ABSTRACT

Heat is one of the most fundamental forms of energy, and the ability to control heat
plays a critical role in most current and future energy applications. Recently, in-
terface engineering between heterogeneous solids has provided new approaches to
manipulate heat transport at the scales of the energy carriers in solids, i.e. phonons
which are quantized lattice vibrations. For example, nanocrystalline materials,
which are polycrystalline materials with nanoscale grain sizes, are promising ther-
moelectric (TE) materials that have achieved substantially improved figure of merits
compared to their bulk counterparts. This enhancement is typically attributed to a
reduction in lattice thermal conductivity by phonon scattering at grain boundaries.
On the other hand, inefficient heat dissipation across interfaces has been a long-
standing problem that shortens the lifetime of electronics such as light-emitting

diodes.

Despite the importance of interfaces, we still lack a comprehensive understand-
ing of interfacial thermal phonon transport. For instance, the Fresnel coefficients
enable the straightforward mathematical description of light as it moves between
media of differing dielectric constants. Similarly, interfacial phonon transport can
also be characterized by transmission coeflicients that vary over the broad phonon
spectrum in an analogous manner to Fresnel coefficients for light. However, despite
decades of work, the spectral profile of these coefficients and how the profile is in-
fluenced by the atomic structure of actual interfaces remains unclear. As a result,
the basic phenomenon of interfacial heat transport remains among the most poorly

understood transport processes.

To elucidate this process, in this thesis we investigate interfacial thermal phonon

transport using both modeling and experiment. The first portion of the thesis ex-



vi
amines the impact of frequency-dependent grain boundary scattering in nanocrys-
talline silicon and silicon-germanium alloys using a novel computational method.
We find that the grain boundary may not be as effective as commonly considered in
scattering certain phonons, with a substantial amount of heat being carried by low
frequency phonons with mean free paths longer than the grain size. Our result will

help guide the design of more efficient TEs.

The second part of the thesis focuses on studying heat conduction using the Boltz-
mann transport equation (BTE), which is the governing equation of energy transport
at length scales comparable to phonon mean free paths. The BTE is an integro-
differential equation of time, real space, and phase space. Due to its high dimen-
sionality, it is extremely challenging to solve. Here, we develop analytical methods
to solve the frequency-dependent BTE, which allow us to obtain simple, closed-
form solutions to complex multidimensional problems that have previously been
possible to solve only with computationally expensive numerical simulations. We
demonstrate that the solution leads to a more accurate measurement of phonon MFP

spectra in thermal transient grating experiments.

Finally, we report the first measurements of thermal phonon transmission coeffi-
cients at a metal-semiconductor interface using ab-initio phonon transport modeling
based on the BTE we develop in the second part and a thermal characterization tech-
nique, time-domain thermoreflectance. With our approach, we are able to directly
link the atomic structure of an interface to the spectral content of the heat crossing
it for the first time. Our work realizes the long-standing goal of directly measuring
thermal phonon transmission coefficients and demonstrates a general route to study

microscopic processes governing interfacial heat conduction.
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