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ABSTRACT

Heat is one of the most fundamental forms of energy, and the ability to control heat

plays a critical role in most current and future energy applications. Recently, in-

terface engineering between heterogeneous solids has provided new approaches to

manipulate heat transport at the scales of the energy carriers in solids, i.e. phonons

which are quantized lattice vibrations. For example, nanocrystalline materials,

which are polycrystalline materials with nanoscale grain sizes, are promising ther-

moelectric (TE) materials that have achieved substantially improved figure of merits

compared to their bulk counterparts. This enhancement is typically attributed to a

reduction in lattice thermal conductivity by phonon scattering at grain boundaries.

On the other hand, inefficient heat dissipation across interfaces has been a long-

standing problem that shortens the lifetime of electronics such as light-emitting

diodes.

Despite the importance of interfaces, we still lack a comprehensive understand-

ing of interfacial thermal phonon transport. For instance, the Fresnel coefficients

enable the straightforward mathematical description of light as it moves between

media of differing dielectric constants. Similarly, interfacial phonon transport can

also be characterized by transmission coefficients that vary over the broad phonon

spectrum in an analogous manner to Fresnel coefficients for light. However, despite

decades of work, the spectral profile of these coefficients and how the profile is in-

fluenced by the atomic structure of actual interfaces remains unclear. As a result,

the basic phenomenon of interfacial heat transport remains among the most poorly

understood transport processes.

To elucidate this process, in this thesis we investigate interfacial thermal phonon

transport using both modeling and experiment. The first portion of the thesis ex-
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amines the impact of frequency-dependent grain boundary scattering in nanocrys-

talline silicon and silicon-germanium alloys using a novel computational method.

We find that the grain boundary may not be as effective as commonly considered in

scattering certain phonons, with a substantial amount of heat being carried by low

frequency phonons with mean free paths longer than the grain size. Our result will

help guide the design of more efficient TEs.

The second part of the thesis focuses on studying heat conduction using the Boltz-

mann transport equation (BTE), which is the governing equation of energy transport

at length scales comparable to phonon mean free paths. The BTE is an integro-

differential equation of time, real space, and phase space. Due to its high dimen-

sionality, it is extremely challenging to solve. Here, we develop analytical methods

to solve the frequency-dependent BTE, which allow us to obtain simple, closed-

form solutions to complex multidimensional problems that have previously been

possible to solve only with computationally expensive numerical simulations. We

demonstrate that the solution leads to a more accurate measurement of phonon MFP

spectra in thermal transient grating experiments.

Finally, we report the first measurements of thermal phonon transmission coeffi-

cients at a metal-semiconductor interface using ab-initio phonon transport modeling

based on the BTE we develop in the second part and a thermal characterization tech-

nique, time-domain thermoreflectance. With our approach, we are able to directly

link the atomic structure of an interface to the spectral content of the heat crossing

it for the first time. Our work realizes the long-standing goal of directly measuring

thermal phonon transmission coefficients and demonstrates a general route to study

microscopic processes governing interfacial heat conduction.
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C h a p t e r 1

OVERVIEW

1.1 Nanoscale energy transport

The ability to tailor the fundamental physical properties of materials and devices

exactly at the scale where they occur requires atomically precise control of mat-

ter. Modern technologies provide new approaches to use structure at the nanoscale

as a tunable physical variable, which allows us to greatly expand the range of

performance of existing materials and devices. One of the prominent topics in

nanoscience is the ability to manipulate heat transport at the scales of energy car-

riers in solids. Precise control of heat could lead to efficient heat dissipation in

high power and nanoscale electronic devices, the proposed use of intensely heated

nanoparticles in medical therapies, and waste heat harvesting using thermoelectric

devices in automobiles and airplanes.

Over the past decades, extensive research in nanoscale energy transport has led

to remarkable advances such as the demonstration of thermoelectric materials with

exceptionally high efficiencies. Recently, nanocrystalline materials, which are poly-

crystalline materials with nanoscale grain sizes, have been demonstrated as efficient

thermoelectrics. Many of these materials show great promise for scalable manufac-

turing. In particular, the nanostructuring approach has been successful for silicon

and silicon-germanium alloys created by ball-milling and hot pressing. SiGe has

long been used for space power generation(1, 2) and the thermoelectric proper-

ties of SiGe nanocomposites with improved properties over those of the bulk were

recently reported.(2–5) Substantial improvements in nanostructured bulk silicon,

which does not require expensive and rare germanium, were also reported.(6)
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Research in engineering interfaces between two solids enables new functionalities

that are not possible in homogeneous materials. For instance, electronic transport

across metal-semiconductor and pn-junctions forms the basis for modern micro-

electronics, photovoltaics, and light-emitting diodes (LEDs). Interfaces play a key

role in heat conduction by phonons as well: engineered interfaces in solids have led

to dramatic increases in the efficiency of thermoelectric materials.

Anisotropic materials, which can possess extreme values of thermal conductivity

that are difficult to achieve in isotropic materials, has been used to control heat

flow in different crystal orientations.(7) For example, the extremely high thermal

conductivity in the basal plane and low thermal conductivity in the cross plane

makes graphite an attractive candidate for heat spreading applications in high-power

transistors.(8)These are just a few examples of utilizing and engineering materials

to gain the desired thermal properties in solids.

To ultimately achieve precise control of heat in solids, the knowledge of heat car-

riers is crucial. There are two major heat carriers in solids: electrons and phonons.

Electrons carry charges as well as heat. In fact, in heavily-doped semiconductors,

electrons can contribute up to half of the total thermal conductivity. Phonons are

the quantized lattice vibrations in a crystal, which are the domaint heat carriers in

dielectrics and semiconductors. While electronic properties in solids, i.e. electri-

cal resistivity, optical absorption, and interfacial transmission processes, have been

well understood, our knowledge of phonons lags far behind that of electrons.

For instance, the improved efficiency in nanocryatlline thermoelectric materials is

achieved by significantly reducing the phonon thermal conductivity through strong

phonon grain boundary scattering.(3, 4, 6, 9–12) The physics of thermal conductiv-

ity is commonly interpreted using kinetic theory

k =
1
3

∑
pol

∫
CωvωΛωdω, (1.1)
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where Cω is the mode specific heat, vω is the group velocity, ω is the frequency, Λω

is the effective mean free path (MFP), and the sum runs over all phonon polariza-

tions. Λω includes all those scattering mechanisms present in a bulk sample, Λbulk ,

as well as additional scattering due to grain boundaries, Λbdy, which are combined

using Matthiessen’s rule: Λ−1
ω = Λ−1

bulk + Λ−1
bdy. The greatest challenges to engineer

thermal conductivity are in measuring and calculating both Λbulk and Λbdy.

The knowledge of bulk mean free paths of solids is crucial to designing nanos-

tructures that could provide optimal thermal properties.(13, 14) Surprisingly, we do

not know the MFPs in most solids. First-principle calculations based on density

functional theory have enabled the direct computation of MFPs in materials with

simple crystal structures. However, they have never been directly measured in ex-

periments. Traditionally, semi-empirical expressions have been the only means to

estimate MFPs.(15) Various experimental techniques to measure phonon MFPs ex-

ists such as photoacoustic wave propagation,(16) inelastic neutron scattering,(17)

heat pulse techniques(18, 19) but they have some limitation such as a restriction

on the sample type, accessible phonon frequency range, or applicable temperatures.

Recently, Minnich proposed a method(20) to accurately reconstruct the MFP dis-

tribution over a wide range of length scales and materials from the observation

of quasiballistic thermal transport, which occurs if a temperature gradient exists

over a length scales comparable to phonon MFPs.(21, 22) The proposed method is

suitable of a series of ultrafast optical techniques(20, 23–25) where quasiballistic

phonon transport can be observed. However, interpreting measurements using this

reconstruction method requires the knowledge of heat conduction beyond the diffu-

sion transport, which is a challenge itself. Thus, measuring phonon MFPs remains

a tough task.

Another challenge in engineering thermal conductivity using nanostructures is to

predict Λbdy for the complex interfaces, i.e. grain boundaries. Our knowledge
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of boundary scattering process is still based on simple models that were devel-

oped over 50 years ago and have never been experimentally verified. Numerous

works over several decades have investigated the microscopic processes of phonon

transport at solid-solid interfaces by observing the temperature dependence of the

thermal conductivity or interface conductance(26–30) or by correlating changes in

bonding strength and interface conductance.(31, 32) However, these experimental

approaches provide limited information about the microscopic information about

thermal phonons because the observed quantities are averaged over all phonons and

thus obscure the microscopic processes of interfacial thermal phonon transport at

solid-solid interfaces.

The third challenge is to model heat conduction at length scales comparable to

phonon MFPs, which has been of considerable interest recently(33) due to its ap-

plications in many technologies such as thermoelectrics(10, 12) and electronic de-

vices(34) as well as its potential to infer phonon MFP spectra in solids. At these

small scales, classic continuum transport theories such as Fourier’s law are not

valid due to the absence of scattering and therefore a local temperature.(35) In this

nondiffusive regime, phonon transport is nonlocal and is described by the phonon

frequency-dependent Boltzmann transport equation (BTE).(21) The BTE is an in-

tegrodifferential equation of time, space, and phase space.(36–39) It is extremely

challenging to solve due to its high dimensionality. Extensive efforts have been

done to study phonon transport using BTE.(40–43) However, most of the previous

approaches depended on simplifications to make the problem tractable, which in

practice are not physical. Rigorous methods to model nanoscale heat conduction

using the BTE with no or minimal simplifications in various geometries are key

components of successfully controlling heat in solids.
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1.2 Outline of this thesis

A better understanding of any one of these topics could lead to substantial contribu-

tion to our fundamental knowledge of energy carriers. The purpose of this thesis is

to give insights into some of these questions. This work focuses on understanding

energy transport by phonons at the nanoscale using theory, computational methods

and ultrafast experimental techniques.

Chapter 2 studies the impact of frequency-dependent grain boundary scattering in

nanocrystalline silicon and silicon-germanium alloys in a realistic 3D geometry us-

ing frequency-dependent variance reduced Monte Carlo simulations. We are able

to explain the thermal conductivity measurements in nanocrystalline Si by Wang

et. al. while the commonly used gray model, assuming phonon-grain boundary

scattering rate is a constant for all phonon modes, predicts the wrong trend of ther-

mal conductivity at low temperatures. We find that the grain boundary may not be

as effective as predicted by the gray model in scattering certain phonons. We also

identify the portion of the phonon spectrum that is responsible for carrying heat

across the grain boundaries, therefore helping guide the design of more efficient

TEs.

While this computational study provides important insights, one issue still remains.

Even though the proposed frequency-dependent model reproduces the experimental

measurements, the fitting itself is not unique. Since thermal conductivity is a macro-

scopic property that is integrated over the thermal spectrum, there exists multiple

choices of this underlying distribution that result in the same thermal conductivity.

Moreover, we do not know the spectral properties of thermal phonons in most of

the materials. The second portion of the thesis focuses on determining how to more

directly measure properties of the heat carriers like the phonon MFP distribution in

bulk materials and phonon transmission coefficients at a solid-solid interface.
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In Chapter 3, we present analytical solutions to the phonon Boltzmann transport

equation, the governing equation when heat transport occurs at length scales com-

parable to phonon MFPs. We first derive an analytical Green’s function for the

frequency-dependent, multidimensional Boltzmann equation under the relaxation-

time approximate. Then, we present a semi-analytical series expansion method to

solve the transient, frequency-dependent BTE in a thin film geometry. The new so-

lutions are valid from diffusive to ballistic transport regimes and rigorously includes

frequency dependence of phonon properties and enables simple closed-form solu-

tions for a number of multidimensional problems for which the only prior solution

methods have been computationally expensive numerical methods. Most impor-

tantly, the analytical solutions allow us to inspect nanoscale heat conduction just by

looking at the expression of the equation, which is not directly accessible from pure

numerical approaches.

The rest of the thesis focuses on applying the derived analytical solutions to extract

the spectral properties of thermal phonons in bulk materials and at interfaces. Chap-

ter 4 analyzes heat conduction in transient grating (TG) spectroscopy and demon-

strates that the new analytical Green’s function enables a more accurate measure-

ment of MFP spectra, therefore leading to an improved understanding of heat con-

duction in solids.

In Chapter 5, we report the first measurements of thermal phonon transmission co-

efficients at a metal-semiconductor interface using ab-initio phonon transport mod-

eling based on the BTE solutions in Chapter 3 and a thermal characterization tech-

nique, time-domain thermoreflectance. With our approach, we are able to directly

link the atomic structure of an interface to the spectral content of the heat crossing

it for the first time. Our work realizes the long-standing goal of directly measuring

thermal phonon transmission coefficients and demonstrates a general route to study

microscopic processes governing interfacial heat conduction.
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Finally, chapter 6 examines possibilities for future work and concludes the thesis.
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C h a p t e r 2

PHONON TRANSPORT IN NANOCRYSTALLINE MATERIALS

Chapter 2 has been adapted from:

(1) Chengyun Hua and Austin J Minnich. “Importance of frequency-dependent
grain boundary scattering in nanocrystalline silicon and silicon–germanium
thermoelectrics”. In: Semiconductor Science and Technology 29.12 (2014),
p. 124004. url: http://stacks.iop.org/0268-1242/29/i=12/a=
124004.

2.1 Background

Thermoelectric (TE) materials, which can convert heat directly to electricity, are

of considerable interest for applications such as waste heat recovery due to their

silent operation, reliability and lack of working fluid.(44–46) The performance of

TE devices is characterized by the thermoelectric figure of merit zT = S2σT/(ke +

kph), where S is the Seebeck coefficient, σ is the electrical conductivity, T is the

absolute temperature at which the properties are measured and ke and kph are the

corresponding thermal conductivities for electrons and phonons.(21) To achieve

comparable efficiency to that of mechanical cycles, zT should be greater than 2, but

commonly used bulk TE materials such as Bi2Te3 typically have zT < 1.

Recently, nanocrystalline materials, which are polycrystalline materials with nanoscale

grain sizes, have been demonstrated as efficient thermoelectrics. The improved

efficiency is achieved by significantly reducing the phonon thermal conductivity

through strong phonon grain boundary scattering.(3, 4, 6, 9–12) Many of these ma-

terials show great promise for scalable manufacturing. In particular, the nanos-

tructuring approach has been successful for silicon and silicon-germanium alloys

created by ball-milling and hot pressing. SiGe has long been used for space power

generation(1, 2) and the thermoelectric properties of SiGe nanocomposites with



9

improved properties over those of the bulk were recently reported.(2–5) Substantial

improvements in nanostructured bulk Si, which does not require expensive and rare

Ge, were also reported.(6) While these gains are significant, further improvements

are difficult to achieve due to the lack of understanding of grain boundary scattering,

which plays a critical role in scattering phonons in nanocrystalline materials.

Phonon transport in nanostructured Si/SiGe has been recently studied using molecu-

lar dynamics(47–51), atomistic Green’s functions(52–54) and phonon-Boltzmann-

equation-based simulations.(55–61) Many studies assumed that the transmissivity

of phonons across the boundary to be constant in a gray model. However, atomistic

calculations(50, 51, 53, 54) reported that transmissivity depends on phonon fre-

quency. Kimmer et al.(51) found that transmission through the high-energy grain

boundary in silicon is a function of the phonon frequency using molecular-dynamics

simulations. Li and Yang(53) used atomistic Green’s functions to study the effect of

lattice mismatch on phonon transmission across interfaces and showed that trans-

missivity decreases as phonon frequency increases. These predictions are supported

by a recent experimental work by Wang et al(62), who reported temperature (T) de-

pendent measurement of thermal conductivities of nanocrystalline silicon. While a

T3 dependence of thermal conductivity is expected based on the gray model, they

instead observed a T2 dependence, implying that transmissivity increases with de-

creasing phonon frequency. This result suggests that lower frequency modes are

less scattered by interfaces compared to higher frequency modes. A frequency-

dependent transmissivity would have an important effect on the distribution of heat

among the phonon spectrum and hence on strategies to further reduce the ther-

mal conductivity of nanocrystalline Si and SiGe. However, phonon transport in

nanocrystalline thermoelectrics with frequency dependent grain boundary scatter-

ing has not yet been systematically explored.

Here we examine the effects of frequency-dependent grain boundary scattering
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on the thermal conductivity of nanocrystalline Si and SiGe alloys using efficient

variance-reduced Monte Carlo (MC) simulations. This novel computational method

enables the simulation of phonon transport in the full 3D geometry of the crystal

with orders of magnitude reduced computational cost compared to previous numer-

ical methods while rigorously including the frequency-dependence of phonon prop-

erties. Moreover, the simulations allow us to examine in detail how the frequency-

dependent grain boundary scattering modifies the distribution of heat among the

thermal phonon spectrum, providing an important guide to further improving the

thermoelectric efficiency of nanocrystalline Si and SiGe.

2.2 Modeling

We seek to simulate thermal phonon transport in a polycrystalline domain with

grain sizes of tens to hundreds of nanometers. To study heat transfer in this meso-

scopic structure, we solve the frequency-dependent Boltzmann transport equation

(BTE) under the relaxation time approximation, which is accurate to approximately

10% in silicon.(63) The energy-based BTE is given by:(35, 64)

∂ed
ω

∂t
+ vg · ∇ed

ω =
(eloc
ω − eeq

ω ) − ed
ω

τ(ω, p,T)
, (2.1)

where ed
ω = ~ω( f − f eq

Teq
) is the desired deviational distribution function, f eq

T =

[exp(~ω/kbT) − 1]−1 is a Bose-Einstein (BE) distribution at the temperature T ,

eloc
ω = ~ω f eq

Tloc
is the BE distribtion at the local equilibrium temperature Tloc, eeq

ω =

~ω f eq
Teq

is the BE distribtion at the global equilibrium temperature Teq, vg(ω, p) is

the phonon group velocity and τ(ω, p,T) is the phonon relaxation time. Here, ~ is

the reduced Planck constant, kb is the Bolzmann constant, T is the temperature, ω

is the phonon frequency and p is the phonon polarization.

The BTE is an integro-differential of time, real space and phase space, and it de-

scribes a wide range of phenomena in many field ranging from astronomy to neu-

tron transport.(36–39) The equation was first used to describe phonons in solids
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by Peierls in 1929.(65) In 1958, Englman obtained analytical solutions of the BTE

with simpler collision terms to describe the transport theory of temperature waves in

insulators. Later, Williams extended Englman’s theory and obtained simpler forms

of the solution.(66) In the 1960s and 70s, Simons developed the theory of high-

frequency thermal waves in dielectrics in which phonons can undergo both normal

and resistive interaction processes based on the BTE.(67) A decade later, the equa-

tion was re-investigated by Claro and Mahan(68) to study the nonlocal heat transfer

effects during transient heating. Majumdar derived an equation of phonon radiative

transfer from the BTE(22), which was applied to study heat transfer across diamond

thin films for both steady-state and transient cases.(69) Chen demonstrated the fail-

ure of Fourier’s law in nonplanar nanostructures and provided a general solution

for the temperature rise of heat-generating nanometer and micrometer particles em-

bedded in a host medium based on the BTE.(40) Later, he derived ballistic-diffusive

heat-conduction equations from the BTE which gave a better approximation than

the Fourier Law at small scales but was much simpler to solve than the BTE(42).

This two-channel model was then employed to solve several planar nanoscale heat

conduction problems.(41) Recently, Miranda et al. obtained a constitutive equa-

tion for heat conduction derived from the exact solution of the BTE by a series

expansion.(43)

Despite these extensive efforts to study phonon transport using the BTE, most of

the previous approaches depended on simplifications to make the problem tractable.

For example, all the works mentioned above assumed a single phonon mean free

path even though recent work has demonstrated that the transport properties of

phonons in solids vary widely over the broad thermal spectrum.(70, 71) Further, the

above solutions assumed simple 1D geometries that do not often occur in practice.

Various numerical techniques have been developed to solve the BTE, including dis-

crete ordinates(35), a finite volume approach(72), Monte Carlo simulations(55, 59),
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and a mean free path (MFP) sampling algorithm.(73) However, these methods are

either computationally expensive or make simplifying assumptions that may not be

accurate. Another approach to incorporate boundary scattering is to model the inter-

face scattering using a phenomenological volumetric scattering rate τ−1 = v/L.(60)

While this approach has minimal computational requirements and provides useful

insights, it lacks predictive power because the value of the geometrical length L

depends on frequency in the non-gray model and is not known in advance.

In this work, we overcome these computational challenges using a novel variance-

reduced, frequency-dependent Monte Carlo technique recently introduced by Per-

aud and Hadjiconstantinou. (64, 74–77) Specifically, we solve the adjoint BTE

using a linearized, energy-based deviational MC algorithm. This algorithm enables

us to solve the frequency-dependent BTE in a large, complex geometry with mini-

mal memory requirements and substantially reduced computational cost compared

to traditional MC algorithms.

The algorithm we have chosen incorporates several key improvements over other

numerical methods that we describe in turn. First, we use a deviational MC algo-

rithm based on Eq. (2.1) rather than traditional MC method.(64) Deviational MC

techniques achieve variance-reduction by recognizing that many of the collisions

performed in traditional MC simulations serve only to stochastically compute the

Bose-Einstein equilibrium distribution that is already known analytically. The vari-

ance of the calculation can be dramatically reduced by replacing the stochastic cal-

culation of this known distribution with an analytical expression and only simulat-

ing the parts that deviates from the equilibrium distribution.

Second, for problems exhibiting sufficiently small temperature differences, the col-

lision operator in Eq. (2.1) can be linearized. As a result, properties for scattered

particles can be drawn from a distribution that is independent of the local tempera-
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ture, allowing each particle to be simulated independently and thereby eliminating

the need for discretization in space and time.(74) In addition to further reducing

computational cost, this method dramatically reduces the memory requirements of

MC simulations because all the phonon properties do not need to be stored simul-

taneously.

Finally, we solve the adjoint BTE rather than the traditional BTE using a recent ap-

proach introduced by Peraud et al.(75–77) One drawback of solving the traditional

BTE is that the frequencies of the phonon are drawn from the heat flux distribution

~ωD(ω, p)v(ω, p) f eq
Teq

, which is weighted by the density of states D(ω, p). As a

result, even if modes with small density of states contribute substantially to heat

conduction, as occurs in silicon, these phonons are unlikely to be sampled, lead-

ing to large noise at certain frequencies. Peraud et al. recently showed that this

limitation can be overcome using an adjoint approach, in which phonons are emit-

ted uniformly over the frequency spectrum and subsequently weighted by the heat

flux distribution to provide a variance-reduced estimate of the heat flux. The un-

derlying idea is that when the estimator, or in this case the heat flux in a specific

frequency bin, corresponds to a small region of phase space, one can exploit the

time-reversibility of the BTE to emit phonons from the estimator and follow their

trajectories backwards in time. In this way, the probability that a given sample

contributes to the desired estimator is considerably increased, reducing the overall

noise.

The full details of the computation are discussed by Peraud et al. and will only be

briefly reviewed here. The computational domain is a 3D cube with square grains as

illustrated in the inset of Fig. 2.3. The domain bisects the grain in each dimension,

placing the corner of the grains in the center of the domain. We impose a peri-

odic heat flux boundary conditions along the direction of temperature gradient to

model an infinitely repeating structure.(78) The other two directions have a specu-
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lar boundary condition imposed by symmetry. These boundary conditions allow the

thermal properties of an infinite polycrystal to be calculated using only one period.

We impose a linearly varying equilibrium temperature Teq(x) that allows the con-

trol temperature to follow the physical temperature more closely.(74) This variation

in Teq can be implemented as a uniform volumetric source of deviational phonon

bundles, each representing a fixed amount of deviational energy. The frequencies

of the phonon bundles are drawn from a uniform distribution, rather than the heat

flux distribution, according to the adjoint BTE. The algorithm then proceeds by

stochastically simulating the advection, scattering, and sampling of phonon bun-

dles sequentially and completely independently exactly as described by Peraud et

al.(74) Finally, the calculated spectral heat flux is weighted by the heat flux distri-

bution to obtain an unbiased calculation of the heat flux.(75)

In this work, we consider Si and Si1−xGex (x < 0.5) with Ge modeled as a mass

defect scattering mechanism in silicon. We model silicon using the experimental

dispersion along the [100] direction as reported in the previous literature and as-

sume that the crystal is isotropic.(79) Optical phonons are neglected due to their

small contributions to heat transfer in silicon.(55) The relaxation times caused by

three-phonon scatterings (τL for longitudinal acoustic phonons and τT for transverse

acoustic phonons) and phonon-mass-defect scatterings τMD are given by(79–81):

τ−1
L (ω) = 2 × 10−19 × ω2T1.49 exp(−80/T), (2.2)

τ−1
T (ω) = 1.2 × 10−19 × ω2T1.65 exp(−80/T), (2.3)

τ−1
MD(ω) = Aω4, (2.4)

where A is a constant that equals 3 × 10−45 for bulk silicon(82).
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For electron-phonon scattering, the relaxation time is given as(83)

τ−1
ep (ω) =

E2
dm∗3vs

4π~4ρ

kBT
1
2 m∗v2

s

 ~ωkBT
− ln

1 + exp
[

1
2 m∗v2

s−E f

kBT + ~2ω2

8m∗v2
s kBT

+ ~ω
2kBT

]
1 + exp

[
1
2 m∗v2

s−E f

kBT + ~2ω2

8m∗v2
s kBT
− ~ω

2kBT

]
 ,

(2.5)

where Ed , m∗, ρ, vs, and E f represent acoustic deformation potential, density of

states effective mass, density, averaged phonon group velocity and Fermi level, re-

spectively. The values of m∗, vs, ρ and E f are obtained from the literature, which

are m∗ = 1.4m0 (m0 is the electron mass), vs = 6500 m/s, ρ = 2500 kg/m2, and

E f = 0.05 eV corresponding to a doping concentration of approximately 1020 cm−3

in n-type Si.

For mass defect scattering in SiGe, we take A = 3×10−42, which corresponds to x =

0.25 in Si1−xGex according to the formula given by Klemens.(82) We then adjust

the deformation potential Ed until the thermal conductivity matches experimentally

reported values of bulk SiGe,(84) yielding Ed = 2.5 eV, in reasonable agreement

with the value reported by Holland.(80) For doped Si, we change A to be 3 × 10−43,

which corresponds to a doping concentration of 1020 cm−3.(55) In the next section,

we show that the results of this work are not sensitive to the exact values of these

fitting parameters.

The critical parameter in our model is the phonon transmissivity across the grain

boundaries. Many previous works assumed a gray model, but this model is not

consistent with the measurements of Wang et al. We use a frequency-dependent

transmissivity t(ω) proposed by Wang et al. in the form of(62)

t(ω) =
1

γω/ωmax + 1
, (2.6)

where γ is a fitting parameter and ωmax is the maximum phonon frequency with

nonzero density of states (∼ 12 THz for silicon). This model is qualitatively consis-

tent with atomistic Green’s function calculations.(52, 53) Note that this condition
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implies that the transmissivity approaches one as frequency goes to zero, which is

physically consistent with the expectation that long wavelength phonons are unaf-

fected by atomistic disorder at a grain boundary. In this work, we denote gray and

non-gray as constant and frequency-dependent transmissivity, respectively. Note

that other parameters in the BTE always depend on phonon frequency regardless of

the transmissivity model.

We implement the interface condition with the following procedure. If a particle en-

counters the interface, its transmissivity is calculated using the phonon’s frequency.

If a random number is less than the calculated transmissivity, then the phonon trans-

mits through the interface; otherwise, the phonon is reflected. Following Wang et

al., we use Ziman’s specularity parameter to determine whether the scattering is

specular or diffuse:

P(ω, p) = exp
[
−

16π2η2

λ2(ω, p)

]
, (2.7)

where λ(ω, p) is the phonon wavelength and η is the rms surface roughness. If a

randomly drawn number is less than P, the phonon experiences specular scattering,

in which case the phonon’s velocity vector is known from momentum conservation.

Otherwise, the phonon is scattered diffusely. In the latter case, the phonon’s new

velocity vector is randomized according to the half-sphere defined by the normal

vector of the interface.

2.3 Results and discussion

We validated our code by computing the spectral thermal conductivity versus phonon

frequency of the bulk silicon at room temperature. The analytical expression for

the spectral thermal conductivity is k(ω, p) = 1
3C(ω, p)vg(ω, p)Λ(ω, p), where

C(ω, p) = ~ωD(ω, p) ∂f BE
∂T is the mode specific heat, D(ω, p) is the density of states,

and Λ(ω, p) = τ(ω, p)vg(ω, p) is the phonon MFP. Figs. 2.1 (a) & (b) show the cor-

responding density of states and group velocity versus phonon frequency for two
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transverse acoustic branches and one longitudinal acoustic branch in silicon used

in this work. k(ω, p) gives a quantitative measure how each phonon contributes to

the total thermal conductivity. As shown in Fig. 2.2, excellent agreement between

the computation and the analytical solution is observed. Also note that the stochas-

tic noise is low over the entire phonon spectrum in the adjoint method, while the

noise increases as the phonon frequency decreases with the original algorithm due

to undersampling of low frequency phonons.

With this validation, we proceed to the nanocrystalline material by determining

the fitting parameter γ in Eq. (2.6). The reported material had 550 nm grains and

was nominally undoped. By fitting the experimental thermal conductivity with our

model, we obtain γ = 0.12 and the surface roughness η = 0.5 nm in Eq. (2.7),

which explain the thermal conductivity data from Wang et al. Since the reported

Si is nominally undoped, we take A in Eq. (2.4) to be the value of bulk silicon. As

shown in Fig. 2.3, the simulated thermal conductivities of nanocrystalline silicon

obtained using the proposed transmissivity model is in good agreement with the

experiment over the temperature range. Note that based on the fitted γ as shown

in Fig. 2.4, the transmissivity varies from 1 to 0.85 as frequency increases, which

is much higher than the typical nominal value of the transmissivity used in the

literature.

With the fitting parameters determined, we first examine the difference between the

gray and non-gray model for the same undoped nano-Si material. We focus on

examining the distribution of heat in the thermal phonon spectrum by plotting the

spectral thermal conductivity as a function of phonon frequency. We choose the

frequency-independent transmissivity in the gray model to be 0.92 such that the to-

tal thermal conductivities given by the gray and non-gray models are approximately

the same. As shown in Fig. 2.5, the gray model predicts a substantial decrease in

heat at the low frequency regime while the non-gray model predicts a much higher
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Figure 2.1: (a) Density of states and (b) magitude of group velocity versus phonon

frequency for bulk silicon: blue and orange lines represent transverse acoustic

modes, and yellow lines represent longitudinal acoustic modes.
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Figure 2.2: Spectral thermal conductivity versus phonon frequency for bulk silicon

at 300 K: adjoint MC method (solid line); original MC algorithm (dash-dotted line);

analytical solution (dashed line). The noise in the adjoint MC is substantially less

than that of the original algorithm at low frequencies. The abrupt change in the

slope of the spectral thermal conductivity at 5 THz is due to the cutoff of density of

states in Si’s transverse acoustic modes.

contribution to the total heat from those low frequency phonons. This increase is

expected because the transmissivity approaches one in the low frequency limit, indi-

cating that low frequency phonons are scattered less by grain boundaries compared

to the prediction of the gray model.

We next seek to understand doped nanocrystalline Si/SiGe thermoelectric materials

by using the fitted constants described in the previous section to account for the

mass defect and electron-phonon scattering mechanisms. We take grain size to
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Figure 2.3: Simulated (line) and measured (circles) thermal conductivities for pure

nanocrystalline silicon with grain sizes at 550 nm, demonstrating good agreement.

Inset: 2D schematic of a unit cell used in the simulation. The grain boundary bisects

the domain at the indicated location.
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Figure 2.4: Non-gray (line) and gray (dashed line) phonon transmissivities at grain

boundaries plotted versus phonon frequency.
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Figure 2.5: Room-temperature spectral thermal conductivity versus phonon fre-

quency with 550 nm grain: bulk silicon (dashed line), nanocrystalline silicon with

gray model (dash-dotted line), and nanocrystalline silicon with non-gray model

(solid line). Low frequency phonons carry more heat in the non-gray model.

be 20 nm following the experimental reports.(3–6) The result of these effects on

the heat transport in nanocrystalline silicon and SiGe is shown in Fig. 2.6. We

find that high frequency phonons are strongly scattered by the impurities while

low frequency phonons are scattered by the electrons, as expected. However, due

to the non-gray transmissivity, a large fraction of heat is carried by phonons with

frequency less than 4 THz. This observation is unexpected because under the gray

model, thermal conductivity reduction is largely due to the scattering of these low

frequency phonons, but contribution of these modes remains significant in the non-

gray model.
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Figure 2.6: Room-temperature spectral thermal conductivity versus phonon fre-

quency with 20 nm grain: pure nanocrystalline silicon (solid line), doped nanocrys-

talline silicon (dashed line) and nanocrystalline silicon germanium (dash-dotted

line). High frequency phonons are scattered by mass defects while low frequency

phonons are scattered by electrons.

To determine the key length scales for heat conduction, we calculate the phonon

MFPs. We plot this quantity as the thermal conductivity accumulation function,

which has been shown to be a useful quantity for understanding thermal trans-

port.(85, 86) We calculate the accumulation function by determining an effective

MFP for each mode that incorporates all the scattering mechanisms, including grain

boundary scattering, using the spectral thermal conductivity for each phonon fre-

quency and polarization and the kinetic equation: Λe f f = 3k(ω, p)/C(ω, p)v(ω, p).

The spectral thermal conductivity can then be sorted by MFP, from which the ther-
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Figure 2.7: Thermal conductivity accumulation versus phonon MFP: pure

nanocrystalline silicon (solid line), doped nanocrystalline silicon (dashed line),

doped nanocrystalline silicon germanium (dash-dotted line), and bulk silicon (dot-

ted line). Heat is still carried by long MFP phonons in nanocrystalline Si/SiGe even

though many low frequency phonons are scattered by electrons.

mal conductivity accumulation is obtained from the cumulative sum of the spectral

thermal conductivity.

Our simulations show a surprising result. As shown in Fig. 2.7, at room tempera-

ture, about 60 % of the total heat in undoped nanocrystalline silicon with a grain

size around 20 nm is carried by the phonons with MFPs longer than the grain size,

which are denoted long MFP phonons here. Even in doped nanocrystalline Si and

SiGe, for which low frequency phonons are scattered by electrons, as much as 35

% of the total heat is carried by these long MFP phonons.
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Figure 2.8: Thermal conductivity accumulation for (a) doped nanocrystalline Si

and (b) doped nanocrystalline SiGe with 20 nm grains versus phonon MFP at 300

K (solid line) and 1000 K (dashed line). At high temperatures, there is still a large

fraction of heat carried by long MFP phonons even when phonon-phonon scattering

is dominant.

To verify that our conclusion does not depend on the fitting parameters for mass-

defect and electron-phonon scattering, we examine the change in the MFP distribu-

tion as τ−1
MD and τ−1

ep varied by 50% to 200% of their nominal values for nanocrys-

talline SiGe at room temperature. We find that there is only 3% variation in heat

contribution from long MFP phonons due to the change in mass defect scattering

magnitude. Similarly, 7% variation is observation when varying τ−1
ep using the same

method. Thus, our observation of the importance of long MFP phonons is not sen-

sitive to the assumptions made for these scattering mechanisms.

The effects of temperature on the thermal conductivity accumulations for doped

nanocrystalline Si/SiGe are shown in Fig. 2.8(a). As the temperature increases, the

contribution from long MFP phonons decreases due to the dominance of phonon-

phonon scattering. For doped nano-Si (Fig. 2.8(a) & dashed line in Fig. 2.9), at

room temperature, about 35% of the total heat is due to phonons with MFPs longer

than the grain size while at 1000 K, corresponding to the typical operating temper-
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Figure 2.9: Percentage contribution from phonons with MFPs longer than the

grain size versus temperature in doped nanocrystalline SiGe (solid line) and doped

nanocrystalline Si (dashed line). The percentage contribution decreases as temper-

ature increases but is still considerable at high temperatures.

ature of devices that use Si/SiGe, the percentage contribution decreases to 20%. On

the other hand, this dominance shift is less obvious in nanocrystalline SiGe since

most of the high frequency phonons, which are more likely to undergo phonon-

phonon scattering, are already strongly scattered by the alloy atoms, as shown in

Fig. 2.8(b). At 1000 K, the contribution from these long MFP phonons in nano

SiGe is still as high as 30% as shown by solid line in Fig. 2.9.

We now examine the effects of grain size on the heat transport in doped nanocrys-

talline Si/SiGe. Figures 2.10 and 2.11 show the thermal conductivity accumulation

versus phonon MFP for doped nanocrystalline Si/SiGe with different grain sizes at

300 K. Since the mass defect scattering strength is different in the two materials,

short MFP phonons are less scattered by the mass defects and in general carry more

heat in doped nanocrystalline Si than in doped nanocrystalline SiGe. Regardless

of the strength of the mass defect scattering, we find an increase in contribution
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Figure 2.10: Thermal conductivity accumulation for doped nanocrystalline Si at

300 K versus phonon MFP with grain sizes at 20 nm (solid line), 100 nm (dash-

dotted line) and 500 nm (dashed line). As the grain size decreases, the distribution

shifts to shorter MFPs but the heat contribution from long MFP phonons increases.

from long MFP phonons as the grain size decreases in both materials even though

smaller grain sizes result in shorter MFP phonons.

To clearly demonstrate this trend, we plot both thermal conductivity and long MFP

contribution versus grain size in Figs. 2.12 & 2.13. Previous studies have shown that

decreasing the grain size can effectively reduce the thermal conductivity.(47, 48)

The decreasing trend of thermal conductivity as grain size decreases in Fig. 2.12

confirm this observation. As the grain size varies from 550 nm to 20 nm, there

is a 30% reduction of thermal conductivity for nanocrystalline SiGe and 45% in

doped nanocrystalline Si. Due to the stronger mass defect scattering, the thermal

conductivity of nanocrystalline SiGe is more than 50% lower than that of doped

nanocrystalline Si at a given grain size. When we look into the contribution to the
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Figure 2.11: Thermal conductivity accumulation for doped nanocrystalline SiGe at

300 K versus phonon MFP with grain sizes at 20 nm (solid line), 100 nm (dash-

dotted line), and 500 nm (dashed line). As the grain size decreases, the distribution

shifts to shorter MFPs but the heat contribution from long MFP phonons increases.

total thermal conductivity from each phonon mode, we find that, counterintuitively,

the contribution from those phonons with MFPs longer than the grain size increases

as the grain size decreases as shown in Fig. 2.13. For a 20 nm grain, the contribu-

tion from long MFP phonons is as high as 35% in both nanocrystalline Si and SiGe.

This result can be explained by the increasing fraction of phonons with MFP that

is longer than grain size as the grain size decreases. According to the frequency-

dependent transmissivity, those phonons are less affected by the grain boundaries

compared to the prediction of the gray model. Therefore, their contribution to the

total thermal conductivity increases even though the total thermal conductivity de-

creases.

These observations indicate that nanocrystalline grain boundaries may not be as ef-
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Figure 2.12: Thermal conductivity versus grain size in doped nanocrystalline

Si/SiGe using non-gray (solid lines) and gray (dashed lines) models. Thermal con-

ductivity decreases as the grain size decreases, particularly for grains smaller than

100 nm.

fective as previously believed at scattering long MFP phonons. If a grain boundary

can be designed such that it diffusely scatters all phonons independent of frequency

as in the gray model, an additional reduction in the phonon thermal conductiv-

ity can be achieved. In Figs. 2.12 & 2.13, we plot the thermal conductivity and

long MFP phonon contribution versus grain size for the gray model with a constant

transmissivity of 0.85, corresponding to the smallest value of the transmissivity in

the non-gray model. Figure 2.12 shows that thermal conductivity is approximately

12% lower than non-gray model in doped nanocrystalline silicon and 30% lower

in doped nanocrystalline SiGe. The higher reduction in SiGe is because long MFP

phonons in doped nanocrystalline SiGe, which are strongly scattered by the grain

boundary, contribute more to thermal conductivity than in doped nanocrystalline Si.
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Figure 2.13: Percentage contribution from phonons with MFPs longer than the

grain size versus grain size in doped nanocrystalline Si (dashed lines) and doped

nanocrystalline SiGe (solid lines) using non-gray and gray models. The contribu-

tion from the long MFP phonons increases as grain size decreases.

Figure 2.13 quantifies this reduction in contribution from long MFP phonons. The

gray grain boundary scatters most of the long MFP phonons such that their contri-

bution to the total thermal conductivity is negligible. In both doped nanocrystalline

Si and SiGe with 20 nm grains, the long MFP contribution is reduced to less than

5%. Further thermal conductivity reduction can be achieved if the transmissivity

is further decreased. Therefore, great potential to further increase the thermoelec-

tric performance of nanocrystalline Si/SiGe exists if such grain boundaries can be

designed.
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2.4 Summary

Nanocrystalline Si and SiGe have great potential as thermoelectrics, but a better

understanding of grain boundary scattering is necessary to improve their efficiency.

In this chapter, we have studied thermal phonon transport in the full 3D geometry

of nanocrystalline Si and SiGe using a novel adjoint variance-reduced energy-based

Monte Carlo method. We find that low frequency, long MFP phonons, which are

previously predicted to carry negligible heat in the gray model, may still carry a

substantial amount of heat due to the frequency-dependent grain boundary scatter-

ing. Significant potential to improve the efficiency of nanocrystalline Si and SiGe

exists if these phonons can be scattered. Our work provides important insight into

how to further increase the thermoelectric performance of nanostructured silicon

and silicon-germanium alloys.

While this computational study provides important insights, one issue still remains.

Even though the proposed frequency-dependent model reproduces the experimental

measurements, the fitting itself is not unique. Since thermal conductivity is a macro-

scopic property that is integrated over the thermal spectrum, there exists multiple

choices of this underlying distribution that result in the same thermal conductivity.

Moreover, we do not know the spectral properties of thermal phonons in most of

the materials. In the rest part of thesis, we present analytical methods to analyze

the heat transport at the nanoscale, which allow us to more directly measure mi-

croscopic properties of phonons such as phonon MFP spectra in solids and phonon

transmission coefficients at a solid-solid interface. In the next chapter, we will start

with analyzing heat conduction at length scale comparable to phonon MFPs using

Boltzmann transport equation.
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C h a p t e r 3

BOLTZMANN TRANSPORT EQUATION

Chapter 3 has been adapted from:

(1) Chengyun Hua and Austin J. Minnich. “Analytical Green’s function of the
multidimensional frequency-dependent phonon Boltzmann equation”. In:
Phys. Rev. B 90 (21 2014), p. 214306. doi: 10.1103/PhysRevB.90.
214306. url: http://link.aps.org/doi/10.1103/PhysRevB.90.
214306.

(2) Chengyun Hua and Austin J. Minnich. “Semi-analytical solution to the
frequency-dependent Boltzmann transport equation for cross-plane heat con-
duction in thin films”. In: Journal of Applied Physics 117.17, 175306 (2015).
doi: http : / / dx . doi . org / 10 . 1063 / 1 . 4919432. url: http : / /
scitation.aip.org/content/aip/journal/jap/117/17/10.
1063/1.4919432.

3.1 Introduction

Heat conduction at length scale comparable to phonon wavelengths and mean free

paths (MFPs) is of considerable interest recently(33) due to its applications in many

technologies such as thermoelectrics(10, 12) and electronic devices.(34) At these

small scales, classic continuum transport theories such as Fourier’s law are not valid

due to the absence of scattering and therefore a local temperature.(35) In this non-

diffusive regime, phonon transport is nonlocal and is described by the Boltzmann

transport equation (BTE).(21)

Although numerical approaches such as the variance-reduced Monte Carlo methods

introduced in Chapter 2 could efficiently solve the frequency-dependent BTE in a

large, complex geometry with minimal memory requirements, analytical solutions

to the BTE could enable physical insights to be obtained just from examining the

form of the equation, which is not immediately accessible from the numerical so-
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lutions. So far no analytical solutions to the BTE that could rigorously include the

frequency dependence of thermal phonons have been reported.

Here, we report two analytical methods to solve the multidimensional, frequency-

dependent transient BTE subject to different boundary conditions. Both methods

allow us to obtain simple, closed-form solutions to complex multidimensional prob-

lems that have previously been possible to solve only with computationally expen-

sive numerical simulations and will enable a better understanding of nondiffusive

heat conduction.

3.2 Analytical Green’s function of BTE

In this section, we demonstrate that exact analytical solutions to the multidimen-

sional, frequency-dependent transient BTE for arbitrary heat inputs can be obtained

using Fourier transforms in infinite or semi-infinite domains.

Derivation

The frequency-dependent BTE under relaxation time approximation is given by:

∂gω
∂t

+ vg · ∇gω −
Qω

4π
= −

gω − g0(T)
τ(ω,T)

, (3.1)

where gω = ~ωD(ω)( fω(x , t , θ) − f0(T0)) is the desired deviational distribution

function, g0(T) is the equilibrium deviational distribution function defined below,

Qω(r, t) is the spectral volumetric heat generation, vg(ω,T) is the phonon group

velocity, and τ(ω,T) is the phonon relaxation time. Here, r is the spatial vector, t is

the time, ω is the phonon frequency, and T is the temperature. In the Cartesian co-

ordinate system and assuming an isotropical crystal, the advection term in Eq. (3.1)

is expanded as

vg · ∇gω = vgµ
∂gω
∂z

+ vg

√
1 − µ2cosφ

∂gω
∂x

+ vg

√
1 − µ2sinφ

∂gω
∂y

, (3.2)

where µ = cos(θ) is the directional cosine of the polar angle θ and φ is the azimuthal

angle. Here, we emphasize that while many crystals contain minor anisotropies in



33

the Brillouin zone, the vast majority of crystals are thermally isotropic, with notable

exceptions being materials with very anisotropic bonding such as graphite. We

present a validation of this assertion for the ab-initio calculations for silicon used

here in Appendix C.

Assuming a small temperature rise, ∆T = T−T0, relative to a reference temperature,

T0, the equilibrium deviational distribution is proportional to ∆T ,

g0(T) =
1

4π
~ωD(ω)( f BE(T) − f BE(T0)) ≈

1
4π

Cω∆T. (3.3)

Here, ~ is the reduced Planck constant, D(ω) is the phonon density of states, f BE

is the Bose-Einstein distribution, and Cω = ~ωD(ω) ∂f BE
∂T is the mode specific heat.

The volumetric heat capacity is then given by C =
∫ ωm

0
Cωdω and the thermal

conductivity k =
∫ ωm

0
kωdω, where kω = 1

3CωvωΛω and Λω = τωvω is the phonon

MFP.

Both gω and ∆T are unknown. Therefore to close the problem, we need to relate

gω to ∆T . Notice that when intergrating over solid angle and phonon frequency, the

left hand side of Eq. (3.1) becomes

∂E
∂t

+ ∇ · q − Q,

where E =
∫ ∫ ωm

0
gωdωdΩ is the energy, q =

∫ ∫ ωm

0
vgωdωdΩ is the heat flux, and

Q =
∫ ∫ ωm

0
QωdωdΩ is the volumetric heat generation. This expression represents

the general law of energy conversation and always equals to zero. Thefore, the

energy conversation requires that the right hand side of Eq. (3.1) becomes∫ ∫ ωm

0

[
gω(r, t)
τω

−
1

4π
Cω

τω
∆T(r, t)

]
dωdΩ = 0, (3.4)

where Ω is the solid angle in spherical coordinates and ωm is the cut-off frequency.

Note that summation over phonon branches is implied without an explicit summa-

tion sign whenever an integration over phonon frequency is performed.
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Let us now consider solving this equation in an infinite domain or a semi-infinite

domain with specular boundary conditions such that the domain can be extended

to infinity by symmetry. This assumption eliminates the consideration of diffuse

boundaries but still leaves a wide range of problems that can be solved. In such a

domain, a Fourier transform can be applied to all spatial coordinates as well as the

time variable, giving:

(iη + vgµiξz + vg

√
1 − µ2cosφiξx + vg

√
1 − µ2sinφiξy)g̃ω = −

g̃ω
τω

+
Cω

4πτω
∆T̃ +

Q̃ω

4π
,

(3.5)

where ˜ indicates the function is in its Fourier transform form. Here, we define the

temporal frequency as η and the spatial wavevector in x, y and z as ξx, ξy, and ξz,

respectively.

After rearranging Eq. (3.5), the unknown distribution function is written as

g̃ω =
Cω

4π
∆T̃ + Q̃ωτω/Cω

1 + iητω + iµξzΛω + i
√

1 − µ2(cosφξxΛω + sinφξyΛω)
. (3.6)

Plugging Eq. (3.6) into Eq. (3.4), an equation for temperature can be obtained

4π∆T̃
∫ ωm

0

Cω

τω
dω (3.7)

=

∫ ωm

0

∫ 2π

0

∫ 1

−1

Cω

τω

∆T̃ + Q̃ωτω/Cω

1 + iητω + iµΛωξz + i
√

1 − µ2(cosφξxΛω + sinφξyΛω)
dµdφdω.

The angle integrals on the right hand side of Eq. (3.7) can in fact be analytically

evaluated using the identities 2.558-4 and 2.261 in Ref. (87). Therefore, a simple

closed form of temperature in Fourier space can be obtained

∆T̃(η, ξx , ξy , ξz) =

∫ ωm

0
Q̃ω

Λωξ
tan−1

(
Λωξ

1+iητω

)
dω∫ ωm

0
Cω
τω

[
1 − 1

Λωξ
tan−1

(
Λωξ

1+iητω

)]
dω

, (3.8)

where ξ =
√
ξ2

x + ξ2
y + ξ2

z . Note that if the spectral volumetric heat generation Qω

is a Dirac-delta function in time and space, Eq. (3.8) becomes the impulse temper-

ature response or the Green’s function of the frequency dependent BTE. Once ∆T̃
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is determined, g̃ω can be obtained by Eq. (3.6). The spectral heat flux is calculated

as q̃ω =
∫

g̃ωvgd˙, thus closing the problem. Solutions to each of these quantities

in the real-space solution can be easily obtained by inverse Fourier transform.

We next confirm that our solution reduces to the Green’s function of the diffusive

and ballistic regimes. These regimes can be specified by the two non-dimensional

parameters, the Knudsen number Knω = ξΛω and transient number Γω = ητω in

Eq. (3.8). In the diffusive limit, length and time scales are much larger than the

phonon MFPs and relaxation times, respectively, corresponding to Knω � 1 and

Γω � 1. Examining Eq. (3.8) under this limit, we find that in Eq. (3.8)

1
Λωξ

tan−1
(
Λωξ

1 + iητω

)
∼ 1 − iητω +

1
3
Λ

2
ωξ

2, (3.9)

and the solution reduces to the Fourier solution, given by

∆T̃ f ≈
Q̃0

iηC + ξ2k
, (3.10)

where Q̃0 =
∫ ωm

0
Q̃ωdω. In the ballistic regime, lengths and times are much smaller

than MFPs and relaxation times, or Knω � 1 and Γω � 1. The BTE thus becomes

∂gω
∂t

+ vg · ∇gω = 0, (3.11)

the solution of which is the same as Eq. (3.8) under the limit of τω → ∞, given by

∆T̃b ≈
1∫ ωm

0
Cω
τω

dω

∫ ωm

0

Q̃ω

Λωξ
tan−1

(
vωξ
iη

)
dω. (3.12)

Between these two limits is the quasiballistic regime for we must use the full ex-

pression given by Eq. (3.8).

Advantages of the method

The BTE has long been a formidable equation due to its high dimensionality and

the efficient solution of this equation has been a long-standing challenge in the ther-

mal sciences. Prior solution approaches in the thermal science literature are either
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extremely simplified or solely numerical and usually computationally expensive.

Independent of any numerical considerations, this identification of an analytical so-

lution to BTE that enables physical insight to be obtained just from examining the

form of the equation is a useful advance.

Further, the computational effort to obtain a solution for a specific problem is dra-

matically reduced as compared to that of discrete ordinates which have been typi-

cally used in the past. For example, the typical computational time for a problem

with a heat impulse in a semi-infinite substrate using discrete ordinates(79) is on

the order of five hours while our approach takes less than five seconds, a speedup

exceeding three orders of magnitude. Furthermore, our result is valid for transient

heat conduction in all three dimensions, a situation that has rarely been considered

even numerically as the memory requirements for discrete ordinates in multiple

dimensions are prohibitively large.

Applications

We now demonstrate the utility of our solution by solving three multidimensional

problems for which the only previous solution methods were computationally ex-

pensive numerical approaches. We perform our calculations for crystalline silicon,

using the density functional theory (DFT) dispersion and lifetimes calculated by J.

Carrete and N. Mingo using ShengBTE (88, 89) and Phonopy(90) from interatomic

force constants obtained with VASP.(91–94) The details about converting the ab

initio calculations to isotropic dispersion can be found in Appendix C.

The first case we consider here is the transient temperature decay of an infinite

silicon crystal subject to a heat impulse with a Gaussian spatial profile. The spectral

volume heat generation is given by:

Qω(x , y, z, t) = ∆T(0)Cωe−π
x2+y2+z2

R2 δ(t), (3.13)

where R is the radius of the Gaussian profile as illustrated in the inset of Fig. 3.1. To
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Figure 3.1: Temperature decay curves ∆T(t) at the origin for an infinite silicon

sample subject to an impulsive volumetric heat generation with Gaussian spatial

profile at the origin in the diffusive limit. The BTE and Fourier solutions are given

by the solid lines and dashed lines respectively. Inset: 2D schematic of the domain.

R is the Gaussian radius.

simplify the analytical expressions, we choose the amplitude of spectral distribution

of heat generation to be ∆T(0)Cω corresponding to a thermal distribution. Note that

this spectral distribution of heat generation can be varied according to the different

circumstances.

After transforming Eq. (3.13) into Fourier space and inserting into Eq. (3.8), we

obtain the temperature profile in Fourier space, given by

∆T̃(η, ξx , ξy , ξz) = ∆T(0)R3e−
R2ξ2

4π

∫ ωm

0
Cω

1
Λωξ

tan−1
(
Λωξ

1+iητω

)
dω∫ ωm

0
Cω
τω

[
1 − 1

Λωξ
tan−1

(
Λωξ

1+iητω

)]
dω

. (3.14)

Now, we examine how temperature decays with time at the origin. We note that to

obtain this quantity it is not necessary to inverse Fourier transform the three spatial
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wavevectors. Instead, we evaluate the Fourier transform only at x = y = z = 0 by

integrating Eq. (3.8) over all wavevectors as

∆T̃(η, r = 0) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∆T̃(η, ξx , ξy , ξz)dξxdξydξz . (3.15)

In this way, only one inverse Fourier transform over the frequency variable is re-

quired to obtain the temperature decay.

The resulting transient temperature decay curves are plotted in Figs. 3.1 & 3.2. In

the diffusive limit where the heat generation region is big enough such that Knω � 1

and Γω � 1, the BTE solution recovers the Fourier’s law solution as in Fig. 3.1. As

the Gaussian radius R decreases and MFPs become comparable or greater than R,

we observe a deviation of the BTE solution from the Fourier’s law due to quasibal-

listic transport, as shown in Fig. 3.2(a). We note that the actual temperature rise is

larger than the Fourier’s law prediction, consistent with a prior result by Chen.(40)

The ballistic limit is plotted in Fig. 3.2(b), demonstrating that the calculated tem-

perature decay agrees with the ballistic solution of the BTE given by Eq. (3.12).

The second case we consider is a line heater on a semi-infinite silicon substrate

as illustrated in the inset of Fig. 3.3(a), where x is the in-plane direction and z

is the cross-plane direction. The surface of the sample is subject to a periodic

line heating with width L in the x direction, exponential decay with penetration

depth δ in the z direction, and temporal frequency η. We assume that phonons at

z = 0 are specularly reflected, leading to the adiabatic boundary condition gω(z =

0, x , t , µ) = gω(z = 0, x , t , −µ). Therefore, by symmetry we can extend the domain

to the negative z plane and apply our solution.

The spectral volumetric heat generation in this case is expressed as

Qω(x , z, t) = ∆T(0)Cωeiηte−|z |/δ
[
H

(
x +

L
2

)
− H

(
x −

L
2

)]
, (3.16)
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Figure 3.2: Temperature decay curves ∆T(t) at the origin for an infinite silicon

sample subject to an impulsive volumetric heat generation with Gaussian spatial

profile at the origin in (a) the quasiballistic regime and (b) the ballistic limit. The

BTE, Fourier, and ballistic conduction solutions are given by the solid lines, dashed

lines, and dash-dotted lines respectively.
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Figure 3.3: Amplitudes of the temperature decay curves |∆T | for a planar semi-

infinite silicon sample subject to a periodic line heater at the surface. ((a) & (b))

are in diffusive while ((c) & (d)) are in quasiballistic regime. The BTE and Fourier

solutions are given by the solid and dashed lines, respectively. Inset in (a): 2D

schematic of the geometry. Phonons incident on the plane at z = 0 are specularly

reflected. The width of line heater is L with an exponential decay with penetration

depth δ in the cross-plane direction, and η is the temporal frequency.

where H is the Heaviside step function. The same procedure as in the first case is

carried out to obtain the temperature in Fourier space, which is given by

∆T̃(η, ξx , ξy , ξz) = ∆T(0)
2δ

1 + δ2ξ2 Lsinc
(
ξx L
2

) ∫ ωm

0
Cω

1
Λωξ

tan−1
(
Λωξ

1+iητω

)
dω∫ ωm

0
Cω
τω

[
1 − 1

Λωξ
tan−1

(
Λωξ

1+iητω

)]
dω

.

(3.17)
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Since the heating is periodic in time, the temperature profile is quasi-stationary. We

obtain the centerline temperature (T(x = 0, z)) by integrating Eq. (3.17) over all ξx

and the surface temperature (T(x , z = 0)) by integrating Eq. (3.17) over all ξz.

The centerline temperature amplitudes are shown in Figs. 3.3 (a) & (b), and the sur-

face temperature amplitudes are shown in Figs. 3.3 (b) & (d). Again, in the diffusive

limit, the BTE solutions agree with the Fourier solutions when the heating length is

much larger than the phonon MFPs such that Knω � 1 and Γω � 1. The phonon

transport becomes quasiballistic when the MFPs are comparable to or greater than

the characteristic length scales in which case the BTE solutions no longer agree

with the Fourier’s law solutions. We again observe that the BTE solution predicts

a higher temperature rise than the Fourier’s law in the quasiballistic case due to a

lack of scattering local to the heater.

The last case we consider here is a steady displaced planar Gaussian heating source

next to an adiabatic specularly reflecting corner as illustrated in Fig. 3.4. While

this geometry is complex, the problem can be effectively solved using the method

of images as in elementary electrostatics.(95) To implement the method of images,

we replace the specular boundaries with three identical heating sources located at

the mirror locations across each symmetry plane. By symmetry and uniqueness of

the solution for the linear BTE, this solution is equal to that of the original problem.

The method of images is a general technique that can be easily applied to even more

complex geometries than that considered here.

The spectral volumetric heat generation for the original and mirror heaters can be

expressed as

Qω(x , z, t) = ∆T(0)Cω ( f (x , z) + f (−x , −z) + f (x , −z) + f (−x , z)) , (3.18)

where f (x , z) = e−π
(x−L)2+(z−L)2

R2 , L is the displaced distance from the center of the heat

to z/x axis, and R is the radius of the Gaussian profile.
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z

x
0

L

R

Figure 3.4: A planar domain located in the first quadrant subject to an Gaussian

volumetric heat generation displaced away from the origin. The heating profile is

uniform in the cross-plane direction. The radius of the Gaussian profile is R and the

distance from the center of the heat to x/z axis is L. The problem is treated using

the method of images in which the specular boundaries at z = 0 and x = 0 are

replaced with three identical heating sources located at the mirror locations across

each symmetry plane.

Figs. 3.5(a) & (b) give the amplitude of the temperature field when the heater is

placed 10 µm away from both x and z axes based on the BTE and Fourier’s law

respectively. At the given the Gaussian radius (R = 1 µm), the phonon transport is

quasiballistic. The peak amplitude of temperature predicted by the BTE is higher

than that of Fourier’s law. Also, due to a lack of scattering events local to the heater,

heat is trapped around the heating source while it diffuses away from the heater by
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b)

a)

b)

Figure 3.5: Amplitude of 2D temperature field |∆T(x , z)| given by (a) the BTE and

(b) Fourier’s law in the quasiballistic regime with L = 10 µm and R = 1 µm.
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Fourier’s prediction. In the past, the only method to solve this problem was purely

numerical. Using our solution, we can write the exact solution in Fourier space,

and we can obtain the real-space solution including frequency-dependent phonon

properties in under one minute on a typical desktop computer.

3.3 BTE solutions in thin films

In this section, we consider crystals with finite thickness. In the past two decades,

thermal transport in thin solid films with thicknesses from tens of nanometers to mi-

crometers has become a topic of considerable importance.(33, 96–98) Such films

are used in applications ranging from quantum well lasers to electronic devices.(99–

101) For example, boundary scattering in these films leads to reduced thermal

conductivity that results in the inefficient removal of heat in GaN transistors and

LEDs.(8, 102, 103) To address these and other problems, it is first necessary to

understand the fundamental physics of heat conduction in micro-scale solid thin

films.

Heat transport in thin films with thicknesses comparable to the phonon mean free

paths (MFPs) is governed by the Boltzmann transport equation (BTE), which is an

integro-differential equation of time, real space, and phase space. Due to its high di-

mensionality, it is in general very challenging to solve. For transport along the thin

film, an analytical solution can be easily derived by assuming that the characteristic

length scale of the thermal gradient is much longer than the phonon MFPs. Ana-

lytical solutions were derived for electron transport by Fuchs and Sondheimer with

partially specular and partially diffuse boundary scattering.(104, 105) Later, the

Fuchs-Sondheimer solutions were extended to phonon thermal transport assuming

an average phonon MFP, enabling the calculation of thermal conductivity as a func-

tion of the film thickness.(106, 107) Mazumder and Majumdar used a Monte-Carlo

method to study the phonon transport along a silicon thin film including phonon
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dispersion and polarizations.(108)

Heat conduction perpendicular to the thin film (cross-plane direction) is much more

challenging. In other fields such as neutron transport and thermal radiation, solu-

tions to the BTE for a slab geometry have been obtained using an invariant em-

bedding method,(109, 110) an iterative method(111), and an eigenfunction expan-

sion approach.(112) For heat conduction, Majumdar numerically solved the gray

phonon Boltzmann transport using a discrete-ordinate method by assuming that the

two surfaces of the film were black phonon emitters.(35) Later, Joshi and Majumdar

developed an equation of phonon radiative transfer for both steady-state and tran-

sient cases, which showed the correct limiting behavior for both purely ballistic and

diffusive transport.(69) Chen and Tien applied solutions from radiative heat transfer

to calculate the thermal conductivity of a thin film attached to two thermal reser-

voirs.(106) Chen obtained approximate analytical solutions of the BTE to study

ballistic phonon transport in the cross-plane direction of superlattices and addressed

the inconsistent use of temperature definition at the interfaces.(113) Cross-plane

heat conduction using a consistent temperature definition was then re-investigated

by Chen and Zeng.(114, 115)

Despite these extensive efforts to study transport in thin films based on the BTE, so-

lutions for the cross-plane geometry are still only available with expensive numeri-

cal calculations. For example, no analogous Fuchs-Sondheimer formula for the in-

plane thermal conductivity exists for the cross-plane direction. Furthermore, most

of the previous approaches assumed a single phonon MFP even though recent work

has demonstrated that the transport properties of phonons in solids vary widely over

the broad thermal spectrum.(63, 70) Incorporating frequency-dependent phonon

properties with these prior numerical methods is extremely computationally ex-

pensive.
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Here, we present a semi-analytical solution of the frequency-dependent transient

BTE using the method of degenerate kernels, also known as a series expansion

method.(116) Our approach is valid from the diffusive to ballistic transport regimes,

is capable of incorporating a variety of boundary conditions, and is more than three

orders of magnitude faster than prior numerical approaches. Further, we obtain a

simple closed-form expression for cross-plane thermal conductivity, analogous to

the Fuch-Sondheimer formula for the in-plane thermal conductivity, which enables

the cross-plane thermal conductivity of a thin film to be easily calculated. Our re-

sults can be applied to efficiently solve heat conduction problems in numerous prac-

tical geometries such as superlattices and the thin films used in thermoreflectance

experiments while rigorously incorporating the full phonon dispersion.

Method

We start with Eq. 3.1 and assume a small temperature rise, ∆T = T − T0, relative to

a reference temperature, T0. The one-dimensional (1D) frequency-dependent BTE

for an isotropic crystal under the relaxation time approximation becomes:

∂gω
∂t

+ vgµ
∂gω
∂x

= −
gω
τω

+
1

4π
Cω

τω
∆T +

Qω

4π
. (3.19)

Again, to close the problem, energy conservation is used to relate gω to ∆T , given

by ∫ ∫ ωm

0

[
gω(x , t)
τω

−
1

4π
Cω

τω
∆T(x , t)

]
dωdΩ = 0. (3.20)

To solve this equation, we first transform it into an inhomogeneous first-order dif-

ferential equation by applying a Fourier transform to the time variable, giving:

iηg̃ω + vgµ
dg̃ω
dx

= −
g̃ω
τω

+
Cω

τω

∆T̃
4π

+
Q̃ω

4π
, (3.21)
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where η is the temporal frequency. This equation has the general solution:

g̃+
ω(x) = Pωe−

γω
µ x +

∫ x

0

Γ(x′)
µ

e
γω
µ (x′−x)dx′ (µ ∈ (0, 1]) (3.22)

g̃−ω(x) = Bωe
γω
µ (L−x)

−

∫ L

x

Γ(x′)
µ

e
γω
µ (x′−x)dx′ (µ ∈ [−1, 0]), (3.23)

where Γ(x′) =
Cω∆T̃(x′)+Q̃ω(x′)τω

4πΛω
, γω = (1 + iητω)/Λω, L is the distance between the

two walls, and Pω and Bω are the unknown coefficients determined by the bound-

ary conditions. Here, g̃+(x) indicates the forward-going phonons and g̃−(x) the

backward-going phonons. In this work, g̃+(x) is specified at one of the two walls

and g̃−(x) is specified at the other.

Let us assume that the two boundaries are nonblack but diffuse with wall tempera-

ture ∆T1 and ∆T2, respectively. The boundary conditions can be written as:

g̃+
ω(x = 0) = Pω = ε1

Cω

4π
∆T1 + (1 − ε1)

∫ 0

−1
g̃−ω(x = 0, µ)dµ (3.24)

g̃−ω(x = L) = Bω = ε2
Cω

4π
∆T2 + (1 − ε2)

∫ 1

0
g̃+
ω(x = L, µ)dµ, (3.25)

where ε1 and ε2 are the emissivities of the hot and cold walls, respectively. When

ε1 = ε2 = 1, the walls are black and we recover Dirichlet boundary conditions. Note

that while we assume a thermal spectral distribution for the boundary condition, an

arbitrary spectral profile can be specified by replacing the thermal distribution with

the desired distribution. Equations (3.24) & (3.25) are specific for diffuse boundary

scattering; the specular case is presented in Appendix A.

Applying the boundary conditions to Eqs. (5.6) & (5.7), we have

g̃+
ω(x) = A1ω

Cω

4π
e−

γω
µ x + e−

γω
µ x

∫ L

0
Γ(x′)

[
DωE1(γω(L − x′)) + B1ωE1(γωx′)

]
dx′

+

∫ x

0

Γ(x′)
µ

e
γω
µ (x′−x)dx′ (µ ∈ [0, 1]) (3.26)

g̃−ω(x) = A2ω
Cω

4π
e−

γω
µ (L−x) + e−

γω
µ (L−x)

∫ L

0
Γ(x′)

[
DωE1(γωx′) + B2ωE1(γω(L − x′))

]
dx′

+

∫ L

x

Γ(x′)
µ

e−
γω
µ (x′−x)dx′ (µ ∈ [0, 1]), (3.27)
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where

A1ω =
ε1∆T1 + (1 − ε1)ε2∆T2E2(γωL)
1 − (1 − ε1)(1 − ε2)(E2(γωL))2 , A2ω =

ε2∆T2 + (1 − ε2)ε1∆T1E2(γωL)
1 − (1 − ε1)(1 − ε2)(E2(γωL))2 ,

B1ω =
1 − ε1

1 − (1 − ε1)(1 − ε2)(E2(γωL))2 , B2ω =
1 − ε2

1 − (1 − ε1)(1 − ε2)(E2(γωL))2 ,

Dω =
(1 − ε1)(1 − ε2)E2(γωL)

1 − (1 − ε1)(1 − ε2)(E2(γωL))2 ,

and En(x) is the exponential integral given by:(21)

En(x) =

∫ 1

0
µn−2e−

x
µ dµ. (3.28)

To close the problem, we plug Eqs. (3.26) & (3.27) into Eq. (5.4) and obtain an

integral equation for temperature as:

2
∫ ωm

0

Cω

τω
dω∆T̃(x̂) =

∫ ωm

0

Cω

τω

[
A1ωE2

(
γ̂ω x̂

)
+ A2ωE2(γ̂ω(1 − x̂))

]
dω

+

∫ 1

0

∫ ωm

0
Q̃ω(x′)

Gω(x̂ , x̂′)
Knω

dωdx̂′

+

∫ 1

0
∆T̃(x̂′)

∫ ωm

0

CωGω(x̂ , x̂′)
Knωτω

dωdx̂′, (3.29)

where x̂ = x/L, Knω = Λω/L is the Knudsen number, γ̂ω =
1+iητω

Knω
and

Gω(x̂ , x̂′) = E2(γ̂ω x̂)
[
DωE1(γ̂ω(1 − x̂′)) + B1ωE1(γ̂ω x̂′)

]
+ E2(γ̂ω(1 − x̂))

[
DωE1(γ̂ω x̂′) + B1ωE1(γ̂ω(1 − x̂′))

]
+ E1(γ̂ω | x̂′ − x̂ |). (3.30)

Equation (3.29) can be written in the form:

∆T(x̂) = f (x̂) +

∫ 1

0
K(x̂ , x̂′)∆T(x̂′)dx̂′, (3.31)

where the kernel function K(x̂ , x̂′) is given by

K(x̂ , x̂′) =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωGω(x̂ , x̂′)
Knωτω

dω (3.32)
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and the inhomogeneous function f (x̂) is given by

f (x̂) =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω

[
A1ωE2(γ̂ω x̂) + A2ωE2(γ̂ω(1 − x̂))

]
dω

+
1

2
∫ ωm

0
Cω
τω

dω

∫ 1

0

∫ ωm

0
Q̃ω(x′)

Gω(x̂ , x̂′)
Knω

dωdx̂′. (3.33)

From Eq. (3.31), we see that the governing equation is a Fredholm integral equa-

tion of the second kind. Previously, the gray version of Eq. (3.29) that assumes

average phonon properties has been solved numerically using integral discretiza-

tion method.(21) While this approach does yield the solution, it requires the filling

and inversion of a large, dense matrix, an expensive calculation even for the gray

case. Considering the full phonon dispersion adds additional integrations to cal-

culate each element of the matrix, dramatically increasing the computational cost.

Additionally, care must be taken to account for a singularity point at x̂′ = x̂ since

E1(0)→ ∞.

Here, we solve this equation using the method of degenerate kernels,(116) which

is much more efficient than the integral discretization method and automatically

accounts for the singularity point at x̂′ = x̂. This method is based on expanding all

the functions in Eq. (3.31) in a Fourier series, then solving for the coefficients of

the temperature profile. From the temperature ∆T̃(x̂), all other quantities such as

the distribution and heat flux can be obtained.

To apply this method, we first need to expand the inhomogeneous function f (x̂) and

kernel K(x̂ , x̂′) with a Fourier series. This expansion is possible because both f (x̂)

and K(x̂ , x̂′) are continuous and continuously differentiable on the relevant spatial

domains of normalized length between [0, 1] and [0, 1] × [0, 1], respectively.(116)

All the necessary functions can be expanded using a linear combination of sines

and cosines; however, a substantial simplification can be obtained by solving a

symmetric problem in which the spatial domain is extended to include its mirror
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image by extending both f (x̂) and K(x̂ , x̂′) to [-1,1] and [-1,1] × [-1,1]. Because

of the symmetry of this domain, all the coefficients for sine functions equal zero

and the Fourier series for both functions reduces to a cosine expansion. f (x̂) is then

approximated as

f (N)(x̂) =
1
2

f0 +

N∑
m=1

fmcos(mπ x̂), (3.34)

where fm = 2
∫ 1

0
f (x̂)cos(mπ x̂)dx̂. The kernel K(x̂ , x̂′) can be represented by a

degenerate double Fourier series, given by

K(N)(x̂ , x̂′) =
1
4

k00 +
1
2

N∑
m=1

km0cos(mπ x̂) +
1
2

N∑
n=1

k0ncos(nπ x̂′)

+

N∑
m=1

N∑
n=1

kmncos(mπ x̂)cos(nπ x̂′), (3.35)

where

kmn = 4
∫ 1

0

∫ 1

0
K(x̂ , x̂′)cos(mπ x̂)cos(nπ x̂′)dx̂d x̂′. (3.36)

Moreover, the convergence and completeness theorem of cosine functions guaran-

tees that K(N)(x̂ , x̂′) and f (N)(x̂) converge to K(x̂ , x̂′) and f (x̂) as N → ∞.(117)

Inserting Eqs. (3.34) & (3.35) into Eq. (3.31), we then obtain the following integral

equation

N∑
m=0

xmcos(mπ x̂) =
1
2

f0 +

N∑
m=0

fmcos(mπ x̂) +

∫ 1

0

N∑
n=0

xmcos(nπ x̂′)
[
1
4

k00

+
1
2

N∑
m=1

km0cos(mπ x̂) +
1
2

N∑
n=1

k0ncos(nπ x̂′)

+

N∑
m=1

N∑
n=1

kmncos(mπ x̂)cos(nπ x̂′)

 dx̂′, (3.37)

where xm are the desired but unknown Fourier coefficients of ∆T̃(x̂).

Using the orthogonality of cos(nπ x̂) on [0, 1] gives a simpler form of Eq. (3.37):

N∑
m=0

xmcos(mπ x̂) =
1
2

f0+

N∑
m=0

fmcos(mπ x̂)+
1
4

N∑
m=0

km0xm+
1
2

N∑
m=1

N∑
n=1

kmn xncos(mπ x̂).

(3.38)
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Grouping the terms with the same index m in cosine, a system of linear equations

of xm can be obtained as:

¯̄Ax̄ = f̄ , (3.39)

where x̄ is the vector of unknown coefficient xm and f̄ is the vector of fm in

Eq. (3.34). The matrix ¯̄A contains elements A00 = 1− k00
4 , A0n = − 1

2 k0n, An0 = − kn0
4 ,

Ann = 1 − 1
2 knn and Anm = − 1

2 knm (m , n , 0). Expressions of the elements in ¯̄A

can be obtained analytically for the specific kernel here and are given in Appendix

B for the steady-state heat conduction with diffuse walls. Since there is no row or

column in ¯̄A that is all zeros or a constant multiple of another row or column, it is

always guaranteed that ¯̄A is non-singular and its inverse exists.

Solving the matrix system yields xm and thus the temperature ∆T̃(x̂), g̃+
ω(x), and

g̃−ω(x) can be obtained from ∆T̃(x̂) using Eqs. (3.26) & (3.27). Finally, the spectral

heat is given by:

qω(x) =

∫ 1

−1
gωvωµdµ =

∫ 1

0
g+
ωvωµdµ −

∫ 1

0
g−ωvωµdµ, (3.40)

thereby closing the problem.

Summary of the method

We now summarize the key steps to implement our method. The first step is to

determine the appropriate boundary conditions for the problem and compute the

constants in Eqs. (3.26) & (3.27). Subsequently, the kernel function K(x̂ , x̂′) and

the inhomogenous function f (x̂) can be obtained from Eq. (3.20), and their Fourier

coefficients can be computed using Eqs. (3.34) & (3.35). The elements in ¯̄A cor-

respond to the Fourier coefficients of kernel function K(x̂ , x̂′), and f̄ is a vector

of the Fourier coefficients of the inhomogeneous part of Eq. (3.29). We empha-

size that analytic expressions for all of these elements exist and can be obtained;

examples of these coefficients for steady heat conduction with non-black, diffuse
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boundaries are given in Appendix B. Once ¯̄A and f̄ are obtained, Eq. (3.39) is

solved by standard matrix methods to yield the coefficients xm. Finally, ∆T̃(x̂) is

given by
∑N

m=0 xmcos(mπ x̂).

Efficiency of the method

The primary benefit of our method is the substantial reduction in computational cost

compared to the widely used integral discretization approach. Since both K(N)(x̂ , x̂′)

and f (N)(x̂) converge to K(x̂ , x̂′) and f (x̂) as 1/N2, only a few terms of expansion

are required for accurate calculations. In practice, we find that only 20 terms are

necessary before the calculation converges, meaning the required matrix is only

20 × 20. Compared to the traditional integral discretization method that requires a

matrix on the order of 1000 × 1000 before convergence is achieved, our approach

is at least 3 orders of magnitude faster. Further, as we will show in Section 3.3,

our semi-analytical approach enables a closed-form solution for the cross-plane

thermal conductivity of a thin film that is not possible to derive from the integral

discretization method.

Demonstration of the method

As an example calculation, we consider steady-state heat conduction between two

walls that are either black or non-black. In the former case, both wall emissivities ε1

and ε2 equal 1 while in the latter case they are set to 0.5. Assuming steady state and

no heat generation inside the domain, η = 0, and Qω = 0. The Fourier coefficients of

K(x̂ , x̂′) and f̄ for these two specific cases are given in Appendix B. We perform our

calculations for crystalline silicon, using the experimental dispersion in the [100]

direction and assuming the crystals are isotropic. The numerical details concerning

the dispersion and relaxation times are given in Ref. (79).

We calculate the deviational temperature distribution ∆T(x̂) for different film thick-

ness at different equilibrium temperatures as shown in Figs. 3.6 & 3.7 while keep-
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Figure 3.6: (a) Schematic of a planar slab with walls at different temperatures.

(b)Temperature distribution ∆T(x̂) for a planar slab with black walls (solid lines)

and nonblack walls (dashed lines) when Knavg ∼ O(10−2).
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O(102). As Knavg increases, temperature slip at the boundaries grows larger.
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ing |∆T1| = |∆T2 | = 1 K. When the averaged Knudsen number is small such that

Knavg � 1, the temperature profile remains linear. As thin film thickness decreases

such that Knavg ∼ 1 or � 1, we observe a similar temperature slip as discussed

in Ref. (21). These calculations take approximately one second to compute on a

standard laptop computer. In contrast, the integral discretization method is at least

1000 times slower, requiring on the order of one hour to arrive at the same result.

In addition to the finite-layer geometry we consider above, the series expansion

approach can be readily applied to many other thin film geometries, such as super-

lattices and the transducer film used in thermoreflectance experiments, by imposing

different boundary conditions. Similar large reductions in computational cost can

be expected for these cases.

Analytical formula for cross-plane thermal conductivity

Our semi-analytical approach also allows us to obtain a simple closed form ex-

pression for the cross-plane thermal conductivity as a function of film thickness,

analogous to the Fuchs-Sondheimer expression for in-plane thermal conductivity.

Such a formula allows the cross-plane thermal conductivity to be easily evaluated

because the full solution of the BTE is no longer required. To derive this formula,

we assume black walls and calculate the spatially averaged spectral heat flux that is

integrated over the domain, defined as:∫ 1

0
qω(x̂)dx̂ =

1
L

∫ L

0
qω(x)dx =

(
∆T1 − ∆T2

2

) [
1
3

CωvωKnω − CωvωKnωE4

(
1

Knω

)]
+

Cωvω
2Knω

[∫ 1

0

∫ x̂

0
∆T(x̂′)E2

(
| x̂′ − x̂ |

Knω

)
dx̂′dx̂ −

∫ 1

0

∫ 1

x̂
∆T(x̂′)E2

(
| x̂′ − x̂ |

Knω

)
dx̂′dx̂

]
(3.41)
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Once xm is solved from Eq. (3.37), we can insert the Fourier series of ∆T(x) into

Eq. (3.41), which leads to∫ 1

0
qω(x̂)dx̂ =

[(
∆T1 − ∆T2

2

)
1
3

CωvωKnω − CωvωKnωE4

(
1

Knω

)]

+
Cωvω
2Knω

∞∑
m=1

xm[1 − (−1)m]
∫ 1

0

(Knωµ)2
(
1 + e−

1
Knω µ

)
1 + (Knωµ)2(mπ)2 dµ.

(3.42)

According to Fourier’s law, the integrated heat flux is given by∫ 1

0
q f
ω(x̂)dx̂ =

1
3

CωvωKnω(∆T1 − ∆T2). (3.43)

The heat suppression function is defined as the ratio of the BTE and Fourier’s heat

flux(118), given as

S(Knω , L) =
1
2
−

3
2

E4

(
1

Knω

)
+

3
2

∞∑
m=1

xm[1 − (−1)m]
∫ 1

0

µ2
(
1 + e−

1
Knω µ

)
1 + (Knωµ)2(mπ)2 dµ.

(3.44)

Note that the suppression function in general not only depends on Knω but also is a

function of geometry through xm. The reduced or apparent thermal conductivity at

a given domain thickness L is then given by:

k(L) =

∫ ωm

0

1
3

CωvωΛωS(Knω , L)dω. (3.45)

This formula is analogous to the Fuch-Sondheimer equation for transport along thin

films and allows the evaluation of the cross-plane thermal conductivity provided the

expansion coefficients xm are known. However, obtaining the expansion coefficients

still requires solving the BTE as described above. A more useful result would be a

suppression function that depends only on the Knudsen number as is available for

in-plane heat conduction with the Fuchs-Sondheimer formula.(104, 105)

To overcome this difficulty, we derive a simplified form of Eq. (3.44) that is valid

under the conditions of most experiments. Note from Fig. 3.6(b) that for Knavg ∼
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O(10−2), the temperature distribution is still linear, allowing us to simplify Eq. (3.44)

by inserting the linear temperature distribution. Doing so leads to a simplified sup-

pression function:

Ssimplified(Knω) = 1 + 3Knω

[
E5

(
1

Knω

)
−

1
4

]
. (3.46)

This equation depends only on the Knudsen number and hence can be used to di-

rectly evaluate the cross-plane thermal conductivity given the phonon dispersion.

This equation is valid provided that the ballistic modes are only low frequency

phonons that contribute little to heat capacity, a situation that occurs often in ex-

periment because high frequency phonons have short MFPs, on the order of tens of

nanometers, at temperatures exceeding 20 K.

One important observation from Fig. 3.8(a) is that the exact and simplified suppres-

sion functions converge to the same curve at large Knω. Also note that as the slab

thickness decreases, the Knudsen number of a phonon with a particular MFP be-

comes larger. Therefore, in the limit of very small distance between the boundaries,

the only important portion of the suppression function is at large values of Knudsen

number exceeding Knω = 1 because phonons possess a finite minimum MFP. This

observation suggests that for practical purposes the simplified suppression can be

used even outside the range in which it is strictly valid with good accuracy. This

simplification is very desirable because the simplified suppression function only

depends on the Knudsen number and thus can be applied without any knowledge of

other material properties.

Next, we apply this simplified suppression function to extract information about

the phonon MPFs from the experimental measurements. In several works, thermal

conductivity over variable lengths of nanostructures such as nanotubes, graphene

ribbons and SiGe nanowires was measured. In principle, the measurements should

contain information about MFPs: if phonons have MFPs exceeding the distance
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Figure 3.8: (a) Simplified (solid line) and exact (dashed line) suppression function

versus Knudsen number. The exact and simplified suppression functions converge

to the same curve at large Knω. (b) Example MFP reconstructions for silicon at 300

K using numerically simulated data. Plotted are the analytical MFP distribution

(solid line), the numerical apparent thermal conductivities (squares), and the recon-

structed MFP distribution by the exact suppression function (circles) and by the

simplified suppression function (stars). The x axis corresponds to the MFP for the

distributions and to the slab thickness for the thermal conductivity data. Both the

exact and simplified suppression functions yield satisfactory MFP reconstruction

results.

between the heat source and the heat sink, their contribution to thermal conduc-

tivity is reduced compared to that in the bulk material, and thus the deviations of

the measured thermal conductivity from the bulk value provide information on the

phonon MFPs. Prior studies extracted only an average MFP despite the fact that

recent works have demonstrated that in many solids phonon MFPs vary over orders

of magnitude, make the approximation of an average MFP for all phonons quite

poor.

The method proposed by Minnich is able to extract spectral MFP spectra from
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variable-length thermal conductivity measurements by solving Eq. 3.45 as an in-

verse problem. The detailed description of the method is given in Ref. (118).

Briefly, the variable-length thermal conductivities can be related to the MFP dis-

tribution f (Λω) by

ki =

∫ ∞

0
S(Knω) f (Λω)dΛω , (3.47)

where S(Knω) is the suppression function given by Eq. 3.44 or Eq. 3.46. If ki’s are

known, f (Λω) can be reconstructed using convex optimization.

To investigate the accuracy of Eq. 3.46, we perform the above reconstruction proce-

dure to recover the MFP spectrum from thermal conductivity data as a function of

slab thickness using both exact and simplified suppression functions. We synthesize

effective thermal conductivities numerically using Eq. (3.45). Using these effective

thermal conductivities and our knowledge of the suppression function, we use con-

vex optimization to solve for the MFP spectrum. In the exact suppression function

case, each slab thickness has its own suppression function given by Eq. (3.44) while

in the simplified case Eq. (3.46) is used for all slab thicknesses.

As shown in Fig. 3.8(b), both the simplified and exact suppression functions yield

satisfactory results. Even though the smallest thickness we consider here is 50 nm,

close to the ballistic regime, the simplified suppression function still gives a de-

cent prediction over the whole MFP spectrum, with a maximum of 15 % deviation

from the actual MFP spectrum. For practical purposes, this deviation is comparable

to uncertainties in experimental measurements and therefore the simplified sup-

pression function can be used as an excellent approximation in the reconstruction

procedure. This result demonstrates that length-dependent thermal conductivity

measurements like those recently reported for SiGe nanowires(119) and graphene

ribbons(120) can be used to reconstruct the full MFP spectrum rather than only

an average MFP. We perform an investigation of our approach for this purpose in
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Ref. (121).

3.4 Summary

In an infinite or semi-infinite domain, we have derived a new analytical Green’s

function of the multi-dimensional frequency-dependent BTE and demonstrated its

capability to efficiently solve a wide range of problems that were previously in-

tractable except using expensive numerical approaches. On the other hand, when

the interested domain becomes finite, we have presented a series expansion method

to solve the one-dimensional, transient frequency-dependent BTE and demonstrated

its capability to describe cross-plane heat conduction in thin films. Our solution is

valid from the diffusive to ballistic regimes, rigorously includes frequency depen-

dence, and can be applied to a wide range of geometries.

With the time resolution on the order of tens of femtosecond from commercially

available femtosecond laser sources and the spatial resolution on the order of tens

of nanometers from nanoscale metallic heating structures, it becomes possible to

directly access energy transport processes among phonons using ultrafast optical

techniques. While ultrafast methods have shown their potential to probe the fun-

damental energy carriers, analysis of nanoscale energy transport occurring in those

techniques remains challenging. With the BTE solutions we derived above, we are

now able to accurately describe energy transport in some ultrafast optical exper-

iments. In the next two chapter, we demonstrate how we are able to rigorously

investigate the microscopic properties of thermal phonons using the unique combi-

nation of the ultrafast methods and BTE modeling.
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C h a p t e r 4

TRANSPORT REGIMES BEYOND DIFFUSION AND THEIR
APPLICATIONS

Chapter 4 has been adapted from

(1) Chengyun Hua and Austin J. Minnich. “Transport regimes in quasiballistic
heat conduction”. In: Phys. Rev. B 89 (9 2014), p. 094302. doi: 10.1103/
PhysRevB.89.094302. url: http://link.aps.org/doi/10.1103/
PhysRevB.89.094302.

4.1 Introduction

One advantage of analytical solutions to the phonon Boltzmann transport equation

(BTE) is that just by looking at the form of the solution we could fully investigate

heat conduction from diffusive to ballistic regimes as well as the transition regime,

called quasiballistic transport.

Quasiballistic heat conduction occurs if a temperature gradient exists over length

scales comparable to phonon mean free paths (MFPs).(21, 22) In this regime, local

thermal equilibrium does not exist and Fourier’s law is no longer valid. Presently,

quasiballistic transport is under investigation due to its potential to infer information

about the MFPs of thermal phonons,(118) knowledge of which is crucial to engineer

thermal conductivity but remains unknown for most solids.(13, 14)

Quasiballistic transport was originally observed in macroscopic samples using heat

pulse experiments(18) and later in silicon membranes using a microfabricated plat-

form.(122) Nonlocal theories of heat conduction based on the BTE were introduced

to describe the quasiballistic regime for phonons(68, 123, 124) and electrons.(125)

Koh and Cahill reported modulation-frequency dependent thermal conductivities in

a time-domain transient thermoreflectance (TDTR) experiment that they attributed
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to quasiballistic transport and suggested that the meansurements could be used to

measure MFPs. Recently, quasiballistic transport has been observed in other exper-

imental configurations.(20, 23–25) Minnich introduced a reconstruction technique

that described how to quantitatively recover the MFP spectra from observations of

quasiballistic heat transfer.(118)

One notable experimental method for observing quasiballistic transport is the tran-

sient thermal grating (TTG) technique(25, 126, 127), in which the interference of

two laser pulses creates a sinusoidal initial temperature profile with wavelength λ.

The observed thermal decay yields information about the thermal properties of the

material. Recent work has demonstrated that these measurements can also reveal

MFPs if the grating wavelength is comparable to MFPs, but interpreting measure-

ments using the reconstruction method introduced by Minnich requires a solution

of the BTE. A previous work reported a modified "two-channel" model(126), in

which low and high frequency phonons are described by the BTE and heat equa-

tion, respectively, but the extent of the validity of this model is unclear. An analysis

within the framework of the BTE(128) has been recently reported but the analysis

of the frequency-dependent BTE was solely numerical, complicating its use for the

reconstruction method.

Here, we analyze thermal transport in TTG using the Green’s function solution

to the frequency-dependent BTE derived in Chapter 3. Our analysis demonstrates

the existence of weakly and strongly quasiballistic transport regimes that are dis-

tinguished by the thermal decay time relative to the phonon relaxation times. We

provide theoretical justification for the use of a modified diffusion theory to inter-

pret observations of quasiballistic transport. Finally, we use our solution to derive

a corrected suppression function that enables phonon MFP spectra to be measured

more accurately. Our results will lead to a better understanding of phonon heat

conduction in solids like thermoelectrics.
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4.2 Modeling

We start with Eq. 3.1. Thermal transport in a TTG experiment, assuming only in-

plane heat conduction and a small temperature rise, ∆T = T(x , t) − T0, relative to a

reference temperature T0, is described by the 1D frequency-dependent BTE,(22)

∂gω
∂t

+ vgµ
∂gω
∂x

= −
gω
τω

+
1

4π
Cω

τω
∆T +

Qω

4π
(4.1)

where gω = fω(x , t , µ)− f0(T0) is the deviational distribution function, f0 = f0(x , t)

is the equilibrium distribution function, µ = cos(θ) is the directional cosine, vω is

the phonon group velocity, τω is the phonon relaxation time, and Qω is the spectral

volumetric heat generation.

As treated in Chapter 3, to close the problem, energy conservation is used to relate

gω to ∆T , given by∫ ∫ ωm

0

[
gω(x , t)
τω

−
1

4π
Cω

τω
∆T(x , t)

]
dωdΩ = 0, (4.2)

where gω = ~ωD(ω)( fω(x , t , θ) − f0(T0)) is the desired deviational distribution

function, Qω(x , t) is the spectral volumetric heat generation, vg(ω,T) is the phonon

group velocity, and τ(ω,T) is the phonon relaxation time. Here, x is the spa-

tial variable, t is the time, ω is the phonon frequency, T is the temperature, and

µ = cos(θ) is the directional cosine of the polar angle θ. ~ is the reduced Planck

constant, D(ω) is the phonon density of states, f BE is the Bose-Einstein distribu-

tion, and Cω = ~ωD(ω) ∂f BE
∂T is the mode specific heat. The volumetric heat capacity

is then given by C =
∫ ωm

0
Cωdω and the thermal conductivity k =

∫ ωm

0
kωdω, where

kω = 1
3CωvωΛω and Λω = τωvω is the phonon MFP.

Since the initial temperature profile in TTG is sinusoidal, we can assume that both

gω and ∆T are of the form eiqx, where q = 2π/λ is the grating wavevector, and the

volumetric heat generation term in Eq. 4.1 has the following form:

Qω = Cωeiqxδ(t), (4.3)
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where δ(t) denotes an impulse at t = 0, and the initial heat generation follows

a thermal distribution. Substituting gω = g̃ω(t , µ)eiqx and ∆T = ∆T̃(t)eiqx into

Eq. (4.1) leads to a first-order ODE for g̃ω(t). Collins et. al.(128) obtained an

analytical solution by applying a Fourier transform to the grey form of this equation.

Here, we extend the Fourier transform method to the frequency-dependent BTE.

Applying the Green’s function method described in Section 3.2, we are able to de-

couple the nonlocal effects and directly obtain the following closed-form expression

for the unknown distribution function g̃ω and transient temperature ∆T̃ :

F [g̃ω](η) =
1

4π
Cω

τω

F [∆T̃](η)
γ − iη

+
Cω

4πτω

∆T̃(0)
γ − iη

(4.4)

F [∆T̃](η) =
∆T̃(0)

∫ ωm

0
Cω
τω
A(η)dω∫ ωm

0
Cω
τω

[1 − A(η)]dω
(4.5)

A(η) =
i

2qΛω
log

(
τωη + qΛω + i
τωη − qΛω + i

)
, (4.6)

where F denotes Fourier transform, γ = (1 + iqµΛω)/τω, and η is the temporal

Fourier variable. The time-domain solution is obtained by inverse fast Fourier trans-

form. Therefore, we have derived an analytical solution to the frequency-dependent

BTE that is valid from the ballistic to the diffusive regimes, enabling a more rigor-

ous understanding of thermal transport in TTG.

We can gain insight into which parameters determine the transport regime from our

solution. From Eq. (4.6), we identify two nondimensional parameters. One is the

familiar phonon Knudsen number Knω = qΛω, which compares the phonon MFP

with a characteristic length, in this case 1/q. To identify the second parameter, we

notice that η−1 describes a time scale that we assign to be the characteristic thermal

decay time Γ. We can therefore define a new non-dimensional parameter that we

denote the transient number, given by Hω = τω/Γ, which compares the phonon

relaxation times with the thermal decay time Γ.



65

Note that the two parameters are not completely independent. For example, as the

grating wavelength decreases, the thermal decay time also decreases. In the diffu-

sion regime the relationship is trivial but in the quasiballistic and ballistic regimes

the relationship becomes much more complex. While the Knudsen number can

in principle completely distinguish the transport regime, we find that the transient

number is an additional convenient parameter by which to specify the regime, par-

ticularly for quasiballistic transport where the specific Knudsen number at which a

transition occurs is not obvious.

Therefore, together, these two numbers completely specify the transport regime. In

the diffusive limit, length and time scales are much larger than the phonon MFPs

and relaxation times, respectively, corresponding to Knω � 1 and Hω � 1. In

the ballistic regime, lengths and times are much smaller than MFPs and relaxation

times, or Knω � 1 and Hω � 1. The two regimes are well-understood limits

of the BTE(21). Here, we focus on the intermediate range of the two limits, the

quasiballistic regime.

4.3 Heat transport regimes

To begin, we examine the transient temperature decay in the different regimes as

shown in Fig. 4.1. We perform our calculations for crystalline silicon, using the ex-

perimental dispersion in the [100] direction and assuming the crystals are isotropic.

The numerical details concerning the dispersion and relaxation times are given by

Minnich’s recent work(79).

Diffusive and ballistic limits

We first confirm that our result correctly reproduces the diffusive and ballistic limits.

Examining the limit of Eq. (4.5) when both phonon relaxation times and MFPs are

much smaller than their corresponding characteristic scales (Hω � 1 & Kn2
ω � 1),

we find that the solution reduces to the Fourier solution and the thermal decay
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Figure 4.1: Temperature decay curves∆T̃ in the (a) diffusive limit, (b) ballistic limit,

(c) weakly quasiballistic regime, and (d) strongly quasiballistic regime. The BTE

solutions are given by the solid lines, the Fourier solution by the dashed lines, the

ballistic conduction solution by the dotted line, and the Modified Fourier solution

by the dash-dotted lines.
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time Γ = (q2α)−1, where α = k/C is the Fourier thermal diffusivity. Fig. 4.1(a)

demonstrates that the BTE solution agrees with the Fourier solution in this limit.

Similarly, at the ballistic limit (Hω � 1 & Kn2
ω � 1) shown in Fig. 4.1b, the

transient temperature given by Eq. (4.5) agrees with the ballistic solution of the

BTE in which the relaxation times go to infinity.

Weakly quasiballistic regime

We now examine the intermediate quasiballistic regime by allowing the MFPs to be

comparable to or greater than the grating wavevector while requiring the thermal

decay time to be much longer than relaxation times, Kn2
ω ∼ 1 but Hω � 1. We

observe that the BTE solution does not agree with the Fourier’s law solution, as

shown in Fig. 4.1(c). However, we observe that the shape of the temperature decay

remains exponential, as in Fourier’s law, but with a smaller thermal conductivity.

We denote this regime the weakly quasiballistic regime, and the Fourier solution

with a modified thermal conductivity as the modified Fourier solution. So far, the

validity of the modified Fourier model to describe quasiballistic thermal transport

is largely based on experimental observations.(25) The only theoretical approach

to explain this observation was developed by Maznev et. al.(126) Their modified

"two-channel" model assumes that the low-frequency phonons, which are analyzed

by the BTE, only interact with the thermal reservoir of high-frequency phonons,

which are analyzed by the diffusion equation. However, the extent of the validity of

this assumption is not clear.

Here, we give a more rigorous explanation using our solution. Under the assump-

tion of Kn2
ω ∼ 1 and Hω � 1, the Taylor expansion of Eq. 4.6 around Hω = 0

gives

A(η) = iηωη +
tan−1(Knω)

Knω
∼ 1. (4.7)

We observe that in the denominator of Eq. (4.5), 1−A(η) ∼ τω and the full asymp-
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totic expression of A(η) should be used while in the numerator, A(η) can be ap-

proximated 1. Therefore, Eq. (4.5) asymptotically approaches the following form:

F [∆T̃](η) ≈
∆T̃(0)

q2αmod − iη
(4.8)

kmod =

∫ ωm

0
kω

{
3

(Knω)2

[
1 −

tan−1(Knω)
Knω

]}
dω, (4.9)

where αmod = kmod/C is the apparent thermal diffusivity and kmod is the modified

thermal conductivity. Recognizing that Eq. (4.8) is simply the Fourier transform

of an exponential decay, we find ∆T̃(t) ≈ ∆T̃(0)exp
(
−q2αmodt

)
. Thus, the formal

solution of the BTE is equivalent to a modified diffusion theory with a modified

thermal conductivity given by Eq. (4.8). The thermal decay time Γ = (q2αmod)−1.

We term this simplified solution the weak solution to the BTE, valid in the weakly

quasiballistic regime. The modified thermal conductivity is the same expression

given by Maznev et. al.(126)

Most recent experimental observations of quasiballistic transport have occurred

in this weakly quasiballistic regime. For instance, in the TTG measurement of

silicon membranes reported by Johnson et al.,(25) the typical Knω ≈ 2.5 and

Hω ∼ O(0.01), based on the median thermal phonon MFP at the room tempera-

ture. Therefore, their measurements fall into the weakly quasiballistic regime and a

modified Fourier solution should explain the results, in agreement with the experi-

ment.

Strongly quasiballistic regime

As the grating wavelength decreases, eventually the thermal decay becomes so fast

that it is comparable to or greater than relaxation times such that Hω ∼ 1 and

Kn2
ω ∼ 1. Here, the assumption made in the modified "two-channel" model is not

valid because some phonons in the thermal reservoir are now ballistic. For silicon,

this regime occurs at small grating wavelength (. 0.5 µm) or at cryogenic temper-
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atures. In this case, the BTE solution deviates from the exponential decay and can

no longer be explained with any type of diffusion model as shown in Fig. 4.1d, and

a full solution given by Eq. (4.5) is necessary. We denote this regime the strongly

quasiballistic regime. The equivalent decay time Γ is given by
∫ ∞

0
∆T(t)dt/∆T(0),

which reduces to the corresponding thermal decay times in the other two regimes

above.

4.4 Suppression function

We now seek to understand how the thermal length and time scales affect which

phonons conduct heat in each regime. From our model, we can calculate the spectral

thermal conductance, defined as the ratio of heat flux to the temperature difference

σω =

∫ ∫
qω(x , t)dxdt∫ ∫
∆T(x , t)dxdt

=

∫ ∫
q̃(η)eiqxdxdη∫ ∫
∆T̃(η)eiqxdxdη

, (4.10)

where qω(x , t) =
∫

gω(x , t , θ)vω cos(θ)dΩ is the spectral heat flux. In this way, we

remove any spatial and temporal factors and can directly compare the heat flow

induced by a unit temperature difference for each phonon mode.

Substituting Eqs. (4.4) & (4.5) into Eq. (4.10), we derive a general expression for

the spectral thermal conductance

σω = σ f

{
3

(Knω)2

[
1 −

tan−1(Knω)
Knω

]
[Hω + 1]

}
, (4.11)

where σ f = kω/(λ/2) is the Fourier thermal conductance. The term in the brack-

ets, equal to the ratio of the BTE thermal conductance to the Fourier thermal con-

ductance, was previously termed the suppression function S(Knω , Hω) by Min-

nich(118).

Now let us examine the thermal conductance in the two quasiballistic transport

regimes discussed above, shown in Fig. 4.2. We compare the thermal conductance

calculated by the Fourier’s law, weak BTE and full BTE solutions.
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Figure 4.2: Spectral thermal conductance σω in the (a) weakly quasiballistic regime

and (b) strongly quasiballistic regime. The BTE solutions are given by the solid

lines, the Fourier solution by the dashed lines, and the weak BTE solution by the

dash-dotted lines.
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In weakly quasiballistic regime, where Kn2
ω ∼ 1 but Hω � 1 (Fig. 4.2(a)), Hω+1→

1 and Eq. (4.11) reduces to σω = σ f Sweak(Knω), where Sweak(Knω) is the same as

the term in the brackets of Eq. (4.9). In this regime, Fourier’s law overpredicts

the heat flux but the weak BTE solution still accurately describes the spectral heat

distribution. From Fig. 4.2(b), we see that the heat contribution from low frequency

phonons is suppressed compared to the Fourier’s law prediction.

In the strongly quasiballistic regime (Fig. 4.2(b)), the weak BTE solution does not

accurately explain the spectral conductance and we must instead use Eq. (4.11).

The full BTE solution predicts a more gradual suppression than the weak BTE so-

lution for those low frequency phonons whose relaxation times are comparable to

or greater than the thermal decay time Γ. This discrepancy is due to the correction

term Hω + 1, which approaches its maximum value at low frequencies and reduces

the suppression effects. Rewriting Hω into Λω/(vωΓ) in Eq. (4.11), we find that our

new suppression function decreases as 1/Λω in the long MFP limit, in agreement

with the ballistic limit of the BTE(21) while Sweak(Knω) predicts a steeper slope,

1/Λ2
ω, which is inconsistent with the ballistic limit. Therefore, our new suppression

function provides a more accurate prediction of the heat flux suppression over the

entire spectrum of phonons compared to the approximate approaches in the litera-

ture.(126, 128)

4.5 Application

We now show the utility of these insights by demonstrating how our new suppres-

sion function may be used to more accurately measure MFP spectra. As proposed

by Minnich(118), the apparent thermal conductivities can be related to the MFP

distribution by the equation kapp =
∫ ∞

0
S(Λω) f (Λω)dΛω where S(Λω) is the sup-

pression function, the phonon MFP Λω is the independent variable and f (Λω) is the

desired MFP distribution. If the apparent thermal conductivities are experimentally
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Figure 4.3: Example MFP reconstructions for silicon at (a) 100 K and (b) 500 K

using numerically simulated data. Plotted are the analytical MFP distribution (solid

line), the numerical apparent thermal conductivities (squares), the reconstructed

MFP distributions by the general suppression function (triangles) and by the weak

suppression function (circles). The x-axis corresponds to the MFP for the distribu-

tions and to the grating wavelength for the thermal conductivity data.
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Figure 4.4: Example MFP reconstructions for PbSe at 300 K using numerically

simulated data. Plotted are the analytical MFP distribution (solid line), the numer-

ical apparent thermal conductivities (squares), the reconstructed MFP distributions

by the general suppression function (triangles) and by the weak suppression func-

tion (circles). The x-axis corresponds to the MFP for the distributions and to the

grating wavelength for the thermal conductivity data.

measured and the suppression function is known, then the MFP distribution can be

reconstructed by solving the integral equation as an inverse problem.

From our analysis, we have already derived the necessary suppression function

S(Knω , Hω) in Eq. (4.11). However, this suppression function depends both on

the independent variable, the phonon MFP Λω, as well as the unknown relaxation

time τω. To perform the reconstruction, Λω should be the only unknown variable.

To overcome this problem, we rewrite τω into Λω/vω and assume that the phonon

group velocity vω is equal to the average sound velocity vs. This assumption is
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justified since for long MFP phonons for which the correction term is important, the

group velocity of phonons is close to the sound speed, while for short MFP phonons

this term is negligible and the choice of the velocity is irrelevant. The reconstruction

is also insensitive to the precise choice of the value of vs. For example, for PbSe,

changing vs from 2000 m/s to 1000 m/s causes only a 10 % maximum error in the

reconstructed MFP distribution. Using this approximation, the suppression function

is only a function of the independent variable Λω.

To demonstrate the inversion procedure using this new suppression function, we

perform numerical experiments in which we obtain the modified thermal conductiv-

ities of Silicon and PbSe at different temperatures for different grating wavelengths

from the temperature decay curves predicted by the BTE. These modified thermal

conductivities, along with the suppression function, are then used as inputs for the

reconstruction procedure. Figs. 4.3 & 4.4 show the results of the MFP reconstruc-

tion for Si and PbSe using the general and weak suppression functions.

For materials with a MFP spectrum that is in the range of the experimental length

scales, such as Silicon at 100 K, the measurements of the apparent thermal con-

ductivities at different grating wavelengths span almost the entire range of phonon

MFP spectrum. In this case, as shown in Fig. 4.3(a), both the weak and new sup-

pression functions yield satisfactory results. However, phonon MFPs vary by orders

of magnitude and some part of the spectrum may be inaccessible to experiment. For

example, the smallest MFPs of Silicon at 500 K are around 10 nm and the small-

est MFPs of PbSe at room temperature are around 1 nm. These length scales are

too small to be accessed with present experimental methods, meaning the MFP dis-

tribution at small length scales must be extrapolated from measurements at larger

length scales. Such an extrapolation requires evaluating the suppression function

at large values of the argument, precisely in the range where the correction term

to the new suppression function is important. As shown in Figs. 4.3(b) and 4.4,
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our new suppression function yields more accurate results at short MFPs while the

weak suppression function overpredicts the MFP distribution.

4.6 Summary

We have analyzed thermal transport in TTG using the Green’s function solution to

the frequency-dependent BTE. We identify the thermal decay time relative to the

relaxation times as a key nondimensional parameter that separate two quasiballistic

transport regimes. If the thermal decay time is much larger than relaxation times,

a modified diffusion theory is the formal solution of the BTE, providing theoretical

justification for prior interpretations of experimental observations of quasiballistic

transport. Further, we demonstrate how MFP spectra may be measured more accu-

rately using our new suppression function.

Now we have both the theoretical tools and experimental techniques to study the

microscopic transport processes of thermal phonons in bulk materials. In the next

chapter, we will demonstrate a general route to directly study the microscopic trans-

port processes at solid-solid interfaces using experiments. With both approaches,

we will be able to obtain a comprehensive picture of nanoscale energy transport in

solids.
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C h a p t e r 5

PHONON TRANSMISSION COEFFICIENTS AT SOLID
INTERFACES

Chapter 5 has been adapted from

(1) Chengyun Hua et al. “Fresnel transmission coefficients for thermal phonons
at solid interfaces”. In: In review process (2016).

5.1 Background

Transport across interfaces in heterogeneous media is a fundamental physical pro-

cess that forms the basis for numerous widely used technologies. For example,

the reflection and transmission of light at interfaces, as described by the Fres-

nel equations, enables wave-guiding with fiber-optics and anti-reflection coatings,

among many other functionalities. Interfaces also play an essential role in phonon-

mediated heat conduction in solids.(129, 130) Material discontinuities lead to ther-

mal phonon reflections that are manifested on a macroscopic scale as a thermal

boundary resistance (TBR), also called Kapitza resistance, Rk , that relates the tem-

perature drop at the interface to the heat flux flowing across it. TBR exists at the

interface between any dissimilar materials due to differences in phonon states on

each side of the interface.(129) Typical interfaces often possess defects or rough-

ness which can lead to additional phonon reflections and hence higher TBR.

TBR plays an increasingly important role in devices, particularly as device sizes

decrease below the intrinsic mean free paths (MFPs) of thermal phonons.(130) At

sufficiently small length scales, TBR can dominate the total thermal resistance. For

instance, the effective thermal conductivity of a superlattice can be orders of magni-

tude smaller than that of the constituent materials due to high TBR.(113, 131–133)

This physical effect has been used to realize thermoelectrics with high efficiency(9,
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12) and dense solids with exceptionally low thermal conductivity(134). On the other

hand, TBR can lead to significant thermal management problems(101, 135, 136) in

applications such as LEDs(137, 138) and high power electronics(136, 139).

Numerous works over several decades have investigated the microscopic origin of

TBR at solid-solid interfaces, starting with studies performed at low temperatures

(∼ 1 K), in which heat is carried predominantly by phonons with frequencies less

than 1 THz.(140, 141) At these low temperatures and for pristine, ordered inter-

faces, transmission coefficients can be obtained from continuum elastic theory in

an analogy with Snell’s law for light; this model is known as the acoustic mismatch

model (AMM).(142, 143) The AMM was shown to explain the experimentally mea-

sured values of TBR at various solid-solid interfaces.(141) At higher temperatures

(above 1 K), heat transport across the interfaces was found to be sensitive to surface

roughness. For the limit of completely diffuse scattering in which transmitted and

reflected phonons cannot be distinguished, Swartz constructed the diffuse mismatch

model (DMM).(129) Despite the success of these models at explaining TBR at low

temperatures, they generally fail at temperatures larger than 40 K and are unable to

account for the atomistic structure of the interface.

Recent works have focused on remedying these deficiencies. Optical methods en-

able the routine measurement of TBR over a wide range of temperatures for vari-

ous metal-dielectric interfaces (26–30) as well as at interfaces with variable bond-

ing strength. (31, 32) Other works have examined the temperature dependence

of the thermal conductivity(62) in nanocrystalline samples. Computational atom-

istic methods such as molecular dynamics(144–152) and atomistic Green’s func-

tions(153–157) have been extensively applied to obtain the transmission coeffi-

cients at interfaces with realistic atomic structure. These calculations generally

predict the coefficients to decrease with increasing phonon frequency due to reflec-

tions of short wavelength phonons by atomistic roughness, a trend that is supported
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by basic wave physics and indirectly by experiment.(62, 158) Despite all of these

works, however, an unambiguous determination of the transmission coefficients at

an actual interface has not yet been reported.

Here, we report the first measurements of the thermal phonon transmission coeffi-

cients at a solid interface using a combination of experimental observations of qua-

siballistic transport as introduction in Chapter 4 and advances in ab-initio transport

modeling based on the Boltzmann transport equation (BTE) that are presented in

Chapter 3. Unlike prior works in which considerable ambiguity remained in the val-

ues of the coefficients, our approach places tight constraints on the allowed spectral

transmission profile. Applying our approach in conjunction with transmission elec-

tron microscopy (TEM), we are able to directly link atomic structure to the spectral

content of heat crossing the interface for the first time. Our approach demonstrates

a general route to directly experimentally study the microscopic transport processes

governing interfacial heat conduction.

5.2 TDTR with ab-initio phonon transport modeling

Our measurement is based on the TDTR experiment, an optical pump-probe tech-

nique that is used to characterize thermal properties on micron length scales. In this

experiment, a femtosecond pulsed laser beam is split into a pump and a probe beam.

The pump pulse train is modulated at a frequency from 1 to 15 MHz to enable lock-

in detection, and is then used to impulsively heat a metal film coated on the sample.

The transient temperature decay at the surface is detected as a change in optical

reflectance by the probe beam.(159) Extracting thermal properties requires solving

a simple inverse problem in which the measured data sets are related to the desired

properties by a macroscopic transfer function based on a multilayer heat diffusion

model.(160, 161) The thermal properties, such as substrate thermal conductivity

and metal-substrate interface conductance are varied until the data and simulation
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match.

Although this approach is widely used, it has the drawback that the microscopic

phonon properties are averaged into a single number, the interface conductance,

resulting in minimal constraints on the allowed transmission coefficients. In this

work, we instead aim to directly and unambiguously extract the transmission co-

efficients from TDTR data by replacing the macroscopic transfer function based

on Fourier’s law with a microscopic transfer function based on ab-initio phonon

transport modeling. Mathematically, we write this problem as:

g = H(T12(ω)), (5.1)

where T12(ω) are the phonon frequency dependent transmission coefficients from

layer 1, the metal transducer film, to layer 2, the substrate; H is the transfer func-

tion based on ab-initio phonon transport modeling; and g is the TDTR experimental

data consisting of multiple transient data sets with different modulation frequencies.

This equation represents an inverse problem for the transmission coefficients that

can in principle be solved in an analogous manner to that employed for the macro-

scopic transfer function.

Although simple in principle, several challenges arise when trying to implement

this strategy. First, it is essential that part of the non-equilibrium phonon distribu-

tion emerging from the interface propagate into the substrate ballistically. As illus-

trated in Fig. 5.1, when MFPs are much shorter than the characteristic length scale

of the thermal gradient, information about the phonon distribution at the interface

is lost due to scattering. On the other hand, if some phonons have sufficiently long

MFPs, the non-equilibrium phonon distribution penetrates into the substrate and af-

fects the resulting heat conduction, thereby providing direct information about the

spectral content of heat crossing the interface. Fortunately, many experimental re-

ports have demonstrated clear evidence of this quasiballistic heat transport regime
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Figure 5.1: Schematic of the principle underlying the measurement of transmission

coefficients. If the characteristic length scale of the thermal transport is much longer

than the phonon MFPs, information about the interfacial distribution is lost due to

strong scattering. If some MFPs are comparable to the thermal length scale, the

non-equilibrium distribution at the interface propagates into the substrate where it

can be detected.

in different material systems (20, 23, 25, 162–164) including the transient thermal

grating experiments discussed in Chapter 4. In this work, we interpret these effects

as fundamentally originating from the non-equilibrium phonon distribution emerg-

ing from the interface.

Second, we must determine the microscopic transfer function that maps the trans-

mission coefficients directly to the TDTR signal without any artificial fitting pa-

rameters. It is this step that has long impeded efforts to study interfaces due to the

challenge of solving the BTE for the TDTR experiment. A number of simplified

models(79, 126, 164–168) have been proposed to explain these observations. How-

ever, all of these models make various approximations that limit their predictive

capability.

In this work, we overcome this challenge using two recent advances we reported for
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rigorously solving the spectral BTE under the relaxation time approximation (RTA),

with no additional simplifications, that yield a factor of 104 speedup compared to

existing methods and allows the first ab-initio phonon transport modeling of TDTR

free of artificial parameters or simplifications of the phonon dispersion. First, we

have obtained an analytical solution of the spectral BTE in a semi-infinite substrate

subject to an arbitrary heating profile.(169) Second, we have employed a series

expansion method to efficiently solve the BTE in the thin transducer film.(170) In

this work, these two solutions are combined using a spectral interface condition(79)

that expresses the conservation of heat flux at each phonon frequency to yield the

necessary microscopic transfer function H(T12(ω)).

5.3 Derivation of transfer function H(T12(ω))

We now describe the derivation of the transfer function H(T12(ω)) that maps trans-

mission coefficients to the TDTR amplitude and phase data. Thermal transport in

TDTR experiments, assuming only cross-plane heat conduction, is described by

the one-dimensional (1D) spectral Boltzmann transport equation (BTE) under re-

laxation time approximation (RTA)(22),

∂gω
∂t

+ µvω
∂gω
∂x

= −
gω + f0(T0) − f0(T)

τω
+

Qω

4π
(5.2)

f0(T) =
1

4π
~ωD(ω) f BE(T) ≈ f0(T0) +

1
4π

Cω∆T, (5.3)

where gω = ~ωD(ω)[ fω(x , t , µ) − f0(T0)] is the deviational distribution function,

f0 = f0(x , t) is the equilibrium distribution function, µ = cos(θ) is the direc-

tional cosine, vω is the phonon group velocity, τω is the phonon relaxation time,

and Qω(x , t) is the spectral volumetric heat generation. Assuming a small temper-

ature rise, ∆T = T − T0, relative to a reference temperature, T0, the equilibrium

distribution is proportional to ∆T , as shown in Eq. (5.3). Here, ~ is the reduced

Planck constant, ω is the phonon frequency, D(ω) is the phonon density of states,

f BE is the Bose-Einstein distribution, and Cω = ~ωD(ω) ∂f BE
∂T is the mode specific
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heat. The volumetric heat capacity is then given by C =
∫ ωm

0
Cωdω and the Fourier

thermal conductivity k =
∫ ωm

0
kωdω, where kω = 1

3CωvωΛω and Λω = τωvω is the

phonon MFP. To close the problem, energy conservation is used to relate gω to ∆T ,

given by ∫ ∫ ωm

0

[
gω(x , t)
τω

−
1

4π
Cω

τω
∆T(x , t)

]
dωdΩ = 0, (5.4)

where Ω is the solid angle in spherical coordinates and ωm is the cut-off frequency.

Note that summation over phonon branches is implied without an explicit summa-

tion sign whenever an integration over phonon frequency or MFP is performed.

Before we solve Eq. (5.2), let us first briefly review the signal formation in TDTR.

Since the thermal response given by the BTE is a linear time-invariant system, the

output transient signal Z(t) of TDTR can be represented in terms of frequency re-

sponse solution through the following equation(161)

Z(t) =

∞∑
n=−∞

H(ω0 + nωs)einωst , (5.5)

where ω0 is the reference angular frequency of the periodic heating, ωs is the an-

gular sampling frequency set by the repetition rate of the laser pulses, and H(η) is

surface temperature response subject to a periodic heating at frequency η. There-

fore, to study the transient heat transport in TDTR, it is equivalent to solve the

modulated heat conduction problem in the same geometry, a double-layer structure

of a metal film on a substrate as shown in Fig. 5.2.

We now divide our discussion into three parts: transducer film, substrate, and in-

terface. While the calculations for transducer film and substrate are treated using

different techniques, the solutions in those two layers depend on each other through

the appropriate interface conditions.
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Figure 5.2: 2D schematic of the experimental configuration subject to a modulated

heating source: a double layer structure of a transducer film on a substrate (sample).

Q0 is the amplitude of the heating source, η is angular modulation frequency, δ is

the optical penetration depth of the heating source, and x is the cross-plane transport

direction. x1 and x2 correspond to the coordinate systems used in transducer and

substrate accordingly.

Transducer film

The metal thin film serves as an optical transducer that absorbs the incident opti-

cal energy, while also enabling the observation of temperature decay through the

thermoreflectance coefficient. In our work, we neglect electrons and consider that

heat is only carried by phonons in Al. This approximation is supported by prior

works that found that the direct electron-phonon coupling transport mechanism is

negligible for the materials considered here,(26, 171, 172) and thus the presence

of electrons in our model is not necessary to accurately describe interfacial thermal

transport for Al/Si interfaces. Moreover, in Section 5.11, we demonstrate the effects

of electrons in Al are minimal to the TDTR signals.

Since the system is modulated at a given frequency η, we can assume that both g1ω

and ∆T1 are of the form eiηt . The volumetric heat generation in thin film is given

by Qω = Q0
ωeiηte−x1/δ, where the amplitude of heating source Q0 =

∫ ωm

0
Q0
ωdω.

We also assume that phonons are specularly reflected at x1 = 0, i.e. g̃1ω(x1 =
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0, µ) = g̃1ω(x1 = 0, −µ). Substituting g1ω = g̃1ω(x1, µ)eiηt , ∆T1 = ∆T̃1(x1)eiηt and

the specular boundary condition at x1 = 0 into Eq. (5.2) leads to a first-order ODE

for g̃1ω(x1, µ), and its solution is given by

g̃+
1ω(x1, µ) = Bωe−

γ1ω
µ (d+x1) +

∫ d

0

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1+x1)dx′1

+

∫ x1

0

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1−x1)dx′1 (µ ∈ (0, 1]) (5.6)

g̃−1ω(x1, µ) = Bωe
γ1ω
µ (d−x1)

−

∫ d

x

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1−x1)dx′1 (µ ∈ [−1, 0]), (5.7)

where γ1ω = (1 + iητ1ω)/Λ1ω, d is the film thickness, and Bω are the unknown coef-

ficients determined by the interface condition at x1 = d. Here, g̃+
1ω(x1, µ) indicates

the forward-going phonons and g̃−1ω(x1, µ) the backward-going phonons.

To close the problem, we plug Eqs. (5.6) & (5.7) into Eq. (5.4) and obtained an

integral equation for temperature as:

∆T̃(x̂1) −
∫ 1

0
∆T̃(x̂′1)K(x̂′1, x̂1)dx̂′1 =

∫ ωm

0
BωF1

ω(x̂1)dω + F2(x̂1), (5.8)

where x̂1 = x1/d. The kernel function K(x̂′1, x̂) is given by

K(x̂′1, x̂1) =
1

2
∫ ωm

0
C1ω
τ1ω

dω

∫ ωm

0

C1ω

τ1ωKn1ω
{E1[γ̂1ω(x̂′1 + x̂1)] + E1[γ̂1ω | x̂′1 − x̂1 |]}dω

(5.9)

and the two inhomogeneous functions are given by

F1
ω(x̂1) =

2π∫ ωm

0
C1ω
τ1ω

dω

1
τ1ω
{E2[γ̂1ω(1 + x̂1)] + E2[γ̂1ω(1 − x̂1)]} (5.10)

F2(x̂1) =
2π∫ ωm

0
C1ω
τ1ω

dω

∫ 1

0

∫ ωm

0

Q0
ωe−ρx̂′1

Kn1ω
{E1[γ̂1ω(x̂′1 + x̂1)] + E1[γ̂1ω | x̂′1 − x̂1 |]}dωdx̂′

(5.11)

where Kn1ω = Λ1ω/d is the Knudsen number, γ̂1ω =
1+iητ1ω

Kn1ω
, and En(x) is the expo-

nential integral given by(21):

En(x) =

∫ 1

0
µn−2e−

x
µ dµ. (5.12)
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We apply the spectral method introduced in Section 3.3 to efficiently solve Eq. (5.8).

Briefly, the functions in Eq. (5.8) can be expanded as a finite cosine series, such as

∆T̃1(N)(x̂1) ≈
N∑

n=0

tncos(nπ x̂1) (5.13)

and

K(N)(x̂ , x̂′) =
1
4

k00 +
1
2

N∑
m=1

km0cos(mπ x̂) +
1
2

N∑
n=1

k0ncos(nπ x̂′),

+

N∑
m=1

N∑
n=1

kmncos(mπ x̂)cos(nπ x̂′) (5.14)

where N is the truncated basis number, and tn’s and knm’s are the Fourier coefficient.

Similarly, F1
ω(x̂1) and F2(x̂1) are also expanded in term of cosines. Following the

steps in the above reference, we can express the temperature as

∆T̃1(x̂1) = [A−1( f1B + f2)]Tφ(x) (5.15)

where the matrix A contains elements A00 = 1 − k00
4 , A0n = − 1

2 k0n, An0 = − kn0
4 ,

Ann = 1 − 1
2 knn and Anm = − 1

2 knm (m , n , 0) and B is a Nω column vector of

the unknown coefficients Bω, where Nω is the number of discretization in phonon

frequency. f1 is a N × Nω matrix, consisting of the Fourier coefficients of F1
ωi

(x̂1)

evaluated at each phonon frequency ωi and f2 is a N column vector, consisting of

the Fourier coefficients of F2(x̂1).

Then, g̃+
1ω(x1, µ) and g̃−1ω(x1, µ) can be expressed in terms of the unknown coeffi-

cients Bω by plugging Eq. (5.15) into Eqs. (5.6) and (5.7).

Substrate

The substrate can be treated as a semi-infinite region subject to a surface heat flux.

Therefore, the BTE for the substrate becomes

iηg̃2ω + µv2ω
∂g̃2ω

∂x2
= −

g̃2ω

τ2ω
+

C2ω

4πτ2ω
∆T̃(x2) +

1
2

Pωv2ω |µ|δ(x2), (5.16)
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where the unknown coefficients Pω’s are determined through the interface condi-

tions.

We then apply the Green’s function method given in Section 3.2. The unknown

distribution function in spatial frequency domain is then written as

g̃2ω(η, ξ2) =
C2ω

4π
∆T̃2(η, ξ2) + 1

2 PωΛ2ω |µ|/C2ω

1 + iητ2ω + iµξ2Λ2ω
, (5.17)

and the temperature profile

∆T̃2(η, ξ2) =

∫ ωm

0
Pωv2ω

1+iητ2ω
(Λ2ωξ2)2 log

[
1 +

(
Λ2ωξ2

1+iητ2ω

)2
]

dω∫ ωm

0
C2ω

2πτ2ω

[
1 − 1

Λ2ωξ2
tan−1

(
Λωξ2

1+iητ2ω

)]
dω

, (5.18)

where ξ2 is the Fourier variable of x2.

Again, to express g̃2ω only in terms of unknown coefficients Pω, we simply plug

Eq. (5.18) into Eq. (5.17).

Interface condition

The unknown coefficients in the solutions of transducer film and substrate are ob-

tained by applying appropriate interface conditions. Here, we use the elastic trans-

mission interface condition with mode conversion, closely following the work by

Minnich et al.(79) Briefly, for a given mode i, the heat fluxes outgoing from the

interface, qi−
1ω and qi+

2ω, must be equal to the reflected and transmitted heat fluxes

incident to the interface, qi+
1ω and qi−

2ω. By assuming elastic and diffuse scattering,

the transmission and reflection process for each phonon frequency is treated inde-

pendently and the heat flux equality condition must be satisfied for each frequency

and polarization.
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The interface conditions are∫ 1

0
gi+

2ωvi
2ωµdµ =

∑
j

T ji
12(ω)

∫ 1

0
g j+

1ωv j
1ωµdµ +

∑
j

R ji
21(ω)

∫ 1

0
g j−

2ωv j
2ωµdµ,

(5.19)∫ 1

0
gi−

1ωvi
1ωµdµ =

∑
j

T ji
21(ω)

∫ 1

0
g j−

2ωv j
2ωµdµ +

∑
j

R ji
12(ω)

∫ 1

0
g j+

1ωv j
1ωµdµ,

(5.20)

where T ji
12(ω) is the transmission coefficient of mode j at frequency ω from side

1 to side 2 as mode i, R ji
21(ω) is the reflection coefficient of mode j at frequency

ω from side 2 back into side 2 as mode i, and so on. gi±
1ω from Sec. 5.3 and gi±

2ω

from Sec. 5.3 are evaluated at x1 = d and at x2 = 0, respectively. Given the values

of T i j
12(ω), Ri j

12(ω), T i j
21(ω) and Ri j

21(ω), the unknown coefficients Pω and Bω’s are

obtained by plugging Eqs. (5.6), (5.7), and (5.17) into Eqs. (5.19) and (5.20) and

solving the linear system.

The next question is how T i j
12(ω) is related to the other reflection and transmission

coefficients. The reflection coefficients are related to the transmission coefficients

by energy conservation given by∑
j

T i j
12(ω) + Ri j

12(ω) = 1, (5.21)

and ∑
j

T i j
21(ω) + Ri j

21(ω) = 1. (5.22)

T ji
21(ω) is related to T i j

12(ω) through the principle of detailed balance, which requires

that no net heat flux can transmit across the interface when both materials are at an

equilibrium temperature T . Applying this condition to every phonon mode on each

side of the interface for each polarization and frequency gives:

T i j
12(ω)Ci

1ωvi
1ω = T ji

21(ω)C j
2ωv j

2ω . (5.23)

Therefore, we need to specify T i j
12(ω), Ri j

12(ω), and Ri j
21(ω).
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Let us first consider a special case where no mode conversion is allowed (T i j
12(ω),

T i j
21(ω), Ri j

12(ω), Ri j
21(ω) = 0 for i , j). Then, the interface conditions become∫ 1

0
gi+

2ωv2ωµdµ = T ii
12(ω)

∫ 1

0
gi+

1ωvi
1ωµdµ + Rii

21(ω)
∫ 1

0
gi−

2ωvi
2ωµdµ, (5.24)∫ 1

0
gi−

1ωv1ωµdµ = T ii
21(ω)

∫ 1

0
gi−

2ωvi
2ωµdµ + Rii

12(ω)
∫ 1

0
gi+

1ωvi
1ωµdµ, (5.25)

and the detail balance becomes

T ii
12(ω)Ci

1ωvi
1ω = T ii

21(ω)Ci
2ωvi

2ω . (5.26)

Therefore, once T ii
12(ω) is specified, all the other transmission and reflection coef-

ficients are determined. For now, we only consider this special case and neglect

the mode conversion in our BTE simulations. In Section 5.11, we show that the

mode specific transmission coefficients cannot be resolved by the TDTR measure-

ments and the measurable quantity is
∑

j T i j
12(ω) instead of individual transmission

coefficients. For simplicity, we will use T12(ω, p) rather than the summation. Note

that the only inputs to our calculation are the phonon dispersions and lifetimes,

calculated using density functional theory (DFT) with no adjustable parameters by

Jesús Carrete and Natalio Mingo using ShengBTE(88) and Phonony(173) from in-

teratomic force constants obtained with VASP.(91–94) The details about converting

the ab-initio calculations to an equivalent isotropic dispersion to reduce computa-

tional cost can be found in Appendix C. For Aluminum, the dispersion is calculated

using the harmonic interatomic force constants, which are generated using Density

Functional Perturbation Theory (DFPT) implemented in the ab-initio simulation

package Quantum Espresso. The details about calculating phonon lifetimes in Al

are given in Appendex D.5. Fig. 5.3 plots the phonon density of states, group ve-

locity, and relaxation times as a function of phonon frequency in both Al and Si for

the three acoustic branches.

The only unknown parameters in this model are the spectral transmission coeffi-

cients T12(ω). In this work, we use T12(ω) as the fitting parameter rather than using
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models like a gray model or DMM. The result of the BTE modeling can be written

into a compact transfer function given as

g = H(T12(ω)), (5.27)

where H is the microscopic transfer function based on BTE modeling, and g is

the TDTR experimental data consisting of multiple transient data sets with differ-

ent modulation frequencies. This microscopic transfer function maps the spectral

transmission coefficients T12(ω) into an observable quantity g. This equation can

be solved as an inverse problem for the transmission coefficients. Therefore, we are

able to interpret phonon transmission coefficients across an interface directly from

the experiments without any artificial fitting parameters.
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5.4 Solution of inverse problem

The final challenge is to solve the inverse problem that identifies the transmission

coefficients that best explain the observed data. From the BTE model, we obtain a

surface temperature decay curve as a function of time just like the one measured in

the experiments. For a given sample, the correct transmission coefficient profile as a

function of phonon frequency will minimize the difference between the simulation

curves and experimental TDTR traces at all modulation frequencies. By treating the

transmission coefficients as fitting parameters, we avoid using the oversimplified

models. To solve the inverse problem that identifies the transmission coefficients

that best explain the observed data, we utilized particle swarm optimization (PSO)

method to search for the optimal profile. The essential goal of PSO method is to

minimize the objective function defined as

f = α |gab−initio(T12(ω)) − gmeasured | + (1 − α)
∫ (

d2T12

dω2

)2

dω. (5.28)

The first part of the equation evaluates the norm of the difference between the exper-

imentally measured and BTE-simulated TDTR signals given a transmission profile

profile T12(ω). The second part of the equation evaluates the second derivative of the

transmission coefficient profile, serving as the smoothness penalty function. Note

that the smoothness of the profiles is the only constraint we impose in the objec-

tive function. The smoothing parameter α determines the relative importance of the

second part to the first part. If α = 1, then no smoothness constraint is imposed.

Here, we use

α =

∫ (
d2T0

12
dω2

)2
dω

|gab−initio(T0
12(ω)) − gmeasured |

, (5.29)

where T0
12(ω) is the initial profile. The formula is chosen such that the first and

second parts of the equation have the same order of magnitude.

To search for the optimal profile that minimizes the objective function, the PSO

algorithm randomly initializes a collection of transmission coefficient profiles and
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evolves them in steps throughout the phase space which contains all possible trans-

mission coefficient profiles. At each step and for each profile, the algorithm eval-

uates the objective function defined as above. After this evaluation, the algorithm

decides how each profile should evolve according to the current best profile. The

profile evolves, then the algorithm reevaluates. The algorithm stops when the ob-

jective function reaches the desired value. The transmission coefficient profile that

achieves the minimum value of the objective function is the optimal profile that

explains the data.

However, since the inverse problem is ill-posed, a unique solution does not exist.

We use Gibbs sampling to explore adjacent regions of the optimal transmission

coefficient profile. We first randomly generated 1000 profiles by perturbing the

optimal profile with a smooth function defined using the following formula

δ = A[r1cos(2πω/ωmaxr2 + 2πr3) + r4sin(2πω/ωmaxr5 + 2πr6)], (5.30)

where the amplitude of the perturbation A is 0.1, and r1, r2, r3, r4, r5 and r6 are

random numbers between 0 to 1. We evaluated the objective function at all the

perturbed profiles and recorded the values. Then, we started the Gibbs sampling

process. At each iteration, we randomly drew a profile, a, from the stored pop-

ulation and compared the value of its corresponding objective function, fn to the

one from the previous step, fn−1 evaluated at profile b. If fn is less than fn−1, we

accepted a and kept fn. If not, a random number r was drawn and compared to

u = p/(1 + p), where

p = exp
(

fn − fn−1

T0

)
. (5.31)

If r was smaller than u, then we accepted a and kept fn. If not, we rejected a and

updated fn to be fn−1. The system temperature, T0, is chosen such that the stationary

distribution is gradually changing. Here, T0 is set to be the mean value of the objec-

tive functions of all the perturbed samples. We kept track of how many times each
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Clean interface
d < 0.5 nm

Si (110)Al

5 nm

Figure 5.4: TEM image showing the clean interface of an Al/Si sample with the

native oxide removed. The interface thickness is less than 0.5 nm.

profile was chosen at each iteration and generated a histogram of the occurrence

frequency of each profile. We stopped the sampling process when the histogram

became stationary. This occurrence frequency is also called the likelihood of the

transmission coefficient profiles. The higher the value of a profile’s likelihood is,

the more likely the profile could fit the experimentally measured TDTR signals at

different modulation frequencies. Thus by combining the PSO method with Gibbs

sampling algorithm, we are able to determine the most likely transmission coeffi-

cients at the interface between Si and Al.

5.5 Measurements of phonon transmission coefficients

We demonstrate our transmission coefficient measurements on an Al film on Si

substrate with the native oxide removed by Hydrofluoric acid prior to Al deposi-

tion, yielding a clean interface. The TEM image in Fig. 5.4 shows the interface

thickness is less than 0.5 nm. The amplitude and phase of signals from the lock-in

amplifier at different modulation frequencies are given in Fig. 5.5. For reference,

solving the usual inverse problem with the macroscopic transfer function on this
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a)

b)

Al/Si with a clean interface at 300 K

Figure 5.5: Experimental TDTR data (symbols) on this sample at T = 300 K for

modulation frequencies f = 2.68, 5.51 and 9.79 MHz along with the (a) amplitude

and (b) phase fit to the data from the BTE simulations (shaded regions), demonstrat-

ing excellent agreement between simulation and experiment. The shaded stripes de-

noted BTE simulations correspond to the likelihood of the measured transmission

coefficients possessing a certain value as plotted in Fig. 5.6.
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data set yields G ≈ 280 MW/m2-K and k ≈ 140 W/m-K, in good agreement with

prior works and literature values for the thermal conductivity of Si.(20, 158) Al-

though the good agreement is often taken as evidence that the macroscopic transfer

function is valid for Si, this conclusion is incompatible with several independent

ab-initio calculations that clearly show that heat is carried by phonons with MFPs

exceeding the thermal penetration depth of TDTR.(174, 175) This prediction has

recently been experimentally confirmed by Cuffe et al using thermal measurements

on variable thickness silicon membranes.(176) This fact implies that quasiballistic

transport should be readily observable in a typical TDTR experiment on Si, despite

the seemingly correct thermal properties measured. This apparent contradiction is

resolved by observing that the signal measured in TDTR strongly depends on the

spectral profile of the transmission coefficients in the quasiballistic regime, thereby

providing the sensitivity necessary to solve the inverse problem given in Eq. 5.27.

We represent the transmission coefficient as a probability density plot, with the

color intensity indicating the likelihood that a single transmission coefficient curve

passing through a particular point at a given phonon frequency is able to simulta-

neously explain all of the data in Fig. 5.5, without any other adjustable parameters.

The result is shown in Fig. 5.6(a). The figure shows that the transmission coefficient

from Si to Al for longitudinal phonons, TSi→Al(ω), starts at unity, its maximum pos-

sible value, and decreases steadily to near zero for high phonon frequencies (∼ 10

THz). The transmission coefficient profiles for the other polarizations have similar

shapes, and so throughout the paper we plot only the longitudinal transmission co-

efficients for simplicity. The transmission coefficients from Al to Si, TAl→Si(ω) are

calculated by satisfying the principle of detailed balance; the relationship between

TSi→Al(ω) and TAl→Si(ω) reflects the differences in density of states and group ve-

locity between the two materials. The transmission coefficients for each side of the

interface and for the other polarizations are given in Appendix D.2.



96

a)

b)

Figure 5.6: Transmission coefficients of longitudinal phonons TSi→Al(ω) (blue

shaded region) versus (a) phonon frequency and (b) phonon wavelength, along with

the DMM transmission coefficient profile (green dashed line) that gives the same in-

terface conductance as the measured TSi→Al(ω). The intensity of the shaded region

corresponds to the likelihood that the transmission coefficient possesses a given

value.
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Our measured transmission coefficient profile thus indicates that phonons with fre-

quencies less than 4 THz are transmitted to the maximum extent allowed by the

principle of detailed balance, while phonons with frequencies larger than 8 THz are

nearly completely reflected at the interface. We now examine this result in context

with the common models for transmission coefficients. The AMM is often cited as

an appropriate model for transmission coefficients at sufficiently low phonon fre-

quencies. At low phonon frequency ( < 1 THz), we find that at normal incidence,

the transmission coefficients given by AMM is consistent with the measured value.

However, the experimental work of Swartz and Pohl(129) clearly indicates that

even for expitaxial interfaces the validity of the AMM is limited to phonons with

frequencies in the hundreds of GHz that carry a small fraction of the heat at room

temperature. Therefore, the AMM is not applicable for a wide spectrum of phonons

studied here. For short wavelength phonons, the DMM would be expected to apply.

At the highest phonon frequencies (shortest wavelengths), the DMM correctly pre-

dicts the trend of the measured transmission coefficients tending to zero. However,

for most of the phonon spectrum, the DMM is inconsistent with our measurement

as discussed in the following section.

5.6 Comparison of conventional models

In this section we provide additional evidence for the inadequacy of conventional

models to explain our measurements. We consider two models: the gray model in

which the transmission coefficient is a constant, independent of phonon frequency,

and the diffuse mismatch model (DMM). The DMM is only determined by the

phonon properties of the materials, such as density of states and phonon group

velocity. Figs. 5.7(a) & (b) show the transmission coefficients from both sides of

the interface using the DMM. The constant transmissivity value is chosen to yield

an interface conductance G = 284 MW/m2-K using the formula of Ref. (79). The
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Figure 5.7: Transmission coefficients predicted by diffuse mismatch model (DMM)

for each polarization (a) from Si to Al and (b) from Al to Si.
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Figure 5.8: Experimental TDTR data (symbols) on Al/Si with a clean interface

at 300 K for modulation frequency f = 2.65 MHz along with the (a) amplitude

and (b) phase compared to the data from the BTE simulations using constant TSi→Al

(dash-dotted lines) and DMM (dotted lines). (c) Amplitude and (d) phase difference

between averaged experimental data and the BTE simulations using constant TSi→Al

(dash-dotted lines), DMM (dotted lines), and the optimal profile in Fig. 2 of the

main text (dashed lines). The solid line indicates the uncertainty in experiments.
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Figure 5.9: Experimental TDTR data (symbols) on Al/Si with a clean interface

at 300 K for modulation frequency f = 9.79 MHz along with the (a) amplitude

and (b) phase compared to the data from the BTE simulations using constant TSi→Al

(dash-dotted lines) and DMM (dotted lines). (c) Amplitude and (d) phase difference

between averaged experimental data and the BTE simulations using constant TSi→Al

(dash-dotted lines), DMM (dotted lines), and the optimal profile in Fig. 2 of the

main text (dashed lines). The solid line indicates the uncertainty in experiments.
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measured value for the clean interface is 280 ± 10 MW/m2-K.

Here, we demonstrate that neither of the models can explain the experimental TDTR

data. As shown in Figs. 5.8 & 5.9, the use of a constant transmission coefficient in

the BTE model overpredicts the phase values. Similarly, the DMM underpredicts

both the amplitude and phase at the early time of the signals. In Figs. 5.8(c) &

(d) and 5.9(c) & (d), we show the deviation in amplitude and phase between the

averaged experimental data at a given modulation frequency and the BTE simu-

lations using a constant profile and DMM, demonstrating that the deviation is far

beyond the uncertainty in experimental data. The uncertainty is computed by cal-

culating the standard deviation of both amplitude and phase data for multiple runs

and multiple locations on a sample.

From these plots, it is clear that neither of the models is capable of explaining the

data, and it is also clear that TDTR data depends on the spectral profile of the

transmission coefficients. As can be seen in Fig. 5.5, the coefficients we obtain

by solving the inverse problem described in Section 5.4 clearly give a superior fit

to the measured data for all modulation frequencies for which measurements were

performed.

A better comparison for our measurements is with atomistic calculations that are not

subject to the highly restrictive assumptions of the AMM and DMM. Performing

this comparison, we observe that our measurements agree with numerous molecular

dynamics and atomistic Green’s function calculations, essentially all of which pre-

dict a decreasing transmission coefficient with increasing phonon frequency.(154–

157) In particular, our measurement of near-unity transmission for phonons with

frequencies less than approximately 4 THz is consistent with atomistic calculations

on acoustically-matched materials.(155, 177) Our result also agrees with the exper-

imental studies of polycrystalline silicon by Wang et al,(62) which suggested that
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transmission coefficient should decrease with increasing frequency. Our work is

thus able to provide unambiguous experimental confirmation of these prior com-

putational and experimental works for the first time while clearly showing that the

coefficients predicted by simple models are qualitatively incorrect.

5.7 Interfacial heat flux

Using this transmission coefficient profile, we plot the spectral interfacial heat flux

versus phonon frequency and accumulative heat flux versus phonon wavelength in

Figs. 5.10. Our results show that most of interfacial heat flux is carried by phonons

with frequencies less than 4 THz, with the contribution from higher frequencies

strongly reduced due to their small transmission coefficients. In fact, we find that

the contribution of phonons with frequencies less than 4 THz is essential to explain

our observations: we are unable to explain the measured data without the contribu-

tion of phonons with frequencies less than 4 THz. Similarly, we find that we can

only explain the measurements using the exact phonon dispersion for Al computed

from DFT; simple dispersion relations such as Debye model cannot explain the data

because they underestimate the contribution of low frequency phonons to thermal

transport.

5.8 Robustness of the measured transmission coefficients

To confirm the robustness of the measured transmission coefficients, we conducted

several additional experiments. First, since the energy transmission at the interfaces

is considered elastic, the transmission coefficients in theory should be independent

of temperature. We performed TDTR measurements on the same Al/Si sample at

several temperatures higher than 300 K and compared the experimental results with

the calculations using the same transmission coefficient profile measured at 300 K.

As shown in Figs. 5.11, the calculation is in excellent agreement with experimental

data at 400 K using exactly the same transmission coefficient profile obtained at 300
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a)

b)

Figure 5.10: Spectral heat flux with the measured (blue shaded region) and DMM

(green dashed line) transmission coefficient profiles across the interface versus (a)

phonon frequency and (b) phonon wavelength. Phonons with frequencies less than

approximately 4 THz carry a significant amount of heat across the interface. The

intensity of the shaded region reflects the likelihood of the corresponding transmis-

sion coefficients.
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K. Note that this comparison does not require any adjustable parameters. Additional

measurements at various temperatures are given in the Supplementary Information,

and all give excellent agreement.

Second, we measured the transmission coefficients for Al on SiGe. While this ma-

terial has an additional point defect scattering mechanism compared to pure Si, we

expect the transmission coefficients to be nearly the same given that the host lat-

tice is unchanged. The details about point defect scattering in SiGe are given in

Appendix D.5. Fig. 5.12 plots the amplitude and phase of the surface temperature

decays at different modulation frequencies, demonstrating that the same transmis-

sion coefficient profile shown in Fig. 5.6(a) yields a signal that agrees well with this

independent data set, again without any adjustable parameters. This result confirms

that the measured transmission coefficients for Si and SiGe substrates are indeed

the same.

5.9 Effects of atomic structures

We next seek to determine how the atomic structure of the interface affects the

spectral content of the phonons carrying heat across the interface. We conducted

additional measurements for Al on Si with a native oxide layer (thickness ∼ 1 nm

as shown in a TEM image in Fig. 5.13(a)) and Si with thermally grown oxide layer

(thickness ∼ 3.5 nm as shown in a TEM image in Fig. 5.13(b)). Since the oxide

layers are sufficiently thin to neglect their thermal capacitance and we only care

about the net transmission across the thin layer, we can treat them as part of the

interface(178) that modifies the transmission coefficient profile.

By solving the inverse problem with the measurement as in Figs. 5.14 & 5.15 as

input, we are able to find the transmission coefficient profiles for these two cases as

shown in Figs. 5.16. Compared to a clean interface, the transmission coefficients for

Al on Si with a native oxide are reduced for most of the phonon modes, except those
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a)

b)

Al/Si with a clean interface at 400 K

Figure 5.11: (a) Amplitude and (b) phase as a function of time at modulation fre-

quencies f = 2.99, 5.17 and 9.79 MHz from experiments (symbols) and simula-

tions (shaded regions) for Al on Si with a clean interface at 400 K. The magnitude

and trend of the experimental data are reproduced using the same transmission co-

efficient profile as in Fig. 5.6 without any adjustable parameters.
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Al/SiGe with a clean interface at 300 K

a)

d)

Figure 5.12: (a) Amplitude and (b) phase as a function of time at modulation fre-

quencies f = 2.9, 5.3 and 9.8 MHz from experiments (symbols) and simulations

(shaded regions) for Al on SiGe with a clean interface at 300 K. The magnitude and

trend of the experimental data are reproduced using the same transmission coeffi-

cient profile as in Fig. 5.6 without any adjustable parameters.
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with long wavelength longer than 1 nm. When the roughness of the interface in-

creases with a thicker oxide layer, the transmission coefficient keeps decreasing and

more phonons, especially those with wavelengths between 1 and 3 nm, are reflected

at the interface. Therefore, our measurements show that phonons with wavelength

shorter than the interface roughness are more likely to be reflected by the inter-

face than phonons with wavelength longer than the interface roughness, and as the

interface gets rougher, a larger fraction of the phonon spectrum is affected by the

interface. In contrast to prior approaches that measure only interface conductance,

here we are able to precisely and unambiguously identify which phonons are more

likely to be reflected due to atomic-scale changes in the interface structure for the

first time.
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b)

Native oxide
d ~ 1 nm

Si (110)Al5 nm

5 nm

a)

Oxide layer
d ~ 3.5 nm

Si (110)Al

Figure 5.13: TEM images showing the Al/Si sample with (a) native oxide layer

(thickness ∼ 1 nm) and (b) thermally grown oxide layer (thickness ∼ 3.5 nm).
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a)

b)

Al/Si with a native oxide layer at 300 K

Figure 5.14: (a) Amplitude and (b) phase of the surface temperature decay curves

at modulation frequencies f = 1.43, 5.10, and 9.80 MHz of experiments (symbols)

and simulations (shaded regions) for Al on Si with native oxide layer.
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a)

b)

Al/Si with an oxide layer at 300 K

Figure 5.15: (a) Amplitude and (b) phase of the surface temperature decay curves

at modulation frequencies f = 1.43, 5.10, and 9.80 MHz of experiments (symbols)

and simulations (shaded regions) for Al on Si with a thermally grown oxide layer.
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a)

b)

Figure 5.16: Transmission coefficient profiles versus (a) phonon frequency and (b)

phonon wavelength for longitudinal modes from Si to Al with a clean interface, with

a native oxide layer and with a thermally grown oxide layer. As the interface gets

rougher, phonons with frequencies less than 6 THz are more likely to be reflected.
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5.10 Role of electrons

The response of a metal to an intense, ultrashort laser pulse is a complex event

involving physics that span transport regimes from femtoseconds to microseconds

and longer. Initially, photons are absorbed over the duration of the laser pulse by a

subset of free electrons in the metal. The hot electrons then interact with the lattice

through scattering events.(179) To determine the contribution to energy transport

from the electrons in Al thin film, we perform the simulations based on a two-

temperature model that is able to account for the effects of electrons. Briefly, the

two temperature model uses spectral phonon BTE described in Sec. 5.3 coupled

with a heat diffusion equation that describes the temperature evolution of the elec-

trons in the Al thin films after absorption of an optical femtosecond laser pulse. The

coupled equations are given as following:

Cel
∂Tel

∂t
=

∂

∂x

(
kel
∂Tel

∂x

)
− g(Tel − Tph) (5.32)

∂gω
∂t

+ µvω
∂ω
∂x

= −
gω + f0(T0) − f0(Tph)

τω
+ g(Tel − Tph) +

Qω(x , t)
4π

,

(5.33)

where Tel and Tph are the temperatures of the electrons and phonons, respectively,

and Cel and kel are the volumetric heat capacity and the thermal conductivity of

the electrons in Al, respectively. The phonon temperature is linearly coupled to

the electron temperature through the electron-phonon coupling coefficient g. The

values of all the constants in Eq. 5.32 are tabulated in Table D.1. This system of the

equations is solved by a standard finite difference method in a two layered geometry.

We compare the surface temperature responses to a heat impulse with and without

the effects of electrons. As shown in Fig. 5.17, due to strong electron-phonon cou-

pling, electrons only affect the heat conduction shortly after the absorption of a heat

pulse. After the first 100 ps, the heat conduction is dominated by the phonons. Since

a typical signal in a TDTR experiment is usually measured after 500 ps, whether
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Figure 5.17: The surface temperature decay subject to an surface impulse heating

for Al on Si with (solid blue line) and without (dashed red line) the effects of elec-

trons. After 100 ps, the heat is dominated by phonons and there is little contribution

from the electrons. Therefore, the electrons have negligible effects on the signal on

the timescale relevant to the heat conduction across interfaces.

heat is attributed to phonons or electrons in the metal has a negligible effect on the

signal on the timescales that is interested in the experiments. Therefore, our neglect

of electrons has no effect on our transmission coefficient measurement.

5.11 Effects of mode conversion

When phonons cross an interface they can change their frequency, in an inelastic

process, or polarization, known as mode conversion, which can influence thermal

interface conductance.(180) In our work, we do not consider inelastic scattering.

We justify the neglect of inelastic scattering through the work of prior numerical

studies, which have provide evidence that the phonon transmission between two
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slightly dissimilar crystalline solids is elastic.(181) Considering the phonon fre-

quencies between Al and Si are very similar, there is no evidence that inelastic

processes should play a role in the interfacial transport for Al/Si interfaces.

We have carefully examined the effect of mode conversion on our conclusions by

rigorously including this process in our BTE model. To examine whether conver-

sion between polarizations would affect the phonon transport across the interface,

we conducted our BTE simulation assuming modes maintain their polarization af-

ter crossing the interface, or allowing them to change to any polarization while

keeping the total transmission coefficient the same. Keeping the total transmission

coefficient for a given polarization. Keeping
∑

j T i j
12(ω) invariant, we randomly par-

titioned
∑

j T i j
12(ω),

∑
j Ri j

12(ω) and
∑

j Ri j
21(ω) into two different combinations of

T i j
12(ω), Ri j

12(ω) and Ri j
21(ω);in other words, randomly between all the polarizations

on the opposite side of the interface. In Fig. 5.18, we show that the surface tem-

perature decay with and without conversion between polarization are essentially

identical. Moreover, the spectral interfacial heat flux is also identical with and

without conversion. Therefore, we conclude that mode conversion does not have an

observable effect on the signal.

The reason that our measurement is not sensitive to mode conversion is that the

polarizations in Si do not have extremely dissimilar mean free paths. As our mea-

surement approach relies on the lack of scattering of some modes near the interface,

the only way the mode conversion could affect our measurements would be if one

polarization consistently changed to another polarization after transmitting through

the interface with a drastically different mean free path than the original polariza-

tion. Our calculations clearly show that the difference in mean free paths between

the polarizations is not sufficient to affect our calculations and hence have any effect

on our conclusions.
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5.12 Discussion

Our work has considerable implications for thermal metrology and technological

applications. First, we have shown that TDTR is capable of providing considerable

microscopic detail about thermal phonons if the measurements can be properly in-

terpreted using a microscopic transfer function with ab-initio input. Unlike with

the macroscopic transfer function, our approach provides quantitative details on the

spectral content of the heat carried by phonons in the sample. As a corollary, us-

ing the macroscopic transfer function to interpret TDTR data on certain samples

can lead to erroneous results. For example, the apparently correct measurement of

silicon thermal conductivity appears to be a fortuitous cancellation of two factors:

the high transmission coefficient of low frequency phonons leads to an increased

contribution to heat flux that offsets the deviation from Fourier’s law that occurs

due to a lack of scattering. If these two factors were not balanced, the apparent

thermal conductivity of Si would not coincide with the bulk value. Therefore, the

conventional TDTR interpretation does not necessarily provide the actual physical

properties of the materials.

Second, our measurements show that the spectral profile of transmission coeffi-

cients is essential to understanding thermal transport across interfaces. Due to a

lack of knowledge about interfaces, the phonon transmission coefficients are often

predicted with a variety of simple models. However, this work shows that none

of these models are capable of explaining the experimental measurements. There-

fore, including an accurate spectral transmission coefficient profile is essential to

properly describing thermal phonon transport across interfaces.

Third, our work provides strong evidence that elastic transmission of phonons across

an interface is the dominant energy transmission mechanism for materials with sim-

ilar phonon frequencies. Our microscopic transfer function does not incorporate

electrons or inelastic scattering yet is able to explain all of the measurements we
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performed. We conclude that inelastic transmission and coupling between elec-

trons in metals and phonons in semiconductors have little influence on the energy

transport for the materials considered here.

Fourth, our results demonstrate that disorder at interfaces plays an important role in

the spectral content of the heat transmitted through the interface and provides strate-

gies to alter interface conductance. For instance, in applications like LEDs where

the heat dissipation rate across interfaces is to be enhanced, the key to increasing

interface conductance is to minimize the reflection of high frequency phonons (with

wavelength shorter than the surface roughness of the interface) by reducing defects;

low frequency phonons (with wavelength longer than the surface roughness of the

interface) are likely to be mostly transmitted already. On the other hand, the strong

frequency dependence of the transmission coefficients can be exploited to create

thermal phonon filters to selectively remove parts of phonon spectrum, analogous

to optical long-pass filters. Phonons with wavelength much longer than the charac-

teristic roughness of an interface are more likely transmitted through the interface

while short-wavelength phonons are mostly reflected. The thermal phonon spec-

trum responsible for heat conduction can thus be manipulated by controlling the

atomistic roughness of an interface.

Finally, our work exemplifies the powerful insights into heat conduction at the

atomic scale that can be obtained through the interwoven application of experi-

mental measurements in the quasiballistic heat conduction regime, ab-initio phonon

transport modeling, and electron microscopy. Through our approach, we are able

to directly link the atomic structure of an interface to the spectral content of heat

crossing it for the first time. Such a capability will permit the rational understand-

ing and control of interfacial heat transport at the atomic level, a capability that is

expected to impact numerous application.
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C h a p t e r 6

CONCLUSIONS AND OUTLOOK

6.1 Summary

Precise control of thermal phonons, which are the primary heat carriers in solids, is

a fascinating and rapidly growing field which could make substantial contributions

to greatly expand the range of performance of existing materials and devices as

well as innovate new materials and device designs. Interfaces play an essential role

in phonon-mediated heat conduction in solids. The ability to manipulate thermal

phonons using interfaces could impact applications ranging from thermoelectric

waste heat recovery to heat dissipation in electronics. Despite the importance of

interfaces and decades of work, interfacial thermal phonon transport remains one

of the most poorly understood transport processes. This thesis has explored the

physics of interfacial heat transport by phonons, and helped identify how we are

able to use atomic structures to control phonon transport in solids. Using a combi-

nation of modeling and experiment we are able to better understand phonon trans-

port across interfaces, and we introduce a new approach by which the microscopic

properties of thermal phonons can be extracted from thermal measurements.

Chapter 2 has studied the impact of frequency-dependent grain boundary scattering

in nanocrystalline silicon and silicon germanium alloys using a novel frequency-

dependent variance-reduced Monte Carlo technique. This method allows us to

simulate the thermal phonon transport in a realistic 3D geometry of a complex

nanograin structure. We find that the grain boundary may not be as effective as

predicted by the commonly used gray model in scattering certain phonons, with

a substantial amount of heat being carried by low frequency phonons with mean

free paths (MFPs) longer than the grain size. Significant potential to improve the
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efficiency of nanocrystalline silicon and silicon germanium exists if these phonons

can be scattered. Our work provides important insight into how to further increase

the thermoelectric performance of nanostructured silicon and silicon-germanium

alloys.

The rest of the thesis focuses on how to measure microscopic properties of ther-

mal phonons directly from experimental measurements. In Chapter 3, we have

presented two new analytical methods to solve the frequency-dependent, multidi-

mensional Boltzmann transport equation (BTE) under relaxation time approxima-

tion that enables simple, closed-form solutions to complex problems that have been

tractable previously only using computational expensive simulations. Our new so-

lutions are valid from diffusive to ballistic transport regimes, rigorously including

frequency-dependence of phonon properties, and can be applied to complex geome-

tries.

Chapter 4 has applied the analytical methods to study the heat conduction in tran-

sient grating (TG) spectroscopy, which has been of intense interest recently because

of the possibility of measure MFP spectra using observations of quasiballistic heat

conduction. The derived analytical solution provides a more rigorous mathematical

formulation to interpret the TG measurement and therefore enables MFP spectra to

be measured more accurately.

In Chapter 5, we have reported the first measurement of the transmission coeffi-

cients for thermal phonons at a metal-semiconductor interface. Our approach ex-

ploits the advances in ab-initio thermal phonon transport modeling we present in

Chapter 3 to directly extract the coefficients from the data of an optical thermal ex-

periment for the first time. With our approach, we are able to directly link the atomic

structure of an interface to the spectral content of the heat crossing it for the first

time. Our measurements reveal that phonons with wavelength shorter than the in-
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terface roughness are more likely to be reflected by the interface than phonons with

wavelength longer than the interface roughness, and as the interface gets rougher,

a larger fraction of the phonon spectrum is affected by the interface. In contrast to

prior approaches that measure only interface conductance, here we are able to pre-

cisely and unambiguously identify which phonons are more likely to be reflected

due to atomic-scale changes in the interface structure for the first time. Our work

also demonstrates a general approach by which the microscopic properties of ther-

mal phonons can be extracted from thermal measurements, and thus sets the stage

for additional seminal measurements.

6.2 Future work

One important conclusion of this thesis is that the combination of ab-initio trans-

port modeling and ultrafast optical techniques could yield tremendous microscopic

information about thermal phonons that is not previously accessible only through

ultrafast experiments. In a sense, then, the work presented here is only the begin-

ning because it demonstrates a general route by which the microscopic processes

of thermal phonon transport can be studied from thermal measurements. With this

approach, many other transport processes such as phonon scattering by defects and

electron-phonon coupling in semiconductors can be explored.

The future work consists of measuring transmission coefficients for increasingly

complex materials. The simplest next step would be to perform similar transmis-

sion coefficient measurements at other metal-silicon interfaces for different types of

interfaces, i.e. atomically smooth or textured interfaces. Then, the method can be

extended to study more complicated interface geometries, i.e. grain boundaries or

superlattices.

Half-Heusler compounds have been attractive thermoelectric materials because they

are usually environmentally friendly, mechanically, and thermally robust. However,
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their high thermal conductivity has impeded the progress of making them commer-

cially viable. Nanostructured Half-Heusler thermoelectrics has been demonstrated

with an improved efficiency. This improvement again is attributed to a reduction

in thermal conductivity by grain boundary scattering of phonons as nanocrystalline

silicon and silicon-germanium discussed in Chapter 1. However, the microscopic

properties of Half-Heusler such as phonon MFPs is still unclear. A systematic study

on the microscopic transport processes occurring in nanostructured Half-Heuslers

is necessary to further improve their efficiency as thermoelectrics. For future work,

one can use the method described in Chapter 4 to measure the MFP spectra in both

bulk and nanocrystalline Half-Heusler compounds. By comparing the two spectra,

one can get a microscopic quantitative picture of how specific phonons are affected

by the grain boundaries. The mode-specific phonon transmission coefficients can

be recovered by fitting the BTE-simulated MFP spectrum to the measurements. The

variance reduced Monte Carlo algorithm introduced in Chapter 2 could be used to

simulate the thermal transport. Rather than a simple 3D grain structure used in this

work, one could extend the simple structure to the real structures as characterized

by the transmission electron microscopy.

Superlattices, a periodic structure of layers of two or more, are another materials of

great interests though little is known about microscopic phonon transport processes

in them. A similar study on the interfacial heat transport as done in Chapter 5 could

be carried out after one extends the two-layer BTE solution to include multiple

layers.

Next, more attention is worth drawing to further explore the energy transport in the

transition regime between ballistic and diffusive propagation. This regime holds

valuable information on the nature of energy carriers in solids. Our work has iden-

tified two sub categories within this transition regime, demonstrating that this tran-

sition regime might be more complicated than previously understood. Other recent
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work(182) has demonstrated that there might be another new regime where heat

dissipation efficiency could be enhanced even when characteristic length are much

smaller than the energy carriers’ MFPs. A comprehensive picture of nanoscale en-

ergy transport is not only necessary but also crucial to achieve precise control of

heat in solids.

Besides phonons, electrons also play a crucial role in energy transport in metals and

semiconductors. Electron and phonon coupling is ubiquitous in condensed matter.

Electron scattering by phonons is one of the major processes which determines the

transport characteristics in metals and semiconductors. With the advance in first-

principle calculations, it is now possible to get the spectral properties of electrons in

both metal and semiconductor-based materials, which provides inputs for electron

transport modeling. As previously done for phonon transport, one can rigorously

investigate the electron-phonon interaction in semiconductor/metal-based materials

using the combination of ab-initio transport modeling and ultrafast optical tech-

niques done previously for phonon transport.

These are just a few of the possibilities which could yield important and useful in-

formation about nanoscale energy transport. Energy manipulation at the nanoscale

is at the forefront of modern technological innovation, and our understanding of

energy transport at this scale would lead to more robust and efficient methods of

designing frontier materials and devices. We hope this thesis has given insights into

microscopic processes of energy carriers in solids and will be useful for achieving

our ultimate goal of energy manipulation.
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A p p e n d i x A

SPECULAR BOUNDARIES

Section 3.3 derived the BTE solutions in thin films with diffuse boundary scatter-

ing. Here, we derive the governing equation for the problem of nonblack, specular

boundaries with wall temperatures ∆T1 and ∆T2, respectively. The boundary condi-

tions can be written as:

g̃+
ω(x = 0, µ) = Pω = ε1

Cω

4π
∆T1 + (1 − ε1)g̃−ω(x = 0, −µ) (A.1)

g̃−ω(x = L, µ) = Bω = ε2
Cω

4π
∆T2 + (1 − ε2)g̃+

ω(x = L, −µ), (A.2)

Applying the boundary conditions to Eqs. (5.6) & (5.7), we have

g̃+
ω(x) = F1∆T1

Cω

4π
e−

γω
µ x + (1 − ε1)F2∆T2

Cω

4π
e−

γω
µ (L+x)

+ (1 − ε1)F2

∫ L

0

Cω∆T̃(x′) + Q̃ω(x′)τω
4πΛωµ

e−
γω
µ (x′+x)dx′

+

∫ x

0

Cω∆T̃(x′) + Q̃ω(x′)τω
4πΛωµ

e
γω
µ (x′−x)dx′ (µ ∈ [0, 1]), (A.3)

g̃−ω(x) = F2∆T2
Cω

4π
e−

γω
µ (L−x) + (1 − ε2)F1∆T1

Cω

4π
e−

γω
µ (2L−x)

+ (1 − ε2)F1

∫ L

0

Cω∆T̃(x′) + Q̃ω(x′)τω
4πΛωµ

e−
γω
µ (2L−x′−x)dx′

+

∫ L

x

Cω∆T̃(x′) + Q̃ω(x′)τω
4πΛωµ

e−
γω
µ (x′−x)dx′ (µ ∈ [0, 1]), (A.4)

where F1 = ε1
ε1+ε2−ε1ε2

and F2 = ε2
ε1+ε2−ε1ε2

.

To close the problem, we insert Eqs. (A.3) & (A.4) into Eq. (5.4) and nondimension-

alize x by L. We then derive an integral equation for temperature for the specular

boundary conditions, given by

2
∫ ωm

0

Cω

τω
dω∆T̃(x̂) =

∫ ωm

0

Cω

τω
Hω(x̂)dω +

∫ 1

0

∫ ωm

0
Q̃ω(x′)

Gω(x̂ , x̂′)
Knω

dωdx̂′

+

∫ 1

0
∆T̃(x̂′)

∫ ωm

0

CωGω(x̂ , x̂′)
Knωτω

dωdx̂′, (A.5)
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where x̂ = x/L, Knω = Λω/L is the Knudsen number, γ̂ω =
1+iητω

Knω
and

Hω(x̂) = F1∆T1E2(γ̂ω x̂) + F2∆T2E2(γ̂ω(1 − x̂))

+ (1 − ε1)F2∆T2E2(γ̂ω(1 + x̂)) + (1 − ε2)F1∆T1E2(γ̂ω(2 − x̂)) (A.6)

and

Gω(x̂ , x̂′) = (1− ε1)F2E1(γ̂ω(x̂ + x̂′)) + (1− ε2)F1E1(γ̂ω(2− x̂ − x̂′)) + E1(γ̂ω | x̂ − x̂′ |).

(A.7)

In this case, the inhomogeneous function becomes

f (x̂) =
1

2
∫ ωm

0
Cω
τω

dω

[∫ ωm

0

Cω

τω
Hω(x̂)dω +

∫ 1

0

∫ ωm

0
Q̃ω(x′)

Gω(x̂ , x̂′)
Knω

dωdx̂′
]

(A.8)

and the kernel function becomes

K(x̂ , x̂′) =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωGω(x̂ , x̂′)
Knωτω

dω. (A.9)

With these results, the problem can be solved by following the same procedures

described in Sec.3.3 are followed to formulate a linear system of equations. The

solution of this system then yields the temperature Fourier coefficients.
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A p p e n d i x B

FOURIER COEFFICIENTS FOR NONBLACK DIFFUSE
BOUNDARIES

Section 3.3 demonstrated an example calculation for steady-state heat conduction

between two walls that are either black or non-black. In this section we derive the

Fourier coefficients of the kernel function K(x̂ , x̂′) and the inhomogeneous function

f (x̂) for these two specific cases.

For steady-state heat conduction between two non-black walls as studied in Sec. 3.3,

the inhomogeneous function becomes

f (x̂) =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω

[
A1ωE2

(
x̂

Knω

)
+ A2ωE2

(
1 − x̂
Knω

)]
dω. (B.1)

Its Fourier coefficients in Eq. (3.34) are then given by:

f0 =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωKnω
τω

(A1ω + A2ω)
[
1 − 2E3

(
1

Knω

)]
dω, (B.2)

and

fn =
1∫ ωm

0
Cω
τω

dω

∫ ωm

0

∫ 1

0

Cω

τω
Knωµ

[A1ω + (−1)n A2ω] − e−
1

Knω µ [(−1)n A1ω + A2ω]
1 + (Knωµ)2(nπ)2 ,

(B.3)

providing the right-hand side of Eq. (3.39). Under the same assumption of diffuse,

non-black walls, the kernel function becomes

K(x̂ , x̂′) =
1

2
∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωGω(x̂ , x̂′)
Knωτω

dω, (B.4)

where

Gω(x̂ , x̂′) = E2

(
x̂

Knω

) [
DωE1

(
1 − x̂′

Knω

)
+ B1ωE1

(
x̂′

Knω

)]
(B.5)

+ E2

(
1 − x̂
Knω

) [
DωE1

(
x̂′

Knω

)
+ B1ωE1

(
1 − x̂′

Knω

)]
+ E1

(
| x̂ − x̂′ |

Knω

)
.
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Its Fourier coefficients kmn are given by Eq. (3.35), and can be evaluated as:

k00 =
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωKnω
τω

{
2

Knω
− 1 + 2E3

(
1

Knω

)
(B.6)

+(2Dω + B1ω + B2ω)
[
1
2
− E3

(
1

Knω

)
−

1
2

E2

(
1

Knω

)
+ E3

(
1

Knω

)
E2

(
1

Knω

)]}
dω,

and

km0 =
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω

∫ 1

0

Knωµ[(−1)m + 1]
[
e−

1
Knω µ − 1

]
1 + (Knωµ)2(mπ)2 dµdω (B.7)

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω
(Dω + B1ω)

[
1 − E2

(
1

Knω

)] ∫ 1

0

Knωµ
[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω
(Dω + B2ω)

[
1 − E2

(
1

Knω

)] ∫ 1

0

Knωµ
[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω,

and

k0n =
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω

∫ 1

0

Knωµ[(−1)n + 1]
[
e−

1
Knω µ − 1

]
1 + (Knωµ)2(nπ)2 dµdω (B.8)

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωKnω
τω

(Dω + B1ω)
[
1
2
− E3

(
1

Knω

)] ∫ 1

0

[
1 − (−1)ne−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωKnω
τω

(Dω + B2ω)
[
1
2
− E3

(
1

Knω

)] ∫ 1

0

[
(−1)n − e−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω,

and for m , n

kmn =
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

Cω

τω

∫ 1

0

Knωµ
{
e−

1
Knω µ [(−1)m + (−1)n] − [1 + (−1)m+n

}
[1 + (Knωµ)2(mπ)2][1 + (Knωµ)2(nπ)2]

dµdω (B.9)

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωDω

τω

∫ 1

0

Knωµ
[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
(−1)n − e−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωDω

τω

∫ 1

0

Knωµ
[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
1 − (−1)ne−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωB1ω

τω

∫ 1

0

Knωµ
[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
1 − (−1)ne−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωB2ω

τω

∫ 1

0

Knωµ
[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
(−1)n − e−

1
Knω µ

]
1 + (Knωµ)2(nπ)2 dµdω,
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and for m , 0

kmm =
2∫ ωm

0
Cω
τω

dω


∫ ωm

0

Cω

τω

tan−1(mπKnω)
mπKnω

dω + 2
∫ ωm

0

Cω

τω

∫ 1

0

Knωµ
[
e−

1
(−1)mKnω µ − 1

]
[1 + (Knωµ)2(mπ)2]2 dµdω


+

2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωDω

τω

∫ 1

0

Knωµ
[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωDω

τω

∫ 1

0

Knωµ
[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωB1ω

τω

∫ 1

0

Knωµ
[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
1 − (−1)me−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω

+
2∫ ωm

0
Cω
τω

dω

∫ ωm

0

CωB2ω

τω

∫ 1

0

Knωµ
[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµ

∫ 1

0

[
(−1)m − e−

1
Knω µ

]
1 + (Knωµ)2(mπ)2 dµdω. (B.10)

These equations specify the matrix elements of ¯̄A in Eq. (3.39). With the linear sys-

tem specified, the coefficients of the temperature profile xm can be easily obtained

by solving a linear system.
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A p p e n d i x C

ISOTROPIC DISPERSION

We reduce computational cost by taking advantage of the cubic symmetry of Si and

computing an isotropic equivalent dispersion in phonon frequency ω-space. To ob-

tain this dispersion, we start with the full dispersion in three-dimensional wavevec-

tor k-space calculated using density functional theory (DFT) by J. Carrete and N.

Mingo using ShengBTE (88, 89) and Phonopy(173) from interatomic force con-

stants obtained with VASP.(91–94) Phonon frequencies ωk, group velocities vk and

relaxation times τk for the three acoustic and three optical branches are functions

of wavevector k = (kx , ky , kz). We discretize the phonon frequency between its

minimum and maximum values into 101 bins with equal weight ∆ω. For each po-

larization, the density of states for a given frequency bin ωi is obtained by counting

the number of modes N that fall into that bin, given by

D(ωi) =
N

V∆ω
, (C.1)

where V is the volume of the First Brillouin zone, calculated from the maximum

wavevectors given by the data.

We obtain average group velocities using v2
avg(ωi) = 〈v2(ωi)〉, or the average of

the square of group velocity for phonons in a specific frequency bin. In addition,

we can compute the average of the square of the speed in a particular direction,

i.e. v2
x(ωi) = 〈v2

kx
(ωi)〉. We find that v2

x(ωi) = v2
y(ωi) = v2

z (ωi) = 1
3 v2

avg(ωi), which

confirms that the dispersion of Si is isotropic on average.

To obtain the average relaxation time, we compute 〈τ(ωi)v2(ωi)〉/v2
avg(ωi). This par-

ticular averaging is chosen to maintain the spectral thermal conductivity distribution

of the full dispersion.
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Figure C.1: Cumulative thermal conductivity as a function of phonon mean free
path (MFP) for silicon at 300 K calculated by the isotropic equivalent dispersion
(solid line) and the original DFT data (circles). The isotropic dispersion matches
well with the ab-initio calculations as expected for a cubic crystal.

The final bulk thermal conductivity for this isotropic equivalent dispersion of silicon

at 300 K is 155.0 W/m-K, very close to the original value of 155.7 W/m-K, and the

cumulative thermal conductivity spectra are nearly identical, as shown in Fig. C.1.
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A p p e n d i x D

SUPPLEMENTARY MATERIALS FOR PHONON
TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

D.1 Overview

The supplementary information contains additional information on our computa-

tional approach as well as the details about experiments and modeling. Section D.2

presents transmission coefficients for all polarizations from both sides, followed by

Section D.3 showing the original raw TDTR data along with the BTE fitting results.

Sections D.4 & D.5 provide details about experimental measurments and modeling,

respectively.

D.2 Transmission coefficients for all polarizations

In the main text, we only show the transmission coefficient from Si to Al for longi-

tudinal phonons for the three samples. Here, in Figs. D.1, D.2 and D.3, we plot the

transmission coefficient profiles as a function of phonon frequency and wavelength

from both sides of the materials for each polarization with a clean interface, with

a native oxide layer and with a thermally grown oxide layer. The color intensity

indicates the likelihood that a single transmission coefficient curve passing through

a particular point at a given phonon frequency is able to simultaneously explain

all of the experimental data. We emphasize that the only fitting parameters are the

transmission coefficients from Si to Al for the three polarizations. All other trans-

mission and reflection coefficients are determined from detailed balance and energy

conservation.(79)

For the clean interface, the only constraint used in the fitting process is the smooth-

ness of the profile. In particular, note that we do not enforce any type of mono-
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tonicity or shape requirement on the coefficients other than smoothness. For the

native oxide interface, we additionally require that the transmission coefficients of

the native oxide interface do not exceed the values for the clean interface. Similarly,

the transmission coefficients of the thicker oxide interface should always be smaller

than those of the native oxide interface.
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D.3 TDTR data

In Figs. D.4 & D.5, we plot all the original raw data from the TDTR experiments

used in the manuscript along with the BTE fitting results. In all the cases, we show

excellent agreement between simulation and experiments.



154

f)
d

)

a) b
)

e)
c)

A
l/S

i w
it

h
 a

 c
le

an
 in

te
rf

ac
e 

at
 3

50
 K

A
l/S

i w
it

h
 a

 c
le

an
 in

te
rf

ac
e 

at
 3

00
 K

A
l/S

i w
it

h
 a

 c
le

an
 in

te
rf

ac
e 

at
 4

00
 K

Fi
gu

re
D

.4
:

E
xp

er
im

en
ta

lT
D

T
R

da
ta

(s
ym

bo
ls

)
of

an
A

l/S
is

am
pl

e
w

ith
a

cl
ea

n
in

te
rf

ac
e

at
T

=
30

0
K

,3
50

K
an

d
40

0
K

at
di

ff
er

en
t

m
od

ul
at

io
n

fr
eq

ue
nc

ie
sfi

tt
o

th
e

da
ta

fr
om

th
e

B
T

E
si

m
ul

at
io

ns
(s

ha
de

d
re

gi
on

s)
,d

em
on

st
ra

tin
g

ex
ce

lle
nt

ag
re

em
en

tb
et

w
ee

n
si

m
ul

at
io

n

an
d

ex
pe

ri
m

en
ta

td
iff

er
en

tt
em

pe
ra

tu
re

s.



155

a
)

b
)

c) d
)

e
) f)

A
l/S

i w
it

h
 a

n
 o

xi
d

e 
la

ye
r 

at
 3

00
 K

A
l/S

i w
it

h
 a

 n
at

iv
e 

o
xi

d
e 

la
ye

r 
at

 3
00

 K

A
l/S

iG
e 

w
it

h
 a

 c
le

an
 in

te
rf

ac
e 

at
 3

00
 K

Fi
gu

re
D

.5
:

E
xp

er
im

en
ta

lT
D

T
R

da
ta

(s
ym

bo
ls

)
of

an
A

l/S
is

am
pl

e
w

ith
a

na
tiv

e
ox

id
iz

ed
in

te
rf

ac
e,

an
A

l/S
is

am
pl

e
w

ith
a

th
er

m
al

ly

ox
id

iz
ed

in
te

rf
ac

e,
an

d
an

A
l/S

iG
e

w
ith

a
cl

ea
n

in
te

rf
ac

e
at

T
=

30
0

K
at

di
ff

er
en

tm
od

ul
at

io
n

fr
eq

ue
nc

ie
s

fit
to

th
e

da
ta

fr
om

th
e

B
T

E

si
m

ul
at

io
ns

(s
ha

de
d

re
gi

on
s)

.



156

D.4 Experimental details

Sample preparation

Commercial high-purity natural Si (100) wafer and Si-Ge (1.5-2 at % Ge) wafer

(100) from MTI Corp. were used in the experiments. Before coating Al on the

samples, three different surface conditions of the samples were prepared. First, the

native oxide was removed with buffered HF acid to obtain a clean surface of Si and

SiGe. After etching, the samples were immediately put into a vacuum chamber for

Al deposition. Second, the native SiO2 layer was left in place. No further treatment

was taken for this condition before Al deposition. Finally, a thermally grown SiO2

layer as fabricated by putting the Si samples into a tube furnace for three hours. The

thickness of the native SiO2 layer and thermally grown SiO2 layer was measured by

ellipsometry and TEM to be ∼ 1 nm and ∼ 3.5 nm, respectively. A thin film of Al

was deposited on all samples using electron beam evaporator. The thickness of the

Al transducer layer was 70 nm, measured by atomic force microscopy.

TDTR measurements

The measurements are taken on two-tint TDTR. The details are available in Ref. 64.

The probe diameter is 10 µm and the pump diameter is 60 µm. Both beam sizes

are measured using a home-built two-axis knife-edge beam profiler. With 60 µm

pump heating size, the heat transfer problem can be treated as one-dimensional. All

the measurements at T = 300 K are performed under ambient conditions, and the

additional measurements at T = 350 and 400 K are performed in an optical cryostat

(JANIS ST-500) under high vacuum of 10−6 torr.

TEM images

The TEM samples were prepared by standard FIB lift-out technique in the dual

beam FE-SEM/FIB (FEI Nova 600). To protect the top surface, a Pt layer with

thickness ∼ 300 nm was deposited with electron beam evaporation followed by
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another Pt layer with thickness ∼ 3-4 µm by Ga ion beam. The lamella was cut

parallel to the chip edge which was aligned to the wafer flat edge during initial cut-

ting in TDTR sample preparation. As a result, the cutting surface normal was along

(110) direction and all the TEM images were taken parallel to the Si (110) crystal-

lographic zone axis. High resolution transmission electron microscopy (HRTEM)

analyses were carried out in a FEI Tecnai TF-20 TEM/STEM at 200 kV. To avoid

damage from the high energy electron beam, the beam exposure on region of inter-

est was minimized especially at high magnification during operation.

D.5 Ab-initio properties and modeling details

Point defect scattering in SiGe

For SiGe, the mass difference scattering rate is calculated using the Tamura for-

mula,(184) given by

τ−1 =
π

6
V0m0ω

2D(ω), (D.1)

where ω is phonon frequency, D(ω) is the phonon density of states per unit volume,

and V0 is the volume per atom. m0 =
∑

i f i(1 − mi/m̄)2 is a measure of the mass

disorder, f i and mi are the concentration and the atomic mass of species i, respec-

tively, and m̄ is the average mass for the given composition. The Tamura formula

has been proven to effectively calculate the impurity scattering in SiGe with differ-

ent Ge concentration.(185) The values of all the constants in Eq. D.1 are tabulated

in Table D.1

We have sent the SiGe wafer to the third party, Thermotest, for bulk thermal con-

ductivity measurements. The measured value, using transient plane source method

on a bulk sample, is 50.7 ± 0.5 W/m-K. Using the measured value, we are able

to obtain the Ge concentration to be about ∼ 2 at % based on calculations with

the Tamura formula while the measured Ge concentration using Energy Dispersive

X-ray Spectrometry is ∼ 1.5 at %, which gives SiGe thermal conductivity around
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∼ 58 W/m-K. These differences in atomic concentration have only a minimal effect

on the transport calculations and have been incorporated in the uncertainty of BTE

simulations in Fig. 5.12 of the main text.

Al thermal conductivity

We assume a constant MFP for all modes in Al; the value ΛAl = 60 nm is chosen

to yield a lattice thermal conductivity k ≈ 123 W/m-K so that no size effects in

the thin film occur. Although the literature value of Al thermal conductivity is

about 230 W/m-K, we verified that the resulting surface temperature decay curves

by using these two Al thermal conductivities in the TDTR diffusion model could

not be distinguished as shown in Fig. D.6. Since the transmission coefficients are

extracted by fitting our model to the data, if a parameter in the model has little

effect on the results of the model, then it cannot affect the measured transmission

coefficients. Here, we demonstrate that the calculations are completely insensitive

to Al thermal conductivity, provided that it is larger than ∼ 30 W/m-K. Therefore,

our choice of Al thermal conductivity has no impact on our results.

The relaxation time for each mode is then obtained through τω = ΛAl/vω. We also

verified that the particular value of the Al MFP does not affect the results. Note

that although the Al MPF is a constant, the dispersion of Al is directly from the

first-principle calculations, and the transmission coefficients depend heavily on the

density of states and phonon group velocity in both metal and substrate. Therefore,

Al is still modeled with a spectral phonon BTE.
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Figure D.6: Calculated transient surface temperature (a) amplitude and (b) phase

for Al on Si using a two-layer diffusive model with Al thermal conductivity to be

230 W/m-K (solid blue line) and 123 W/m-K (dash-dotted red line). The surface

temperature response is not sensitive to the change of Al thermal conductivity from

230 W/m-K to 123 W/m-K.
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Table D.1: All the constants appearing in the BTE models and the fitting process

are given in the following table.

Bulk thermal properties

Al heat capacity (J/m3-K): 2.41 × 106

Al lattice thermal conductivity (W/m-K): 123

Al total thermal conductivity (W/m-K): 230

Si heat capacity (J/m3-K): 1.63 × 106

Si thermal conductivity (W/m-K): 155

SiGe heat capacity (J/m3-K): 1.63 × 106

SiGe thermal conductivity (W/m-K): 51

Electronic thermal properties in Al

Heat capacity (J/m3-K): 4.11 × 104

Thermal conductivity (W/m-K): 203

Electron-phonon coupling coefficient g (W/m3-K): 2.1 × 1017

Constants in Tamura formula

Volume per Si atom V0 (nm3): 0.02

Measure of the mass disorder m0: 0.0568

Transducer film thickness

Al/Si with a clean interface (nm): 69

Al/SiGe with a clean interface (nm): 72

Al/Si with a native oxidized interface (nm): 70

Al/Si with a thermally-grown oxidized interface (nm): 70

Other constants

Optical penetration depth δ (nm): 10

Laser repetition frequency (MHz): 76


