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ABSTRACT

The typical scenario that arises in modern large-scale inference problems is one
where the ambient dimension of the unknown signal is very large (e.g., high-res-
olution images, recommendation systems), yet its desired properties lie in some
low-dimensional structure such as, sparsity or low-rankness. In the past couple
of decades, non-smooth convex optimization methods have emerged as a powerful
tool to extract those structures, since they are often computationally efficient, and
also they offer enough flexibility while simultaneously being amenable to perfor-
mance analysis. Especially, since the advent of Compressed Sensing (CS) there
has been significant progress towards this direction. One of the key ideas is that
random linear measurements offer an efficient way to acquire structured signals.
When the measurement matrix has entries iid from a wide class of distributions
(including Gaussians), a series of recent papers have established a complete and
transparent theory that precisely captures the performance in the noiseless setting.
In the more practical scenario of noisy measurements the performance analysis task
becomes significantly more challenging and corresponding precise and unifying re-
sults have hitherto remained scarce. The available class of optimization methods,
often referred to as regularized M-estimators, is now richer; additional factors (e.g.,
the noise distribution, the loss function, and the regularizer parameter) and sev-
eral different measures of performance (e.g., squared-error, probability of support
recovery) need to be taken into account.

This thesis develops a novel analytical framework that overcomes these challenges,
and establishes precise asymptotic performance guarantees for regularized M-esti-
mators under Gaussian measurement matrices. In particular, the framework al-
lows for a unifying analysis among different instances (such as the Generalized
LASSO, and the LAD, to name a few) and accounts for a wide class of perfor-
mance measures. Among others, we show results on the mean-squared-error of the
Generalized-LASSO method and make insightful connections to the classical the-
ory of ordinary least squares and to noiseless CS. Empirical evidence is presented
that suggests the Gaussian assumption is not necessary. Beyond iid measurement
matrices, motivated by practical considerations, we study certain classes of ran-
dom matrices with orthogonal rows and establish their superior performance when
compared to Gaussians.

A prominent application of this generic theory is on the analysis of the bit-error
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rate (BER) of the popular convex-relaxation of the Maximum Likelihood decoder
for recovering BPSK signals in a massive Multiple Input Multiple Output setting.
Our precise BER analysis allows comparison of these schemes to the unattainable
Matched-filter bound, and further suggests means to provably boost their perfor-
mance.

The last challenge is to evaluate the performance under non-linear measurements.
For the Generalized LASSO, it is shown that this is (asymptotically) equivalent to
the one under noisy linear measurements with appropriately scaled variance. This
encompasses state-of-the art theoretical results of one-bit CS, and is also used to
prove that the optimal quantizer of the measurements that minimizes the estimation
error of the Generalized LASSO is the celebrated Lloyd-Max quantizer.

The framework is based on Gaussian process methods; in particular, on a new strong
and tight version of a classical comparison inequality (due to Gordon, 1988) in the
presence of additional convexity assumptions. We call this the Convex Gaussian

Min-max Theorem (CGMT).
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C h a p t e r 1

INTRODUCTION

“Big data" and accompanying terms such as “data-analytics" and “data-science"
have grown to become some of the hottest and most overused buzzwords over the
past few years [Mac16; Pel15; Flo16]. This terminology has, by now, proliferated
across the world of academia and has invaded a lot of academic conversations, pre-
sentations, and research agendas. Certainly, there is a lot of hype over big data,
but no one can argue against the following fact: today’s world is awash with data
originating from numerous different disciplines (e.g. image processing, wireless
communications, sensor networks, machine learning, financial data, genomics sig-
nal processing, and DNA microarrays) that are gathered by all means at an increas-
ingly fast pace, and major efforts are underway to extract valuable information from
them. A common theme among such instances of massive automatic data collec-
tion is data outputs, which are comprised of many observations/measurements, but

even more so, of a larger and larger number of variables of interest. This is very
different from the traditional assumption behind classical tools in estimation theory,
under which only a few well-chosen variables are of interest.

To make ideas concrete, consider the fundamental statistical inference task of re-
covering an unknown signal from noisy linear measurements:

y = Ax0 + z, (1.1)

Henceforth, y denotes the vector of (say) m measurements, x0 is the unknown signal
comprised of n variables, A is the measurement matrix and z is the noise vector.
In the “classical world", the pervasive modeling assumption is that the number of
variables n is fixed and small while m grows large. Here, there is a complete set
of tools that can derive good estimates x̂ of x0. Importantly, an intellectually clean
theoretical framework accompanies this set of tools with performance guarantees

under all sorts of different settings (e.g., in the presence of outliers, deviations in
the model, and so on). Unfortunately, the classical tools and theory are mostly

inadequate to cope with the dimensionality explosion that we experience in today’s

applications.

In modern inference problems, unknown signals live in high-dimensional spaces.
Hence, the number of variables n is no longer small (e.g., think of x0 representing
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a large-scale image produced from magnetic resonance imaging (MRI), the human
genome, or a vector of transmitted symbols in a massive MIMO scenario). More-
over, it is common that the number of measurements m is less than the number

of variables n. For example, there are many genes, but only few patients with a
given genetic disease, and, in applications like MRI there is not enough time to
collect many observations [Don+00]. On the face of it, this makes the problem ill-
posed (as the system of Equation in (1.1) becomes underdetermined). Fortunately,
the signal of interest is often constrained structurally so that it only has a few de-
grees of freedom relative to its ambient dimension. For instance, MRI images often
admit sparse representations in appropriate transform domains [CRT06], transmit-
ted symbols belonging to finite constellations (e.g. m-PAM, m-QAM) only take
values belonging to a finite alphabet, and covariance matrices are often well ap-
proximated by low-rank matrices. In summary, modern inference procedures and
accompanying theory are developed in view of the following distinguishing features
of high-dimensional inference problems:

(i) large number of variables to be estimated (large n),

(ii) (often) compressed measurements (m < n),

(iii) signals typically possess low dimensional structure (e.g., sparsity, low-rankness).

In this context, a new set of high-dimensional signal processing and statistics tools
is required, ones that have the following favorable properties: the ability to reveal
those structures and operate under a compressed number of measurements; compu-
tational efficiency; robustness to outliers, to model misspecification, and to miss-
ing data; and also, optimality guarantees. Among different approaches, convex-
optimization based ones are often preferred since they offer enough flexibility and
at the same time are usually amenable to analysis, simultaneously, with regard to
computation, asymptotic theory and intuitive interpretation.

Over the past couple of decades, non-smooth convex optimization has emerged as
a powerful structure-extracting tool for high-dimensional inference. These proce-
dures obtain estimates x̂ of the unknown signal x0 by solving convex programs of
the form:

x̂ = arg min
x
L(y − Ax) + λ f (x). (1.2)
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Henceforth, L represents a convex loss function that penalizes the residual, f is a
convex (typically non-smooth) regularizer, and, λ > 0 is a regularizer parameter.
Often, such estimators are referred to as regularized M-estimators, which includes
for example, `1-penalized least-squares (aka LASSO), penalized least-absolute de-
viations (aka LAD), and, regularized Maximum-likelihood estimators. Regularized
M-estimators have been around for at least twenty-years and have enjoyed great
success in practice. In fact, the non-regularized versions (i.e., f = 0) of (1.2)
correspond to the “plain vanilla" regression M-estimators, which were proposed
and have been analyzed under the classical statistical setting since at least the 70s
[Hub11]. The idea of adding a non-smooth regularizer to exploit the underlying
structure of the unknown signal is also relatively old [CM73; SS86], but it appears
to have gained significant popularity and attention starting in the mid 90’s [Tib96;
CDS98] and even more so about a decade ago in the context of Compressed Sensing

[CRT06; Don06a].

The convex nature of (1.2) can in principle lead to corresponding tractable numer-
ical algorithms. In particular, many of these programs (e.g. `1 and nuclear-norm
penalized least-squares) are instances of convex conic programs, and so they can
be solved in polynomial time using (say) interior point methods [BV09]. However,
such standard solvers for convex programming, are often prohibitively computa-
tionally intense for modern large-scale data sets. This has led to an increasing
interest in deriving and analyzing the convergence properties of simpler first-order
methods (e.g., projected gradient-descent) that aim to make (1.2) scalable in high-
dimensions (e.g., see [TA16; ZL15; ORS15; Bru+14] and references therein). Re-
lated algorithmic efforts involve designing solvers that can solve (1.2) in a dis-
tributed manner among different machines (e.g., [Rec+11]).

Rather than algorithmic issues, this thesis studies the fundamental analytical ques-
tions related to the inference performance of (1.2):

How good an estimator of the true unknown signal x0

is the solution x̂ of the regularized M-estimator in (1.2)? (Q.1)

A solution of the optimization in (1.2) consists of the estimate x̂ and the correspond-
ing optimal cost, i.e., the minimum value of the objective function. Observe that
the objective function in (1.2) is only a surrogate and so its optimal value is not by
itself informative about the quality of estimation. A useful procedure, which is of-
ten employed in practice, in order to assess the estimation performance is through
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cross-validation. The idea here is to split the data set (in our context, the pairs
(y,A)) into a training set and a validation set: an estimate x̂ is obtained by solving
(1.2) based on the training set and its quality is evaluated on the rest of the data.

In this thesis we follow an analytical approach: we assume that the measure-
ment matrix A is realized from the ensemble of m × n matrices with entries iid
standard normal and derive an exact asymptotic characterization of the estimation
quality of regularized M-estimators. The assumption on the random nature of the
measurement matrix is by now a benchmark in the field of Compressed Sensing
and high-dimensional signal-processing1: randomly generated matrices can prov-

ably yield good estimates of x̂0 from compressed high-dimensional measurements
[FR13; EK12; Boc+15]. Matrices sampled from the Gaussian ensemble have been
traditionally useful in analytical works in random matrix theory and Compressed
Sensing has been no exception to that rule2. In fact, one of the finest and most el-
egant (analytical) successes of the field corresponds to an exact characterization of
the absolute minimum number of measurements required as a function of the struc-
tural complexity of the unknown signal, in order for convex optimization algorithms
of the form in (1.2) to perfectly recover the signal in the absence of noise. These are
known as phase-transition results in the literature of noiseless Compressed Sensing
(see Section 2.2 for a survey of references).

One of the main contributions of this thesis is an extension of these results to the

noisy case. When compared to the noiseless setting, the analysis under the presence
of noise is not only more practical but is also inherently more challenging since:
(a) one has to predict the precise value of the estimation error, rather than just
discriminating between perfect recovery or not; (b) the performance depends not
only on the number of measurements but also on the noise and signal statistics;
(c) the optimization itself involves additional parameters that contribute to the final
prediction.

Extensions of the theory to matrices (a) with entries drawn iid from other measure-
ment ensembles, (b) with random orthogonal rows, and (c) ones that are elliptically

1For example random matrices have been known to be useful for dimensionality-reduction pur-
poses since at least the mid 80’s [JL84]

2Admittedly, this is a very special case of possible distributions of A; in a large extent this is
driven by the fact that it allows us to rely on some remarkable properties that govern the Gaussian
ensemble. However, it should be noted that many relevant results obtained in random matrix theory
for the Gaussian ensemble enjoy a universality property, i.e. they actually hold for a wider class of
probability distributions. We will see later in Section 2.2 that this has recently proved to be the case
for the Compressed Sensing problem as well [OT15].
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distributed are also discussed. For instance, we derive explicit formulae charac-
terizing the estimation performance under a certain class of orthogonal matrices
(the isotropically random ones), and establish their superior performance when
compared to Gaussians. Notably, we empirically observe that the same formulae
continue to hold true for random Discrete Cosine Transform (DCT) and Hadamard
matrices, which are often preferred in practice since they allow for fast multiplica-
tion and reduced storage complexity.

An important feature of the exact nature of the estimation predictions derived in
this thesis is that they can be used to compare performance between different in-

stances of regularized M-estimators. This lays the groundwork towards developing

a complete theory of regularized M-estimators in the high-dimensional regime that
involves providing rigorous answers to optimality questions regarding the choice of
the involved parameters:

– What is the optimal loss function and regularizer, under different settings,

e.g., in the presence of outliers, particular structure of x0?

– What is the minimum achievable squared error in each one of those scenar-

ios? Under what conditions can x0 be recovered with zero error?

– How may the regularizer parameter λ be optimally tuned?

– How does the sampling ratio δ = m/n affect the error?

– How robust is the estimation to deviations from the linear model in (1.1)?

In the course of this thesis, we provide answers to some of the questions above3. For
instance, we answer the last question by evaluating the performance of (say) reg-
ularized least-squares (aka Generalized LASSO) under measurements of the form
y = g(Ax0), where g is a possibly unknown, random and nonlinear link function
that aims to capture potential model miss-spesifications in (1.1).

Nonlinear measurements of this form might also arise by design (e.g. quantized
measurements), in which case, our theoretical results lead to new opportunities in
the optimal design of the nonlinear link function (e.g. by choice of the thresholds

3It is worth repeating that the high-dimensional regime of interest differs from the classical
statistical regime. As such, the answers to these questions are expected to be (and in fact, they are)
in general different than predicted by the classical theory of M-estimation that dates back to at least
the 70’s [Hub73; Hub11].
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and levels of quantization). For an illustration, we prove that the optimal quantizer
of the measurements that minimizes the estimation error of the Generalized LASSO
is the celebrated Lloyd-Max quantizer.

Another prominent application of the developed theory is on the study of convex
relaxation type decoders used in wireless communication settings with massive
numbers of transmitting and receiving antennas. Owing to their tractability, such
schemes are very well established in practical systems. Yet, the questions remain:
What is their bit-error rate performance? How do they compare to Maximum-

Likelihood decoders? We address these questions, the answers of which we further
exploit by suggesting algorithmic improvements to boost their performance.

As we will see, the analysis is based on Gaussian process methods. In particular, at
the heart of it lies a tight and extended version of a classical comparison inequality,
proved by Gordon in 1988, in the presence of additional convexity assumptions.
We call this the Convex Gaussian Min-max Theorem (CGMT). The CGMT might
be of independent interest and may have applications that go beyond the scope of
this dissertation.
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C h a p t e r 2

BACKGROUND, LITERATURE SURVEY AND SUMMARY OF
CONTRIBUTIONS

The chapter begins with a survey on the theory of phase-transitions of convex op-
timization in noiseless linear inverse problems, which has been developed in a se-
ries of recent papers [DT09a; Sto09b; Cha+12; BLM+15; Ame+13; Sto13b], and
which is an essential precursor to the material of this thesis. The rest of the chapter
discusses in detail the scope and contributions of this dissertation.

Section 2.1 introduces some key ideas that have emerged from the existing theory
of Compressed Sensing (CS). Section 2.2 reviews the theory of phase transitions in
noiseless CS in some detail and surveys the relevant literature. In Section 2.3 we
see that the presence of noise imposes additional challenges in the analysis. This
leads us to Section 2.4, where we set the main objectives of this thesis and survey
its contributions on a chapter by chapter basis.

2.1 Compressed Sensing
In broad terms, the field of Compressed Sensing (CS) studies the essential problem
of recovering signals with low-dimensional structures from high-dimensional un-
derdetermined measurements, which arises in many modern applications (tomogra-
phy, accelerated MRI, radio interferometry, to name a few). The prototypical exam-
ple is that of sparse recovery (or approximation), in which case the unknown signal
is sparse (or approximately sparse), from linear (noisy) underdetermined measure-
ments [CT06]. Another celebrated instance of Compressed Sensing is the problem
of low-rank matrix completion, which arises in applications like predicting cus-
tomer ratings or customer purchases for a recommendation system, and in system
identification in control [RFP10]. Sparse approximation and related problems have
been of interest since at least the early 90s, while some ideas can be traced even
earlier in the literature. A series of works in the early 2000s studied the analyti-
cal performance of classical sparse approximation algorithms such as Basis Pursuit
(BP) [CDS98] and Orthogonal Matching Pursuit (OMP) [TG07]. The celebrated
papers [CT06] of Candes, Tao and Romberg and [Don06a] of Donoho initiated
tremendous research activity over the last decade under the name of Compressed

Sensing (CS). Although high-level, three of the most fruitful and successful ideas
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that were developed during these years are as follows:

(i) Exploit the underlying low-dimensional structure of the unknown signal. Spar-
sity is only one such example of structure. Other often encountered examples
include signals that are block-sparse, low-rank, slow-varying, take values over
a finite alphabet, and so on. It has been recently recognized that recovery
and analysis techniques that were initially developed for the problem of sig-
nal recovery extend naturally to other kinds of structures [Cha+12; Ame+13;
FM14; OTH13b; TAH16]. Of course, such a unifying viewpoint has, among
others, the clear advantage of enlarging the scope and applicability of the de-
veloped theory.

(ii) Use of random measurement matrices. The value of randomness in the mea-
surement matrix model was recognized in the early work of Candes, Romberg
and Tao [CT06] and has remained crucial in most subsequent literature. Ran-
domness can be expressed in various forms (e.g. entrees sampled iid from
various distributions, randomly subsampled Fourier matrices, etc.) and of-
ten guarantees the required incoherence property between the sampling ma-
trix and the unknown vector, which makes the recovery problem well-posed.
Moreover, the randomness turns out to be crucial in establishing analytical
results. From a practical perspective, the randomness assumption is most rel-
evant in applications where one has the freedom of designing the measurement
matrix. Yet, valuable intuitions can be gained in instances where this is not
the case.

(iii) Use of recovery methods that are based on convex programming techniques.
This idea can be traced back very early in the literature [CM73; SS86]. In the
context of sparse approximation the idea that gives rise to BP is to replace
the original `0-minimization formulation of the problem by its convex relax-
ation, the `1-minimization. Of course, the same idea goes beyond sparsity
and extends to more general notions of structure. As already mentioned, the
advantage of convex methods is that they often lead to tractable numerical
algorithms as well as to insightful statistical performance analyses.

The analysis and results in this thesis are also governed by the same ideas.
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Linear Inverse Problems and Convex Optimization
The classical setting of CS is that of linear inverse problems, which assume noisy
linear measurements y = Ax0 + z ∈ Rm of an unknown, but structured, signal
x0 ∈ R

n. To keep things general, we do not specify the particular structure of
x0, although is assumed known to us; it could be sparsity, group-sparsity, low-
rankness, and so on. We are particularly interested in the scenario of compressed
measurements, i.e. m < n, and the goal is that of estimating x0.

Towards this goal, non-smooth convex optimization techniques have emerged as a
powerful technique. As already mentioned in Chapter 1, these methods produce an
estimate x̂ of x0 by solving (1.2). The loss function L aims to fit the final estimate
to the observations based on the linear measurement model. On the other hand,
the regularizer function f aims to exploit the particular structure of the unknown
signal x0. For instance, it is by now well-understood in the CS literature that `1-
regularization promotes sparsity, `1,2-regularization is appropriate for group spar-
sity, and nuclear-norm-regularization promotes low-rank solutions. In fact, there are
principled ways to construct such convex regularizer functions based on the idea of
representing the low-dimensional structure of x0 as a decomposition into a few well-
selected atoms [Cha+12]. The atomic-decomposition framework has roots in non-
linear approximation [Jon92; Bar93] and was formally introduced in the context of
noisy linear inverse problems under compressed measurements by Chandrasekaran
et. al. in [Cha+12]. The framework explains in a principled and insightful way why
`1-minimization and nuclear-norm are natural candidates for sparse and low-rank
recovery, respectively, and generalizes the construction to several other types of
low dimensional structures [Cha+12]. It should be mentioned that other recipes for
associating convex regularizers to corresponding low-dimensional structures have
been considered in the literature (e.g., [Bac10; BCW10]). A detailed review of all
these goes beyond the scope of this thesis.

For the purposes of our discussion it is important to note that f in (1.2) aims to pro-
mote the structure of x0 and that typically good choices correspond to non-smooth
functions (e.g. `1-norm, nuclear-norm). The fact that f is typically non-smooth
imposes additionally challenges in the assessment of the estimation performance of
(1.2), since the solution x̂ does not admit a closed-form expression (for example,
this would be the situation in the case of a quadratic L function with a quadratic
regularization, also known as ridge-regression).

As discussed, the main contribution of this thesis is providing exact answers to
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Question (Q.1). We start by discussing the noiseless case (i.e. z = 0 in (1.1) in Sec-
tion 2.2, where recent studies provide an exact answer through a mathematically
clean, elegant and general theory. Answering Question (Q.1) in the presence of
noise is more challenging, and this is what this thesis focuses on addressing. Cor-
responding exact results in the literature are scarce and limited to specific instances
of (1.2).

2.2 Noiseless Case
In the absence of noise, the measurements satisfy y = Ax0. Naturally then (1.2)
reduces to the following constrained convex minimization problem1:

x̂ = arg min
y=Ax

f (x). (2.1)

Since measurements are noiseless, we hope that the unknown signal x0 can be re-
covered exactly, i.e. x̂ = x0. Consequently, the fundamental question (Q.1) essen-
tially reduces to the following:

Under what conditions is the solution x̂ of (2.1) unique and equal to x0? (Q.2)

Null-space Condition
When x̂ = x0 is the unique solution of (2.1), we say that the program succeeds,
otherwise it fails. A necessary and sufficient condition for success of (2.1) is known
as the “null-space condition" and is given in the lemma below. Let N (A) denote
the null-space of the measurement matrix A and Tf (x0) the tangent cone of f at x0,
as defined below:

Definition 2.2.1 (Tangent Cone). The tangent cone Tf (x0) of f at x0 is defined as
the closure of the conic hull of the set of descent directions D f (x0) of f at x0:

D f (x0) := {v | f (x0 + v) ≤ f (x0)}.

Proposition 2.2.1 (Null-space Condition). x0 is the unique minimizer of (2.1) iff

N (A) ∩ D f (x0) = {0}, or equivalently,

N (A) ∩ Tf (x0) = {0}. (2.2)

The proof of the proposition is almost straightforward but is included for com-
pleteness. See Figure 5.1 for a simple schematic representation of the null-space
condition for the case of sparse recovery using `1-minimization.

1Besides convex relaxation based schemes, other signal recovery methods such as greedy pur-
suits and combinatorial algorithms have also been proposed and analyzed in the relevant literature.
See for example [NT09] and references therein.
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Figure 2.1: Illustration of the Null-space condition (Proposition 2.2.1).

Proof. (of Proposition 2.2.1). It is convenient to change the variable in the opti-
mization in (2.1) to the error vector w = x − x0. This gives

min
Aw=0

f (x0 + w). (2.3)

We show that ŵ = 0 is the unique solution to this minimization iffN (A)∩Tf (x0) =

{0}. Let v ∈ N (A) ∩ D f (x0). Clearly, Av = 0 and v is feasible in (2.3). Moreover,
f (x0 + v) ≤ f (x0) by definition of the set of descent directions. Combined, v
is a minimizer of (2.3), which completes the proof. The equivalence of the two
conditions in the statement of the proposition follows by Definition 2.2.1 and the
fact that N (A) is a linear subspace. �

Condition 2.2.1 is geometric in nature: “When does the null-space of the measure-
ment matrix not intersect (other than at 0, of course) the tangent cone?". Checking
this for deterministic matrices is hard. However, it turns out to be tractable when
A possesses specific randomness properties. When A is realized from some proba-
bility ensemble, then it is desirable to satisfy Condition (2.2) with high probability

(whp) over the matrix realization.

Gaussian Matrices: Escape through a mesh & Gaussian width
Suppose that the entries of A are sampled iid from a standard normal distribution. It
is well-known that the null-space of an iid Gaussian matrix is isotropically random.
Then, the question becomes: “When does a random subspace (cf. the null-space
of A) miss a fixed cone (cf. the tangent cone Tf (x0)) with high probability?". The
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answer to this question was given by Gordon in 1988 [Gor88] and is known as the
“escape through a mesh lemma". Gordon proved and used the lemma in a different
context; Rudelson and Vershynin first noticed its relevance to the CS problem in
2006 [RV06], in the context of sparse signal recovery.

Before stating the lemma, we will introduce two very useful concepts, namely the
“minimum conic singular value" (mCSV) and the “conic Gaussian width".

Definition 2.2.2 (Minimum conic singular value). Let A ∈ Rm×n. The minimum
conic singular value of A with respect to a cone K ⊂ Rn is defined as,

σmin(A;K ) = inf
w∈K∩Sn−1

‖Aw‖2.

Henceforth, Sn−1 denotes the unit sphere in Rn. To see the relevance of Definition
2.2.2 to our discussion, observe that

σmin(A;Tf (x0)) > 0 ⇒ (2.2) holds. (2.4)

Also, note that σmin(A;Rn) is the minimum singular value of A.

Definition 2.2.3 (conic Gaussian width). Let h ∈ Rn have entries iid standard nor-
mal. The Gaussian width of a cone (not necessarily convex) K ⊂ Rn is denoted by
ω(K ) and is defined as:

ω(K ) := E
[

sup
w∈K∩Sn−1

hTw
]
,

where the expectation is over the randomness of h.

The Gaussian width is a geometric measure of the size of the cone and plays a
central role in asymptotic convex geometry [AAGM15; LT91].

Proposition 2.2.2 (Escape through a mesh). Let A ∈ Rm×n have entries iid stan-

dard normal and K be a cone in Rn. Then, for any t > 0, it holds with probability

at least 1 − e−t
2/2 that

σmin(A;K ) ≥
√
m − 1 − ω(K ) − t .

In essence Proposition 2.2.2 is contained in [Gor88]. The result as presented above
is drawn from [Tro15]. Its proof is based on Gaussian process methods and specifi-
cally on Gordon’s Gaussian Min-max Theorem (GMT) [Gor88]. GMT plays a cen-
tral role in this thesis, but we defer this discussion along with a proof of Proposition
2.2.2 to Chapter 3.2.
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Combining Proposition 2.2.2 with (2.4) and Proposition 2.2.1, shows that, when the
measurement matrix is Gaussian, the convex program (2.1) succeeds with exponen-
tially high probability, as long as the number of measurements satisfies

m ≥ (ω(Tf (x0)) − t)2 + 1. (2.5)

In this sufficient condition for successful recovery, the role of the regularizer func-
tion f and the particular structure of x0 are summarized by the Gaussian width of
the tangent cone ω(Tf (x0)). Certainly, (2.5) is alone a remarkable result. Yet, it
would be of limited practical use unless ω(Tf (x0)) can be computed for interesting
regularizers and for corresponding structures. Thankfully, it will be soon shown
that this indeed the case! Towards this direction, note from (2.5) that any upper
bound on the Gaussian width translates to a sufficient lower bound on the required
number of measurements for successful recovery. Importantly, it turns out that for
many examples of structured signals that are encountered in practice, there exist
good choices of the regularizer function such that

ω2(Tf (x0)) � n. (2.6)

Therefore, under iid Gaussian design matrices the convex optimization (2.1) suc-
cessfully recovers x0 whp (over A) with number of measurements that is (much)
less than the ambient dimension n of the signal.

Rudelson and Vershynin [RV06] were the first to derive an upper bound on the
Gaussian width in the case of k-sparse recovery with `1-regularization and con-
cluded that ≈ 8k log(n/k) number of measurements are sufficient. In 2009, Stojnic
performed a more careful analysis using a convex optimization duality argument
and obtained a sharper upper bound [Sto09b]. Through simulations he observed
this bound to be tight (asymptotically with respect to the problem dimensions), i.e.
a greater number of measurements than it leads to success whp, while fewer of them
leads to failure whp. This sharp transition between success and failure is known as
“phase transition" in CS, as we discuss next. It was soon realized that Stojnic’s
upper bounding technique could be extended to other related problems. Oymak &
Hassibi used it to study the low-rank recovery problem with nuclear-norm mini-
mization [OH10]. Chandrasekaran et al. realized the necessary abstractions behind
Stojnic’s technique and phrased it in terms of convex-geometric notions such as the
“tangent cone", “cone of subdifferential", etc. [Cha+12]. Together with subsequent
works by Amenlunxen et. al. [Ame+13] and Foygel & Lester [FM14], this led to
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a clean recipe that derives upper bounds on the Gaussian width for general con-
vex regularizers. The derived bounds appeared to be tight via simulations, and this
favorable property was proved in [Ame+13, Thm. 4.3] (see also [FM14, Prop. 1]).

The recipe for controlling the conic Gaussian width is based on polarity. We will re-
view the basic idea next. This will also allow us to introduce the relevant geometric
concepts of “Gaussian-distance squared" and “statistical dimension", which will
turn out to play key role in the results of this thesis, as well.

Calculating the Gaussian width: Gaussian distance squared

The contents of this section largely follow the treatment in [Tro15]. The technique
was developed in a series of works [Sto09b; Cha+12; Ame+13; FM14].

Recalling the definition of the Gaussian width, it follows that

(ω(Tf (x0)))2 ≤
(
E
[

sup
w∈Tf (x0)∩Bn−1

hTw
])2
≤ E

([
sup

w∈Tf (x0)∩Bn−1
hTw

])2
=: δ(Tf (x0)),

(2.7)

where: (i) for the first inequality we have enlarged the constraint set in the maxi-
mization to be over the intersection of the cone with the unit ball Bn−1, rather than
with the unit sphere, (ii) for the second inequality we have used Jensen’s inequality.
The quantity on the right-hand side (RHS) of (2.7) is known in the literature as the
“statistical dimension" of the tangent cone and is denoted by δ(Tf (x0)) [Ame+13].
Amelunxen et. al. showed that, compared to the Gaussian width, the statistical
dimension delivers a better summary parameter of the size of a cone since it canon-
ically extends the dimension of a subspace to the class of convex cones, and it
satisfies many elegant identities [Ame+13, Prop. 3.1]. However, the two notions
are very closely related; in fact, it can be shown [Ame+13, Prop. 2] that

(ω(Tf (x0)))2 ≤ δ(Tf (x0)) ≤ (ω(Tf (x0)))2 + 1, (2.8)

where of course the lower bound is a restatement of (2.7).

As we show next, there is a principled way to derive upper bounds on the statistical
dimension of the tangent cone. In fact, it is shown that (in most interesting cases)
these bounds are sharp, asymptotically, in the problem dimensions. Thus, in view
of (2.8), they translate to sharp numerical estimates of the Gaussian width.
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Upper bounding the statistical dimension is based on a polarity argument. First,
observe that

δ(Tf (x0)) := E
[
dist2(h, (Tf (x0))◦)

]
, (2.9)

where we have used the convexity of f (see for example [troppBowling]) and the
dist function is used to denote the distance of a vector to a set. Formally, for a
nonempty, convex, closed set C,

dist(x, C) = inf
v∈C
‖x − v‖2.

Convexity and closeness assures that the infimum is attained at a unique point lying
in the set C. Also, (·)◦ is used to denote the polar of a cone2. A classical result in
convex analysis characterizes the polar of the tangent cone in terms of the subdif-
ferential of the function [Roc97, Thm. 23.7]. This polarity correspondence is key.

Recall here that the subdifferential of f at x0 is the set of vectors:

∂ f (x0) =
{
s ∈ Rn | f (x0 + v) ≥ f (x0) + sTv,∀v ∈ Rn

}
,

and is always a compact and convex set [Roc97]. Also, if x0 is not a minimizer of
f , then ∂ f (x0) does not contain the origin. For any nonnegative number τ ≥ 0, we
denote the, scaled (by τ), subdifferential set as

τ · ∂ f (x0) = {τs | s ∈ ∂ f (x0)},

and, for the conic hull of the subdifferential we write

cone(∂ f (x0)) = {s | s ∈ τ · ∂ f (x0), for some τ ≥ 0}.

Proposition 2.2.3 (Polarity, [Roc97]). Let f be proper convex and such that x0 is

not a minimizer of f . Then,

(Tf (x0))◦ = cone(∂ f (x0)).

Clearly then,

δ(Tf (x0)) = E
[
dist2(h, cone(∂ f (x0)))

]
=: D(cone(∂ f (x0))). (2.10)

2As a reminder, the polarK ◦ of a coneK is the closed convex cone defined asK ◦ := {v | vT x ≤
0 for all x ∈ K }.
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Figure 2.2: Illustration of the distance of a vector to the scaled subdifferential
λ∂ f (x0) and to the cone of subdifferential cone(∂ f (x0)).

Above, we have introduced another notation for the statistical dimension, which is
indicative of the fact that it corresponds to the “Gaussian distance squared to the

cone of subdifferential". For this, it is not hard to see that

δ(Tf (x0)) = D(cone(∂ f (x0))) = E
[

inf
τ≥0

dist2(h, τ · ∂ f (x0))
]
≤ inf

τ≥0
D(τ∂ f (x0)),

(2.11)

where the last equality follows since the distance to a union of sets equals the min-
imum distance to any of its members, and, we have defined the “Gaussian distance

squared to the scaled subdifferential":

D(τ∂ f (x0)) := E
[
dist2(h, τ · ∂ f (x0))

]
. (2.12)

For many commonly encountered examples of regularizer functions f and associ-
ated structures of x0, D(τ∂ f (x0)) can be computed for τ ≥ 0. Then, the minimum
value over all such parameters τ provides a (numerical) upper bound to the statis-
tical dimension (correspondingly to the Gaussian width). This elegant recipe was
developed in [Cha+12; Ame+13]. Moreover, it is shown in [Ame+13, Thm. 4.3]
and [FM14, Prop. 1] that these bounds are asymptotically sharp, as the problem
dimensions grow large. We refer the reader to the original references for the exact
statements of this result; for our purposes, it suffices to remember that (for most
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cases of interest):

D(cone(∂ f (x0))) ≈ inf
τ≥0

D(τ∂ f (x0)). (2.13)

As a mere illustration, when f is the `1-norm and x0 is k-sparse, ∂ f (x0) has a well-
known simple characterization and D(τ∂ f (x0)) admits simple closed-form expres-
sions in terms of the tail distribution Q(τ) of a standard Gaussian (e.g., Appendix
D):

D(τ∂ f (x0)) = k(1 + τ)2 + (n − k)(2(1 + τ2)Q(τ) −
√

2/πτe−
τ2
2 ). (2.14)

The minimum of this expression over τ ≥ 0 is equal to the statistical dimension
and is easy to numerically evaluate. Alternatively, one can obtain a closed form
upper bound by evaluating D(τ∂ f (x0)) at τ =

√
2 log(n/k), which yields a simple

closed-form expression:

D(cone(∂ f (x0))) ≤ 2k(log(n/k) + 3/4). (2.15)

Following the same recipe, it can be shown that for f , the nuclear norm, and x0 =

vec(X0) of a rank-r matrix X0 ∈ R
n×n,

D(cone(∂ f (x0))) ≤ 6nr . (2.16)

We refer the reader to Appendix D for some details on these calculations and for
more examples. A useful observation amounts to the fact that the above upper
bounds do not depend on the specific values of x0; rather, they only depend on the
degree of structure they possess, i.e. on the sparsity level and the rank, respectively.

The take-away message here is that one can compute asymptotically sharp esti-
mates of the statistical dimension of the tangent cone via the Gaussian distance
squared to the scaled subdiferential. These estimates translate (in view of (2.5) and
of (2.8)) to explicit expressions on the minimum required number of measurements
for successful recovery.

Sharp phase-transitions

The nullspace condition of Proposition 2.2.1 provides a sufficient and necessary
condition for the success of (2.1). Gordon’s escape through a mesh Lemma was
used to show that ≈ ω(Tf (x0))2 number of measurements are sufficient for the null-
space condition to hold (cf. (2.5)). Remarkably, this much number of measurements
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is also necessary. This fact, which had earlier been observed empirically in [Sto09b;
OH10; Cha+12] was proved by Amelunxen et. al. [Ame+13] in 2014. (The same
result was also proved by Stojnic in an independent effort for the case of sparse re-
covery with `1-minimization [Sto13b]. See the next section for a detailed literature
survey.)

Theorem 2.2.1 (Phase transitions in noiseless Linear inverse problems, [Ame+13]).
Let x0 ∈ R

n be a fixed vector and f be a proper, convex function. Suppose A has

entries iid standard normal, noiseless linear measurements y = Ax0 and consider

the minimization in (2.1). For all p ∈ (0, 1),

m ≤ D(cone(∂ f (x0))) − αp

√
n ⇒ (2.1) succeeds with probability ≤ p,

m ≥ D(cone(∂ f (x0))) + αp

√
n ⇒ (2.1) succeeds with probability ≥ 1 − p,

(2.17)

where αp :=
√

8 log(4/p).

Precise and general results
When the measurement matrix has entries iid Gaussian, Theorem 2.2.1 provides
a precise and unifying answer to question Q.2. This is in contrast to early results
in the field which instead were order-wise and/or problem-specific. Order-wise
results correspond to bounds on the required number of measurements to succeed
that involve unknown (or loose) constants.

Apart from the mathematical challenge per se and the resulting elegant and trans-
parent theory, there are several further benefits that come along with precise and
general results.

(i) They permit comparing the performance of different instances of (2.1), those
resulting from different choices of the regularizer function f . This in turn
leads to principled recipes to optimally choose the regularizer function (e.g.
[Cha+12]).

(ii) They can be used to study the convergence rates of fast iterative solvers of
(2.1). Please see [ORS15].

(iii) They answer questions regarding time-data tradeoffs that occur in modern data
analysis [CJ13; Bru+14]. Such tradeoffs refer to the ability to reduce the com-
putational complexity of an inference procedure when one has access to in-
creasingly large datasets [CJ13].
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Naturally, owing to their precise nature, the results of this thesis inherit these bene-
fits, as well.

Universality
In view of Theorem 2.2.1 the noiseless compressed sensing problem as posed in
question Q.2 has been completely solved in the case where the random measure-
ment matrix A has entries iid Gaussian.

The Gaussian assumption is appealing mainly for two reasons: (i) It opens the door
to a very rich set of probabilistic tools available in the literature for the Gaussian
ensemble. Notable examples that we saw being critical in the establishment of
Theorem 2.2.1 include Gaussian process inequalities (such as Proposition 2.2.2),
and the Gaussian concentration of Lipschitz functions (see Proposition 3.1.1). (ii)
Results that hold under this assumption enjoy a remarkable universality property in
that they continue to hold for a fairly broad family of other ensembles.

The universality property of the Gaussian distribution is by now well established
in random matrix theory; important results, such as the semi-circle law, were first
shown to hold for Gaussian matrices and were subsequently proved to hold for
much broader classes of random matrices [Tao12; Joh06]. But does this apply to the
noiseless compressed sensing problem? Is the phase-transition result of Theorem
2.2.1 universal?

Extensive empirical investigations had been reported in the literature suggesting
that this is indeed the case [DT09b]. Bayati et. al. [BLM+15] were the first to
rigorously demonstrate universality of the phase-transition of `1-minimization over
a class of random ensembles beyond Gaussians. Only very recently, Oymak &
Tropp [OT15] have extended this result to a broader class of measurement models.
Even more importantly, they succeed in establishing the universality property under
the general setting of Theorem 2.2.1, thus significantly broadening its scope and its
implications to measurement matrices that have entries iid following a broad class
of probability distributions.

But, what happens beyond iid measurement ensembles? Does the universality prop-
erty of Theorem 2.2.1 extend to such cases? Certainly, there are important exam-
ples of random measurement models that fall outside the class of iid matrices for
which answering these questions becomes important. A prime example includes
random matrices with orthogonal rows. For instance, the use of matrices formed
by randomly subsampled rows of Fourier, discrete-cosine and Hadamard matri-
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ces is appealing in practice since such matrices allow for fast multiplication and
reduced storage complexity. For the specific class of Isotropically Random Orthog-
onal (IRO) matrices, i.e. matrices that are sampled uniformly from the manifold of
row-orthogonal matrices satisfying AAT = Im, the answer to the second question
above is affirmative and easy to prove. It is a well-known fact that the nullspace
of an IRO matrix, which is what matters for the performance of (2.1) thanks to the
nullspace condition Proposition 2.2.1, is an isotropically random orthogonal sub-
space in Rn of dimension n − m. In particular, this means that it follows the same
distribution as the nullspace of an iid Gaussian random matrix, which in turn leads
to the phase-transitions being the same.

As part of this thesis, we will establish that this is no more the case in the noisy
setting: the performance of convex-type methods under IRO matrices is superior to
that of Gaussians.

Literature Survey
As mentioned, the work on phase transitions of non-smooth convex optimization
used to recover structured signals from noiseless linear measurements is an essential
precursor to the material of this thesis. Hence, we have discussed it above in detail.
Here, we put together together a narrative description of the relevant contributions
starting from the seminal works of Candes & Tao and of Donoho all the way to
the papers that establish Theorem 2.2.1. As discussed, this line of work attempts
to characterize the minimum number of measurements, say m∗, as a function of the
structural complexity of x0 and of the choice of f , such that x0 is the unique solution
of (2.1) with probability approaching 1 if and only if m > m∗.

The early works in the field studied this question in the context of sparse signal
recovery and `1-minimization; they showed that it can recover a sparse signal x0

from fewer observations than the ambient dimension n [CT06; Don06b; DT09a].
On the one hand, Candes & Tao assumed the measurement matrix A satisfies cer-
tain restricted isometry properties and provided an “order-optimal" (with very loose
constants) upper bound on m∗. On the other hand, when A has entries iid Gaussian,
Donoho and Tanner obtained an asymptotically precise upper bound on m∗, via
polytope angle calculations and related ideas from combinatorial geometry. The re-
sults of Donoho and Tanner were latter extended to weighted `1-minimization and
were supplemented with robustness guarantees in [XH11]. However, the combina-
torial geometry approach has proved hard to extend to regularizers whose set of
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sub-gradients is non-polyhedral (the most representative such example is nuclear-
norm minimization for the low-rank recovery problem, see for example [RXH11]
for some early loose performance bounds using this approach).

In early 2005, Rudelson & Vershynin [RV06] proposed a different approach to
studying `1-minimization that uses Gordon’s Gaussian Min-max Theorem (GMT)
(specifically, a corollary of it known as the “escape through a mesh" lemma [Gor88]).
Stojnic refined this approach and obtained an empirically sharp upper bound on m∗

both for sparse and group-sparse vectors [Sto09b; Sto09a]. This approach is sim-
pler than that of Donoho & Tanner and extends to very general settings. Oymak &
Hassibi [OH10] used it to study the low-rank recovery problem, and later, Chan-
drasekaran et al. [Cha+12] developed a geometric framework and were able to
analyze general structures and convex regularizers f , while clarifying the key role
played in the analysis by the geometric concept of “Gaussian width" [Gor88]. See
also [MT14; FM14] for extensions to other signal recovery problems.

The works discussed thus far only derive upper bounds on m∗. Matching lower
bounds that prove the asymptotic tightness of the former (known as phase-transition)
are even more recent. Bayati et. al [BLM+15] rigorously demonstrates the phase
transition phenomenon for `1-minimization. The analysis is based on a state evolu-
tion framework for an iterative Approximate Message Passing (AMP) algorithm
inspired by statistical physics, which was earlier introduced by Donoho et. al
[DMM09; BM11]. Amelunxen et. al. [Ame+13] took a different route; using tools
from conic integral geometry they established for the first time that previous results
of [Cha+12] were tight. In particular, they showed that: (a) a phase transition almost
always exists for general convex regularizers f ; (b) that it can be located exactly
by computing the “statistical dimension" (which is very related to the “Gaussian
width", but has some extra favorable properties); and (c) that it is possible to give
accurate upper and lower bounds for the statistical dimension. Subsequently, Sto-
jnic [Sto13b] combined his earlier approach, whith was based on Gordon’s GMT,
with a convex duality argument and used this to prove that his earlier bounds on
`1 and `1,2 were asymptotically tight. (A similar observation was also reported in
[Ame+13, Rem. 2.9].) Stojnic’s approach deserves special credit under the prism
of our work, since it essentially motivated and inspired most of our contributions
on the study of the precise reconstruction error under noisy measurements using
Gaussian process methods.
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2.3 Noisy Case: The Challenge
The noisy setting is significantly more challenging than the noiseless one. To begin
with, the addition of noise, which can potentially follow many different distribu-
tions, leads to a much richer class of recovery optimization problems. In particu-
lar, compared to (2.1), the minimization in (1.2) offers the additional flexibility of
choosing different loss functions. On a same note, (1.2) poses additional questions
regarding the choice of the regularizer parameter λ and how it affects the recovery
performance. Moreover, in the presence of noise, it is in general too optimistic to
expect exact recovery of the true unknown signal (as did in the noiseless case). In-
stead, a more reasonable goal is that of obtaining a good estimate of it, but there
can be a plethora of different ways to quantify this. Perhaps the most popular and
widely-used measure of performance is the squared-error ‖x̂ − x0‖

2
2 , which mea-

sures the deviation of the estimate x̂ from the true signal x0 in `2-norm. However,
depending on the specific application other measures might be more appropriate.
For instance, in sparse recovery it is often of interest to guarantee that x̂ reveals
the correct support (i.e., location of non-zero entries) of x0. Hence, the challenge
becomes that of providing guarantees for a variety of performance measures.

In short, in the presence of noise, a general and precise theory that would resemble
that of noiseless Compressed Sensing as presented in Section 2.2 should be such
that it addresses the following rich set of questions.

(Q.a) Can we obtain precise and general characterization of the recovery perfor-
mance of (1.2) as a function of all the involved parameters (e.g., loss function,
regularizer, regularizer parameter, noise-distribution)?

(Q.b) Can we do so in the context of a mathematically clean and transparent analy-
sis framework?

(Q.c) How are the results related to those of noiseless compressed sensing? Is it
possible to obtain those as special cases?

(Q.d) To what extent do the error formulae obtained for iid Gaussian matrices con-
tinue to hold true for random matrices from other ensembles?

(Q.e) Is it possible to obtain guarantees for various measures of performance (e.g.,
squared-error, probability of support recovery)?
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(Q.f) What if the measurements are non-linear? Is it still meaningful to use (1.2)
for the recovery? Equivalently, how robust is the performance of (1.2) to
model miss-specifications?

2.4 Thesis Contributions & Organization
This dissertation extends the theory and the results of noiseless Compressed Sens-
ing to the more challenging and practically important case of noisy measurements.
In a fashion similar to the former results discussed in Section 2.2, we consider a
random Gaussian model for the measurement matrix. We obtain results that are
precise and general; hence, they enjoy the favorable properties of corresponding
results in Section 2.2.

In particular, we develop a novel analytical framework, which provides accurate

answers to all the questions raised in Section 2.3. Interestingly, the framework
is based on Gaussian process inequalities; more specifically, it relies on a novel
strengthened version of Gordon’s Gaussian Min-max Theorem (GMT) in the pres-
ence of convexity, which we call the Convex Gaussian Min-max Theorem (CGMT).
Note that the original GMT is the basis of the “escape through a mesh" Proposition
2.2.2, which in turn is key in the analysis of noiseless CS. Overall, this creates a

coherent and elegant story that makes our understanding of the behavior of convex

signal recovery methods with Gaussian measurements very clear.

For ease of reference, we detail the contributions on a chapter by chapter basis
below. Browsing through the opening paragraphs of each chapter should also serve
as an overview of its scope.

Chapter 3
Chapter 3 establishes the Convex Gaussian Min-Max Theorem (CGMT), which is
key to developing the analysis framework. The chapter begins with an introduction
of the popular Slepian’s Lemma and classical uses of it. This leads us to Gordon’s
comparison theorem that is a non-trivial extension of Slepian’s result proved in
1988. The CGMT is a tight and strengthened version of Gordon’s original result
when combined with additional convexity assumptions, and might be of indepen-
dent interest with applications that go beyond the scope of this dissertation. The
proof of the theorem is also included in this chapter.

Some technical material is deferred to Appendix A.
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Chapter 4
Chapter 4 studies the squared-error performance of regularized M-estimators (cf.
(1.2)). More specifically, it establishes in a single theorem an asymptotically precise

expression for the squared error ‖x̂−x0‖
2
2 of (1.2). The scope of the theorem is very

general since it is valid under only very mild regularity assumptions on the loss
functions, on the regularizer functions and on the noise distribution. Essentially,
this chapter provides an answer to Question (Q.a) when performance is measured
via the squared-error. The study reveals a new summary parameter, termed the
expected Moreau envelope, that plays a central role in the error characterization, and
is in fact a generalization of the Guassian squared distance that appeared earlier in
Section 2.2. The chapter concludes with a detailed survey of the relevant literature
on precise performance guarantees for regularized M-estimators.

Appendix B includes the proof of the theorem and of related useful results, such as
properties of the expected Moreau envelope.

Chapter 5
Chapter 5 describes the general framework to analyze the recovery performance
of (1.2). The framework is based on the CGMT and consists of four major steps,
which are all explained here. It is the backbone for the proofs of the vast majority
of the results that appear in the thesis. To better illustrate the steps involved, we
outline how the framework is used to prove the theorem of Chapter 4. Apart from
technical details, the basic mechanics are easy to explain, thus making the analysis
transparent and providing an affirmative answer to Question (Q.b).

Chapter 6
In Chapter 6, we present results after applying the general theorem of Chapter 4
to specific popular instances of (1.2) and obtain instance-specific error expressions.
Some of the instances considered include M-estimators without regularization, Reg-
ularized Least-squares (aka Generalized LASSO), Regularized Least Absolute De-
viation (LAD) and more. We then analyze these error expressions to answer a
number of interesting questions such as “what is the minimum number of measure-
ments required for stable recovery? How does this number depend on regulariza-
tion?", “Are there problem instances for which specific choices of loss and regu-
larizer functions achieve the MMSE performance?". By the end of the chapter, we
present simulation results that illustrate the validity of the theoretical predictions.

All proofs are deferred to the corresponding Appendix C.
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Chapter 7
Chapter 7 further specializes the general results of Chapter 4 to the squared-error
performance of regularized LASSO (aka generalized LASSO) in the regime of
high-SNR. Specifically, it considers noise distribution of finite varianceσ2 and stud-
ies the normalized squared error (NSE) : ‖x̂−x0‖

2
2/σ

2. At high-SNR (i.e. smallσ),
the NSE obtains its worst-case value and the main result of the chapter explicitly
characterizes that (this is known as noise-sensitivity study). The derived formulae
are in closed-form and admit insightful interpretations: (i) They reveal clear connec-
tions to the results of Section 2.2 on noiseless compressed sensing, thus answering
Question (Q.c). (ii) They are interpreted as natural extensions of classically known
error expressions for ordinary least-squares. Moreover, their simple nature is used
to derive recipes for the optimal tuning of the regularizer parameter. An important
differentiating feature of many results in this chapter is that they are non-asymptotic.

Chapter 8
The content of Chapter 8 is motivated by Question (Q.d): “To what extent are the
error expressions derived in previous chapters for Gaussian matrices universal over
other random ensembles"? For matrices that are Isotropically Random Orthogo-
nal (IRO), we precisely characterize the squared error performance of regularized
least-squares and prove that it is superior to the error performance of Gaussians.
In particular, this is in contrast to the corresponding result in the noiseless case,
where we saw in Section 2.2 that the phase-transitions of the two ensembles match.
Interestingly, we empirically observe the following universality property of IRO
matrices: the derived error formulae for IRO matrices hold true for random DCT
and Hadamard matrices.

The main idea of the proof is also given in this section, while some technical details
are deferred to Appendix E.

Chapter 9
All the results from the previous chapters consider the squared-error reconstruction
performance of (1.2). Chapter 8 takes a step forward by answering Question (Qe).
In particular, it extends the applicability of the CGMT framework and the precise
results that it yields to more general Lipschitz performance metrics. For concrete-
ness, the focus is primarily on regularized least-squares. For an illustration, we
characterize the probability of correct support recovery of the LASSO.
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Chapter 10
This chapter presents an important application of the generic results of the previous
chapters. The standard relaxation of the ML decoder for Binary Phase-Shift Key-
ing signal transmission in a Massive Multiple Input Multiple Output setting, often
called the Box relaxation optimization (BRO), is an instance of (1.2). The BRO
is very popular in practice, but its bit error rate (BER) performance has hitherto
remained unknown. Using results from Chapter 9, we precisely characterize the
BER of the BRO. This let us compare performance to the unattainable matched-
filter bound: we show a 3dB divergence in the square case of an equal number of
transmitting to receiving antennas. We then discuss extensions to other signal con-
stellations and potential (provable) improvements of the BRO when combined with
local methods.

The proofs are deferred to Appendix F.

Chapter 11
Chapter 11 answers Question (Q.f). In particular, it studies the squared-error per-
formance of the Generalized LASSO under a non-linear measurement model of the
form y = g(Ax0) for some (potentially) non-linear, random and/or unknown link
function g (e.g. quantized measurements). The main result of the chapter estab-
lishes an interesting equivalence of the LASSO performance under non-linearities
to the already known results on the LASSO performance under linear measure-
ments. This result has several implications worth exploring. For instance, it en-
compasses state-of-the art theoretical results of one-bit Compressed Sensing and
generalizations to higher levels of quantization. Also, it is used at the end of the
chapter to design optimal quantizers. Interestingly, we prove that the optimal quan-
tizer of the measurements that minimizes the estimation error of the Generalized
LASSO is the celebrated Lloyd-Max quantizer.

As usual, all proofs are deferred to Appendix G.

Chapter 12
The final chapter concludes with some brief remarks on various directions for future
research that are suggested by the analysis methods and results presented in this
thesis.
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C h a p t e r 3

THE CONVEX GAUSSIAN MIN-MAX THEOREM

This chapter establishes the Convex Gaussian Min-max Theorem (CGMT), which
is a key result of this thesis. To arrive at the CGMT, we first present the classical
Slepian’s and Gordon’s comparison Theorems in Section 3.1. A popular corollary
of Gordon’s result, called the Gaussian Min-max Theorem (GMT), is derived next
in Section 3.2. We also demonstrate how the GMT leads to the “escape through a
mesh" Proposition 2.2.2, which was shown earlier in Section 2.2 to play a central
role in the study of phase-transitions in noiseless Compressed Sensing. The CGMT
is stated in Section 3.3 and is interpreted as an extended and tight version of the
GMT. Its proof is included in the last Section 3.4.

3.1 Gaussian Comparison Inequalities
Gaussian comparison theorems are powerful tools in probability theory. They estab-
lish probabilistic inequalities between functions of Gaussian processes (e.g. their
maximum values) based on known relations on their first and second order mo-
ments, and they have various applications (see for example [LT91, Ch. 3.3] for an
introduction).

Perhaps the most celebrated of those results is Slepian’s Lemma, which dates back
to 1962 [Sle62]. We state the lemma below and discuss a popular application of it.

Slepian’s Lemma

Lemma 3.1.1 (Slepian’s Lemma). Let {Xi }
N
i=1, {Yi }Ni=1 be two Gaussian processes

with the same mean µi and the same variance σ2
i

such that ∀i , i′:

EXiXi′ ≥ EYiYi′ .

Then, for any c ∈ R,

P(max
i

Xi ≥ c) ≤ P(max
i

Yi ≥ c).

In words, Slepian’s lemma says that for a Gaussian process Yi that is more uncorre-
lated than another Gaussian process Xi , it holds:

if c is an upper bound on the maxi Yi , then so it is for maxi Xi .
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The intuition behind this seemingly simple but deep result is clear. The process Yi
is more uncorrected, hence it is more probable that it takes larger values than the
process Xi . Also, for the Gaussian ensemble, the first two moments alone capture
its characteristics. We refer the reader to [LT91, Ch. 3.1] for a proof.

Slepian’s lemma has proved to be useful in several contexts. The textbook appli-
cation of it is that of computing a high-probability upper bound on the maximum
singular value of an iid Gaussian matrix. We demonstrate this, aiming to familiar-
ize the reader with the uses of Gaussian process inequalities and to introduce some
ideas that will be key to our subsequent discussion.

Maximum singular value of Guassian matrices

Let A ∈ Rm×n have entries iid Gaussian and consider its maximum singular value:

σmax(A) = ‖A‖2 = max
‖u‖2=1
‖w‖2=1

uTAw. (3.1)

Towards using Slepian’s lemma to compute a high-probability upper bound on
σmax(A), let γ ∈ R, g ∈ Rm and h ∈ Rn have iid N (0, 1) entries and define the
following two Gaussian processes each indexed by

[u
w
]
:

X [u
w
] = uTAw + γ‖u‖2‖w‖2, (3.2a)

Y[u
w
] = ‖w‖2gTu + ‖u‖2hTw. (3.2b)

Clearly, the two processes have mean 0. Also, a simple calculation yields

E[X [u
w
] X [u′

w′
] ] − E[Y[u

w
]Y[u′

w′
] ] = = (uTu′)(wTw′) + ‖u‖2‖‖w‖2‖u′‖2‖w′‖2

− ‖w‖2‖w′‖2(uTu′) − ‖u‖2‖u′‖2(wTw′)

= (‖u‖2‖u′‖2 − uTu′)(‖w‖2‖w′‖2 − wTw′) ≥ 0,

with equality if
[u
w
]

=
[u′
w′

]
(thus, both processes have the same variance). Conse-

quently, the processes defined in (3.2) satisfy the conditions of Slepian’s lemma,
from which it follows that for all c ∈ R 1,

P( max
‖u‖2=1,‖w‖2=1

X [u
w
] ≥ c) ≤ P( max

‖u‖2=1,‖w‖2=1
Y[u

w
] ≥ c). (3.3)

1Formally, note that Slepian’s lemma is stated for processes indexed on discrete sets. A simple
compactness argument leads to (3.3) (see for example [RXH11, Prop. 1].
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Now, observe that

max
‖u‖2=1,‖w‖2=1

X [u
w
] = max

‖u‖2=1,‖w‖2=1
uTAw + γ.

This is already very similar to the quantity of interest σmax(A) in (3.1). In fact,
with a simple symmetrization trick, we can get rid of the “disturbing term" γ. The
simple idea is to condition on the sign of γ, which is positive or negative with equal
probability 1/2. With this and using the observation

P( max
‖u‖2=1,‖w‖2=1

X [u
w
] ≥ c | γ ≥ 0) ≥ P( max

‖u‖2=1,‖w‖2=1
uTAw ≥ c),

we find that

P( max
‖u‖2=1,‖w‖2=1

X [u
w
] ≥ c) ≥

1
2
P( max
‖u‖2=1,‖w‖2=1

uTAw ≥ c). (3.4)

Next, we evaluate the RHS in (3.3): performing the maximization over u and w for
Y is straightforward and gives

max
‖u‖2=1,‖w‖2=1

Y[u
w
] = ‖g‖2 + ‖h‖2.

This, when combined with (3.4) and (3.3) yields

P( max
‖u‖2=1,‖w‖2=1

uTAw ≥ c) ≤ 2 · P(‖g‖2 + ‖h‖2 ≥ c). (3.5)

By Gaussian concentration of Lipschitz functions, ‖g‖2 + ‖h‖2 concentrates around
√
m +
√
n which in view of (3.5) implies that the probability that σmax(A) (signifi-

cantly) exceeds
√
m +
√
n is very small. Formally, set c =

√
m +
√
n + t in (3.5) and

use Proposition 3.1.1 below, from which each one of the events {‖g‖2 ≥
√
m + t/2}

and {‖h‖2 ≥
√
n + t/2} occurs with probability at most exp(−t2/8), to conclude

with the following high-probability upper bound on σmax(A):

P(σmax(A) ≥
√
m +
√
n + t) ≤ 4e−t

2/8.

Proposition 3.1.1 (Gaussian Lipschitz concentration). (e.g.,[BLM13, Theorem 5.6])

Let w ∈ Rn have entries i.i.d. N (0, 1) and f : Rn → R be L-Lipschitz2 . Then,

Var[ f (w)] ≤ L2. Furthermore, for all t > 0, each one of the events { f (w) > E f (w)+
t } and { f (w) < E f (w)− t } occurs with probability no greater than exp

(
−t2/(2L2)

)
.

2 We say that a function f : Rn → R is Lipschitz with constant L or is L-Lipschitz if | f (w) −
f (u)| ≤ L‖w − u‖ for all w, u ∈ Rn .
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Gordon’s comparison Theorem
In this section, we present Gordon’s comparison theorem, which is a non-trivial
extension of Slepian’s lemma that was proved by Gordon in 1986 [Gor85]. The the-
orem establishes a probabilistic comparison between the min-max of two doubly-

indexed Gaussian processes {Xi j } and {Yi j } based on conditions on their correspond-
ing covariance structures. See for example [LT91, Ch. 3.1] for a proof.

Theorem 3.1.1 (Gordon’s comparison theorem). Let
{
Xi j

}
and

{
Yi j

}
, 1 ≤ i ≤ I ,

1 ≤ j ≤ J , be centered Gaussian processes such that
EX2

i j
= EY2

i j
, for all i , j ,

EXi jXik ≥ EYi jYik , for all i , j , k ,

EXi jX`k ≤ EYi jY`k , for all i , ` and j , k .

Then, for all c ∈ R,

P(min
i

max
j

Xi j ≤ c) ≤ P(min
i

max
j

Yi j ≤ c).

Theorem 3.1.1 is powerful since it applies to any pair of processes that satisfy the
imposed conditions. In the next section, we present a corollary of it, which fol-
lows by application of the theorem to the two specific Gaussian processes that were
earlier introduced in (3.2) (only this time viewed as doubly-indexed on u,w).

3.2 Gaussian Min-max Theorem
Theorem 3.2.1 ((GMT)). Let A ∈ Rm×n, γ ∈ R, g ∈ Rm and h ∈ Rn have entries

iid standard normal. Let Sw, Su compact sets, and ψ(w, u) a continuous function.

Define,

Φ(A, γ) = min
w∈Sw

max
u∈Su

uTAw + γ‖u‖2‖w‖2 +ψ(w, u), (3.6a)

φ(g, h) = min
w∈Sw

max
u∈Su
‖w‖2gTu + ‖u‖2hTw +ψ(w, u). (3.6b)

Then, for all c ∈ R,

P(Φ(A, γ) ≤ c) ≤ P(φ(g, h) ≤ c).

The result was essentially proved by Gordon in 1988 [Gor88] as a corollary of
3.1.1. The version presented here requires an additional compactness argument
when compared to the original result [Gor88, Lem. 3.1]; see Appendix A for details
and a proof.
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Theorem 3.3.1 asserts that the lower tail probability of Φ(A, γ) is upper bounded by
that of φ(g, h), or equivalently,

if c is a high probability lower bound on φ(g, h), so it is for Φ(A, γ).

Escape through a mesh

Next, we apply the GMT Theorem 3.2.1 to prove the “escape through a mesh"
Proposition 2.2.2. The proof is instructive.

Consider the setup of Proposition 2.2.2, i.e. A ∈ Rm×n has entries iid Gaussian and
K ⊂ Rn is a cone. The mCSVof A can be written as:

σmin(A;K ) = min
w∈K∩Sn−1

‖Aw‖2 = min
w∈K∩Sn−1

max
‖u‖2=1

uTAw. (3.7)

We apply the GMT for Sw = K ∩Sn−1, Su = Sm−1 andψ(w, u) = 0. The min-max
optimization in (3.6b) is easy to evaluate:

min
w∈K∩Sn−1

max
‖u‖2=1

‖w‖2gTu + ‖u‖2hTw = min
w∈K∩Sn−1

‖w‖2‖g‖2 + hTw

= ‖g‖2 − max
w∈K∩Sn−1

(−h)Tw. (3.8)

Moreover, the min-max optimization in (3.6a) is almost in the desired form that
appears in (3.7), except from the disturbing term γ‖w‖2‖u‖2. We can get rid of this
term by a simple symmetrization trick that is very similar to the one that led to (3.4)
earlier: the idea is again to condition on the sign of γ (see the proof of Theorem
3.3.1(i) for details). Omitting the details here, it can be shown that

P( min
w∈K∩Sn−1

max
‖u‖2=1

uTAw ≤ c) ≤ 2 · P( min
w∈K∩Sn−1

max
‖u‖2=1

uTAw + γ‖u‖2‖w‖2 ≤ c).

Combining this with (3.8) and applying the GMT, yields

P(σmin(A;K ) ≤ c) ≤ 2 · P(‖g‖2 − max
w∈K∩Sn−1

(−h)Tw ≤ c). (3.9)

Thus, the GMT translates the problem of lower-bounding the mCSVof A to the much

simpler task of lower bounding the auxiliary min-max optimization in (3.8). It can
be easily shown that ‖g‖2 and maxw∈K∩Sn−1(−h)Tw are both 1-Lipschitz functions
of g and h respectively. Therefore, by Proposition 3.1.1, each one of the following
events occurs with probability at most exp(−t2/8) 3:

{‖g‖2 ≤
√
m − 1 − t/2} and { max

w∈K∩Sn−1
(−h)Tw ≤ ω(K ) − t/2}.

3For a detailed derivation, see for example [OTH13b, App. B].
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Here, we have recognized that E[maxw∈K∩Sn−1(−h)Tw] = ω(K ) as in Definition
2.2.3. Putting these together and setting c =

√
m − 1 − ω(K ) − t proves that

P
(
σmin(A;K ) ≤

√
m − 1 − ω(K ) − t

)
≤ 4e−t

2/8. (3.10)

Remark 3.2.0.1. The escape through a mesh result was first proved by Gordon in
[Gor88]. The version that appears in Proposition 2.2.2 is due to Chandrasekaran
et. al. [Cha+12]. The proof presented above is slightly modified. In particular, the
conditioning trick that gets rid of the disturbing “γ-term" appears to be new in this
setting and will soon prove to be critical in establishing a stronger version of the
GMT in Section 3.3. However, compared to the probability bound of Proposition
2.2.2 the constants in (3.10) are slightly looser.

A tight version?

A natural question that arises concerns the tightness of the bounds obtained via the
GMT. To become explicit, suppose that φ(g, h) concentrates around some constant
µ, in the sense that for all t > 0 , the events

{φ(g, h) ≤ µ − t } and {φ(g, h) ≥ µ + t } ,

each occur with low probability. Of course, µ − t is then a high-probability lower
bound to φ(g, h), but also this bound is tight since it is accompanied by a cor-
responding high-probability upper bound, namely µ + t, whose value can be made
arbitrarily close to the former. The GMT implies that µ− t is also a high-probability
lower bound on Φ(A). But, it gives no information on how much Φ(A) is allowed
to deviate from this.

In the coming section, we show that under additional convexity assumptions, the
GMT is tight in the sense discussed above. We call this the Convex Gaussian Min-

max Theorem (CGMT) and it constitutes one of the main theoretical contributions
of this thesis. There are two critical observations that lead to this conclusion. First,
if we can get rid of the term γ‖u‖2‖w‖2 in (3.6a), then the remaining objective
function consists of a bilinear term in w and u and the functionψ(w, u). Therefore,
it is convex-concave4 in its two arguments as long as ψ is convex-concave. This
leads to the second observation: from Sion’s min-max principle, we can flip the
order of a min-max optimization in which the objective is convex-concave and the

4A function f (x, y) is convex-concave if it is convex in its first argument x and concave in the
second y.
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constraint sets are convex. As the proof shows, applying the GMT to the (now
flipped) max-min problem, translates to the desired upper bound on the original
optimization.

In fact, the CGMT moves even further. While Gordon’s result only relates the
optimal costs of the two involved min-max optimizations, the CGMT establishes a
tight relation between the optimal solutions. This result is crucial to the analysis in
the rest of the chapters of this thesis.

3.3 Convex Gaussian Min-max Theorem (CGMT)
The CGMT is a tight version of Gordon’s Theorem 3.2.1 in the presence of ad-
ditional convexity assumptions. The setup of the theorem is similar to that of the
GMT.

In particular, let A ∈ Rm×n , g ∈ Rm , h ∈ Rn, Sw ⊂ R
n ,Su ⊂ R

m andψ : Rn×Rm →
R. With these, consider the following two min-max optimization problems and their
corresponding optimal costs.

Φ(A) := min
w∈Sw

max
u∈Su

uTAw +ψ(w, u), (3.11a)

φ(g, h) := min
w∈Sw

max
u∈Su

‖w‖2gTu + ‖u‖2hTw +ψ(wu). (3.11b)

Further denote wΦ := wΦ(A) and wφ := wφ(g, h) any optimal minimizers in (3.11a)
and (3.11b), respectively.

Observe that the optimization in (3.11b) is the same as the one in (3.6b). On the
other hand, the optimization in (3.11a) is missing the term “γ‖w‖2‖u‖2" when com-
pared to (3.6a).

Henceforth, we refer to the two optimization problems in (3.11a) and (3.11b) as the
Primary Optimization (PO) and Auxiliary Optimization (AO), respectively.

We are now ready to state the Convex Gaussian Min-max Theorem.

Theorem 3.3.1 (CGMT). In (3.11), letSw,Su be compact sets,ψ(·, ·) be continuous

on Sw × Su, and A, g and h all have entries iid standard normal. The following

statements are true:

(i) For all c ∈ R,

P( Φ(A) < c ) ≤ 2P( φ(g, h) ≤ c ).
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(ii) Further assume that Sw,Su are convex sets andψ is convex-concave on Sw ×

Su. Then, for all c ∈ R,

P( Φ(A) > c ) ≤ 2P( φ(g, h) ≥ c ). (3.12)

In particular, for all µ ∈ R, t > 0,

P( |Φ(A) − µ | > t ) ≤ 2P( |φ(g, h) − µ | ≥ t ). (3.13)

(iii) Let S be an arbitrary open subset of Sw and Sc = Sw/S . Denote ΦSc (A)
and φSc (g, h) the optimal costs of the optimizations in (3.11a) and (3.11b),
respectively, when the minimization over w is now constrained over w ∈ Sc .

If there exist constants φ, φSc and η > 0 such that

(a) φSc ≥ φ + 3η,

(b) φ(g, h) < φ + η with probability at least 1 − p,

(c) φSc (g, h) > φSc − η with probability at least 1 − p,

then,

P(wΦ(A) ∈ S) ≥ 1 − 4p.

The probabilities are taken with respect to the randomness of A, g and h. A few
remarks are in place.

Remarks

Remark 3.3.0.2 (Statement (i)). The inequality in the first statement of the CGMT
is essentially no different than what Theorem 3.2.1 states:

if c is a high probability lower bound for the optimal cost φ(g, h) of the (AO), so it
is for the optimal cost Φ(A) of the (PO).

As already mentioned, in contrast to the GMT, the minimax optimization in (3.11a)
does not include the term “γ‖w‖2‖u‖2". The “price" paid for this, is the multiplica-
tive factor of two. Note however that this factor does not affect the essence of the
result since the scenarios of interest are those for which P(φ(g, h) ≤ c) is close
to zero. What is more, in most of the applications where the GMT is useful, the
optimization problem involved is in the form of (3.11a) rather than that of (3.6a).
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(For instance, recall the proof of the escape through a mesh theorem.) One reason
behind this, is that under convexity assumptions on Sw, Su and ψ the (PO) is a
convex program, which is generally more likely to be encountered in applications
compared to the always non-convex program in (3.6a)5. Convexity, is also critical
for establishing the second statement of the theorem.

Remark 3.3.0.3 (Statement (ii)). This is the main contribution of the CGMT and it
holds only after imposing appropriate convexity assumptions providing a counter-
part to statement (i):

if c is a high probability upper bound for the optimal cost φ(g, h) of the (AO), so it
is for the optimal cost Φ(A) of the (PO).

Combining the two statements, yields the concentration result in (3.13):

if φ(g, h) concentrates around µ, so does Φ(A).

Remark 3.3.0.4 (Lipschitzness and normal concentration). Inequality (3.13) be-
comes interesting when µ is chosen so that φ(g, h) concentrates around it. In this
case, the probability in the right-hand side of (3.12) is vanishing, indicating that
Φ(A) concentrates around the same value. In particular, we can apply (3.13) for
µ = Eφ(g, h). It is shown in Lemma A.2.0.2 in Appendix A that φ(g, h) is Lipschitz
in (g, h). It then follows from the Gaussian concentration property of Lipschitz
functions (see Proposition 3.1.1) that φ(g, h) is normally concentrated around its
mean Eφ(g, h). Thus, we obtain Corollary 3.3.1 below.

Corollary 3.3.1. Consider the same setup as in Theorem 3.3.1 and let the assump-

tions of statement (ii) therein hold. Further, define Rw := maxw∈Sw ‖w‖2 and

Ru := maxu∈Su ‖u‖2. Then, for all t > 0,

P ( |Φ(A) − Eφ(g, h)| > t ) ≤ 4 exp
(
−t2/(4R2

wR
2
u)

)
.

Remark 3.3.0.5 (On the convexity assumptions). The proof of the second statement
shows that the critical step is being able to flip the order of the min-max operation
in the (PO) problem without changing its optimal cost. The convexity conditions as
specified in the second statement of the theorem guarantee that this is possible. Note
however that these conditions are only sufficient. In principle, it might be possible

5 the component γ‖w‖2‖u‖2 causes the min-max optimization in (3.6a) to be non-convex even
when Sw,Su are convex andψ convex-concave.



36

to flip the order of min-max under milder conditions in which case statement (ii)
would continue to hold. For instance, flipping the order of min-max remains valid
even under the weaker assumption of a quasi-convex-concave function, [Sio+58,
Thm. 3.4].

Remark 3.3.0.6 (Statement (iii)). In the presence of convexity, the optimal cost of
the (PO) concentrates to the same value to which the (AO) does. Statement (iii)
uses this fact to conclude with an even stronger statement, only this time regarding
the minimizers of two optimizations. Simply combining conditions (a)–(c) of the
statement, implies that φSc (g, h) > φ(g, h) whp. Of course, the left-hand side is
always no smaller than the right-hand side. If a strict inequality holds (as implied
by the conditions), then it is easy to conclude that wφ ∈ S holds whp. The power
of the theorem is that the same conclusion holds not only for the minimizer of the
(AO), but also, for the minimizer wΦ of the (PO).

Remark 3.3.0.7 (An asymptotic version of Statement (iii)). All three statements
of the CGMT hold non-asymptotically in the problem dimensions m and n. The
following corollary is a version of the theorem that holds when the problem dimen-
sions grow to infinity.

Corollary 3.3.2 (Asymptotic CGMT). Using the same notation as in Theorem 3.3.1

and under the convexity conditions of statement (ii), suppose there exists constants

φ < φSc such that φ(g, h)
P
−→ φ and φSc (g, h)

P
−→ φSc

6 . Then,

lim
n→∞
P(wΦ(A) ∈ S) = 1.

Remark 3.3.0.8 (Applications). The CGMT plays a central role in this thesis and
is one of its main theoretical contributions. In the subsequent chapters, it is used
as a key ingredient to analyze the estimation performance of non-smooth convex
optimization methods. The analysis is tight owing to the tight nature of the theorem
itself. At this point, it is worth mentioning that the CGMT, while applicable to the
problem of precise performance analysis, cannot be used to show tightness of the
lower bound of Proposition 2.2.2 on the mCSV7. The theorem does not apply since
the constraint sets Sw, Su involved in (3.7) are not convex. The CGMT might be of

6For a sequence of random variables {X(n)}n∈N and a constant c ∈ R (independent

of n), we write {X(n)}n∈N
P
−→ c, to denote convergence in probability, i.e. ∀ε > 0,

limn→∞ P
(
|X(n) − c | > ε

)
= 0.

7We remark, however, that the corresponding lower bound
√
m −

√
n for σmin(A) is indeed

asymptotically tight in the regime n/m → (0, 1), n → ∞ by the Bai-Yin’s law [BY93].
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individual interest and may have applications that go beyond this application. With
this in mind, we have chosen to present it above in its most general version.

3.4 Proof of the CGMT
Proof of statement (i)

As discussed, this is an almost direct consequence of the GMT (Theorem 3.2.1). Yet
we need to get rid of the term “γ‖w‖2‖u‖2" in (3.6a) in the GMT. The argument is
rather simple but critical for the rest of the statements of the theorem. We will show
that

P (Φ(A) ≤ c) ≤ 2P
(
Φ(A, γ) ≥ c

)
. (3.14)

Once this is established, the claim follows directly by the GMT. To prove (3.14), fix
A and g < 0 and denote

f1(w, u) = uTAw +ψ(w, u) and f2(w, u) = uTAw + γ‖w‖2‖u‖2 +ψ(w, u).

Clearly, f1(w, u) ≥ f2(w, u) for all (w, u) ∈ Sw × Su. We may then write,

min
w∈Sw

max
u∈Su

f1(w, u) = f1(w1, u1) ≥ f1(w1, u) for all u ∈ Su

≥ max
u∈Su

f2(w1, u) ≥ min
w∈Sw

max
u∈Su

f2(w, u).

This proves Φ(A) ≥ Φ(A, γ), when g < 0. From this and from the independence of
γ and A, for all c ∈ R:

P
(
Φ(A, γ) ≤ c | γ < 0

)
≥ P (Φ(A) ≤ c | γ < 0) = P(Φ(A) ≤ c).

When combined with γ ∼ N (0, 1), the above yields the desired inequality (3.14):

P
(
Φ(A, γ) ≤ c

)
=

1
2
P

(
Φ(A, γ) ≤ c | γ > 0

)
+

1
2
P

(
Φ(A, γ) ≤ c | γ < 0

)
≥

1
2
P(Φ(A) ≤ c).

Proof of statement (ii)

The additional convexity assumptions imposed in statement (ii) of the theorem are
critical here. By assumption, the sets Sw,Su are non-empty, compact and convex.
Furthermore, the function uTAw+ψ(w, u) is continuous, finite8 and convex-concave

8A continuous function on a compact set is bounded from the Weierstrass extreme value theo-
rem.
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on Sw × Su. Thus, we can apply the minimax result in [Roc97, Corollary 37.3.2]
to exchange “min-max" with a “max-min" in (3.11a)9:

Φ(A) = max
u∈Su

min
w∈Sw

uTAw +ψ(w, u).

It is convenient to rewrite the above as

−Φ(A) = min
u∈Su

max
w∈Sw

−uTAw −ψ(w, u).

Then, using the symmetry of A, we have that for any c ∈ R:

P (−Φ(A) ≤ c) = P

(
min
u∈Su

max
w∈Sw

{
uTAw −ψ(w, u)

}
≤ c

)
.

Thus, we may apply10 statement (i) of Theorem 3.3.1 (with the roles of w and u
flipped):

P (−Φ(A) < c) ≤ 2P
(
min
u∈Su

max
w∈Sw

{
‖u‖2hTw + ‖w‖2gTu −ψ(w, u)

}
≤ c

)
= 2P

(
min
u∈Su

max
w∈Sw

{
−‖u‖2hTw − ‖w‖2gTu −ψ(w, u)

}
≤ c

)
, (3.15)

where the last equation follows because of the symmetry of g and h. To continue,
note that

min
u∈Su

max
w∈Sw

{
−‖u‖2hTw − ‖w‖2gTu −ψ(w, u)

}
=

− max
u∈Su

min
w∈Sw

{
‖u‖2hTw + ‖w‖2gTu +ψ(w, u)

}
,

and further apply the minimax inequality [Roc97, Lemma 36.1] which requires that
for all g, h,

max
u∈Su

min
w∈Sw

{
‖w‖2gTu + ‖u‖2hTw +ψ(w, u)

}
≤ min

w∈Sw
max
u∈Su

{
‖w‖2gTu + ‖u‖2hTw +ψ(w, u)

}
:= φ(g, h).

These, when combined with (3.15), give P (−Φ(A) < c) ≤ 2P (−φ(g, h) ≤ c) . Ap-
ply this for c = −(µ+ t) and combine with statement (i) of the theorem for c = µ− t,
to conclude with (3.13) as desired.

9Flipping the order of min-max remains valid even under the weaker assumption of a quasi-
convex-concave function ψ, [Sio+58, Thm. 3.4]. Hence, (3.12) holds in this case too by the same
argument.

10Observe that the signs of uTAw, gTu and hTw do not matter because of the assumed symmetry
in the distributions of A, g and h.
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Proof of statement (iii)

Consider the following event

E = {ΦSc (A) ≥ φSc − η , Φ(A) ≤ φ + η}.

In this event, it is not hard to check using assumption (a) that ΦSc > Φ, or equiv-
alently wΦ ∈ S. Thus, it suffices to show that E occurs with probability at least
1 − 4p.

Indeed, from statement (i) of the theorem and assumption (c),

P(ΦSc (A) < φSc − η) ≤ 2P(φSc (g, h) ≤ φSc − η) ≤ 2p.

Also, from statement (ii) of the theorem and assumption (b),

P(Φ(A) > φ + η) ≤ 2P(φ(g, h) ≥ φ + η) ≤ 2p.

Combining the above displays the claim follows from a union bound.

Proof of Corollary 3.3.2

Call η := (φSc − φ)/3 > 0. By assumption, for any p > 0 there exists N := N (η, p)
such that the events {φ < φ +η} and {φSc > φSc −η} occur with probability at least
1 − p each, for all n > N . Then, for all n > N , we can apply Theorem 3.3.1(iii)
to conclude that wΦ(A) ∈ S with probably at least 1 − 4p. Since this holds for all
p > 0, the proof is complete.
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C h a p t e r 4

THE SQUARED-ERROR OF REGULARIZED M-ESTIMATORS

In this chapter, we consider a very general setup of structured signal estimation
under the noisy linear measurement model in (1.1). Our focus is on the regime of
high-dimensions where both the dimensions of the ambient space n and the number
of measurements m are large. We assume the noise vector z is generated from
some distribution density in Rm, say pz, and we model prior structural information
on the unknown signal x0 by assuming that it is sampled from an n-dimensional
probability density px0 . For the recovery of the signal, we use convex regularized
M-estimators as in (1.2). We derive an asymptotically precise characterization of
the (mean) squared-error performance of this general class of convex optimization
estimators when the measurement matrix is iid Gaussian.

We introduce some notation and formally set up the problem in Section 4.1. The
main theorem (Theorem 4.2.1) is presented next in Section 4.2, where its features
and implications are also discussed. Theorem 4.2.1 is specialized to instances of
M-estimators with separable loss and regularizer functions in Section 4.3. Later,
in Chapter 6, we include numerous specific examples and numerical simulations.
Also, in Chapter 5, we introduce the mechanics that lead to the proof of Theorem
4.2.1

4.1 Introduction
Regularized M-estimators
Regularized M-estimators obtain an estimate x̂ of the unknown x0 from the vector
of observations y = Ax0 + z is via solving the convex program

x̂ := arg min
x
L(y − Ax) + λ f (x). (4.1)

The loss function L : Rm → R measures the deviation of Ax̂ from the observations
y, the regularizer f : Rn → R aims to promote the particular structure of x0, and,
the regularizer parameter λ > 0 balances between the two. Henceforth, both L
and f are assumed to be convex. Different choices of the loss function and of the
regularizer give rise to a number of popular and widely-uesd estimators, including
the following:
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• Ordinary Least-Squares (LS) (L(·) = (1/2)‖ · ‖22 , f (·) = 0).

• Ridge regression (L(·) = (1/2)‖ · ‖22 , f (·) = ‖ · ‖22).

• LASSO (L(·) = (1/2)‖ · ‖22 , f (·) = ‖ · ‖1). Popular sparse recovery algorithm.
The acronym was introduced in [Tib96]. To distinguish from the `2-LASSO
defined below, we often refer to this version as the `2

2-LASSO. The “least-
squares" nature of the loss function corresponds to a maximum likelihood
estimator for the case when z is Gaussian.

• `2- (or, Square-root) LASSO, (L(·) = ‖ · ‖2). A sparse-recovery algorithm
similar in nature to the LASSO but there exists differences between them,
e.g. tuning of the regularizer parameter of the `2-LASSO does not require
knowledge of the standard deviation of the noise [BCW11; OTH13b].

• Generalized-LASSO, (L(·) = (1/2)‖ · ‖22 or L(·) = ‖ · ‖2). A natural gen-
eralization of the LASSO to arbitrary convex (and, typically non-smooth)
regularizers f , e.g. nuclear norm, `1,2 norm (Group-LASSO, [YL06a]) and
discrete total variation.

• Regularized LAD (L(·) = ‖ · ‖1). Least Absolute Deviation algorithms are
known to have robust properties in linear regression models (e.g. [RT95]).
Also, they perform particularly well in the presence of heavy-tailed errors
[Wan13] and sparse noise [WM10; FM14; TH14].

• Huber-loss (L(·) =
∑m

j=1 hρ(·)). The Huber-loss function with parameter ρ >
0 is defined as

hρ(v) =


v2

2 , |v | ≤ ρ,

ρ |v | −
ρ2

2 , otherwise,
(4.2)

i.e. it is quadratic in small values of v but grows linearly for large values of v.
It describes a popular robust estimator that is well-analyzed in the classical
statistics setting [Hub11].

• Support Vector Machines regression, (L(·) = ‖ · ‖ε , f (·) = ‖ · ‖22). Here,
‖x‖ε =

∑
i |xi |ε , where |x |ε = |x | − ε if |x | ≥ ε and 0, otherwise, is the

Vapniks epsilon-insensitive norm; ε can be thought of as the resolution at
which we want to look at the data [EPP00].

The list above is of course not exhaustive but illustrates the richness of the family
of estimators represented by (4.1).
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Notation
We gather here the basic notation that is used throughout the work.

Convex Analysis: For a convex function f : Rn → R, we let ∂ f (x) denote the
subdifferential of f at x and f ∗(y) = supx yTx − f (x) its Fenchel conjugate. The
Moreau envelope function of f at x with parameter τ is defined by

e f (x;τ) := min
v

1
2τ
‖x − v‖22 + f (v).

The optimal value in the minimization above is denoted by prox f (x;τ). When
writing x∗ = arg minx f (x),we let the operator arg min return any one of the possible
minimizers of f .

Limits and Derivatives: For a real-valued (not necessarily differentiable) convex
function f on R denote

f ′+(v) := sup
s∈∂ f (v)

|s |.

Also, write limx→c+ f (x) for the one-sided limit of f at c, as x approaches from
above. For a function g(x , τ) that is continuously differentiable on R2 we write
g′(x , τ) or g1(x , τ) for the derivative with respect to the first variable, and, g2(x , τ)
for the derivative with respect to the second variable.

Probability: The symbols P (·) and E [·] denote the probability of an event and the
expectation of a random variable, respectively. For a sequence of random variables
{X(n)}n∈N and a constant c ∈ R (independent of n), we write {X(n)}n∈N

P
−→ c, to

denote convergence in probability, i.e. ∀ε > 0, limn→∞ P
(
|X(n) − c | > ε

)
= 0.

We write X ∼ pX to denote that the random variable X has a density pX . If X
is a vector random variable with entries iid, then we use iid

∼. Also, X ∼ N (µ, σ2)
denotes a Gaussian random variable with mean µ and variance σ2.

We reserve the letters g and h to denote standard Gaussian vectors (with iid entries
N (0, 1)) of dimensions m and n, respectively. Similarly, G and H are reserved to
denote (scalar) standard normal random variables.

Setup
Linear Asymptotic Regime: Our study falls into the linear asymptotic regime in
which the problem dimensions m and n grow proportionally to infinity with

m/n → δ ∈ (0,∞).
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Measurement matrix: The entries of A ∈ Rm×n are i.i.d. N (0, 1
n
). The normaliza-

tion of the variance ensures that the rows of A are approximately unit-norm; this is
necessary in order to properly define a signal-to-noise ratio.

Unknown (structured) signal: Let x0 ∈ R
n represent the unknown signal vector that

is sampled from a probability density px0 ∈ R
n with one dimensional marginals that

are independent of n. Note, that we do not necessarily require that the entries of x0

be iid. The signal x0 is assumed independent of A.

Information about the structure of x0 is encoded in px0 . For instance, to study an x0

which is sparse, it is typical to assume that its entries are i.i.d. x0,i ∼ (1−ρ)δ0+ρqX0 ,
where ρ ∈ (0, 1) becomes the normalized sparsity level, qX0 is a scalar p.d.f. and δ0

is the Dirac delta function1.

Regularizer: We consider regularizers f : Rn → R that are proper continuous
convex functions.

Loss function: The loss function L : Rn → R is proper continuous and convex.
Without loss of generality, we assume for simplicity that minv L(v) = 0. Finally, we
impose a natural normalization condition as follows: for all n ∈ N and all constants
c > 0 there exists constant C > 0, such that ‖v‖2 ≤ c

√
n =⇒ sups∈∂L(v) ‖s‖2 ≤

C
√
n.

Noise vector: The noise vector z ∈ Rm follows a probability distribution pz ∈ R
m

with one dimensional marginals that are independent of n. Also, it is independent
of the measurement matrix A.

Sequence of problem instances: Formally, our result applies on a sequence of prob-
lem instances {x0,A, z,L , f ,m}n∈N indexed by n such that the properties listed
above hold for all members of the sequence and for all n ∈ N. (We do not write out
the subscripts n for arguments of the sequence in order to not overload notation).
Every such sequence generates a sequence {y, x̂}n∈N where y := Ax0 + z, and,

x̂ := arg min
x
L (y − Ax) + λ f (x). (4.3)

Here, λ > 0 is a fixed regularizer parameter.
1Such models in place for studying structured signals have been widely used in the relevant

literature, e.g. [DJ94; DMM11; DJM13]. In fact, the results here continue to hold as long as the
marginal distribution of x0 converges to a given distribution (as in [BM12]).
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Estimation error: Solving (4.3) aims to recover x0. We assess the quality of the
estimator x̂ with the “empirical squared error" (or simply, “squared-error") defined
as: 1

n
‖x̂−x0‖

2
2 . Note, that this is a random quantity owing to the randomness of A, z

and x0. Our main theorem precisely evaluates its high probability limit as n → ∞.

4.2 General Result
Key Assumption
As already hinted in the introduction the functions L, f and the distributions pz

and px0 determine the error performance indirectly through “summary function-
als" related to the Moreau-envelope approximations. The assumption below is an
in-probability convergence requirement on the sequence of Moreau-envelopes, and
defines those summary functionals. It also involves a rather natural growth restric-
tion on the loss function in the presence of noise to handle instances where the noise
may have unbounded moments.

Assumption 4.2.1 (Summary functionals L and F). We say that Assumption 4.2.1

holds if:

(a) For all c ∈ R and τ > 0, there exist continuous functions L : R × R>0 → R and

F : R × R>0 → R such that2

m−1 {eL (cg + z;τ) − L(z)}
P
−→ L (c , τ) and

n−1
{
e f (ch + x0;τ) − f (x0)

} P
−→ F (c , τ) ,

(b) At least one of the following holds. There exists constantC > 0 such that ‖z‖2√
m
≤

C with probability approaching 1 (w.p.a.1), or, supv∈Rm sups∈∂L(v) ‖s‖2 < ∞ for

all m ∈ N.

Assumption 4.2.1 is rather mild: as discussed later in Section 4.2, it holds naturally
under very generic settings. Yet, it is of key importance since it defines the func-
tionals L and F, which are necessary ingredients involved in the error prediction
of (4.3). The main theorem in its most general form will require some extra (con-
tinuity and growth) properties on the functionals L and F. Those will most often
be naturally inherited from corresponding easy-to-verify, and in cases well-studied,
properties of the Moreau envelope functions.

2The convergence above is in probability over z ∼ pz , x0 ∼ px0 , g ∼ N (0, Im) and h ∼ N (0, In).
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Theorem
Assumption 4.2.1 provides us with the basic terminology needed for the statement
of the main theorem. Technically, a few additional mild constraint qualifications
are required. We present those immediately after the statement of the main result
(see Assumption 4.2.2). The proof of the theorem is deferred to Appendix B. An
outline is given earlier in Section 5.2.

Theorem 4.2.1 (Master Theorem). Let x̂ be a minimizer of the Generalized M-

estimator in (4.3) for fixed λ > 0. Further let Assumptions 4.2.1 and 4.2.2 hold. If

the following convex-concave minimax scalar optimization

inf
α≥0
τg>0

sup
β≥0
τh>0

D(α, τg , β, τh) :=
βτg

2
+ δ · L

(
α,
τg

β

)
−
ατh

2
−
αβ2

2τh
+ λ · F

(
αβ

τh
,
αλ

τh

)
(4.4)

has a unique minimizer α∗, then, it holds in probability that

lim
n→∞

1
n
‖x̂ − x0‖

2
2 = α2

∗ .

We will often refer to the optimization problem in (4.4) as the Scalar Performance

Optimization (SPO) problem.

A few important remarks are in place here (a detailed discussion follows in Section
4.2): (i) The convergence in the theorem is over the randomness of the design matrix
A, of the noise vector z and of the unknown signal x0. (ii) As was discussed in
Section 4.1 the result applies to a properly defined sequence of M-Estimators of
growing dimensions m and n such that m/n → δ ∈ (0,∞). (We have dropped
the dependence of x̂ and x0 on n to simplify notation.) (iii) The terms involving
division by α and β are understood as taking their limiting values when α = 0
and β = 0, i.e. D(0, τg , β, τh) = limα→0+ D(α, τg , β, τh) and D(α, τg , 0, τh) =

limβ→0+ D(α, τg , β, τh).

Before proceeding with a further discussion of the result, let us state Assumption
4.2.2 on the functionals L and F as required by Theorem 4.2.1.

Assumption 4.2.2 (Properties of L and F). We say that Assumption 4.2.2 holds if

all the following are true.

(a) limτ→0+ F(τ, τ) = 0 and limc→+∞

{
c2

2τ − F(c , τ)
}

= +∞ for all τ > 0.
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(b) limτ→0+ L(α, τ) < +∞, limτ→0+ L(0, τ) = 0, and , −∞ < L2,+(0, 0) := limτ→0+ L2,−(0, τ) ≤
0.

(c) 1
m
L(z)

P
−→ L0 ∈ [0,∞]. Also, L0 = − limτ→+∞ L(c , τ) ≥ −L(c , τ′) for all

c ∈ R, τ′ > 0.

(d) If L0 = +∞, then limτ→+∞
L(c ,τ)
τ = 0, for all c ∈ R.

A few remarks on the notation used in Assumption 4.2.2 follow. In (b), L2,−(0, τ)
denotes the left derivative of L with respect to its second argument evaluated at
(0, τ). In (d), L0 can take the value +∞. For a sequence of random variables
{X(n)}n∈N, we write X(n) P

−→ +∞, iff for all M > 0, limn→∞ P
(
X(n) > M

)
= 1.

Separable M-estimators
A special yet popular family of M-estimators involves separable loss/regularizer
functions and iid noise/signal distributions. We refer to such instances as “separable

M-estimators". To be concrete, consider solving

min
x

m∑
j=1

`
(
y j − aTj x

)
+ λ

n∑
i=1

f (xi), (4.5)

where additionally, z j
iid
∼ pz and x0i

iid
∼ px . Popular choices for the (scalar) loss func-

tion `(v) above, include v2, |v | , Huber-loss, etc.. In the separable case, the generic
Assumptions 4.2.1 and 4.2.2 translate to very primitive and naturally interpretable
conditions. Also, the functionals L and F take here an explicit form, which we call
the “Expected Moreau envelope". The Expected Moreau envelope associated with
the loss function is given by

L(c , τ) = EG∼N (0,1)
Z∼pZ

[e` (cG + Z ;τ) − `(Z)] .

The function L, above, has the following remarkable properties: (i) it is smooth
regardless of the smoothness of `, and, (ii) it is strictly convex regardless of whether
` is itself strictly convex or not. In particular, the second property can be used to
show that the uniqueness condition of Theorem 4.2.1 regarding the minimizer α∗ of
(4.4) is satisfied.

In order to get a better understanding of those issues before discussing Theorem
4.2.1 in its greatest generality, we state below a summary of the main result regard-
ing separable M-estimators. (The formal statement will be given later in Section
4.3, which includes a detailed treatment of separable M-estimators.)
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Summary of result for separable M-estimators . Let `, f : R → R be convex

non-negative functions, and, Z ∼ pZ , X0 ∼ px such that for all c ∈ R:

E
[
|`′+(cG + Z)|2

]
< ∞ and E

[
| f ′+(cH + X0)|2

]
< ∞. (4.6)

Further assume EX2
0 < ∞, and, that either EZ2 < ∞ or supv

|`(v)|
|v |

< ∞. Then,

any minimizer x̂ of (4.5) satisfies in probability,

lim
n→∞

1
n
‖x̂ − x0‖

2
2 = α2

∗ ,

where α∗ is the unique minimizer to the (SPO) problem in (4.4) with

L(c , τ) = E [e` (cG + Z ;τ) − `(Z)] and F(c , τ) = E
[
e f (cH + X0;τ) − `(X0)

]
.

We defer most of the discussions to Section 4.3. We only note here that there is
no smoothness or strict convexity assumption imposed on ` or f . Neither is the
noise distribution required to have bounded moments. For example, `(v) = |v |

with z distributed iid Cauchy satisfies all the conditions. The main condition of
the theorem is the one in (4.6), which is very primitive, and, easy to check. It
essentially guarantees that e` (cG + Z ;τ) − `(Z) is absolutely integrable, thus L is
well-defined. It turns out that this also suffices for all requirements of Assumption
4.2.2 to be satisfied.

Remarks
On Assumption 4.2.1

We have made an effort to identify technical assumptions required for the statement
of Theorem 4.2.1 which are as generic and minimal as possible. Assumption 4.2.1
summarizes those technical conditions that are essential for our result to hold in its
most general form. In later sections, when we discuss special cases (e.g. separa-
ble M-estimators in Section 4.3), we show that these conditions translate to more
primitive sufficient conditions that are often easier to check.

Remark 4.2.0.9 (WLLN and Robust Statistics). The most natural setting where As-
sumption 4.2.1(a) can be easily interpreted is that of separable functions. For in-
stance, if L(v) =

∑m
j=1 `(v j) and z j

iid
∼ pZ (Z), then, in view of the WLLN, the

natural candidate for L(c , τ) is E[e` (cG + Z ;τ)− `(Z)]. Of course, this requires the
argument under the expectation be aboslutely integrable. This is naturally satisfied
for most loss functions in the case of noise distributions with bounded moments.
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On the other hand, when the noise is (say) heavy-tailed, some extra caution is re-
quired on the choice of the loss function; this leads to (4.6). As a warning to this
discussion, Assumption 4.2.1 does not require separability. For example, we use
Theorem 4.2.1 to analyze the error performance of the square-root lasso (for which
L(v) = ‖v‖2) in Section 6.5, and, that of another instance with a non-separable
regularizer function in Section 6.3.

Remark 4.2.0.10 (Convexity of L and F). We remark that if Assumption 4.2.1 holds,
then both the functions F and L defined therein are jointly convex in their arguments.
This follows from the facts that (a) the Moureau envelope of a convex function is
jointly convex in its arguments (cf. Lemma B.4.1(ii)), (b) taking limits preserves
convexity. In that sense, the continuity requirement of the assumption on L and F

is rather mild, since convex functions are continuous on the interior of their domain
[Roc97, Thm. 10.1].

Remark 4.2.0.11 (Robust Statistics). Assumption 4.2.1(b) is tailored to scenarios
in which the noise distribution has unbounded moments (e.g. mean, variance); in
this case ‖z‖2/

√
n is not bounded with high probability. It is not hard to see that

condition 4.2.1(b) implies supv
‖L(v)‖2
‖v‖2 < ∞; such a requirement that L grows at

most linearly at infinity is natural in the context of robust statistics.

On Assumption 4.2.2

Remark 4.2.0.12 (Continuity). Conditions (a), (b) and (c) impose continuity and
growth requirements on L and F. Those are rather naturally inherited by corre-
sponding properties of the Moreau-envelope functions. In Appendix B.4 we have
gathered such relevant and useful properties of Moreau-envelopes, which we use
extensively throughout the text. For an illustration, it is not hard to see3 that
limτ→0+ eL (z;τ) = L(z). This, of course is in line with Assumption 4.2.2(b) that
limτ→0+ L(0, τ) = 0.

Remark 4.2.0.13 (Robust Statistics). Assumption 4.2.2(d) is meant to deal with
cases of noise with unbounded moments (this will often translate to L0 = +∞). In
such cases, we require that L(c , τ) grows sub-linearly in τ. Once more, this property
is essentially inherited without any extra effort by the corresponding property of the
Moreau-envelope.

3Formally, this is a well-known continuity result on Moreau-envelopes. see Lemma B.4.1(ix)
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On the Theorem

Remark 4.2.0.14 (Limits). In evaluating the objective function D of the (SPO) at
α = 0 and β = 0, Assumptions 4.2.2(a)-(b) turn out to be useful, giving

lim
β→0+

L

(
α,
τg

β

)
= −L0 and lim

α→0+
F

(
αβ

τh
,
αλ

τh

)
= 0.

Remark 4.2.0.15 (Convexity). An important property of the (SPO) is that it is con-

vex: its objective function D(α, τg , β, τh) is (jointly) convex in α, τg and concave
in β, τh. As is well known, convexity translates to the ability to efficiently solve the
optimization; see also Remark 4.2.0.18 below.

Remark 4.2.0.16 (Uniqueness of α∗). Theorem 4.2.1 assumes that the (SPO) prob-
lem has a unique minimizer α∗. In most cases discussed in this paper, the unique-
ness property is a consequence of the fact that the function L(c , τ) turns out to be
(jointly) stricly convex in its arguments. In the separable case, this translates to the
strict convexity of the expected Moreau envelope function E[e` (cG + Z ;τ)− `(Z)],
cf Remark 4.3.0.26.

Further Discussions

Remark 4.2.0.17 (The role of the parameters). The role of the normalized number of
measurement m/n → δ and that of the regularizer parameter λ are explicit in (4.4).
On the other hand, the structure of x0 and the choice of the regularizer f are implicit
through F. Similarly, any prior knowledge on the noise vector z and the effect of the
loss function L are also implicit in (4.4) through L. In the separable case, the role
of those summary parameters is played by the Expected Moreau envelope function.

Remark 4.2.0.18 (An alternative characterization). The (SPO) problem in (4.4) is
convex-concave and only involves four scalar variables. Thus, the optimal α∗ can,
in principle, be efficiently numerically computed. Equivalently, α∗ can be expressed
as the solution to the corresponding first-order optimality conditions, which offers
an alternative to the current statement of Theorem 4.2.1. In Section 4.3 we explicitly
derive the system of stationary equations for the case of separable M-estimators.
It is often possible to solve the stationary equations by means of simple iterative
schemes (cf. Remark 4.3.0.29). Furthermore, this alternative formulation might
be easier to work with when deriving analytic properties of α∗. As an example, in
Sections 6.1–6.3 for specific instances of M-estimators, we start from the stationary
equations, combine them in an appropriate way and derive insightful and practically
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useful properties, such as lower bounds on α∗, necessary conditions on the problem
parameters such that α∗ (correspondingly, the equated error) be bounded, etc.

Remark 4.2.0.19 (Optimal cost). Although not stated as part of our main result, the
analysis that leads to Theorem 4.2.1 further characterizes the limiting behavior of
the optimal cost, say C∗, of the M-Estimator in (4.3). Let Γ∗ be the optimal cost of
the (SPO), then

1
n

min
x
{L(y − Ax) − L(z) + λ( f (x) − f (x0))}

P
−→ Γ∗. (4.7)

Remark 4.2.0.20 (Asymptotics). The statement of the theorem holds under an asymp-
totic setup in which the problem dimensions m and n grow to infinity. In Chapter
6.10 we examine via simulations the validity of the prediction for finite values of
m and n. The results indicate that the asymptotic prediction becomes accurate for
values of the problem parameters ranging on a few hundreds, and, in cases even on
a few tens.

Remark 4.2.0.21 (Proof). The fundamental tool behind our analysis is the CGMT
(Theorem 3.3.1). As seen in Section 3.3, the CGMT associates with a primary
optimization (PO) problem a simplified auxiliary optimization (AO) problem from
which we can tightly infer properties of the original (PO), such as the optimal cost,
the optimal solution, etc.. We manage to write the general M-estimator in (4.3) as
a (PO) problem so that CGMT is applicable. This leads to a corresponding (AO)
problem. Next, we analyze the error of the (AO) and translate the result to the (PO)
thanks to the CGMT. These ideas form the basic mechanics of the proof and are
rather simple to explain; see Chapter 5 for an outline.

Remark 4.2.0.22 (Why “Master"?). All existing results in the literature on the per-
formance of specific instances of M-estimators can be seen as special cases of The-
orem 4.2.1. Beyond those, the theorem can be used to derive a wide range of novel
results, including instances where the loss function and the regularizer may be non-
smooth and non-separable, and where the noise distribution may have unbounded
moments. We discuss several examples in Chapter 6.

Remark 4.2.0.23 (Premises/Opportunities). Theorem 4.2.1 paves the way to an-
swering optimality questions regarding the performance of M-estimators under dif-
ferent scenarios. The first fundamental step in answering such optimality questions
(see Chapter 1) is characterizing the squared error in terms of the problem design
parameters, i.e. f , `, λ and δ. And, of course, this is exactly what Theorem 4.2.1
achieves. Since the characterization differs from the corresponding results of clas-
sical statistics (where n is considered fixed), the questions will not in general admit
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the same answers. In the high-dimensional regime, our knowledge of those issues
is rather limited and there is an exciting potential for exploring new phenomena and
providing answers that are both of theoretical and of practical interest. We provide
a few preliminary results towards this direction in Chapter 6.

4.3 Separable M-estimators
We specialize the general result of Section 4.2 to the popular case where the loss
function L and the regularizer f are both separable and the noise vector and signal
x0 both have entries iid. To make things concrete, assume4

L(v) =

m∑
j=1

`(v j) and z j
iid
∼ pZ , j = 1, . . . ,m,

f (x) =

n∑
i=1

f (xi) and x0i
iid
∼ px , i = 1, . . . , n.

Henceforth, both ` and f are proper closed convex functions. Also, it is further
assumed

`(0) = 0 = min
v
`(v) and f (0) = 0. (4.8)

Satisfying Assumptions 4.2.1 and 4.2.2
To apply Theorem 4.2.1, we first need to verify that Assumptions 4.2.1 and 4.2.2
hold for both the loss function and the noise distribution, and for the regularizer and
the signal distribution.

Loss Function and Noise Distribution

In the separable case Assumptions 4.2.1 and 4.2.2 essentially translate to the fol-
lowing requirement on ` and pZ :

E
[
|`′+(cG + Z)|2

]
< ∞, for all c ∈ R, (4.9)

where the expectation is over Z ∼ pZ and G ∼ N (0, 1). This is shown in Lemma
4.3.1 below.

Lemma 4.3.1 (Expected Moreau envelope–Loss fcn). If ` and pZ satisfy (4.9), then,

Assumptions 4.2.1(a) and 4.2.2(b)-(d) hold with

L(c , τ) = E [e` (cG + Z ;τ) − `(Z)] . (4.10)

4Note the slight abuse of notation here in using f to denote both the vector-valued and scalar
regularizer function.
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The condition in (4.9) is very primitive and is, in general, easy to check. It essen-
tially guarantees that e` (cG + Z ;τ) − `(Z) is absolutely integrable (for a proof see
Appendix B.3). Hence, L in Lemma 4.3.1 is well-defined and it satisfies Assump-
tion 4.2.1(a) as a result of applying the WLLN. A few examples for which (4.9) is
satisfied include:

1. `(v) = v2 and EZ2 < ∞,

2. (4.9) is trivially satisfied if `(v) = |v | for any noise distribution pZ ,

3. Huber-loss and Z ∼ Cauchy(0, 1).

Apart from (4.9), we also need to satisfy Assumption 4.2.1(b), which here translates
to the following requirement:

EZ2 < ∞ or sup
v∈R
|`′+(v)| < ∞. (4.11)

The second condition above on boundedness of the sub-differential is equivalent to
supv

|`(v)|
|v |

< ∞. That is, if Z has unbounded second moments then ` needs to grow
to infinity at most linearly, e.g. | · |, Huber-loss, etc.

Regularizer and Signal Distribution

Not surprisingly, following the results of Section 4.3, the required condition on f

and px becomes

E
[
| f ′+(cH + X0)|2

]
< ∞, for all c ∈ R, (4.12)

where the expectation is over X0 ∼ px and H ∼ N (0, 1). Additionally, the follow-
ing mild assumptions are required:

∃ x+ > 0, x− < 0 such that 0 ≤ f (x±) < ∞ and EX2
0 < ∞. (4.13)

Lemma 4.3.2 (Expected Moreau Envelope–Regularizer fcn). If f and px satisfy

(4.12) and (4.13), then, Assumptions 4.2.1(a) and 4.2.2(a) hold with

F(c , τ) = E
[
e f (cH + X0;τ) − f (X0)

]
. (4.14)
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The Expected Moreau Envelope
If conditions (4.9), (4.11) and (4.12) are satisfied, then Theorem 4.2.1 is applicable
with L and F given as in (4.10) and (4.14), respectively. We call those functions the
Expected Moreau envelopes. The important role they play in determining the error
performance of the corresponding M-estimator is apparent from Theorem 4.2.1. In
this section, we discuss two key features that they possess, namely, smoothness and
strict convexity.

Lemma 4.3.3 (Smoothness). Suppose ` is a closed proper convex function and pZ a

noise density such that (4.9) holds. Then, the function L(c , τ) := E [e` (cG + Z ;τ) − `(Z)]
is differentiable in R × R>0 with

∂L

∂c
= E

[
e′` (cG + Z ;τ)G

]
and

∂L

∂τ
= −

1
2
E

[(
e′` (cG + Z ;τ)

)2
]
.

Remark 4.3.0.24. Note that L is smooth, regardless of any non-smoothness of `.
This is a well-known fact about Moreau envelope approximations and also one of
the primal reasons behind the important role those functions play in convex analysis
[RW09]. The property is naturally inherited to the Expected Moreau envelopes as
revealed by the lemma above.

Lemma 4.3.4 (Strict Convexity). Suppose ` is a closed proper convex function and

pZ a noise density such that (4.9) holds and the following are satisfied:

(a) Either there exists x ∈ R at which ` is not differentiable, or, there exists interval

I ⊂ R where ` is differentiable with a strictly increasing derivative,

(b) Var(Z) , 0 5, and, at each z ∈ R, pZ (z) is either a Dirac delta function or it is

continuous.

Then, L(c , τ) := E [e` (cG + Z ;τ) − `(Z)] is jointly strictly convex in R>0 × R>0.

Remark 4.3.0.25. The function L is strictly convex, without requiring any strong or
strict convexity assumption on `. Interestingly, this property is not in general true
for Moreau envelope approximations but it turns out to be the case for the Expected

Moreau envelope L. The fact that the latter further involves taking an expectation
over cG+ Z , with G having a nonzero density on the entire real line, turns out to be
critical.

5We require that there exist at least two values of z ∈ R for which pZ (z) > 0. In particular, there
is no requirement that Var(Z) be defined, e.g. Cauchy distribution is allowed.
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Remark 4.3.0.26 (Strict convexity =⇒ Uniqueness of α∗). The strict convexity
property of L is critical because it guarantees uniqueness of the minimizer α∗ of
the (SPO) problem in Theorem 4.2.1. This implication is proved in Lemma B.3.3
in Appendix B.3.

Error Prediction
We are now ready to state the main result of this section which characterizes the
squared error of separable M-estimators. This is essentially a corollary of Theorem
4.2.1.

Theorem 4.3.1 (Separable M-estimators). Suppose ` and pZ satisfy (4.9), (4.11),
and, the two conditions of Lemma 4.3.4. Further assume that f , px satisfy (4.12)
and (4.13). Let x̂ be any minimizer of the separable M-estimator and consider the

(SPO) problem in (4.4) with L and F given as in (4.10) and (4.14), respectively. If

the set of minimizers of the (SPO) over α is bounded, then there is a unique such

minimizer α∗ for which it holds in probability that

lim
n→∞

1
n
‖x̂ − x0‖

2
2 = α2

∗ .

Remark 4.3.0.27 (Boundedness). Applying Theorem 4.3.1 requires a few primitive
and easy to check assumptions on `, Z , f and X0. In contrast to the general case
in Theorem 4.2.1, here, the uniqueness of α∗ is guaranteed if the set of minimizers
of the (SPO) over α is bounded. The boundedness condition is essentially in one
to one correspondence, with the squared error of the M-estimator being (stochasti-
cally) bounded or not. We expect the boundedness assumption, which is generic in
nature, to translate to necessary and sufficient primitive conditions on `, f , pZ , px
and δ. For example, in Remark 6.1.0.33 we show that in the case of un-regularized
M-estimators, a necessary such condition is that the normalized number of mea-
surements be larger than 1, i.e. δ > 1 6. Identifying such conditions that would
guarantee bounded error is an important design issue, since it provides guarantees
and guidelines on how the loss function, the regularizer and the number of mea-
surements ought to be chosen. In the general case, this remains an open question.
We expect that Theorem 4.3.1 itself and the proof ideas behind it (in particular, see

6 Besides, in Remark 6.3.0.41, we show that with appropriate regularization, the necessary
condition on the number of measurements becomes δ > D f ,x0 , where D f ,x0 = D(cone(∂ f (x0)))/n is
the normalized Gaussian squared distance to the cone of subdifferential defined in 2.10. Recall that
for many useful examples D(cone(∂ f (x0))) � n implying that with an appropriate regularizer the
signal x0 can be robustly estimated with a number of measurements that is less than the dimension
of the signal. Of course, this is in agreement with the phase-transition result of Theorem 2.2.1.
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Lemma B.1.5(b)) can be used to answer this question. Since this is not the main
focus of the paper, we leave the rest for future work.

As a system of nonlinear equations

Theorem 4.3.1 predicts the error of the M-estimator as the optimizer α∗ to a convex-
concave optimization problem with four optimization variables. Equivalently, α∗
can be expressed via the first-order optimality conditions (stationary equations)
corresponding to this optimization. Recall from Lemma 4.3.3 that L and F are
differentiable (irrespective of smoothness of ` and f ). The error of the M-estimator
is then the unique α∗ ≥ 0 for which there exist τg∗ ≥ 0, β∗ ≥ 0 and τh∗ ≥ 0
satisfying

∂D

∂α

∣∣∣∣
p∗

(α − α∗) ≥ 0,
∂D

∂τg

∣∣∣∣
p∗

(τg − τg∗) ≥ 0,

∂D

∂β

∣∣∣∣
p∗

(β − β∗) ≤ 0,
∂D

∂τh

∣∣∣∣
p∗

(τh − τh∗) ≤ 0, (4.15)

for all α, β ≥ 0, τg , τh > 0 and p∗ = (α∗, τg∗, β∗, τh∗). A similar remark to the
one that follows Theorem 4.2.1 is in place regarding the values α = 0 and β = 0.
At these, the derivatives above should be interpreted as the corresponding (upper)
limits as α → 0+ and β → 0+. The continuity properties of the Moreau envelope
(see Lemma B.4.1) guarantee that those limits are well-defined

When α∗ > 0 and there also exist optimal values β, τg , τh, all of them strictly pos-
itive, then (4.15) holds with equalities. In this case, a little bit of algebra and an
appropriate change of variables from τg , τh to κ, ν, show that the optimality condi-
tions can be expressed as follows:

α2 = E

(λ
ν
· e′f

(
β

ν
H + X0;

λ

ν

)
−
β

ν
H

)2 ,
β2 = δ · E

[(
e′`(αG + Z , κ)

)2
]
,

να = δ · E
[
e′`(αG + Z , κ) · G

]
,

κβ =
β

ν
−
λ

ν
· E

[
e′f

(
β

ν
H + X0;

λ

ν

)
· H

]
.

(4.16)

Here, e′
f

and e′
`
, denote the first derivatives of the Moureau envelopes with respect

to their first argument.
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Remarks

Remark 4.3.0.28 (Reformulations). The system of equations in (4.16) can be easily
reformulated in terms of the proximal operator of f and `, using

e′`(χ, τ) =
1
τ

(χ − prox` (χ;τ)),

and similar for f (see Lemma B.4.1(iii)). In the case of additional smoothness
assumptions on the loss function and/or the regularizer, further reformulations are
possible. For example, if ` is two times differentiable, then using Stein’s formula
for normal random variables we can make the following substitution in (4.16):

E
[
e′`(αG + Z , κ) · G

]
= α · E

[
e′′` (αG + Z , κ)

]
, (4.17)

where the double-prime superscript denotes the second derivative with respect to
the first argument. Such reformulations are often convenient for analysis purposes;
see for example Remark 6.1.0.34.

Remark 4.3.0.29 (Numerical Evaluations). The system of equations in (4.16) com-
prises four nonlinear equations in four unknowns. Setting t = (α, β, ν, κ) for the
vector of unknowns, the system of equations in (4.16) can be written as t = S(t),
for appropriately defined S : R4 → R4. We have empirically observed that a simple
recursion tk+1 = S(tk), k = 0, 1, . . . converges to a solution t∗ satisfying t∗ = S(t∗).
This observation is particularly useful since it allows for efficient numerical exper-
imentations, cf. Section 6.10. It is certainly an interesting and practically useful
subject of future work to identify analytic conditions under which such simple re-
cursive schemes provide efficient means of solving (4.16).

Remark 4.3.0.30 (Extensions). The results of this section extend naturally, and
without any extra effort, to the case of “block-seperable" loss functions and/or
regularizers. A popular example that falls in this category is `1,2-regularization,
which is typically used for the recovery of block-sparse signals. In such a case
f (x) =

∑b
i=1 ‖[x]i ‖2, where [x]i = [x(i−1)t+1, x(i−1)t+2, . . . , x(i−1)t+t], i = 1, . . . , b is

the ith block of x. Here, b is the number of blocks and t is the length of each block.
In the proportional high-dimensional regime, one would assume b growing linearly
with n with a constant ratio of 1/t.

4.4 Survey of Relevant Literature
There is a very long list of early results on the error performance of regularized
M-estimators which derive “order-wise" bounds that involve unknown scaling con-
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stants (e.g. [CT07; BCW11; BRT09; Neg+12; Wai14; Ver14; Ban+14; LHC15]
and references therein). Nevertheless, in this discussion we focus entirely on more
recent results that derive precise characterizations rather than loose bounds.

Unless otherwise stated, the literature that we describe below takes the random mea-
surement matrix A to have independent Gaussian entries (but, see Remark 4.4.0.31).
Also, it studies the high-dimensional asymptotic regime where m and n grow to in-
finity at a proportional rate.

Chronologically, the first such results were derived using the AMP framework by
Bayati, Donoho, Maleki and Montanari [DMM11; BM12]. Both references con-
sider a least-squares loss function with `1-regularization (a.k.a. LASSO) and Gaus-
sian noise distribution: [DMM11] developed formal expressions for the reconstruc-
tion error at high-SNR under optimal tuning of the regularizer parameter λ > 0;
[BM12] explicitly characterizeed the reconstruction error for all values of λ and all
values of SNR. Subsequent works [Mal+13; Tae+13; DJM13] involve extensions
of the results to other separable regularizers (e.g. `1,2-norm). In late 2013, Donoho
and Montanari [DM13] introduced an extension of the AMP framework to ana-
lyze the error performance of loss functions other than least-squares. Their analysis
applies to separable, strongly-convex and smooth loss functions, to iid signal statis-
tics, and to iid noise statistics with bounded second moments. Donoho & Montanari
consider no regularization, hence their analysis restricts the normalized number of
measurements to δ = m/n > 1. Very recently, Bradic & Chen [BC15] built upon the
framework of [DM13] and extended the analysis to sparse signal recovery and `1-
regularization, under more general (but somewhat stringent) conditions on the loss
function and on the noise and signal statistics. Our work raises the assumptions
on separability, smoothness and strong convexity of the loss function and considers
general convex regularizers and more general signal and noise statistics. Also, our
analytic approach via the CGMT framework is somewhat more direct and poten-
tially more powerful. The AMP framework involves two steps of analysis: (a) it
analyzes the error performance of the AMP algorithm based on a state evolution
framework inspired by statistical physics; (b) it shows that the AMP algorithm has
the same error performance as the M-estimator. This way it concludes about the
behavior of the latter. In contrast, our approach directly analyzes the error behavior
of the original M-estimator. Nevertheless, we remark on the algorithmic advantage
of the AMP framework which (whenever applicable) comes with a fast(er) iterative
algorithm with the same error performance guarantees as the convex M-estimator.
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Also, the AMP framework has been used for the analysis of other problems be-
yond noisy signal recovery from linear measurements (see [Mon15] and references
therein). It remains an open and potentially interesting question to study deeper
connections between the two different frameworks of analysis, namely the CGMT
and the AMP frameworks.

Our approach, which is based on Gaussian process methods, is inspired and moti-
vated by the work of Stojnic [Sto13a]. Stojnic considered an `1-constrained version
of the LASSO under Gaussian noise distribution in the high-SNR regime. Under
this setting, he was the first to note that Gordon’s GMT could be combined with a
convex duality argument to yield bounds that are tight. Shortly after, in [OTH13b]
we extended Stojnic’s results to the regularized case by deriving tight high-SNR
bounds for the square-root LASSO with general convex regularizers. Since then,
in a series of works [TOH14; TH14; Thr+15; TPH15; TH15; TOH15; TAH16] we
have built upon these early results to obtain the powerful and transparent framework
presented in this thesis. A critical element of the framework is the CGMT Theo-
rem 3.3.1, which is a refined, clear, and extended version of Stojnic’s idea. Beyond
that, a plethora of new ideas and techniques have been blended that lead to the final
results as presented here.

Finally, a third approach to analyze the mean-squared error performance of high-
dimensional M-estimators has been undertaken by El Karoui in [Kar13; EK15].
El Karoui uses leave-one-out and martingale ideas from statistics and ideas from
random matrix theory to accurately predict the squared error of ridge-regularized
(a.k.a. f (x) = ‖x‖22) M-estimators. The analysis can handle noise distributions
with unbounded moments, but it requires a smooth and separable loss function. In
our work, we drop both these assumptions and extend the results to general convex
regularizers. In comparing the two works, we note that El Karoui’s proof technique
can deal with more general assumptions on the design matrix A. (Nevertheless,
please see Remark 4.4.0.31.) Beyond matrices with iid entries, El Karoui [EK15]
further considers elliptical models. Even though we do not explicitely consider such
an extension in the current paper, our proof technique is readily applicable to this
more general scenario.

Remark 4.4.0.31 (On Universality). Since the works [Sto09b; Cha+12; Ame+13]
we now have a very clear understanding of the phase transitions of non-smooth
convex signal recovery methods with iid Gaussian measurements. Under the same
measurement model, the current paper extends this clear picture to the noisy setting
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by precisely characterizing the reconstruction error. Here, we briefly discuss rele-
vant results that prove the universal behavior of iid Gaussian measurements over a
wider class of distributions.

As discussed in Section 2.2, [OT15] have established the universality of the Guas-
sian design for the phase-transition results of noiseless CS (see [OT15, Prop. 5.1],
for an exact statement). Oymak & Tropp further derive conclusions for the noisy
setting: they prove the universality of the error bounds that we derived in [OTH13b]
(presented here in Chapter 7) for the constrained LASSO. It remains an open chal-
lenge to extend these results to the general setting of the arbitrary loss and regular-
izer functions of the current paper. We remark that the results of [OT15] use some of
the ideas that were developed in [OTH13b; TOH15] and in the current paper. Also,
note that the results of El Karoui [EK15] on the ridge-regularized M-estimators
hold for matrices with iid entries beyond Gaussian.

From this discussion we have excluded random measurement models beyond ones
with iid entries. An important example includes design matrices with orthogonal
rows, e.g. Isotropically Random Orthogonal (IRO) matrices, randomly subsampled
Fourier and Hadamard matrices, etc.. While the universality of phase transition
appears to extend to such designs, this is not the case for the reconstruction error.
We will pursue this study in Chapter 8.

Remark 4.4.0.32 (Heuristic results). In parallel to the works referenced above, there
have been a number of works that studied the same questions, mixing heuristic-
based arguments and extended simulations. For example, [GBS09; KWT10; RGF09;
VKC14] use the replica method from statistical physics, which provides a powerful
tool for tackling hard analytical problems, but still lacks mathematical rigor in some
parts. Closer to the setting of our work, the high-dimensional error performance of
regularized M-estimators has been previously considered via heuristic arguments
and simulations in [EK+13; Bea+13]. In particular, Bean et. al. [Bea+13] shows
that maximum likelihood estimators are in general inefficient in high-dimension
and initiate the study of optimal loss functions. It is worth revisiting and extending
those results in connection to the mathematically rigorous approach of the current
paper.



60

C h a p t e r 5

ANALYSIS FRAMEWORK

The goal of this chapter is to present an analytical framework that uses the CGMT
(Theorem 4.2.1) for analyzing the estimation performance of regularized M-estima-
tors under Gaussian measurement matrices. Recall from Section 3.3 that the CGMT
associates with a primary optimization (PO) problem (cf. Eqn. (3.11a)) a simplified
auxiliary optimization (AO) problem (cf. Eqn. (3.11b)) from which we can tightly
infer properties of the original (PO), such as the optimal cost, the optimal solution,
etc.. The prescribed framework includes four major steps:

1. Identify the (PO): Express the regularized M-estimator in (1.2) as a (PO)
problem that satisfies the convexity and compactness assumptions of the CGMT.
Derive the corresponding (AO).

2. “Scalarization" of the (AO): Treat the (AO) as a deterministic optimization
and simplify it with the goal of reducing it to an optimization problem involv-
ing only scalar optimization variables.

3. Convergence analysis of the (AO): Identify the converging limit of the (AO).
Typically, this limit is itself a (deterministic) min-max optimization problem,
which we term the Scalar Performance Optimization (SPO).

4. Analysis of the (SPO): Prove that conditions (a)–(c) of Thm. 3.3.1(iii) hold
for the (SPO), which often translates to strict-convexity requirements on its
objective function.

5.1 How it Works
In essence, Step 1 can be accomplished by expressing the (convex) loss function
in (1.2) in a variational form through its Fenchel conjugate, bringing (1.2) to the
appropriate min-max form of the (PO). Convexity is guaranteed by the imposed
convexity assumptions on the loss function and the regularizer. On the technical
side the necessary compactness conditions of the CGMT need also to be guaranteed.

The premise of the CGMT is that the (AO) is (significantly) simpler to analyze than
the corresponding (PO). It is shown here that this is indeed the case in the analysis
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L(v) = max
u

uT v � L⇤(u)

CGMT 

“Scalarization” 

“Convergence Analysis” 

min
x

L(y � Ax) + f(x)

Figure 5.1: Schematic representation of the CGMT framework. The first step in-
volves equivalently expressing the regularized M-estimator as a min-max Primary
Optimization (PO) (cf. (3.11a)). (These problems are hard to directly analyze and
are thus shown in red.) The CGMT Theorem 3.3.1 associates with the (PO) an
Auxiliary Optimization (AO) problem that is simpler to analyze (hence, depicted
in green). The second step of the framework involves simplifying the (AO) into
an optimization problem that only involves scalar variables. This makes possible
the convergence analysis that follows as a third step and leads to a deterministic
Scalar Performance Optimization (SPO). The last step involves using the (SPO) to
conclude about the original regularized M-estimator.

of regularized M-estimators. We split the analysis of the (AO) into two stages:
Steps 2 and 3 above.

In Step 2, we treat the (AO) as a deterministic optimization and reduce it into
a scalar optimization, i.e., one that involves only scalar optimization variables).
Besides the trivial cases, directly optimizing over the original vector variables in
(3.11b) is impossible. Instead, we introduce techniques that break this into steps.
As an example, by appropriately arranging terms it is often possible to perform the
optimization over the direction of the original vector optimization variable while
keeping its magnitude fixed and having it play the role of the remaining scalar op-
timization variable. At the end, we manage to rewrite the (AO) in (3.11b) that
involves a min-max optimization over two vector variables of sizes n and m re-
spectively, as an optimization over, at most, four scalar variables. Importantly, this
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optimization is convex-concave. Observe that this is in contrast to the original (AO)
problem in (3.11b), which itself is not necessarily convex-concave.

Once the (AO) is written as a scalar optimization, we perform a convergence analy-
sis of it. Using standard concentration arguments and convergence results, such as
the Gaussian concentration of Lipschitz functions, or the WLLN, it is easy to com-
pute the converging limit of the objective function when the optimization variables
are considered fixed. The technical work involved here shows that the min-max
cost (and, potentially the corresponding optimizers) of the random objective func-
tion converges to the min-max value of the converging limit of the objective that
was previously identified. We call the converging limit of the the (AO), which is
itself a (deterministic) min-max optimization, the Scalar Performance Optimization
(SPO). As we show, convexity is again crucial here.

Identifying the converging limit of the (AO) in Step 3 facilitates the proof of con-
ditions (a)–(c) of Theorem 3.3.1 (or, Corollary 3.3.2 in an asymptotic setup). It is
shown that these conditions essentially translate to a strict-convexity requirement
on the objective function of the (SPO). In its turn, we show that the strict convex-
ity property holds because the Expected Moreau Envelope functions that naturally
arise in the analysis are strictly convex themselves. Once the conditions are guaran-
teed to hold, the (asymptotic) CGMT applies and we can conclude about properties
of the original (PO) problem (and correspondingly, the regularized M-estimator).

5.2 An Example
In Chapter 4 we characterized the squared-error of regularized M-estimators under
noisy linear measurements and a Gaussian measurement model. The analysis is
based on the CGMT framework as outlined above. Later in the thesis, we use the
same framework to extend the results of Chapter 4 to the Isotropically Random
Orthogonal measurement model in Chapter 8, to general metrics of performance
beyond squared-error in Chapter 9, and, to non-linear measurements in Chapter
11. Despite the different features present in the analysis corresponding to each one
of those problems, the core ideas are as outlined earlier in this chapter. To better
illustrate those and to keep things concrete, we provide here an outline of the proof
of Theorem 4.2.1. Leaving some technical challenges aside (addressed in Appendix
B), the mechanics are easy to explain and provide valuable intuition regarding both
the assumptions required and the flavor of the final result. For instance, we will be
able to show without much effort, how the Moreau envelope functions eL (cg + z;τ)
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and e f (ch + x0;τ) appear in the final result.

Introductory idea
Our goal is to characterize the nontrivial limiting behavior of ‖x̂ − x0‖2, where x̂ is
any solution to the following minimization,

min
x
L(y − Ax) + λ f (x).

To get a direct handle on the error term, it is convenient to change the optimization
variable to w := x − x0, so then ŵ := x̂ − x0 is a solution to (recall y = Ax0 + z)

ŵ := arg min
w
L(z − Aw) + λ f (x0 + w) =: M(w). (5.1)

There is a simple but standard argument that is in the heart of most analyses of
such minimization estimators, and comes as follows. Suppose we knew that the
error ‖ŵ‖2 converges eventually to some deterministic value, call it α∗. This is
equivalent to ŵ belonging in the following set

Sε = {w | |‖w‖2 − α∗ | < ε }, (5.2)

with probability one (w.p.1) for all ε > 0. Letting Sc
ε denote the complement of

that set, observe, that if w.p. 1,

M(ŵ) < inf
w∈Sc

ε

M(w), (5.3)

then ŵ must lie in Sε . Note that with this standard trick we have translated a ques-
tion on the optimal solution of the minimization problem in (5.1) to one regarding
its optimal cost. One possible approach in comparing the two random processes in
(5.3) would be to first identify the converging limits of both. If say

M(ŵ)
P
−→ M and inf

w∈Sc
ε

M(w)
P
−→ MSc

ε
, (5.4)

then, (5.3) holds as long as

M < MSc
ε
, (5.5)

which is just a comparison between two deterministic quantities.

This is exactly the approach we want to take here: show (5.4) and (5.5). Unfortu-
nately, directly working with the objective function M and proving (5.4) turns out
to be rather challenging. Instead, we prove the desired indirectly, via working with



64

an auxiliary objective function which is simpler to analyze. What justifies this idea
is the Convex Gaussian Min-max Theorem (Theorem 3.3.1).

Recall that the CGMT associates with a primary optimization (PO) problem (cf.
(3.11a)) a simplified auxiliary optimization (AO) (cf. (3.11b)) problem from which
we can tightly infer properties of the original (PO), such as the optimal cost, the
optimal solution, etc..

Identifying a (PO) and the Corresponding (AO) Problem
The M-estimator optimization in (5.1) will play the role of the (PO), and we need to
identify the corresponding (AO). To do so, we first need to bring (5.1) in the form
of (3.11a) as required by the CGMT.

The idea here is to use duality1. Specifically, we can equivalently view the mini-
mization in (5.1) as follows:

min
w,v
L(v) + λ f (x0 + w) sub.to v = z − Aw.

Then, associating a dual variable u with the equality constraint above, we have

min
w,v

max
u

uTAw−uTz + uTv + L(v) + λ f (x0 + w)︸                                      ︷︷                                      ︸
ψ(w,v,u)

. (5.6)

Clearly, this is now in the desired format: we can identify the bilinear form uTAw
and a function ψ(w, v, u) which is convex in (w, v) and concave in u. Thus, imme-
diately, the corresponding (AO) problem becomes2:

min
w,v

max
u
−‖w‖2gTu − ‖u‖2hTw − uTz + uTv + L(v) + λ f (x0 + w). (5.7)

Now that we have identified the (AO) problem, we wish to apply Corollary 3.3.2
for the set Sε of (5.2). Applying the corollary amounts to analyzing the conver-
gence of the (AO) problem (and that of its “restricted" counterpart). This will be
performed in two stages. The first involves a deterministic analysis, in which the
optimization in (5.7) is simplified and reduced to one which only involves scalar
random variables. In the second stage, we analyze the convergence properties of
this scalar optimization.

1A preliminary version of this idea first appeared in [TPH15], in which the authors analyzed
the error performance of the Generalized-LASSO. We have extended the idea here to apply to any
convex loss function L.

2When compared to (3.11b) it is more convenient in (5.7) to write the two terms ‖w‖gTu and
‖u‖hTw with a minus sign instead. We can do this, since g and h are Gaussian vectors; thus, their
distribution is sign independent.
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Before proceeding with these, in all the above we have been silent regarding any
compactness requirements of Theorem 3.3.1. These technicalities are carefully han-
dled in Appendix B. (In particular, this is where Assumption 4.2.1(b) becomes use-
ful.)

Scalarization of the (AO)
A key idea that facilitates the analysis of the (AO) in (5.7) is to reduce the opti-
mization into one that only involves scalar optimization variables. The objective
function of the (AO) is tailored towards this direction, and the only modification
required is to express f (x0 + w) via its variational form as sups sT (x0 + w) − f ∗(s),
where f ∗ is the Fenchel conjugate function.

This way, the variables u and w appear in the objective only through either linear
terms or through their magnitudes. This observation suggests that one can easily
optimize over their directions while fixing the magnitudes. To illustrate this, fixing
the magnitude of u as ‖u‖2 = β ≥ 0, we can optimize over its direction by aligning
it with −‖w‖2g − z + v. Then (5.7) simplifies to the following,

min
w,v

max
β≥0,s

β‖‖w‖2g + z + v‖2 − βhTw + L(v) + λsT (x0 + w) − f ∗(s). (5.8)

Suppose we could switch the order of min-max above. Then it would be possible
to do the same trick with w, i.e. fix ‖w‖2 = α ≥ 0 and minimize over its direction
to get

max
β≥0,s

min
α≥0,v

β‖αg + z + v‖2 + L(v) − α‖βh − λs‖2 + λsTx0 − f ∗(s). (5.9)

Justifying that flipping in the order of min-max is not straightforward since the
objective function in (5.8) is not convex-concave; thus, what would otherwise be
the arguments to be called upon, namely the Minimax Theorems (e.g. [Sio+58]),
are not directly applicable here. Yet, in Appendix B, we show that such a minimax
property holds asymptotically in the problem dimensions; thus, (5.9) is (for our pur-
poses) equivalent to (5.8). We leave the details aside for the moment, and, proceed
with the simplification of (5.9).

In (5.9), we have reduced the optimization over w and u to scalars α and β. Next,
we wish to simplify the optimization over s and v. However, the same trick as the
one we applied for the former two variables won’t work. The new idea that we need
here is to write the terms ‖‖w‖2g + z + v‖2 and ‖βh − λs‖2 using

‖t‖2 = inf
τ>0

τ

2
+
‖t‖22
2τ

.



66

What we achieve with this is that the corresponding terms become now separable

over the entries of the vectors v and s, which makes the optimization over them eas-
ier. The only price we have to pay is introducing just two more scalar optimization
variables. That is (5.9) becomes

sup
β≥0
τh>0

inf
α≥0
τg>0

βτg

2
+ min

v

{
β

2τg
‖αg + z + v‖22 + L(v)

}

−
ατh

2
− min

s

{
α

2τh
‖βh − λs‖22 − λsTx0 + f ∗(s)

}
.

It can be readily seen that the minimization over v gives rise to the Moreau enve-
lope function of L evaluated at z + αg with index τg/β. A rather straightforward
completion of squares arguments and a call upon the relation between the Moreau
envelopes of conjugate pairs, leads to a similar conclusion regarding the minimiza-
tion over s, as well. Deferring the details to the appendix, we have reached the
following scalar optimization

sup
β≥0
τh>0

inf
α≥0
τg>0

βτg

2
+ eL

(
αg + z;

τg

β

)
−
ατh

2
−
αβ2

2τh
‖h‖22 + λ · e f

(
βα

τh
h + x0;

αλ

τh

)
.

(5.10)

Convergence analysis of the (AO)
Once we have simplified the (AO), it is now possible to analyze the convergence
of its optimal cost. We start with the objective function of (5.10), which we shall
denote Rn(α, τg , β, τh) for convenience. Fix3 α, τg , β, τh, then,

1
n
Rn(α, τg , β, τh)

P
−→

βτg

2
+ L

(
α,

β

τg

)
−
ατh

2
−
αβ2

2τh
+ λ · F

(
αβ

τh
,
αλ

τh

)
=: D(α, τg , β, τh),

(5.11)

where we have assumed that L and F above are such that

1
n

eL (cg + z;τ)
P
−→ L(c , τ) and

1
n

e f (ch + x0;τ)
P
−→ F(c , τ).

This corresponds to Assumption 4.2.1(a), except that in the latter we have eL (cg + z;τ)−
L(z) instead of just eL (cg + z;τ), and similarly for f . The reason for this slight
tweak is to account for noise vectors z with unbounded moments. For those, eL (cg + z;τ)

might not converge, but eL (cg + z;τ) − L(z) will. We handle these issues in the
Appendix.

3To be precise, an appropriate rescaling is required here. See Appendix B.
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Our next step is to use the point-wise convergence of (5.11) in order to prove the
following result:

inf
α≥0
τg>0

sup
β≥0
τh>0

1
n
Rn(α, τg , β, τh)

P
−→ inf

α≥0
τg>0

sup
β≥0
τh>0

D(α, τg , β, τh) =: φ. (5.12)

This statement is of course much stronger than the one in (5.11). The proof re-
quires two main ingredients: (i) translating the point-wise convergence into a uni-

form one over compact sets, (ii) proving that D is level-bounded with respect to its
arguments, thus, the sets of optimizers in (5.12) are bounded. For the first point,
convexity turns out to be critical, while the latter can be shown if Assumption 4.2.2
holds.

Concluding
The analysis of the (AO) problem led us to (5.12). The same arguments also show
that

inf
|α−α∗ |≥ε
τg>0

sup
β≥0
τh>0

1
n
Rn(α, τg , β, τh)

P
−→ inf
|α−α∗ |≥ε
τg>0

sup
β≥0
τh>0

D(α, τg , β, τh) =: φSc
ε
. (5.13)

Recall from Section 5.2 that the variable α plays the role of the magnitude of w,
hence the random optimization in the LHS of (5.13) corresponds to the restricted
(AO) problem φSc

ε
(g, h) of Corollary 3.3.2. What remains for the corollary to apply

is showing that φSc
ε
> φ. This follows by assumption of the theorem that the

minimizer over α in the RHS of (5.12) is unique. Applying the corollary shows the
desired and concludes the proof.
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C h a p t e r 6

SPECIFIC EXAMPLES

Theorem 4.2.1 establishes the asymptotic limit of the squared error of convex reg-
ularized M-estimators. As was detailed in Section 4.1, this family of estimators in-
cludes many popular instances, such as regularized least-squares (a.k.a. generalized-
LASSO), the square-root LASSO, regularized LAD, and so on. When the general
results of Chapter 4 are applied to specific problem instances, they yield simplified
expressions for the error performance. Analyzing those, it is possible to answer a
number of interesting questions, such as the following.

• What is the minimum number of measurements required for stable estima-
tion? How does this number depend on regularization?

• What is a lower bound on the squared-error performance of M-estimators?

• Are there problem instances for which specific choices of loss and regularizer
functions achieve the MMSE performance?

We provide answers to such questions for a number of popular estimators in Sec-
tions 6.1–6.9. Moreover, in Section 6.10 we present numerical simulation results
that illustrate the validity of those theoretical predictions.

6.1 M-estimators without Regularization
Consider an M-estimator without regularization, i.e.,

x̂ := arg min
x

m∑
j=1

`(y j − aTj x j). (6.1)

For simplicity, we consider z j
iid
∼ pZ and a separable loss function. Assuming that

` and pZ satisfy the assumptions of Theorem 4.3.1, and, noting that f = 0 =⇒

F(c , τ) = 0, the squared error of (6.1) is predicted by the minimizer α∗ of the
following (SPO) problem

inf
α≥0
τg>0

sup
β≥0

βτg

2
+ δL(α,

τg

β
) − αβ, (6.2)
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where we have performed the (straightforward) optimization over τh: infτh>0
τh
2 +

β2

2τh
= β. We may equivalently express α∗ as the solution to the first-order optimality

conditions of (6.2). In particular, the stationary equations (see (4.16)) simplify in
this case to the following system of two equations in two unknowns: α

2 = δκ2E
[(

e′`(αG + Z , κ)
)2

]
,

α = δκ · E
[
e′`(αG + Z , κ) · G

]
.

(6.3)

Starting from (6.3), some interesting conclusions can be drawn regarding the per-
formance of M-estimators without regularization, which we gather in the following
remarks.

Remark 6.1.0.33 (Stable recovery). It follows from (6.3) that in the absence of reg-
ularization it is required that the number of measurements m is at least as large as
the dimension of the ambient space n (δ ≥ 1), in order for the recovery to be stable,
i.e. the error be finite. To see this, assume stable recovery, then there exists (α∗, κ∗)
satisfying (6.3). Starting from the second equation, applying the Cauchy-Schwarz
inequality and substituting back the first equation we find:

α∗ = δκ∗ · E
[
e′`(α∗G + Z , κ∗) · G

]
≤ δκ∗ ·

√
E

[(
e′
`
(α∗G + Z , κ∗)

)2
)
]

= δκ∗
α∗
√
δκ∗

,

from where it follows that δ ≥ 1.

Remark 6.1.0.34 (Stein’s Formula). Assume e` is two times differentiable (e.g., this
is the case if ` is two times differentiable). Then, applying Stein’s formula (4.17), a
simple rearrangement of (6.3) shows that

α2
∗ =

1
δ

E
[(

e′
`
(α∗G + Z , κ∗)

)2
]

(
E

[
e′′
`
(α∗G + Z , κ∗)

])2 . (6.4)

Remark 6.1.0.35 (Least-Squares). The simplest instance of the general M-estimator
is the Least-squares, i.e. x̂ := minx ‖y−Ax‖22 . Of course, in this case, x̂ has a closed
form expression which can be directly used to predict the error behavior. However,
for illustration purposes, we show how the same result can be also obtained from
(6.3). This is also one of the few cases where α∗ can be expressed in closed form.
Assume δ > 1 and z j

iid
∼ pZ with bounded second moment, i.e. 0 < EZ2 = σ2 <

∞. Then, it can be readily checked that all assumptions hold for 1
2 (·)2, pz . Also,
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e′1
2 (·)2(χ;τ) =

χ
1+τ and e′′1

2 (·)2(χ;τ) = 1
1+τ . Solving for the second equation in (6.3)

gives κ∗ = 1
δ−1 . Substituting this into the first, we recover the well-known formula

α2
∗ = σ2 1

δ − 1
. (6.5)

Remark 6.1.0.36 (Related work). M-estimators of the form (6.1), under the addi-
tional regularity assumptions of ` being strongly convex and smooth, had been pre-
viously analyzed by Donono & Montanari [DM13]; their proof technique is based
on the AMP framework [DMM09]. In particular, the formula in (6.4) coincides with
the corresponding expression in [DM13, Thm. 4.1]; only here, ` need not be smooth
or strongly convex (and, in fact not necessarily separable).

6.2 Ridge Regularzation
A popular regularizer in the machine learning and statistics literature is the ridge
regularizer (also known as Tikhonov regularizer), i.e.

x̂ := arg min
x

m∑
j=1

`(y j − aTj x j) + λ
‖x‖22

2
. (6.6)

We specialize Theorem 4.2.1 to this case. For simplicity, we assume a separable
loss function, and, z j

iid
∼ pZ and x0,i

iid
∼ pX .

We will apply Theorem 4.3.1. Suppose that ` satisfies the assumptions. Also,
assume EX2

0 = σ2
x < ∞. Then, for f = 1

2 (·)2, it is easily verified that E[( f ′(cH +

X0))2] = E[(cH + X0)2] < ∞. Hence, the squared-error of (6.6) is predicted by α∗,
the unique minimizer to the (SPO) in (4.4) with

F(c , τ) =
c2 +σ2

x

2(τ + 1)
− σ2

x .

The first-order optimality conditions (see (4.16)) of this problem simplify after
some algebra to the following two equations in two unknowns: α2 = δκ2 · E

[
e′`(αG + Z , κ)2

]
+ λ2κ2σ2

x ,

α (1 − λκ) = δκ · E
[
e′`(αG + Z , κ) · G

]
.

(6.7)

Remark 6.2.0.37 (Stein’s Formula). Assume prox` (x;τ) is two times differentiable
with respect to c (e.g., this is the case if ` is two times differentiable), and write
prox′

`
(x , τ) for the derivative with respect to x. Applying (4.17), a simple rear-

rangement of (6.7) yields the following equivalent system of equations δ − 1 + κλ = δ · E
[
prox′`(αG + Z ; κ)

]
,

α2 = δE
[(
αG + Z − prox`(αG + Z ; κ)

)2
]

+ λ2κ2σ2
x .

(6.8)
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Remark 6.2.0.38 (Least-squares loss). Consider a least-squares loss function where
`(x) = 1

2 x
2 and a noise distribution of variance EZ2 = σ2

z < ∞. Then prox` (x;τ) =
x

1+τ and prox′
`
(x;τ) = 1

1+τ . Substituting in (6.8) gives
1 − κλ =

δκ

1 + κ
,

α2(1 − δ ·
κ2

(1 + κ)2 ) = δ ·
κ2

(1 + κ)2σ
2
z + λ2κ2σ2

x .

(6.9)

Now, we can solve these to get the following closed form expression for α∗:

α2 =

(
δ ·

κ2

(1 + κ)2 · σ
2
z + λ2σ2

xκ
2
)
·

(
1 − δ ·

κ2

(1 + κ)2

)−1

, (6.10)

where

κ =
1 − δ − λ +

√
(1 − δ − λ)2 + 4λ
2λ

. (6.11)

Observe that letting λ → 0 (which would correspond to ordinary least-squares)
and assuming δ > 1, κ in (6.11) approaches 1/(δ − 1) and the optimal α2 in (6.10)
becomes σ2

z /(δ − 1), which agrees with (6.5), as expected.

Remark 6.2.0.39 (Achieving the MMSE). Let a Gaussian input distribution x0,i
iid
∼

N (0, 1) and any noise distribution of power EZ2 = σ2
z < ∞. We show that a ridge-

regularized M-estimator with a least-squares loss function and optimally tuned λ

achieves asymptotically the Minimum Mean-Squared Error (MMSE) of estimating
x0 from y = Ax0 + z.

First, we use the results of Remark 6.2.0.38 to calculate the achieved error of the
M-estimator optimized over the values of the regularizer parameter:

o∗ := inf
λ>0

lim
n→∞

1
n
‖x̂ − x0‖

2
2 = inf

λ>0

{
α2(κ(λ), λ) as in (6.10) | κ(λ) satisfies (6.11)

}
.

(6.12)

The optimization over λ is possible as follows. From (6.9), we find

δ
(
κ

κ + 1

)2
=

(1 − κλ)2

δ
. (6.13)

Substituting this in (6.10), and denoting x = κλ, gives

α2 =
δx2 +σ2(1 − x)2

δ − (1 − x)2 . (6.14)

Minimizing α2 over λ > 0 in (6.12) is equivalent to minimizing the fraction above
over 0 < x < 1, since there always exist κ, λ satisfying x = κλ and (6.13). Thus,
performing the optimization over 0 < x < 1 in (6.14) we find
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o∗ =
1
2

(
1 − σ2 − δ +

√
(1 − δ)2 + 2σ2(δ + 1) +σ4

)
. (6.15)

Next, Wu and Verdu have shown in [WV12, Thm. 8, Eqn. (56)] that the MMSE is
given by the expression in the right-hand side above as well. This completes the
proof of the claim.

Remark 6.2.0.40 (Related work). Ridge-regularized M-estimators have been also
analyzed by El Karoui in [Kar13]. In particular, the formula in (6.8) coincides with
the corresponding expression in [Kar13, Thm. 2.1]1. The result in [Kar13] requires
additional smoothness assumptions on `. Our result holds under relaxed assump-
tions and has been derived as a corollary of Theorem 4.2.1. On the other hand,
[Kar13, Thm. 2.1] is shown to be true for design matrices A with iid entries beyond
Gaussian, e.g. sub-Gaussian.

6.3 Cone-constrained M-estimators
When introducing regularized M-estimators in (4.1) we captured prior knowledge
on the structure (or distribution) of the unknown signal x0 via the regularizer func-
tion f . It might be the case, depending on the application, that access to this infor-
mation is instead provided in the form of x0 belonging to some set C ⊂ Rn. Then,
it is natural to obtain an estimate x̂ of x0 by solving

min
x∈C

m∑
j=1

`(y j − aTj x). (6.16)

We call such an estimator a constrained M-estimator. Typically, C can be described
in the form C = {x | g(x) ≤ c} for some function g and a constant c ∈ R. Hence-
forth, we assume that g is convex, and so the optimization above is convex. Note
then that there exists by Lagrangian duality a value of λ for which the regularized
M-estimator with f (x) = g(x) is equivalent to (6.16).

The analysis framework of Chapter 5 is readily applicable to constrained M-estimators
and can lead to a statement similar to Theorem 4.3.1 regarding constrained M-
estimators. Instead, here we rather focus on a “benchmark analysis" of (6.16) as
described below.

1In comparing (6.8) to [Kar13, Eqn. (4)], due to some differences in normalizations the follow-
ing “dictionary" needs to be used to match the results: α ↔ rρ(κ), κ ↔ cρ(κ), δ−1λ ↔ τ and
δ−1 ↔ κ.
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We assume additional prior information on x0 via knowledge of the value g(x0),
in which case C = {x | g(x) ≤ g(x0)}, i.e. the set of descent directions of g at
x0. In some sense (which in cases can be made precise, e.g. see Chapter 7), this
additional prior information corresponds to a genie choosing the optimal value of
the regularizer parameter in the corresponding regularized version.

Furthermore, we relax the constraint by substituting C with its conic hull, the tan-
gent cone of g at x0 (cf. Defn. 2.2.1). We call the resulting program, a cone-

constrained M-estimator. Essentially, this corresponds to studying the performance
of 6.16 in the regime of “high-SNR". Intuitively, this is the case as follows: At
high-SNR, we expect the solution x̂ to be in the close neighborhood of the true sig-
nal x0, and inside this small neighborhood the tangent cone is a good approximation
of the cone of descent directions (see Figure 5.1 for an illustration). This intuition
is made precise in Chapter 7.

In what follows we analyze the squared-error performance of cone-constrained M-
estimators. The results are insightful and yield connections to the theory of noise-
less linear inverse problems presented in Section 2.2. For the special case of a least-
squares loss function, a more complete analysis along with further discussions on
the relevance of cone-constrained estimators to the more realistic regularized and
constrained versions is given in Chapter 7.

Error Performance

We consider

x̂ := arg min
x∈C

m∑
j=1

`(y j − aTj x), (6.17)

where
C = Tg(x0) + x0 := {λh | λ ≥ 0, g(x0 + h) ≤ g(x0)} + x0

and g a proper, closed, convex function. Here, Tg(x0) is the tangent cone of g at
x0, which is assumed fixed. The constrained minimization above can be written in
the general form of regularized M-estimators in (4.1) by choosing the regularizer to
be the indicator function for the cone, i.e. f (x) = δ{x∈C}

2. Recall that dist (v, C)

denotes the distance of a vector v to a set C. We have,

eδ{x∈C} (ch + x0;τ) =
1
2τ

min
v∈C−x0

‖ch−v‖22 =
1
2τ

dist2
(
ch, Tg(x0)

)
=

c2

2τ
dist2

(
h, Tg(x0)

)
.

2Note that this is a non-separable regularizer function.
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In the last equality above we have used the homogeneity of the cone Tg(x0). Let
(Tg(x0))◦ denote the polar cone of Tg(x0), and

D(cone(∂g(x0))) := E
[
dist2

(
h, (Tg(x0))◦

)]
= E

[
‖h‖22 − dist2

(
h, Tg(x0)

)]
.

Recall from Section 2.2 that this is the Gaussian distance squared to the cone of
subdifferential. Here, we assume that

D(cone(∂g(x0)))
n

→ Dg,x0 ∈ (0, 1). (6.18)

This translates to an assumption on the degrees of freedom of the structured signal
x0 being proportional to its dimension. For example, for a k-sparse x0 and g(x) =

‖x‖1, it can be readily checked by inspection of (2.14) that (6.18) is satisfied in the
linear regime of sparsity: k = ρn, ρ ∈ (0, 1).

With (6.18), Assumption 4.2.1(a) holds with F(c , τ) = c2

2τ (1 − Dg,x0). For this, it
is straightforward to check that Assumption 4.2.2(a) is also satisfied. Overall, if
`, pZ satisfy the conditions of Theorem 4.3.1 and g, x0 are such that (6.18) holds,
then Theorem 4.2.1 applies. Then, the squared error of the cone-constrained M-
estimator in (6.17) is predicted by the unique minimizer α∗ of the (SPO) problem
below:

inf
α≥0
τg>0

sup
β≥0

βτg

2
+ δ · E

[
e`

(
αG + Z ;τg/β

)
− `(Z)

]
− αβ

√
Dg,x0 . (6.19)

Compared to (4.4), we have performed the (straightforward) optimization over τh:

infτh>0
τh
2 +

β2D
2
g ,x0

2τh
= βDg,x0 .

Remarks

Remark 6.3.0.41 (Stable recovery). Starting from (6.19) we can conclude on the
minimum number of measurements required for stable recovery. We show that
the normalized number of measurements δ need to be at least as large as Dg,x0 ,
in order for the error to be finite. This is to be compared with the case where no
regularization is used, which required δ ≥ 1 > Dg,x0 (see Remark 6.1.0.33). To
prove the claim, assume finite error, then the value where it converges is predicted
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by (6.19). Standard first-order optimality conditions give3

β −
δ

β
E

[(
e′`(αG + Z ;τg/β)

)2
]
≥ 0, (6.20a)

δE[e′`(αG + Z ;τg/β) · G] − β
√

Dg,x0 ≥ 0, (6.20b)

τ

2
+
δτ

2β2E
[(

e′`(αG + Z ;τg/β)
)2

]
− α

√
Dg,x0 ≤ 0. (6.20c)

Starting from the second equation, applying the Cauchy-Schwarz inequality and
substituting back the first equation we conclude as follows:

β

√
Dg,x0 ≤ δE[e`(αG + Z ;τg/β) · G] ≤ δ

√
E[

(
e′
`
(αG + Z ;τg/β)

)2
] ≤ δ

β
√
δ
⇒ δ ≥ Dg,x0 .

Remark 6.3.0.42. (Least-squares loss) Consider a least-squares loss function and a
noise distribution of variance EZ2 = σ2 < ∞. Then, the solution to (6.19) admits
an insightful closed form expression. First, in (6.19) perform the optimization over
τg. Equating (6.20a) to 0, gives τg =

√
δ
√
α2 +σ2 − β. Substituting this in (6.19),

we are left to solve for

inf
α≥0

sup
β≥0

β

(
√
δ
√
α2 +σ2 − α

√
Dg,x0

)
−
β2

2
.

It can be easily checked that if δ > Dg,x0 , then the optimal α∗ is

α2
∗ = σ2 Dg,x0

δ − Dg,x0

. (6.21)

It is insightful to compare this with (6.5), the corresponding error formula for least-
squares: the only difference is that 1 is substituted with the statistical dimension
Dg,x0 . Also, verifying the conclusion of the previous remark, we now require δ >
Dg,x0 instead of δ > 1, implying that robust recovery is in general possible with
fewer measurements than the dimension of the signal. In Chapter 7 we obtain a
non-asymptotic version of (6.21).

Remark 6.3.0.43. (Lower Bound) In (6.20b) apply Stein’s inequality and combine
it with (6.20a) to yield

α2 ≥
Dg,x0

δ

β2/δ

E
[
e′′
`
(αG + Z ;τg/β)

] ≥ Dg,x0

δ

E
[(

e′
`
(αG + Z ;τg/β)

)2
]

E
[
e′′
`
(αG + Z ;τg/β)

] . (6.22)

3 The three equations in (6.20) correspond to differentiation of the objective of (6.19) with re-
spect to τ, α and β, respectively. If any of the variables is zero at the optimal, then, the corresponding
equation holding with an inequality is necessary and sufficient. On the other hand, if the optimal is
strictly positive, then the equation should hold with equality.
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For the first inequality above, we have assumed that at the optimal,
E

[
e′′
`
(αG + Z ;τg/β)

]
< ∞. When this holds, (see Remark 6.3.0.44 for an in-

stance where this is not the case) we can use the above to lower bound the er-
ror performance in terms of the Fisher information of the noise. Based on a re-
sult of [MB07], Donoho and Montanari prove in [DM13, Lem. 3.4,3.5] that the
right-hand side in (6.22) is further lower bounded by I (Z)/(1 + α2I (Z)), where
I (Z) = E

(
∂
∂z log pZ (z)

)2
denotes the Fisher information of the random variable Z ,

which is assumed to have a differentiable density. Using this and solving for α2, we
conclude with

α2 ≥
Dg,x0

δ − Dg,x0

1
I (Z)

. (6.23)

For Gaussian noise of variance σ2, we have 1/I (Z) = σ2. In this case the lower
bound in (6.23) coincides with the error formula of the least-squares loss function,
which then proves optimality of the latter.

Remark 6.3.0.44. (Consistent Estimators) The lower bound in (6.23) only holds
if the optimal α∗ in (6.19) is strictly positive. This is not always the case: under
some circumstances, it is possible to choose the loss function such that the resulting
cone-constrained M-estimator is consistent. Theorem 4.2.1 is the starting point to
identifying such interesting scenarios.

Here, we illustrate this through an example: we assume a sparse Gaussian-noise
model and use a Least Absolute Deviations (LAD) loss function. More precisely,
pZ (Z) = s̄δ0(Z) + (1 − s̄) 1√

2π
exp(−Z2/2), s̄ ∈ (0, 1) and `(v) = |v |. In Section C.1

we prove that when s̄, δ and Dg,x0 are such that

δ ≥ Dg,x0 + min
κ>0

 s̄(1 + κ2) + (δ − s̄)

√
2
π

∫ ∞

κ
(G − κ)2 exp(−G2/2)dG

 , (6.24)

then the first-order optimality conditions in (6.20) are satisfied for α → 0, τg → 0
and some β > 0. Thus, when the number of measurements is large enough such
that (6.24) holds, then α∗ = 0, and, x0 is perfectly recovered4. See Figure 6.1 for

4The problem is very closely related to the demixing problem in which one aims to extract two
(or more) constituents from a mixture of structured vectors [McC+14]. In that context, recovery
conditions like the one in (6.24) have been generalized to other kinds of structures beyond sparsity
[MT14; McC+14; FM14]. Our purpose here has been to illustrate how Theorem 4.2.1 can be used
to derive such results. Besides, the generality of the paper’s setup offers the potential of extending
such consistency-type results beyond cone-constrained M-estimators and beyond fixed signals x0.
This is an interesting direction of future research.
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an illustration. The vertical dashed line corresponds to the the sparsity level s̄ for
which (6.24) holds with equality. The estimation error of the LAD is zero below
that level, as predicted by (6.24).
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Figure 6.1: Using the predictions of Theorem 4.2.1 to analytically compare the
performance of different instances of M-estimators. Here, we compare a least-
absolute deviations (LAD) to a least-squares (LASSO) loss function in (6.16) for
sparse signal estimation under sparse noise. The normalized squared error is plotted
as a function of the sparsity-level s̄ of the noise at the high-SNR regime. The noise
is sparse with sparsity level s̄ and nonzero entries are i.i.d N (0, σ2) and σ2 → 0.
Also, the sparsity level of the unknown signal is fixed to be 0.1 and the normalized
number of measurements is δ = 3/5.

Remark 6.3.0.45 (LASSO vs LAD). The precise error predictions can be used to
analytically and accurately compare the performance between different instances of
M-estimators. For an illustration, we may use the results of this section to compare
the squared error performance of a least-absolute deviations (LAD) loss function to
a least-squares (LASSO) loss function. We assume sparse noise and we use (6.16)
with C = {x | g(x) ≤ g(x0)}. Let s̄ denote the noise sparsity and the non-zero
entries of the noise vector be iid N (0, σ2). Figure 6.1 compares the normalized-
squared error (NSE) performance ‖x̂ − x0‖

2
2/σ

2 of the LAD to that of the LASSO
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at high-SNR (i.e., σ2 → 0), when x0 is sparse and g(x) = ‖x‖1. As discussed
earlier (please see also Section 7.4), the NSE at high-SNR is an upper bound on the
NSE at arbitrary values of the SNR. Also, at high-SNR, the performance of (6.16)
is equivalent to that of the cone-constrained M-estimator in (6.17). The predictions
follow from (6.19). More precisely, for the least-squares loss function, a slight
modification of the derivations presented in Remark 6.3.0.42 to account for the

sparsity of the noise shows that the NSE behaves as s̄
Dg ,x0

δ−Dg ,x0
(compare to (6.21)).

This is plotted in black in Figure 6.1. On the other hand, the NSE of the LAD is
plotted in red. The corresponding formula has been derived in [TH14, Thm. 3.1];
we refer the interested reader to the original reference for the details.

It is seen that the LAD method outperforms the LASSO when the noise sparsity
level is up to around 50%. For less sparse noise vectors, the LASSO error is smaller.
The dashed vertical line identifies the sparsity level s̄ for which (6.24) holds with
equality. It was shown analytically in Remark 6.3.0.44 that the estimation error of
the LAD is zero below that sparsity level. Thus, in this regime of very sparse noise
the LAD significantly outperforms the LASSO.

It is interesting to evaluate how the two methods compare in the other extreme of
non-sparse noise (i.e. s̄ = 1). Starting from (6.19) it can be shown (the interested
reader is referred to [TH14, Cor. 3.2] for the detailed derivations) that when s̄ = 1,
then the NSE of the LAD at high-SNR behaves as

Dg ,x0

δ−Dg ,x0−δω(Dg ,x0/δ)
− 1, where

ω(η) := 2(1 − η)φ2(η) − 2√
π
φ(η)e−φ

2(η) − η + 1 for all η ∈ (0, 1), and φ satisfies

η = 2√
π

∫ φ(η)
0 e−t

2/2dt. Hence, when compared to (6.21), it can be shown that the
NSE of the LAD is larger than the NSE of the LASSO by no more than π/2 times
for all values of Dg,x0 ∈ (0, 1) 5.

6.4 Generalized-LASSO
The generalized LASSO solves

x̂ := arg min
x

1
2
‖y − Ax‖22 + λ f (x). (6.25)

For simplicity, suppose that f is separable and satisfies the assumptions of Theorem
4.3.1. Also, assume z j

iid
∼ pZ such that 0 < EZ2 =: σ2 < ∞. Then, for ` = 1

2 (·)2, it
5Results similar to the ones discussed here can be interpreted as extensions of corresponding

results in classical statistics in which n is assumed fixed and no regularization is used. For example,
it is interesting to compare our conclusion that when the noise is Gaussian then the penalized-LAD
is no more than π/2 times worse than the generalized-LASSO, with a similar result in [CM73,
pp. 839], which corresponds to no regularization and δ → ∞.
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is easily verified that E[(`′(cG + Z))2] = E[(cG + Z)2] < ∞. Hence, the squared-
error of (6.25) is predicted by α∗, the unique minimizer to the (SPO) in (4.4) with
L(c , τ) = c2+σ2

2(τ+1) − σ
2.

Equivalently, the error is predicted by the solution to the stationary equations in
(4.16) with e′1

2 (·)2(χ;τ) =
χ

1+τ . The second and third equations in (4.16) give

β2(1 + κ)2 = δ(α2 +σ2),

ν(1 + κ) = δ.

Solving these for κ and ν, and substituting them in the remaining two equations
results in the following system of two nonlinear equations in two unknowns

δ α2

α2+σ2 = E

[(
λ
β e
′
f

(√
α2+σ2
√
δ

H + X0, λ
√
α2+σ2

β
√
δ

)
− H

)2
]

β(1 − δ) + β2
√
δ

√
α2+σ2

= λE
[
e′
f

(√
α2+σ2
√
δ

H + X0, λ
√
α2+σ2

β
√
δ

)
· H

]
.

(6.26)

For the special case of `1-regularization, the result above was proved by Bayati and
Montanari [BM12] using the AMP framework. In the generality presented here, the
result appears to be novel.

Remark 6.4.0.46. (Not consistent) An interesting observation from (6.26) is that the
generalized LASSO cannot achieve perfect recovery, irrespective of the choice of
the regularizer function. To see this, the first equation in (6.26) for α = 0 gives

E

[(
λ
β e
′
f
( σ√

δ
H + X0,

λσ

β
√
δ
) − H

)2
]

= 0. Then, it must hold, almost surely, that the

argument under the expectation sign be equal to zero. Evaluating the derivative
of the envelope function as in Lemma B.4.1(iii), this becomes equivalent to X0 =

prox f

(
σ√
δ
H + X0; λσ

β
√
δ

)
. This, when combined with the optimality conditions for

the Moreau envelope (see (B.86)), gives that almost surely σ√
δ
H ∈ ∂ f (X0). Thus,

we have reached a contradiction because H can take any real value as a Gaussian
random variable.

6.5 Square-root LASSO
The generalized Square-root LASSO

x̂ := arg min
x

√
n‖y − Ax‖2 + λ f (x). (6.27)

In contrast, to the other examples in this section, the square-root LASSO is an
instance of (4.1) with a non-separable loss function. Observe the normalization
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of the loss function with a
√
n-factor. This is to satisfy our condition that (∀c >

0)(∃C > 0)
[
‖v‖2 ≤ c

√
n =⇒ 1√

n
sups∈∂L(v) ‖s‖2 ≤ C

]
.

In Appendix C we show that when L(v) =
√
n‖v‖2 and z ∼ pz with E

[
‖z‖22/m

]
=

σ2 ∈ (0,∞), then Assumption 4.2.1(a) holds with

L(α, τ) =


1√
δ
(
√
α2 +σ2 − σ) − τ

2δ , if
√
δ
√
α2 +σ2 ≥ τ,

1
2τ (α2 +σ2) − σ√

δ
, otherwise.

(6.28)

Also, Assumption 4.2.1(b) is trivially satisfied and Section C.2 shows the same for
Assumptions 4.2.2(b)-(d). Thus, considering any regularizer that satisfies Assump-
tions 4.2.1(a) and 4.2.2(a), Theorem 4.2.1 applies, and predicts the squared error of
(6.27) as the unique minimizer α∗ to the following optimization:

inf
α≥0

sup
β≥0
τh>0

−
ατh

2
−
αβ2

2τh
+ λ · F

(
αβ

τh
,
αλ

τh

)
+

β
√
δ
√
α2 +σ2 , if β ≤ 1

√
δ
√
α2 +σ2 , otherwise

.

(6.29)

To arrive to (6.29) starting from (4.4), we have replaced L with (6.28) and have
performed the minimization over τg as shown below:

inf
τg≥0


βτg

2 −
τg
2β +

√
δ
√
α2 +σ2 , if δ(α2 +σ2) ≥

τ2
g

β2

βδ
2τg

(α2 +σ2) +
βτg

2 , otherwise.
=

β
√
δ
√
α2 +σ2 , if β ≤ 1

√
δ
√
α2 +σ2 , otherwise

.

(6.30)

The optimization in (6.30) can be simplified one step further. It is shown in Ap-
pendix C that −αβ

2

2τh
+ λF

(
αβ
τh
, αλτh

)
is a non-increasing function of β for β > 0.

Therefore, the (SPO) becomes equivalent to the following

inf
α≥0

sup
0≤β≤1
τh≥0

β
√
δ
√
α2 +σ2 −

ατh
2
−
αβ2

2τh
+ λ · F

(
αβ

τh
,
αλ

τh

)
. (6.31)

In the next sections, we specialize the result to the cases of sparse, group-sparse and
low-rank signal recovery.

6.6 Sparse Recovery via the LASSO
Assume each entry x0,i , i = 1, . . . , n is sampled i.i.d. from a distribution

pX0(x) = (1 − ρ) · δ0(x) + ρ · q0(x), (6.32)
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where δ0 is the delta Dirac function, ρ ∈ (0, 1) and qX0 a probability density func-
tion with second moment normalized to 1/ρ so that (without loss of generality):

n−1‖x0‖
2
2

P
−→ σ2

x = 1. (6.33)

Then, x0 is ρn-sparse on average and we solve (6.27) with `1-regularization. The
Fenchel’s conjugate of the `1-norm is simply the indicator function of the `∞ unit
ball. Hence, without much effort, for c1, c2 ∈ R and τ > 0,

e f ∗ (c1h + c2x0;τ) =
1
2τ

n∑
i=1

min
|vi |≤1

(vi − (c1hi + c2x0,i))2

=
1
2τ

n∑
i=1

η2(c1hi + c2x0,i; 1), (6.34)

where we have denoted

η(x;τ′) := (x/|x |)
(
|x | − τ′

)
+ (6.35)

for the soft thresholding operator with parameter τ′ > 0. By Lemma B.2.5 it follows
then that

e f (x0 + ch;τ) =
‖x0 + ch‖22

2τ
−
τ

2

n∑
i=1

η2(
1
τ

x0,i +
c

τ
hi; 1)

=
‖x0 + ch‖22

2τ
−

1
2τ

n∑
i=1

η2(x0,i + chi;τ).

Consequently, an application of the weak law of large numbers shows that Assump-
tion 4.2.1 is satisfied for

F(c , τ) =
1
2τ

+
c2

2τ
−

1
2τ
E[η2(X0 + cH ;τ)] (6.36)

where the expectation is over h ∼ N (0, 1) and X0 ∼ pX0 . F above further satisfies6

Assumption 4.2.2. Thus, substituting this in (6.31) yields a prediction of the squared
error as the solution to the following minimization problem:

inf
α≥0

sup
0≤β≤1
τh≥0

β
√
δ
√
α2 +σ2 −

ατh
2

+
τh
2α
−
α

2τ
E[η2(

τ

α
X0 + βH ; λ)]. (6.37)

We have appleed extra effort in order to obtain the following equivalent but more
insightful characterization of the error, as stated below. The result follows by ana-
lyzing and massaging the first-order optimality conditions of (6.37); see Appendix
C.3 for a proof.

6This can be readily checked from (6.36), but note, here, f is separable and x0 is distributed iid;
Thus one can more easily check the more primitive conditions of Section 4.3.
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Theorem 6.6.1 (Sparse Recovery with Square-root LASSO). If δ > 1, then define

λcrit = 0. Otherwise, let λcrit, κcrit be the unique pair of solutions to the following

set of equations:  κ2δ = σ2 + E
[
(η(κH + X0; κλ) − X0)2

]
, (6.38)

κδ = E[(η(κH + X0; κλ) · h)], (6.39)

where h ∼ N (0, 1) and is independent of X0 ∼ pX0 (cf. (6.32)). Then, for any

λ > 0, with probability one,

lim
n→∞

‖x̂ − x0‖
2
2 =

δκ
2
crit − σ

2 , λ ≤ λcrit,

δκ2
∗ (λ) − σ2 , λ ≥ λcrit,

where κ2
∗ (λ) is the unique solution to (6.38).

Figure 11.2 validates the prediction of the theorem for qX0 being Gaussian7. Later
in Figure 11.1 we present simulation results for qX0 distributed iid Bernoulli. For
the case of compressed (δ < 1) measurements, observe the two different regimes
of operation, one for λ ≤ λcrit and the other for λ ≥ λcrit, precisely as they are
predicted by the theorem. A further detailed discussion on the distinct regions of
operation of the square-root LASSO and their role is included in Section 7.6.

Remark 6.6.0.47. This is the first precise analysis result for the `2-LASSO stated in
that generality. An analogous result, but via different analysis tools, has only been
known before for the `2

2-LASSO as it appears in [BM12].

6.7 Group-Sparse Recovery via the Group-LASSO
Let x0 ∈ R

n be composed of t non-overlapping blocks of constant size b each
such that n = t · b. Each block [x0]i , i = 1, . . . , t is sampled i.i.d. from a
probability density in Rb: pX0(x) = (1 − ρ) · δ0(x) + ρ · qX0(x), x ∈ Rb, where
ρ ∈ (0, 1). Thus, x0 is ρt-block-sparse on average. We operate in the regime
of linear measurements m/n = δ ∈ (0,∞). As is common we use in (6.27)
the `1,2-norm to induce block-sparsity, i.e., f (x) =

∑t
i=1 ‖[x0]i ‖2; this version of

the LASSO is often referred to as group-LASSO in the literature [YL06b]. It is
not hard to show that 1

n
e f ∗ (c1h + c2x0;τ)

P
−→ 1

2bτE
[
‖~η(c1h + c2X0; 1)‖22

]
, where

~η(x;τ′) = x/‖x‖ (‖x‖2 − τ′)+ , x ∈ Rb is the vector soft thresholding operator and
7This is known as the “sparse-Gaussian" model. For it, the system of equations in (6.38)–(6.39)

obtains an even more explicit formulation which significantly simplifies the numerical evaluation of
the solution. We refer the interested reader to [Thr+15] for the details.
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h ∼ N (0, Ib), X0 ∼ pX0 and are independent. From this, the functional F can be
easily calculated and substituting that in (6.31) yields a prediction of the squared
error as the solution to the following minimization problem:

inf
α≥0

sup
0≤β≤1
τh≥0

β
√
δ
√
α2 +σ2 −

ατh
2

+
τh
2α
−

α

2τhb
E

[
‖~η(βh +

τh
α
X0; λ)‖22

]
. (6.40)

Figure 11.3 illustrates the accuracy of the prediction.

6.8 Low-rank Matrix Recovery via the Trace-LASSO
Let X0 ∈ R

d×d be an unknown matrix of rank r , in which case, x0 = vec(X0) with
n = d2. Assume m/d2 = δ ∈ (0,∞) and r/d = ρ ∈ (0, 1). As usual in this setting,
we consider nuclear-norm regularization; in particular, we choose f (x) =

√
d‖X‖∗.

Furthermore, for this choice of regularizer, we have

1
n
e f ∗ (c1H + c2X0;τ) =

1
2d2τ

min
‖V‖2≤

√
d

‖V − (c1H + c2X0)‖2F

=
1

2dτ
min
‖V‖2≤1

‖V − d−1/2(c1H + c2X0)‖2F =
1

2dτ

d∑
i=1

η2
(
si

(
d−1/2(c1H + c2X0)

)
; 1

)
,

(6.41)

where η(·; ·) is as in (6.35), si(·) denotes the ith singular value of its argument and
H ∈ Rd×d has entries N (0, 1). If conditions are met such that the empirical distri-
bution of the singular values of (the sequence of random matrices) c1H + c2X0 con-
verges asymptotically to a limiting distribution, say q(c1, c2), then 6.41 converges
to 1

2Ex∼q(c1 ,c2)
[
η2(x; 1)

]
. From this, the functional F can be computed similar to

Sections 6.6 & 6.7 and substituted in (6.31). For instance, this will be the case if
d−1/2X0 = USVt , where U,V unitary matrices and S is a diagonal matrix whose
entries have a given marginal distribution with bounded moments (in particular, in-
dependent of d). We leave the details and the problem of (numerically) evaluating
F for future work.

6.9 Robust Estimators
In this section, we investigate instances where the noise distribution has unbounded
moments. In the presence of (say) heavy-tailed noise, it is a common practice to use
a loss function that grows to infinity no faster than linearly. This is also suggested
by Assumption 4.2.1(b) (cf. (4.11) for the separable case), as has already been
discussed.
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For illustration, we assume z iid
∼ Cauchy(0, 1) and consider two examples of loss

functions for which we show that Theorem 4.2.1 is applicable.

LAD

As a first example, consider the regularized-LAD estimator:

x̂ = arg min
x
‖y − Ax‖1 + λ f (x). (6.42)

The loss function is separable, with `(v) = |v |. Easily, for all c ∈ R

E
[
|`′+(cG + Z)|2

]
= E

[
|sign(cG + Z)|2

]
= 1 < ∞,

satisfying Assumption (4.9). Also, EZ2 is undefined, but, supv
`(v)
|v |

= 1 < ∞, thus,
(4.11) holds. Finally, | · | is not differentiable at zero satisfying the conditions of
Lemma 4.3.4. With these, Theorem 4.3.1 is applicable.

Huber-loss

The Huber-loss function with parameter ρ > 0 is defined as

hρ(v) =


v2

2 , |v | ≤ ρ,

ρ |v | −
ρ2

2 , otherwise.
(6.43)

Consider a regularized M-estimator with `(v) = hρ(v). We show here that this
choice satisfies the Assumptions of Theorem 4.3.1. Indeed, for all c ∈ R

E
[
|`′+(cG + Z)|2

]
≤ E

[
|cG + Z |

∣∣∣ |cG + Z | ≤ ρ
]

+ E
[
ρ

∣∣∣ |cG + Z | > ρ
]
< ∞,

satisfying Assumption (4.9). Also, supv
`(v)
|v |

= ρ < ∞, thus, (4.11) holds. Finally,
hρ is differentiable with a strictly increasing derivative in the interval [−ρ, ρ]. With
these, Theorem 4.3.1 is applicable. Figure 6.4 illustrates the validity of the predic-
tion via numerical simulations.

6.10 Numerical Simulations
We have performed a few numerical simulations on specific instances of M-estimators
discussed in previous sections. The purpose is to illustrate both the validity of the
prediction of Theorem 4.2.1, as well as that of the remarks that followed as a con-
sequence of it.

Figure 6.2 . We consider the regularized LAD estimator of (6.42) under an iid
sparse-Gaussian noise model. The unknown signal is also considered sparse, which
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Theory

δ = 0.7

δ = 1.2

Figure 6.2: Squared error of the l1-Regularized LAD with Gaussian (◦) and
Bernoulli (�) measurements as a function of the regularizer parameter λ for two
different values of the normalized number of measurements, namely δ = 0.7 and
δ = 1.2. Also, x0,i

iid
∼ px(x) = 0.9δ0(x) + 0.1φ(x)/

√
0.1 and z j

iid
∼ pz(z) =

0.7δ0(z) + 0.3φ(z) for φ(x) = 1√
2π
e−x

2/2. For the simulations, we used n = 768
and the data were averaged over five independent realizations.

leads to the natural choice of `1 regularization, i.e. f (x) = ‖x‖1. Apart from the
very close agreement of the theoretical prediction of Theorem 4.2.1 to the simulated
data, the following facts are worth observing.

- When the number of measurements m gets large enough, then, for an appro-
priate range of values of the regularizer parameter, the estimator is consistent,
i.e. the unknown signal x0 is perfectly recovered. This is relevant to Remark
6.3.0.44 where we proved this to be the case for the closely related cone-
constrained LAD estimator. For that, we were able to quantify how large m

should be as a function of the sparsities of the noise and of the signal, see
(6.24).

- The prediction of Theorem 4.2.1 remains accurate when the measurement
matrix has entries iid Bernoulli ({±1}), which supports the universality claim.
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Figure 6.3: Comparing the squared error of the `1-Regularized LAD with the cor-
responding error of the LASSO. Both are plotted as functions of the regularizer
parameter λ, for two different values of the normalized measurements, namely
δ = 0.7 and δ = 1.2. The noise and signal are iid sparse-Gaussian as follows:
x0,i

iid
∼ px(x) = 0.9δ0(x) + 0.1φ(x)/

√
0.1 and z j ∼ pz(z) = 0.9δ0(z) + 0.1φ(z) with

φ(x) = 1√
2π
e−x

2/2. For the simulations, we used n = 768 and the data were averaged
over five independent realizations.

Figure 6.3 . The model for both the noise and for the unknown signal is here
the same as in Figure 6.2, i.e. both are iid sparse. We use `1-regularization and
two different loss functions, namely, a least-absolute-deviations one and a least-
squares one, corresponding to a LAD and a LASSO estimator, respectively. The
figure aims to compare the performance of the two. Intuition suggests that the LAD
is more appropriate for a sparse noise model, since `1 promotes sparsity. This is
indeed the case, in the sense that for good choices of the regularizer parameter λ,
the LAD outperforms by far the LASSO. (In the extreme of a large enough number
of measurements, the LAD is consistent and this is not the case for the LASSO.)
However, it is worth observing that for a different and relatively big range of values
of λ, the LASSO performs better. This indicates the importance of the tuning of the
regularizer parameter, to which the predictions of Theorem 4.2.1 can offer valuable
guidelines and insights.
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Figure 6.4: Squared error of the `1-Regularized M-Estimator with Huber-loss as a
function of the regularizer parameter λ. Here, δ = 0.7, x0

iid
∼ px(x) = 0.9δ0(x) +

0.1φ(x)/
√

0.1 and pz(z) = 0.9δ(z) + 0.1η(z) with φ(x) = 1√
2π
e−x

2/2 and η(z) =

1
π(1+z2) . For the simulations, we used n = 1024 and the data are averaged over 5
independent realizations.

Figure 6.4 . For this figure, we have assumed an `1-regularized estimator with
Huber-loss `(v) = H1(v). The noise is iid Cauchy(0, 1). In Section 6.9 it was
shown that all the Assumptions of Theorem 4.3.1 are satisfied in this setting. The
figure validates the prediction. To obtain the prediction we numerically solved the
corresponding system of nonlinear equations (see (4.16)) using the efficient iterative
scheme described in Remark 4.3.0.29.
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C h a p t e r 7

NOISE SENSITIVITY OF THE GENERALIZED-LASSO

Chapter 4 derives a precise and general characterization of the squared-error of
regularized M-estimators. In Sections 6.5, we showed how this general result spe-
cializes to regularized least-squares (aka Generalized LASSO), and we obtained
precise error expressions for arbitrary values of the noise distribution and of the
rest of the involved parameters (e.g. number of measurements, regularizer). Here,
we study the worst-case error behavior over the noise variance. Our main focus is
on the Generalized-LASSO algorithm. In particular, we measure the reconstruction
fidelity by the Normalized Squared Error (NSE) (also, referred to as noise sensi-

tivity), defined as the ratio between the square reconstruction error and the noise
variance, and we obtain tight upper bounds on it.

The bounds are tight in the sense that they are attained for the worst-case noise dis-
tribution. In fact, we will see that this happens when the noise variance approaches
zero; hence, the derived formulae can also be interpreted as precise error predictions
in the high-SNR regime. A particularly appealing feature of the derived bounds is
that they come in closed-form and are geometric in nature. More specifically, we
show that they only depend on a first-order information on the regularizer function
f and on the signal x0, which is captured by the subdifferential ∂ f (x0)(x0); this is
in contrast to the general results of Chapters 4 & 6, which require higher-order in-
formation on f and on the signal distribution px0 in order to account for arbitrary
values of noise level. Among others, this particular nature of the results allows for
insightful interpretations and for establishing valuable connections with classical
results on Ordinary Least-Squares (OLS) and with the related problems of noise-
less compressed sensing and of proximal denoising. Finally, we will see that the
majority of the results in this chapter are non-asymptotic.

We start with introducing three variations of the Generalized LASSO in Section 7.1.
In Section 7.2, we study the trivial case of no regularization, corresponding to OLS;
classical results on its error performance are revisited under three different noise
models: (i) Gaussian noise, (ii) arbitrary fixed noise, and (iii) adversarial noise. In
Section 7.3 we derive corresponding bounds for the Generalized LASSO, and show
that they very much resemble those of OLS. The formal statement of these results,
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along with proofs and further discussions on the implications, follow in the rest of
the Chapters. Sections 7.4–7.7 study the case of Gaussian noise; Arbitrary fixed
noise and adversarial noise are studied in Section 7.8 and 7.9, respectively.

7.1 Introduction
The idea of ordinary least-squares (OLS) for recovering an unknown signal x0 ∈ R

n

from a vector y = Ax0 + z ∈ Rm of noisy linear observations is very old and can
be traced back to the works of Gauss and Legendre. OLS have been classically
studied in the statistics literature in the regime of large number of observations
but only a few variables to be estimated. The Generalized LASSO is a natural
extension of OLS in the modern high-dimensional inference regime; by introducing
a regularization term it aims to promote prior information on the structure of the
unknown signals.

Generalized LASSO
We distinguish a total of three variations of regularized Least-squares. Although
these have been discussed earlier in Chapter 6, we repeat the terminology here for
the reader’s convenience.

? C-LASSO1:

x̂c(A, z) = arg min
x
‖y − Ax‖2 subject to f (x) ≤ f (x0). (7.1)

? `2-LASSO2:

x̂`2(λ,A, z) = arg min
x

{
‖y − Ax‖2 +

λ
√
m
f (x)

}
. (7.2)

? `2
2-LASSO:

x̂`2
2
(τ,A, z) = arg min

x

{
1
2
‖y − Ax‖22 +σλ f (x)

}
. (7.3)

The compressed nature of observations in modern inference problems, poses the
following urgent questions: What is the minimum number of measurements required

1C-LASSO in (7.1) stands for “Constrained LASSO". The algorithm assumes a priori knowl-
edge of f (x0). The acronym “LASSO" was introduced by Tibshirani in 1996 [Tib96] (essentially)
referring to the C-LASSO with `1-regularization.

2In the statistics literature the variant of the LASSO algorithm in (7.2) is mostly known as the
“square-root LASSO" [BCW11]. Throughout the thesis, we have used both acronyms; however, in
this chapter we stick to the more compact term “`2-LASSO".
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to recover x0 robustly, that is with error proportional to the noise level? When

recovery is robust, can we explicitly characterize how good the estimate is? Can

we do so with bounds that are simple and in closed-form? We will address these
questions in this chapter.

Ordinary Least-Squares
It is insightful and instructive to start by considering the simplest case of all, i.e. the
case of no regularization. Of course, this corresponds to OLS, which solves

x̂ = arg min
x
‖y − Ax‖22 . (7.4)

OLS has a long history originating in the early 1800s due to works by Gauss and
Legendre [Sti81; Mer77], and its behavior is by now very well understood. In
particular, in the classical setting m > n, assuming A is full column-rank, (7.4) has
a unique solution which is famously given by

x̂ = (ATA)−1ATy. (7.5)

The squared error-loss of the OLS estimate in (7.5) is thus expressed as

‖x̂ − x0‖
2
2 = zTA(ATA)−2ATz. (7.6)

Starting from (7.6) and imposing certain generic assumptions on the measurement
matrix A and/or the noise vector z, it is possible to conclude precise and simple
formulae characterizing the estimation error ‖x̂ − x0‖

2
2 . As an example, when the

entries of z are drawn iid normal of zero-mean and variance σ2, then E‖x̂ − x0‖
2
2 =

σ2trace((ATA)−1). Furthermore, when the entries of A are drawn i.i.d. normal of
zero-mean and variance 1/m, ATA is a Wishart matrix whose asymptotic eigendis-
tribution is well known. Using this, and letting m, n grow, we find that the squared
error concentrates around

‖x̂ − x0‖
2
2

‖z‖22
≈

n

m − n
. (7.7)

Such expressions serve as valuable insights regarding the behavior of the OLS esti-
mator and are meant to provide guidelines for the effectiveness of the estimator in
practical situations.

Structured Signals
Gauss and Legendre proposed the OLS method in the context of traditional statis-
tical data analysis. In today’s inference problems, the signals of interest are struc-
tured, i.e. they often have few few degrees of freedom relative to their ambient
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dimension. To appreciate how knowledge of the structure of the unknown signal
x0 can help alleviate the ill-posed nature of the problem, consider a desired signal
x0 which is k-sparse i.e., has only k < n (often k � n) non-zero entries. Suppose
we make m noisy measurements of x0 using the m × n measurement matrix A to
obtain y = Ax0 + z, and further suppose each set of m columns of A be linearly
independent. Then, as long as m > k , we can always find the sparsest solution to

x̂ = arg min
x
‖y − Ax‖22 ,

via exhaustive search of
(
n
k

)
such least-squares problems. Under the same assump-

tions that led to (7.7), this gives a normalized squared error

‖x̂ − x0‖
2
2

‖z‖22
≈

k

m − k
. (7.8)

The catch here, of course, is that the computational complexity of the estimation
procedure that was just described is exponential in the ambient dimension n, thus,
making it intractable.

On the other hand, the Generalized-LASSO allows estimating the structured signal
x0 in a computationally efficient way and is thus appealing. It then becomes crucial
to provide answers to the following questions regarding its statistical performance:

– How many measurements m are needed?

– How does the normalized squared error behave and how does it compare to

(7.7) and (7.8)?

– Can we provide generic answers that will hold for the general class of signal

structures beyond sparsity?

In particular, we are interested in bounds on the error performance that are sharp
and simple, similar to those that characterize the OLS. Under same assumptions on
the distribution of the measurement matrix and the noise vector, we ask whether it is
possible to derive bounds that resemble (7.7) and (7.8)? It turns out that we can and
this chapter is dedicated to providing a full performance analysis and computation
of such bounds.
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7.2 Revisiting Least Squares
We start by briefly reviewing the OLS equations and derive performance bounds
under the generic assumption that the entries of A are i.i.d. zero-mean normal with
variance 1/m. We examine three different noise models: (i) Gaussian noise, (ii)
arbitrary noise, but independent of A, and (iii) adversarial noise

Recall that the OLS solves (7.4). It is clear that when m < n, (7.4) is ill posed. How-
ever, when m > n and A has i.i.d. normal entries, A is full column rank with high
probability. The solution of (7.4) is then unique and given by x̂ = (ATA)−1ATy.
Recalling that y = Ax0 + z, this gives a squared error-loss as in (7.6).

Gaussian Noise
For the purposes of this section, further assume that the entries of z are i.i.d. zero-
mean normal with variance σ2 and independent of the entries of A. In this case, the
normalized mean-squared-error takes the form,

E‖x̂ − x0‖
2
2 = E[zTA(ATA)−2ATz]

= σ2E[trace(A(ATA)−2AT )]

= σ2E[trace((ATA)−1)].

ATA is a Wishart matrix and the distribution of its inverse is well studied. In par-
ticular, when m > n + 1, we have E[(ATA)−1] = m

m−n−1In [HS]. Hence,

E‖x̂ − x0‖
2
2 = mσ2 n

(m − 1) − n
.

Noting that E‖z‖22 = mσ2 and letting m, n be large enough we conclude with the
stronger concentration result on the squared-error of OLS:

‖x̂ − x0‖
2
2

‖z‖22
≈

n

(m − 1) − n
. (7.9)

Fixed Noise
Fix any noise vector z, with the only assumption being that it is chosen indepen-
dently of the measurement matrix A. Denote the projection of z onto the range space
of A by Proj(z,Range(A)) := A(ATA)−1ATz and the minimum singular value of A
by σmin(A). Then,

‖x̂ − x0‖2 ≤
‖A(x̂ − x0)‖2
σmin(A)

=
‖ Proj(z,Range(A))‖2

σmin(A)
. (7.10)
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It is well known that, when A has entries i.i.d. zero-mean normal with variance
1/m, then σmin(A) ≈ 1 −

√
n
m

, [Ver10a]. Also, since z is independent of A, and the
range space of A is uniformly random subspace of dimension n in Rm, it can be
shown that ‖ Proj(z,Range(A))‖22 ≈

n
m
‖z‖22 (e.g. [CR09, p. 13]). With these, we

conclude that with high probability on the draw of A,

‖x̂ − x0‖
2
2

‖z‖22
.

n

(
√
m −
√
n)2

. (7.11)

Worst-Case Squared-Error
Next, assume no restriction at all on the noise vector z. In particular, this includes
the case of adversarial noise, i.e., noise that has information of the sensing matrix
A and can adapt itself accordingly. As expected, this can cause the reconstruction
error to be, in general, significantly worse than the guarantees in (7.9) and (7.11).
In more detail, we can write,

‖x̂ − x0‖2 ≤
‖A(x̂ − x0)‖2
σmin(A)

=
‖A(ATA)−1ATz‖2

σmin(A)

≤ ‖z‖2
‖A(ATA)−1AT ‖2

σmin(A)
≤ ‖z‖σ−1

min(A), (7.12)

where ‖M‖2 denotes the spectral norm of a matrix M and we used the fact that
the spectral norm of a symmetric projection matrix is upper bounded by 1. It is
not hard to show that equality in (7.12) is achieved when z is equal to the left
singular value of A corresponding to its minimum singular value. Using the fact
that σmin(A) ≈ 1 −

√
n
m

, we conclude that,

‖x̂ − x0‖
2
2

‖z‖22
.

m

(
√
n −
√
m)2

. (7.13)

7.3 Least-squares Meets Compressed Sensing
Motivating Examples
In Section 7.2 and in particular in Equations (7.9)–(7.13), we reviewed classi-
cal bounds on the normalized square-error of the OLS, which corresponds to the
LASSO in the trivial case f (·) = 0. How do those results change when a nontrivial
convex function f (·) is introduced? What is a precise and simple upper bound on
the NSE of the LASSO when the unknown signal is sparse and f (·) = ‖ · ‖1? What
if the unknown signal is low-rank and nuclear norm is chosen as the regularizer?
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Is it possible to generalize such bounds to arbitrary structures and corresponding
convex regularizers?

We provide explicit answers to all these questions. While the formal statement
of the results is deferred to Section 7.4–7.9, we provide an overview of them and
highlight their implications here. Throughout, we assume that the entries of the
sensing matrix A are i.i.d. zero-mean normal with variance 1/m.

Sparse Signal Estimation

Assume x0 ∈ R
n has k nonzero entries. We estimate x0 via the LASSO with f being

the `1-norm. First, suppose that the noise vector has i.i.d. zero-mean normal entries
with varianceσ2. Then, the NSE of the C-LASSO admits the following sharp upper
bound3, which is attained in the limit as the noise variance σ2 goes to zero:

‖x̂c − x0‖
2
2

‖z‖22
.

2k(log n
k

+ 1)
m − 2k(log n

k
+ 1)

. (7.14)

Compare this to the formula (7.9) for the OLS. (7.14) is obtained from (7.9) after
simply replacing the ambient dimension n in the latter with 2k(log n

k
+ 1). Also,

while (7.9) requires m > n, (7.14) relaxes this requirement to m > 2k(log n
k

+ 1).
This is to say that any number of measurements greater than 2k(log n

k
+ 1) � n are

sufficient to guarantee robust recovery. Note that this coincides with the classical
phase-transition threshold in the noiseless compressed sensing discussed in Section
2.2, see (2.15).

If instead of the C-LASSO, one uses the `2-LASSO with λ ≥
√

2 log n
k
, then

‖x̂`2 − x0‖
2
2

‖z‖22
.

(λ2 + 3)k
m − (λ2 + 3)k

. (7.15)

Again, observe how (7.15) is obtained from (7.9) after simply replacing the ambi-
ent dimension n with (λ2 + 3)k . The role of the regularizer parameter λ is explicit
in (7.15). Also, substituting λ ≈

√
2 log n

k
in (7.15) (almost) recovers (7.14). This

suggests that choosing this value of the regularizer parameter is optimal in that it re-
sults in the regularized LASSO performing as well as the constrained version. Note
that this value for the optimal regularizer parameter only depends on the sparsity
level k of the unknown signal x0 and not the unknown signal iteself.

3 The statements in this section hold true with high probability in A, z and under mild assump-
tions. See Section 7.4 for the formal statement of the results.
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Next, consider the more general case in which the noise vector z can be anything
but is drawn independently of the sensing matrix A. If ones uses the C-LASSO to
estimate x0, then the estimation error is bounded as follows4 :

‖x̂c − x0‖
2
2

‖z‖2
.

2k(log n
k

+ 1)

(
√
m −

√
2k(log n

k
+ 1))2

. (7.16)

Accordingly, the `2-LASSO for λ ≥
√

2 log n
k

gives:

‖x̂`2 − x0‖
2
2

‖z‖2
. 2

(λ2 + 3)k

(
√
m −

√
(λ2 + 3)k)2

. (7.17)

Once more, (7.16) and (7.17) resemble the corresponding formula describing OLS
in (7.11). The only difference is that the ambient dimension n is substituted with
2k(log n

k
+ 1) and (λ2 + 3)k , respectively5.

Low-rank Matrix Estimation

Assume X0 ∈ R
√
n×
√
n is a rank-r matrix, and let x0 = vec(X0) ∈ Rn be the vec-

torization of X0. We use the generalized LASSO with f (x) = ‖vec−1(x)‖?. The
nuclear norm of a matrix (i.e. sum of singular values) is known to promote low-
rank solutions [Faz02; RFP10].

As previously, suppose first that z has i.i.d. zero-mean normal entries with variance
σ2. Then, the NSE of the C-LASSO and that of the `2-LASSO for λ ≥ 2n1/4 are
bounded as follows:

‖x̂c − x0‖
2
2

‖z‖22
.

6
√
nr

m − 6
√
nr
, (7.18)

and
‖x̂c − x0‖

2
2

‖z‖22
.

λ2r + 2
√
n(r + 1)

m − (λ2r + 2
√
n(r + 1))

. (7.19)

Just like in the estimation of sparse signals in Section 7.3, it is clear from the bounds
above that they can be obtained from the OLS bound in (7.9) after only substituting
the dimension of the ambient space n with 6

√
nr and λ2r + 2

√
n(r + 1), respec-

tively. And again, 6
√
nr is exactly the phase transition threshold for the noiseless

compressed sensing of low-rank matrices, see (2.16).
4The formula below is subject to some simplifications meant to highlight the essential structure.

See Section 7.8 for the details.
5It is conjectured in [TOH14] that the factor of 2 in (7.17) is not essential and that it only appears

as an artifact of the proof technique therein. See, also, Section 7.8.
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Moving to the case where z is arbitrary but independent of A, we find that

‖x̂c − x0‖
2
2

‖z‖22
.

6
√
nr

(
√
m − 6

√
nr)2

, (7.20)

and
‖x̂`2 − x0‖

2
2

‖z‖22
. 2

λ2r + 2
√
n(r + 1)

(
√
m −

√
λ2r + 2

√
n(r + 1))2

. (7.21)

General Structures

From the discussion in Sections 7.3 and 7.3, it is becoming clear that the error
bounds for the OLS admit nice and simple generalizations to error bounds for the
generalized LASSO. What changes in the formulae bounding the NSE of the OLS
when considering the NSE of the LASSO is only that the ambient dimension n is
substituted by a specific summary parameter.

This parameter depends on the particular structure of the unknown signal, but not
the signal itself. For example, in the sparse case, it depends only on the sparsity of
x0, not x0 itself, and in the low-rank case, it only depends on the rank of X0, not X0

itself. Furthermore, it depends on the structure-inducing function f (·) that is being
used. Finally, it is naturally dependent on whether the constrained or the regular-
ized LASSO is being used. In the case of regularized LASSO, it also depends on
the value λ of the regularizer parameter. Interestingly, the value of this parameter
corresponding to the NSE of the constrained LASSO is exactly the phase-transition
threshold of the corresponding noiseless CS problem.

The general result of this chapter shows that this summary parameter is nothing
but (i) the statistical dimension D(cone(∂ f (x0))) (recall (2.7) and (2.10)) for the
constrained LASSO (ii) the Gaussian distance squared to the scaled subdifferential

D(λ∂ f (x0)) (recall (2.12)) for the regularized LASSO. To see that this is consistent
with the bounds presented above on the specific instances of sparse and low-rank
recovery, recall for example from Section 2.2 that for f (x) = `1 and x0 a k-sparse
vector, D(cone(∂ f (x0))) ≈ 2k log n

k
. Hence, one obtains (7.14) and (7.16) when

substituting the n with 2k log n
k

in (7.9) and (7.11), respectively.

To conclude this section, we repeat once more: the classical and well-known error

analysis of the NSE of the OLS can be naturally extended to describe the NSE

of the generalized LASSO. In particular, when the entries of A are i.i.d. normal,
then an error bound on the NSE of the OLS translates to a bound on the NSE of the
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generalized (constrained or regularized) LASSO after (almost) only substituting the
ambient dimension n by either D(cone(∂ f (x0))) or D(λ∂ f (x0)). D(cone(∂ f (x0)))
and D(λ∂ f (x0)) are summary parameters that capture the geometry of the LASSO
problem.

7.4 The NSE of Generalized LASSO in Gaussian Noise
In this Section we assume that the noise vector z has entries distributed i.i.d. normal
N (0, σ2) and derive sharp upper bounds on the NSE of the generalized LASSO.

First, we formally define the performance measures of interest. Then, we de-
scribe the main steps of the required technical analysis, which is again based on
the CGMT framework of Chapter 5. Sections 7.5, 7.6 and 7.7 are each devoted to
upper-bounding the NSE of the C-LASSO, `2-LASSO and `2

2-LASSO respectively.

The NSE in High-SNR
Define the Normalized Squared Error as

NSE(σ) :=
‖x̂ − x0‖

2
2

mσ2 . (7.22)

Further define the worst-case NSE as

wNSE := sup
σ>0

NSE(σ).

We say that recovery of x0 is robust whenever wNSE < ∞. Also, consider the
asymptotic NSE,

aNSE := lim
σ→0

NSE(σ).

In this section we derive precise closed-form expressions for the aNSE of the gen-
eralized LASSO. We conjecture that

wNSE := sup
σ>0

NSE(σ) = lim
σ→0

NSE(σ) =: aNSE. (7.23)

This highlights the significance of studying the performance at high-SNR, since it
leads to the following implication

aNSE ≈ η ⇒ NSE(σ) . η,

i.e. the formulae characterizing the NSE at high-SNR are in fact tight upper bounds

on the NSE for arbitrary values of the SNR.
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In fact, we have proved in [OTH13b, Sec. 10] that (7.38) is true for the C-LASSO.
For the regularized LASSO, the conjecture is supported by extended empirical ob-
servations. Besides, the same phenomenon has been observed and proved to be true
for related estimation problems. Examples include the proximal denoising problem
(7.33) in [OH15; DJM13; DGM13] and the LASSO problem with `1 penalization
[DMM11].

Remark 7.4.0.48. (Proving (7.38)) In 6.5 we obtained exact expressions for the NSE
of the regularized LASSO that can be evaluated for arbitrary values of the SNR by
solving (6.31). Hence, an alternative to the approach presented below to recover
the results of this section is by evaluating the former in the limit of σ → 0. More
importantly, it is possible in principle to evaluate the worst-case NSE by computing
supσ>0 NSE(σ). The challenge lies in the fact that the NSE(σ) for arbitrary values
of the noise variance is expressed not in closed form but rather as the minimizer to
(6.31). However, this offers a systematic way to a rigorous proof of the fact that
supσ>0 NSE(σ) = limσ→0 NSE(σ).

Analysis
The analysis is based on the CGMT framework of Chapter 5. In addition to the
general characteristics of the analysis in Chapter 5, two additional features are im-
portant for the results of this section and are worth emphasizing. First, before ap-
plying the CGMT framework, we introduce a “first-order approximation" of the
LASSO minimization which is shown to be tight in the high-SNR regime. The ap-
proximated LASSO problem leads to an Auxiliary Optimization (AO) that is very
simple to analyze (in particular, much simpler than the generic (AO) in (5.7)). As
part of the analysis, it becomes clear why the statistical dimension and the Gaus-
sian distance squared appear in the derived error formulae. Second, the bounds
derived here are non-asymptotic. The analysis in Chapter 5 leads to an asymptotic
version of the results. However, the CGMT Theorem 3.3.1 is non-asymptotic and
after some some extra work in the “convergence analysis of the (AO)" step of the
CGMT framework (see Section 5.1.) non-asymptotic results are also possible.

Below, we present some of these key ideas. We provide specific references to either
[OTH13b; Oym15] 6 or the appendix for the details of the proofs.

For the purposes of exposition we use the `2-LASSO. The analysis for the con-
6 When referring to [OTH13b] keep in mind the following: a) in [OTH13b] the entries of A

have variance 1 and not 1/m as here, b) [OTH13b] uses slightly different notation for D(λ∂ f (x0))
and D(cone(∂ f (x0))) (D f (x0 , λ) and D f (x0 ,R+), respectively).
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strained version C-LASSO is to a large extent similar. In fact, [OTH13b] treats
those two under a common framework.

Remark 7.4.0.49. The results presented here on the aNSE of the C-LASSO and of
the `2-LASSO, were proved in [OTH13b]. Even though the proof is based on the
same ideas as those underlying the CGMT framework, at the time of writing we
were missing the clean formulation of both Theorem 3.3.1 and of the framework
described in 5. As a result, the analysis in [OTH13b] is put in a somewhat differ-
ent language and is slightly more convoluted and lengthier than the now available
framework would allow. In fact, it is only thanks to this general framework that
we were later able to extend the analysis to the `2

2-LASSO in [TPH15] (proving an
earlier conjecture of [OTH13b]). Since the focus of this thesis is on results that are
far more general than the aNSE performance of the generalized LASSO, we have
decided not to include the proof details of Theorems 7.5.1 and 7.6.1 here. Besides,
the interested reader can find these not only in [OTH13b], but also in [Oym15].

First-Order Approximation. Recall the `2-LASSO problem introduced in (7.2):

x̂`2 = arg min
x
‖y − Ax‖ +

λ
√
m
f (x). (7.24)

A key idea behind our approach is using the linearization of the convex structure
inducing function f around the vector of interest x0 [Roc97; BL10]. From convexity
of f , for all x ∈ Rn and s ∈ ∂ f (x0), we have f (x) ≥ f (x0) + sT (x− x0). In particular,

f (x) ≥ f (x0) + sup
s∈∂ f (x0)

sT (x − x0) =: f̂ (x), (7.25)

and approximate equality holds when ‖x−x0‖ is “small". Recall that ∂ f (x0) denotes
the subdifferential of f at x0 and is always a compact and convex set [Roc97]. We
also assume that x0 is not a minimizer of f , hence, ∂ f (x0) does not contain the
origin.

We substitute f in (7.24) by its first-order approximation f̂ to get a corresponding
“Approximated LASSO" problem. To write the approximated problem in an easy-
to-work-with format, recall that y = Ax0 + z = Ax0 + σv, for v ∼ N (0, Im) and
change the optimization variable from x to w = x − x0:

w̃`2 = arg min
w

 ‖Aw − σv‖ +
1
√
m

sup
s∈λ∂ f (x0)

sTw
 . (7.26)
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We denote w̃`2 the optimal solution of the approximated problem in (7.26) and
ŵ`2 = x̂`2 − x0 for the optimal solution of the original problem in (7.24)7. Also,
denote the optimal cost achieved in (7.26) by w̃`2 , as Φ`2(A, v). Finally, note that
the approximated problem corresponding to C-LASSO can be written as in (7.26),
with only λ∂ f (x0) being substituted by cone(∂ f (x0)).

Taking advantage of the simple characterization of f̂ via the subdifferential ∂ f (x0),
we are able to precisely analyze the optimal cost and the normalized squared error of
the resulting approximated problem. The approximation is tight when ‖x̂`2 −x0‖ →

0 and we later show that this is the case when the noise level σ → 0. This fact
allows us to translate the results obtained for the Approximated LASSO problem to
corresponding precise results for the original LASSO problem, in the small noise

variance regime.

We follow the steps of the CGMT framework as prescribed in Chapter 5.

Determining the (AO). The (approximated) LASSO problem in (7.26) is simpler
than the original one in (7.2), yet, still hard to directly analyze. It should come as no
surprise at this point that, in view of the CGMT, we analyze instead a corresponding
Auxiliary Optimization (AO) problem.

First, using the fact that

√
m‖Aw − σv‖2 = max

‖u‖=1
uTGw −

√
mσuTv, (7.27)

we bring the minimization in (7.26) in the appropriate format of a (PO) as in (3.11a).
Here, we have used the assumption that A has entries of variance 1/m and G denotes
a matrix with iid standard normal entries. Then, we find that the (AO) becomes:

φ`2(g, h) = min
w

max
‖u‖2≤1

{
‖w‖2uTg − ‖u‖2hTw − σ

√
muTv + max

s∈λ∂ f (x0)
sTw

}
.

Moreover, since v is iid Gaussian, ‖w‖2g−σ
√
mv is distributedN (0, (‖w‖22 + mσ2)Im).

Therefore, it is equivalent to analyze the following (AO) instead:

φ`2(g, h) = min
w

max
‖u‖2≤1

{√
‖w‖22 + mσ2gTu − ‖u‖2hTw + max

s∈λ∂ f (x0)
sTw

}
, (7.28)

where we have abused some notation and g is still used to denote an iid Gaussian
vector in Rm.

7We follow this convention throughout: we use the symbol “˜” over variables that are associated
with the approximated problems. To distinguish, we use the symbol “ˆ” for the variables associated
with the original problem .
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Scalarization of the (AO). Here, we perform the deterministic analysis of φ`2(g, h)
for fixed g ∈ Rm and h ∈ Rn.

First, we can easily maximize over the direction of u to equivalently express the
optimization as

φ`2(g, h) = min
w

max
0≤β≤1

s∈∂ f (x0)

{
β
√
‖w‖22 + mσ2‖g‖ − (βh − λs)Tw

}
.

The objective is now convex in w and (jointly) concave in β, s, and the constraint
sets over which maximization occurs are bounded. Thus, as in [Roc97, Corollary
37.3.2] we can flip the order of min-max. Then, it is easy to minimize over the
direction of w to find

φ`2(g, h) = max
0≤β≤1

s∈∂ f (x0)

min
α≥0

{
β
√
α2 + mσ2‖g‖ − α‖βh − λs‖2

}
. (7.29)

As a last step, we flip the order of min-max once more. Maximization over s results
in the distance term below, (defined as dist(v, λ∂ f (x0)) := mins∈∂ f (x0) ‖v − λs‖2):

max
0≤β≤1

min
α≥0
{
√
α2 +σ2 ‖g‖2β − α · dist(βh, λ∂ f (x0))}. (7.30)

In just a few lines we were able to reduce the (AO) problem to an equivalent opti-
mization in (7.30) that now only involves two scalar variables, out of which α plays
the role of ‖w‖2. Also, the objective is strongly convex with respect to α (this can
be used to satisfy the conditions of Theorem 3.3.1).

Convergence Analysis of the (AO). One may now proceed following the asymp-
totic convergence analysis framework of the (AO) prescribed in Chapter 5, which
leads to asymptotic bounds of the aNSE of the LASSO (see for example [TOH15,
Sec. 3.3.3] or (6.21)). Instead, here we obtain bounds that are non-asymptotic. It
is shown in [OTH13b] that when λ ∈ RON then the optimal value of β in (7.30) is
1 with high probability. We will formally define RON later in Section 7.6; for now,
it suffices to mention that this regime is in a sense (that will soon made precise)
the “interesting" regime of values of the regularizer parameter. When this is the
case, (7.30) simplifies to a minimization problem over α and is trivial to solve for
its optimal value.

The result is summarized in Lemma 7.4.1 below.
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Lemma 7.4.1 (Deterministic Result). Let wφ(g, h) be a minimizer of the problem

in (7.28). If ‖g‖ > dist(h, λ∂ f (x0)), then,

a) ‖wφ(g, h)‖2 = mσ2 dist2(h, λ∂ f (x0))
‖g‖2 − dist2(h, λ∂ f (x0))

,

b) φ`2(g, h) =
√
mσ

√
‖g‖2 − dist2(h, λ∂ f (x0)).

Of interest is making probabilistic statements about φ`2(g, h) and the norm of its
minimizer ‖wφ(g, h)‖. Lemma 7.4.1 provides us with closed-form deterministic so-
lutions for both of them, which only involve the quantities ‖g‖2 and dist2(h, λ∂ f (x0)).
The `2-norm and the distance function to a convex set are 1-Lipschitz functions.
Application of Proposition 3.1.1 shows that ‖g‖2 and dist2(h, λ∂ f (x0)) concentrate
nicely around their means, E

[
‖g‖2

]
= m and E

[
dist2(h, λ∂ f (x0))

]
= D(λ∂ f (x0)),

respectively. Combining this with Lemma 7.4.1, we conclude with Lemma 7.4.2
below.

Lemma 7.4.2 (Probabilistic Result). Assume that (1 − εL)m ≥ D(λ∂ f (x0)) ≥ εLm
for some constant εL > 0. Define8,

η =
√
m − D(λ∂ f (x0)) and γ =

D(λ∂ f (x0))
m − D(λ∂ f (x0))

.

Then, for any ε > 0, there exists a constant c > 0 such that, for sufficiently large m,

with probability 1 − exp(−cm),

∣∣∣φ`2(g, h) −
√
mση

∣∣∣ ≤ ε√mση and

∣∣∣∣∣∣ ‖wφ(g, h)‖2

mσ2 − γ

∣∣∣∣∣∣ ≤ εγ.
Remark: In Lemma 7.4.2, the condition “(1 − εL)m ≥ D(λ∂ f (x0))” ensures that
‖g‖ > dist(h, λ∂ f (x0)) (cf. Lemma 7.4.1) with high probability over the realiza-
tions of g and h.

Applying the CGMT. Before proceeding, let us recap. Application of Gordon’s
Lemma to the approximated LASSO problem in (7.26) introduced the simpler (AO)
(7.28). Without much effort, we found in Lemma 7.4.2 that its cost, φ`2(g, h), and
the normalized squared norm of its minimizer, ‖w̃(g,h)‖2

mσ2 , concentrate around
√
mση

and γ, respectively. Now, it remains to apply the CGMT Theorem 3.3.1(ii) & (iii)
to conclude that the same same results translate to Φ`2(A, v) and w̃`2(A, v). The

8Observe that the dependence of η and γ on λ, m and ∂ f (x0), is implicit in this definition.



103

conditions of statement (iii) of the theorem are shown to be satisfied using the strong
convexity of (7.28) over w (see [OTH13b] or [TOH15]).

From the Approximated LASSO Back to the Original The final step requires us
to translate this bound on the NSE of the Approximated LASSO to a bound on the
NSE of the original one. We choose σ small enough such that ‖w̃`2 ‖ is small and
so f (x0 + w̃`2) ≈ f̂ (x0 + w̃`2). Using this and combining the results above we show
that ‖ŵ`2 ‖

2/(mσ2) concentrates with high probability around γ (see Section 9.1.2
in [OTH13b]).

7.5 Constrained LASSO
Theorem 7.5.1. Assume there exists a constant εL > 0 such that, (1 − εL)m ≥
D(cone(∂ f (x0))) ≥ εLm and m is sufficiently large. For any ε > 0, there exists a

constant C = C(ε , εL) such that, with probability 1 − exp(−Cm),

‖x̂c − x0‖
2

mσ2 ≤ (1 + ε )
D(cone(∂ f (x0)))

m − D(cone(∂ f (x0)))
. (7.31)

Furthermore, there exists a deterministic number σ0 > 0 (i.e. independent of A, v)

such that, if σ ≤ σ0, with the same probability,∣∣∣∣∣∣ ‖x̂c − x0‖
2

mσ2 ×
m − D(cone(∂ f (x0)))

D(cone(∂ f (x0)))
− 1

∣∣∣∣∣∣ < ε . (7.32)

Observe in Theorem 7.5.1 that as m approaches D(cone(∂ f (x0))), the NSE increases
and when m = D(cone(∂ f (x0))), NSE = ∞. This behavior is not surprising as when
m < D(cone(∂ f (x0))), one cannot even recover x0 from noiseless observations via
(2.1) hence it is futile to expect noise robustness.

Example (sparse signals): Figure 7.1 illustrates Theorem 7.5.1 when x0 is a k-
sparse vector and f is the `1 norm. In this case, D(cone(∂ f (x0))) is only a function
of k and n and can be exactly calculated, [Don06a]. The dark-blue region corre-
sponds to the unstable region m < D(cone(∂ f (x0))). The dashed gray line obeys
m = 1.4 × D(cone(∂ f (x0))) and yields a constant (worst-case) NSE of 2.5 as spar-
sity varies. We note that for `1 minimization, the NSE formula was first proposed
by Donoho et al. in [DMM11].

Relation to Proximal Denoising
It is interesting to compare the NSE of the C-LASSO to the MSE risk of the con-
strained proximal denoiser.
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Figure 7.1: NSE heatmap for `1 minimization based on Theorem 7.5.1. The x and
y axes are the sparsity and measurements normalized by the ambient dimension.
To obtain the figure, we plotted the heatmap of the function − log D(cone(∂ f (x0)))

m−D(cone(∂ f (x0)))
(clipped to ensure the values are between [−10, 5]).

The proximal denoising problem tries to estimate x0 from noisy but uncompressed
observations y = x0 + z, where the entries of z are i.i.d. zero-mean Gaussian with
variance σ2. In particular, it solves,

min
x

{
1
2
‖y − x‖22 + λσ f (x)

}
. (7.33)

A closely related approach to estimate x0, which requires prior knowledge f (x0)
about the signal of interest x0, is solving the constrained denoising problem:

min
x
‖y − x‖22 subject to f (x) ≤ f (x0). (7.34)

The natural question to be posed in both cases is how well can one estimate x0 via
(7.33) (or (7.34)) [Don95; DJM13; CJ13; OH15]? The minimizer x̂ of (7.33) (or
(7.34)) is a function of the noise vector z and the common measure of performance,
is the normalized mean-squared-error which is defined as

E‖x̂−x0‖
2
2

σ2 . It has been
shown that the normalized MSE of (7.34) is upper bounded by D(cone(∂ f (x0)))
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[OH15; CJ13]. Furthermore, this bound is attained asymptotically as σ → 0. From
Theorem 7.5.1 we find that the corresponding quantity ‖x̂c − x0‖

2/σ2 is upper
bounded by

D(cone(∂ f (x0)))
m

m − D(cone(∂ f (x0)))
,

and is again attained asymptotically as σ → 0. We conclude that the NSE of the
LASSO problem is amplified compared to the corresponding quantity of proximal
denoising by a factor of m

m−D(cone(∂ f (x0))) > 1. This factor can be interpreted as the
penalty paid in the estimation error for observing noisy linear measurements of the
unknown signal instead of just noisy measurements of the signal itself.

7.6 `2-LASSO
Characterization of the NSE of the `2-LASSO is more involved than that of the
NSE of the C-LASSO. For this problem, choice of λ naturally plays a critical role.

Background
Before introducing the main result, it is required to introduce some further notation.

Let C ⊂ Rn be a closed and nonempty convex set. For any vector v ∈ Rn, we denote
its (unique) projection onto C as Proj(v, C), i.e.

Proj(v, C) := argmins∈C ‖v − s‖.

The distance of v to the set C can then be written as

dist(v, C) := ‖v − Proj(v, C)‖.

Recall the definition of the Gaussian distance squared to the scaled subdifferential
in (2.12):

D(λ∂ f (x0)) = E
[

dist2(h, λ∂ f (x0))
]
.

Accordingly, define the Gaussian correlation as:

C(λ∂ f (x0)) := E
[

(h − Proj(h, λ∂ f (x0)))T Proj(h, λ∂ f (x0))
]
.

Further recall from (2.13) the deep relation between and D(λ∂ f (x0)) and D(cone(∂ f (x0)))
(one that is stronger than the obvious fact that D(cone(∂ f (x0))) ≤ minλ≥0 D(λ∂ f (x0))):

D(cone(∂ f (x0))) ≈ min
λ≥0

D(λ∂ f (x0)). (7.35)
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Moreover, as the next lemma shows, the minimum of D(λ∂ f (x0)) in (7.35) is
uniquely attained. The lemma also reveals an interesting relation between D(λ∂ f (x0))
and C(λ∂ f (x0)).

Lemma 7.6.1 ([Ame+13]). Suppose ∂ f (x0) is nonempty and does not contain the

origin. Then,

1. D(λ∂ f (x0)) is a strictly convex function of λ ≥ 0, and is differentiable for

λ > 0.

2. ∂D(λ∂ f (x0))
∂λ = − 2

λC(λ∂ f (x0)).

NSE
Definition 7.6.1 (RON). Suppose m > minλ≥0 D(λ∂ f (x0)). Define RON as follows,

RON = {λ > 0 | m − D(λ∂ f (x0)) > max{0,C(λ∂ f (x0))}} .

Theorem 7.6.1 (non-asymptotic). Assume there exists a constant εL > 0 such that

(1 − εL)m ≥ max{D(λ∂ f (x0)), D(λ∂ f (x0)) + C(λ∂ f (x0))} and D(λ∂ f (x0)) ≥ εLm.

Further, assume that m is sufficiently large. Then, for any ε > 0, there exist a

constant C = C(ε , εL) and a deterministic number σ0 > 0 (i.e. independent of A, v)

such that, whenever σ ≤ σ0, with probability 1 − exp(−C min{m, m
2

n
}),∣∣∣∣∣∣ ‖x̂`2 − x0‖

2

mσ2 ×
m − D(λ∂ f (x0))

D(λ∂ f (x0))
− 1

∣∣∣∣∣∣ < ε .

Regions Of Operation

First, we identify the regime in which the `2-LASSO can robustly recover x0. In
this direction, the number of measurements should be large enough to guarantee
at least noiseless recovery in (2.1), which is the case when m > D(cone(∂ f (x0)))
from Theorem 2.2.1. To translate this requirement in terms of D(λ∂ f (x0)), recall
(7.35) and Lemma 7.6.1, and define λbest to be the unique minimizer of D(λ∂ f (x0))
over λ ∈ R+. We then write the regime of interest as m > D(λbest · ∂ f (x0)) ≈
D(cone(∂ f (x0))).

Next, we identify three important values of the penalty parameter, λ, needed to
describe the distinct regions of operation of the estimator.
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Figure 7.2: Regions of operation of the `2-LASSO.

1. λbest : λbest is optimal in the sense that the NSE is minimized for this partic-
ular choice of the penalty parameter (see Section 7.6). This also explains the
term “best" we associate with it.

2. λmax : Over λ ≥ λbest, the equation m = D(λ∂ f (x0)) has a unique solution.
We denote this solution by λmax. For values of λ larger than λmax, we have
m ≤ D(λ∂ f (x0)).

3. λcrit : Over 0 ≤ λ ≤ λbest, if m ≤ n, the equation m − D(λ∂ f (x0)) =

C(λ∂ f (x0)) has a unique solution which we denote λcrit. Otherwise, it has no
solution and λcrit := 0.

Based on the above definitions, we recognize the three distinct regions of operation
of the `2-LASSO, as follows:

1. RON = {λ ∈ R+
∣∣∣λcrit < λ < λmax}.

2. ROFF = {λ ∈ R+
∣∣∣λ ≤ λcrit}.

3. R∞ = {λ ∈ R+
∣∣∣λ ≥ λmax}.

See Figure 7.2 for an illustration of the definitions above and Section 8 in [OTH13b]
for the detailed proofs of the statements.
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Figure 7.3: We consider the `1-penalized `2-LASSO problem for a k sparse signal
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n
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= 0.5, we have λcrit ≈ 0.76, λbest ≈ 1.14, λmax ≈ 1.97.

Characterizing the NSE in each Region
Theorem 7.6.1 upper bounds the NSE of the `2-LASSO in RON . Here, we also
briefly discuss some observations that can be made regarding ROFF and R∞:

• RON: Begin with observing that RON is a nonempty and open interval. In
particular, λbest ∈ RON since m > D(λbest · ∂ f (x0)). Theorem 7.6.1 proves
that for all λ ∈ RON and for σ sufficiently small,

‖x̂`2 − x0‖

mσ2 ≈
D(λ∂ f (x0))

m − D(λ∂ f (x0))
. (7.36)

Also, empirical observations suggest that (7.36) holds for arbitrary σ when ≈
replaced with .. Finally, we should note that the NSE formula
D(λ∂ f (x0))/(m − D(λ∂ f (x0))) is a convex function of λ over RON.

• ROFF: For λ ∈ ROFF, the LASSO estimate x̂`2 satisfies y = Ax̂`2 and the
optimization (7.2) reduces to the standard `1 minimization (2.1) of noiseless
CS. This suggests that when σ → 0,

‖x̂`2 − x0‖

mσ2 ≈
D(λcrit · ∂ f (x0))

(m − D(λcrit · ∂ f (x0)))
, for all λ ∈ ROFF. (7.37)

In [OTH13b, Lem. 9.2], we prove this only for sufficiently small values of
λ; no complete rigorous proof of the non asymptotic statement in (7.37) is
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available. However, we have shown in [TOH15, Thm. 6] that the statement is
true asymptotically. We omit the details; also see the remark following.

Remark 7.6.0.50. Essentially, the technical reason why we have only been
able to characterize the NSE in RON is the following. In that regime the
optimal value of β in the (AO) in (7.30) is 1 [OTH13b]. As we saw in Lemma
7.4.1 this allows evaluation of the optimal value of the (AO) in closed-form.
On the other hand, when λ ∈ ROFF it is no more straightforward how to
optimize (7.30) over β. However, following the asymptotic framework of
Chapter 5 the analysis becomes possible and leads to an asymptotic version
of (7.37). We omit the details for brevity, but refer the interested reader to
[TOH15, Thm. 6].

• R∞: Empirically, we observe that the stable recovery of x0 is not possible for
λ ∈ R∞.

Optimal Tuning of the Penalty Parameter
It is not hard to see that the formula in (7.36) is strictly increasing in D(λ∂ f (x0)).
Thus, when σ → 0, the NSE achieves its minimum value when the penalty param-
eter is set to λbest. Recall from (7.35) that D(λbest · ∂ f (x0)) ≈ D(cone(∂ f (x0))) and
compare the formulae in Theorems 7.5.1 and 7.6.1, to conclude that the C-LASSO
and `2-LASSO can be related by choosing λ = λbest. In particular, we have,

‖x̂`2(λbest) − x0‖
2

mσ2 ≈
D(λbest · ∂ f (x0))

m − D(λbest · ∂ f (x0))
≈

D(cone(∂ f (x0)))
m − D(cone(∂ f (x0)))

≈
‖x̂c − x0‖

2

mσ2 .

It is important to note that deriving λbest does not require knowledge of any prop-
erties (e.g. variance) of the noise vector neither does it require knowledge of the
unknown signal x0 itself. All it requires is knowledge of the particular structure of
the unknown signal. For example, in the `1-case, λbest depends only on the sparsity
of x0, not x0 itself, and in the nuclear norm case, it only depends on the rank of x0,
not x0 itself.

7.7 `2
2-LASSO

An Early Conjecture
In [OTH13b] we proposed a mapping between the penalty parameters λ of the `2-
LASSO program (7.2) and τ of the `2

2-LASSO program (7.3), for which the NSE of
the two problems behaves the same. The mapping function is defined as follows.
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Definition 7.7.1 (Mapping Function). For any λ ∈ RON, define

map(λ) = λ
m − D(λ∂ f (x0)) − C(λ∂ f (x0))√

m − D(λ∂ f (x0))
.

Observe that map(λ) is well-defined over the region RON, since m > D(λ∂ f (x0))
and m − D(λ∂ f (x0)) > C(λ∂ f (x0)) for all λ ∈ RON. It can be proven that map(·)
defines a bijective mapping from RON to R+ [OTH13b, Theorem 3.3] .

Theorem 7.7.1 (Properties of map(·)). Assume m > minλ≥0 D(λ∂ f (x0)). The func-

tion map(·) : RON → R
+ is strictly increasing and continuous. Thus, its inverse

function map−1(·) : R+ → RON is well defined.

Some other useful properties of the mapping function include the following:

• map(λcrit) = 0,

• limλ→λmax map(λ) = ∞.

Based on this mapping, we conjectured translating the results on the NSE of the `2-
LASSO over RON to corresponding results on the `2

2-LASSO for τ ∈ R+ as follows:
When m > D(λbest · ∂ f (x0))), it had been conjectured in [OTH13b] that, for any
τ > 0,

D(map−1(λ) · ∂ f (x0))
m − D(map−1(λ) · ∂ f (x0))

(7.38)

accurately characterizes the NSE ‖x̂`2
2
− x0‖

2/(mσ2) for sufficiently small σ, and
upper bounds it for arbitrary σ. The claim was supported by extended numerical
simulations (see Section 13 in [OTH13b]).

Proving the Conjecture
We were able to establish the validity of the conjecture in [TPH15] in an asymptotic
setting. We formally state the result here.

For convenience denote the normalized Gaussian distance squared and Gaussian
correlation as

D f ,x0(τ)(λ) := D(λ∂ f (x0))/n and C f ,x0(τ)(λ) := C(λ∂ f (x0))/n. (7.39)
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To familiarize with these definitions, it is instructive to specialize to the case where
f = ‖ · ‖1 and x0 is a k-sparse vector, with k/n = ρ ∈ (0, 1). Then, ∂ f (x0) has a sim-
ple characterization and D f ,x0(τ),C f ,x0(τ) admit simple closed-form expressions in
terms of the tail distribution Q(τ) of a standard Gaussian (e.g.,[OTH13b, App. H]):

D f ,x0(τ) = ρ(1 + τ)2 + (1 − ρ)(2(1 + τ2)Q(τ) −
√

2/πτe−
τ2
2 ),

C f ,x0(τ) = −ρτ2 + (1 − ρ)(2τ2Q(τ) −
√

2/πτe−
τ2
2 ). (7.40)

Our results hold in the linear asymptotic regime as in Chapter 4. In particular, we
assume (i) m/n = δ ∈ (0,∞), with δ a constant, and, (ii) D f ,x0(τ) ∈ (0, 1) is a
constant for any constant τ > 0. Here and onwards, “constant" indicates a number
that is independent of the problem dimensions. For example, in the case of sparse
recovery, choosing f = ‖ · ‖1 and x0 to be k-sparse, with k/n = ρ ∈ (0, 1), it follows
from (7.40) that D f ,x0(τ) is constant independent of n and k for all τ > 0.

We have the following asymptotic versions of Definition 7.7.1 and Theorem 7.7.1

Definition 7.7.2 (map). Let RON := {τ > 0|δ − D f ,x0(τ) > max{0,C f ,x0(τ)}} and
define map : RON → (0,∞) :

map(τ) := τ
δ − D f ,x0(τ) − C f ,x0(τ)
√
δ

√
δ − D f ,x0(τ)

. (7.41)

Lemma 7.7.1 shows that the inverse of map is well defined.

Lemma 7.7.1 (map−1). Assume δ > minτ>0 D f ,x0(τ). Then, RON is a nonempty

open interval and map is strictly increasing, continuous and bijective. In particular,

its inverse function map−1 : (0,∞)→ RON is well defined.

Theorem 7.7.1 characterizes the limiting behavior of the asymptotic normalized
squared error of (7.3).

Theorem 7.7.1. Fix any λ > 0 in (7.3) and let

aNSE := lim
σ→0

NSE(σ) = lim
σ→0

‖x̂`2
2
− x0‖

2
2

mσ2 .

Assume a linear asymptotic regime in which m/n → δ ∈ (0, 1) and D f ,x0(τ),C f ,x0(τ)
are also constants. If δ > minτ>0 D f ,x0(τ), then, the following limit holds in proba-

bility
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lim
n→∞

aNSE =
D f ,x0(map−1(λ))

δ − D f ,x0(map−1(λ))
=: η(λ).
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Figure 7.4: Illustration of the region RON and of the map function (Defn. 7.7.2) for
f = ‖ · ‖1 and x0 ∈ R

n a k-sparse vector. map−1 maps the value of the regularizer λ
in (7.3) to a value in RON. D f ,x0(τ) and C f ,x0(τ) are computed as in (7.40).

.

Remarks

Remark 7.7.0.51 (The mapping). The theorem maps λ > 0 to some value τ ∈ RON

through map−1. Note that RON is nonempty as long as m
n
> minτ D f ,x0(τ) (Lemma

7.7.1). Figure 7.4 illustrates the action of map−1 for an instance of a sparse recovery
problem.

Remark 7.7.0.52 (Optimal tuning). Thm. 7.7.1 suggests a simple recipe for finding
the optimal value λbest of the regularizer parameter.

Lemma 7.7.2. Recall η(λ) as defined in Theorem 7.7.1. Let λbest := arg minλ≥0 η(λ)

and τbest := arg minτ≥0 D f ,x0(τ). Then, λbest = τbest

√
1 − D f ,x0(τbest)/δ.

The proof of the lemma is not involved and is omitted for brevity. Recall from
7.6.1 that D f ,x0(τ) is strictly convex. Thus, τbest can be efficiently calculated as the
unique solutions to a convex program. This determines λbest. Note that even though
calculating λbest does not require explicit knowledge of x0 itself, it does assume
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Figure 7.5: Numerical validation of Theorem 7.7.1 for f = ‖ · ‖1 and x0 ∈ R
n a

k-sparse vector. Measured values of the NSE(σ) are averages over 50 realizations
of A, v. The theorem accurately predicts NSE(σ) asσ → 0. The results support our
claim that aNSE = wNSE. λbest is the value of the optimal regularizer as predicted
by Lemma 2.2.

knowledge of the particular structure. For instance, in sparse recovery we need to
know the sparsity level k (see Fig. 8.1).

Remark 7.7.0.53 (Phase-transitions). Combining Theorem 7.7.1 with Lemma 7.7.2
it holds with probability one that,

lim
σ→0

min
λ>0

‖x̂ − x0‖
2
2

mσ2 =
minτ D f ,x0(τ)

δ − minτ D f ,x0(τ)
.

In view of the wNSE conjecture in (7.38), the quantity in the left hand side can
be viewed as the minimax NSE of G-LASSO for a fixed signal x0. While δ >

minτ D(τ), we can always tune (7.3) to guarantee robust recovery. However, as
the normalized number of measurements δ approaches minτ D f ,x0(τ), then, even
after optimal tuning, the NSE grows to ∞. This phase-transition characterizing the
robustness of (7.3) is identical to (2.5) of noiseless Compressed Sensing.

Remark 7.7.0.54 (Robustness). Theorem 7.7.1 reveals the following interesting fea-
ture of (7.3). Given sufficient number of measurements m/n > minτ D f ,x0(τ), the
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recovery is robust for all choices of the regularizer parameter λ > 0. In particular,
this is in contrast to the `2-LASSO in (7.2). Recall from Section 7.5 that the NSE of
the later becomes unbounded if the regularizer parameter is larger than some µmax.

Remark 7.7.0.55 (Proof). The proof of Theorem 7.7.1 follows from the CGMT
framework of Chapter 5 when applied to the corresponding Approximated LASSO
problem (see Section 7.4). The details are omitted for brevity and the interested
reader is referred to [TPH15].

It is worth mentioning that at the time of writing of [OTH13b], it wasn’t clear to
us how to leverage the objective function in (7.3) and bring it in the required min-
imax format of the (PO) in (3.11a). Recall (7.27) allowed this in the case of the
`2-LASSO. As discussed, we were only able to conjecture a formula for the aNSE
of the `2

2-LASSO based on an “educated guess" on a mapping between the `2
2-

LASSO and the `2-LASSO. Later, in [TPH15] we rigorously established the con-
jecture raised. Instead of worrying about the mapping function between (7.3) and
(7.2) and translating the results from the latter to the former, we followed a direct
approach. The simple but key observation was that the objective function in (7.3)
can be appropriately linearized for the purpose of using the GMT, and be written
equivalently as:

min
x

max
u

uT (y − Ax) − (1/2)‖u‖2 + λσ f (x).

This same idea of expressing the loss function (here, least-squares) in a dual form
through its convex conjugate function led to generalization of this type of analysis
to other convex loss functions (see Section 5.2).

7.8 The NSE of Generalized LASSO with Arbitrary Fixed Noise
Here, we relax the assumption of Section 7.4 that the entries of z are i.i.d. normal.
Instead, assume that the noise vector z is arbitrary, but still independent of the sens-
ing matrix A. Under this assumption, we derive simple and non-asymptotic upper
bounds on the NSE of the C-LASSO and of the `2-LASSO. Those upper bounds
can be interpreted as generalizations of the bound on the error of the OLS as was
discussed in Section 7.2. Compared to the bounds of Section 7.4, the bounds de-
rived here not only hold under more general assumption on the noise vector, but
they are also non-asymptotic.
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C-LASSO
Recall the generalized C-LASSO in (7.1). We introduce an upper bound on its NSE
for arbitrary fixed noise vector that is independent of A and compare this bound to
the result of Theorem 7.5.1. We further provide an overview of the proof technique.

Theorem 7.8.1. [OTH13a] Assume m ≥ 2 and 0 < t ≤
√
m − 1−

√
D(cone(∂ f (x0))).

Then, with probability, 1 − 6 exp(−t2/26),

‖x̂c − x0‖

‖z‖
≤

√
m

√
m − 1

√
D(cone(∂ f (x0))) + t

√
m − 1 −

√
D(cone(∂ f (x0))) − t

.

Comparison to Theorem 7.5.1. It is interesting to see how the bound of Theorem
7.8.1 compares to the result of Theorem 7.5.1 in the case z ∼ N (0, σ2Im). Of
course, when this is the case the bound of Theorem 7.5.1 is tight and our intention
is to see how loose is the bound of Theorem 7.8.1. Essentially9, the only differ-
ence appears in the denominators of the two bounds;

√
m − D(cone(∂ f (x0))) ≥

√
m −

√
D(cone(∂ f (x0))) for all regimes of 0 ≤ D(cone(∂ f (x0))) < m. The con-

trast becomes significant when m ≈ D(cone(∂ f (x0))). In particular, setting m =

(1 + ε )2D(cone(∂ f (x0))), we have,√
m − D(cone(∂ f (x0)))
√
m − D(cone(∂ f (x0)))

=

√
2ε + ε2

ε
=

√
2
ε

+ 1.

Thus, when ε is large, the bound of Theorem 7.8.1 is arbitrarily tight. On the other
hand, when ε is small, it can be arbitrarily worse. Simulation results (see Figure
7.6) verify that the error bound of Theorem 7.8.1 becomes sharp as the number of
measurements m increases. Besides, even if tighter, the bound of Theorem 7.5.1
requires stronger assumptions namely, an i.i.d.. Gaussian noise vector z and an
asymptotic setting where m and D(cone(∂ f (x0))) are large enough.

Proof Overview. We only provide an overview of the proof. The details can be
found in [OTH13a]. We begin with introducing some useful notation. ATf (x0) will
denote the cone obtained by multiplying elements of Tf (x0) by A., i.e.,

ATf (x0) = {Av ∈ Rm | v ∈ Tf (x0)}.

The lemma below derives a deterministic upper bound on the squared error of the
C-LASSO. It is interesting to compare this to the corresponding bound (7.10) for
the OLS. Recall the notions of “tangent cone" and “restricted minimum singular
value" introduced in Section 2.2.

9Precisely: assuming m ≈ m − 1 and ignoring the t’s in the bound of Theorem 7.8.1.
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Figure 7.6: NSE of the C-LASSO with `1-regularization. The unknown signal
x0 ∈ R

500 is 5-sparse. The number of measurements m varies from 0 to 360. We
plot the empirical NSE assuming z ∼ N (0, σ2Im) for several values ofσ. The solid
black line corresponds to the bound of Theorem 7.8.1. The dashed line corresponds
to the phase transition line of noiseless CS, namely D(cone(∂ f (x0))) (cf. Theorem
2.2.1).

Lemma 7.8.1 (Deterministic error bound).

‖x̂c − x0‖ ≤
‖ Proj(z,ATf (x0))‖

σmin(A, Tf (x0) ∩ Sn−1)
.

Proof. From first-order optimality conditions (e.g. [Roc97, p. 270-271]),〈
AT (Ax̂c − y), x̂c − x0

〉
≤ 0.

Writing y = Ax0 + z, and rearranging terms, we find that,

‖A(x̂c − x0)‖ ≤
〈
z,

A(x̂c − x0)
‖A(x̂c − x0)‖

〉
≤ sup

v∈ATf (x0)∩Sn−1
〈z, v〉 (7.42)

≤ sup
v∈ATf (x0)∩Bn−1

〈z, v〉

= ‖ Proj(z,ATf (x0))‖. (7.43)

(7.42) follows since x̂c − x0 ∈ Tf (x0). For (7.43), we applied Moreau’s decomposi-
tion Theorem [Roc97, Theorem 31.5]. To conclude with the desired result it remains
to invoke the definition of the restricted singular valuesσmin(A, Tf (x0)∩Sn−1). �
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To prove Theorem 7.8.1 we will translate the deterministic bound of Lemma 7.8.1
to a probabilistic one. For this, we need a high-probability lower bound for
σmin(A, Tf (x0)∩Sn−1) and a high-probability upper bound for ‖ Proj(z,ATf (x0))‖.
The former is given by a direct application of the “escape through a mesh" Proposi-
tion 2.2.2. The latter requires some more effort to derive. The result is summarized
in Lemma 7.8.2 below and is the main technical contribution of [OTH13a]. The
proof makes use of Gordon’s original GMT Theorem 3.2.1. For a vector g ∈ Rm

with independent N (0, 1) entries, we define γm := E[‖g‖]. It is well known (e.g.
[Gor88]) that γm =

√
2Γ( m+1

2 )
Γ( m2 ) and

√
m ≥ γm ≥

m√
m+1

.

Lemma 7.8.2 (Restricted correlation). Let K ∈ Rn be a convex and closed cone,

G ∈ Rm×n have independent standard normal entries, m ≥ 2 and z ∈ Rm be

arbitrary and independent of G. For any t > 0, pick α ≥
√

D(K ◦)+t
γm−1

‖z‖. Then,

sup
v∈K∩Sn−1

{zTGv − α‖Gv‖} ≤ 0, (7.44)

with probability 1 − 5 exp(− t2

26 ).

We may now complete the proof of Theorem 7.8.1. Suppose 0 ≤ t < γm −

D(cone(∂ f (x0))). First apply Proposition 2.2.2, to find that with probability 1 −
exp(− t2

2 ),

σmin(A, Tf (x0) ∩ Sn−1) ≥
γm −

√
D(cone(∂ f (x0))) − t
√
m

. (7.45)

Next, apply Lemma 7.8.2 with G =
√
mA and K = Tf (x0). With probability

1 − 5 exp(− t2

26 ),

‖ Proj(z,ATf (x0))‖ = zT
Proj(z,ATf (x0))
‖ Proj(z,ATf (x0))‖

≤ sup
v∈Tf (x0)∩Sn−1

zTAv
‖Av‖

≤

√
D(cone(∂ f (x0))) + t

γm−1
‖z‖. (7.46)

Theorem 7.8.1, now follows after substituting (7.45) and (7.46) in Lemma 7.8.1 and
using the following: γmγm−1 = m − 1 and γm−1 ≤ m − 1.

`2-LASSO
Consider now the generalized `2-LASSO in (7.2).
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Theorem 7.8.2 ([TOH14]). Assume m ≥ 2. Fix the regularizer parameter in (7.2)
to be λ ≥ 0 and let x̂`2 be a minimizer of (7.2). Then, for any 0 < t ≤ (

√
m − 1 −√

D(λ∂ f (x0))), with probability 1 − 5 exp(−t2/32),

‖x̂ − x0‖ ≤ 2‖z‖
√

D(λ∂ f (x0)) + t
√
m − 1 −

√
D(λ∂ f (x0)) − t

.

Theorem 7.8.2 provides a simple, general, non-asymptotic and (rather) sharp upper
bound on the error of the regularized LASSO estimator (7.2), which also takes
into account the specific choice of the regularizer parameter λ ≥ 0. It is non-
asymptotic and is applicable in any regime of m, λ and D(λ∂ f (x0)). Also, the
constants involved in it are small making it rather tight10.

For the bound of Theorem 7.8.2 to be at all meaningful, we require
m > minλ≥0 D(λ∂ f (x0)) = D(λbest∂ f (x0)). Recall that this translates to the number
of measurements being large enough to at least guarantee noiseless recovery Also,
similar to the discussion in Section 7.6 there exists a unique λmax satisfying λmax >

λbest and
√

D(λmax∂ f (x0)) =
√
m − 1, and, when m ≤ n, there exists unique λmin <

λbest satisfying
√

D(λmin∂ f (x0)) =
√
m − 1. From this, it follows that

√
m − 1 >√

D(λ∂ f (x0)) if and only if λ ∈ (λmin , λmax). This is a superset of RON (recall
the definition in Section 7.6) and is exactly the range of values of the regularizer
parameter λ for which the bound of Theorem 7.8.2 is meaningful.

As a superset of RON, (λmin , λmax) contains λbest for which, the bound of Theo-
rem 7.8.2 achieves its minimum value since it is strictly increasing in D(λ∂ f (x0)).
Recall from Section 7.6 that deriving λbest does not require knowledge of any prop-
erties (e.g. variance) of the noise vector neither does it require knowledge of the
unknown signal x0 itself.

As a final remark, comparing Theorem 7.8.2 to Theorem 7.8.1 reveals the similar
nature of the two results. Apart from a factor of 2, the upper bound on the error
of the regularized LASSO (7.2) for fixed λ, is essentially the same as the upper
bound on the error of the constrained LASSO (7.1), with D(cone(∂ f (x0))) replaced
by D(λ∂ f (x0)). This when combined with (7.35) suggests that setting λ = λbest in
(7.2) achieves performance almost as good as that of the constrained LASSO (7.1).

Comparison to Theorem 7.6.1. To start with, Theorem 7.8.2 is advantageous to
Theorem 7.6.1 in that it holds in a more general setting than standard Gaussian noise

10It is conjectured in [TOH14] and supported by simulations (e.g. Figure 7.7) that the factor of 2
in Theorem 7.8.2 is an artifact of the proof technique and not essential.
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Figure 7.7: Figure 7.7 illustrates the bound of Theorem 7.8.2, which is given in red
for n = 340, m = 140, k = 10 and for A having N (0, 1

m
) entries. The upper bound

of Theorem 7.6.1, which is asymptotic in m and only applies to i.i.d. Gaussian z, is
given in black. In our simulations, we assume x0 is a random unit norm vector over
its support and consider both i.i.d. N (0, σ2) as well as non-Gaussian noise vectors
z. We have plotted the realizations of the normalized error for different values of
λ and σ. As noted, the bound of Theorem 7.6.1 is occasionally violated since it
requires very large m, as well as, i.i.d. Gaussian noise. On the other hand, the
bound of Theorem 7.8.2 always holds.

and, also, characterizes a superset of RON. Furthermore, it is non-asymptotic, while
Theorem 7.6.1 requires m,D(λ∂ f (x0)) to be large enough. On the other side, when
z ∼ N (0, σ2Im), then, Theorem 7.6.1 offers clearly a tighter bound on the NSE. Yet,
apart from a factor of 2, this bound only differs from the bound of Theorem 7.8.2
in the denominator, where instead of

√
m − 1 −

√
D(λ∂ f (x0)) we have the larger

quantity
√
m − D(λ∂ f (x0)). This difference becomes insignificant and indicates

that our bound is rather tight when m is large. Finally, the bound of Theorem 7.6.1
is only conjectured in [OTH13b] to upper bound the estimation error for arbitrary
values of the noise varianceσ2. In contrast, Theorem 7.8.2 is a fully rigorous upper
bound on the estimation error of (7.2).

Proof Overview. It is convenient to rewrite the generalized `2-LASSO in terms of
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the error vector w = x − x0 as follows:

min
w
‖Aw − z‖ +

λ
√
m

( f (x0 + w) − f (x0)). (7.47)

Denote the solution of (7.47) by ŵ. Then, ŵ = x̂ − x0 and we want to bound ‖ŵ‖.
To simplify notation, for the rest of the proof, we denote the value of that desired
upper bound as

`(t) := 2‖z‖
√

D(λ∂ f (x0)) + t
√
m − 1 −

√
D(λ∂ f (x0)) − t

. (7.48)

It is easy to see that the optimal value of the minimization in (7.47) is no greater
than ‖z‖. Observe that w = 0 achieves this value. However, Lemma 7.8.3 below
shows that if we constrain the minimization in (7.47) to be only over vectors w
whose norm is greater than `(t), then the resulting optimal value is (with high prob-
ability on the measurement matrix A) strictly greater than ‖z‖. Combining those
facts yields the desired result, namely ‖ŵ‖ ≤ `(t). The fundamental technical tool
in the proof of Lemma 7.8.3 is (not surprisingly at this point) Gordon’s Lemma
3.2.1.

Lemma 7.8.3. Fix some λ ≥ 0 and 0 < t ≤ (
√
m − 1 −

√
D(λ∂ f (x0))). Let `(t) be

defined as in (7.48). Then, with probability 1 − 5 exp(−t2/32), we have,

min
‖w‖≥`(t)

{‖Aw − z‖ +
λ
√
m

( f (x0 + w) − f (x0))} > ‖z‖. (7.49)

Proof. Fix λ and t, as in the statement of the lemma. From the convexity of f (·),
f (x0 + w) − f (x0) ≥ maxs∈∂ f (x0) sTw. Hence, it suffices to prove that w.h.p. over A,

min
‖w‖≥`(t)

{
√
m‖Aw − z‖ + max

s∈λ∂ f (x0)
sTw} >

√
m‖z‖.

We begin with applying Gordon’s Lemma 3.2.1 to the optimization problem in the
expression above. Define, z =

√
mz, rewrite ‖Aw − z‖ as max‖a‖=1{aTAw − aTz}

and then apply Lemma 3.2.1 with S = {w | ‖w‖ ≥ `(t)} and ψ(w, a) = −aTz +

maxs∈λ∂ f (x0) sTw. This leads to the following statement:

P ( (7.49) is true ) ≥ 2 · P
(
L(t; g, h) > ‖z‖

)
− 1,

where, L(t; g, h) is defined as

min
‖w‖≥`(t)

max
‖a‖=1
{(‖w‖g − z)Ta − min

s∈λ∂ f (x0)
(h − s)Tw}. (7.50)
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In the remaining, we analyze the simpler optimization problem defined in (7.50),
and prove that L(t; g, h) > ‖z‖ holds with probability 1− 5

2 exp(−t2/32). We begin
with simplifying the expression for L(t; g, h), as follows:

L(t; g, h) = min
‖w‖≥`(t)

{‖‖w‖g − z‖ − min
s∈λ∂ f (x0)

(h − s)Tw}

= min
α≥`(t)

{
‖αg − z‖ − α dist(h, λ∂ f (x0))

}
= min

α≥`(t)
{

√
α2‖g‖2 + ‖z‖2 − 2αgTz − α dist(h, λ∂ f (x0))}. (7.51)

The first equality above follows after performing the trivial maximization over a in
(7.50). Next, we show that L(t; g, h) is strictly greater than ‖z‖ with the desired
high probability over realizations of g and h. Consider the event Et of g and h
satisfying all three conditions listed below,

1. ‖g‖ ≥ γm − t/4, (7.52a)

2. dist(h, λ∂ f (x0)) ≤
√

D(λ∂ f (x0)) + t/4, (7.52b)

3. gTz ≤ (t/4)‖z‖. (7.52c)

The conditions in (7.52) hold with high probability. In particular, the first two
hold with probability no less than 1 − exp(−t2/32). This is because the `2-norm
and the distance function to a convex set are both 1-Lipschitz functions and, thus,
Proposition 3.1.1 applies. The third condition holds with probability at least 1 −
(1/2) exp(−t2/32), since gTz is statistically identical to N (0, ‖z‖2). Union bound-
ing yields,

P(Et) ≥ 1 − (5/2) exp(−t2/32). (7.53)

Furthermore, it can be shown (see Lemma 4.2 in [TOH14]) that if g and h are such
that Et is satisfied, then L(t; g, h) > ‖z‖. This, when combined with (7.53) shows
that P(L(t; g, h) > ‖z‖) ≥ 1 − (5/2) exp(−t2/32), completing the proof of Lemma
7.8.3. �

7.9 The Worst-Case NSE of Generalized LASSO
Here, we assume no restriction at all on the distribution of the noise vector z. In
particular, this includes the case of adversarial noise, i.e., noise that has information
on A and can adapt itself accordingly. We compute the resulting worst-case NSE of
the C-LASSO in the next section.
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Theorem 7.9.1. Assume 0 < t ≤
√
m −

√
D(λ∂ f (x0)). Then, with probability

1 − exp(−t2/2),

‖x̂c − x0‖

‖z‖
≤

√
m

γm −
√

D(cone(∂ f (x0))) − t
.

Recall in the statement of Theorem 7.9.1 that γm = E[‖g‖], with g ∼ N (0, Im). For
large m, γm ≈

√
m and according to Theorem 7.9.1, the worst-case NSE of the C-

LASSO can be as large as 1. Contrast this to Theorem 7.8.1 and the case where z is
not allowed to depend on A. There, the NSE is approximately D(cone(∂ f (x0)))/m
for large m.

Proof. The proof of Theorem 7.9.1 follows easily from Lemma 7.8.1:

‖x̂c − x0‖ ≤
‖A(x̂c − x0)‖

σmin(A, Tf (x0) ∩ Sn−1)
≤

‖z‖
σmin(A, Tf (x0) ∩ Sn−1)

.

Apply (7.45) to the above, to conclude with the desired upper bound.
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C h a p t e r 8

BEYOND IID ENSEMBLES: ISOTROPICALLY RANDOM
ORTHOGONAL MATRICES

The results of all previous chapters are proved under the assumption of the entries
of the measurement matrix being iid Gaussian. Beyond the Gaussian assumption,
numerical evidence suggests the same error predictions holding true for design ma-
trices with entries iid drawn from a wider class of probability distributions. These
are further partially supported by recent rigorous theoretical justifications [OT15;
EK15].

In this chapter, we take a step further by relaxing the iid-ness assumption on the
distribution of the measurement matrix and considering Isotropically Random Or-
thogonal (IRO) matrices. IRO matrices are sampled uniformly from the manifold
of row-orthogonal matrices satisfying AAT = Im, and are occasionally referred to
as being “Haar distributed". Matrices with orthogonal rows are often preferred in
practice because their condition number is one and they do not amplify the noise.
As a result they have superior noise performance, something we shall also observe.
Furthermore, certain classes of orthogonal matrices, such as Fourier, discrete-cosine
and Hadamard allow for fast multiplication and reduced complexity.

While in the noiseless case, the performance of IRO matrices is, as discussed in
Section 2.2) no different than that of iid matrices, we show things are different in the
noisy setting. We precisely characterize the error performance of the generalized-
LASSO under IRO matrices and show that it is superior to the error performance of
Gaussian designs. Interestingly, we empirically observe the following universality
property of IRO matrices: the derived error formulae for IRO matrices hold true for
random DCT and Hadamard matrices.

We begin in Section 8.1 with an overview of the results, emphasizing on the differ-
ence in the performance of IRO matrices to Gaussian ones. The formal statements
of the results are presented in Section 8.2 and a proof outline is included in Section
8.3.
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8.1 Introduction
We assume compressed measurements (δ := m

n
< 1) and iid Gaussian noise of

variance σ2. For the signal recovery we use the Constrained LASSO1:

x̂ := arg min
x
‖y − Ax‖2 subject to f (x) ≤ f (x0). (8.1)

and measure its performance with the Normalized Squared Error (NSE):

NSE(σ) := ‖x̂ − x0‖
2
2/σ

2. (8.2)

Noiseless Case

In the noiseless case recall by Theorem 2.2.1 that arg min{x|y=Ax} f (x) is the true
vector x0 with probability approaching one if and only if the compression rate δ
satisfies

δ > ω2
f ,x0

. (8.3)

Here, ω f ,x0 is the normalized Guassian-width, i.e.

ω f ,x0 = ω(Tf (x0))/
√
n.

This result is universal over the measurement matrix A over both the Gaussian
and the IRO ensemble: A appears in the optimality conditions only through its
nullspace, which in both cases is an isotropically random subspace in Rn of dimen-
sion n − m.

Noisy Case

Gaussian Ensemble: Theorem 7.5.1 proves that the NSE of (8.1) under Gaussian
measurements is upper bounded by2

ω2
f ,x0

δ − ω2
f ,x0

. (8.4)

1For simplicity and concreteness, we focus here on the Constrained LASSO. However, note that
all the results in this chapter can be readily extended to the regularized versions. Furthermore, we
only present results for the high-SNR regime (similar to those in Chapter 7 for Gaussian matrices)
but, these are readily extendible to arbitrary SNR values.

2Formally, (8.4) is an asymptotic version of Theorem 7.5.1. The Gaussian distance squared is
replaced here by the Gaussian width. This is allowed by (2.8). Also, note that in contrast to Chapter
7, here we assume the entries of A have unit variance; this explains the difference in scaling with m

between (8.2) and (7.22).
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The bound is precise (or asymptotically tight) since it is shown to be achieved with
equality in the limit σ → 0.

IRO Ensemble : Unlike the noiseless case, in the noisy setting IRO matrices ex-
hibit different recovery performance than that of Gaussians. Using the replica
method from statistical physics and through extensive simulation results, [VKC13;
Wen+14b] derive expressions that characterize the NSE of (8.1) and report that or-
thogonal constructions provide a superior performance compared to their Gaussian
counterparts. As mentioned in [VKC13], even though it provides a powerful tool
for tackling hard analytical problems, the replica method still lacks mathematical
rigor in some parts [VKC13]. As a follow up to these reports, and also driven by the
fact that orthogonal constructions are easier to implement in practical applications
[Wen+14b], it is of interest to prove precise bounds on the achieved NSE; ones that
would resemble those of Section 7.5 for Gaussian constructions. Towards this di-
rection, Oymak and Hassibi showed in [OH14] that the noisy performance of IRO
matrices is at at least as good as that of Gaussians. To conclude this, they proved
that the minimum conic singular value (mCSV) of the former can be no smaller than
that of the latter. Recall from Section 2.2 that mCSVs appear naturally as a measure
of noise robustness performance (e.g.[Cha+12, Cor. 3.3]), thus, the achieved NSE
of IRO can be no worse than that of Gaussians. Adding to this, [OH14] conjectures

a formula to bound the NSE of (8.1) when A is IRO.

Contribution
We prove in Theorem 8.2.1 that when the measurement matrix A is IRO, then the
NSE of (8.1) in the high-SNR regime (σ → 0) behaves precisely as3:

(1 − ω2
f ,x0

)

 ω2
f ,x0

δ − ω2
f ,x0

 . (8.5)

As is the case for the Gaussian ensemble (cf. (8.4)), we conjecture this to be the
worst-case value of the NSE over all σ. Since 1 − ω2

f ,x0
< 1, when compared

to (8.4), our result implies the superiority in performance of the IRO ensemble
when compared to the Gaussian one. In particular, this establishes rigorously the
conjecture raised in [OH14]. Our second result in Theorem 8.2.2 derives a high-
probability lower bound on the mCSV of IRO matrices. The bound is seen to exceed
the corresponding well-known bound for Gaussian matrices.

3The formula in (8.5) holds for IRO matrix A scaled such that AAT = nIm . This is to allow for
a fair comparison with i.i.d. standard Gausian matrices for which E[AAT ] = nIm .
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Approach
The set of techniques available for dealing with IRO matrices is limited compared to
the variety of methods available for working with Gaussian matrices. Nonetheless,
we are able to prove (8.5) based on a modification of the CGMT framework. Recall
from Section 7.4 that in order to apply the CGMT Theorem 3.3.1 for the analysis
of the LASSO, we used the fact that ‖a‖2 = max‖u‖2≤1 uTa to write (8.1) as:

min
x

max
‖u‖2≤1

uT (y − Ax) subject to f (x) ≤ f (x0), (8.6)

to which CGMT is directly applicable. In contrast, when A is IRO, it is not at all
obvious how to use CGMT. To start with, there is no Gaussian matrix. The key idea
here is to equivalently express an IRO matrix as:

(GGT )−1/2G,

with G ∈ Rm×n having entries i.i.d. standard Gaussian and where (GGT )−1/2 is
the inverse of the square-root of the positive definite (with probability one) m × m

matrix GGT . Substituting this expression in (8.1), the LASSO objective is closer
but not yet quite of the form required by the CGMT. In particular, the slick trick that
led to (8.6) is not enough here and additional ideas are required. Using these we are
able to bring (8.1) into the desired format; the argument is sketched in Section 8.3.
Once this is done, what remains is to apply the framework of Chapter 5 to conclude
with the desired.

8.2 Results
Setup

The matrix A ∈ Rm×n ,m < n is modeled to have orthogonal rows AAT = Im, and
the joint probability density of its elements remains unchanged when A is pre- and
post- multiplied by any orthogonal matricesΦ ∈ Rm×m ,Θ ∈ Rn×n, i.e., p(ΦAΘ) =

p(A). We say that A is IRO4. The noise vector v has entries i.i.d. standard normal
N (0, 1), f : Rn → R is assumed convex and continuous, and, x0 is not a minimizer
of f .

Our results hold in the asymptotic linear regime, where m, n and ω f ,x0 all grow to
infinity such that

4 Different terminologies that appear in the literature to describe the same distribution include
“random m-frames in Rn" and “distributed according to the Haar measure on the Stiefel manifold,"
see [Tro12].
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m/n → δ ∈ (0, 1) and ω f ,x0/
√
n → ω f ,x0 ∈ (0, 1),

where δ,ω f ,x0 are constants independent of the problem dimensions, e.g. m,n.

Theorem 8.2.1 (C-LASSO for IRO matrices). Consider (8.1) with A being an IRO

matrix and let

aNSE := lim
σ→0
‖x̂ − x0‖

2
2/σ

2.

If δ > ω2
f ,x0

, then, the following limit holds in probability

lim
n→∞

aNSE
n

= (1 − ω2
f ,x0

)

 ω2
f ,x0

δ − ω2
f ,x0

 .
Theorem 8.2.2 (Minimum Conic Singular Value of IRO matrices). Assume δ >

ω2
f ,x0

. Denote

χ :=
√
δ

√
1 − ω2

f ,x0

1 − δ
− ω f ,x0

and ρ := ω f ,x0/χ + 1 − δ. For all ζ > 0, with probability 1 in the limit n → ∞,

σmin(A;Tf (x0)) is lower bounded by√
δ + ρ2χ2 − 2ρχω f ,x0 − ρχ

2(1 − δ)
δ + ρ

− ζ .

Remarks
C-LASSO

Comparison to Gaussian case: For an i.i.d Gaussian matrix with entries of variance
1/n, it was shown in Section 7.5 that

aNSE
n
≈

ω2
f ,x0

δ − ω2
f ,x0

.

This is strictly greater than the expression of Theorem 8.2.1, proving that the IRO
ensemble has strictly superior noise performance. Note that when ω2

f ,x0
< δ � 1,

the two formulae are close to each other. This agrees with the fact that the entries of
a very “short" IRO matrix are effectively independent for many practical purposes
[Jia+06]. Finally, observe that both bounds approach infinity as the compression
rate δ approaches ω2

f ,x0
. Of course, this agrees with the phase transition in the

noiseless case (cf. (8.3)) which is same for both ensembles.
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Figure 8.1: Illustration of Theorem 8.2.1 for f = ‖ · ‖1 and x0 ∈ R
256 a 10-sparse

vector. Simulation results support the claim that aNSE = wNSE. Furthermore, ran-
domly sampled Discrete Cosine Transform (DCT) and Hadamard (HDM) matrices
appear to have same NSE performance as IRO matrices. Measured values of the
NSE are averages over 25 realizations.

Interpretation: As seen the formula of Theorem 8.2.1 closely resembles the cor-
responding results for the Gaussian case. Thus, most of the remarks made for the
Gaussian case regarding the role of the involved parameters, the geometric nature
of the bound and its generality directly transfer to our case. It is useful to recall
that ω2

f ,x0
admits precise high-dimensional approximations either in closed-form,

or ones that are numerically tractable, for a number of useful instances of f and x0,
e.g. if f = ‖·‖1 and x0 a k-sparse signal with k/n → ρ, thenω2

f ,x0
≤ 2ρ(log(1/ρ)+1)

(cf. Section 2.15).

wNSE: Similar to (7.38), we conjecture that wNSE = aNSE here, as well. In
this case, Theorem 8.2.1 would prove a tight upper bound on NSE(σ) for any σ.
Simulation results in Figure 8.1 support the claim.

Universality: Our simulations in Figure 8.1 suggest that partial Discrete Cosine
Transform (DCT) matrices obtained by randomly sampling m rows of the DCT ma-
trix without replacement, and similarly sampled Hadamard (HDM) matrices exhibit
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Figure 8.2: Illustration of Theorem 8.2.2. The bound exceeds the corresponding
bound for Gaussian matrices. We have chosen f = ‖ · ‖1 and x0 ∈ R

n, a k-sparse
vector.

the same NSE performance as the IRO ensemble. Thus, Theorem 8.2.1 appears to
predict the NSE of random DCT and HDM matrices as well. Understanding of the
behavior of such ensembles is of great practical importance due to their favorable
attributes [Wen+14b].

Minimum Conic Singular Value

Comparison to Gaussian case: Recall from the escape through a mesh Proposition
2.2.2 that the mCSV of a matrix with i.i.d. entries N (0, 1/n) is lower bounded by
√
δ − ω f ,x0 . The bound of Theorem 8.2.2 exceeds that, which is a strong indication

that IRO matrices are strictly better conditioned than corresponding Gaussian ones.
See Fig. 8.2 for an illustration.

Sanity test: When ω2
f ,x0

< δ � 1, the entries of the IRO behave almost as if they
are independent [Jia+06]. As expected, then, in this regime the bound of Theorem
8.2.2 approaches

√
δ −ω f ,x0 , which coincides with the bound on Gaussians. On the
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other hand, when δ = 1, it can be seen that, as expected, the expression of Theorem
8.2.2 approaches one.

Tightness: Theorem 8.2.2 provides no guarantees on the exactness of the derived
lower bound. This is also the case for the corresponding result on the mCSV of
Gaussian matrices. Proving (or disproving) the exactness of the bounds is an open
research problem.

General cones: Of course, the bound of Theorem 8.2.2 holds for the minimum
singular value of A with respect to any cone, not necessarily a tangent cone or even
a convex cone. One just needs to replace ω f ,x0 with the Gaussian width of the
corresponding cone. Also, a non-asymptotic version of Theorem 8.2.2 is possible
with only few adjustments in the proof presented here.

8.3 Proof Outline
Here, we outline the main steps of the proof. We focus on Theorem 8.2.1. The proof
of Theorem 8.2.2 is similar (see Appendix E). We limit our attention to showing the
steps and modifications required to apply the CGMT in the case of IRO matrices. In
contrast to this part of the proof, which involves several new ideas, afterwards we
have transformed the problem into one where the CGMT framework is applicable,
then the rest is along the lines of Chapter 5. This latter part and some technical
details not discussed here are deferred to Appendix E. We re-write (8.1) by changing
the decision variable to be the error vector w := x − x0:

ŵ := min
w∈D f (x0)

‖Aw − σv‖2. (8.7)

We evaluate the limiting behavior limσ→0 ‖ŵ‖2/σ2. Throughout, we write ‖ · ‖
instead of ‖ · ‖2.

Formulation in terms of Gaussians
We begin with a simple Lemma that provides a simple characterization of IRO
matrices in terms of Gaussians. Let X1/2 denote a square-root of a matrix X ∈
Rm×m, and X−1/2 its inverse (if it exists). Also, for random variables x and y with
the same distribution, we write x ∼ y.

Lemma 8.3.1 (IRO matrices). Let G ∈ Rm×n have entries i.i.d. N (0, 1). Then the

matrix A = (GGT )−1/2G is a m × n IRO matrix.

Proof. It can be readily confirmed that AAT = Im. We need to prove that the dis-
tribution of A remains invariant after pre- and post- multiplication with orthogonal
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matrices of appropriate sizes. Let Φ ∈ Rn×n, Θ ∈ Rm×m be any orthogonal ma-
trices. First, AΘ ∼ (GGT )−1/2GΘ = ((GΘ)(GΘ)T )−1/2GΘ. Recall that the Gaus-
sian distribution is invariant under orthogonal transformations, i.e. G ∼ GΘ, to
conclude from the above that AΘ ∼ A. Next, G ∼ ΦG. Also, it can be directly
verified that Φ(GGT )−1/2Φ is the inverse of a square-root of of ΦGGTΦ. With
these, A ∼ ((ΦG)(ΦG)T )−1/2ΦG = Φ(GGT )−1/2G = ΦA. �

Next, we use Lemma 8.3.1 to write the objective function in (8.7) in terms of Gaus-
sian matrices.

Lemma 8.3.2 (LASSO Objective). Assume A ∈ Rm×n is IRO and v ∈ Rm is stan-

dard Gaussian, independent of each other. Then, for any w ∈ Rn,

(Aw − σv) ∼ (GGT )−1/2G(σq − w),

where G ∈ Rm×n and q ∈ Rn have entries i.i.d. N (0, 1) and are independent of

each other.

Proof. Let A,G, v, q as in the statement of the Lemma. For any row-orthogonal
Q ∈ Rm×n, v ∼ Qq. Furthermore, provided that q is independent of the distribution
of Q, the same is then true for v. Hence, letting Q = A, we have (Aw − σv) ∼
A(w − σq). Apply Lemma 8.3.1 to conclude with the desired. �

Preparing the grounds for applying the CGMT
Using Lemma 8.3.2, we work with the following (probabilistically) equivalent for-
mulation of (8.7):

ŵ := min
w∈D f (x0)

‖(GGT )−1/2G(w − σq)‖2, (8.8)

This brings a step closer to the CGMT framework, but not yet quite to the point that
we can identify the desired format of the (PO) problem described in (3.11a). The
goal of this section is to complete this step. We start by using the fact that for any
a ∈ Rm: ‖a‖ = max‖b‖≤1 bTa. In particular, the objective function in (8.8) can be
expressed as follows:

max
‖b‖≤1

bT (GGT )−1/2(w − σq) =

max
‖(GGT )1/2b‖≤1

bTG(w − σq) = max
‖GT b‖≤1

bTG(w − σq).
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It can be checked that the above is equivalent to:

max
b

min
`

bTG(w − σq − `) + ‖`‖.

Now, we flip the order of max-min [Roc97, Cor. 37.3.2]5:

ŵ = min
w∈D f (x0),`

max
b

bTG(w − σq − `) + ‖`‖ ,

or, re-defining ` := w − σq − `:

ŵ = min
w∈D f (x0),`

max
b

bTG` + ‖w − σq − `‖. (8.9)

This brings (8.7) in the desired format (cf.(3.11a)) for the application of the GMT
framework6. In particular, the (AO) problem as it corresponds to (8.9) becomes:

w̃(g, h, q) = arg min
w∈D f (x0),`

max
b
‖`‖gTb − ‖b‖hT`

+ ‖w − σq − `‖. (8.10)

The rest of the proof analyzes (8.10) with the goal of determining the limiting be-
havior of ‖w̃‖ and is included in Appendix E. We just remark here on the assump-
tion of the theorem that σ → 0; this also provides a hint on the presence of the
Gaussian width of the tangent cone in the final result. When σ → 0, it suffices to
analyze a “first-order approximation" to problem (8.10) in which the feasible set
D f (x0) is substituted by its conic hull, i.e. Tf (x0). Since the tangent cone captures
the local behavior in the neighborhood of x0, the relaxation will be tight in the limit
as ‖ŵ‖2 → 0. The idea is that in the limit σ → 0, ‖ŵ‖ is sufficiently small and
the approximation tight. Of course, this approximation is the same as the one we
already saw in Section 7.5 when Gaussian matrices were considered.

5(i) the objective function above is continuous, convex in `, and concave in b, (ii) the constraint
sets are convex. We only need to worry about boundedness of the constraint sets. Such steps require
proper attention in general and are handled rigorously in the Appendix.

6To be precise, this requires a trivial modification of (8.9) since w does not appear in the bilinear
form as in (3.11a). This can be handled easily and similar extension can also be found in [FM14,
Lem. 5]. In particular, comparing to (3.11a), we can identify in (8.9): ψ([`,w], b) := ‖w − q − `‖,
which is continuous and convex in [`,w], as desired. Also, the constraint sets are convex. Please
refer to the Appendix for compactness issues.
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C h a p t e r 9

BEYOND SQUARED-ERROR: GENERAL PERFORMANCE
METRICS

All the results presented up to this point of the thesis consider specifically the
squared-error reconstruction performance of (1.2). This section extends the scope
of the CGMT framework and derives precise results for other performance metrics.
For concreteness, we focus on the problem of sparse recovery under `1-regularized
least-squares (a.k.a LASSO), but also discuss possible extensions to other instances
of (1.2). We establish accurate predictions of a wide range of performance metrics
that have a Lipschitz property. For illustration, this result can be used to accurately
predict the probability that the LASSO successfully identifies the non-zero entries
of the unknown signal; specializing the result to the high-SNR regime yields bounds
that are geometric in nature and admit insightful interpretations.

In Section 9.1 we motivate the need to study other performance metrics besides the
squared-error. We briefly review the known result on the squared-error performance
in Section 9.2, but put in a language that is easy to generalize. The main result of the
chapter on the LASSO performance under general Lipschitz performance metrics
is presented in Section 9.3. For an illustration, we use it to predict the probability
of correct support recovery in Section 9.4. Its proof occupies the last Section, 9.5.

9.1 Introduction
Consider recovering a k-sparse signal x0 ∈ R

n from noisy linear measurements (cf.
(1.1)) using the square-root LASSO:

x̂ = arg min
x
‖y − Ax‖2 +

λ
√
n
‖x‖1. (9.1)

(The normalization with
√
n is for convenience in the analysis). We remark that the

analysis presented here also applies to the `2
2-LASSO, but we focus on the version

in (9.1) for concreteness. Also, for convenience, we shall often refer to (9.1) simply
as the LASSO.

Measuring Performance
A “good estimate" might translate to a variety of different desired attributes associ-
ated with x̂. This translates to a variety of different performance metrics, which we
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discuss here.

`2-reconstruction (or squared-) error: This refers to the standard and somewhat
generic measure of performance on which this thesis has focused thus far. It mea-
sures the deviation of x̂ from the true signal x0 in the `2-norm. Formally, the metric
acts on the reconstruction error vector ŵ := x̂ − x0 and returns its Euclidean norm,
i.e., Ψ`2(ŵ) := ‖ŵ‖2 = ‖x̂ − x0‖2. The `2-error in estimating the coefficients of x0

also controls the mean squared prediction error, i.e. the error in predicting a (future)
response to a fresh (random) measurement (e.g. [OT15, Sec. 8.1]).

Lipschitz Metrics: Beyond the `2-reconstruction error, we consider performance
metrics Ψ : Rn → R that act on the error vector ŵ := x̂ − x0 and which satisfy a
Lipschitz property, i.e. |Ψ(x) − Ψ(y)| ≤ L · ‖x − y‖2 for all x, y ∈ Rn and some L.
One common such metric is Ψ(w) = ‖w‖1, [Neg+12].

Support Recovery: In the problem of sparse recovery a natural performance met-
ric that arises in a variety of contexts (e.g. subset selection in regression, structure
estimation in graphical models, sparse approximation [Wai09]) is that of support re-
covery, i.e. identifying whether an entry of the unknown signal x0 is on the support
(aka is non-zero), or it is off the support (aka is zero). We take a decision based on
the solution x̂ of the LASSO: declare the ith entry to be on the support iff |x̂i | ≥ ε .
Here ε > 0 is a user-defined threshold imposed on x̂; such a hard-thresholding
operation is practical due to machine precision inaccuracies in solving (9.1). In
Theorem 9.4.1 we accurately predict the (per-entry) rate of successful on-support

and off-support recovery. Formally, let

Φε ,on(x̂) =
1
k

∑
i∈S(x0)

1{|x̂i |≥ε } , (9.2a)

Φε ,off(x̂) =
1

n − k

∑
i<S(x0)

1{|x̂i |≤ε } , (9.2b)

where 1A is the indicator function of a set A. The metric Φε ,on(x̂) (resp. Φε ,off(x̂))
measures the ratio of the non-zero (resp. zero) entries of x0 that are properly iden-
tified to be on (resp. off) the support. An equivalent way to interpret the met-
rics defined above is to consider their expectation. For instance, E[Φε ,on(x̂)] =

(1/k)
∑

i∈S(x0) P(|x̂i | ≥ ε ) measures the average probability that a single non-zero
entry of x0 is correctly identified to be on the support. In particular, if the entries
of x̂ are iid, then in the limit Φε ,on(x̂) converges to the probability that a single on-
support entry is correctly identified. Our proof hints that this is indeed the case (cf.
Section 9.5).
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Working Hypothesis
The unknown signal x0 ∈ R

n is k-sparse: its first k entries are sampled iid from
a distribution pX0 of zero mean and of unit variance (E[X2

0 ] = 1), and the rest of
them are zero. (Alternatively, we could have assumed all its entries be iid from a
distribution as in 6.32). The measurement matrix A ∈ Rm×n has entries iid zero
mean Gaussian random variables with variance 1

n
. The noise vector z ∈ Rm has

entries iid N (0, σ2). We study the linear asymptotic regime in which the problem
dimensions n, m and k all grow to infinity at proportional rates 1:

k/n → ρ ∈ (0, 1) and m/n → δ ∈ (0,∞).

Also, the regularizer parameter λ in (9.1) is considered to be constant, in particu-
lar independent of n. Under the current setting, the Signal to Noise Ratio (SNR)
becomes SNR := ρ/σ2.

Generalizations
One of the primal purposes of the current chapter is showing how the CGMT frame-
work can be applied to characterize performance measures beyond the squared-
error. For simplicity and concreteness, we focus entirely on the LASSO method.
However, we remark that the results can in principle be extended to the general
class of regularized M-estimators in (1.2) under a setting similar to that of Chap-
ter 4. The essence of the proof is the same as the one here (cf. Section 9.5), but
several technical details need to be taken care of. We leave the details and a result
on the performance of regularized M-estimators under Lipschitz-like metrics of the
generality of Theorem 4.2.1 for future work.

9.2 Review: `2-reconstruction Error
The `2-reconstruction error of (9.1) was precisely characterized in Section 6.5. We
repeat the result below only this time introducing some new notation that will prove
convenient for the statement of the more general result to follow in the next section.

ψ-distance functional: For a functionψ : R→ R, let Distψ(.)(·, ·) : R × R>0 → R be
defined as

Distψ(.)(κ, λ) := ρ · E[ψ(X0 − η(κH + X0, κλ))] + (1 − ρ) · E[ψ(η(κH , κλ))],
(9.3)

1 As usual, the results apply on a sequence of problem instances {x0 ,A, z,m, k }n indexed by
n ∈ N such that the properties mentioned hold for all members of the sequence for all n. To keep
notation clear we do not explicitly use the subscript n for symbols of the sequence.
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where the expectation is over both X0 ∼ pX0 and H ∼ N (0, 1), and η(X , τ) =

(X/|X |) max{|X | − τ, 0} denotes the soft-thresholding operator. The function re-
turns the distance, with respect to the function ψ(.), between a r.v. X0 and the
soft threshold operator applied to the random variable itself after adding a Gaussian
noise to it. This motivates the terminology used. Also, note the implicit dependence
of the functional on the rest of the problem parameters, namely ρ, δ and σ.

λcrit : There exists a critical value of the regularizer parameter, namely λcrit, such
that the error behavior is different when λ ≤ λcrit compared to λ > λcrit. Define the
pair (αcrit, λcrit) as the solution to the following system of equations:α

2
crit = Dist(.)2(κcrit, λcrit),

δ = ρ · P {|κH + X0 | ≥ λcritκcrit } + 2(1 − ρ)Q(λcrit),
(9.4)

where κcrit =

√
(α2

crit +σ2)/δ and Q(·) is the standard Q-function. Recall by Theo-
rem 6.6.1 that if δ ≤ 1, then (9.4) has a unique solution. Otherwise, define λcrit = 0.
With these we can restate Theorem 6.6.1 as follows.

Lemma 9.2.1 (re-stament of Theorem 6.6.1). Under the working hypothesis of Sec-

tion 9.1 and for any fixed λ > 0, define α := α(λ) as the unique solution to the

equation α2 = Dist(.)2(
√

(α2 +σ2)/δ, λ) if λ ≥ λcrit, and as α = αcrit otherwise.

Then, it holds in probability that limn→∞
1
n
‖x̂ − x0‖

2
2 = α2.

9.3 Lipschitz Performance Metrics
Theorem 9.3.1 below generalizes Lemma 9.2.1 to metrics that attain a Lipschitz
property. Assumption 9.3.1 below formally defines the required properties of such
metrics.

Assumption 9.3.1 (Lipschitz metrics). We say Assumption 9.3.1 holds for the Lip-

schitz function Ψ : Rn → R if:

• For all constants c > 0, there exists a constant C > 0 such that for all x ∈ Rn that

‖x‖ ≤ c
√
n, we have |Ψ(x)| ≤ C

√
n.

• For all x, y ∈ Rn, |Ψ(x)−Ψ(y)| ≤ L√
n
‖x− y‖2, for a constant L independent on n.

• For all α, λ > 0 and h ∼ N (0, In), there exists function Γ : R>0 × R>0 → R such

that

Ψ(x0 −
−→η (κh + x0, λκ))

P
−→ Γ(κ, λ). (9.5)
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Figure 9.1: Performance of the Square-root Lasso with respect to Ψ(x) = 1√
n
‖x‖2

(Red Line) and Ψ(x) = 1
n
‖x‖1 (Blue line) as a function of λ. The theoretical predic-

tion follows from Theorem 9.3.1. For the simulations, we used n = 256, δ = 0.8,
ρ = 0.1, SNR=0.5 and the data are averaged over five independent realizations.

Here, −→η is the “vector" soft-threshold operator acting element-wise on the entries

of its first argument.

The first is a simple scaling requirement such that Ψ(x) = O (1). The second im-
poses a growth condition on the Lipschitz constant with respect to n (this is neces-
sary for the asymptotic analysis but can potentially be relaxed). The third require-
ment of Assumption 9.3.1 is easier to interpret in the “separable-case" in which
Ψ(x) = (1/n)

∑
iψ(xi) for some L-Lipschitz scalar function ψ. Then, condition

(9.5) holds by the WLLN for Γ(κ, λ) = Distψ(κ, λ) (recall (9.3)).

Theorem 9.3.1 (Lipschitz performance of LASSO). Under the working hypothesis

of Section 9.1 and with α and λcrit defined as in Lemma 9.2.1, fix λ > 0, let λ̂ =

max{λ, λcrit} and κ =
√
α2 +σ2/

√
δ. Then, for any Lipschitz function Ψ(x) that

satisfies Assumption 9.3.1, it holds in probability that, limn→∞ Ψ(x̂ − x0) = Γ(κ, λ̂).
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Evaluating the prediction only involves identifying the function Γ as per Assump-
tion 9.3.1, and calculating the parameters α and λcrit as per Lemma 9.2.1. Of
course, Lemma 9.2.1 follows from Theorem 9.3.1 when applied for Ψ(x̂ − x0) =

1√
n
‖x̂−x0‖2, since the latter is easily shown to satisfy Assumption 9.3.1 for Γ(κ, λ) =√

Dist(.)2(κ, λ). A different Lipschitz performance metric that is often of interest in
practice is the `1-reconstruction errorΨ(x̂−x0) = (1/n)‖x̂−x0‖1. This is an example
of a separable metric, thus it satisfies Assumption 9.3.1 for Γ(κ, λ) = Dist|·|(κ, λ).
See Figure 9.1 for an illustration. Observe that the prediction of the theorem (al-
though asymptotic) is accurate for problem dimensions of only a few hundreds.
Also, the precise nature of the predictions allows optimal tuning of the regularizer
parameter λ, the number of measurements δ, etc..

9.4 Support Recovery
Theorem 9.4.1 below characterizes the support recovery metrics introduced in (9.2).
Recall that ε > 0 is a fixed hard threshold imposed on the entries of the solution x̂
to the LASSO in order to decide whether an entry is on or off the support.

Theorem 9.4.1 (Probability of support recovery). Under the working hypothesis

of Section 9.1 and with α and λcrit defined as in Lemma 9.2.1, fix λ > 0, let κ =√
(α2 +σ2)/δ and λ̂ = max{λcrit, λ}. Then, for any ε > 0, it holds in probability

that

lim
n→∞
Φε ,on(x̂) = P{|κH + X0 | ≥ ε + λ̂κ}

and

lim
n→∞
Φε ,off(x̂) = P{|κH | ≤ ε + λ̂κ}.

The metrics in (9.2) are not Lipschitz. Hence, they don’t satisfy all requirements of
Assumption 9.3.1 of Section 9.3, and Theorem 9.3.1 is not directly applicable. The
core idea behind the proof of the theorem is similar to that of Theorem 9.3.1, but
requires a few extra arguments (see Section F.1). Figure 9.2 illustrates the validity
of the prediction.

Remark 9.4.0.56 (Off-support). When ε � λ̂κ, the formula of the theorem for
Φε ,off(x̂) reduces to P{|κH | ≤ ε + λ̂κ} ∼ P{|H | ≤ λ̂}, which is independent of the
problem parameters δ, ρ and SNR. This simple observation is verified in Figure
9.2: the off-support recovery probability is the same for different values of under-
sampling parameter δ as long as λ ≥ λcrit.
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Figure 9.2: Probability of successful recovery of the on-support and of the off-
support entries as a function of λ for two different values of the normalized mea-
surements, namely δ = 0.8 (solid) and δ = 1.2 (dashed). The theoretical predic-
tion (shown in solid/dashed lines) follows from Theorem 9.4.1. For the simulation
points (shown with squares and circles), we used n = 256, SNR= 0.5, ε = 10−3,
ρ = 0.1 and the data are averaged over five independent realizations of the problem.

Remark 9.4.0.57 (Large/Small λ). It is easy to conclude from Theorem 9.4.1 that
as λ becomes large Φε ,off (reps. Φε ,on) converge to one (resp. zero). Of course,
this behavior is expected since large values for the regularizer parameter put more
emphasis on the `1-regularization term in (9.1), thus promoting sparser solutions.
Reversed behavior is observed when λ takes values close to zero. An interesting
observation is the following: in the under-sampling regime (δ < 1), even when
λ → 0 there is a non-vanishing probability that an off-support entry is correctly
identified as such. This is because λcrit is non-zero in this case. See also Figure 9.2.

Remark 9.4.0.58 (Optimal λ). A natural question becomes that of determining the
optimal value of the regularizer parameter. In order to balance between on- and
off- support recovery probabilities a reasonable performance metric becomes Φε =

ωΦε ,on + (1 − ω)Φε ,off for ω ∈ [0, 1]. Theorem 9.4.1 precisely characterizes the
behavior of this as a function of λ; thus, it determines the optimal value of λ that
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minimizes Φε .

Remark 9.4.0.59 (High-SNR Regime). Here, we analyze the probability of support
recovery at SNR � 1 (eqv. σ2 → 0). In this regime, λcrit takes a simple form:
if δ < 1, then λcrit = Q−1( δ−ρ

2(1−ρ) ) where Q−1 is the inverse Q-function, otherwise,
λcrit = 0 (also, see Section 7.6). Let us first examine the behavior of “off-support"
recovery probability. When σ2 � 1, the formula of Theorem 9.4.1 reduces to the
following simpler one:

lim
n→∞
Φε ,off(x̂) ∼ 1 − 2Q

(
λ̂ +

ε

σ

√
δ − D`1 ,x0(λ̂)

)
, (9.6)

for λ such that δ > D`1 ,x0(λ̂), λ̂ = max{λ, λcrit}, and

D`1 ,x0(λ) = ρ · E[(H − λ)2
∣∣∣H > 0] + (1 − ρ) · E[η2(H , λ)]. (9.7)

Several remarks are in place here.

First, when the threshold ε does not scale with σ and σ → 0, then naturally the
probability converges to one. The same is true as λ grows large, which is again ex-
pected. The term D`1 ,x0(λ) is nothing but the normalized Gaussian squared distance
to the scaled subdifferential ((9.7) is same as (2.14) normalized by n). Observe that
(9.6) requires δ > minλ>0 D`1 ,x0(λ) in line with Theorem 2.2.1. Also, the formula
is valid for λ such that δ > D`1 ,x0(λ̂).

For the on-support probability, we can show that it behaves as

lim
n→∞
Φε ,on(x̂) ∼ P

{
|κ̂H + X0 | ≥ ε + λ̂κ̂

}
for κ̂ = σ/

√
δ − D`1 ,x0(λ̂), and similar remarks can be made.

9.5 Proofs
Proof of Theorem 9.3.1
We follow the standard approach of the CGMT framework as detailed in Chapter 5.
Recall that in Chapter 5 we were interested in the `2-reconstruction error, thus we
applied the CGMT Theorem 3.3.1(iii) to the set (cf. (5.2)):

Sε = {w | |‖w‖2 − α∗ | > ε }.

Instead, here we need to apply the CGMT to a different set:

Sε = {w | |Ψ(w) − Γ(κ, λ)| > ε }. (9.8)
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To avoid unnecessary repetitions, we only highlight the parts of the proof that are
different.

First, specializing the results of Section 5.2 to the LASSO method in (9.1), the (PO)
and (AO) problems of interest become (see for example Section 7.4):

min
w

1
√
n
‖z − Aw‖2 +

λ

n
‖x0 + w‖1, (9.9)

min
w

max
0<β≤1

β
‖g‖2
√
n

√
‖w‖22
n

+σ2 − β
hTw
√
n

+
λ

n
‖x0 + w‖1. (9.10)

To prove Theorem 9.3.1, we need to show that Ψ(wΦ)
P
−→ Γ(κ, λ) =: d∗. The

CGMT suggests that d∗ is the converging limit of Ψ(wφ), the solution to the Auxil-

iary Optimization (AO) in (9.10). The strategy now becomes clear. First, we need
to analyze the (AO) problem in (9.10) and find the converging limit of Ψ(wφ), say
d∗. The second step consists of showing that the objective function of the (AO)
strictly increases when w is constrained such that Ψ(wφ) is far from d∗.

We start by a "Sclarization" of the (AO) as in Chapter 5. Only now we also need to
keep track of the optimal direction of wφ in (B.24). It can be shown that

wφ,i = x0,i −
−→η

(
κ(g, h)hi + x0,i , κ(g, h) · λ

)
,

where κ(g, h) :=
√
α2(g, h) +σ2/

√
δ and α(g, h) is the minimizer of the random

scalar optimization problem in (B.10) (when specialized to the LASSO, (B.10) can
be expressed as in [TAH15, eqn. (46)]).

The next step of the CGMT framework, namely the “Convergence analysis" of the
(AO) shows that α(g, h) converges to α as this is defined in Lemma 9.2.1.

Thus, we can condition on the hight probability event that α(g, h)→ α to show that

Ψ(wφ)
P
−→ Ψ(x0 −

−→η (κh + x0, κ · λ)). (9.11)

But the latter term converges to Γ(κ, λ) by assumption, thus showing that the for-
mula of Theorem 9.3.1 holds for the solution of the (AO) problem. It is also worth
mentioning that the above argument shows the entries of wφ to be asymptotically
iid.

To complete the proof of the theorem, we need to verify that the objective function
of the (AO) strictly increases when w ∈ Sε for the set Sε defined in (9.8). For any
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δ > 0, let ε = 2δ > 0 and consider any w ∈ S2δ. By (9.11), |Ψ(wφ) − Γ(κ, λ)| < δ

w.p.a. 1. Combined, |Ψ(w) − Ψ(wφ)| > δ w.p.a. 1. But then, the Lipschitzness
property of Ψ implies that

n−1/2‖w − wφ‖2 > δ/L,

and the desired conclusion follows by showing that the objective function in (9.10)
is strongly convex in w and recalling optimality of wφ. In particular,

β‖g‖2
√
‖w‖22/n +σ2 is strongly convex with coefficient τ/n for some constant τ >

0 (independent of n). Thus the objective function of the optimization in (9.10) (call
it F(·)) satisfies

F(w) ≥ F(wφ) +C
‖w − wφ‖

2
2

n
≥ F(wφ) +

τδ

L
.

Proof of Theorem 9.4.1
The two metrics defined in (9.2) do not satisfy the Lipschitz property. Nevertheless
the proof of Theorem 9.4.1 follows from Theorem 9.3.1 when combined with a
weak-convergence argument. Let ψ : R → R be arbitrary L-Lipschitz function. By
Theorem 9.3.1, (1/n)

∑
iψ(wΦ,i)

P
−→ Distψ(κ, λ). Since this holds for all Lipschitz

functions, the empirical probability measure of wΦ converges [Bil79, Thm. 25.8].
Hence, it follows (almost identically as in [Bil79, Thm. 19]) that Ψε ,on

P
−→ Γ(κ, λ),

where Γ as in Assumption 9.3.1 for the function Ψ(w) = 1/k
∑k

i=1 1{|wi−x0,i |≥ε }.
Simplifying the “Γ(κ, λ)-term" yields the statement of Theorem 9.4.1.
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C h a p t e r 10

APPLICATION: THE BIT-ERROR RATE OF THE
BOX-RELAXATION OPTIMIZATION

Convex relaxation based methods have emerged as popular tools for structured sig-
nal recovery. In the previous chapters, we have developed a complete theory char-
acterizing the error performance of such methods under linear noisy measurements
and Gaussian design matrices. Here, we apply the results in a specific example, that
of data detection in Multiple-Input Multiple-Output (MIMO) communication sys-
tems with a large number of antennas at both ends, and further explore the practical
implications.

To be concrete, we consider the problem of recovering an n-dimensional signal
x0 ∈ C

n from the noisy MIMO input-output relation y = Ax0+z ∈ Rm, where C is a
finite constellation (e.g. BPSK, M-ary PAM, etc.) , A ∈ Rm×n is the MIMO channel
matrix (assumed to be known), z ∈ Rm is the noise vector [NLM13; Wen+14a;
NC14; Cha+15]. A large host of exact and heuristic optimization algorithms have
been proposed. Exact algorithms, such as sphere decoding and its variants, become
computationally prohibitive as the problem dimension grows.

Heuristic algorithms such as zero-forcing, MMSE, decision-feedback, etc., [GLS12;
Fos96; HV05] have inferior performances that are often difficult to precisely charac-
terize. A popular such heuristic is the Box Relaxation Optimization (BRO) decoder,
which is a convex relaxation of the ML decoder [TRL01; YYU02; Ma+02], and
allows one to recover the signal via convex optimization followed by hard thresh-
olding. Despite its popularity, very little has been known about its performance.

Applying the theory developed in this thesis, this chapter characterizes the bit-wise

error rate (BER) of the BRO in the regime of large dimensions and under Gaussian
assumptions on the channel matrix, for the first time. Further implications of the
analysis are also discussed.

In order to make ideas concrete, we focus primarily on the case of BPSK signal
recovery which then occupies Sections 10.1 and 10.2. In Section 10.3 we include
extensions of the results to other signal constellations.
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10.1 BPSK Signal Recovery

Setup. Our goal is to recover an n-dimensional BPSK vector x0 ∈ {±1}n from the
noisy multiple-input multiple output (MIMO) relation y = Ax0 + z ∈ Rm , where
A ∈ Rm×n is the MIMO channel matrix (assumed to be known) and z ∈ Rm is
the noise vector. We assume that A has entries iid N (0, 1/n) and z has entries iid
N (0, σ2). The normalization is such that the reciprocal of the noise variance σ2 is
equal to the Signal-to-Noise Ratio, i.e. SNR = 1/σ2.

The Maximum-Likelihood (ML) decoder. The ML decoder which maximizes the
probability of error (assuming the x0,i are equally likely) is given by minx∈{±1}n ‖y−
Ax‖2. Solving the above is often computationally intractable, especially when n is
large, and therefore a variety of heuristics have been proposed (zero-forcing, mmse,
decision-feedback, etc.) [Ver98].

Box Relaxation Optimization. The heuristic we shall use is referred to as Box
Relaxation Optimization (BRO). It consists of two steps. The first one involves
solving a convex relaxation of the ML algorithm, where x ∈ {±1}n is relaxed to
x ∈ [−1, 1]n. The output of the optimization is hard-thresholded in the second step
to produce the final binary estimate. Formally, the algorithm outputs an estimate x∗

of x0 given as

x̂ = arg min
−1≤xi≤1

‖y − Ax‖2, (10.1a)

x∗ = sign(x̂), (10.1b)

where the sign function returns the sign of its input and acts element-wise on input
vectors.

Bit error probability. We evaluate the performance of the detection algorithm by
the bit error probability Pe, defined as the expectation of the Bit Error Rate BER .
Formally,

BER :=
1
n

n∑
i=1

1{x∗
i
,x0,i } , (10.2a)

Pe := E [BER ] =
1
n

n∑
i=1

Pr
(
x∗i , x0,i

)
. (10.2b)

Our main result analyzes the BER of the (BRO) in (10.1). We assume a large-
system limit where m, n → ∞ at a proportional rate δ. The SNR is assumed
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constant; in particular, it does not scale with n. Let Q(·) denote the Q-function
associated with the standard normal density p(h) = 1√

2π
e−h

2/2.

Theorem 10.1.1 (BER of the (BRO) for BPSK). Let BER denote the bit error

rate of the detection scheme in (10.1) for some fixed but unknown BPSK signal

x0 ∈ {±1}n. For constant SNR and m
n
→ δ ∈ (1

2 ,∞), it holds:

lim
n→∞

BER = Q(1/τ∗),

where τ∗ is the unique solution to

min
τ>0

τ

2

(
δ −

1
2

)
+

1/SNR
2τ

+
τ

2

∫ ∞

2
τ

(
h −

2
τ

)2

p(h)dh. (10.3)

Theorem 10.1.1 derives a precise formula for the bit error probability of the (BRO).
As is common in the results of this thesis, the formula involves solving a convex and
deterministic minimization problem in (10.3). The proof of the theorem is of course
based on the CGMT framework of Chapter 5. In particular, we rely on the extension
of the framework to general performance metrics in Chapter 9. See Appendix F for
details.

10.2 Implications

Computing τ∗. It can be shown that the objective function of (10.3) is strictly
convex when δ > 1

2 . When δ < 1
2 , it is well known that even the noiseless box

relaxation fails [Cha+12]. (In fact, δ = 1
2 is the recovery threshold for this con-

vex relaxation.) Thus, (10.3) has a unique solution τ∗. Observe that the problem
parameters δ and SNR appear explicitly in (10.3); naturally then τ∗ is indeed a func-
tion of those. The minimization in (10.3) can be efficiently solved numerically. In
addition, owing to the strict convexity of the objective function, τ∗ can be equiva-
lently expressed as the unique solution to the corresponding first order optimality
conditions.

Numerical illustration. Figure 10.1 illustrates the accuracy of the prediction of
Theorem 10.1.1. Note that although the theorem requires n → ∞, the prediction is
already accurate for n ranging on a few hundreds.

BER at high-SNR. It can be shown that when SNR � 1, then

τ∗ = 1/
√

(δ − 1/2)SNR.
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Figure 10.1: Bit error rate performance of the Boxed Relaxation: BER as a function
of SNR for different values of the ratio δ = dm/ne of receive to transmit antennas.
The theoretical prediction follows from Theorem 10.1.1. For the simulations, we
used n = 512. The data are averages over 20 independent realizations of the channel
matrix and of the noise vector for each value of the SNR.

This can be intuitively understood as follows: at high-SNR, we expect τ∗ to be
going to zero (correspondingly BER to be small). When this is the case, the last
term in (10.3) is negligible; then τ∗ is the solution to minτ>0

τ
2

(
δ − 1

2

)
+

1/SNR
2τ which

gives the desired result. Hence, for SNR � 1,

lim
n→∞

BER ≈ Q(
√

(δ − 1/2) · SNR). (10.4)

In Figure 10.2 we have plotted this high-SNR expression for the log10(BER ) vs
its exact value as predicted by Theorem 10.1.1. It is interesting to observe that the
former is actually a very good approximation to the latter even for small practical
values of SNR. The range of SNR values for which the approximation is valid
becomes larger with increasing δ. Heuristically, for δ > 0.7 the expression in (10.4)
is a good proxy for the true probability of error at practical SNR values.

Comparison to the matched filter bound. Theorem 10.1.1 gives us a handle on the
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Pe of (BRO) in (10.1) and therefore allows us to evaluate its practical performance.
Here, we compare the performance to an idealistic case, where all n − 1 but 1 bits
of x0 are known to us. As is customary in the field, we refer to the bit error rate
of this case as the matched filter bound (MFB) and denote it by BERMFB. The
(MFB) corresponds to the probability of error in detecting (say) x0,n ∈ {±1} from:
ỹ = x0,nan + z, where ỹ = y −

∑n−1
i=1 x0,iai is assumed known, and, ai denotes the

ith column of A. The ML estimate is just the sign of the projection of the vector
ỹ to the direction of an. Without loss of generality assume that x0,n = 1. Then,
the output of the matched filter becomes sign(X̃), where X̃ = ‖an‖2 + σ2ν, where
ν ∼ N (0, 1). When n → ∞, ‖an‖2

P
−→ δ. Hence, with probability one,

lim
n→∞

BERMFB = lim
n→∞
P(X̃ < 0) = Q(

√
δ · SNR). (10.5)

A direct comparison of (10.5) to (10.4) shows that at high-SNR, the performance
of the (BRO) is 10 log10

δ
δ−1/2dB off that of the (MFB) . In particular, in the square

case (δ = 1), where the number of receive and transmit antennas are the same, the
(BRO) is 3dB off the (MFB) . When the number of receive antennas is much larger,
i.e. when δ → ∞, then the performance of the (BRO) approaches the (MFB) .

Improving performance with local algorithms. To prove Theorem 10.1.1 we
essentially apply the CGMT Theorem 3.3.1 for the following set1:

S = {v :
∣∣∣∣1
n

n∑
i=1

1(vi≤−1) − Q(
1
τ∗

)
∣∣∣∣ < ε },

A study of our analysis of the (AO) reveals that error events for each of the bits in
the (AO) are iid (see Appendix F). This means that if, for constant k , we define the
set:

S∗k = {v :
∣∣∣∣ 1(

n
k

) ∑
T∈{1,...,n}
|T |=k

1(vi1≤−1,...,vik ≤−1) − Q
k(

1
τ∗

)
∣∣∣∣ < ε },

then limn→∞ P{wφ ∈ S∗
k
} = 1. By Thm. 10.1.1, this implies limn→∞ P{wΦ ∈ S∗

k
} =

1, which means that error events for any fixed k bits in the (PO) are also iid. This
fact has significant consequences. For example, it implies that, when a block of
data is in error, only a few of its bits are. This means that the output of the (BRO)
can be used by various local methods to further reduce the BER. As an example, we
can perform a greedy bit-flipping operation on the output of the (BRO) . A possible

1Strictly speaking, the performance metric defined by the BER is not Lipschitz, hence a weak
approximation argument like the one in Section 9.5 is needed.
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Figure 10.2: Bit error rate of the Box Relaxation Optimization (BRO) in (10.1) in
comparison to the Matched Filter Bound (MFB) for δ = 0.7 (dashed lines) and
δ = 1 (solid lines). The red curves follow the formula of Thm. 10.1.1, the green
ones correspond to (10.4), and, BERMFB of (10.5) is in blue.

implementation of this might be as follows. For i = 1, 2, . . . , n repeat the following:
if ‖y − Ax∗ − 2 · sign(x∗

i
) · ai ‖2 < ‖y − Ax∗‖2, then x∗∗

i
= −x∗

i
; otherwise, x∗∗

i
= x∗

i
.

Output x∗∗. Here, ai denotes the ith column of A. Our preliminary simulation results
suggest this simple bit-flipping scheme significantly improves the BER. In future
work, we seek to analyze the overall performance, i.e. characterize the BER of x∗∗.

10.3 Extensions
Theorem 10.1.1 precisely computes the BER of the box relaxation method (BRO)
to recover BPSK signals in MIMO systems. As the interested reader may expect,
similar results can be achieved for higher order constellations (m-PAM, m-QAM,
m-PSK, etc.). We discuss such extensions here.

M-PAM consellations
Suppose that each one of the transmit antennas sends a symbol belonging to an M-
PAM constellation, i.e. x0,i ∈ C := {±1,±3, . . . ,±(M − 1)}, for M = 2k , k ∈ I.
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Figure 10.3: Bit error rate of the Box Relaxation Optimization (BRO) in (10.6)
as a function of the SNR for BPSK, 4-PAM and 8-PAM signals. The theoretical
prediction follows from Theorem 10.3.1. For the simulations, we used n = 512 and
δ = 1.2. The data are averages over 20 independent realizations of the channel
matrix and of the noise vector for each value of the SNR.

The ML decoder is given by minx∈Cn ‖y − Ax‖2, which is often computationally
intractable. The natural extension of the box-relaxation decoder for BPSK in (10.1)
outputs an estimate x∗ of x0 given as

x̂ = arg min
−(M−1)≤xi≤(M−1)

‖y − Ax‖2, (10.6a)

x∗i = arg min
s∈C
|x̂i − s |. (10.6b)

The theorem below provides a characterization of the BER of the (BRO) scheme in
(10.6).

Theorem 10.3.1 (BER of the (BRO) for M-ary PAM). Let BER denote the bit

error rate of the detection scheme in (10.6) for some unknown signal x0 such that

x0,i
iid
∼ Uniform ({±1,±3, . . . ,±(M − 1)}), for M = 2k , k ∈ I. For constant SNR

and m
n
→ δ ∈ (1 − 1

M
,∞), it holds:

lim
n→∞

BER = 2(1 − 1/M) ·Q(1/τ∗),
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where τ∗ is the unique solution to

min
τ>0

τ

2

(
δ −

M − 1
M

)
+

M2 − 1
3

·
1/SNR

2τ

+
τ

M

∑
i=1,3,...,M−3

∫ ∞

M−1−i
τ

(
h −

M − 1 − i

τ

)2

p(h)dh

+
τ

M

∑
i=1,3,...,M−1

∫ ∞

M−1+i
τ

(
h −

M − 1 + i

τ

)2

p(h)dh. (10.7)

The proof of the theorem is very similar to that of Theorem 10.3.1 (see Appendix
F). The theorem assumes a probabilistic model on x0. In particular, each trans-
mitted symbol x0,i is uniformly sampled from the M-ary PAM constellation C =

{±1,±3, . . . ,±(M − 1)}. A straightforward extension of the result to other distribu-
tions is of course possible. Also, observe that the theorem guarantees meaningful
BER performance provided that the ratio of transmit to receive antennas δ is no less
than 1 − 1/M < 1.
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C h a p t e r 11

NON-LINEAR MEASUREMENTS

This chapter extends the performance analysis beyond the linear measurement model.
Instead of linear measurements y j = aT

j
x0 + z j we consider estimating an unknown

signal vector x0 ∈ R
n from m measurements taking the following form:

y j = g j(aTj x0), j = 1, 2, . . . ,m. (11.1)

The g j’s are independent copies of a generically random, possibly non-linear and
potentially unspecified link function g. Such measurement functions could arise in
applications where the measurement device has nonlinearities and uncertainties. It
could also arise by design, e.g., g j(x) = sign(x + z j), corresponds to noisy 1-bit
quantized measurements.

For the estimation, we use the generalized-LASSO and ask:

What is the recovery performance of the generalized-LASSO

with non-linear measurements of the form (11.1)? (Q.3)

While this approach seems to naively ignore the nonlinearities, we will discuss sev-
eral good reasons motivating question (Q.3). In fact, it turns out that the LASSO so-
lution is a good estimator of the unknown signal up to a constant of proportionality
(information about the magnitude of the signal is in general lost in the nonlinearity).

The main result of this chapter answers question (Q.3) in a precise way. In fact,
it does so by establishing an interesting connection to already known results on
the LASSO performance under linear measurements, that were derived in previ-
ous chapters. This has several worth-exploring implications For instance, it en-
compasses state-of-the art theoretical results of one-bit Compressed Sensing, and
generalizations to higher levels of quantization Also, it is used to prove that the
optimal quantizer of the measurements that minimizes the estimation error of the
Generalized LASSO is the celebrated Lloyd-Max quantizer.

We begin in Section 11.1 with motivating Question Q.3. Our answer to the ques-
tion is simple to state, and is thus summarized in the same section. The section
further discusses how this extends relevant results in the literature. A formal state-
ment of our main theorem follows in Section 11.2, where numerical illustrations are
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also provided. The chapter concludes in Section 11.3 with an optimal and efficient
algorithm for the design of quantized measurements.

11.1 Motivation & Contribution
Non-linear Measurements
We consider recovering a structured signal x0 ∈ R

n from m measurements taking
the form in (11.1). For instance, gi(x) = x + z j , with (say) z j being normally
distributed, recovers the standard linear regression setup with Gaussian noise. Here,
we are particularly interested in scenarios where g is non-linear. Notable examples
include g(x) = sign(x) (or g j(x) = sign(x + z j)) and g(x) = (x)+, corresponding to
1-bit quantized (noisy) measurements and to the censored Tobit model, respectively.
Depending on the situation, g might be known or unspecified. In the statistics and
econometrics literature, the measurement model in (11.1) is popular under the name
single-index model and several aspects of it have been well-studied, e.g. [Bri82;
Bri77; Ich93; LD89]1.

Using the Generalized LASSO for Non-linear Measurements?
When the link function is linear, i.e. gi(x) = x + zi , we have previously seen that a
good estimate of x0 is obtained via solving the Generalized LASSO2 algorithm:

x̂ := arg min
x
‖y − Ax‖2 + λ f (x). (11.2)

Of course, no one stops us from continuing to use it even in cases where yi =

g(aT
i

x0) with g being non-linear3. But, the question then becomes: Can there be
any guarantees that the solution x̂ of the Generalized LASSO is still a good estimate
of x0?

While the LASSO is by nature tailored to a linear model for the measurements (in-
deed, the first term of the objective function in (11.2) tries to fit Ax to the observed
vector y presuming that this is of the form yi = aT

i
x0 +noise), there are several good

reasons motivating this question, as discussed below.
1 The single-index model is a classical topic and can also be regarded as a special case of what

is known as sufficient dimension reduction problem. There is extensive literature on both subjects;
unavoidably, we only refer to the directly relevant works here.

2To be more precise the version considered here is the `2-LASSO. Our results can be accus-
tomed to the `2

2-LASSO, but for concreteness, we restrict attention to (11.2) throughout. Also,
following the common practice in this thesis, we often drop the term “Generalized" and refer to
(11.2) simply as the LASSO.

3Note that the Generalized LASSO in (11.2) does not assume knowledge of g. All that is as-
sumed is the availability of the measurements yi . Thus, the link-function might as well be unknown
or unspecified.
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1. In the early 80’s, Brillinger [Bri82] showed that in the classical statistics
regime of large m and of fixed n, when the measurement vectors a j are
Gaussian, the least-squares estimate of x0 has the favorable property of being
(asymptotically) consistent up to a constant of proportionality. In the modern
regime of high-dimensions (both large m and n) and of structured signals, the
generalized-LASSO method is replacing ordinary least-squares. Thus, it is
natural to ask to what extent does Brillinger’s result continue to hold under
this different setting?

2. The link function g might be unspecified, and so no additional information
about it is available in this case. On the other hand, in many interesting ex-
amples the nonlinearity arises by design, and thus, is known. It might then
be appealing to perform maximum likelihood (ML) type estimation. How-
ever, several issues arise: (i) often this requires knowledge of the distribution
of the noise, and in practice one would not expect this to be known, (ii) the
ML algorithm might be computationally inefficient; in contrast, the LASSO
is appealing because an abundance of efficient, specialized solvers for it are
readily available.

3. The question (Q.3) can be interpreted as a study of the robustness of the
LASSO method to model mismatches. More often than not, the linear model
of (1.1) represents reality only approximately by ignoring potential non-linearities
in the measurement device. Answering question (Q.3) complements the re-
sults on the LASSO performance under linear measurements with robustness
guarantees.

Summary of Contributions
Question (Q.3) was first studied back in the early 80’s by Brillinger [Bri82] who
provided answers in the case of solving (11.2) without a regularizer term. This, of
course, corresponds to standard Least Squares (LS). Interestingly, he showed that
when the measurement vectors are Gaussian, then the LS solution is a consistent
estimate of x0, up to a constant of proportionality µ, which only depends on the
link-function g. The result is sharp, but only under the assumption that the number
of measurements m grows large, while the signal dimension n stays fixed, which
was the typical setting of interest at the time. In the world of structured signals
and high-dimensional measurements, the problem was only very recently revisited
by Plan and Vershynin [Ver10b]. They consider a constrained version of the Gen-
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eralized LASSO, in which the regularizer is essentially replaced by a constraint,
and derive upper bounds on its performance. The bounds are not tight (they in-
volve absolute constants), but they demonstrate some key features: i) The solution
to the constrained LASSO x̂ is a good estimate of x0 up to the same constant of
proportionality µ that appears in Brillinger’s result. ii) Thus, ‖x̂− µx0‖

2
2 is a natural

measure of performance. iii) Estimation is possible even with m < n measurements
by taking advantage of the structure of x0.

Inspired by the work of Plan and Vershynin [Ver10b] and motivated by recent ad-
vances on the precise analysis of the Generalized LASSO with linear measure-
ments, we extend these latter results to the case of non-linear mesaurements. When
the measurement matrix A has entries i.i.d. Gaussian (henceforth, we assume this
to be the case without further reference), and the estimation performance is mea-
sured in a mean-squared-error sense, we are able to precisely predict the asymptotic
behavior of the error. The derived expression accurately captures the role of the link
function g, the particular structure of x0, the role of the regularizer f , and, the value
of the regularizer parameter λ. Further, it holds for all values of λ, and for a wide
class of functions f and g.

Interestingly, our result shows in a very precise manner that in large dimensions,
modulo the information about the magnitude of x0, the LASSO treats non-linear
measurements exactly as if they were scaled and noisy linear measurements with
scaling factor µ and noise variance σ2 defined as

µ := E[γg(γ)], and σ2 := E[(g(γ) − µγ)2], for γ ∼ N (0, 1), (11.3)

where the expecation is with respect to both γ and g. In particular, when g is such
that µ , 04, then,

the estimation performance of the Generalized LASSO with measurements of the

form yi = gi(aTi x0) is asymptotically the same as if the measurements were rather

of the form yi = µaT
i

x0 +σzi , with µ, σ2 as in (11.3) and zi standard Gaussian

noise.

Owing to this equivalence, all results established in previous chapters on the the
performance of the LASSO under noisy linear measurements can be readily used to

4This excludes for example link functions g that are even, but also some other not so obvious
cases [GP+13, Sec. 2.2]. For a few special cases, e.g. sparse recovery with binary measurements yi
[Yi+15], different methodologies than the LASSO have been recently proposed that do not require
µ = 0.
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Figure 11.1: Squared error of the `1-regularized LASSO with non-linear measure-
ments (�) and with corresponding linear ones (?) as a function of the regularizer pa-
rameter λ; both compared to the asymptotic prediction. Here, gi(x) = sign(x+0.3zi)
with zi ∼ N (0, 1). The unknown signal x0 is of dimension n = 768 and has d0.15ne
non-zero entries. The different curves correspond to d0.75ne and d1.2ne number of
measurements, respectively. Simulation points are averages over 20 problem real-
izations.

characterize the performance of the LASSO in the presence of nonlinearities. Fig-
ure 11.1 serves as an illustration; the error with non-linear measurements matches
well with the error of the corresponding linear ones and both are accurately pre-
dicted by our analytic expression.

Under the generic model in (11.1), which allows for g to even be unspecified,
x0 can, in principle, be estimated only up to a constant of proportionality [Bri82;
LD89; Ver10b]. For example, if g is uknown then any information about the norm
‖x0‖2 could be absorbed in the definition of g. The same is true when g(x) =

sign(x), even though g might be known here. In these cases, what becomes impor-
tant is the direction of x0. Motivated by this, and, in order to simplify the presenta-
tion, we have assumed throughout that x0 has unit Euclidean norm5, i.e. ‖x0‖2 = 1.

5In [Ver10b, Remark 1.8], they note that their results can be easily generalized to the case when
‖x0‖2 , 1 by simply redefining ḡ(x) = g(‖x0‖2x) and accordingly adjusting the values of the
parameters µ and σ2 in (11.3). The very same argument is also true in our case.
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Discussion of Relevant Literature
Extending an Old Result. Brillinger [Bri82] identified the asymptotic behavior
of the estimation error of the LS solution x̂LS = (ATA)−1ATy. He showed that
x̂LS is a strongly consistent estimate of x0 up to a constant of proportionality µ and
further identified its asymptotic distribution [Bri82, Thm. 1]. From the latter, it can
be deduced6 that when both m and n grow large, but such that m/n → +∞, then
√
m/n‖x̂LS − µx0‖2 → σ. Here, µ and σ2 are same as in (11.3). Our result can

be viewed as a generalization of the above in several directions. First, we extend
Brillinger’s result to the regime where m/n = δ ∈ (1,∞) and both grow large by
showing that

lim
n→∞

‖x̂LS − µx0‖2 =
σ

√
δ − 1

. (11.4)

Second, and most importantly, we consider solving the Generalized LASSO in-
stead, to which LS is only a very special case. This allows versions of (11.4) where
the error is finite even when δ < 1 (e.g., see (11.7)). Note the additional challenges
faced when considering the LASSO: i) x̂ no longer has a closed-form expression,
ii) the result needs to additionally capture the role of x0, f , and, λ.

Motivated by Recent Work. Plan and Vershynin consider the constrained Gener-
alized LASSO (see also Section 6.3)7 :

x̂C-LASSO = arg min
f (x)≤ f (x0)

‖y − Ax‖2, (11.5)

with y as in (11.1) . In its simplest form, their result shows that when m &

ω2(Tf (µx0)) then with high probability,

‖x̂C-LASSO − µx0‖2 .
σ
√
ω2(Tf (µx0)) + ζ
√
m

. (11.6)

Recall from Definition 2.2.3 that ω2(Tf (µx0)) is the (squared) Gaussian width and
often ω2(Tf (µx0)) is less than n. Thus, estimation is in principle is possible with

6 Theorem 1 in [Bri82] does not require n → ∞. Here, we have translated the original result
to the doubly asymptotic setting that is adapted throughout the thesis, where m, n → ∞. Note
however that Brillinger’s result is valid only in the classical statistical regime: here, m/n → ∞.
Also, to conclude with the stated result starting from Brillinger’s theorem, we have silently assumed

that maxi x0,i
P
−→ 0. I would like to thank Martin Slawski for pointing out the necessity of this

assumption.
7In fact, Plan and Vershynin consider the slightly more general formulation of the constrained

LASSO minx∈K ‖y − Ax‖2, where K ⊂ Rn is some known set (not necessarily convex).
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m < n measurements. The parameters µ and σ that appear in (11.6) are the same
as in (11.3) and ζ := E[(g(γ) − µγ)2γ2]. Observe that, in contrast to Brillinger’s
result and to our setting, the result in (11.6) is non-asymptotic. Also, it suggests the
critical role played by µ and σ. On the other hand, (11.6) is only an upper bound
on the error, and also it suffers from unknown absolute proportionality constants
(hidden in .).

Moving the analysis into an asymptotic setting, our work expands upon the result
of [Ver10b]. First, we consider the regularized LASSO instead, which is more com-
monly used in practice. Most importantly, we improve the loose upper bounds into
precise expressions. In turn, this proves in an exact manner the role played by µ

and σ2 to which (11.6) is only indicative. For a direct comparison with (11.6) we
mention the following result which follows from our analysis (we omit the proof
for brevity). Assume f is convex, m/n = δ ∈ (0,∞), ω2(Tf (µx0))/n = ρ ∈ (0, 1]
and n → ∞. Also, δ > ρ. Then, (11.6) yields an upper bound Cσ

√
ρ/δ to the error,

for some constant C > 0. Instead, we show

‖x̂C-LASSO − µx0‖2 ≤ σ

√
ρ

√
δ − ρ

. (11.7)

11.2 Results
Modeling Assumptions
Unknown structured signal: We let x0 ∈ R

n represent the unknown signal vector.
We assume that x0 = x0/‖x0‖2, with x0 sampled from a probability density px0 in
Rn. Thus, x0 is deterministically of unit Euclidean-norm (this is mostly to simplify
the presentation, see Footnote 4). As in Chapter 4, information about the structure
of x0 (and correspondingly of x0) is encoded in px0 .

Regularizer: We consider convex regularizers f : Rn → R.

Measurement matrix: The entries of A ∈ Rm×n are i.i.d. N (0, 1).

Measurements and Link-function. We observe y = ~g(Ax0) where ~g is a (possibly
random) map from Rm to Rm and ~g(u) = [g1(u1), . . . , gm(um)]T . Each gi is i.i.d.
from a real valued random function g for which µ and σ2 are defined in (11.3). We
assume that µ and σ2 are nonzero and bounded.

Asymptotics. The regime of study is the linear asymptotic regime of Chapter 4.
We repeat here for convenience: we consider a sequence of problem instances
{x(n)

0 ,A(n), f (n),m(n)}n∈N indexed by n such that A(n) ∈ Rm×n has entries i.i.d.
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N (0, 1), f (n) : Rn → R is proper convex, and m := m(n) with m = δn, δ ∈ (0,∞).
We further require that the following conditions hold:

(a) x(n)
0 is sampled from a probability density p

(n)
x0

in Rn with one-dimensional
marginals that are independent of n and have bounded second moments. Fur-
thermore, n−1‖x(n)

0 ‖
2
2

P
−→ σ2

x = 1.

(b) For any n ∈ N and any ‖x‖2 ≤ C, it holds n−1/2 f (x) ≤ c1 and n−1/2 maxs∈∂ f (n)(x) ‖s‖2 ≤
c2, for constants c1, c2,C ≥ 0 independent of n.

The assumption σ2
x = 1 holds without loss of generality and is only necessary to

simplify the presentation. In (b), ∂ f (x) denotes the subdifferential of f at x. The
condition itself is no more than a normalization condition on f .

Every such sequence {x(n)
0 ,A(n), f (n)}n∈N generates a sequence {x(n)

0 , y(n)}n∈N where
x(n)

0 := x(n)
0 /‖x(n)

0 ‖2 and y(n) := ~g(n)(Ax0). When clear from the context, we drop the
superscript (n).

Precise Error Prediction
Let {x(n)

0 ,A(n), f (n), y(n)}n∈N be a sequence of problem instances that satisfy all the
conditions above. With these, define the sequence {x̂(n)}n∈N of solutions to the
corresponding LASSO problems for fixed λ > 0:

x̂(n) := min
x

1
√
n

{
‖y(n) − A(n)x‖2 + λ f (n)(x)

}
. (11.8)

The main contribution of this paper is a precise evaluation of limn→∞ ‖µ
−1x̂(n) −

x(n)
0 ‖

2
2 with high probability over the randomness of A, of x0, and of g.

Our main result requires a further assumption on p
(n)
x0

and f (n). For the readers al-
ready familiar with the content of Chapter 4 this should come as no surprise. In
particular, recall that Theorem 4.2.1 characterizing the performance under linear

measurements holds under Assumptions 4.2.1(a) and 4.2.2(a). Due to slight differ-
ences on normalization here8 , the corresponding assumptions here are expressed
as follows.

8Note that: (i) while here the entries of A have unit variance, the variance is normalized to
1/n in Chapter 4; (ii) there is a difference in the normalization between (11.8) and (6.27). Those
modifications are here necessary since we have imposed ‖x0‖2 = 1 (compare to ‖x0‖2 = O(

√
n) in

Chapter 4). While proper adjustments are required due to such differences, the results of Chapter 4
are of course still applicable in the current setup (at least when g is affine, but see Theorem 11.2.1).
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Assumption 11.2.1. We say that Assumption 11.2.1 holds for f and px0 if there

exists F : R × R>0 → R such that

1
n
{e f̃ (ch + µx0;τ) − f̃ (µx0)}

P
−→ F(c , τ)

and F satisfies Assumption 4.2.2(a).

Here, f̃ (x) = 1√
n
f (x
√
n), µ is as in (11.3) and the convergence is over x0 ∼ px0 and

h ∼ N (0, In).

All remarks made in Chapter 4 regarding the mild nature of the assumptions therein
continue to hold for Assumption 11.2.1. For instance, it is naturally met for sepa-
rable regularizers (although, this is not necessary). Also observe that Assumption
11.2.1 is exactly the same as Assumptions 4.2.1(a) and 4.2.2(a) for homogeneous
regularizers of order 1 (e.g. norms).

Theorem 11.2.1 (Non-linear=Linear). Consider the asymptotic setup of Section

11.2 and let Assumption 11.2.1 hold. Recall µ and σ2 as in (11.3) and let x̂ be the

minimizer of the Generalized LASSO in (11.8) for fixed λ > 0 and for measurements

given by (11.1). Further let x̂lin be the solution to the Generalized LASSO when used

with linear measurements of the form ylin = A(µx0) +σz, where z has entries i.i.d.

standard normal. Then, in the limit of n → ∞, with probability one,

‖x̂ − µx0‖
2
2 = ‖x̂lin − µx0‖

2
2 .

Theorem 11.2.1 relates in a very precise manner the error of the Generalized LASSO
under non-linear measurements to the error of the same algorithm when used under
appropriately scaled noisy linear measurements. Chapters 4 and 6 derive precise
asymptotic expressions for the latter, which may then be translated to the more
general setting of nonlinear measurements. The theorem below is an immediate
corollary of Theorem 11.2.1 when combined with (6.31), which predicts the error
of the LASSO under linear measurements.

Corollary 11.2.1 (Precise Error Formula for non-linear measurements). Under the

same assumptions of Theorem 11.2.1 and δ := m/n, it holds, with probability one,

lim
n→∞

‖x̂ − µx0‖
2
2 = α2

∗ ,

where α∗ is the unique optimal solution to the convex program

inf
α≥0

sup
0≤β≤1
τ≥0

β
√
δ
√
α2 +σ2 −

ατ

2
−
αβ2

2τ
+ λ · F

(
αβ

τ
,
αλ

τ

)
. (11.9)
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Figure 11.2: Squared error of the `1-regularized LASSO as a function of the regu-
larizer parameter for noisy 1-bit measurements gi(x) = sign(x + 0.3zi). Here, x0 is
sparse with pX0(+1) = pX0(0) = 0.05, pX0(+1) = 0.9. The theoretical prediction is
obtained by Corollary 11.2.1. Finally, δ = 0.75, n = 512, and the simulation points
represent averages over 20 realizations.

Note that the two parameters capturing the role of the non-linearity g, namely σ2

and µ, appear in the objective function in (11.9) explicitly and implicitly through F,
respectively. All further remarks that were made in previous chapters regarding the
scalar performance optimization (SPO) in (11.9) are also valid here. For instance,
it is straightforward to specialize the result to the cases of sparse, group-sparse and
low-rank signal recovery to obtain corresponding results to those in Sections 6.6-6.7
(see also [TAH15] for details). Figures 11.1, 11.2 and 11.3 illustrate the accuracy
of these predictions.

The proof of Theorem 11.2.1 is deferred to Appendix G.

11.3 Application: Optimal q-bit Quantization
Setup

Consider recovering a sparse unknown signal x0 ∈ R
n from scalar q-bit quantized

linear measurements. Let t := {t0 = 0, t1, . . . , tL−1, tL = +∞} represent a (symmet-
ric with respect to 0) set of decision thresholds and ` := {±`1,±`2, . . . ,±`L} the
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Figure 11.3: Squared error of the group-sparse LASSO as a function of the regular-
izer parameter compared to the asymptotic predictions for noisy 1-bit measurements
gi(x) = sign(x + 0.3zi). Here, x0 is group-sparse: it is composed of t = 512 blocks
of block size b = 3, and each block is zero with probability 0.95, otherwise its
entries are iid N (0, 1). The theoretical prediction is obtained by Corollary 11.2.1.
Finally, δ = 0.75, and the simulation points represent averages over 20 realizations.

corresponding representation points, such that L = 2q−1. Then, quantization of a
real number x into q-bits can be represented as

Qq(x , `, t) = sign(x)
L∑
i=1

`i1{ti−1≤|x |≤ti } ,

where 1S is the indicator function of a set S. For example, 1-bit quantization
with level ` corresponds to Q1(x , `) = ` · sign(x). The measurement vector y =

[y1, y2 . . . , ym]T takes the form

yi = Qq(aTi x0, `, t), i = 1, 2, . . . ,m, (11.10)

where aT
i

’s are the rows of a measurement matrix A ∈ Rm×n, which is henceforth
assumed i.i.d. standard Gaussian. We use the LASSO to obtain an estimate x̂ of x0

as

x̂ := arg min
x
‖y − Ax‖2 + λ‖x‖1. (11.11)
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LASSO x0 x̂A 
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)

Thm. 11.2.1

Figure 11.4: Illustration of the equivalence result of Theorem 11.2.1 applied to
quantized measurements.

Henceforth, we assume for simplicity that ‖x0‖2 = 1. Also, in our case, µ is known
since g = Qq is known; thus it is reasonable to scale the solution of (11.11) as µ−1x̂
and consider the error quantity ‖µ−1x̂ − x0‖2 as a measure of estimation perfor-
mance. Clearly, the error depends (besides others) on the number of bits q, on the
choice of the decision thresholds t and on the quantization levels `. An interesting
question of practical importance becomes how to optimally choose these to achieve
less error. As a running example for this section, we seek optimal quantization
thresholds and corresponding levels

(t∗, `∗) = arg min
t,`
‖µ−1x̂ − x0‖2, (11.12)

while keeping all other parameters such as the number of bits q and of measure-
ments m fixed.

Consequences of Precise Error Prediction

Theorem 11.2.1 shows that ‖µ−1x̂ − x0‖2 = ‖x̂lin − x0‖2, where x̂lin is the solution
to (11.11), but only, this time with a measurement vector ylin = Ax0 + σ

µ z, where
µ, σ are as in (11.14) and z has entries i.i.d. standard normal. See Figure B.1 for
an illustration. Thus, lower values of the ratio σ2/µ2 correspond to lower values
of the error and the design problem posed in (11.12) is equivalent to the following
simplified one:

(t∗, `∗) = arg min
t,`

σ2(t, `)
µ2(t, `)

. (11.13)
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To be explicit, µ and σ2 above can be easily expressed from (11.3) after setting
g = Qq as follows:

µ := µ(`, t) =

√
2
π

L∑
i=1

`i ·
(
e−t

2
i−1/2 − e−t

2
i
/2
)

and σ2 := σ2(`, t) := τ2 − µ2,

(11.14)

where τ2 := τ2(`, t) = 2
L∑
i=1

`2
i · (Q(ti−1) − Q(ti)) and Q(x) =

1
√

2π

∫ ∞

x

exp(−u2/2)du.

An Algorithm for Finding Optimal Quantization Levels and Thresholds

In contrast to the initial problem in (11.12), the optimization involved in (11.13) is
explicit in terms of the variables ` and t, but is still hard to solve in general. Interest-
ingly, we show in Appendix G that the popular Lloyd-Max (LM) algorithm can be
an effective algorithm for solving (11.13), since the values to which it converges are
stationary points of the objective in (11.13). Note that this is not a directly obvious
result since the classical objective of the LM algorithm is minimizing the quantity
E[‖y − Ax0‖

2
2] rather than E[‖µ−1x̂ − x0‖

2
2].
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C h a p t e r 12

CONCLUSIONS AND FUTURE WORK

We will conclude with some brief remarks on various directions for future research
that are suggested by the methods and results presented in this dissertation.

High-dimensional Theory of M-estimation
The general and precise results of Chapter 4 (cf., Theorem 4.2.1) can be used to
compare performance between different instances of regularized M-estimators un-
der different settings. Figure 6.3 serves as a preliminary numerical illustration:
under the specific setting, LAD outperforms the LASSO for appropriate choices of
λ. Starting from the error expressions of Theorem 4.2.1 it is interesting to quantify
such comparisons and yield such analytic conclusions.

Along these lines, one of the most exciting (and at the same time challenging) po-
tential implications of Theorem 4.2.1 is identifying optimal choices for the (convex)
loss and regularizer functions under different settings. Since the error characteriza-
tion differs from the corresponding results of classical statistics (where the signal
dimension is fixed), we expect new phenomena to arise and the answers to differ in
general. When it comes to the regularizer, the optimality question has been partially
considered in the literature. When the structured signal x0 is considered fixed, then
a good choice for the regularizer f is one that minimizes the statistical dimension
of the tangent cone of f at x0 (cf. Section 6.3) [Cha+12; Ame+13; OTH13b]1. The
results presented in [Cha+12] and [Ame+13] together, prove that this is indeed the
optimal choice in the noiseless case (cf. Section 2.2). The same is true in the high-
SNR regime when a least-squares loss function is used (cf. Section 7.4). The more
general setting of Chapter 4, will allow revisiting of this question and extension
of the results to capture instances where x0 is associated with a prior distribution
px0 , the loss function differs from a least-squares one, and the noise variance is not
necessarily tending to zero. Theorem 4.2.1 suggests the critical role to be played
in this effort by the Expected Moreau envelope, which is in fact a generalization
of the statistical dimension (cf. Section 6.3). When it comes to the optimal choice

1Based on this, Chandrasekaran et. al. have suggested the notion of “atomic-norms" as a prin-
cipled way of constructing appropriate convex regularizer functions for different kinds of structures
[Cha+12].
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of the loss function with respect to the noise distribution pz, less is known. Again,
the expected Moreau envelope will be central in the optimization, but is yet to be
understood how this will translate into practical recipes for the design of optimal
loss functions.

Another important question that is also related to the optimal choice of loss/regularizer
functions examines the conditions under which the squared-error of (1.2) becomes
zero, if this is at all possible. In Remark 6.3.0.44, we discussed an example of an
M-estimator that under specific noise and signal distributions becomes consistent
provided that the normalized number of measurements is large enough and that the
regularizer parameter is chosen on the correct range (also, see Figure 6.3). Answer-
ing such questions boils down to identifying conditions under which α∗ = 0 can be
the optimal solution to the (SPO) of Theorem 4.2.1.

Furthermore, Theorem 4.2.1 can be used to provide valuable insights and guidelines
regarding optimal choices of the regularizer parameter. In Section 6.10 and Figure
6.3 we presented an example that highlights the importance of selecting λ within the
correct range of values, otherwise the performance can be significantly deteriorated.
The closed-form formulae of Sections 7.6 and 7.7 suggested simple recipes for
optimal tuning of λ. However, they require some prior knowledge on the structure
of the signal (e.g. sparsity level, rank) that might not be available in practice (at
least in precise form). Thus, it is interesting to study modifications that adapt to
these more realistic scenarios, but still take advantage of the precise error formulae.

Beyond Gaussian Designs
All the results of this dissertation, apart from those in Chapter 8, are proved for
design matrices that have entries iid Gaussian. Yet, there are potentials of extending
the results to other classes of distributions.

Matrices with iid entries. Preliminary numerical results (Figure 6.2 is an example)
suggest a universality property of the derived error prediction to design matrices
with entries iid drawn from a wider class of probability distributions, such as sub-
Gaussians. This is similar to the universality of Gaussians in the noiseless setting,
which was discussed in Section 2.2 and was recently established by [OT15]. Oy-
mak & Tropp further include preliminary results for the noisy case, where they
prove universality of the high-SNR error bounds on the squared error of the con-
strained LASSO (cf. Section 7.5). Furthermore, El Karoui proves the results to be
universal in the case for M-estimators with ridge-regulararization and a twice differ-
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entiable loss function [EK15]. Extending these to the general setting of regularized
M-estimators of Chapter 4 is of interest.

Isotropically Random Orthogonal (IRO) Matrices. Recall that an IRO matrix A is
sampled uniformly at random from the manifold of row-orthogonal matrices satis-
fying AAT = Im. Chapter 8 characterizes the error performance of the Generalized-
LASSO under IRO matrices and shows it is different (in fact, superior) to the one
under Gaussian designs. The analysis was based on expressing IRO matrices us-
ing Gaussians and appropriately massaging the CGMT framework. It is of interest
to extend the analysis and corresponding results to loss functions beyond least-
squares. Furthermore, numerical simulations in Chapter 8 suggest that the formulae
obtained for IRO matrices are also true for random DCT and Hadamard matrices.
This is particularly important since the latter designs are often preferred in practice
due to reduced computational and storage complexity. Proving what appears to be
a universality property of IRO matrices when it comes to recovery performance of
regularized M-estimators is an open question.

Elliptical Distributions. Assume G with entries iid Gaussian, εi’s to be independent
and independent of G and A = diag(ε1, . . . , εm)G. We refer the reader to [EK15] for
a motivation on the potential significance of studying such “elliptical-like" distribu-
tions. It is rather straightforward to extend the CGMT framework, and consequently
the predictions of this thesis, to account for such a class of distributions. It might
be worth considering the details in future work.

Graphical LASSO and LP Decoding
The CGMT Theorem 3.3.1 played a key role in the course of this thesis. It let
us carry out the analysis to a simple Auxiliary Optimization (AO) instead of the
original Primary Optimization (PO) problem. It is conceivable that this key idea is
applicable to other problems than the ones considered in this thesis. We discuss two
such promising examples next.

The Graphical LASSO is a convex regularized likelihood optimization algorithm
that is popularly used to estimate Gaussian graphical models [YL07; FHT08]. There
is a long literature on its relevant applications and on related algorithmic issues, but
to the best of our knowledge there are no available precise results on its perfor-
mance.

The LP decoder is a popular linear program for decoding linear codes, especially
low density parity check (LDPC) codes. Since the work of Feldman [Fel03], who
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was the first to propose the particular relaxation and accompany it with preliminary
performance guarantees, and despite a long list of follow-up references [Von], it has
remained an open problem to precisely quantify its achieved block error probability.

Even though there is no reason to believe that the performance analysis of the two
problems ought to have any commonalities (owing to their completely different
natures), with some appropriate manipulations we can show that they both boil
down to deriving a matrix analogue version of the CGMT. To make the question
concrete, let A ∈ Rm×n have entries iid Gaussian, SW ⊂ R

m×m, SU ⊂ R
n×n and

ψ : Rn×n × Rm×m → R. We seek an (AO) that corresponds to the following matrix
analogue of the (PO) in (3.11a):

min
W∈SW

max
U∈SU

trace(UTAW) +ψ(W,U).

The two desired features for the (AO) are that:

a) It is tightly related to the (PO) in a sense similar to the CGMT, i.e., its optimal
cost concentrates to the same value as the value of concentration of the (PO).

b) It is simpler to analyze than the (PO).

This observation is promising, and if there be such a matrix analogue version of the
CGMT it is very likely to have applications to other problems as well.

A Complex CGMT
The CGMT Theorem 3.3.1 requires the entries of the matrix A in the (PO) to be
real Gaussians. Is it possible to extend the theorem to matrices that have entries iid
from a circularly-symmetric complex normal distribution? The driving motivation
behind this question is extending the results of Chapter 10 to signal constellations
such as M-QAM and M-PSK when the channel coefficients (corresponding to the
entries of A) are modeled as complex Gaussians. We are unaware of a “complex
version" of even Gordon’s original GMT Theorem 3.2.1.

Simple Denoising
In the simple denoising problem, the goal is to estimate an unknown structured
signal x0 ∈ R

n from noisy but uncompressed observations y = x0 + z ∈ Rn. A
natural estimate is obtained by solving the following minimization problem:

x̂ := arg min
x
L(y − x) + λ f (x), (12.1)
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for some convex loss function L : Rn → R, a convex regularizer f : Rn → R and
λ > 0. One is then interested in characterizing the estimation performance of (12.1)
(e.g., measured in the squared-norm ‖x̂−x0‖

2
2) as a function of the involved problem

parameters, and further use this to optimally choose the loss function depending on
the noise distribution, the value of the regularizer parameter, etc..

Of course, this setup is very similar to the one that has been the subject of this the-
sis: the measurements y = x + z follow (1.1) with an identity measurement matrix
A = In and the same is true for (12.1) when compared to (1.2). When A is iid Gaus-
sian, Theorem 4.2.1 derives a precise characterization of the squared error ‖x̂−x0‖

2
2

for a general noise distribution, signal structure, loss function, regularizer function
and regularizer parameter. To the best of our knowledge there is no available result
for the simple denoising problem that reflects the generality of Theorem 4.2.1. The
recent works of Chatterjee [Cha+14] and of Oymak and Hassibi [OH15], only con-
sider a least-squares loss function. Moreover, [OH15] only considers the high-SNR
regime, while [Cha+14] only considers the constrained version of (12.1).

While the analysis that leads to Theorem 4.2.1 is not directly applicable here (since
it requires A to be iid Gaussian), it is conceivable that some of the techniques de-
veloped in this dissertation might still be applicable. To support this claim, we
show in Appendix H how such ideas lead to novel characterizations of the squared
error of (12.1) for a least-squares loss function. The obtained results significantly
extend the corresponding state of the art results in [OH15; Cha+14]. It is an inter-
esting and promising direction of future work, to generalize the analysis to other
loss functions.

Algorithmic Opportunities
(a) Our analysis of the box relaxation optimization in Chapter 10 shows in a precise
way that, when a block of data is in error, only a few of its bits are. We believe this
suggests that its output can be used by various local methods (e.g. Markov Chain
Monte Carlo) to device novel algorithms with even better BER and with provable

performance guarantees, which might be of impact in numerous applications, such
as massive MIMO.

(b) Suppose a device with nonlinear output measurements y j = g j(aTi x0) of x0

as in Chapter 11. If the regularized least-squares estimator is employed, what is
the optimal function h that should applied on top of g to minimize the resulting
estimation error? The performance characterization of Chapter 11 allows a concrete
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formulation of this optimization, which seems worth exploring.

(c) The CGMT Theorem 3.3.1 relates the regularized M-estimation optimization
program with a seemingly unrelated Auxiliary Optimization (AO) problem. Our
work shows that the (AO) is simpler to analyze and it effectively predicts the error
performance of the M-estimator. It would be interesting to understand whether,
beyond the purposes of analysis, the (AO) problem can be useful in suggesting
alternative efficient estimation algorithms. A successful example of such an efficient
estimation algorithm in the literature, which has also been used for the analysis
of the M-estimators, is the Approximate Message Passing (AMP) and its variants
[DMM09]. Is it possible to use the machinery of the CGMT to analyze the (AMP)?
Is there a deeper relationship of the (AO) problem to the (AMP)? It is intriguing to
attempt putting the two methods, which to date appear to emerge independently of
each other, under a unifying framework.
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A p p e n d i x A

PROOFS FOR CHAPTER 3

A.1 Proof of the GMT
We begin with using Theorem 3.1.1 to prove an analogue of Theorem 3.2.1 for
discrete sets. The proof is almost identical to the proof of Gordon’s original Lemma
3.1 in [Gor88]. Nevertheless, we include it here for completeness. Theorem 3.2.1
then follows from Lemma A.1.1 by a compactness argument.

Onwards, we suppress notation and write ‖ · ‖ instead of ‖ · ‖2.

Lemma A.1.1 (Gordon’s Gaussian Min-max Theorem: Discrete Sets). Let A ∈
Rm×n, g ∈ R, g ∈ Rm and h ∈ Rd have entries i.i.d. N (0, 1) and be independent of

each other. Also, let I1 ⊂ R
d, I2 ⊂ R

m be finite sets of vectors andψ(·, ·) be a finite

function defined on I1 × I2. For all c > 0,

P

(
min
w∈I1

max
u∈I2

{
uTAw + g‖w‖‖u‖ +ψ(w, u))

}
≥ c

)
≥

P

(
min
w∈I1

max
u∈I2

{
‖w‖gTu + ‖u‖hTw +ψ(w, u))

}
≥ c

)
.

Proof. Define two Gaussian processes indexed on the set I1 × I2:

Yw,u = wTGu + g‖u‖‖w‖ and Xw,u = ‖w‖gTu − ‖u‖hTw.

First, we show that the processes defined satisfy the conditions of Gordon’s The-
orem 3.1.1. Clearly, they are both centered. Furthermore, for all w,w′ ∈ I1 and
u, u′ ∈ I2:

E[X2
w,u] = ‖w‖2‖u‖2 + ‖u‖2‖w‖2 = E[Y2

w,u],

and

E[Xw,uXw′ ,u′] − E[Yw,uYw′ ,u′] = ‖w‖‖w′‖(uTu′) + ‖u‖2(wTw′)

− (wTw′)(uTu′) − ‖u‖‖u′‖‖w‖‖w′‖

=

‖w‖‖w′‖ − (wTw′)︸                  ︷︷                  ︸
≥0


(uTu′) − ‖u‖‖u′‖︸                ︷︷                ︸

≤0

 ,
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which is non positive and equal to zero when w = w′.

Next, for each (w, u) ∈ I1 × I2, let λw,u = −ψ(w, u) + c and apply Theorem 3.1.1.
This completes the proof by observing that[

min
w∈I1

max
u∈I2
{Yw,u +ψ(w, u)} ≥ c

]
=

⋂
w∈I1

⋃
u∈I2

[
Yw,u ≥ λw,u

]
,

and similar for the process Xw,u. �

Proof. (of Theorem 3.2.1) Denote R1 := maxw∈Sw ‖w‖ and R2 := maxu∈Su ‖u‖.
Fix any ε > 0. Since ψ(·, ·) is continuous and the sets Sw,Su are compact, ψ(·, ·)
is uniformly continuous on Sw × Su. Thus, there exists δ := δ(ε ) > 0 such that
for every (w, u), (w̃, ũ) ∈ Sw × Su with ‖

[
w u

]
−

[
w̃ ũ

]
‖ ≤ δ, we have that

|ψ(w, u) − ψ(w̃, ũ)| ≤ ε . Let Sδw,Sδu be δ-nets of the sets Sw and Su, respectively.
Then, for any w ∈ Sw, there exists w′ ∈ Sδw such that ‖w − w′‖ ≤ δ and an
analogous statement holds for Su. In what follows, for any vector v in a set S, we
denote v′ the element in the δ-net of S that is the closest to v in the usual `2-metric.
To simplify notation, denote

α(w, u) := uTAw+g‖w‖‖u‖+ψ(w, u) and β(w, u) := ‖w‖gTu+‖u‖hTw+ψ(w, u).

From Lemma A.1.1, we know that for all c ∈ R:

P

(
min
w∈Sδw

max
u∈Sδu

α(w, u) ≥ c

)
≥ P

(
min
w∈Sδw

max
u∈Sδu

β(w, u) ≥ c

)
. (A.1)

In what follows we show that constraining the minimax optimizations over only the
δ-nets Sδw,S

δ
u instead of the entire sets Sw,Su, changes the achieved optimal values

by only a small amount.

First, we calculate an upper bound on

min
w∈Sδw

max
u∈Sδu

α(w, u) − min
w∈Sw

max
u∈Su

α(w, u) ≤ min
w∈Sδw

max
u∈Sδu

α(w, u) − min
w∈Sw

max
u∈Sδu

α(w, u) =: α(w1, u1) − α(w2, u2)

≤ max
u∈Sδu

α(w′2, u) − α(w2, u2) =: α(w′2, u∗) − α(w2, u2)

≤ α(w′2, u∗) − α(w2, u∗)

= uT
∗A(w′2 − w2) + g‖u∗‖(‖w′2‖ − ‖w2‖) + (ψ(w′2, u∗) −ψ(w2, u∗))

≤ (‖A‖2 + |g |) ‖u∗‖︸︷︷︸
≤R2

‖w′2 − w2‖︸       ︷︷       ︸
≤δ

+ |ψ(w′2, u∗) −ψ(w2, u∗)|︸                        ︷︷                        ︸
≤ε

≤ (‖A‖2 + |g |)R2δ + ε .
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From this, we have that

P

(
min
w∈Sw

max
u∈Su

α(w, u) ≥ c

)
≥ P

(
min
w∈Sδw

max
u∈Sδu

α(w, u) ≥ c + (‖A‖2 + |g |)R2δ + ε

)
.

(A.2)

Using standard concentration results on Gaussians, it is shown in Lemma A.1.0.1
that for all t > 0,

P(‖A‖2 + |g | ≤
√
m +
√
n + 1 + t) ≥ 1 − 2 exp(−t2/4).

This, when combined with (A.2) yileds:

P

(
min
w∈Sw

max
u∈Su

α(w, u) ≥ c

)
≥ P

(
min
w∈Sδw

max
u∈Sδu

α(w, u) ≥ c + (
√
m +
√
n + 1 + t)R2δ + ε

)
− 2e−t

2/4.

(A.3)

Similarly,

min
w∈Sδw

max
u∈Sδu

β(w, u) − min
w∈Sw

max
u∈Su

β(w, u) ≥ min
w∈Sδw

max
u∈Sδu

β(w, u) − min
w∈Sδw

max
u∈Su

β(w, u) =: β(w1, u1) − β(w2, u2)

≥ β(w1, u1) − max
u∈Su

β(w1, u) =: β(w1, u1) − β(w1, u∗)

≥ β(w1, u′∗) − β(w1, u∗)

= ‖w1‖gT (u′∗ − u∗) + (‖u′∗‖ − ‖u∗‖)h
Tw1 + (ψ(w1, u′∗) −ψ(w1, u∗))

≥ −(‖g‖ + ‖h‖) ‖w1‖︸︷︷︸
≤R1

‖u′∗ − u∗‖︸      ︷︷      ︸
≤δ

− |ψ(w1, u′∗) −ψ(w1, u∗)|︸                        ︷︷                        ︸
≤ε

≥ −(‖g‖ + ‖h‖)R1δ − ε .

Thus,

P

(
min
w∈Sw

max
u∈Su

β(w, u) ≥ c + (‖g‖ + ‖h‖)R1δ + ε

)
≤ P

(
min
w∈Sδw

max
u∈Sδu

β(w, u) ≥ c

)
,

and a further application of Lemma A.1.0.1 shows that for all t > 0:

P

(
min
w∈Sw

max
u∈Su

β(w, u) ≥ c + (
√
m +
√
n + t)R2δ + ε

)
− 2e−t

2/4 ≤ P

(
min
w∈Sδw

max
u∈Sδu

β(w, u) ≥ c

)
,

(A.4)

Now, we can apply (A.1) in order to combine (A.3) and (A.4) to yield the following:

P

(
min
w∈Sw

max
u∈Su

α(w, u) ≥ c

)
≥

P

(
min
w∈Sw

max
u∈Su

β(w, u) ≥ c + (
√
m +
√
n + 1 + t)(R1 + R2)δ + 2ε

)
− 4e−t

2/4.
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This holds for all ε > 0 and all t > 0. In particular, set t = δ−
1
2 and take the limit

of the right-hand side as ε → 0. Then, t → ∞ and we can of course choose δ → 0,
which proves that

P

(
min
w∈Sw

max
u∈Su

α(w, u) ≥ c

)
≥ P

(
min
w∈Sw

max
u∈Su

β(w, u) > c

)
.

�

Lemma A.1.0.1. Let A ∈ Rm×n, g ∈ R, g ∈ Rm and h ∈ Rn have entries i.i.d.

N (0, 1) and be independent of each other. Then, for all t > 0, each one of the

events

{‖A‖2 + |g | ≤
√
m +
√
n + 1 + t } and {‖h‖2 + ‖g‖2 ≤

√
m +
√
n + t } (A.5)

holds with probability at least 1 − 2 exp(−t2/4).

Proof. A well-known non-asymptotic bound on the largest singular value of an
n × d Gaussian matrix shows (e.g. [Ver10a, Corollary 5.35]) that for all t > 0:

P
(
‖A‖2 >

√
m +
√
n + t

)
≤ exp(−t2/2).

Also, ‖ · ‖2 is an 1-Lipschitz function and for a standard Gaussian vector v ∈ Rn:
E‖v‖2 ≤

√
d . Applying Proposition 3.1.1 we have that for all t > 0 the events

{|g | > 1 + t }, {‖g‖2 >
√
m + t } and {‖h‖2 >

√
n + t }, each one occurs with

probability no larger than exp(−t2/2). Combining those,

P
(
‖A‖2 + |g | ≤

√
m +
√
n + 1 + t

)
≥ P

(
‖A‖2 ≤

√
d +
√
n + t/2 , |g | ≤ 1 + t/2

)
≥ 1 − P

(
‖A‖2 >

√
m +
√
n + t/2

)
− P ( |g | > 1 + t/2)

≥ 1 − 2 exp(−t2/4).

The proof of the second statement is identical and is omitted for brevity. �

A.2 Lipschitzness of the (AO)

Lemma A.2.0.2 (Lipschitzness of the AO problem). Let Sw ⊂ R
n, Su ⊂ R

m be

compact sets and function φ : Rm × Rn → R:

φ(g, h) := min
w∈Sw

max
u∈Su

‖w‖2gTu + ‖u‖2hTw +ψ(w, u).

Further let R1 = maxw∈Sw ‖w‖2 and R2 = maxu∈Su ‖u‖2. Then, φ(g, h) is Lipschitz

with constant
√

2R1R2.
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Proof. Fix any two pairs (g1, h1) and (g2, h2) and let

(w2, u2) = arg min
w∈Sw

max
u∈Su
‖w‖gT2 u + ‖u‖hT

2 w +ψ(w, u),

and
u∗ = arg max

u∈Su
‖w2‖gT1 u + ‖u‖hT

1 w2 +ψ(w2, u).

Clearly,
φ(g1, h1) ≤ ‖w2‖gT1 u∗ + ‖u∗‖hT

1 w2 +ψ(w2, u∗),

and
φ(g2, h2) ≥ ‖w2‖gT2 u∗ + ‖u∗‖hT

2 w2 +ψ(w2, u∗).

Without loss of generality, assume φ(g1, h1) ≥ φ(g2, h2). Then,

φ(g1, h1) − φ(g2, h2) ≤ ‖w2‖gT1 u∗ + ‖u∗‖hT
1 w2 +ψ(w2, u∗)

− (‖w2‖gT2 u∗ + ‖u∗‖hT
2 w2 +ψ(w2, u∗))

≤ ‖w2‖uT
∗ (g1 − g2) + ‖u∗‖wT

2 (h1 − h2)

≤
√
‖w2‖2‖u∗‖2 + ‖u∗‖2‖w2‖2

√
‖g1 − g2‖2 + ‖h1 − h2‖2

≤ R1R2
√

2
√
‖g1 − g2‖2 + ‖h1 − h2‖2,

where the penultimate inequality follows from Cauchy-Schwarz. �
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A p p e n d i x B

PROOFS FOR CHAPTER 4

B.1 Proof of Theorem 4.2.1
Here, we prove Theorem 4.2.1. The proof consists of several steps and interme-
diate results that are stated as lemmas. The proofs of the latter are all deferred to
Appendix B.2.

Preliminaries

x̂ := arg min
x
L(y − Ax) + λ f (x).

Recall that y = Ax0 + z. Our goal is to characterize the nontrivial limiting behavior
of ‖x̂ − x0‖2/

√
n. We start with a simple change of variables w := (x − x0)/

√
n to

directly get a handle on the error vector w. Also, we normalize the objective by
dividing with n so that the optimal cost is of constant order. Then,

ŵ := arg min
w

1
n

{
L

(
z −
√
nAw

)
+ λ f

(
x0 +

√
nw

)}
. (B.1)

Instead of the optimization problem above, we will analyze a simpler Auxiliary
Optimization (AO) that is tightly related to the Primary Optimization (PO) in (B.1)
via the CGMT.

The CGMT for M-estimators
In this section, we show how the CGMT Theorem 3.3.1 can be applied to predict
the limiting behavior of the solution ‖ŵ‖2 to the minimization in (B.1). The main
challenge here is to express (B.1) as a (convex-concave) minimax optimization in
which the involved random matrix (here A) appears in a bilinear form, exactly as in
(3.11a). Also, some side technical details need to be taken care of. For example, in
(3.11a) the optimization constraints are required by Theorem 3.3.1 to be bounded,
which is not the case with (B.1). We start with addressing this immediately.



190

Boundedness of the Error

The constraint set over which w is optimized in (3.11a) is unbounded. We will
introduce “artificial" boundedness constraints that allow the application of Theorem
3.3.1, while they do not affect the optimization itself. For this purpose, recall our
goal of proving that ‖ŵ‖2 converges to some (finite) α∗ defined in Theorem 4.2.1.
Define the set Sw = {w | ‖w‖2 ≤ Kα}, where

Kα := α∗ + ζ (B.2)

for a constant ζ > 0, and, consider the “bounded" version of (B.1):

ŵB := arg min
w∈Sw

1
n

{
L

(
z −
√
nAw

)
+ λ f

(
x0 +

√
nw

)}
. (B.3)

We expect that the additional constraint w ∈ Sw in (B.3) will not affect the opti-
mization with high probability when n is large enough. The idea here is that the
minimizer of the original unconstrained problem in (B.1) satisfies ‖ŵ‖2 ≈ α∗ < Kα

whp. Of course, this latter statement is yet to be proven! Once this is done, we can
return and confirm that our initial expectation is met. Lemma B.1.1 below shows
that if ‖ŵB‖

P
−→ α∗ < Kα, then, the same is true for the optimal of (B.1).

Lemma B.1.1. For the two optimizations in (B.1) and (B.3), let ŵ and ŵB be op-

timal solutions. Also, recall the definition of Kα in (B.2). If ‖ŵB‖
P
−→ α∗, then

‖ŵ‖
P
−→ α∗.

Owing to the result of the lemma, henceforth we work with the bounded optimiza-
tion in (B.3). Using some abuse of notation, we will refer to optimal solution of
(B.3) as ŵ, rather than ŵB.

Identifying the (PO)

Here, we bring the minimization in (B.3) it in the form of the (PO) in (3.11a). For
this purpose, we will use Lagrange duality. Note that the former can be equivalently
expressed as

ŵ = arg min
w∈Sw ,v

1
n

{
L(
√
nv) + λ f (x0 +

√
nw)

}
subject to v = z −

√
nAw.

Associating a dual variable u to the equality constraint above, we write it as

ŵ = arg min
w∈Sw ,v

max
u

1
√
n

{
−uT (

√
nA)w + uTz − uTv

}
+

1
n

{
L(v) + λ f (x0 +

√
nw)

}
.

(B.4)
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It takes not much effort to check that the objective function above is in the desired
format of (3.11a): the random matrix A appears in a bilinear term uTAw and the
rest of the terms form a convex-concave function in u,w. Furthermore, we can use
Assumption 4.2.1(b) to show that the optimal u∗ is bounded, which is a requirement
of Theorem 3.3.1. In the same lines as in Section B.1, we henceforth work with the
“bounded" version of (B.4), namely,

ŵ = arg min
w∈Sw ,v

max
u∈Su

1
√
n

{
−uT (

√
nA)w + uTz − uTv

}
+

1
n

{
L(v) + λ f (x0 +

√
nw)

}
(B.5)

for Su := {u | ‖u‖2 ≤ Kβ} and Kβ > 0 a sufficiently large constant.

Lemma B.1.2. If Assumption 4.2.1(b) holds, then there exists sufficiently large con-

stant Kβ such that the optimization problem in (B.5) is equivalent to that in (B.3),
with probability approaching 1 in the limit of n → ∞.

As a last step, before writing down the corresponding (AO) problem, it will be
useful for the analysis of the latter to express f in a variational form through its
Fenchel conjugate, which gives,

ŵ = arg min
w∈Sw ,v

max
u∈Su ,s

1
√
n

{
−uT (

√
nA)w + uTz − uTv

}
+

1
n

{
L(v) + λsTx0 + λ

√
nsTw − λ f ∗(s)

}
.

(B.6)

The (AO)

Having identified (B.6) as the (PO) in our application, it is straightforward to write
the corresponding (AO) problem following (3.11b):

min
w∈Sw ,v

max
u∈Su ,s

1
√
n

{
‖w‖2gTu − ‖u‖2hTw + uTz − uTv

}
+

1
n

{
L(v) + λsTx0 + λ

√
nsTw − λ f ∗(s)

}
.

(B.7)

Once we have identified the (AO) problem, Corollary 3.3.2 suggests analyzing that
one instead of the (PO). Our goal is showing that ‖ŵ‖2

P
−→ α∗. For this, we wish to

apply the corollary to the following set

S = {w | |‖w‖2 − α∗ | > ε },

for arbitrary ε > 0.
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Asymptotic min-max property of the (AO)

It turns out that verifying the conditions of the corollary for the (AO) as it appears in
(B.7) is not directly easy. In short, what makes the analysis cumbersome is the fact
that the optimization in (B.7) is not convex (e.g. if gTu is negative, then ‖w‖2gTu
is not convex). Thus, flipping the order of min-max operations that would simplify
the analysis is not directly justified.

At this point, recall that the (PO) in (B.6) is itself convex. In fact, for it, all con-
ditions of Sion’s min-max Theorem [Sio+58] are met, thus, the order of min-max
operations can be flipped. According to the CGMT, the (PO) and the (AO) are
tightly related in an asymptotic setting. We use this to translate the convexity prop-
erties of the (PO) to the (AO). In essence, we show that when dimensions grow,
the order of min-max operations in the (AO) can be flipped. Thus, we will instead
consider the following problem as the (AO):

φ(g, h) := max
0≤β≤Kβ

s

min
‖w‖2≤Kαv

max
‖u‖2=β

1
√
n

(‖w‖2g + z − v)Tu −
1
√
n
‖u‖2hTw

+
1
n
L(v) +

λ

n
sTx0 +

λ
√
n

sTw −
λ

n
f ∗(s).

(B.8)

Observe that the objective function remains the same; it is only the order of min-
max operations that is slightly modified compared to (B.7). Since the objective
function is not necessarily convex-concave in its arguments, there is no immediate
guarantee that the two problems in (B.7) and (B.8) are equivalent for any realiza-
tions of g and h. However, the lemma below essentially shows that such a strong
duality holds with high probability over g and h in high dimensions. Hence, the
problem in (B.8) can be as well used, instead of the one in (B.7), in order to analyze
the (PO). For this reason, henceforth, we refer to (B.8) as the (AO) problem.

Lemma B.1.3. Let ŵ(A) denote an optimal solution of (B.1). Consider the (AO)

problem in (B.8). Let α∗ be as defined in Theorem 4.2.1. For any ε > 0 define

the set S := {w | |‖w‖2 − α∗ | < ε } and let φSc (g, h) be the optimal cost of the

same optimization as in (B.8), only this time the minimization over w is further

constrained such that w < S. Assume that for any Kα > α∗ and for any sufficiently

large Kβ, there exist constants φ < φSc such that for all η > 0, with probability

approaching one in the limit of n → ∞, the following hold:
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(a) φ(g, h) < φ + η,

(b) φSc (g, h) > φSc − η.

Then,

lim
n→∞
P ( |‖ŵ(A)‖2 − α∗ | < ε ) = 1.

After Lemma B.1.3, what remains in order to prove Theorem 3.3.1 is satisfying the
conditions of the lemma. This involves a thorough analysis of the (AO) problem in
(B.8), which is the subject of the next few sections.

Scalarization
Observe that the optimization in (B.8) is over vectors. The purpose of this section
is to simplify the (AO) into an optimization involving only scalar variables. Of
course, one of these has to play the role of the norm of w, which is the quantity of
interest. The main idea behind the “scalarization" step of the (AO) is to perform
the optimization over only the direction of the vector variables while keeping their
magnitude constant. This is already hinted by the rearrangement of the order of
min-max operations going from (B.7) to (B.8). Also, this process is facilitated by
the following two facts:

1. The bilinear term uTAw that appears in the (PO) conveniently “splits" into
the two terms ‖w‖2gTu and ‖u‖2hTw in the (AO),

2. The term involving the regularizer, i.e. f (x0 + w) has been expressed in a
variational form as sups sTx0 + sTw − f ∗(s).

The details of the reduction step are all summarized in Lemma B.1.4, below which
shows that the (AO) reduces to the following convex minimax problem on four
scalar optimization variables:

inf
0≤α≤Kα
τg>0

sup
0≤β≤Kβ
τh>0

βτg

2
+

1
n

eL

(
αg + z;

τg

β

)

−


ατh

2 +
β2α
2τh
‖h‖2
n
− λ · 1

n
e f

(
βα
τh

h + x0; αλτh
)

, α > 0
λ
n
f (x0) , α = 0

, (B.9)

where we recall that

eω (u;τ) := min
v
{

1
2τ
‖u − v‖22 +ω(v)}
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denotes the (vector) τ-Moreau envelope of a function ω : Rd → R evaluated at
u ∈ Rd.

Lemma B.1.4 (Scalarization of the (AO)). The following statements are true re-

garding the two minimax optimization problems in (B.8) and (B.9):

(i) They have the same optimal cost.

(ii) The objective function in (B.9) is continuous on its domain, (jointly) convex in

(α, τg) and (jointly) concave in (β, τh).

(iii) The order of inf-sup in (B.9) can be flipped without changing the optimization.

Convergence Analysis
The goal of this section is to show that the (AO) satisfies the conditions of Lemma
B.1.3. This requires a convergence analysis of its optimal cost. We work with the
scalarized version of the (AO) that was derived in the previous section:

φ(g, h, z, x0) = inf
0≤α≤Kα
τg>0

sup
0≤β≤Kβ
τh>0

Rn(α, τg , β, τh; g, h, z, x0),

(B.10)

Rn =
βτg

2
+

1
n

{
eL

(
αg + z;

τg

β

)
− L(z)

}

−


ατh

2 +
β2α
2τh
‖h‖2
n
− λ

n

{
e f

(
βα
τh

h + x0; αλτh
)
− f (x0)

}
, α > 0

0 , α = 0
.

Here, when compared to (B.9), we have subtracted from the objective the terms
L(z) and f (x0), which of course does not affect the optimization. The optimization
is of course random over the realizations of g, h, z and x0, and, by the WLLN,
it is easy to identify the converging value of the objective function Rn for fixed
parameter values α, τg , β, τh. Indeed, it converges to the objective function of the
(SPO) problem in (4.4). For our goals, we need to show that the minimax of the
converging sequence of objectives converges to the minimax of the objective of the
(SOP). Convexity of Rn plays a crucial role here since is being use to conclude local
uniform convergence from the pointwise convergence. Uniform convergence is a
requirement to conclude the desired.1

1We remark that the tools used for this part of the proof are similar to those classically used
for the study of consistency of M-estimators in the classical regime where n is fixed and m goes to
infinity, cf. Arg-min theorems e.g. [LM08, Thm. 7.70], [NM94, Thm. 2.7] .
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Lemma B.1.5 (Convergence properties of the (AO)). Let

Rn(α, τg , β, τh) := Rn(α, τg , β, τh; g, h, z, x0),

be defined as in (B.10), and,

φA := φA(g, h, z, x0) := inf
α∈A
τg>0

sup
0≤β≤Kβ
τh>0

Rn(α, τg , β, τh), (B.11)

for A ⊆ [0,∞). Further consider the following deterministic convex program

φA := inf
α∈A
τg>0

sup
β≥0
τh>0

D(α, τg , β, τh) :=


βτg

2 + δ · L
(
α,

τg
β

)
, β > 0

−δ · L0 , β = 0
(B.12)

−


ατh

2 +
αβ2

2τh
− λ · F

(
αβ
τh
, αλτh

)
, α > 0

0 , α = 0
,

where L and F as in Theorem 4.2.1. If Assumption 4.2.1(a) and 4.2.2 hold, then,

(a) Rn(α, τg , β, τh)
P
−→ D(α, τg , β, τh), for all (α, τg , β, τh), and D(α, τg , β, τh) is

convex in (α, τg) and concave in (β, τh).

(b) Assume α∗ is the unique minimizer in (B.12) with A := [0,∞). For any ε > 0,

define Sε := {α | |α − α∗ | < ε }. Then, for any sufficiently large constants

Kα > α∗ and Kβ > 0, and for all η > 0, it holds with probability approaching

1 as n → ∞:

(i) φ[0,Kα ] < φ[0,∞) + η,

(ii) φ[0,Kα ]\Sε ≥ φ[0,∞)\Sε − η,

(iii) φ[0,∞)\Sε > φ[0,∞).

Putting all the Pieces Together
We are now ready to conclude the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Fix any ε > 0. Consider the setSε = {w | |‖w‖2−α∗‖2 < ε

as in Lemma B.1.3. We use the same notation as in the lemma. Let Kα > α∗ and
arbitrarily large (but finite) Kβ > 0. From Lemma B.1.4(i), φ(g, h) is equal to
the optimal cost of the optimization in (B.9). But, from Lemma B.1.5(b)(i), the
latter converges in probability to some constant φ (see Lemma B.1.5 for the exact
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value constant). The same line of arguments applies to φSc
ε
(g, h), showing that it

converges to another constant φSc
ε
. Again from Lemma B.1.5(iii): φSc

ε
> φ. Thus,

the conditions of Lemma B.1.3 are satisfied, and it implies that the magnitude of
any optimal minimizer (say) ŵ(PO) of the (PO) problem in (B.6) satisfies ŵ(PO) ∈ S

in probability, in the limit of n → ∞. �

B.2 Proofs for Section F.1
Proof of Lemma B.1.1
For convenience, denote with M(w) the objective function in (B.1). For some ε > 0
such that α+ε < Kα (e.g. ε = ζ/2 in (B.2)), denoteD := {w | α−ε ≤ ‖w‖2 ≤ α+ε }.
By assumption, with probability approaching 1 (w.p.a. 1)

ŵB ∈ D . (B.13)

For the shake of a contradiction, assume that there exists optimal solution ŵ of
(B.1) such that ŵ < D w.p.a. 1. Clearly,

M(ŵ) ≤ M(ŵB). (B.14)

Suppose ŵ ∈ Sw, then ŵ is optimal for (B.3) and satisfies (B.13), which contradicts
our assumption. Thus, ŵ < Sw. Next, let wθ := θŵ + (1 − θ)ŵB for θ ∈ (0, 1) such
that wθ < D and wθ ∈ Sw (always possible, by definition of D). By the convexity
of F and (B.14), it follows that M(ŵθ) ≤ M(ŵB). Hence, ŵθ is optimal for (B.3)
and satisfies (B.13), which, again, is a contradiction. This completes the proof.

Proof of Lemma B.1.2
It suffices to prove the equivalence of the optimization (B.4) and (B.5). Let w∗, v∗, u∗
be optimal in (B.4). To prove the claim, we show that u∗ ∈ Su

(
⇔ ‖u∗‖2 ≤ Kβ

)
w.p.a. 1. From the first order optimality conditions in (B.4), we find that

u∗ ∈
1
√
n
∂L(v∗), (B.15)

v∗ = z −
√
nAw∗. (B.16)

Recall Assumption 4.2.1(b) and consider two cases. First, if supv∈Rm sups∈∂L(v) ‖s‖2 <
∞, the claim follows directly by (B.15). Next, assume that w.h.p., ‖z‖2 ≤ C1

√
n

for constant C1 > 0. Also, a standard high probability bound on the spectral norm
of Gaussian matrices gives ‖A‖2 ≤ C2, e.g. [Ver10b]. Using these, boundedness of
w∗ and (B.16), we find that ‖v∗‖2 ≤ C3

√
n whp. Then, the normalization condition

1√
n

sups∈∂L(v) ‖s‖2 ≤ C for all ‖v‖2 ≤ c
√
n and all n ∈ N, yields the desired, i.e.

‖u∗‖2 ≤ C holds with probability approaching 1 as n → ∞.
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Proof of Lemma B.1.3
Let w∗ denote an optimal solution of the “bounded" optimization in (B.6). It will
suffice to prove that w∗ ∈ S in probability. To see this, recall from Lemma B.1.2 that
(B.6) is asymptotically equivalent to (B.3). Then, Lemma B.1.1 and the assumption
α∗ < Kα guarantee that ŵ(A) ∈ S in probability, as desired.

DenoteΦ := Φ(A) the optimal cost of the minimization in (B.6) andΦSc := ΦSc (A)
the optimal cost of the same problem when the minimization is further restricted to
be over the set w ∈ Sc . Note that w∗ ∈ S iff ΦSc (A) > Φ(A); hence, it will suffice
to prove that the latter event occurs in probability.

We do so by relating the (PO) in (B.6) to the Auxiliary Optimization (AO) in (B.8)
using Theorem 3.3.1. For concreteness, denote the objective function in (B.8) with
A(w, v, u, s), and, recall Sw := {w | ‖w‖2 ≤ Kα}, Su := {u | ‖u‖2 ≤ Kβ}. With
these, define

φP := φP(g, h) := min
w∈Sw ,v

max
u∈Su ,s

A(w, v, u, s),

and φD := φD(g, h) := max
u∈Su ,s

min
w∈Sw ,v

A(w, v, u, s). (B.17)

Observe here that the order of min-max in φP is exactly as in the original formu-
lation of the CGMT, cf. (3.11b); φD is the dual of it, and φ in (B.8) involves yet
another change in the order of the optimizations. The reason we prefer to work with
the later problem, is that this particular order allows for a number of simplifications
performed in Section B.1.

As done before, denote with φPSc , φDSc the optimal cost of the optimizations in
(B.17) under the additional constraint w ∈ Sc . The two problems in (B.17) are
related to the one in (B.8) as follows:

φPSc = min
w∈Sw ,v
w∈Sc

max
u∈Su ,s

A(w, v, u, s) = min
w∈Sw ,v
w∈Sc

max
β,s

max
‖u‖2=β

A(w, v, u, s)

≥ max
β,s

min
w∈Sw ,v
w∈Sc

max
‖u‖2=β

A(w, v, u, s) = φSc , (B.18)

where the inequality follows from the min-max inequality [Roc97, Lem. 36.1]. Sim-
ilarly,

φD = max
u∈Su ,s

min
w∈Sw ,v

A(w, v, u, s) = max
β,s

max
‖u‖2=β

min
w∈Sw ,v

A(w, v, u, s)

≤ max
β,s

min
w∈Sw ,v

max
‖u‖2=β

A(w, v, u, s) = φ. (B.19)
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Furthermore, they are related to the (PO) via the CGMT. From Theorem 3.3.1(i),
for all c ∈ R:

P(ΦSc < c) ≤ 2P(φPSc ≤ c). (B.20)

Also, from Theorem 3.3.1(ii)2:

P(Φ > c) ≤ 2P(φD ≥ c). (B.21)

The remaining of the proof is in the same lines as the proof of 3.3.1(iii), but is
included for clarity. Let η := (φSc −φ)/3 > 0. We may apply (B.20) for c = φSc −η

and combine with (B.18) to find that

P(ΦSc < φSc − η) ≤ 2P(φPSc ≤ φSc − η) ≤ 2P(φSc ≤ φSc − η). (B.22)

From assumption (b) the last term above tends to zero as n → ∞. In a similar way,
combining (B.21), (B.19) and assumption (a), we find that

P(Φ > φ + η) ≤ 2P(φD ≥ φ + η) ≤ 2P(φ ≥ φ + η), (B.23)

goes to zero with n → ∞. Denote the event E = {ΦSc ≥ φSc − η and Φ ≤
φ + η}. From (B.22) and (B.23) the event occurs with probability approaching 1.
Furthermore, in this event, after using assumption (a), we have Φb

Sc ≥ φSc − η >

φ + η ≥ Φb; equivalently, the optimal minimizer satisfies w∗ ∈ S, which completes
the proof.

Proof of Lemma B.1.4
(i) We start by showing how the vector optimization in (B.8) can be reduced to the
scalar one that appears in (B.9). This requires the following steps.

Optimizing over the direction of u: Performing the inner maximization is easy. In
particular, using the fact that max‖u‖2=β uT t = β‖t‖2 for all β ≥ 0 the problem
simplifies to a max-min one:

max
0≤β≤Kβ ,s

min
‖w‖≤Kα ,v

β
√
n
‖ ‖w‖2g + z − v ‖2 −

β
√
n

hTw +
1
n
L(v) +

λ

n
sTx0 +

λ
√
n

sTw −
λ

n
f ∗(s).

Optimizing over the direction of w: Next, we fix ‖w‖2 = α, and, similar to what
was done above, minimize over its direction:

max
0≤β≤Kβ ,s

min
0≤α≤Kα ,v

β
√
n
‖ αg + z − v ‖2 +

1
n
L(v) −

α
√
n
‖βh − λs‖2 +

λ

n
sTx0 −

λ

n
f ∗(s).

(B.24)
2more precisely, please refer to equation (32) in [TOH15].
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Changing the orders of min-max: Denote with M(α, β, v, s) the objective function
above. It can be checked that M is jointly convex in (α, v) and jointly concave in
(β, s) (cf. Lemma B.2.4). Thus, minv M is convex in α and jointly concave in (β, s).
Furthermore, the constraint sets are all convex and the one over which minimization
over α occurs is bounded. Hence, as in [Sio+58, Cor. 3.3] we can flip the order of
maxβ,s minα, to conclude with

min
0≤α≤Kα

max
0≤β≤Kβ

max
s

min
v

M(α, β, v, s).

Also, observe that the order of optimization among v and s does not affect the
outcome.

The square-root trick: We apply the fact that
√
χ = infτ>0{

τ
2 +

χ
2τ } to both the terms

1√
n
‖αg + z − v‖2 and 1√

n
‖βh − λs‖2:

min
0≤α≤Kα

max
0≤β≤Kβ

inf
τg>0

sup
τh>0

βτg

2
+

1
n

min
v

{
β

2τg
‖ αg + z − v ‖22 + L(v)

}
−
ατh

2
−

1
n

min
s

{
α

2τh
‖βh − λs‖22 − λsTx0 + λ f ∗(s)

}
.

(B.25)

Identifying the Moreau envelope: Arguing as before, we can change the order of
optimization between β and τg. Also, it takes only a few algebra steps and using
basic properties of Moreau envelope functions (in particular, Lemma B.2.5(ii)) to
rewrite the last summand in (B.25) as below. If α > 0, then,

min
s

{
α

2τh
‖βh − λs‖22 − λsTx0 + λ f ∗ (s)

}
= −

τh
2α
‖x0‖

2
2 − βhTx0 + λ · e f ∗

(
β

λ
h +

τh
αλ

x0;
τh
αλ

)
(B.26)

=
β2α

2τh
‖h‖2 − λ · e f

(
βα

τh
h + x0;

αλ

τh

)
.

(B.27)

Otherwise, if α = 0, then the same term equals −λ f (x0) since maxs sTx0 − f ∗(s) =

f (x0).

(ii) The continuity of the objective function in (B.9) follows directly from the conti-
nuity of the Moreau envelope functions, cf. [RW09, Lem. 1.25, 2.26]. In particular,
regarding the two branches of the objective: it can be checked, using the continuity
of the Moreau envelope, that the limit of the RHS in (B.27) as α → 0 evaluates to
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−λ f (x0). (In fact, this is the unique extension of the upper branch to a continuous
finite convex function on the whole α ≥ 0, τ > 0, as per [Roc97, Thm. 10.3].)

Convexity of (B.9) can be checked from (B.25). By applying Lemma B.2.4, after
minimization over v, the Moreau Envelope remains jointly convex with respect to
α and τg and concave in β. The same argument (and similar lemma) holds for the
last term of (B.25) in which after minimization over s it remains jointly convex in
β and τh and concave in α. Then the negative sign before this term makes it jointly
concave in β and τh and convex over α.

Proof of Lemma B.1.5
(a) By Assumption 4.2.1(a) the normalized Moreau envelope functions in (B.10)
converge in probability to L and F, respectively. Also, ‖h‖22/n

P
−→ 1 by the WLLN.

This proves the convergence part.

Lemma B.1.4(i) showed Rn to be convex-concave. Then, the same holds for D
by point-wise convergence and the fact that convexity is preserved by point wise
limits.

(b) Call

Mn(α) = sup
0≤β≤Kβ
τh>0

inf
τg>0
Rn(α, τg , β, τh) and M(α) = sup

0≤β
τh>0

inf
τg>0
Dn(α, τg , β, τh).

(B.28)

The bulk of the proof consists of showing that the following two statements hold:

∀ compact susets A ⊂ (0,∞) and sufficiently large Kβ := Kβ(A) > 0 : inf
α∈A

Mn(α)
P
−→ inf

α∈A
M(α)

(B.29)

and

∀ε > 0,w.p.a.1 : Mn(0) < M(0) + ε . (B.30)

Before proceeding with the proof of these, let us show how the conclusion of the
lemma is reached once (B.29) and (B.30) are established.

Using (B.29) and (B.30) to prove the lemma : Fix Kα > α∗, any δ > 0 such that
A := [α∗ − 2δ, α∗ + 2δ] ⊂ (0, Kα] and Kβ > 0 large enough such that (B.29) and
(B.30) both hold. Then, for all ε > 0, w.p.a.1:

min
0≤α≤Kα

Mn(α) ≤ min
α∈A

Mn(α) ≤ Mn(α∗) < M(α∗) + ε . (B.31)
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For the last inequality above: if α∗ = 0, it follows from (B.30), or otherwise from
(B.29).

Next, consider the compact setAl = {α > 0 | α ∈ [α∗ − 2δ, α − δ] } andAr = {α >

0 | α ∈ [α∗ + δ, α + 2δ] }. (Note that if α∗ = 0, then Al is empty.) From (B.29), we
know that for all ε > 0, w.p.a.1

min
α∈Al

Mn(α) > min
α∈Al

M(α) − ε and min
α∈Au

Mn(α) > min
α∈Au

M(α) − ε .

Let Alu = Al ∪ Au and combine the above to find

min
αAlu

Mn(α) > min
α∈Alu

M(α) − ε . (B.32)

By assumption on uniqueness of α∗ and on convexity of M , we have

M(α∗) < min
α∈Alu

M(α) (B.33)

and M(α∗) = minα∈A M(α). Thus, Applying (B.31) and (B.32) for ε = (minα∈Alu
M(α)−

M(α∗))/3 yields w.p.a.1 :

min
α∈Alu

Mn(α) > min
α∈Alu

M(α) − ε > M(α∗) + ε > min
α∈[α∗−2δ,α∗+2δ]

Mn(α). (B.34)

Thus, w.p.a.1,
α̂n := arg min

α∈A
Mn(α) ∈ (α∗ − δ, α∗ + δ).

In this event, for any α < A, there is a convex combination αθ := θα̂n + (1 − θ)α,
(θ < 1) that equals either α∗ − 2δ or α∗ + 2δ. By convexity,

Mn(αθ) ≤ θMn(α̂n) + (1 − θ)Mn(α).

Also, from (B.34), Mn(α̂n) < Mn(αθ). Combining those, we find Mn(α̂n) < Mn(α),
implying that α̂n is the minimizer of Mn over the entire [0, Kα] w.p.a.1. In other
words, for all ε w.p.a. 1,

min
α∈[0,Kα ]\(α∗−δ,α∗+δ)

Mn(α) ≥ min
α∈Alu

Mn(α) > min
α∈Alu

M(α) − ε . (B.35)

To establish a connection with the three statements (i)-(iii) of the lemma, observe
that φ[0,∞) = M(α∗). Also, φ[0,∞)\Sδ = minα∈Alu

M(α) (by convexity). With these,
(i) corresponds directly to (B.31), (ii) to (B.35), and, (iii) to (B.33).

Proof of (B.29) and (B.30) : From the first statement of the lemma, the objective
function Rn of the (AO) converges point-wise to D. We will use this to show that
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the minimax value of Rn converges to the corresponding minimax of D. The proof
is based on a repeated use of Lemma B.2.1 below, about convergence of the infimum
of a sequence of convex converging stochastic processes. This fact is essentially a
consequence of what is known in the literature as convexity lemma, according to
which point wise convergence of convex functions implies uniform convergence in
compact subsets. Please refer to Section B.2 for the proof.

Lemma B.2.1 (Min-convergence – Open Sets). Consider a sequence of proper,

convex stochastic functions Mn : (0,∞) → R, and, a deterministic function M :
(0,∞)→ R, such that:

(a) Mn(x)
P
−→ M(x), for all x > 0,

(b) there exists z > 0 such that M(x) > infx>0 M(x) for all x ≥ z.

Then, infx>0 Mn(x)
P
−→ infx>0 F(x).

1) Fix α ≥ 0, β > 0, and, τh > 0. Consider

M
α,β,τh
n (τg) := Rn(α, τg , β, τh), (B.36)

Mα,β,τh (τg) := D(α, τg , β, τh). (B.37)

The functions {Mn} are convex. Furthermore, M
α,β,τh
n (τg)

P
−→ Mα,β,τh (τg) point

wise in τg. Next, we show that Mα,β,τh is level-bounded, i.e. it satisfies con-
dition (b) of Lemma B.2.1. In view of Lemma B.2.2, it suffices to show that
limτg→∞ Mα,β,τh (τg) = +∞, or limτg→∞

(
β
2 + δ ·

L(α,τg/β)
τg

)
> 0. By assumption

4.2.2(c), limτg→∞ L(α, τg/β) = −L0. There are two cases to be considered. Either
L0 < ∞, or else, Assumption 4.2.2(d) holds. Either way, limτg→∞ L(α, τg/β)/τg =

0 and we are done. Now, we can apply Lemma B.2.1 to conclude that

inf
τg>0

M
α,β,τh
n (τg)

P
−→ inf

τg>0
Mα,β,τh (τg). (B.38)

2) Next, again for fixed α ≥ 0, τh > 0, consider (we use some abuse of notation

here, with the purpose of not overloading notation)

M
α,τh
n (β) := inf

τg>0
M
α,β,τh
n (τg),
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Mα,τh (β) := inf
τg>0

Mα,β,τh (τg).

The functions {Mα,τh
n } are concave in β, as the point wise minima of concave func-

tions. Furthermore, Mα,τh
n (β)

P
−→ Mα,τh (β) point wise in β > 0, by (B.38).

α > 0: For now and until further notice, restrict attention to the case α > 0. Also,
consider first β > 0. We show that Mα,τh is level-bounded, i.e. it satisfies con-
dition (b) of Lemma B.2.1. In view of Lemma B.2.2, it suffices to show that
limβ→+∞ Mα,τh (β) = −∞, or limβ→+∞ infτg>0 M

α,β,τh (τg) = −∞. This condition
is equivalent to the following

(∀M > 0)(∃B > 0)
[
β > B ⇒ (∃{τg}k) [D(α, τg , β, τh) < −M]

]
. (B.39)

First, we show that

lim
β→+∞

αβ2

2τh
− λ · F

(
αβ

τh
,
αλ

τh

)
= +∞. (B.40)

This follows by Assumption 4.2.2(a) when applied for c = αβ/τh and τ = αλ/τh

(recall here that α > 0).

Next, choose {τg}k → 0. For that choice, βτg
2 + L(α, τg/β) → limτ→0 L(α, τ) < ∞,

where boundedness follows by Assumption 4.2.2(b). Thus, (B.39) is correct and
we may apply Lemma B.2.1 to conclude that

sup
β>0

M
α,τh
n (β)

P
−→ sup

β>0
Mα,τh (β). (B.41)

Now, we investigate the case β = 0. We have, M
α,τh
n (0) = − 1

n
L(z) − ατh

2 +
λ
n

(
e f

(
x0; αλτh

)
− f (x0)

)
and M

α,τh
n (0) = −δL0 −

ατh
2 + F(0, αλτh ).

If L0 < ∞, then by assumption, Mα,τh
n (0)

P
−→ Mα,τh (0). Combined with (B.41), we

find

sup
β≥0

M
α,τh
n (β)

P
−→ sup

β≥0
Mα,τh (β). (B.42)

Now, consider the case L0 = +∞. Clearly, the optimal β for Mα,τh is not at
zero; thus, supβ≥0 M

α,τh (β) = supβ>0 M
α,τh (β). Also, by assumption, for all M ,

limn→∞ P
(

1
n
L(z) > M

)
= 1. Letting ε > 0 and M := − supβ>0 M

α,τh (β) + ε +
ατh

2 − F(0, αλτh ), then w.p.a.1, Mα,τh
n (0) < supβ>0 M

α,τh (β) − ε ≤ supβ>0 M
α,τh
n (β),

where the last inequality follows because of (B.41). Again, this leads to (B.42). To
sum up, (B.42) holds for all α > 0.
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α = 0: We show that for all ε > 0, the following holds w.p.a.1:

sup
β≥0

M
α=0,τh
n (β) < sup

β≥0
Mα=0,τh (β) + ε . (B.43)

To begin with, note that for all n,

sup
β≥0

M
α=0,τh
n (β) ≤ sup

β>0
lim
τg→0

βτg

2
+

1
n

min
v

{
β

2τg
‖z − v‖22 + L(v) − L(z)

}
= 0,

(B.44)

where we have used Lemma B.4.1(ix). Next, we show that

Mα=0,τh (β) = 0. (B.45)

Using Assumption 4.2.2(c) on the non-negativity of L0 and Assumption 4.2.2(b)
that limτ→0 L(c , τ) = 0, it follows that Mα=0,τh (β) ≤ supβ>0 limτg→0

βτg
2 + L(0, τg/β) =

0. Thus, it will suffice for the claim if we prove

lim
β→∞

inf
τg>0

βτg

2
+ L(0, τg/β) = 0, (B.46)

or equivalently,

lim
β→∞

inf
κ>0

κ

(
β2

2
+
L(0, κ)
κ

)
= 0.

Fix some β > 0. Note that limκ→0
κβ2

2 + L(0, κ) = 0, where we have used Assump-

tion 4.2.2(b) that limτ→0 L(0, τ) = 0. Also, limκ→∞ κ
(
β2

2 +
L(0,κ)
κ

)
= +∞, using

Assumption 4.2.2(d) this time. Now, consider only β >
√
−L2,+(0, 0) (see Assump-

tion 4.2.2(b)). Then, the function κβ2

2 + L(0, κ) has a positive derivative at κ → 0+.
From this and convexity, it follows that for all κ > 0,

κβ2

2
+ L(0, κ) ≥ lim

κ→0

κβ2

2
+ L(0, κ) = 0.

This proves (B.46) as desired.

To complete the argument, (B.43) follows by (B.44) and (B.45), and with this we
have completed the proof of (B.30).

3) Keep α > 0 fixed and consider

Mα
n (τh) := sup

β≥0
M
α,τh
n (β),

Mα(τh) := sup
β≥0

Mα,τh (β).
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The functions {Mα
n } and F are all concave in τh, as the point wise maxima of jointly

concave functions. Furthermore, Mα
n (τh)

P
−→ Mα(τh) point wise in τh, by (B.42).

Next, we show that Mτh is level-bounded, i.e. it satisfies condition (b) of Lemma
B.2.1. In view of Lemma B.2.2, it suffices to show that limτh→∞ Mα(τh) = +∞, or
limτh→∞ supβ>0 infτg>0D(α, τg , β, τh) = −∞. This is equivalent to the following

(∀M > 0)(∃T > 0)
[
τh > T ⇒ (∀{β}k)(∃{τg}k) [D(α, τg , β, τh) < −M]

]
.

(B.47)

Consider the function

H (β, τh) :=
ατh

2
+
αβ2

2τh
− λ · F(

αβ

τh
,
αλ

τh
).

We show that

H (β, τh) ≥
ατh

2
.

To see this note that e f (ch + x0;τ) ≤ c2‖h‖2
2τ + f (x0). Thus, 1

n

{
e f (ch + x0;τ) − f (x0)

}
≤

c2‖h‖2
2τn . The LHS converges to F(c , τ) by Assumption 4.2.1(a) and the RHS con-

verges to c2

2τ . Therefore, F(c , τ) ≤ c2

2τ . Applying this for c =
αβ
τh

and τ = αλ
τh

, we

have that αβ
2

2τh
− λ · F(αβτh ,

αλ
τh

) ≥ 0, as desired.

Then,

D(α, τg , β, τh) ≤
βτg

2
+ δ · L

(
α,
τg

β

)
−
ατh

2
.

Also, note that for all β > 0, we can choose (sequence) of τg, such that βτg ,
τg
β → 0.

Then, βτg2 +δ ·L
(
α,

τg
β

)
→ limτ→0 L(α, τ) =: A < ∞. It can then be seen that (B.47)

holds for (say) T := T (M) = 4(A + M)/α.

We can apply Lemma B.2.1 to conclude that

sup
τh>0

Mα
n (τh)

P
−→ sup

τh>0
Mα(τh). (B.48)

4) Finally, consider
Mn(α) := sup

τh>0
Mα

n (τh),

M(α) := sup
τh>0

Mα(τh). (B.49)
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The functions {Mn} and F are all convex in τh, as the point wise maxima of convex
functions. Furthermore, Mn(α)

P
−→ M(α) point wise in α, by (B.48). By assump-

tion of the lemma, F has a unique minimizer α∗, which of course implies level
boundedness. Thus, we can apply Lemma B.2.1 to conclude that

inf
α>0

Mn(α)
P
−→ inf

α>0
M(α). (B.50)

Besides, pointwise convergence Mn(α)
P
−→ M(α) translates to uniform convergence

over any compact subset A ⊂ (0,∞) by the Convexity lemma [AG82, Cor.. II.1]
,[LM08, Lem. 7.75]. Hence,

inf
α∈A

Mn(α)
P
−→ inf

α∈A
M(α).

This is of course same as the desired in (B.29). Recall, (B.30) was established
in (B.43). The only thing remaining is showing that there exists an optimal β∗ in
supβ≥0 M

α,τh (β) that is bounded by some sufficiently large Kβ(A). This follows
from the level-boundedness arguments above as detailed next.

Boundedness of solutions : For a compact subset A ⊂ (0,∞), we argue that there
exists bounded β∗ and sequences {τg∗}k , {τh∗}k such that (α∗, {τg∗}k , β∗, {τh∗}k) ap-
proaches

min
α∈A

sup
τh>0
β≥0

inf
τg>0
D(α, τg , β, τh).

This follows from the work above. In particular, at each step in the proof of
(B.29) above, we showed level-boundedness of the corresponding functions. For
example, (B.47) shows that there exists (sufficiently large) Th(α) > 0 such that
supτh>0 M

α(τh) is equal to supTh (α)≥τh>0 M
α(τh). This holds for all α; so, in partic-

ular, is true for Th := maxα∈A Th(α). Next, from (B.40) there exists Kβ(α,Th), such
that supβ≥0 M

α,τh (β) is equal to supKβ (α,Th )≥β≥0 M
α,τh (β). Again, this holds for all

α ∈ A, thus there exists sufficiently large Kβ > 0 such that (see also Lemma B.2.3)

min
α∈A

sup
τh>0
β≥0

inf
τg>0
D(α, τg , β, τh) = inf

α∈A
sup
τh>0

Kβ≥β≥0

inf
τg>0
D(α, τg , β, τh).

The objective functionD above is convex-concave. Also, the constraint sets over α
and β are compact. Furthermore, the optimization ofD over τg and τh is separable.
With these and an application of Sion’s minimax theorem, the order of inf–sup
between the four optimization variables can be flipped arbitrarily without affecting
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the outcome. Thus, for example,

inf
α∈A

sup
τh>0
β≥0

inf
τg>0
D(α, τg , β, τh) = inf

α∈A
τg>0

sup
τh>0
≥β≥0

D(α, τg , β, τh).

The same is of course true for the corresponding random optimizations (also, Lemma
B.1.4(iii)).

Auxiliary Lemmas

Proof of Lemma B.2.1. First, convexity is preserved by point wise limits, so that
F(x) is also convex. Using this and level-boundedness condition (b) of the lemma,
it is easy to show that infx>0 F(x) > −∞. Since F is proper and (lower) level-
bounded, the only way infx>0 F(x) = −∞ is if limx→0 F(x) = −∞. But this is
not possible as follows: Fix 0 < x1 < x2 < x3. Then, for any 0 < x < x1 and
θ := x3−x2

x3−x
, convexity gives

F(x) ≥
1
θ
F(x2) −

(
1 −

1
θ

)
F(x3) ≥ −

x3 − x1

x3 − x2
|F(x2)| −

x2 − x1

x3 − x2
|F(x3)|.

Next, we show that for sufficiently small ε > 0, there exist x0 > xε > 0:

inf
x>0

F(x) ≤ F(xε ) ≤ inf
x>0

F(x) + ε and F(xε ) < F(x0). (B.51)

We show the claim for all 0 < ε < ε1 := (F(z) − infx>0 F(x)). Since infx>0 F(x)
is finite, there exists xε > 0 such that F(xε ) − ε ≤ infx>0 F(x). Without loss
of generality, xε < z. Pick any x0 > z. For the sake of contradiction, assume
F(x0) ≤ F(xε ). Then, by convexity, for some θ ∈ (0, 1)

F(z) ≤ θF(xε ) + (1 − θ)F(x0) ≤ F(xε ) ≤ inf
x>0

F(x) + ε < F(z).

Thus, F(xε ) < F(x0).

In order to establish the desired, it suffices that for all arbitrarily small δ > 0, w.p.a.
1,

| inf
x>0

Fn(x) − inf
x>0

F(x)| < δ. (B.52)

Fix some 0 < ε < min{ε1, δ} such that (B.51) holds, and, also some

0 < ε ′ < min{(F(x0) − F(xε ))/4, δ/4, δ − ε }. (B.53)
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Let K = [a, b] ⊂ (0,∞) be compact subset such that a < xε < x0 ≤ b and
a = δ−2ε ′

2δ−ε ′ xε . The functions {Fn} are convex and they converge point wise to
F in the open set (0,∞). This implies uniform convergence in compact sets by
the Convexity lemma [AG82, Cor.. II.1] ,[LM08, Lem. 7.75]. That is, there exists
sufficiently large N1 such that the event

sup
x∈K

|Fn(x) − F(x)| < ε ′ (B.54)

occurs w.p.a. 1, for all n > N1. In this event,

inf
x>0

Fn(x) ≤ Fn(xε ) < F(xε ) + ε ′ ≤ inf
x>0

F(x) + ε + ε ′ ≤ inf
x>0

F(x) + δ.

It remains to prove the other side of (B.52). In what follows, take n ≥ N1 and
condition on the high probability event in (B.54).

Let us first show level-boundedness of Fn. Consider the event infx>x0 Fn(x) <

infx≤x0 Fn(x). If this happens, then, infx>x0 Fn(x) < Fn(xε ), in which case there
exists (by continuity of Fn), xn > x0 such that Fn(xn) < Fn(xε ). But then, convexity
implies that for some 0 < θn < 1,

Fn(x0) ≤ θnFn(xn) + (1 − θn)Fn(xε ) < Fn(xε ) ≤ F(xε ) + ε ′ < F(x0) − ε ′, (B.55)

where we also used (B.54) and (B.53). Of course, this contradicts (B.54). Thus,

inf
x>0

Fn(x) = inf
x≤x0

Fn(x). (B.56)

Using (B.56), convexity and properness of {Fn}, it can be shown that infx>0 Fn(x) >
−∞. The argument is the same as the one used in the beginning of the proof for F,
thus is omitted for brevity.

Overall, for all n > N1, conditioned on (B.54), there is some 0 < xn ≤ x0 such that

inf
x>0

Fn(x) ≥ Fn(xn) − ε ′. (B.57)

If a ≤ xn ≤ b, then a direct application of (B.54) gives the desired

Fn(xn) ≥ F(xn) − ε ′ ≥ inf
x>0

F(x) − ε ′ ⇒ inf
x>0

Fn(x) ≥ inf
x>0

F(x) − 2ε ′ ≥ inf
x>0

F(x) − δ.

Next, assume that 0 < xn < a. There exists θn ∈ (0, 1) such that θnxn + (1− θn)xε =

a. In fact,

θn =
xε − a

xε − xn
≥ (1 − a/xε ) =

δ − 2ε ′

2δ − ε ′
. (B.58)
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Then, by convexity and (B.54), Fn(a) ≤ θnFn(xn) + (1 − θn)Fn(xε ). Rearranging
and using (B.54)

Fn(xn) ≥
1
θn

Fn(a) −
1 − θn
θn

Fn(xε )

≥
1
θn

(F(a) − ε ′) −
1 − θn
θn

(F(xε ) + ε ′)

≥
1
θn

(
inf
x>0

F(x) − ε
)
−

1 − θn
θn

(
inf
x>0

F(x) + δ
)
.

Combining this with (B.57) and (B.58) yields the desired infx>0 Fn(xn) ≥ infx>0 F(x)−
δ. �

Lemma B.2.2. (Level-bounded convex fcns) Let F : (0,∞) → R be convex. Then,

the following two statements are equivalent:

(a) There exists z > 0 such that F(x) > infx>0 F(x) for all x ≥ z.

(b) limx→∞ F(x) = +∞.

Proof. (a)⇒(b): Clearly, there exists 0 < x0 < z, such that F(z) > F(x0). Then, by
convexity, for all x > z it holds

F(x) ≥ F(z) +
F(z) − F(x0)

z − x0︸          ︷︷          ︸
>0

(x − z).

Taking limits of x → ∞ on both sides above proves the claim.

(a)⇐(b): As a proper function, F has a nonempty domain in (0,∞). Hence,
infx>0 F(x) < ∞ and can choose some M > infx>0 F(x). From (b), there exists
z > 0 such that F(x) ≥ M for all x ≥ z, as desired. �

Lemma B.2.3 (Saddle-points). For a convex-concave function F : R × R → R,

consider the minimax optimization infx supy F(x , y). Let C , D be compact subsets

such that there exists at least one saddle point (x∗, y∗) ∈ C × D. Then,

inf
x

sup
y

F(x , y) = inf
x∈C

sup
y∈D

F(x , y).

Proof. First observe that

inf
x

sup
y

F(x , y) = inf
x∈C

sup
y

F(x , y).
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Since F has a saddle-point, the LHS above is equal to supy infx F(x , y) [Roc97,
Lem. 36.2]. Also, from Sion’s minimax theorem, the RHS is equal to supy infx∈C F(x , y).
Thus, it suffices to prove that

sup
y

inf
x∈C

F(x , y) = sup
y∈D

inf
x∈C

F(x , y).

Clearly, this holds with a “≥" sign. To prove equality, let (x∗, y∗) be a saddle point.
Then,

sup
y

inf
x∈C

F(x , y) = inf
x∈C

sup
y

f (x , y) ≤ sup
y

f (x∗, y) ≤ f (x∗, y∗) = sup
y∈D

inf
x∈C

F(x , y).

�

Lemma B.2.4. The function h(α, τ, v) = 1
2τ ‖αx + z − v‖22 is jointly convex in its

arguments.

Proof. The function ‖αx− v‖22 is trivially jointly convex in α and v. So its perspec-
tive function, which is 1

τ ‖αx − v‖22 , is also jointly convex in all its arguments, same
as its shifted version which is h(α, τ, v). �

Lemma B.2.5. Let f : Rn → R be convex. Then,

(i) prox f (x;τ) + τ · prox f ∗

(
x/τ;τ−1

)
= x,

(ii) e f (x;τ) + e f ∗ (x/τ; 1/τ) =
‖x‖2
2τ .

B.3 Proofs for Separable M-Estimators
Satisfying Assumptions 4.2.1 and 4.2.2
Proof of Lemma 4.3.1

Recall,
`′+(v) = max

s∈∂`(v)
|s |,

and that (4.9) gives for all c ∈ R,

E|`′+(cG + Z)| < ∞ and E|`′+(cG + Z)|2 < ∞. (B.59)

We make repeated use of Lemma B.4.1 on properties of the Moreau envelope func-
tion.
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• First, we show that

E

[∣∣∣∣∂e` (αG + Z ;τ)
∂τ

∣∣∣∣] < ∞, for all α ∈ R, τ > 0. (B.60)

From (B.88)
∣∣∣∣ ∂e` (αG+Z ;τ)

∂τ

∣∣∣∣ ≤ |`′+(prox` (αG + Z ;τ))|2. Lemma B.4.1(viii) shows that
this is no larger than |`′+(αG + Z)|2. Then, (B.60) follows from (B.59).

• It is also useful to prove

E [|`(αG + Z) − `(Z)|] < ∞, for all α ∈ R. (B.61)

From convexity of `,

|`(αG + Z) − `(Z)| ≤ max{|`′+(αG + Z)|, |`′+(Z)|} · |αG | ≤
(
|`′+(αG + Z)| + |`′+(Z)|

)
· |αG |,

and the desired follows by taking expectations and applying (B.59) for c = α and
c = 0.

• Let us now show

E [|e` (αG + Z ;τ) − `(Z)|] < ∞, for all α ∈ R, τ > 0 (B.62)

We have, |e` (αG + Z ;τ)−`(Z)| ≤ |e` (αG + Z ;τ)−`(αG+Z)|+ |`(αG+Z)−`(Z)|.
In view of (B.61), it suffices for (B.62) to show integrability of the first term. We
argue as follows:

|e` (αG + Z ;τ) − `(αG + Z)| = lim
ρ→0
|e` (αG + Z ;τ) − e` (αG + Z ; ρ) |

= lim
ρ→0

∣∣∣∣∂e` (αG + Z ;τ)
∂τ

|τ=ξ(ρ)

∣∣∣∣ · |τ − ρ |.
It remains to take expectations of both sides and apply the argument below (B.60)
to yield (B.62).

• Assumption 4.2.1(a). We have 1
m
{eL (αg + z;τ)−L(z)} = 1

m

∑m
j=1

(
e`

(
αg j + z j ;τ

)
− `(z j)

)
.

Then from the WLLN (e.g. [Dur10, Thm. 2.2.9]) the expression above converges
in probability to

L (α, τ) = E [e` (αG + Z ;τ) − `(Z)] , (B.63)

where we have also used (B.62) to verify integrability.
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• Continuity and convexity of L. The Moreau envelope function is convex in its
arguments (see Lemma B.4.1(ii)). Convexity is preserved under affine transfor-
mations and nonnegative weighted sums; thus, L(α, τ) is jointly convex in α, τ.
Continuity then follows as a consequence of convexity [Roc97, Thm. 10.1].

• Assumption 4.2.2(c). To compute limτ→+∞ E [e` (αG + Z ;τ) − `(Z)], we first ap-
ply the Dominated Convergence Theorem to pass the limit inside the expectation.
This is justified since (B.62) shows integrability, and the limit exists as follows (see
Lemma B.4.1(vii)):

lim
τ→+∞

e` (αG + Z ;τ) = min
v
`(v) = 0,

for all α, τ > 0. Taking expectation of this shows limτ→+∞ L(α, τ) = −L0, where
L0 = E[`(Z)] by the WLLN. Also, we need to show that if E[`(Z)] < ∞, then
E [e` (αG + Z ;τ)] ≥ 0. This follows easily since e` (αG + Z ;τ) ≥ minv `(v) = 0.
Finally, the property L(α, τ) ≥ limτ→∞ L(α, τ) follows by the non increasing nature
of e` with respect to τ (cf. B.4.1(v)).

• Assumption 4.2.2(d). If limτ→+∞ L(α, τ) < ∞, the claim is immediate. Other-
wise, we apply de l’Hopital rule and (B.68) to get

lim
τ→∞

E[e` (αG + Z ;τ) − `(Z)]
τ

= lim
τ→∞

∂

∂τ
E[e` (αG + Z ;τ) − `(Z)].

An application of the Dominated Convergence Theorem in Lemma B.3.1(i) shows
that we can interchange the order of differentiation and expectation above. We will
prove that

lim
τ→∞

∂

∂τ
(e` (αG + Z ;τ) − `(Z)) = 0 (B.64)

for all G and Z . Then, we can also utilize Dominated Convergence Theorem to pass
the limit in the expectation and conclude with the desired.

From standard properties of the Moreau envelopes (cf. (B.88)),

∂

∂τ
(e` (αG + Z ;τ) − `(Z)) =

1
−2τ2 (αG + Z − prox` (αG + Z ;τ))2.

Thus, it suffices to prove limτ→∞
1
τ (x − prox` (x;τ)) = 0 for all x. This is shown in

Lemma B.4.1(vii).

• Assumption 4.2.2(b). We apply the Dominated Convergence Theorem to com-
pute limτ→0+ E[e` (αG + Z ;τ) − `(Z)] and exchange limit and expectation. Then,
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because limτ→0+ e` (αG + Z ;τ) = `(αG + Z) we have

lim
τ→0+

E [e` (αG + Z ;τ) − `(Z)] = E
[

lim
τ→0+

e` (αG + Z ;τ) − `(Z)
]

= E [`(αG + Z) − `(Z)] < ∞.

Boundedness follows from (B.62). The same argument shows that

lim
τ→0+

L(0, τ) = lim
τ→0+

E [e` (Z ;τ) − `(Z)] = E
[

lim
τ→0+

e` (Z ;τ) − `(Z)
]

= E [`(Z) − `(Z)] = 0.

Finally, to compute limτ→0+ L2(0, τ), we apply the Dominated Convergence Theo-
rem twice as was done for the proof of Assumption 4.2.2(d). With this we have,

lim
τ→0+

L2(0, τ) = E

[
lim
τ→0+

∂

∂τ
(e` (αG + Z ;τ) − `(Z))

∣∣∣
α=0

]
= −

1
2
E

[
lim
τ→0+

(
`′prox` (Z ;τ),τ

)2
]
≤ 0.

The second equality above follows by Lemma B.4.1(iii) (please see (B.86) for the
notation `′χ,τ). Besides, due to lemma B.4.1(viii), (`′prox` (Z ;τ),τ)

2 ≤ (`′+(Z))2 which
implies

−E
[

lim
τ→0+

(
`′prox` (Z ;τ),τ

)2
]
≥ −E

[
lim
τ→0+

(`′+(Z))2
]

= −E
[
(`′+(Z))2

]
> −∞.

Boundedness follows by (B.59).

Proof of Lemma 4.3.2

• Assumption 4.2.1(a). Assumption 4.2.1(a) is satisfied for F(c , τ) = E
[
e f (cH + X0);τ) − f (X0)

]
.

The proof is exactly the same as in Lemma 4.3.1.

• limτ→0+ F(τ, τ) = 0. This will follow from continuity of the Moreau envelope.
In particular, using Lemma B.4.1(ix), we find that for all H , X0:

lim
τ→0

e f (τH + X0;τ) = f (X0).

Then, the desired claim follows from this and an application of the Dominated Con-
vergence Theorem.
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• limc→∞
c2

2τ − E[e f (cH + X0;τ) − f (X0)] = ∞. We have

c2

2τ
− E[e f (cH + X0;τ) − f (X0)] = E[

(cH + X0)2

2τ
− e f (cH + X0;τ)] + E[ f (X0) − X2

0 ]

= E[e f ∗ ((cH + X0)/τ; 1/τ)] + E[ f (X0) − X2
0 ]

=
1
2
E[e f ∗ ((cH + X0)/τ; 1/τ)

∣∣∣H > 0] +
1
2
E[e f ∗ ((cH + X0)/τ; 1/τ)

∣∣∣H < 0] + E[ f (X0) − X2
0 ]

≥
1
2

e f ∗
(
E[(cH + X0)/τ

∣∣∣H > 0]; 1/τ
)

+
1
2

e f ∗
(
E[(cH + X0)/τ

∣∣∣H < 0]; 1/τ
)

+ E[ f (X0) − X2
0 ]

=
1
2

e f ∗
c/τ√2

π
+ E[X0]; 1/τ

 +
1
2

e f ∗
−c/τ√2

π
+ E[X0]; 1/τ

 + E[ f (X0) − X2
0 ].

(B.65)

The second equality above follows from Lemma B.2.5. For the inequality, e f ∗ (c;τ)

is convex in c, thus it follows from Jensen’s inequality. From (B.65), observing that
E[ f (X0)−X2

0 ] > −∞ and |E[X0]| < ∞ by boundedness of E[X2
0 ] and non-negativity

of f , it suffices to show that

lim
|c |→∞

e f ∗ (c/τ; 1/τ) = ∞.

First, assume that f (x) is defined for some positive value a > 0 and f (a) < ∞, then

∀M , ∀x > XM =
f (a)
a

+
M

a
: f ∗(x) = max

y
xy− f (y) ≥ ax− f (a) > M . (B.66)

Which means that limx→∞ f ∗(x) = ∞. Now in order to show that the limit in (B.65)
goes to infinity we prove that

∀M ∀x > τ(XM +
√

2M/τ) ∀v,
τ

2
(x/τ − v)2 + f ∗(v) > M .

⇐⇒ ∀u
τ

2
u2 + f ∗(u + x/τ) > M . (B.67)

This is easy to show. For the cases that |u | >
√

2M/τ we have

τ

2
u2 + f ∗(u + x/τ) > M + f ∗(u + x/τ) ≥ M .

Note that f (0) = 0 implies f ∗(x) ≥ 0 for all x. On the other hand, for the cases that
|u | ≤

√
2M/τ,

x/τ + u ≥ x/τ − |u | ≥ x/τ −
√

2M/τ > XM .

Thus due to (B.66),

τ

2
u2 + f ∗(u + x/τ) >

τ

2
u2 + M ≥ M ,
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which shows that limc→∞ e f ∗ (c/τ; 1/τ) = ∞.
On the other hand, if f (x) is also defined for some negative value a < 0 and
f (a) < ∞, the same set of arguments proves that limc→−∞ f ∗(c) = ∞ and also
limc→−∞ e f ∗ (c/τ; 1/τ) = ∞.

Strict Convexity of the Expected Moreau Envelope
In this section, we prove Lemmas 4.3.3 and 4.3.4. We have combined the statements
in Lemma B.3.1 below.

Lemma B.3.1 (Lemmas 4.3.3 and 4.3.4). Let ` : R → R be a proper, closed,

convex function, G ∼ N (0, 1) and Z ∼ pz such that (4.9) holds. The function

L : R × R>0 → R:

L(α, τ) := EG,Z [e` (αG + Z ;τ) − `(Z)]

has the following properties:

(i) It is differentiable with

∂L

∂α
= E

[
∂e` (αG + Z ;τ)

∂α

]
and

∂L

∂τ
= E

[
∂e` (αG + Z ;τ)

∂τ

]
. (B.68)

(ii) If the conditions (a) and (b) of Lemma 4.3.4 also hold, then it is jointly strictly

convex in R>0 × R>0.

(iii) If `(x) ≥ `(0) = 0 and `(x+) > 0 for some x+ > 0, then, the function F(α) :=
limτ→0+ L(α, τ) = E [`(αG + Z) − `(Z)] is strictly convex in α > 0.

Proof. We make repeated use of the properties of the Moreau envelope function
as listed in Lemma B.4.1. Also, we use the same notation as in that lemma; in
particular, recall (B.86), (B.87) and (B.88). For ease of reference we summarize the
notation used throughout this section below:

v̂χ,τ := prox` (χ;τ) , `′χ,τ :=
1
τ

(χ − v̂χ,τ),

E1(α, τ) :=
∂e` (αG + Z ;τ)

∂α
, E2(α, τ) :=

∂e` (αG + Z ;τ)
∂τ

.

(i): The claim follows by the Dominated Convergence Theorem, since the following
hold:
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• e` (αG + Z ;τ) is continuously differentiable with respect to both α and τ (cf.
Lemma B.4.1(iii)),

• In Section B.3 (see (B.62)) we use (4.9) to show that E[|e` (αG + Z ;τ) −
`(Z)|] < ∞ for all α and τ > 0.

• For all α ∈ R and τ > 0:

E [|E1(α, τ)|] =
1
τ
E

[∣∣∣αG + Z − prox` (αG + Z ;τ)
∣∣∣ · |G |]

≤
1
τ

√
E

[∣∣∣αG + Z − prox` (αG + Z ;τ)
∣∣∣2] =

√
E [|E2(α, τ)|],

where we have used Lemma B.4.1(iii), the Cauchy-Schwarz inequality. In
Section B.3 (see (B.60)) we use (4.9) to show that E [|E2(α, τ)|] < ∞.

(ii): For any α > 0, τ > 0, it suffices to show that

Γ(x , y) := L(α + x , τ + y) − L(α, τ) − L1(α, τ)x − L2(α, τ)y > 0, for all x ∈ R, y > −τ,
(B.69)

where we use numerical subscript notation to denote derivation with respect to the
corresponding argument, i.e. L1 = ∂L/∂α and L2 = ∂L/∂τ.

Observe that Γ(x , y) defined in (B.69) is differentiable; denote its partial derivatives
with respect to x and y as Γ1 and Γ2, respectvely. Furthermore, Γ is jointly convex
in (x , y) (see Lemma B.4.1(ii)) and Γ(0, 0) = 0. Thus, it suffices for (B.69) to prove
strict positivity of the following expression:

Γ1(x , y)x + Γ2(x , y)y = (L1(α + x , τ + y) − L1(α, τ))x + (L2(α + x , τ + y) − L2(α, τ))y

= E
[
(E1(α + x , τ + y) − E1(α, τ))x + (E2(α + x , τ + y) − E2(α, τ))y

]
.

In the last equality above we have interchanged the order of expectation and dif-
ferentiation. Lemma B.4.1(iv) lower bounds the expression inside the expectation
above. To be specific, using (B.89), we find that

Γ1(x , y)x + Γ2(x , y)y ≥
(
τ +

y

2

)
E

[
(`′α+x ,τ+y − `

′
α,τ)

2
]
.

Therefore, it will suffice for our purposes to show that for any fixed x , y,

E
[(
`′αG+Z ,τ − `

′
(α+x)G+Z ,τ+y

)2
]
> 0. (B.70)
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For this it is enough to prove the existence of (G∗, Z∗) with p(Z∗) > 0 such that

`′αG∗+Z∗ ,τ , `
′
(α+x)G∗+Z∗ ,τ+y . (B.71)

Indeed, if this is the case, by continuity of the mapping (G, Z)→ αG+Z and of the
prox operator (cf. Lemma B.4.1(i)) there exists an open neighborhood N around
(G∗, Z∗) such that `′αG+Z ,τ , `

′
(α+x)G+Z ,τ+y

for all (G, Z) ∈ N . Furthermore, there
exists subset J1 × J2 ⊆ N of nonzero measure such that: (i) J1 is a closed interval
with p(G) > 0 for all G ∈ J1, (ii) if Z has a point mass at Z∗, then J2 = Z∗;
otherwise, J2 is a closed interval with p(Z) > 0 for all Z ∈ J2. In all cases,
J1 × J2 is a set of nonzero measure, with which we conclude (B.70) as desired. In
what follows, we prove (B.71).

Case 1: Assume that there exists an open interval I on which ` is differentiable
with strictly increasing derivative:

`′(v1) < `′(v2), for all v1 < v2 ∈ I. (B.72)

In particular, since ` is convex in its entire domain it further holds that

v1 ∈ I , v2 , v1 ⇒ `′(v1) , `′(v2). (B.73)

Consider the set

S := {(G, Z) | v̂αG+Z ,τ ∈ I}. (B.74)

Clearly, S is a nonempty open set (by continuity of the prox operator). Next, we
show that there exists (G∗, Z∗) ∈ S, such that

v̂αG∗+Z∗ ,τ , v̂(α+x)G∗+Z∗ ,τ+y (B.75)

and p(Z∗) > 0. This suffices for proving (B.71), since when combined with v̂αG∗+Z∗ ,τ ∈

I and (B.73) it implies that `′αG∗+Z∗ ,τ , `
′
(α+x)G∗+Z∗ ,τ+y

.

Choose any two distinct Zi , i = 0, 1 with p(Zi) > 0. This is possible since by
assumption Var[Z] , 0. Denote, SZi

:= {G | (G, Zi) ∈ S}. Clearly, SZi
are

nonempty open sets. If there exists Gi ∈ SZi
such that (G∗, Z∗) = (Gi , Zi) satisfies

(B.75), there is nothing else to prove.

Otherwise, we would have v̂αG+Zi ,τ = v̂(α+x)G+Zi ,τ+y ∈ I and consequently `′αG+Zi ,τ
=

`′(α+x)G+Zi ,τ+y
, for all G ∈ SZi

and i = 0, 1. But, Lemma B.3.2 below proves that
this cannot happen under our assumptions on the sets SZi

.
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Case 2: Let v0 be a point where ` is not differentiable and consider I ⊂ ∂`(v0)
a non-empty open subset of the subdifferential of ` at v0. Further consider the
nonempty open sets

S := {(G, Z) | `′αG+Z ,τ ∈ I} and S̃ := {(G, Z) | `′(α+x)G+Z ,τ+y ∈ I}. (B.76)

Clearly, v̂αG+Z ,τ = v0 for all (G, Z) ∈ S and similar for S̃. Choose any two distinct
Zi , i = 1, 2 with p(Zi) > 0. This is possible since by assumption Var[Z] , 0.
Denote, SZi

:= {G | (G, Zi) ∈ S} and S̃Zi
:= {G | (G, Zi) ∈ S̃}, which are all

nonempty sets. Consider,

NZi
= SZi

\ S̃Zi
, i = 0, 1.

If (say) NZ0 , ∅, then for any G0 ∈ NZ0 , it holds

v̂(α+x)G0+Z0 ,τ+y , v̂αG0+Z0 ,τ ∈ I ⇒ `′(α+x)G0+Z0 ,τ+y , `
′
αG0+Z0 ,τ

,

where the last implication follows because of monotonicity of the subdifferential.
This shows (B.71) as desired.

Otherwise,Ni = ∅ ⇒ for i = 0, 1. In case there exists Gi ∈ SZi
such that (G∗, Z∗) =

(Gi , Zi) satisfies (B.71), there is nothing else to prove. If this was not the case, then
we would have `′αGi+Zi ,τ

= `′(α+x)Gi+Zi ,τ+y
∈ I and v̂αGi+Zi ,τ = v̂(α+x)Gi+Zi ,τ+y = v0,

for all G ∈ SZi
. But, Lemma B.3.2 below proves that this cannot happen under our

assumptions on the sets SZi
.

(iii): Suppose that the statement of the lemma is false. Then, there exist α1 ,

α2 > 0, and, αθ := θα1 + (1 − θ)α2 for θ ∈ (0, 1) such that F(θα1 + (1 − θ)α2) =

θF(α1) + (1 − θ)F(α2), or,

E [θ`(α1G + Z) + (1 − θ)`(α2G + Z) − `(αθG + Z)] = 0 (B.77)

The convexity of ` ensures that, for each αG+Z , the argument in the expectation is
nonnegative. Therefore, the relation above holds if and only if the argument under
the expectation is zero almost surely with respect to the distribution of αG + Z .
Next, we prove that this leads to a contradiction.

Let x+ be as in the statement of the lemma, and x0 = max{x ∈ [0, x+] | `(x) =

0} < x+. For some ε > 0 to be specified later in the proof, let x1 = x0 + ε . Note
that `(x1) > 0 by definition of x0 and by convexity. Without loss of generality
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assume α1 > α2. Fix Z0 such that p(Z0) > 0 and x0 , Z0 (always possible since
Var[Z] , 0). Consider two cases based on the sign of x0 − Z0.

x0 > Z0: Define G0 = (x1 − Z0)/α1 > 0. Note that α1G0 + Z0 = x1 and call
x2 := α2G0 + Z0. Choose ε = (α1

α2
− 1)(x0 − Z0)/2 > 0. Then, it is not hard

to check that x2 < x0 < x1; thus, for some θ ∈ (0, 1), αθG0 + Z0 = x0. But
θ`(x1) + (1 − θ)`(x2) > 0 = `(x0) or

`(αθG0 + Z0) < θ`(α1G0 + Z0) + (1 − θ)`(α2G0 + Z0). (B.78)

There exists an open ball (of non-zero measure) around αG0 + Z0, where the same
relation as above holds. This contradicts (B.77) and concludes the proof.

x0 < Z0: Define G0 := x1 − Z0/α2 > 0. Note that α2G0 + Z0 = x1 and call
x2 := α1G0 + Z0. Choose ε = (α2

α1
− 1)(x0 − Z0)/2 > 0. Then, it is not hard to

check that x2 < x0 < x1 and the same argument as above leads to a contradiction of
(B.77).

�

Lemma B.3.2 (Auxiliary). Suppose Z0 , Z1. For some nonempty set J ⊂ R

assume that the sets

GZi
:= {G | v̂αG+Zi ,τ ∈ J }, i = 0, 1 (B.79)

are non-empty and have at least two elements each. Further suppose that for all

G,G′ ∈ Gi , i = 0, 1 the following holds

`′αG+Zi ,τ
= `′αG′+Zi ,τ

⇒ v̂αG+Zi ,τ = v̂αG′+Zi ,τ . (B.80)

Then, it cannot be true that for all G ∈ Gi and i = 0, 1:

v̂αG+Zi ,τ = v̂(α+x)G+Zi ,τ+y and `′αG+Zi ,τ
= `′(α+x)G+Zi ,τ+y . (B.81)

Proof. Assume to the contrary of the lemma that the sets G0 and G1 satisfy (B.81).
When combined with optimality conditions (cf. (B.86)), the properties of the sets
give

y`′αG+Zi ,τ
= xG, for all G ∈ Gi , i = 0, 1. (B.82)

Consider separately two cases on the possible values of x and y:
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• x = 0, y , 0: Let G , G′ both belonging in G0 (such a pair exists since G0 is
open). Starting from (B.82) and using (B.80), we have:

`′αG+Z0 ,τ
= `′αG′+Z0 ,τ

= 0⇒ v̂αG+Z0 ,τ = v̂αG′+Z0 ,τ .

These equalities when combined with optimality conditions of the prox (cf. (B.86))
yield a contradiction: G = G′.

• x , 0: Let any G0 ∈ G0, and, consider G1 := G0 +
Z0−Z1
α , G0. Note that

αG1 + Z1 = αG0 + Z0. Also, by uniqueness of the prox operator, v̂αG1+Z1 ,τ =

v̂αG0+Z0 ,τ ∈ I and G1 ∈ G1. Furthermore, `′αG0+Z0 ,τ
= `′αG1+Z1 ,τ

. Then, combining
with (B.82) we reach the following contradiction:

xG0 = xG1 ⇒ G0 = G1.

�

Strict convexity =⇒ uniqueness of α∗
Lemma B.3.3. Suppose all assumptions of Theorem 4.3.1 are satisfied. Then, (4.4)
has a unique optimal minimizer α∗.

Proof. During the proof, we borrow notation and results from the proof of Lemma
B.1.5 in Section B.2. Under the assumption of the theorem, L(α, τ) is jointly strictly
convex in R>0 ×R>0, by Lemma B.3.1. Also, by assumptions, the set of minimizers
of F in (B.49) is bounded. With these, we will show that the set of optima actually
consists of a unique point. Consider Mα,β,τh (τg) as in (B.37). We have shown in
Section B.2 that Mα,β,τh is level bounded. Thus, the minimum is either attained at
some τg∗ or is achieved in the limit of τg → 0. Now, consider extending the function
at τg = 0, by setting L(α, 0) = limτg→0+ L(α, τg). By assumption, this latter is a
strictly convex function of α. Hence, similarly extending Mα,β,τh at τg = 0, the
function is jointly strictly convex in (α, τg) and the minimum over τg is now attained
(can be τg∗ = 0). Using those two, Lemma B.3.4 shows that infτg>0 M

α,β,τh (τg) is
strictly convex in α > 0. Next, consider taking the supremum over β ≥ 0. From
the results of Section B.2, the optimal β is attained at some value β∗ ≥ 0 (in other
words, it does not approach infinity). Suppose β∗ = 0, then the optimal α solves

inf
α≥0

sup
τh>0
−
ατh

2
+ λF(0, αλ/τh).

In Lemma B.3.6 we show that the set of minimizers of this optimization is un-
bounded. This contradicts our assumption on the boundedness of α∗. Hence, β∗ ,
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0, and we can apply Lemma B.3.5 to find that Mα(τh) := supβ infτg>0 M
α,β,τh (τg),

remains a strictly convex function of α > 0. Lastly, maximizing over τh does not
affect strict convexity since it is not involved in the term βτg

2 +δL(α, τg/β). Overall,
F(α) = supβ,τh infτg D(α, τg , β, τh) is strictly convex in α > 0. Using this it is
straightfowrard to show that its minimizer over α ≥ 0 is unique, thus completing
the proof. �

Lemma B.3.4. Let X ,Y be convex sets and F(x, y) : X × Y → R be jointly

strictly convex. If F(x, ·) attains its minimum value in Y for all x ∈ X, then,

G(x) := infy∈Y F(x, y) is strictly convex.

Proof. For θ ∈ (0, 1), x1, x2 ∈ X, denote xθ = (1−θ)x1+θx2, yθ := arg infy∈Y F((1 − θ)x1 + θx2, y)
and yi := arg infy∈Y F(xi , y), i = 1, 2. With these

G(xθ) = F(xθ , yθ) ≤ F(xθ , θy1 + (1 − θ)y2) < (1 − θ)F(x1, y1) + θF(x2, y2)

= (1 − θ)G(x1) + θG(x2),

where the first inequality follows from definition of yθ , the second from the joint
strict convexity of F, and, the third by definition of y1, y2. �

Lemma B.3.5. Consider F : R>0 × R≥0 → R and G(x) := min0≤y≤K F(x , y). If F

is jointly strictly convex in R>0 × R>0 and F(x , 0) is also strictly convex, then G is

strictly convex.

Proof. Consider x1, x2 > 0 and xθ = θx1 + (1 − θ)x2 for some θ ∈ (0, 1). Let y1, y2

and yθ be defined such that G(x1) = F(x1, y1), G(x2) = F(x2, y2), and G(xθ) =

F(xθ , yθ). We distinguish four cases. For each one we prove that G(xθ) < θG(x1) +

(1 − θ)G(x2), as desired.

y1, y2 > 0:

G(xθ) ≤ F(xθ , θy1+(1−θ)y2) < θF(x1, y1)+(1−θ)F(x2, y2) = θG(x1)+(1−θ)G(x2).

The strict inequality follows from the joint convexity of F in R>0.

y1 = 0, y2 = 0:

G(xθ) ≤ F(xθ , 0) < θF(x1, 0) + (1 − θ)F(x2, 0) = θG(x1) + (1 − θ)G(x2).

The strict inequality follows from the joint convexity of F(·, 0).
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y1 > 0, y2 = 0, yθ , θy1: From the strict convexity of F(xθ , ·) in R≥0 it follows that
G(xθ) < F(xθ , θy1). But, from convexity F(xθ , θy1) ≤ θG(x1) + (1 − θ)G(x2).

y1 > 0, y2 = 0, yθ = θy1: Consider the restriction of F on the line segment passing
through points (x1, y1), (xθ , yθ) and (x2, 0). Call it H(ρ) and let be H(0) = G(x1)
and H(1) = G(x2). Clearly, H(1 − θ) = G(xθ). By strict convexity of F, it follows
that H(ρ) is strictly convex for 0 ≤ ρ < 1. Hence,

H(1 − θ) = H

(
2(1 − θ)

2 − θ

(
1 −

θ

2

))
<

θ

2 − θ
H(0) +

2(1 − θ)
2 − θ

H

(
1 −

θ

2

)
≤

θ

2 − θ
H(0) +

2(1 − θ)
2 − θ

(
θ

2
H(0) +

2 − θ
2

H(1)
)

= θH(0) + (1 − θ)H(1).

The strict inequality follows from strict convexity of H in (0, 1]. The last inequality
is a consequence of convexity of H in [0, 1].

�

Lemma B.3.6. Consider the following optimization

inf
α≥0

sup
τh>0
−
ατh

2
+ λE

[
e f (X0;αλ/τh) − f (X0)

]
. (B.83)

The set of minimizers over α is unbounded.

Proof. For convenience, denote the objective function as O(α, τh) and its optimal
value as O∗. Let us first perform the optimization over τh for fixed α. We have

lim
τh→0+

O(α, τh) = λE
[
min
x

f (x) − f (X0)
]
,

where we have used B.4.1(vi). Also,

lim
τh→+∞

O(α, τh) = −∞,

with an appeal to B.4.1(ix). What we learn from these is that

O∗ ≥ λE
[
min
x

f (x) − f (X0)
]

(B.84)

and that the optimal τh either approaches 0 or is attained. In the latter case, the
optimal τh∗ satisfies the first-order optimality condition:

1
α2E

[
(X0 − prox f (X0;αλ/τh∗))

2
]

= 1.



223

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1
2v

2

τ = 0.2
τ = 1
τ = 5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

|v|
τ = 0.2
τ = 1
τ = 5

e 1
2 (·)2(x; ⌧) = x2

2(⌧+1) e|·|(x; ⌧) =

(
1
2⌧ x2, if |x|  ⌧

|x| � ⌧
2 , otherwise

Figure B.1: Graphs of the Moreau envelope functions of a quadratic (left) and of
the absolute value (right), for different values of the parameter τ. Moreau envelopes
are always smooth under-estimators of the original function.

But for any τh∗ > 0, by B.4.1(vii), the left hand-side above tends to 0 as α → ∞.
Thus, in the limit α → ∞, the optimal τh approaches 0, giving

lim
α→+∞

sup
τh>0

O(α, τh) = λE
[
min
x

f (x) − f (X0)
]
.

When combined with (B.84), this completes the proof of the lemma. �

B.4 Useful Properties of Moreau Envelopes
In this section we have gathered some very useful properties of Moreau envelopes
of convex functions. We have made heavy use of those results for the proofs in
Appendix B.3. Some of the results are standard, while others are more tailored
towards our interests.

Lemma B.4.1 (Properties of the Moreau envelope). Let ` : R → R be a proper,

closed, convex function. For τ > 0, consider its Moreau envelope function and its

proximal operator:

e` (χ;τ) := min
v

1
2τ

(χ − v)2 + `(v), (B.85a)

prox` (χ;τ) := arg min
1
2τ

(χ − v)2 + `(v). (B.85b)

The following statements are true:
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(i) prox` (χ;τ) is single valued and continuous. Furthermore,

`′χ,τ :=
1
τ

(χ − prox` (χ;τ)) ∈ ∂`(prox` (χ;τ)). (B.86)

(ii) e` (χ;τ) is jointly convex in (χ, τ).

(iii) e` (χ;τ) is continuously differentiable with respect to both x and τ. The gra-

dients are given by:

E1(χ, τ) :=
∂e`
∂χ

=
1
τ

(χ − prox` (χ;τ)) = `′χ,τ , (B.87)

E2(χ, τ) :=
∂e`
∂τ

= −
1

2τ2 (χ − prox` (χ;τ))2 = −
1
2

(
`′χ,τ

)2
. (B.88)

(iv) Fix χ and τ > 0. Consider the function ∆ : R × (−τ,∞)→ R:

∆(x , y) := (E1(χ + x , τ + y) − E1(χ, τ))x + (E2(χ + x , τ + y) − E2(χ, τ))y

Then,

∆(x , y) ≥
(
τ +

y

2

)
(`′χ+x ,τ+y − `

′
χ,τ)

2. (B.89)

(v) e` (x;τ) is non-increasing in τ.

(vi) limτ→∞ e` (x;τ) = minv `(v).

(vii) limτ→∞
1
τ |x − prox` (x;τ) | = 0.

(viii) If 0 ∈ arg minv `(v), then prox` (x;τ) x ≥ 0, |prox` (x;τ) | ≤ |x | and |`′prox` (x;τ),τ | ≤

|`′x ,τ |.

(ix) e` (xn;τn) → `(x) whenever xn → x while τn → 0+ in such a way that the

sequence {|xn − x |/τn}n∈N is bounded.

Proof. (i) From [RW09, Thm. 2.26(a)], prox` (χ;τ) is known to be continuous
single valued mapping. Besides, from standard optimality conditions:

1
τ

(χ − prox` (χ;τ)) ∈ ∂`(prox` (χ;τ)).

For convenience, we have define `′χ,τ := 1
τ (χ−prox` (χ;τ) ∈ ∂`(prox` (χ;τ)). Note

that if ` is differentiable at prox` (χ;τ), then `′χ,τ is the derivative of ` at that point.

(ii) Trivially, h(χ, v) := (χ − v)2 is a jointly convex function of v and x. Thus, its
perspective function τh( χτ ,

v
τ ) = 1

τ (χ − v)2 is also jointly convex over τ, x and v and
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so after minimization over v, the function remains jointly convex over x and τ (cf.
[RW09, Prop. 2.22]).

(iii) See [RW09, Thm. 2.26(b)] for differentiability with respect to x. Next, we
mimic the argument to conclude about differentiability with respect to τ. It suffices
to show that h(y) := e` (χ;τ + y)− e` (χ;τ) +

y

2τ2 (χ − prox` (χ;τ))2 is differentiable
at y = 0 with ∂h

∂y = 0. We know e` (χ;τ) = 1
2τ (χ − prox` (χ;τ))2 + `(prox` (χ;τ)),

whereas e` (χ;τ + y) ≤ 1
2(τ+y) (χ − prox` (χ;τ))2 + `(prox` (χ;τ)). Thus,

h(y) ≤
1

2(τ + y)
(χ − prox` (χ;τ))2 −

1
2τ

(χ − prox` (χ;τ))2 +
y

2τ2 (χ − prox` (χ;τ))2

=
y2

2τ2(τ + y)
(χ − prox` (χ;τ))2. (B.90)

Besides, because of convexity of h(y), 0 = h(0) ≤ 1
2h(y) + 1

2h(−y), or equivalently,
h(y) ≥ −h(−y). Thus, (B.90) gives:

h(y) ≥
y2

2τ2(τ − y)
(χ − prox` (χ;τ))2. (B.91)

Combining (B.90) and (B.91) leads to the following:

y2

2τ2(τ − y)
(χ − prox` (χ;τ))2 ≤ h(y) ≤

y2

2τ2(τ + y)
(χ − prox` (χ;τ))2. (B.92)

Here, h(y) is sandwiched between two continuously differentiable functions at 0
with zero derivatives. This completes the proof.

(iv) From (B.87) and (B.88), we have

∆(x , y) = (`′χ+x ,τ+y − `
′
χ,τ)x −

(
`′2(χ + x , τ + y) − `′2(χ, τ)

) y
2

= (`′χ+x ,τ+y − `
′
χ,τ)

(
x −

y

2

(
`′χ+x ,τ+y + `′χ,τ

))
.

On the other hand, due to optimality conditions in (B.86),

prox` (χ + x;τ + y) − prox` (χ;τ) = x − (τ + y)`′χ+x ,τ+y + τ`′χ,τ

=

(
x −

y

2
(`′χ+x ,τ+y + `′χ,τ)

)
− (τ +

y

2
)(`′χ+x ,τ+y − `

′
χ,τ).

Finally, from convexity of `, it follows from the monotonicity property of the sub-
differential that

(`′χ+x ,τ+y − `
′
χ,τ)(prox` (χ + x;τ + y) − prox` (χ;τ)) ≥ 0.
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Combining the three displays above gives the desired inequality.

(v) This follows directly by non-positivity of the derivative as in (B.88).

(vi) Using the decreasing nature of e` (x;τ) w.r.t. τ, we have

lim
τ→∞

e` (x;τ) = infτ>0 min
v

1
2τ

(x−v)2+`(v) = min
v

infτ>0
1
2τ

(x−v)2+`(v) = min
v
`(v).

(vii) Fix an ε > 0. Since limτ→∞ e` (x;τ) = minv `(v), there exists T ′ε such that for
all τ ≥ Tε := max{2,T ′ε },

|e` (x;τ) − min
v
`(v)| =

1
2τ

(x − prox` (x;τ))2 + (`(prox` (x;τ)) − min
v
`(v)) < ε2.

Then 1
2τ (x − prox` (x;τ))2 < ε2, which gives

1
τ
|x − prox` (x;τ) | < ε

√
2
τ
≤ ε

√
2
Tε
≤ ε .

Therefore, limτ→∞
1
τ |x − prox` (x;τ) | = 0.

(viii) By (B.86) and the assumption 0 ∈ arg minv `(v), we find prox` (0;τ) =

0. Monotonicity of the prox operator [RW09, Prop. 12.19], gives (prox` (x;τ) −
prox` (0;τ))x ≥ 0, which then shows prox` (x;τ) x ≥ 0. Also, monotonicity of the
subdifferential of ` gives `′x ,τx ≥ 0. Those two, when combined with optimality
conditions in (B.86) give

x − prox` (x;τ) = τ`′x ,τ =⇒ x2 ≥ prox` (x;τ) x =⇒ |x | ≥ |prox` (x;τ) x |.

It remains to show that maxs∈∂`(prox` (x;τ)) |s | ≤ maxs∈∂`(x) |s |. Since 0 ∈ arg minv `(v),
it follows by convexity that

(0 ≤ x1 ≤ x2 or x2 ≤ x1 ≤ 0) =⇒ max
s∈∂`(x1)

|s | ≤ max
s∈∂`(x2)

|s |.

Observe that the LHS of the implication above is equivalent to (|x2 | ≥ |x1 | and x1x2 ≥

0). Then apply it for x1 = prox` (x;τ) and x2 = x, to conclude.

(ix) Please see [RW09, Thm. 1.25].

�
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A p p e n d i x C

PROOFS FOR CHAPTER 6

C.1 On Remark 6.3.0.44
Substituting the envelope function of | · | in (6.20) gives:

β

2
+ s̄E

−
β(αG+Z)2

2τ2 , |αG + Z | ≤ τ
β

− 1
2β , otherwise

+ (δ − s̄)E

−
βα2G2

2τ2 , |αG | ≤ τ
β

− 1
2β , otherwise

≥ 0,

(C.1a)

s̄E


βG(αG+Z)

2 , |αG + Z | ≤ τ
β

G sign(αG + Z) , otherwise
+ (δ − s̄)E


αG2β
τ , |αG‖ ≤ τ

β

G sign(G) , otherwise
− β

√
Dg,x0 ≥ 0,

(C.1b)

τ

2
+ s̄E


(αG+Z)2

2τ , |αG + Z | ≤ τ
β

−τ2 , otherwise
+ (δ − s̄)E


α2G2

2τ , |αG | ≤ τ
β

−τ2 , otherwise
− α

√
Dg,x0 ≤ 0.

(C.1c)

Define κ := τ
βα and ρ := τ

β . In order to find a sufficient condition for α to be
zero, we assume α → 0, τ → 0, ρ → 0 and κ ≥ 0 and look for conditions under
which the equations in (C.1) are consistent. Under these assumptions, one can
check that (C.1c) is satisfied (the argument converges to zero), while, (C.1b) and
(C.1a) become

2
(δ − s̄)
κ

∫ κ

0
G2φ(G)dG + (δ − s̄)

∫ ∞

κ
Gφ(G)dG ≥ β

√
Dg,x0 , (C.2a)

β2 ≥ s̄ + 2
δ − s̄

κ2

∫ κ

0
G2φ(G)dG + 2(δ − s̄)

∫ ∞

κ
φ(G)dG, (C.2b)

where φ(G) = e−G
2/2/
√

2π and we multiplied (C.1a) by β2 to get (C.2b). Observe
that (C.2a) upper bounds β while (C.2b) derives a lower bound on it. Thus, consis-
tency of the set of equations (C.2) is achieved if the following holds:

1

Dg,x0

(2
(δ − s̄)
κ

∫ κ

0
G2φ(G)dG + (δ − s̄)

∫ ∞

κ
Gφ(G)dG)2 ≥

s̄ + 2
δ − s̄

κ2

∫ κ

0
G2φ(G)dG + 2(δ − s̄)

∫ ∞

κ
φ(G)dG.
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Or, equivalently,

Dg,x0 ≤
(2 (δ−s̄)

κ

∫ κ

0 G2φ(G)dG + (δ − s̄)
∫ ∞
κ

Gφ(G)dG)2

s̄ + 2δ−s̄
κ2

∫ κ

0 G2φ(G)dG + 2(δ − s̄)
∫ ∞
κ
φ(G)dG

. (C.3)

Thus if the maximum of the right side of (C.3) with respect to κ is greater than
Dg,x0 , all our variables satisfy (6.20) and the optimal value in (6.19) occurs when
α → 0, τ → 0 and τ

αβ → κ which means α∗ = 0. We will show that

max
κ>0

(2 (δ−s̄)
κ

∫ κ

0 G2φ(G)dG + (δ − s̄)
∫ ∞
κ

Gφ(G)dG)2

s̄ + 2δ−s̄
κ2

∫ κ

0 G2φ(G)dG + 2(δ − s̄)
∫ ∞
κ
φ(G)dG

≥

δ − min
κ>0

s̄(1 + κ2) + 2(δ − s̄)
∫ ∞

κ
(G − κ)2φ(G)dG. (C.4)

If both this and (6.24) are true then, there will be a κ for which (C.3) holds and as
we discussed, this implies α∗ = 0.

For convenience, we define Aκ =
∫ ∞
κ

G2φ(G)dG, Bκ =
∫ ∞
κ

Gφ(G)dG and Cκ =∫ ∞
κ
φ(G)dG. The optimal κ for the right side of (C.4) satisfies the following due to

the first optimality condition

2(δ − s̄)κ̂Bκ̂ − 2(δ − s̄)κ̂2Cκ̂ = κ̂2 s̄. (C.5)

For this value of κ, the left side of (C.4) becomes

(2 (δ−s̄)
κ̂

∫ κ̂

0 G2φ(G)dG + (δ − s̄)
∫ ∞
κ̂

Gφ(G)dG)2

s̄ + 2δ−s̄
κ̂2

∫ κ̂

0 G2φ(G)dG + 2(δ − s̄)
∫ ∞
κ̂
φ(G)dG

= (δ − s̄)(1 − 2Aκ̂ + 2κ̂Bκ̂)

= δ − s̄ − 2(δ − s̄)κ̂Bκ̂ + 2(δ − s̄)κ̂2Cκ̂ − 2(δ − s̄)Aκ̂ + 4(δ − s̄)κ̂Bκ̂ − 2(δ − s̄)κ̂2Cκ̂

= δ − s̄(1 + κ̂2) − 2(δ − s̄)(Aκ̂ − 2Bκ̂ + κ̂2Cκ̂) = δ − s̄(1 + κ̂2) + 2(δ − s̄)
∫ ∞

κ̂
(G − κ̂)2φ(G)dG,

where the first and third equalities follow after substituting s̄ using (C.5). This
proves (C.4) as desired to conclude the claim of the remark.

C.2 On Section 6.5
Satisfying Assumptions 4.2.1(a) and 4.2.2(b)-(d)

It only takes a few calculations to show that

1
m

e√n‖·‖2 (αg + z;τ) =


1√
mδ
‖αg + z‖2 − τ

2δ , if
√
δ‖αg+z‖2√

m
≥ τ,

1
2τ
‖αg+z‖22

m
, otherwise.

(C.6)
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Assume that 0 < E
‖z‖22
m

=: σ2 < ∞. From (C.6), it can be seen that 1
m

e√n‖·‖2 (αg + z;τ)

is a Lipschitz convex function of ‖αg+z‖
√
m

. Also, ‖αg+z‖
√
m

converges in probability to
√
α2 +σ2, thus

1
m

(e√n‖·‖2 (αg + z;τ) − ‖z‖2
√
n)→ L(α, τ) =


√
α2+σ2−σ√

δ
− τ

2δ , if δ(α2 +σ2) ≥ τ2,

1
2τ (α2 +σ2) − σ√

δ
, otherwise.

Finally, it remains to show this function satisfies Assumption 4.2.2.

Assumption 4.2.2(b): limτ→0 L(α, τ) =
√
α2+σ2−σ√

δ
and limτ→0 L(0, τ) = 0. Besides

L2,+(α, τ) =

−
1
2δ , δ(α2 +σ2) ≥ τ2,

−α
2+σ2

2τ2 , otherwise.

So, L2,+(0, 0) = − 1
2δ ; thus, condition (b) is satisfied.

Assumption 4.2.2(c): 1
m
L(z)

P
−→ σ√

δ
= − limτ→∞ L(α, τ). It is also easy to check

that L(α, τ) ≥ − σ√
δ

for all α and τ > 0 because

L(α, τ) =


√
α2+σ2−σ√

δ
− τ

2δ , δ(α2 +σ2) ≥ τ2

α2+σ2

2τ − σ√
δ

, otherwise
≥


τ
2δ −

σ√
δ

, δ(α2 +σ2) ≥ τ2

α2+σ2

2τ − σ√
δ

otherwise
≥ −

σ
√
δ
.

Therefore condition (c) is satisfied. Besides, since L0 = σ√
δ
< ∞, there is nothing

to check regarding Condition 4.2.2(d).

Proving (6.29)⇔(6.31)

It suffices to show that H(β) := −αβ
2

2τh
+ F(αβτh ,

αλ
τh

) is a non-increasing function of
β > 0. We prove this for the separable function f satisfying the assumptions of
Theorem 4.3.1 where F(c , τ) = E[e f (cH + X0;τ) − f (X0)]. Using Lemma B.3.1(i)
and B.4.1(iii), we find

lim
c→0+

∂

∂c

(
E[e f (cH + X0;τ) − f (X0)]

)
=

1
τ
E[H(X0 − prox f (X0;τ))].

Because of independence of h and x0, the RHS above is zero. Thus limc→0+
∂
∂c F(c , τ) =

0 which when combined with concavity of H , it shows that it is non-increasing for
β > 0.
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C.3 Proof of Theorem 6.6.1
From (6.37) ‖x̂ − x0‖ converges in probability to the unique minimizer α∗ of the
following max-min problem:

max
0≤β≤1
τ>0

min
α≥0

H(α, β, τ) := β
√
δ
√
σ2 + α2 −

τα

2
+
τ

2α
−
α

2τ
E

[
η2

(
βH +

τ

α
X0; λ

)]
,

(C.7)

where the expectation is over H ∼ N (0, 1) and X0 ∼ pX0 . Here, we prove Theo-
rem 6.6.1 by analyzing the optimality conditions of (C.7). Recall that H is jointly
concave in β, p and strongly convex in α.

First Order Optimality Conditions.
We begin with a lemma, which characterizes the first-order optimality conditions
of (C.7).

Lemma C.3.1 (Optimality Conditions). Consider the following pair of equations

with respect to β and κ: β2κ2δ = σ2 + E
[
(η(βκH + X0; κλ) − X0)2

]
, (C.8)

βκδ = E[(η(βκH + X0; κλ) · h)]. (C.9)
Also, define λmin to be the unique non-negative solution to the equation

(1 + x2)
∫ −x

−∞

e−z
2/2dz − xe−x

2/2 = δ

√
π

2
.

With these, let (β∗, τ∗, α∗) be optimal in (C.7). Then,

α2
∗ = β2

∗κ
2
∗δ − σ

2 and κ∗ =
σ√

β2
∗δ − τ

2
∗

(C.10)

such that,

(i) If β∗ = 1 and λ > λmin, then κ∗ is the unique solution to (C.8) for β = 1,

(ii) If β∗ ∈ (0, 1) ,then κ∗, β∗ are solutions to the pair of equation (C.8)-(C.9).

Proof. Consider the derivation of the objective function with respect to α, τ and β
as follows

∂

∂α
H(α, τ, β) =

βα
√
δ

√
α2 +σ2

−
τ

2
−

1
2τ
E[(η(βH +

τ

α
X0, λ) −

τ

α
X0)2], (C.11)

∂

∂τ
H(α, τ, β) = −

α

2
+

α

2τ2E[(η(βH +
τ

α
X0, λ) −

τ

α
X0)2], (C.12)

∂

∂β
H(α, τ, β) =

√
δ
√
α2 +σ2 −

α

τ
E[η(βH +

τ

α
X0, λ) · H]. (C.13)
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We will prove that the optimal α∗, τ∗ and β∗ are all strictly positive. First, suppose
α∗ = 0 and τ∗ > 0. Then, the first term in (C.11) goes to zero while −τ2 stays
negative and the final term is always non-positive. This shows ∂

∂α

∣∣∣
α→0H(α, τ, β) <

0, which means that α∗ = 0 cannot be optimal in this case by convexity. Next,
assume α∗ = 0 and the optimal over τ is approached as τ → 0. In this case, it can
be shown that the expected value in (C.11) is strictly positive, thus the derivative
remains negative. Thus, α∗ > 0, as promised. A similar argument shows strict
positivity of (C.12) when τ → 0. Thus, τ∗ > 0. Finally, ∂

∂β

∣∣∣
β→0H(α, τ, β) > 0, by

independence of h and X0, showing β∗ > 0.

The argument above shows that the derivatives are equal to zero at the optimal. For
convenience define

P

(
τ

α

)
:=

τ

2α
−
αλ2

2τ
E

[
η2

(
β

λ
H +

τ

λα
X0; 1

)]
.

Then equating the derivatives in (C.7) with respect to α and τ with zero gives

β
√
δα

√
α2 +σ2

−
τ

2
−
τ

α2 P
′(
τ

α
) = 0, (C.14a)

−
α

2
+

1
α
P′(

τ

α
) = 0. (C.14b)

Here, P′ is the derivative of P(x) with respect to x. Any optimal β∗, τ∗, α∗ satisfies
these. Then, it only takes multiplying (C.14b) by τ

α and adding the result to (C.14a)
to see that

α∗ =
τ∗σ√
β2δ − τ2

∗

. (C.15)

Next, substituting (C.15) in (C.14b) it can be shown that,

−
σ2

2
+
σ2

2τ2E[
(
η(βH +

√
β2δ − τ2

σ
X0; λ) −

√
β2δ − τ2

σ
X0

)2] = 0.

To reach this we have also used the following facts: η(x; λ) ∂
∂xη(x; λ) = η(x; λ),

λη( xλ ; 1) = η(x; λ) and E[X2
0 ] = 1 by assumption (6.33). Multiplying the result

with 2τ2/σ2 and defining
κ :=

σ√
β2δ − τ2

,

we conclude with,

β2δκ2 − σ2 = E[
(
η(βκH + X0; κλ) − X0

)2], (C.16)
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which is same as (C.8). Also, with respect to the optimal κ∗ it is easily seen by
(C.15) that

α2
∗ = β2

∗κ
2
∗δ − σ

2. (C.17)

The derivative in (C.7) with respect to β gives
∂

∂β
H(α, β, τ) =

√
δ
√
σ2 + α2 −

α

τ
E[η(βH +

τ

α
X0; λ)H]

=βδκ − κE[η(βH +
X0

κ
, λ)H] = βδκ − E[η(κβH + X0; λκ)H],

(C.18)

where we have also used (C.17). Note that the above is the same as (C.9) and recall
the constraint 0 ≤ β ≤ 1 in (C.7) to conclude with the desired.

It only remains to show that the solution with respect to κ of (C.8) (eqv. of (C.16))
is unique when β = 1 and λ ≥ λmin. For β = 1, (C.8) is the same as fixed point
equation [BM12, Eqn. (1.9)], which in turn was shown to admit a unique solution
for all λ > λmin in [DMM11] (see [BM12, Prop. 1.3]). �

The Regions of Operation
We build up to the proof of Theorem 6.6.1 through a series of auxiliary lemmas.
Through the lemmas, we identify two “regimes of operation" of the LASSO. The
first we call Rbad, and it corresponds to values of λ for which the optimal β is in the
open set (0, 1). The second regime is such that β = 1. If δ < 1, we prove in Lemma
C.3.5 that there exists a unique critical value λcrit separating the two regimes in the
sense that Rbad extends from 0 to λcrit. If on the other hand δ ≥ 1, then there is no
Rbad region (Lemma C.3.6).

First, we need a few useful definitions.

Definition C.3.1. For any λ > 0, we let α∗(λ), τ∗(λ) and β∗(λ) be optimal solutions
in (C.7). Apart from α∗(λ), the others are not necessarily unique at this point. Also,
κ∗(λ) is defined as in (C.10).

Definition C.3.2 (Bad Regime). We say that a value λ > 0 is in the bad regime
Rbad, denoted λ ∈ Rbad, if there exists β∗(λ) ∈ (0, 1).

Definition C.3.3 (Critical Regime). We say that a value λcrit > 0 is in the critical
regime Rcrit, denoted λcrit ∈ Rcrit if for some κcrit, the pair λcrit, κcrit solves: κ2δ = σ2 + E

[
(η(κH + X0; κλ) − X0)2

]
, (C.19)

κδ = E[(η(κH + X0; κλ) · H)]. (C.20)
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As an immediate consequence of the definition above and the first order optimality
conditions in Lemma C.3.1, we have

β∗(λcrit) = 1, κ∗(λcrit) = κcrit and α∗(λcrit) =

√
δκ2

crit − σ
2. (C.21)

Also, the following lemma reveals the importance of λcrit: all λ < λcrit are in Rbad

and the squared error is constant in that regime, i.e. α∗(λ) = α∗(λcrit).

Lemma C.3.2 (Error in Rbad). Let λcrit ∈ Rcrit. Then, for all 0 < λ′ < λcrit, it

holds λ′ ∈ Rbad. Furthermore, β∗(λ′) = λ/λcrit, λ′κ∗(λ′) = κcritλcrit and α∗(λ′) =

α∗(λcrit).

Proof. Fix any 0 < λ′ < λcrit. By definition, there exists κcrit such that λcrit, κcrit

satisfy (C.19)-(C.20). Define β′ := λ/λcrit and κ′ := κcrit/β
′. It is then easy to see

that β′, κ′ solve (C.8)-(C.9) (for λ = λ′ therein). Also, β′ < 1 by definition. Thus,
λ′ ∈ Rbad and β∗(λ′) = λ/λcrit, κ∗(λ′) = κcritλcrit/λ

′. Also, using (C.10) and (C.21),

α∗(λ) =

√
δβ2
∗(λ′)κ2

∗ (λ) − σ2 =
√
δκ2
∗ (λcrit) − σ2 = α∗(λcrit). �

It is thus important to identify the critical values of the regularizer parameter, i.e.
all λcrit ∈ Rcrit. Values in Rbad are important towards this aim, since as shown in
the next lemma, for any λ ∈ Rbad there must exist some λcrit > λ.

Lemma C.3.3 (Rbad → λcrit). Let λ1 ∈ Rbad, then there exists λ2 ∈ Rcrit with

λ2 > λ1.

Proof. Let β1, α1, κ1 be optimal corresponding to λ1. Since λ1 ∈ Rbad, it holds
0 < β1 < 1. Then, from Lemma C.3.1, κ1, β1 solve (C.8)-(C.9). Starting from
these and substituting λ2 := λ1/β1 and κ2 := κ1β1 therein, it is not hard to see that
this is equivalent to λ2, κ2 satisfying (C.19)-(C.20). Thus, λ2 ∈ Rcrit. Also, clearly
λ2 > λ1. �

The lemma below is important since it shows that when δ < 1 there exists a unique

λcrit ∈ Rcrit.

Lemma C.3.4 (Unique λcrit). Suppose δ < 1. The set of equations (C.19)-(C.20)
has a unique pair of solutions (κ, λ). Thus, there exists unique λcrit ∈ Rcrit.
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Proof. First, we show that there exists at most one λcrit ∈ Rcrit. For the shake of
contradiction assume two different pairs of solutions, say (κ1, λ1) and (κ2, λ2). By
definition, λ1, λ2 ∈ Rcrit. First, note that we cannot have λ1 = λ2, since if this
was the case then from (C.21) we would also have κ1 = κ2. Henceforth, assume
w.l.o.g. that λ1 < λ2. It follows from Lemma C.3.2 that λ1 ∈ Rbad and also
κ∗(λ1)λ1 = κ∗(λ2)λ2. Thus,

κ∗(λ1) < κ∗(λ2). (C.22)

But also, again from Lemma C.3.2, α∗(λ1) = α∗(λ2). Since, λ1, λ2 ∈ Rcrit, this
implies when combined with (C.21) that κ∗(λ1) = κ∗(λ2), which contradicts (C.22),
completing the proof of this part.

Let us now prove that Rcrit is non-empty. To begin with, we show that Rbad is non-
empty in this case. In particular, we show that λmin defined in Lemma C.3.1 is in
Rbad. Since, δ < 1, we have λmin > 0. Suppose that (β∗(λmin) = 1, κ∗(λmin)) is op-
timal for some κ∗(λmin), then, from first-order optimality conditions, κ∗(λmin), λmin

solves (C.8) for β = 1. But, then as in [BM12, pg. 16] κ∗(λmin) → ∞. Also, since
H(α, τ, β) is concave in β, the above imply that ∂H

∂β

∣∣∣
(β=0,κ→∞) ≥ 0, or equivalently

from (C.18), ∫ ∞

λmin

h(h − λmin)e−h
2/2dh ≤ δ

√
π

2
.

Recalling the definition of λmin in Lemma C.3.1, it can be shown (using standard
inequalities on tail functions of Gaussians) that the inequality above is violated for
all 0 < δ < 1. Hence, it must be β∗(λmin) < 1. Also, β∗(λmin) > 0 because of
(C.15). Thus, λmin ∈ Rbad. To complete the proof use Lemma C.3.3 with λ1 = λmin

to see that there exists λ2 ∈ Rcrit. �

Lemma C.3.5 (δ < 1). Suppose δ < 1 and let λcrit ∈ Rcrit. Furthermore, i) for all

λ ≤ λcrit, α∗(λ) = α∗(λcrit), and, ii) for all λ > λcrit, κ∗(λ) is the unique solution to

(C.8) for β = 1.

Proof. Existence and uniqueness of λcrit is proved in Lemma C.3.4

i) For λ ≤ λcrit, the claim follows directly from Lemma C.3.2.

ii) Next, we show that for λ ≥ λcrit, there exists an optimal solution for which
β∗(λ) = 1. This suffices since then κ∗(λ) solves (C.8) for β = 1 (by first or-
der optimality conditions), and, also, the solution is unique by [DMM11],[BM12,
Prop. 1.3] and the fact that λmin ≤ λcrit ≤ λ. To see that β∗(λ) = 1, we argue as
follows. First, β∗(λ) < (0, 1). Otherwise, λ ∈ Rbad, thus, by Lemma C.3.3 there
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exists λ′ > λ ≥ λcrit such that λ′ ∈ Rcrit, which contradicts the uniqueness of λcrit.
Hence, β∗(λ) = 1. �

Lemma C.3.6 (δ > 1). Suppose δ > 1, then for all λ > 0, κ∗(λ) is the unique

solution to (C.8) for β = 1.

Proof. First, let us show that for λ → 0, β∗(λ) = 1. Indeed for β = 1 and λ → 0,
(C.18) gives

∂H

∂β
= δ − E[(h +

1
κ
X0)H] = δ − 1 > 0.

Thus, from concavity of H with respect to β, we find that the unique optimal value
for β is

β∗(λ → 0) = 1. (C.23)

Also, as in the proof of Lemma C.3.5, β∗(λ → ∞) = 1. Thus, again similar to
Lemma C.3.5, it suffices to prove that there exists no λ ∈ Rbad. For the sake of
contradiction, suppose that there exists λ1 ∈ Rbad. By Lemma C.3.3, there exists
λ1 < λcrit ∈ Rcrit. But, then β∗(λ → 0) → 0, which contradicts (C.23). This
completes the proof. �

Proof. (of Theorem 6.6.1) The claim of the theorem is now a direct consequence
of Lemmas C.3.5 and C.3.6 combined with (C.17). �
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A p p e n d i x D

CALCULATING THE SUMMARY PARAMETERS

The upper bounds on the NSE of the generalized LASSO presented in Sections
7.4-7.9 are in terms of the summary parameters D(λ∂ f (x0)) and D(cone(∂ f (x0))).
(The same quantities appeared in the study of noiseless problems in Section 2.2.)
While the bounds are simple, concise and nicely resemble the corresponding ones
in the case of OLS, it may appear to the reader that the formulae are rather abstract,
because of the presence of D(cone(∂ f (x0))) and D(λ∂ f (x0)).

However, as discussed here, for a large number of widely-used convex regulariz-
ers f (·), one can calculate (tight) upper bounds or even explicit formulae for these
quantities. For example, for the estimation of a k-sparse signal x0 with f (·) = ‖ · ‖1,
it has been shown that D(cone(∂ f (x0))) . 2k(log n

k
+ 1). Substituting this into The-

orems 7.5.1 and 7.8.1 results in the “closed-form" upper bounds given in (7.14) and
(7.16), i.e. ones expressed only in terms of m, n and k . Analogous results have
been derived [Cha+12; OH10; Sto09a; Ame+13; FM14] for other well-known sig-
nal models as well, including low rankness and block-sparsity. The first column of
Table D.1 summarizes some of the results for D(cone(∂ f (x0))) found in the litera-
ture [Cha+12; Ame+13; FM14]. The second column provides closed form results
on D(λ∂ f (x0)) when λ is sufficiently large [OTH13b, App. H]. Note that, by setting
λ to its lower bound in the second row, one approximately obtains the correspond-
ing result in the first row. This should not be surprising due to (7.35). Also, this
value of λ is a good proxy for the optimal regularizer λbest of the `2-LASSO as was
discussed in Sections 7.6 and 7.8.

Table D.1: Closed form upper bounds for D(cone(∂ f (x0))) and D(λ∂ f (x0)).

D(cone(∂ f (x0))) D(λ∂ f (x0))

k-sparse, x0 ∈ R
n 2k(log n

k
+ 1) (λ2 + 3)k for λ ≥

√
2 log n

k

Rank r , X0 ∈ R
√
n×
√
n 6

√
nr λ2r + 2

√
n(r + 1) for λ ≥ 2n1/4

k-block sparse, x0 ∈ R
tb 4k(log t

k
+ b) (λ2 + b + 2)k for λ ≥

√
b +

√
2 log t

k
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We refer the reader to [Cha+12; Ame+13; FM14; OTH13b] for the details and
state-of-the-art bounds on D(cone(∂ f (x0))) and D(λ∂ f (x0)). Identifying the subd-
ifferential ∂ f (x0) and calculating D(λ∂ f (x0)) for all λ ≥ 0, are the critical steps.
Once those are available, computing minλ≥0 D(λ∂ f (x0)) provides upper approxi-
mation formulae for D(cone(∂ f (x0))). This idea was first introduced by Stojnic
[Sto09b] and was subsequently refined and generalized in [Cha+12]. Most recently
[Ame+13; FM14] proved (7.35), thus showing that the resulting approximation on
D(cone(∂ f (x0))) is in fact highly-accurate. Section 4 of [Ame+13] is an excellent
reference for further details and the notation used there is closer to ours.

We should emphasize that examples of regularizers are not limited to the ones
discussed here and presented in Table D.1. There are increasingly more signal
classes that exhibit low-dimensionality and to which the theorems of Sections 7.4-
7.9 would apply. Some of these are as follows.

• Non-negativity constraint: x0 has non-negative entries, [DT05].

• Low-rank plus sparse matrices: x0 can be represented as sum of a low-rank
and a sparse matrix, [Wri+13].

• Signals with sparse gradient: Rather than x0 itself, its gradient dx0(i) = x0(i)−
x0(i − 1) is sparse, [CX13].

• Low-rank tensors: x0 is a tensor and its unfoldings are low-rank matrices,
[KSV13; GRY11].

• Simultaneously sparse and low-rank matrices: for instance, x0 = ssT for a
sparse vector s, [Oym+15; RSV12].

Establishing new and tighter analytic bounds for D(λ∂ f (x0)) and D(cone(∂ f (x0)))
for more regularizers f is certainly an interesting direction for future research. In
the case where such analytic bounds do not already exist in literature or are hard to
derive, one can numerically estimate D(λ∂ f (x0)) and D(cone(∂ f (x0))) once there
is an available characterization of the subdifferential ∂ f (x0). Using the concentra-
tion property of dist2(h, λ∂ f (x0)) around D(λ∂ f (x0)), when h ∼ N (0, In), we can
compute D(λ∂ f (x0)), as follows:

1. draw a vector h ∼ N (0, In),

2. return the solution of the convex program mins∈∂ f (x0) ‖h − λs‖2.
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Computing D(cone(∂ f (x0))) can be built on the same recipe by recognizing
dist2(h, cone(∂ f (x0))) as minλ≥0,s∈∂ f (x0) ‖h − λs‖2.

To sum up, any bound on D(λ∂ f (x0)) and D(cone(∂ f (x0))) translates, through The-
orems 7.5.1–7.9.1, into corresponding upper bounds on the NSE of the generalized
LASSO. For purposes of illustration and completeness, we review next the details
of computing D(cone(∂ f (x0))) and D(λ∂ f (x0)) for the celebrated case where x0 is
sparse and the `1-norm is used as the regularizer.

D.1 Sparse Signals
Suppose x0 is a k-sparse signal and f (·) = ‖ · ‖1. Denote by S the support set of x0,
and by Sc its complement. The subdifferential at x0 is [Roc97],

∂ f (x0) = {s ∈ Rn | ‖s‖∞ ≤ 1 and si = sign(x0,i),∀i ∈ S}.

Let h ∈ Rn have i.i.d N (0, 1) entries and define

shrink(χ, λ) =


χ − λ , χ > λ,

0 , −λ ≤ χ ≤ λ,

χ + λ , χ < −λ.

Then, D(λ∂ f (x0)) is equal to

D(λ∂ f (x0)) = E[dist2(h, λ∂ f (x0))]

=
∑
i∈S

E[(hi − λsign((x0)i))2] +
∑
i∈Sc

E[shrink2(hi , λ)] =

= k(1 + λ2) + (n − k)

√
2
π

[
(1 + λ2)

∫ ∞

λ
e−t

2/2dt − λ exp(−λ2/2)
]
.

(D.1)

Note that D(λ∂ f (x0)) depends only on n, λ and k = |S |, and not explicitly on S
itself (which is not known). Substituting the expression in (D.1) in place of the
D(λ∂ f (x0)) in Theorems 7.6.1 and 7.8.2, yields explicit expressions for the corre-
sponding upper bounds in terms of n, m, k and λ.

We can obtain an even simpler upper bound on D(λ∂ f (x0)) which does not involve
error functions as we show below. Denote Q(t) = 1√

2π

∫ ∞
t

e−τ
2/2dτ the complemen-
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tary c.d.f. of a standard normal random variable. Then,

1
2
E[shrink2(hi , λ)] =

∫ ∞

λ
(t − λ)2d(−Q(t))

= −
[
(t − λ)2Q(t)

]∞
λ

+ 2
∫ ∞

λ
(t − λ)Q(t)dt

≤

∫ ∞

λ
(t − λ)e−t

2/2dt (D.2)

≤ e−λ
2/2 −

λ2

λ2 + 1
e−λ

2/2 (D.3)

=
1

λ2 + 1
e−λ

2/2.

(D.2) and (D.3) follow from standard upper and lower tail bounds on normal ran-
dom variables, namely 1√

2π
t

t2+1e
−t2/2 ≤ Q(t) ≤ 1

2e
−t2/2. From this, we find that

D(λ∂ f (x0)) ≤ k(1 + λ2) + (n − k)
2

λ2 + 1
e−λ

2/2.

Letting λ ≥
√

2 log(n
k
) in the above expression recovers the corresponding entry in

Table D.1:

D(λ∂ f (x0)) ≤ (λ2 + 3)k , when λ ≥
√

2 log(
n

k
). (D.4)

Substituting (D.4) in Theorems 7.6.1 and 7.8.2 recovers the bounds in (7.15) and
(7.17), respectively.

Setting λ =
√

2 log(n
k
) in (D.4) provides an approximation to D(cone(∂ f (x0))). In

particular, D(cone(∂ f (x0))) ≤ 2k(log(n
k
) + 3/2). [Cha+12] obtains an even tighter

bound (D(cone(∂ f (x0))) ≤ 2k(log(n
k
) + 3/4) starting again from (D.1), but using

different tail bounds for Gaussians. We refer the reader to Proposition 3.10 in
[Cha+12] for the exact details.
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A p p e n d i x E

PROOFS FOR CHAPTER 8

Here we include a detailed proof of Theorem 8.2.1. In the last section, we provide
a short overview of the proof of Theorem 8.2.2 which follows along the same key
ideas.

Preliminaries
We rewrite (8.1) in a more convenient format for the purposes of the analysis. In
particular, we perform the following operations in the order in which they appear:
(i) substitute y = Ax0 +σq, (ii) change the decision variable to the quantity of inter-
est, i.e. the normalized error vector w := (1/σ)(x − x0), (iii) move the constraint on
w to the objective function by introducing a Lagrange multiplier λ, and, (iv) rescale
by a factor of σ. Then,

ŵ := min
w

max
λ≥0
‖Aw − q‖2 +

λ

σ
( f (x0 +σw) − f (x0)). (E.1)

We will derive a precise expression for the limiting (as n → ∞) behavior of limσ→0 ‖ŵ‖2.
Note that after the normalization of x − x0 with σ , it is not guaranteed that the op-
timal minimizer in (E.1) is bounded (think of σ → 0). However, we will prove that
in the regime of Theorem 8.2.1 this is indeed the case. Many of the arguments that
we use in the analysis require boundedness of the constraint sets. To tackle this, we
assume that ŵ is bounded by some large constant K > 0 (with probability one over
A, q), the value of which to be chosen at the end of the analysis. Recall that at that
point we will have a precise characterization of the limiting behavior of ‖ŵ‖2, say
α∗. If α∗ turns out to be independent of the value of K which we started with, then
we will assume that this starting value was strictly larger than α∗. Thus, in what
follows, we let K ,Λ,M , ... denote such (arbitrarily) large positive quantities. Also,
throughout the proof we write ‖ · ‖ instead of ‖ · ‖2.
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Preparing the grounds for applying the CGMT
Using Lemma 8.3.2, onwards we work with the following (probabilistically) equiv-
alent formulation of (E.1):

ŵ := min
‖w‖≤K

max
λ≥0
‖(GGT )−1/2G(w − q)‖2

+
λ

σ
( f (x0 +σw) − f (x0)). (E.2)

The goal of this section is to bring this in a format for which CGMT is applicable.
We start by using the fact that for any a ∈ Rm:

‖a‖ = max
‖b‖≤1

bTa.

In particular, the first term in (E.2) can be expressed as follows; to shorten notation
denote c := w − q:

‖(GGT )−1/2Gc‖ = max
‖b‖≤1

bT (GGT )−1/2Gc

= max
‖(GGT )1/2b‖≤1

bTGc

= max
‖GT b‖≤1

bTGc (E.3)

= max
‖b‖≤Λ

bTGc − δ(GTb|Bn−1). (E.4)

In the last line above, δ(a|Bn−1) denotes the indicator function of the unit ball, i.e.
takes the value 0 if ‖a‖ ≤ 1 and +∞, otherwise. Also, we are allowed to assume
that b is bounded by some large 0 ≤ Λ ≤ ∞, since the set of optima in (E.3) is
a compact set (GT has full column rank with probability one). It can be readily
checked (also, see [Roc97]) that δ(a|Bn−1) = sup` aT`− ‖`‖, for any a ∈ Rn. Thus,
continuing from (E.4):

‖(GGT )−1/2Gc‖ = max
‖b‖≤Λ

inf
`

bTG(c − `) + ‖`‖.

As a final step, we will flip the order of max-min above. This is allowed by [Roc97,
Cor. 37.3.2] since: (i) the objective function above is continuous, convex in `, and
concave in b, (ii) the constraint sets are convex, (iii) the set constraining the maxi-
mization is bounded. Thus,

‖(GGT )−1/2Gc‖ = inf
`

max
‖b‖≤Λ

bTG(c − `) + ‖`‖.
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We argue that the infimum above is achieved over a bounded set. Indeed, perform-
ing the maximization over b above

inf
`

max
‖b‖≤Λ

bTG(c − `) + ‖`‖ = inf
`
Λ‖G(c − `)‖ + ‖`‖.

The sub-level sets of the (continuous) objective function in the minimization on the
right-hand side of the equation above are clearly bounded. Hence, by Weierstrass’
Theorem [BNO03, Prop. 2.1.1] the set of minimum is nonempty and compact. We
may thus assume there exists large but finite N such that constraining the mini-
mization over ‖`‖ ≤ N does not increase the optimum. We may now substitute the
above in (E.2) to conclude with:

ŵ = min
‖w‖≤K
‖`‖≤N

max
λ≥0
‖b‖≤Λ

bTG(w − q − `) + ‖`‖

+
λ

σ
( f (x0 +σw) − f (x0)),

or, re-defining ` := w − q − ` and appropriately adjusting N :

ŵ = min
‖w‖≤K
‖`‖≤N

max
λ≥0
‖b‖≤Λ

bTG` + ‖w − q − `‖

+
λ

σ
( f (x0 +σw) − f (x0)). (E.5)

This brings (E.1) in the desired format for the application of the CGMT. In partic-
ular, identify ψ([`,w], b) := ‖w − q − `‖ + maxλ≥0

λ
σ ( f (x0 + σw) − f (x0)) which

is continuous and convex in [`,w], as desired. This format is of course the same as
in (8.9), modulo the boundedness constraints which were not regarded in the main
body of the paper.

The (AO) for arbitrary σ
Let us write the (AO) as it corresponds to (E.5):

w̃(g, h, q) = min
‖w‖≤K
‖`‖≤N

max
λ≥0
‖b‖≤Λ

‖`‖gTb − ‖b‖hT`

+ ‖w − q − `‖ +
λ

σ
( f (x0 +σw) − f (x0)). (E.6)

Our goal in the rest of the section is to simplify (E.6). The technique is same as
described in Chapter 5, only the details differ. By massaging the objective func-
tions and performing minimizations/maximizations when possible we eventually
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reach an equivalent formulation, in which most optimizations are in terms of scalar
variables instead of vectors. Two remarks are in place:

(a) We will need to flip the order of min-max several times; except if stated dif-
ferently we apply [Roc97, Cor. 37.3.2]: here, constraint sets will always be convex
and the objective function continuous. We only need to worry about convexity of
the objective and boundedness of (at least one of) the constraint sets.

(b) To keep notation short, we will often drop the set constraints over the optimiza-
tion variables when clear from context. Recall that most of the constraints are just
boundedness constraints by constants that can be chosen large.

Maximizing over the direction of b. This is easy to perform, note that max‖b‖=β gTb =

β‖g‖2, β ≥ 0.

Minimizing over `. First, let us argue briefly that we can “push" the minimization
over ` on the right of the maximization: (i) it can be seen that after optimizing
over the direction of b, the objective function in (E.6) is convex in `, (ii) it is also
concave in λ, β, and (iii) ` is constrained in a bounded set.

To be able to optimize over `, we use the following trick. We will express the terms
‖`‖ and ‖w − q − `‖ using the fact that:

√
x = min

p≥0

x

2p
+

p

2
, ∀x > 0. (E.7)

Also, note that the set of minima above is clearly bounded for bounded x. With
these,

min
`
β(‖`‖‖g‖ − hT`) + ‖w − q − `‖ =

min
0≤p≤P
0≤t≤T

p + t

2
+

1
2p
‖q − w‖2+

min
`

1
p

[
t + β2p‖g‖2

2t
‖`‖2 + (−βph + q − w)T`

]
,

and the minimization over ` contributes the term:

−
1

2p
t

t + β2p‖g‖2
‖ − βph + q − w‖2.

Linearize f . The function f is continuous and convex, thus, we can express it
in terms of its convex conjugate f ∗(u) = supx uTx − f (x). In particular, applying
[Roc97, Thm.12.2] we have f (x0+σw) = supu xT0 u+σuTw− f ∗(u). The supremum
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here is achieved at u∗ ∈ ∂ f (x0 + σw) [Roc97, Thm. 23.5]. Also, from [BNO03,
Prop. 4.2.3], ∪‖w‖≤K∂ f (x0 + σw) is bounded. Thus, the set of maximizers u∗ is
bounded and for some 0 < M := M(K ) < ∞, w̃ is given as the solution to

max
λ≥0

0≤β≤Λ
‖u‖≤M

min
w,p,t

p + t

2
+

1
2p
‖q − w‖2 + λuTw

−
1

2p
t

t + β2p‖g‖2
‖ − βph + q − w‖2 +

λ

σ
F(u), (E.8)

where we have flipped the orders of min-max for w and u, and have denoted

F(u) := uTx0 − f ∗(u) − f (x0).

Redefine variables. It will be convenient for the calculations to follow to redefine
the variables β and t as follows:

β := βp, t := t p and λ := λp.

It can be checked that with these changes, the optimization remains convex.

Minimizing over the direction of w. Evaluating the squares in (E.8) and after
some algebra, it can be shown that the terms in which w appears are as follows:

β2‖g‖2

2(β2‖g‖2 + t)
‖w‖2 − (f̃ − λu)Tw, (E.9)

where

f̃ :=
(
−

βt

β2‖g‖2 + t
h +

β2‖g‖2

β2‖g‖2 + t
q
)
, (E.10)

which has entries i.i.d. Gaussians of zero mean and standard deviation

σf̃ := σf̃(β, t) :=
β
√
t2 + β2‖g‖4

β2‖g‖2 + t
. (E.11)

Fix the norm of ‖w‖ = α. Optimizing over the direction of w the second term in
(E.9) gives −α‖ f̃ − λu‖.
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Minimize over p. Overall, the min-max problem in (E.6) has reduced itself to:

max
λ≥0

0≤β≤Λ
‖u‖≤M

min
α,p,t

{ 1
2p

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

β2‖g‖2

β2‖g‖2 + t
α2 − 2α‖ f̃ − λu‖ + 2

λ

σ
F(u)

)
+

p

2

}
=

max
λ≥0

0≤β≤Λ
‖u‖≤M

min
α,t

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

β2‖g‖2

β2‖g‖2 + t
α2 − 2α‖ f̃ − λu‖ + 2

λ

σ
F(u)

)1/2
. (E.12)

In yielding the equality above, we have applied (E.7).

Redifine λ. It is convenient to redefine λ as λ := λ/σf̃ . Let f denote standard i.i.d.
Gaussian vector, such that f̃ ∼ σf̃f. With these, we can express w̃ as the solution to:

max
λ≥0

0≤β≤Λ
‖u‖≤M

min
α,t

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

β2‖g‖2

β2‖g‖2 + t
α2 − 2σf̃(α‖f − λu‖ − 2

λ

σ
F(u))

)
. (E.13)

Note that we have essentially considered the square of (E.13). Let us denote the
optimal cost of (E.13) above as φ(σ) := φ(σ; g, h, q, f).

The (AO) in the limit σ → 0

Theorem 3.3.1 relates ‖w̃‖ to ‖ŵ‖, under appropriate assumptions. Also, recall that
we wish to characterize limσ→0 ‖ŵ‖. Thus, in view of (E.13), we wish to analyze
the problem

φ0 := φ0(g, h, q, f) := lim
σ→0

φ(σ; g, h, q, f).

In (E.13), from Fenchel’s inequality:

F(u) = uTx0 − f ∗(u) − f (x0) ≤ 0. (E.14)

With this observation, we prove in the next lemma that φ(σ; g, h, q, f) is non-
decreasing in σ.

Lemma E.0.1. Fix g, h, q, f and consider φ(·; g, h, q, f) : (0,∞)→ R as defined in

(E.13). φ(σ; g, h, q, f) is non-decreasing in σ.
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Proof. Denote L(σ, α, t , β, u, λ) the objective function in (E.13) and consider 0 <
σ1 < σ2 < ∞. Letα(2), t (2) be an optimal solution to the min-max problem in (E.13)
for σ2. Then, let (β(1), u(1), λ(1)) = arg maxβ,u,λ L(σ1, α

(2), t (2), β, u, λ). Clearly,

φ(σ1) ≤ L(σ1, α
(2), t (2), β(1), u(1), λ(1)).

Using 1/σ1 > 1/σ2 and (E.14),

L(σ1, α
(2), t (2), β(1), u(1), λ(1)) ≤

L(σ2, α
(2), t (2), β(1), u(1), λ(1)).

But,
L(σ2, α

(2), t (2), β(1), u(1), λ(1)) ≤ φ(σ2).

Combine the above chain of inequalities to conclude. �

In particular, when viewed as a function of κ := 1/σ, φ(·; g, h, q, f) is non-increasing.
Thus,

φ0 = lim
σ→0

φ(σ) = lim
κ→∞

φ(κ) = inf
κ≥0

φ(κ). (E.15)

Next, we argue that we can flip the order of min-max. The objective function in
(E.13) is continuous, convex in κ, and, concave in λ, β, u. The constraint set on λ
appears to be unbounded, but, it can be checked from (E.13) that the optimal value
is in fact bounded. With this and (E.15), we get

max
λ≥0

0≤β≤Λ
‖u‖≤M

min
α,t

inf
κ≥0

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

β2‖g‖2

β2‖g‖2 + t
α2 − 2σfα‖f̃ − λu‖ + κ2σf̃λF(u)

)
.

Recall (E.14) and the fact that equality is achieved iff u ∈ ∂ f (x0) (e.g. [Roc97,
Thm. 23.5]). Then, φ0 is given by

max
λ≥0

0≤β≤Λ
u∈∂ f (x0)

min
α,t

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

β2‖g‖2

β2‖g‖2 + t
α2 − 2σfα‖ f̃ − λu‖

)
,

where we have assumed ∞ > M > maxs∈∂ f (x0) ‖s‖. We can now optimize over
λu (after appropriately flipping the order of min-max): minλ≥0,u∈∂ f (x0) ‖f − λu‖ =
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dist(f , cone(∂ f (x0))). Thus, we conclude with "Gordon’s optimization" for σ → 0
taking the form:

φ0(g, h, q, f) = min
0≤α≤K

L(α; g, h, q, f), (E.16)

L(α; g, h, q, f) := min
0≤t≤T

max
0≤β≤Λ

{
t + ‖q‖2−

t

β2‖g‖2 + t
‖βh − q‖2 +

β2‖g‖2

β2‖g‖2 + t
α2 − 2σf̃αdh

}
,

where we have denoted dh := dist(f , cone(∂ f (x0))).

It is now easy to optimize (E.18) over α. We summarize the result in the following
lemma.

Lemma E.0.2. In (E.18), fix g, h, q and let w̃ := w̃(g, h, q) be optimal. Denote,

f̃ := f̃(β, t) := −
βt

β2‖g‖2 + t
h +

β2‖g‖2

β2‖g‖2 + t
q,

and υ(β, t) := dist(f̃ , cone(λ∂ f (x0))). Then,

‖w̃‖ =
β2‖g‖2 + t

β‖g‖2
υ(β, t), (E.17)

where β, t are optimal solutions to the following optimization:

max
Λ≥β≥0

min
T≥t≥0

(
t + ‖q‖2 −

t

β2‖g‖2 + t
‖βh − q‖2+

−
t2 + β2‖g‖4

‖g‖2(β2‖g‖2 + t)
υ(β, t)

)
. (E.18)

Note that f̃ ∼ σf̃f where f is standard i.i.d. Gaussian and

σf̃ := σf̃(β, t) := β

√
t2 + β2‖g‖4/(β2‖g‖2 + t).

Probabilistic Analysis
Lemma E.0.2 derives an expression for ‖w̃‖, for fixed g, h, q. Here, we evaluate the
limiting behavior of this expression. Recall that g, h, q are all i.i.d. standard Gaus-
sian vectors and assume the large-system limit linear regime as in the statement of
Theorem 8.2.1. Recall the use of the following notation: let {Xn}

∞
n=1 be a sequence

of random variables and {cn} a deterministic sequence, then Xn

P
−→ cn iff for all

ε > 0, the event |Xn − cn | ≤ εcn occurs w.p. 1 in the limit n → ∞. For the purpose
of this section, convergence is to be understood in the aforementioned meaning.
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From standard concentration results on Gaussian r.v.s.: ‖g‖2
P
−→ m, ‖h‖2

P
−→ n,

‖q‖2
P
−→ n, ‖βh − σq‖2

P
−→ (β2 + σ2)n, and υ f ,x0(β, t; g, h, v)

P
−→ σf̃ω f ,x0 . For

the last relation, we have used the property of the Gaussian width as in[Ame+13,
Prop. 10.1]. Hence, for any fixed β, t, the objective function in (E.18) converges to

d(β, t) = t +
β2(m − t)
β2m + t

n −
t2 + β2m2

m(β2m + t)
ω2

f ,x0
. (E.19)

It can be checked that the objective function in (E.18) is convex in t and concave in
β. Also, the constraint sets are compact. Thus, it follows from [AG82, Cor. II.1] (
“point-wise convergence in probability of concave functions implies uniform con-
vergence in compact spaces" ) that the convergence in (E.19) is uniform over β and
t. As will be shown next, provided that the constants determining the constraint
sets are large enough, then there exist unique β2

∗ and t∗ that are optimal in (E.19).
Hence, as in [NM94, Thm. 2.7], the optimal solutions of (E.18) indeed converge
to the deterministic solutions of (E.19), which we calculate below. Let the con-
stant bounds on the variables β, t, namely Λ,T , to be specified later. Denote β∗, t∗
optimal solutions in

max
0≤β≤B

min
0≤t≤T

d(β, t).

Let us write ω := ω f ,x0 . We differentiate the objective with respect to both β and t

to find:

∂d(β∗, t∗)
∂λ

= 1 −
β2
∗m(β2

∗ − 1)
(t∗ + β2

∗m)
n −

t2∗ + 2t∗β2
∗m − m2β2

∗

(β2
∗m + t∗)2

ω2

m
, (E.20a)

∂d(β∗, t∗)
∂β

=
2β∗t∗(m − t∗)
(β2
∗m + t∗)2

(n − ω2). (E.20b)

Setting them to zero, from (E.20b) we have β∗ = 0, t∗ = 0 or t∗ = σm. We consider
each case separately. Assume β∗ = 0, then t∗ = arg min d(λ, β∗) = arg min λ −
λω

2

m
= 0 and d(t∗, β∗) = 0. Next, suppose t∗ = m. Substituting this in (E.20a) we

find

(n − m)β4
∗ + ((n − m) − (m − ω2))β2

∗ − (m − ω2) = 0.

Solving this yields β2
∗ = m−ω2

n−m
and d(β∗, t∗) = m − ω2 > 0. Choose, Λ,T such that

β∗, t∗ are feasible. From convexity, first-order optimality conditions are sufficient.

What is left is to substitute those limit values β∗ and t∗ in (E.17) in Lemma E.0.2,
to conclude with

‖w̃‖2

σ2

P
−→

ω2
f ,x0

(n − ω2
f ,x0

)

m − ω2
f ,x0

.
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Proof Outline of Theorem 8.2.2
In the next few lines we outline only the main checkpoints involved in the proof
of Theorem 8.2.1. The analysis follows along the same lines as in the proof of
Theorem 8.2.1. In fact, things here are less involved since we are only interested in
lower bounding the optimal cost of a min-max problem. Hence, a single application
of the GMT Theorem 3.2.1 (and not the CGMT 3.3.1) suffices.

Denote, C := Tf (x0) ∩ Sn−1. We write the mCSV of A as

σmin(A;Tf (x0)) = min
x∈C

max
‖y‖≤1

yTAx. (E.21)

We prove a high-probability lower bound on the optimal cost of this min-max op-
timization. We do so by applying Gordon’s GMT, just as is done in the Gaussian
case. But first, we need to bring (E.21) in a format where GMT is applicable After
applying the GMT, it can be shown that it suffices to lower bound the optimal cost
of the following “Gordon’s optimization" problem instead:

min
x∈C ,`

max
B≥β≥0

‖x − `‖ + β(‖`‖‖g‖ − hT`). (E.22)

Next, we perform a deterministic (fixed g, h) analysis of this to simplify it as possi-
ble into a scalar optimization problem. Caution should be taken here that the con-
straint set C on x is non-convex, thus we are not allowed to flip min-max operations
“carelessly". It can be shown that (E.23) has optimal cost

√
F, where F := F(g, h)

is the optimal cost of the following optimization:

min
x∈C ,T≥t≥0

max
B≥β≥0

‖g‖2 − tβ2‖h‖2 − 2tβhTx + tβ2‖g‖2 + t2β2

‖g‖2 + t
. (E.23)

Now, it is easy to optimize over x by choosing it to maximize hTx in C and F

is the optimal cost to only a scalar optimization problem involving the r.v.s. ‖g‖,
‖h‖ and maxx∈C hTx. All three are 1-Lipschitz functions thus they concentrate
(thus, converge in the proportional regime) to their mean values

√
m,
√
n and ω f ,x0

respectively. Also, the problem is convex in β, t, thus we can yield the expression of
Theorem 8.2.2 (with the correspondence β ↔ χ, t ↔ ρ), by first-order optimality
conditions.
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A p p e n d i x F

PROOFS FOR CHAPTER 10

F.1 Proof of Theorem 10.1.1
The proof of the theorem is of course based on the CGMT framework and is almost
identical to the proof of Theorem 9.4.1. In particular, from Section 9.5, it suffices
to prove that the BER of the corresponding (AO) problem converges to the desired
quantity Q(1/τ∗). Hence, we only include the part of the proof that involves the
analysis of the (AO).

For simplicity, we write ‖ · ‖ for the `2-norm.

The error vector. As usual, it is convenient to re-write (10.1a) by changing the
variable to the error vector w := x − x0:

ŵ := min
−2≤wi≤0

‖z − Aw‖. (F.1)

Without loss of generality we assume for the analysis that x0 = 1n = (1, 1, . . . , 1).
Then, we can write (10.2a) in terms of the error vector w as: BER = 1

n

∑n
i=1 1{ŵi≤−1} .

Identifying the (PO) and the (AO). Using the CGMT for the analysis of the BER,
requires as a first step expressing the optimization in (10.1a) in the form of a (PO)
as it appears in (3.11a). It is easy to see that (F.1) is equivalent to

min
−2≤wi≤0

max
‖u‖≤1

uTAw − uTz. (F.2)

Observe that the constraint sets above are both convex and compact; also, the objec-
tive function is convex in w and concave in u. Hence, according to the CGMT we
can perform the analysis of the BER for the corresponding (AO) problem instead,
which becomes (note the normalization to account for the variance of the entries of
A)

1
√
n

min
−2≤wi≤0

max
‖u‖≤1

(‖w‖g −
√
nz)Tu − ‖u‖hTw. (F.3)

We refer to the optimization in (F.3) as the (AO) problem.
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Computing the BER via the (AO). Call w̃ the optimal solution of the (AO). Fix
any ε > 0 and consider the set

S = {v :
∣∣∣∣1
n

n∑
i=1

1{vi≤−1} − Q(1/τ∗)
∣∣∣∣ < ε }, (F.4)

where τ∗ is defined in the statement of Theorem 10.1.1. We will apply Theorem
3.3.1 for the above set S. In particular, we show that (i) the (AO) in (F.3) converges
in probability (after proper normalization with n), and, (ii) w̃ ∈ S with probability
one. These will suffice to conclude that ŵ ∈ S with probability one, which would
complete the proof of Theorem 10.1.1.

Simplifying the (AO). We begin by simplifying the (AO) problem as it appears in
(F.3). First, since both g and z have entries iid Gaussian, then, ‖w‖g −

√
nz has

entries iid N (0,
√
‖w‖2 + nσ2). Hence, for our purposes and using some abuse of

notation so that g continues to denote a vector with iid standard normal entries, the
first term in (F.3) can be treated as

√
‖w‖2 + nσ2gTu, instead. As a next step, fix

the norm of u to say ‖u‖ = β. Optimizing over its direction is now straightforward,
and gives min−2≤wi≤0 max0≤β≤1

β
√
n

(√
‖w‖2 + nσ2‖g‖ − hTw

)
. In fact, it is easy

to now optimize over β as well; its optimal value is 1 if the term in the parenthesis
is non-negative and is 0 otherwise. With this, the (AO) simplifies to the following:

(
min

−2≤wi≤0

√
‖w‖2

n
+σ2‖g‖ −

1
√
n

hTw
)

+, (F.5)

where we defined (χ)+ := max{χ, 0}. To facilitate the optimization over w, we
express the term in the square-root in a variational form, using

√
χ = infτ>0

τ
2 +

χ
2τ .

With this trick, the minimization over the entries of w becomes separable:

min
τ≥0

τ‖g‖
2

+
σ2‖g‖

2τ
+

n∑
i=1

min
−2≤wi≤0

‖g‖
2τn

w2
i −

hi
√
n

wi .

Then, the optimal w̃i satisfies

w̃i =


0 , if hi ≥ 0,
τ
√
n

‖g‖ hi , if − 2‖g‖
τ
√
n
≤ hi < 0,

−2 , if hi < −
2‖g‖
τ
√
n
.

(F.6)

where τ is the solution to the following:min
τ>0

τ‖g‖
2

+
σ2‖g‖

2τ
+

1
√
n

n∑
i=1

υ(τ; hi , ‖g‖)


+

, (F.7)
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υ(τ; hi , ‖g‖) :=


0 , if hi ≥ 0,

−
τ
√
n

2‖g‖h
2
i

, if − 2‖g‖
τ
√
n
≤ hi < 0,

2 ‖g‖
τ
√
n

+ 2hi , if hi ≤ −
2‖g‖
τ
√
n
.

Convergence of the (AO). Now that the (AO) is simplified as in (F.7), we can get
a handle on the limiting behavior of the optimization itself as well as of the optimal
w̃. But first, we need to properly normalize the (AO) by dividing the objective in
(F.7) by

√
n. Also, for convenience, redefine τ := τ√

δ
. By the WLLN, we have

‖g‖
√
n

P
−→
√
δ, and, for all τ > 0, 1

n

∑n
i=1 υ(τ; hi , ‖g‖)

P
−→ Y (τ) := −τ2

∫ 2
τ

0 h2p(h)dh +

2
τQ

(
2
τ

)
− 2

∫ ∞
2
τ

hp(h)dh. With these we can evaluate the point-wise (in τ) limit of
the objective function in (F.7). Next, we use the fact that the objective is convex
in τ and Lemma [AG82, Cor.. II.1], to conclude that the convergence is indeed
uniform in τ. Hence, the random optimization in (F.7) converges to the following
deterministic optimization minτ>0

τδ
2 + σ2

2τ +Y (τ); some algebra shows that the latter
is the same as (10.3). If δ > 1/2, then, it can be shown via differentiation that
the objective function of it is strictly convex. Also, it is nonnegative; thus, the
entire expression in (F.7), which is nothing but the (AO) problem we started with,
converges in probability to (10.3). What is more, using [NM94, Thm. 2.7] it can be
shown that the optimal τ∗(g, h) of the (AO) converges in probability to the unique
optimal solution τ∗ of (10.3). This is crucial for the final step of the proof.

Proving w̃ ∈ S. Recall the definition in (F.4). We prove that 1
n

∑n
i=1 1{w̃i≤−1}

P
−→

Q(1/τ∗). From (F.6), 1{w̃i≤−1} = 1
{hi≤−

‖g‖
√
n
√
δτ
}
. Recall, ‖g‖/

√
n

P
−→
√
δ and τ

P
−→ τ∗.

Conditioning on those high probability events it can be shown that 1
n

∑n
i=1 1{hi≤−

‖g‖
√
n
√
δτ
}

P
−→

1
n

∑n
i=1 1{hi≤−

1
τ∗
}

P
−→ Q( 1

τ∗
).

F.2 Proof of Theorem 10.3.1
The proof of the theorem is an almost straightforward extension of the proof of
Theorem 10.1.1. We omit most of the details for brevity.

It can easily be verified that the corresponding (AO) becomes (cf. Eqn. (F.5)):

min
τ≥0

τ‖g‖
2

+
σ2‖g‖

2τ
+

n∑
i=1

min
`i≤wi≤ui

‖g‖
2τn

w2
i −

hi
√
n

wi ,

where `i = −(M − 1) − x0,i and ui = (M − 1) − x0,i . For simplicity in notation,
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denote A =
‖g‖
τ
√
n
. Then, the optimal w̃i satisfies

w̃i =


`i , if hi < A`i ,

1
A

hi , if A`i ≤ hi ≤ Aui ,

ui , if hi > Aui .

(F.8)

where, τ is the solution to the following:min
τ>0

τ‖g‖
2

+
σ2‖g‖

2τ
+

1
√
n

n∑
i=1

υ(τ; hi , ‖g‖)


+

, (F.9)

υ(τ; hi , ‖g‖) :=


A
2 `

2
i
− hi`i , if hi < A`i ,

− 1
2Ah2

i
, if A`i ≤ hi ≤ Aui ,

A
2 u

2
i
− hiui , if hi > Aui .

Proceeding exactly as in the case of BPSK signal recovery, we need to properly
normalize the (AO) by dividing the objective in (F.9) by

√
n. Also, for convenience,

redefine τ := τ√
δ
. By the WLLN, we have ‖g‖√

n

P
−→
√
δ, and using the assumption on

uniform distribution of the entries of x0 over the constellation, we further have that
for all τ > 0,

1
n

n∑
i=1

υ(τ; hi , ‖g‖)
P
−→ Y (τ),

where

Y (τ) :=
1
M

∑
i=1,3,...,M−1

∫ `i
τ

−ui
τ

τ
h2

2
p(h)dh +

∫ −ui
τ

−∞

(
1
2τ

u2
i + hui)p(h)dh +

∫ ∞

`i
τ

(
1
2τ
`2
i − h`i)p(h)dh

+
1
M

∑
i=1,3,...,M−1

∫ ui
τ

−`i
τ

τ
h2

2
p(h)dh +

∫ −`i
τ

−∞

(
1
2τ
`2
i + h`i)p(h)dh +

∫ ∞

ui
τ

(
1
2τ

u2
i − hui)p(h)dh,

and (using some abuse of notation) `i := (M − 1) − i and ui = (M − 1) + i. With
some algebra, this can be simplified to

Y (τ) :=
1
M

∑
i=1,3,...,M−3

−τ + τ

∫ ∞

`i
τ

(h −
`i
τ

)2p(h)dh + τ

∫ ∞

ui
τ

(h −
ui

τ
)2p(h)dh.


+

1
M

−τ2 + τ

∫ ∞

2(M−1)
τ

(h −
2(M − 1)

τ
)2p(h)dh.

 (F.10)

Hence, the random optimization in (F.9) converges to the following deterministic
optimization minτ>0

τδ
2 + σ2

2τ +Y (τ); some algebra shows that the latter is the same as
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(10.7). Here, we also used the fact that for x0 sampled uniformly from an M-PAM
constellation, it holds E[x2

0,i] = 2
M

∑
i=1,3...,M−1 i

2 = (M2 − 1)/3, hence

σ2 =

(
M2 − 1

3

)
1

SNR
.

Finally, it can be readily verified that the optimal cost of the minimization in (10.7)
is nonnegative if δ > 1 − 1/M .

Using this fact, and with arguments same as in the proof of Theorem 10.1.1, it can
be shown that the optimal τ∗(g, h) of the (AO) converges in probability to the unique
optimal solution τ∗ of (10.7).

To complete the proof, we need to show that 1
n

∑n
i=1 1{x∗i ,x0,i }

P
−→ 2(1−1/M)Q(1/τ∗).

It is easily seen that if x0,i ∈ {±1,±3, . . . ,±(M − 3)}, then there is an error when
|w̃i | > 1. From (F.8) this event corresponds to |hi | > A. On the other hand, if x0,i =

M − 1 (or x0,i = −(M − 1)), then the error event corresponds to w̃i < −1 (or w̃i > 1,
reps.), which in view of (F.8) translates to hi < −A (or hi > A, resp.). Putting
these together and conditioning on the high-probability events ‖g‖/

√
n

P
−→
√
δ and

τ
P
−→ τ∗, we have

1
n

n∑
i=1

1{arg mins∈C |x0,i+w̃i−s |,x0,i }
P
−→

1
M

(2(M − 2)Q(1/τ∗) + 2Q(1/τ∗))

= 2(1 − 1/M)Q(1/τ∗).
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A p p e n d i x G

PROOFS FOR CHAPTER 11

G.1 Proof of Theorem 11.2.1
In Chapter 11 we presented Corollary 11.2.1 as a consequence of Theorem 11.2.1.
To prove the result, we follow the reverse direction, i.e. we first prove Corollary
11.2.1 and subsequently show how Theorem 11.2.1 follows from that. The proof
is based on the CGMT framework and it follows largely the same steps outlined in
Chapter 5. Nevertheless, a few crucial modifications are required to account for the
non-linear nature of the measurements.

Assume a sequence of problem instances as described in Section 11.2. To keep no-
tation simple, we simply use ‖v‖ (rather than ‖v‖2) for the Euclidean norm of v and
we shall also drop the superscript (n) when referring to elements of the sequence.
Thus, we write

x̂ = arg min
x

1
√
n
‖~g(Ax0) − Ax‖ +

λ
√
n
f (x), (G.1)

but it is to be understood that the above actually produces a sequence of solutions
x̂(n) indexed by n. Our goal is to characterize the nontrivial limiting behavior of
‖x̂ − µx0‖.

We start with a simple but useful change of variables w := x − µx0, to directly get
a handle on the error vector w. Then, (G.1) becomes:

ŵ := arg min
w

1
√
n
‖~g(Ax0) − µAx0 − Aw‖ +

λ
√
n
f (µx0 + w)

= arg min
w

max
‖u‖≤1

1
√
n

(−uTAw + uT (~g(Ax0) − µAx0)) +
λ
√
n
f (µx0 + w), (G.2)

where the second line follows after using the fact ‖v‖ = max‖u‖≤1 uTv.

A Key Decomposition

The first key step in the proof is a trick adapted from the proofs of [Ver10b, Lem. 4.3]
and [PVY14, Thm. 1.3]. Until further notice, we condition on x0. Also, we repeat-
edly make use of the assumption that ‖x0‖ = 1 without direct reference. The trick
amounts to decomposing each measurement vector ai in its projection on the di-
rection of x0 and its orthogonal complement. Denoting P⊥ = (I − x0xT0 ) for the
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projector onto the orthogonal complement of the span of x0 (recall ‖x0‖2 = 1), we
have aT

i
= (aT

i
x0)xT0 + aT

i
P⊥, or, in matrix form:

A = (Ax0)xT0 + AP⊥.

Then, (G.2) becomes:

min
w

max
‖u‖≤1

1
√
n

{
−uTAP⊥w + uT (~g(Ax0) − µAx0 − (Ax0)xT0 w)

}
+

λ
√
n
f (µx0 + w).

(G.3)

Using the Gaussianity assumption on the entries of A it is straightforward to show
that P⊥ai is independent of aT

i
x0, for all i = 1, . . . ,m. Also, conditioned on

aT
i

x0, P⊥ai is independent of (~gi(aTi x0) − µaT
i

x0) since the latter only depends
on ai through aT

i
x0. Combining those, it follows that P⊥ai is also independent

of (~gi(aTi x0)− µaT
i

x0) [Ver10b, pg. 13]. Overall, AP⊥w is independent of the rest of
the terms in in (G.3). This shows that the objective function of (G.3) is distributed
identically even after replacing the AP⊥w with GP⊥w, where G is an independent
copy of A. After all these, (G.3) is identically distributed with the following:

min
w

max
‖u‖≤1

1
√
n
{−uTGP⊥w + uT (ze − (xT0 w)e)} +

λ
√
n
f (µx0 + w), (G.4)

where G and e := Ax0 have entries i.i.d. standard normal and are independent of
each other. Also, ze := ~g(e) − µe for convenience.

Applying the CGMT

After the decomposition step in the previous section, we have transformed the ini-
tial problem to that of analyzing the (probabilistically) equivalent one in (G.4).
In particular, we wish to evaluate the limiting behavior of ‖ŵ‖, i.e. the norm of
the minimizer of the optimization in (G.4). The analysis is possible thanks to the
CGMT framework.

In (G.4) identify the bilinear term uTGP⊥w and note that the rest of the objective
function is convex in w (recall that f is convex), and, linear (thus, concave) in u.
Overall, this is in the appropriate format of a (PO) problem as in (3.11a) modulo
the extra factor P⊥ in the bilinear term. It is straightforward to show that this ex-
tra factor only requires a natural change of the corresponding terms in the (AO)
problem as follows: ‖P⊥w‖gTu + ‖u‖2hTP⊥w. With this minor modification, the
CGMT continues to hold. A remaining technical caveat is that the minimization
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over w in it appears unconstrained. For this, we assume that the minimizer of (G.4)
satisfies ‖ŵ‖ ≤ Kw for sufficiently large constant Kw > 0 independent of n. If our
assumption is valid, then by the end of the proof we will have identified a quantity
α∗ > 0 to which ‖ŵ‖ converges; if α∗ turns out to be independent of the choice of
Kw, then we may explicitly choose Kw = 2α∗ (say) and α∗ is the true limit; on the
other hand, if α∗ turns out to depend on Kw, this means that we could have chosen
Kw arbitrarily large in the first place, and so the true limit diverges. Thus, assum-
ing that ‖ŵ‖ the minimization in (G.4) is not affected by imposing the constraint
‖w‖ ≤ Kw. With these, we can write the corresponding (AO) problem as

w̃ = arg min
‖w‖≤Kw

max
‖u‖≤1

1
√
n
{‖P⊥w‖gTu − ‖u‖hTP⊥w + uT (ze − (xT0 w)e)} +

λ
√
n
f (µx0 + w).

(G.5)

We will see that analyzing this problem, with the goal of determining the converging
value of the magnitude of its minimizer w̃, is simpler than analyzing the (PO) (and
certainly more so than the one we started with in (G.2)). The CGMT essentially
shows that ‖w̃‖ converges to the same value as ‖ŵ‖. Recall ŵ being the minimizer
of the (PO) and the goal of Theorem 11.2.1 being to evaluate the converging value
of its magnitude.

Analysis of the Auxiliary Optimization

The goal of this section is that of analyzing the (AO) problem in (G.5). In partic-
ular, we will prove that (i) the optimal cost of the (AO) problem converges to the
optimal cost of the deterministic optimization in (11.9), which involves three scalar
optimization variables α, β, τ, (ii) the min-max problem in (11.9) is strictly convex
in α and jointly concave in β, τ, (iii) ‖w̃‖ converges to the unique optima α∗ in
(11.9). With these, the claim of the Theorem follows by Theorem 3.3.1(iii) (see
also Chapter 5).

As described in Chapter 5 the analysis requires several steps here as well. The ran-
domness in (G.5) is over e, g, h, x0 and possibly the link function g; at each step
we condition on all but a subset of these and identify convergence of the objective
function of the (AO) with respect to the remaining. Pointwise convergence (with
respect to the involved optimization variables) needs to be turned into uniform con-
vergence to guarantee that not only the objective function, but also the min/max
value and the optimizer converge appropriately. (Strict) convexity of the objective
will turn out to be crucial for the latter.
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Introducing the Frenchel conjugate. To begin with, let us rewrite the (AO) prob-
lem above by expressing f in terms of its Frenchel conjugate, i.e.

f (x) = sup
v̄

v̄Tx − f ∗(v̄) = sup
v

√
nvTx − f ∗(

√
nv). (G.6)

Translating to our problem and after rescaling this gives,

n−1/2 f (µx0 + w) = sup
v

vT (µx0 + w) − n−1/2 f ∗(
√
nv). (G.7)

Now, from standard optimality conditions of (G.6), the optimal v̄∗ satisfies v̄∗ ∈
∂ f (x). Then, using condition (b) of Section 11.2, ‖v∗‖ = O

(√
n
)

for all x such that
‖x‖ = O (1). From this, and ‖w + µx0‖ = O (1) we conclude that the optimal v∗ in
(G.7) satisfies ‖v∗‖ ≤ Kv < 0 for sufficiently large constant Kv independent of n.
Putting everything together, (G.5) is equivalent to

min
‖w‖≤Kw

max
‖u‖≤1

0≤‖v‖≤Kv

1
√
n

uT (ze − (xT0 w)e−‖P⊥w‖g) − ‖u‖h̄TP⊥w

+ λvT (µx0 + w) − λ f̄ ∗(v), (G.8)

where we have also denoted h̄ := n−1/2h and f̄ ∗(v) = n−1/2 f ∗(
√
nv). Observe again

that by condition (b) of Section 11.2, f̄ ∗(v) = maxx xTv − n−1/2 f (x) = O (1) since
v = O (1).

In order to somewhat simplify the exposition, we often omit explicitly carrying over
the constraints ‖w‖ ≤ Kw, ‖v‖ ≤ Kv until the very last step, but we often recall and
actually make use of them.

Optimizing over the directions of u and w. Observe that the maximization over
the direction of u is easy in (G.8), which then becomes:

min
w

max
0≤β≤1

v

1
√
n
β‖ ze − (xT0 w)e−‖P⊥w‖g ‖ − βh̄TP⊥w + λvT (µx0 + w) − λ f̄ ∗(v).

(G.9)

At this point, the form of the objective function suggests that it is possible to do the
same trick over w, i.e. fix its magnitude and optimize over only its direction. The
caveat is that the minimization over w in (G.9) is done only after the maximization
over β and v. What is more, the objective function is not be convex in w; thus,
flipping the order of min-max operations that would resolve the issue is not directly
justified by (say) Sion’s minimax theorem [Sio+58].
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The very same issue was encountered in the analysis under noisy linear measure-
ments in Section 5.2 (specifically, going from (5.8) to (5.9)). In essence, it was
shown that the flipping under question is indeed possible when dimensions are
large. Hence, we have:

max
0≤β≤1

v

min
w

β
√
n
‖ ze + (xT0 w)e − ‖P⊥w‖g ‖ − βh̄TP⊥w + λvT (µx0 + w) − λ f̄ ∗(v)

= max
0≤β≤1

v

min
α1 ,α2≥0

β
√
n
‖ ze + α2e − α1g ‖ − max

‖P⊥w‖=α1
xT0 w=α2

{
βh̄TP⊥w − λvT (µx0 + w) + λ f̄ ∗(v)

}
.

By decomposing w as P⊥w + (xT0 w)x0, it is not hard to perform the maximization
over w to equivalently write the last display above as:

max
0≤β≤1

v

min
α1 ,α2≥0

β
√
n
‖ ze + α2e − α1g ‖ − α1‖βP⊥h̄ − λP⊥v‖ + λµvTx0 + α2λ(vTx0) − λ f̄ ∗(v).

(G.10)

The randomness of e, g and g. Until further notice condition on h̄ and x0. All
randomness in (G.10) is now on the first term.

Consider β, v fixed for now. For any pair α1, α2 by the WLLN, m−1‖ze + α2e −
α1g‖2

P
−→ E[(g(γ) − µγ + α2γ − α1γ

′)2], where γ, γ′ ∼ N (0, 1) and independent.
Recall, E[(g(γ)−µγ)2] = σ2, E[(g(γ)−µγ)γ] = µ−µ = 0 and m/n = δ, to conclude
that n−1/2‖ze +α2e − α1g‖

P
−→
√
δ
√
σ2 + α2

1 + α2
2, where convergence is point-wise

in α1, α2. Also, the objective function in (G.10) is jointly convex in [α1, α2]. Thus,
point-wise convergence translates to uniform as in [AG82, Cor.. II.1] , from which,
it follows that (for any β, v) the minimum over α1, α2 in (G.10) converges to

min
α1 ,α2≥0

β
√
δ
√
σ2 + α2

1 + α2
2 − α1‖βP⊥h̄ − λP⊥v‖ + λµvTx0 + α2λ(vTx0) − λ f̄ ∗(v).

(G.11)

Furthermore, the function
√
σ2 + α2

1 + α2
2 is (by direct differentiation) jointly strongly

convex over [α1, α2]; thus (G.11) has a unique minimizer. Then, we can apply the
Argmin theorem [NM94, Thm. 2.7] to conclude that the optimal α1, α2 of (G.10)
converge to the corresponding (unique) optima of (G.11).

Up to now, β, v were assumed fixed and the convergence from (G.10) to (G.11)
holds point-wise with respect to β, v. The point-wise minimum of concave func-
tions is still concave, thus, uniform convergence is indeed true by [NM94, Thm. 2.7]
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. Hence, (G.10) converges to

max
0≤β≤1

v

min
α1 ,α2≥0

β
√
δ
√
σ2 + α2

1 + α2
2 − α1‖βP⊥h̄ − λP⊥v‖ + λµvTx0 + α2λ(vTx0) − λ f̄ ∗(v),

(G.12)

and the optimal α1, α2 of the former converge to the corresponding optima of the
latter.

Merging α1 and α2. It is important to note that α2
1 + α2

2 in (G.12) correspond
exactly to the squared norm of the error. Here, we simplify (G.12) by introducing
the quantity α2

1 + α2
2 as the minimization variable rather than sperately α1 and α2.

By first order optimality conditions in (G.12) we find

α1β
√
δ = ‖βP⊥h̄ − λP⊥v‖

√
α2

1 + α2
2 +σ2 and − α2β

√
δ = λvTx0

√
α2

1 + α2
2 +σ2.

(G.13)

Substituting this in (G.12), the objective becomes (ignoring the terms that do not
involve α1 or α2):

β
√
δ
√
σ2 + α2

1 + α2
2 −

√
σ2 + α2

1 + α2
2

β
√
δ

(
‖βP⊥h̄ − λP⊥v‖2 + (λvTx0)2

)
.

But, from (G.13) we find
√
σ2 + α2

1 + α2
2

√
‖βP⊥h̄ − λP⊥v‖2 + (λvTx0)2 = β

√
δ
√
α2

1 + α2
2.

Combining, we conclude that (G.12) can be written as

max
0≤β≤1

v

min
α≥0

β
√
δ
√
σ2 + α2 − α‖βP⊥h̄ − λv‖ + λµvTx0 − λ f̄

∗(v), (G.14)

where the new optimization variable α plays the role of
√
α2

1 + α2
2, thus it represents

the norm of the error vector ‖w‖. We have also identified ‖βP⊥h̄ − λP⊥v‖2 +

(λvTx0)2 = ‖βP⊥h̄ − λv‖2.

Introducing a new optimization variable. To get a better handle on it, we square
the norm term in (G.14) at the expense of introducing a new scalar optimization
variable. This is based on the following trick:

√
x = min

τ>0

τ

2
+

x

2τ
, (G.15)

for any x ≥ 0. Thus, (G.14) becomes

max
0≤β≤1
v,τ>0

min
α≥0

β
√
δ
√
σ2 + α2 −

ατ

2
−
α

2τ
‖βP⊥h̄ − λv‖2 + λµvTx0 − λ f̄

∗(v), (G.16)
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where we have also flipped the order of min-max between α and τ. We could do
this as in [Roc97, Cor. 37.3.2] since the objective is convex in α and concave in
τ, the constraint sets are both convex and both of them are bounded. To argue the
boundedness, recall that α ≤ Kw; for τ it suffices to combine optimality conditions
of (G.15) and boundedness of v, ‖v‖2 ≤ Kv.

Optimizing over v. Note that the objective in (G.16) is concave in v, convex in α
and the constraint sets are convex compact. Thus, as might be expected by now,
we use [Roc97, Cor. 37.3.2] to flip the corresponding order of max-min. Also, after
some simple algebra while using P⊥x0 = 0 and ‖x0‖ = 1, it can be shown that

‖βP⊥h̄ − λv‖2 − 2
τ

α
λµvTx0 = ‖λv − (βP⊥h̄ +

τ

α
µx0)‖2 − µ2 τ

2

α2 .

Combining, we conclude with

(G.16) = max
0≤β≤1
τ>0

min
α≥0

β
√
δ
√
σ2 + α2 −

ατ

2
+ µ2 τ

2α

−
αλ2

τ
min

v

{
1
2
‖v − (

β

λ
P⊥h̄ +

τ

αλ
µx0)‖2 +

τ

λα
f̄ ∗(v)

}
, (G.17)

= max
0≤β≤1
τ>0

min
α≥0

G(α, β, τ).

Here, G(α, β, τ) is convex in α (see (G.14)) and jointly concave in β, τ. To see the
latter it suffices to show that αλ

2

τ ‖v−
β
λ (P⊥h̄ +

µτ
λαx0)‖2 is jointly convex over β, τ, v

(minimization over v does not change the joint convexity over τ and β.). Norm is
separable over its entries, so we equivalently show that for scalars τ, β, v, the func-
tion 1

τ (v − c1β − c2τ)2 is jointly convex over τ > 0, β; this is true as the perspective
function of (v − c1β − c2)2. One more remark is in place here regarding the form of
G(α, β, τ): even-though α appears in the denominator in (G.17), the limit of α → 0
of the expression is finite using the continuity of the Moreau envelope[RW09]. An-
other way to see this is by noting that the objective in (G.17) is equivalent to that
in (G.14). Hence, evaluating G at α = 0 in the minimization in (G.17) subsumes
G(0, β, τ) = limα→0 G(α, β, τ).

The randomness of h̄ and x0. Fix β, τ, α, denote c1 =
β
λ , c2 =

τµ
αλ , c3 = τ

αλ , and,
consider

R(h̄, x0) := R(α, β, τ; h̄, x0) := −
c2

2
+

1
c2

min
v

{
1
2
‖v − c1P⊥h̄ − c2x0‖

2 + c3 f̄
∗(v)

}
.
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Recall from Assumption 1, and, from the modeling condition (a) in Section 11.2
that

A(h̄, x0) := R(α, β, τ; h̄, x0) := −
c2

2
‖x0‖

2

n
+

1
c2

min
v

{
1
2
‖v − c1h̄ − c2

x0
√
n
‖2 + c3 f̄

∗(v)
}

(G.18)

converges to {− c2
2 +

µ
c2
F(c1, c2, c3)} in probability. Also, recall x0 = x0‖x0‖. Next,

we show that for all constant ζ > 0

|R(h̄, x0) − A(h̄, x0)| ≤ ζ (G.19)

with probability approaching one in the limit of n → ∞. Combining this with
Assumption 1, will prove that R(h̄, x0) converges in {− c2

2 +
µ
c2
F(c1, c2, c3)} in prob-

ability, as well.

Proof of (G.19): Fix any ε > 0. We condition on the following events: |h̄
Tx0 | ≤ ε ,

1 − ε ≤ n−1/2‖x0‖ ≤ 1 + ε .
(G.20)

Each one of the events occurs with probability approaching one as n → ∞; the
first follows since h̄ ∼ N (0, 1

n
In) and ‖x0‖ = 1 and from standard tail bounds

on Gaussians; the second is due to condition (a) of Section 11.2. Without loss of
generality assume R(h̄, x0) ≥ A(h̄, x0), and let v∗ be optimal in (G.18), then

|R(h̄, x0) − A(h̄, x0)| ≤
c2

2

(
‖x0‖

2

n
− 1

)
+

1
2c2
‖v∗ − c1P⊥h̄ − c2x0‖

2 −
1

2c2
‖v∗ − c1h̄ − c2

x0
√
n
‖2

=
c2

2

(
‖x0‖

2

n
− 1

)
+

(
c1

c2
(xT0 h̄)x0 + x0

(
1
√
n
−

1
‖x0‖

))T (
v∗ − c1h̄ −

1
2
c2x0

(
1
√
n

+
1
‖x0‖

)
+

1
2
c1(xT0 h̄)x0

)
= −

1
2
c2

1

c2
(xT0 h̄)2 +

c1

c2
(xT0 h)(xT0 v∗) − c1(xT0 h̄)

‖x0‖
√
n

+ (xT0 v∗)
(
‖x0‖
√
n
− 1

)
≤

1
2
c2

1

c2
ε2 +

c1

c2
‖v∗‖ε + c1ε (1 + ε ) + ‖v∗‖ε (G.21)

where the last line follows after bounding the absolute values of the summands
using (G.20). Recall now that ‖v∗‖ ≤ Kv < ∞. Also, note that c1 and c1

c2
are also

bounded constants. Then, for all ζ > 0 in (G.19) we can find sufficiently small
ε > 0 such that the value of the last expression in the panel above is no larger than
ζ , thus completing the proof of (G.19).



263

Thus, we have shown that G(α, β, τ) in (G.17) converges pointwise to

β
√
δ
√
α2 +σ2 −

ατ

2
−
αβ2

2τ
+ λ · F

(
αβ

τ
,
αλ

τ

)
in the limit of n → ∞. Above, we have applied Lemma B.2.5(b) and have further
made use of Assumption 11.2.1. Note that H is strongly convex in α and jointly
concave in β, v since taking limits does not affect convexity properties (recall that
G is convex-concave). With these, it follows as per [NM94, Thm. 2.7] that (i)

max
0≤β≤1,τ>0

min
α≥0

G(α, β, τ)
P
−→ max

0≤β≤1,τ>0
min
α≥0

H(α, β, τ), (G.22)

and (ii) α∗(h, x0)
P
−→ α∗, where α∗ the unique minimizer of the second optimization

in (G.22). This completes the proof of the corollary.

Theorem 11.2.1
As mentioned, Theorem 11.2.1 is a direct consequence of what we have already
shown. In particular, we showed that the value α∗ to which the error converges only
depends on g through the parameters µ and σ2. Those are the same (by definition)
for the non-linear and the linear case considered. Therefore, the errors are the same.

G.2 Proofs for Section 11.3
The LM Algorithm
The Lloyd-Max algorithm is an algorithm for finding the quantization threshold
ti and the representation points `i . Given real values x ∈ R sampled from some
probability density φ(x) it looks for optimal sets t̂, ˆ̀ that minimize the mean-square-
error (MSE) between x and their corresponding quantized values Qq(x; `, t), i.e.

( ˆ̀, t̂) := arg min
`,t
Ex∼φ[(x − Qq(x; `, t))2]. (G.23)

The algorithm simply alternates between i) optimizing the threshold ti for a given
set of `, and then ii) optimizing the levels `i for the new thresholds. It is well known
that the converging points `LM , tLM of the algorithm satisfy

tLMi =
`LM
i

+ `LM
i+1

2
i = 1, ..., L − 1, (G.24a)

`LMi =

∫ tLM
i

tLM
i−1

φ(x)dx

−1 ∫ tLM
i

tLM
i−1

xφ(x)dx

 i = 1, ..., L. (G.24b)

Furthermore, they are stationary points of the objective function in (G.23).
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Gaussian Case

Assume that the values x are sampled from a standard Gaussian distribution, i.e.
x ∼ N (0, 1) and φ(x) = (1/

√
2π) exp(−x2/2). Also, recall the definition of the

parameters µ, σ2 in (11.3); setting g = Qq therein, we find (also, to compare with
(11.14))

µ := µ(`, t) = 2
L∑
i=1

`i

∫ ti

ti−1

xφ(x)dx , (G.25a)

τ2 := τ2(`, t) = 2
L∑
i=1

`2
i

∫ ti

ti−1

φ(x)dx . (G.25b)

In this notation, the objective in (G.23) can be writthen as τ2 − 2µ + 1. Thus,
`LM , tLM satisfy

(τ2)′
∣∣∣
(`LM ,tLM ) = 2µ′

∣∣∣
(`LM ,tLM ). (G.26)

Here and onwards we use (τ2)′, µ′ to denote the gradient of τ2 and µ with respect
to the vector [`T , tT ]. The gradients are evaluated at the point (`LM , tLM ) in (G.26).

q-Bit Compressive Sensing
We prove that the LM algorithm is an efficient algorithm when the objective is
minimizing the LASSO reconstruction error of a signal x0 to which we have access
through q-bit quantized linear measuments Qq(aT

i
x; `, t). It was shown in Section

11.3 that the problem can be posed as that of finding `∗, t∗ such that

(t∗, `∗) = arg min
t,`

σ2(t, `)
µ2(t, `)

= arg min
t,`

τ2(t, `)
µ2(t, `)

. (G.27)

The following Lemma proves the claim made in Section 11.3, i.e. the converging
points of the LM algorithm are stationary points of the objective function in (G.27).

Lemma G.2.1. The converging points of the LM algorithm, say (tLM , `LM ) satisfy

∂

∂`i

(
τ2(`, t)
µ2(`, t)

) ∣∣∣∣∣
(`,t)=(`LM ,tLM )

= 0 , i = 1, ..., L,

∂

∂ti

(
τ2(`, t)
µ2(`, t)

) ∣∣∣∣∣
(`,t)=(`LM ,tLM )

= 0 , i = 0, ..., L − 1. (G.28)

Proof. Call R(t, `) =
τ2(t,`)
µ2(t,`) . We denote R′ := R′(t, `) for its gradient with respect

to the vector [tT , `T ]. It suffices to prove that R′
∣∣∣
(`LM ,tLM ) = 0, or equivalently, that
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at the point (t, `) = (tLM , `LM ) the following holds:

(τ2)′µ2 = 2τ2µµ′. (G.29)

To see that this is the case, note that

τ2(tLM , `LM ) = µ(tLM , `LM ). (G.30)

This follows by direct substitution of (G.24) in (G.25). Then, (G.29) follows from
(G.30) and (G.26). �
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A p p e n d i x H

A NOTE ON SIMPLE DENOISING

The problem of simple denoising was introduced in Chapter 12. It refers to the
recovery of a structured signal x0 ∈ R

n from uncompressed observations y = x0 +z.
For the estimation, we use (12.1) and ask what is the resulting squared error ‖x̂ −
x0‖

2
2 . The purpose of this short note is to showcase that some of the mechanics of

the CGMT framework, which are presented in this thesis, might still be applicable
towards answering that question. The details go beyond our main purpose; instead,
our intention is to motivate a potentially interesting research direction. Hence, we
have decided to keep the presentation short and be somewhat informal with the
focus being on conveying the main idea.

H.1 Regularized Least-squares
We will show that an appropriate application of (subset of) the mechanics of the
CGMT framework prescribed in Chapter 5 results in a precise characterization of
the squared error of regularized least-squares in the simple denosing setting. To
begin, let y = x0 + z with z ∼ pz and x0 ∼ px0 , and consider

x̂ := arg min
x

1
2
‖y − x‖22 + λ f (x), (H.1)

for some convex f and λ > 0. We characterize the squared error ‖x̂ − x0‖
2
2 as a

function of f , λ, pz, and px0 .

As in Chapter 5.2, the first step is to introduce the error vector w := x − x0. With
this, (H.2) is expressed as

ŵ := arg min
w

1
2
‖z − w‖22 + λ f (x0 + w), (H.2)

and we wish to find the converging limit of ‖ŵ‖22/n. Our strategy is simple as
follows: we write (H.2) in a min-max form, treat that as an (AO) 1, and apply Steps
2–4 of Chapter 5.

First, note that we can rewrite (H.2) as

ŵ := arg min
w

1
2
‖w‖22 − zTw + λ f (x0 + w).

1Strictly speaking, things here are much simpler; there is no random Gaussian matrix A involved
in (H.2), hence there is no (obvious) place or need to apply any comparison theorem! However, it
will turn out that writing (H.2) as a min-max is still useful.
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Of course, the minimization above is equivalent to

min
w,s

1
2
‖w‖22 − zTw + λ f (s), s.t. x0 + w = s

or,

min
w,s

max
u

1
2
‖w‖22 − zTw + λ f (s) + uTx0 + uTw − uT s. (H.3)

Following the same tricks as in the CGMT framework, we reduce the optimization
in (H.3) into one that only involves scalar optimization variables. This corresponds
to the “scalarization" step of Chapter 5. We start by flipping the order of min-max in
(H.3). The objective function is appropriately convex-concave, but thecompactness
of the constraint sets needs to be taken into account. This can be done rigorously in
a similar manner as in Section 5.2. Details are omitted here since they don’t serve
our main purpose. Once flipped, we can optimize over the direction of w while
keeping its norm fixed to (say) α, i.e. (H.3) becomes as follows:

min
α≥0,s

max
u

1
2
α2 − α‖z − u‖2 + λ f (s) + uTx0 − uT s, (H.4)

and the minimizer α∗ satisfies ‖ŵ‖2 = α∗. Next, we write the term ‖z − u‖2 in its
variational form minτ>0

τ
2 +

‖z−u‖22
2τ , which allows maximizing over u. With these,

(H.4) reduces to

min
α≥0,s

max
τ

1
2
α2 −

ατ

2
+
τ

2α
‖x0 − s‖22 + zT (x0 − s) + λ f (s).

It only takes completing the squares above to reach the more convenient form:

min
α≥0

max
τ

1
2
α2 −

ατ

2
+ min

s

{
τ

2α
‖x0 +

α

τ
z − s‖22 + λ f (s)

}
−
α

2τ
‖z‖22 ,

where we can clearly identify the Moreau envelope of f . To conclude, we have
reduced (H.2) to the following optimization that only involves scalar variables:

min
α≥0

max
τ

1
2
α2 −

ατ

2
−
α

2τ
‖z‖22 + λ · e f

(
x0 +

α

τ
z;
α

λτ

)
. (H.5)

Compare this to (5.10) of Section 5.2. As it was the case with the latter, under
appropriate conditions on f , px0 , and pz, it is easy to find the converging limit of
the objective function in (H.5) when the optimization variables α and τ are fixed.
For a mere illustration, assume here that f is separable, zi

iid
∼ pZ , x0,i

iid
∼ pX0 , and

EZ∼pZ Z
2 = σ2 < ∞. Then, for fixed α and τ, the objective function in (H.5) (after

normalized by n) converges by the WLLN to the following:

1
2
α2 −

ατ

2
−
α

2τ
σ2 + λ · F(

α

τ
,
α

λτ
), (H.6)
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where F is the following expected Moreau envelope function:

F(c , τ) = E Z∼pZ
X0∼pX0

e f (X0 + cZ ;τ) .

It now takes replicating the technical work involved in the “convergence analysis"
step of the CGMT framework to prove that the random optimization in (H.5) con-
verges to the min-max of the deterministic function in (H.6), which then becomes
the Scalar Performance Optimization (SPO). Finally, again with arguments that are
same as in the CGMT framework, it is shown that the random minimizer α∗(x0, z)
of (H.6), which corresponds to the quantity of interest ‖ŵ‖2, converges to the min-
imizer of the SPO. The details go beyond the scope of this note.

To conclude, we have prescribed a machinery (basically an adaptation of the CGMT
framework of Chapter 5) that yields a precise (asymptotic) characterization of the
squared error of regularized least-squares in the simple denoising setting.This result
extends recent results of Chatterjee [Cha+14] and of Oymak and Hassibi [OH15].
Oymak and Hassibi characterize the squared error only when noise is Gaussian
with vanishing variance (high-SNR regime). Instead, the machinery presented here
concludes about general noise distributions. Chatterjee achieves to characterize the
error of constrained least-squares. We have extended the result to the more often
encountered in practice regularized version. (We remark however that the analysis
in both [OH15] and [Cha+14] is non-asymptotic).

It is interesting to explore the extent to which these new ideas are still applicable
to characterize the error under different choices of the loss function in (12.1) other
than the least-squares discussed here. This would yield a theorem as general as
Theorem 4.2.1 applied to the simple denoising setting.
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