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Abstract

An Electromyogram or Electromyographic (EMG) signal is the recording of the electrical activity

produced by muscles. It measures the electric currents generated in muscles during their contrac-

tion. The EMG signal provides insight into the neural activation and dynamics of the muscles, and

is therefore important for many different applications, such as in clinical investigations that attempt

to diagnose neuromuscular deficiencies. In particular, the work in this thesis is motivated by reha-

bilitation for patients with spinal cord injury. The EMG signal is very important for researchers

and practitioners to monitor and evaluate the effect of the rehabilitation training and the condition

of muscles, as the EMG signal provides information that helps infer the neural activity in the spinal

cord. Before the work in this thesis, EMG analysis required significant amounts of manual labeling

of interesting signal features. The motivation of this thesis is to fully automate the EMG analysis

tasks and yield accurate, consistent results.

The EMG signal contains multiple muscle responses. The difficulty in processing the EMG signal

arises from the fact that the transient muscle response is a transient signal with unknown arrival

time, unknown duration, and unknown shape. In addition, the EMG signal recorded from patients

with spinal cord injury during rehabilitation is very different from the EMG signal of normal healthy

people undergoing the same motions. For example, some of the muscle responses are very weak and

thus hard to detect. Because of this, general EMG processing tools and methods are either not

applicable or insufficient.

The primary contribution of this thesis is the development of a wavelet-based, double-threshold

algorithm for the detection of transient peaks in the EMG signal. The application of wavelet trans-

form in the detection of transient signals has been studied extensively and employed successfully.

However, most of the theories assume certain knowledge about the shapes of the transient signals,

which makes it hard to be generalized to the transient signals with arbitrary shapes. The proposed

detection scheme focuses on the more fundamental feature of most transient signals (in particular

the EMG signal): peaks, instead of the shapes. The continuous wavelet transform with Mexican Hat

wavelet is employed. This thesis theoretically derived a framework for selecting a set of scales based
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on the frequency domain information. Ridges are identified in the time-scale space to combine the

wavelet coefficients from different scales. By imposing two thresholds, one on the wavelet coefficient

and one on the ridge length, the proposed detection scheme can achieve both high recall and high

precision. A systematic approach for selecting the optimal parameters via simulation is proposed and

demonstrated. Comparing with other state-of-the-art detection methods, the proposed method in

this thesis yields a better detection performance, especially in the low Signal-to-Noise-Ratio (SNR)

environment.

Based on the transient peak detection result, the EMG signal is further segmented and classified

into various groups of monosynaptic Motor Evoked Potentials (MEPs) and polysynaptic MEPs using

techniques stemming from Principal Component Analysis (PCA), hierarchical clustering, and Gaus-

sian mixture model (GMM). A theoretical framework is proposed to segment the EMG signal based

on the detected peaks. The scale information of the detected peak is used to derive a measure for

its effective support. Several different techniques have been adapted together to solve the clustering

problem. An initial hierarchical clustering is first performed to obtain most of the monosynaptic

MEPs. PCA is used to reduce the number of features and the effect of the noise. The reduced

feature set is then fed to a GMM to further divide the MEPs into different groups of similar shapes.

The method of breaking down a segment of multiple consecutive MEPs into individual MEPs is

derived.

A software with graphic user interface has been implemented in Matlab. The software imple-

ments the proposed peak detection algorithm, and enables the physiologists to visualize the detection

results and modify them if necessary. The solutions proposed in this thesis are not only helpful to the

rehabilitation after spinal cord injury, but applicable to other general processing tasks on transient

signals, especially on biological signals.
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Chapter 1

Introduction

An Electromyogram or Electromyographic (EMG) signal is the recording of the electrical activity

produced by muscles. It measures the electric currents generated in muscles during their contrac-

tion. The EMG signal provides insight into the neural activation and dynamics of the muscles, and

is therefore important for clinical investigations that attempt to diagnose neuromuscular deficiencies

such as those caused by stroke and Parkinson’s disease [50]. Other potential important applications

exist in areas such as aging, exercise physiology, space medicine, and ergonomics, where it is of

interest to understand whether the control of muscles is altered as a consequence of aging, exercise,

exposure to microgravity, fatigue, and excessive and prolonged force production [38]. The EMG

signal can also be used to identify hand gestures and finds its application in controlling prosthetic

devices for rehabilitation or wearable devices for gaming [57]. In particular, the work in this thesis is

motivated by rehabilitation for patients with spinal cord injury. The EMG signal is very important

for researchers and practitioners to monitor and evaluate the effect of the rehabilitation training and

the condition of muscles [24], as the EMG signal provides information that helps infer the neural

activity in the spinal cord. Before the work in this thesis, EMG analysis in [24] requires significant

amount of manual labeling of interesting signal features. The motivation of this thesis is to fully

automate the EMG analysis tasks and yield accurate, consistent results.

The processing of the EMG signal is a hard problem in general. Similar to action potentials and

electrocardiogram (ECG), the useful information (the actual muscle response other than noise) in an

EMG recording is classified as a transient signal, as it is contained within a short time (∼ 10−50ms).

Every EMG recording contains multiple muscle responses. The difficulty in processing EMG arises

from the fact that the transient muscle response is a transient signal with unknown arrival time,

unknown duration, and unknown shape. In addition, the EMG signal recorded from patients with

spinal cord injury during rehabilitation is very different from the EMG signal of normal healthy

people undergoing the same motions. For example, some of the muscle responses are very weak and

thus hard to detect. Because of this, traditional EMG processing tools and methods are either not
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applicable or insufficient. In this thesis, two EMG processing tasks were addressed and effective

methods were derived. The solutions proposed in this thesis are not only helpful to the rehabilita-

tion after spinal cord injury, but applicable to other general processing tasks on transient signals

(biological signals in particular).

The first task is to detect useful information (the transient muscle response) from EMG record-

ing. The detection of transient signals with unknown arrival time, unknown duration, and unknown

shape is still an active research problem. There is not a universal optimal detector. Usually, different

detection schemes are employed to tackle transient signals from different applications. In this thesis,

a peak-based transient detection algorithm was proposed. The methodology consists of a combi-

nation of several techniques stemming from multi-resolution wavelet decomposition, statistics, and

detection theory. The detection method is totally unsupervised, and it’s especially good at detecting

trasient signals with low signal-to-noise ratio (SNR). Simulation results show that this method works

much better than existing methods found in the literature. In addition, the simulation shows that

this method is applicable to general transient signals.

The other task addressed in this thesis is to automatically segment and classify the EMG signal

into different areas of interest. A theoretical framework is proposed to segment the EMG signal based

on the detected peaks. The scale information of the detected peaks is used to derive a measure for

its effective support. Several different techniques have been adapted together to solve the clustering

problem. An initial hierarchical clustering is first performed to obtain most of the monosynaptic

Motor Evoked Potentials (MEPs). Principal component analysis (PCA) is used to reduce the number

of features and effect of the noise. The reduced feature set is then fed to a Gaussian mixture model

(GMM) to further divide the MEPs into different groups of similar shapes. The method of breaking

down a segment of multiple consecutive MEPs into individual MEPs is also derived.

1.1 Spinal Cord Injury

The work of this dissertation is motivated by the field of spinal cord injury (SCI). The goal of the

spinal cord injury research is to help patients with severe spinal cord injury to recover their ability to

stand, walk, and have voluntary movements [24]. According to the report published by the National

Spinal Cord Injury Statistical Center in 2012, the number of people in the United States who have

SCI has been estimated to be approximately 270,000, with approximately 12,000 new cases each

year. In particularly, about 30% of the cases are complete SCI, which means all the sensation and

voluntary control of some parts of the body is lost [58]. Figure 1.1-1 shows that SCI is mainly caused

by motor vehicle crashes, followed by falls and violence. Because of this, SCI primarily affects young
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Figure 1.1-1: Causes of SCI since 2005 [58]

adults. According to the data from the Christopher & Dana Reeve Foundation, the average age of

those who reported being paralyzed due to a spinal cord injury was 48, and the average length of

time since the spinal cord injury occurred was 14 years, as shown in Figure 1.1-2 [9]. This indicates

that those sustaining SCI tend to be young individuals suffering traumatic injury at the prime of

their personal lives and economic earning potentials.

Right now, SCI cannot be cured, and rehabilitation can be very difficult. Besides the pain

and extreme high cost of lifetime medical care, people with severe SCI cannot currently stand or

walk, which can impact their social and work life. The work described in this thesis supports a

collaborative effort between Caltech, University of Louisville, and UCLA to provide new therapies

for SCI [24].

1.2 Recovery of Spinal Cord Injury

The spinal cord is the main pathway for information connecting the brain and the rest of the body.

The human spinal cord is divided into 31 different segments: different segments connect to different

parts of the body, as shown in Figure 1.2-1. When the spinal cord is injured, this pathway is blocked,

and patients can lose sensation and voluntary control of some parts of the body depending on which

level of the spinal cord is injured. In addition to the role of transmission of neural signals, the spinal

cord also contains neural circuits that can independently control numerous reflexes and the central

pattern generator. In the case of SCI, the spinal circuitry below the lesion remains intact, but loses

supraspinal modulation from the brain.

Although there are no fully restorative treatments for SCI, various rehabilitative, cellular, and

molecular therapies have been tested in animal models. In the cellular therapies, cells are trans-

planted, for example, to replace dead cells. In the molecular therapies, different pharmacological

agents are used to restore biochemical imbalance after SCI. Rehabilitative training, such as loco-
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(a) Age Distribution of SCI Patients [9]

(b) Years since onset of SCI [9]

Figure 1.1-2: Some statistics of SCI patients: age distribution as in (a); years since onset as in (b)
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Figure 1.2-1: Human Spinal Cord [63]

motor training, improves the locomotor function. For a complete review, please see [59] and the

references within. Our strategy for recovering from spinal cord injury is derived mainly from two

important facts about the spinal circuitry.

First, basic posture and locomotion control depends significantly on the spinal circuitry, not the

brain. In fact, one can stand without much conscious effort. The spinal circuitry needs to achieve

some crucial level of excitability in order to work properly. For healthy humans, the brain sends

neural signals (train of action potentials) down to the spinal cord to raise the excitation level of the

spinal circuitry. For people with complete SCI, this modulation is lost, and hence the spinal circuitry

cannot function properly to generate locomotion [12]. Our strategy is to use electrical stimulation

to reactivate previously silent spinal circuitry.

The second fact is the plasticity of the spinal circuitry. The spinal circuitry can be trained to

adapt to the loss of modulation from the brain after SCI. Therefore, task-specific training is per-

formed to let the spinal circuitry adapt to the new modulation from the electrical stimulation [24].

Epidural Electrostimulation (EES) involves electrically stimulating the spinal cord via an elec-

trode or multi-electrode array placed in the epidural space of the vertebral canal. To date, human

studies of EES in [24] have been based on an epidural spinal cord stimulation unit from Medtronic

(RestoreADVANCED, Medtronic, Minneapolis, MN, USA), a FDA-approved commercial product

for back pain management. The electrode array was implanted over spinal cord segments L1–S1,

the lumbosacral enlargement, which is responsible for lower-body movement.

The electrode array dimension is about 49mm by 10mm, and it contains 16 electrodes. Different
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Figure 1.2-2: Examples of electrode configurations: anodes are black, and cathodes are gray, while
the rest are floating electrodes (from Harkema [24]).

patterns of the stimulating electric field can be chosen by assigning anodes and cathodes to different

electrodes (See Figure 1.2-2). The stimulation signal is a pulse train whose parameters, such as

frequency, pulse width, and amplitude, can be adjusted.

EES must be coupled with physical training for maximum effect. The training currently em-

ployed includes standing, stepping, and voluntary movement control while lying supine. Various

sensors are used during the training to analyze the performance of a subject under EES, and guide

future training. In particular, surface electrodes are placed on various major muscle groups of the

lower body, and the electric signal from the muscle, formally known as the Electromyogram or Elec-

tromyographic (EMG) signal, is recorded during the training. The EMG signal is one of the most

important clinical data obtained in this project and many other neuromuscular research efforts. My

research is to develop new tools for analyzing and processing the EMG signal.

1.3 Electromyographic (EMG) Signal Processing: Objective

Statement

The Electromyographic (EMG) Signal is the electric potential generated by the muscle cells. In gen-

eral, the EMG signal is very useful in many areas, such as detection of the medical abnormalities,

and analysis of the biomechanics of movement. For spinal cord research, the EMG signal is one of

the most important quantities to evaluate motor performance and training. Ideally, one would like

to know how neurons in the spinal cord react to the epidural electrical stimulation. In practice, it’s

almost impossible to directly measure the neural activities in the spinal cord. On the other hand,

when motor neurons in the spinal cord are activated, they send action potentials down to the specific

muscles and activate the muscle fibers. EMG is a measurement of the electric activity happening
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around the muscle fibers. Therefore, the EMG signal can be used to infer the activity of the motor

neurons in the spinal cord. In Section 2.1.1, a detailed review of the physiology of the EMG signal

is presented. In summary, if one thinks of the spinal cord as a black box, by checking its output

(the EMG signal), one can often infer the neural activity inside the spinal cord.

A major effort in the EMG processing with the application to the diagnosis of neuromuscular

disorder is to decompose the EMG signal into its continuant Motor Unit Action Potential Trains

(MUAPTs) [53, 38]. A fully description of MUAPTs is given in Section 2.1.1. Basically, EMG

decomposition involves mainly two steps: Firstly, detect/segment the raw EMG signal to obtain

individual Motor Unit Action Potentials (MUAPs), and then group MUAPs from the same motor

unit to obtain MUAPTs. Another research topic on EMG processing is to detect the onset of muscle

activity [50, 57]. In this problem, waveforms of individual MUAPs are no long desired; instead, the

EMG signal is viewed on a higher level, and active periods of the EMG signal are determined.

In the following, a brief description of the two specific EMG processing tasks to be addressed

in this thesis is given first. For detailed descriptions, please refer to Chapter 3 and Chapter 4,

respectively. After that, a brief discussion on the challenges and motivations is presented. For full

description on the challenges, please read Section 2.2. For a complete literature review, please read

the sections within Chapter 3 and Chapter 4.

1.3.1 Peak-based Detection

There are many different kinds of processing we can do on the EMG signal. One very important

aspect of the EMG signal is to measure the level of activation. More specifically, we’d like to

detect the Motor Evoked Potential (MEP). MEPs are the action potentials along the muscle fibers

generated by active motor neurons as a result of EES. MEPs are transient signals, and are corrupted

by noise in the recording. Our goal is to detect all the peaks of the MEPs in the EMG signal (See

Figure 1.3-1). The MEP peaks can potentially tell us what motor neurons are active, when they are

active, and how strong the activation is. Throughout the thesis, EMG signal detection refer to the

detection of the MEP peaks.

1.3.2 Segmentation and Classification

Another Important task is to segment and classify the EMG signal into various intervals of interest.

Segmentation refers to the task of dividing the given EMG signal into various sections, and classi-

fication is to label the segmented sections according to their nature. In the example of the EMG

signal obtained from EES, segmentation is supposed to find the sections of data that only contain
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Figure 1.3-1: An example showing the detection of the peaks of MEPs in the EMG signal: red circles
show the peaks of MEPs. (The example EMG signal is from the muscle of left medial gastrocnemius
while the patient is lying in supine position under EES.)

Figure 1.3-2: An example showing the segmentation of the EMG signal: ER (short for Early Re-
sponse) is the label for the early MEP; LR (short for Late Response) is the label for the late MEP.
(The example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying
in supine position under EES.)

MEP waveforms. In addition, the MEPs can be further classified into early MEPs and late MEPs

(See Figure 1.3-2). An early MEP is the direct response after an electrical stimulus, and so it’s

normally strong. A late MEP is the indirect response after an electrical stimulus. It comes after

the early MEP and is normally weak. Both early MEPs and late MEPs are important, and they

correspond to different underlying biophysics. Therefore, it’s crucial to identify and differentiate

them. With this information, one can better infer the neural activities in the spinal cord. Please

refer to Section 2.1.2 for a full description of early MEPs and late MEPs.

Before my work, EMG processing was entirely carried out manually by many technicians at

University of Louisville. It’s laborious to manually label all the features (including peaks, early

and late MEPs), since the rehabilitation training generates enormous amount of data from every

experiment. Typically, a training session lasts a couple of hours. There are about 20 EMG channels,

each of which measures a specific muscle group in the lower body. The sampling rate is 2000Hz. As a
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result, the EMG data file from one experiment easily exceeds 100MB. In addition, manual inspection

and processing of the EMG signal are very subjective and the quality of the results depends on the

experience and the knowledge of the individuals. Therefore, an automatic tool to process the EMG

signal will save lots of time for the practitioners, and give reliable, accurate results.

Another motivation behind our work is to facilitate the machine learning algorithm developed

to optimize the stimulation parameters [11]. The EMG signal is a very important input signal to

the algorithm. The machine learning algorithm is supposed to automatically adjust the stimulation

parameters from all observations. Thus, an unsupervised, accurate EMG processing algorithm is

needed to enable on-line learning and adjustment of the array stimuli.

There are mainly two challenges behind the EMG processing work in this thesis.

First of all, the EMG signal is in nature hard to process automatically. The muscle response

(the signal carrying useful information other than noise) is a transient signal with unknown arrival

time, unknown duration, and unknown shape. The characteristics of the muscle responses vary from

time to time, from subject to subject. As a result, most of the EMG processing in clinical research

is still carried out with lots of human supervision, and the methods employed for detection and

segmentation are still rudimentary [34, 37, 15, 8, 7, 27]. See Section 3.1 for a complete review of the

literature on EMG detection.

Second of all, the EMG processing tasks and the characteristics of the EMG signal in the research

on spinal cord injury (in particular, for rehabilitation with epidural electro-stimulation as in [24])

are quite different from those in typical research on neuromuscular disorder. As a result, no existing

tools can be used to solve the problems encountered in this project, and new tools and methodologies

need to be invented.

1.4 Thesis Outline and Contributions

The primary contribution of this thesis is the development of a set of automatic, unsupervised tools

for the analysis of Electromyogram (the EMG signal) for the purpose of studying electrical stimu-

lation based rehabilitation on patients with spinal cord injuries. A wavelet-based, double-threshold

algorithm was developed for the detection of the transient peaks in the EMG signal (Chapter 3).

Based on the transient peak detection result, the EMG signal is further segmented and classified

into various groups of monosynaptic MEPs and polysynaptic MEPs using techniques stemming

from Principal Component Analysis (PCA), hierarchical clustering, and Gaussian mixture model

(Chapter 4). A software with graphic user interface has been implemented in Matlab. The software

implements the proposed peak detection algorithm, and enables the physiologists to visualize the

detection results and modify them if necessary.
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Chapter 2 gives an introduction to the necessary background in order to understand the thesis.

It first talks about the physiology of the generic EMG signal and the EMG signal from patients with

spinal cord injuries undergoing rehabilitation. With that, the characteristics of the EMG signal

and the challenge of processing it are explained. After that, a basic introduction to the classical

detection theory and the wavelet transform is given, because these two are the main theories behind

the transient peak detection algorithm proposed in Chapter 3. In particular, two classical detectors,

the matched filter and the energy detector, are introduced because they normally serve as the upper

bound and the lower bound of any given detector. Frequency properties of the wavelet transform

are studied here in order to help understand the derivation of the choices of scales later in Chapter 3.

Chapter 3 extends existing theories in the transient detection field. The application of the wavelet

transform in the detection of transient signals has been studied extensively and employed success-

fully. However, most of the theories assumes certain knowledge about the shapes of the transient

signals, which makes it hard to be generalized to the transient signals with arbitrary shapes. The

proposed detection scheme focuses on the more fundamental feature of most of the transient sig-

nals (in particular the EMG signal): peaks. The continuous wavelet transform with Mexican Hat

wavelet is employed. This thesis theoretically derived a framework for selecting a set of scales based

on the frequency domain information. Ridges are identified in the time-scale space to combine the

wavelet coefficients from different scales. By imposing two thresholds, one on the wavelet coefficient

and one on the ridge length, the proposed detection scheme can achieve both high recall and high

precision. A systematic approach for selecting optimal parameters via simulation is proposed and

demonstrated. Comparing with other state-of-the-art detection methods, the proposed method in

this thesis yields better detection performance, especially in the low Signal-to-Noise-Ratio (SNR)

environment.

In Chapter 4, a method for automatically segmenting and clustering the EMG signal is derived.

A theoretical framework is proposed to segment the EMG signal based on the detected peaks. The

scale information of the detected peaks is used to derive a measure for its effective support. Several

different techniques have been adapted together to solve the clustering problem. An initial hier-

archical clustering is first performed to obtain most of the monosynaptic Motor Evoked Potentials

(MEPs). Principal component analysis (PCA) is used to reduce the number of features and the

effect of the noise. The reduced feature set is then fed to a Gaussian mixture model (GMM) to

further divide the MEPs into different groups of similar shapes. The method of breaking down a

segment of multiple consecutive MEPs into individual MEPs is derived.
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Chapter 5 reviews the work and the contributions of this thesis and talks about some future

directions and applications.
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Chapter 2

Background

This chapter gives an overview of the background knowledges in order to understand the work in

this thesis in Chapter 3 and Chapter 4.

Firstly, the physiology of the EMG signal is introduced. This helps the readers to understand

the characteristics of the EMG signal, and the correlation between the EMG signal and the neural

activity of the spinal cord. With this understanding, readers can have a clear view of the challenges

and motivations behind the work in this thesis. In addition, the assumptions made in order to

derive the new detection and segmentation techniques in Chapter 3 and Chapter 4 are based on the

understanding of the physiology and observation of the EMG signal.

After that, the background knowledge in order to understand the detection technique in Chapter 3

is presented. The methodology consists of a combination of several techniques stemming from multi-

resolution wavelet decomposition, robust statistics, and the detection theory. Since the task is to

detect transient muscle responses, it’s apparent to review the classical detection theory. The classical

detection theory cannot be applied directly to solve the problem, but it helps readers understand

the proposed methods from a theoretical point of view. In particular, the proposed method involves

the use of the generalized likelihood ratio test. Therefore, the classical likelihood ratio test (formally

known as the Neyman-Pearson Theorem) is introduced. The use of the wavelet transform was

inspired by many literatures in the transient detection field. Detection of the transient signals

with unknown structure is generally hard, but employing certain transformation on the signal can

yield good detection result, given that the transformation exposes the unique structure of the signal.

Therefore, a review on the wavelet theory is given, and specifically a study of the frequency properties

of the wavelets is presented, since the proposed detection method makes use of them.
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2.1 Physiology of the Electromyographic (EMG) Signal

Electromyography, or EMG for short, is one of the electrophysiological recording methods. Many

people are probably more familiar with other electrophysiological recording methods: Electroen-

cephalography (EEG), the recording of electrical activity along the scalp, and Electrocardiography

(ECG, or EKG), the recording of the electrical activity of the heart, etc. Similarly, EMG is a

technique for evaluating and recording the electrical activity produced by skeletal muscles. The

instrument for performing EMG is called Electromyograph, and the record produced is called Elec-

tromyogram, or the Electromyographic signal (the EMG signal for short)

The EMG signal is essentially the voltage fluctuation resulting from ionic current flows across

the membranes of the muscle cells, when these cells are electrically or neurologically activated.

Therefore, from the EMG signal, one can analyze the underlying biological processes of muscles.

From that, one can further infer the neural activity of the spinal cord and potentially the central

nervous system. The EMG signal can be analyzed to diagnose neuromuscular deficiencies such as

caused by stroke and Parkinson’s disease [50], the biomechanics of human or animal movement.

EMG can be categorized into two kinds, surface EMG and intramuscular EMG, based on the

electrodes being used (See Figure 2.1-1). In Surface EMG (sEMG for short), a pair of electrodes or a

more complex array of multiple electrodes is placed on the surface of the skin above the muscle; while

in intramuscular EMG, (iEMG for short), typically either a monopolar or concentric needle electrode

is inserted through the skin into the muscle tissue. To perform iEMG, special treatment needs to

be taken, while sEMG is a non-intrusive, relatively simple approach. On the other hand, iEMG

electrodes can be placed much closer to the muscle of interest, while the sEMG signal is influenced

by the depth of the under-skin tissue at the site of the recording. Because of this difference, iEMG

results in a much more selective, less noisy recording [53].

2.1.1 Physiology of the Generic EMG signal

Stashuk’s review paper [53] on the EMG signal decomposition gives a very good explanation of how

the EMG signal is generated. The following materials follow the discussion in that paper.

2.1.1.1 Muscle Fiber Action Potential (MFAP)

Muscle fibers are simply the colloquial term for muscle cells, or myocytes, which are the individual

components constituting skeletal muscles. Skeletal muscle is subdivided into parallel bundles of

stringlike fascicles, which themselves are bundles of even smaller stringlike multinucleated cells, the

muscle fibers. Muscle fibers typically have a length of 2− 6cm, and a diameter of 50− 100µm [26].

Each muscle fiber is normally innervated by only one motor neuron in only one place, usually near its



14

(a) Schematics of typical intramuscular
electrodes [35]

(b) Picture of surface electrodes from Mo-
tion Lab Systems [56]

Figure 2.1-1: Intramuscular and surface EMG electrodes

midpoint [26]. Neuromuscular junction is the structure through which a motor neuron innervates its

muscle fiber. When a muscle fiber is excited, it fires action potentials propagating relatively slowly

(3 − 5m/s) in both direction away from the neuromuscular junction, similarly to the propagation

of action potentials (AP) along the axons of neurons. This action potential is called a muscle fiber

action potential (MFAP), and is the fundamental component contributing to the detected EMG

signal. The characteristics of MFAPs will depend upon the diameter of the fiber, the conduction

velocity, its location relative to the detection site, and the configuration and type of electrodes.

2.1.1.2 Motor Unit Action Potential (MUAP)

The fibers of a muscle are not excited individually. They are controlled together in a group, called

the motor unit. A motor unit is made up of a single motor neuron and the skeletal muscle fibers

innervated by that motor neuron. A typical muscle is controlled by about 100 large motor neurons

[26]. A motor unit can innervate anywhere from 100 to 1000 muscle fibers scattered over a substantial

part of the muscle. All of the muscle fibers innervated by the same motor neuron respond faithfully

and synchronously to each action potential of the motor neuron [26]. As a result, individual MFAPs

are normally not detected. Instead, a summation of all of a motor unit’s MFAPs is detected, known

as a motor unit action potential (MUAP).

Let MFAPi(t) be the waveform of a muscle fiber action potential from the i-th fiber of a motor

unit. Let MUAPj(t) be the electrical potential from the j-th motor unit, which arises as a sum of

all MFAPs:
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MUAPj(t) =

Nj∑
i=1

MFAPi(t− τi)si (2.1.1.1)

where τi is the temporal offset of MFAPi(t), and Nj is the number of fibers in motor unit j. The

binary variable si represents the neuromuscular junction function that has a value of 1 if fiber i fires

and 0 if not.

τi depends on the location of the neuromuscular junction and the conduction velocity of the mus-

cle fiber. Nj represents the size of the motor unit. As pointed out before, Nj ∼ 100−1000. Because

a single action potential in a motor neuron can activate hundreds of muscle fibers in synchrony, the

resulting currents sum to generate an electrical signal that is readily detectable outside the muscle

itself [26]. Because of the attenuation of MFAP with distance to the detection electrode, the size

of the MUAP is in practice often dependent on the location and diameter of the closest few muscle

fibers. Figure 2.1-2 depicts the composition of a MUAP as the summation of individual MFAPs.

In general, MUAP waveforms will vary in shape due to variations in the delays of the fiber

potentials (affecting τi), possible changes in the position of the electrode relative to the muscle

fibers (affecting MFAPi), and the possibility of a particular fiber failing to fire (affecting si). These

variations are the source of stochastic biological variability in the MUAP waveform [53].

2.1.1.3 Motor Unit Action Potential Train (MUAPT)

In order to maintain or increase the force generated by a muscle, the specific motor neuron must

fire a temporal sequence of action potentials, called a spike train. As discussed in last section, one

action potential from a single motor neuron results in one MUAP. Therefore, this spike train, when

arriving at the neuromuscular junctions of all muscle fibers of this motor unit, results in a temporal

sequence of MUAPs, called Motor Unit Action Potential Train (MUAPT) [53].

MUAPTj(t) =

Mj∑
k=1

MUAPjk(t− δjk) (2.1.1.2)

where MUAPTj(t) is the MUAPT of the j-th motor unit, MUAPjk(t) is the MUAP generated

during the k-th firing of the j-th motor unit, Mj is the number of times the j-th motor unit fires,

and δjk is the k-th firing time of the j-th motor unit.

2.1.1.4 Composite EMG signal

When more than minimal force is required, many motor neurons generate an asynchronous barrage

of action potentials. Due to the property of superposition of electric fields, an electrode, either

inserted into a muscle or on the surface of the skin, measures the spatial and temporal sum of

MUAPTs contributed from all recruited motor units within the “listening sphere”. The result is a
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Figure 2.1-2: A MUAP is composed of the summation of the MFAPs of its component muscle fibers.
(from Stashuk [53])
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Figure 2.1-3: Physiological and mathematical model for the composition of a detected EMG signal
(from Stashuk [53]).

complex pattern of electric potentials (typically in the order of 100µV in amplitude) that is called

the composite EMG signal [26]. Figure 2.1-3 presents both an anatomical and physiological model

of an EMG signal.

EMG(t) =

Nm∑
j=1

MUAPTj(t) + n(t) (2.1.1.3)

where MUAPTj(t) is the j-th MUAPT, Nm is the number of active motor units, and n(t) is the

background instrumentation noise.

Normally, more motor units are recruited as the muscle force increases. Different motor units are

recruited at different times and stay active for different lengths of time. In addition, each MUAPT

has its own characteristics of firing intervals, and this firing interval changes within each MUAPT,

too. A general research direction is to decompose the detected EMG signal into its MUAPTs from
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Figure 2.1-4: Bar plot for the firing times obtained via the decomposition method in [38]. MU:
Motor Unit; MVC: Maximum Voluntary Contraction). (from Nawab [38])

different motor units. EMG decomposition is normally performed on the iEMG signal, since iEMG

measures a few MUAPTs while sEMG detects many more, making decomposition very difficult.

An example of the decomposition result on the iEMG signal from Nawab’s paper [38] is shown in

Figure 2.1-4.

The sEMG signal can reveal important muscle excitation information about underlying limb

movement. As a result, a typical research direction is to detect muscle activation intervals in the

sEMG signal. Figure 2.1-5 gives an example of muscle activity onset detection using an energy

detector in [50].

As mentioned before, the shape of MUAPs depends on many different factors, such as the position

of the electrode relative to the active muscle fibers, the physical characteristics and configuration

of the electrodes. In addition, an EMG signal is composed of temporal overlapping of different

MUAPs. As a result, it’s hard to predict the actual shape of the EMG signal. This property is the

major challenge in EMG processing. However, the good news is that no matter how variable the

shapes can be, the effective bandwidth of the EMG signal can be assumed as prior knowledge of the

physiology of EMG, as shown in Figure 2.1-6. This prior knowledge will be used in developing the

EMG detection method.
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Figure 2.1-5: Muscle activity onset detection result for clinical EMG signal (from Rasool [50])

Figure 2.1-6: Schematic representation of a typical sEMG power spectrum (from Day [10])
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Figure 2.1-7: Schematic of electric stimuli (the actual shape of the stimulus may look different.)

2.1.2 EMG signal Resulting from Electro-stimulation: Motor Evoked Po-

tentials

The EMG signal obtained from patients with SCI in rehabilitation training is different from the

EMG signal of normal healthy spinal cords undergoing the same motions, although the fundamental

physiology is similar. Recall from the previous discussion, patients with complete SCI lose all

sensation and voluntary movement control below the injury level. This is because the information

pathway is blocked between the brain and the neurons of the spinal cord below the lesion. As a result,

the brain can no longer send or receive information from certain parts of body. Although certain

locomotion control, such as stepping and standing, is governed in part by the neural circuitry within

the spinal cord, this neural circuitry becomes silent after the SCI because it needs modulation

and stimulation from the brain to function properly. Electro-stimulation (ES) therapy is based

on the belief that this neural circuitry is intact and can resume working if given proper electrical

stimulation and rehabilitation training due to plasticity of the neurons of the spinal cord. Specifically,

an electrode array was implanted over the spinal cord segments to stimulate the spinal cord neurons.

The electric signal can be thought of as a spike train, similar to the action potential train found in

neurons. Figure 2.1-7 gives a schematic of the electric stimuli. The actual shape of one stimulus,

though it may differ from the drawing, is a biphasic waveform. Each stimulus is a very short pulse,

and it is repetitive with a given frequency. Many parameters associated with the stimulation can be

adjusted, such as the pulse width δ, the frequency 1/T , the amplitude A, the electrodes configuration,

and electrode polarity (shown in Figure 1.2-2).

To provide some biology background in the following discussion, electric signaling in neurons is

first explained.



21

Figure 2.1-8: The membrane potential of a cell results from a difference in the net electric charge on
either side of its membrane. When a neuron is at rest, there is an excess of positive charge outside
the cell and an excess of negative charge inside it. (from Kandel [26])

2.1.2.1 Signaling in Neurons

At rest, all cells, including neurons, maintain a difference in the electric potential across the cell

membrane. This is called the resting membrane potential. At rest, there are more negative charges at

the cytoplasmic side, while there are more positive charges at the extracellular side (See Figure 2.1-8).

By default, the membrane potential is defined as the difference obtained by subtracting extracellular

potential from cytoplasmic potential. Hence, the resting membrane potential is a negative value

(typical value for neurons is −65mV, typical value for muscle cells is −90mV) [26].

Excitable cells, such as neurons and muscle cells, differ from other cells in that their membrane

potentials can be significantly and quickly altered; this change can serve as a signaling mechanism.

The change in the membrane potential can be either a decrease or increase from the resting potential.

The resting membrane potential provides the baseline: a reduction in membrane potential is called

depolarization. Because depolarization enhances a cell’s ability to generate an action potential, it is

excitatory ; an increase in membrane potential is called hyperpolarization. Hyperpolarization makes

a cell less likely to generate an action potential and is therefore inhibitory. There are typically four

components associated with the electric signaling in neurons and muscle cells. The four components

in the list below are only an abstraction of the four functionality. Different cells have different

structures and mechanisms. Figure 2.1-9 show an example of the signaling in a sensory neuron.
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Figure 2.1-9: A sensory neuron transforms a physical stimulus (a stretch in this example) into electric
signals in the neuron. Each of the neuron’s four signaling components produces a characteristic
signal. (from Kandel [26])

Input : Input component produces graded local signals. This signal passively propagates to

other parts of the cell.

Trigger : Trigger component takes consideration of all input signals, and then makes the deci-

sion whether or not to generate action potentials.

Conduction : Conductive component actively propagates the action potentials down to the

other parts of the cells. Active propagation means the amplitude of the action potentials doesn’t

diminish over time or distance.

Output : Output component passes the action potentials to other neurons or muscle cells. A

synapse is a structure that permits a neuron to pass an electrical or chemical signal to another

cell (a neuron or muscle cell).

There are 3 main functional groups of neurons in the spinal cord[26]:

Sensory neurons : carry information from the body’s periphery into the nervous system for

the purpose of perception and motor coordination.

Motor neurons : carry commands from the brain or the spinal cord to muscles and glands.

Interneurons : constitute by far the largest class, consisting of all nerve cells that are not

sensory or motor neurons. They form complex neural network that enable complicated logic and

decision making.
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Figure 2.1-10: The knee jerk is an example of a monosynaptic reflex system, a simple behavior
controlled by direct connections between sensory and motor neurons. (from Kandel [26])

There are 2 types of neural circuitry in the spinal cord [26]:

Monosynaptic circuits : the sensory neurons and motor neurons executing the action are

directly connected to one another, with no interneuron intervening between them.

Polysynaptic circuits : include one or more sets of interneurons; are more amenable to mod-

ifications by the brain’s higher processing centers.

Figure 2.1-10 shows the reflex mechanism of knee jerk. In this example, The extensor motor

neuron is connected directly to the sensory neuron, thereby forming a monosynaptic circuit. It

becomes active when sensory neuron is active. On the other hand, the flexor motor neuron is

connected to the sensory neuron via an inhibitory interneuron, thereby forming a polysynaptic circuit.

As a result of the inhibitory interneuron, the flexor motor neuron becomes inhibited (or inactive)

when the sensory neuron is active. Overall, the extensor and the flexor motor neurons are coordinated

by interneurons.
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2.1.2.2 Motor Evoked Potential

Now let’s come back to the EMG signal generated from patients with SCI under electrical stimula-

tion. What happens to the neurons in the spinal cord under electrical stimulation is still an ongoing

research. Here, only the fundamentals are introduced.

From previous discussion, it is shown that the action potentials in neurons can be generated when

the membrane potential of the trigger zone or axon of a neuron depolarize to a certain threshold.

The external electric field can affect different parts of the neurons in order to drive action potentials.

Here let’s focus the discussion on axons, as this is described in [26]. Again, this is only a postulate.

At the presence of the external electric field, the current needs to pass through the cell membrane

in order to drive a cell to threshold. In the vicinity of the positive electrode, current flows across the

membrane into the axon. It then flows along the axoplasmic core, eventually flowing out through

more distant regions of axonal membrane to the negative electrode in the extracellular fluids. Not

all currents pass through the cell membranes; in fact, a lot more of the stimulating current move

instead through the low-resistance pathway provided by the extracellular fluid. The axons with

lower axial resistance to the flow of longitudinal current can pass more currents, and as a result can

depolarize more efficiently. Normally, axons with larger diameters have lower axial resistance. If an

axon depolarizes beyond threshold, it will then fire and propagate action potentials. This resulting

action potential is called compound action potential.

If the external electric field directly excites a motor neuron (e.g., by depolarizing its axon), then

the motor neuron fires an action potential and propagates it down to its muscle fibers. The result

is one MUAP. I borrow the terminology from reflex physiology and call it a monosynaptic MUAP.

If the external electric field indirectly excites a motor neuron, either by exciting its presynaptic

interneurons (the interneurons that transmit signals to this motor neuron), or by modulating the

presynaptic input signals from sensory neurons, then the motor neuron also fires an action potential

and results an MUAP. I call it a polysynaptic MUAP.

Usually, the external electric field directly excites more than one motor neuron. All excited motor

neurons will approximately fire action potentials synchronously (synchronized with the electrical

stimuli). This is the key difference between the EMG signal from patients with SCI under electrical

stimulation and the generic EMG signal. In a healthy spinal cord, when multiple motor units are

recruited, they fire action potentials asynchronously because each motor neuron is modulated via

its own complex neural circuitry formed by a large number of interneurons. Regarding the EMG

signal that resulted from the electrical stimulation, because of the synchrony, all of the monosynaptic

MUAPs from multiple motor units overlap with each other, and produce one large response, which

I call the monosynaptic response.

The indirect excitation of a motor neuron is harder than direct excitation, because when a motor
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neuron is excited via all the synapses from all presynaptic interneurons, there need to be enough

interneurons, and all the interneurons need to be coordinated properly. For example, normally,

when a motor neuron is excited, its excitatory presynaptic interneuron needs to be active while its

inhibitory presynaptic interneuron needs to be inactive. If both the inhibitory and excitatory in-

terneurons are active, the motor neuron won’t be excited. In the case of external electric stimulation,

it’s typically hard to coordinate this kind of activity among the interneurons. This is why various

configurations of electrodes and different parameters of the stimuli are chosen in order to achieve

certain neural activity within the spinal cord. The overlapping response from all the polysynaptic

MUAPs is called a polysynaptic response, and is much weaker than the monosynaptic response, since

much fewer motor neurons are indirectly excited. Because of the complex neural pathway between

the origin of the compound action potential to the motor neuron, a polysynaptic response arrives

later than a monosynaptic response, and is less synchronous with the electrical stimulus. Thereby,

a monosynaptic response is also sometimes referred to as an early response; a polysynaptic response

is referred to as a late response.

Collectively, both the monosynaptic response and the polysynaptic response are called the Motor

Evoked Potential (MEP). A MUAP is no longer a proper term in the EMG signal in this thesis, as

both monosynaptic and polysynaptic responses are somehow synchronized to the external electric

stimuli, and there is hardly an individual MUAP in the resulting EMG signal. In this thesis,

MEP refers specifically to the compound response from the patients with SCI under the electrical

stimulation. Figure 1.3-2 gives an example of both an early response and a late response after one

electrical stimulus (the stimulus is at the beginning of the plotted signal). As you can see from the

example, the early (monosynaptic) response is much stronger than the late (polysynaptic) response.

2.2 Characteristics of MEPs and Challenges of Processing

Them

The first part of this section shows some of the major characteristics of the EMG signal with example

figures. With the physiology background discussed above, the readers can have a deep understanding

of the characteristics. Next, the challenges arising from these characteristics will be listed, along

with the major insufficiencies of some prior work.

2.2.1 Characteristics of MEPs

The biggest challenge is the randomness of the MEPs. The parameters of a MEP are not determin-

istic, and must be modeled by random variables. The actual probability model and its parameters
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Figure 2.2-1: Example EMG signal containing MEPs with low SNR (marked by red circles). (The
example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in
supine position under EES.)

are also unknown, which makes the problem even harder.

Figure 2.2-1 shows that the arrival times of the MEPs are random. The MEPs in the red circles

are polysynaptic ones (the weak ones), while the rest are monosynaptic ones (the strong ones). The

arrival times of the monosynaptic MEPs, although still random, show certain regular pattern, so a

reasonably good probability model can be sufficient. However, the arrival times of the polysynaptic

MEPs have limited pattern, and a proper probability model is therefore hard to determine. As

pointed in the physiology section of this chapter, the arrival time of a MEP depends on many

different factors, such as the conduction of the motor neuron axons, the detection location relative

to the neuromuscular junctions, and the overall conduction speed of the muscle fibers. Moreover,

in the case of polysynaptic MEPs, the neural pathway between the source of the compound action

potential and the excited motor neuron is very complex and totally unpredictable.

Figure 2.2-2 shows different waveforms of the MEPs from different muscles of one training session.

Figure 2.2-3 shows different waveforms of the MEPs from one single muscle of one training session.

The two figures show that the durations and the shapes of the MEPs vary a lot. The lack of

information on the structure of a signal leads to great difficulty in processing it. Later in this section,

this difficulty will be elaborated within the context of prior work. There are many different factors

contributing to the varying shapes of the MEPs. As shown in the physiology section, every MUAP

consists of multiple MFAPs. MUAP waveforms vary in shape due to variations in the delays of the

MFAPs, and the number of muscle fibers that fire. In addition, there is a lot of substances between

the muscle fibers and the detection site, including a layer of fat tissues and skin. All these substances
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Figure 2.2-2: Examples of MEP waveforms from different muscles of one patient under one reha-
bilitation session. The muscle from which each MEP waveform is from is shown in its short name
on the upper right corner of each subplot. For the full names of the muscles, refer to Appendix A.
(The example EMG signal is from various muscles while the patient is lying in supine position under
EES.)

degrade the MUAPs significantly. The configuration of the electrodes can also alter the waveform

in an unpredictable way. Totally, the shapes of the resulting MUAPs are completely random and

unpredictable. Moreover, an MEP is a superposition of multiple MUAPs. In the rehabilitation

training with electrical stimulation, the spinal cord is damaged, and hence there is little to know

about how many motor neurons are excited and which they are. This further adds to the complexity

of the shapes of the MEPs. The polysynaptic MEPs have a even less regular structure than the

monosynaptic ones, because the complex neural pathway results in a complicated, asynchronous

overlapping of the MUAPs. The only common feature from all the MEPs is that they all contain

multiple transient peaks, although the shapes of the peaks, such as the widths and heights, are still

random. Also the number of peaks within one MEP is unknown.

Figure 2.2-1 and Figure 2.2-4 show that the polysynaptic MEPs have an extremely low signal-

noise ratio (SNR). This is another major difference between MEPs found in the electro-stimulation

induced EMG signal and the MUAPs found in the generic EMG signal. Due to the spinal cord

injury, lots of the neurons in the spinal cord below the lesion are inactive. A lot less motor neurons

can fire from the excitation of their presynaptic interneurons. As a result, the polysynaptic MEPs

are very weak.

The last characteristic of the EMG signal is shown in Figure 2.2-5. As commonly seen in the

recording of any electrical signals, the EMG signal suffers from the baseline fluctuation.
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Figure 2.2-3: Examples of MEP waveforms from the same muscle. (The example EMG signal is from
the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.)

Figure 2.2-4: Examples of MEP waveforms with low SNR. (The example EMG signal is from the
muscle of left medial gastrocnemius while the patient is lying in supine position under EES.)
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Figure 2.2-5: Examples of the baseline fluctuation in the EMG signal. The baseline deviates from
0 (marked by a dashed horizontal line), and changes slowly over time. (The example EMG signal
is from the muscle of left medial gastrocnemius while the patient is lying in supine position under
EES.)

All the previous discussion is limited to the variations of the MEPs within one person from one

training session. In practice, all the characteristics of the MEPs also vary from session to session,

and from person to person. The spinal cord is injured differently in different patients. The strength

of the muscles also varies a lot among individuals. Finally, in every training session, the EMG

electrodes are placed by practitioners manually, resulting in different detection sites. The location

of the detection site also has an impact on the shapes of the MEPs.

2.2.2 Challenges of Processing MEPs

Detailed literature reviews are given within Chapter 3 and Chapter 4. A brief introduction to the

prior work is presented here as a context for the discussion of the challenges in the EMG processing.

Traditionally, the detection of signals in a noisy observation is formulated as a binary hypothesis

testing problem in the detection theory. When the probability models of the signal and the noise are

fully known, an optimal detector with constant false-alarm rate can be formulated as a likelihood

ratio test according to Neyman-Pearson Theorem [28]. Please refer to Section 2.3 for an overview of

the binary hypothesis testing problem and the likelihood ratio test. For example, when the shape of

the signal is completely known, then a matched filter gives the optimal detection performance [28].

Normally, a matched filter is used to give the upper bound on the detection performance. On the
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contrary, if there is absolutely nothing known about the signal, then an energy detector gives the

optimal detection performance [28]. An energy detector normally serves as the lower bound when

evaluating a detector. When certain parameters in the model of either the signal or the noise are

unknown, then a generalized likelihood ratio test can be formulated with the parameters being their

maximum likelihood (ML) estimates [28]. The shapes of the MEPs are unknown, so a matched filter

cannot be applied directly. The use of an energy detector is insufficient because it doesn’t use the

structure of the MEPs at all and hence gives the worst detection performance. The idea is to find a

certain representation of the EMG signal, such that the feature or structure of the MEP is exposed

in that representation. Then a binary hypothesis testing problem can be formulated in the new

representation.

Many different representations have been proposed in the field of transient detection. In particu-

lar, the wavelet transform is proven to be successful for a variety of signals. Wavelet transform gives

the local feature of a signal rather than a global feature. So it naturally works well on a transient

signal. In addition, Wavelet transform can expose features at different levels by specifying different

scale values. Some prior work on the transient-signal detection with wavelet transform includes [21],

in which the signal is assumed to have a known shape, but unknown arrival time and scaling. In [19],

the signal is unknown, but its bandwidth and time-bandwidth-product are assumed to be known.

The methods in the prior work are either insufficient because of the strong constraints made on the

signal model, or not applicable to the case of peak detection.

The methodology proposed in Chapter 3 combines detection theory with wavelet transform. As

a result, a brief review of some background knowledge in the detection theory and wavelet transform

is given in Section 2.3 and Section 2.4, respectively.

2.3 Classical Detection Theory

The first task to address in this thesis is to detect the transient muscle responses (more specifically,

the MEP peaks). The detection of the signal corrupted by noise is studied in the detection theory. In

classical detection theory, the detection of the signal out of noise is formulated as a binary hypothesis

testing problem, so I will first review the binary hypothesis testing problem, and I will introduce

the fundamental theorem for solving it: the Neyman-Pearson Theorem. The theorem introduced a

detection scheme called likelihood ratio test that gives an optimal detector given the full probability

models of the signal and the noise. In the proposed detection method, a generalized likelihood ratio

test is used to tackle the problem of unknown parameters in the signal model.

In Chapter 3, the proposed detector is compared against other detectors in the literature. As

a result, a review of the performance metrics of binary detection is presented in Section 2.3.2.

There are many different evaluation metrics in different applications. This thesis uses two statistics
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called recall and precision, which are widely used in the field of pattern recognition and machine

learning. These two statistics are chosen because they give the most important information about the

detection performance in this application: detection of transient MEP peaks from an EMG signal.

Basically, from recall one can tell how many MEP peaks are detected among all the true MEP peaks,

and precision shows how many detected peaks are true MEP peaks. Recall is important because a

practical detector sometimes misses a true signal, and precision is important as any practical detector

sometimes detects noise as a signal. Other statistics are either equivalent to recall or precision, or

less important to the task.

2.3.1 Binary Hypothesis Testing and Neyman-Pearson Theorem

In classical detection theory, a signal-detection problem is often formulated as a binary hypothesis

testing problem, where under the null hypothesis H0 the signal is not present, and under the alter-

native hypothesis H1 both the signal and the noise are present.

Suppose N observations x[n], n = 0, 1, · · · , N − 1, are generated depending on the hypothesis:

H0 : x[n] = w[n] w[n] ∼ N (0, σ2) i.i.d. (2.3.1.1a)

H1 : x[n] = s[n] + w[n] w[n] ∼ N (0, σ2) i.i.d. (2.3.1.1b)

where x[n] represents a noisy observation at a discrete time n, s[n] is the transient signal to be

detected and w[n] is the background white noise.

A binary detector maps the observation into eitherH0 orH1. If I use notation P (Hi;Hj) to represent

the probability of deciding Hi when Hj is true, then there are four probability associated with a

given binary detector.

• P (H0;H0) = probability of correct non-detection

• P (H0;H1) = probability of missed detection = PM

• P (H1;H0) = probability of false alarm = PFA

• P (H1;H1) = probability of detection = PD

When the full knowledge of the statistics of the signal s[n] and the noise w[n] is given, then an

optimal detector exists according to Neyman-Pearson Theorem:

Theorem 1 (Neyman-Pearson Theorem) To maximize PD for a given PFA = α, decide H1 if:

L(x)
def
=
p(x;H1)

p(x;H0)
> γ (2.3.1.2)



32

where the threshold γ is found from:

PFA =

∫
{x:L(x)>γ}

p(x;H0)dx = α (2.3.1.3)

The Eq. (2.3.1.2) is called likelihood-ratio test (LRT), because the left-hand side L(x) is the ratio

of the data likelihood under H1 over H0. The detector given by the Neyman-Pearson Theorem is

also referred to as the Constant False Alarm Rate (CFAR) detection, as the detector maintains a

constant PFA.

The Neyman-Pearson theorem can be applied when the statistics of the signal s[n] and the noise

w[n] are fully known, so that the likelihood ratio can be analytically derived. When the statistics

of the signal s[n] are not completely known, then the generalized likelihood ratio test (GLRT) can

be formulated as follows.

Suppose the statistics of the signal s[n] depends on the parameter vector θ, then the likelihood ratio

is:

L(x)
def
=
p(x; θ̂,H1)

p(x;H0)
> γ (2.3.1.4)

where θ̂ is the maximum likelihood (ML) estimate of θ:

θ̂ = arg max
θ

p(x;θ,H1) (2.3.1.5)

Two classical detectors will be derived based on Neyman-Pearson theorem. The first one is

called matched filter, which is derived when the signal is fully known. The other one is called energy

detector, which is derived when nothing is known about the signal. As a result, matched filter is

normally considered as an upper bound of the detection performance of any given detector, while

energy detector is used as a lower bound.

In both cases, assume there are N observations x[n], n = 0, 1, · · · , N − 1, with noise, w[n], being

white gaussian noise with variance σ2.
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2.3.1.1 Matched Filter

When the signal s[n] is deterministic:

p(x;H1) =
1

(2πσ)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− s[n])2
]

(2.3.1.6)

p(x;H1) =
1

(2πσ)N/2
exp

[
− 1

2σ2

N−1∑
n=0

x2[n]
]

(2.3.1.7)

Therefore:

L(x) = exp
[
− 1

2σ2

(N−1∑
n=0

(x[n]− s[n])2 −
N−1∑
n=0

x2[n]
)]

> γ (2.3.1.8)

Take the logarithm on both sides and simple steps yield the log likelihood ratio test:

ln(L(x)) =
1

σ2

N−1∑
n=0

x[n]s[n]− 1

2σ2

N−1∑
n=0

s2[n] > ln γ

Since s[n] is known:

T (x)
def
=

N−1∑
n=0

x[n]s[n] > σ2 ln γ +
1

2

N−1∑
n=0

s2[n]
def
= γ′

Or:

T (x) =

N−1∑
n=0

x[n]s[n] > γ′ (2.3.1.9)

T (x) is called the test statistic, as used in statistical hypothesis testing. The test statistic in

Eq. (2.3.1.9) is obtained by correlating a known signal, or template, with the observation, and

is therefore called the matched filter. It is also sometimes referred to as the replica-correlator.

2.3.1.2 Energy Detector

When nothing is known about the signal s[n], the parameter θ as in the generalized likelihood ratio

test is the signal itself, θ = s. As a result:



34

ŝ = arg max
s

p(x; s,H1)

= arg max
s

1

(2πσ)N/2
exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− s[n])2
]

= x

It follows:

p(x; ŝ,H1) =
1

(2πσ)N/2
(2.3.1.10)

p(x;H0) is the same as in Eq. (2.3.1.7). The generalized likelihood ratio test follows:

L(x) = exp
[ 1

2σ2

N−1∑
n=0

x2[n]
]
> γ (2.3.1.11)

Take the logarithm on both sides and simple steps yield the log likelihood ratio test:

ln(L(x)) =
1

2σ2

N−1∑
n=0

x2[n] > ln(γ)

T (x)
def
=

N−1∑
n=0

x2[n] > 2σ2 ln γ
def
= γ′

Or:

T (x) =

N−1∑
n=0

x2[n] > γ′ (2.3.1.12)

The test statistic T (x) in Eq. (2.3.1.12) is obtained from the energy of the observation x[n], and is

therefore called the energy detector.

2.3.2 Performance Metrics of Binary Detection

The detector of a binary hypothesis testing problem is also sometimes called a binary classifier or

predictor. There are many different metrics that can be used to measure the performance of a binary

classifier. Different metrics are used in different fields due to different goals. Sometimes, the same

metrics are given different names in different applications. This section first gives a general overview

of the fundamental metrics. After that, some of the metrics that are used throughout the thesis are

highlighted.

In Eq. (2.3.1.1), the observation in which a signal is absent (e.g., null hypothesis H0 is true), is



35

often called a negative; while the observation in which a signal is present (e.g., alternative hypothesis

H1 is true) is often called a positive. The detector classifies the observation as either from the

null hypothesis H0 or the alternative hypothesis H1. To evaluate the detector, one compares the

classification results to the ground truth and cross tabulates the data into a 2x2 contingency table

or confusion matrix [54].

H0 true H1 true

predict H1 False Positive True Positive

predict H0 True Negative False Negative

Table 2.1: Confusion matrix of a binary classifier

One can then evaluate the detector by counting the following 4 numbers:

• FP: number of false positives

• TP: number of true positives

• TN: number of true negatives

• FN: number of false negatives

There are 8 possible ways to evaluate the detection performance by dividing each number by its

row sum and column sum. However, only 4 of them are independent. The other 4 are just their

ones’ complements.

In the field of detection theory [28], following two statistics are often used:

• Detection rate: TP
TP+FN , the percentage of true positives that are labeled as positives.

• False alarm rate: FP
FP+TN , the percentage of true negatives that are labeled positives.

Ideally, the detection rate should be 1, while the false alarm rate is 0. For a practical detector,

there is always a trade-off between the detection rate and the false alarm rate. To compare two

different detectors, normally people draw the Receiver Operating Characteristic (ROC) [28]. The

ROC plot illustrates the performance of a binary classifier system as its discrimination threshold

is varied. The curve is created by plotting detection rate against the false-alarm rate at various

threshold settings.

In the field of pattern recognition or machine learning, two statistics are mostly often used:

• Recall: TP
TP+FN , the percentage of true positives that are labeled as positives.

• Precision: TP
TP+FP , the percentage of labeled positives that are true positives.
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Recall is equivalent to detection rate in the detection theory. Ideally, both recall and precision

are 1. In practice, there is always a trade-off between precision and recall: increasing recall normally

decreases precision and vice versa. By choosing a good detector, one can achieve both high recall

and precision. One can plot recall vs. precision, a plot similar to the ROC.

When precision and recall are used to quantify the performance of a classifier, it’s hard to compare

the performance of two different classifiers, since one classifier could have higher recall but lower

precision. To compare the overall performance by incorporating both recall and precision, people

commonly use the F-score. The traditional F-measure or balanced F-score (F1 score) is the harmonic

mean of the precision and the recall:

F1
def
= 2 · precision · recall

precision+ recall
(2.3.2.1)

The general formula for positive real β is:

Fβ
def
= (1 + β2) · precision · recall

β2 · precision+ recall
(2.3.2.2)

By choosing different values of β, the F-score puts different weights on precision and recall: a larger

β means more emphasis on recall while a smaller β means more emphasis on precision.

There are many other statistics defined for other applications. Usually they are either equivalent

to each other, or you can find one from the other (e.g., Sum of the two is 1). For a complete list of

all the statistics, please refer to [54].

2.4 Wavelet Transform

The detection of a transient signal with unknown arrival time, unknown duration, unknown shape

is difficult to solve, and there is no universal optimal detectors. A lot of transient detection work ex-

plored different models, transformation, or representation of the signal in order to expose its innate,

distinct structure. A proper representation of the signals that takes advantage of the prior knowl-

edge about the structure of the signals normally yields better detection performance [20, 49, 18].

The use of wavelet transform as a multi-resolution decomposition technique in the field of transient

detection has been proven successful [19, 21, 33]. The continuous wavelet transform is used by the

proposed detection methodology in Chapter 3, and therefore reviewed here. In particular, the fre-

quency properties of the wavelets are derived, because the choice of scales in the proposed detector

depends on them, and will be discussed in details in Section 3.3.2 of Chapter 3.
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Figure 2.4-1: Mexican Hat Wavelets at different scales. Mexican Hat mother wavelet is defined by
Eq. (3.3.1.1)

2.4.1 Mother Wavelet and Wavelets

A mother wavelet ψ(t) has the following two properties:

∫ +∞

−∞

∣∣ψ(t)
∣∣2 dt = 1 (2.4.1.1a)∫ +∞

−∞
ψ(t)dt = 0 (2.4.1.1b)

For a mother wavelet: ψ(t), the wavelet with scale s and translation u is:

ψs,u(t) =
1√
s
ψ(
t− u
s

) (2.4.1.2)

Eq. (2.4.1.2) indicates that the wavelet becomes wider (has larger support) as scale s increases, and

narrower (smaller support) as scale s decreases (see Fig. 2.4-1).

You can easily prove that all wavelets satisfy the properties of mother wavelet as in Eq. (2.4.1.1):

∫ +∞

−∞

∣∣ψs,u(t)
∣∣2 dt = 1 (2.4.1.3a)∫ +∞

−∞
ψs,u(t)dt = 0 (2.4.1.3b)
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2.4.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) of a function x(t) is defined as:

X(s, u)
def
=

∫ +∞

−∞
x(t)ψ̄s,u(t)dt (2.4.2.1)

where ψ̄s,u(t) is the complex conjugate of the wavelet ψs,u(t).

From the definition, the wavelet transform gives the inner product between the function x(t) and

wavelet ψs,u(t). Since ψs,u(t) is only non-vanishing in the neighborhood of u, X(s, u) gives the local

information of x(t) around u. Furthermore, X(s, u) measures the resemblance between function x(t)

around u and ψs(t), the mother wavelet scaled by s,

ψs(t)
def
= ψs,0(t) =

1√
s
ψ(
t

s
) (2.4.2.2)

From Eq. (2.4.1.2) and Eq. (2.4.2.2), the follow equation can be derived:

ψs,u(t) = ψs(t− u)

Using ψs(t) instead of ψs,u(t), Eq. (2.4.2.1) can be rewritten as (by substituting t with t+ u):

X(s, u) =

∫ +∞

−∞
x(t+ u)ψ̄s(t)dt (2.4.2.3)

Here is another way to view the CWT when the mother wavelet is a symmetric, real-valued function.

X(s, u) =

∫ +∞

−∞
x(t)ψs,u(t)dt

=

∫ +∞

−∞
x(t)ψs(t− u)dt

=

∫ +∞

−∞
x(t)ψs(u− t)dt

= (x ∗ ψs)(u) (2.4.2.4)

From Eq. (2.4.2.4), CWT can also be viewed as a convolution between the function x(t) and scaled

mother wavelet ψs(t), when the mother wavelet is a symmetric, real-valued function.

2.4.3 CWT on Discrete-time Signals

When implementing CWT on a computer, one need to adapt above equations to their discrete

versions. When performing the continuous wavelet transform to discrete-time signals, both signal

x(t) and wavelets ψs,u(t) become their sampled versions x[n] and ψs,k[n], respectively, for n ∈ (Z),
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k ∈ (Z).

Define:

ψs[n]
def
= ψs,0[n] (2.4.3.1)

which is the scaled version of the discrete-time mother wavelet. Eq. (2.4.2.1) and Eq. (2.4.2.3)

become:

Xs[k] =

+∞∑
n=−∞

x[n]ψ̄s,k[n] (2.4.3.2)

=

+∞∑
n=−∞

x[n+ k]ψ̄s[n] (2.4.3.3)

For real-valued, symmetric wavelets, Eq. (2.4.2.4) becomes:

Xs[k] =

+∞∑
n=−∞

x[n]ψs[k − n] = (x ∗ ψs)[k] (2.4.3.4)

In all equations above, scale s can still be an arbitrary, positive real number.

2.4.4 Frequency-domain Properties of Wavelets

Suppose the Fourier transform of ψ(t) is ψ̂(ω), and the Fourier Transform of ψs,u(t) is ψ̂s,u(ω):

ψ(t)
F−→ ψ̂(ω)

ψs,u(t)
F−→ ψ̂s,u(ω)

where F is the Fourier transform.

From Eq. (2.4.1.2):

ψ̂s,u(ω) =
√
sψ̂(sω)e−i2πuω (2.4.4.1)

The mother wavelet ψ(t) is essentially a band-pass filter that is centered at Cψ, and has the band-

width of BWψ

From Eq. (2.4.4.1):

Cψ(s)
def
= center frequency of wavelet ψs,u(t)

=
1

s
Cψ (2.4.4.2a)

BWψ(s)
def
= bandwidth of the wavelet ψs,u(t)

=
1

s
BWψ (2.4.4.2b)



40

Figure 2.4-2: Discrete-time Fourier Transform of Mexican Hat Wavelets at different scales

Therefore, every wavelet at scale s is again a band-pass filter, although with a different center

frequency and bandwidth. ψ̂s,u(ω) is centered at Cψ(s) = 1
sCψ, and has a bandwidth of BWψ(s) =

1
sBWψ. Fig. 2.4-2 shows the magnitude of the Discrete-time Fourier Transform (DTFT) of the

Mexican hat wavelets at different scales. The DTFT is periodic with period of 2π. For real-valued

signals, the magnitude of the DTFT is also symmetric. Hence, in Fig. 2.4-2, only the positive

frequency part of the DTFT is plotted with focus on the frequency from 0 to 1 for a better view,

since all the DTFTs vanish quickly beyond 1. In addition, the frequency shown in the DTFT is in

units of radians, rather than Hz. If one wants to interpret the DTFT in Hz, one needs to incorporate

the sampling rate of the signal.
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Chapter 3

Peak-based EMG Detection Via
CWT

3.1 Existing Methods

In the EMG signal detection problem, one of the main tasks is to identify transient peaks of the

muscle responses, or Motor Evoked Potentials (MEPs) in the application of spinal cord injury. There

are two reasons why the peaks must be detected. First, the number, locations, and amplitudes of

EMG peaks are crucial for assessing the response to the treatment. Second, although MEPs can have

various shapes, all MEPs contain transient peaks. By making use of the peak characteristics of MEPs,

detection performance can be potentially increased. Therefore, the MEP detector involves both

transient detection and peak detection. Transient detection is a theoretical field with many theories

being proposed. On the other hand, peak detection is more of a practical problem encountered in

various applications. In the following, the prior literature on EMG detection is first reviewed, and

its shortcomings are pointed out. Then, theoretical developments on transient signal detection are

reviewed. After that, the peak detection literature is reviewed with focus on applications. One

goal of this work is to build upon theories of transient signal detection and algorithms from peak

detection, and combine them and adapt it to the MEP detection.

3.1.1 EMG processing

Most of the methods used in the EMG community rely upon some variation of amplitude thresh-

olding, often based on empirical formulas [34, 37, 15, 8, 7, 27]. In [15], a threshold cursor is set

by an operator visually at a level to distinguish spike potentials from noise. In [7], a threshold is

manually adjusted (decreasing from its maximum value 10% at each iteration) to obtain good motor

unit firing rates. In [8] and [27], a threshold is calculated from the maximum value and the mean

absolute value of the EMG signal as measured over a lengthy interval. In both [34] and [37], the

EMG signal is first low-pass filtered to reduce the noise. In [34], a threshold is set to a coefficient
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(typically 3.5) times the standard deviation of the baseline noise. In [37], a trigger level is set to

10% of the maximum value. These methods could work practically, but not for the EMG application

with large dynamic range of EMG and the need for unsupervised processing. An improvement over

amplitude-based thresholding is to compute the signal variation and set a threshold based on that

quantity [22, 42]. Both of these papers use different formulas to calculate the empirical variation of

the EMG signal within a window and set a threshold. Still, many of these formulas are empirical

and lack theoretical support. In [3], amplitude envelope or local energy is obtained to detect the

onset of muscle activity. This is essentially a linear filtering or energy detector which will be dis-

cussed later in the review of transient signal detection methods. Other methods are based on more

advanced techniques, such as matched filtering [14], Maximum A Posteriori (MAP [30]) estimation

and wavelet transforms [36]. However, these approaches either require some kind of template, or

assume that different muscle responses are the scaled versions of a prototype function. Therefore

the methods can’t be generalized to solve the MEP detection problem, since the MEPs have various,

unpredictable shapes.

In summary, most detection techniques developed in the EMG community are relatively simple,

and involve manual adjustment of parameters by human supervision. Manual operation is useful in

some practice, since the operators can use their experiences and knowledge to improve performance.

However, it can be very laborious for large data sets. Since the quality of the results largely depends

on the skill level of the individual, it’s hard to consistently get good results. Some other detection

techniques use simple empirical formulas. Since the algorithm is simple, it’s easy to implement

and runs fast. However, they lack theoretical support, and the empirical formulas are usually only

successful on specific data. In addition, most of the techniques require a window. It’s not a good

idea to choose a fix window for detection of transient peaks, as the peaks are really short and have

various widths. A large window would lose the resolution and thus miss some transient peaks,

while a small window normally yields poor detection performance. Some advanced techniques have

been developed recently. However, they either suffer from the baseline and the noise, or put strong

assumptions on the waveforms of the EMG signal, which make them hard to generalize and apply

on an actual EMG signal. After all, all algorithms are still spike-detection in essence, but the MEPs

are far more complicated than spikes. In addition, almost all the techniques’ detection performance

deteriorate sharply for EMG signal with low signal-to-noise ratio (SNR).

3.1.2 Transient Signal Detection

In classical detection theory, a detector is given a record of observation samples and decides whether

the observation contains, in addition to noise, a signal of interest or not. This type of problem arises

in many different areas, such as communication systems, radar systems, and medical diagnosis. In

applications such as underwater acoustics, seismic surveillance, and EMG signal processing as in this
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thesis, the signal to be detected is a transient signal, a signal of short duration. In most practical

applications, the complete knowledge about the location, shape, or strength of the transient signals

is unknown.

There are many different techniques proposed for the detection of transient signals. Theoretically,

if the statistics of the noise and the signal are completely known, then the likelihood ratio test (LRT)

is formulated to obtain a constant false alarm rate (CFAR) detector. For example, when the exact

shape of the signal is a known priori, then the optimal detector is given by a matched filter (MF).

When some parameters (either the signal or the noise or both) are unknown, a generalized likelihood

ratio test (GLRT) is then formulated with the maximum likelihood estimates (MLE) of the unknown

parameters [28].

The detection problem becomes particularly challenging in the case of EMG-like transient signals,

because the signal typically has unknown shape, unknown strength, and unknown location. Classical

techniques are not guaranteed to work. Many different methods have been proposed to tackle the

transient detection problem. Generally, if some prior information about the signals to be detected

is known, then the detector, which makes good use of the prior knowledge, would generally perform

well on those signals [20]. In [20], Frisch shows that a good detection performance can be achieved if

the prior information about the signal is translated into a proper signal representation. Meantime,

a detector based on some signal assumptions will not perform well on signals that don’t satisfy

the assumptions. As a result, some prior work has focused on general detectors which make few

assumptions on the transient signals. For example, a plug-in power-law detector was proposed in

[62].

Many methods formulate test statistics based on the notion of signal “energy” or “power”. When

nothing is known about the signal, the optimal detector is an energy detector [28, 60]. In an energy

detector, the energy of the signal (sum of squares of the discrete-time samples) is calculated and

compared against a threshold. However, the performance of the energy detector is typically not

good, as it doesn’t use any prior knowledge about the signal. Hence, energy detectors usually serve

as a lower bound when evaluating the detection performance of any given detector. An improvement

over the energy detector is the power-law detector [43, 44, 45, 62]. Nuttall formulated the power-law

detector in the frequency domain via preprocessing the data by the magnitude-square DFT, and

studied its performance extensively in his technical reports [43, 44, 45]. Wang, in [62], extended

Nutall’s idea and proposed a series of variations on the power-law detectors. In particularly, one

of her power-law detectors deals with unknown, colored noise. By making use of the structure of

the transient signals (real transient signals tend to aggregate their energy in a band), her power-

law detector combines contiguous DFT bins. She also explored the use of wavelet transform to

take advantage of the fact that real transient signals also tend to aggregate energy locally in time.

Another extension to the energy detection was proposed in [55]. Instead of calculating the power or
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energy, the second-order statistics, a higher order statistics (in particularly, the sum of the absolute

values of the third power of the observed samples) is used.

Another group of methods are based on “Page’s test” [46]. Page’s test was originally developed

to detect a sudden change in the statistics of the data as quickly as possible. A transient signal can

be seen as a two-sided change: when a signal s1 arrives after an interval of signal s0, the probability

of the data switches from p(s0) to p(s1); when signal s1 disappears at a later time, the probability

returns to p(s0). Hence, Page’s test has been used for transient detection and shown to be quite

useful [2, 23, 1, 5].

Other transient detection investigations explored different models, transformation or represen-

tation of the signal in order to expose its innate, distinct structure. A proper representation of

the signals that takes advantage of the prior knowledge about the structure of the signals normally

yields good detection performance [20, 49, 18]. In [40, 48], a transient signal is modeled as the

impulse response of a rational transfer function. Many different kinds of linear transforms have been

explored for transient signal detection, such as the short-time Fourier transform (STFT) [64], the

Gabor transform [17], and the wavelet transform [19, 21, 33].

There are other various techniques that try to solve the transient detection problem. In [55],

an approach coined as “hyperparameter estimation” is proposed, in which unknown parameter are

assumed to be drawn from an underlying probability distribution, and unknown parameters about

the meta-distribution (so called hyperparameters) are estimated. In [16], data is ordered before

processing it, since an approach based on order statistics is robust.

3.1.3 Peak Detection

Peak detection has also been studied quite extensively in various application domains [13, 25, 41,

47, 51]. In [47], various peak functions were proposed in order to capture the structure of a peak. In

[13, 51], a multiscale-based peak detection algorithm was proposed. Reference [51] uses local maxima

scalogram (LMS) for the purpose of detecting periodic or quasi-periodic peaks. Reference [13] uses

the continuous wavelet transform (CWT) to find peaks in the mass spectrum. Du’s wavelet idea is

similar to the solution proposed in this thesis, although the proposed wavelet-based peak detection

algorithm was independently developed. Compared to [13], this thesis provides more theoretical

support for peak detection. In [41], peak detection based methods were used in ECG signals in

cardiac MRI. In [39], the continuous wavelet transform is employed to detect action potentials in

neural recordings. The technique developed in this thesis was inspired by [39]. However, action

potentials have a stereotyped shape, while MEPs in the EMG signal can have various shapes, which

makes the problem studied in this thesis much harder than that in [39].

Overall, the proposed peak detection algorithm employs the GLRT from detection theory, the
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continuous wavelet transform, and uses a double-threshold method to enhance the detection perfor-

mance.

3.2 Preprocessing: Robust Estimation of Noise

The proposed peak detection algorithm assumes that noise is a stationary additive white Gaussian

noise (AWGN) with a known variance. It’s proper to assume the noise is stationary when the

processing is carried out on a short interval (several seconds). However, variance is not a known

priori in real applications. The estimation of the noise variance in a raw EMG signal is in particular

difficult because the noise and the MEPs are mixed together. In most applications, noise variance

is calculated in a supervised fashion, in which an operator selects a segment of signal-free data

and calculates its variance. This method has two major drawbacks. First of all, it relies on human

supervision, and can’t run automatically. In addition, visual inspection is not reliable and consistent.

Secondly, this said operation is normally only applied once at the beginning of the processing, because

doing it repeatedly on every short intervals is impractical. As a result, this said manual operation

does not work when the noise is non-stationary over a long time period, which is typical in most

real systems.

In [39], noise variance is calculated based on the theory of robust estimation, assuming the signal

samples are outliers. Let X = {xi}Ni=1 be a sequence of N independent identically distributed

Gaussian random variables with variance σ2. Then from [39], it follows that

σ̂ = M{|x1 − X̄|, |x2 − X̄|, · · · , |xN − X̄|}/0.6745 (3.2.0.1)

where M{S} is the sample median of the sequence S and X̄
def
= 1/N

∑N
i=1 xi. From robust statistics,

the median of a random variable is less sensitive to outliers than its variance. As a result, indirect

estimation of variance from the median is much more accurate than directly computing the variance

of the sequence containing outliers, especially when outliers, in the case of signal samples, have much

larger amplitudes than noise.

However, the above estimation is only useful when the outliers (signal samples in the case of noise

estimation) are “sparse”: the outliers only occupy a small portion of the observed data. Otherwise,

the estimation accuracy deteriorates rapidly, as shown by the simulation results in Figure 3.2-1.

sparsity is defined as the fraction of signal-free samples (noise-only samples) over the total number

of samples. The signal model is one period of sine wave. The exact signal model has little effect

on the results, because the sparsity is the dominating factor. The sine wave is chosen because it

contains the typical characteristics of MEPs (having transient peaks). Below is a summary of how

the simulation experiment is carried out to generate the plots in Figure 3.2-1.
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1. Construct signal: one period of sine wave (with length w and amplitude A) (e.g., w = 20, A =

100)

2. Choose a sparsity value s and a SNR value.

3. Calculate the variance σ2 of the noise from Eq. (3.4.1.4) based on the chosen SNR value and

the signal model.

4. Suppose the simulated data contains N signals. Then generate N ∗ [w/(1 − s)] samples of

WGN with σ2. (e.g., N = 200 to yield accurate results)

5. Divide the data into N chunks, each contains [w/(1 − s)] samples. In each chunk, randomly

choose the location of the signal (the signal needs to be completely contained in each chunk

to avoid overlapping). Add signal samples to the WGN at selected locations.

6. Estimate the variance of the noise from Eq. (3.2.0.1), denoted as σ̂2.

7. Calculate the error: e = ‖(σ̂ − σ)/σ‖.

Perform above procedure for multiple values of SNR (10 ∼ 100) and sparsity (50% ∼ 98%) and

plots the Error vs. Sparsity curves from different SNR values (each curve coded by a unique color).

The point average curve is also plotted as a black dashed line. Figure 3.2-1 shows that data with

different SNRs have similar errors when estimating the variance of the noise using Eq. (3.2.0.1).

Due to the relatively large-amplitudes of the signals, variance is always over estimated. The error

is small for a large sparsity, but increases rapidly when the sparsity drops. Sparsity needs be above

90% in order to have an error below 10%. In a practical EMG signal, the sparsity of the MEPs is

at most 80%, which means the error is above 25%.

To solve the problem in estimating variance using Eq. (3.2.0.1) when signals are not sparse, an

iterative estimation algorithm is proposed, as shown in Algorithm 1. The idea behind the proposed

algorithm is to iteratively obtain a better estimation of signal-free (noise-only) samples W from

given samples X. Signal-free samples are estimated assuming that signal samples mostly have larger

amplitudes than 3σ. At the same time, assuming noise is Gaussian, then 99.73% of the noise samples

are preserved during the step W∗ ← {x ∈ X : (x − µ̂) < σ̂ ∗ 3}. In the while loop, if the initial

estimation of signal-free samples W contains some signal samples, then the estimated variance is

larger than the true value. As a result, the estimated signal-free samples will contain almost all of

the signal-free samples while having less signal samples than before. Eventually, when the signal

samples become sparse enough, the robust estimation given by Eq. (3.2.0.1) is very close to the true

value, and W will contain mostly just signal-free samples. When W is purely Gaussian noise, then

after an update to get W∗, the condition |W| − |W∗| ≤ 0.0027 |W| will hold, and thus the loop is
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Figure 3.2-1: Simulation results on noise estimation using Eq. (3.2.0.1) based on robust statistics:
Error vs. Sparsity curves from different SNR values (each curve coded by a unique color). The point
average curve is also plotted as black dashed line.

Data: maxIter, X = [x1, x2, · · · , xN ] that is a sum of the transient signal and the Gaussian
noise with variance σ2

Result: Estimated noise standard deviation σ̂
/* Initialization */

W← X ; // Noise W is initially set to be entire input.

converge ← false;
iter ← 1;
while not converge or iter ≤ maxIter do

iter ← iter + 1;
µ̂← W̄ ; // W̄ is the sample mean

σ̂ ← result from Eq. (3.2.0.1);
W∗ ← {x ∈ X : (x− µ̂) < σ̂ ∗ 3} ; // Update noise samples from current estimated

stats

if |W| − |W∗| ≤ 0.0027 |W| then
converge ← true;

else
W←W∗;

end

end
Algorithm 1: Iterative Robust Noise Estimation
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Figure 3.2-2: Simulation results on noise estimation using the iterative algorithm as in Algorithm 1:
Error vs. Sparsity curves from different SNR values (each curve coded by a unique color). The point
average curve is also plotted as black dashed line.

terminated as W converges to the signal-free samples in the original samples X.

Figure 3.2-2 and Figure 3.2-3 show the results when using the proposed algorithm to estimate the

noise variance. The conditions are the same as in Figure 3.2-1. Comparing results in Figure 3.2-1

and Figure 3.2-2, the iterative algorithm greatly boosts the estimation accuracy. For example, at the

sparsity of 80%, the average error is only 2%, reduced from 25% as in simple one-pass estimation.

The potential drawback of using the iterative method is the increase in the computation time.

The cost of the computation depends on the number of iterations it takes for convergence. Figure 3.2-

3 shows the number of iterations it took to converge when running the simulation to get Figure 3.2-2.

It shows that it took on average 2 ∼ 5 iterations, and the maximum of all is 7 iterations. Since each

iteration takes linear time O(n) to compute, the computation cost of the iterative algorithm is again

linear O(n) with a slightly larger constant.

3.3 Peak Detection Via Wavelets

It’s assumed that the noise is white Gaussian noise (WGN) with known, constant variance (assume

noise is stationary). In the EMG signal, the noise is not stationary and the statistics of the noise is

not well known. However, the noise can be approximated as a stationary process in a given short

interval (noise is locally stationary). Within the given short interval, the variance of the noise can
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Figure 3.2-3: Simulation results on noise estimation using the iterative algorithm as in Algorithm 1:
# of Iterations vs. Sparsity curves from different SNR values (each curve coded by a unique color).
The point average curve is also plotted as black dashed line.

be assumed to be constant, and can be estimated in a preprocessing step, before peak detection.

As discussed in Chapter 1 and Chapter 2, the goal is to find all the peaks of Motor Evoked

Potentials (MEPs). MEPs are the actual electric potential generated by muscle cells. The EMG

signal includes the useful MEPs as well as noise. Throughout this chapter, EMG peaks mean MEP

peaks. It should be clear to the readers since peaks of the noise are clearly not of interest.

Before diving into the algorithm, let’s first define the terminology to be used through out the

discussion.

Let EMG(t), t ∈ [t1, t2] denote the EMG signal voltage over a recording interval. This recorded

signal is assumed to contain M MEPs:

EMG(t) =

M∑
i=1

MEPi(t− δi) + wσ(t) (3.3.0.1)

where MEPi(t), defined over [0, Li], and δi are the waveform and the onset of the i-th MEP,

respectively. wσ(t) is the background noise.

Every MEPi(t) contains multiple peaks. Let pi,j denote the location of the j-th peak of MEPi(t),

for j = 1, 2, · · · , Ni, where Ni is the number of peaks from MEPi(t). Ni typically takes values from

2 to 5. All the peaks from all the MEPs in a given EMG signal are collectively denoted as:

P = {pi,j + δi, j = 1, 2, · · · , Ni; i = 1, 2, · · · ,M} (3.3.0.2)
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The total number of peaks in the given recording EMG(t) is:

N
def
= |P| =

M∑
i=1

Ni (3.3.0.3)

The goal is to find P from a given EMG signal EMG(t).

Throughout the thesis, signal-to-noise ratio (SNR) is used to discuss the noise level. Generally

speaking, SNR is defined as the ratio of the power of the signal to the power of the noise. There is

no universal definition of SNR. The definition of SNR is subject to the nature of the signal and the

application domain. In this thesis, SNR is defined as the power of one MEP waveform to the power

of the local noise. Then the SNR for MEPi(t) is:

SNR
def
=

1/Li
∫ Li

0
(MEPi(t))

2

σ2
(3.3.0.4)

where σ2 is the variance of the background noise in the neighborhood of MEPi(t). This definition

is suitable for transient signals because it measures the local signal strength or noise level. When

there are no MEPs in the signal, SNR is simply 0. When there is a MEP, over the short period of

the MEP and its neighborhood, noise can be assumed to be stationary, and so it’s valid to simply

use σ2 to denote the power of noise. From this definition, SNR is only comparable between two

MEPs of the same shape. This implies that for one MEP, a larger SNR will always yield better

detection performance. However, for two MEPs of different shapes, a larger SNR doesn’t necessarily

yield better detection performance.

The goal is to locate the peaks of the transient EMG signal (more specifically, the transient

MEPs) corrupted by white Gaussian noise with known statistics. There are two particular chal-

lenges as discussed in great detail in the Section 2.2. The first challenge is that the peaks of the

EMG signal have different shapes: some peaks are wide while some are narrow; the second challenge

is that some peaks of the EMG signal have very low SNR, making the signal barely recognized by

visual inspection. To tackle these two challenges, the algorithm is mainly composed of two steps,

which are broadly summarized below.

Step 1

To tackle the challenge of various shapes of the peaks, wavelet transform is employed to perform

multi-resolution decomposition of the EMG signal. The idea is that a peak of a particular shape

will result in large wavelet coefficients at one or more scales. Therefore, a binary hypothesis

testing is performed at each scale, where the test statistic is derived from the local maximum of
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the wavelet coefficients. Then, the local maximum that are above certain threshold are selected

as “peak candidates”. This is better than a simple digital filtering, since the continuous wavelet

transform is essentially a filter bank in the sense that one wavelet at each single scale corresponds

to one band-pass filter [61]. So, wavelet transform at each scale is more selective to peaks of

certain frequency than a general digital filter with a wide passband.

Step 2

To tackle the challenge of low SNR, peak candidates from different scales are combined. In

particular, ridges in the time-frequency space are identified by linking the peak candidates at

each scale. The idea is that a real EMG peak results in a relatively long ridge, while a peak from

noise doesn’t. Therefore, the threshold defined in Step 1 can be reduced in order to increase

the recall. However, lower threshold also decreases precision, especially in a low SNR signal. To

increase the precision while not hurting recall too much, ridges with short length are considered

as from the noise.

The peak detection problem is formulated as a general peak detection problem regardless of

the EMG signal for two reasons. First of all, a precise model of the EMG signal is not available.

Secondly, it’s desirable to develop a general peak-detection algorithm that is applicable to other

application areas. In particular, this algorithm works well on the actual EMG signal recorded from

spinal cord research subjects. Here is the formal definition of the problem to be solved.

Suppose a given data recoding x(t), t ∈ [t1, t2] contains N peak signals:

x(t) =

N∑
i=1

Ai(t− pi) + wσ(t) (3.3.0.5)

where Ai(t) is the i-th peak signal containing one peak at 0, and pi is the location of the i-th peak in

x(t), and wσ(t) the background noise, which is assumed as stationary zero-mean WGN with known

variance σ2.

The goal is to estimate all the peak locations: P def
= {pi, i = 1, 2, · · · , N}. The number of peaks

N and the locations pi are not a priori known. The peak signal Ai(t) is assumed to have only one

local maximum, which is the peak. The exact shapes of the peak signals Ai(t) are unknown. But

the bandwidth of the peak signals is assumed to be prior knowledge from the nature of the signals.

The proposed methodology consists of a combination of several techniques stemming from multi-

resolution wavelet decomposition, statistics, detection theory. For convenience, the five major steps

of the algorithm are briefly stated up-front. Each step will be explained in detail in subsequent

sections.

1. Perform multi-scale decomposition of the signal using an appropriate wavelet basis with ap-
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propriate scales.

2. Perform binary hypothesis testing at every scale to find peak candidates.

3. Identify “ridges” in the time-frequency space by linking peak candidates detected in Step 2.

4. Remove false positive peaks by removing wavelet extrema ridges with short lengths.

5. Map wavelet extrema ridges to peaks: each ridge represents one peak.

3.3.1 Mother Wavelet For Peak Detection

Wavelet transformation (WT) methods can be categorized as the continuous wavelet transform

(CWT) and the discrete wavelet transform (DWT). In CWT, both scales and translations are con-

tinuous while the DWT uses dyadic scales and translations. The DWT is often used in data com-

pression applications due to its efficiency in exact reconstruction of data from wavelet coefficients.

On the contrary, the CWT is a very redundant representation of the data. Redundancy is not good

for storage efficiency, but redundancy often leads to accuracy if it’s used properly. The redundancy

of the CWT makes the features of a real peak more visible. Therefore, the CWT is widely used

in pattern matching. The proposed methodology makes use of the pattern matching ability of the

CWT in the peak detection process.

More specifically, from the definition of CWT (Eq. (2.4.2.1)), the wavelet coefficients are found

from the inner product between the signal x(t) and the wavelets ψs,u(t). Therefore, the wavelet

coefficients indicate the resemblance between the signal at translation index u and wavelet at scale

s. A larger coefficient magnitude means better pattern matching. For peak detection, the goal is to

match the different shapes (heights and widths) of the peaks by scaling the mother wavelet ψ(t) at

different scales. Therefore, the mother wavelet should preferably have the basic features of a peak.

In this work, the Mexican hat wavelet was selected as the mother wavelet due to the resemblance of

its shape to a peak.

The Mexican hat wavelet is the Ricker wavelet in mathematics and numerical analysis, and

defined as:

ψ(t) =
1√
2π

(
1− t2

)
e

−t2

2 (3.3.1.1)

It is the negative normalized second derivative of a Gaussian function. It is usually referred to as

the Maxican hat wavelet because its shape looks like that of a sombrero (See Figure 3.3-1).

As pointed out by Du’s [13], the CWT with the choice of Mexican Hat wavelets naturally re-

moves the baseline from the raw data, so that baseline removal in the raw data in the preprocessing

steps is not necessary. In fact, any symmetric mother wavelet will have this benefit. The following
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Figure 3.3-1: Mexican Hat Wavelet ψ(t) given by Eq. 3.3.1.1

derivation follows that in [13].

Suppose each peak in the raw data, Praw(t), can be represented as follows:

Praw(t) = P (t) +B(t) + C, t ∈ [t1, t2] (3.3.1.2)

where P (t) is the signal peak component, B(t) is the baseline function with zero mean, C is a

constant and [t1, t2] is the support region of the signal peak. Since the wavelet support is small

compared to the time scale of the raw data, it can be assumed that the baseline is slowly changing

and monotonic in the wavelet support region. As a result, the baseline can be decomposed into an

odd function and a constant.

Based on Eq. (3.3.1.2), the CWT coefficients of the peak can be calculated:

X(s, u) =

∫ +∞

−∞
P (t)ψs,u(t)dt+

∫ +∞

−∞
B(t)ψs,u(t)dt+

∫ +∞

−∞
Cψs,u(t)dt (3.3.1.3)

where ψs,u(t) is the scaled and translated wavelet function. Note that in Eq. (3.3.1.3) the wavelet

is not taken as the complex conjugate, because the Mexican Hat wavelet is a real-valued function.

Because the wavelet function ψs,u(t) has a zero mean, the third term in Eq. (3.3.1.3) will be

zero. For symmetric wavelet functions, like the Mexican Hat wavelet, the second term will also

be zero. Thus, only the term with real peak P (t) is left in Eq. (3.3.1.3). That is to say, as long

as the baseline is slowly changing and locally monotonic in the wavelet support region, it will be

automatically removed in the CWT coefficients.

There are other reasons to choose the Mexican Hat wavelet. When there is a peak-shape function,

its 2nd order derivative has maximum at the peak location. Since the Mexican Hat wavelet function
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is proportional to the 2nd-order derivative of a Gaussian function, the CWT coefficient of a function

f(t) is proportional to the 2nd-order derivative of f(t) smoothed by a Gaussian function [32].

A Gaussian function is a smoothing function, since it is the impulse response of a low-pass filter.

The convolution of a function x(t) with a Gaussian function attenuates part of its high frequencies

without modifying the lowest frequencies and hence smooths x(t). As a result, the CWT with the

Mexican Hat wavelet is essentially a low-pass filtering of the signal. Let θ(t) be a Gaussian-like

function (Gaussian function multiplied by some constant), and then Mexican Hat mother wavelet

can be written as:

ψ(t) =
d2θ(t)

dt2

Let θs(t)
def
= (1/

√
s)θ(t/s) denote the dilation of θ(t) by a scale factor s. Then from Eq. (2.4.2.2):

d2θs(t)

dt2
=
d2( 1√

s
θ( ts ))

dt2

=
1√
s

1

s2
ψ(
t

s
)

=
1

s2
ψs(t)

The last step makes use of the Eq. (2.4.2.2). From Eq. (2.4.2.4), one can derive that:

X(s, u) = (x ∗ ψs)(u) = (x ∗ s2 d
2θs(t)

dt2
)(u) = s2 d

2

du2
(x ∗ θs)(u) (3.3.1.4)

Hence, X(s, u) is proportional to the 2nd-order derivative of x(t) smoothed by θs(t). The 2nd-order

derivative of a peak-like signal normally also reaches its maximum near (if not at) the peak location.

So, by searching for local maxima in the wavelet coefficients at one proper scale, one can estimate

the locations of the peaks in the time domain.

In summary, the choice of the Mexican Hat wavelet as the mother wavelet gives following benefits:

• Its peak shape gives excellent pattern-matching results for peak detection.

• It naturally removes baseline from the raw signal.

• It naturally smooths the raw signal, removing high frequency noise.

3.3.2 Choice of Scales

In the continuous wavelet transform, scale s is a positive real number, which takes continuous values.

In practice, a set of discrete scales have to be chosen. In the following, scales will be chosen from

both the time-domain and the frequency-domain point of views.
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The intuition behind the proposed methodology is “template matching”. From the time-domain

point of view, if a wavelet at certain scale, s, ψs,u(t) has “similar shape” to a peak in the signal

at certain location u, then the wavelet coefficient at scale s and translation u will be significantly

different from zero. This is because a wavelet coefficient is the inner product of the signal and the

wavelet, and it measures the “resemblance” between the signal at location (or translation) u and

the wavelet at scale s. In the case of peak detection using the Mexican Hat wavelet, the shape can

be characterized by the curve (or slope, roughly speaking) on both sides of the peak. Therefore, the

scales need to be chosen, such that wavelets at selected scales have similar shapes as the peaks of

interest.

From the frequency point of view, each wavelet is essentially a band-pass filter. Wavelets with

different scales have different passbands and bandwidths. The wavelet transform at different scales is

similar to a filter bank. So, if a signal at location u has energy within the passband of a wavelet with

scale s, then the wavelet coefficient at scale s and translation u will be significantly different from

zero. Therefore, the scales need to be chosen, such that the passbands of the wavelets at selected

scales cover the frequency components of the signal of interest.

The two points of view are essentially equivalent. Although this method is inspired by the idea of

“template matching”, it’s hard to quantify the “shape” information. On the other hand, frequency

is a well-defined concept. Therefore, the scales will be determined from the frequency point of view.

Let’s denote the set of scales (in ascending order)to be:

S def
= {s0, s1, . . . , sj , . . . , sJ}, si < sj for i < j (3.3.2.1)

Suppose the peaks of interest have frequency components within the range [ωL, ωU ], then the corre-

sponding scale limits s0 and sJ can be calculated from Eq. (2.4.4.2):

ωU = Cψ(s0) =
1

s0
Cψ

ωL = Cψ(sJ) =
1

sJ
Cψ

Solving for s0 and sJ yields:

s0 =
Cψ
ωU

(3.3.2.2a)

sJ =
Cψ
ωL

(3.3.2.2b)

Now the task is to find a useful set of distribution of the intermediate values between s0 and

sJ . Let me first introduce the concept of “effective coverage” of a wavelet on the frequency domain.



56

Figure 3.3-2: Illustration of bandwidth defined on the Mexican hat mother wavelet. The red curve
is the Fourier transform of the Mexican hat mother wavelet. f0 is the center frequency. f1 and f2

are the cutoff frequencies. BW is the bandwidth.

The coverage of a wavelet at scale s is its Fourier Transform. Although its Fourier Transform is

non-vanishing over the entire frequency domain, it’s only significantly different from zero over a

short interval. There are two extreme cases. If the coverage of the wavelet is considered to be the

entire frequency domain (coverage is ∞), then only one scale value is needed. This case will then

degenerate to simple band-pass filtering. If the coverage of the wavelet is considered to be its peak

location (coverage is 0), then scales need to take all positive real values to cover the entire frequency

domain. This reverts to the continuous wavelet transform. In practice, one seeks a positive, efficient

coverage for wavelet.

As shown in Figure 3.3-2, the bandwidth BW = f2−f1 is the range where the Fourier Transform

is above the half-energy point (-3dB point). So, bandwidth can be used to describe the “effective

coverage” of the wavelet. However, to allow more flexibility, another parameter called “density” d

is introduced. The meaning of d will become clear later on.

The interval centered at Cψ(s), with length of BWψ(s)/d, is defined as the “effective coverage”

or “EC ” of a wavelet ψs,u(t), or more formally:

EC
def
=

[
Cψ(s)− 1

2
· BWψ(s)

d
,Cψ(s) +

1

2
· BWψ(s)

d

]
, where d ∈ R+ is the density (3.3.2.3)

where Cψ(s) and BWψ(s) are the center frequency and the bandwidth of ψ̂s,u, respectively, and ψ̂s,u

is the Fourier transform of the Mexican hat wavelet ψs,u.
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To realize a uniform “effective coverage” of the frequency domain, the following equation must

be satisfied:

Cψ(si)− Cψ(si+1) =
1

2
· BWψ(si)

d
+

1

2
· BWψ(si+1)

d
(3.3.2.4)

Substituting Eq. (2.4.4.2) into Eq. (3.3.2.4) yields:

(
1

si
− 1

si+1
)Cψ =

1

2d
· ( 1

si
+

1

si+1
)BWψ

Rearranging this equation yields:

si+1

si
=

2d · Cψ +BWψ

2d · Cψ −BWψ
(3.3.2.5)

where: 0 ≤ i ≤ J − 1, i ∈ Z

From Eq. (3.3.2.5), scales need to be a geometric series in order to uniformly cover the frequency

domain. Therefore,

sn
def
= s0λ

n, s0 ∈ R+, n = {0, 1, · · · , J} (3.3.2.6)

where:

λ
def
=

2d · Cψ +BWψ

2d · Cψ −BWψ
(3.3.2.7)

Compared with dyadic scaling, in which scales are based on the power of 2, the scales from

Eq. (3.3.2.6) are based on the power of λ. I call the scaling defined in Eq. (3.3.2.6) “generalized

dyadic scaling”, or “exponential scaling”, as scales grows “exponentially”. Both dyadic scaling and

“exponential scaling” are powers with different choices of the base. By choosing different values of

λ, “Exponential scaling” gives much more flexibility to the choice of the scales than dyadic scaling,

while the “exponential” nature still keeps the benefit of “efficiency” from dyadic scaling, in the sense

that the frequency interval of interest is covered uniformly by selected set of scales.

The quality factor (or Q factor) is:

Q
def
=

f0

f2 − f1

from which, the quality factor of the mother wavelet is:

Qψ
def
=

Cψ
BWψ

(3.3.2.8)
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Eq. (3.3.2.7) can be further simplified to:

λ =
2d ·Qψ + 1

2d ·Qψ − 1
(3.3.2.9)

From Eq. (3.3.2.6), the value of J can be found as:

J =
log sJ

s0

log λ
(3.3.2.10)

Substituting Eq. (3.3.2.2) yields:

J =
log ωU

ωL

log λ
(3.3.2.11)

Now consider the role of the parameter d. Eq. (3.3.2.9) shows that a larger value of d translate to a

smaller value of λ. Eq. (3.3.2.11) shows that a smaller value of λ gives a larger value of J . Overall, a

larger value of d gives a larger value of J . Therefore, a larger d implies more band-pass filters within

a fixed frequency interval [ωL, ωU ]. That’s the meaning of “density” as I define it: it’s the density of

band-pass filters within a given frequency interval. For example, Fig. 3.3-3 plots the Discrete-time

Fourier Transform (DTFT) of the wavelets with scales calculated using two different density values.

Fig. 3.3-3a shows the DTFTs of all the wavelets with scales calculated with density of 1; Fig. 3.3-3b

depicts the DTFTs of all the wavelets with scales calculated with density of 3. Each wavelet at

a given scale is essentially a bandpass filter as shown in the figure. From the two plots, it’s clear

to see that a higher density value gives a denser coverage of a given frequency interval by the wavelets.

In Du’s [13], linear scaling are used instead of “exponential scaling” as defined in Eq. (3.3.2.6).

To compare the difference between these two choices, the DTFTs of the wavelets for linear scaling

are plotted in Fig. 3.3-4. Let’s compare it with Fig. 3.3-3b. In both cases, a total of 7 wavelets

covers roughly the same frequency interval. However, linear scaling provides an uneven coverage:

more wavelets cover the low frequency area than high frequency area. On the contrary, exponential

scaling gives a uniform coverage: the wavelets spread out more or less evenly along the frequency

range of interest. Unless it is a priori known that signal peaks have a higher probability to occur

in the low frequency range, it’s better to cover the frequency space uniformly, yielding consistent

detection performance for peaks with both high and low frequency components within the frequency

range of interest.

In summary, for a user-given frequency interval [ωL, ωU ], and given mother wavelet ψ(t) (so that

one can calculate Qψ from Eq. (3.3.2.8)), the set of scales, S, are calculated from Eq. (3.3.2.6),

Eq. (3.3.2.9), and Eq. (3.3.2.11). One must carefully choose the parameter density (d) in order to

optimize the peak detector’s performance. In this thesis, parameter density d is chosen by running
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(a) density: 1

(b) density: 3

Figure 3.3-3: Example of the effect of density on the scales: In both the two plots, DTFTs of the
wavelets with scales calculated from a specific density are plotted. Since the DTFT is symmetric,
only the positive part of the DTFT is shown, and only the area of interest is zoomed in. Scales are
calculated from Eq. (3.3.2.11), Eq. (3.3.2.9), and Eq. (3.3.2.6)
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Figure 3.3-4: Example of wavelets with linear scales

experiments on simulated data with artificial peak signals. Section 3.4.3 talks about how to choose

all the algorithm-related parameters from simulation in detail.

3.3.3 The Statistics of Wavelet Coefficients of Noise

At the beginning of this chapter, it is assumed the noise corrupting the signal is a zero-mean White

Gaussian Noise (WGN). This implies that each noise sample, w[n], follows a Gaussian distribution,

and all N noise samples are mutually independent:

w[n] ∼ N (0, σ2) i.i.d, for n ∈ {1, 2, · · · , N} (3.3.3.1)

In Eq. (2.4.3.3), suppose the support of ψs has a finite time duration, denoted [BL, BR], with

BL, BR ∈ Z. Also, assume wavelets are real-valued, such as the Mexican Hat wavelets. Then

Eq. (2.4.3.3) becomes:

Xs[k] =

BR∑
n=BL

x[n+ k]ψs[n] (3.3.3.2)

When the signal is WGN, w[n], the wavelet coefficients of WGN, Ws[k], is:

Ws[k]
def
=

BR∑
n=BL

w[n+ k]ψs[n]
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(a) WGN and its CWTs (b) ACVS of WGN and CWTs

Figure 3.3-5: ACVS of the wavelet coefficients of WGN: Fig. 3.3-5a (left) shows a WGN with unit
variance and its CWTs with different scales. The top one is the WGN, below which are CWTs with
scales 2, 4, 8, 16, 32 from top to bottom. Fig. 3.3-5b (right) shows the normalized ACVS of the
sequence on the left. The WGN is a 5 second sequence. The scales are chosen so that they are in
the same range as the actual implementation. The sampling rate is 2000Hz as in the spinal cord
injury application.

Because w[n] are jointly independent Gaussian random variable with the zero mean and the same

variance σ2:

Ws[k] ∼ N (0,

BR∑
n=BL

ψ2
s [n] · σ2) (3.3.3.3)

The discrete-time version of Eq. (2.4.1.3a) is:

BR∑
n=BL

ψ2
s [n] = 1

Therefore, each wavelet coefficient of WGN is again a Gaussian random variable with zero mean

and the same variance as the WGN:

Ws[k] ∼ N (0, σ2) (3.3.3.4)

Of course, the wavelet coefficients jointly at each scale s are no longer white; they are colored

Gaussian noise. However, the wavelet support is relatively small (compared to the signal length),

especially at smaller scales. So, the correlation between the wavelet coefficients only exists locally.

For the wavelet coefficients at larger scales, WGN is still a good approximation to model the wavelet

coefficients of noise. This is further verified from the distribution and the auto-covariance sequences

(ACVS) of the wavelet coefficients.

From Fig. 3.3-5, the ACVS of the wavelet coefficients at different scales resemble the Dirac

function, indicating that the coefficients are approximately uncorrelated. Also note that the white

noise approximation is less valid at larger scales, due to a significant amount of overlap in the basis
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Figure 3.3-6: Empirical CDF of the CWT of WGN: black dashed line is the theoretical CDF of a
Gaussian random variable. All other color lines are the empirical CDFs of the CWTs of the WGN
as in Fig. 3.3-5a

functions. With the choice of scales and sampling rate, the ACVS roughly vanishes beyond 50ms

for scale of 32. The data to be processed is much longer than 50ms. Hence, it’s a safe to assume

that the wavelet coefficients of WGN is still white.

From the empirical Cumulative Distribution Function (CDF) of the CWT of the WGN in Fig. 3.3-

6, the CWT of WGN has almost the same CDF as a Gaussian distribution. This further justifies

the assumption of the statistics of the CWT of WGN.

3.3.4 Detection at a Single Scale

After performing the CWT on the EMG signal, the next step is to find peak candidates from the

wavelet coefficients at each single scale. For a set of discrete scales, the CWT results in a matrix of

coefficients. Denote the CWT result of a discrete-time signal {x[n], n = 0, 1, 2, . . . , N}, with choice

of mother wavelet and scales from previous sections, as X:

Xj,k
def
= (X)j,k =

+∞∑
n=−∞

x[n]ψsj ,k[n] (3.3.4.1a)

=

+∞∑
n=−∞

x[n+ k]ψsj [n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ; (3.3.4.1b)
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where Xj,k is the element of X at row j, column k, and sj is derived from Eq. (3.3.2.1). X is a

J + 1 by N + 1, matrix where J + 1 is the total number of scales, and N + 1 is the total number of

samples in the data of interest.

Because the Mexican Hat mother wavelet is used, Eq. (3.3.1.4), shows that if there is a peak signal

at location t0, then the CWT should achieve a local maxima in the neighborhood of t0. However,

due to the existence of noise in the recorded EMG signal, not all local maxima correspond to real

peaks. In fact, for a data interval containing short-duration transients, most of the local maxima

are likely to be noise. So, a binary hypothesis testing on the wavelet coefficients at every scale is

performed to differentiate signals from noise:

H0 : x[n] = w[n] w[n] ∼ N (0, σ2) (3.3.4.2a)

H1 : x[n] = A+ w[n] −∞ < A <∞, w[n] ∼ N (0, σ2) (3.3.4.2b)

where A is the local maxima of the CWT of an actual peak signal. Since the strength of the peak

signal is not a priori known in the EMG peak detection problem, A is modeled as a constant with

unknown magnitude, and the observation length is one sample period.

w[n] is the wavelet coefficient of white Gaussian noise at n. From Section 3.3.3, it is known

that the wavelet coefficient itself is a Gaussian random variable with zero-mean, and with the same

standard deviation as the noise in time domain, although, collectively, the wavelet coefficients of

white Gaussian noise are no longer white.

For the above binary hypothesis testing problem, no universal optimal detector exists. However,

a sub-optimal detector can be formulated as a Generalized Likelihood Ratio Test (GLRT) [28]. The

GLRT decides H1 if:

|x[n]| > γ (3.3.4.3)

where the threshold γ is found from

PFA = Q(
γ

σ
) (3.3.4.4)

where PFA is the probability of False Positive, and Q(x) is the Q-function, which is the comple-

mentary cumulative distribution function of the standard normal distribution, and σ is the standard

deviation of the WGN. In practice, one can choose a desired PFA, then a threshold can be deter-

mined from Eq. (3.3.4.4). For example, by choosing threshold γ = 3 · σ, one can get the theoretical

PFA of 0.13%.

Practically, the detection process on a single scale is slightly different from the theory above.
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All of the local maxima in the wavelet coefficients are found first. Then, the local maxima that are

below the selected threshold γ are removed. The remaining local maxima in the wavelet coefficients

are called “peak maxima”.

Define the parameter “threshold coefficient”, c, as:

c
def
=
γ

σ
; c ∈ R+ (3.3.4.5)

So:

γ = c · σ, (3.3.4.6)

where σ is the standard deviation of WGN, γ is the threshold used in the binary hypothesis test-

ing (Eq. (3.3.4.3)), and c is a parameter that can be adjusted to yield different detection performance.

Formally, from the CWT result X (Refer to Eq. (3.3.4.1)), all the peak maxima produced by the

binary hypothesis testing at scale sj are:

Pj
def
= {k | Xj,k > γ, Xj,k > Xj,k−1, Xj,k > Xj,k+1}, j = 0, 1, 2, . . . J (3.3.4.7)

Sort the elements in Pj in ascending order, and denote the i-th element as pj,i, such as:

pj,k1 < pj,k2 , for 1 < k1 < k2 < mj (3.3.4.8)

pj,i is the column index of the i-th peak maxima at row, sj , in matrix X, and mj is the total number

of elements in Pj :

mj
def
= |Pj |, j = 0, 1, 2, . . . J (3.3.4.9)

Define the set P as the collection of the binary hypothesis testing results performed at all scales:

P def
= {Pj | j = 1, 2, · · · , J} (3.3.4.10)

3.3.5 Combine Peak Candidates across Scales: Identify Ridges

If a proper density d (See Section 3.3.2) is chosen, then there will be a peak maxima across multiple

adjacent scale values in S (See Eq. (3.3.2.1)) around the occurrence of a peak signal. On the contrary,

when there are no peak signals, even if a false positive (local maxima in wavelet coefficients of noise)

is picked up during the binary hypothesis testing at a single scale in Section 3.3.4, it’s very unlikely
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that false positives are produced across multiple adjacent scales at the same neighborhood, due to

the randomness of noise. In the example shown in Fig. 3.3-7, there is one real peak signal at time

index 86. This figure shows that after identifying all the peak maxima, a real peak signal results

in peak maxima across multiple scales. There are other peak maxima identified due to the noise

(around time indices 90, 100, and 130), but they don’t span multiple scales.

Therefore, if peak maxima across the scales are connected to form ridges in the time-frequency

domain, then each peak in the time domain is represented as a ridge in the time-frequency domain

(shown in Figure 3.3-8c). Real peak signals will have relatively long ridges, while peaks from noise

will have relatively short ridges. Hence, false positives can be further eliminated by removing short

ridges.

Given the peak candidates P, all the peak candidates are examined from the largest scale to the

smallest scale. The procedure of ridge identification is as follows:

1. Starts at largest scale. Let j = J . Every peak maxima at the largest scale starts a new ridge.

2. Go to the next scale by updating scale index: j = j − 1. Go over all the peak maxima at the

scale sj . If the peak maxima is close to a peak maxima at scale sj+1, it will be connected to

the existing ridge containing that peak maxima at scale sj+1. If it is not close to any peak

maxima at scale sj+1, then a new ridge is created starting at this peak maxima.

3. Repeat Step 2 until it finishes processing peak maxima at the smallest scale.

There is one parameter that needs to be chosen in order to link the peak maxima to form ridges,

and this parameter is called the time threshold, and denoted as w. It determines if a new peak

maxima is connected to an existing ridge, or is regarded as the start of a new ridge.

More specifically, in Step 2 at scale sj :

for ∀ i ∈ {1, 2, . . . ,mj}

if ∃ k ∈ {1, 2, . . . ,mj+1} : |pj,i − pj+1,k| < w, (3.3.5.1)

then: pj,i is connected to pj+1,k

Otherwise: pj,i is regarded as the start of a new ridge.

where w is the threshold for connecting two peak maxima from adjacent two scales during ridge

identification.

The length of a ridge is defined as the number of peak maxima along the ridge. Define a parameter

called “ridge length threshold”, lthres. Then ridges with length no larger than lthres are removed to
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(a) Simulated peak signal corrupted by white Gaussian noise (SNR: 5)

(b) CWT with identified peak candidates (marked by X)

Figure 3.3-7: Example of identified peak candidates for one peak signal
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further remove the false positives. The parameter, ridge length threshold, is dependent on another

parameter density as defined in Eq. (3.3.2.3). When density is higher, ridges tend to be longer,

because there are more scales at which peak maxima could be produced. On the contrary, lower

density yields shorter ridges on average. Therefore, the ridge length threshold should be positively

correlated to density. For simplicity, assume they are linearly correlated:

lthres
def
= kridge ∗ d (3.3.5.2a)

where kridge ∈ R+ : ridge length threshold coefficient (3.3.5.2b)

In the remaining ridges, each ridge corresponds to one peak signal. The location of the peak is

estimated from the location of the peak maxima on the ridge that has the largest wavelet coefficient.

The idea is that the wavelet coefficient measures the pattern matching between a real peak and

a wavelet function. The location of the wavelet function which gives the best pattern matching

naturally gives the best estimation of the location of the peak signal.

3.3.6 The Overall Detection Algorithm

This section first summarizes the overall peak detection algorithm by repeating some of the impor-

tant steps from previous sections, and then discusses in more details the parameters associated with

the algorithm.

Suppose a given data recoding x(t), t ∈ [t1, t2] contains Np peak signals:

x(t) =

Np∑
i=1

Ai(t− τi) + wσ(t)

where Ai(t) is the i-th peak signal containing one peak at 0, and τi is the location of the i-th peak in

x(t), and wσ(t) the background noise, which is assumed as stationary zero-mean WGN with known

variance σ2.

This signal is sampled at a sampling rate fs = 1/Ts, where Ts is the sampling period. This

results in a sequence of signal samples, the discrete-time signal, x[k] = x(tk), for k = 0, 1, · · · , N ,

where N = b(t2 − t1)/Tsc. As a result, the locations of the peak signals in the discrete-time case

become pi, for i = 1, 2, · · · , Np, such that pi ∈ {0, 1, 2, · · · , N}.

Suppose the peak signals have frequency components within the range [ωL, ωU ], and a set of

parameters associated with the algorithm have been chosen :

• density, d: Density of the scales as defined in Eq. (3.3.2.3).
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• threshold coefficient, c: The coefficient for calculating the threshold used in GLRT, as

defined in Eq (3.3.4.6).

• time threshold, w: The threshold for connecting peak maxima from two adjacent scales

during ridge identification, as defined in Eq. (3.3.6.1).

• ridge length threshold coefficient, kridge: The coefficient for calculating the length thresh-

old when removing short ridges, as defined in Eq. (3.3.5.2).

The overall procedure for peak detection:

1. Perform CWT on raw data, x[k], k = 0, 1, 2, · · · , N , with Mexican Hat mother wavelet, ψ[n]

and a choice of scales, sj , j = 0, 1, 2, · · · , J , calculated from Eq. (3.3.2.6), (3.3.2.9), and

(3.3.2.11), to obtain a matrix of wavelet coefficients X.

Xj,k
def
= (X)j,k =

+∞∑
n=−∞

x[n]ψsj ,k[n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ;

Accordingly, the wavelet coefficients at scale sj is denoted as Xj,:, the j-th row of the matrix X.

2. Identify peak maxima by performing GLRT on local maxima of Xj,: for all j = 0, 1, 2, · · · , J ,

as illustrated in Eq. (3.3.4.7) and (3.3.4.6), to obtain a set of peak maxima at scale sj , whose

column indices are denoted as:

Pj
def
= {k | Xj,k > γ, Xj,k > Xj,k−1, Xj,k > Xj,k+1}, j = 0, 1, 2, . . . J

Sort the elements in Pj in ascending order, and denote the i-th element as pj,i, such as:

0 ≤ pj,k1 < pj,k2 ≤ N, for 1 < k1 < k2 < mj

pj,i is the column index of the i-th peak maxima at row, sj , in matrix X, and mj is the total

number of elements in Pj :

mj
def
= |Pj |, j = 0, 1, 2, . . . J

3. Identify all the ridges by linking neighboring peak candidates across scales, as described in

Section 3.3.5.

Starting at scale sJ , initiate a new ridge for every peak maxima pJ,i, i = 1, 2, · · · ,mJ .

For j = J − 1, J − 2, · · · , 1, 0, at scale sj :
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for ∀ i ∈ {1, 2, . . . ,mj}

if ∃ k ∈ {1, 2, . . . ,mj+1} : |pj,i − pj+1,k| < w, (3.3.6.1)

then: pj,i is connected to pj+1,k

Otherwise: pj,i is regarded as the start of a new ridge.

The result is a set of ridges, denoted as {Ri, i = 1, 2, 3, · · · , NR}, where NR is the total num-

ber of ridges detected. Ri is a set of pair of indices: Ri = {(rxi,j , ryi,j), j = 1, 2, · · · , Li},

where rxi,j and ryi,j give the row and column index (as in X ) of the j-th peak maxima along

ridge Ri, respectively, and Li = |Ri| is the number of peak maxima along the ridge.

4. Remove ridges whose length, Li are no larger than lthres.

5. Estimate peak location from the remaining ridges.

For each Ri, the location of the peak signal associated with it is estimated as follows:

( ˆrxi, ˆryi) = arg max
(x,y)∈Ri

X(x, y) (3.3.6.2)

Then:

p̂i = ˆryi, for i = 1, 2, · · · , NR (3.3.6.3)

Fig. 3.3-8 shows an example of the peak detection process.

There are totally four parameters associated with the peak detection algorithm as mentioned

above. Once the four parameters are chosen, the algorithm is fully specified and can run by itself.

The four parameters needs to be chosen carefully, as they can have a big effect on the detection

performance. The remaining of this section discusses the roles of the parameters and their effect on

the detection performance.

The density, d, determines the relative length of the ridges identified in the algorithm. If d is

very small, then a peak signal wouldn’t have large wavelet coefficients (and hence peak maxima)

across multiple scales, so the ridges for peak signals are short. As a result, the length of the ridge

of a true peak signal does not differ too much from that of noise. Therefore, when removing short

ridges, true peak signals are removed, too, resulting in a poor detection rate. If d is very large, then

the ridges from noise could potentially be long. Despite that, the biggest issue is the computation



70

(a) Simulated peak signal corrupted by WGN (SNR: 5) and identified peaks

(b) CWT with identified peak candidates (marked by X)

(c) CWT with identified ridges

(d) CWT with identified ridges after removing short ridges

Figure 3.3-8: Overall peak detection process based on the wavelet method
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time. The computation time linearly increases as the number of scales. In summary, it’s preferable

to choose a density that is as small as possible, and yet gives very good detection rate.

The threshold coefficient, c, is the first threshold in what’s effectively a double-threshold method,

and has direct impact on the detection results on a single scale. At one scale, when c is large,

although false alarm rate can be small, a weak peak signal is likely to be missed: no peak maxima

produced at the occurrence of the peak signal. This results in short ridges or even no ridges for a

true peak signal. When c is small, more noise components are picked up as peak maxima. This

results in long ridges for noise and more computation time, as the ridge identification process is

positively correlated to the number of peak candidates at every scale. For WGN, c = 3 theoretically

removes 99.9% of noise samples as shown in Eq. (3.3.4.4). However, this also removes lots of real

peak signals when signals are weak. The advantage of this double-threshold method is that a smaller

c (smaller than 3) can be chosen to achieve better detection rate for weak peak signals, and later

the false positives are further removed by removing short ridges.

The time threshold, w, has effect on the accuracy of the ridge identification process. If w is too

large, then peak maxima from different peak signals are likely to be connected as one ridge. In

addition, peak maxima from noise will be connected to form a long ridge. When w is too small,

then even peak maxima from the same true peak signal are not connected, resulting in multiple

short ridges for one true peak signal. If they are short enough to be removed in the following step,

then a true real peak will be missed. This parameter is related to the choice of density d. When d

is larger, then peak maxima from adjacent scales are closer to each other, and hence only a smaller

w is needed to connect peak maxima from the same peak signal. When d is smaller, a large w is

needed to ensure peak maxima from the same real peak signal are connected to form one ridge.

The ridge length threshold coefficient, kridge, is the second threshold in the proposed double-

threshold method, and has a direct impact on the ridge-removing process. For a large kridge, less

noise is falsely detected, resulting in small false alarm rates; however, less true peak signals are

found, resulting in small detection rates as well. Hence, a proper kridge needs to be chosen for best

overall detection performance.

Each of the four parameters has different effect on the overall detection performance in a rather

complicated way, and they are correlated in a complicated way, too. Therefore, the optimal param-

eters are chosen from running experiments on simulated data sets.

3.3.7 Detection of Peaks and Troughs in the EMG signal

Before showing simulation results, let’s first consider how to apply the peak detection algorithm to

the EMG signal. The EMG signal have both peaks and troughs, as shown in Fig. 3.3-9. The goal

in EMG peak detection is to detect both the peaks and the troughs, which can be done as follows.
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Figure 3.3-9: Peaks and Troughs of an EMG template waveform (The amplitude of the waveform is
scaled so that the maximum absolute value is 1µV.)

Assuming the EMG signal is corrupted by zero-mean WGN, the follow procedure detects both the

peak and the troughs of the EMG signal. An example process is shown in Fig. 3.3-10.

1. rectify the raw EMG signal x[n] to obtain the positive part xp[n]. See Fig. 3.3-10b.

xp[n] =


x[n] if x[n] ≥ 0

0 if x[n] < 0

2. perform wavelet-based peak detection on xp[n] to obtain positive peaks {p̂+
i }.

3. obtain the negative part of the data xn[n] by flipping the raw EMG signal and rectifying the

EMG signal x[n]. See Fig. 3.3-10c.

xn[n] =


−x[n] if x[n] ≤ 0

0 if x[n] > 0

4. perform wavelet-based peak detection on xn[n] to obtain negative peaks, or troughs {p̂−i }.

5. combine results from Step 2 and Step 4 to get all peaks {p̂i} = {p̂+
i } ∪ {p̂

−
i }. See Fig. 3.3-10a.

3.4 Simulation

Simulations are used for two goals: one, to choose optimal algorithm parameters, and two, to

evaluate the peak detection algorithm on “ground truth” data, and compare it against other methods.
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(a) Simulated EMG signal with overall peak and trough detection results

(b) Rectified simulated EMG signal with peak detection results

(c) Flipped and rectified simulated EMG signal with trough detection results

Figure 3.3-10: Example process of detecting peaks and troughs of the EMG signal
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This section first describes the simulated data sets. Then, several different ways to evaluate the

performance of a peak detection algorithm are introduced. After that, the idea behind the selection

of the optimal algorithm parameters from simulations is explained. Lastly, to demonstrate the

effectiveness of the proposed peak detection algorithm, other peak detection methods are introduced

and compared against it.

3.4.1 Simulated Ground Truth Data

The peak detection algorithm is designed to detect transient peak signals from a noisy recording,

assuming noise is known WGN. Therefore, the simulated data is the summation of a series of transient

peak signals and WGN. The simulated signal x[n] can be expressed as:

x[n]
def
=

Np∑
i=1

P [n− pi] + wσ[n] (3.4.1.1)

where P [n] is a transient peak signal with peak at time index 0, pi is the location of the i-th transient

signal peak, Np is the number of transient peak signals, and wσ[n] is the WGN with variance of σ2.

pi is chosen randomly and depends on the sparsity of the transient signals. sparsity is defined as the

fraction of signal-free samples (noise-only samples) over the total number of samples. If signal P [n]

has length M , then every M/(1− sparsity) samples of data contains exactly one transient signal on

average. Hence, the total length of data x[n] is M/(1− sparsity) ·Np.

Two kinds of simulated data are generated. The first one is a generic peak signal embedded

in WGN, since the algorithm is designed to work for any generic peak signal. The second one is a

simulated EMG signal, which is used to demonstrate the effectiveness of the peak detection algorithm

on the EMG signal. In both cases, the same equation (Eq. (3.4.1.1)) is used, with difference choices

of peak signal model P [n].

3.4.1.1 Simulated Generic Peak Signals

A half-period sine wave is used as the peak signal model, so that a precise description of the fre-

quency component of the peak signal is possible. This allows a good control over the performance

of the peak detection. In addition, the half-period sine wave naturally resembles a peak. Consider

the following peak signal model:

Pf [n]
def
= A · sin(π · n

Lf − 1
), n = 0, 1, 2, · · · , Lf − 1 (3.4.1.2)

Lf =
fs
2f

+ 1 (3.4.1.3)
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Figure 3.4-1: Template waveform of the peak signal model. (The amplitude of the waveform is
scaled so that the maximum absolute value is 1µV.)

where A is the amplitude of the peak, Lf is the length of the peak signal, which can be calculated

from the sampling rate fs and the frequency of the sine wave f in Eq. (3.4.1.3). The extra 1 in

Eq. (3.4.1.3) is needed since both ends of the one half-period need to be included. From the above

equations, one can see that the frequency information or the sampling rate are not needed in order

to obtain simulated data; all are needed is the length of the peak signal. However, in practice, the

discrete data is obtained with certain sampling rate, and the frequency information of the signal is

specified independently of the sampling rate. Therefore, in practice, Eq. (3.4.1.3) is used to calculate

the length of the peak signal. When synthesizing peak signals, Eq. (3.4.1.1) is used by substituting

P [n] with Pf [n] with given f . Fig. 3.4-1 shows the waveform of the peak signal model.

3.4.1.2 Synthesized EMG Signals

Real EMG signal is not good for evaluating the peak detection performance, because it’s hard to

determine the ground truth. Although experts can select true EMG peaks from the noisy recording

based on their expertise and years of experience, manual detection is subjective, and leads to bias and

inaccuracy. In particular, the proposed detection algorithm focuses on signal with such low SNR that

it’s almost impossible for human to detect by visual inspection. In addition, a real EMG signal suffers

from unknown characteristics of noise, which can affect the detection performance significantly.

When evaluating the detection performance of the peak-detection algorithm, it’s preferable to single

out the effect of the algorithm itself on the detection performance. Otherwise, when detection

performance is bad, it’s impossible to determine if the algorithm is not good or estimation of the

noise is inaccurate. Therefore, synthesized EMG signal is used instead of real EMG signal. When

applying peak detection algorithm to a real EMG signal with unknown characteristics of noise, the

noise characteristics from real EMG signal is first estimated, and then the peak detection algorithm

is carried out with the estimation result.
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(a) R MH (b) L MG (c) L VL

Figure 3.4-2: MEP template waveforms used in the synthesized EMG signal. The MEP waveforms
are picked from the real EMG signals of different muscles. The muscle name is given in its short
form under each MEP waveform. For the complete names of the muscles from their short names,
please refer to Appendix A. The amplitude of the waveform is scaled so that the maximum absolute
value is 1µV.

The synthesized EMG signal uses actual EMG waveforms hand-picked from clinical EMG record-

ings, and therefore contain characteristics of the real EMG signal. However, the real EMG signal

suffers from noise, so that the hand-picked EMG waveforms are noisy. To remove the noise, a

point-average of several EMG waveforms with similar shapes is constructed. A Matlab program

with graphic user interface to facilitate this process is implemented. This graphic tool is used to

hand-pick several typical EMG waveforms from the real EMG signal. When synthesizing the EMG

signal using Eq. (3.4.1.1), one simply substitutes P [n] with a chosen EMG waveform WEMG[n].

Fig. 3.4-2 shows three recorded EMG waveforms which will be used to synthesize the EMG signal in

the subsequent experiments. These three waveforms were chosen since they differ from each other

in the number of peaks, and they represent a large body of the real EMG waveforms.

3.4.1.3 Definition of Signal-to-Noise Ratio (SNR)

The peak detection algorithm gives different performance for signals with different SNRs. When

comparing performance of different algorithms, a fixed SNR is maintained. Since the signal is a

transient signal, the traditional definition of SNR doesn’t apply since the energy or power of the

signal depends on the density of the signals: energy or power increases if there are more signals within

a fixed time interval. Therefore, the notion of transient average power is used in the definition of

SNR:

SNR
def
=
Psignal
Pnoise

=
1

s2−s1+1 ·
∑s2
n=s1

s[n]2

σ2
(3.4.1.4)

where [s1, s2] is the support of the transient signal s[n], σ2 is the variance of the WGN. For WGN,

the power is the variance.

This definition gives a qualitative description of the noise level in a signal: a large SNR means

a relatively low noise level. For a fixed signal shape, a higher-SNR signal will give better detection

performance. However, for signals with different shapes, the detection performances under different
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SNRs are non-comparable: A signal with higher SNR doesn’t necessarily give better detection

performance than another signal with lower SNR. Hence, this definition is used to quantitatively

measure the noise level for a fixed signal model.

3.4.1.4 Procedure of Synthesizing Simulated Data

Simulated ground truth data was synthesized as follows:

1. The sampling rate, fs, is selected to be 2000, which is the sampling rate of the clinical EMG

signal of interest.

2. Choose the number of peak signals N , and sparsity. In this thesis, N is chosen to be 300, and

sparsity is chosen to be 80%.

3. Choose either the generic peak signal model or the EMG signal model, and obtain peak signal

model P [n]. For generic peak signal model, choose amplitude A and frequency f , and use

Eq. (3.4.1.2) to calculate Pf [n], and let P [n] be Pf [n]. For EMG signal model, choose a

waveform, and let P [n] be WEMG[n]. In this thesis, A is chosen to be 100, and f is chosen to

be 60Hz because that’s the major frequency component of a typical EMG signal.

4. Choose SNR and calculate σ from Eq. (3.4.1.4). Typical SNR takes values from 1 to 100.

5. Based on the sparsity and the signal length M , randomly choose τi from interval [1 + (i− 1) ·

M/(1− sparsity) + buffer, i ·M/(1− sparsity)] for i ∈ {1, 2, 3, · · · , N}. buffer is used to make

sure two transient signals don’t overlap with each other.

6. Synthesize WGN wσ[n] with variance of σ2 and length M/(1− sparsity) ·N .

7. Obtain synthesized data x[n] from Eq. (3.4.1.1).

3.4.2 Performance Evaluation Methods

To evaluate the performance of the peak detection algorithm, the terminology from pattern match-

ing or machine learning in the case of binary classification is borrowed (See Section 2.3.2).

Suppose the ground truth of locations of signal peaks is denoted as a set P. For any given peak

detector, its output is a set of peak locations denoted as a set O. Accordingly, the following 3

quantities can be defined:

• True positive TP
def
= |P ∩ O|, the number of EMG peaks that are detected.
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• False positive FP
def
=
∣∣O \ P∣∣, the number of non-EMG peaks (peaks from noise) that are

detected (number of false alarms).

• False negative FN
def
=
∣∣P \ O∣∣, the number of EMG peaks that are NOT detected (number

of missed detections).

To quantify detection performance, terms from pattern recognition as discussed in Section 2.3

are employed.

• Recall is the fraction of real EMG peaks that are detected

• Precision is the fraction of detected peaks that are actual EMG peaks

Or formally:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Recall is also called Detection Rate in detection theory or hit rate in the signal processing field,

or sensitivity in statistics. A good detector has a high recall (close to 1). Precision is directly related

to False Discovery Rate (FDR) as used in statistics: Precision = 1−FDR. The concept of precision

describes another very important aspect of the peak detection algorithm. A high recall only means

most of the true signal peaks were found, it doesn’t imply anything about the “accuracy” or “preci-

sion” about this detection method. Along with all the true signal peaks, “fake peaks” or noise could

also be labeled as peak signals. Consider an extreme case. If a detector labels all peaks as signal

peaks, then the recall can be as high as 1. However, the precision will be extremely bad: close to 0

for transient peak signals.

When comparing two detectors, one detector is better if it has both higher recall and precision.

However, it’s not easy to compare two detectors if one detector has higher recall but lower precision:

it depends on which quantity is more important to the specific application. For example, in radar

detector for military purpose, one wants to have extremely high recall, but just a decent precision.

Therefore, different emphasis or weights can be placed on recall and precision when measuring the

performance of a detector according to the specific application. F-score is defined to quantitatively

describe the overall performance. The general formula for F-score with a positive real β is:

Fβ
def
= (1 + β2) · precision · recall

β2 · precision+ recall
(3.4.2.1)
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By choosing different values of β, the F-score puts different weights on the precision and recall: a

larger β means more emphasis on recall while a smaller β means more emphasis on precision.

In this thesis, F1 score, the harmonic mean of precision and recall is used:

F1
def
= 2 · precision · recall

precision+ recall
(3.4.2.2)

Both precision and recall change as the SNR of the data changes, so the performance of the detector

is evaluated under different SNR environments, especially under a low SNR environment.

In traditional detection theory, a Receiver Operating Characteristic (ROC) curve is plotted for

a binary detector. The ROC curve is a plot of the relationship between the detection rate (PD)

and the false alarm rate (PFA), when the threshold takes different values. Different threshold of

the detector yields different pairs of (PD, PFA). Typically, a higher threshold yields smaller PD and

smaller PFA. A ROC curve is used to compare between different detectors. The ROC curve of a

better detector is closer to the upper-left corner of the graph, as that region gives high PD and low

PFA. In this thesis, recall vs. precision curve is plotted. The curve of recall vs. precision is a similar

plot to the traditional ROC curve. In fact, recall is the same as the detection rate PD. In the

peak detection problem, false-alarm rate PFA is ill-defined. As a result, the closely related quantity,

precision, is used instead. A detector with a small false-alarm rate normally gives a large precision.

In recall vs. precision curve, a better detector yields a curve closer to the upper-right corner of the

graph, as that region gives both high precision and recall.

More specifically, precision vs. recall curve is plotted by varying the threshold coefficient c in the

proposed peak detector under a very low SNR environment. The threshold coefficient c is varied

because it’s used in the binary hypothesis testing during peak maxima detection at each scale.

In summary, following plots will be generated based on the detection results of a given peak

detector.

• fix the detector parameter; find the precision, recall, and F-score of the detector for different

SNRs. Evaluate the following relationships:

– precision vs. SNR

– recall vs. SNR

– F-score vs. SNR

• fix the SNR of the data; find the recall and precision of the detector with different detector

thresholds. Evaluate the following relationships:

– recall vs. precision
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– recall vs. threshold

– precision vs. threshold

3.4.3 Choose Algorithm Parameters from Simulation

There are four parameters associated with the peak detection algorithm. It’s impossible to formulate

an analytical formula that relates the detection performance with the four parameters. Hence, I

propose to choose the parameters by experimenting on simulated data that is representative of the

application.

As discussed briefly in the beginning of Section 3.3, the problem is formulated as a generic peak

detection problem regardless of the specific shapes of the EMG signal. Therefore, the simulated

generic peak signal is used rather than the simulated EMG signal for the purpose of selecting algo-

rithm parameters. Please note that a set of “optimal parameters” is not necessarily the best, but

the best for the given data. In fact, choosing the algorithm parameters from experiments is rather

a subjective process. In this thesis, I just chose one that gives an overall satisfying and seemingly

best detection performance.

To find the parameters that work well for various shapes of peaks, the detection performance

for peak signals with various frequencies is tested. Also, a relatively large sparsity in generating the

simulated data is used, in order to prevent a situation where the wavelet coefficients from two close

peaks interfere with each other. In practice, real signals, such as the EMG signal, will often have

two peaks very close to each other. However, when choosing the algorithm parameters, I want to

focus on the ability of the algorithm at detecting single peak signal from noisy environment. The

next section will demonstrate the ability of the algorithm to detect EMG peaks, and shows that the

peak detection algorithm works well even when peaks are close to each other.

In general, the algorithm parameters are chosen by brute-force search. The peak detection

performance is checked for different combinations of the 4 parameter values and visually inspect the

recall vs. precision curve and the F-score vs. SNR curve to choose the best one. Firstly, the ranges of

reasonable values for all the parameters are chosen. Then several candidate values within the range

are chosen. If many candidate values are chosen for every parameter, then there will be a lot of

4-parameter pairs, and hence the time to run the peak detection for all parameter pairs is enormous.

To avoid this, at first stage, only a few candidate values are roughly chosen, as this step only aims

to narrow down the range of the parameters. In the next stage, candidate values are finely selected

in the new range. In this way, a set of good parameters can be quickly found.

When initially checking the performance of the detector, the F-score vs. SNR curve is used to

find a range of candidate parameter pairs, and then the recall vs. precision curve is used to select the

best one among the candidates. The F-score is a quick way to select good candidate values, since
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those parameters that give very low F-score (F-score < 0.9) can be automatically filtered. After

that, the parameter selection process focuses on the low-SNR data (SNR = 1 ∼ 10), and select the

one parameter pair that gives the best recall vs. precision curve.

From observation, the optimal parameters are different for different SNRs, but the detection

performance doesn’t differ too much within a finite range of SNRs. For example, it’s good enough

to have just one set of parameters for low-SNR (SNR < 10) data, and one set of parameters for

high-SNR (SNR > 10) data. In practice, one can choose a proper set of parameters based on the

actual noise levels in the application. The EMG application focuses on low-SNR data, since this is

the most challenging and interesting problem.

From the physiology of the EMG signal, the frequency range of interest is 0 ∼ 400Hz, and the

major component is at 60Hz. Hence:

fL = 20 (3.4.3.1)

fU = 400 (3.4.3.2)

The lower frequency bound, fL cannot be 0, since this implies an infinite range of scales in the CWT.

20Hz is a good lower bound, as most of the frequency components in a EMG signal is above 20Hz.

Note that in the theoretic derivation, angular frequency, ω, (with unit of rad/sec) is used to

represent frequency, but in practice, people most often use frequency, f , (with unit of Hz). The

previous equations using ω to present frequency can be adapted to frequency in Hz with simple

relation:

ω = 2π · f

Other parameters used in the simulation are:

fs = 2000

sparsiy = 80%

With the above parameters, the best algorithm-parameter pair selected is:

density: d = 3; (3.4.3.3a)

threshold coefficient: c = 2.2; (3.4.3.3b)

time threshold: w = 5; (3.4.3.3c)

ridge length threshold coefficient: kridge = 0.6; (3.4.3.3d)
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3.4.4 Experimental Results

3.4.4.1 Methods for Comparison

This section describes a couple of peak detection methods widely used in the literature, and they

will be implemented for comparison with the proposed method.

The most straightforward, widely used in EMG clinics, method for peak detection is a simple

amplitude thresholding, in which only peaks passing certain threshold are identified as real peaks;

peaks below the threshold are considered noise. This method cannot work well, if the sampling rate

is high or the SNR is low. In either case, the problems occur when noise results in peaks on the

rising and falling side of a true EMG peak. These peaks normally have large amplitude such that

they pass the threshold, but arise from noise.

A better method is to incorporate some prior knowledge about the peak shapes: only peaks with

certain width are considered real peaks, assuming peaks from noise have small width. Therefore,

the simple thresholding method can be improved by eliminating peaks from noise that are near

a true peak. This way, the peaks on the rising and falling sides are shadowed by the true peak.

Specifically, a threshold on the minimum separation between two peaks is set: if two peaks are

within the separation threshold, the smaller one is removed, and only the larger one is kept. This

method is referred to as the improved amplitude thresholding in this thesis. In the implementation,

the separation threshold is set to be 5 samples which is 2.5ms, considering the data sampling rate is

2000Hz. This threshold is based on the fact that the simulated peaks have a base frequency of 60Hz.

However, this method puts too much restrictions on the width of the peaks. If the peak signals have

a wide range of widths, then the performance of this method would be affected a lot.

A further improved method is to use digital filtering before peak detection. By digitally low-pass

filtering the data, peaks from noise will be removed, and this works for a wide range of shapes

of peaks, unlike the method above. I used Matlab’s digital filter design tool to implement this

filter with passband of 400Hz and stopband of 450Hz. However, digital filtering can only suppress

noise to a certain level. Because a digital filter must allow all peaks of interest to pass, it must

have a relatively wide passband. Therefore, for a peak with a particular frequency component, the

filtering performance is not very good. In other words, digital filtering is not very selective to the

peak signals. In fact, for very low SNR data, digital filtering wouldn’t separate real peaks from

noise very well. This is where the wavelet method shines. CWT at each scale is similar to digital

filtering with a specific passband. Hence, for every peak signal, with a proper choice of density value,

there would exists a couple of selected scale values, such that the passband of the wavelets at those

scales cover the major frequency components of the peak signal. As a result, the CWT is much

more selective than simple digital filtering. In addition, the additional process of ridge identification
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further separates the peak signals from the noise.

To compare with classical transient detection methods, Nuttall’s classical power-law detector [43]

was selected as a benchmark. Consider a window size of 2w + 1, w ∈ Z+, then the power at sample

i given data x[k], k ∈ Z is defined as:

p[i]
def
=

1

2w + 1

i+w∑
k=i−w

x[k]2

The threshold on the power is chosen to be a coefficient times the power of the noise (the variance).

This method is termed Nuttall’s power detector.

To compare with other peak detection method using the wavelet transform, Du’s wavelet-based

detector [13] was selected for comparison. Du’s paper offers very good peak detection results in

mass spectroscopy when compared to other classical peak detection algorithms. But the proposed

wavelet-based double thresholding method in this thesis offers more theoretical support and allows

users to fine tune the parameters specifically for their applications. It will be seen that this detector

offers better detection results compared to Du’s method. I call this method Du’s wavelet detector.

As a upper bound for the peak detection performance, I also proposed a method similar to the

“Matched Filtering” in classical detection theory, termed the matched filter. This method uses the

peak signal itself as the digital filter, and find the correlation (by running convolution) between data

and the peak signal (See Eq. (2.3.1.9). After that, peaks above a certain threshold are selected to

be actual peaks. This method makes use of full knowledge of the signals, so it naturally gives the

optimal performance, and serves as a upper bound for evaluating the peak detection algorithm.

In summary, I have implemented the following 7 methods (6 from literature for comparison;

“wavelet” refers to the wavelet-based double-thresholding method proposed in this thesis), and have

performed experiments on simulated data with these methods. The legends on the resulting plots

will match the method names given in the following list.

• amplitude thresholding

• improved amplitude thresholding

• low-pass filter

• power-law detector

• Du’s paper

• wavelet (developed in this thesis)

• matched filter
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Figure 3.4-3: Example of simulated data with 10 peak signals (60Hz peak with SNR = 1)

3.4.4.2 Test Results on the Generic Peak Signal

Fig. 3.4-3 shows a section of an example simulated peak signals with SNR being 1. This plot shows

that for data with very low SNR (e.g., SNR = 1), it’s almost impossible to visually detect the real

signals. Since the EMG signal has most of its frequency component around 60Hz, peak detection will

be evaluated on the generic peak signal of 60Hz. Fig. 3.4-4 compares the recall vs. precision curves of

all seven methods previously described in Section 3.4.4.1. In addition, the recall vs. threshold curves

and the precision vs. threshold curves are plotted to give the readers more insights. Figure 3.4-4a

verifies the basic intuition about the 7 methods: amplitude thresholding, being the simplest method,

performs worst; improved amplitude thresholding gives slightly better results; more complex meth-

ods, such as low-pass filtering, power-law detector, and Du’s method give even better performance.

The wavelet-based algorithm performs significantly better than all of those methods. In fact, the

performance of the wavelet-based algorithm is close to the upper bound given by the matched fil-

tering. As can be seen from Fig. 3.4-4b, the recall for the wavelet-based method is similar to that

of low-pass filtering, but lower than Du’s method. However, the precision evaluation in Fig. 3.4-4c

shows that the wavelet-based method has the highest precision among all methods. Even though the

power-law detector gives close precision, its recall is much worse. In general, there is always a trade-

off between precision and recall: a method giving good recall usually suffers from bad precision, vice

versa. The wavelet method is designed to give a good overall performance (good recall vs. precision

curve) without sacrificing too much on either recall or precision. The fact that the wavelet method

gives best precision and reasonable recall comes from the intuition behind the method: by imposing

double-thresholding, the amount of false positives can be reduced, hence increasing precision, while
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(a) recall vs. precision

(b) recall vs. threshold (c) precision vs. threshold

Figure 3.4-4: Experimental Results on the generic peak signal. Recall and precision are calculated
under different thresholds for the proposed wavelet method (labeled as “wavelet“ in the plot), as
well as other six methods for comparison. For detailed descriptions on what methods the labels
refer to, please see Section 3.4.4.1. The frequency of the peak signal is 60Hz, and the SNR is
1. (a) gives the recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the
precision vs. threshold curves.

not hurting too much the detection rate, or recall.

Now compare the 7 methods in terms of their F-scores. Fig. 3.4-5 calculates the recall, precision,

and F-score of the 7 methods for peak signals with SNR ranging from 1 to 50. Naturally, a higher

SNR signal gives better detection performance, as shown in all three plots. From Fig. 3.4-5a, the

wavelet-based method performs much better than all other methods except the power-law detector,

and almost as well as the matched filtering method, the theoretical upper bound. The wavelet

method gives slightly lower F-score compared to the power-law detector in high-SNR range (which

is less interesting in the application), but if one zooms in on the low-SNR range, then the power-law

detector drops its F-score significantly. Since the goal of this thesis is to detect low-SNR EMG

peaks, the wavelet method is much better than the power-law detector. If looking at the recall
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(a) F-score vs. SNR

(b) recall vs. SNR (c) precision vs. SNR

Figure 3.4-5: Experimental results on the generic peak signal. Recall and precision are calculated
under different SNRs for the proposed wavelet method (labeled as “wavelet“ in the plot), as well as
other six methods for comparison. For detailed descriptions on what methods the labels refer to,
please see Section 3.4.4.1. The frequency of the peak signal is 60Hz, and the SNR is 1. (a) gives the
F-score vs. SNR curves; (b) gives the recall vs. SNR curves; (c) gives the precision vs. SNR curves.

and precision plots, one can tell that the wavelet-based method has slightly lower recall as Du’s

method, but much better precision over Du’s method. This again justifies my observation in the

recall vs. precision curves: Du’s method gives good recall while the power-law gives good precision,

but the wavelet method gives the best overall performance.

3.4.4.3 Test Results on the EMG signal

To demonstrate that the wavelet-based peak detection algorithm works for various shapes of EMG

signals, I synthesized three simulated EMG signals. Each simulated EMG signal uses one real EMG

waveform from Fig. 3.4-2. As can be seen from that figure, the EMG waveforms are very different

from each other. In total, peak detection is performed on three synthesized EMG signals. In the

following, I will present the experimental results on all three synthesized EMG signals.
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For the EMG signal, there doesn’t exist a matched filtering method. I can only compare the

wavelet-based method with the rest of methods from literature. Also, from last section, the F-

score isn’t highly discriminative since the focus is on the low-SNR range, and hence only the re-

call vs.precision curves are plotted for comparison.

As can be seen from Figure 3.4-6, Figure 3.4-7 and Figure 3.4-8, the detection performance is

consistent among all three synthesized EMG signals. The wavelet-based method always has better

overall recall vs. precision curves than other methods for all three types of synthesized EMG signals.

As predicted, the wavelet-based method has a high precision due to its double thresholding approach,

without hurting the detection rate performance too much. Since this detection performance is similar

to the one realized in the generic peak signal of the last section, I will not analyze every curve in

details. The results are given to demonstrate the effectiveness of the wavelet-based method on the

EMG signal. The performances on three different EMG signals of very different shapes demonstrate

that the wavelet method can tackle the main challenge in the detection of the EMG signal.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-6: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2a. The SNR is 1. Recall and precision are calculated under different thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-7: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2b. The SNR is 10. Recall and precision are calculated under different thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-8: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2c. The SNR is 10. Recall and precision are calculated under different thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.
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Chapter 4

Segmentation and Clustering of
MEPs

This chapter describes a series of steps for processing the EMG signal in order to extract useful

information. The EMG signal was recorded from patients with spinal cord injury during their reha-

bilitation described in [24]. For a complete description on the physiology and characteristics of the

said EMG signal, please refer to Section 2.1 and 2.2.

During the rehabilitation training in [24], electrical stimulation is applied to the spinal cord.

The stimulation parameters (such as amplitude, frequency, and electrode configurations) are varied

manually by the researchers in order to study the different effects of the electrical simulation on

the spinal neurons, and to find the optimal set of parameters. The stimulation with one fixed set

of stimulation parameters is called one “event”. Every event lasts for a couple of seconds. As a

result, the processing of the EMG signal is carried out on every event individually. There are several

benefits in doing so. Firstly, by performing EMG processing on a short interval, it is safe to assume

the statistics of the noise are stationary. Secondly, the EMG signal from different events is likely

to show different statistics, and the performance is good when the signal in regard has a stationary

statistics. Last but not least, it’s desired to compare the characteristics of the EMG signal between

different events.

The muscle responses in the EMG signal are called Motor Evoked Potentials (MEPs). MEPs

can be classified into two subgroups: monosynaptic MEPs and polysynaptic MEPs. They are also

sometimes referred to as the early responses and late responses, respectively, due to the differences of

their arrival times after the electrical stimulus. After the peaks of MEPs are detected using the peak

detection methods described in Chapter 3, a series of interesting tasks can be further carried out in

order to expose finer structures of the MEPs. This information can assist the neurophysiologists in

assessing the underlying neural activities of the spinal cord.

The fundamental two tasks are to segment and cluster the MEPs. In this thesis, the goal
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of segmentation is to identify MEP segments from the EMG signal sequence. More specifically,

the boundaries of an MEP need to be obtained. Suppose an EMG sequence of N samples, X =

{x1, x2, · · · , xN}, contains one MEP. The goal of segmentation is to obtain index a and b (b > a)

, such that segment, w = {xa, xa+1, · · · , xb} contains all the samples from the MEP, but no other

samples. Clustering, in general, is the task of partitioning a set of objects into different groups,

so that two objects within one group are more similar than two objects from two different groups.

In the task of MEP clustering, the goal is to group similar MEPs together. This is motivated

by the fact that similar MEPs are likely to come from the same neural physiological process. By

identifying different clusters of MEPs, different neural processes can be inferred by the physiologists.

In particular, monosynaptic MEPs are significantly different from polysynaptic MEPs because of

the distinct neural pathways. As a result, the clustering is carried out in a sequential manner:

firstly monosynaptic MEPs are separated from polysynaptic MEPs via an initial, crude clustering;

then clustering is performed within monosynaptic MEPs and polysynaptic MEPs so as to discover

finer structures. The overall procedure is first stated here. Detailed explanations on these step are

described in the following sections.

1. Find segments of MEPs from the detected peaks in the EMG signal.

2. Find majority of the monosynaptic MEPs via hierarchical clustering on all segments of MEPs.

3. Further cluster monosynaptic MEPs into subgroups based on clustering with Gaussian mix-

tures.

4. Decompose segments that contain both polysynaptic MEPs and monosynaptic MEPs

5. Clustering on polysynaptic MEPs with Gaussian mixtures

To demonstrate the proposed method, the same event of the EMG signal is used throughout

this chapter. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient

with clinically motor complete spinal cord injuries while lying in the supine position with electrical

stimulation applied to the spinal cord [24]. The stimulation amplitude is 7.2V and frequency is

10Hz. This event lasts 30 seconds with 300 simulation intervals (A simulation interval is the time

period between two stimuli).

4.1 Segmentation of MEP Waveforms

After the peaks of the MEPs are detected from the EMG signal, MEP waveforms are segmented

based on peak information. As observed from the EMG signal, MEPs are composed of consecutive

transient peaks. As a result, if two peaks are “next to” each other, then they are likely to be peaks

from the same MEP, or vice versa. It’s not a good idea to choose a hard threshold because the
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distance between two peaks varies for different shapes of MEPs, and is not a known priori. A better

way is to incorporate the shape information from the wavelet transform of the peaks.

In the proposed wavelet-based peak detection algorithm in Chapter 3, every detected peak corre-

sponds to one ridge in the wavelet space (the time-scale space). The wavelet used is the Mexican hat

wavelet, which naturally resembles a peak. The peak location is estimated from the translation of the

maximum wavelet coefficient along the ridge, as the magnitude of the wavelet coefficient measures

the resemblance between the signal and the wavelet function (See Eq. (3.3.6.2) and Eq. (3.3.6.3)).

For convenience, the equations are copied here.

( ˆrxi, ˆryi) = arg max
(x,y)∈Ri

X(x, y)

p̂i = ˆryi, for i = 1, 2, · · · , NR

where X(i, j) : (i, j) 7→ Xi,j , which is the wavelet coefficient matrix defined by:

Xj,k
def
= (X)j,k =

+∞∑
n=−∞

x[n]ψsj ,k[n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ;

{Ri, i = 1, 2, 3, · · · , NR} is the set of ridges detected, where NR is the total number of ridges

detected, and Ri is a set of pair of indices: Ri = {(rxi,j , ryi,j), j = 1, 2, · · · , Li}, where rxi,j and

ryi,j give the row and column index (as in X) of the j-th peak maxima along ridge Ri, respectively,

and Li = |Ri| is the number of peak maxima along the ridge.

The scale of the maximum coefficient along the ridge Ri is therefore:

r̂si = s ˆrxi

since ˆrxi gives the index in the scale set S def
= {s0, s1, . . . , sj , . . . , sJ}.

Now the effective support of the peak at p̂i is defined with respect to the wavelet function at

scale r̂si. Although the theoretical mother wavelet function is not time-limited, its most energy is

confined only within a small region around the origin. Define the effective support of the Mexican

Hat mother wavelet in time domain as w (as shown in Figure 4.1-1), then the Mexican Hat wavelet

at any scale s has effective support of w · s. There are multiple choices of the values of w. In this

thesis, w is chosen to be [−4, 4], and the signal energy within the support occupies almost 100% of

the total energy.

The effective support of a detected peak at p̂i is estimated to be the same as the wavelet at scale

r̂si:
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Figure 4.1-1: Mexican Hat mother wavelet ψ(t) (given by Eq. 3.3.1.1) and its effective support
(denoted by red line and w)

w(pi) = w · r̂si (4.1.0.1)

If the supports of two consecutive peaks overlap, then these two peaks are claimed to be from the

same MEP. More formally, p̂i and p̂i+1 are judged to be from the same MEP, if and only if:

p̂i + w(pi)/2 > p̂i+1 − w(pi+1)/2 (4.1.0.2)

Example results are shown in Figure 4.1-2. The figure contains three EMG slices containing

different MEPs to demonstrate the effectiveness of this method on different shapes of MEPs. For

every peak estimated, an estimated effective support is calculated using Eq. (4.1.0.1). After this is

done for all the peaks, peaks are grouped into MEPs based on the criterion in Eq. (4.1.0.2). The

onset of an MEP is estimated as the beginning of the effective support of its first peak, while the end

of an MEP is estimated as the end of the effective support of its last peak, as shown in Figure 4.1-2.

Given the EMG signal of N samples: X = {x1, x2, · · · , xN}. The result of this segmen-

tation procedure is a set of MEPs: WMEP = {wi}NM
i=1 , where wi is the waveform i-th MEP:

wi = wi,1, wi,2, · · · , wi,Di
, and NM denotes the total number of MEPs. Extra information about

the MEPs are also obtained to assist further analysis. The onset locations of MEPs are denoted

as bMEP = {b1, b2, · · · , bNM
} where bi ∈ {1, 2, · · · , N} is the index of wi,1 as in X. If one MEP is

caused by the electrical stimulus, then this stimulus is said to be “associated” with this MEP. This

stimulus associated with MEP wi is simply obtained by finding the closest stimulus that comes before

it. Given an array of the locations of Ns stimuli: Tstim = {t1, t2, · · · , tNs} where ti ∈ {1, 2, · · · , N}
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(a) R MH (b) L MG (c) L VL

Figure 4.1-2: Examples of segmenting MEPs from effective supports of peaks: Each subplot shows
one piece of the EMG signal simulated from one of the MEP waveforms in Figure 3.4-2. The
black line is the simulated EMG signal containing one MEP. The red dots/crosses are estimated
positive/negative peak locations from the proposed wavelet method. The effective support of every
peak is plotted as a short blue horizontal line centering at the peak. The blue vertical line denotes the
onset of an MEP, while the dotted vertical line denotes the end. R MH = right medial hamstrings.
L MG = left medial gastrocnemius. L VL = left vastus lateralis.

gives the index of i-th stimulus in X, then the stimulus associated with wi, ai follows:

ai = arg max
t∈Tstim∩t<bi

t− bi (4.1.0.3)

The result is a set of indices a = {ai}NM
i=1 .

Running the peak detection algorithm proposed in this thesis followed by the above segmentation

method on the example event of the EMG signal yields 469 MEPs. The EMG signal is recorded

from left medial gastrocnemius (L MG) of a patient with clinically motor complete spinal cord

injuries while lying in the supine position with electrical stimulation applied to the spinal cord. The

stimulation amplitude is 7.2V and frequency is 10Hz. This event lasts 30 seconds with 300 simulation

intervals.

4.2 Identify Cluster of Monosynaptic MEPs

As discussed in Section 2.1.2.2, MEPs can be classified as monosynaptic MEPs and polysynaptic

MEPs. Monosynaptic MEPs are usually the direct responses of muscles after electrical stimulation,

while polysynaptic MEPs are typically indirect responses. It takes different times for the effect of

the electrical stimulation to show up in the muscle cells. The latency of an MEP is defined as the

time between the electrical stimulation and the onset of the MEP. An example of the latencies of

two MEPs is shown in Figure 4.2-1.

The latency of a monosynaptic MEP is normally larger than that of a polysynaptic one. Hence,
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Figure 4.2-1: Example of latency of an MEP when occurrence of MEP is defined as its onset: The
vertical red dotted line on the far left indicates the occurrence of one stimulus. latency 1 is the
latency of the monosynaptic MEP, while latency 2 is the latency of the polysynaptic MEP.
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sometimes monosynaptic MEPs are also called early responses while polysynaptic MEPs are called

late responses. Monosynaptic MEPs typically have similar latencies among them, while monosynap-

tic MEPs don’t. In addition, monosynaptic MEPs are normally much stronger than polysynaptic

MEPs. For a complete explanation of the underlying physiology, please refer to Section 2.1.2.2.

The ultimate goal is to divide MEPs into monosynaptic ones and polysynaptic ones, and perform

further analysis (such as clustering) within each group. To achieve this goal, the cluster that contains

the majority of the monosynaptic MEPs is identified in this section, because monosynaptic MEPs

have a relatively predictable structure, and hence easier to identify. Then the remaining MEPs are

processed to extract remaining monosynaptic MEPs, and absorb them to the cluster of monosynaptic

MEPs. The final remaining MEPs are grouped into the cluster of polysynaptic MEPs.

4.2.1 Feature Extraction

Based on these prior knowledge on the key differences between polysynaptic MEPs and monosynap-

tic MEPs, the following features are extracted for every MEP:

Strength: the strength of i-th MEP wi is defined as its energy:

strength(i) = ‖wi‖2 =

Di∑
j=1

w2
i,j (4.2.1.1)

Latency: the latency of i-th MEP1.

latency(i) = bi − ai (4.2.1.2)

Duration: the length of i-th MEP: duration(i) = Di

As a result, each MEP wi is associated with a vector vi in its feature space, comprised of its

strength, latency and duration: vi = [strength(i) latency(i) duration(i)]. The set of all features

are v = {vi}NM
i=1 . Denote the k-th features of all MEPs as vk = {vi,k}NM

i=1 .

The features need to be scaled to have a common value range so that all features have equal

impact on the computation of the distance. Two scaling schemes are employed.

1The neurophysiologists define latency to be bi − ai, as shown in Figure 4.2-1. Alternatively, the weighted mean
(defined in Eq. (4.3.1.8) as τi, and used as the alignment mark) is less sensitive to the noise and the non-stationarity
of MEPs than the onset of the MEP, bi. As a result, weighted mean is instead used to calculate the latency feature
in the hierarchical clustering.
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Interval scaling: the interval-scaled feature of vk is:

ˆvi,k =
vi,k −mini vi,k

maxi vi,k −mini vi,k
(4.2.1.3)

Ratio scaling: the ratio scaling is performed simply by doing a log transform followed by an

interval scaling:

ˆvi,k =
log(vi,k)−mini log(vi,k)

maxi log(vi,k)−mini log(vi,k)
(4.2.1.4)

Both scaling are used for numeric features. The interval scaling is the most common one, and

ratio scaling is used when the feature takes exponential values. In the proposed method, the latency

and duration features are interval-scaled. The strength feature is ratio-scaled so as to minimize the

distance between monosynaptic MEPs as the energy of an MEP takes value in a wide range.

Different weights can be put on different features so as to put more emphasis on certain features.

Suppose the weights vector is c = [c1 c2 c3]T , then the k-th feature is replaced by vk multiplied by

ck. In the proposed method, c1 = 1, c2 = 1, c3 = 2 to highlight the difference of duration between

monosynaptic MEPs and polysynaptic MEPs.

4.2.2 Hierarchical Clustering

The objective of the clustering is to partition MEPs into two groups: the monosynaptic MEPs and

the polysynaptic MEPs. There are a number of clustering techniques employed for the EMG signal,

such as hierarchical clustering [31, 42, 15, 8], k-means clustering [52]. k-means clustering is simple

and efficient, but it is sensitive to outliers and initial seeds, and it’s not suitable for discovering

clusters that are not hyper-ellipsoids (or hyper-spheres). Since the detection and segmentation

are not perfect, there will be outliers. In addition, as one can see when the features are plotted,

the clusters of monosynaptic MEPs are not hyper-spheres at all. Because of the weaknesses of k-

means clustering, hierarchical clustering is chosen for this task. Although hierarchical clustering is

less efficient, the number of MEPs detected from one event is not big (typically 100 − 1000), so

efficiency is not a concern in this application.

Hierarchical clustering involves following three steps:

1. compute the distance between all pairs of objects, and stores the result in a distance matrix.

2. group the objects into a binary, hierarchical cluster tree, called dendrogram. Initially every

object forms a cluster. Then the two closest pair of clusters gets merged into one new cluster.

Repeat the linking until only one cluster remains, resulting a binary tree with root being the

final cluster with all objects and leaves being every individual objects.
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3. determine where to cut the hierarchical tree into clusters.

Each step can be implemented in various ways. In the proposed method, the following options

are chosen.

• the distance measure between two objects is chosen to be the L1 distance. A L1 distance

between two vectors p and q is defined as:

d1(p,q) = ‖p− q‖1 =

n∑
i=1

|pi − qi| (4.2.2.1)

This distance is chosen so as to minimize the distance within monosynaptic MEPs while

maximizing the distance between monosynaptic MEPs and polysynaptic MEPs.

• In the linking stage, the distance between two clusters is defined as the shortest distance

between any two objects in the two clusters, one from each cluster.

• When cutting the hierarchical tree, the criterion is chosen to be the distance between the

clusters. If the distance between two clusters are above the threshold, then they are two

separate clusters in the final result. The distance is chosen to be 0.1.

The time complexity for the proposed clustering is O(N2
M ) for NM MEPs.

From the physiology of MEPs, monosynaptic MEPs tend to have similar latencies and durations,

and much larger energy than polysynaptic ones. The cutoff threshold is intentionally chosen to be

a small value to ensure that there is at least one cluster full of pure monosynaptic MEPs. The

potential drawback is that other clusters may contain monosynaptic ones, too. This problem will

be solved later. The cut of the dendrogram results in many clusters. One of them contains only

the monosynaptic MEPs. The next task is to identify the largest cluster that contains only the

monosynaptic MEPs. That cluster of monosynaptic MEPs are plotted with their associated stimuli

aligned in Figure 4.2-2. The method of finding this cluster is described as follows.

The idea is to assign a score to every cluster that measures the effective standard deviation of the

latencies of monosynaptic MEPs within the said cluster. Then the cluster with the lowest effective

standard deviation is chosen to be the cluster of monosynaptic MEPs. Suppose there are NC clusters

C = {Ci}NC
i=1, where Ci = {ci,1, ci,2, · · · , ci,ni} gives the set of indices of MEPs in the i-th cluster

(ci,1 ∈ {1, 2, · · · , NM} are indices in the set WMEP ). The latency feature is v2 = {vi,2}NM
i=1 , the

second features of all MEPs in the feature space. Denote the total number of events as NE . Then

the effective standard deviation of i-th cluster, σ(i), is calculated following:
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Figure 4.2-2: Example of a cluster with 285 monosynaptic MEPs from the initial hierarchical cluster-
ing of 469 MEPs detected and segmented from 30 seconds of the EMG signal. The MEP waveforms
are aligned to their associated electrical stimuli at the origin, so the x axis is the latencies of the
MEPs. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient with
clinically motor complete spinal cord injuries while lying in the supine position with EES. The
stimulation amplitude is 7.2V and frequency is 10Hz.

σ(i) = std({vci,j ,2}
ni
j=1) · |NE − ni|

NE
(4.2.2.2)

where std(S) gives the standard deviation of the set S. The above formula is formulated with fol-

lowing rationale. The monosynaptic MEPs have very consistent latencies, so the standard deviation

of the latencies of the cluster of monosynaptic MEPs should be very small (close to 0). However, the

standard deviation alone does not always work because small clusters could have smaller standard

deviations than the large cluster of pure monosynaptic MEPs. Based on physiology, there is ap-

proximately 1 monosynaptic MEP in one event, so theoretically there should be NE monosynaptic

MEPs in the cluster. As a result, the closer that ni is to NE , the higher confidence that Ci contains

the monosynaptic MEPs. As a result, a factor |NE−ni|
NE

is multiplied to the standard deviation to

get rid of the small clusters. The index of the identified cluster of monosynaptic MEPs is:

ÎM = arg min
i∈{1,2,··· ,NC}

σ(i) (4.2.2.3)

In the example shown in Figure 4.2-2, the identified cluster of monosynaptic MEPs contain 285

MEPs and have a effective standard deviation of 0.000371. MEPs of the second largest cluster from

hierarchical clustering is also plotted in Figure 4.2-3 to give readers some insight on the hierarchical

clustering result. It contains 46 polysynaptic MEPs.
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Figure 4.2-3: Example of the second largest cluster with 46 MEPs from the initial hierarchical
clustering of 469 MEPs detected and segmented from 30 seconds of the EMG signal. The MEP
waveforms are aligned to their associated electrical stimuli at the origin, so the x axis is the latencies
of the MEPs. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient
with clinically motor complete spinal cord injuries while lying in the supine position with EES. The
stimulation amplitude is 7.2V and frequency is 10Hz.

4.3 Clustering of Monosynaptic MEPs

In the hierarchical clustering, the features are chosen so as to maximize the difference between

monosynaptic MEPs and polysynaptic MEPs, while at the same time minimizing the difference

within monosynaptic MEPs. Because both monosynaptic and polysynaptic MEPs can have vari-

ous waveforms and the exact shapes are not a known priori, shape information is not used in the

hierarchical clustering. After the majority of the monosynaptic MEPs are extracted during the

hierarchical clustering, a further clustering within them is performed to find intrinsic structures of

the monosynaptic MEPs.

As discussed in the physiology of MEPs in Section 2.1.2.2, MEPs are the activities of the muscle

cells in response to the electrical stimulation provided by the implanted electrodes on the spinal

cord. The neurons in the spinal cord are excited and their activities are modulated by the electric

field. Different neural pathways would result in different MEPs shown in the EMG signal of the

lower-body muscles. The goal of the clustering within monosynaptic MEPs is to infer the different

neural pathways or activities from the different structures or shapes of the MEPs.
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4.3.1 Feature Extraction: Principal Component Analysis

In order to cluster with the shape information, the entire waveform of an MEP should be used.

However, the MEP waveforms contain about ∼ 10 − 100 samples, and many of them are highly

redundant. The redundant features add unnecessary complexity and computation time to the clus-

tering task, and would shadow the most differentiating features. As a result, the first step before

performing any kinds of clustering is to reduce the number of features, and principal component

analysis (PCA) is the most common way of doing this.

PCA is a technique that is widely used for applications such as dimensionality reduction, lossy

data compression, feature extraction, and data visualization. PCA can be defined as the orthogonal

projection of the data onto a lower dimensional linear space, known as the principal subspace,

such that the variance of the projected data is maximized [4]. Suppose the data is {xn}, where

n = 1, 2, · · · , N , and xn = [xn1 xn2 · · · xnD]T is a (column) vector in the Euclidean space with

dimensionality D. Assume the mean has already been subtracted from the data such that x̄ = 0.

The subtraction of the mean is a preprocessing of the data before performing PCA. With x̄ = 0, the

meaning of maximum variance in projected data is achieved.

The goal is to find a subspace with dimensionality M < D such that the projected data contains

most of the variance in the original data. Suppose the subspace is given by M orthonormal vectors

{ui} where i = 1, 2, · · · ,M . ui = [ui1 ui2 · · · uiD] is a column vector in original space with following

properties:

uTi uj = δij (4.3.1.1)

‖ui‖ = 1 (4.3.1.2)

where δij is the Kronecker delta function.

The projection of a given data xn onto the subspace {ui}Mi=1 is therefore zn = [zn1 zn2 · · · znM ]T

where zni = xTnui. Let U = [u1 u2 · · · uM ] be the matrix with columns being the orthonormal

vectors ui. Then, the projection of xn can compactly be expressed as:

zn = UTxn (4.3.1.3)

Let matrix X = [x1 · · · xN ]T represent the N data with rows being the observations xn, and let

matrix Z = [z1 · · · zN ]T represent the N projections with rows being the projections zn. Then:

Z = XU (4.3.1.4)
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From the projection Z, original data can be reconstructed with:

X̃ = ZUT (4.3.1.5)

X̃ would be the same as X if M = D. For M < D, there is a distortion or error. The distortion

measure is the squared distance between the original data and the reconstructed data.

J =
1

N

N∑
n=1

‖xn − x̃n‖ (4.3.1.6)

It turns out PCA minimizes J for a fixed M < D with respect to different choice of the M orthonor-

mal vectors {ui}Mi=1 [4].

Theoretically, PCA is achieved by evaluating the covariance matrix S of the data set X and

then finding the M eigenvectors of S corresponding to the M largest eigenvalues. The covariance

matrix is calculated by: S = 1/N
∑N
n=1 xTnxn.2 In practice, many algorithms have been developed

to compute the M eigenvectors efficiently.

The mathematical derivation can be found in [4]. Here is the summary of the conclusions.

Suppose {λk} and {uk} are the eigenvalues and eigenvectors of S, where k = 1, 2, · · · , D. If {uk}Mk=1

are used as the bases of the subspace, then the variance of the projected data onto this subspace is

given by
∑M
k=1 λk. In addition, the distortion measure J can also be derived as:

J =

D∑
k=M+1

λk (4.3.1.7)

Therefore, by choosing the M eigenvectors of S corresponding to the M largest eigenvalues, the

variance of the projected data is maximized while the distortion measure is minimized.

In practice, the choice of M depends on how much of the total variance is desired to be kept in

the principal subspace. 90% is typically considered to be a good approximation. In fact, beyond

that, the remaining 10% of the variance is mainly composed of noise, so PCA also helps reduce the

effect of the noise.

One typical issue when applying PCA to the waveforms is alignment. Suppose xn = [xn1 xn2 · · · xnD]T

gives the feature vector of length D. Then, the i-th feature xni should be the same type of feature

for all xn where n = 1, 2, · · · , N . Unfortunately, MEP waveforms don’t satisfy this. First of all,

the segmented waveforms of MEPs don’t have the same length. Secondly, the amplitude at every

sampled time is simply a measurement of the voltage, and there is no information about how the

2This is why data {xn} needs to be centered. Only when x̄ = 0 will S given by above equation give the covariance
matrix.
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waveforms of two MEPs are correlated with each other. Normally, the alignment is performed by

aligning the most significant feature of the waveform. For example, the largest peak of a MUAP

is used as the alignment mark. This is not possible for MEPs because one MEP can have multiple

significant peaks, and there is no single most significant peak. As a result, MEPs can’t be aligned

based on their peaks.

In this thesis, the alignment mark is chosen to be the weighted average of the time indices

with weight being the amplitude square, as defined in Eq. (4.3.1.8). This definition removes the

dependency on the peak locations of the MEPs, and therefore can be applied to MEPs with various

shapes. In addition, this definition makes use of the shape information so that similar MEPs will be

aligned correctly and consistently. After all the MEPs are aligned with the weighted time mean, the

MEPs are adjusted to have the same length. The length is chosen to be the average of all MEPs.

Hence, longer MEPs are truncated while shorter MEPs are padded with 0s.

τi =

∑Di

j=1 j ∗ w2
i,j∑Di

j=1 w
2
i,j

(4.3.1.8)

where τi ∈ {1, 2, · · · , N} is the alignment mark of the i-th MEP, of which the time indices are

{1, 2, · · · , Di}, and the waveform is wi = {wi,1, wi,2, · · · , wi,Di
}.

To illustrate the PCA process applied to the monosynaptic MEPs, the MEPs in Figure 4.2-2 are

used for demonstration. The original MEP waveforms, aligned with respect to their weighted time

means, are plotted in Figure 4.3-1a. Figure 4.3-1e shows the percentage of the variance each principal

component (eigenvector) explains. The percentage of variance is simply the ratio of the eigenvalue

corresponding to each eigenvector over the sum of all eigenvalues. As shown in Figure 4.3-1e, the first

two eigenvectors already explain more than 95% of the total variance, so two principal components

are good enough to retain most of the useful information in the original waveforms (See Figure 4.3-

1c). Please note that the PCA is performed on the centered data (eg. data with mean subtracted).

To reconstruct the original data, the mean has to be added back (See Figure 4.3-1d). The projection

of the centered, aligned monosynaptic MEPs onto the principal subspace of dimension 2 is plotted

in Figure 4.3-1f. This shows a side benefit of PCA, which is to help visualize high-dimensional data.

Finally, the reconstructed waveforms are plotted in Figure 4.3-1b. Compare it with Figure 4.3-1a,

one can tell the reconstructed waveforms are very close to the original waveforms, and hence a

two-dimensional subspace is enough to capture most of the useful information in the original high-

dimensional space.
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(a) original monosynaptic MEP waveforms (b) reconstructed monosynaptic MEP waveforms

(c) coefficients of the first two principal compo-
nents from PCA

(d) point-average waveform of the original
monosynaptic MEPs

(e) percentage of the variance explained by every
component from PCA

(f) projection of the original monosynaptic MEPs

Figure 4.3-1: PCA result on the 285 MEPs in the monosynaptic MEP cluster obtained from the
initial clustering. (a) gives the original MEP waveforms aligned with respect to their weighted
time means. The common length of all waveforms is 47 samples. (b) gives the MEP waveforms
reconstructed from their PCA projections with a two-dimensional principal subspace. (c) gives the
coefficients of the first two principal components. (d) gives the point-average waveform of the original
MEP waveforms. (e) gives the percentage of the variance explained by every principal component.
(f) gives the projection of the original MEP waveforms onto the two-dimensional principal subspace.
Score 1 and score 2 give the coordinates in the principal subspace when projecting the original
waveforms onto the first and second component, respectively.
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4.3.2 Clustering with Gaussian Mixure Model

Clustering with Gaussian Mixture Model (GMM), or Mixtures of Gaussians, is a very popular and

powerful technique. K-means clustering is actually a special case of GMM clustering. Unlike K-

means clustering, which only works well if clusters of data form hyper-spheres, GMM can model

clusters with hyper-ellipsoids of various orientations. In addition, K-means gives hard thresholding

while GMM assigns the probability to every data point that measures the likelihood that each clus-

ter explains the data. GMM has been used to cluster neural signals successfully [65]. A Gaussian

distribution can accounts for the variability in the MEP waveforms. As a result, GMM has been

used to cluster monosynaptic MEPs in this thesis.

A Gaussian Mixture Model is a probability distribution which is a linear superposition of Gaus-

sian distributions with different weights:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (4.3.2.1)

where x is a random vector, πk are called mixing coefficients and satisfy
∑K
k=1 πk = 1, and

N (x|µk,Σk) gives the multivariate normal distribution with mean µk and covariance matrix Σk.

The above GMM has K components. For convenience, let π = {πk}Kk=1, µ = {µk}Kk=1, and

Σ = {Σk}Kk=1. Given a fixed number of components K, the set of parameters of a GMM is therefore

Θ = {π,µ,Σ}.

The goal is to estimate the parameters of a GMM from a given set of observations X = {xn}Nn=1.

The most common approach is to maximize the log of the likelihood function (commonly referred

as Maximum Likelihood, or ML) with respect to the model parameter Θ:

ln p(X|π,µ,Σ) =
N∑
n=1

ln


K∑
k=1

πkN (xn|µk,Σk)

 (4.3.2.2)

Maximizing the above function is a very complex task and does not yield a closed form solution.

The most commonly used alternative approach for finding maximum likelihood solutions to GMM

is called the expectation-maximization algorithm, or EM algorithm [4]. Various constraints can be

put on the parameter Θ when maximizing the likelihood function. The most common one is the

free form optimization as described in [4], in which no constraints are put on the parameters. For

covariance matrix, a parsimonious model can be used to apply different constraints, as discussed

in details in [6]. For example, the covariance matrix Σ can be constrained to be diagonal. The

parameters of all components can be constrained to be the same. Adding constraints to the model

reduces the model complexity, and therefore reduces overfitting when the amount of data is small.
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Figure 4.3-2: BIC for various K and Σ choices: Run clustering with GMM on the monosynaptic
MEPs from Figure 4.2-2. The best model has 3 Gaussians (K = 3) with diagonal covariance matrix
and non-shared parameters. The BIC associated with the best model is 7360, the smallest of all.

Model Class

In this thesis, the following models of Gaussian mixtures are considered:

• The number of Gaussian mixture components K = 1, 2, 3, 4, or 5.

• The covariance matrix Σk is diagonal or full.

• The parameters µk and Σk are shared or not.

Overall there are 5 · 2 · 2 = 20 models to choose from.

The more complex the model is, the better it fits the data, and the bigger the likelihood is.

However, a complex model tends to overfit the data. As a result, a penalty has to be given based on

the complexity of the model. Bayesian information criterion (BIC) is commonly used as a criterion

for model selection among a finite set of models. The model with the lowest BIC is preferred. The

BIC is defined as:

BIC = −2 ln(L̂) +M ln(N) (4.3.2.3)

where L̂ is the maximized value of the likelihood function of the model, M is the number of free

parameters to be estimated, and N is the number of data points. The BIC calculated under different

models for the clustering of monosynaptic MEPs is shown in Figure 4.3-2. For that particular data

set, the best model has three Gaussians, with all having diagonal covariance matrices and non-shared

parameters.

After the model is identified from the data, the clustering is done by evaluating the responsibility,
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γnk, that component k takes for explaining data xn, as defined by:

γnk =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(4.3.2.4)

xn is assigned to cluster k if cluster k has the largest responsibility for explaining it. For a total of

K clusters, the cluster index cn of data xn is given by:

cn = arg max
k∈{1,2,··· ,K}

γnk (4.3.2.5)

The clustering result is shown in Figure 4.3-3. From simple visual inspection, the clustering

result looks good as it finds the subtle differences between different clusters of MEPs, and MEPs

from every cluster share similar shapes. Of course, to accurately interpret the clustering result, one

needs to consult neurophysiologists for expertise.

4.4 Decomposition of Overlapping MEPs

In the initial hierarchical clustering, the cutoff threshold is intentionally chosen to be small so that

there is at least one cluster of only monosynaptic MEPs. As a result, some of the monosynaptic

MEPs are “left out”. This is especially true when a monosynaptic MEP is very close to, or even

overlaps with, a polysynaptic MEP. In this case, the segmentation step produces a long segment

with both monosynaptic MEPs and polysynaptic MEPs. The task in this step is to extract the

remaining monosynaptic MEPs when two or more MEPs overlap in time.

The overall procedure is first stated, followed by a detailed discussion of every step. For every

remaining MEP,

1. Find a segment of the waveform that gives the best matching with the cluster of monosynaptic

MEPs. This segment is regarded as a candidate monosynaptic MEP.

2. Calculate the likelihood of given candidate MEP being from the clusters of monosynaptic

MEPs using information of the shape and the latency. If the likelihood is above a certain

threshold, the candidate MEP is labeled as a monosynaptic MEP.

3. Classify the newly added monosynaptic MEP using the Gaussian mixture model identified in

Section 4.3.2.



109

(a) Projections of the MEPs and results of clustering with GMM

(b) cluster 1 (c) cluster 2 (d) cluster 3

Figure 4.3-3: Clustering result on monosynaptic MEPs with GMM: the monosynaptic MEPs are
from Figure 4.2-2. PCA is performed to reduce the dimensionality before clustering (See Figure 4.3-
1f). The GMM has three Gaussians with diagonal covariance matrices. There are 285 MEPs in total:
cluster 1 has 163 MEPs; cluster 2 has 51 MEPs; cluster 3 has 71 MEPs. (a) gives the scatter plot
of the projections of the MEPs onto a two-dimensional principal subspace. Each projection is color-
coded to give its membership. For every component, the Gaussian distribution is also plotted with
mean given by cross (X) and covariance given by ellipsoids that specifies a 99% probability threshold
for confidence region; (b) - (d) Monosynaptic MEPs in Cluster 1 - 3 with original waveforms on the
left and reconstructed waveforms on the right. The points average is plotted (in red) within each
group of waveforms.
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4.4.1 Identify Candidate Monosynaptic MEPs

The waveform of a remaining MEP is denoted as a vector of length D, w = [w1 w2 · · · wD]T . From

the means of the K components in the GMM, cluster template waveforms can be reconstructed by

Eq. (4.3.1.5). Denote the K cluster template waveforms as w(k), where k = 1, 2, · · · ,K, and:

w(k) = Uµk

where µk is the mean of the k-th component in GMM, and U is the base of principal subspace.

Note that all vectors w(k) and µk are column vectors.

Cross-correlate w with w(k) and find the best matching point, nk, the point where the cross-

correlation coefficient takes its maximum value, ρk.

nk = arg max
n∈Z

(w ?w(k))[n] (4.4.1.1)

ρk = (w ?w(k))[nk] (4.4.1.2)

where (f ? g)[n] is the cross-correlation between two real-valued discrete signals f [n] and g[n]:

(f ? g)[n] =

+∞∑
m=−∞

f [m+ n]g[m] (4.4.1.3)

which gives the dot product of f [m] with lag n and g[m].

Then find the component k̂ that gives the maximum value of ρk: k̂ = arg maxk=1,2,··· ,K ρk. Sup-

pose the length of the aligned monosynaptic MEPs is D̄, then the candidate monosynaptic MEP is

w′ = {wj}
nk̂+D̄−1
j=nk̂

. The other segments of w might contain polysynaptic MEPs, so create new MEP

segments, w(1) and w(2):

w(1) = {wj}
nk̂−1
j=n1

(4.4.1.4)

w(2) = {wj}Dj=nk̂+D̄ (4.4.1.5)

where w(1) is the segment before w′, while w(2) is the segment after w′. If there are none or very few

samples on either sides, then the candidate intervals w(1) or w(2) are not meaningful. Figure 4.4-1

shows an example of breaking down a long segment into a candidate monosynaptic MEP and a

candidate polysynaptic MEP. In that case, no segments exist before w′, and only one segment exists

after w′. In this example, w′ is successfully accepted to the cluster of monosynaptic MEPs in next
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Figure 4.4-1: Breaking segment into candidate monosynaptic and polysynaptic MEP: w′ is the
candidate monosynaptic MEP found by cross-correlation. There is not a segment before w′. w(2)

is the remaining segment after w′, and will be analyzed as a potential polysynaptic MEP: red solid
line and red dotted line indicate the location of nk̂ and nk̂ + D̄ − 1, the beginning and end of the
candidate monosynaptic MEP w′, respectively

step.

4.4.2 Determine if the Candidate is a Monosynaptic MEP

After a segment of candidate MEP is identified, the likelihood of it being from the monosynaptic MEP

cluster needs to be quantitatively evaluated. The Gaussian mixture model can give the likelihood

based on the waveform of the MEP, but it does not use the latency information, which is crucial in

determining the type of the MEP. In the following, the waveform and the latency information are

combined to give a quantitative measurement of the likelihood.

For convenience, some of the notations introduced in Section 4.1 are restated here, together

with some new notations. An EMG signal takes the format of N samples (discrete-time signal):

X = {x1, x2, · · · , xN}. Suppose the cluster of monosynaptic MEPs contains NM MEPs, WMEP =

{wi}NM
i=1 , where wi is the waveform of the i-th MEP of length Di: wi = wi,1, wi,2, · · · , wi,Di

. The

timing of the stimulus which is presumed to elicit the response in wi is denoted as ai ∈ {1, 2, · · · , N}

that represents the (discrete-time) index in the EMG signal X. The latency of the i-th MEP, which

is the time from the occurrence of the electrical stimulus (ai) to the MEP (wi), is denoted as di. The

complete information about the i-th MEP is thus Mi = {wi, ai, di}, which includes the waveform,

the associated stimulus, and its latency to the stimulus.
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The probability model for the waveform can be given by the Gaussian mixture model, Θ =

{π,µ,Σ}. The probability model for the latency is given by the Gaussian distribution, Θd =

{µd, σ2
d} where subscript d indicates latency. The principal subspace of the MEP waveform space

(the Euclidean space with the dimension of the common length of the MEP waveforms) is given by

U (Refer to Section 4.3.1 for feature extraction via PCA). Assume the waveform is independent of

the latency, and then the probability of a given MEP being a monosynaptic MEP is:

p(wi, di; Θ,Θd,U) = p(UTwi|Θ) · N (di|µd, σ2
d) (4.4.2.1)

where p(UTwi|Θ) is the Gaussian mixture model given by Eq. (4.3.2.1). Then the log likelihood is:

ln
{
p(wi, di; Θ,Θd,U)

}
= ln

{
p(UTwi|Θ)

}
+ ln

{
N (di|µd, σ2

d)
}

(4.4.2.2)

The parameters of the Gaussian distribution of the latency Θd are estimated by:

µ̂d =
1

NM

NM∑
i=1

di (4.4.2.3)

σ̂d =

√√√√ 1

NM − 1

NM∑
i=1

(di − µ̂d)2 (4.4.2.4)

which gives the unbiased estimation of the population mean and the population variance.

The threshold for accepting a given MEP as a monosynaptic MEP is given by:

T = γ

(
min

{
ln
{
p(UTwi|Θ)

}}
+ min

{
ln
{
N (di|µd, σ2

d)
}})

(4.4.2.5)

where γ is a factor that can be adjusted to either tighten or relax the threshold. For example, in

the thesis, γ = 1.5 is found to yield good results. Note that the log likelihood is a negative number,

so a γ > 1 relaxes the threshold.

For a given new MEP Mnew = {wnew, anew, dnew}, Mnew is said to be monosynaptic MEP if:

ln
{
p(wnew, dnew; Θ,Θd,U)

}
≥ T (4.4.2.6)

4.4.3 Classify the New Monosynaptic MEP

The newly added monosynaptic MEP, wnew, is classified to one of the K clusters determined by the

K components of Gaussian mixtures. The posterior probability of the given MEP being from the

k-th component is γk:
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γk =
πkN (UTwnew|µk,Σk)∑K
j=1 πjN (UTwnew|µj ,Σj)

(4.4.3.1)

This is the adaptation of Eq. (4.3.2.4) by replacing xn with the PCA projection of the new MEP

waveform, UTwnew.

wnew is assigned to the component with the largest posterior probability for the observation.

k̂ = arg max
k∈{1,2,··· ,K}

γk (4.4.3.2)

In Section 4.1, 469 MEPs were detected and segmented from 30 seconds of the EMG signal which

was recorded from left medial gastrocnemius (L MG) of a patient with clinically motor complete

spinal cord injuries while lying in the supine position with EES. The stimulation amplitude is 7.2V

and frequency is 10Hz. Among the 469 MEPs, 285 MEPs were placed to the monosynaptic MEP

cluster in the initial clustering in Section 4.2.2. After running the above decomposition procedure on

the remaining 184 MEPs, additional 15 MEPs were placed to the monosynaptic MEP cluster, so the

monosynaptic MEP cluster has 300 MEPs. This is expected as there are 300 stimulation intervals

from 30 seconds of the EMG signal with stimulation frequency being 10Hz, and normally there is

one monosynaptic MEP within one stimulation interval. The remaining 184 MEPs are considered

candidate polysynaptic MEPs and will be clustered via GMM in the next section.

4.5 Clustering of Polysynaptic MEPs

Clustering of polysynaptic MEPs undergoes the same set of procedures as the monosynaptic MEPs

as described in Section 4.3. Here is a brief recap of the procedures.

1. Align the MEP waveforms based on its weighted time mean. Run PCA and project waveform

onto the principal subspace (with dimensionality of 2).

2. Perform maximum likelihood (ML) optimization on a set of Gaussian mixture models via EM

algorithm. Select the best model.

3. Cluster the PCA projections of the MEPs using the selected Gaussian mixture model.

An example clustering result is shown in Figure 4.5-1. PCA is performed to reduce the dimensionality

before clustering. The best model has four Gaussians with full covariance matrices. There are 184

polysynaptic MEPs in total: cluster 1 has 52 MEPs; cluster 2 has 52 MEPs; cluster 3 has 68 MEPs;

cluster 4 has 12 MEPs.

Although polysynaptic MEPs are very weak, and do not have consistent latencies or shapes even

within an event, the clustering successfully partitions them into different groups (See Figure 4.5-

1). Because the SNR of the polysynaptic MEPs is low, the real MEP waveforms are tempered by
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(a)

(b) cluster 1 (c) cluster 2

(d) cluster 3 (e) cluster 4

Figure 4.5-1: Clustering result on polysynaptic MEPs with GMM: the polysynaptic MEPs are from
the same EMG signal as the monosynaptic MEPs in Figure 4.2-2. (a) gives the scatter plot of the
projections of the MEPs onto a two-dimensional principal subspace. Each projection is color-coded
to give its membership. For every component, the Gaussian distribution is also plotted with mean
given by cross (X) and covariance given by ellipsoids that specifies a 99% probability threshold for
confidence region; (b) - (d) Monosynaptic MEPs in Cluster 1 - 4 with original waveforms on the left
and reconstructed waveforms on the right. The points average is plotted (in red) within each group
of waveforms.
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noise severely, which make them visually hard to analyze by physiologists. The use of PCA not

only reduces the feature dimensionality, but also reduces the effect of the noise. In Figure 4.5-1b

to Figure 4.5-1e, the reconstructed waveforms are shown on the right hand side of the original

waveforms. The reconstructed waveforms are much smoother, and the structure or shape of the

MEP waveforms is more prominent.

The clustering result is especially satisfying considering that these clusters don’t visually separate

from each other in the scatter plot. As a result, the K-means clustering would obtain completely

wrong results. This example shows the flexibility and powerfulness of the GMM.

Because polysynaptic MEPs are weak, there are more false positives in detecting transient peaks

of the polysynaptic MEPs. The error in the peak detection will be carried over to the segmentation

phase and eventually the clustering phase. The threshold in the peak detection step is intentionally

chosen to be small enough to yield a high recall, but a low precision. A high recall guarantees that

most of the true MEPs are detected. A low precision implies more noise samples are picked up

as MEPs, but this can be corrected in the following clustering phase, because noise samples have

similar statistics and tend to show up in one cluster. The cluster of noise samples can be removed

upon inspection by the physiologists.
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Chapter 5

Conclusion

5.1 Summary of Thesis Contributions

The primary contribution of this thesis is the development of a set of automatic, unsupervised tools

for the analysis of Electromyogram or the EMG signal for the purpose of studying electrical stimu-

lation based rehabilitation on patients with spinal cord injuries. A wavelet-based, double-threshold

algorithm was developed for the detection of transient peaks in the EMG signal (Chapter 3). Based

on the transient peak detection result, EMG signals are further segmented and classified into various

groups of monosynaptic MEPs and polysynaptic MEPs using techniques stemming from Principal

Component Analysis (PCA), hierarchical clustering, and Gaussian mixture model (Chapter 4). A

software with graphic user interface has been implemented in Matlab. The software implements the

proposed peak detection algorithm, and enables the physiologists to visualize the detection results

and modify them if necessary.

Although there exist many different sets of tools to analyze the EMG signal, most of them rely

greatly on the human supervision. One significant aspect of the contributions of this thesis is that

all the proposed analysis methods are completely automatic and unsupervised. This is particularly

important when the amount of data is huge, or real-time processing is desired. The EMG signal of

interest in this thesis was recorded from patients with spinal cord injuries during the rehabilitation

under electrical stimulation. As a result, the EMG signal is very different in nature from most of

the signals in the EMG community. The EMG signal dealt with in this thesis has more complicated

shapes, and the shape information is not a known priori. As a result, the set of methods developed

in this thesis made no assumptions on the shapes of the signals, and therefore can be applied to any

generic transient signals, as long as the transient signals are composed of peaks, which is the case

in most practical systems, such as ECG signals, and mass spectrum.

Chapter 3 extends existing theories in the transient detection field. The application of wavelet
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transform in the detection of transient signals has been studied extensively and employed successfully.

However, most of the theories assumes certain knowledge about the shapes of the transient signals,

which makes it hard to be generalized to transient signals with arbitrary shapes. The proposed de-

tection scheme focuses on the more fundamental feature of most transient signals (in particular the

EMG signal) – peaks, instead of the shapes. The continuous wavelet transform with Mexican Hat

wavelet is employed. This thesis theoretically derived a framework for selecting a set of scales based

on the frequency domain information. Ridges are identified in the time-scale space to combine the

wavelet coefficients from different scales. By imposing two thresholds, one on the wavelet coefficient

and one on the ridge length, the proposed detection scheme can achieve both high recall and high

precision. A systematic approach for selecting optimal parameters via simulation is proposed and

demonstrated. Comparing with other state-of-the-art detection methods, the proposed method in

this thesis yields a better detection performance, especially in the low Signal-to-Noise-Ratio (SNR)

environment.

In Chapter 4, a method for automatically segmenting and clustering the detected EMG signal

is derived. A theoretical framework is proposed to segment the EMG signal based on the detected

peaks. The scale information of the detected peaks is used to derive a measure for its effective sup-

port. Several different techniques have been adapted together to solve the clustering problem. An

initial hierarchical clustering is first performed to obtain most of the monosynaptic Motor Evoked

Potentials (MEPs). Principal component analysis (PCA) is used to reduce the number of features

and effect of the noise. The reduced feature set is then fed to a Gaussian mixture model (GMM)

to further divide the MEPs into different groups of similar shapes. The method of breaking down a

segment of multiple consecutive MEPs into individual MEPs is derived.

In order to make the processing completely unsupervised, the statistics of the underlying noise

must be estimated automatically and accurately. Assume the noise is White Gaussian Noise (WGN),

from robust statistics, the variance of the noise can be estimated if the signals are outliers. In the

case that signals are not outliers, the performance deteriorates rapidly. An iterative algorithm has

been proposed to improve the accuracy of the estimation even when the signals are not outliers, and

simulated experiments show great boost in the accuracy.

5.2 Opportunities for Future Work

The key difficulty in processing the EMG signal is the complex structure of the transient signals

(MEPs in the case of the EMG signal in this thesis). The lack of prior knowledge on the shape

of the transient signals makes the detection and further processing very difficult. In this thesis,
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transient signals are modeled as consecutive transient peaks. Based on this model, detection and

segmentation methods are derived. In the future work, better representation of the transient signals

can be explored and employed to formulate new detection and segmentation scheme. For example,

Le’s proposed idea of using L-spline functions to model transient signals is promising [29].

The parameters in the proposed peak detection method are selected based on simulated exper-

iments. In the future work, the parameters can be theoretically derived. In the segmentation, the

effective support of the mother wavelet is chosen to be the width of the its most significant peak.

Other choices may yield better results, and is subject to more theoretical development. A Bayesian

clustering can be derived in order to incorporate the prior knowledge for better clustering results.

Lastly, the noise is assumed to be additive white Gaussian. Other noise models may be explored.

The proposed peak detection method is formulated as a generic detector with little assumptions

made on the transient signals. As a result, the work in this thesis can potentially be applied to

any transient signals that are composed of transient peaks, especially biological signals such as the

electrocardiogram (ECG).
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Appendix A

Muscle Names

Throughout the thesis, short names of different muscles are used to represent the EMG channels.

In the short names, “L” means left while “R” means right. For every type of muscle, EMG from

both the left and right ones are recorded. Every muscle is represented by 2 or 3 letters, as shown in

Table A.1
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Commonly Acquired EMG during supine, sitting, standing and stepping experiments

SOL soleus

MG medial gastrocnemius

TA tibialis anterior

MH medial hamstring

VL vastus lateralis

RF rectus femoris

GL gluteus maximus

GM gluteus medius

AD adductor

Additional Acquired EMG during voluntary control experiments

EDL extensor digitorum longus

EHL extensor hallucis longus

IC intercostals

Acquired EMG for stimulation artifact

PS paraspinals

Table A.1: Commonly Acquired EMG channels
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Appendix B

EMG Peak Detection Software

To help the practitioners at University of Louisville at Kentucky to process the EMG signal for the

spinal cord injuries research, a MATLAB program with graphic user interface (GUI) is developed.

It is called EmgPackage, and its core functionality is to detect EMG peaks reliably and accurately

by implementing the peak detection algorithm described in Chapter 3. It also allows the users to

adjust the parameters to yield the best results for their specific data and applications. Since no

detection algorithm is perfect and there will be missed detections or false positives sometimes, the

software allows the users to manually adjust the detection results by adding or deleting peaks.

Figure B.0-1 shows the interface when EmgPackage is first opened. There are mainly five sections:

Input Control Select data for processing

Process Control Select muscles and stimulation events, and algorithm-related parameters.

The default values of the parameters already give the best overall performance, but if the users

particularly want a low false positive rate or a low false negative rate, then parameters can be

adjusted to yield the desired performance.

Load Results After processing, the peak detection results are saved and can be loaded and

further modified.

Postprocessing Control Users can manually modify the peak detection results by adding or

deleting a single peak or a group of similar peaks.

EMG Signal Six consecutive stimulation intervals are shown on each page (starting at the

upper left one and goes horizontally to the upper right one, which is followed by the lower left

and ending at the lower right one). Users can go to the next or the previous page, or jump to any

specific page. Every of the six sub-windows shows one stimulation interval, and the horizontal

axis represents the latency. The red circles show the detected peaks. The numbers next to them

are their cluster numbers.
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Figure B.0-1: EmgPackage’s main GUI when it’s first opened.

The detected peaks are clustered based on their latencies using hierarchical clustering. The idea

is that many of the similar peaks across different stimulation intervals have similar latencies. By

grouping similar peaks together, users can modify a group of similar peaks instead of one by one.

This can greatly reduce their work load.

Figure B.0-2 shows the sub-GUI when users click the button “Select Muscles and Events to

Process”. Users can select arbitrary muscles and stimulation events that they are interested in for

peak detection.

Figure B.0-3 shows an example of the peak detection results.
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Figure B.0-2: Sub-GUI for selection of different muscles and stimulation events
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Figure B.0-3: An example of peak detection results from using EmgPackage: every one of the six
sub-plots is one stimulation interval with the horizontal axis being the latency. The beginning of
every sub-plot is the occurrence of one stimulus. The red circles show the detected peaks. The
numbers next them indicate their cluster numbers.
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