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Appendix A

SPECULAR BOUNDARIES

Section 3.3 derived the BTE solutions in thin films with diffuse boundary scatter-
ing. Here, we derive the governing equation for the problem of nonblack, specular
boundaries with wall temperatures A7} and AT, respectively. The boundary condi-

tions can be written as:

— Co —
g, (x=0,) = P, = €1 AN+ (1 —e)g,(x =0, -p) (A.1)

_ Co —
8,(x=L.p = B, =€ ADL+(l- €)8,(x =L, -, (A.2)

Applying the boundary conditions to Egs. (5.6) & (5.7), we have
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To close the problem, we insert Egs. (A.3) & (A.4) into Eq. (5.4) and nondimension-
alize x by L. We then derive an integral equation for temperature for the specular

boundary conditions, given by
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where x = x/L, Kn,, = A,,/L is the Knudsen number, y,, = —1;'17’“ and

H,(x) = FATE(y,x)+ BATE(y,(1 —X))

+ (1 = e)RALE(y,(1+%)+ (1 — )F AT\ E;(¥,(2 — X)) (A.6)
and

Go(x,X) = (1 -eDRE(Yo(x+X) + (1 - e) L E1(Yu(2 =X =X) + E1 (Yo [x = X)).

(A.7)
In this case, the inhomogeneous function becomes
1 W Cw 1 W ~ Gw A’
10 =g | [ Ea@aos [ [ 8 % E dwaw
2)," 2do lJo Tw o Jo Kn,,
(A.8)
and the kernel function becomes
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With these results, the problem can be solved by following the same procedures
described in Sec.3.3 are followed to formulate a linear system of equations. The

solution of this system then yields the temperature Fourier coefficients.



