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Chapter 4

Segmentation and Clustering of
MEPs

This chapter describes a series of steps for processing the EMG signal in order to extract useful

information. The EMG signal was recorded from patients with spinal cord injury during their reha-

bilitation described in [24]. For a complete description on the physiology and characteristics of the

said EMG signal, please refer to Section 2.1 and 2.2.

During the rehabilitation training in [24], electrical stimulation is applied to the spinal cord.

The stimulation parameters (such as amplitude, frequency, and electrode configurations) are varied

manually by the researchers in order to study the di↵erent e↵ects of the electrical simulation on

the spinal neurons, and to find the optimal set of parameters. The stimulation with one fixed set

of stimulation parameters is called one “event”. Every event lasts for a couple of seconds. As a

result, the processing of the EMG signal is carried out on every event individually. There are several

benefits in doing so. Firstly, by performing EMG processing on a short interval, it is safe to assume

the statistics of the noise are stationary. Secondly, the EMG signal from di↵erent events is likely

to show di↵erent statistics, and the performance is good when the signal in regard has a stationary

statistics. Last but not least, it’s desired to compare the characteristics of the EMG signal between

di↵erent events.

The muscle responses in the EMG signal are called Motor Evoked Potentials (MEPs). MEPs

can be classified into two subgroups: monosynaptic MEPs and polysynaptic MEPs. They are also

sometimes referred to as the early responses and late responses, respectively, due to the di↵erences of

their arrival times after the electrical stimulus. After the peaks of MEPs are detected using the peak

detection methods described in Chapter 3, a series of interesting tasks can be further carried out in

order to expose finer structures of the MEPs. This information can assist the neurophysiologists in

assessing the underlying neural activities of the spinal cord.

The fundamental two tasks are to segment and cluster the MEPs. In this thesis, the goal
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of segmentation is to identify MEP segments from the EMG signal sequence. More specifically,

the boundaries of an MEP need to be obtained. Suppose an EMG sequence of N samples, X =

{x1, x2, · · · , xN

}, contains one MEP. The goal of segmentation is to obtain index a and b (b > a)

, such that segment, w = {x
a

, x
a+1, · · · , xb

} contains all the samples from the MEP, but no other

samples. Clustering, in general, is the task of partitioning a set of objects into di↵erent groups,

so that two objects within one group are more similar than two objects from two di↵erent groups.

In the task of MEP clustering, the goal is to group similar MEPs together. This is motivated

by the fact that similar MEPs are likely to come from the same neural physiological process. By

identifying di↵erent clusters of MEPs, di↵erent neural processes can be inferred by the physiologists.

In particular, monosynaptic MEPs are significantly di↵erent from polysynaptic MEPs because of

the distinct neural pathways. As a result, the clustering is carried out in a sequential manner:

firstly monosynaptic MEPs are separated from polysynaptic MEPs via an initial, crude clustering;

then clustering is performed within monosynaptic MEPs and polysynaptic MEPs so as to discover

finer structures. The overall procedure is first stated here. Detailed explanations on these step are

described in the following sections.

1. Find segments of MEPs from the detected peaks in the EMG signal.

2. Find majority of the monosynaptic MEPs via hierarchical clustering on all segments of MEPs.

3. Further cluster monosynaptic MEPs into subgroups based on clustering with Gaussian mix-

tures.

4. Decompose segments that contain both polysynaptic MEPs and monosynaptic MEPs

5. Clustering on polysynaptic MEPs with Gaussian mixtures

To demonstrate the proposed method, the same event of the EMG signal is used throughout

this chapter. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient

with clinically motor complete spinal cord injuries while lying in the supine position with electrical

stimulation applied to the spinal cord [24]. The stimulation amplitude is 7.2V and frequency is

10Hz. This event lasts 30 seconds with 300 simulation intervals (A simulation interval is the time

period between two stimuli).

4.1 Segmentation of MEP Waveforms

After the peaks of the MEPs are detected from the EMG signal, MEP waveforms are segmented

based on peak information. As observed from the EMG signal, MEPs are composed of consecutive

transient peaks. As a result, if two peaks are “next to” each other, then they are likely to be peaks

from the same MEP, or vice versa. It’s not a good idea to choose a hard threshold because the
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distance between two peaks varies for di↵erent shapes of MEPs, and is not a known priori. A better

way is to incorporate the shape information from the wavelet transform of the peaks.

In the proposed wavelet-based peak detection algorithm in Chapter 3, every detected peak corre-

sponds to one ridge in the wavelet space (the time-scale space). The wavelet used is the Mexican hat

wavelet, which naturally resembles a peak. The peak location is estimated from the translation of the

maximum wavelet coe�cient along the ridge, as the magnitude of the wavelet coe�cient measures

the resemblance between the signal and the wavelet function (See Eq. (3.3.6.2) and Eq. (3.3.6.3)).

For convenience, the equations are copied here.

( ˆrx
i

, ˆry
i

) = argmax
(x,y)2Ri

X(x, y)

p̂
i

= ˆry
i

, for i = 1, 2, · · · , N
R

where X(i, j) : (i, j) 7! X
i,j

, which is the wavelet coe�cient matrix defined by:

X
j,k

def
= (X)
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=
+1
X

n=�1
x[n] 

sj ,k[n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ;

{R
i

, i = 1, 2, 3, · · · , N
R

} is the set of ridges detected, where N
R

is the total number of ridges

detected, and R
i

is a set of pair of indices: R
i

= {(rx
i,j

, ry
i,j

), j = 1, 2, · · · , L
i

}, where rx
i,j

and

ry
i,j

give the row and column index (as in X) of the j-th peak maxima along ridge R
i

, respectively,

and L
i

= |R
i

| is the number of peak maxima along the ridge.

The scale of the maximum coe�cient along the ridge R
i

is therefore:

r̂s
i

= s ˆrxi

since ˆrx
i

gives the index in the scale set S def
= {s0, s1, . . . , sj , . . . , sJ}.

Now the e↵ective support of the peak at p̂
i

is defined with respect to the wavelet function at

scale r̂s
i

. Although the theoretical mother wavelet function is not time-limited, its most energy is

confined only within a small region around the origin. Define the e↵ective support of the Mexican

Hat mother wavelet in time domain as w (as shown in Figure 4.1-1), then the Mexican Hat wavelet

at any scale s has e↵ective support of w · s. There are multiple choices of the values of w. In this

thesis, w is chosen to be [�4, 4], and the signal energy within the support occupies almost 100% of

the total energy.

The e↵ective support of a detected peak at p̂
i

is estimated to be the same as the wavelet at scale

r̂s
i

:
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Figure 4.1-1: Mexican Hat mother wavelet  (t) (given by Eq. 3.3.1.1) and its e↵ective support
(denoted by red line and w)

w(p
i

) = w · r̂s
i

(4.1.0.1)

If the supports of two consecutive peaks overlap, then these two peaks are claimed to be from the

same MEP. More formally, p̂
i

and p̂
i+1 are judged to be from the same MEP, if and only if:

p̂
i

+ w(p
i

)/2 > p̂
i+1 � w(p

i+1)/2 (4.1.0.2)

Example results are shown in Figure 4.1-2. The figure contains three EMG slices containing

di↵erent MEPs to demonstrate the e↵ectiveness of this method on di↵erent shapes of MEPs. For

every peak estimated, an estimated e↵ective support is calculated using Eq. (4.1.0.1). After this is

done for all the peaks, peaks are grouped into MEPs based on the criterion in Eq. (4.1.0.2). The

onset of an MEP is estimated as the beginning of the e↵ective support of its first peak, while the end

of an MEP is estimated as the end of the e↵ective support of its last peak, as shown in Figure 4.1-2.

Given the EMG signal of N samples: X = {x1, x2, · · · , xN

}. The result of this segmen-

tation procedure is a set of MEPs: W
MEP

= {w
i

}NM
i=1 , where w

i

is the waveform i-th MEP:

w
i

= w
i,1, wi,2, · · · , wi,Di , and N

M

denotes the total number of MEPs. Extra information about

the MEPs are also obtained to assist further analysis. The onset locations of MEPs are denoted

as b
MEP

= {b1, b2, · · · , bNM } where b
i

2 {1, 2, · · · , N} is the index of w
i,1 as in X. If one MEP is

caused by the electrical stimulus, then this stimulus is said to be “associated” with this MEP. This

stimulus associated with MEPw
i

is simply obtained by finding the closest stimulus that comes before

it. Given an array of the locations of N
s

stimuli: T
stim

= {t1, t2, · · · , tNs} where t
i

2 {1, 2, · · · , N}
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(a) R MH (b) L MG (c) L VL

Figure 4.1-2: Examples of segmenting MEPs from e↵ective supports of peaks: Each subplot shows
one piece of the EMG signal simulated from one of the MEP waveforms in Figure 3.4-2. The
black line is the simulated EMG signal containing one MEP. The red dots/crosses are estimated
positive/negative peak locations from the proposed wavelet method. The e↵ective support of every
peak is plotted as a short blue horizontal line centering at the peak. The blue vertical line denotes the
onset of an MEP, while the dotted vertical line denotes the end. R MH = right medial hamstrings.
L MG = left medial gastrocnemius. L VL = left vastus lateralis.

gives the index of i-th stimulus in X, then the stimulus associated with w
i

, a
i

follows:

a
i

= argmax
t2Tstim\t<bi

t� b
i

(4.1.0.3)

The result is a set of indices a = {a
i

}NM
i=1 .

Running the peak detection algorithm proposed in this thesis followed by the above segmentation

method on the example event of the EMG signal yields 469 MEPs. The EMG signal is recorded

from left medial gastrocnemius (L MG) of a patient with clinically motor complete spinal cord

injuries while lying in the supine position with electrical stimulation applied to the spinal cord. The

stimulation amplitude is 7.2V and frequency is 10Hz. This event lasts 30 seconds with 300 simulation

intervals.

4.2 Identify Cluster of Monosynaptic MEPs

As discussed in Section 2.1.2.2, MEPs can be classified as monosynaptic MEPs and polysynaptic

MEPs. Monosynaptic MEPs are usually the direct responses of muscles after electrical stimulation,

while polysynaptic MEPs are typically indirect responses. It takes di↵erent times for the e↵ect of

the electrical stimulation to show up in the muscle cells. The latency of an MEP is defined as the

time between the electrical stimulation and the onset of the MEP. An example of the latencies of

two MEPs is shown in Figure 4.2-1.

The latency of a monosynaptic MEP is normally larger than that of a polysynaptic one. Hence,
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Figure 4.2-1: Example of latency of an MEP when occurrence of MEP is defined as its onset: The
vertical red dotted line on the far left indicates the occurrence of one stimulus. latency 1 is the
latency of the monosynaptic MEP, while latency 2 is the latency of the polysynaptic MEP.
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sometimes monosynaptic MEPs are also called early responses while polysynaptic MEPs are called

late responses. Monosynaptic MEPs typically have similar latencies among them, while monosynap-

tic MEPs don’t. In addition, monosynaptic MEPs are normally much stronger than polysynaptic

MEPs. For a complete explanation of the underlying physiology, please refer to Section 2.1.2.2.

The ultimate goal is to divide MEPs into monosynaptic ones and polysynaptic ones, and perform

further analysis (such as clustering) within each group. To achieve this goal, the cluster that contains

the majority of the monosynaptic MEPs is identified in this section, because monosynaptic MEPs

have a relatively predictable structure, and hence easier to identify. Then the remaining MEPs are

processed to extract remaining monosynaptic MEPs, and absorb them to the cluster of monosynaptic

MEPs. The final remaining MEPs are grouped into the cluster of polysynaptic MEPs.

4.2.1 Feature Extraction

Based on these prior knowledge on the key di↵erences between polysynaptic MEPs and monosynap-

tic MEPs, the following features are extracted for every MEP:

Strength: the strength of i-th MEP w
i

is defined as its energy:

strength(i) = kw
i

k2 =
Di
X

j=1

w2
i,j

(4.2.1.1)

Latency: the latency of i-th MEP1.

latency(i) = b
i

� a
i

(4.2.1.2)

Duration: the length of i-th MEP: duration(i) = D
i

As a result, each MEP w
i

is associated with a vector v
i

in its feature space, comprised of its

strength, latency and duration: v
i

= [strength(i) latency(i) duration(i)]. The set of all features

are v = {v
i

}NM
i=1 . Denote the k-th features of all MEPs as vk = {v

i,k

}NM
i=1 .

The features need to be scaled to have a common value range so that all features have equal

impact on the computation of the distance. Two scaling schemes are employed.

1The neurophysiologists define latency to be bi � ai, as shown in Figure 4.2-1. Alternatively, the weighted mean
(defined in Eq. (4.3.1.8) as ⌧i, and used as the alignment mark) is less sensitive to the noise and the non-stationarity
of MEPs than the onset of the MEP, bi. As a result, weighted mean is instead used to calculate the latency feature
in the hierarchical clustering.
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Interval scaling: the interval-scaled feature of vk is:

ˆv
i,k

=
v
i,k

�min
i

v
i,k

max
i

v
i,k

�min
i

v
i,k

(4.2.1.3)

Ratio scaling: the ratio scaling is performed simply by doing a log transform followed by an

interval scaling:

ˆv
i,k

=
log(v

i,k

)�min
i

log(v
i,k

)

max
i

log(v
i,k

)�min
i

log(v
i,k

)
(4.2.1.4)

Both scaling are used for numeric features. The interval scaling is the most common one, and

ratio scaling is used when the feature takes exponential values. In the proposed method, the latency

and duration features are interval-scaled. The strength feature is ratio-scaled so as to minimize the

distance between monosynaptic MEPs as the energy of an MEP takes value in a wide range.

Di↵erent weights can be put on di↵erent features so as to put more emphasis on certain features.

Suppose the weights vector is c = [c1 c2 c3]T , then the k-th feature is replaced by vk multiplied by

c
k

. In the proposed method, c1 = 1, c2 = 1, c3 = 2 to highlight the di↵erence of duration between

monosynaptic MEPs and polysynaptic MEPs.

4.2.2 Hierarchical Clustering

The objective of the clustering is to partition MEPs into two groups: the monosynaptic MEPs and

the polysynaptic MEPs. There are a number of clustering techniques employed for the EMG signal,

such as hierarchical clustering [31, 42, 15, 8], k-means clustering [52]. k-means clustering is simple

and e�cient, but it is sensitive to outliers and initial seeds, and it’s not suitable for discovering

clusters that are not hyper-ellipsoids (or hyper-spheres). Since the detection and segmentation

are not perfect, there will be outliers. In addition, as one can see when the features are plotted,

the clusters of monosynaptic MEPs are not hyper-spheres at all. Because of the weaknesses of k-

means clustering, hierarchical clustering is chosen for this task. Although hierarchical clustering is

less e�cient, the number of MEPs detected from one event is not big (typically 100 � 1000), so

e�ciency is not a concern in this application.

Hierarchical clustering involves following three steps:

1. compute the distance between all pairs of objects, and stores the result in a distance matrix.

2. group the objects into a binary, hierarchical cluster tree, called dendrogram. Initially every

object forms a cluster. Then the two closest pair of clusters gets merged into one new cluster.

Repeat the linking until only one cluster remains, resulting a binary tree with root being the

final cluster with all objects and leaves being every individual objects.



99

3. determine where to cut the hierarchical tree into clusters.

Each step can be implemented in various ways. In the proposed method, the following options

are chosen.

• the distance measure between two objects is chosen to be the L1 distance. A L1 distance

between two vectors p and q is defined as:

d1(p,q) = kp� qk1 =
n

X

i=1

|p
i

� q
i

| (4.2.2.1)

This distance is chosen so as to minimize the distance within monosynaptic MEPs while

maximizing the distance between monosynaptic MEPs and polysynaptic MEPs.

• In the linking stage, the distance between two clusters is defined as the shortest distance

between any two objects in the two clusters, one from each cluster.

• When cutting the hierarchical tree, the criterion is chosen to be the distance between the

clusters. If the distance between two clusters are above the threshold, then they are two

separate clusters in the final result. The distance is chosen to be 0.1.

The time complexity for the proposed clustering is O(N2
M

) for N
M

MEPs.

From the physiology of MEPs, monosynaptic MEPs tend to have similar latencies and durations,

and much larger energy than polysynaptic ones. The cuto↵ threshold is intentionally chosen to be

a small value to ensure that there is at least one cluster full of pure monosynaptic MEPs. The

potential drawback is that other clusters may contain monosynaptic ones, too. This problem will

be solved later. The cut of the dendrogram results in many clusters. One of them contains only

the monosynaptic MEPs. The next task is to identify the largest cluster that contains only the

monosynaptic MEPs. That cluster of monosynaptic MEPs are plotted with their associated stimuli

aligned in Figure 4.2-2. The method of finding this cluster is described as follows.

The idea is to assign a score to every cluster that measures the e↵ective standard deviation of the

latencies of monosynaptic MEPs within the said cluster. Then the cluster with the lowest e↵ective

standard deviation is chosen to be the cluster of monosynaptic MEPs. Suppose there are N
C

clusters

C = {C
i

}NC
i=1, where C

i

= {c
i,1, ci,2, · · · , ci,ni} gives the set of indices of MEPs in the i-th cluster

(c
i,1 2 {1, 2, · · · , N

M

} are indices in the set W
MEP

). The latency feature is v2 = {v
i,2}NM

i=1 , the

second features of all MEPs in the feature space. Denote the total number of events as N
E

. Then

the e↵ective standard deviation of i-th cluster, �(i), is calculated following:
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Figure 4.2-2: Example of a cluster with 285 monosynaptic MEPs from the initial hierarchical cluster-
ing of 469 MEPs detected and segmented from 30 seconds of the EMG signal. The MEP waveforms
are aligned to their associated electrical stimuli at the origin, so the x axis is the latencies of the
MEPs. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient with
clinically motor complete spinal cord injuries while lying in the supine position with EES. The
stimulation amplitude is 7.2V and frequency is 10Hz.

�(i) = std({v
ci,j ,2}ni

j=1) ·
|N

E

� n
i

|
N

E

(4.2.2.2)

where std(S) gives the standard deviation of the set S. The above formula is formulated with fol-

lowing rationale. The monosynaptic MEPs have very consistent latencies, so the standard deviation

of the latencies of the cluster of monosynaptic MEPs should be very small (close to 0). However, the

standard deviation alone does not always work because small clusters could have smaller standard

deviations than the large cluster of pure monosynaptic MEPs. Based on physiology, there is ap-

proximately 1 monosynaptic MEP in one event, so theoretically there should be N
E

monosynaptic

MEPs in the cluster. As a result, the closer that n
i

is to N
E

, the higher confidence that C
i

contains

the monosynaptic MEPs. As a result, a factor |NE�ni|
NE

is multiplied to the standard deviation to

get rid of the small clusters. The index of the identified cluster of monosynaptic MEPs is:

Î
M

= argmin
i2{1,2,··· ,NC}

�(i) (4.2.2.3)

In the example shown in Figure 4.2-2, the identified cluster of monosynaptic MEPs contain 285

MEPs and have a e↵ective standard deviation of 0.000371. MEPs of the second largest cluster from

hierarchical clustering is also plotted in Figure 4.2-3 to give readers some insight on the hierarchical

clustering result. It contains 46 polysynaptic MEPs.
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Figure 4.2-3: Example of the second largest cluster with 46 MEPs from the initial hierarchical
clustering of 469 MEPs detected and segmented from 30 seconds of the EMG signal. The MEP
waveforms are aligned to their associated electrical stimuli at the origin, so the x axis is the latencies
of the MEPs. The EMG signal was recorded from left medial gastrocnemius (L MG) of a patient
with clinically motor complete spinal cord injuries while lying in the supine position with EES. The
stimulation amplitude is 7.2V and frequency is 10Hz.

4.3 Clustering of Monosynaptic MEPs

In the hierarchical clustering, the features are chosen so as to maximize the di↵erence between

monosynaptic MEPs and polysynaptic MEPs, while at the same time minimizing the di↵erence

within monosynaptic MEPs. Because both monosynaptic and polysynaptic MEPs can have vari-

ous waveforms and the exact shapes are not a known priori, shape information is not used in the

hierarchical clustering. After the majority of the monosynaptic MEPs are extracted during the

hierarchical clustering, a further clustering within them is performed to find intrinsic structures of

the monosynaptic MEPs.

As discussed in the physiology of MEPs in Section 2.1.2.2, MEPs are the activities of the muscle

cells in response to the electrical stimulation provided by the implanted electrodes on the spinal

cord. The neurons in the spinal cord are excited and their activities are modulated by the electric

field. Di↵erent neural pathways would result in di↵erent MEPs shown in the EMG signal of the

lower-body muscles. The goal of the clustering within monosynaptic MEPs is to infer the di↵erent

neural pathways or activities from the di↵erent structures or shapes of the MEPs.
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4.3.1 Feature Extraction: Principal Component Analysis

In order to cluster with the shape information, the entire waveform of an MEP should be used.

However, the MEP waveforms contain about ⇠ 10 � 100 samples, and many of them are highly

redundant. The redundant features add unnecessary complexity and computation time to the clus-

tering task, and would shadow the most di↵erentiating features. As a result, the first step before

performing any kinds of clustering is to reduce the number of features, and principal component

analysis (PCA) is the most common way of doing this.

PCA is a technique that is widely used for applications such as dimensionality reduction, lossy

data compression, feature extraction, and data visualization. PCA can be defined as the orthogonal

projection of the data onto a lower dimensional linear space, known as the principal subspace,

such that the variance of the projected data is maximized [4]. Suppose the data is {x
n

}, where
n = 1, 2, · · · , N , and x

n

= [x
n1 x

n2 · · · x
nD

]T is a (column) vector in the Euclidean space with

dimensionality D. Assume the mean has already been subtracted from the data such that x̄ = 0.

The subtraction of the mean is a preprocessing of the data before performing PCA. With x̄ = 0, the

meaning of maximum variance in projected data is achieved.

The goal is to find a subspace with dimensionality M < D such that the projected data contains

most of the variance in the original data. Suppose the subspace is given by M orthonormal vectors

{u
i

} where i = 1, 2, · · · ,M . u
i

= [u
i1 u

i2 · · · u
iD

] is a column vector in original space with following

properties:

uT

i

u
j

= �
ij

(4.3.1.1)

ku
i

k = 1 (4.3.1.2)

where �
ij

is the Kronecker delta function.

The projection of a given data x
n

onto the subspace {u
i

}M
i=1 is therefore z

n

= [z
n1 z

n2 · · · z
nM

]T

where z
ni

= xT

n

u
i

. Let U = [u1 u2 · · · u
M

] be the matrix with columns being the orthonormal

vectors u
i

. Then, the projection of x
n

can compactly be expressed as:

z
n

= UTx
n

(4.3.1.3)

Let matrix X = [x1 · · · x
N

]T represent the N data with rows being the observations x
n

, and let

matrix Z = [z1 · · · z
N

]T represent the N projections with rows being the projections z
n

. Then:

Z = XU (4.3.1.4)
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From the projection Z, original data can be reconstructed with:

X̃ = ZUT (4.3.1.5)

X̃ would be the same as X if M = D. For M < D, there is a distortion or error. The distortion

measure is the squared distance between the original data and the reconstructed data.

J =
1

N

N

X

n=1

kx
n

� x̃
n

k (4.3.1.6)

It turns out PCA minimizes J for a fixed M < D with respect to di↵erent choice of the M orthonor-

mal vectors {u
i

}M
i=1 [4].

Theoretically, PCA is achieved by evaluating the covariance matrix S of the data set X and

then finding the M eigenvectors of S corresponding to the M largest eigenvalues. The covariance

matrix is calculated by: S = 1/N
P

N

n=1 x
T

n

x
n

.2 In practice, many algorithms have been developed

to compute the M eigenvectors e�ciently.

The mathematical derivation can be found in [4]. Here is the summary of the conclusions.

Suppose {�
k

} and {u
k

} are the eigenvalues and eigenvectors of S, where k = 1, 2, · · · , D. If {u
k

}M
k=1

are used as the bases of the subspace, then the variance of the projected data onto this subspace is

given by
P

M

k=1 �k. In addition, the distortion measure J can also be derived as:

J =
D

X

k=M+1

�
k

(4.3.1.7)

Therefore, by choosing the M eigenvectors of S corresponding to the M largest eigenvalues, the

variance of the projected data is maximized while the distortion measure is minimized.

In practice, the choice of M depends on how much of the total variance is desired to be kept in

the principal subspace. 90% is typically considered to be a good approximation. In fact, beyond

that, the remaining 10% of the variance is mainly composed of noise, so PCA also helps reduce the

e↵ect of the noise.

One typical issue when applying PCA to the waveforms is alignment. Suppose x
n

= [x
n1 xn2 · · · x

nD

]T

gives the feature vector of length D. Then, the i-th feature x
ni

should be the same type of feature

for all x
n

where n = 1, 2, · · · , N . Unfortunately, MEP waveforms don’t satisfy this. First of all,

the segmented waveforms of MEPs don’t have the same length. Secondly, the amplitude at every

sampled time is simply a measurement of the voltage, and there is no information about how the

2This is why data {xn} needs to be centered. Only when x̄ = 0 will S given by above equation give the covariance
matrix.
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waveforms of two MEPs are correlated with each other. Normally, the alignment is performed by

aligning the most significant feature of the waveform. For example, the largest peak of a MUAP

is used as the alignment mark. This is not possible for MEPs because one MEP can have multiple

significant peaks, and there is no single most significant peak. As a result, MEPs can’t be aligned

based on their peaks.

In this thesis, the alignment mark is chosen to be the weighted average of the time indices

with weight being the amplitude square, as defined in Eq. (4.3.1.8). This definition removes the

dependency on the peak locations of the MEPs, and therefore can be applied to MEPs with various

shapes. In addition, this definition makes use of the shape information so that similar MEPs will be

aligned correctly and consistently. After all the MEPs are aligned with the weighted time mean, the

MEPs are adjusted to have the same length. The length is chosen to be the average of all MEPs.

Hence, longer MEPs are truncated while shorter MEPs are padded with 0s.

⌧
i

=

P

Di

j=1 j ⇤ w2
i,j

P

Di

j=1 w
2
i,j

(4.3.1.8)

where ⌧
i

2 {1, 2, · · · , N} is the alignment mark of the i-th MEP, of which the time indices are

{1, 2, · · · , D
i

}, and the waveform is w
i

= {w
i,1, wi,2, · · · , wi,Di}.

To illustrate the PCA process applied to the monosynaptic MEPs, the MEPs in Figure 4.2-2 are

used for demonstration. The original MEP waveforms, aligned with respect to their weighted time

means, are plotted in Figure 4.3-1a. Figure 4.3-1e shows the percentage of the variance each principal

component (eigenvector) explains. The percentage of variance is simply the ratio of the eigenvalue

corresponding to each eigenvector over the sum of all eigenvalues. As shown in Figure 4.3-1e, the first

two eigenvectors already explain more than 95% of the total variance, so two principal components

are good enough to retain most of the useful information in the original waveforms (See Figure 4.3-

1c). Please note that the PCA is performed on the centered data (eg. data with mean subtracted).

To reconstruct the original data, the mean has to be added back (See Figure 4.3-1d). The projection

of the centered, aligned monosynaptic MEPs onto the principal subspace of dimension 2 is plotted

in Figure 4.3-1f. This shows a side benefit of PCA, which is to help visualize high-dimensional data.

Finally, the reconstructed waveforms are plotted in Figure 4.3-1b. Compare it with Figure 4.3-1a,

one can tell the reconstructed waveforms are very close to the original waveforms, and hence a

two-dimensional subspace is enough to capture most of the useful information in the original high-

dimensional space.
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(a) original monosynaptic MEP waveforms (b) reconstructed monosynaptic MEP waveforms

(c) coe�cients of the first two principal compo-
nents from PCA

(d) point-average waveform of the original
monosynaptic MEPs

(e) percentage of the variance explained by every
component from PCA

(f) projection of the original monosynaptic MEPs

Figure 4.3-1: PCA result on the 285 MEPs in the monosynaptic MEP cluster obtained from the
initial clustering. (a) gives the original MEP waveforms aligned with respect to their weighted
time means. The common length of all waveforms is 47 samples. (b) gives the MEP waveforms
reconstructed from their PCA projections with a two-dimensional principal subspace. (c) gives the
coe�cients of the first two principal components. (d) gives the point-average waveform of the original
MEP waveforms. (e) gives the percentage of the variance explained by every principal component.
(f) gives the projection of the original MEP waveforms onto the two-dimensional principal subspace.
Score 1 and score 2 give the coordinates in the principal subspace when projecting the original
waveforms onto the first and second component, respectively.
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4.3.2 Clustering with Gaussian Mixure Model

Clustering with Gaussian Mixture Model (GMM), or Mixtures of Gaussians, is a very popular and

powerful technique. K-means clustering is actually a special case of GMM clustering. Unlike K-

means clustering, which only works well if clusters of data form hyper-spheres, GMM can model

clusters with hyper-ellipsoids of various orientations. In addition, K-means gives hard thresholding

while GMM assigns the probability to every data point that measures the likelihood that each clus-

ter explains the data. GMM has been used to cluster neural signals successfully [65]. A Gaussian

distribution can accounts for the variability in the MEP waveforms. As a result, GMM has been

used to cluster monosynaptic MEPs in this thesis.

A Gaussian Mixture Model is a probability distribution which is a linear superposition of Gaus-

sian distributions with di↵erent weights:

p(x) =
K

X

k=1

⇡
k

N (x|µ
k

,⌃
k

) (4.3.2.1)

where x is a random vector, ⇡
k

are called mixing coe�cients and satisfy
P

K

k=1 ⇡k = 1, and

N (x|µ
k

,⌃
k

) gives the multivariate normal distribution with mean µ
k

and covariance matrix ⌃
k

.

The above GMM has K components. For convenience, let ⇡ = {⇡
k

}K
k=1, µ = {µ

k

}K
k=1, and

⌃ = {⌃
k

}K
k=1. Given a fixed number of components K, the set of parameters of a GMM is therefore

⇥ = {⇡,µ,⌃}.
The goal is to estimate the parameters of a GMM from a given set of observations X = {x

n

}N
n=1.

The most common approach is to maximize the log of the likelihood function (commonly referred

as Maximum Likelihood, or ML) with respect to the model parameter ⇥:

ln p(X|⇡,µ,⌃) =
N

X

n=1

ln

8

<

:

K

X

k=1

⇡
k

N (x
n

|µ
k

,⌃
k

)

9

=

;

(4.3.2.2)

Maximizing the above function is a very complex task and does not yield a closed form solution.

The most commonly used alternative approach for finding maximum likelihood solutions to GMM

is called the expectation-maximization algorithm, or EM algorithm [4]. Various constraints can be

put on the parameter ⇥ when maximizing the likelihood function. The most common one is the

free form optimization as described in [4], in which no constraints are put on the parameters. For

covariance matrix, a parsimonious model can be used to apply di↵erent constraints, as discussed

in details in [6]. For example, the covariance matrix ⌃ can be constrained to be diagonal. The

parameters of all components can be constrained to be the same. Adding constraints to the model

reduces the model complexity, and therefore reduces overfitting when the amount of data is small.
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Figure 4.3-2: BIC for various K and ⌃ choices: Run clustering with GMM on the monosynaptic
MEPs from Figure 4.2-2. The best model has 3 Gaussians (K = 3) with diagonal covariance matrix
and non-shared parameters. The BIC associated with the best model is 7360, the smallest of all.

Model Class

In this thesis, the following models of Gaussian mixtures are considered:

• The number of Gaussian mixture components K = 1, 2, 3, 4, or 5.

• The covariance matrix ⌃
k

is diagonal or full.

• The parameters µ
k

and ⌃
k

are shared or not.

Overall there are 5 · 2 · 2 = 20 models to choose from.

The more complex the model is, the better it fits the data, and the bigger the likelihood is.

However, a complex model tends to overfit the data. As a result, a penalty has to be given based on

the complexity of the model. Bayesian information criterion (BIC) is commonly used as a criterion

for model selection among a finite set of models. The model with the lowest BIC is preferred. The

BIC is defined as:

BIC = �2 ln(L̂) +M ln(N) (4.3.2.3)

where L̂ is the maximized value of the likelihood function of the model, M is the number of free

parameters to be estimated, and N is the number of data points. The BIC calculated under di↵erent

models for the clustering of monosynaptic MEPs is shown in Figure 4.3-2. For that particular data

set, the best model has three Gaussians, with all having diagonal covariance matrices and non-shared

parameters.

After the model is identified from the data, the clustering is done by evaluating the responsibility,
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�
nk

, that component k takes for explaining data x
n

, as defined by:

�
nk

=
⇡
k

N (x
n

|µ
k

,⌃
k

)
P

K

j=1 ⇡jN (x
n

|µ
j

,⌃
j

)
(4.3.2.4)

x
n

is assigned to cluster k if cluster k has the largest responsibility for explaining it. For a total of

K clusters, the cluster index c
n

of data x
n

is given by:

c
n

= argmax
k2{1,2,··· ,K}

�
nk

(4.3.2.5)

The clustering result is shown in Figure 4.3-3. From simple visual inspection, the clustering

result looks good as it finds the subtle di↵erences between di↵erent clusters of MEPs, and MEPs

from every cluster share similar shapes. Of course, to accurately interpret the clustering result, one

needs to consult neurophysiologists for expertise.

4.4 Decomposition of Overlapping MEPs

In the initial hierarchical clustering, the cuto↵ threshold is intentionally chosen to be small so that

there is at least one cluster of only monosynaptic MEPs. As a result, some of the monosynaptic

MEPs are “left out”. This is especially true when a monosynaptic MEP is very close to, or even

overlaps with, a polysynaptic MEP. In this case, the segmentation step produces a long segment

with both monosynaptic MEPs and polysynaptic MEPs. The task in this step is to extract the

remaining monosynaptic MEPs when two or more MEPs overlap in time.

The overall procedure is first stated, followed by a detailed discussion of every step. For every

remaining MEP,

1. Find a segment of the waveform that gives the best matching with the cluster of monosynaptic

MEPs. This segment is regarded as a candidate monosynaptic MEP.

2. Calculate the likelihood of given candidate MEP being from the clusters of monosynaptic

MEPs using information of the shape and the latency. If the likelihood is above a certain

threshold, the candidate MEP is labeled as a monosynaptic MEP.

3. Classify the newly added monosynaptic MEP using the Gaussian mixture model identified in

Section 4.3.2.
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(a) Projections of the MEPs and results of clustering with GMM

(b) cluster 1 (c) cluster 2 (d) cluster 3

Figure 4.3-3: Clustering result on monosynaptic MEPs with GMM: the monosynaptic MEPs are
from Figure 4.2-2. PCA is performed to reduce the dimensionality before clustering (See Figure 4.3-
1f). The GMM has three Gaussians with diagonal covariance matrices. There are 285 MEPs in total:
cluster 1 has 163 MEPs; cluster 2 has 51 MEPs; cluster 3 has 71 MEPs. (a) gives the scatter plot
of the projections of the MEPs onto a two-dimensional principal subspace. Each projection is color-
coded to give its membership. For every component, the Gaussian distribution is also plotted with
mean given by cross (X) and covariance given by ellipsoids that specifies a 99% probability threshold
for confidence region; (b) - (d) Monosynaptic MEPs in Cluster 1 - 3 with original waveforms on the
left and reconstructed waveforms on the right. The points average is plotted (in red) within each
group of waveforms.
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4.4.1 Identify Candidate Monosynaptic MEPs

The waveform of a remaining MEP is denoted as a vector of length D, w = [w1 w2 · · · w
D

]T . From

the means of the K components in the GMM, cluster template waveforms can be reconstructed by

Eq. (4.3.1.5). Denote the K cluster template waveforms as w(k), where k = 1, 2, · · · ,K, and:

w(k) = Uµ
k

where µ
k

is the mean of the k-th component in GMM, and U is the base of principal subspace.

Note that all vectors w(k) and µ
k

are column vectors.

Cross-correlate w with w(k) and find the best matching point, n
k

, the point where the cross-

correlation coe�cient takes its maximum value, ⇢
k

.

n
k

= argmax
n2Z

(w ?w(k))[n] (4.4.1.1)

⇢
k

= (w ?w(k))[n
k

] (4.4.1.2)

where (f ? g)[n] is the cross-correlation between two real-valued discrete signals f [n] and g[n]:

(f ? g)[n] =
+1
X

m=�1
f [m+ n]g[m] (4.4.1.3)

which gives the dot product of f [m] with lag n and g[m].

Then find the component k̂ that gives the maximum value of ⇢
k

: k̂ = argmax
k=1,2,··· ,K ⇢

k

. Sup-

pose the length of the aligned monosynaptic MEPs is D̄, then the candidate monosynaptic MEP is

w0 = {w
j

}nk̂+D̄�1
j=nk̂

. The other segments of w might contain polysynaptic MEPs, so create new MEP

segments, w(1) and w(2):

w(1) = {w
j

}nk̂�1
j=n1

(4.4.1.4)

w(2) = {w
j

}D
j=nk̂+D̄

(4.4.1.5)

where w(1) is the segment before w0, while w(2) is the segment after w0. If there are none or very few

samples on either sides, then the candidate intervals w(1) or w(2) are not meaningful. Figure 4.4-1

shows an example of breaking down a long segment into a candidate monosynaptic MEP and a

candidate polysynaptic MEP. In that case, no segments exist before w0, and only one segment exists

after w0. In this example, w0 is successfully accepted to the cluster of monosynaptic MEPs in next
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Figure 4.4-1: Breaking segment into candidate monosynaptic and polysynaptic MEP: w0 is the
candidate monosynaptic MEP found by cross-correlation. There is not a segment before w0. w(2)

is the remaining segment after w0, and will be analyzed as a potential polysynaptic MEP: red solid
line and red dotted line indicate the location of n

k̂

and n
k̂

+ D̄ � 1, the beginning and end of the
candidate monosynaptic MEP w0, respectively

step.

4.4.2 Determine if the Candidate is a Monosynaptic MEP

After a segment of candidate MEP is identified, the likelihood of it being from the monosynaptic MEP

cluster needs to be quantitatively evaluated. The Gaussian mixture model can give the likelihood

based on the waveform of the MEP, but it does not use the latency information, which is crucial in

determining the type of the MEP. In the following, the waveform and the latency information are

combined to give a quantitative measurement of the likelihood.

For convenience, some of the notations introduced in Section 4.1 are restated here, together

with some new notations. An EMG signal takes the format of N samples (discrete-time signal):

X = {x1, x2, · · · , xN

}. Suppose the cluster of monosynaptic MEPs contains N
M

MEPs, W
MEP

=

{w
i

}NM
i=1 , where w

i

is the waveform of the i-th MEP of length D
i

: w
i

= w
i,1, wi,2, · · · , wi,Di . The

timing of the stimulus which is presumed to elicit the response in w
i

is denoted as a
i

2 {1, 2, · · · , N}
that represents the (discrete-time) index in the EMG signal X. The latency of the i-th MEP, which

is the time from the occurrence of the electrical stimulus (a
i

) to the MEP (w
i

), is denoted as d
i

. The

complete information about the i-th MEP is thus M
i

= {w
i

, a
i

, d
i

}, which includes the waveform,

the associated stimulus, and its latency to the stimulus.
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The probability model for the waveform can be given by the Gaussian mixture model, ⇥ =

{⇡,µ,⌃}. The probability model for the latency is given by the Gaussian distribution, ⇥
d

=

{µ
d

,�2
d

} where subscript d indicates latency. The principal subspace of the MEP waveform space

(the Euclidean space with the dimension of the common length of the MEP waveforms) is given by

U (Refer to Section 4.3.1 for feature extraction via PCA). Assume the waveform is independent of

the latency, and then the probability of a given MEP being a monosynaptic MEP is:

p(w
i

, d
i

;⇥,⇥
d

,U) = p(UTw
i

|⇥) · N (d
i

|µ
d

,�2
d

) (4.4.2.1)

where p(UTw
i

|⇥) is the Gaussian mixture model given by Eq. (4.3.2.1). Then the log likelihood is:

ln
�

p(w
i
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i

;⇥,⇥
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,U)
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n

p(UTw
i
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o
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n
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,�2
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)
o

(4.4.2.2)

The parameters of the Gaussian distribution of the latency ⇥
d

are estimated by:

µ̂
d

=
1

N
M

NM
X

i=1

d
i

(4.4.2.3)
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which gives the unbiased estimation of the population mean and the population variance.

The threshold for accepting a given MEP as a monosynaptic MEP is given by:

T = �

 

min

⇢

ln
n

p(UTw
i

|⇥)
o

�

+min
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ln
n

N (d
i
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,�2
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)
o

�

!

(4.4.2.5)

where � is a factor that can be adjusted to either tighten or relax the threshold. For example, in

the thesis, � = 1.5 is found to yield good results. Note that the log likelihood is a negative number,

so a � > 1 relaxes the threshold.

For a given new MEP M
new

= {w
new

, a
new

, d
new

}, M
new

is said to be monosynaptic MEP if:

ln
�

p(w
new

, d
new

;⇥,⇥
d

,U)
 

� T (4.4.2.6)

4.4.3 Classify the New Monosynaptic MEP

The newly added monosynaptic MEP, w
new

, is classified to one of the K clusters determined by the

K components of Gaussian mixtures. The posterior probability of the given MEP being from the

k-th component is �
k

:
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�
k
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N (UTw
new
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k

,⌃
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P
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j=1 ⇡jN (UTw
new

|µ
j

,⌃
j

)
(4.4.3.1)

This is the adaptation of Eq. (4.3.2.4) by replacing x
n

with the PCA projection of the new MEP

waveform, UTw
new

.

w
new

is assigned to the component with the largest posterior probability for the observation.

k̂ = argmax
k2{1,2,··· ,K}

�
k

(4.4.3.2)

In Section 4.1, 469 MEPs were detected and segmented from 30 seconds of the EMG signal which

was recorded from left medial gastrocnemius (L MG) of a patient with clinically motor complete

spinal cord injuries while lying in the supine position with EES. The stimulation amplitude is 7.2V

and frequency is 10Hz. Among the 469 MEPs, 285 MEPs were placed to the monosynaptic MEP

cluster in the initial clustering in Section 4.2.2. After running the above decomposition procedure on

the remaining 184 MEPs, additional 15 MEPs were placed to the monosynaptic MEP cluster, so the

monosynaptic MEP cluster has 300 MEPs. This is expected as there are 300 stimulation intervals

from 30 seconds of the EMG signal with stimulation frequency being 10Hz, and normally there is

one monosynaptic MEP within one stimulation interval. The remaining 184 MEPs are considered

candidate polysynaptic MEPs and will be clustered via GMM in the next section.

4.5 Clustering of Polysynaptic MEPs

Clustering of polysynaptic MEPs undergoes the same set of procedures as the monosynaptic MEPs

as described in Section 4.3. Here is a brief recap of the procedures.

1. Align the MEP waveforms based on its weighted time mean. Run PCA and project waveform

onto the principal subspace (with dimensionality of 2).

2. Perform maximum likelihood (ML) optimization on a set of Gaussian mixture models via EM

algorithm. Select the best model.

3. Cluster the PCA projections of the MEPs using the selected Gaussian mixture model.

An example clustering result is shown in Figure 4.5-1. PCA is performed to reduce the dimensionality

before clustering. The best model has four Gaussians with full covariance matrices. There are 184

polysynaptic MEPs in total: cluster 1 has 52 MEPs; cluster 2 has 52 MEPs; cluster 3 has 68 MEPs;

cluster 4 has 12 MEPs.

Although polysynaptic MEPs are very weak, and do not have consistent latencies or shapes even

within an event, the clustering successfully partitions them into di↵erent groups (See Figure 4.5-

1). Because the SNR of the polysynaptic MEPs is low, the real MEP waveforms are tempered by
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(a)

(b) cluster 1 (c) cluster 2

(d) cluster 3 (e) cluster 4

Figure 4.5-1: Clustering result on polysynaptic MEPs with GMM: the polysynaptic MEPs are from
the same EMG signal as the monosynaptic MEPs in Figure 4.2-2. (a) gives the scatter plot of the
projections of the MEPs onto a two-dimensional principal subspace. Each projection is color-coded
to give its membership. For every component, the Gaussian distribution is also plotted with mean
given by cross (X) and covariance given by ellipsoids that specifies a 99% probability threshold for
confidence region; (b) - (d) Monosynaptic MEPs in Cluster 1 - 4 with original waveforms on the left
and reconstructed waveforms on the right. The points average is plotted (in red) within each group
of waveforms.
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noise severely, which make them visually hard to analyze by physiologists. The use of PCA not

only reduces the feature dimensionality, but also reduces the e↵ect of the noise. In Figure 4.5-1b

to Figure 4.5-1e, the reconstructed waveforms are shown on the right hand side of the original

waveforms. The reconstructed waveforms are much smoother, and the structure or shape of the

MEP waveforms is more prominent.

The clustering result is especially satisfying considering that these clusters don’t visually separate

from each other in the scatter plot. As a result, the K-means clustering would obtain completely

wrong results. This example shows the flexibility and powerfulness of the GMM.

Because polysynaptic MEPs are weak, there are more false positives in detecting transient peaks

of the polysynaptic MEPs. The error in the peak detection will be carried over to the segmentation

phase and eventually the clustering phase. The threshold in the peak detection step is intentionally

chosen to be small enough to yield a high recall, but a low precision. A high recall guarantees that

most of the true MEPs are detected. A low precision implies more noise samples are picked up

as MEPs, but this can be corrected in the following clustering phase, because noise samples have

similar statistics and tend to show up in one cluster. The cluster of noise samples can be removed

upon inspection by the physiologists.


