
PROGRAMMING MOLECULAR ASSOCIATION AND VISCOELASTIC 

BEHAVIOR IN PROTEIN HYDROGELS 

 

 

Thesis by 

Lawrence Joseph Dooling 

 

In Partial Fulfillment of the Requirements for 

the degree of 

Doctor of Philosophy 

 

 

 

 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

 

2016 

(Defended May 25, 2016)



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2016 

Lawrence Joseph Dooling 
 

 



iii 
 

ACKNOWLEDGEMENTS 

 I am deeply grateful to my adviser, Professor David Tirrell, for his guidance, patience, and 

continued support. I could not have asked for a better research adviser and mentor. Dave brings a 

level of scientific rigor and integrity to research that I will continue to aspire to throughout my career. 

These qualities are matched by his humility, kindness, and sense of humor. Thank you Dave for 

everything. 

 I would also like to thank the current and former members of the Tirrell group with whom I 

have had the privilege to work over the past several years. I have learned a tremendous amount from 

all of them and have appreciated their support and friendship. 

 My thesis committee – Professor Julia Kornfield, Professor Zhen-Gang Wang, and Professor 

Guruswami Ravichandran – provided me with helpful advice and guidance in completing my thesis, 

for which I am very grateful. In particular, I would like to thank Professor Kornfield and her group 

for generous access to the rheometer in her laboratory and advice on measurements. 

 Finally, I would like to express my gratitude to my family for their continued support in my 

graduate school years and throughout my entire life. Any success I may have, I owe to them.       

 

  



iv 
 

ABSTRACT 

 Recombinant artificial proteins contain genetically encoded information that specifies their 

assembly into higher order structures by physical or chemical cross-linking as well as elastic 

behavior and biological or chemical function. This thesis describes the use of artificial proteins to 

construct molecular networks containing covalent cross-links involving the thiol side chain of 

cysteine residues and physical cross-links involving the association of helical domains as coiled 

coils. The goal of this work was to demonstrate how the viscoelastic properties of protein hydrogels 

could be encoded within an artificial protein sequence.  

 Using genetic engineering methods, a telechelic protein denoted ERE was designed from 

elastin- and fibronectin-derived repeating units and expressed in Escherichia coli. ERE was end-

linked by the reaction of terminal cysteine residues with tetrakis-vinyl sulfone-functionalized 4-arm 

star PEG to form hydrogel networks. The effects of varying the precursor concentration and cross-

linker stoichiometry on the swelling ratio and mechanical properties of the hydrogels were studied 

in detail in Chapter 2. The capacity for ERE hydrogels to serve as an artificial extracellular matrix 

was also assessed by the encapsulation of mouse fibroblasts, which survived the cross-linking 

reaction and exhibited a spread morphology within the gel.  

 Chapter 3 describes a set of recombinant artificial proteins that can be cross-linked by 

covalent bonds, by association of helical domains, or by both mechanisms. These proteins were used 

to construct chemical, physical, and chemical-physical hydrogel networks in which the mechanism 

of cross-linking determines whether the material response to mechanical deformation is elastic or 

viscoelastic. In viscoelastic networks, stress relaxation and energy dissipation could be tuned by 

controlling the ratio of physical cross-linking to chemical cross-linking, and the physical cross-links 

could be disrupted either by protein denaturation or by mutation of the primary sequence. 
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Network dynamics control the viscoelasticity and erosion rate of materials and influence 

biological processes at multiple length scales. In Chapter 4, variation of the protein sequence was 

explored as a strategy to tune the characteristic relaxation timescale of protein networks. Single point 

mutations to coiled-coil physical cross-linking domains in chemical-physical hydrogels altered the 

characteristic relaxation time over five orders of magnitude. Using a pair of orthogonal coiled-coil 

physical cross-linking domains, networks with two distinct relaxation timescales were also 

engineered.   

The dynamic properties of protein hydrogels can also be controlled by interactions between 

protein domains and small molecule ligands. In Chapter 5, the viscoelastic behavior of chemical-

physical protein gels was tuned by swelling the gels with small hydrophobic molecules including 

vitamin D3 and fatty acids. The proposed mechanism for this effect involves binding of the ligands 

within the hydrophobic pore or channel created by a coiled-coil physical cross-link. Exploiting 

natural and designed protein-ligand interactions represents a new approach to developing hydrogel 

“formulations” in which the viscoelastic properties of the material can be engineered to meet specific 

design criteria.   

In addition to exhibiting interesting dynamic properties, polymeric hydrogels containing 

permanent covalent cross-links and reversible physical cross-links often display enhanced toughness 

and extensibility. Protein hydrogels cross-linked by covalent thioether bonds and physical coiled 

coils could be extended further than control covalent hydrogels and exhibited a greater work of 

extension, which is considered a measure of material toughness. These results demonstrate progress 

toward engineering tougher, more extensible protein hydrogels by the incorporation of physical 

cross-linking by coiled-coil protein domains. 
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