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Abstract

Recent technological advances have opened the door to a wide variety of dynamic control

applications, which are enabled by increasing computational power in ever smaller devices.

These advances are backed by reliable optimization algorithms that allow specification, syn-

thesis, and embedded implementation of sophisticated learning-based controllers. However,

as control systems become more pervasive, dynamic, and complex, the control algorithms

governing them become more complex to design and analyze. In many cases, optimal con-

trol policies are practically impossible to determine unless the state dimension is small,

or the dynamics are simple. Thus, in order to make implementation progress, the control

designer must specialize to suboptimal architectures and approximate control. The major

engineering challenge in the upcoming decades will be how to cope with the complexity of

designing implementable control architectures for these smart systems while certifying their

safety, robustness, and performance.

This thesis tackles the design and verification complexity by carefully employing tractable

lower and upper bounds on the Lyapunov function, while making connections to robust con-

trol, formal synthesis, and machine learning. Specifically, optimization-based upper bounds

are used to specify robust controllers, while lower bounds are used to obtain performance

bounds and to synthesize approximately optimal policies. Implementation of these bounds

depends critically on carrying out learning and optimization in the loop. Examples in

aerospace, formal methods, hybrid systems, and networked adaptive systems are given, and

novel sources of identifiability and persistence of excitation are discussed.
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Chapter 1

Introduction

From its classical engineering roots in the 1930s–40s, increasing mathematization in the

1950s–60s, through to the present day, the discipline of control has been progressive in its

adoption of computational tools and algorithms. The Nyquist criterion, Bode and Nichols

plots, Kalman filter, KYP lemma, LMIs, and convex optimization are all tools designed

by control theorists, or imported from other fields to solve an engineering question. But

instead of giving a specific answer, more often than not these theoretical tools lead to a

procedure, which the control designer—in their quest for practical implementation—must

execute, check and recheck, abandon, resurrect, tune, and check once more. The final proof

is in the pudding. After all, the goal is to control dynamical systems.

This reliance on algorithms starkly conflicts with the standard practice in mathematics

and physics, where definite answers reign supreme. A true 17th century mathematician

would never be satisfied until a closed-form solution to a problem has been obtained. Only a

formula, or an equation, a concept—something simple—into which someone could substitute

facts and figures, would make them happy. Whereas a mathematician wants to tell you what

or why something is, a control theorist would be more interested in how to make it happen.

These algorithmic tools help researchers and decision makers working in a variety of

multidisciplinary fields, such as biology and medicine, transportation, and earth sciences.

By making use of a strong tradition in modeling and abstraction of physical systems, they

are able to solve problems they could not before. Control theory has the right pedigree

to help contextualize some of the toughest “squishy” and “applied” questions, because it

lies at the intersection of engineering and mathematics, and has an obsession with both

intellectual rigor and practicality.

At the same time, control theory is undergoing its own revolution driven by ever faster



2

computers, and ever better optimization algorithms. As our world becomes increasingly

automatized, engineers are faced with very real societal needs to create complex and opti-

mized automatic systems that affect more and more people. Meanwhile, these systems must

operate safely, robustly, and with high performance. This means that practice continues

to outpace rationale. In fact, the late Jan Willems predicted the influx of optimization

technology as the next “big thing” in control. In his autobiographical essay, he wrote

. . .MPC is an area where essentially all aspects of the field, from modeling

to optimal control, and from observers to identification and adaptation, are in

synergy with computer control and numerical mathematics [Wil07].

MPC stands for Model Predictive Control, a particular kind of optimization-based con-

trol method that comes from the chemical process community. Its main idea is very simple:

1. model the system

2. using the model, make a plan from now until a time T later (with optimization)

3. execute the first portion of the plan, and let the system evolve

4. go to step 2.

Model Predictive Control is arguably one of the most compelling, highly performant, and

most broadly applicable tools control theory has to offer. For example, it has the ability

to incorporate constraints on the input and state. It neatly ties together observers and

controllers. It can be extended to nonlinear, hybrid, stochastic, and machine learning

systems. It has beautiful links to dynamic programming, and encompasses all of LQR,

LQG, and Kalman filtering.

MPC was a great idea for chemical processes. Because chemical processes operate at

slow timescales (≤ 1 Hz), optimal control calculations (step 2) could easily be performed

between data points. For years, successful application of MPC to faster, more dynamic

plants has been held back by slow computers and complex algorithms. But now that

computers and optimization methods are catching up, MPC can finally be applied to these

faster plants (101–105 Hz). The next few decades of research in system theory will be devoted

to figuring out just how far optimization-based control can be taken in practice. Already,

fast computers are opening up a huge variety of dynamically interesting applications in

robotics, aerospace, finance, and transportation.
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However, the very thing that makes control relevant, namely feedback, appears in MPC

in an indirect way. Somewhere between steps 3 and 4, a measurement of the true system

must take place. Unlike classical control—where this measurement process appears centrally

with the notions of signals, closed-loop poles, and small gain theorems—optimization-based

control treats stability through foreign concepts like terminal costs, control-Lyapunov func-

tions, invariant sets, and tubes. Furthermore, the notion of feedback is made even more

difficult to track by the inherent discrete time (or epoch) nature of the optimization-based

control.

In other words, the frequency domain currency is no good here. This makes sense,

because frequency domain tools primarily operate on linear systems, while an optimization-

based control strategy is inherently nonlinear. Thus, there is a very clear disconnect: on

the one hand, control designers want to use MPC because it is so simple and works so well.

On the other hand, they are wary because when applied without care to convergence and

stability issues, MPC can fail spectacularly—often at a great (physical) cost.

To help alleviate some of these concerns, this thesis argues that the right way to think

about optimization-based control is through bounds on the Lyapunov, or energy, func-

tion (Chapter 2). Lyapunov bounds help answer questions about robustness, adaptation,

and learning through algorithms, specifically convex optimization algorithms. In so doing,

some systems concepts are brought back to the optimization-based setting. Specifically, we

enlist the help of adaptive and robust control to design approximate adaptive- or robust-by-

construction control methods, which must be implemented online as convex optimization

problems (Chapters 3–4).

We must use algorithms to find tractable bounds, because for all but the simplest linear

systems, exact Lyapunov functions are notoriously difficult to compute. Ways to provide

useful upper and lower bounds have frequently come up as a theme in the past. Although

hints at the idea can probably be traced back to Bellman [Bel57], the most illuminating

reference is a two-part series on dissipation theory by Willems [Wil72a, Wil72b], in which

he describes the notion of an energy storage function and a dissipation inequality. The

storage function is bounded below by the available storage and above by the required supply.

Since then, many researchers have used these ideas to develop bounds-based control and

estimation policies.

An emphasis on questions that can be answered efficiently online as opposed to offline
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pervades our approach. More importantly, these bounding techniques lead to efficiently

computed approximate policies, depending on the type of bound employed. By using bounds

instead of the true Lyapunov function, we give up some optimality for efficient synthesis or

guarantees about safety. Of course, if useful bounds cannot be obtained or implemented,

usually because the class of Lyapunov function candidates is not rich enough, we must

remain agnostic about the applicability of these methods. However, in many cases results

speak for themselves—as shown when Lyapunov bounding techniques are applied to formal

methods and hybrid systems (Chapters 3–4).

Closely related to the Lyapunov thinking that led to the success of adaptive control

are notions of identifiability that can be exported to other fields, such as communication

networks and machine learning. Part of this thesis concentrates on novel notions of identifi-

ability and persistence of excitation. Classical schemes in system identification and adaptive

control often rely on persistence of excitation to guarantee parameter convergence, which

may be difficult to achieve with a single agent and a single input. However, by adding

communication to the mix, we show that it is possible to obtain parameter convergence

even if no single agent employs a persistently exciting input (Chapters 5–6).

Summary of contributions. Chapter 2 grew out of a course that my advisor graciously

let me develop and teach during Spring 2015. While the main ideas date back to Lya-

punov [Lya92], and are (by now) fairly standard in nonlinear control, the notation is up-

dated for the modern mathematical palate, often following the language of linear matrix

inequalities [BEFB94, Boy08] and dissipation inequalities [Wil72a, Wil72b]. Chapter 3

reviews MPC, and presents recent directions for fast implementation, referencing ideas com-

ing from various software implementations. These optimization tools are then combined

with approximate dynamic programming to obtain Lyapunov bound based policies. The

closest works are [BT96, Ran99, dFR03, WOB14], however the applications and exam-

ples are new. Chapter 4 is a novel application of bounds-based techniques to approximately

solve hybrid and temporal logic constrained problems, based on the paper:

[PFTM16] I. Papusha, J. Fu, U. Topcu, and R. M. Murray. Automata the-

ory meets approximate dynamic programming: Optimal control with temporal logic

constraints. In IEEE Conference on Decision and Control (CDC), submitted. 2016.
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Chapter 5 switches gears to adaptation and learning by describing robust adaptive con-

trol in the language of optimization and Lyapunov bounds developed in the previous chap-

ters. This chapter explores novel reformulations and makes connections between learning

theory and adaptive control. The fundamental departure from e.g., [LW13, IF06] is to view

adaptive control not just as the result of a clever zeroing of dissipation terms in a Lyapunov

argument, but rather as the implementation of a specific (continuous-time or discrete-time)

algorithm for solving a constrained convex optimization problem online. This view is made

more explicit in Chapter 6, which introduces a new concept of networked adaptive systems

by specializing to a specific subspace parameter consensus constraint and implementing a

gradient flow. In this networked setting, we derive an identifiability criterion and adapta-

tion algorithm that trades off time and space, resulting in provable parameter convergence

even without persistence of excitation. This last chapter is based on the paper:

[PLM14] I. Papusha, E. Lavretsky, and R. M. Murray. Collaborative system

identification via parameter consensus. In American Control Conference (ACC), pp.

13–19. June 2014.

Not directly referenced in this thesis are the following additional publications:

[HPB14] M. B. Horowitz, I. Papusha, and J. W. Burdick. Domain decompo-

sition for stochastic optimal control. In IEEE Conference on Decision and Control

(CDC), pp. 1866–1873. 2014.

[PM15] I. Papusha and R. M. Murray. Analysis of control systems on symmetric

cones. In IEEE Conference on Decision and Control (CDC), pp. 3971–3976. December

2015.

[FPMM16] S. S. Farahani, I. Papusha, C. McGhan, and R. M. Murray.

Constrained autonomous satellite docking via differential flatness and model predictive

control. In IEEE Conference on Decision and Control (CDC), submitted. 2016.
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Chapter 2

Lyapunov Theory

2.1 Conserved and dissipated quantities

In this section we set out notation by discussing autonomous dynamical systems of the form

ẋ(t) = f(x(t)), x(0) = x0, (2.1)

where x(t) ∈ Rn is the system state at time t, and f : Rn → Rn is a function that

corresponds to the (infinitesimal) direction of evolution of the state: given a state space

location x ∈ Rn, the quantity f(x) is a tangent vector that points in the direction of the

trajectory, see Figure 2.1. We assume that the initial value problem (2.1) has a unique

solution x(t) for all t ≥ 0. This can be ensured, for example, if f is a globally, uniformly

Lipschitz continuous function of its argument, see e.g., [CL55, Per01].

x

f(x)
Rn

Figure 2.1: Schematic of general autonomous system ẋ = f(x(t)).

In control and system theory, the specific form of f may be too complicated, or perhaps

even unknown. Thus the trajectories x(t) may be too complicated to describe in closed
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form. However, we would still like to quantitatively analyze the stability or dissipativity

of the system (2.1) without reference to specific trajectories of f . An energy or Lyapunov

function allows us to describe the behavior of the system (2.1) in a quite general way. For

the remainder of this section, let V : Rn → R be a given real-valued function of state space.

Level sets. Given a real scalar α ∈ R, the α-level set Lα of V is the set

Lα = {z ∈ Rn | V (z) = α}.

Conserved quantities. We say that V is a conserved quantity if it is constant along

trajectories of (2.1). The quantity V is conserved if its time derivative does not change,

d

dt
V (x(t)) = ∇V (x(t))T f(x(t)) = 0, (2.2)

for all t. If V is a conserved quantity, then trajectories of (2.1) stay in level sets of V . To

see why, suppose V (x(0)) = α. Integrating V̇ along the trajectories of (2.1) gives

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ)) dτ

= α+

∫ t

0
∇V (x(τ))T f(x(τ))︸ ︷︷ ︸

=0

dτ

= α,

for all t ≥ 0. Thus if x(0) ∈ Lα and V satisfies the condition (2.2), then x(t) ∈ Lα for all

t ≥ 0.

Sublevel sets. Given a real scalar α ∈ R, the α-sublevel set Sα of V is the set

Sα = {z ∈ Rn | V (z) ≤ α}.

By definition, Lα = bdSα, hence the α-sublevel set Sα contains Lα, as well as all β-level

and β-sublevel sets for which β ≤ α. Depending on the specific form of V , the sublevel

sets Sα may be bounded or unbounded. If V is a convex function, then Sα is a convex set.

See Figure 2.2.
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V (x)

α

Rn

Sα

Figure 2.2: Sublevel sets Sα given an energy function V (x).

Dissipated quantities. We say that V is a dissipated quantity if it is nonincreasing along

trajectories of (2.1). The quantity V is dissipated if its time derivative is nonpositive,

d

dt
V (x(t)) = ∇V (x(t))T f(x(t)) ≤ 0, (2.3)

and strictly dissipated if its time derivative is negative,

d

dt
V (x(t)) = ∇V (x(t))T f(x(t)) < 0, (2.4)

for all t. A key property of dissipated quantities is that trajectories of (2.1) stay in sublevel

sets of V . To see why, suppose V (x(0)) = α. Integrating V̇ along the trajectories of (2.1)

gives

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ)) dτ

= α+

∫ t

0
∇V (x(τ))T f(x(τ))︸ ︷︷ ︸

≤0

dτ

≤ α,

for all t ≥ 0. Thus if x(0) ∈ Sα and V satisfies the condition (2.3), then x(t) ∈ Sα for all

t ≥ 0. The quantity −V̇ is the dissipation function.
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Example 2.1 Spring-mass-dashpot. The system illustrated in Fig 2.3 below has the linear

dynamics 
ẋ1

ẋ2




︸ ︷︷ ︸
ẋ(t)

=


 0 1

− k
m

− c
m




x1

x2




︸ ︷︷ ︸
f(x(t))

,

where x1(t) is the signed displacement of the mass from its equilibrium position, x2(t) = ẋ1(t)

is its velocity, m is the mass, k is the spring constant, and c is dashpot constant.

m
u = 0

k

c

x1(t)

Figure 2.3: Spring-mass-dashpot system.

Define V (x1, x2) =
1
2kx

2
1 +

1
2mx2

2 as the total energy (kinetic plus potential) of the mechanical

system. The energy derivative is

V̇ (x1, x2) =


 kx1

mx2



T 


 0 1

− k
m

− c
m




x1

x2




 = −cx2

2.

The total energy V is conserved if c = 0, and dissipated if c > 0. Note that by our definition,

the total energy is not necessarily strictly dissipated, because V (x1, 0) = 0 for all x1.

2.2 Lyapunov’s stability theorem

Lyapunov’s insight. We should note that the conservation and dissipation conditions (2.2),

(2.3), and (2.4) can be interpreted in two ways. First, we can think of V (x(t)) as a quantity

that depends on a given trajectory x(t). The time derivative V̇ (x(t)) is therefore computed

indirectly through x(t). This way of thinking, however, is not particularly useful, because

it requires knowing the full trajectory x(t).

Provided the appropriate smoothness conditions are met (e.g., continuous differentia-

bility of V and f as a function of x) and the chain rule applies, a second, more useful

interpretation can be made: the quantity V is computed over the entire state space Rn.

Here, the conservation or dissipation of V depends only on the form of V and f , rather than

on any specific trajectory. To this end, we often rewrite the conservation and dissipation
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conditions (2.2), (2.3), and (2.4) as

∇V (x)T f(x) = 0, ∀x ∈ Rn (2.2′)

∇V (x)T f(x) ≤ 0, ∀x ∈ Rn (2.3′)

∇V (x)T f(x) < 0, ∀x ∈ Rn \ {0} (2.4′)

to stress that V is a function on the state space Rn, rather than of a specific trajectory

x(t). Thus whether or not V is conserved or dissipated can be concluded by checking the

conditions (2.2′), (2.3′), or (2.4′).

The power of this small shift in thinking, widely attributed to Lyapunov’s 1892 the-

sis [Lya92] has not gone unnoticed in the dynamical systems community. As we will see,

the power of this shift lies in an ability to quantify stability, optimality, and robustness of

control policies. Lyapunov is arguably the principal enabler of modern control.

Generalized energy. A function V : Rn → R is positive definite if it satisfies the

following conditions:

• V (x) ≥ 0 for all x ∈ Rn,

• V (x) = 0 if and only if x = 0,

• All sublevel sets of V are bounded.

A positive definite function is a kind of generalized energy for the system. As Lyapunov’s

famous result asserts, the existence of a strictly dissipated generalized energy is a sufficient

condition for the stability of the system.

Example 2.2 The quadratic function V (x) = xTPx is positive definite if and only if the

matrix P is a positive definite matrix, P ≻ 0.

Theorem 1 (Lyapunov, 1892). Suppose there is a function V : Rn → R such that

• V is positive definite (generalized energy)

• ∇V (x)T f(x) < 0 for all x 6= 0 and ∇V (0)T f(0) = 0 (strict dissipation)

then every trajectory of ẋ(t) = f(x(t)) converges to zero as t → ∞.
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Proof. Suppose x(t) 6→ 0 as t → ∞. Since V is a dissipated, nonnegative quantity, the

conditions V (x(t)) ≥ 0 and V̇ (x(t)) ≤ 0 together mean that V (x(t)) is a monotone, bounded

function of t, therefore V (x(t)) → c1 > 0 as t → ∞ for some positive constant c1. In

particular, c1 ≤ V (x(t)) ≤ V (x(0)) = c2 for all t ≥ 0. Take

C = {z ∈ Rn | c1 ≤ V (z) ≤ c2}.

Since C is a compact subset of Sc2 , which excludes a neighborhood of the origin, and V is

strictly dissipated, we have supz∈C V̇ (z) = −γ < 0 for some positive constant γ. But the

energy at time t is given by

V (x(t)) = V (x(0)) +

∫ t

0
V̇ (x(τ))︸ ︷︷ ︸

≤−γ

dτ ≤ c2 − γt,

which is negative for large t, leading to a contradiction.

Example 2.3 Consider the linear system ẋ = Ax, where A ∈ Rn×n, and define V (x) = xTPx,

where P = PT ∈ Rn×n is a given symmetric matrix. The derivative along trajectories of ẋ = Ax

is given by

V̇ (x) = ẋTPx+ xTP ẋ

= (Ax)TPx+ xTP (Ax)

= xT (ATP + PA)x.

Thus, we conclude the following:

• V is positive definite if and only if P ≻ 0.

• V is strictly dissipated if and only if ATP + PA ≺ 0.

We can restate Lyapunov’s theorem in the linear setting as follows: if there exists a matrix

P ≻ 0 with ATP + PA ≺ 0, then all trajectories of ẋ = Ax converge to the origin as t → ∞.

Necessary condition. Note that Theorem 1 is a sufficiency result. It states that if a

positive definite Lyapunov function exists, then the system can be certified as stable. It

states nothing about how to compute the Lyapunov function. A number of so-called con-

verse theorems have been proposed [Kur55a, Kur55b, Mas56], which state the technical

conditions under which a Lyapunov function must exist to prove the stability of a dynamical
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system; see, e.g., [Kra63, LSW96]. One example is linear systems, for which it is easy to

see that a quadratic Lyapunov function is sufficient to prove stability.

Example 2.4 Converse Lyapunov result for linear systems. Let Q = QT ≻ 0 be any positive

definite matrix and let ẋ = Ax be a (Hurwitz) stable system. Let

P =

∫ ∞

0

eA
T τQeAτ dτ,

which is well defined because all eigenvalues of A have negative real part. Consider the quadratic

Lyapunov function V (x) = xTPx.

V̇ (x(t)) = x(t)T (ATP + PA)x(t)

= x(t)T
(
AT

∫ ∞

0

eA
T τQeAτ dτ +

∫ ∞

0

eA
T τQeAτ dτA

)
x(t)

= x(t)T
(∫ ∞

0

d

dt

{
eA

T τQeAτ
}

dτ

)
x(t)

= −x(t)TQx(t)

for any trajectory x(t) of the system. Thus the quantity V is positive definite and strictly

dissipated. The matrix P , also known as a Gramian, satisfies the Lyapunov equation ATP +

PA+Q = 0.

Example 2.5 Certificate of instability. Let ẋ = Ax be an autonomous linear system and

suppose there exists a function V (x) = xTPx with P 6� 0 such that ATP + PA � 0. Then A

is not (Hurwitz) stable.

To see this, note that the condition ATP + PA � 0 implies that all trajectories of the au-

tonomous system ẋ = Ax satisfy V (x(t)) ≤ V (x(0)) for all t ≥ 0, because

V (x(t))− V (x(0)) =

∫ t

0

V̇ (x(τ)) dτ

=

∫ t

0

x(τ)T (ATP + PA)x(τ)︸ ︷︷ ︸
≤0

dτ ≤ 0.

But since P 6� 0, there exists a vector w such that V (w) < 0. Setting the initial condition

x(0) = w, we have

V (x(t)) ≤ V (w) < 0, for all t ≥ 0.

In particular, lim inft→∞ ‖x(t)‖2 6= 0.
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Graphical interpretation. We can interpret Lyapunov’s theorem graphically by plotting

the level and sublevel sets of the function V . A schematic view is shown in Figure 2.4. Here,

the solid line denotes a particular level set Lα = {z ∈ Rn | V (z) = α} for a given scalar α,

and the shaded area inside is the sublevel set Sα = {z ∈ Rn | V (z) ≤ α}. If V is positive

definite, then Sα is bounded. The arrowed line corresponds to a particular trajectory x(t).

For a given state x, the inner product between the vectors ∇V (x) and f(x) determines

whether a trajectory through x will enter the appropriate level or sublevel set. For example,

if the inner product is zero (∇V (x)T f(x) = 0, V is conserved), then a trajectory through x

will follow the level set of V corresponding to V (x) = α. If the inner product is nonpositive,

(∇V (x)T f(x) ≤ 0, V is dissipated), then the trajectory through x cannot escape the sublevel

set Sα. Finally, if the inner product is strictly negative (∇V (x)T f(x) < 0, V is strictly

dissipated), then the trajectory through x must enter intSα.

x

∇V (x)

f(x)

V (
x)

<
α

V (
x)

>
α

V (
x)

=
α

Figure 2.4: Graphical interpretation of Lyapunov’s theorem.

As the following example illustrates, some care must be taken to ensure strict dissipation

when considering the stability of a system.

Example 2.6 Non-strict dissipation. If it can only be concluded that V̇ (x) ≤ 0 but not

V̇ (x) < 0, then trajectories can “hide” in the zero-dissipation set

Z = {z ∈ Rn | V̇ (z) = 0}.

Let ẋ = Ax be an autonomous linear system and consider V (x) = xTPx with the specific

constants

A =


0 −1

1 0


 , P =


1 0

0 1


 .



15

In this case, V is positive definite, and dissipated (but not strictly dissipated), because ATP +

PA = 0. The zero-dissipation set is Z = R2. In fact, this “center” system has circular

trajectories that do not approach the origin, unless they already start there.

Decay rate. If V (x) = xTPx is positive definite and dissipated with the further restriction

that V̇ (x) ≤ −2αV (x), then trajectories of (2.1) decay exponentially with rate at least α,

lim
t→∞

eαt‖x(t)‖2 = 0.

In this case, the scalar α is a Lyapunov exponent for the system. To see why the decay rate

is at least α, recall Grönwall’s inequality, which states

ḣ(t) ≤ g(t)h(t) for all t ∈ (a, b) =⇒ h(t) ≤ h(a) exp

{∫ t

a
g(τ) dτ

}
for all t ∈ (a, b).

Applying Grönwall’s inequality to V (x(t)) gives the bound

V (x(t)) ≤ V (x(0)) exp

{
−
∫ t

0
2αdτ

}
,

which means x(t)TPx(t) ≤ x(0)TPx(0)e−2αt for all t ≥ 0. Therefore,

‖x(t)‖2 ≤
√

σmax(P )

σmin(P )
‖x(0)‖2e−αt, for all t ≥ 0.

Evidently, such a Lyapunov function certifies that the decay rate is at least α.

Region of attraction. Lyapunov functions can also be used to estimate regions of attrac-

tion by comparing the regions of state space over which the Lyapunov function is strictly

dissipated against the Lyapunov function’s sublevel sets. Define the region of attraction

R = {x0 ∈ Rn | lim
t→∞

x(t) = 0}

as the set of initial conditions in (2.1) for which the trajectory through that initial condition

approaches the origin. Next, define the strict dissipation set

D = {z ∈ Rn | V̇ (z) < 0} ∪ {0}.
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Trajectories starting at a point x0 ∈ D with initial energy V (x0) = α must initially stay

within Sα, because V is dissipated within D. If Sα happens to contain a point outside D,

then a trajectory through that point can gain energy and escape Sα, because dissipation

of V is only guaranteed within D. However, if Sα is entirely within D, then no trajectory

can escape Sα. Therefore, Sα ⊆ R is an inner approximation of the region of attraction R
if it can be shown that Sα ⊆ D. Depending on the problem, it may be easier to show that

Sα ⊆ D (for example, by semidefinite programming) than to compute R explicitly. See

Example 2.7 and Figure 2.5 for an illustration.

Example 2.7 Van der Pol oscillator. Consider the dynamics





ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2,

which are locally stable about the equilibrium (0, 0). The region of attraction R corresponding

to this equilibrium is enclosed by the limit cycle (Figure 2.5). Using a quadratic Lyapunov

function of the form V (x) = xTPx,

V (x) =


x1

x2



T 
 1.5 −0.5

−0.5 1




︸ ︷︷ ︸
P


x1

x2


 , ATP + PA = −I ≺ 0,

we can form an ellipsoidal estimate of R as follows. First, we determine the strict dissipation

region D. Then, we search for the maximum scalar α for which the sublevel set Sα is entirely

contained in D. In this case, the largest such sublevel set corresponds to S2.25. Therefore, S2.25

is an inner approximation of R.

Lyapunov stability for linear systems. Linear systems and quadratic Lyapunov func-

tions have a special relationship. Generically speaking, a Lyapunov function can always be

constructed for any stable system assuming f is Lipschitz [Kur55a, Kur55b], but its form

may be too complicated to describe exactly. A special property of linear systems is that a

quadratic Lyapunov function is “enough.” For example, if a linear system is stable, then

there exists a quadratic Lyapunov function to prove it. If a system is unstable, then there

exists a quadratic function to prove that, as well. See Examples 2.4 and 2.5.
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0 1 2 3-1-2-3

0

-1

-2

-3

1

2

3

limit cycle

x1

x2

V̇ (x) > 0

V (x) = 2

V (x) = 5

D

Figure 2.5: Van der Pol region of attraction estimate. The strict dissipation set (shaded) is
D = {z | V̇ (z) < 0}∪ {0}, with the largest ellipsoidal sublevel set contained in D given by Sα = {z |
V (z) ≤ 2.25}. The true region of attraction R is the area enclosed by the limit cycle.

Theorem 2. For the state space system ẋ = Ax, V (x) = xTPx, and

V̇ (x) = xT (ATP + PA)x = −xTQx,

if P ≻ 0 and Q ≻ 0, then x(t) → 0. Conversely, if ẋ = Ax is (Hurwitz) stable, then there

exists P ≻ 0 and Q ≻ 0 to prove it.

Results for linear systems are also typically global. Consider a linear system ẋ = Ax. For

a quadratic Lyapunov function V (x) = xTPx, the energy sublevels are (possibly degenerate)

ellipsoids,

Sα = {z ∈ Rn | zTPz ≤ α}.

If the system is stable, the dissipation sets are all of Rn,

D = {z ∈ Rn | V̇ (z) = zT (ATP + PA)z ≤ 0}.

Since Sα ⊆ D = Rn for all α, we conclude that state space systems are either globally

stable, or not globally stable.

This connection between quadratic Lyapunov functions and linear systems allows the
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study of linear systems to be viewed as the study of invariant ellipsoids and the sublevels

of an appropriate quadratic function, or more usefully, of the associated quadratic form.

Many textbooks have been devoted to this subject [FK96, Son98, Kha02], and it is not

our intention to reproduce that work here. The interested reader is referred to the text-

book [Kha02] for a general treatment of linear and nonlinear stability theory, and to [DP00]

for a more control theoretic spin. This thesis builds on these works, but specifically uses

the conventions and notation of [BEFB94, FK96].

2.3 Robust control

2.3.1 Linear differential inclusions

P

K

u y

w z

Figure 2.6: Robust controller synthesis.

A linear system with unknown or uncertain parameters can be described as a state space

model

ẋ = A(t)x+Bu(t)u+Bw(t)w

z = Cz(t)x+Dzu(t)u+Dzw(t)w

x(0) = x0,

(2.5)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, w ∈ Rnw is an exogenous input,

and z ∈ Rnz is the regulated output. The goal of a typical robust control problem is to

choose a control input u as a function of a measured output y that minimizes some cost

index that relates the inputs, outputs, and disturbances. For simplicity we will consider

state-feedback systems, in which case the measured output is y = x. Key to the approach
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is the assumption that the model matrices obey


A(t) Bu(t) Bw(t)

Cz(t) Dzu(t) Dzw(t)


 ∈ Ω, for all t,

for a given description of the set Ω ⊆ R(nx+nz)×(nx+nu+nw). Such a description is called a

Linear Differential inclusion (LDI).

LTI systems. The set Ω might consist of a single element,

Ω =






A Bu Bw

Cz Dzu Dzw






 ,

in which case the system is known fully. It is still subject to disturbances w, however the

design procedure for robust controllers for LTI systems is considerably simplified, at most

requiring the solution of linear (Lyapunov) or quadratic (Riccati) matrix equations.

Polytopic systems. In this case, the set Ω might be described by the vertices of a

polygon, i.e.,

Ω = Co






 A1 Bu,1 Bw,1

Cz,1 Dzu,1 Dzw,1


 , . . . ,


 AL Bu,L Bw,L

Cz,L Dzu,L Dzw,L






 .

Optimal controller synthesis with a common Lyapunov function for polytopic model uncer-

tainties usually requires semidefinite programming.

Norm-bound systems. A very useful uncertainty class consists of model descriptions of

the form

Ω =
{
Ã+ B̃∆(I −Dqp∆)−1C̃ | ‖∆‖2 ≤ 1

}
, (2.6)

where

Ã =


A Bu Bw

Cz Dzu Dzw


 , B̃ =


 Bp

Dzp


 , C̃ =

[
Cq Dqu Dqw

]
.

The set Ω is the image of the matrix unit ball under the matrix linear-fractional mapping

∆ 7→ Ã+ B̃∆(I −Dqp∆)−1C̃, (2.7)
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and is well-posed provided DT
qpDqp ≺ I. The norm-bound model uncertainty corresponds

to a linear state-feedback perturbation ∆(t) being applied to an LTI system as shown in

Figure 2.7.

P

∆(t)

p q

w z

Figure 2.7: Norm-bound perturbation.

The specific way this perturbation is applied to (2.5) is interpreted as follows. We can

rewrite the uncertain dynamics (2.5) subject to a norm-bound feedback perturbation as the

dynamical system,

ẋ = Ax+Bpp+Buu+Bww

q = Cqx+Dqpp+Dquu+Dqww

z = Czx+Dzpp+Dzuu+Dzww

p = ∆(t)q, ‖∆(t)‖2 ≤ 1

x(0) = x0.

(2.8)

In this state-space description (2.8), a signal q is “picked off” from the original LTI dynam-

ics (2.5). That signal is then fed through a gain-bounded block to generate an uncertain

signal p = ∆(t)q. The signal p is then applied back to the dynamics (2.5). To see that (2.7)

is the correct mapping for the norm-bound perturbation, we rewrite (2.8) in matrix form,




ẋ

z

q


 =




A Bu Bw Bp

Cz Dzu Dzw Dzp

Cq Dqu Dqw Dqp







x

u

w

p



, p = ∆(t)q, ‖∆(t)‖2 ≤ 1. (2.9)
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The last row of (2.9) can be eliminated. With p = ∆(t)q, the last row reads

q =
[
Cq Dqu Dqw

]



x

u

w


+Dqp∆(t)q

= C̃




x

u

w


+Dqp∆(t)q, (2.10)

so if (I − Dqp∆(t)) is invertible for all t, we can determine q from (2.10) by taking the

inverse,

q = (I −Dqp∆(t))−1C̃




x

u

w


 . (2.11)

Substituting (2.11) back into (2.9) gives


ẋ

z


 =

(
Ã+ B̃∆(t)(I −Dqp∆(t))−1C̃

)



x

u

w


 ,

which gives the uncertainty description (2.6).

The well-posedeness assumption

I −Dqp∆(t) ≻ 0, ‖∆(t)‖2 ≤ 1 for all t,

restricts the domain of the mapping (2.7) so the set Ω is convex. By making use of the norm

bound ‖∆(t)‖2 ≤ 1, equivalently the map (2.7) is well posed if and only if DT
qpDqp ≺ I.

This assumption is often satisfied by removing the dependence of q on p by setting Dqp = 0.

2.3.2 Quadratic stability margins.

Lyapunov theory and LDI descriptions of model uncertainties, particularly norm-bound

LDIs, are very useful for computing quadratic stability margins. A quadratic stability

margin gives a sense of how much the model uncertainty set Ω can be expanded while still
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remaining quadratically stable.

Guaranteed LQR margins. Consider the state feedback system

ẋ = Ax+B∆u

u = Kx,
(2.12)

where K = −R−1BTP is an LQR gain, and P ≻ 0 satisfies the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0

for given matrices Q ≻ 0, R ≻ 0. Assume that R is diagonal and the matrix ∆ ∈ Rnu×nu is

a diagonal multiplicative perturbation to the input of a nominal system. The system (2.12)

is quadratically stable with Lyapunov function V (x) = xTPx if the matrix ∆ satisfies

∆ii ≥ 1/2 for all i = 1, . . . , nu.

To see why, we can use the Riccati equation to show that

V̇ (x) = xT (PB(R−1 −R−1∆T −∆R−1)BTP −Q)x < 0 for all x 6= 0

provided R−1 −R−1∆T −∆R−1 � 0, which happens if ∆ is diagonal with ∆ii ≥ 1/2. This

corresponds to a classical lower gain margin of

20 log10(1/2) = −6dB

and an upper gain margin of ∞. Thus, LQR is robust to 1/2 gain reduction and unbounded

gain amplification in each input channel.

LQR margin shaping. We can view the LQR state feedback u = (I + ∆)Kx with an

uncertain additive feedback perturbation by rewriting (2.12) as

ẋ = Ax+Buu+Bpp

q = Cqx

p = ∆q, ‖∆‖2 ≤ α,

(2.13)
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where Bp = Bu and Cq = K are fixed, and the nominal control input is u = Kx. If the

input uncertainty is norm-bounded by α (and not necessarily diagonal), with ‖∆‖2 ≤ α, we

can ask the question of for which α is (2.13) quadratically stable. Equivalently, with the

Lyapunov function V (x) = xTPx, we ask when is the quadratic form

V̇ (x) =


x

p




(A+BuK)TP + P (A+BuK) PBp

BT
p P 0




x

p


 ≤ 0,

for all (x, p) satisfying (2.13). From the S-procedure, we conclude that (2.13) provided the

matrix inequality

P ≻ 0, τ ≥ 0,


(A+BuK)TP + P (A+BuK) + τα2CT

q Cq PBp

BT
p P −τI


 � 0

is feasible. Substituting the Riccati equation and K = −R−1BTP , this is equivalent to

P ≻ 0, τ ≥ 0,


−Q− PBuR

−1(I − τα2R−1)BT
u P PBu

BT
u P −τI


 � 0,

which is feasible provided α2 ≤ λmin(R)/λmax(Q
−1/2PBTPQ−1/2).

2.4 Fundamental variational bounding ideas

One of the most powerful applications of Lyapunov theory to control lies in two very simple

bounds. One of these bounds gives an upper bound to the Lyapunov function, and the

other gives a lower bound. Although they differ only in the sense of inequality, and are

obtained in effectively the same way, these two bounds lead to very different interpretations

of the Lyapunov function.

To see how this kind of bounding works, we consider the autonomous system

ẋ(t) = A(t)x(t), x(0) = x0, (2.14)

where at each time instant t, the matrix A(t) is chosen from a convex set Ω ⊂ Rn×n, and

the initial condition x0 ∈ Rn is given. For simplicity, we assume that solutions to (2.14)

are unique given the function A(·).
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One might think of the choice of A(t) as being made nondeterministically by an adver-

sarial nature, in which case the specific value of A(t) is unknown beyond the uniqueness

and set membership constraints, or by the designer, in which case the value A(t) is perhaps

determined by a control algorithm. Let

J =

∫ ∞

0
ℓ(x(t)) dt

denote the cost of a given trajectory x(·) satisfying (2.14), where ℓ(x) ≥ 0 for all x ∈ Rn.

Note that J might be infinite if the system (2.14) is unstable.

Now suppose there exists a continuously differentiable Lyapunov function V + : Rn → R

that satisfies

V +(x) ≥ 0, V̇ +(x) ≤ −ℓ(x), (2.15)

for all x ∈ Rn and for all A(t) ∈ Ω. Then for a fixed x0, the quantity V +(x0) is an upper

bound on J . To see this, we integrate along the trajectory

V +(x(T ))− V +(x(0)) =

∫ T

0
V̇ +(x(t))︸ ︷︷ ︸
≤−ℓ(x(t))

dt

≤ −
∫ T

0
ℓ(x(t))︸ ︷︷ ︸

≥0

dt

≤ −
∫ ∞

0
ℓ(x(t)) dt = −J,

where the first inequality follows from (2.15), and the second from the nonnegativity of the

loss function ℓ. Therefore, we have

J ≤ V +(x(0))− V +(x(T )) ≤ V +(x0), for all T,

because V +(x(T )) is nonnegative for all T . Thus V +(x0) is an upper bound on the worst-

case cost of the trajectory for any valid choice of the values A(t) that nature might make.

In fact, we have the variational inequality

J ≤ Jwc = inf
V + satisfies (2.15)

V +(x0), (2.16)

therefore no choice that nature might make could ever make the cost bigger than the worst
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case value Jwc, a quantity obtained by minimizing V +(x0) over all functions V
+ that satisfy

the condition (2.15). Thus if we are able to compute the infimum in (2.16), and it is finite,

then we have a quantifiable measure of the robustness of the cost with respect to the choice

of A(t) at every time instant t. It is sometimes possible to quantify this robustness given

the description of the set Ω alone. For example, if Ω is consists of a single Hurwitz matrix

element, then (2.14) must be stable, and J is no more than the initial energy. However,

if nature wanted to be devious, it might pick A(t) ∈ argmaxA∈Ω V̇ +(x(t)) as a function of

x(t) to make the cost as close to Jwc as possible.

On the other hand if the Lyapunov function satisfies the reverse inequality

V −(x) ≥ 0, V̇ −(x) ≥ −ℓ(x), (2.17)

for all x ∈ Rn and for all A(t) ∈ Ω, then the same chain of inequalities leads to

J ≥ V −(x0)− V −(x(T )),

for all T . Now suppose that the state trajectory x(·) is asymptotically stable, and V −(0) =

0, then as T → ∞ we have V −(x(T )) → 0. In other words, V −(x0) is a lower, or performance

bound for any stabilizing choice of the values A(t). Similarly, we have the variational bound

J ≥ Jperf = sup
V − satisfies (2.17)

V −(x0), (2.18)

therefore no stabilizing A(t) can ever achieve the performance limitation Jperf. To get a

sequence that gives a small cost, a control designer might choose A(t) ∈ argminA∈Ω V̇ −(x(t))

as a function of x(t) to make the cost as close to the performance limit Jperf as possible.

Indeed, asking for an upper bound on the cost leads to a discussion of robustness and

stability, and for a lower bound—a limit on performance. Thus the former is the basis of

robust control, while the latter leads to suboptimal policies. It is a miracle of linear systems

that these bounds can be implemented (often, in a tight way) as semidefinite programs or

even Lyapunov and Riccati equations. However, even when they are not tight, these bound-

ing ideas are extremely useful, and can be used to solve extremely complicated problems.

Chapter 2 gives applications of the upper bound, and Chapters 3–4 give applications of the

lower bound.
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V (x)V +(x)

V −(x)

Figure 2.8: Upper and lower bounds on a Lyapunov function.

2.5 References

The idea of using a real-valued positive definite energy function to prove stability was

described by Lyapunov more than a century ago [Lya92] (translation [Lya92]), and by

now the theory is quite mature. Theorem 1, also known as Lyapunov’s direct method, is

a sufficiency result: it states that if a generalized energy function can be found, then a

conclusion can be made about local or global stability of the equilibrium. To prove sta-

bility, one usually searches over a class (such as quadratic or sum-of-squares [Par00]) of

generalized energy functions that satisfy dissipativity conditions. However, if a function

that satisfies the dissipativity conditions is not found, the system is not necessarily unsta-

ble, except in the case of linear systems—for linear systems, it always suffices to search

over quadratic functions. More generally, converse Lyapunov theorems, which appeared

in [Kur55a, Kur55b, Mas56], gave conditions under which it is possible to construct

Lyapunov functions. The Kalman–Yakubovich–Popov (KYP) lemma [Yak62] was one

of the unifying results that linked quadratic Lyapunov functions with system theoretic

concepts, such as H∞-norm, and allowed searching for quadratic Lyapunov functions by

semidefinite programming. A great modern proof of the KYP lemma was given by Rantzer

in [Ran96]. A beautiful description of the concepts of supply rates and storage functions,

including lower and upper bounds is given in a classic paper by Willems [Wil72a], with

applications to linear quadratic theory in [Wil72b]. Searching for Lyapunov functions by

convex optimization in general is often attributed to [PS82], and the concept of a Control

Lyapunov Function [Son98]. The links between semidefinite programming, robust control,

linear systems, and quadratic Lyapunov functions are reviewed in [BEFB94].
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Chapter 3

Model Predictive and

Approximately Optimal Control

3.1 Online optimization for control

In the previous chapter, we introduced the Lyapunov function as a fundamental tool for

analyzing autonomous systems. Searching for a Lyapunov function that obeys the ap-

propriate dissipation conditions results in a functional optimization problem, which for

linear systems and quadratic Lyapunov function candidates is a finite dimensional semidef-

inite program over the coefficients of the Lyapunov function parameterization. For con-

trolled systems, finding a Lyapunov function in general is difficult, but not impossible

(e.g., [Son98, Par00]), and the standard prescription involves the following computations:

1. Offline: find a Lyapunov function that is provably dissipated known as a Control

Lyapunov Function (CLF)

2. Online: use the CLF to define a control policy that runs in the loop

We divide the two computations into online and offline parts to stress that the procedure to

complete the first part is (in principle) allowed to take as much or as little time as needed,

because a Lyapunov function needs only to be found once for a given set of dynamics. The

only limiting factors are the tractability of the dynamics, and the designer’s time, patience,

or (sometimes) ingenuity.

For example, a typical approach for a controlled linear system would be to use a

quadratic Lyapunov function candidate to determine a linear state feedback control law

with specified quadratic stability margins. Once the linear feedback coefficients are found
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after solving an SDP, the control law is fixed and can be computed online in the loop by

appropriately mixing the state values. For nonlinear systems, a more complicated (e.g.,

quartic, hexic, etc.) Lyapunov function candidate may be used, from which the polynomial

control policy can be obtained by taking the appropriate gradients.

This offline-online control design procedure can fail at the first step if the parameteri-

zation of Lyapunov function candidates is not rich enough to encompass the desired closed

loop dynamics, even if the closed loop dynamics can be achieved. For example, adding state

and input constraints to linear systems is an easy way to ensure that linear state feedback

and quadratic Lyapunov function candidates do not suffice.

An alternative is to conflate the offline-online procedure above into one online algorithm:

1. Online: calculate an optimal or approximately optimal control input in the loop by

solving an optimization problem.

This is the idea used by Model Predictive Control (MPC), in which (for discrete time sys-

tems), the control input is computed at each time step by solving an optimization problem.

The key requirements are that that optimization problem be solvable quickly enough (i.e.,

the problem is convex and not too large-dimensional), and that the system dynamics are

robust enough to deal with any suboptimalities that MPC may introduce. There is no need

to search over a specific class of Lyapunov function candidates, because the optimization

problem itself serves as a Lyapunov function.

A typical linear-quadratic MPC strategy would solve the following optimization at every

timestep,

minimize
1

2

T−1∑

τ=0

(
xTτ Qxτ + uTτ Ruτ

)
+

1

2
xTTQfxT

subject to xτ+1 = Axτ +Buτ , τ = 0, . . . , T − 1

xτ ∈ X , τ = 0, . . . , T

uτ ∈ U , τ = 0, . . . , T − 1

x0 = z,

(3.1)

where X = {x ∈ Rn | xmin � x � xmax} and U = {u ∈ Rm | umin � u � umax}
encapsulate lower and upper bound “box” constraints on the state and input. The variables

are x0, . . . , xT ∈ Rn, u0, . . . , uT−1 ∈ Rm, and the rest of the matrices and vectors are

problem data. MPC is usually thought of as a suboptimal policy, because it involves picking
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a small enough horizon T in order to make the optimization problem (3.1) tractable. The

following theorem of stability for general MPC, listed for completeness, appears to be quite

technical, but is really quite simple. The key takeaway is the descent condition (3.2) is the

same as the descent condition (2.15).

Theorem 3 (General stability of MPC). Suppose that f : X × U → Rn, ℓ : X × U → Rn
+,

and Vf : X → Rn
+ are continuous with f(0, 0) = 0, ℓ(0, 0) = 0, Vf (0) = 0, the sets X and

Xf are closed containing the origin, Xf ⊆ X and U are compact containing the origin, Xf

is control invariant for the system x+ = f(x, u), and that

min
u∈U

{ℓ(x, u) + Vf (f(x, u)) | f(x, u) ∈ Xf} ≤ Vf (x), ∀x ∈ Xf ,

then the optimal objective V ⋆
T of the T -horizon MPC problem can be used as a control

Lyapunov function, which decreases according to

V ⋆
T (f(x, κT (x)))− V ⋆

T (x) ≤ −ℓ(x, κT (x)), (3.2)

where κT (x) is the MPC law.

Proof. See [RM09, §2.4]

3.2 Box constrained quadratic programming

The MPC problem (3.1) and many others like it can be converted to a linearly constrained

Quadratic Program (QP) of the form

minimize 1
2x

TPx+ qTx

subject to Ax = b

Gx+ s = h

s � 0,

(3.3)

with variables x ∈ Rnx and s ∈ Rns , and problem data P = P T , q, A, b, G, h, and T . If

P � 0 (P ≻ 0), then the problem (3.3) is convex (strongly convex). For example, the box

constrained MPC problem (3.1) is written in the form (3.3) by using the combined variable
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x = (x0, . . . , xT , u0, . . . , uT ) ∈ Rn(T+1)+mT and taking

P =




Q · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · Q

0 · · · Qf · · · 0

R · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · R




, q =




0
...

0

0

0
...

0




,

A =




I 0 · · · 0 · · · 0

A −I · · · 0
... B · · · 0

A −I
... B

...
...

. . .
. . .

...
. . .

0 · · · A −I 0 · · · B




, b =




z

0

0
...

0




,

G =




In(T+1)×n(T+1)

ImT×mT

−In(T+1)×n(T+1)

−ImT×mT



, h =




xmax

...

umax

...

−xmin

...

−umin

...




.

3.2.1 Primal-dual path following algorithm

Being able to solve optimization problems like (3.3) quickly and efficiently is very desirable,

because such problems have to be solved over and over within the MPC loop. Finding

efficient algorithms appropriate to MPC is a very active area of research. One of the most

efficient algorithms involves finding the central path for the problem (3.3) by the modified
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Karush–Kuhn–Tucker (KKT) conditions

Stationarity: (Px+ q) +GT z +AT y = 0,

Complementary slackness: zisi = 1/t, i = 1, . . . , ns

Primal feasibility: Gx+ s = h, Ax = b, s � 0,

Dual feasibility: z � 0.

(3.4)

The main nonlinearity in the KKT conditions is the complementary slackness condition,

because it involves the product of the variables z and s. The primal-dual path following

algorithm consists of updating the point u = (x, s, z, y) through linearizations of the KKT

conditions (3.4) and letting t → 0. Specifically, we define the primal-dual residual

r(x, s, z, y)
∆
=




Px+ q +GT z +AT y

diag(z)s− 1
t1

Gx+ s− h

Ax− b



=




rx

rs

rz

ry



,

and approximate it by the linearization

rt(u+∆u) ≈ rt(u) +Drt(u)∆u = 0.

The goal at each step is to solve for ∆u, where

Drt(x, s, z, y) =




P 0 GT AT

0 diag(z) diag(s) 0

G I 0 0

A 0 0 0




is the Jacobian of r(x, s, z, y). This corresponds to solving the linear system




P 0 GT AT

0 diag(z) diag(s) 0

G I 0 0

A 0 0 0







∆x

∆s

∆z

∆y



= −




rx

rs

rz

ry




(3.5)
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for (∆x,∆s,∆z,∆y), updating the point (x, s, z, y), and letting t → ∞. See [Van10,

MB11, BV04].

3.2.2 Taking advantage of structure

By far, the most amount of time is spent solving the linear system (3.5). However, this

linear system is quite sparse for MPC problems. This allows a significant amount of pre-

computation of the inverse to be made offline, see Figure 3.1 and [MWB11].
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Figure 3.1: Offline structure analysis for a small MPC problem (nx = 3, nu = 2, T = 4) and
a barrier method. The nonzeros of the KKT matrix are shown as circles (left). The Cholesky
factor has extra fill-in nonzeros shown as crosses (middle). With the Approximate Minimum Degree
(AMD) heuristic [Dav06], a reordered Cholesky factor has fewer fill-in entries (right). All these
computations are performed offline, without reference to any specific MPC problem data.

3.3 Discrete-space approximate dynamic programming

3.3.1 Bounds on the value function

While MPC is a compelling suboptimal control strategy, effective implementation is limited

to constrained systems for which each MPC step is expressible as a convex optimization

problem. An alternative to MPC and CLF based methods is Approximate Dynamic Pro-

gramming (ADP), in which we aim to approximate the Lyapunov function with the hope

that the approximation will give a good control policy. While no guarantees can be made a

priori that the policy is useful (or even stabilizing), experimentally these techniques can be

quite effective in solving control problems that cannot be practically solved any other way.

The specific ADP strategy that forms the basis of our approach in the rest of this chapter

stems from an early paper [dFR03]. Closely related was the application to hybrid systems
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(mixed continuous and discrete space) found in [HR99] and the works that followed [Ran99,

HR02]. This section uses notation closest to Bertsekas [BT96] to describe lower and upper

bounds on the value function for discrete-space systems, and hints to why the continuous-

space case is more difficult.

3.3.2 Setup

We consider a finite state Markov Decision Process. Let X = {1, . . . , n} be a finite state

space and U(i) ⊆ U = {1, . . . ,m} the set of actions available in state i. In this formulation,

the probability of transitioning from state i to state j under the control u ∈ U(i) is pij(u),
with incurred stage cost g(i, u, j). Assume the transition probabilities and costs are fixed

and known.

A policy is a sequence π = {µ0, µ1, . . .} where each µt : X → U is a function that maps

a state i to an available action in U(i). Given a policy π, the sequence of states {i0, i1, . . .}
is a Markov chain with transition probabilities

P(it+1 = j | it = i) = pij(µt(i)).

Thus, for a given policy π = {µ0, µ1, . . .}, we should have

n∑

j=1

pij(µt(i)) = 1, for all i = 1, . . . , n.

The expected cost of this policy when starting from an initial state i is

V π(i) = E

[ ∞∑

t=0

γtg(it, µt(it), it+1)
∣∣∣ i0 = i

]
,

where γ ∈ (0, 1] is a discount factor. For the infinite horizon case, it is often convenient to

consider stationary policies π = {µ, µ, . . .} and γ < 1.

We can think of V π as a vector in Rn, where each component V π(i) corresponds to

the expected cost-to-go starting at state i. The goal is to find a policy that minimizes the

expected cost-to-go,

V ⋆(i) = min
π

V π(i).
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3.3.3 Bellman operator

The optimal cost-to-go satisfies the Bellman equation

V ⋆(i) = min
u∈U(i)

E[g(i, u, j) + γV ⋆(j) | i, u]

= min
u∈U(i)

n∑

j=1

pij(u)(g(i, u, j) + γV ⋆(j)), for all i = 1, . . . , n,

with the corresponding optimal policy at step t given by

µ∗
t (i) = argmin

u∈U(i)
E[g(i, u, j) + γV ⋆(j) | i, u], for all i = 1, . . . , n.

Value iteration. For any value function vector (V (1), . . . , V (n)) define the vector T V

by the Bellman operator,

(T V )(i) = min
u∈U(i)

E[g(i, u, j) + γV (j) | i, u],

thus the Bellman equation reads

V = T V. (3.6)

Under some regularity assumptions (e.g., [BT96]) and an infinite horizon, the Bellman

equation (3.6) has a unique solution V ⋆ with a corresponding stationary policy π∗. We can

arrive at the optimal value function by value iteration,

V (k+1) = T V (k), k = 0, 1, . . . .

For any starting guess V (0), the sequence {V (0), V (1), . . .} converges to V ⋆.

3.3.4 Lower and upper bounds

Monotonicity. A key property of the Bellman operator T is its monotonicity: if V1 ≤ V2,

then T V1 ≤ T V2, where the inequalities are interpreted componentwise.

Lower bound. Any function V that satisfies the Bellman inequality

V ≤ T V (3.7)
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automatically satisfies V ≤ V ⋆, and is a componentwise lower bound on V ⋆. To see this,

recursively apply T to both sides of (3.7) and use the monotonicity property,

V ≤ T V ≤ T 2V ≤ · · · = V ⋆.

The Bellman inequality (3.7) defines a class of underestimators of V ⋆, one of which is V ⋆

itself. Members of this class capture a performance bound on the original decision problem.

For example, if the transition costs are nonnegative, then V = 0 (componentwise) is a trivial

performance bound.

Upper bound. Similarly, any function that satisfies the reverse Bellman inequality

T V ≤ V (3.8)

automatically satisfies V ⋆ ≤ V . To see this, recursively apply T to both sides of (3.8) and

use the monotonicity property,

V ⋆ = · · · ≤ T 2V ≤ T V ≤ V.

Value functions that satisfy the reverse Bellman inequality (3.8) correspond to suboptimal

policies, because their value is greater than or equal to the optimal value.

3.3.5 Bound optimization by linear programming

We can attempt to recover V ⋆ by optimizing over the class of value function underestimators,

maximize V

subject to V ≤ T V,
(3.9)

where the variable is the value function V , and the objective is interpreted in some scalarized

way.

If the transition probabilities and stage costs are known, then we can rewrite the prob-
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lem (3.9) as a linear program (LP),

maximize
n∑

i=1

w(i)V (i)

subject to V (i) ≤
n∑

j=1

pij(u)(g(i, u, j) + γV (j)),

∀i = 1, . . . , n, ∀u ∈ U(i),

with variables V (1), . . . , V (n). The weights w(1), . . . , w(n) are arbitrary, as long as they

are positive. The number of linear constraints is O(nm).

Similarly, we can form an LP to optimize over the class of value function overestimators

by minimizing instead of maximizing, and changing the sense of the inequalities. In both

cases, the optimal value function V ⋆ for the decision problem is recovered as the optimizing

variable in the corresponding LP.

To make the LP useful (instead of simply solving V = T V ), we can restrict the class of

underestimators by further specifying an approximating basis,

Ṽ (i) =
N∑

k=1

αkφk(i),

where φk : X → R is a basis function, and αk is a real coefficient for all k = 1, . . . , N .

Ideally, the number N of basis functions is less than the dimensionality n of the state space.

The underapproximation LP becomes

maximize
n∑

i=1

w(i)
N∑

k=1

αkφk(i)

subject to
N∑

k=1

αkφk(i) ≤
n∑

j=1

pij(u)

(
g(i, u, j) + γ

N∑

k=1

αkφk(j)

)
,

∀i = 1, . . . , n, ∀u ∈ U(i),

with variables α1, . . . , αN . While the number of linear constraints is still O(nm), the number

of variables has decreased. Note that the true value V ⋆ is recovered if it is in the span of

the basis functions, otherwise we recover a guaranteed underestimate.
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3.3.6 Approximation guarantees and limitations

We wish to simultaneously find functions V + and V − in an approximating class (e.g.,

relative to a fixed basis) such that

V − ≤ V ⋆ ≤ V +,

and the difference between V + and V − is as small as possible. To do this we might solve

the LP

minimize maxi {V +(i)− V −(i)}
subject to V − ≤ T V −

T V + ≤ V +

V −, V + ∈ C

(3.10)

with variables V + and V −. Here C ⊆ Rn represents any, e.g., basis, restrictions on the

approximating class. The optimal value of (3.10), say ǫ⋆, is a measure of approximation

error over all states. If the overestimator and underestimator are restricted to a basis,

V +(i) =
N∑

k=1

α+
k φk(i), V −(i) =

N∑

k=1

α−
k φk(i),

then the optimization problem (3.10) has a corresponding trade-off between the number of

free variables and expressiveness.

While a single-sided program like (3.9) delivers a performance bound for the decision

problem, it does not relate the value function underestimate to the true value function

V ⋆. To relate to the true value function, we require both lower and upper bounds, since

single-sided bounds can be arbitrarily poor, depending on the choice of basis. The double-

sided program (3.10) gives a performance bound, a suboptimal policy, and a worst case

approximation error, because the true value function is pointwise between the lower and

upper estimates.

Nonconvexity in upper bounds. The double sided program (3.10) may not be an LP

(or even convex). To see why this is the case, consider the reverse Bellman inequality
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T V + ≤ V +. For the finite case, it holds if and only if

min
u∈U(i)

n∑

j=1

pij(u)(g(i, u, j) + γV +(j)) ≤ V +(i), ∀i = 1, . . . , n. (3.11)

In other words, V + satisfies T V + ≤ V + if and only if for each state i there exists an input

u ∈ U(i) for which the expected value is less than V +(i). The left side is not convex in the

optimization variable V , because the minimum is on the wrong side of the inequality sign.

This is not an issue for the Bellman inequality V − ≤ T V −, because it takes the form

V −(i) ≤ min
u∈U(i)

n∑

j=1

pij(u)(g(i, u, j) + γV −(j)), ∀i = 1, . . . , n,

which is suitably convex. To engineer around this difficulty, we can restrict to conditions

that imply the condition (3.11). For example, the conservative condition

1

m

m∑

u=1

n∑

j=1

pij(u)(g(i, u, j) + γV +(j)) ≤ V +(i), ∀i = 1, . . . , n,

is suitable, because an average is always at least the minimum. (This is the condition

implemented to obtain the bounds of Figure 3.4.)

3.3.7 Optimization with unknown transition probabilities

If the transition probabilities pij(u) are not known ahead of time (as in an exploration

or machine learning scenario), but are known to be in some set, then robust optimization

can be used to design policies that are robust with respect to the uncertainty in these

probabilities. As in the case of robust LP, some uncertainty descriptions are tractable.

Robust LP. Consider a linear program in inequality form,

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

over the variable x ∈ Rn, where c, bi are fixed, and each ai is known to lie in an ellipsoid

ai ∈ Ei, where
Ei = {ai + Piv | ‖v‖2 ≤ 1}.
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The goal of a robust LP is to find a solution that works for all such ai ∈ Ei, which is

equivalent to the optimization problem

minimize cTx

subject to supai∈Ei(a
T
i x) ≤ bi, i = 1, . . . ,m.

(3.12)

Since the supremum in (3.12) is equal to

sup
ai∈Ei

(aTi x) = aTi x+ ‖P T
i x‖2,

for every x, we can rewrite the robust LP (3.12) as the Second Order Cone Program (SOCP)

minimize cTx

subject to aTi x+ ‖P T
i x‖2 ≤ bi, i = 1, . . . ,m.

(3.13)

Notably, the problem (3.13) is convex, with efficient solution techniques for medium to large

m and n. The additional terms ‖P T
i x‖2 act as norm regularization constraints.

Robust performance bound. If the transition probabilities are known to lie in an

ellipsoid, then we can rewrite the robust underapproximation program

maximize
n∑

i=1

w(i)V (i)

subject to V (i) ≤
n∑

j=1

pij(u)(g(i, u, j) + γV (j)),

∀i = 1, . . . , n, ∀u ∈ U(i), ∀pi:(u) ∈ Ei(u),

as an SOCP. For every state i and input u, the outbound probability vector pi:(u) ∈ Ei(u) ⊆
Rn lies an ellipsoid, and V ∈ Rn is the variable. As a special case, this formulation can be

used to find a value function (and policy) that is robust with respect to lower and upper

bounds on the transition probabilities,

pij(u) ∈ [p
ij
(u), pij(u)],
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by choosing a diagonal ellipsoid that encompasses these intervals, e.g.,

Ei(u) = {ai(u) + Pi(u)v | ‖v‖2 ≤ 1} , i = 1, . . . , n, u ∈ U(i),

where

ai(u) =
p
i:
(u) + pi:(u)

2
, Pi(u) =




pi1(u)−p
i1
(u)

2 · · · 0
...

. . .
...

0 · · · pin(u)−p
in
(u)

2


 .

3.3.8 Example: Gridworld

We construct a state space consisting of n = 30 states, arranged in a 5 × 6 grid and

indexed i = 1, . . . , 30 (left-right, top-bottom), modeling the movement of robot or person

in a cluttered environment. At each state, there are up to four possible actions u = 1, . . . , 4

corresponding to a movement N , W , S, and E, respectively. For each non-edge state i, the

transition probability is defined as

pij(u) =





0.8 if j neighbors i, and u is a movement to j,

0.1/3 if j neighbors i, and u is not a movement to j,

0.1 if j = i,

0 otherwise.

Thus, for every non-edge state, there is a 0.8 chance of moving to a desired square, 0.1

chance (split evenly) to jump to one of the remaining three neighbors, and a 0.1 chance of

staying at the current square. For edges and corners, we stay at the current square if a

control action is unavailable.

Next, a fraction of the squares is chosen to be obstacles. These states have probability

1.0 of staying and zero probability of leaving, and are disconnected from their neighboring

states.

Finally, a cost of 1 is chosen for every transition to a neighboring state, with the bottom

right state (state 30) having zero cost.

We show the convergence of value iteration for two starting guesses in Figure 3.2. The

next figure (Figure 3.3) shows the converged value function. In Figure 3.4, we solved a
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version of the optimization problem (3.10) with N = 10 basis vectors. Crucially, one of the

basis vectors was a vector of the form

φobst(i) =





1 if i is an obstacle,

0 otherwise.

To decrease basis complexity, we can use basis vectors that encode state membership

constraints:

• A basis vector can pool over labeled, free, and obstacle regions.

• If a particular type of policy is expected, one can choose a basis vector whose gradient

tends to point toward the goal.
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Value iteration

Figure 3.2: Lower and upper bounds of the value function during two instances of value iteration.
Here the initial guess was V (0) = 0 for the lower bounds and V (0) = 20 for the upper bounds. Both
iterations converge in the middle.

3.4 Continuous-space approximate dynamic programming

There are two major challenges that must be overcome when applying these techniques

tractably to continuous state and action spaces, i.e., X ⊆ Rn and U ⊆ Rm. Each can
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Figure 3.3: Gridworld with shading indicating the cost to go after 60 value iterations. The target
(bottom-right) cell has zero cost-to-go. The obstacle states are X obst = {7, 15, 19, 27, 29}.
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Figure 3.4: Approximate bounds using N = 10 basis functions, one of which is an obstacle
indicator.
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introduce its own level of conservativeness.

1. Continuous state space. The value function V : X → R is an infinite-dimensional

object. Representing V in large dimensional states (n ≫ 1) requires exponentially

many sample points to maintain adequate detail. Typically this is partially resolved

by restriction to a given basis, e.g., finite elements, piecewise linear, or quadratic

approximations.

2. Continuous action space. An implementation of the Bellman inequality (3.7)

becomes a semi-infinite constraint indexed by the control input u ∈ U , even when the

value function is finitely parameterized. Typically, S-procedure style arguments are

made here.

3.4.1 Example: Linear quadratic dynamics with bounded control

The following example from [WOB14] illustrates the type of analysis required in the con-

tinuous domain. Consider a discrete-time continuous space system

xt+1 = Axt +But + wt, t = 0, 1, . . . ,

with initial state x0 and zero-mean noise terms w0, w1, . . . satisfying

E[wt] = 0, E[wtw
T
t ] = W ∈ Rn×n, for all t = 0, 1, . . . ,

and a quadratic cost function g(x, u) = xTQx + uTRu. The state space is unbounded,

X = Rn, and the controls have an upper bound,

U = {u ∈ Rm | ‖u‖∞ ≤ 1}.

Note that the main difference between this problem and a standard LQR-style problem

(which has a closed form solution) is the control bound. The first choice is how to represent

the infinite-dimensional value function in a finite dimensional way. We select a value function

underestimator of the form

V (x) = xTPx+ s,
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where P ∈ Sn
+ and s ∈ R are parameters. The Bellman inequality V ≤ T V reads

V (x) ≤ Ew[g(x, u) + γV (Ax+Bu+ w)], ∀x ∈ X , ∀u ∈ U . (3.14)

Any V satisfying (3.14) underestimates V ⋆ over all states x. After some manipulation, this

becomes

xTPx+ s ≤


x

u



T 
γA

TPA+Q γATPB

γBTPA γBTPB +R




x

u


+ γ(Tr(PW ) + s),

∀x ∈ X , ∀u ∈ U . (3.15)

The next choice is how to implement the semi-infinite constraint (3.15). Without the

control bound constraints ‖u‖∞ ≤ 1, eq. (3.15) is a Linear Matrix Inequality (LMI) in the

variables P and s. Applying the (lossy) S-procedure gives a sufficient condition for (3.15)

to hold:




x

u

1




T 


γATPA+Q γATPB 0

γBTPA γBTPB +R 0

0 0 γTr(PW )− (1− γ)s







x

u

1


 ≥ 0

for all x, u satisfying




x

u

1




T 


0 0 0

0 −eie
T
i 0

0 0 1







x

u

1


 ≥ 0, i = 1, . . . , n.

This condition translates to the LMI constraint




γATPA+Q γATPB 0

γBTPA γBTPB +R+D 0

0 0 γTr(PW )− (1− γ)s−Tr(D)


 � 0,

where P � 0, s ∈ R, and D � 0 are the variables, and D is restricted to be a diagonal

matrix.
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3.5 Extensions

With the logic specification and finite states, this discussion applies on the product state

space and automaton. The engineering challenge is to pick appropriate basis vectors. With

logic specification and continuous states, the value function has both continuous and dis-

crete indices. Underestimates are more readily obtained (by convex optimization) than

overestimates. Sum-of-squares can be used for overestimates. We can enforce the LP con-

straints only at certain specified states—more tractable with loss of bound guarantees. We

discuss these issues in the next chapter.

In cases where pij(u) is unknown, robust optimization can be brought to bear on this if

we know something about, say, the range of probabilities pij(u) ∈ [p
ij
(u), pij(u)]. We can

also attempt to discover pij(u), either by simulation or repeated probing. It is also possible

to talk about the probability of satisfaction by incorporating this probability, directly or by

proxy, into the additive stage costs. Similarly, a proxy for exploration can also be part of

the objective.

3.6 References

A great book on theory and practice of MPC is [RM09]. Robust MPC is surveyed

in [BM99], with robust bounding ideas going back to [BPG89, Yak92]. Using the language

of upper bounds and LMIs, [KBM96] describe polytopic uncertainty in a conservative way

to model nonlinear systems whose Jacobian lies in a polytope. Interior point and barrier

methods for convex optimization are attributed to [NN94, Nes04], and described well by

the textbook [BV04]. Specific solvers fall into three categories: general purpose solvers

(SDPT3 [TTT99], SeDuMi [Stu99], CVXOPT [Van10]), parser-solvers (YALMIP [L0̈4],

CVX [GB08, GB14]), and code generating solvers (CVXGEN [MB11], FORCES [DJ14]).

The code generating solvers, including the central path methods described in this chapter,

rely on the sparse LDL decomposition [Duf04, Dav05]. A general reference on meth-

ods for solving sparse systems is [Dav06]. General methods for ADP are described in the

text [Pow07] and references therein.
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Chapter 4

Automata Theory Meets

Approximate Dynamic

Programming

4.1 Introduction

In this chapter, we address the problem of optimal control of dynamical systems under

temporal logic specifications. Dynamical systems of interest to control are typically writ-

ten as differential equations on a continuous state space, with inputs that can take on a

continuum of values over a continuous time interval. However, temporal logic constraints

that permit decidable synthesis must work with a finite or countable parameterization of

time and space. As a result, a control designer must either forgo the continuous dynamics,

create a discrete abstraction, or somehow re-express the temporal constraints within their

optimal control framework.

Linear Temporal Logic (LTL) is an expressive temporal logic that allows one to rigor-

ously describe a variety of system specifications including reaching a goal, avoiding unsafe

regions, covering a set of regions, responding to events, periodic surveillance, and remain-

ing stable. To relate specifications in LTL and continuous-time continuous-state systems,

researchers propose abstracting a continuous or hybrid system to a discrete, finite-state

model, which allows reasoning over discrete logic properties.

Abstraction-based, hierarchical control methods have been proposed for continuous

systems under temporal logic constraints [KB08, FGKGP09, HB10, LO14, AHLP00,

STBR11, WTM12]. This class of methods consists of three general steps:

1. abstracting the dynamical system as a discrete finite-state system,
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2. synthesizing a discrete control law using the product of the Linear Temporal Logic

(LTL) specification automaton and the abstraction, and

3. refining the discrete control law and implementing it in the original system.

Approximate abstraction can be computed by reachability-based computational methods,

counter-example guided abstraction refinement, and sampling-based methods [CFH+03,

KB08, Rei11, FT13, KF12, KSS+13]. However, it is well-known that the abstraction

process is computationally expensive. In addition, it cannot ensure the optimality of a

control policy designed at the abstraction level with respect to a given cost function.

To address the issue of scalability, correctness, and optimality of the control design, the

works [WM13, WTM13] proposed to formulate the control problem as a mixed-integer lin-

ear programming problem on the system variables, avoiding the need of a finite abstraction.

However, the method has limited applicability to a fragment of LTL, and the satisfaction

is encoded into a finite set of constraints over system variables corresponding to the speci-

fication. Importantly, this framework is both discrete-time and sensitive to the number of

timesteps used.

Since LTL formulas can be equivalently expressed by an automaton [GO01], this chapter

exploits the idea that continuous-time systems constrained by LTL can be formulated as a

hybrid dynamical system by augmenting the continuous state space with the discrete states

in the specification automaton. Therefore, approximate optimal control for hybrid systems

can be employed to solve the optimal control under temporal logic constraints problem in

a computationally efficient way.

We show how to use approximate dynamic programming (ADP) to approximate the

value function and give an approximate policy. As a result, we too are limited to a sub-

set of LTL—in this case the fragment is called co-safe LTL. An earlier similar proposed

architecture using the product of a co-safe LTL specification automaton and a discrete ab-

straction of nonlinear robot dynamics using a sampling-based planner is [BMKV11]. By

way of comparison, we treat the hybrid dynamics directly, and restrict to piecewise linear

systems obviating the need for expensive RRT calculations. The main parameters under

the designer’s control are the value function bases used, rather than number of timesteps

in the discretization or the fidelity of the discrete abstraction.

We first state the specific problem and describe the co-safe LTL fragment. We then
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define the product between the continuous-time, continuous-space dynamics and the discrete

automaton corresponding to the co-safe LTL specification, and write down the dynamic

program corresponding to the optimal control problem. This dynamic program is difficult

to solve for all but the most trivial cases, so we use the results of the previous chapter to

present a novel optimization based framework for approximate dynamic programming in

the temporal logic context. We also give examples of how to implement the optimization

as a semidefinite program for linear systems.

4.2 Problem description

Consider a continuous-time and continuous-state dynamical system on Rn. This system is

given by

ẋ = f(x, u), x(0) = x0, (4.1)

where x(t) ∈ X ⊆ Rn and u(t) ∈ U ⊆ Rm are the state and control signals at time t. For

simplicity, we restrict f to be a Lipschitz continuous function of (x, u), and the control input

u to be a piecewise right-continuous function of time, with finitely many discontinuities on

any finite time interval. These conditions are not always required, but they ensure the

existence and uniqueness of solutions, and are meant to prevent Zeno behavior.

The system (4.1) is constrained to satisfy a specification on the discrete behavior ob-

tained from its continuous trajectory. First, let AP be a set of atomic propositions, which

are logical predicates that hold true when x(t) is in a particular region. Then, define a la-

beling function L : X → Σ, which maps a continuous state x ∈ X to a finite set Σ = 2AP of

atomic propositions that evaluate to true at x. This function partitions the continuous space

X into regions that share the same truth values in AP. The labeling function also links

the continuous system with its discrete behavior. In the following definition, φ(x0, [0, T ], u)

refers to the trajectory of the continuous system with initial condition x0 under the control

input u(t) over the time interval [0, T ].

Definition. Let t0, t1, . . . , tN be times, such that

• 0 = t0 < t1 < · · · < tN = T ,

• L(x(t)) = L(x(tk)), tk ≤ t < tk+1, k = 0, . . . , N ,
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• L(x(t−k )) 6= L(x(t+k )), k = 0, . . . , N .

The discrete behavior, denoted B(φ(x0, [0, T ], u)), is defined to be the discrete word σ0σ1 . . . σN−1 ∈
Σ∗, where σk = L(x(tk)).

A specification on the discrete behavior can be written as a co-safe LTL formula over

the finite set of atomic propositions (for a comprehensive description of the syntax and

semantics of LTL, the reader is referred to [MP92, BK08]). A co-safe LTL formula is an

LTL formula where every satisfying word has a finite good prefix1 [KV01]. We restrict

to such formulas to take advantage of the expressiveness of temporal logic for specifying

optimal control problems without imposing infinite Büchi acceptance conditions. We give

examples of appropriate specifications in §4.5.
Given a co-safe LTL specification ϕ over the set of atomic propositions AP, there exists a

corresponding deterministic finite-state automaton (DFA) Aϕ = 〈Q,Σ, δ, q0, F 〉, where Q is

a finite set of states (modes), Σ = 2AP is a finite alphabet, δ : Q×Σ → Q is a deterministic

transition function such that when the symbol σ ∈ Σ is read at state q, the automaton

makes a deterministic transition to state δ(q, σ) = q′, q0 ∈ Q is the initial state, and F ⊆ Q

is a set of final, or accepting states. The transition function is extended to a sequence of

symbols, or a word w = σ0σ1 . . . ∈ Σ∗, in the usual way: δ(q, σ0v) = δ(δ(q, σ0), v) for σ0 ∈ Σ

and v ∈ Σ∗. We say that the finite word w satisfies ϕ if and only if δ(q0, w) ∈ F . The set

of words satisfying ϕ is the language of the automaton Aϕ, denoted L(Aϕ).

The discrete behavior encodes the sequence of labels visited by the state as it moves

along its continuous trajectory. Specifically, the atomic propositions are evaluated only at

the times when the label changes value. Thus a trajectory φ(x0, [0, T ], u) satisfies an LTL

specification ϕ if and only if its discrete behavior is in the language L(Aϕ). The optimal

control problem is formulated as follows.

Problem. Consider the system (4.1), a co-safe LTL specification ϕ, and a final state xf ∈
X . Design a control law u that minimizes the cost function

J =

∫ T

0
ℓ(x(τ), u(τ)) dτ +

N∑

k=0

s(x(tk), q(t
−
k ), q(t

+
k )) (4.2)

subject to the constraints that B(φ(x0, [0, T ], u)) ∈ L(Aϕ) and x(T ) = xf .

1Given a word w ∈ Σ∗ and v ∈ Σ∗, v is a prefix of w if and only if w = vu for some u ∈ Σ∗. The word u

is called the suffix of w.
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Here, ℓ : X × U → R is a continuous loss function, and s : X × Q × Q → R is

the cost to transition between two states of the automaton whenever such a transition is

allowed. The final state x(T ) = xf is also specified. Similar problems have been studied in

existing work [HR99, HR02, XA04, HB10, WTM12, WTM13, KSS+13]. The novelty

of our approach is twofold. First, we show that this co-safe LTL problem can be cast as an

optimal hybrid control problem, and second, we use approximate dynamic programming to

synthesize a suboptimal controller with guaranteed performance bounds.

4.3 Product formulation

To solve Problem 4.2, we first augment the continuous state space X with the discrete state

space Q of the specification automaton Aϕ to obtain a hybrid system. The construction

of Aϕ for a specific formula ϕ can be automated with existing tools [GO01]. We show

that the optimal control problem constrained by a co-safe LTL specification ϕ is a dynamic

programming problem over the product space X ×Q.

In this setting, the hybrid state at time t is an ordered pair (x(t), q(t)) ∈ X ×Q. Evolu-

tion of the continuous-state component x(t) is governed by the original system flow (4.1),

while evolution of the discrete component q(t) is governed by the appropriate deterministic

transition of the specification automaton. Such a transition is initiated when the continuous

state crosses a boundary between two labeled regions. Specifically, we consider the following

product hybrid system:

Definition. The product system H = 〈Q,X , E, f, R,G〉 is an internally forced hybrid

system, where

• Q is the set of discrete states (modes) of Aϕ,

• X ⊆ Rn is the set of continuous states,

• E ⊆ Q× Σ×Q is a set of discrete transitions, where e = (q, σ, q′) ∈ E if and only if

δ(q, σ) = q′,

• f : X × U → Rn is the continuous vector field given by (4.1),
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• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′, σ, q) ∈ E,

and L(x) = σ}, q ∈ Q, σ ∈ Σ,

Rq =
⋃

σ∈Σ
Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ bdRq,σ | δ(q, L(x)) = q′},

for all e = (q, σ, q′) ∈ E.

Each region Rq refers to the continuous states x ∈ X that are reachable while the

automaton is in or transitions to mode q. For each discrete mode q, the continuous state

evolves inside Rq until it enters a guard region G(q,σ,q′) and a discrete transition to mode q′

is made.

We can solve the optimal control problem with dynamic programming by ensuring that

the optimal value function is zero at every accepting state of the automaton. Let V ⋆ :

X×Q → R be the optimal cost-to-go in (4.2), with V ⋆(x0, q0) denoting the optimal objective

value when starting at initial condition (x0, q0), subject to the discrete behavior specification

and final condition x(T ) = xf . For simplicity, we assume that V ⋆ has no explicit dependence

on t, which corresponds to searching for a stationary policy, although this assumption can

be relaxed at the expense of having to choose a time-dependent basis when searching for

an approximate value function later. In this setting, the cost-to-go satisfies a collection of

mixed continuous-discrete Hamilton–Jacobi–Bellman (HJB) equations,

0 = min
u∈U

{
∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}
,

∀x ∈ Rq, ∀q ∈ Q,

(4.3)

V ⋆(x, q) = min
q′

{
V ⋆(x, q′) + s(x, q, q′)

}
,

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,

(4.4)

0 = V ⋆(xf , qf ), ∀qf ∈ F. (4.5)
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Equation (4.3) says that V ⋆(x, q) is an optimal cost-to-go inside the regions where the label

remains constant. The next equation (4.4) is a shortest-path equality that must hold at

every continuous state x where discrete state transition to a different label can happen.

Finally, the boundary equation (4.5) fixes the value function.

q q′

u

Figure 4.1: Finite state interpretation of HJB conditions (4.3)–(4.5)

We can interpret these HJB conditions intuitively as a single-sink shortest-path problem

on a directed weighted graph, where nodes with the same label are treated together and

the weights are the incremental costs ℓ(x, u)dt or the discrete transition costs s(x, q, q′)

(Figure 4.1). As long as the continuous state evolves within the same labeled region, the

value function is subject to the optimality condition associated with the region that contains

that state. As a result, the continuous-state condition (4.3) must hold on the interior nodes

(white), while the discrete-state switching condition (4.4) must hold at the boundary nodes

(black).

The graph interpretation also clarifies why automata derived from co-safe LTL speci-

fications fit within the dynamic programming framework but not automata derived from

more general temporal logics: the semantics of general LTL are over infinite execution

traces, and require Büchi automata whose acceptance conditions do not readily translate

to a single-sink shortest-path problem. Nevertheless, we believe the co-safe restriction is

a strength, rather than weakness, because co-safe LTL is still highly expressive, and the
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solution methods we describe in the next section are efficient for many classes of problems,

relatively simple to implement, and can be readily automated.

4.4 Lower bounds on the optimal cost

Let V ⋆ be a value function satisfying the hybrid HJB conditions (4.3)–(4.5), and suppose

V is another function that satisfies the following inequalities,

0 ≤∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

(4.6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,
(4.7)

0 = V (xf , qf ), ∀qf ∈ F. (4.8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated by [HR99, Ran99, dFR03]. The

inequalities (4.6)–(4.8) characterize a set of optimal value function under-estimators, among

which is the optimal value function V ⋆ itself. The difference between the equalities (4.3)–

(4.5) and the inequalities (4.6)–(4.8) is the removal of the minimum operators in favor of

semi-infinite constraints and the addition of pointwise inequalities.

The strength of using inequalities to search over value function under-estimators, instead

of solving the HJB equations directly, lies in an ability to come up with approximate value

functions and ADP policies whose suboptimality can be quantified [WB09]. The ADP

method is enabled by the fact that we can come up with sufficient conditions that imply

(4.6)–(4.8), and relies on finding the largest approximate value function that is a pointwise

underestimate of V ⋆. Thus we solve the problem

maximize V (x0, q0)

subject to (4.6), (4.7), and (4.8)
(4.9)

over the variables parameterizing V .



55

The approximate value function V is written as a sum of basis functions as follows,

V (x, q) =

nq∑

i=1

wi,qφi,q(x),

where φi,q : X → R are given basis functions, and the coefficients wi,q, i = 1, . . . , nq are the

variables. Given an approximate value function V , an approximately optimal control law

can be implemented as

u(x, q) = argmin
u∈U

{
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u)

}
.

Switching between different discrete modes is autonomous, and the scaling with problem

size can be controlled with an appropriate parameterization of V . For more information on

ADP, see the references [BT96, Pow07]. The goal of the rest of this section is to describe

how to solve (4.9) for specific problems.

4.4.1 Linear quadratic systems

In this section we describe how to search for an approximate value function for the linear

system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

with a quadratic continuous cost

ℓ(x, u) = xTQx+ uTRu, Q � 0, R ≻ 0,

and a constant switching cost

s(x, q, q′) =





ξ if q 6= q′,

0 otherwise,

where ξ > 0 is a given positive constant.

We parameterize the approximate value function as a quadratic. For each q ∈ Q, let

V (x, q) = xTPqx+ 2rTq x+ tq, for all x ∈ X , (4.10)
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where Pq = P T
q ∈ Rn×n, rq ∈ Rn and tq ∈ R are the variables of the parameterization.

This parameterization is linear in (Pq, rq, tq) and corresponds to choosing basis functions

φi,q(x) that are quadratic, linear, and constant in the components of x, respectively.

With the approximate value function in (4.10), the objective function is then

V (x0, q0) = xT0 Pq0x0 + 2rTq0x0 + tq0 .

For the constraints, condition (4.6) is the same as

0 ≤




x

u

1




T 


ATPq + PqA+Q PqB AT rq

BTPq R BT rq

rTq A rTq B 0







x

u

1




∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

(4.11)

i.e., it is a collection of |Q| semi-infinite constraints indexed by the continuous variables

x ∈ X and u ∈ U , one for each q ∈ Q. If Rq is a quadratically representable set, e.g.,

ellipsoids or halfspaces, then we directly use the S-procedure to obtain a finite number

of sufficient conditions for (4.11) to hold [WB09]. Otherwise if Rq is not quadratically

representable, then two approaches can be used. One approach is exact: Given state q ∈ Q,

we partition Rq to a finite set of quadratically representable sets Rq =
⋃Nq

i=1R
i
q and enforce

constraint (4.11) in state q to each Ri
q with parameterization (P i

q , r
i
q, t

i
q). Note that such a

partition is possible if the set of states satisfying each atomic proposition is quadratically

representable. Alternatively, we can overapproximate Rq with a quadratically representable

set. In both cases, U can be overapproximated by a quadratically representable set.

Similarly, the inequality (4.7) is enforced over each guard region by the collection of |E|
semi-infinite constraints

0 ≤


x

1



T 
Pq′ − Pq rq′ − rq

rTq′ − rTq tq′ − tq + ξ




x

1




∀x ∈ Ge, ∀e ∈ E.

(4.12)

Once again, the S-procedure translates the semi-infinite constraints into a finite sufficient

condition if the guard regions are quadratically representable. The guard regions are
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quadratically representable when each atomic proposition corresponds to a quadratically

representable set in X .

Finally, the condition (4.8) relates Pqf , rqf , and tqf via the |F | linear equality constraints

0 = xTf Pqfxf + 2rTqfxf + tqf , ∀qf ∈ F, (4.13)

where xf is the given fixed final state.

4.4.2 Nonlinear systems

For general nonlinear flows, it is appropriate to choose a more expressive value function

approximation. A typical approach would use a radial basis function (RBF) basis [PS91],

[LW13, §12],

V (x, q) =
m∑

i=1

wi,q exp

(
−‖x− ci‖22

a2i

)
, (4.14)

where {ci}mi=1 is a finite set of center points in Rn chosen to sample the continuous state

space X , and {ai}mi=1 are positive constants that define the RBF widths. The same set of

basis functions can be used everywhere, or alternatively the RBF centers can be chosen to

have most of their support over the regions Rq appropriate to each state q ∈ Q.

With the approximate value function in (4.14), the objective and constraints (4.6)–(4.8)

lead to the optimization problem

maximize
m∑

i=1

wi,qφi,q(x0)

subject to 0 ≤
m∑

i=1

wi,q

(
∂φi,q(x)

∂x
· f(x, u)

)
+ ℓ(x, u)

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

0 ≤
m∑

i=1

(wi,q′ − wi,q)φi(x) + s(x, q, q′)

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,

0 =
m∑

i=1

wi,qfφi(xf ) ∀qf ∈ F,

with variables wi,q. The switching cost function s can be defined similar to that in §4.4.1.
This semi-infinite LP has a finite number m × |Q| of variables but an infinite number

of constraints. A general solution approach is to sample the constraints, and then solve the
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finite linear program. The derivation of Probably Approximately Correct (PAC) bounds on

the needed number of samples requires careful study of the specific dynamics and costs in

the optimization problem.

4.5 Examples

4.5.1 Linear quadratic systems with halfspace labels

We consider the linear quadratic system on X = R2 from §4.4.1 with the specific parameters

A =


2 −2

1 0


 , B =


1

1


 ,

Q = I, R = 1, ξ = 1,

x0 = (0.5, 0), xf = (0, 0).

Let AP = {a, b} consist of atomic propositions that are true whenever the continuous

state enters a specific region,

a = True ⇐⇒ (x(t) ∈ RA) , RA = {x ∈ R2 | x1 ≤ 1}

b = True ⇐⇒ (x(t) ∈ RB) , RB = {x ∈ R2 | x1 > 1}.

Note that RA and RB are closed halfspaces and the interface between them is the line

G = {x ∈ R2 | x1 = 1}. We define the labeling function L : R2 → {A,B} ⊆ Σ = 2AP ,

where A = {a} and B = {b}. The goal is to satisfy the specification

ϕ1 = ♦A ∧ ♦B,

where ♦ is the LTL “eventually” operator.

The automaton that accepts this specification consists of four states and is shown in Fig-

ure 4.2. The discrete behavior accepted by this automaton is any trajectory that eventually

visits each of the regions RA and RB.
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q0start

q1

q2

q3

A

¬B

B

B

¬A

A

Figure 4.2: Automaton Aϕ1
for ϕ1 = ♦A ∧ ♦B

The guard regions are defined as

G(q0,A,q1) = RA, G(q0,B,q2) = RB,

G(q1,B,q2) = G(q2,A,q2) = G.

Note that the direction of crossing the guard region is encoded by the allowed DFA transi-

tions.

Guided by the automaton, we mechanically apply the S-procedure to obtain the semidef-

inite program

maximize xT0 Pq0x0 + 2rTq0x0 + tq0

subject to (4.11), (4.12), and (4.13),

with variables Pq = P T
q ∈ R2×2, rq ∈ R2, tq ∈ R, q ∈ Q = {q0, . . . , q3}, and eight additional

variables coming from the S-procedure. With xf = 0, the final constraint (4.13) translates

to tq3 = 0.

The semidefinite program was solved using SDPT3 and resulted, within numerical ac-
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curacy, in the following value function:

P ⋆
q =


 22.314 −28.142

−28.142 38.799


 , q = q0, . . . , q3,

r⋆q =


0

0


 , q = q0, . . . , q3,

t⋆q =





2, q = q0

1, q = q1, q2

0, q = q3.

Note that the shape of V (·, q) is the same for every state in the automaton, with the

only difference being the offset tq. The policy implied by this value function is illustrated

in Figure 4.3 for the specific hybrid execution trace with initial condition x0 = (0.5, 0). The

reader is invited to follow the figure as we interpret the execution:

1. The path x(t) starts at the point a with initial condition x0 = (0.5, 0) and automaton

state q0.

2. The automaton makes an immediate transition to q1, because L(x0) = A and the

value function is lower for this discrete state. The continuous dynamics follow the

negative gradient of V (·, q1).

3. At point b, the automaton transitions to q3. The continuous dynamics go down the

gradient of V (·, q3) in the segment of the path between b and c.

4. At point c, the automaton is already in its accepting state q3. The continuous dy-

namics continue to follow the negative gradient of V (·, q3) to reach xf = 0.

4.5.2 More complex specification

We now consider three regions, RA, RB, and RC with the slightly more complex specification

ϕ = (A → ♦B) ∧ (C → ♦B) ∧ (♦A ∨ ♦C).
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RA RB

a

b

c

Figure 4.3: Approximately minimum cost path satisfying ϕ1 with initial condition x0 = (0.5, 0).
To satisfy ϕ1, the trajectory must leave RA and visit RB .

This specification ensures that either RA or RC must be reached, after which the system

must eventually visit RB. The automaton for this specification is shown in Figure 4.4.

Depending on the accrued continuous and transition costs, there is a choice to go left or

right in Figure 4.5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B
A

C

B

¬B

Figure 4.4: Automaton Aϕ2
for ϕ2 = (A → ♦B) ∧ (C → ♦B) ∧ (♦A ∨ ♦C)

We form the semidefinite program as before to obtain five approximate value functions

V (·, q), one for each q ∈ Q = {q0, . . . , q4} in the automaton. This time, we plot the execution

for two initial conditions x0 = (−0.5,−0.5), whose path (abc) goes right, and x0 = (−0.5, 0),
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whose path (def) goes left. See Figure 4.5.

RA RB RC

a

b

c

d

e

f

Figure 4.5: Approximately minimum cost paths satisfying ϕ2, and level sets of the value function
active in each region: the path abc with initial condition x0 = (−0.5,−0.5) satisfies ϕ2 by visiting
RC , while the path def with initial condition x0 = (−0.5, 0) satisfies ϕ2 by visiting RA. Note that
the level sets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift compared to V (·, q4)
(dashed, inside RB), which allows for the excursion away from the origin required by ϕ2.

To interpret this policy, it is valuable to compare the spectra of the closed loop matrix

Acl
q = A−BR−1BTP ⋆

q

in the initial mode q = q0 against the accepting mode q = q4,

λ(Acl
q0) = {0.786± 1.144i}, λ(Acl

q4) = {−1± i}.

In the initial state q0, the closed loop eigenvalues are unstable, while they are stable in the

final state q4. Our procedure therefore recovers the requirement of ϕ2 that a trajectory

starting near the origin in region RB must go away to visit another region, and eventually

transition to an accepting state of the automaton before being allowed back to xf = 0.
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Figure 4.6: State of Aϕ2
and value function along the path abc going right.

4.6 Conclusion

This chapter presented an approach to formulate and solve the optimal control problem

under co-safe LTL constraints using approximate dynamic programming. The optimal pol-

icy is given by following a sequence of value functions over a hybrid state space, where the

continuous component comes from the continuous-time and continuous-state dynamics of

the system, and the discrete component comes from the specification automaton. For linear

dynamics and quadratic-constant costs, we showed how to use the specification automaton

to construct a semidefinite program that gives a suboptimal policy. This procedure does not

rely on discretizing the time/state space or formulating non-convex optimization problems.

At this stage, this approach is limited to a subset of LTL specifications that admit determin-

istic and finite (rather than Büchi) automaton representations. Extensions to the general

class of LTL specifications that admit deterministic Büchi automaton representations with

continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC bound on sampling-based

methods for nonlinear systems. The proposed framework can also be incorporated as a
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building block in other approximate optimal control methods for scalable synthesis of sys-

tems with LTL specifications.
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Chapter 5

Adaptation and Learning

5.1 Introduction

In this chapter, we bridge the Lyapunov bound thinking of the previous chapters with the

well-developed theory of adaptive control. Specifically, we review its concepts and make

connections to machine learning systems. Fundamentally, we view adaptive control not

just as the result of a clever zeroing of dissipation terms in a Lyapunov argument, but

rather as the implementation of a specific (continuous-time or discrete-time) algorithm for

solving a constrained convex optimization problem online. While much of this material is

quite standard, the constrained optimization lens through which we view adaptive control

is critical to understanding the upcoming Chapter 6.

We motivate the discussion by the following example of a Model Referenced Adaptive

Controller (MRAC).

Example 5.1 Let A ∈ Rn×n be a dynamics matrix, and B ∈ Rn×m with (A,B) controllable.

Consider the state space system

ẋ = Ax+B(u+ c), x(0) = x0, (5.1)

where x ∈ Rn is the state, u ∈ Rm is the input, and c ∈ Rm is an unknown but constant

disturbance vector satisfying Bc 6= 0. Let Q ≻ 0 and R ≻ 0 be given matrices that define a

linear state feedback controller uLQR = Kx, where K = −R−1BTP , and P ≻ 0 satisfies the

algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0.
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It can be shown that setting u = uLQR in (5.1) gives

lim sup
t→∞

‖x(t)‖ = ‖ − (A+BK)−1Bc‖ 6= 0.

In other words, the LQR controller fails to stabilize the system (5.1). However, setting u =

uideal = uLQR − c in (5.1) would asymptotically stabilize the system, because the closed loop

matrix A+BK is stable from LQR theory.

MRAC controller. Since the ideal controller is not practical (it requires knowing c), we

will instead consider uMRAC = uLQR − ĉ(t), where ĉ(t) is a possibly time-varying estimate

of c. Our goal is to come up with an estimation rule for ĉ(t) that ensures asymptotic

convergence of the state in (5.1) to zero. To do this, we will pick a stable (model) reference

system

ẋref = (A+BK)xref, xref(0) = x0

and drive the state x(t) toward xref(t) with uMRAC. The following estimation rule will form

the basis of our analysis:

˙̂c(t) = ΓBTPe(t), ĉ(0) = ĉ0, (5.2)

where e(t) = x(t) − xref(t), Γ = ΓT ≻ 0 is a fixed m × m matrix called the learning rate,

and ĉ0 ∈ Rm is a given initial guess.

With u = uMRAC, we have the following system and reference dynamics

ẋ = (A+BK)x−B(ĉ(t)− c)

ẋref = (A+BK)xref.

Subtracting these gives the model tracking error dynamics

ė = (A+BK)e−Bc̃(t),

and since c is a constant, ˙̃c(t) = ˙̂c(t) = ΓBTPe(t), we can summarize the dynamics of (e, c̃)

as

d

dt


e

c̃


 =


A+BK −B

ΓBTP 0




e

c̃


 ,


e(0)

c̃(0)


 =


 0

ĉ0 − c


 . (5.3)
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Bounded estimates. We use the Lyapunov function candidate

V : Rn ×Rm → R, V (e, c̃) = eTPe+ c̃TΓ−1c̃,

where c̃(t) = ĉ(t)− c, to show that e(t) and c̃(t) are bounded for all t ≥ 0. To see this, note

that V is positive definite, and

V̇ (e, c̃) = 2eTP ė+ 2c̃TΓ−1 ˙̃c

= 2eTP ((A+BK)e−Bc̃) + 2c̃TΓ−1(ΓBTPe)

= eT ((A+BK)TP + P (A+BK)︸ ︷︷ ︸
=ATP+PA−2PBR−1BTP

)e+ 2c̃T (BTPe−BTPe︸ ︷︷ ︸
=0

)

= −eT (Q+ PBR−1BTP )e ≤ −eTQe,

where the last equality follows from the algebraic Riccati equation. Thus V̇ ≤ 0. This

immediately implies that e(t) and c̃(t) are bounded in magnitude for all time t ≥ 0, because

V (e(t), c̃(t)) = V (e(0), c̃(0)) +

∫ t

0
V̇ (e(τ), c̃(τ))︸ ︷︷ ︸

≤0

dτ

≤ V (e(0), c̃(0)).

However, their boundedness does not by itself show that the signals e(t) and c̃(t) tend

to zero. To conclude something about the asymptotic value of e(t) and c̃(t), we use the

following lemma:

Lemma (Barbalat). Let f : [0,∞) → R be a uniformly continuous function and suppose

that limt→∞
∫ t
0 f(τ) dτ exists and is finite. Then f(t) → 0 as t → ∞.

To apply Barbalat’s lemma to V̇ , we first show that V̇ is uniformly continuous:

V̈ (e, c̃) = −2e(t)T (Q+ PBR−1BTP )ė(t)

= −2e(t)T (Q+ PBR−1BTP )((A+BK)e(t)−Bc̃(t)).
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Since e(t) and c̃(t) are bounded, so is V̈ . Furthermore,

∫ T

0
V̇ (e(t), c̃(t)) dt = V (e(T ), c̃(T ))︸ ︷︷ ︸

bounded for all T

−V (e(0), c̃(0)),

therefore V̇ (e, c̃) → 0 by Barbalat’s lemma. Since V̇ is strictly negative definite in the e(t)

component, this in turn implies e(t) → 0. Finally, since e(t) = x(t) − xref(t) goes to zero,

and xref(t) goes to zero, the state x(t) in (5.1) goes to zero, as required.

Persistence of excitation. It is still possible that c̃(t) 6→ 0 even though e(t) → 0. In

other words, the estimate ĉ(t) need not converge to the true value c, even though the state

is driven to zero. For the parameter estimate to be driven to the true estimate, the system

may have to satisfy a further persistence of excitation condition. See [IF06] and Chapter 6.

Link to integral control. For comparison, consider the controller uint = uLQR − q(t),

where

q(t) = ΓBTP

∫ t

0
x(τ) dτ,

and Γ = ΓT ≻ 0 is a fixed gain matrix. In other words, uint is a state feedback LQR

controller with an additional integral term. With u = uint, we have

d

dt


x

q


 =


A+BK −B

ΓBTP 0




︸ ︷︷ ︸
Acl


x

q


+


Bc

0


 , (5.4)

which looks just like the error dynamics of the MRAC (5.3), except with a nonzero driving

term.

If the system (5.4) had a steady state value and the relevant inverse existed, then the

steady state would be given by


xss
qss


 = −


A+BK −B

ΓBTP 0



−1 
Bc

0


 =


0

c


 .

In particular, x(t) → xss = 0, as required. (We can check that this is indeed a solution by

multiplying both sides by Acl.) In fact, these dynamics are the same as the MRAC when
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we view them in terms of the variables x(t) and q̃(t) = q(t)− c:

d

dt


x

q̃


 =


A+BK −B

ΓBTP 0




x

q̃


 .

As we’ve seen, these dynamics ensure x(t) → 0. A very famous property of integral con-

trollers that they can reject constant disturbances, as is the case here. Thought of another

way, an integral controller is a zero-referenced MRAC for linear systems.

5.2 Robust adaptation

The MRAC is not robust with respect to bounded process noise without further modifica-

tion. Consider a zero-referenced, robust SISO MRAC design problem with the following

open-loop plant model,

ẋ(t) = Ax(t) + bu(u(t)− θTx(t)) + bww(t)

x(0) = x0,

reference model

ẋref(t) = Axref(t)

xref(0) = xref0 ,

and tracking error e(t) = x(t)− xref(t). The tracking error dynamics are

ė(t) = ẋ(t)− ẋref(t)

= Ax(t) + bu(u(t)− θTx(t)) + bww(t)−Axref

= Ae(t) + bu(u(t)− θTx(t)) + bww(t).

Assuming full state feedback, we use the control input u(t) = θ̂(t)Tx(t), where θ̂(t) is to be

determined. Define θ̃(t) = θ̂(t)−θ as the parameter error. With this definition the tracking

error obeys the dynamics

ė(t) = Ae(t) + buθ̃(t)
Tx(t) + bww(t). (5.5)
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Let V (e, θ̃) = eTPe+ θ̃TΓ−1θ̃ be a Lyapunov function candidate. The time derivative along

the trajectories of (5.5) is

V̇ (e, θ̃) = (Ae+ buθ̃
Tx+ bww)

TPe+ eTP (Ae+ buθ̃
Tx+ bww) +

˙̃
θTΓ−1θ̃ + θ̃TΓ−1 ˙̃θ

=




e

w

θ̃




T 


ATP + PA Pbw 0

bTwP 0 0

0 0 0







e

w

θ̃


+ 2θ̃T (Γ−1 ˙̃θ + xeTPbu). (5.6)

A typical approach in adaptive control is to pick
˙̃
θ (or equivalently the parameter update

law
˙̂
θ =

˙̃
θ + θ̇ =

˙̃
θ because θ is a constant) so the second term is zero, i.e.,

˙̂
θ = −ΓxeTPbu, (5.7)

however as we will see, the adaptive law (5.7) can lead to runaway parameters.

Suppose ‖w(t)‖2 ≤ wmax for all t. With the adaptive law (5.7), the Lyapunov function

V̇ (e, θ̃) < 0 only on the dissipation set

D =





(e, θ̃) 6= (0, 0)

∣∣∣∣∣∣∣∣∣∣




e

w

θ̃




T 


ATP + PA Pbw 0

bTwP 0 0

0 0 0







e

w

θ̃


 < 0, ‖w‖2 ≤ wmax





⊆ Rn×Rn.

Thus, while the tracking error e(t) will be ultimately bounded,

‖e(t)‖2 ≤ 2
λmax(P )

λmin(Q)
‖bw‖2wmax

∆
= e0, for all t ≥ T0,

where ATP + PA
∆
= −Q ≺ 0, the parameter error θ̃(t) need not be bounded. Even though

the system might be tracking the reference model, the parameter estimate θ̂(t) might tend

to infinity.

As a simple fix, one can modify (5.7) to ensure that (e, θ̃) ∈ D by freezing the evolution

of θ̂(t) when the tracking error is small. The deadzone modification does this by setting the
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parameter derivative to zero,

˙̂
θ =





−ΓxeTPbu if ‖e‖ > e0,

0 otherwise.

(5.8)

While the deadzone modification solves the problem of runaway parameters, the modifica-

tion still does not ensure parameter convergence, θ̃(t) → 0, by itself.

One courageous attempt to combat the problem of unbounded parameters due to nonzero

noise might be to bound ‖Hθ̃w(s)‖∞ ≤ √
γ by imposing the dissipation condition

V̇ (e, θ̃) + θ̃T θ̃ − γwTw ≤ 0, for all wTw ≤ w2
max,

which by the S-procedure leads to the following LMI in the variables P , τ , γ

P ≻ 0, τ, γ ≥ 0,




ATP + PA Pbw 0 0

bTwP −γI 0 0

0 0 (1− τ)I 0

0 0 0 τw2
max



� 0. (5.9)

However, it is clear that (5.9) is infeasible when wmax 6= 0, because the bottom-right block


(1− τ)I 0

0 τw2
max




cannot be made negative semidefinite for any τ ≥ 0. The presence of a nonzero disturbance

really does have a dangerous, unbounded effect on the parameter estimates.

Directly incorporating robustness. While failing to guarantee runaway parameters

due to bounded disturbances, the adaptation law (5.7) can still be designed to be robust

to bounded-energy w(t). For example, the w-to-e induced L2 gain is bounded by
√
γ,

provided we can ensure V̇ (e, θ̃) + eT e − γwTw ≤ 0 for all (e, w) satisfying (5.5) and (5.7),

or equivalently, the following LMI condition holds

P ≻ 0,


A

TP + PA+ I Pbw

bTwP −γI


 � 0.
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Thus, we can minimize ‖Hew(s)‖∞ of the adaptive laws (5.7) or (5.8) by solving the semidef-

inite program

minimize γ

subject to P ≻ 0
A

TP + PA+ I Pbw

bTwP −γI


 � 0

(5.10)

over the variables P and γ. By the bounded-real lemma, the optimum value of (5.10) is

given by γ⋆ = ‖(sI −A)−1bw‖22. Hence, with an appropriate choice of P , a bounded-energy

disturbance w(t) leads to a bounded-energy reference tracking error.

Passivation. We can try to passivate the w-to-θ̃ response by imposing the condition

V̇ (e, θ̃) + σθ̃T θ̃ − θ̃T bww ≤ 0,

which would in principle be accomplished by the adaptive law

˙̂
θ = −ΓxeTPbu − σθ̃ + bww. (5.11)

However, the adaptive law (5.11) can only be implemented under the conditions that θ̃ and

bww are available for measurement. While it may be possible to measure the model noise

bww when implementing (5.11) online, the parameter error θ̃ would only be known if the

true parameter θ were known. Thus the passivation idea is not implementable. Instead,

the law (5.11) is often rewritten as

˙̂
θ = −ΓxeTPbu − σθ̂,

which is implementable. While this σ-modification solves the problem of runaway parame-

ters, its main issue is the tendency of the parameter estimate θ̂(t) to tend to zero, meaning

the adaptive controller “unlearns” the parameters after a while.

General additive modifications. We can consider the effect of an entire suite of additive

modifications to the standard adaptive law (5.7) by examining the second term of the

Lyapunov derivative (5.6). Note that any additive modification must enter the Lyapunov
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derivative with the term θ̃T in tow, meaning that any feedback with the signals e, w, and

θ̃ would appear as θ̃T e, θ̃Tw, and θ̃T θ̃. Members of this suite include the σ-modification,

e-modification, and the projection operator, see [NA05, IF06, LW13].

Robust reference model. Suppose that A ∈ Co{A1, . . . , AL}, which corresponds to

a reference model that differs from the original dynamics. A polytopic model uncertainty

leads to the adaptive law (5.5), from which the parameter matrix P can be chosen by solving

minimize γ

subject to P ≻ 0
A

T
i P + PAi + I Pbw

bTwP −γI


 � 0, i = 1, . . . , L,

over the variables P and γ.

5.3 Dynamic estimation

5.3.1 Least squares estimator

Consider the following process 



yt = θTφ(xt)

ŷt = θ̂Tt φ(xt),

where et = ŷt − yt ∈ R is the estimation error, and θ̂t ∈ Rn is the estimate of an unknown

constant θ ∈ Rn at time t. The time index t can be discrete or continuous, but having a

continuous time index simplifies the treatment and is more in line with adaptive estimation

on a fast scale, cf. [IF06].

A typical estimation objective might be to minimize the running cost

J(θ̂t) =
1

2

∫ t

0

(
θ̂Tt φ(xτ )− yτ

)2
dτ, (5.12)

which is the cost of making a constant estimate θ̂t over the entire interval [0, t]. Thus at

each time t, we solve the (unconstrained) least-squares optimization problem

minimize J(θ̂t) (5.13)
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over the variable θ̂t ∈ Rn. It is important to note that even in the presence of the integral

in (5.12), the optimization problem (5.13) is convex and finite dimensional. Its solution in

closed form is found by setting the gradient of J(θ̂t) to zero,

∇θ̂t
J(θ̂t) =

∫ t

0
φ(xτ )

(
θ̂Tt φ(xτ )− yτ

)
dτ

set
= 0,

or equivalently the optimality condition is

(∫ t

0
φ(xτ )φ(xτ )

T dτ

)
θ̂t =

∫ t

0
φ(xτ )yτ dτ. (5.14)

Thus the optimal estimate at time t is

θ̂t =

(∫ t

0
φ(xτ )φ(xτ )

T dτ

)−1

︸ ︷︷ ︸
Γt

∫ t

0
φ(xτ )yτ dτ, (5.15)

provided the matrix Γt is invertible, Γt ≻ 0 (which is implied by persistence of excitation).

In order to compute θ̂t in (5.15), it appears that we need to calculate two integrals and to

invert a matrix. However, these computations can be significantly simplified by making two

observations.

First, we differentiate the identity ΓtΓ
−1
t = I to yield Γ̇tΓ

−1
t + Γt

˙(Γ−1
t ) = 0, giving

Γ̇t = −Γt
˙(Γ−1
t )Γt

= −Γtφ(xt)φ(xt)
TΓt,

and second we differentiate the optimality condition (5.14) to get

φ(xt)φ(xt)
T θ̂t + Γ−1

t
˙̂
θt = φ(xt)yt,

which results in

˙̂
θt = −Γt

(
φ(xt)φ(xt)

T θ̂t − φ(xt)yt

)

= −Γtφ(xt)(ŷt − yt)

= −Γtφ(xt)et,
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where we made use of the identity ŷt = φ(xt)
T θ̂t = θ̂Tt φ(xt). To summarize the construction,

the value θ̂t in (5.15) can equivalently be found by integrating the following set of differential

equations 



Γ̇t = −Γtφ(xt)φ(xt)
TΓt

˙̂
θt = −Γtφ(xt)et,

(5.16)

up to time t, with some initial conditions Γ0 ∈ Sn
++ and θ̂0 ∈ Rn.

The rule (5.16) is implementable, assuming state feedback: the model prediction error

et = ŷt − yt and the state regressor φ(xt) drive the parameter estimate dynamics, while

the learning rate Γt is also changed in accordance with the measurements. Note that the

differential equations (5.16) are nonlinear in (Γt, θ̂t), and correspond to classical “MIT-rule”

gradient estimation if the learning rate Γt is frozen in time.

5.3.2 Constrained estimator

If we know that the unknown parameter θ must be in a convex set Θ ⊆ Rn, we can solve

the constrained least-squares problem

minimize J(θ̂t)

subject to θ̂t ∈ Θ.

As long as the objective J is a convex function of θ̂t, and the constraint set Θ is a convex

set, the optimization problem can be efficiently solved. For example, in discrete time, a

simple projected gradient descent estimator would take the form

θ̂t+1 := ΠΘ

(
θ̂t − Γt∇θ̂t

J(θ̂t)
)
,

where ΠΘ(x) = argminz∈Θ ‖z − x‖2 is the Euclidean projection on the set Θ. In many

cases, both in discrete and continuous time, the estimation problem can be implemented

recursively, or as the result of a Newton-style interior point iteration. In the case of recursive

estimation, this technique is sometimes called recursive least squares, or constrained Kalman

filtering. In the case of interior point iteration, it is known as Model Predictive or Moving

Horizon Estimation. The next section describes a specific case where Θ is an affine set.



76

5.3.3 Equality constrained least squares estimator

If we know that the unknown parameter θ belongs to a subspace, say hT θ = c with a given

vector h ∈ Rn and real constant c, we can constrain the estimate θ̂t to also lie in that

subspace. Thus at each time t, we can solve the constrained optimization problem

minimize J(θ̂t)

subject to hT θ̂t = c
(5.17)

over the variable θ̂t. Despite the appearance of integrals, the optimization problem (5.17)

is finite dimensional and convex.

After introducing a Lagrange multiplier νt ∈ R, the KKT conditions read


Pt h

hT 0




θ̂t
νt


 =


gt
c


 , (5.18)

where

Pt =

∫ t

0
φ(xτ )φ(xτ )

T dτ, gt =

∫ t

0
φ(xτ )yτ dτ.

We arrive at the recursive version of this estimator by differentiating (5.18) with respect to

time, 
φ(xt)φ(xt)

T 0

0 0




θ̂t
νt


+


Pt h

hT 0





˙̂
θt

ν̇t


 =


φ(xt)yt

0


 ,

or equivalently 
Pt h

hT 0





˙̂
θt

ν̇t


 =


−φ(xt)(ŷt − yt)

0


 .

Note that a block LDU (Aitken) diagonalization of the KKT matrix is given by


Pt h

hT 0


 =


 I 0

hTP−1
t 1




Pt 0

0 −hTP−1
t h




I P−1

t h

0 1


 ,
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hence we can compute the KKT inverse as


Pt h

hT 0



−1

=


I P−1

t h

0 1



−1 
Pt 0

0 −hTP−1
t h



−1 
 I 0

hTP−1
t 1



−1

=


I −P−1

t h

0 1




P

−1
t 0

0 −1/hTP−1
t h




 I 0

−hTP−1
t 1




=


I −P−1

t h

0 1




 P−1

t 0

(hTP−1
t h)−1hTP−1

t −(hTP−1
t h)−1




=


P

−1
t − P−1

t h(hTP−1
t h)−1hTP−1

t P−1
t h(hTP−1

t h)−1

(hTP−1
t h)−1hTP−1

t −(hTP−1
t h)−1




= Γ̄t,

meaning that

˙̄Γt = −Γ̄t
˙

(Γ
−1
t )Γ̄t

= −Γ̄t


Ṗt 0

0 0


 Γ̄t.

Equivalently, we may write






 Γ̇t γ̇t

γ̇Tt ξ̇t


 := −


Γt

γTt


φ(xt)φ(xt)

T
[
Γt γt

]



˙̂
θt

ν̇t


 := −


Γt

γt


φ(xt)(ŷt − yt).

5.3.4 Learning example: Finite measure estimation

Suppose θ denotes a finite probability measure, with the constraints 1T θ = 1 and θi ≥ 0.

The constrained least squares algorithm is then driven by the estimation difference

et = ŷt − yt

= θ̂Tt φ(xt)− θTφ(xt)

= Eθ̂t
[φ(xt)]−Eθ[φ(xt)],
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i.e., the statistical regret, or dispersion.

A simple example concerns the following autonomous (discrete-time) system,

xt+1 = Atxt, t = 0, 1, 2, . . . , (5.19)

where x0 ∈ Rn is given, and At is a matrix randomly chosen at each time t from the finite

set {A(1), . . . , A(L)}. The choice probabilities

θj = P(At = A(j)), j = 1, . . . , L,

are unknown. The goal of the problem is to determine the distribution θ online.

Instances of adaptive algorithms for determining θ take an interesting form. For sim-

plicity, we discuss the gradient estimator. Suppose with the specific regressors

Φ(x)ij = (A(j)x)i, i = 1, . . . , n, j = 1, . . . , L,

we can measure the expected next-step location

(yt)i =
L∑

j=1

θjΦ(xt)ij =
L∑

j=1

θj(A
(j)xt)i

= (Eθ[Atxt])i, i = 1, . . . , n.

This can be accomplished, for example, by sampling N points x
(1)
t+1, . . . , x

(N)
t+1 from a simu-

lation oracle and forming the empirical average

Eθ[Atxt] ≈
1

N

N∑

k=1

x
(k)
t+1.

The normalized gradient descent algorithm takes the following instantiation,





et := Eθ̂t
[Atxt]−Eθ[Atxt]

θ̂t+1 :=
1

1− 1TΓΦ(xt)et
(θ̂t − ΓΦ(xt)et),

(5.20)

provided it is initialized with a valid distribution θ̂0 (e.g., the unform distribution θ̂0 =

(1/L)1) and the learning rate is small enough that each iterate θ̂t is also a distribution.
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At each time step t, the first expectation Eθ̂t
[Atxt] is a function of the current parameter

estimate θ̂t and state measurement xt, while Eθ[Atxt] is the answer to N queries of a

simulation oracle. In the extreme case of N = 1, the algorithm (5.20) is a version of

stochastic gradient descent.

It can be shown using a Chernoff bound that if the process (5.19) is almost surely

persistently exciting (PE),

∃T, α > 0,
1

T

t+T∑

τ=t

φ(xτ )φ(xτ )
T � αI, for all t, (a.s.), (5.21)

then θ is Probably Approximately Correct (PAC) learnable, meaning that

P(‖θ̂t − θ‖2 > ǫ) ≤ δ, if t >
C(α)

2Nǫ2
log

2

δ
.

In other words, the distribution θ can be learned within an arbitrarily small tail probability

δ to any accuracy ǫ, provided the algorithm has been running long enough. For a review of

concepts in learnability, see, e.g., [Val84, Kak03].

It is interesting to examine the PE condition (5.21). The process (5.19) might fail to

satisfy (5.21) by not exciting all the relevant “statistical” or “measurement” modes. For

example, if all A(i) have a common unobservable subspace with respect to the measurement

yt = φ(xt), then the measurement modes are not excited, and we cannot expect to determine

the distribution θ. While every classically PE measurement process is also almost surely

PE, an interesting topic of future research is to determine if there exist useful almost

surely PE processes that are not classically PE. If they did, then some level of robustness

and ergodicity could be exploited in e.g., network applications. Further implications of

weakened PE conditions are discussed in Chapter 6. Still, even if the process is not almost

surely PE, the estimation error et tends to zero (a.s.) by the same Lyapunov arguments.

5.4 Case study: Controlling wing rock

In this section we design a controller to robustly stabilize the “wing rock phenomenon” in

a delta-wing aircraft at a high angle of attack. Such aircraft are known to be unstable in

the roll direction at high angle of attack, therefore active control must be used to avoid the
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instability. At a given trim condition, the wing roll model is nonlinear,

ϕ̇ = p

ṗ = θ1ϕ+ θ2p+ (θ3|ϕ|+ θ4|p|)p+ θ5ϕ
3 + θ6δa,

where ϕ is the roll angle (rad), p is the roll rate (rad/s), and δa is the differential aileron

control (rad). The state is (ϕ, p) and the input is δa. We use the same parameters as

in [LW13, ex. 9.3],

θ1 = −0.018, θ2 = 0.015, θ3 = −0.062, θ4 = 0.009, θ5 = 0.021, θ6 = 0.75.

We can rewrite the dynamics in parameter-affine form


ϕ̇

ṗ




︸︷︷︸
ẋ

=


 0 1

θ1 θ2




︸ ︷︷ ︸
A


ϕ

p




︸︷︷︸
x

+


 0

θ6




︸ ︷︷ ︸
B

(
δa︸︷︷︸
u

+
1

θ6

[
θ3 θ4 θ5

]

︸ ︷︷ ︸
θT




|ϕ|p
|p|p
ϕ3




︸ ︷︷ ︸
φ(x)

)
. (5.22)

The reference roll dynamics are given by a second order system


ϕ̇

ref

ṗref




︸ ︷︷ ︸
ẋref

=


 0 1

−ω2
n −2ξωn




︸ ︷︷ ︸
Aref


ϕ

ref

pref




︸ ︷︷ ︸
xref

+


 0

ω2
n




︸ ︷︷ ︸
Bref

ϕcmd

︸ ︷︷ ︸
r

, (5.23)

where ϕcmd(t) is the reference roll angle, ωn = 1 (rad/s) is the natural frequency, and

ξ = 0.7 is the damping ratio. The goal is to design a control input u = δa that makes the

roll dynamics (5.22) approach the reference dynamics (5.23).

5.4.1 Open loop limit cycle

With δa = 0, the roll dynamics (5.22) are unstable. Specifically, trajectories starting near

the origin reach a limit cycle in (ϕ, p) space, as seen in Figure 5.1. The cross-coupling leads

to bank angle magnitudes in excess of 30◦.
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Figure 5.1: The open-loop delta wing dynamics exhibit a wing rock instability.

5.4.2 Robust design

For simplicity, we assume that θ1, θ2, and θ6 are known. However, θ3, θ4, and θ5 are only

known within ±20%. Thus we have

θ ∈ Co {(−0.062/0.75 · (1± 0.2), 0.009/0.75 · (1± 0.2), 0.021/0.75 · (1± 0.2))} .

See Figures 5.2–5.4.

5.5 References

Adaptive control dates back to the 1960s MIT rule, and has a storied past, with a great

historical overview given by Anderson [And05] and Stein [Ste03]. As detailed in these

historical accounts, the “robust” modifications like the deadzone [PN82], σ-mod [IK83], e-

mod [NA87], and projection operator [KN82, PP92] are critical for safe adaptive methods,

because unmodeled or unmatched noise can often be detrimental to closed loop stability.

General references are [NA05, IF06, LW13]. Constraints on input in adaptive methods

were studied by [LH07]. LMI based approaches also appear in [PKP09, YYCS09]. Fur-

thermore, nonquadratic Lyapunov functions were studied in [ERA05]. Early attempts at



82

0 20 40 60 80 100 120 140
−15

−10

−5

0

5

10

15

 

 

0 20 40 60 80 100 120 140
−6

−4

−2

0

2

4

6

command
reference
actual

t (sec)

t (sec)

b
an

k
an

gl
e
ϕ
(d
eg
)

ro
ll
ra
te

p
(d
eg
/s
)

Figure 5.2: Adaptive controller on delta-wing dynamics
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Figure 5.3: Error components e = x− xref
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Figure 5.4: Parameter estimates

HJB inequalities for adaptive control, which parallel the lower bounds methods of previ-

ous chapters, appear in [WZL03], with applications to UAVs [Dyd10]. This chapter dealt

primarily with SISO systems, however a great review of MRAC for MIMO systems is the

paper [CHIK03]. In the machine learning literature, the algorithms in Section 5.3 are often

called recursive least squares, stochastic gradient descent, and Kalman temporal difference

learning.
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Chapter 6

Networked Adaptive Systems

6.1 Introduction

We envision collaborative system identification applications where identical intelligent agents

can communicate with each other, and are tasked with reaching consensus on some set of

common parameters. While we are motivated by the case where these parameters specify

the continuous dynamics for a nominal model class, of which every agent in the system is an

instance, our information sharing framework readily applies to more general collaborative

filtering and estimation schemes. For example, the parameters can refer to a static (or

slowly changing) global state that each agent in the network can only partially observe.

Either way, the parameters are determined in a decentralized, adaptive way through an

online scheme that integrates local measurements with communicated information.

Classical (single agent) system identification algorithms determine model parameters by

probing the system with an a priori selected input and observing the output. If the input

is “exciting” enough to stimulate all the relevant internal dynamical modes, the model pa-

rameters can be backed out by adaptation. Otherwise, most algorithms can only ascertain

the parameters to the extent that they replicate the observed input-output relationship.

Designing an input that guarantees parameter convergence is difficult, because the persis-

tence of excitation (PE) conditions that must be checked often require solving for the full

system trajectory.

If we can replicate the system into an ensemble of identical systems and probe each one

with a different input, can the parameter estimates converge to their true values under more

relaxed conditions than with just one test system? In this chapter, we answer this question

in the affirmative, provided that a collective persistence of excitation condition holds. The
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condition ensures that a minimal “overall” level of input excitation is present within the

communication network.

As a main ingredient of our collaborative identification scheme, we develop a parameter

estimator based on a combination of linear consensus and local system identification. Con-

sensus and flocking have been widely studied in computer science and dynamical systems,

see [OSM04, OSFM07] and references therein for a good introduction. The closest works

to ours, [SRS09, WS06], solve a sensor fusion problem in robotic coverage applications

and characterize the role of persistently excited agents as knowledge leaders in the network.

More recently, similar gradient-based schemes have been analyzed with noise in [SSS11]

and sampled data in [GD13].

We expand upon classical parameter convergence results (e.g., [MN77, And77, BS83,

NA86, NA87]) by generalizing to the networked communication case. Our main contribu-

tion is a notion of collective persistence of excitation that takes advantage of the information

shared between agents. As a special example of the condition, we show that parameter esti-

mates can be made to converge to their true values even if no single agent uses a persistently

exciting input.

6.1.1 Preliminaries

An undirected graph G = (V , E) is a finite set of n vertices V = {v1, . . . , vn} together with a

set of m edges E = {e1, . . . , em}. We sometimes write i for vi. An edge ek is an unordered

pair of vertices {vi, vj} ⊆ V . The adjacency matrix of G is a matrix A = [aij ] ∈ Rn×n with

entries

aij =





+1, if {vi, vj} ∈ E ,
0, otherwise.

The adjacency matrix is symmetric (A = AT ) for undirected graphs. The neighborhood of

a vertex vi consists of the set of adjacent vertex indices Ni = {j | {vi, vj} ∈ E}. The degree

of vi, written deg(vi), is the number of neighbors |Ni| of that vertex, and the degree matrix

is the diagonal matrix D = diag(deg(v1), . . . , deg(vn)) ∈ Rn×n.

The graph Laplacian L = LT ∈ Rn×n is defined as

L = D −A.
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The Laplacian matrix is positive semidefinite, which we write as L � 0, whenever G is

connected. This follows from, e.g., the fact that L is (weakly) diagonally dominant with

strictly positive entries on the diagonal. In general, we write A � B to mean A−B � 0 in

the matrix sense.

A key property of connected graphs is that all eigenvalues λ1, . . . , λn of L are strictly

positive except for the smallest, which is zero. We order the eigenvalues of L as

0 = λ1 < λ2 ≤ · · · ≤ λn.

The second smallest eigenvalue λ2 is the known as the algebraic connectivity of G. The

(column) eigenvector 1 = (1, . . . , 1) ∈ Rn corresponds to the zero eigenvalue subspace. In

particular,

L1 = 0, 1TL = 0.

6.2 Problem setting

6.2.1 Parameter estimator dynamics

An ensemble of n agents has communication topology G: each vertex vi is an agent and each

edge ek = {vi, vj} is an allowed (bidirectional) communication link between agents i and j.

At any time t ≥ 0, agent i can measure a surrogate state time series xi(t) ∈ Rq and a real-

valued output yi(t) ∈ R. The surrogate state xi(t) can be, for example, a filtered version

of the agent’s true dynamical state. We model the output yi(t) as a linear combination of

parameters,

yi(t) = θTφ(xi(t)), (6.1)

where φ : Rq → Rp is a known regressor and θ ∈ Rp is a vector of fixed but unknown

coefficients.

In order to determine the parameter vector θ, each agent i has an estimate θ̂i(t) of θ

made from local measurements and any information communicated by the agent’s neighbors.

The agent generates a local prediction of the output,

ŷi(t) = θ̂i(t)
Tφ(xi(t)), (6.2)
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and attempts to decrease its output prediction error ỹi = ŷi− yi by modifying θ̂i with time.

For brevity, define φi(t) = φ(xi(t)). We consider the combined estimator dynamics

d

dt
θ̂i = −γφi(t)(ŷi − yi)

+
∑

j∈Ni

aij(θ̂j − θ̂i), i = 1, . . . , n.
(6.3)

With the first term of (6.3) we seek to reduce the local output prediction error. The

constant estimation gain γ > 0 controls the local information fusion rate. Notice that

this term is linear time-varying with the parameter estimates θ̂i, which can be seen by

substituting (6.2) into (6.3). The second term, a sum over the neighbors Ni, presents a

mechanism for global parameter consensus by ensuring that θ̂i does not stray too far from

any neighboring θ̂j , where j ∈ Ni. In control theory terms, these dynamics describe a linear

consensus controller driven by the learning signals −γφi(t)(ŷi − y).

xi(t)

{
θ̂j(t) : j ∈ Ni

}

θTφ(xi(t))

θ̂(t)Tφ(xi(t))

+
consensus
eq. (6.3)

1

s

−

ỹi

yi(t)

ŷi(t) ˙̂
θi(t)

θ̂i(t)

Figure 6.1: Each agent i in the network implements the estimator dynamics from eq. (6.3) and
communicates only with its neighbors Ni.

6.2.2 Persistence of excitation

The identified parameters governed by dynamics (6.3) asymptotically achieve consensus

θ̂1 = · · · = θ̂n with all signals remaining bounded. In addition, if a collective persistence

of excitation condition is met, the parameter errors θ̃i = θ̂i − θ converge to zero. The

convergence result is summarized in the following theorem.

Theorem 4. Suppose that G is connected and each regressor φi(t) = φ(xi(t)) remains

bounded with bounded first derivative for all i = 1, . . . , n. Then the dynamics (6.3) exhibit
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1. bounded internal signals: θ̂i(t) and ŷi(t) are bounded for all i = 1, . . . , n and for all

t ≥ 0,

2. asymptotic zero prediction error: ỹi(t) = ŷi(t) − yi(t) → 0 as t → ∞ for all i =

1, . . . , n,

3. asymptotic parameter consensus: θ̂j(t)− θ̂i(t) → 0 as t → ∞ for all i, j = 1, . . . , n.

If in addition there exist positive real numbers m1,m2 > 0 such that for all t0 ≥ 0 and t > t0

the matrix inequality

m2I � 1

t− t0

∫ t

t0

n∑

i=1

φi(τ)φi(τ)
T dτ � m1I (6.4)

holds, then we also have

4. asymptotic parameter convergence: the parameter errors θ̃i(t) = θ̂i(t) − θ → 0 as

t → ∞ for all i = 1, . . . , n.

The hypothesis of Theorem 4 can also be rephrased with conditions on the regressor

function itself, e.g., φ : Rq → Rp uniformly continuous in x.

Collective PE. The condition (6.4) encodes a notion of collective persistence of excitation

(PE). For the trivial network with a single agent (n = 1), collective PE reduces to PE of a

single regressor

m2I � 1

t− t0

∫ t

t0

φ1(τ)φ1(τ)
T dτ � m1I, (6.5)

which is sufficient to obtain parameter convergence in traditional system identification where

parameter consensus plays no explicit role [MN77, And77, BS83]. From linearity of the

integral in condition (6.4), collective PE occurs in an ensemble {φ1, . . . , φn} of regressors if,

for example, any of the following types of excitation take place:

• Enlightened : a few φi are persistently exciting,

• Total : every φi is persistently exciting,

• Intermittent : there exists an unbounded sequence of times t1, t2, . . . such that some

φi obeys (6.5) in each interval [tk, tk+1],
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• Collaborative: none of the φi is persistently exciting, but condition (6.4) still holds.

In the first two cases, distinguished agents have the role of a knowledge leader in the

network (cf. [WS06]). The last two reveal that parameter convergence can still occur even

if no single agent can claim leadership over all parameters, because the information shared

through consensus reconciles any PE deficiency with other agents.

Example. Consider the sample communication network in Figure 6.2. Three agents are

tasked with identifying a true parameter vector θ = (θ1, θ2) = (1,−1) ∈ R2 using constant

regressors. The system to be identified is yi(t) = θTφi(t). We let φi : [0,∞) → R2 be given

by φi(t) = (ci, di), where ci and di are fixed real constants for all i = 1, 2, 3.

v1

v2v3

e1

e2

e3

Figure 6.2: Communication graph with n = 3 agents and m = 3 links.

Each φi is not by itself persistently exciting, as the time average of a constant regressor

outer product has rank one:

1

t− t0

∫ t

t0


ci
di



[
ci di

]
dτ =


ci
di



[
ci di

]
� m1I

for any m1 > 0; however, the collective PE condition (6.4) is still satisfied if the φi are not

scalar multiples of the same vector,

m2I � 1

t− t0

∫ t

t0

3∑

i=1


ci
di



[
ci di

]
dτ � m1I

for some m1,m2 > 0. In other words, collective PE holds for constant regressors provided

they span the parameter space R2. With rate γ = 1, the parameter estimates θ̂i ∈ R2
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evolve according to





˙̂
θ1 = −φ1(t)(ŷ1 − y1) + k(θ̂2 − θ̂1) + k(θ̂3 − θ̂1)

˙̂
θ2 = −φ2(t)(ŷ2 − y2) + k(θ̂3 − θ̂2) + k(θ̂1 − θ̂2)

˙̂
θ3 = −φ3(t)(ŷ3 − y3) + k(θ̂1 − θ̂3) + k(θ̂2 − θ̂3).

In the estimator dynamics above, consensus terms link the evolution of θ̂i to its neigh-

boring θ̂j for j ∈ Ni. Figure 6.3 illustrates the parameter estimates as a function of time for

each of the three agents with (k = 1) and without (k = 0) consensus. We used the constant

regressors

φ1(t) =


1

2


 , φ2(t) =


 1

−2


 , φ3(t) =


1

0


 .

Without consensus (k = 0, Figure 6.3(a)), individual parameter estimates depend solely

on underdetermined measurements made at that node, so we have no reason to expect any

θ̂i to converge to θ. With consensus (k = 1, Figure 6.3(b)), the agents collaboratively

identify the true parameter.

Isolated agents develop their own (possibly inconsistent) parameter estimates, which

replicate their observed input-output relationship. This is indicated in Figure 6.4 as a

propensity toward the vertical axis. Parameter evolution is frozen once the output prediction

error becomes zero, because the local prediction objectives Ji cannot be made any smaller.

Collective PE and consensus allow both prediction error and parameter error to approach

the origin by adding an extra regularization (disagreement) term to the objective.

Informal derivation. To see where the collective PE condition (6.4) originates, we sam-

ple the nominal system (6.1). Split the time interval [t0, t] into N equal intervals of length

δ. For each agent i = 1, . . . , n, we have the collection of N linear equations,




yi(t0)

yi(t0 + δ)

yi(t0 + 2δ)
...

yi(t)




=




φ(xi(t0))
T

φ(xi(t0 + δ))T

φ(xi(t0 + 2δ))T

...

φ(xi(t))
T




︸ ︷︷ ︸
Ψi


θ


 , i = 1, . . . , n. (6.6)
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Figure 6.3: (a) Individual parameter estimates θ̂i fail to converge to θ in a network of three agents
without a consensus mechanism in place, because each agent’s input is not by itself persistently
exciting. (b) With the same inputs and consensus, all parameter estimates to converge to the true
value.
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2

Parameter error vs. prediction error

Figure 6.4: Prediction error (horizontal axis) tends to zero for all three agents with (solid) and
without (dashed) consensus. Parameter error (vertical axis) also tends to zero with consensus due
to collective PE.
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The matrices Ψi ∈ RN×p in the linear system of equations (6.6) are skinny (N ≫ p), so a

unique least squares solution to (6.6) exists, provided the matrix

Ψ =




Ψ1

Ψ2

...

Ψn




is full rank. Equivalently, the symmetric matrix ΨTΨ should be positive definite. In terms

of the sampled regressors, we require

N−1∑

k=0

n∑

i=1

φ(xi(t+ kδ))φ(xi(t+ kδ))T � NαI

for some real constant α > 0. Multiplying both sides by δ and taking N → ∞, δ → 0 gives

the integral condition (6.4), as required.

Instantaneous objective minimization. We reinterpret the dynamics (6.3) as instan-

taneous minimization of a particular cost function. The dynamics arise from two main

desires for the network as a whole. First, all local estimates θ̂i should converge to the same

value as t → ∞, and second, the value to which the local estimates converge should be the

true θ. Define at each time t ≥ 0 an instantaneous quadratic cost J : Rp × · · · ×Rp → R,

J(θ̂1(t), . . . , θ̂n(t)) =

n∑

i=1

γJi(θ̂i(t)) +
∑

{vi,vj}∈E

aij
2

∥∥θ̂j(t)− θ̂i(t)
∥∥2
2
, (6.7)

with variables θ̂i(t) ∈ Rp and local prediction costs Ji : R
p → R for all i = 1, . . . , n. The

dynamics (6.3) can be recovered from the gradient flow

d

dt
θ̂i = − ∂J

∂θ̂i
, i = 1, . . . , n, (6.8)

with quadratic local prediction costs

Ji(θ̂i(t))
∆
=

1

2

(
ŷi(t)− yi(t)

)2
, i = 1, . . . , n,
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where ŷi(t) is given in terms of θ̂i(t) by the local prediction equation (6.2), and yi(t) comes

from an online measurement. The learning rate γ > 0 trades off instantaneous prediction

error with total parameter disagreement.

6.2.3 Proof of Theorem 4 for p = 1

To show the main ideas, and following [PLM14], we will prove Theorem 4 for the case θ

is a scalar (p = 1). The vector case (p > 1) is not substantially different, and is included

in Appendix A for completeness. The proof relies on a standard result of analysis that the

derivative of a function that has a finite limit converges to zero, if that derivative is also

uniformly continuous, e.g., [Kha02]. Known as Barbalat’s lemma, restated below in its

integral form, it is central to proving Theorem 4, parts 1–3.

Lemma (Barbalat). Let f : [0,∞) → R be a uniformly continuous function and suppose

that limt→∞
∫ t
0 f(τ) dτ exists and is finite. Then f(t) → 0 as t → ∞.

To obtain parameter convergence in Theorem 4, part 4, we will use the persistence of

excitation condition from [MN77], which gives necessary and sufficient conditions for the

uniform asymptotic stability of a time-varying autonomous system. It says that the origin

is the unique stable equilibrium of ẋ = −P (t)x, if the matrix −P (t) ∈ Rn×n is stable, on

average, in any direction in Rn. The condition below can be expressed in many ways, and

we direct the reader to the classical references [MN77, And77, BS83, SB89] for additional

insight.

Theorem 5 (Morgan and Narendra 1977). Suppose P (t) is a symmetric positive semidef-

inite matrix of bounded piecewise continuous functions. Then the equation ẋ = −P (t)x is

uniformly asymptotically stable if and only if there are real numbers a > 0 and b such that

for all t0 ≥ 0 and t ≥ t0, ∫ t

t0

wTP (τ)w dτ ≥ a(t− t0) + b

for all fixed unit vectors w.

Proof of Theorem 4 for p = 1. Stack the real components θ̂i into a column vector θ̂ =

(θ̂1, . . . , θ̂n) ∈ Rn and let the parameter error be θ̃ = θ̂ − θ1 ∈ Rn. In view of the es-

timator definitions in (6.2), each agent’s individual learning signal depends on θ̃ via

−γφ(xi)(ŷi − yi) = −γφ(xi)
2θ̃i.
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Putting these together, the individual dynamics (6.3) can be aggregated in matrix form as

d

dt
θ̃ = −Lθ̃ − γΦθ̃, (6.9)

where Φ(t) = diag(φ2
1(t), . . . , φ

2
n(t)) ∈ Rn×n, and we used the identity Lθ̃ = L(θ̂−θ1) = Lθ̂.

Consider the candidate Lyapunov function

V (θ̃) =
1

2
θ̃T θ̃.

The time derivative of V along solution trajectories of (6.9) is

V̇ (θ̃) =
1

2

(( d

dt
θ̃
)T

θ̃ + θ̃T
( d

dt
θ̃
))

=
1

2

((
− Lθ̃ − γΦθ̃

)T
θ̃

+ θ̃T
(
− Lθ̃ − γΦθ̃

))

= −θ̃TLθ̃ − γθ̃TΦθ̃ (6.10)

≤ 0,

where the inequality follows from the positive semidefiniteness of L and Φ(t) and from the

learning rate assumption γ > 0.

Since V is bounded below (V ≥ 0) and nonincreasing (V̇ ≤ 0), it converges to a limit

as t → ∞. Furthermore, V is uniformly bounded above by its initial value, because

V
(
θ̃(t)

)
= V

(
θ̃(0)

)
+

∫ t

0
V̇
(
θ̃(τ)

)
︸ ︷︷ ︸

≤0

dτ

≤ V
(
θ̃(0)

)
,

hence θ̃ is bounded, from which we conclude that the local estimates θ̂i = θ̃i + θ and

predictions ŷi = θ̂iφ(xi) are bounded. This finishes the proof of part 1. Next, we integrate

both sides of (6.10),

V (t)− V (0) = −
∫ t

0
θ̃(τ)TLθ̃(τ) + γ

n∑

i=1

|ỹi(τ)|2 dτ,
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and let t → ∞. Note that the prediction errors ỹi(t) are square integrable for all i = 1, . . . , n.

Moreover, the quadratic disagreement θ̃TLθ̃ has a finite integral. If we can prove uniform

continuity of ỹi and θ̃TLθ̃, then Barbalat’s lemma would imply parts 2 and 3.

The derivative of ỹi is

d

dt
ỹi =

( d

dt
θ̃i

)T
φ(xi(t)) + θ̃Ti Dφ(xi(t))ẋi(t), (6.11)

where Dφ(xi(t)) ∈ Rp×q is the Jacobian matrix of φ with respect to x evaluated at xi(t).

Since dθ̃/dt is bounded as a result of (6.9), and xi(t), ẋi(t) are bounded by assumption

with φ continuously differentiable with respect to x, the derivative (6.11) is bounded. Thus

ỹi → 0 as t → ∞, proving part 2. Next,

d

dt
θ̃TLθ̃ = −θ̃T (2LTL+ γ(ΦL+ LΦ))θ̃ (6.12)

is bounded because it is a sum of bounded terms, thus θ̃TLθ̃ → 0 as t → ∞. In particular,

this means Lθ̃ = Lθ̂ → 0, where again we used L1 = 0. For a connected graph, the null

space of the Laplacian is null(L) = span{1}, hence θ̂j − θ̂i → 0 for all i, j = 1, . . . , n. In

other words, the parameter estimates asymptotically reach consensus. This completes the

proof of part 3.

For part 4, note that the dynamics of θ̃ in (6.9) are linear time-varying, so it suffices to

show that the condition in Theorem 5 is met for P (t) = L+ γΦ(t) and b = 0.

Let the Laplacian have eigendecomposition Lvi = λivi with λi > 0 for i = 2, . . . , n.

Complete the basis of Rn so { 1√
n
1, v2, . . . , vn} is an orthonormal set. Write a unit vector

w in this basis as

w =
α√
n
1+

n∑

j=2

βjvj , (6.13)

so that (α, β2, . . . , βn) ∈ Rn has unit norm. Pick t0 ≥ 0 and t > t0, and denote the time

average of a quantity over the interval [t0, t] by a bar over the quantity, as in

Φ̄
∆
=

1

t− t0

∫ t

t0

Φ(τ) dτ,
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so that collective PE (6.4) implies m2 ≥ 1T Φ̄1 ≥ m1. Then,

1

t− t0

∫ t

t0

wT (L+ γΦ(τ))w dτ

= wTLw + wT Φ̄w ≥ max{wTLw, γwT Φ̄w}, (6.14)

because L and Φ̄ are positive semidefinite. Our goal is to bound the maximum (6.14) away

from zero for all time. By substituting (6.13) into (6.14) and using L1 = 0 and 1TL = 0,

we bound the first term in the maximum below by

wTLw =
n∑

i=2

βiv
T
i L

n∑

j=2

βjvj

=
n∑

i=2

n∑

j=2

βiβjλjv
T
i vj =

n∑

i=2

λiβ
2
i

≥ λ2‖β‖22
= λ2(1− α2),

where β = (β2, . . . , βn) ∈ Rn−1, and in the last line we used ‖β‖22 = 1 − α2. Next, for

V
∆
= [v2, . . . , vn] ∈ Rn×n−1, the second term has a lower bound

wT Φ̄w =
α2

n
1T Φ̄1+ βTV T Φ̄V β︸ ︷︷ ︸

≥0

+
2α√
n
1T Φ̄V β

≥ α2

n
1T Φ̄1︸ ︷︷ ︸
≥m1

−2|α|√
n
|1T Φ̄V β|

≥ α2

n
m1 −

2|α|√
n

‖Φ̄1‖1︸ ︷︷ ︸
≤m2

‖V β‖∞︸ ︷︷ ︸
≤‖β‖2

≥ α2

n
m1 − 2m2

√
α2

n
(1− α2).

The second line follows form Cauchy-Schwarz and the third from Hölder’s inequality. Putting

these together gives the required lower bound

max{wTLw, γwT Φ̄w} ≥ a > 0,
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where the worst case rate constant a is

a = inf
|α|≤1

max
{
λ2(1− α2),

γ
α2

n
m1 − 2γm2

√
α2

n
(1− α2)

}
. (6.15)

Note that the infimum in (6.15) is attained by continuity, and is strictly positive (if a and

the first term is zero, then so is the second, γm1/n = 0, a contradiction).

6.3 Interpretations and related problems

We present quadratic Ji for simplicity, though it is straightforward to devise schemes robust

to process noise, communication noise, unmodeled dynamics, and parameter drift, see [IF06,

SB89, LW13]. For example, if instead we use

Ji(θ̂i(t))
∆
=

∫ t

0

(
θ̂i(t)

Tφ(xi(τ))− yi(τ)
)2

dτ

in the cost (6.7), our collaborative identification scheme becomes more robust to measure-

ment noise. If the prediction costs are zero (Ji = 0) and p = 1, the flow (6.8) reduces to

gradient flow on the quadratic disagreement function

J(θ̂1, . . . , θ̂n) =
∑

{vi,vj}∈E

aij
2

(
θ̂j − θ̂i

)2
,

which is the classical linear consensus flow
˙̂
θ = −Lθ̂, see [OSM03, OSM04, OSFM07].

We can also reformulate the cost (6.7) as a constrained objective, rather than a quadrat-

ically penalized objective, to obtain second order dynamics (PI control) with parameter

consensus [YCCK10, Ren08].

Augmented Lagrangian flow. Consider at each each time t the optimization problem

minimize

n∑

i=1

Ji(θ̂i(t))

subject to θ̂j(t)− θ̂i(t) = 0, {vi, vj} ∈ E
(6.16)
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with variables θ̂i(t) ∈ Rp and local identification objectives Ji : R
p → R for all i = 1, . . . , n.

The quadratic cost (6.7) can be recast as an augmented Lagrangian of the optimiza-

tion (6.16),

L(θ̂, ν) =
n∑

i=1

Ji(θ̂i)

+
∑

{vi,vj}∈E

(
νTk (θ̂j − θ̂i) +

aij
2
‖θ̂j − θ̂i‖22

)
,

(6.17)

where the index k corresponds uniquely to edge ek = {vi, vj} and the multiplier νk.

Solving (6.16) amounts to finding a saddle point of the augmented Lagrangian (6.17),

which can be attained via the min-max flow





˙̂
θi = −∂L

∂θ̂i
, i = 1, . . . , n

ν̇k = +
∂L
∂νk

, k = 1, . . . ,m.

(6.18)

We see immediately the utility of the quadratic augmentation term: it gives rise to the

proportional neighbor terms in the individual dynamics (6.3). Each dual variable gives rise

to one of m edge constraints, one for communication link. This can be interpreted as PI

parameter control scheme [Cor08].

Extension to dynamical systems. The persistence of excitation condition (6.4) is awk-

ward to verify for generic dynamical systems even in the classical single agent setting

(n = 1). For linear dynamical systems, it can be shown that a sinusoidal input with enough

independent frequency components, i.e., an input that is sufficiently rich, will generate the

persistence of excitation necessary for parameter convergence [SB89, YW77].

We now demonstrate how sufficient richness translates to the collaborative multi agent

setting by example. Suppose the nominal system to be identified is the (stable) single input

linear system

ẋ(t) = ax(t) + bu(t),

where a < 0 and b are constant (unknown) parameters. With our goal to determine a

and b, we instantiate an ensemble of identical systems whose communication structure is

organized by the graph G. Each agent chooses their own input ui(t) ∈ R and observes the
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resulting state xi(t) ∈ R for all i = 1, . . . , n. The dynamics are

ẋi(t) = axi(t) + bui(t), i = 1, . . . , n. (6.19)

Note that the dynamics (6.19) are of the nominal form (6.1), where yi(t) ∈ R is the state

derivative ẋi(t), the regressor is φi(t) = (xi(t), ui(t)) ∈ R2, and the unknown parameter

vector is θ = (a, b) ∈ R2. In practice, the time derivative ẋi(t) is not a signal available

for measurement, so we often (linearly) filter both sides of (6.19) and redefine surrogate

outputs and regressors by their filtered versions.

In the classical setting (n = 1), condition (6.4) is satisfied if we choose u(t) = sin(ωt)

with ω 6= 0, because

1

t− t0

∫ t

t0


x(τ)

u(τ)



[
x(τ) u(τ)

]
dτ

eventually has bounded positive eigenvalues. Note that the choice of u(t) determines x(t),

and hence the value of the integral above. In the multi agent setting (n > 1), there is

considerably more design freedom in choosing the inputs ui(t) to obtain desired parameter

convergence dynamics while maintaining collective PE, and hence a guarantee of parameter

convergence.

For example, it suffices that ui(t) = sin(ωt) for some i ∈ {1, . . . , n}, while the rest of the
uj(t), for j 6= i, are arbitrary. The distinguished agent i can be thought of as enlightened to

the true dynamics of the system because that agent is probed with a known sufficiently rich

input. Parameter consensus then ensures that all other agents reach the same conclusion

about the values of a and b as the enlightened agent i. Moreover, if all agents are enlightened,

as is the case in total excitation, the designer of the collaborative identification system can

trade off parameter dynamics (time) against the number of agents (space).

Deadzone. Proposed in [PN82] and commonly used in practical adaptive systems, a

deadzone modification is readily incorporated into the dynamics (6.3),

d

dt
θ̂i =





− γφi(t)(ŷi − yi) +
∑

j∈Ni

aij(θ̂j − θ̂i), |ŷi − yi| ≥ emin

0 |ŷi − yi| < emin,
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where emin is some minimum level of output tracking error. This simple, but important

modification ensures that θ̃i does not run away in magnitude when the tracking error is

small.

Different robustness properties are emphasized if a deadzone is placed on the learning

or network term, individually. For example, if a deadzone is placed on the network term,

this allows for θ to be slightly different agent to agent.

σ-mod. The network consensus terms provide a level of damping and robustness against

noise. Extra damping, however, can sometimes be beneficial [IK83],

d

dt
θ̂i = −γφi(t)(ŷi − yi) +

∑

j∈Ni

aij(θ̂j − θ̂i)− σθ̂i,

where σ > 0 is a constant damping parameter.

e-mod. A nonlinear damping scaled by the output reconstruction error prevents the ten-

dency for θ̂i to go to zero when the reconstruction error is small [NA87],

d

dt
θ̂i = −γφi(t)(ŷi − yi) +

∑

j∈Ni

aij(θ̂j − θ̂i)− σ|ŷi − y|θ̂i,

where σ > 0 is a constant damping parameter.

Regressor selection. Well chosen regressors, corresponding to well chosen inputs, lead

to accelerated identification by spreading the work of system identification across multiple

agents, while poorly chosen inputs can result in the network “fighting” against individ-

uals. Experimental and theoretical investigation of the interplay among agents can shed

a more nuanced light on the benefits as well as limitations of the proposed collaborative

identification scheme.

As an example of the types of phenomena observed in our studies, note that in the proof

of Theorem 4 we showed that the worst-case convergence rate constant (6.15) was strictly

positive. It is known that the bound is not tight. Consider the problem of choosing optimal
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constant regressors to maximize the convergence rate, obtained by solving the optimization

maximize λmin(L⊗ Ip + γΦ)

subject to Φ =




φ1φ
T
1 · · · 0

...
. . .

...

0 · · · φnφ
T
n




0 � Φ � Inp,

(6.20)

with variables Φ ∈ Rnp×np and φ1, . . . , φn ∈ Rp, where λmin(·) denotes the minimum

eigenvalue of a matrix and ⊗ is the Kronecker product. The optimal values φ⋆
1, . . . , φ

⋆
n

of (6.20) correspond to a choice of constant regressors for the n agents that maximizes the

convergence rate of the estimator dynamics (6.3).

The rank requirements embedded within the first (sparsity pattern) constraint make

the regressor selection problem nonconvex. Using an ADMM heuristic [BPC+11] for the

specific three-agent example in §6.2.2, we come up with a better regressor choice,

φ⋆
1(t) =


−0.63037

−0.77629


 , φ⋆

2(t) =


0.47497

−0.88


 , φ⋆

3(t) =


−0.9894

0.14525


 .

In Figure 6.5, we plot the rate bound (6.15) against the parameter α, zoomed to α ∈
[0.75, 1] to show detail, and compare it to the rate bound from a heuristic regressor selection

scheme that approximately solves optimization (6.20).

Note that φ⋆
1, φ

⋆
2, φ

⋆
3 achieve faster convergence than φ1, φ2, φ3, but both regressor sets

admit a choice of α for which the convergence rate of the dynamics (6.3) is poor. Examine

once again the bound (6.15). At α = 0, the convergence rate is the algebraic connectivity

λ2 of the communication graph G, while at α = 1, the convergence rate is

a = γ
m1

n
,

a function of the minimum excitation level m1 and the learning rate γ. In Fig 6.5, we

suggest that there exist directions in parameter space (α ≈ 0.957) where consensus and

adaptation disastrously conspire against each other, whereas other directions give better

convergence properties.
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Figure 6.5: Rate bound (solid) for two different regressor choices, and the actual convergence rate
(dashed) with regressor choice φ⋆
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⋆
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⋆
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Optimal input to achieve PE. In a time-limited identification scenario, such as in fault

detection, it is necessary to identify the system as quickly as possible so appropriate control

actions can be taken to survive the fault. In these cases, the excitation input can be chosen

to maximize the parameter convergence rate.

More concretely, consider the discrete time, single agent, version of our problem, with

a linear in parameters system model

yk = θTφ(xk), k = 0, 1, . . . ,

and the estimation process

ŷk = θ̂Tk φ(xk),

θ̂k+1 = θ̂k − Γφ(xk) (ŷk − yk) , t = 0, 1, . . . .

We would like to estimate the fixed parameter vector θ ∈ Rp, where xk = (·, uk) ∈ Rq is

the surrogate state, yk is a real output, Γ = ΓT ≻ 0 is a given matrix, and the regressor

function φ : Rq → Rp is uniformly continuous in xk.
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The parameter error θ̃k = θ̂k − θ obeys the recurrence

θ̃k+1 = (I − Γφ(xk)φ(xk)
T )θ̃t.

We have a PE-like convergence result [LN88]: if there exists an integer interval width L > 0

and a constant α > 0 such that

1

L

j+L−1∑

k=j

φ(xk)φ(xk)
T � αI, for all j = 1, 2, . . .

then the parameter error θ̃k converges to zero as k → ∞. The per-step convergence factor

ρ(Mk) = ρ(I − Γφ(xk)φ(xk)
T )

where ρ(·) denotes the spectral radius of a matrix, is a proxy for the rate at which the

parameter error tends to zero.

Consider at each time k the per-step optimization problem

minimize ρ(Mk) = ρ(I − Γφ(xk)φ(xk)
T )

subject to uk ∈ C
(6.21)

which greedily picks an input uk ∈ C at each step in order to maximize the convergence

rate. Interestingly although this formulation does not explicitly mention networks, similar

problems have been widely studied in the networked and robust control literature [XB04,

XBL05, DS81, PD93, DP00].

Using the identity ρ(Mk) ≤ γ if and only if −γI � Mk � γI, we can rewrite prob-

lem (6.21) as

minimize γ

subject to −γI � I − Γφ(xk)φ(xk)
T � γI

uk ∈ C.

Multiplying all sides of the first constraint by Γ−1 and taking a Schur complement, we
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obtain the equivalent bilinear SDP

minimize γ

subject to


 I φ(xk)

T

φ(xk) (1 + γ)Γ−1


 � 0

Γ−1 − φ(xk)φ(xk)
T � γΓ−1

uk ∈ C.

The bilinear constraint Γ−1−φ(xk)φ(xk)
T � γΓ−1 is nonconvex and thus difficult to enforce

in practice. For small dimensions, branch and bound, as well as powerful multiplier methods

are readily applied to solve the problem [NW06, Ber05, Ber76, Ber96, BPC+11].
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Chapter 7

Conclusion

7.1 Summary and contributions

This thesis was informed by the realization that the frontiers of control systems are no

longer in writing down a formula or a PDE, solving it once, and implementing it on the

system—but rather in designing a sequence of steps, a method, an algorithm to solve the

control problem in the loop, along with a proof that the algorithm will give a correct or

nearly correct answer. As computers get faster and more pervasive, online optimization

for control is coming to systems that were traditionally not part of the control designer’s

responsibility. Whether informed by careful a priori modeling, adaptation, or by gathered

data, engineers need the right language to specify and provide for closed loop stability.

This thesis argues that the right language of Lyapunov functions has been known for over

a hundred years, with the minor caveat that to make the language actionable, the great

utility of bounds and approximate policies cannot be overlooked.

Specifically, upper bounds on the Lyapunov function lead to policies that are robust by

construction. If an upper bound cannot be found, then either the closed loop system is

not robust with respect to the provided parameterization, requiring a re-thinking of the

robustness model, or the system is so fragile that it cannot be stabilized. On the other

hand, lower bounds result in inherently infeasible performance bound policies, which have

no guarantees of stability or performance, however they lead to approximate policies that in

practice allow for sophisticated adaptation and learning. This thesis showed novel applica-

tions of lower bounds to temporal logic constrained systems, and upper bounds to adaptive

systems, providing approximate solutions without resorting to intractable discretizations.

It was shown that constraints in adaptive systems lead to improved notions of identifiability,
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meanwhile networks themselves can be a source of extra performance and robustness. The

story and applications are very exciting, and we are barely touching their surface.

7.2 On the title

Although it is already happening to some extent, it is my sincere wish that some day control

theory, machine learning, and optimization will all use the same language to describe a

greater theory of computational mathematics of which they are all a small part. The title

of this thesis reflects the key words that I can reasonably see coalescing in mutually beneficial

harmony.

Why “robustness”? Robust control is a well-developed theory that any student of con-

trol must know in order to implement control systems safely. Closed loop stability is mean-

ingless in practice without some sort of quantifiable margins. This thesis argues that robust

control is the study of Lyapunov upper bounds, specifically ones obtained offline.

Why “adaptation”? Control theorists know a lot about dynamical systems from Lya-

punov and dissipation bounds, however for the most part they do not yet know the right

way to treat incoming data. Thus adaptive control still has much to learn from machine

learning and optimization.

Why “learning”? Machine learning professionals know a lot about the right way to treat

incoming data, however they are often less worried about closed loop stability and systems

concepts than control theorists. Moreover, just as the goal of “learning” is to synthesize

concepts and make them simpler, so does choosing simple Lyapunov function candidates

result in simple approximate policies. Adaptation and learning are two aspects of the same

not yet well described underlying theory, with complementary knowledge bases yet to be

shared.

Why “in optimal control”? Optimization, specifically convex optimization, is becom-

ing less a tool in control, and more of a language of control. Variationally speaking, many

traditional concepts like controllability and H2 synthesis are artifacts of Lagrange duality

in optimization problems whose variables are Lyapunov functions.
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7.3 Current and future directions

Terascale networks. Recent years have seen an explosion of interest in large scale sens-

ing and actuation networks, as evidenced by emerging applications related to the smart

city, transportation engineering, building planning, and power grid optimization. Such

applications are enabled by increasingly cheaper, smaller, and more powerful sensors and

computational devices that can be connected together in a network.

The challenge facing engineers of such systems is twofold. First, such systems are usually

decentralized, because no single agent in the network can be expected to have access to all

data relevant to making a global inference. Second, these devices are usually limited by

power, which translates to restrictions on computation and communication. However, there

is strength in numbers. What cannot be done by one device because of computation or

communication constraints can sometimes be done by many devices collaborating on a

single goal.

The distributed system identification framework proposed in this chapter serves to take

advantage of large numbers of intelligent systems to trade off time (of computation, of

inherent dynamics), and hence, of power, against space by adding more devices to the

network. In this sense, simple rules like eq. (6.3) can easily be implemented by devices that

are limited by computation and communication, leading to a global collaborative behavior.

For example, θ can very well describe a global environment state or a map. If each

agent is confined to a particular area of a map, and can measure a correlation between

θ and some regressor φi, then the information sharing framework, suitably adapted to a

discrete setting of, e.g., an occupancy grid, as well as discrete time, allows for multiple agents

to collaboratively identify the entire space without any single agent having to explore every

part of the space. The defining conveniences of such schemes are several:

• Sensing locality : each agent only directly operates on local sensor information, or

information available by direct communication.

• Communication: collaborative identification is entirely decentralized, in that only

those agents allowed to communicate with each other do so, whether it be due to

power, channel capacity, or geographical constraints.

• Real-time: governed by the parameters of the network itself, each agent achieves
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asymptotic (or, in the case of discrete-time schemes on classes of communication

graphs termed “expander” graphs, in finite time) decision accuracy.

• Graceful degradation and adaptation: if the environment state θ changes, networked

adaptive systems are able to detect these changes and adapt their decisions.

• Robustness: the network provides a source of robustness for the decision rules. If an

agent fails and can detect the failure, it can still achieve the same level of decision

accuracy by simply listening to the network.

Machine learning. With increased sensing capability comes an increase in the amount

of data. Effectively dealing with “Big Data” poses computational and inferential challenges

in modern systems. Ideas from consensus and adaptation can be applied in this setting as

well. In this case, θ is a set of modeling parameters upon which inferential hypotheses may

be tested. The machine learning goal can be stated as to gather as much data (through the

values of φ(xi) and yi) as possible, and determine a summary θ of the data useful for the

inference task. In the extreme case, every agent i corresponds to a data point, and schemes

like eq. (6.3) represent rules for updating parameter estimates as data become available.

Consensus on θ is a way to enforce the prior belief that all data points originate from the

same distribution.

Human factors. Control systems, such as the one depicted in Figure 7.1, are typically

specified in terms of three sometimes competing goals:

1. robust stability goal : ∇V (x)T f(x, u) < 0, ∀plants

2. performance goal : ∇V (x)T f(x, u) < −ℓ(x, u), ∀plants

3. learning goal :
∫ t+T
t φφT dt ≻ 0, ∀t

While the purview of control theory is usually in designing an automatic “controller” (linear

state feedback, MPC, ADP. . . ) to satisfy the given goals, the language of Lyapunov bounds

can equally well be applied to a human in the loop controller. Because people are often much

better at making complicated, nonconvex decisions than computers, it is not too difficult

to envision future systems in which a human decision making strategy is augmented by

computed Lyapunov bounds that guarantee a certain level of closed loop stability and
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Figure 7.1: People as control systems.

robustness. As long as a decision maker ensures the relevant robustness metrics are obeyed

when making a decision, system theoretic stability is guaranteed. Meanwhile, things that

computers are typically bad at, such as exploration and learning, can be offloaded to people,

and gauged by Lyapunov bounds.

Sampling based strategies for ADP and automatic tools. Once under- and over-

approximations of the Lyapunov functions are given as semiinfinite constraints parameter-

ized by the states and inputs, constraint sampling and active set techniques can be used

to perform approximate optimization over these functional sets. Extensions to nonlinear

systems and more complicated hybrid dynamics can be made. Moreover, in the case of

co-safe LTL constrained hybrid systems, co-construction of the optimization problem and

the specification automaton can allow for structure exploitation and the ability to consider

medium to large dimensional spaces without relying on state space discretization.

Circuits. Ideas from networked systems can be used to inform classically “centralized”

applications, such as detecting the phase of a signal in a phase-locked loop (PLL). Here,

the parameter θ refers to the phase of an incoming signal, which may change on a slower

timescale than the convergence of the update dynamics (6.3), and each agent corresponds

to a different PLL instance, placed in different locations on a single chip die.

The consensus dynamics (6.3) can in fact be implemented in physical circuitry (e.g.,

resistors and capacitors), rather than sampled in a digital manner as would be the case

with macroscopic agents in terascale networks. Information fusion and voting can be im-

plemented at the lowest practical level, and would be limited by fundamental physical

parameters, such as the aspect ratios of communication buses, thermal noise, and the areas

of amplifier input stages at the input of each PLL.
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Micro UAV formation scale extraction. Formations of dynamic agents have been

studied in parallel with consensus, and at this point the theory of pure linear and in some

cases nonlinear consensus is well developed. However, applications are still lacking. In

particular, what happens when a consensus scheme is used to make decisions on the scale of

a formation of UAVs while the scale itself is being estimated? Exploratory work in applying

the networked adaptive systems idea (See Figure 7.2) has been done by the author during

a weeklong visit to the GRASP lab at University of Pennsylvania.

(a) Experimental setup (b) Simulator setup

(c) Trajectory visualization

Figure 7.2: (a) Three “nano” quadrotors (boxed) in simultaneous flight and an assigned plane of
motion for each (indicated by arrow) used to distribute a system identification task among the three
agents. (b) High fidelity simulation of quadrotor dynamics corresponding to the experimental setup.
(c) Visualization of desired and executed motions.
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Appendix A

Proof of Theorem 4 for p > 1

Form column vectors θ̂ = (θ̂1, . . . , θ̂n) ∈ Rnp and θ̃ = (θ̃1, . . . , θ̃n) ∈ Rnp by stacking the

components θ̂i ∈ Rp and θ̃i = θ̂i − θ ∈ Rp for all i = 1, . . . , n. The dynamics (6.9) are now

d

dt
θ̃ = −(L⊗ Ip)θ̃ − γΦ(t)θ̃,

where ⊗ is the Kronecker product, Ip ∈ Rp×p is the identity matrix, and Φ : [0,∞) →
Rnp×np is block diagonal,

Φ(t) =




φ1(t)φ1(t)
T · · · 0

...
. . .

...

0 · · · φn(t)φn(t)
T


 .

The candidate Lyapunov function

V (θ̃) =
1

2
θ̃T θ̃ =

1

2

n∑

i=1

θ̃Ti θ̃i

has nonpositive derivative

V̇ (θ̃) = −θ̃T
(
(L⊗ Ip) + γΦ(t)

)
θ̃ ≤ 0,

with V̇ → 0 as t → ∞ by the same arguments as before, thus parts 1-3 follow. For part 4,

the mixed product property AB ⊗ CD = (A⊗ C)(B ⊗D) for appropriately sized matrices

A, B, C, and D implies that the spectrum of L⊗ Ip is related to the spectrum of L and Ip
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by

(L⊗ Ip)

(
1√
n
1⊗ ej

)
= 0,

(L⊗ Ip) (vi ⊗ ej) = λi (vi ⊗ ej) ,

for all i = 2, . . . , n and j = 1, . . . , p, where ej ∈ Rp is the jth unit vector. Write a unit

vector w ∈ Rnp in this basis as

w =

p∑

j=1

αj
1√
n
1⊗ ej +

n∑

i=2

p∑

j=1

βijvi ⊗ ej ,

with (α, β) ∈ Rp × R(n−1)p having unit norm. As before, let Φ̄ be the average of Φ over

[t0, t]. We wish to bound

max{wT (L⊗ Ip)w, γw
T Φ̄w}

uniformly below by a strictly positive constant. Using the mixed product property and

‖α‖22 + ‖β‖22 = 1 we have

wT (L⊗ Ip)w =
n∑

i=2

p∑

j=1

λiβ
2
ij

≥ λ2(1− ‖α‖22).

For the second term wT Φ̄w, note that

(1⊗ ei)
T Φ̄(1⊗ ej) = (φ1φT

1 )ij + · · ·+ (φnφT
n )ij ,
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hence

wT Φ̄w =
1

n

p∑

i=1

p∑

j=1

αiαj(1⊗ ei)Φ̄(1⊗ ej)

+
2√
n

n∑

i=2

p∑

j=1

p∑

k=1

αkβij(1⊗ ek)
T Φ̄(vi ⊗ ej)

+
n∑

i=2

p∑

j=1

n∑

k=2

p∑

l=1

βijβkl(vi ⊗ ej)Φ̄(vk ⊗ el)

︸ ︷︷ ︸
≥0

≥ 1

n
αT

(
n∑

i=1

φiφT
i

)
α

− 2m2n√
n

n∑

i=2

p∑

j=1

p∑

k=1

|αkβij |

≥ ‖α‖22
n

m1 − 2m2n
√
‖α‖22(1− ‖α‖22),

thus a loose uniform lower bound is

max{wT (L⊗ Ip)w, γw
T Φ̄w} ≥ a > 0.

A continuity argument should convince the reader that

a = inf
‖α‖2≤1

max
{
λ2(1− ‖α‖22),

γ
‖α‖22
n

m1 − 2γm2n
√
‖α‖22(1− ‖α‖22)

}

is strictly positive.
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