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C h a p t e r 5

PHONON TRANSMISSION COEFFICIENTS AT SOLID
INTERFACES

Chapter 5 has been adapted from

(1) Chengyun Hua et al. “Fresnel transmission coefficients for thermal phonons
at solid interfaces”. In: In review process (2016).

5.1 Background

Transport across interfaces in heterogeneous media is a fundamental physical pro-

cess that forms the basis for numerous widely used technologies. For example,

the reflection and transmission of light at interfaces, as described by the Fres-

nel equations, enables wave-guiding with fiber-optics and anti-reflection coatings,

among many other functionalities. Interfaces also play an essential role in phonon-

mediated heat conduction in solids.(129, 130) Material discontinuities lead to ther-

mal phonon reflections that are manifested on a macroscopic scale as a thermal

boundary resistance (TBR), also called Kapitza resistance, Rk , that relates the tem-

perature drop at the interface to the heat flux flowing across it. TBR exists at the

interface between any dissimilar materials due to differences in phonon states on

each side of the interface.(129) Typical interfaces often possess defects or rough-

ness which can lead to additional phonon reflections and hence higher TBR.

TBR plays an increasingly important role in devices, particularly as device sizes

decrease below the intrinsic mean free paths (MFPs) of thermal phonons.(130) At

sufficiently small length scales, TBR can dominate the total thermal resistance. For

instance, the effective thermal conductivity of a superlattice can be orders of magni-

tude smaller than that of the constituent materials due to high TBR.(113, 131–133)

This physical effect has been used to realize thermoelectrics with high efficiency(9,
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12) and dense solids with exceptionally low thermal conductivity(134). On the other

hand, TBR can lead to significant thermal management problems(101, 135, 136) in

applications such as LEDs(137, 138) and high power electronics(136, 139).

Numerous works over several decades have investigated the microscopic origin of

TBR at solid-solid interfaces, starting with studies performed at low temperatures

(∼ 1 K), in which heat is carried predominantly by phonons with frequencies less

than 1 THz.(140, 141) At these low temperatures and for pristine, ordered inter-

faces, transmission coefficients can be obtained from continuum elastic theory in

an analogy with Snell’s law for light; this model is known as the acoustic mismatch

model (AMM).(142, 143) The AMM was shown to explain the experimentally mea-

sured values of TBR at various solid-solid interfaces.(141) At higher temperatures

(above 1 K), heat transport across the interfaces was found to be sensitive to surface

roughness. For the limit of completely diffuse scattering in which transmitted and

reflected phonons cannot be distinguished, Swartz constructed the diffuse mismatch

model (DMM).(129) Despite the success of these models at explaining TBR at low

temperatures, they generally fail at temperatures larger than 40 K and are unable to

account for the atomistic structure of the interface.

Recent works have focused on remedying these deficiencies. Optical methods en-

able the routine measurement of TBR over a wide range of temperatures for vari-

ous metal-dielectric interfaces (26–30) as well as at interfaces with variable bond-

ing strength. (31, 32) Other works have examined the temperature dependence

of the thermal conductivity(62) in nanocrystalline samples. Computational atom-

istic methods such as molecular dynamics(144–152) and atomistic Green’s func-

tions(153–157) have been extensively applied to obtain the transmission coeffi-

cients at interfaces with realistic atomic structure. These calculations generally

predict the coefficients to decrease with increasing phonon frequency due to reflec-

tions of short wavelength phonons by atomistic roughness, a trend that is supported
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by basic wave physics and indirectly by experiment.(62, 158) Despite all of these

works, however, an unambiguous determination of the transmission coefficients at

an actual interface has not yet been reported.

Here, we report the first measurements of the thermal phonon transmission coeffi-

cients at a solid interface using a combination of experimental observations of qua-

siballistic transport as introduction in Chapter 4 and advances in ab-initio transport

modeling based on the Boltzmann transport equation (BTE) that are presented in

Chapter 3. Unlike prior works in which considerable ambiguity remained in the val-

ues of the coefficients, our approach places tight constraints on the allowed spectral

transmission profile. Applying our approach in conjunction with transmission elec-

tron microscopy (TEM), we are able to directly link atomic structure to the spectral

content of heat crossing the interface for the first time. Our approach demonstrates

a general route to directly experimentally study the microscopic transport processes

governing interfacial heat conduction.

5.2 TDTR with ab-initio phonon transport modeling

Our measurement is based on the TDTR experiment, an optical pump-probe tech-

nique that is used to characterize thermal properties on micron length scales. In this

experiment, a femtosecond pulsed laser beam is split into a pump and a probe beam.

The pump pulse train is modulated at a frequency from 1 to 15 MHz to enable lock-

in detection, and is then used to impulsively heat a metal film coated on the sample.

The transient temperature decay at the surface is detected as a change in optical

reflectance by the probe beam.(159) Extracting thermal properties requires solving

a simple inverse problem in which the measured data sets are related to the desired

properties by a macroscopic transfer function based on a multilayer heat diffusion

model.(160, 161) The thermal properties, such as substrate thermal conductivity

and metal-substrate interface conductance are varied until the data and simulation
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match.

Although this approach is widely used, it has the drawback that the microscopic

phonon properties are averaged into a single number, the interface conductance,

resulting in minimal constraints on the allowed transmission coefficients. In this

work, we instead aim to directly and unambiguously extract the transmission co-

efficients from TDTR data by replacing the macroscopic transfer function based

on Fourier’s law with a microscopic transfer function based on ab-initio phonon

transport modeling. Mathematically, we write this problem as:

g = H(T12(ω)), (5.1)

where T12(ω) are the phonon frequency dependent transmission coefficients from

layer 1, the metal transducer film, to layer 2, the substrate; H is the transfer func-

tion based on ab-initio phonon transport modeling; and g is the TDTR experimental

data consisting of multiple transient data sets with different modulation frequencies.

This equation represents an inverse problem for the transmission coefficients that

can in principle be solved in an analogous manner to that employed for the macro-

scopic transfer function.

Although simple in principle, several challenges arise when trying to implement

this strategy. First, it is essential that part of the non-equilibrium phonon distribu-

tion emerging from the interface propagate into the substrate ballistically. As illus-

trated in Fig. 5.1, when MFPs are much shorter than the characteristic length scale

of the thermal gradient, information about the phonon distribution at the interface

is lost due to scattering. On the other hand, if some phonons have sufficiently long

MFPs, the non-equilibrium phonon distribution penetrates into the substrate and af-

fects the resulting heat conduction, thereby providing direct information about the

spectral content of heat crossing the interface. Fortunately, many experimental re-

ports have demonstrated clear evidence of this quasiballistic heat transport regime
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Figure 5.1: Schematic of the principle underlying the measurement of transmission

coefficients. If the characteristic length scale of the thermal transport is much longer

than the phonon MFPs, information about the interfacial distribution is lost due to

strong scattering. If some MFPs are comparable to the thermal length scale, the

non-equilibrium distribution at the interface propagates into the substrate where it

can be detected.

in different material systems (20, 23, 25, 162–164) including the transient thermal

grating experiments discussed in Chapter 4. In this work, we interpret these effects

as fundamentally originating from the non-equilibrium phonon distribution emerg-

ing from the interface.

Second, we must determine the microscopic transfer function that maps the trans-

mission coefficients directly to the TDTR signal without any artificial fitting pa-

rameters. It is this step that has long impeded efforts to study interfaces due to the

challenge of solving the BTE for the TDTR experiment. A number of simplified

models(79, 126, 164–168) have been proposed to explain these observations. How-

ever, all of these models make various approximations that limit their predictive

capability.

In this work, we overcome this challenge using two recent advances we reported for
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rigorously solving the spectral BTE under the relaxation time approximation (RTA),

with no additional simplifications, that yield a factor of 104 speedup compared to

existing methods and allows the first ab-initio phonon transport modeling of TDTR

free of artificial parameters or simplifications of the phonon dispersion. First, we

have obtained an analytical solution of the spectral BTE in a semi-infinite substrate

subject to an arbitrary heating profile.(169) Second, we have employed a series

expansion method to efficiently solve the BTE in the thin transducer film.(170) In

this work, these two solutions are combined using a spectral interface condition(79)

that expresses the conservation of heat flux at each phonon frequency to yield the

necessary microscopic transfer function H(T12(ω)).

5.3 Derivation of transfer function H(T12(ω))

We now describe the derivation of the transfer function H(T12(ω)) that maps trans-

mission coefficients to the TDTR amplitude and phase data. Thermal transport in

TDTR experiments, assuming only cross-plane heat conduction, is described by

the one-dimensional (1D) spectral Boltzmann transport equation (BTE) under re-

laxation time approximation (RTA)(22),

∂gω
∂t

+ µvω
∂gω
∂x

= −
gω + f0(T0) − f0(T)

τω
+

Qω

4π
(5.2)

f0(T) =
1

4π
~ωD(ω) f BE(T) ≈ f0(T0) +

1
4π

Cω∆T, (5.3)

where gω = ~ωD(ω)[ fω(x , t , µ) − f0(T0)] is the deviational distribution function,

f0 = f0(x , t) is the equilibrium distribution function, µ = cos(θ) is the direc-

tional cosine, vω is the phonon group velocity, τω is the phonon relaxation time,

and Qω(x , t) is the spectral volumetric heat generation. Assuming a small temper-

ature rise, ∆T = T − T0, relative to a reference temperature, T0, the equilibrium

distribution is proportional to ∆T , as shown in Eq. (5.3). Here, ~ is the reduced

Planck constant, ω is the phonon frequency, D(ω) is the phonon density of states,

f BE is the Bose-Einstein distribution, and Cω = ~ωD(ω) ∂f BE
∂T is the mode specific
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heat. The volumetric heat capacity is then given by C =
∫ ωm

0
Cωdω and the Fourier

thermal conductivity k =
∫ ωm

0
kωdω, where kω = 1

3CωvωΛω and Λω = τωvω is the

phonon MFP. To close the problem, energy conservation is used to relate gω to ∆T ,

given by ∫ ∫ ωm

0

[
gω(x , t)
τω

−
1

4π
Cω

τω
∆T(x , t)

]
dωdΩ = 0, (5.4)

where Ω is the solid angle in spherical coordinates and ωm is the cut-off frequency.

Note that summation over phonon branches is implied without an explicit summa-

tion sign whenever an integration over phonon frequency or MFP is performed.

Before we solve Eq. (5.2), let us first briefly review the signal formation in TDTR.

Since the thermal response given by the BTE is a linear time-invariant system, the

output transient signal Z(t) of TDTR can be represented in terms of frequency re-

sponse solution through the following equation(161)

Z(t) =

∞∑
n=−∞

H(ω0 + nωs)einωst , (5.5)

where ω0 is the reference angular frequency of the periodic heating, ωs is the an-

gular sampling frequency set by the repetition rate of the laser pulses, and H(η) is

surface temperature response subject to a periodic heating at frequency η. There-

fore, to study the transient heat transport in TDTR, it is equivalent to solve the

modulated heat conduction problem in the same geometry, a double-layer structure

of a metal film on a substrate as shown in Fig. 5.2.

We now divide our discussion into three parts: transducer film, substrate, and in-

terface. While the calculations for transducer film and substrate are treated using

different techniques, the solutions in those two layers depend on each other through

the appropriate interface conditions.
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Figure 5.2: 2D schematic of the experimental configuration subject to a modulated

heating source: a double layer structure of a transducer film on a substrate (sample).

Q0 is the amplitude of the heating source, η is angular modulation frequency, δ is

the optical penetration depth of the heating source, and x is the cross-plane transport

direction. x1 and x2 correspond to the coordinate systems used in transducer and

substrate accordingly.

Transducer film

The metal thin film serves as an optical transducer that absorbs the incident opti-

cal energy, while also enabling the observation of temperature decay through the

thermoreflectance coefficient. In our work, we neglect electrons and consider that

heat is only carried by phonons in Al. This approximation is supported by prior

works that found that the direct electron-phonon coupling transport mechanism is

negligible for the materials considered here,(26, 171, 172) and thus the presence

of electrons in our model is not necessary to accurately describe interfacial thermal

transport for Al/Si interfaces. Moreover, in Section 5.11, we demonstrate the effects

of electrons in Al are minimal to the TDTR signals.

Since the system is modulated at a given frequency η, we can assume that both g1ω

and ∆T1 are of the form eiηt . The volumetric heat generation in thin film is given

by Qω = Q0
ωeiηte−x1/δ, where the amplitude of heating source Q0 =

∫ ωm

0
Q0
ωdω.

We also assume that phonons are specularly reflected at x1 = 0, i.e. g̃1ω(x1 =
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0, µ) = g̃1ω(x1 = 0, −µ). Substituting g1ω = g̃1ω(x1, µ)eiηt , ∆T1 = ∆T̃1(x1)eiηt and

the specular boundary condition at x1 = 0 into Eq. (5.2) leads to a first-order ODE

for g̃1ω(x1, µ), and its solution is given by

g̃+
1ω(x1, µ) = Bωe−

γ1ω
µ (d+x1) +

∫ d

0

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1+x1)dx′1

+

∫ x1

0

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1−x1)dx′1 (µ ∈ (0, 1]) (5.6)

g̃−1ω(x1, µ) = Bωe
γ1ω
µ (d−x1)

−

∫ d

x

C1ω∆T̃(x′1) + Q0
ωe−x/δτ1ω

4πΛ1ωµ
e
γ1ω
µ (x′1−x1)dx′1 (µ ∈ [−1, 0]), (5.7)

where γ1ω = (1 + iητ1ω)/Λ1ω, d is the film thickness, and Bω are the unknown coef-

ficients determined by the interface condition at x1 = d. Here, g̃+
1ω(x1, µ) indicates

the forward-going phonons and g̃−1ω(x1, µ) the backward-going phonons.

To close the problem, we plug Eqs. (5.6) & (5.7) into Eq. (5.4) and obtained an

integral equation for temperature as:

∆T̃(x̂1) −
∫ 1

0
∆T̃(x̂′1)K(x̂′1, x̂1)dx̂′1 =

∫ ωm

0
BωF1

ω(x̂1)dω + F2(x̂1), (5.8)

where x̂1 = x1/d. The kernel function K(x̂′1, x̂) is given by

K(x̂′1, x̂1) =
1

2
∫ ωm

0
C1ω
τ1ω

dω

∫ ωm

0

C1ω

τ1ωKn1ω
{E1[γ̂1ω(x̂′1 + x̂1)] + E1[γ̂1ω | x̂′1 − x̂1 |]}dω

(5.9)

and the two inhomogeneous functions are given by

F1
ω(x̂1) =

2π∫ ωm

0
C1ω
τ1ω

dω

1
τ1ω
{E2[γ̂1ω(1 + x̂1)] + E2[γ̂1ω(1 − x̂1)]} (5.10)

F2(x̂1) =
2π∫ ωm

0
C1ω
τ1ω

dω

∫ 1

0

∫ ωm

0

Q0
ωe−ρx̂′1

Kn1ω
{E1[γ̂1ω(x̂′1 + x̂1)] + E1[γ̂1ω | x̂′1 − x̂1 |]}dωdx̂′

(5.11)

where Kn1ω = Λ1ω/d is the Knudsen number, γ̂1ω =
1+iητ1ω

Kn1ω
, and En(x) is the expo-

nential integral given by(21):

En(x) =

∫ 1

0
µn−2e−

x
µ dµ. (5.12)
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We apply the spectral method introduced in Section 3.3 to efficiently solve Eq. (5.8).

Briefly, the functions in Eq. (5.8) can be expanded as a finite cosine series, such as

∆T̃1(N)(x̂1) ≈
N∑

n=0

tncos(nπ x̂1) (5.13)

and

K(N)(x̂ , x̂′) =
1
4

k00 +
1
2

N∑
m=1

km0cos(mπ x̂) +
1
2

N∑
n=1

k0ncos(nπ x̂′),

+

N∑
m=1

N∑
n=1

kmncos(mπ x̂)cos(nπ x̂′) (5.14)

where N is the truncated basis number, and tn’s and knm’s are the Fourier coefficient.

Similarly, F1
ω(x̂1) and F2(x̂1) are also expanded in term of cosines. Following the

steps in the above reference, we can express the temperature as

∆T̃1(x̂1) = [A−1( f1B + f2)]Tφ(x) (5.15)

where the matrix A contains elements A00 = 1 − k00
4 , A0n = − 1

2 k0n, An0 = − kn0
4 ,

Ann = 1 − 1
2 knn and Anm = − 1

2 knm (m , n , 0) and B is a Nω column vector of

the unknown coefficients Bω, where Nω is the number of discretization in phonon

frequency. f1 is a N × Nω matrix, consisting of the Fourier coefficients of F1
ωi

(x̂1)

evaluated at each phonon frequency ωi and f2 is a N column vector, consisting of

the Fourier coefficients of F2(x̂1).

Then, g̃+
1ω(x1, µ) and g̃−1ω(x1, µ) can be expressed in terms of the unknown coeffi-

cients Bω by plugging Eq. (5.15) into Eqs. (5.6) and (5.7).

Substrate

The substrate can be treated as a semi-infinite region subject to a surface heat flux.

Therefore, the BTE for the substrate becomes

iηg̃2ω + µv2ω
∂g̃2ω

∂x2
= −

g̃2ω

τ2ω
+

C2ω

4πτ2ω
∆T̃(x2) +

1
2

Pωv2ω |µ|δ(x2), (5.16)
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where the unknown coefficients Pω’s are determined through the interface condi-

tions.

We then apply the Green’s function method given in Section 3.2. The unknown

distribution function in spatial frequency domain is then written as

g̃2ω(η, ξ2) =
C2ω

4π
∆T̃2(η, ξ2) + 1

2 PωΛ2ω |µ|/C2ω

1 + iητ2ω + iµξ2Λ2ω
, (5.17)

and the temperature profile

∆T̃2(η, ξ2) =

∫ ωm

0
Pωv2ω

1+iητ2ω
(Λ2ωξ2)2 log

[
1 +

(
Λ2ωξ2

1+iητ2ω

)2
]

dω∫ ωm

0
C2ω

2πτ2ω

[
1 − 1

Λ2ωξ2
tan−1

(
Λωξ2

1+iητ2ω

)]
dω

, (5.18)

where ξ2 is the Fourier variable of x2.

Again, to express g̃2ω only in terms of unknown coefficients Pω, we simply plug

Eq. (5.18) into Eq. (5.17).

Interface condition

The unknown coefficients in the solutions of transducer film and substrate are ob-

tained by applying appropriate interface conditions. Here, we use the elastic trans-

mission interface condition with mode conversion, closely following the work by

Minnich et al.(79) Briefly, for a given mode i, the heat fluxes outgoing from the

interface, qi−
1ω and qi+

2ω, must be equal to the reflected and transmitted heat fluxes

incident to the interface, qi+
1ω and qi−

2ω. By assuming elastic and diffuse scattering,

the transmission and reflection process for each phonon frequency is treated inde-

pendently and the heat flux equality condition must be satisfied for each frequency

and polarization.
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The interface conditions are∫ 1

0
gi+

2ωvi
2ωµdµ =

∑
j

T ji
12(ω)

∫ 1

0
g j+

1ωv j
1ωµdµ +

∑
j

R ji
21(ω)

∫ 1

0
g j−

2ωv j
2ωµdµ,

(5.19)∫ 1

0
gi−

1ωvi
1ωµdµ =

∑
j

T ji
21(ω)

∫ 1

0
g j−

2ωv j
2ωµdµ +

∑
j

R ji
12(ω)

∫ 1

0
g j+

1ωv j
1ωµdµ,

(5.20)

where T ji
12(ω) is the transmission coefficient of mode j at frequency ω from side

1 to side 2 as mode i, R ji
21(ω) is the reflection coefficient of mode j at frequency

ω from side 2 back into side 2 as mode i, and so on. gi±
1ω from Sec. 5.3 and gi±

2ω

from Sec. 5.3 are evaluated at x1 = d and at x2 = 0, respectively. Given the values

of T i j
12(ω), Ri j

12(ω), T i j
21(ω) and Ri j

21(ω), the unknown coefficients Pω and Bω’s are

obtained by plugging Eqs. (5.6), (5.7), and (5.17) into Eqs. (5.19) and (5.20) and

solving the linear system.

The next question is how T i j
12(ω) is related to the other reflection and transmission

coefficients. The reflection coefficients are related to the transmission coefficients

by energy conservation given by∑
j

T i j
12(ω) + Ri j

12(ω) = 1, (5.21)

and ∑
j

T i j
21(ω) + Ri j

21(ω) = 1. (5.22)

T ji
21(ω) is related to T i j

12(ω) through the principle of detailed balance, which requires

that no net heat flux can transmit across the interface when both materials are at an

equilibrium temperature T . Applying this condition to every phonon mode on each

side of the interface for each polarization and frequency gives:

T i j
12(ω)Ci

1ωvi
1ω = T ji

21(ω)C j
2ωv j

2ω . (5.23)

Therefore, we need to specify T i j
12(ω), Ri j

12(ω), and Ri j
21(ω).
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Let us first consider a special case where no mode conversion is allowed (T i j
12(ω),

T i j
21(ω), Ri j

12(ω), Ri j
21(ω) = 0 for i , j). Then, the interface conditions become∫ 1

0
gi+

2ωv2ωµdµ = T ii
12(ω)

∫ 1

0
gi+

1ωvi
1ωµdµ + Rii

21(ω)
∫ 1

0
gi−

2ωvi
2ωµdµ, (5.24)∫ 1

0
gi−

1ωv1ωµdµ = T ii
21(ω)

∫ 1

0
gi−

2ωvi
2ωµdµ + Rii

12(ω)
∫ 1

0
gi+

1ωvi
1ωµdµ, (5.25)

and the detail balance becomes

T ii
12(ω)Ci

1ωvi
1ω = T ii

21(ω)Ci
2ωvi

2ω . (5.26)

Therefore, once T ii
12(ω) is specified, all the other transmission and reflection coef-

ficients are determined. For now, we only consider this special case and neglect

the mode conversion in our BTE simulations. In Section 5.11, we show that the

mode specific transmission coefficients cannot be resolved by the TDTR measure-

ments and the measurable quantity is
∑

j T i j
12(ω) instead of individual transmission

coefficients. For simplicity, we will use T12(ω, p) rather than the summation. Note

that the only inputs to our calculation are the phonon dispersions and lifetimes,

calculated using density functional theory (DFT) with no adjustable parameters by

Jesús Carrete and Natalio Mingo using ShengBTE(88) and Phonony(173) from in-

teratomic force constants obtained with VASP.(91–94) The details about converting

the ab-initio calculations to an equivalent isotropic dispersion to reduce computa-

tional cost can be found in Appendix C. For Aluminum, the dispersion is calculated

using the harmonic interatomic force constants, which are generated using Density

Functional Perturbation Theory (DFPT) implemented in the ab-initio simulation

package Quantum Espresso. The details about calculating phonon lifetimes in Al

are given in Appendex D.5. Fig. 5.3 plots the phonon density of states, group ve-

locity, and relaxation times as a function of phonon frequency in both Al and Si for

the three acoustic branches.

The only unknown parameters in this model are the spectral transmission coeffi-

cients T12(ω). In this work, we use T12(ω) as the fitting parameter rather than using
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models like a gray model or DMM. The result of the BTE modeling can be written

into a compact transfer function given as

g = H(T12(ω)), (5.27)

where H is the microscopic transfer function based on BTE modeling, and g is

the TDTR experimental data consisting of multiple transient data sets with differ-

ent modulation frequencies. This microscopic transfer function maps the spectral

transmission coefficients T12(ω) into an observable quantity g. This equation can

be solved as an inverse problem for the transmission coefficients. Therefore, we are

able to interpret phonon transmission coefficients across an interface directly from

the experiments without any artificial fitting parameters.
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5.4 Solution of inverse problem

The final challenge is to solve the inverse problem that identifies the transmission

coefficients that best explain the observed data. From the BTE model, we obtain a

surface temperature decay curve as a function of time just like the one measured in

the experiments. For a given sample, the correct transmission coefficient profile as a

function of phonon frequency will minimize the difference between the simulation

curves and experimental TDTR traces at all modulation frequencies. By treating the

transmission coefficients as fitting parameters, we avoid using the oversimplified

models. To solve the inverse problem that identifies the transmission coefficients

that best explain the observed data, we utilized particle swarm optimization (PSO)

method to search for the optimal profile. The essential goal of PSO method is to

minimize the objective function defined as

f = α |gab−initio(T12(ω)) − gmeasured | + (1 − α)
∫ (

d2T12

dω2

)2

dω. (5.28)

The first part of the equation evaluates the norm of the difference between the exper-

imentally measured and BTE-simulated TDTR signals given a transmission profile

profile T12(ω). The second part of the equation evaluates the second derivative of the

transmission coefficient profile, serving as the smoothness penalty function. Note

that the smoothness of the profiles is the only constraint we impose in the objec-

tive function. The smoothing parameter α determines the relative importance of the

second part to the first part. If α = 1, then no smoothness constraint is imposed.

Here, we use

α =

∫ (
d2T0

12
dω2

)2
dω

|gab−initio(T0
12(ω)) − gmeasured |

, (5.29)

where T0
12(ω) is the initial profile. The formula is chosen such that the first and

second parts of the equation have the same order of magnitude.

To search for the optimal profile that minimizes the objective function, the PSO

algorithm randomly initializes a collection of transmission coefficient profiles and
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evolves them in steps throughout the phase space which contains all possible trans-

mission coefficient profiles. At each step and for each profile, the algorithm eval-

uates the objective function defined as above. After this evaluation, the algorithm

decides how each profile should evolve according to the current best profile. The

profile evolves, then the algorithm reevaluates. The algorithm stops when the ob-

jective function reaches the desired value. The transmission coefficient profile that

achieves the minimum value of the objective function is the optimal profile that

explains the data.

However, since the inverse problem is ill-posed, a unique solution does not exist.

We use Gibbs sampling to explore adjacent regions of the optimal transmission

coefficient profile. We first randomly generated 1000 profiles by perturbing the

optimal profile with a smooth function defined using the following formula

δ = A[r1cos(2πω/ωmaxr2 + 2πr3) + r4sin(2πω/ωmaxr5 + 2πr6)], (5.30)

where the amplitude of the perturbation A is 0.1, and r1, r2, r3, r4, r5 and r6 are

random numbers between 0 to 1. We evaluated the objective function at all the

perturbed profiles and recorded the values. Then, we started the Gibbs sampling

process. At each iteration, we randomly drew a profile, a, from the stored pop-

ulation and compared the value of its corresponding objective function, fn to the

one from the previous step, fn−1 evaluated at profile b. If fn is less than fn−1, we

accepted a and kept fn. If not, a random number r was drawn and compared to

u = p/(1 + p), where

p = exp
(

fn − fn−1

T0

)
. (5.31)

If r was smaller than u, then we accepted a and kept fn. If not, we rejected a and

updated fn to be fn−1. The system temperature, T0, is chosen such that the stationary

distribution is gradually changing. Here, T0 is set to be the mean value of the objec-

tive functions of all the perturbed samples. We kept track of how many times each
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Clean interface
d < 0.5 nm

Si (110)Al

5 nm

Figure 5.4: TEM image showing the clean interface of an Al/Si sample with the

native oxide removed. The interface thickness is less than 0.5 nm.

profile was chosen at each iteration and generated a histogram of the occurrence

frequency of each profile. We stopped the sampling process when the histogram

became stationary. This occurrence frequency is also called the likelihood of the

transmission coefficient profiles. The higher the value of a profile’s likelihood is,

the more likely the profile could fit the experimentally measured TDTR signals at

different modulation frequencies. Thus by combining the PSO method with Gibbs

sampling algorithm, we are able to determine the most likely transmission coeffi-

cients at the interface between Si and Al.

5.5 Measurements of phonon transmission coefficients

We demonstrate our transmission coefficient measurements on an Al film on Si

substrate with the native oxide removed by Hydrofluoric acid prior to Al deposi-

tion, yielding a clean interface. The TEM image in Fig. 5.4 shows the interface

thickness is less than 0.5 nm. The amplitude and phase of signals from the lock-in

amplifier at different modulation frequencies are given in Fig. 5.5. For reference,

solving the usual inverse problem with the macroscopic transfer function on this
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a)

b)

Al/Si with a clean interface at 300 K

Figure 5.5: Experimental TDTR data (symbols) on this sample at T = 300 K for

modulation frequencies f = 2.68, 5.51 and 9.79 MHz along with the (a) amplitude

and (b) phase fit to the data from the BTE simulations (shaded regions), demonstrat-

ing excellent agreement between simulation and experiment. The shaded stripes de-

noted BTE simulations correspond to the likelihood of the measured transmission

coefficients possessing a certain value as plotted in Fig. 5.6.
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data set yields G ≈ 280 MW/m2-K and k ≈ 140 W/m-K, in good agreement with

prior works and literature values for the thermal conductivity of Si.(20, 158) Al-

though the good agreement is often taken as evidence that the macroscopic transfer

function is valid for Si, this conclusion is incompatible with several independent

ab-initio calculations that clearly show that heat is carried by phonons with MFPs

exceeding the thermal penetration depth of TDTR.(174, 175) This prediction has

recently been experimentally confirmed by Cuffe et al using thermal measurements

on variable thickness silicon membranes.(176) This fact implies that quasiballistic

transport should be readily observable in a typical TDTR experiment on Si, despite

the seemingly correct thermal properties measured. This apparent contradiction is

resolved by observing that the signal measured in TDTR strongly depends on the

spectral profile of the transmission coefficients in the quasiballistic regime, thereby

providing the sensitivity necessary to solve the inverse problem given in Eq. 5.27.

We represent the transmission coefficient as a probability density plot, with the

color intensity indicating the likelihood that a single transmission coefficient curve

passing through a particular point at a given phonon frequency is able to simulta-

neously explain all of the data in Fig. 5.5, without any other adjustable parameters.

The result is shown in Fig. 5.6(a). The figure shows that the transmission coefficient

from Si to Al for longitudinal phonons, TSi→Al(ω), starts at unity, its maximum pos-

sible value, and decreases steadily to near zero for high phonon frequencies (∼ 10

THz). The transmission coefficient profiles for the other polarizations have similar

shapes, and so throughout the paper we plot only the longitudinal transmission co-

efficients for simplicity. The transmission coefficients from Al to Si, TAl→Si(ω) are

calculated by satisfying the principle of detailed balance; the relationship between

TSi→Al(ω) and TAl→Si(ω) reflects the differences in density of states and group ve-

locity between the two materials. The transmission coefficients for each side of the

interface and for the other polarizations are given in Appendix D.2.
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a)

b)

Figure 5.6: Transmission coefficients of longitudinal phonons TSi→Al(ω) (blue

shaded region) versus (a) phonon frequency and (b) phonon wavelength, along with

the DMM transmission coefficient profile (green dashed line) that gives the same in-

terface conductance as the measured TSi→Al(ω). The intensity of the shaded region

corresponds to the likelihood that the transmission coefficient possesses a given

value.
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Our measured transmission coefficient profile thus indicates that phonons with fre-

quencies less than 4 THz are transmitted to the maximum extent allowed by the

principle of detailed balance, while phonons with frequencies larger than 8 THz are

nearly completely reflected at the interface. We now examine this result in context

with the common models for transmission coefficients. The AMM is often cited as

an appropriate model for transmission coefficients at sufficiently low phonon fre-

quencies. At low phonon frequency ( < 1 THz), we find that at normal incidence,

the transmission coefficients given by AMM is consistent with the measured value.

However, the experimental work of Swartz and Pohl(129) clearly indicates that

even for expitaxial interfaces the validity of the AMM is limited to phonons with

frequencies in the hundreds of GHz that carry a small fraction of the heat at room

temperature. Therefore, the AMM is not applicable for a wide spectrum of phonons

studied here. For short wavelength phonons, the DMM would be expected to apply.

At the highest phonon frequencies (shortest wavelengths), the DMM correctly pre-

dicts the trend of the measured transmission coefficients tending to zero. However,

for most of the phonon spectrum, the DMM is inconsistent with our measurement

as discussed in the following section.

5.6 Comparison of conventional models

In this section we provide additional evidence for the inadequacy of conventional

models to explain our measurements. We consider two models: the gray model in

which the transmission coefficient is a constant, independent of phonon frequency,

and the diffuse mismatch model (DMM). The DMM is only determined by the

phonon properties of the materials, such as density of states and phonon group

velocity. Figs. 5.7(a) & (b) show the transmission coefficients from both sides of

the interface using the DMM. The constant transmissivity value is chosen to yield

an interface conductance G = 284 MW/m2-K using the formula of Ref. (79). The
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Figure 5.7: Transmission coefficients predicted by diffuse mismatch model (DMM)

for each polarization (a) from Si to Al and (b) from Al to Si.
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Figure 5.8: Experimental TDTR data (symbols) on Al/Si with a clean interface

at 300 K for modulation frequency f = 2.65 MHz along with the (a) amplitude

and (b) phase compared to the data from the BTE simulations using constant TSi→Al

(dash-dotted lines) and DMM (dotted lines). (c) Amplitude and (d) phase difference

between averaged experimental data and the BTE simulations using constant TSi→Al

(dash-dotted lines), DMM (dotted lines), and the optimal profile in Fig. 2 of the

main text (dashed lines). The solid line indicates the uncertainty in experiments.
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Figure 5.9: Experimental TDTR data (symbols) on Al/Si with a clean interface

at 300 K for modulation frequency f = 9.79 MHz along with the (a) amplitude

and (b) phase compared to the data from the BTE simulations using constant TSi→Al

(dash-dotted lines) and DMM (dotted lines). (c) Amplitude and (d) phase difference

between averaged experimental data and the BTE simulations using constant TSi→Al

(dash-dotted lines), DMM (dotted lines), and the optimal profile in Fig. 2 of the

main text (dashed lines). The solid line indicates the uncertainty in experiments.
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measured value for the clean interface is 280 ± 10 MW/m2-K.

Here, we demonstrate that neither of the models can explain the experimental TDTR

data. As shown in Figs. 5.8 & 5.9, the use of a constant transmission coefficient in

the BTE model overpredicts the phase values. Similarly, the DMM underpredicts

both the amplitude and phase at the early time of the signals. In Figs. 5.8(c) &

(d) and 5.9(c) & (d), we show the deviation in amplitude and phase between the

averaged experimental data at a given modulation frequency and the BTE simu-

lations using a constant profile and DMM, demonstrating that the deviation is far

beyond the uncertainty in experimental data. The uncertainty is computed by cal-

culating the standard deviation of both amplitude and phase data for multiple runs

and multiple locations on a sample.

From these plots, it is clear that neither of the models is capable of explaining the

data, and it is also clear that TDTR data depends on the spectral profile of the

transmission coefficients. As can be seen in Fig. 5.5, the coefficients we obtain

by solving the inverse problem described in Section 5.4 clearly give a superior fit

to the measured data for all modulation frequencies for which measurements were

performed.

A better comparison for our measurements is with atomistic calculations that are not

subject to the highly restrictive assumptions of the AMM and DMM. Performing

this comparison, we observe that our measurements agree with numerous molecular

dynamics and atomistic Green’s function calculations, essentially all of which pre-

dict a decreasing transmission coefficient with increasing phonon frequency.(154–

157) In particular, our measurement of near-unity transmission for phonons with

frequencies less than approximately 4 THz is consistent with atomistic calculations

on acoustically-matched materials.(155, 177) Our result also agrees with the exper-

imental studies of polycrystalline silicon by Wang et al,(62) which suggested that
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transmission coefficient should decrease with increasing frequency. Our work is

thus able to provide unambiguous experimental confirmation of these prior com-

putational and experimental works for the first time while clearly showing that the

coefficients predicted by simple models are qualitatively incorrect.

5.7 Interfacial heat flux

Using this transmission coefficient profile, we plot the spectral interfacial heat flux

versus phonon frequency and accumulative heat flux versus phonon wavelength in

Figs. 5.10. Our results show that most of interfacial heat flux is carried by phonons

with frequencies less than 4 THz, with the contribution from higher frequencies

strongly reduced due to their small transmission coefficients. In fact, we find that

the contribution of phonons with frequencies less than 4 THz is essential to explain

our observations: we are unable to explain the measured data without the contribu-

tion of phonons with frequencies less than 4 THz. Similarly, we find that we can

only explain the measurements using the exact phonon dispersion for Al computed

from DFT; simple dispersion relations such as Debye model cannot explain the data

because they underestimate the contribution of low frequency phonons to thermal

transport.

5.8 Robustness of the measured transmission coefficients

To confirm the robustness of the measured transmission coefficients, we conducted

several additional experiments. First, since the energy transmission at the interfaces

is considered elastic, the transmission coefficients in theory should be independent

of temperature. We performed TDTR measurements on the same Al/Si sample at

several temperatures higher than 300 K and compared the experimental results with

the calculations using the same transmission coefficient profile measured at 300 K.

As shown in Figs. 5.11, the calculation is in excellent agreement with experimental

data at 400 K using exactly the same transmission coefficient profile obtained at 300
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a)

b)

Figure 5.10: Spectral heat flux with the measured (blue shaded region) and DMM

(green dashed line) transmission coefficient profiles across the interface versus (a)

phonon frequency and (b) phonon wavelength. Phonons with frequencies less than

approximately 4 THz carry a significant amount of heat across the interface. The

intensity of the shaded region reflects the likelihood of the corresponding transmis-

sion coefficients.
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K. Note that this comparison does not require any adjustable parameters. Additional

measurements at various temperatures are given in the Supplementary Information,

and all give excellent agreement.

Second, we measured the transmission coefficients for Al on SiGe. While this ma-

terial has an additional point defect scattering mechanism compared to pure Si, we

expect the transmission coefficients to be nearly the same given that the host lat-

tice is unchanged. The details about point defect scattering in SiGe are given in

Appendix D.5. Fig. 5.12 plots the amplitude and phase of the surface temperature

decays at different modulation frequencies, demonstrating that the same transmis-

sion coefficient profile shown in Fig. 5.6(a) yields a signal that agrees well with this

independent data set, again without any adjustable parameters. This result confirms

that the measured transmission coefficients for Si and SiGe substrates are indeed

the same.

5.9 Effects of atomic structures

We next seek to determine how the atomic structure of the interface affects the

spectral content of the phonons carrying heat across the interface. We conducted

additional measurements for Al on Si with a native oxide layer (thickness ∼ 1 nm

as shown in a TEM image in Fig. 5.13(a)) and Si with thermally grown oxide layer

(thickness ∼ 3.5 nm as shown in a TEM image in Fig. 5.13(b)). Since the oxide

layers are sufficiently thin to neglect their thermal capacitance and we only care

about the net transmission across the thin layer, we can treat them as part of the

interface(178) that modifies the transmission coefficient profile.

By solving the inverse problem with the measurement as in Figs. 5.14 & 5.15 as

input, we are able to find the transmission coefficient profiles for these two cases as

shown in Figs. 5.16. Compared to a clean interface, the transmission coefficients for

Al on Si with a native oxide are reduced for most of the phonon modes, except those
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a)

b)

Al/Si with a clean interface at 400 K

Figure 5.11: (a) Amplitude and (b) phase as a function of time at modulation fre-

quencies f = 2.99, 5.17 and 9.79 MHz from experiments (symbols) and simula-

tions (shaded regions) for Al on Si with a clean interface at 400 K. The magnitude

and trend of the experimental data are reproduced using the same transmission co-

efficient profile as in Fig. 5.6 without any adjustable parameters.
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Al/SiGe with a clean interface at 300 K

a)

d)

Figure 5.12: (a) Amplitude and (b) phase as a function of time at modulation fre-

quencies f = 2.9, 5.3 and 9.8 MHz from experiments (symbols) and simulations

(shaded regions) for Al on SiGe with a clean interface at 300 K. The magnitude and

trend of the experimental data are reproduced using the same transmission coeffi-

cient profile as in Fig. 5.6 without any adjustable parameters.
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with long wavelength longer than 1 nm. When the roughness of the interface in-

creases with a thicker oxide layer, the transmission coefficient keeps decreasing and

more phonons, especially those with wavelengths between 1 and 3 nm, are reflected

at the interface. Therefore, our measurements show that phonons with wavelength

shorter than the interface roughness are more likely to be reflected by the inter-

face than phonons with wavelength longer than the interface roughness, and as the

interface gets rougher, a larger fraction of the phonon spectrum is affected by the

interface. In contrast to prior approaches that measure only interface conductance,

here we are able to precisely and unambiguously identify which phonons are more

likely to be reflected due to atomic-scale changes in the interface structure for the

first time.
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b)

Native oxide
d ~ 1 nm

Si (110)Al5 nm

5 nm

a)

Oxide layer
d ~ 3.5 nm

Si (110)Al

Figure 5.13: TEM images showing the Al/Si sample with (a) native oxide layer

(thickness ∼ 1 nm) and (b) thermally grown oxide layer (thickness ∼ 3.5 nm).
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a)

b)

Al/Si with a native oxide layer at 300 K

Figure 5.14: (a) Amplitude and (b) phase of the surface temperature decay curves

at modulation frequencies f = 1.43, 5.10, and 9.80 MHz of experiments (symbols)

and simulations (shaded regions) for Al on Si with native oxide layer.
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a)

b)

Al/Si with an oxide layer at 300 K

Figure 5.15: (a) Amplitude and (b) phase of the surface temperature decay curves

at modulation frequencies f = 1.43, 5.10, and 9.80 MHz of experiments (symbols)

and simulations (shaded regions) for Al on Si with a thermally grown oxide layer.
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a)

b)

Figure 5.16: Transmission coefficient profiles versus (a) phonon frequency and (b)

phonon wavelength for longitudinal modes from Si to Al with a clean interface, with

a native oxide layer and with a thermally grown oxide layer. As the interface gets

rougher, phonons with frequencies less than 6 THz are more likely to be reflected.
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5.10 Role of electrons

The response of a metal to an intense, ultrashort laser pulse is a complex event

involving physics that span transport regimes from femtoseconds to microseconds

and longer. Initially, photons are absorbed over the duration of the laser pulse by a

subset of free electrons in the metal. The hot electrons then interact with the lattice

through scattering events.(179) To determine the contribution to energy transport

from the electrons in Al thin film, we perform the simulations based on a two-

temperature model that is able to account for the effects of electrons. Briefly, the

two temperature model uses spectral phonon BTE described in Sec. 5.3 coupled

with a heat diffusion equation that describes the temperature evolution of the elec-

trons in the Al thin films after absorption of an optical femtosecond laser pulse. The

coupled equations are given as following:

Cel
∂Tel

∂t
=

∂

∂x

(
kel
∂Tel

∂x

)
− g(Tel − Tph) (5.32)

∂gω
∂t

+ µvω
∂ω
∂x

= −
gω + f0(T0) − f0(Tph)

τω
+ g(Tel − Tph) +

Qω(x , t)
4π

,

(5.33)

where Tel and Tph are the temperatures of the electrons and phonons, respectively,

and Cel and kel are the volumetric heat capacity and the thermal conductivity of

the electrons in Al, respectively. The phonon temperature is linearly coupled to

the electron temperature through the electron-phonon coupling coefficient g. The

values of all the constants in Eq. 5.32 are tabulated in Table D.1. This system of the

equations is solved by a standard finite difference method in a two layered geometry.

We compare the surface temperature responses to a heat impulse with and without

the effects of electrons. As shown in Fig. 5.17, due to strong electron-phonon cou-

pling, electrons only affect the heat conduction shortly after the absorption of a heat

pulse. After the first 100 ps, the heat conduction is dominated by the phonons. Since

a typical signal in a TDTR experiment is usually measured after 500 ps, whether
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Figure 5.17: The surface temperature decay subject to an surface impulse heating

for Al on Si with (solid blue line) and without (dashed red line) the effects of elec-

trons. After 100 ps, the heat is dominated by phonons and there is little contribution

from the electrons. Therefore, the electrons have negligible effects on the signal on

the timescale relevant to the heat conduction across interfaces.

heat is attributed to phonons or electrons in the metal has a negligible effect on the

signal on the timescales that is interested in the experiments. Therefore, our neglect

of electrons has no effect on our transmission coefficient measurement.

5.11 Effects of mode conversion

When phonons cross an interface they can change their frequency, in an inelastic

process, or polarization, known as mode conversion, which can influence thermal

interface conductance.(180) In our work, we do not consider inelastic scattering.

We justify the neglect of inelastic scattering through the work of prior numerical

studies, which have provide evidence that the phonon transmission between two
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slightly dissimilar crystalline solids is elastic.(181) Considering the phonon fre-

quencies between Al and Si are very similar, there is no evidence that inelastic

processes should play a role in the interfacial transport for Al/Si interfaces.

We have carefully examined the effect of mode conversion on our conclusions by

rigorously including this process in our BTE model. To examine whether conver-

sion between polarizations would affect the phonon transport across the interface,

we conducted our BTE simulation assuming modes maintain their polarization af-

ter crossing the interface, or allowing them to change to any polarization while

keeping the total transmission coefficient the same. Keeping the total transmission

coefficient for a given polarization. Keeping
∑

j T i j
12(ω) invariant, we randomly par-

titioned
∑

j T i j
12(ω),

∑
j Ri j

12(ω) and
∑

j Ri j
21(ω) into two different combinations of

T i j
12(ω), Ri j

12(ω) and Ri j
21(ω);in other words, randomly between all the polarizations

on the opposite side of the interface. In Fig. 5.18, we show that the surface tem-

perature decay with and without conversion between polarization are essentially

identical. Moreover, the spectral interfacial heat flux is also identical with and

without conversion. Therefore, we conclude that mode conversion does not have an

observable effect on the signal.

The reason that our measurement is not sensitive to mode conversion is that the

polarizations in Si do not have extremely dissimilar mean free paths. As our mea-

surement approach relies on the lack of scattering of some modes near the interface,

the only way the mode conversion could affect our measurements would be if one

polarization consistently changed to another polarization after transmitting through

the interface with a drastically different mean free path than the original polariza-

tion. Our calculations clearly show that the difference in mean free paths between

the polarizations is not sufficient to affect our calculations and hence have any effect

on our conclusions.
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5.12 Discussion

Our work has considerable implications for thermal metrology and technological

applications. First, we have shown that TDTR is capable of providing considerable

microscopic detail about thermal phonons if the measurements can be properly in-

terpreted using a microscopic transfer function with ab-initio input. Unlike with

the macroscopic transfer function, our approach provides quantitative details on the

spectral content of the heat carried by phonons in the sample. As a corollary, us-

ing the macroscopic transfer function to interpret TDTR data on certain samples

can lead to erroneous results. For example, the apparently correct measurement of

silicon thermal conductivity appears to be a fortuitous cancellation of two factors:

the high transmission coefficient of low frequency phonons leads to an increased

contribution to heat flux that offsets the deviation from Fourier’s law that occurs

due to a lack of scattering. If these two factors were not balanced, the apparent

thermal conductivity of Si would not coincide with the bulk value. Therefore, the

conventional TDTR interpretation does not necessarily provide the actual physical

properties of the materials.

Second, our measurements show that the spectral profile of transmission coeffi-

cients is essential to understanding thermal transport across interfaces. Due to a

lack of knowledge about interfaces, the phonon transmission coefficients are often

predicted with a variety of simple models. However, this work shows that none

of these models are capable of explaining the experimental measurements. There-

fore, including an accurate spectral transmission coefficient profile is essential to

properly describing thermal phonon transport across interfaces.

Third, our work provides strong evidence that elastic transmission of phonons across

an interface is the dominant energy transmission mechanism for materials with sim-

ilar phonon frequencies. Our microscopic transfer function does not incorporate

electrons or inelastic scattering yet is able to explain all of the measurements we
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performed. We conclude that inelastic transmission and coupling between elec-

trons in metals and phonons in semiconductors have little influence on the energy

transport for the materials considered here.

Fourth, our results demonstrate that disorder at interfaces plays an important role in

the spectral content of the heat transmitted through the interface and provides strate-

gies to alter interface conductance. For instance, in applications like LEDs where

the heat dissipation rate across interfaces is to be enhanced, the key to increasing

interface conductance is to minimize the reflection of high frequency phonons (with

wavelength shorter than the surface roughness of the interface) by reducing defects;

low frequency phonons (with wavelength longer than the surface roughness of the

interface) are likely to be mostly transmitted already. On the other hand, the strong

frequency dependence of the transmission coefficients can be exploited to create

thermal phonon filters to selectively remove parts of phonon spectrum, analogous

to optical long-pass filters. Phonons with wavelength much longer than the charac-

teristic roughness of an interface are more likely transmitted through the interface

while short-wavelength phonons are mostly reflected. The thermal phonon spec-

trum responsible for heat conduction can thus be manipulated by controlling the

atomistic roughness of an interface.

Finally, our work exemplifies the powerful insights into heat conduction at the

atomic scale that can be obtained through the interwoven application of experi-

mental measurements in the quasiballistic heat conduction regime, ab-initio phonon

transport modeling, and electron microscopy. Through our approach, we are able

to directly link the atomic structure of an interface to the spectral content of heat

crossing it for the first time. Such a capability will permit the rational understand-

ing and control of interfacial heat transport at the atomic level, a capability that is

expected to impact numerous application.


