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C h a p t e r 4

TRANSPORT REGIMES BEYOND DIFFUSION AND THEIR
APPLICATIONS

Chapter 4 has been adapted from

(1) Chengyun Hua and Austin J. Minnich. “Transport regimes in quasiballistic
heat conduction”. In: Phys. Rev. B 89 (9 2014), p. 094302. doi: 10.1103/
PhysRevB.89.094302. url: http://link.aps.org/doi/10.1103/
PhysRevB.89.094302.

4.1 Introduction

One advantage of analytical solutions to the phonon Boltzmann transport equation

(BTE) is that just by looking at the form of the solution we could fully investigate

heat conduction from diffusive to ballistic regimes as well as the transition regime,

called quasiballistic transport.

Quasiballistic heat conduction occurs if a temperature gradient exists over length

scales comparable to phonon mean free paths (MFPs).(21, 22) In this regime, local

thermal equilibrium does not exist and Fourier’s law is no longer valid. Presently,

quasiballistic transport is under investigation due to its potential to infer information

about the MFPs of thermal phonons,(118) knowledge of which is crucial to engineer

thermal conductivity but remains unknown for most solids.(13, 14)

Quasiballistic transport was originally observed in macroscopic samples using heat

pulse experiments(18) and later in silicon membranes using a microfabricated plat-

form.(122) Nonlocal theories of heat conduction based on the BTE were introduced

to describe the quasiballistic regime for phonons(68, 123, 124) and electrons.(125)

Koh and Cahill reported modulation-frequency dependent thermal conductivities in

a time-domain transient thermoreflectance (TDTR) experiment that they attributed
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to quasiballistic transport and suggested that the meansurements could be used to

measure MFPs. Recently, quasiballistic transport has been observed in other exper-

imental configurations.(20, 23–25) Minnich introduced a reconstruction technique

that described how to quantitatively recover the MFP spectra from observations of

quasiballistic heat transfer.(118)

One notable experimental method for observing quasiballistic transport is the tran-

sient thermal grating (TTG) technique(25, 126, 127), in which the interference of

two laser pulses creates a sinusoidal initial temperature profile with wavelength λ.

The observed thermal decay yields information about the thermal properties of the

material. Recent work has demonstrated that these measurements can also reveal

MFPs if the grating wavelength is comparable to MFPs, but interpreting measure-

ments using the reconstruction method introduced by Minnich requires a solution

of the BTE. A previous work reported a modified "two-channel" model(126), in

which low and high frequency phonons are described by the BTE and heat equa-

tion, respectively, but the extent of the validity of this model is unclear. An analysis

within the framework of the BTE(128) has been recently reported but the analysis

of the frequency-dependent BTE was solely numerical, complicating its use for the

reconstruction method.

Here, we analyze thermal transport in TTG using the Green’s function solution

to the frequency-dependent BTE derived in Chapter 3. Our analysis demonstrates

the existence of weakly and strongly quasiballistic transport regimes that are dis-

tinguished by the thermal decay time relative to the phonon relaxation times. We

provide theoretical justification for the use of a modified diffusion theory to inter-

pret observations of quasiballistic transport. Finally, we use our solution to derive

a corrected suppression function that enables phonon MFP spectra to be measured

more accurately. Our results will lead to a better understanding of phonon heat

conduction in solids like thermoelectrics.
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4.2 Modeling

We start with Eq. 3.1. Thermal transport in a TTG experiment, assuming only in-

plane heat conduction and a small temperature rise, ∆T = T(x , t) − T0, relative to a

reference temperature T0, is described by the 1D frequency-dependent BTE,(22)

∂gω
∂t

+ vgµ
∂gω
∂x

= −
gω
τω

+
1

4π
Cω

τω
∆T +

Qω

4π
(4.1)

where gω = fω(x , t , µ)− f0(T0) is the deviational distribution function, f0 = f0(x , t)

is the equilibrium distribution function, µ = cos(θ) is the directional cosine, vω is

the phonon group velocity, τω is the phonon relaxation time, and Qω is the spectral

volumetric heat generation.

As treated in Chapter 3, to close the problem, energy conservation is used to relate

gω to ∆T , given by∫ ∫ ωm

0

[
gω(x , t)
τω

−
1

4π
Cω

τω
∆T(x , t)

]
dωdΩ = 0, (4.2)

where gω = ~ωD(ω)( fω(x , t , θ) − f0(T0)) is the desired deviational distribution

function, Qω(x , t) is the spectral volumetric heat generation, vg(ω,T) is the phonon

group velocity, and τ(ω,T) is the phonon relaxation time. Here, x is the spa-

tial variable, t is the time, ω is the phonon frequency, T is the temperature, and

µ = cos(θ) is the directional cosine of the polar angle θ. ~ is the reduced Planck

constant, D(ω) is the phonon density of states, f BE is the Bose-Einstein distribu-

tion, and Cω = ~ωD(ω) ∂f BE
∂T is the mode specific heat. The volumetric heat capacity

is then given by C =
∫ ωm

0
Cωdω and the thermal conductivity k =

∫ ωm

0
kωdω, where

kω = 1
3CωvωΛω and Λω = τωvω is the phonon MFP.

Since the initial temperature profile in TTG is sinusoidal, we can assume that both

gω and ∆T are of the form eiqx, where q = 2π/λ is the grating wavevector, and the

volumetric heat generation term in Eq. 4.1 has the following form:

Qω = Cωeiqxδ(t), (4.3)
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where δ(t) denotes an impulse at t = 0, and the initial heat generation follows

a thermal distribution. Substituting gω = g̃ω(t , µ)eiqx and ∆T = ∆T̃(t)eiqx into

Eq. (4.1) leads to a first-order ODE for g̃ω(t). Collins et. al.(128) obtained an

analytical solution by applying a Fourier transform to the grey form of this equation.

Here, we extend the Fourier transform method to the frequency-dependent BTE.

Applying the Green’s function method described in Section 3.2, we are able to de-

couple the nonlocal effects and directly obtain the following closed-form expression

for the unknown distribution function g̃ω and transient temperature ∆T̃ :

F [g̃ω](η) =
1

4π
Cω

τω

F [∆T̃](η)
γ − iη

+
Cω

4πτω

∆T̃(0)
γ − iη

(4.4)

F [∆T̃](η) =
∆T̃(0)

∫ ωm

0
Cω
τω
A(η)dω∫ ωm

0
Cω
τω

[1 − A(η)]dω
(4.5)

A(η) =
i

2qΛω
log

(
τωη + qΛω + i
τωη − qΛω + i

)
, (4.6)

where F denotes Fourier transform, γ = (1 + iqµΛω)/τω, and η is the temporal

Fourier variable. The time-domain solution is obtained by inverse fast Fourier trans-

form. Therefore, we have derived an analytical solution to the frequency-dependent

BTE that is valid from the ballistic to the diffusive regimes, enabling a more rigor-

ous understanding of thermal transport in TTG.

We can gain insight into which parameters determine the transport regime from our

solution. From Eq. (4.6), we identify two nondimensional parameters. One is the

familiar phonon Knudsen number Knω = qΛω, which compares the phonon MFP

with a characteristic length, in this case 1/q. To identify the second parameter, we

notice that η−1 describes a time scale that we assign to be the characteristic thermal

decay time Γ. We can therefore define a new non-dimensional parameter that we

denote the transient number, given by Hω = τω/Γ, which compares the phonon

relaxation times with the thermal decay time Γ.
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Note that the two parameters are not completely independent. For example, as the

grating wavelength decreases, the thermal decay time also decreases. In the diffu-

sion regime the relationship is trivial but in the quasiballistic and ballistic regimes

the relationship becomes much more complex. While the Knudsen number can

in principle completely distinguish the transport regime, we find that the transient

number is an additional convenient parameter by which to specify the regime, par-

ticularly for quasiballistic transport where the specific Knudsen number at which a

transition occurs is not obvious.

Therefore, together, these two numbers completely specify the transport regime. In

the diffusive limit, length and time scales are much larger than the phonon MFPs

and relaxation times, respectively, corresponding to Knω � 1 and Hω � 1. In

the ballistic regime, lengths and times are much smaller than MFPs and relaxation

times, or Knω � 1 and Hω � 1. The two regimes are well-understood limits

of the BTE(21). Here, we focus on the intermediate range of the two limits, the

quasiballistic regime.

4.3 Heat transport regimes

To begin, we examine the transient temperature decay in the different regimes as

shown in Fig. 4.1. We perform our calculations for crystalline silicon, using the ex-

perimental dispersion in the [100] direction and assuming the crystals are isotropic.

The numerical details concerning the dispersion and relaxation times are given by

Minnich’s recent work(79).

Diffusive and ballistic limits

We first confirm that our result correctly reproduces the diffusive and ballistic limits.

Examining the limit of Eq. (4.5) when both phonon relaxation times and MFPs are

much smaller than their corresponding characteristic scales (Hω � 1 & Kn2
ω � 1),

we find that the solution reduces to the Fourier solution and the thermal decay
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Figure 4.1: Temperature decay curves∆T̃ in the (a) diffusive limit, (b) ballistic limit,

(c) weakly quasiballistic regime, and (d) strongly quasiballistic regime. The BTE

solutions are given by the solid lines, the Fourier solution by the dashed lines, the

ballistic conduction solution by the dotted line, and the Modified Fourier solution

by the dash-dotted lines.
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time Γ = (q2α)−1, where α = k/C is the Fourier thermal diffusivity. Fig. 4.1(a)

demonstrates that the BTE solution agrees with the Fourier solution in this limit.

Similarly, at the ballistic limit (Hω � 1 & Kn2
ω � 1) shown in Fig. 4.1b, the

transient temperature given by Eq. (4.5) agrees with the ballistic solution of the

BTE in which the relaxation times go to infinity.

Weakly quasiballistic regime

We now examine the intermediate quasiballistic regime by allowing the MFPs to be

comparable to or greater than the grating wavevector while requiring the thermal

decay time to be much longer than relaxation times, Kn2
ω ∼ 1 but Hω � 1. We

observe that the BTE solution does not agree with the Fourier’s law solution, as

shown in Fig. 4.1(c). However, we observe that the shape of the temperature decay

remains exponential, as in Fourier’s law, but with a smaller thermal conductivity.

We denote this regime the weakly quasiballistic regime, and the Fourier solution

with a modified thermal conductivity as the modified Fourier solution. So far, the

validity of the modified Fourier model to describe quasiballistic thermal transport

is largely based on experimental observations.(25) The only theoretical approach

to explain this observation was developed by Maznev et. al.(126) Their modified

"two-channel" model assumes that the low-frequency phonons, which are analyzed

by the BTE, only interact with the thermal reservoir of high-frequency phonons,

which are analyzed by the diffusion equation. However, the extent of the validity of

this assumption is not clear.

Here, we give a more rigorous explanation using our solution. Under the assump-

tion of Kn2
ω ∼ 1 and Hω � 1, the Taylor expansion of Eq. 4.6 around Hω = 0

gives

A(η) = iηωη +
tan−1(Knω)

Knω
∼ 1. (4.7)

We observe that in the denominator of Eq. (4.5), 1−A(η) ∼ τω and the full asymp-
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totic expression of A(η) should be used while in the numerator, A(η) can be ap-

proximated 1. Therefore, Eq. (4.5) asymptotically approaches the following form:

F [∆T̃](η) ≈
∆T̃(0)

q2αmod − iη
(4.8)

kmod =

∫ ωm

0
kω

{
3

(Knω)2

[
1 −

tan−1(Knω)
Knω

]}
dω, (4.9)

where αmod = kmod/C is the apparent thermal diffusivity and kmod is the modified

thermal conductivity. Recognizing that Eq. (4.8) is simply the Fourier transform

of an exponential decay, we find ∆T̃(t) ≈ ∆T̃(0)exp
(
−q2αmodt

)
. Thus, the formal

solution of the BTE is equivalent to a modified diffusion theory with a modified

thermal conductivity given by Eq. (4.8). The thermal decay time Γ = (q2αmod)−1.

We term this simplified solution the weak solution to the BTE, valid in the weakly

quasiballistic regime. The modified thermal conductivity is the same expression

given by Maznev et. al.(126)

Most recent experimental observations of quasiballistic transport have occurred

in this weakly quasiballistic regime. For instance, in the TTG measurement of

silicon membranes reported by Johnson et al.,(25) the typical Knω ≈ 2.5 and

Hω ∼ O(0.01), based on the median thermal phonon MFP at the room tempera-

ture. Therefore, their measurements fall into the weakly quasiballistic regime and a

modified Fourier solution should explain the results, in agreement with the experi-

ment.

Strongly quasiballistic regime

As the grating wavelength decreases, eventually the thermal decay becomes so fast

that it is comparable to or greater than relaxation times such that Hω ∼ 1 and

Kn2
ω ∼ 1. Here, the assumption made in the modified "two-channel" model is not

valid because some phonons in the thermal reservoir are now ballistic. For silicon,

this regime occurs at small grating wavelength (. 0.5 µm) or at cryogenic temper-
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atures. In this case, the BTE solution deviates from the exponential decay and can

no longer be explained with any type of diffusion model as shown in Fig. 4.1d, and

a full solution given by Eq. (4.5) is necessary. We denote this regime the strongly

quasiballistic regime. The equivalent decay time Γ is given by
∫ ∞

0
∆T(t)dt/∆T(0),

which reduces to the corresponding thermal decay times in the other two regimes

above.

4.4 Suppression function

We now seek to understand how the thermal length and time scales affect which

phonons conduct heat in each regime. From our model, we can calculate the spectral

thermal conductance, defined as the ratio of heat flux to the temperature difference

σω =

∫ ∫
qω(x , t)dxdt∫ ∫
∆T(x , t)dxdt

=

∫ ∫
q̃(η)eiqxdxdη∫ ∫
∆T̃(η)eiqxdxdη

, (4.10)

where qω(x , t) =
∫

gω(x , t , θ)vω cos(θ)dΩ is the spectral heat flux. In this way, we

remove any spatial and temporal factors and can directly compare the heat flow

induced by a unit temperature difference for each phonon mode.

Substituting Eqs. (4.4) & (4.5) into Eq. (4.10), we derive a general expression for

the spectral thermal conductance

σω = σ f

{
3

(Knω)2

[
1 −

tan−1(Knω)
Knω

]
[Hω + 1]

}
, (4.11)

where σ f = kω/(λ/2) is the Fourier thermal conductance. The term in the brack-

ets, equal to the ratio of the BTE thermal conductance to the Fourier thermal con-

ductance, was previously termed the suppression function S(Knω , Hω) by Min-

nich(118).

Now let us examine the thermal conductance in the two quasiballistic transport

regimes discussed above, shown in Fig. 4.2. We compare the thermal conductance

calculated by the Fourier’s law, weak BTE and full BTE solutions.



70

Frequency (THz)T
h

er
m

al
 C

o
n

d
u

ct
an

ce
 (

W
/m

2 −
K

)

BTE
Fourier
Weak BTE

Weakly quasiballistic
T = 300 K, λ = 3 µm

0 2 4 6 8 10 12
10

−10

10
−5

10
0

10
5

10
10

Frequency (THz)T
h

e
rm

a
l 
C

o
n

d
u

c
ta

n
c

e
 (

W
/m

2 −
K

)

BTE

Fourier
Weak BTE

a

0 2 4 6 8 10 12
10

−6

10
−2

10
2

10
6

a)

b)

Figure 4.2: Spectral thermal conductance σω in the (a) weakly quasiballistic regime

and (b) strongly quasiballistic regime. The BTE solutions are given by the solid

lines, the Fourier solution by the dashed lines, and the weak BTE solution by the

dash-dotted lines.
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In weakly quasiballistic regime, where Kn2
ω ∼ 1 but Hω � 1 (Fig. 4.2(a)), Hω+1→

1 and Eq. (4.11) reduces to σω = σ f Sweak(Knω), where Sweak(Knω) is the same as

the term in the brackets of Eq. (4.9). In this regime, Fourier’s law overpredicts

the heat flux but the weak BTE solution still accurately describes the spectral heat

distribution. From Fig. 4.2(b), we see that the heat contribution from low frequency

phonons is suppressed compared to the Fourier’s law prediction.

In the strongly quasiballistic regime (Fig. 4.2(b)), the weak BTE solution does not

accurately explain the spectral conductance and we must instead use Eq. (4.11).

The full BTE solution predicts a more gradual suppression than the weak BTE so-

lution for those low frequency phonons whose relaxation times are comparable to

or greater than the thermal decay time Γ. This discrepancy is due to the correction

term Hω + 1, which approaches its maximum value at low frequencies and reduces

the suppression effects. Rewriting Hω into Λω/(vωΓ) in Eq. (4.11), we find that our

new suppression function decreases as 1/Λω in the long MFP limit, in agreement

with the ballistic limit of the BTE(21) while Sweak(Knω) predicts a steeper slope,

1/Λ2
ω, which is inconsistent with the ballistic limit. Therefore, our new suppression

function provides a more accurate prediction of the heat flux suppression over the

entire spectrum of phonons compared to the approximate approaches in the litera-

ture.(126, 128)

4.5 Application

We now show the utility of these insights by demonstrating how our new suppres-

sion function may be used to more accurately measure MFP spectra. As proposed

by Minnich(118), the apparent thermal conductivities can be related to the MFP

distribution by the equation kapp =
∫ ∞

0
S(Λω) f (Λω)dΛω where S(Λω) is the sup-

pression function, the phonon MFP Λω is the independent variable and f (Λω) is the

desired MFP distribution. If the apparent thermal conductivities are experimentally
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Figure 4.3: Example MFP reconstructions for silicon at (a) 100 K and (b) 500 K

using numerically simulated data. Plotted are the analytical MFP distribution (solid

line), the numerical apparent thermal conductivities (squares), the reconstructed

MFP distributions by the general suppression function (triangles) and by the weak

suppression function (circles). The x-axis corresponds to the MFP for the distribu-

tions and to the grating wavelength for the thermal conductivity data.
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Figure 4.4: Example MFP reconstructions for PbSe at 300 K using numerically

simulated data. Plotted are the analytical MFP distribution (solid line), the numer-

ical apparent thermal conductivities (squares), the reconstructed MFP distributions

by the general suppression function (triangles) and by the weak suppression func-

tion (circles). The x-axis corresponds to the MFP for the distributions and to the

grating wavelength for the thermal conductivity data.

measured and the suppression function is known, then the MFP distribution can be

reconstructed by solving the integral equation as an inverse problem.

From our analysis, we have already derived the necessary suppression function

S(Knω , Hω) in Eq. (4.11). However, this suppression function depends both on

the independent variable, the phonon MFP Λω, as well as the unknown relaxation

time τω. To perform the reconstruction, Λω should be the only unknown variable.

To overcome this problem, we rewrite τω into Λω/vω and assume that the phonon

group velocity vω is equal to the average sound velocity vs. This assumption is
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justified since for long MFP phonons for which the correction term is important, the

group velocity of phonons is close to the sound speed, while for short MFP phonons

this term is negligible and the choice of the velocity is irrelevant. The reconstruction

is also insensitive to the precise choice of the value of vs. For example, for PbSe,

changing vs from 2000 m/s to 1000 m/s causes only a 10 % maximum error in the

reconstructed MFP distribution. Using this approximation, the suppression function

is only a function of the independent variable Λω.

To demonstrate the inversion procedure using this new suppression function, we

perform numerical experiments in which we obtain the modified thermal conductiv-

ities of Silicon and PbSe at different temperatures for different grating wavelengths

from the temperature decay curves predicted by the BTE. These modified thermal

conductivities, along with the suppression function, are then used as inputs for the

reconstruction procedure. Figs. 4.3 & 4.4 show the results of the MFP reconstruc-

tion for Si and PbSe using the general and weak suppression functions.

For materials with a MFP spectrum that is in the range of the experimental length

scales, such as Silicon at 100 K, the measurements of the apparent thermal con-

ductivities at different grating wavelengths span almost the entire range of phonon

MFP spectrum. In this case, as shown in Fig. 4.3(a), both the weak and new sup-

pression functions yield satisfactory results. However, phonon MFPs vary by orders

of magnitude and some part of the spectrum may be inaccessible to experiment. For

example, the smallest MFPs of Silicon at 500 K are around 10 nm and the small-

est MFPs of PbSe at room temperature are around 1 nm. These length scales are

too small to be accessed with present experimental methods, meaning the MFP dis-

tribution at small length scales must be extrapolated from measurements at larger

length scales. Such an extrapolation requires evaluating the suppression function

at large values of the argument, precisely in the range where the correction term

to the new suppression function is important. As shown in Figs. 4.3(b) and 4.4,
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our new suppression function yields more accurate results at short MFPs while the

weak suppression function overpredicts the MFP distribution.

4.6 Summary

We have analyzed thermal transport in TTG using the Green’s function solution to

the frequency-dependent BTE. We identify the thermal decay time relative to the

relaxation times as a key nondimensional parameter that separate two quasiballistic

transport regimes. If the thermal decay time is much larger than relaxation times,

a modified diffusion theory is the formal solution of the BTE, providing theoretical

justification for prior interpretations of experimental observations of quasiballistic

transport. Further, we demonstrate how MFP spectra may be measured more accu-

rately using our new suppression function.

Now we have both the theoretical tools and experimental techniques to study the

microscopic transport processes of thermal phonons in bulk materials. In the next

chapter, we will demonstrate a general route to directly study the microscopic trans-

port processes at solid-solid interfaces using experiments. With both approaches,

we will be able to obtain a comprehensive picture of nanoscale energy transport in

solids.


