. This suggested a poor matching of the 

substrate reactivities, with the C(sp3) partner being consumed and quenched much faster 

than the aryl component could engage the catalyst.  

Table 3.2. Preliminary evaluation of chiral ligands and solvents. 
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conditions developed in Table 3.1 when using iPrBiOX L67 and TMSCl (0.4 equiv) as 

the activator (Table3. 2a, Entry 9). Running the reaction in 1,4-dioxane as solvent gave 

a dramatic boost in ee to 63% (Table 3.2, Entry 5). 

 While this result provided us with improved enantioselectivity, the yield (as 

determined by 1H NMR spectroscopy of the crude reaction mixture) remained at 

approximately 10%, and a significant amount of protodehalogenated 118 was still 

observed. We hypothesized that slow oxidative addition of the aryl iodide relative to the 

rate of α-chloronitrile decomposition could be the source of the problem. Therefore we 

screened a panel of phosphino-oxazoline (PHOX) ligands, anticipating that the more 

strongly σ-donating phosphine would accelerate oxidative addition of the aryl iodide 

partner.11 Gratifyingly, not only were the yields improved twofold (BnPHOX, L72), but 

several ee’s were higher than our previous best results (Figure 3.2).  

Figure 3.2. Initial screen of PHOX ligands. 
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also incorporate another potentially coordinating functionality. It was our hope that 

reaction optimization with this substrate would select for conditions tolerant of 

coordinating groups. Therefore we were pleased to find that aryl iodide 121a was an 

improved substrate for the cross-coupling, as shown in Scheme 3.4.  

Scheme 3.4. PHOX ligand evaluation employing 4-iodobenzonitrile (121a). 
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than the corresponding des-gem-dimethyl derivative L72. Introduction of a methoxy 

group in L75 shut down reactivity entirely, suggesting that L75 may bind Ni in a 

tridentate fashion, disrupting catalysis.13 Changing the aryl core of BnPHOX to a 

neopentyl alkyl linker (L76) gave appreciably greater decomposition of the starting 

materials, indicating that such electron rich phosphine ligands are not well-tolerated.14 

Likewise, changing the oxazoline ring to a thiazoline (L77) gave poor reactivity and 

selectivity.15 Finally, reinvestigating iPrBiOX (L67) with this substrate did show an 

improvement over its performance with 4-iodotoluene, but the ligand was not superior to 

the PHOX series. 

 At this stage, BnPHOX (L72) stood as the most optimal ligand we had explored, 

affording 122a in synthetically useful yields but insufficient ee. To address this, we 

undertook a systematic exploration of the BnPHOX scaffold, with optimization efforts 

targeting: a) the bite angle, b) the oxazoline benzyl substituent, and c) the 

biarylphosphine arm.  

Figure 3.3. Perturbation of PHOX ligand bite angles. 
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lone pairs of the oxazoline oxygen would lead to a narrowing of the bite angle.16 While a 

significant effect was observed, unfortunately it was to the detriment of ee (although the 

yield was maintained). We then sought to perturb the torsion angle about the aryl-

oxazoline bond (highlighted in blue). We anticipated that introduction of bulky 

substituents on either ring about this bond would lead to steric clashing, disrupting the 

coplanarity of the rings and therefore altering the ligand bite angle.17 Therefore, we 

prepared ortho-methyl substituted L79, as well as two imidazoline derivatives bearing 

large groups on the nitrogen atom (L80 and L81). Indeed, all of these ligands displayed a 

similar reaction profile, affording low yields of nearly racemic product.  

Figure 3.4. Electronic tuning of the BnPHOX core and Hammett parameters. 
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this is due to the second-order nature of the perturbation, in which both the oxazoline and 

phosphine arms are affected by the substituent. We also investigated substitution at the 5-

position (L83), however neither electron-rich nor electron-withdrawing groups led to an 

improvement in enantioselectivity.  

Figure 3.5. Optimization of the BnPHOX diarylphosphine arm. 
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the alkyl substituents to 3,5-di(tBu) L87 nearly shut down reactivity, increasing the 

electron density of the aryl substituent had the opposite effect: 3,5-dimethyl-4-

methoxyphenyl-BnPHOX (L89, DMMBnPHOX) afforded 122a in 88% yield and 82% 

ee, the best results observed thus far.11b Attempts to further increase the electron density 

of the phenyl rings by introduction of dimethylamino substituents (L90) gave no product 

in the cross-coupling, perhaps due to catalyst destabilization by the aniline moieties. 

Figure 3.6. Unnatural phenylalanine-derived PHOX ligands. 
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benzyl substituent of BnPHOX. We hypothesized that increasing the steric bulk about the 
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coupling between the desired aryl halide partner and the organozinc reagent formed from 

iodoserine.21 Unfortunately, most substitutions about the benzyl ring led to catalysts 

performing no better than BnPHOX (L72), with some being markedly worse. However 

one ligand, 3,5-bis(trifluoromethyl)phenyl L94 afforded 122a in 74% ee, a 5% increase 

over the control.  

Having identified both a phosphine arm and a benzyl substituent that gave 

selectivities superior to BnPHOX (L72), we prepared the ligand bearing both components 

(L98). We were disappointed that while the yield remained high, the ee of 122a furnished 

by this catalyst was only 45%. This result suggests that the two binding arms of the 

PHOX scaffold are not amenable to independent iterative optimization. Rather, it appears 

that the phosphine and oxazoline groups must be developed in concert, and that the 

interplay between the two halves of the ligand during catalysis is nontrivial. 

3.3 SUBSTRATE SCOPE  

With DMMBnPHOX (L89) identified as the optimal ligand for the model 

reductive coupling to afford 122a, we set out to evaluate the substrate scope of this 

transformation. We began these studies with a survey of aryl iodide partners bearing 

various functional groups and a range of electronics (Scheme 3.5). It became 

immediately clear that electron-rich substrates such as 4-iodoanisole did not afford any 

cross-coupled product (not shown). We attribute this to sluggish oxidative addition of 

these substrates, even with the optimal PHOX ligand. Substrates bearing mildly electron-

withdrawing substitution such as haloarenes 122d and 122e gave poor yields but notable 

chemoselectivity. More strongly electron-withdrawing functionality (122f–h) afforded 

much higher yields, but with ee’s generally lower than the model substrate and too low to 
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be considered synthetically useful. However one class of entries underwent cross-

coupling in good yields with enantioselectivities higher than the control: heteroaryl 

iodides 122i and 122j. Both the thiophene and chloropyridine entries reacted cleanly and 

with high ee. 

Scheme 3.5. Preliminary screen of aryl iodide substrates.a 
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select for tolerance of Lewis-basic functionality by utilizing two nitrile-bearing coupling 
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Section 3.2. Following up on this result, we set out to explore the range of heteroaryl 

CN

CF3

O

Me
Cl

Br

CN

S

N

58% yield
79% ee

62% yield
70% ee

36% yield
78% ee

24% yield
84% ee

75% yield
78% ee

88% yield
82% ee

82% yield
85% ee

76% yield
87% ee

Cl

O

OMe
SF5

N N

O tBu

85% yield
79% ee

37% yield
70% ee

61% yield
70% ee

122a 122b 122c 122d

122e 122f 122g 122h

122i 122j 122k

CN

Cl
+

I
NiCl2(dme) (10 mol %)

L89 (20 mol %)
3 equiv Mn0

CN

0.4 equiv TMSCl
Dioxane, rt, 18 h

Ph
Ph

118 121a-k 122a-k

R R

a Yields determined by 1H NMR with an internal standard, reactions conducted on 0.2 or 0.05 mmol scale 
under an N2 atmosphere in a glovebox. % ee determined by SFC using a chiral stationary phase.



Chapter 3 – Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Heteroaryl 
Iodides and α-Chloronitriles 

184	
  

iodides that may be tolerated by these reaction conditions. We anticipated that these 

substrates would be of particular interest to the synthetic community, especially with 

respect to medicinal chemistry.22 Successful incorporation of a wide range of heteroaryl 

moieties would also represent an advance in the field of reductive cross-coupling: 

Previously reported asymmetric examples only include simple arenes, while racemic 

couplings of heteroarenes require a wide range of varying reaction conditions to achieve 

only moderate yields in many cases.23  

Figure 3.7. Heteroaryl cross-coupling behavior with two ligands. 

 

 Highlighting the difficulty of utilizing heteroarenes in reductive cross-coupling is 

Figure 3.7, showing the results of employing various substituted iodopyrimidines with 

L89 and achiral 4,4’-dtbpy (L64). For all coupling products discussed previously, L64 

was the achiral ligand used to obtain racemic material for the development of chiral 

separation conditions. While L64 frequently afforded lower yields than the optimal chiral 
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functionality, only DMMBnPHOX L89 afforded the desired product. An interesting 
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enables blocking of the pyrimidine lone pairs by the methylene protons, preventing 

catalyst poisoning in this case.  

Scheme 3.6. Unsuccessful achiral ligands for the coupling of 121n. 

 

 As a result of the difficulties encountered employing achiral ligand L64 with 

some heteroaryl substrates, we required a more reliable achiral ligand for the preparation 
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First, the addition of NaBF4 to some substrates favorably altered the reaction profile, 

affording higher yields of the desired products sometimes by increasing conversion and 

sometimes by decreasing protodehalogenation. Changes in enantioselectivity were also 

noted, however these tended to be subtler. This is similar to results reported by Molander 

and coworkers in their reductive cross-couplings of heteroaromatic substrates, which 

were the impetus for investigating NaBF4. Studies of other salt additives were unfruitful, 

with only slight or detrimental impacts being observed. It is unclear if the role of NaBF4 

is as a halide-scavenging agent, a mild Lewis acid, or simply as an ionic electrolyte. 

Second, several heteroaryl substrates benefited from the use of two equivalents of aryl 

iodide. The excess substrate was easily recovered during column chromatography, 

making this a modest sacrifice in the service of improved yields. 
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Scheme 3.7. Heteroaryl iodide scope. 
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 The scope of successful heteroaryl iodide cross-coupling partners is shown in 

Scheme 3.7. We began our screening of these substrates with a series of pyridyl 

substrates, based on the preliminary success of chloropyridine 121j. We were pleased to 

see that a wide range of 2-halopyridines coupled with perfect chemoselectivity for the 

iodo position, including 2-bromopyridine 121r. An iodide walk about 2-fluoropyridine 

demonstrated that while para and meta substitution were tolerated, 2-fluoro-3-

iodopyridine afforded only modest yield of 122q, albeit with good enantioselectivity. 

Electron-donating as well as withdrawing groups behaved well, as in 122t and 122u. 3-

iodoquinoline was an especially good substrate, providing 122v in excellent ee and high 

yield. Importantly, 5-iodo-2-trimethylsilylpyridine underwent cross-coupling smoothly 

(122s), providing a nucleophilic handle for further derivatization or a route to access the 

unsubstituted pyridyl product via protodesilylation.24 

 Inspired by the success of the pyridyl series, we went on to prepare and evaluate a 

range of iodopyrimidine substrates. A series of 2-aminopyrimidines bearing saturated 

nitrogen heterocycles was of particular interest (122l, 122m, and 122w), as these 

compounds find application in medicinal chemistry for a wide range of indications 

(oncological, cardiovascular, and anti-infective).22 We were also pleased to find that 2-

chloro-5-iodopyrimidine (121x) underwent reductive coupling chemoselectively and with 

excellent ee, providing a functional handle for later SNAr or cross-coupling derivatization. 

Thioether-bearing 122n was also accessible in high yield and ee, providing an entry to 

the unsubstituted pyrimidine product via hydrogenation.25 Finally, we were gratified to 

find that other heterocyclic scaffolds behaved well in the reaction, including thiophene 
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122i and imidazopyridine 122z bearing a pendant aryl bromide and containing a fused 

imidazole moiety.26 

Scheme 3.8. Unsuccessful heteroaryl iodides. 
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employing 2-arylpyrimidines (123i and 123j). While these substrates afforded the cross-

coupled products in excellent yields, the material obtained was racemic. At this time it is 

unclear whether some mechanistic difference is at play with these substrates, or whether 

the products obtained are configurationally labile. 

Table 3.3. Control experiments. 

  

 At this stage, we sought to verify that our reaction conditions were indeed optimal 

and to establish the necessity of all the reagents employed. Table 3.3 shows the results of 

these control experiments conducted with 3-iodoquinoline 121v. As expected, the 
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improve reactivity. Finally, employing bromonitrile 117 in place of 118 led to higher 

levels of protodehalogenation, as well as elimination to form the acrylonitrile. 

Scheme 3.9. DMM-PHOX derivative series. 
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acid β-methylphenylalanine, prepared via asymmetric hydrogenation.27 Unfortunately, 

only one diastereomer is easily prepared, with the other requiring commercially 

unavailable ligands for the analogous hydrogenation step. However L106 did not provide 

improved results, affording only the reduced yields of DMM iPrPHOX in similar ee. At 

this point we determined that L89 was the optimal ligand for this transformation and 

elected to move forward with substrate scope evaluation. 

Scheme 3.10. Preparation of α-chloronitriles. 
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mild conditions for the chlorination of functionalized alcohols reported by Giacomelli 

and coworkers furnished chloronitriles from the corresponding cyanohydrins in excellent 

yields, employing trichlorotriazine (TCT) and DMF (Scheme 3.10b).29 Importantly, these 

conditions tolerated functional groups such as esters and Boc-protected amines (e.g. 

128a) that would likely have been incompatible with the harsh conditions employed 

initially. We were pleased that these substrates proved to be not only accessible, but also 

remarkably stable, undergoing no decomposition over months when stored at –20 ºC. 

Scheme 3.11. α-Chloronitrile substrate scope. 
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 Employing this route, we were able access a series of diverse α-chloronitrile 

substrates from commercially available aldehydes. With the substrates in hand, we 

evaluated their performance in the reductive cross-coupling reaction utilizing 3-

iodoquinoline 121v as the model aryl iodide. This substrate was chosen because of its 

simple functionality and high performance in the aryl iodide screen discussed above. 

What emerged was the trend illustrated in Scheme 3.11: Sterically encumbered substrates 

such as neopentyl 128c and branched piperidine 128d afforded the cross-coupled 

products in excellent ee but with moderate yields, while less hindered substrates such as 

2-chloropropionitrile proceeded in excellent yields but with slightly diminished 

enantioselectivity. Functional group tolerance in this series was excellent, with 

electrophilic functionality such as pendent ester 128f and primary alkyl chloride 128g 

reacting cleanly and in high yield. Boc protected piperidines 128a and 128d were also 

well-tolerated, demonstrating the feasibility of heteroatom incorporation in the arene, the 

nitrile moiety, and the alkyl chain of the products. 

Figure 3.8. Recrystallization of selected substrates. 
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 We noted that many of the products of our substrate scope investigations were 

isolable as crystalline solids, suggesting that they may be amenable to enantioenrichment 

via recrystallization. Taking the most promising of these, we subjected the purified 

products to vapor diffusion recrystallization, affording highly enantioenriched products as 

shown in Figure 3.8. This also enabled the conclusive determination of the absolute 

stereochemistry of these products as the (S)-series, via X-ray diffraction of 129e.  

Scheme 3.12. Derivatization of enantioenriched benzylic nitriles. 
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arylethylamines, a potently bioactive class of molecules.30 We also subjected 122m to Pt-

catalyzed hydrolysis, employing the mild conditions developed by Ghaffar and Parkins, 

to generate the carboxamide product 131 with no loss of ee.31 Finally, beginning with 

enantioenriched thiophene 122i, we conducted a DIBAL-mediated reduction of the 

stereogenic nitrile to the corresponding aldehyde 132 in excellent yield with only slight 

degradation of ee under these basic conditions.32 
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3.4 MECHANISTIC STUDIES 

As described in Chapter 1, we hypothesize that asymmetric reductive cross-

couplings of radical-stabilized C(sp)3 electrophiles may proceed through the intermediacy 

of prochiral radicals derived from halide abstraction. While this hypothesis inspired our 

substrate selection and helped guide reaction development, we set out to verify the 

presence of radical intermediates and to elucidate their nature. Two possible mechanisms 

for this transformation are shown in Figure 3.9: a sequential reduction mechanism (a) 

and a radical chain mechanism (b).  

Figure 3.9. Possible mechanisms for the asymmetric reductive cross-coupling. 
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141). We postulate that stereoselective recombination of prochiral α-cyano radical 142 

with a chiral NiII complex (137 or 140) may be the enantiodetermining step. However if 

this combination is reversible, then reductive elimination from NiIII  137 or 140 may be 

enantiodetermining via a Curtin-Hammett-type mechanism. The difference between 

mechanisms a and b lies in the lifetime of radical 142. If 142 recombines rapidly with the 

NiII center that abstracted the halide (a radical rebound process), then sequential reduction 

is favored. If 142 is sufficiently long-lived to escape the solvent cage and combine with a 

different NiII center (134), then the radical chain process is favored.   

Scheme 3.13. Mechanistic experiments. 
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The remainder of the aryl iodide was unreacted, while the remainder of the α-

chloronitrile afforded volatile decomposition products. This is consistent with the 

generation of an α-cyanocyclopropylcarbinyl radical intermediate.  

Given the results with radical clock 114, it was somewhat surprising that the 

reaction was not impacted by up to 50 mol % of the radical inhibitors BHT or DHA 

(Scheme 3.13b). We would anticipate that cage-escaped radicals generated in the 

reaction would be quenched by these inhibitors, leading to lower yields or complete 

inhibition. However, it may be possible that short-lived radicals not escaping the solvent 

cage may be unaffected by inhibitors. The success of the cross-coupling in the presence 

of these inhibitors is not consistent with our expectations for a radical chain mechanism, 

although further studies are required to elucidate if the sequential reduction mechanism is 

operative or if more complex pathways are at work. 

 

3.5 CONCLUSION 

In conclusion, a Ni-catalyzed asymmetric reductive cross-coupling between α-

chloronitriles and heteroaryl iodides has been developed.34 A new chiral PHOX ligand 

was identified that provides α,α-disubstituted nitriles in good yields and with high 

enantioinduction. This is the first example of a Ni-catalyzed asymmetric reductive cross-

coupling reaction that tolerates N- and S-heterocyclic coupling partners and demonstrates 

the feasibility of developing related transformations of electrophiles containing Lewis 

basic functional groups. The development of such novel asymmetric reductive cross-

coupling reactions as well as mechanistic investigations are the subject of ongoing 

research in our laboratory.  
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3.6 EXPERIMENTAL SECTION 

3.6.1 Materials and Methods 

Unless otherwise stated, reactions were performed under a nitrogen atmosphere 

using freshly dried solvents. Methylene chloride, diethyl ether, tetrahydrofuran, and 

toluene were dried by passing through activated alumina. All other commercially 

obtained reagents were used as received unless specifically indicated. Aryl iodides were 

purchased from Sigma Aldrich, Combi-Blocks, or Astatech. Manganese powder 

(>99.9%) was purchased from Sigma Aldrich. NiCl2(dme) was purchased from Strem. 

Ghaffar-Parkins catalyst was purchased from Strem. All reactions were monitored by 

thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 

mm). Silica gel column chromatography was performed as described by Still et al. (W. C. 

Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.) using silica gel (particle size 

0.032-0.063) purchased from Silicycle. 1H and 13C NMR were recorded on a Varian 

Inova 500 (at 500 MHz and 125 MHz respectively) or a Varian Inova 600 (at 600 MHz 

and 150 MHz respectively and are reported relative to internal chloroform (1H, δ = 7.26, 

13C, δ = 77.0).  Data for 1H NMR spectra are reported as follows: chemical shift (δ ppm) 

(multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier 

abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad. IR spectra were recorded on a Perkin Elmer Paragon 1000 

spectrometer and are reported in frequency of absorption (cm–1). Analytical SFC was 

performed with a Mettler SFC supercritical CO2 analytical chromatography system with 

Chiralcel AD-H, OD-H, AS-H, OB-H, and IA columns (4.6 mm x 25 cm).  HRMS were 

acquired using either an Agilent 6200 Series TOF with an Agilent G1978A Multimode 
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source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), 

or mixed (MM) ionization mode. Low-temperature X-ray diffraction data (φ-and ω-

scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled 

to a PHOTON 100 CMOS detector with Cu-Kα radiation (λ = 1.54178 Å) from an IµS 

micro-source.  

 

3.6.2 Ligand and Substrate Preparation 

a. General Procedure 1 for the preparation of BnPHOX derivatives 
 

To a flame-dried flask was added CuI (0.13 equiv), followed by anhydrous 

toluene (0.5 mL/1 mmol bromoarene). To this solution was added N,N’-DMEDA (0.88 

equiv) and diarylphosphine (1.8 equiv). These were stirred for 15 minutes at room 

temperature. To the reaction was then added Cs2CO3 (3.75 equiv), followed by 

bromoarene (1 equiv) as a solution in toluene (0.5 mL/1 mmol bromoarene). The reaction 

was heated to 110 ºC for 16 h. After cooling to room temperature, the reaction was 

filtered through a plug of Celite and washed with degassed anhydrous DCM. The solution 

was concentrated and quickly purified via column chromatography using a positive 

pressure of argon and degassed solvent to afford the BnPHOX ligand. 
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(S)-4-benzyl-2-(2-(bis(4-methoxy-3,5-dimethylphenyl)phosphanyl)phenyl)-4,5-

dihydrooxazole (L89, DMMBnPHOX) 

 

Prepared according to General Procedure 1: To a flame-dried flask was added CuI 

(0.13 equiv, 241 mg, 1.3 mmol), followed by anhydrous toluene (40 mL). To this solution 

was added N,N’-DMEDA (0.88 equiv, 0.93 mL, 8.6 mmol) and diarylphosphine 148 (1.8 

equiv, 5.3 g, 17.5 mmol). These were stirred for 15 minutes at room temperature. To the 

reaction was then added Cs2CO3 (3.75 equiv, 12.4 g, 36.7 mmol), followed by 

bromoarene 149 (1 equiv, 3.1 g, 9.8 mmol) as a solution in toluene (40 mL). The reaction 

was heated to 110 ºC for 16 h. After cooling to room temperature, the reaction was 

filtered through a plug of Celite and washed with degassed anhydrous DCM. The solution 

was concentrated and quickly purified via column chromatography using a positive 

pressure of argon and degassed solvent (10-40% Et2O/Hexanes) to afford L89 as a white 

foamy solid (1.62 g, 3.01 mmol, 31% yield). 1H NMR (500 MHz, Chloroform-d) δ 7.90 – 

7.82 (m, 1H), 7.40 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.26 – 7.20 (m, 1H), 7.15 – 7.10 

(m, 2H), 7.05 (dd, J = 12.7, 7.9 Hz, 4H), 6.93 (ddd, J = 7.7, 4.5, 1.5 Hz, 1H), 4.44 – 4.29 

(m, 1H), 4.06 (dd, J = 9.3, 8.3 Hz, 1H), 3.78 (dd, J = 8.4, 7.4 Hz, 1H), 3.75 (d, J = 4.0 

Hz, 6H), 2.99 (dd, J = 13.7, 5.0 Hz, 1H), 2.28 (d, J = 13.0 Hz, 12H), 2.17 – 2.06 (m, 1H); 

13C NMR (126 MHz, cdcl3) 13C NMR (126 MHz, cdcl3) δ 164.32, 164.30, 157.71, 157.63, 

139.88, 139.68, 138.19, 135.02, 134.84, 134.72, 134.54, 133.40, 133.38, 132.43, 132.41, 

P N

O

Bn

MeO

Me

Me

Me
OMe

Me

CuI (0.13 equiv)
N,N'-DMEDA (0.88 equiv)

Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
Br N

O

Bn

P
H

Me

MeO
Me Me

OMe

Me

148
1.8 equiv.

+

L89149
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132.36, 132.33, 131.49, 131.35, 131.01, 130.95, 130.90, 130.83, 130.36, 129.91, 129.89, 

129.08, 128.48, 127.65, 126.34, 71.55, 67.90, 59.68, 59.62, 41.25, 16.22, 16.17; 31P NMR 

(121 MHz, cdcl3) δ -6.15; IR (NaCl/thin film): 3564.92, 2935.84, 1651.78, 1474.78, 

1274.72, 1217.33, 1113.02, 1014.45, 909.83, 732.11, 700.48, 607.77 cm-1; [α]D
25 = 

+37.355 (c = 1.285, CHCl3). HRMS (MM) calc’d for [M+H2O]+ 555.2533, found 

555.2544. 

 

(S)-4-(2,5-dimethylbenzyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-dihydrooxazole 

(L92) 

 

Prepared from bromoarene 150 (4.24 mmol, 1.46 g) according to General Procedure 1 

and purified by flash column chromatography in 10-20% EtOAc/hexanes to afford 1.1 g 

(58% yield) of L92 a clear tacky resin. 1H NMR (500 MHz, Chloroform-d) δ 7.97 (ddd, J 

= 7.6, 3.5, 1.5 Hz, 1H), 7.46 – 7.29 (m, 12H), 7.07 (d, J = 7.7 Hz, 1H), 7.00 – 6.85 (m, 

3H), 4.41 (tdd, J = 9.6, 7.2, 4.8 Hz, 1H), 4.09 (t, J = 8.8 Hz, 1H), 3.87 (dd, J = 8.4, 7.2 

Hz, 1H), 2.96 (dd, J = 14.3, 4.9 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H), 2.12 (dd, J = 14.3, 9.9 

Hz, 1H). 

 

 

Ph2P N

O

Me

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L92150

N

O

MeBr

Me Me
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(S)-4-(3,5-dimethylbenzyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-dihydrooxazole 

(L93) 

 

Prepared from bromoarene 151 (4.24 mmol, 1.46 g) according to General 

Procedure 1 and purified by flash column chromatography in 10-20% EtOAc/hexanes to 

afford 210 mg (11% yield) of L93 a clear tacky resin. 1H NMR (500 MHz, Chloroform-

d) δ 7.90 (s, 1H), 7.45 – 7.18 (m, 12H), 6.95 – 6.79 (m, 2H), 6.71 (s, 2H), 4.49 – 4.21 (m, 

1H), 4.02 (t, J = 8.9 Hz, 1H), 3.81 (d, J = 8.1 Hz, 1H), 2.89 (d, J = 13.8 Hz, 1H), 2.28 (d, 

J = 0.7 Hz, 6H), 2.02 (q, J = 12.0, 10.4 Hz, 1H). 

 

(S)-4-(3,5-dimethoxybenzyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-dihydrooxazole 

(L95) 

 

Prepared from bromoarene 152 (5.60 mmol, 2.11 g) according to General 

Procedure 1 and purified by flash column chromatography in 10-50% EtOAc/hexanes to 

afford 414 mg (15% yield) of L95 a white solid. 1H NMR (300 MHz, Acetonitrile-d3) δ 

7.86 – 7.74 (m, 1H), 7.52 – 7.22 (m, 12H), 6.98 – 6.88 (m, 1H), 6.39 (d, J = 2.3 Hz, 2H), 

6.35 (t, J = 2.3 Hz, 1H), 4.45 – 4.23 (m, 1H), 4.13 (dd, J = 9.4, 8.3 Hz, 1H), 3.76 (m, 7H), 

Ph2P N

O

Me

Me

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L93151

N

O

Me

Me

Br

Ph2P N

O

OMe

OMe

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L95152

N

O

OMe

OMe

Br
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2.68 (dd, J = 13.7, 6.4 Hz, 1H), 2.32 (dd, J = 13.7, 7.4 Hz, 1H).; 31P NMR (121 MHz, 

cd3cn) δ -6.56. 

 

(S)-4-(3,5-bis(trifluoromethyl)benzyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-

dihydrooxazole (L94) 

 

 Prepared from bromoarene 153 (1.05 mmol, 475 mg) according to General 

Procedure 1 and purified by flash column chromatography in 10-20% EtOAc/hexanes to 

afford 240 mg (41% yield) of L94 a colorless viscous oil. 1H NMR (300 MHz, 

Acetonitrile-d3) δ 7.88 (s, 3H), 7.82 – 7.72 (m, 1H), 7.52 – 7.10 (m, 12H), 6.98 – 6.85 

(m, 1H), 4.49 – 4.29 (m, 1H), 4.25 (dd, J = 9.5, 8.3 Hz, 1H), 3.84 (dd, J = 8.3, 7.3 Hz, 

1H), 2.84 (dd, J = 14.0, 5.0 Hz, 1H), 2.69 (dd, J = 14.0, 8.2 Hz, 1H).; 31P NMR (121 

MHz, cd3cn) δ -6.50. 

 

 (S)-4-(3,5-diisopropylbenzyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-dihydrooxazole 

(L96) 

 

Ph2P N

O

CF3

CF3

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h

L94153

N

O

CF3

CF3

Br

Ph2P N

O

iPr

iPr

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L96154

N

O

iPr

iPr

Br
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Prepared from bromoarene 154 (5.30 mmol, 2.12 g) according to General 

Procedure 1 and purified by flash column chromatography in 5-20% EtOAc/hexanes to 

afford 930 mg (35% yield) of L96 a white solid. 1H NMR (300 MHz, Acetonitrile-d3) δ 

7.85 – 7.74 (m, 1H), 7.50 – 7.21 (m, 10H), 6.99 (t, J = 1.7 Hz, 1H), 6.97 – 6.86 (m, 3H), 

4.31 (dtd, J = 9.4, 7.4, 6.2 Hz, 1H), 4.10 (dd, J = 9.4, 8.3 Hz, 1H), 3.77 (dd, J = 8.3, 7.5 

Hz, 1H), 2.86 (p, J = 6.9 Hz, 2H), 2.69 (dd, J = 13.7, 6.3 Hz, 1H), 2.37 (dd, J = 13.7, 7.3 

Hz, 1H), 1.22 (d, J = 6.9 Hz, 12H).; 31P NMR (121 MHz, cd3cn) δ -6.43. 

 

(S)-4-([1,1':3',1''-terphenyl]-5'-ylmethyl)-2-(2-(diphenylphosphanyl)phenyl)-4,5-

dihydrooxazole (L97) 

 

Prepared from bromoarene 155 (5.97 mmol, 2.80 g) according to General 

Procedure 1 and purified by flash column chromatography in 10-30% EtOAc/hexanes to 

afford 830 mg (24% yield) of L97 a white solid. 1H NMR (300 MHz, Acetonitrile-d3) δ 

7.93 – 7.77 (m, 1H), 7.77 – 7.69 (m, 5H), 7.53 (d, J = 1.7 Hz, 2H), 7.51 – 7.07 (m, 13H), 

6.94 (ddd, J = 6.3, 3.8, 1.9 Hz, 1H), 4.54 – 4.34 (m, 1H), 4.33 – 4.16 (m, 1H), 4.00 – 3.82 

(m, 1H), 2.89 – 2.60 (m, 2H).; 31P NMR (121 MHz, cd3cn) δ -7.08. 

 

 

Ph2P N

O

Ph

Ph

Ph2PH (1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L97155

N

O

Ph

Ph

Br
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(S)-2-(2-(bis(4-methoxy-3,5-dimethylphenyl)phosphanyl)phenyl)-4-(3,5-

bis(trifluoromethyl)benzyl)-4,5-dihydrooxazole (L98) 

 

Prepared from bromoarene 156 (3.0 mmol, 1.36 g) according to General 

Procedure 1 and purified by flash column chromatography in 10-20% Et2O/hexanes to 

afford 300 mg (15% yield) of L98 a clear yellow oil. 1H NMR (300 MHz, Acetonitrile-

d3) δ 8.07 – 7.63 (m, 3H), 7.57 – 7.15 (m, 3H), 6.95 (dd, J = 7.9, 4.0 Hz, 5H), 4.42 – 4.05 

(m, 1H), 3.86 – 3.44 (m, 8H), 2.88 – 2.45 (m, 2H), 2.16 (s, 6H), 1.96 (s, 6H).; 19F NMR 

(282 MHz, cd3cn) δ -63.09.; 31P NMR (121 MHz, cd3cn) δ -6.78. 

 

b. General Procedure 2 for preparation of heteroaryl iodides. 

To a flame-dried flask was added copper(I) iodide (0.05 equiv), followed by 1,4-

dioxane and N,N’-DMEDA (0.10 equiv), then aryl bromide (1.0 equiv) and sodium 

iodide (2.0 equiv). The reaction was heated to 110 ºC for 24 h. Upon cooling to room 

temperature, the reaction was filtered over Celite and washed with DCM. The solution 

was concentrated to afford the aryl iodide as a light solid. Purification by recrystallization 

was possible for all substrates but was generally unnecessary. Aryl iodides were 

employed in the coupling reactions as is.  

 

 

P N

O

CF3

CF3

(DMMPh)2PH (148) 1.8 equiv)
CuI (0.13 equiv)

N,N'-DMEDA (0.88 equiv)
Cs2CO3 (3.75 equiv)

PhMe, 110 ºC, 16 h
L98

156

N

O

CF3

CF3

Br

Me

MeO

Me

Me
OMe
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5-iodo-2-(pyrrolidin-1-yl)pyrimidine (121l) 

 Prepared from 5-bromo-2-(pyrrolidin-1-yl)pyrimidine (10.3 mmol, 

2.35 g) following General Procedure 2 to yield 2.75 g (97% yield) of 

121l as a very light pink solid. 1H NMR (500 MHz, Chloroform-d) δ 

8.37 (s, 2H), 3.57 – 3.47 (m, 4H), 2.18 – 1.77 (m, 4H); 13C NMR (126 MHz, cdcl3) δ 

162.34, 158.19, 74.37, 46.74, 25.52; IR (NaCl/thin film): 2944.10, 2864.32, 1565.22, 

1518.02, 1511.96, 1333.11, 1286.14, 1153.17, 940.39, 782.61, 639.66 cm-1; HRMS 

(MM) calc’d for [M]+ 274.9914, found 274.9874. 

 

5-iodo-2-(piperidin-1-yl)pyrimidine (121m) 

 Prepared from 5-bromo-2-(piperidin-1-yl)pyrimidine (10.3 mmol, 

2.49 g) following General Procedure 2 to yield 2.86 g (96% yield) of 

121m as a light yellow solid. 1H NMR (500 MHz, Chloroform-d) δ 

8.34 (s, 2H), 3.78 – 3.69 (m, 4H), 1.71 – 1.63 (m, 2H), 1.59 (tt, J = 7.8, 4.5 Hz, 4H); 13C 

NMR (126 MHz, cdcl3) δ 162.34, 159.63, 74.30, 44.87, 25.64, 24.71; IR (NaCl/thin 

film): 2929.42, 2849.82, 1558.04, 1505.31, 1360.11, 1266.59, 1253.66, 1023.84, 945.12, 

851.36, 784.80, 642.34 cm-1; HRMS (MM) calc’d for [M]+ 289.0070, found 289.0033. 

 

5-iodo-2-phenylthiopyrimidine (121n) 

Prepared from 5-bromo-2-phenylthiopyrimidine (10.3 mmol, 2.75 g) 

following General Procedure 2 to yield 3.14 g (97% yield) of 121n as a 

light tan solid. 1H NMR (500 MHz, Chloroform-d) δ 8.62 (s, 2H), 7.65 – 7.56 (m, 2H), 

7.48 – 7.40 (m, 3H); 13C NMR (126 MHz, cdcl3) δ 171.40, 162.64, 135.25, 129.61, 

N

NPhS

I

N

N

I

N

N

NN

I
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129.34, 128.88, 87.17; IR (NaCl/thin film): 3057.57, 1537.84, 1514.30, 1440.03, 

1382.13, 1184.77, 994.96, 745.51, 687.91, 630.05 cm-1; HRMS (MM) calc’d for [M]+ 

313.9369, found 313.9579. 

 

c. General Procedure 3 for preparation of α-chloronitriles. 

To a flame-dried flask was added aldehyde starting material (1 equiv) followed by 

anhydrous Et2O and K2CO3 (0.2 equiv). To this suspension was added TMSCN (1.02 

equiv) (Warning: acutely toxic, handle with care). Reaction was stirred at room 

temperature overnight. Reaction was then quenched with saturated aqueous NaHCO3 (1 

mL/mmol). Layers were separated and the aqueous phase was extracted twice with Et2O. 

Organic layers were combined and concentrated. The resulting oil was suspended in 1 N 

HCl and stirred at rt for 2 hours. The reaction was then washed twice with Et2O and the 

organics were dried over Na2SO4 and concentrated to afford the crude cyanohydrin. A 

new flame-dried flask was charged with a large stirbar and cyanuric chloride (1.05 

equiv). To this was added DMF (1.1 mL/gram cyanuric chloride) and the suspension was 

stirred vigorously until a white solid was obtained. The solid was then suspended by 

addition of DCM (0.5 M). The crude cyanohydrin was added to the reaction as a solution 

in DCM and stirred at room temperature for 24 hours. The reaction was quenched by 

addition of water and stirred for 10 minutes. Layers were separated and the aqueous layer 

was washed with DCM. Organic phases were combined and washed with saturated 

Na2CO3, then 1 N HCl, then brine. Organics were then dried over Na2SO4 and 

concentrated to afford the crude chloronitrile. Crude oils were purified by column 
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chromatography to afford clear oils or white solids. Substrate preparations were 

unoptimized and the reported reactions were performed once. 

 

tert-Butyl-4-(2-chloro-2-cyanoethyl)piperidine-1-carboxylate (128a) 

Prepared from 2-(1-Boc-4-piperidyl)acetaldehyde (1.0 g, 4.4 

mmol) following General Procedure 3. The crude residue was 

purified by silica gel chromatography (5:95 to 20:80 EtOAc:hexanes) to yield 837 mg 

(70% yield) of 128a as a white solid. 1H NMR (500 MHz, Chloroform-d) δ 4.49 (t, J = 

7.6 Hz, 1H), 4.12 (bs, 2H), 2.71 (bs, 2H), 2.10 – 1.94 (m, 2H), 1.80 (ddd, J = 11.3, 7.6, 

4.2 Hz, 1H), 1.72 – 1.67 (m, 2H), 1.45 (s, 9H), 1.28 – 1.06 (m, 2H); 13C NMR (126 MHz, 

cdcl3) δ 154.64, 117.08, 79.61, 43.72, 43.20, 42.63, 40.18, 33.02, 31.44, 31.08, 28.42; IR 

(NaCl/thin film): 2929.41, 1673.87, 1417.84, 1246.54, 1161.38, 1127.43, 966.65, 865.88, 

769.18, 741.68, 677.80 cm-1; HRMS (MM) calc’d for [M+H]+ 273.1364, found 273.1352. 

 

tert-Butyl-4-(chloro(cyano)methyl)piperidine-1-carboxylate (128d) 

Prepared from 1-Boc-piperidine-4-carboxaldehyde (2.0 g, 9.39 

mmol) following General Procedure 3. The crude residue was 

purified by silica gel chromatography (5:95 to 20:80 

EtOAc:hexanes) to yield 570 mg (24% yield) of 128d as a white solid. 1H NMR (500 

MHz, Chloroform-d) δ 4.34 (d, J = 6.1 Hz, 1H), 4.24 (bs, 2H), 2.70 (bs, 2H), 2.10 – 1.98 

(m, 1H), 1.98 – 1.84 (m, 2H), 1.46 (s, m, 11H); 13C NMR (126 MHz, cdcl3) δ 154.47, 

115.76, 79.95, 47.27, 43.17, 42.70, 41.59, 28.39, 28.35, 27.96; IR (NaCl/thin film): 

1976.08, 1945.79, 2859.74, 1682.85, 1422.81, 1366.50, 1280.82, 1239.82, 1166.99, 

BocN

CN

Cl

BocN Cl

CN
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1128.02, 973.46, 866.39, 760.71 cm-1; HRMS (MM) calc’d for [M+H]+ 259.1208, found 

259.1256. 

 

Ethyl 4-chloro-4-cyanobutyrate (128f) 

Prepared from ethyl hemisuccinaldehyde (1.82 g, 14 mmol) 

following General Procedure 3. The crude residue was purified by 

silica gel chromatography (5:95 to 20:80 EtOAc:hexanes) to yield 1.77 g (72% yield) of 

128f as a clear oil. 1H NMR (500 MHz, Chloroform-d) δ 4.70 (dd, J = 7.5, 6.2 Hz, 1H), 

4.17 (q, J = 7.1 Hz, 2H), 2.73 – 2.53 (m, 2H), 2.49 – 2.28 (m, 2H), 1.28 (t, J = 7.1 Hz, 

3H), ; 13C NMR (126 MHz, cdcl3) δ 171.34, 116.62, 61.14, 41.50, 31.39, 29.66, 14.15; IR 

(NaCl/thin film): 2983.27, 2249.74, 1734.19, 1608.59, 1564.56, 1419.07, 1378.34, 

1193.90, 1096.48, 1024.20, 852.08, 795.42, 665.51 cm-1 ; HRMS (MM) calc’d for [M]+ 

175.0395, found 175.0380. 

 

2-chloro-2-cyclopropylacetonitrile (144) 

Prepared from cyclopropane carboxaldehyde (1 mL, 13.4 mmol) following 

General Procedure 3. The crude residue was purified by kugelrohr 

distillation followed by silica gel chromatography (100% pentanes) to yield 205 mg (13% 

yield) of 144 as a clear mobile liquid. The product was isolated with some residual 

pentane due to its volatility. 1H NMR (500 MHz, Chloroform-d) δ 4.22 (d, J = 7.7 Hz, 

1H), 1.53 (qt, J = 7.9, 4.8 Hz, 1H), 0.94 – 0.84 (m, 2H), 0.74 – 0.62 (m, 2H); 13C NMR 

(126 MHz, cdcl3) δ 115.79, 46.91, 16.59, 6.09, 5.40; IR (NaCl/thin film): 3091.35, 

Cl

CN

CN

Cl
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3013.92, 2958.47, 2247.22, 1732.61, 1430.84, 1220.80, 1029.90, 991.98, 926.86, 832.41, 

728.05 cm-1; HRMS (MM) calc’d for [M+H]+ 116.0262, found 116.0258. 

 

3.6.3 Enantioselective Reductive Cross-Coupling 

General Procedure 4 for reductive cross-couplings. 

A 20 mL scintillation vial was charged with a cross stirbar, Mn0 powder (3 equiv, 

33 mg, 0.6 mmol), aryl iodide (if solid, 1 or 2 equiv, 0.2 or 0.4 mmol), NiCl2(dme) (0.1 

equiv, 4.4 mg, 0.02 mmol), L89 (0.2 equiv, 21.6 mg, 0.04 mmol) and NaBF4 if applicable 

(1 equiv, 22 mg, 0.2 mmol). To this was added 1,4-dioxane (0.68 mL, 0.3M), aryl iodide 

(if liquid, 1 or 2 equiv, 0.2 or 0.4 mmol) and TMSCl (0.4 equiv, 33 µL, 0.08 mmol), 

followed by chloronitrile (1 equiv, 0.2 mmol). Reaction was sealed with a Teflon-lined 

cap and stirred on the benchtop at 500 RPM for 16 hours. Over this interval reactions turn 

from dark purple to cloudy red or yellow with significant white precipitate. Reactions 

were diluted with 1 mL of hexane, leading to additional salt precipitation. This slurry was 

loaded directly onto a silica gel or florisil column and eluted in a hexane/EtOAc gradient. 

Excess aryl iodide could be recovered in the first several fractions, with cross-coupled 

product being the most polar component. Reaction success is critically dependent on 

stirring. A stirbar too small for the reaction vessel will fail to suspend the Mn powder and 

lead to low conversions. The reaction vessel should be sufficiently large (solvent height 

should be sufficiently low) to allow even distribution of Mn powder with vigorous 

stirring.  
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2-(6-chloropyridin-3-yl)-4-phenylbutanenitrile (122j) 

Prepared from 2-chloro-5-iodopyridine (48.0 mg, 0.2 mmol) and 

2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) following 

General Procedure 4. The crude residue was purified by silica gel chromatography (0:100 

to 10:90 EtOAc:hexanes) to yield 39.8 mg (78% yield) of 122j as a clear oil.  The 

enantiomeric excess was determined to be 85% by chiral SFC analysis (AD, 2.5 mL/min, 

8% IPA in CO2, λ = 210 nm): tR(minor) = 9.8 min, tR(major) = 13.0 min. 1H NMR (500 

MHz, Chloroform-d) δ 8.31 (d, J = 2.6 Hz, 1H), 7.66 (dd, J = 8.3, 2.7 Hz, 1H), 7.40 – 

7.28 (m, 3H), 7.28 – 7.22 (m, 1H), 7.22 – 7.17 (m, 2H), 3.77 (dd, J = 9.2, 6.0 Hz, 1H), 

2.87 – 2.81 (m, 2H), 2.34 – 2.27 (m, 1H), 2.16 (dddd, J = 13.7, 8.5, 7.6, 6.0 Hz, 1H).; 13C 

NMR (126 MHz, cdcl3) δ 151.54, 148.52, 138.91, 137.56, 130.54, 128.89, 128.40, 

126.84, 124.78, 119.22, 37.00, 33.47, 32.86.; IR (NaCl/thin film): 3027.23, 2926.09, 

2242.46, 1586.64, 1566.17, 1496.29, 1460.14, 1389.42, 1141.53, 1108.27, 1022.71, 

832.61, 741. 61, 700.19 cm-1; [α]D
25 = -12.081 (c = 1.410, CHCl3). HRMS (MM) calc’d 

for [M+Na]+ 279.0659, found 279.0702. 

 

2-(6-bromopyridin-3-yl)-4-phenylbutanenitrile (122r) 

Prepared from 2-bromo-5-iodopyridine (56.8 mg, 0.2 mmol) and 

2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) with NaBF4 

(22 mg, 0.2 mmol) following General Procedure 4. The crude residue was purified by 

silica gel chromatography (0:100 to 10:90 EtOAc:hexanes) to yield 40.9 mg (68% yield) 

of 122r as a clear oil.  The enantiomeric excess was determined to be 88% by chiral SFC 

analysis (AD, 2.5 mL/min, 10% IPA in CO2, λ = 280 nm): tR(minor) = 9.5 min, tR(major) 

N Cl

CN

N Br
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= 12.2 min.  1H NMR (500 MHz, Chloroform-d) δ 8.29 (dt, J = 2.5, 0.6 Hz, 1H), 7.54 

(qd, J = 8.3, 1.7 Hz, 2H), 7.42 – 7.29 (m, 2H), 7.29 – 7.22 (m, 1H), 7.22 – 7.14 (m, 2H), 

3.74 (dd, J = 9.2, 6.0 Hz, 1H), 2.90 – 2.78 (m, 2H), 2.29 (dddd, J = 13.9, 9.3, 8.0, 6.0 Hz, 

1H), 2.16 (dddd, J = 13.7, 8.5, 7.6, 6.0 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 148.97, 

142.08, 138.88, 137.29, 130.97, 128.89, 128.57, 128.40, 126.85, 119.13, 36.95, 33.53, 

32.85; IR (NaCl/thin film): 3026.73, 2925.74, 2859.37, 2242.11, 1734.00, 1581.13, 

1561.56, 1496.15, 1455.35, 1385.97, 1090.22, 1019.79, 830.73, 735.64, 699.99 cm-1; 

[α]D
25 = -4.695 (c = 1.180, CHCl3). HRMS (MM) calc’d for [M+H]+ 301.0335, found 

301.0341. 

 

4-phenyl-2-(6-(trifluoromethyl)pyridin-3-yl)butanenitrile (122t) 

Prepared from 5-iodo-2-trifluoromethylpyridine (54.6 mg, 0.2 

mmol) and 2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) 

with NaBF4 (22 mg, 0.2 mmol) following General Procedure 4. 

The crude residue was purified by silica gel chromatography (0:100 to 10:90 

EtOAc:hexanes) to yield 39.7 mg (68% yield) of 122t as a clear oil.  The enantiomeric 

excess was determined to be 85% by chiral SFC analysis (AD, 2.5 mL/min, 7% IPA in 

CO2, λ = 254 nm): tR(minor) = 3.0 min, tR(major) = 4.7 min.  1H NMR (500 MHz, 

Chloroform-d) δ 8.64 (d, J = 2.2 Hz, 1H), 7.89 (dd, J = 8.1, 2.3 Hz, 1H), 7.73 (dd, J = 

8.2, 0.8 Hz, 1H), 7.40 – 7.29 (m, 2H), 7.29 – 7.22 (m, 1H), 7.22 – 7.14 (m, 2H), 3.87 (dd, 

J = 9.3, 5.9 Hz, 1H), 2.93 – 2.82 (m, 2H), 2.39 – 2.28 (m, 1H), 2.21 (dddd, J = 13.7, 8.5, 

7.7, 5.9 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 148.93, δ 148.18 (q, JC-F = 35.3 Hz), 

138.77, 136.28, 134.83, 128.92, 128.40, 128.38, 126.91, 126.89, 120.81 (q, JC-F = 2.7 Hz), 

N CF3

CN
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118.87, 37.02, 34.03, 32.90.; IR (NaCl/thin film): 3028.51, 2928.97, 2862.95, 2243.85, 

1735.25, 1602.71, 1496.75, 1454.95, 1403.90, 1339.65, 1178.34, 1137.96, 1088.63, 

1027.88, 850.30, 751.10, 700.69 cm-1; [α]D
25 = -21.304 (c = 1.475, CHCl3). HRMS (MM) 

calc’d for [M+H]+ 291.1104, found 291.1181. 

 

2-(6-methoxypyridin-3-yl)-4-phenylbutanenitrile (122u) 

Prepared from 5-iodo-2-methoxypyridine (94.0 mg, 0.4 mmol) 

and 2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) with 

NaBF4 (22 mg, 0.2 mmol) following General Procedure 4. The crude residue was purified 

by silica gel chromatography (0:100 to 20:80 EtOAc:hexanes) to yield 22.8 mg (45% 

yield) of 122u as a clear oil.  The enantiomeric excess was determined to be 83% by 

chiral SFC analysis (AD, 2.5 mL/min, 8% IPA in CO2, λ = 245 nm): tR(minor) = 6.5 min, 

tR(major) = 7.5 min.  1H NMR (500 MHz, Chloroform-d) δ 8.07 (dt, J = 2.6, 0.6 Hz, 1H), 

7.55 (ddd, J = 8.6, 2.6, 0.4 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 7.21 – 7.17 

(m, 2H), 6.78 (dd, J = 8.6, 0.7 Hz, 1H), 3.94 (s, 3H), 3.69 (dd, J = 8.8, 6.3 Hz, 1H), 2.81 

(td, J = 8.1, 3.5 Hz, 2H), 2.35 – 2.21 (m, 1H), 2.14 (dddd, J = 13.8, 8.5, 7.5, 6.4 Hz, 1H).; 

13C NMR (126 MHz, cdcl3) δ 164.04, 145.68, 139.41, 137.39, 128.77, 128.42, 126.64, 

124.09, 120.16, 111.56, 53.67, 37.04, 33.28, 32.85.; IR (NaCl/thin film): 2925.19, 

1849.43, 2240.05, 1608.56, 1572.83, 1494.73, 1395.28, 1290.62, 1024.55, 831.08, 

750.29, 699.95 cm-1; [α]D
25 = -9.806 (c = 0.790, CHCl3). HRMS (MM) calc’d for 

[M+Na]+ 275.1155, found 275.1175. 
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2-(6-fluoropyridin-3-yl)-4-phenylbutanenitrile (122o) 

Prepared from 2-fluoro-5-iodopyridine (89.2 mg, 0.4 mmol) and 

2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) following 

General Procedure 4. The crude residue was purified by silica gel chromatography (0:100 

to 10:90 EtOAc:hexanes) to yield 30.7 mg (64% yield) of 122o as a clear oil.  The 

enantiomeric excess was determined to be 87% by chiral SFC analysis (AD, 2.5 mL/min, 

8% IPA in CO2, λ = 254 nm): tR(minor) = 5.2 min, tR(major) = 6.4 min.  1H NMR (500 

MHz, Chloroform-d) δ 8.18 – 8.10 (m, 1H), 7.79 (ddd, J = 8.5, 7.2, 2.7 Hz, 1H), 7.38 – 

7.28 (m, 2H), 7.28 – 7.22 (m, 1H), 7.22 – 7.16 (m, 2H), 6.99 (ddd, J = 8.5, 3.1, 0.6 Hz, 

1H), 3.78 (dd, J = 9.2, 6.0 Hz, 1H), 2.93 – 2.77 (m, 2H), 2.31 (dddd, J = 14.0, 9.3, 8.1, 

6.0 Hz, 1H), 2.17 (dddd, J = 13.7, 8.5, 7.6, 6.0 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 

163.33 (d, JC-F = 241.3 Hz), 146.57 (d, JC-F = 15.3 Hz), 140.02 (d, JC-F = 8.2 Hz), 138.98, 

129.33 (d, JC-F = 4.7 Hz), 128.87, 128.40, 126.82, 119.45, 110.26 (d, JC-F = 37.6 Hz), 

37.11, 33.29 (d, JC-F = 1.6 Hz), 32.88. ; IR (NaCl/thin film): 3027.76, 2926.65, 2859.25, 

2242.02, 1599.81, 1484.95, 1399.59, 1256.76, 1127.35, 1025.00, 831.20, 748.87, 700.31 

cm-1; [α]D
25 = -27.336 (c = 1.155, CHCl3). HRMS (MM) calc’d for [M+H]+ 241.1136, 

found 241.1210. 

 

2-(2-fluoropyridin-4-yl)-4-phenylbutanenitrile (122p) 

Prepared from 2-fluoro-4-iodopyridine (44.6 mg, 0.2 mmol) and 

2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) with NaBF4 (22 

mg, 0.2 mmol) following General Procedure 4. The crude residue was purified by silica 

gel chromatography (0:100 to 10:90 EtOAc:hexanes) to yield 28.8 mg (60% yield) of 

N F

CN

N

CN
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122p as a clear oil.  The enantiomeric excess was determined to be 79% by chiral SFC 

analysis (AD, 2.5 mL/min, 8% IPA in CO2, λ = 210 nm): tR(minor) = 4.7 min, tR(major) = 

5.5 min.  1H NMR (500 MHz, Chloroform-d) δ 8.25 (d, J = 5.2 Hz, 1H), 7.36 – 7.31 (m, 

2H), 7.29 – 7.23 (m, 1H), 7.22 – 7.18 (m, 2H), 7.17 – 7.14 (m, 1H), 6.92 (td, J = 1.5, 0.7 

Hz, 1H), 3.79 (dd, J = 9.4, 5.6 Hz, 1H), 2.92 – 2.83 (m, 2H), 2.29 (dddd, J = 13.7, 9.5, 

8.2, 5.5 Hz, 1H), 2.23 – 2.15 (m, 1H).; 13C NMR (126 MHz, cdcl3) δ 164.13 (d, JC-F = 

240.5 Hz), 163.17, 150.09, 148.71 (d, JC-F = 15.3 Hz), 138.83, 128.91, 128.39, 126.90, 

120.00 (d, JC-F = 4.4 Hz), 118.59, 108.40 (d, JC-F = 38.8 Hz), 36.61, 35.85 (d, JC-F = 3.3 

Hz), 32.90. ; IR (NaCl/thin film): 2923.87, 2851.17, 2244.02, 1734.43, 1611.28, 1569.24, 

1454.61, 1414.02, 1277.86, 839.28, 751.37, 700.44 cm-1; [α]D
25 = -22.036 (c = 0.45, 

CHCl3). HRMS (MM) calc’d for [M+H]+ 241.1136, found 241.1134. 

 

2-(2-fluoropyridin-3-yl)-4-phenylbutanenitrile (122q) 

Prepared from 2-fluoro-3-iodopyridine (44.6 mg, 0.2 mmol) and 2-

chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) following General 

Procedure 4. The crude residue was purified by silica gel chromatography (0:100 to 10:90 

EtOAc:hexanes) to yield 16.7 mg (35% yield) of 122q as a clear oil.  The enantiomeric 

excess was determined to be 83% by chiral SFC analysis (AD, 2.5 mL/min, 6% IPA in 

CO2, λ = 245 nm): tR(minor) = 4.9 min, tR(major) = 5.8 min.  1H NMR (500 MHz, 

Chloroform-d) δ 8.21 (ddd, J = 4.9, 1.9, 1.2 Hz, 1H), 7.98 – 7.87 (m, 1H), 7.35 – 7.29 

(m, 2H), 7.29 – 7.22 (m, 2H), 7.22 – 7.18 (m, 2H), 4.03 (t, J = 7.4 Hz, 1H), 2.94 – 2.80 

(m, 2H), 2.30 – 2.18 (m, 2H); 13C NMR (126 MHz, cdcl3) δ 160.30 (d, JC-F = 239.3 Hz), 

147.65 (d, JC-F = 14.8 Hz), 139.59 (d, JC-F = 4.3 Hz), 139.02, 128.78, 128.37, 126.74, 
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122.09 (d, JC-F = 4.3 Hz), 118.80, 118.23 (d, JC-F = 29.6 Hz), 35.26, 33.06, 30.83 (d, JC-F = 

2.5 Hz); IR (NaCl/thin film): 2925.09, 2853.97, 2244.15, 1734.36, 1606.84, 1577.55, 

1441.07, 1248.36, 1101.26, 805.44, 750.96, 699.91 cm-1; [α]D
25 = -29.296 (c = 0.635, 

CHCl3). HRMS (MM) calc’d for [M+H]+ 241.1136, found 241.1133. 

 

2-(2-chloropyrimidin-5-yl)-4-phenylbutanenitrile (122x) 

Prepared from 2-chloro-5-iodopyrimidine (48.1 mg, 0.2 mmol) 

and 2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) following 

General Procedure 4. The crude residue was purified by flash column chromatography 

using Florisil® stationary phase (0:100 to 15:85 EtOAc:hexanes) to yield 21.2 mg (41% 

yield) of 122x as a clear oil.  The enantiomeric excess was determined to be 89% by 

chiral SFC analysis (AD, 2.5 mL/min, 10% IPA in CO2, λ = 210 nm): tR(minor) = 6.2 

min, tR(major) = 7.0 min.  1H NMR (500 MHz, Chloroform-d) δ 8.59 (d, J = 0.5 Hz, 2H), 

7.37 – 7.31 (m, 2H), 7.30 – 7.24 (m, 1H), 7.22 – 7.17 (m, 2H), 3.78 (dd, J = 9.4, 5.9 Hz, 

1H), 2.95 – 2.84 (m, 2H), 2.34 (dddd, J = 13.6, 9.4, 7.7, 5.8 Hz, 1H), 2.19 (dtd, J = 13.8, 

8.0, 5.9 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 161.50, 158.30, 138.35, 129.03, 128.39, 

128.36, 127.07, 118.06, 36.65, 32.80, 31.36; IR (NaCl/thin film): 2923.61, 2850.58, 

2243.80, 1735.29, 1580.36, 1550.38, 1401.12, 1160.95, 772.57, 748.86, 700.55, 640.20 

cm-1; [α]D
25 = -14.892 (c = 0.305, CHCl3). HRMS (MM) calc’d for [M+H]+ 258.0793, 

found 258.0257. 
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2-(2-methoxypyrimidin-5-yl)-4-phenylbutanenitrile (122y) 

Prepared from 5-iodo-2-methoxypyrimidine (89.2 mg, 0.4 

mmol) and 2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) 

with NaBF4 (22 mg, 0.2 mmol) following General Procedure 4. The crude residue was 

purified by florisil gel chromatography (0:100 to 40:60 EtOAc:hexanes) to yield 35.8 mg 

(71% yield) of 122y as a clear oil.  The enantiomeric excess was determined to be 92% 

by chiral SFC analysis (AS, 2.5 mL/min, 10% IPA in CO2, λ = 254 nm): tR(minor) = 4.5 

min, tR(major) = 5.0 min.  1H NMR (500 MHz, Chloroform-d) δ 8.47 (d, J = 0.4 Hz, 2H), 

7.38 – 7.29 (m, 2H), 7.28 – 7.23 (m, 1H), 7.22 – 7.17 (m, 2H), 4.04 (s, 3H), 3.71 (dd, J = 

9.1, 6.1 Hz, 1H), 2.89 – 2.82 (m, 2H), 2.31 (dddd, J = 13.9, 9.2, 7.9, 6.1 Hz, 1H), 2.16 

(dddd, J = 13.7, 8.4, 7.6, 6.1 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 165.54, 158.16, 

138.84, 128.91, 128.40, 126.86, 122.72, 119.06, 55.30, 36.79, 32.79, 31.17; IR 

(NaCl/thin film): 3026.71, 2928.66, 2241.18, 1600.01, 1560.30, 1474.60, 1410.27, 

1331.54, 1031.65, 803.93, 700.50 cm-1; [α]D
25 = -17.013 (c = 0.395, CHCl3). HRMS 

(MM) calc’d for [M+H]+ 254.1288, found 254.1310. 

 

4-phenyl-2-(2-phenylthio)pyrimidin-5-yl)butanenitrile (122n) 

Prepared from 5-iodo-2-phenylthiopyrimidine (62.8 mg, 0.2 

mmol) and 2-chloro-4-phenylbutanenitrile (36 mg, 0.2 mmol) 

following General Procedure 4. The crude residue was purified by silica gel 

chromatography (0:100 to 30:70 EtOAc:hexanes) to yield 50.3 mg (76% yield) of 122n 

as a clear oil.  The enantiomeric excess was determined to be 91% by chiral SFC analysis 

(AD, 2.5 mL/min, 15% IPA in CO2, λ = 280 nm): tR(minor) = 11.3 min, tR(major) = 12.7 
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min.  1H NMR (500 MHz, Chloroform-d) δ 8.44 (s, 2H), 7.70 – 7.56 (m, 2H), 7.50 – 7.40 

(m, 3H), 7.37 – 7.29 (m, 2H), 7.28 – 7.22 (m, 1H), 7.20 – 7.14 (m, 2H), 3.67 (dd, J = 9.0, 

6.0 Hz, 1H), 2.89 – 2.79 (m, 2H), 2.28 (dddd, J = 13.9, 9.2, 7.9, 6.1 Hz, 1H), 2.13 (dddd, 

J = 13.7, 8.4, 7.7, 6.1 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 173.10, 156.34, 138.73, 

135.37, 129.65, 129.37, 128.92, 128.80, 128.38, 126.89, 124.93, 118.64, 36.64, 32.74, 

31.50; IR (NaCl/thin film): 3025.13, 2926.01, 2242,07, 1734.06, 1580.58, 1539.37, 

1399.77, 1170.57, 748.46, 701.21, 689.27 cm-1; [α]D
25 = +10.214 (c = 1.965, CHCl3). 

HRMS (MM) calc’d for [M+H]+ 332.1216, found 332.1746. 

 

4-phenyl-2-(2-(piperidin-1-yl)pyrimidin-5-yl)butanenitrile (122m) 

Prepared from 5-iodo-2-(piperidin-1-yl)pyrimidine (57.8 mg, 

0.2 mmol) and 2-chloro-4-phenylbutanenitrile (36.0 mg, 0.2 

mmol) following General Procedure 4. The crude residue was 

purified by silica gel chromatography (0:100 to 40:60 EtOAc:hexanes) to yield 43.1 mg 

(70% yield) of 122m as a white solid.  The enantiomeric excess was determined to be 

85% by chiral SFC analysis (AD, 2.5 mL/min, 15% IPA in CO2, λ = 254 nm): tR(minor) 

= 7.5 min, tR(major) = 8.6 min. The product could be further enriched via 

recrystallization by vapor diffusion of pentane to a saturated solution of 122m in DCM, 

affording 38.4 mg (89% recovery) of white needles. The enantiomeric excess of 

recrystallized 7k was determined to be 95%.  1H NMR (500 MHz, Chloroform-d) δ 8.22 

(s, 2H), 7.35 – 7.29 (m, 2H), 7.26 – 7.21 (m, 1H), 7.21 – 7.16 (m, 2H), 3.93 – 3.70 (m, 

4H), 3.55 (dd, J = 8.6, 6.5 Hz, 1H), 2.81 (td, J = 8.0, 7.3, 2.1 Hz, 2H), 2.25 (dddd, J = 

13.6, 8.6, 7.9, 6.5 Hz, 1H), 2.11 (dddd, J = 13.7, 8.3, 7.4, 6.5 Hz, 1H), 1.76 – 1.65 (m, 

N

N

CN

N
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2H), 1.65 – 1.54 (m, 4H); 13C NMR (126 MHz, cdcl3) δ 161.27, 156.64, 139.33, 128.78, 

128.42, 126.64, 119.91, 115.78, 44.89, 36.74, 32.73, 31.18, 25.71, 24.78.; IR (NaCl/thin 

film): 2932.29, 2853.60, 2239.17, 1605.13, 1514.57, 1448.02, 1364.20, 1271.93, 

1024.80, 947.51, 797.14, 700.19 cm-1; [α]D
25 = +13.073 (c = 1.595, CHCl3). HRMS (MM) 

calc’d for [M+H]+ 307.1917, found 307.1848. 

 

4-phenyl-2-(2-(pyrrolidin-1-yl)pyrimidin-5-yl)butanenitrile (122l) 

Prepared from 5-iodo-2-(pyrrolidin-1-yl)pyrimidine (55 mg, 

0.2 mmol) and 2-chloro-4-phenylbutanenitrile (36.0 mg, 0.2 

mmol) following General Procedure 4. The crude residue was 

purified by silica gel chromatography (0:100 to 40:60 EtOAc:hexanes) to yield 35.0 mg 

(60% yield) of 122l as a white solid.  The enantiomeric excess was determined to be 85% 

by chiral SFC analysis (AD, 2.5 mL/min, 12% IPA in CO2, λ = 235 nm): tR(minor) = 10.8 

min, tR(major) = 12.5 min. The product could be further enriched via recrystallization by 

vapor diffusion of pentane to a saturated solution of 122l in DCM, affording 31.8 mg 

(91% recovery) of white needles. The enantiomeric excess of recrystallized 122l was 

determined to be 97%.    1H NMR (500 MHz, Chloroform-d) δ 8.25 (s, 2H), 7.34 – 7.29 

(m, 2H), 7.26 – 7.21 (m, 1H), 7.21 – 7.16 (m, 2H), 3.66 – 3.49 (m, 5H), 2.81 (t, J = 7.6 

Hz, 2H), 2.26 (ddt, J = 13.7, 8.5, 7.2 Hz, 1H), 2.11 (dtd, J = 13.6, 7.8, 6.6 Hz, 1H), 2.05 – 

1.96 (m, 4H).; 13C NMR (126 MHz, cdcl3) δ 156.64, 139.30, 128.79, 128.42, 126.65, 

121.43, 119.93, 115.75, 46.78, 36.76, 32.72, 31.22, 25.52; IR (NaCl/thin film): 2927.97, 

2866.57, 2238.90, 1603.00, 1524.42, 1483.96, 1460.18, 1335.03, 798. 26, 699.99 cm-1; 

N
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[α]D
25 = +12.942 (c = 1.130, CHCl3). HRMS (MM) calc’d for [M+H3O]+ 311.1826, found 

311.1825. 

 

tert-butyl-4-(5-(1-cyano-3-phenylpropyl)pyrimidin-2-yl)piperazine-1-carboxylate 

(122w) 

Prepared from 5-iodo-2-(4-Boc-piperazin-1-yl)pyrimidine 

(78.0 mg, 0.2 mmol) and 2-chloro-4-phenylbutanenitrile 

(36.0 mg, 0.2 mmol) following General Procedure 4. The 

crude residue was purified by silica gel chromatography (0:100 to 40:60 EtOAc:hexanes) 

to yield 56.5 mg (69% yield) of 122w as a white solid.  The enantiomeric excess was 

determined to be 85% by chiral SFC analysis (AD, 2.5 mL/min, 15% IPA in CO2, λ = 

235 nm): tR(minor) = 7.5 min, tR(major) = 9.0 min. The product could be further enriched 

via recrystallization by vapor diffusion of pentane to a saturated solution of 122w in 

benzene, affording 51.0 mg (90% recovery) of white needles. The enantiomeric excess of 

recrystallized 122w was determined to be 94%. 1H NMR (500 MHz, Chloroform-d) δ 

8.25 (s, 2H), 7.37 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 3.83 – 3.79 

(m, 4H), 3.58 (dd, J = 8.7, 6.4 Hz, 1H), 3.50 (t, J = 5.3 Hz, 4H), 2.90 – 2.73 (m, 2H), 2.26 

(dddd, J = 13.6, 8.7, 7.2, 4.1 Hz, 1H), 2.11 (dddd, J = 13.7, 8.4, 7.5, 6.4 Hz, 1H), 1.49 (s, 

9H); 13C NMR (126 MHz, cdcl3) δ 161.27, 156.70, 154.78, 139.21, 128.81, 128.40, 

126.69, 119.71, 117.11, 80.07, 43.65, 42.86 (br), 36.74, 32.74, 31.18, 28.43; IR 

(NaCl/thin film): 2977.91, 2927.86, 2861.14, 2243.21, 1687.28, 1607.00, 1517.48, 

1496.25, 1424.34, 1364.59, 1247.24, 1176.22, 1129.18, 999.26, 793.95, 696.53 cm-1; 
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[α]D
25 = +13.500 (c = 1.980, CHCl3). HRMS (MM) calc’d for [M+Na]+ 430.2213, found 

430.2294. 

 

4-phenyl-2-(thiophen-2-yl)butanenitrile (122i) 

Prepared from 2-iodothiophene (111 µL, 1.0 mmol)  and 2-chloro-4-

phenylbutanenitrile (180 mg, 1.0 mmol) following General Procedure 

4. The crude residue was purified by silica gel chromatography 

(0:100 to 10:90 EtOAc:hexanes) to yield 170 mg (75% yield) of 122i as a clear oil.  The 

enantiomeric excess was determined to be 88% by chiral SFC analysis (AD, 2.5 mL/min, 

8% IPA in CO2, λ = 245 nm): tR(minor) = 5.8 min, tR(major) = 7.1 min.  1H NMR (500 

MHz, Chloroform-d) δ 7.36 – 7.31 (m, 2H), 7.29 (dd, J = 5.1, 1.3 Hz, 1H), 7.27 – 7.23 

(m, 1H), 7.22 (dq, J = 7.6, 0.7 Hz, 2H), 7.08 (dt, J = 3.5, 1.0 Hz, 1H), 7.00 (dd, J = 5.1, 

3.5 Hz, 1H), 4.03 (ddd, J = 8.6, 6.3, 0.8 Hz, 1H), 2.94 – 2.82 (m, 2H), 2.41 – 2.24 (m, 

2H); 13C NMR (126 MHz, cdcl3) δ 139.49, 137.62, 128.76, 128.50, 127.13, 126.62, 

126.31, 125.61, 119.74, 37.32, 32.85, 31.66; IR (NaCl/thin film): 3085.49, 3062.55, 

3026.78, 2927.12, 2860.88, 2241.68, 1602.83, 1496.13, 1454.38, 1238.04, 1080.89, 

1029.74, 833.92, 750.39, 699.80 cm-1; [α]D
25 = -27.559 (c = 1.455, CHCl3). HRMS (MM) 

calc’d for [M+H3O]+ 246.0947, found 246.1107. 

 

2-(2-(4-bromophenyl)imidazo[1,2-a]pyridin-6-yl)-4-phenylbutanenitrile (122z) 

Prepared from 2-(4-bromophenyl)-6-iodoimidazo[1,2-

a]pyridine (159.6 mg, 0.4 mmol) and 2-chloro-4-

phenylbutanenitrile (36.0 mg, 0.2 mmol) following General Procedure 4. The crude 

CN

S
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residue was purified by silica gel chromatography (5:95 to 20:80 acetone:hexanes) to 

yield 60.0 mg (72% yield) of 122z as a white solid.  The enantiomeric excess was 

determined to be 87% by chiral SFC analysis (IA, 2.5 mL/min, 40% IPA in CO2, λ = 245 

nm): tR(minor) = 10.7 min, tR(major) = 14.3 min. The product could be further enriched 

via recrystallization by vapor diffusion of pentane to a saturated solution of 7o in DCM, 

affording 52.2 mg (87% recovery) of white needles. The enantiomeric excess of 

recrystallized 122z was determined to be 97%.  Following column chromatography, a 

UV active peak remained in the SFC trace (tR = 8.6 min) that was not observed in any 

other analysis. This peak was significantly diminished following recrystallization.   1H 

NMR (500 MHz, Chloroform-d) δ 8.19 – 8.11 (m, 1H), 7.86 (d, J = 0.7 Hz, 1H), 7.85 – 

7.78 (m, 2H), 7.64 (d, J = 9.4 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.38 – 7.30 (m, 2H), 7.28 – 

7.23 (m, 1H), 7.21 (dq, J = 7.7, 0.7 Hz, 2H), 7.07 (dd, J = 9.3, 1.9 Hz, 1H), 3.77 (dd, J = 

9.0, 5.7 Hz, 1H), 2.93 – 2.83 (m, 2H), 2.33 (dddd, J = 13.8, 9.1, 8.2, 5.7 Hz, 1H), 2.25 

(dddd, J = 13.7, 8.5, 7.7, 5.8 Hz, 1H); 13C NMR (126 MHz, cdcl3) δ 145.73, 144.82, 

139.13, 132.34, 131.93, 128.86, 128.41, 127.59, 126.80, 124.07, 123.75, 122.23, 121.06, 

119.44, 118.31, 108.76, 36.51, 33.80, 32.88; IR (NaCl/thin film): 2924.20, 2854.07, 

2240.70, 1472.83, 1435.81, 1354.99, 1208.78, 1067.55, 1009.04, 833.96, 806.47, 738.54, 

700.04 cm-1; [α]D
25 = +28.004 (c = 0.275, CHCl3). HRMS (MM) calc’d for [M+H]+ 

416.0757, found 416.0698. 
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4-phenyl-2-(quinolin-3-yl)butanenitrile (122v) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and 2-

chloro-4-phenylbutanenitrile (36.0 mg, 0.2 mmol) with NaBF4 

(22.0 mg, 0.2 mmol) following General Procedure 4. The crude residue was purified by 

silica gel chromatography (0:100 to 40:60 EtOAc:hexanes) to yield 39.4 mg (72% yield) 

of 3a as a light yellow oil that solidified on standing.  The enantiomeric excess was 

determined to be 92% by chiral SFC analysis (AD, 2.5 mL/min, 20% IPA in CO2, λ = 

280 nm): tR(major) = 6.1 min, tR(minor) = 6.8 min.  1H NMR (500 MHz, Chloroform-d) δ 

8.81 (s, 1H), 8.18 (d, J = 2.3 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.85 (dd, J = 8.2, 1.3 Hz, 

1H), 7.76 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.61 (ddd, J = 8.1, 6.8, 1.1 Hz, 1H), 7.38 – 7.28 

(m, 2H), 7.28 – 7.15 (m, 3H), 3.99 (dd, J = 9.0, 5.9 Hz, 1H), 2.95 – 2.82 (m, 2H), 2.39 

(dddd, J = 14.0, 9.2, 7.9, 6.2 Hz, 1H), 2.30 (dddd, J = 13.7, 8.5, 7.7, 5.9 Hz, 1H); 13C 

NMR (126 MHz, cdcl3) δ 149.22, 147.75, 139.21, 134.28, 130.18, 129.42, 128.85, 

128.57, 128.45, 127.78, 127.62, 127.56, 126.76, 119.74, 37.18, 34.39, 32.99; IR 

(NaCl/thin film): 3026.11, 2926.11, 2241.03, 1603.40, 1571.03, 1495.05, 1454.48, 

1125.63, 906.13, 787.96, 751.66, 700.17 cm-1; [α]D
25 = -1.617 (c = 0.952, CHCl3). HRMS 

(MM) calc’d for [M+H]+ 273.1386, found 273.1589. 

 

2-(quinolin-3-yl)propanenitrile (129b) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and 2-

chloropropanenitrile (17 µL, 0.2 mmol) following General Procedure 4. 

The crude residue was purified by silica gel chromatography (0:100 to 20:80 

EtOAc:hexanes) to yield 28.7 mg (79% yield) of 129b as a clear oil.  The enantiomeric 
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excess was determined to be 81% by chiral SFC analysis (AD, 2.5 mL/min, 10% IPA in 

CO2, λ = 254 nm): tR(major) = 7.8 min, tR(minor) = 8.8 min.  1H NMR (300 MHz, 

Chloroform-d) δ 8.87 (d, J = 2.4 Hz, 1H), 8.23 (d, J = 2.4 Hz, 1H), 8.14 (d, J = 8.5 Hz, 

1H), 7.92 – 7.84 (m, 1H), 7.77 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.62 (ddd, J = 8.2, 6.9, 1.2 

Hz, 1H), 4.16 (q, J = 7.3 Hz, 1H), 1.78 (dd, J = 7.3, 0.5 Hz, 3H); 13C NMR (126 MHz, 

cdcl3) δ 149.01, 147.67, 133.57, 130.13, 129.83, 129.34, 127.78, 127.58, 127.54, 120.60, 

29.26, 21.39; IR (NaCl/thin film): 2924.03, 2850.94, 2241.83, 1570.25, 1496.55, 

1457.22, 1378.86, 1126.13, 1082.83, 966.72, 907.45, 787.48, 752.77, 617.35 cm-1; [α]D
25 

= -20.200 (c = .355, CHCl3). HRMS (MM) calc’d for [M+H3O]+ 201.1022, found 

201.1022. 

 

4-methyl-2-(quinolin-3-yl)pentanenitrile (129h) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and 2-chloro-

4-methylpentanenitrile (26.2 mg, 0.2 mmol) following General 

Procedure 4. The crude residue was purified by silica gel chromatography (0:100 to 30:70 

EtOAc:hexanes) to yield 29.1 mg (65% yield) of 129h as a clear oil.  The enantiomeric 

excess was determined to be 89% by chiral SFC analysis (OB-H, 2.5 mL/min, 5% IPA in 

CO2, λ = 254 nm): tR(minor) = 4.2 min, tR(major) = 4.6 min.  1H NMR (500 MHz, 

Chloroform-d) δ 8.83 (d, J = 2.4 Hz, 1H), 8.19 (d, J = 2.4 Hz, 1H), 8.13 (dq, J = 8.5, 0.9 

Hz, 1H), 7.85 (ddd, J = 8.1, 1.3, 0.7 Hz, 1H), 7.76 (ddd, J = 8.5, 6.9, 1.4 Hz, 1H), 7.61 

(ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.05 (dd, J = 9.8, 6.2 Hz, 1H), 2.06 – 1.97 (m, 1H), 1.96 – 

1.86 (m, 1H), 1.75 (ddd, J = 13.5, 8.6, 6.2 Hz, 1H), 1.04 (dd, J = 11.3, 6.6 Hz, 6H); 13C 

NMR (126 MHz, cdcl3) δ 149.31, 147.66, 134.09, 130.08, 129.34, 129.21, 127.73, 
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127.63, 127.50, 120.06, 44.85, 33.43, 26.23, 22.59, 21.58; IR (NaCl/thin film): 2957.60, 

2928.61, 2238.86, 1653.55, 1570.26, 1494.77, 1467.80, 1369.63, 1280.03, 1116.26, 

787.30, 752.79 cm-1; [α]D
25 = -22.811 (c = 0.350, CHCl3). HRMS (MM) calc’d for 

[M+H3O]+ 243.1492, found 243.1194. 

 

4,4-dimethyl-2-(quinolin-3-yl)pentanenitrile (129c) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol)  and 2-chloro-

4,4-dimethylpentanenitrile (29.1 mg, 0.2 mmol) following General 

Procedure 4. The crude residue was purified by silica gel 

chromatography (0:100 to 30:70 EtOAc:hexanes) to yield 21.4 mg (45% yield) of 129c as 

a clear oil.  The enantiomeric excess was determined to be 93% by chiral SFC analysis 

(AD, 2.5 mL/min, 12% IPA in CO2, λ = 280 nm): tR(major) = 5.5 min, tR(minor) = 6.8 

min.  1H NMR (500 MHz, Chloroform-d) δ 8.81 (d, J = 2.4 Hz, 1H), 8.20 (d, J = 2.4 Hz, 

1H), 8.12 (dd, J = 8.5, 1.0 Hz, 1H), 7.84 (ddt, J = 8.1, 1.3, 0.6 Hz, 1H), 7.75 (ddd, J = 

8.4, 6.9, 1.5 Hz, 1H), 7.60 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.00 (dd, J = 10.3, 3.4 Hz, 1H), 

2.15 (dd, J = 14.2, 10.4 Hz, 1H), 1.76 (dd, J = 14.2, 3.4 Hz, 1H), 1.12 (s, 9H); 13C NMR 

(126 MHz, cdcl3) δ 149.40, 147.52, 133.87, 130.57, 130.04, 129.32, 127.73, 127.61, 

127.50, 121.19, 50.25, 31.37, 31.16, 29.40. IR (NaCl/thin film): 2956.95, 2239.66, 

1734.18, 1495.05, 1477.11, 1280.54, 1116.30, 1012.66, 897.41, 788.79, 752.85, 619.63 

cm-1; [α]D
25 = -55.546 (c = 0.515, CHCl3). HRMS (MM) calc’d for [M+H]+ 239.1543, 

found 239.1530. 
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3-phenyl-2-(quinolin-3-yl)propanenitrile (129e) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and 2-chloro-3-

phenylpropanenitrile (33.1 mg, 0.2 mmol) with NaBF4 (22 mg, 0.2 

mmol) following General Procedure 4. The crude residue was purified by silica gel 

chromatography (0:100 to 30:70 EtOAc:hexanes) to yield 33.8 mg (65% yield) of 3e as a 

light yellow solid.  The enantiomeric excess was determined to be 90% by chiral SFC 

analysis (AD, 2.5 mL/min, 20% IPA in CO2, λ = 280 nm): tR(major) = 5.9 min, tR(minor) 

= 6.8 min. The product could be further enriched via recrystallization by vapor diffusion 

of pentane to a saturated solution of 129e in DCM, affording 29.7 mg (88% recovery) of 

clear pyramidal crystals suitable for X-Ray diffraction. The enantiomeric excess of 

recrystallized 3e was determined to be 96%. The structure was solved by direct methods 

using SHELXS and refined against F2 on all data by full-matrix least squares with 

SHELXL-2014 using established refinement techniques and with an extinction 

coefficient of 0.0069(7). All non-hydrogen atoms were refined anisotropically. All 

hydrogen atoms were included into the model at geometrically calculated positions and 

refined using a riding model. Compound 129e crystallizes in the orthorhombic space 

group P212121 and absolute configuration was determined by anomalous dispersion 

(Flack = -0.15(8)).1H NMR (500 MHz, Chloroform-d) δ 8.71 (d, J = 2.4 Hz, 1H), 8.16 – 

8.10 (m, 1H), 8.07 (d, J = 2.3 Hz, 1H), 7.81 (dd, J = 8.2, 1.4 Hz, 1H), 7.77 (ddd, J = 8.4, 

6.9, 1.4 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.17 – 7.11 

(m, 2H), 4.32 – 4.25 (m, 1H), 3.36 – 3.23 (m, 2H); 13C NMR (126 MHz, cdcl3) δ 149.35, 

147.68, 135.32, 134.61, 130.18, 129.35, 129.29, 128.84, 127.96, 127.80, 127.76, 127.49, 

127.45, 119.51, 41.90, 37.50; IR (NaCl/thin film): 3029.15, 2925.55, 2855.78, 2242.14, 
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1604.24, 1571.67, 1495.10, 1455.39, 1382.41, 1125.96, 908.49, 787.51, 752.04, 734.70, 

699.30 cm-1; [α]D
25 = -1.218 (c = 0.870, CHCl3). HRMS (MM) calc’d for [M+H]+ 

259.1230, found 259.1427. 

 

 

Ethyl 4-cyano-4-(quinolin-3-yl)butanoate (129f) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and ethyl 4-

chloro-4-cyanobutyrate (35.1 mg, 0.2 mmol) following General 

Procedure 4. The crude residue was purified by silica gel chromatography (0:100 to 30:70 

EtOAc:hexanes) to yield 34.0 mg (63% yield) of 129f as a clear oil.  The enantiomeric 

excess was determined to be 80% by chiral SFC analysis (AD, 2.5 mL/min, 12% IPA in 

CO2, λ = 254 nm): tR(major) = 7.2 min, tR(minor) = 8.3 min.  1H NMR (500 MHz, 

Chloroform-d) δ 8.91 (s, 1H), 8.20 (s, 2H), 7.86 (dd, J = 8.2, 1.1 Hz, 1H), 7.77 (d, J = 6.7 

Hz, 1H), 7.61 (dd, J = 8.1, 6.8 Hz, 1H), 4.28 (dd, J = 8.7, 6.0 Hz, 1H), 4.15 (q, J = 7.1 

Hz, 2H), 2.62 (dt, J = 16.9, 7.5 Hz, 1H), 2.53 (dt, J = 17.0, 6.5 Hz, 1H), 2.41 – 2.21 (m, 

2H), 1.27 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, cdcl3) δ 171.81, 149.29, 148.04, 

134.40, 130.30, 129.54, 128.12, 127.83, 127.61, 127.59, 119.40, 61.01, 34.27, 30.92, 

30.72, 14.17; IR (NaCl/thin film): 2979.77, 2926.59, 2242.45, 1731.81, 1495.27, 

1377.67, 1312.77, 1189.37, 1024.39, 909.00, 788.82, 754.73 cm-1; [α]D
25 = -9.319 (c = 

0.860, CHCl3). HRMS (MM) calc’d for [M+H]+ 269.1285, found 269.1313. 
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 3-chloro-2-(quinolin-3-yl)propanenitrile (129g) 

Prepared from 3-iodoquinoline (102.4 mg, 0.4 mmol) and 2,4-

dichlorobutanenitrile (27.6 mg, 0.2 mmol) following General 

Procedure 4. The crude residue was purified by silica gel chromatography (0:100 to 30:70 

EtOAc:hexanes) to yield 35.8 mg (78% yield) of 129g as a clear oil that slowly solidified 

on standing.  The enantiomeric excess was determined to be 79% by chiral SFC analysis 

(AD, 2.5 mL/min, 12% IPA in CO2, λ = 254 nm): tR(major) = 7.1 min, tR(minor) = 9.7 

min.  1H NMR (500 MHz, Chloroform-d) δ 8.88 (d, J = 2.4 Hz, 1H), 8.22 (d, J = 2.4 Hz, 

1H), 8.14 (dd, J = 8.5, 1.0 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.78 (ddd, J = 8.4, 6.9, 1.4 Hz, 

1H), 7.63 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.41 (dd, J = 8.6, 6.7 Hz, 1H), 3.79 (ddd, J = 

11.5, 8.2, 4.6 Hz, 1H), 3.60 (ddd, J = 11.4, 6.4, 4.8 Hz, 1H), 2.54 (dddd, J = 14.4, 8.7, 

6.5, 4.5 Hz, 1H), 2.40 (dddd, J = 14.4, 8.2, 6.7, 4.8 Hz, 1H); 13C NMR (126 MHz, cdcl3) 

δ 149.09, 147.92, 134.63, 130.42, 129.44, 127.77, 127.71, 127.51, 127.27, 119.08, 41.02, 

38.07, 32.28; IR (NaCl/thin film): 2960.74, 2922.28, 2242.62, 1571.06, 1495.00, 

1443.08, 1382.69, 1125.91, 957.61, 906.20, 787.55, 753.85, 619.73 cm-1; [α]D
25 = +9.150 

(c = 0.665, CHCl3). HRMS (MM) calc’d for [M+H3O]+ 249.0789, found 249.0270. 

 

tert-butyl-4-(2-cyano-2-(quinolin-3-yl)ethyl)piperidine-1-carboxylate (129a) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and tert-

Butyl-4-(2-chloro-2-cyanoethyl)piperidine-1-carboxylate (54.6 

mg, 0.2 mmol) following General Procedure 4. The crude 

residue was purified by silica gel chromatography (0:100 to 40:60 EtOAc:hexanes) to 

yield 44.7 mg (61% yield) of 129a as a clear oil.  The enantiomeric excess was 

N

CN

Cl

N

CNBocN
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determined to be 89% by chiral SFC analysis (AD, 2.5 mL/min, 25% IPA in CO2, λ = 

280 nm): tR(major) = 4.8 min, tR(minor) = 6.0 min.  1H NMR (500 MHz, Chloroform-d) δ 

8.81 (d, J = 2.3 Hz, 1H), 8.18 (d, J = 2.3 Hz, 1H), 8.12 (dd, J = 8.4, 1.0 Hz, 1H), 7.84 

(dd, J = 8.1, 1.4 Hz, 1H), 7.76 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.60 (ddd, J = 8.1, 6.8, 1.1 

Hz, 1H), 4.10 (br, dd, J = 10.1, 5.6 Hz, 3H), 2.72 (br, 2H), 2.13 – 1.99 (m, 1H), 1.94 – 

1.63 (m, 4H), 1.46 (s, 9H), 1.33 – 1.12 (m, 2H); 13C NMR (126 MHz, cdcl3) δ 154.68, 

149.12, 147.72, 134.10, 130.21, 129.37, 128.78, 127.73, 127.60, 127.58, 119.77, 79.55, 

43.88 (br), 43.20 (br), 42.58, 33.99, 32.58, 32.10, 31.22, 28.44; IR (NaCl/thin film): 

2974.27, 2926.66, 2852.75, 2239.98, 1685.09, 1495.27, 1424.19, 1365.34, 1278.99, 

1244.13, 1163.05, 1125.17, 970.82, 865.20, 787.79, 755.04, 736.24, 620.45 cm-1; [α]D
25 = 

-4.158 (c = 1.900, CHCl3). HRMS (MM) calc’d for [M+Mg]+ 389.1948, found 389.2091. 

 

tert-butyl-4-(cyano(quinolin-3-yl)methyl)piperidine-1-carboxylate (129d) 

Prepared from 3-iodoquinoline (51.2 mg, 0.2 mmol) and tert-

Butyl-4-(chloro(cyano)methyl)piperidine-1-carboxylate (51.8 mg, 

0.2 mmol) following General Procedure 4. The crude residue was purified by silica gel 

chromatography (0:100 to 40:60 EtOAc:hexanes) to yield 28.6 mg (41% yield) of 129d 

as a clear oil.  The enantiomeric excess was determined to be 91% by chiral SFC analysis 

(AD, 2.5 mL/min, 12% IPA in CO2, λ = 280 nm): tR(minor) = 18.5 min, tR(major) = 19.5 

min.  1H NMR (500 MHz, Chloroform-d) δ 8.79 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 2.3 Hz, 

1H), 8.13 (dq, J = 8.5, 0.8 Hz, 1H), 7.86 (dd, J = 8.1, 1.3 Hz, 1H), 7.77 (ddd, J = 8.4, 6.9, 

1.4 Hz, 1H), 7.62 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 4.19 (s, 2H), 3.94 (d, J = 6.8 Hz, 1H), 

2.64 (s, 2H), 2.03 (tdd, J = 12.0, 6.9, 3.5 Hz, 1H), 1.88 – 1.71 (m, 1H), 1.67 (dt, J = 12.9, 

N
BocN

CN
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3.0 Hz, 1H), 1.45 (s, 11H); 13C NMR (126 MHz, cdcl3) δ 154.49, 149.48, 147.80, 135.05, 

130.33, 129.37, 127.79, 127.66, 127.41, 126.70, 118.57, 79.85, 43.53, 42.89, 41.41, 

41.34, 30.11, 28.80, 28.40; IR (NaCl/thin film): 2975.09, 2929.55, 2853.85, 2240.07, 

1688.65, 1424.27, 1365.82, 1248.34, 1165.15, 1121.49, 1059.13, 756.02 cm-1; [α]D
25 = -

21.275 (c = 0.640, CHCl3). HRMS (MM) calc’d for [M+Mg]+ 377.1948, found 377.2042. 

 

5-(thiophen-2-yl)pent-2-enenitrile (1:1 cis/trans) (145) 

Prepared from 2-iodothiophene (11 µL, 0.1 mmol) and 2-chloro-

2-cyclopropylacetonitrile (11.6 mg, 0.1 mmol) following 

General Procedure 4. The crude residue was purified by preperative thin layer 

chromatography (15:85 EtOAc:hexanes) to yield 3.5 mg (21% yield) of 145 as a clear oil 

as a 1:1 mixture of cis* and trans§ isomers. Analysis of the crude NMR indicated no other 

conversion of the aryl iodide, with no cyclopropane-containing product detected. No 

unreacted chloronitrile was observed, presumably consumed by non-productive reaction 

pathways.  1H NMR (500 MHz, Chloroform-d) δ 7.16 (ddd, J = 5.1, 1.2, 0.7 Hz, 2H)* §, 

6.94 (ddd, J = 5.2, 3.4, 1.9 Hz, 2H)* §, 6.86 – 6.77 (m, 2H)* §, 6.73 (dt, J = 16.3, 6.9 Hz, 

1H) §, 6.50 (dt, J = 10.9, 7.5 Hz, 1H)*, 5.45 – 5.27 (m, 2H) * §, 3.02 (dtd, J = 15.6, 7.4, 0.8 

Hz, 4H) * §, 2.87 – 2.78 (m, 2H)*, 2.62 (ddd, J = 7.7, 6.9, 1.7 Hz, 2H)  §. 13C NMR (126 

MHz, cdcl3) δ 153.94, 153.14, 142.38, 142.30, 126.95, 124.91, 123.78, 123.76, 100.98, 

100.70, 35.11, 33.46, 28.43, 28.09; IR (NaCl/thin film): 2916.78, 2848.47, 2220.22, 

1558.05, 1683.13, 848.26, 689.00, 668.02 cm-1. HRMS (MM) calc’d for [M]+ 163.0450, 

found 163.0765. 

 

CN

S
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3.6.4 Derivatization of Enantioenriched Nitrile Products 

a. Hydrogenation of 122m over Raney Ni to Boc-amine 130. 

 

Raney Ni (75 mg) was rinsed with dry MeOH 3 times to remove excess water and 

added to a flame-dried flask. To this was added dry MeOH (5 mL), 4-phenyl-2-(2-

(piperidin-1-yl)pyrimidin-5-yl)butanenitrile (122m, 30 mg, 0.10 mmol, 85% ee), and Boc 

anhydride (33 mg, 0.15 mmol). The flask was purged with N2 for 15 min, then flushed 

with two balloons of H2. The flask was equipped with a balloon of H2 and stirred for 3.5 

hours. The reaction was then filtered over Celite with EtOAc to afford a viscous resinous 

clear oil. The crude residue was purified by silica gel chromatography (0:100 to 50:50 

EtOAc:hexanes) to yield 39 mg (95% yield) of 130 as a clear oil that solidified slowly 

upon standing.  The enantiomeric excess was determined to be 85% by chiral SFC 

analysis (AD, 2.5 mL/min, 15% IPA in CO2, λ = 235 nm): tR(major) = 10.5 min, 

tR(minor) = 12.3 min.  1H NMR (500 MHz, Chloroform-d) δ 8.14 (s, 2H), 7.29 – 7.21 (m, 

2H), 7.21 – 7.13 (m, 1H), 7.13 – 7.06 (m, 2H), 4.45 (s, 1H), 3.86 – 3.70 (m, 4H), 3.45 (dt, 

J = 13.1, 6.4 Hz, 1H), 3.12 (ddd, J = 13.9, 8.8, 5.4 Hz, 1H), 2.69 – 2.41 (m, 3H), 1.99 

(dddd, J = 13.6, 9.8, 6.9, 4.8 Hz, 1H), 1.84 (dtd, J = 13.5, 9.8, 5.3 Hz, 1H), 1.74 – 1.55 

(m, 6H), 1.40 (s, 9H); 13C NMR (126 MHz, cdcl3) δ 161.26, 157.43, 155.82, 141.54, 

128.42, 128.33, 125.93, 121.66, 79.40, 46.02, 44.85, 40.52, 34.57, 33.28, 28.34, 25.75, 

24.84; IR (NaCl/thin film): 3337.97, 2930.35, 2853.42, 1712.79, 1602.18, 1504.75, 

1449.34, 1364.47, 1271.22, 1255.54, 1169.92, 1028.05, 947.36, 798.75, 699.89 cm-1; 

CN

N

N

N

Boc2O (1.5 equiv)
Raney Ni

H2 (1 atm), 23 ºC, 12 h N

N

N

NHBoc
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[α]D
25 = -15.883 (c = 2.365, CHCl3). HRMS (MM) calc’d for [M]+ 410.2676, found 

410.2101. 

 

b. Hydrolysis of 122m with Ghaffar-Parkins catalyst to carboxamide 131. 

 

In a 1-dram vial, 4-phenyl-2-(2-(piperidin-1-yl)pyrimidin-5-yl)butanenitrile 

(122m, 30 mg, 0.10 mmol, 85% ee) was suspended in EtOH (0.4 mL) and H2O (0.1 mL). 

To this was added hydrido(dimethylphosphinous acid-kP)[hydrogen 

bis(dimethylphosphinito-kP)]platinum(II) (9 mg, 20 µmol). The reaction was sealed with 

a Teflon-lined cap and heated to 65 ºC for 36 h. After cooling to room temperature, the 

reaction was diluted with DCM and filtered through a short plug of silica gel and Na2SO4. 

The plug was washed with additional DCM and the organics were concentrated to afford 

the carboxamide as a clear oil. The crude residue was purified by silica gel 

chromatography (30:70 to 60:40 EtOAc:hexanes) to yield 30.8 mg (95% yield) of 131 as 

a viscous clear oil.  The enantiomeric excess was determined to be 85% by 1H NMR 

using Europium(III) tris[3-(trifluoromethylhydroxymethylene)-d-camphorate] (30 mol 

%) as a chiral shift reagent.  1H NMR (500 MHz, Chloroform-d) δ 8.23 (s, 2H), 7.27 (d, J 

= 7.2 Hz, 2H), 7.22 – 7.16 (m, 1H), 7.16 – 7.11 (m, 2H), 5.66 (s, 1H), 5.45 (s, 1H), 3.92 – 

3.61 (m, 4H), 3.12 (dd, J = 8.4, 6.8 Hz, 1H), 2.67 – 2.54 (m, 2H), 2.43 (ddt, J = 13.8, 8.7, 

6.9 Hz, 1H), 2.12 – 1.97 (m, 1H), 1.68 (td, J = 6.7, 6.3, 4.7 Hz, 2H), 1.65 – 1.55 (m, 4H); 

13C NMR (126 MHz, cdcl3) δ 175.22, 161.24, 157.30, 140.84, 128.51, 126.13, 119.40, 

CN

N

N

N EtOH, H2O, 65 ºC, 36 h N

N

N

OH2N
Ghaffar-Parkins catalyst

(20 mol %)



Chapter 3 – Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Heteroaryl 
Iodides and α-Chloronitriles 

235	
  

46.14, 44.86, 34.06, 33.17, 25.72, 24.82; IR (NaCl/thin film): 3333.85, 3190.50, 2932.50, 

2853.02, 1667.77, 1602.06, 1504.96, 1446.89, 1364.61, 1271.06, 1256.15, 1178.28, 

1024.54, 947.10, 797.03, 733.36, 699.53 cm-1 [α]D
25 = +35.005 (c = 2.455, CHCl3). 

HRMS (MM) calc’d for [M]+ 324.1945, found 324.1904. 

 

c. DIBAL-H reduction of 122i to carboxaldehyde 132. 

 

To a flame-dried flask was added 4-phenyl-2-(thiophen-2-yl)butanenitrile (122i, 

46 mg, 0.2 mmol, 88% ee) and DCM (30 mL). The reaction was cooled to -41 ºC and a 1 

M solution of DIBAL-H in hexanes (3 equiv, 0.6 mL, 0.6 mmol) was added slowly via 

syringe. The reaction was complete by TLC after 20 min. A 5% AcOH/H2O solution (12 

mL) was added and the reaction was allowed to warm to room temperature. The reaction 

was stirred vigorously for 30 min and then the layers were separated. The organics were 

washed with dilute sodium bicarbonate, dried over sodium sulfate, and concentrated to 

afford light yellow oil. The crude residue was purified by silica gel chromatography 

(0:100 to 10:90 EtOAc:hexanes) to yield 44 mg (96% yield) of 132 as a yellow oil that 

was stored frozen in benzene.  The enantiomeric excess was determined to be 81% by 

chiral SFC analysis (AD, 2.5 mL/min, 8% IPA in CO2, λ = 235 nm): tR(minor) = 4.5 min, 

tR(major) = 5.1 min.  1H NMR (500 MHz, Chloroform-d) δ 9.61 (d, J = 2.1 Hz, 1H), 7.34 

– 7.28 (m, 3H), 7.25 – 7.20 (m, 1H), 7.18 (dq, J = 7.6, 0.7 Hz, 2H), 7.07 (dd, J = 5.1, 3.5 

Hz, 1H), 6.95 (ddd, J = 3.5, 1.2, 0.7 Hz, 1H), 3.79 (ddd, J = 8.4, 6.3, 2.1 Hz, 1H), 2.73 

CN DIBAL-H (1 M/hexanes)
(3 equiv)

DCM, -41 ºC, 20 min

OH

S S
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(ddd, J = 14.4, 9.0, 5.7 Hz, 1H), 2.64 (ddd, J = 13.8, 8.8, 7.0 Hz, 1H), 2.43 (dddd, J = 

13.6, 9.0, 7.1, 6.3 Hz, 1H), 2.17 – 2.07 (m, 1H); 13C NMR (126 MHz, cdcl3) δ 198.65, 

140.80, 138.31, 128.54, 128.52, 127.54, 126.43, 126.22, 125.56, 52.86, 32.84, 32.05; IR 

(NaCl/thin film): 3025.79, 2924.74, 1725.05, 1496.21, 1454.03, 750.13, 699.05 cm-1; 

[α]D
25 = +4.156 (c = 0.70, CHCl3). HRMS (MM) calc’d for [M]+ 410.2676, found 

410.2101. 
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3.6.5 SFC Traces of Racemic and Enantioenriched Nitrile Products 

122j racemic  

 

 

 
 

122j enantioenriched, 88% ee 

 

 

 
 

N Cl

CN
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122r racemic 

 

 

 
 

122r enantioenriched, 88% ee 

 

 

 

N Br

CN
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122t racemic 
 

 

 
 

122t enantioenriched, 85% ee 
 

 

 

N CF3

CN
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122u racemic 
 

 

 
 

122u enantioenriched, 83% ee 
 

 

 
 

N OMe

CN
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122o racemic 
 

 

 
 

122o enantioenriched, 87% ee 
 

 

 
 

N F

CN
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122p racemic 
 

 

 
 

122p enantioenriched, 79% ee 
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CN
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122q racemic 
 

 

 
 

122q enantioenriched, 83% ee 
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122x racemic 
 

 

 
 
 

122x enantioenriched, 89% ee 
 

 

 
 

N

N

CN
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122y racemic 
 

 

 
 

122y enantioenriched, 92% ee 
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N
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122n racemic 
 

 

 
 

122n enantioenriched, 91% ee 
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N
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122m racemic 

 

 
 
122m enantioenriched, 85% ee 

 

 
 
122m enantioenriched, recrystallized, 95% ee 
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122l racemic 

 

 
 

122l enantioenriched, 86% ee 

 

 
 

122l enantioenriched, recrystallized, 97% ee 
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122w racemic 

 

 
 

122w enantioenriched, 85% ee 

 

 
 

122w enantioenriched, recrystallized, 94% ee 
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122i racemic 
 

 

 
 

122i enantioenriched, 88% ee 
 

 

 
 

CN
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122z racemic 

 

 
 

122z enantioenriched, 87% ee 

 

 
 

122z enantioenriched, recrystallized, 97% ee 
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122v racemic 
 

 

 
 

122v enantioenriched, 92% ee 
 

 

 
 

N

CN
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129b racemic 
 

 

 
 

129b enantioenriched, 81% ee 
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CN

Me
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129h racemic 
 

 

 
 

129h enantioenriched, 89% ee 
 

 

 
 

N

CN

Me

Me



Chapter 3 – Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between Heteroaryl 
Iodides and α-Chloronitriles 

255	
  

129c racemic 
 

 

 
 

129c enantioenriched, 93% ee 
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129e racemic 

 

 
 

129e enantioenriched, 89% ee 

 

 
 

129e enantioenriched, 96% ee 
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129f racemic 
 

 

 
 

129f enantioenriched, 80% ee 
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129g racemic 
 

 

 
 

129g enantioenriched, 79% ee 
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129a racemic 
 

 

 
 

129a enantioenriched, 89% ee 
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129d racemic 
 

 

 
 

129d enantioenriched, 91% ee 
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130 racemic  
 

 

 
 

130 enantioenriched, 85% ee 
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132 racemic  
 

 

 
 

132 enantioenriched, 81% ee 
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