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Chapter 3

Peak-based EMG Detection Via
CWT

3.1 Existing Methods

In the EMG signal detection problem, one of the main tasks is to identify transient peaks of the

muscle responses, or Motor Evoked Potentials (MEPs) in the application of spinal cord injury. There

are two reasons why the peaks must be detected. First, the number, locations, and amplitudes of

EMG peaks are crucial for assessing the response to the treatment. Second, although MEPs can have

various shapes, all MEPs contain transient peaks. By making use of the peak characteristics of MEPs,

detection performance can be potentially increased. Therefore, the MEP detector involves both

transient detection and peak detection. Transient detection is a theoretical field with many theories

being proposed. On the other hand, peak detection is more of a practical problem encountered in

various applications. In the following, the prior literature on EMG detection is first reviewed, and

its shortcomings are pointed out. Then, theoretical developments on transient signal detection are

reviewed. After that, the peak detection literature is reviewed with focus on applications. One

goal of this work is to build upon theories of transient signal detection and algorithms from peak

detection, and combine them and adapt it to the MEP detection.

3.1.1 EMG processing

Most of the methods used in the EMG community rely upon some variation of amplitude thresh-

olding, often based on empirical formulas [34, 37, 15, 8, 7, 27]. In [15], a threshold cursor is set

by an operator visually at a level to distinguish spike potentials from noise. In [7], a threshold is

manually adjusted (decreasing from its maximum value 10% at each iteration) to obtain good motor

unit firing rates. In [8] and [27], a threshold is calculated from the maximum value and the mean

absolute value of the EMG signal as measured over a lengthy interval. In both [34] and [37], the

EMG signal is first low-pass filtered to reduce the noise. In [34], a threshold is set to a coe�cient
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(typically 3.5) times the standard deviation of the baseline noise. In [37], a trigger level is set to

10% of the maximum value. These methods could work practically, but not for the EMG application

with large dynamic range of EMG and the need for unsupervised processing. An improvement over

amplitude-based thresholding is to compute the signal variation and set a threshold based on that

quantity [22, 42]. Both of these papers use di↵erent formulas to calculate the empirical variation of

the EMG signal within a window and set a threshold. Still, many of these formulas are empirical

and lack theoretical support. In [3], amplitude envelope or local energy is obtained to detect the

onset of muscle activity. This is essentially a linear filtering or energy detector which will be dis-

cussed later in the review of transient signal detection methods. Other methods are based on more

advanced techniques, such as matched filtering [14], Maximum A Posteriori (MAP [30]) estimation

and wavelet transforms [36]. However, these approaches either require some kind of template, or

assume that di↵erent muscle responses are the scaled versions of a prototype function. Therefore

the methods can’t be generalized to solve the MEP detection problem, since the MEPs have various,

unpredictable shapes.

In summary, most detection techniques developed in the EMG community are relatively simple,

and involve manual adjustment of parameters by human supervision. Manual operation is useful in

some practice, since the operators can use their experiences and knowledge to improve performance.

However, it can be very laborious for large data sets. Since the quality of the results largely depends

on the skill level of the individual, it’s hard to consistently get good results. Some other detection

techniques use simple empirical formulas. Since the algorithm is simple, it’s easy to implement

and runs fast. However, they lack theoretical support, and the empirical formulas are usually only

successful on specific data. In addition, most of the techniques require a window. It’s not a good

idea to choose a fix window for detection of transient peaks, as the peaks are really short and have

various widths. A large window would lose the resolution and thus miss some transient peaks,

while a small window normally yields poor detection performance. Some advanced techniques have

been developed recently. However, they either su↵er from the baseline and the noise, or put strong

assumptions on the waveforms of the EMG signal, which make them hard to generalize and apply

on an actual EMG signal. After all, all algorithms are still spike-detection in essence, but the MEPs

are far more complicated than spikes. In addition, almost all the techniques’ detection performance

deteriorate sharply for EMG signal with low signal-to-noise ratio (SNR).

3.1.2 Transient Signal Detection

In classical detection theory, a detector is given a record of observation samples and decides whether

the observation contains, in addition to noise, a signal of interest or not. This type of problem arises

in many di↵erent areas, such as communication systems, radar systems, and medical diagnosis. In

applications such as underwater acoustics, seismic surveillance, and EMG signal processing as in this
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thesis, the signal to be detected is a transient signal, a signal of short duration. In most practical

applications, the complete knowledge about the location, shape, or strength of the transient signals

is unknown.

There are many di↵erent techniques proposed for the detection of transient signals. Theoretically,

if the statistics of the noise and the signal are completely known, then the likelihood ratio test (LRT)

is formulated to obtain a constant false alarm rate (CFAR) detector. For example, when the exact

shape of the signal is a known priori, then the optimal detector is given by a matched filter (MF).

When some parameters (either the signal or the noise or both) are unknown, a generalized likelihood

ratio test (GLRT) is then formulated with the maximum likelihood estimates (MLE) of the unknown

parameters [28].

The detection problem becomes particularly challenging in the case of EMG-like transient signals,

because the signal typically has unknown shape, unknown strength, and unknown location. Classical

techniques are not guaranteed to work. Many di↵erent methods have been proposed to tackle the

transient detection problem. Generally, if some prior information about the signals to be detected

is known, then the detector, which makes good use of the prior knowledge, would generally perform

well on those signals [20]. In [20], Frisch shows that a good detection performance can be achieved if

the prior information about the signal is translated into a proper signal representation. Meantime,

a detector based on some signal assumptions will not perform well on signals that don’t satisfy

the assumptions. As a result, some prior work has focused on general detectors which make few

assumptions on the transient signals. For example, a plug-in power-law detector was proposed in

[62].

Many methods formulate test statistics based on the notion of signal “energy” or “power”. When

nothing is known about the signal, the optimal detector is an energy detector [28, 60]. In an energy

detector, the energy of the signal (sum of squares of the discrete-time samples) is calculated and

compared against a threshold. However, the performance of the energy detector is typically not

good, as it doesn’t use any prior knowledge about the signal. Hence, energy detectors usually serve

as a lower bound when evaluating the detection performance of any given detector. An improvement

over the energy detector is the power-law detector [43, 44, 45, 62]. Nuttall formulated the power-law

detector in the frequency domain via preprocessing the data by the magnitude-square DFT, and

studied its performance extensively in his technical reports [43, 44, 45]. Wang, in [62], extended

Nutall’s idea and proposed a series of variations on the power-law detectors. In particularly, one

of her power-law detectors deals with unknown, colored noise. By making use of the structure of

the transient signals (real transient signals tend to aggregate their energy in a band), her power-

law detector combines contiguous DFT bins. She also explored the use of wavelet transform to

take advantage of the fact that real transient signals also tend to aggregate energy locally in time.

Another extension to the energy detection was proposed in [55]. Instead of calculating the power or
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energy, the second-order statistics, a higher order statistics (in particularly, the sum of the absolute

values of the third power of the observed samples) is used.

Another group of methods are based on “Page’s test” [46]. Page’s test was originally developed

to detect a sudden change in the statistics of the data as quickly as possible. A transient signal can

be seen as a two-sided change: when a signal s1 arrives after an interval of signal s0, the probability

of the data switches from p(s0) to p(s1); when signal s1 disappears at a later time, the probability

returns to p(s0). Hence, Page’s test has been used for transient detection and shown to be quite

useful [2, 23, 1, 5].

Other transient detection investigations explored di↵erent models, transformation or represen-

tation of the signal in order to expose its innate, distinct structure. A proper representation of

the signals that takes advantage of the prior knowledge about the structure of the signals normally

yields good detection performance [20, 49, 18]. In [40, 48], a transient signal is modeled as the

impulse response of a rational transfer function. Many di↵erent kinds of linear transforms have been

explored for transient signal detection, such as the short-time Fourier transform (STFT) [64], the

Gabor transform [17], and the wavelet transform [19, 21, 33].

There are other various techniques that try to solve the transient detection problem. In [55],

an approach coined as “hyperparameter estimation” is proposed, in which unknown parameter are

assumed to be drawn from an underlying probability distribution, and unknown parameters about

the meta-distribution (so called hyperparameters) are estimated. In [16], data is ordered before

processing it, since an approach based on order statistics is robust.

3.1.3 Peak Detection

Peak detection has also been studied quite extensively in various application domains [13, 25, 41,

47, 51]. In [47], various peak functions were proposed in order to capture the structure of a peak. In

[13, 51], a multiscale-based peak detection algorithm was proposed. Reference [51] uses local maxima

scalogram (LMS) for the purpose of detecting periodic or quasi-periodic peaks. Reference [13] uses

the continuous wavelet transform (CWT) to find peaks in the mass spectrum. Du’s wavelet idea is

similar to the solution proposed in this thesis, although the proposed wavelet-based peak detection

algorithm was independently developed. Compared to [13], this thesis provides more theoretical

support for peak detection. In [41], peak detection based methods were used in ECG signals in

cardiac MRI. In [39], the continuous wavelet transform is employed to detect action potentials in

neural recordings. The technique developed in this thesis was inspired by [39]. However, action

potentials have a stereotyped shape, while MEPs in the EMG signal can have various shapes, which

makes the problem studied in this thesis much harder than that in [39].

Overall, the proposed peak detection algorithm employs the GLRT from detection theory, the
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continuous wavelet transform, and uses a double-threshold method to enhance the detection perfor-

mance.

3.2 Preprocessing: Robust Estimation of Noise

The proposed peak detection algorithm assumes that noise is a stationary additive white Gaussian

noise (AWGN) with a known variance. It’s proper to assume the noise is stationary when the

processing is carried out on a short interval (several seconds). However, variance is not a known

priori in real applications. The estimation of the noise variance in a raw EMG signal is in particular

di�cult because the noise and the MEPs are mixed together. In most applications, noise variance

is calculated in a supervised fashion, in which an operator selects a segment of signal-free data

and calculates its variance. This method has two major drawbacks. First of all, it relies on human

supervision, and can’t run automatically. In addition, visual inspection is not reliable and consistent.

Secondly, this said operation is normally only applied once at the beginning of the processing, because

doing it repeatedly on every short intervals is impractical. As a result, this said manual operation

does not work when the noise is non-stationary over a long time period, which is typical in most

real systems.

In [39], noise variance is calculated based on the theory of robust estimation, assuming the signal

samples are outliers. Let X = {x
i

}N
i=1 be a sequence of N independent identically distributed

Gaussian random variables with variance �2. Then from [39], it follows that

�̂ = M{|x1 � X̄|, |x2 � X̄|, · · · , |x
N

� X̄|}/0.6745 (3.2.0.1)

where M{S} is the sample median of the sequence S and X̄
def
= 1/N

P

N

i=1 xi

. From robust statistics,

the median of a random variable is less sensitive to outliers than its variance. As a result, indirect

estimation of variance from the median is much more accurate than directly computing the variance

of the sequence containing outliers, especially when outliers, in the case of signal samples, have much

larger amplitudes than noise.

However, the above estimation is only useful when the outliers (signal samples in the case of noise

estimation) are “sparse”: the outliers only occupy a small portion of the observed data. Otherwise,

the estimation accuracy deteriorates rapidly, as shown by the simulation results in Figure 3.2-1.

sparsity is defined as the fraction of signal-free samples (noise-only samples) over the total number

of samples. The signal model is one period of sine wave. The exact signal model has little e↵ect

on the results, because the sparsity is the dominating factor. The sine wave is chosen because it

contains the typical characteristics of MEPs (having transient peaks). Below is a summary of how

the simulation experiment is carried out to generate the plots in Figure 3.2-1.
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1. Construct signal: one period of sine wave (with length w and amplitude A) (e.g., w = 20, A =

100)

2. Choose a sparsity value s and a SNR value.

3. Calculate the variance �2 of the noise from Eq. (3.4.1.4) based on the chosen SNR value and

the signal model.

4. Suppose the simulated data contains N signals. Then generate N ⇤ [w/(1 � s)] samples of

WGN with �2. (e.g., N = 200 to yield accurate results)

5. Divide the data into N chunks, each contains [w/(1 � s)] samples. In each chunk, randomly

choose the location of the signal (the signal needs to be completely contained in each chunk

to avoid overlapping). Add signal samples to the WGN at selected locations.

6. Estimate the variance of the noise from Eq. (3.2.0.1), denoted as �̂2.

7. Calculate the error: e = k(�̂ � �)/�k.

Perform above procedure for multiple values of SNR (10 ⇠ 100) and sparsity (50% ⇠ 98%) and

plots the Error vs. Sparsity curves from di↵erent SNR values (each curve coded by a unique color).

The point average curve is also plotted as a black dashed line. Figure 3.2-1 shows that data with

di↵erent SNRs have similar errors when estimating the variance of the noise using Eq. (3.2.0.1).

Due to the relatively large-amplitudes of the signals, variance is always over estimated. The error

is small for a large sparsity, but increases rapidly when the sparsity drops. Sparsity needs be above

90% in order to have an error below 10%. In a practical EMG signal, the sparsity of the MEPs is

at most 80%, which means the error is above 25%.

To solve the problem in estimating variance using Eq. (3.2.0.1) when signals are not sparse, an

iterative estimation algorithm is proposed, as shown in Algorithm 1. The idea behind the proposed

algorithm is to iteratively obtain a better estimation of signal-free (noise-only) samples W from

given samples X. Signal-free samples are estimated assuming that signal samples mostly have larger

amplitudes than 3�. At the same time, assuming noise is Gaussian, then 99.73% of the noise samples

are preserved during the step W⇤  {x 2 X : (x � µ̂) < �̂ ⇤ 3}. In the while loop, if the initial

estimation of signal-free samples W contains some signal samples, then the estimated variance is

larger than the true value. As a result, the estimated signal-free samples will contain almost all of

the signal-free samples while having less signal samples than before. Eventually, when the signal

samples become sparse enough, the robust estimation given by Eq. (3.2.0.1) is very close to the true

value, and W will contain mostly just signal-free samples. When W is purely Gaussian noise, then

after an update to get W⇤, the condition |W|� |W⇤|  0.0027 |W| will hold, and thus the loop is
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Figure 3.2-1: Simulation results on noise estimation using Eq. (3.2.0.1) based on robust statistics:
Error vs. Sparsity curves from di↵erent SNR values (each curve coded by a unique color). The point
average curve is also plotted as black dashed line.

Data: maxIter, X = [x1, x2, · · · , xN

] that is a sum of the transient signal and the Gaussian
noise with variance �2

Result: Estimated noise standard deviation �̂
/* Initialization */

W X ; // Noise W is initially set to be entire input.

converge  false;
iter  1;
while not converge or iter  maxIter do

iter  iter + 1;
µ̂ W̄ ; // W̄ is the sample mean

�̂  result from Eq. (3.2.0.1);
W⇤  {x 2 X : (x� µ̂) < �̂ ⇤ 3} ; // Update noise samples from current estimated

stats

if |W|� |W⇤|  0.0027 |W| then
converge  true;

else
W W⇤;

end

end
Algorithm 1: Iterative Robust Noise Estimation
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Figure 3.2-2: Simulation results on noise estimation using the iterative algorithm as in Algorithm 1:
Error vs. Sparsity curves from di↵erent SNR values (each curve coded by a unique color). The point
average curve is also plotted as black dashed line.

terminated as W converges to the signal-free samples in the original samples X.

Figure 3.2-2 and Figure 3.2-3 show the results when using the proposed algorithm to estimate the

noise variance. The conditions are the same as in Figure 3.2-1. Comparing results in Figure 3.2-1

and Figure 3.2-2, the iterative algorithm greatly boosts the estimation accuracy. For example, at the

sparsity of 80%, the average error is only 2%, reduced from 25% as in simple one-pass estimation.

The potential drawback of using the iterative method is the increase in the computation time.

The cost of the computation depends on the number of iterations it takes for convergence. Figure 3.2-

3 shows the number of iterations it took to converge when running the simulation to get Figure 3.2-2.

It shows that it took on average 2 ⇠ 5 iterations, and the maximum of all is 7 iterations. Since each

iteration takes linear time O(n) to compute, the computation cost of the iterative algorithm is again

linear O(n) with a slightly larger constant.

3.3 Peak Detection Via Wavelets

It’s assumed that the noise is white Gaussian noise (WGN) with known, constant variance (assume

noise is stationary). In the EMG signal, the noise is not stationary and the statistics of the noise is

not well known. However, the noise can be approximated as a stationary process in a given short

interval (noise is locally stationary). Within the given short interval, the variance of the noise can
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Figure 3.2-3: Simulation results on noise estimation using the iterative algorithm as in Algorithm 1:
# of Iterations vs. Sparsity curves from di↵erent SNR values (each curve coded by a unique color).
The point average curve is also plotted as black dashed line.

be assumed to be constant, and can be estimated in a preprocessing step, before peak detection.

As discussed in Chapter 1 and Chapter 2, the goal is to find all the peaks of Motor Evoked

Potentials (MEPs). MEPs are the actual electric potential generated by muscle cells. The EMG

signal includes the useful MEPs as well as noise. Throughout this chapter, EMG peaks mean MEP

peaks. It should be clear to the readers since peaks of the noise are clearly not of interest.

Before diving into the algorithm, let’s first define the terminology to be used through out the

discussion.

Let EMG(t), t 2 [t1, t2] denote the EMG signal voltage over a recording interval. This recorded

signal is assumed to contain M MEPs:

EMG(t) =
M

X

i=1

MEP
i

(t� �
i

) + w
�

(t) (3.3.0.1)

where MEP
i

(t), defined over [0, L
i

], and �
i

are the waveform and the onset of the i-th MEP,

respectively. w
�

(t) is the background noise.

EveryMEP
i

(t) contains multiple peaks. Let p
i,j

denote the location of the j-th peak ofMEP
i

(t),

for j = 1, 2, · · · , N
i

, where N
i

is the number of peaks from MEP
i

(t). N
i

typically takes values from

2 to 5. All the peaks from all the MEPs in a given EMG signal are collectively denoted as:

P = {p
i,j

+ �
i

, j = 1, 2, · · · , N
i

; i = 1, 2, · · · ,M} (3.3.0.2)
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The total number of peaks in the given recording EMG(t) is:

N
def
= |P| =

M

X

i=1

N
i

(3.3.0.3)

The goal is to find P from a given EMG signal EMG(t).

Throughout the thesis, signal-to-noise ratio (SNR) is used to discuss the noise level. Generally

speaking, SNR is defined as the ratio of the power of the signal to the power of the noise. There is

no universal definition of SNR. The definition of SNR is subject to the nature of the signal and the

application domain. In this thesis, SNR is defined as the power of one MEP waveform to the power

of the local noise. Then the SNR for MEP
i

(t) is:

SNR
def
=

1/L
i

R

Li

0 (MEP
i

(t))2

�2
(3.3.0.4)

where �2 is the variance of the background noise in the neighborhood of MEP
i

(t). This definition

is suitable for transient signals because it measures the local signal strength or noise level. When

there are no MEPs in the signal, SNR is simply 0. When there is a MEP, over the short period of

the MEP and its neighborhood, noise can be assumed to be stationary, and so it’s valid to simply

use �2 to denote the power of noise. From this definition, SNR is only comparable between two

MEPs of the same shape. This implies that for one MEP, a larger SNR will always yield better

detection performance. However, for two MEPs of di↵erent shapes, a larger SNR doesn’t necessarily

yield better detection performance.

The goal is to locate the peaks of the transient EMG signal (more specifically, the transient

MEPs) corrupted by white Gaussian noise with known statistics. There are two particular chal-

lenges as discussed in great detail in the Section 2.2. The first challenge is that the peaks of the

EMG signal have di↵erent shapes: some peaks are wide while some are narrow; the second challenge

is that some peaks of the EMG signal have very low SNR, making the signal barely recognized by

visual inspection. To tackle these two challenges, the algorithm is mainly composed of two steps,

which are broadly summarized below.

Step 1

To tackle the challenge of various shapes of the peaks, wavelet transform is employed to perform

multi-resolution decomposition of the EMG signal. The idea is that a peak of a particular shape

will result in large wavelet coe�cients at one or more scales. Therefore, a binary hypothesis

testing is performed at each scale, where the test statistic is derived from the local maximum of



51

the wavelet coe�cients. Then, the local maximum that are above certain threshold are selected

as “peak candidates”. This is better than a simple digital filtering, since the continuous wavelet

transform is essentially a filter bank in the sense that one wavelet at each single scale corresponds

to one band-pass filter [61]. So, wavelet transform at each scale is more selective to peaks of

certain frequency than a general digital filter with a wide passband.

Step 2

To tackle the challenge of low SNR, peak candidates from di↵erent scales are combined. In

particular, ridges in the time-frequency space are identified by linking the peak candidates at

each scale. The idea is that a real EMG peak results in a relatively long ridge, while a peak from

noise doesn’t. Therefore, the threshold defined in Step 1 can be reduced in order to increase

the recall. However, lower threshold also decreases precision, especially in a low SNR signal. To

increase the precision while not hurting recall too much, ridges with short length are considered

as from the noise.

The peak detection problem is formulated as a general peak detection problem regardless of

the EMG signal for two reasons. First of all, a precise model of the EMG signal is not available.

Secondly, it’s desirable to develop a general peak-detection algorithm that is applicable to other

application areas. In particular, this algorithm works well on the actual EMG signal recorded from

spinal cord research subjects. Here is the formal definition of the problem to be solved.

Suppose a given data recoding x(t), t 2 [t1, t2] contains N peak signals:

x(t) =
N

X

i=1

A
i

(t� p
i

) + w
�

(t) (3.3.0.5)

where A
i

(t) is the i-th peak signal containing one peak at 0, and p
i

is the location of the i-th peak in

x(t), and w
�

(t) the background noise, which is assumed as stationary zero-mean WGN with known

variance �2.

The goal is to estimate all the peak locations: P def
= {p

i

, i = 1, 2, · · · , N}. The number of peaks

N and the locations p
i

are not a priori known. The peak signal A
i

(t) is assumed to have only one

local maximum, which is the peak. The exact shapes of the peak signals A
i

(t) are unknown. But

the bandwidth of the peak signals is assumed to be prior knowledge from the nature of the signals.

The proposed methodology consists of a combination of several techniques stemming from multi-

resolution wavelet decomposition, statistics, detection theory. For convenience, the five major steps

of the algorithm are briefly stated up-front. Each step will be explained in detail in subsequent

sections.

1. Perform multi-scale decomposition of the signal using an appropriate wavelet basis with ap-
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propriate scales.

2. Perform binary hypothesis testing at every scale to find peak candidates.

3. Identify “ridges” in the time-frequency space by linking peak candidates detected in Step 2.

4. Remove false positive peaks by removing wavelet extrema ridges with short lengths.

5. Map wavelet extrema ridges to peaks: each ridge represents one peak.

3.3.1 Mother Wavelet For Peak Detection

Wavelet transformation (WT) methods can be categorized as the continuous wavelet transform

(CWT) and the discrete wavelet transform (DWT). In CWT, both scales and translations are con-

tinuous while the DWT uses dyadic scales and translations. The DWT is often used in data com-

pression applications due to its e�ciency in exact reconstruction of data from wavelet coe�cients.

On the contrary, the CWT is a very redundant representation of the data. Redundancy is not good

for storage e�ciency, but redundancy often leads to accuracy if it’s used properly. The redundancy

of the CWT makes the features of a real peak more visible. Therefore, the CWT is widely used

in pattern matching. The proposed methodology makes use of the pattern matching ability of the

CWT in the peak detection process.

More specifically, from the definition of CWT (Eq. (2.4.2.1)), the wavelet coe�cients are found

from the inner product between the signal x(t) and the wavelets  
s,u

(t). Therefore, the wavelet

coe�cients indicate the resemblance between the signal at translation index u and wavelet at scale

s. A larger coe�cient magnitude means better pattern matching. For peak detection, the goal is to

match the di↵erent shapes (heights and widths) of the peaks by scaling the mother wavelet  (t) at

di↵erent scales. Therefore, the mother wavelet should preferably have the basic features of a peak.

In this work, the Mexican hat wavelet was selected as the mother wavelet due to the resemblance of

its shape to a peak.

The Mexican hat wavelet is the Ricker wavelet in mathematics and numerical analysis, and

defined as:

 (t) =
1p
2⇡

⇣

1� t2
⌘

e
�t2

2 (3.3.1.1)

It is the negative normalized second derivative of a Gaussian function. It is usually referred to as

the Maxican hat wavelet because its shape looks like that of a sombrero (See Figure 3.3-1).

As pointed out by Du’s [13], the CWT with the choice of Mexican Hat wavelets naturally re-

moves the baseline from the raw data, so that baseline removal in the raw data in the preprocessing

steps is not necessary. In fact, any symmetric mother wavelet will have this benefit. The following
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Figure 3.3-1: Mexican Hat Wavelet  (t) given by Eq. 3.3.1.1

derivation follows that in [13].

Suppose each peak in the raw data, P
raw

(t), can be represented as follows:

P
raw

(t) = P (t) +B(t) + C, t 2 [t1, t2] (3.3.1.2)

where P (t) is the signal peak component, B(t) is the baseline function with zero mean, C is a

constant and [t1, t2] is the support region of the signal peak. Since the wavelet support is small

compared to the time scale of the raw data, it can be assumed that the baseline is slowly changing

and monotonic in the wavelet support region. As a result, the baseline can be decomposed into an

odd function and a constant.

Based on Eq. (3.3.1.2), the CWT coe�cients of the peak can be calculated:

X(s, u) =

Z +1

�1
P (t) 

s,u

(t)dt+

Z +1

�1
B(t) 

s,u

(t)dt+

Z +1

�1
C 

s,u

(t)dt (3.3.1.3)

where  
s,u

(t) is the scaled and translated wavelet function. Note that in Eq. (3.3.1.3) the wavelet

is not taken as the complex conjugate, because the Mexican Hat wavelet is a real-valued function.

Because the wavelet function  
s,u

(t) has a zero mean, the third term in Eq. (3.3.1.3) will be

zero. For symmetric wavelet functions, like the Mexican Hat wavelet, the second term will also

be zero. Thus, only the term with real peak P (t) is left in Eq. (3.3.1.3). That is to say, as long

as the baseline is slowly changing and locally monotonic in the wavelet support region, it will be

automatically removed in the CWT coe�cients.

There are other reasons to choose the Mexican Hat wavelet. When there is a peak-shape function,

its 2nd order derivative has maximum at the peak location. Since the Mexican Hat wavelet function
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is proportional to the 2nd-order derivative of a Gaussian function, the CWT coe�cient of a function

f(t) is proportional to the 2nd-order derivative of f(t) smoothed by a Gaussian function [32].

A Gaussian function is a smoothing function, since it is the impulse response of a low-pass filter.

The convolution of a function x(t) with a Gaussian function attenuates part of its high frequencies

without modifying the lowest frequencies and hence smooths x(t). As a result, the CWT with the

Mexican Hat wavelet is essentially a low-pass filtering of the signal. Let ✓(t) be a Gaussian-like

function (Gaussian function multiplied by some constant), and then Mexican Hat mother wavelet

can be written as:

 (t) =
d2✓(t)

dt2

Let ✓
s

(t)
def
= (1/

p
s)✓(t/s) denote the dilation of ✓(t) by a scale factor s. Then from Eq. (2.4.2.2):

d2✓
s

(t)

dt2
=

d2( 1p
s

✓( t
s

))

dt2

=
1p
s

1

s2
 (

t

s
)

=
1

s2
 
s

(t)

The last step makes use of the Eq. (2.4.2.2). From Eq. (2.4.2.4), one can derive that:

X(s, u) = (x ⇤  
s

)(u) = (x ⇤ s2 d
2✓

s

(t)

dt2
)(u) = s2

d2

du2
(x ⇤ ✓

s

)(u) (3.3.1.4)

Hence, X(s, u) is proportional to the 2nd-order derivative of x(t) smoothed by ✓
s

(t). The 2nd-order

derivative of a peak-like signal normally also reaches its maximum near (if not at) the peak location.

So, by searching for local maxima in the wavelet coe�cients at one proper scale, one can estimate

the locations of the peaks in the time domain.

In summary, the choice of the Mexican Hat wavelet as the mother wavelet gives following benefits:

• Its peak shape gives excellent pattern-matching results for peak detection.

• It naturally removes baseline from the raw signal.

• It naturally smooths the raw signal, removing high frequency noise.

3.3.2 Choice of Scales

In the continuous wavelet transform, scale s is a positive real number, which takes continuous values.

In practice, a set of discrete scales have to be chosen. In the following, scales will be chosen from

both the time-domain and the frequency-domain point of views.



55

The intuition behind the proposed methodology is “template matching”. From the time-domain

point of view, if a wavelet at certain scale, s,  
s,u

(t) has “similar shape” to a peak in the signal

at certain location u, then the wavelet coe�cient at scale s and translation u will be significantly

di↵erent from zero. This is because a wavelet coe�cient is the inner product of the signal and the

wavelet, and it measures the “resemblance” between the signal at location (or translation) u and

the wavelet at scale s. In the case of peak detection using the Mexican Hat wavelet, the shape can

be characterized by the curve (or slope, roughly speaking) on both sides of the peak. Therefore, the

scales need to be chosen, such that wavelets at selected scales have similar shapes as the peaks of

interest.

From the frequency point of view, each wavelet is essentially a band-pass filter. Wavelets with

di↵erent scales have di↵erent passbands and bandwidths. The wavelet transform at di↵erent scales is

similar to a filter bank. So, if a signal at location u has energy within the passband of a wavelet with

scale s, then the wavelet coe�cient at scale s and translation u will be significantly di↵erent from

zero. Therefore, the scales need to be chosen, such that the passbands of the wavelets at selected

scales cover the frequency components of the signal of interest.

The two points of view are essentially equivalent. Although this method is inspired by the idea of

“template matching”, it’s hard to quantify the “shape” information. On the other hand, frequency

is a well-defined concept. Therefore, the scales will be determined from the frequency point of view.

Let’s denote the set of scales (in ascending order)to be:

S def
= {s0, s1, . . . , sj , . . . , sJ}, s

i

< s
j

for i < j (3.3.2.1)

Suppose the peaks of interest have frequency components within the range [!
L

,!
U

], then the corre-

sponding scale limits s0 and s
J

can be calculated from Eq. (2.4.4.2):

!
U

= C
 

(s0) =
1

s0
C
 

!
L

= C
 

(s
J

) =
1

s
J

C
 

Solving for s0 and s
J

yields:

s0 =
C
 

!
U

(3.3.2.2a)

s
J

=
C
 

!
L

(3.3.2.2b)

Now the task is to find a useful set of distribution of the intermediate values between s0 and

s
J

. Let me first introduce the concept of “e↵ective coverage” of a wavelet on the frequency domain.
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Figure 3.3-2: Illustration of bandwidth defined on the Mexican hat mother wavelet. The red curve
is the Fourier transform of the Mexican hat mother wavelet. f0 is the center frequency. f1 and f2
are the cuto↵ frequencies. BW is the bandwidth.

The coverage of a wavelet at scale s is its Fourier Transform. Although its Fourier Transform is

non-vanishing over the entire frequency domain, it’s only significantly di↵erent from zero over a

short interval. There are two extreme cases. If the coverage of the wavelet is considered to be the

entire frequency domain (coverage is 1), then only one scale value is needed. This case will then

degenerate to simple band-pass filtering. If the coverage of the wavelet is considered to be its peak

location (coverage is 0), then scales need to take all positive real values to cover the entire frequency

domain. This reverts to the continuous wavelet transform. In practice, one seeks a positive, e�cient

coverage for wavelet.

As shown in Figure 3.3-2, the bandwidth BW = f2�f1 is the range where the Fourier Transform

is above the half-energy point (-3dB point). So, bandwidth can be used to describe the “e↵ective

coverage” of the wavelet. However, to allow more flexibility, another parameter called “density” d

is introduced. The meaning of d will become clear later on.

The interval centered at C
 

(s), with length of BW
 

(s)/d, is defined as the “e↵ective coverage”

or “EC” of a wavelet  
s,u

(t), or more formally:

EC
def
=



C
 

(s)� 1

2
· BW

 

(s)

d
, C

 

(s) +
1

2
· BW

 

(s)

d

�

, where d 2 R+ is the density (3.3.2.3)

where C
 

(s) and BW
 

(s) are the center frequency and the bandwidth of  ̂
s,u

, respectively, and  ̂
s,u

is the Fourier transform of the Mexican hat wavelet  
s,u

.
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To realize a uniform “e↵ective coverage” of the frequency domain, the following equation must

be satisfied:

C
 

(s
i

)� C
 

(s
i+1) =

1

2
· BW

 

(s
i

)

d
+

1

2
· BW

 

(s
i+1)

d
(3.3.2.4)

Substituting Eq. (2.4.4.2) into Eq. (3.3.2.4) yields:

(
1

s
i

� 1

s
i+1

)C
 

=
1

2d
· ( 1

s
i

+
1

s
i+1

)BW
 

Rearranging this equation yields:

s
i+1

s
i

=
2d · C

 

+BW
 

2d · C
 

�BW
 

(3.3.2.5)

where: 0  i  J � 1, i 2 Z

From Eq. (3.3.2.5), scales need to be a geometric series in order to uniformly cover the frequency

domain. Therefore,

s
n

def
= s0�

n, s0 2 R+, n = {0, 1, · · · , J} (3.3.2.6)

where:

�
def
=

2d · C
 

+BW
 

2d · C
 

�BW
 

(3.3.2.7)

Compared with dyadic scaling, in which scales are based on the power of 2, the scales from

Eq. (3.3.2.6) are based on the power of �. I call the scaling defined in Eq. (3.3.2.6) “generalized

dyadic scaling”, or “exponential scaling”, as scales grows “exponentially”. Both dyadic scaling and

“exponential scaling” are powers with di↵erent choices of the base. By choosing di↵erent values of

�, “Exponential scaling” gives much more flexibility to the choice of the scales than dyadic scaling,

while the “exponential” nature still keeps the benefit of “e�ciency” from dyadic scaling, in the sense

that the frequency interval of interest is covered uniformly by selected set of scales.

The quality factor (or Q factor) is:

Q
def
=

f0
f2 � f1

from which, the quality factor of the mother wavelet is:

Q
 

def
=

C
 

BW
 

(3.3.2.8)
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Eq. (3.3.2.7) can be further simplified to:

� =
2d ·Q

 

+ 1

2d ·Q
 

� 1
(3.3.2.9)

From Eq. (3.3.2.6), the value of J can be found as:

J =
log sJ

s0

log �
(3.3.2.10)

Substituting Eq. (3.3.2.2) yields:

J =
log !U

!L

log �
(3.3.2.11)

Now consider the role of the parameter d. Eq. (3.3.2.9) shows that a larger value of d translate to a

smaller value of �. Eq. (3.3.2.11) shows that a smaller value of � gives a larger value of J . Overall, a

larger value of d gives a larger value of J . Therefore, a larger d implies more band-pass filters within

a fixed frequency interval [!
L

,!
U

]. That’s the meaning of “density” as I define it: it’s the density of

band-pass filters within a given frequency interval. For example, Fig. 3.3-3 plots the Discrete-time

Fourier Transform (DTFT) of the wavelets with scales calculated using two di↵erent density values.

Fig. 3.3-3a shows the DTFTs of all the wavelets with scales calculated with density of 1; Fig. 3.3-3b

depicts the DTFTs of all the wavelets with scales calculated with density of 3. Each wavelet at

a given scale is essentially a bandpass filter as shown in the figure. From the two plots, it’s clear

to see that a higher density value gives a denser coverage of a given frequency interval by the wavelets.

In Du’s [13], linear scaling are used instead of “exponential scaling” as defined in Eq. (3.3.2.6).

To compare the di↵erence between these two choices, the DTFTs of the wavelets for linear scaling

are plotted in Fig. 3.3-4. Let’s compare it with Fig. 3.3-3b. In both cases, a total of 7 wavelets

covers roughly the same frequency interval. However, linear scaling provides an uneven coverage:

more wavelets cover the low frequency area than high frequency area. On the contrary, exponential

scaling gives a uniform coverage: the wavelets spread out more or less evenly along the frequency

range of interest. Unless it is a priori known that signal peaks have a higher probability to occur

in the low frequency range, it’s better to cover the frequency space uniformly, yielding consistent

detection performance for peaks with both high and low frequency components within the frequency

range of interest.

In summary, for a user-given frequency interval [!
L

,!
U

], and given mother wavelet  (t) (so that

one can calculate Q
 

from Eq. (3.3.2.8)), the set of scales, S, are calculated from Eq. (3.3.2.6),

Eq. (3.3.2.9), and Eq. (3.3.2.11). One must carefully choose the parameter density (d) in order to

optimize the peak detector’s performance. In this thesis, parameter density d is chosen by running
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(a) density: 1

(b) density: 3

Figure 3.3-3: Example of the e↵ect of density on the scales: In both the two plots, DTFTs of the
wavelets with scales calculated from a specific density are plotted. Since the DTFT is symmetric,
only the positive part of the DTFT is shown, and only the area of interest is zoomed in. Scales are
calculated from Eq. (3.3.2.11), Eq. (3.3.2.9), and Eq. (3.3.2.6)
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Figure 3.3-4: Example of wavelets with linear scales

experiments on simulated data with artificial peak signals. Section 3.4.3 talks about how to choose

all the algorithm-related parameters from simulation in detail.

3.3.3 The Statistics of Wavelet Coe�cients of Noise

At the beginning of this chapter, it is assumed the noise corrupting the signal is a zero-mean White

Gaussian Noise (WGN). This implies that each noise sample, w[n], follows a Gaussian distribution,

and all N noise samples are mutually independent:

w[n] ⇠ N (0, �2) i.i.d, for n 2 {1, 2, · · · , N} (3.3.3.1)

In Eq. (2.4.3.3), suppose the support of  
s

has a finite time duration, denoted [B
L

, B
R

], with

B
L

, B
R

2 Z. Also, assume wavelets are real-valued, such as the Mexican Hat wavelets. Then

Eq. (2.4.3.3) becomes:

X
s

[k] =
BR
X

n=BL

x[n+ k] 
s

[n] (3.3.3.2)

When the signal is WGN, w[n], the wavelet coe�cients of WGN, W
s

[k], is:

W
s

[k]
def
=

BR
X

n=BL

w[n+ k] 
s

[n]
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(a) WGN and its CWTs (b) ACVS of WGN and CWTs

Figure 3.3-5: ACVS of the wavelet coe�cients of WGN: Fig. 3.3-5a (left) shows a WGN with unit
variance and its CWTs with di↵erent scales. The top one is the WGN, below which are CWTs with
scales 2, 4, 8, 16, 32 from top to bottom. Fig. 3.3-5b (right) shows the normalized ACVS of the
sequence on the left. The WGN is a 5 second sequence. The scales are chosen so that they are in
the same range as the actual implementation. The sampling rate is 2000Hz as in the spinal cord
injury application.

Because w[n] are jointly independent Gaussian random variable with the zero mean and the same

variance �2:

W
s

[k] ⇠ N (0,
BR
X

n=BL

 2
s

[n] · �2) (3.3.3.3)

The discrete-time version of Eq. (2.4.1.3a) is:

BR
X

n=BL

 2
s

[n] = 1

Therefore, each wavelet coe�cient of WGN is again a Gaussian random variable with zero mean

and the same variance as the WGN:

W
s

[k] ⇠ N (0,�2) (3.3.3.4)

Of course, the wavelet coe�cients jointly at each scale s are no longer white; they are colored

Gaussian noise. However, the wavelet support is relatively small (compared to the signal length),

especially at smaller scales. So, the correlation between the wavelet coe�cients only exists locally.

For the wavelet coe�cients at larger scales, WGN is still a good approximation to model the wavelet

coe�cients of noise. This is further verified from the distribution and the auto-covariance sequences

(ACVS) of the wavelet coe�cients.

From Fig. 3.3-5, the ACVS of the wavelet coe�cients at di↵erent scales resemble the Dirac

function, indicating that the coe�cients are approximately uncorrelated. Also note that the white

noise approximation is less valid at larger scales, due to a significant amount of overlap in the basis
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Figure 3.3-6: Empirical CDF of the CWT of WGN: black dashed line is the theoretical CDF of a
Gaussian random variable. All other color lines are the empirical CDFs of the CWTs of the WGN
as in Fig. 3.3-5a

functions. With the choice of scales and sampling rate, the ACVS roughly vanishes beyond 50ms

for scale of 32. The data to be processed is much longer than 50ms. Hence, it’s a safe to assume

that the wavelet coe�cients of WGN is still white.

From the empirical Cumulative Distribution Function (CDF) of the CWT of the WGN in Fig. 3.3-

6, the CWT of WGN has almost the same CDF as a Gaussian distribution. This further justifies

the assumption of the statistics of the CWT of WGN.

3.3.4 Detection at a Single Scale

After performing the CWT on the EMG signal, the next step is to find peak candidates from the

wavelet coe�cients at each single scale. For a set of discrete scales, the CWT results in a matrix of

coe�cients. Denote the CWT result of a discrete-time signal {x[n], n = 0, 1, 2, . . . , N}, with choice

of mother wavelet and scales from previous sections, as X:

X
j,k

def
= (X)

j,k

=
+1
X

n=�1
x[n] 

sj ,k[n] (3.3.4.1a)

=
+1
X

n=�1
x[n+ k] 

sj [n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ; (3.3.4.1b)



63

where X
j,k

is the element of X at row j, column k, and s
j

is derived from Eq. (3.3.2.1). X is a

J + 1 by N + 1, matrix where J + 1 is the total number of scales, and N + 1 is the total number of

samples in the data of interest.

Because the Mexican Hat mother wavelet is used, Eq. (3.3.1.4), shows that if there is a peak signal

at location t0, then the CWT should achieve a local maxima in the neighborhood of t0. However,

due to the existence of noise in the recorded EMG signal, not all local maxima correspond to real

peaks. In fact, for a data interval containing short-duration transients, most of the local maxima

are likely to be noise. So, a binary hypothesis testing on the wavelet coe�cients at every scale is

performed to di↵erentiate signals from noise:

H0 : x[n] = w[n] w[n] ⇠ N (0,�2) (3.3.4.2a)

H1 : x[n] = A+ w[n] �1 < A <1, w[n] ⇠ N (0,�2) (3.3.4.2b)

where A is the local maxima of the CWT of an actual peak signal. Since the strength of the peak

signal is not a priori known in the EMG peak detection problem, A is modeled as a constant with

unknown magnitude, and the observation length is one sample period.

w[n] is the wavelet coe�cient of white Gaussian noise at n. From Section 3.3.3, it is known

that the wavelet coe�cient itself is a Gaussian random variable with zero-mean, and with the same

standard deviation as the noise in time domain, although, collectively, the wavelet coe�cients of

white Gaussian noise are no longer white.

For the above binary hypothesis testing problem, no universal optimal detector exists. However,

a sub-optimal detector can be formulated as a Generalized Likelihood Ratio Test (GLRT) [28]. The

GLRT decides H1 if:

|x[n]| > � (3.3.4.3)

where the threshold � is found from

P
FA

= Q(
�

�
) (3.3.4.4)

where P
FA

is the probability of False Positive, and Q(x) is the Q-function, which is the comple-

mentary cumulative distribution function of the standard normal distribution, and � is the standard

deviation of the WGN. In practice, one can choose a desired P
FA

, then a threshold can be deter-

mined from Eq. (3.3.4.4). For example, by choosing threshold � = 3 · �, one can get the theoretical

P
FA

of 0.13%.

Practically, the detection process on a single scale is slightly di↵erent from the theory above.
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All of the local maxima in the wavelet coe�cients are found first. Then, the local maxima that are

below the selected threshold � are removed. The remaining local maxima in the wavelet coe�cients

are called “peak maxima”.

Define the parameter “threshold coe�cient”, c, as:

c
def
=
�

�
; c 2 R+ (3.3.4.5)

So:

� = c · �, (3.3.4.6)

where � is the standard deviation of WGN, � is the threshold used in the binary hypothesis test-

ing (Eq. (3.3.4.3)), and c is a parameter that can be adjusted to yield di↵erent detection performance.

Formally, from the CWT result X (Refer to Eq. (3.3.4.1)), all the peak maxima produced by the

binary hypothesis testing at scale s
j

are:

P
j

def
= {k | X

j,k

> �, X
j,k

> X
j,k�1, X

j,k

> X
j,k+1}, j = 0, 1, 2, . . . J (3.3.4.7)

Sort the elements in P
j

in ascending order, and denote the i-th element as p
j,i

, such as:

p
j,k1 < p

j,k2 , for 1 < k1 < k2 < m
j

(3.3.4.8)

p
j,i

is the column index of the i-th peak maxima at row, s
j

, in matrix X, and m
j

is the total number

of elements in P
j

:

m
j

def
= |P

j

|, j = 0, 1, 2, . . . J (3.3.4.9)

Define the set P as the collection of the binary hypothesis testing results performed at all scales:

P def
= {P

j

| j = 1, 2, · · · , J} (3.3.4.10)

3.3.5 Combine Peak Candidates across Scales: Identify Ridges

If a proper density d (See Section 3.3.2) is chosen, then there will be a peak maxima across multiple

adjacent scale values in S (See Eq. (3.3.2.1)) around the occurrence of a peak signal. On the contrary,

when there are no peak signals, even if a false positive (local maxima in wavelet coe�cients of noise)

is picked up during the binary hypothesis testing at a single scale in Section 3.3.4, it’s very unlikely
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that false positives are produced across multiple adjacent scales at the same neighborhood, due to

the randomness of noise. In the example shown in Fig. 3.3-7, there is one real peak signal at time

index 86. This figure shows that after identifying all the peak maxima, a real peak signal results

in peak maxima across multiple scales. There are other peak maxima identified due to the noise

(around time indices 90, 100, and 130), but they don’t span multiple scales.

Therefore, if peak maxima across the scales are connected to form ridges in the time-frequency

domain, then each peak in the time domain is represented as a ridge in the time-frequency domain

(shown in Figure 3.3-8c). Real peak signals will have relatively long ridges, while peaks from noise

will have relatively short ridges. Hence, false positives can be further eliminated by removing short

ridges.

Given the peak candidates P, all the peak candidates are examined from the largest scale to the

smallest scale. The procedure of ridge identification is as follows:

1. Starts at largest scale. Let j = J . Every peak maxima at the largest scale starts a new ridge.

2. Go to the next scale by updating scale index: j = j � 1. Go over all the peak maxima at the

scale s
j

. If the peak maxima is close to a peak maxima at scale s
j+1, it will be connected to

the existing ridge containing that peak maxima at scale s
j+1. If it is not close to any peak

maxima at scale s
j+1, then a new ridge is created starting at this peak maxima.

3. Repeat Step 2 until it finishes processing peak maxima at the smallest scale.

There is one parameter that needs to be chosen in order to link the peak maxima to form ridges,

and this parameter is called the time threshold, and denoted as w. It determines if a new peak

maxima is connected to an existing ridge, or is regarded as the start of a new ridge.

More specifically, in Step 2 at scale s
j

:

for 8 i 2 {1, 2, . . . ,m
j

}

if 9 k 2 {1, 2, . . . ,m
j+1} : |p

j,i

� p
j+1,k| < w, (3.3.5.1)

then: p
j,i

is connected to p
j+1,k

Otherwise: p
j,i

is regarded as the start of a new ridge.

where w is the threshold for connecting two peak maxima from adjacent two scales during ridge

identification.

The length of a ridge is defined as the number of peak maxima along the ridge. Define a parameter

called “ridge length threshold”, l
thres

. Then ridges with length no larger than l
thres

are removed to
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(a) Simulated peak signal corrupted by white Gaussian noise (SNR: 5)

(b) CWT with identified peak candidates (marked by X)

Figure 3.3-7: Example of identified peak candidates for one peak signal



67

further remove the false positives. The parameter, ridge length threshold, is dependent on another

parameter density as defined in Eq. (3.3.2.3). When density is higher, ridges tend to be longer,

because there are more scales at which peak maxima could be produced. On the contrary, lower

density yields shorter ridges on average. Therefore, the ridge length threshold should be positively

correlated to density. For simplicity, assume they are linearly correlated:

l
thres

def
= k

ridge

⇤ d (3.3.5.2a)

where k
ridge

2 R+ : ridge length threshold coe�cient (3.3.5.2b)

In the remaining ridges, each ridge corresponds to one peak signal. The location of the peak is

estimated from the location of the peak maxima on the ridge that has the largest wavelet coe�cient.

The idea is that the wavelet coe�cient measures the pattern matching between a real peak and

a wavelet function. The location of the wavelet function which gives the best pattern matching

naturally gives the best estimation of the location of the peak signal.

3.3.6 The Overall Detection Algorithm

This section first summarizes the overall peak detection algorithm by repeating some of the impor-

tant steps from previous sections, and then discusses in more details the parameters associated with

the algorithm.

Suppose a given data recoding x(t), t 2 [t1, t2] contains Np

peak signals:

x(t) =

Np
X

i=1

A
i

(t� ⌧
i

) + w
�

(t)

where A
i

(t) is the i-th peak signal containing one peak at 0, and ⌧
i

is the location of the i-th peak in

x(t), and w
�

(t) the background noise, which is assumed as stationary zero-mean WGN with known

variance �2.

This signal is sampled at a sampling rate f
s

= 1/T
s

, where T
s

is the sampling period. This

results in a sequence of signal samples, the discrete-time signal, x[k] = x(t
k

), for k = 0, 1, · · · , N ,

where N = b(t2 � t1)/Ts

c. As a result, the locations of the peak signals in the discrete-time case

become p
i

, for i = 1, 2, · · · , N
p

, such that p
i

2 {0, 1, 2, · · · , N}.
Suppose the peak signals have frequency components within the range [!

L

,!
U

], and a set of

parameters associated with the algorithm have been chosen :

• density, d: Density of the scales as defined in Eq. (3.3.2.3).
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• threshold coe�cient, c: The coe�cient for calculating the threshold used in GLRT, as

defined in Eq (3.3.4.6).

• time threshold, w: The threshold for connecting peak maxima from two adjacent scales

during ridge identification, as defined in Eq. (3.3.6.1).

• ridge length threshold coe�cient, k
ridge

: The coe�cient for calculating the length thresh-

old when removing short ridges, as defined in Eq. (3.3.5.2).

The overall procedure for peak detection:

1. Perform CWT on raw data, x[k], k = 0, 1, 2, · · · , N , with Mexican Hat mother wavelet,  [n]

and a choice of scales, s
j

, j = 0, 1, 2, · · · , J , calculated from Eq. (3.3.2.6), (3.3.2.9), and

(3.3.2.11), to obtain a matrix of wavelet coe�cients X.

X
j,k

def
= (X)

j,k

=
+1
X

n=�1
x[n] 

sj ,k[n] j = 0, 1, . . . , J, k = 0, 1, . . . , N ;

Accordingly, the wavelet coe�cients at scale s
j

is denoted as X
j,

:, the j-th row of the matrix X.

2. Identify peak maxima by performing GLRT on local maxima of X
j,

: for all j = 0, 1, 2, · · · , J ,
as illustrated in Eq. (3.3.4.7) and (3.3.4.6), to obtain a set of peak maxima at scale s

j

, whose

column indices are denoted as:

P
j

def
= {k | X

j,k

> �, X
j,k

> X
j,k�1, X

j,k

> X
j,k+1}, j = 0, 1, 2, . . . J

Sort the elements in P
j

in ascending order, and denote the i-th element as p
j,i

, such as:

0  p
j,k1 < p

j,k2  N, for 1 < k1 < k2 < m
j

p
j,i

is the column index of the i-th peak maxima at row, s
j

, in matrix X, and m
j

is the total

number of elements in P
j

:

m
j

def
= |P

j

|, j = 0, 1, 2, . . . J

3. Identify all the ridges by linking neighboring peak candidates across scales, as described in

Section 3.3.5.

Starting at scale s
J

, initiate a new ridge for every peak maxima p
J,i

, i = 1, 2, · · · ,m
J

.

For j = J � 1, J � 2, · · · , 1, 0, at scale s
j

:
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for 8 i 2 {1, 2, . . . ,m
j

}

if 9 k 2 {1, 2, . . . ,m
j+1} : |p

j,i

� p
j+1,k| < w, (3.3.6.1)

then: p
j,i

is connected to p
j+1,k

Otherwise: p
j,i

is regarded as the start of a new ridge.

The result is a set of ridges, denoted as {R
i

, i = 1, 2, 3, · · · , N
R

}, where N
R

is the total num-

ber of ridges detected. R
i

is a set of pair of indices: R
i

= {(rx
i,j

, ry
i,j

), j = 1, 2, · · · , L
i

},
where rx

i,j

and ry
i,j

give the row and column index (as in X ) of the j-th peak maxima along

ridge R
i

, respectively, and L
i

= |R
i

| is the number of peak maxima along the ridge.

4. Remove ridges whose length, L
i

are no larger than l
thres

.

5. Estimate peak location from the remaining ridges.

For each R
i

, the location of the peak signal associated with it is estimated as follows:

( ˆrx
i

, ˆry
i

) = argmax
(x,y)2Ri

X(x, y) (3.3.6.2)

Then:

p̂
i

= ˆry
i

, for i = 1, 2, · · · , N
R

(3.3.6.3)

Fig. 3.3-8 shows an example of the peak detection process.

There are totally four parameters associated with the peak detection algorithm as mentioned

above. Once the four parameters are chosen, the algorithm is fully specified and can run by itself.

The four parameters needs to be chosen carefully, as they can have a big e↵ect on the detection

performance. The remaining of this section discusses the roles of the parameters and their e↵ect on

the detection performance.

The density, d, determines the relative length of the ridges identified in the algorithm. If d is

very small, then a peak signal wouldn’t have large wavelet coe�cients (and hence peak maxima)

across multiple scales, so the ridges for peak signals are short. As a result, the length of the ridge

of a true peak signal does not di↵er too much from that of noise. Therefore, when removing short

ridges, true peak signals are removed, too, resulting in a poor detection rate. If d is very large, then

the ridges from noise could potentially be long. Despite that, the biggest issue is the computation
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(a) Simulated peak signal corrupted by WGN (SNR: 5) and identified peaks

(b) CWT with identified peak candidates (marked by X)

(c) CWT with identified ridges

(d) CWT with identified ridges after removing short ridges

Figure 3.3-8: Overall peak detection process based on the wavelet method
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time. The computation time linearly increases as the number of scales. In summary, it’s preferable

to choose a density that is as small as possible, and yet gives very good detection rate.

The threshold coe�cient, c, is the first threshold in what’s e↵ectively a double-threshold method,

and has direct impact on the detection results on a single scale. At one scale, when c is large,

although false alarm rate can be small, a weak peak signal is likely to be missed: no peak maxima

produced at the occurrence of the peak signal. This results in short ridges or even no ridges for a

true peak signal. When c is small, more noise components are picked up as peak maxima. This

results in long ridges for noise and more computation time, as the ridge identification process is

positively correlated to the number of peak candidates at every scale. For WGN, c = 3 theoretically

removes 99.9% of noise samples as shown in Eq. (3.3.4.4). However, this also removes lots of real

peak signals when signals are weak. The advantage of this double-threshold method is that a smaller

c (smaller than 3) can be chosen to achieve better detection rate for weak peak signals, and later

the false positives are further removed by removing short ridges.

The time threshold, w, has e↵ect on the accuracy of the ridge identification process. If w is too

large, then peak maxima from di↵erent peak signals are likely to be connected as one ridge. In

addition, peak maxima from noise will be connected to form a long ridge. When w is too small,

then even peak maxima from the same true peak signal are not connected, resulting in multiple

short ridges for one true peak signal. If they are short enough to be removed in the following step,

then a true real peak will be missed. This parameter is related to the choice of density d. When d

is larger, then peak maxima from adjacent scales are closer to each other, and hence only a smaller

w is needed to connect peak maxima from the same peak signal. When d is smaller, a large w is

needed to ensure peak maxima from the same real peak signal are connected to form one ridge.

The ridge length threshold coe�cient, k
ridge

, is the second threshold in the proposed double-

threshold method, and has a direct impact on the ridge-removing process. For a large k
ridge

, less

noise is falsely detected, resulting in small false alarm rates; however, less true peak signals are

found, resulting in small detection rates as well. Hence, a proper k
ridge

needs to be chosen for best

overall detection performance.

Each of the four parameters has di↵erent e↵ect on the overall detection performance in a rather

complicated way, and they are correlated in a complicated way, too. Therefore, the optimal param-

eters are chosen from running experiments on simulated data sets.

3.3.7 Detection of Peaks and Troughs in the EMG signal

Before showing simulation results, let’s first consider how to apply the peak detection algorithm to

the EMG signal. The EMG signal have both peaks and troughs, as shown in Fig. 3.3-9. The goal

in EMG peak detection is to detect both the peaks and the troughs, which can be done as follows.
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Figure 3.3-9: Peaks and Troughs of an EMG template waveform (The amplitude of the waveform is
scaled so that the maximum absolute value is 1µV.)

Assuming the EMG signal is corrupted by zero-mean WGN, the follow procedure detects both the

peak and the troughs of the EMG signal. An example process is shown in Fig. 3.3-10.

1. rectify the raw EMG signal x[n] to obtain the positive part x
p

[n]. See Fig. 3.3-10b.

x
p

[n] =

8

>

>

<

>

>

:

x[n] if x[n] � 0

0 if x[n] < 0

2. perform wavelet-based peak detection on x
p

[n] to obtain positive peaks {p̂+
i

}.

3. obtain the negative part of the data x
n

[n] by flipping the raw EMG signal and rectifying the

EMG signal x[n]. See Fig. 3.3-10c.

x
n

[n] =

8

>

>

<

>

>

:

�x[n] if x[n]  0

0 if x[n] > 0

4. perform wavelet-based peak detection on x
n

[n] to obtain negative peaks, or troughs {p̂�
i

}.

5. combine results from Step 2 and Step 4 to get all peaks {p̂
i

} = {p̂+
i

}[ {p̂�
i

}. See Fig. 3.3-10a.

3.4 Simulation

Simulations are used for two goals: one, to choose optimal algorithm parameters, and two, to

evaluate the peak detection algorithm on “ground truth” data, and compare it against other methods.
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(a) Simulated EMG signal with overall peak and trough detection results

(b) Rectified simulated EMG signal with peak detection results

(c) Flipped and rectified simulated EMG signal with trough detection results

Figure 3.3-10: Example process of detecting peaks and troughs of the EMG signal
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This section first describes the simulated data sets. Then, several di↵erent ways to evaluate the

performance of a peak detection algorithm are introduced. After that, the idea behind the selection

of the optimal algorithm parameters from simulations is explained. Lastly, to demonstrate the

e↵ectiveness of the proposed peak detection algorithm, other peak detection methods are introduced

and compared against it.

3.4.1 Simulated Ground Truth Data

The peak detection algorithm is designed to detect transient peak signals from a noisy recording,

assuming noise is knownWGN. Therefore, the simulated data is the summation of a series of transient

peak signals and WGN. The simulated signal x[n] can be expressed as:

x[n]
def
=

Np
X

i=1

P [n� p
i

] + w
�

[n] (3.4.1.1)

where P [n] is a transient peak signal with peak at time index 0, p
i

is the location of the i-th transient

signal peak, N
p

is the number of transient peak signals, and w
�

[n] is the WGN with variance of �2.

p
i

is chosen randomly and depends on the sparsity of the transient signals. sparsity is defined as the

fraction of signal-free samples (noise-only samples) over the total number of samples. If signal P [n]

has length M , then every M/(1� sparsity) samples of data contains exactly one transient signal on

average. Hence, the total length of data x[n] is M/(1� sparsity) ·N
p

.

Two kinds of simulated data are generated. The first one is a generic peak signal embedded

in WGN, since the algorithm is designed to work for any generic peak signal. The second one is a

simulated EMG signal, which is used to demonstrate the e↵ectiveness of the peak detection algorithm

on the EMG signal. In both cases, the same equation (Eq. (3.4.1.1)) is used, with di↵erence choices

of peak signal model P [n].

3.4.1.1 Simulated Generic Peak Signals

A half-period sine wave is used as the peak signal model, so that a precise description of the fre-

quency component of the peak signal is possible. This allows a good control over the performance

of the peak detection. In addition, the half-period sine wave naturally resembles a peak. Consider

the following peak signal model:

P
f

[n]
def
= A · sin(⇡ · n

L
f

� 1
), n = 0, 1, 2, · · · , L

f

� 1 (3.4.1.2)

L
f

=
f
s

2f
+ 1 (3.4.1.3)
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Figure 3.4-1: Template waveform of the peak signal model. (The amplitude of the waveform is
scaled so that the maximum absolute value is 1µV.)

where A is the amplitude of the peak, L
f

is the length of the peak signal, which can be calculated

from the sampling rate f
s

and the frequency of the sine wave f in Eq. (3.4.1.3). The extra 1 in

Eq. (3.4.1.3) is needed since both ends of the one half-period need to be included. From the above

equations, one can see that the frequency information or the sampling rate are not needed in order

to obtain simulated data; all are needed is the length of the peak signal. However, in practice, the

discrete data is obtained with certain sampling rate, and the frequency information of the signal is

specified independently of the sampling rate. Therefore, in practice, Eq. (3.4.1.3) is used to calculate

the length of the peak signal. When synthesizing peak signals, Eq. (3.4.1.1) is used by substituting

P [n] with P
f

[n] with given f . Fig. 3.4-1 shows the waveform of the peak signal model.

3.4.1.2 Synthesized EMG Signals

Real EMG signal is not good for evaluating the peak detection performance, because it’s hard to

determine the ground truth. Although experts can select true EMG peaks from the noisy recording

based on their expertise and years of experience, manual detection is subjective, and leads to bias and

inaccuracy. In particular, the proposed detection algorithm focuses on signal with such low SNR that

it’s almost impossible for human to detect by visual inspection. In addition, a real EMG signal su↵ers

from unknown characteristics of noise, which can a↵ect the detection performance significantly.

When evaluating the detection performance of the peak-detection algorithm, it’s preferable to single

out the e↵ect of the algorithm itself on the detection performance. Otherwise, when detection

performance is bad, it’s impossible to determine if the algorithm is not good or estimation of the

noise is inaccurate. Therefore, synthesized EMG signal is used instead of real EMG signal. When

applying peak detection algorithm to a real EMG signal with unknown characteristics of noise, the

noise characteristics from real EMG signal is first estimated, and then the peak detection algorithm

is carried out with the estimation result.
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(a) R MH (b) L MG (c) L VL

Figure 3.4-2: MEP template waveforms used in the synthesized EMG signal. The MEP waveforms
are picked from the real EMG signals of di↵erent muscles. The muscle name is given in its short
form under each MEP waveform. For the complete names of the muscles from their short names,
please refer to Appendix A. The amplitude of the waveform is scaled so that the maximum absolute
value is 1µV.

The synthesized EMG signal uses actual EMG waveforms hand-picked from clinical EMG record-

ings, and therefore contain characteristics of the real EMG signal. However, the real EMG signal

su↵ers from noise, so that the hand-picked EMG waveforms are noisy. To remove the noise, a

point-average of several EMG waveforms with similar shapes is constructed. A Matlab program

with graphic user interface to facilitate this process is implemented. This graphic tool is used to

hand-pick several typical EMG waveforms from the real EMG signal. When synthesizing the EMG

signal using Eq. (3.4.1.1), one simply substitutes P [n] with a chosen EMG waveform W
EMG

[n].

Fig. 3.4-2 shows three recorded EMG waveforms which will be used to synthesize the EMG signal in

the subsequent experiments. These three waveforms were chosen since they di↵er from each other

in the number of peaks, and they represent a large body of the real EMG waveforms.

3.4.1.3 Definition of Signal-to-Noise Ratio (SNR)

The peak detection algorithm gives di↵erent performance for signals with di↵erent SNRs. When

comparing performance of di↵erent algorithms, a fixed SNR is maintained. Since the signal is a

transient signal, the traditional definition of SNR doesn’t apply since the energy or power of the

signal depends on the density of the signals: energy or power increases if there are more signals within

a fixed time interval. Therefore, the notion of transient average power is used in the definition of

SNR:

SNR
def
=

P
signal

P
noise

=
1

s2�s1+1 ·
P

s2

n=s1
s[n]2

�2
(3.4.1.4)

where [s1, s2] is the support of the transient signal s[n], �2 is the variance of the WGN. For WGN,

the power is the variance.

This definition gives a qualitative description of the noise level in a signal: a large SNR means

a relatively low noise level. For a fixed signal shape, a higher-SNR signal will give better detection

performance. However, for signals with di↵erent shapes, the detection performances under di↵erent
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SNRs are non-comparable: A signal with higher SNR doesn’t necessarily give better detection

performance than another signal with lower SNR. Hence, this definition is used to quantitatively

measure the noise level for a fixed signal model.

3.4.1.4 Procedure of Synthesizing Simulated Data

Simulated ground truth data was synthesized as follows:

1. The sampling rate, f
s

, is selected to be 2000, which is the sampling rate of the clinical EMG

signal of interest.

2. Choose the number of peak signals N , and sparsity. In this thesis, N is chosen to be 300, and

sparsity is chosen to be 80%.

3. Choose either the generic peak signal model or the EMG signal model, and obtain peak signal

model P [n]. For generic peak signal model, choose amplitude A and frequency f , and use

Eq. (3.4.1.2) to calculate P
f

[n], and let P [n] be P
f

[n]. For EMG signal model, choose a

waveform, and let P [n] be W
EMG

[n]. In this thesis, A is chosen to be 100, and f is chosen to

be 60Hz because that’s the major frequency component of a typical EMG signal.

4. Choose SNR and calculate � from Eq. (3.4.1.4). Typical SNR takes values from 1 to 100.

5. Based on the sparsity and the signal length M , randomly choose ⌧
i

from interval [1 + (i� 1) ·
M/(1� sparsity) + bu↵er, i ·M/(1� sparsity)] for i 2 {1, 2, 3, · · · , N}. bu↵er is used to make

sure two transient signals don’t overlap with each other.

6. Synthesize WGN w
�

[n] with variance of �2 and length M/(1� sparsity) ·N .

7. Obtain synthesized data x[n] from Eq. (3.4.1.1).

3.4.2 Performance Evaluation Methods

To evaluate the performance of the peak detection algorithm, the terminology from pattern match-

ing or machine learning in the case of binary classification is borrowed (See Section 2.3.2).

Suppose the ground truth of locations of signal peaks is denoted as a set P. For any given peak

detector, its output is a set of peak locations denoted as a set O. Accordingly, the following 3

quantities can be defined:

• True positive TP
def
= |P \O|, the number of EMG peaks that are detected.
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• False positive FP
def
=

�

�O \ P
�

�, the number of non-EMG peaks (peaks from noise) that are

detected (number of false alarms).

• False negative FN
def
=

�

�P \ O
�

�, the number of EMG peaks that are NOT detected (number

of missed detections).

To quantify detection performance, terms from pattern recognition as discussed in Section 2.3

are employed.

• Recall is the fraction of real EMG peaks that are detected

• Precision is the fraction of detected peaks that are actual EMG peaks

Or formally:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

Recall is also called Detection Rate in detection theory or hit rate in the signal processing field,

or sensitivity in statistics. A good detector has a high recall (close to 1). Precision is directly related

to False Discovery Rate (FDR) as used in statistics: Precision = 1�FDR. The concept of precision

describes another very important aspect of the peak detection algorithm. A high recall only means

most of the true signal peaks were found, it doesn’t imply anything about the “accuracy” or “preci-

sion” about this detection method. Along with all the true signal peaks, “fake peaks” or noise could

also be labeled as peak signals. Consider an extreme case. If a detector labels all peaks as signal

peaks, then the recall can be as high as 1. However, the precision will be extremely bad: close to 0

for transient peak signals.

When comparing two detectors, one detector is better if it has both higher recall and precision.

However, it’s not easy to compare two detectors if one detector has higher recall but lower precision:

it depends on which quantity is more important to the specific application. For example, in radar

detector for military purpose, one wants to have extremely high recall, but just a decent precision.

Therefore, di↵erent emphasis or weights can be placed on recall and precision when measuring the

performance of a detector according to the specific application. F-score is defined to quantitatively

describe the overall performance. The general formula for F-score with a positive real � is:

F
�

def
= (1 + �2) · precision · recall

�2 · precision+ recall
(3.4.2.1)
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By choosing di↵erent values of �, the F-score puts di↵erent weights on the precision and recall: a

larger � means more emphasis on recall while a smaller � means more emphasis on precision.

In this thesis, F1 score, the harmonic mean of precision and recall is used:

F1
def
= 2 · precision · recall

precision+ recall
(3.4.2.2)

Both precision and recall change as the SNR of the data changes, so the performance of the detector

is evaluated under di↵erent SNR environments, especially under a low SNR environment.

In traditional detection theory, a Receiver Operating Characteristic (ROC) curve is plotted for

a binary detector. The ROC curve is a plot of the relationship between the detection rate (P
D

)

and the false alarm rate (P
FA

), when the threshold takes di↵erent values. Di↵erent threshold of

the detector yields di↵erent pairs of (P
D

, P
FA

). Typically, a higher threshold yields smaller P
D

and

smaller P
FA

. A ROC curve is used to compare between di↵erent detectors. The ROC curve of a

better detector is closer to the upper-left corner of the graph, as that region gives high P
D

and low

P
FA

. In this thesis, recall vs. precision curve is plotted. The curve of recall vs. precision is a similar

plot to the traditional ROC curve. In fact, recall is the same as the detection rate P
D

. In the

peak detection problem, false-alarm rate P
FA

is ill-defined. As a result, the closely related quantity,

precision, is used instead. A detector with a small false-alarm rate normally gives a large precision.

In recall vs. precision curve, a better detector yields a curve closer to the upper-right corner of the

graph, as that region gives both high precision and recall.

More specifically, precision vs. recall curve is plotted by varying the threshold coe�cient c in the

proposed peak detector under a very low SNR environment. The threshold coe�cient c is varied

because it’s used in the binary hypothesis testing during peak maxima detection at each scale.

In summary, following plots will be generated based on the detection results of a given peak

detector.

• fix the detector parameter; find the precision, recall, and F-score of the detector for di↵erent

SNRs. Evaluate the following relationships:

– precision vs. SNR

– recall vs. SNR

– F-score vs. SNR

• fix the SNR of the data; find the recall and precision of the detector with di↵erent detector

thresholds. Evaluate the following relationships:

– recall vs. precision
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– recall vs. threshold

– precision vs. threshold

3.4.3 Choose Algorithm Parameters from Simulation

There are four parameters associated with the peak detection algorithm. It’s impossible to formulate

an analytical formula that relates the detection performance with the four parameters. Hence, I

propose to choose the parameters by experimenting on simulated data that is representative of the

application.

As discussed briefly in the beginning of Section 3.3, the problem is formulated as a generic peak

detection problem regardless of the specific shapes of the EMG signal. Therefore, the simulated

generic peak signal is used rather than the simulated EMG signal for the purpose of selecting algo-

rithm parameters. Please note that a set of “optimal parameters” is not necessarily the best, but

the best for the given data. In fact, choosing the algorithm parameters from experiments is rather

a subjective process. In this thesis, I just chose one that gives an overall satisfying and seemingly

best detection performance.

To find the parameters that work well for various shapes of peaks, the detection performance

for peak signals with various frequencies is tested. Also, a relatively large sparsity in generating the

simulated data is used, in order to prevent a situation where the wavelet coe�cients from two close

peaks interfere with each other. In practice, real signals, such as the EMG signal, will often have

two peaks very close to each other. However, when choosing the algorithm parameters, I want to

focus on the ability of the algorithm at detecting single peak signal from noisy environment. The

next section will demonstrate the ability of the algorithm to detect EMG peaks, and shows that the

peak detection algorithm works well even when peaks are close to each other.

In general, the algorithm parameters are chosen by brute-force search. The peak detection

performance is checked for di↵erent combinations of the 4 parameter values and visually inspect the

recall vs. precision curve and the F-score vs. SNR curve to choose the best one. Firstly, the ranges of

reasonable values for all the parameters are chosen. Then several candidate values within the range

are chosen. If many candidate values are chosen for every parameter, then there will be a lot of

4-parameter pairs, and hence the time to run the peak detection for all parameter pairs is enormous.

To avoid this, at first stage, only a few candidate values are roughly chosen, as this step only aims

to narrow down the range of the parameters. In the next stage, candidate values are finely selected

in the new range. In this way, a set of good parameters can be quickly found.

When initially checking the performance of the detector, the F-score vs. SNR curve is used to

find a range of candidate parameter pairs, and then the recall vs. precision curve is used to select the

best one among the candidates. The F-score is a quick way to select good candidate values, since
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those parameters that give very low F-score (F-score < 0.9) can be automatically filtered. After

that, the parameter selection process focuses on the low-SNR data (SNR = 1 ⇠ 10), and select the

one parameter pair that gives the best recall vs. precision curve.

From observation, the optimal parameters are di↵erent for di↵erent SNRs, but the detection

performance doesn’t di↵er too much within a finite range of SNRs. For example, it’s good enough

to have just one set of parameters for low-SNR (SNR < 10) data, and one set of parameters for

high-SNR (SNR > 10) data. In practice, one can choose a proper set of parameters based on the

actual noise levels in the application. The EMG application focuses on low-SNR data, since this is

the most challenging and interesting problem.

From the physiology of the EMG signal, the frequency range of interest is 0 ⇠ 400Hz, and the

major component is at 60Hz. Hence:

f
L

= 20 (3.4.3.1)

f
U

= 400 (3.4.3.2)

The lower frequency bound, f
L

cannot be 0, since this implies an infinite range of scales in the CWT.

20Hz is a good lower bound, as most of the frequency components in a EMG signal is above 20Hz.

Note that in the theoretic derivation, angular frequency, !, (with unit of rad/sec) is used to

represent frequency, but in practice, people most often use frequency, f , (with unit of Hz). The

previous equations using ! to present frequency can be adapted to frequency in Hz with simple

relation:

! = 2⇡ · f

Other parameters used in the simulation are:

f
s

= 2000

sparsiy = 80%

With the above parameters, the best algorithm-parameter pair selected is:

density: d = 3; (3.4.3.3a)

threshold coe�cient: c = 2.2; (3.4.3.3b)

time threshold: w = 5; (3.4.3.3c)

ridge length threshold coe�cient: k
ridge

= 0.6; (3.4.3.3d)
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3.4.4 Experimental Results

3.4.4.1 Methods for Comparison

This section describes a couple of peak detection methods widely used in the literature, and they

will be implemented for comparison with the proposed method.

The most straightforward, widely used in EMG clinics, method for peak detection is a simple

amplitude thresholding, in which only peaks passing certain threshold are identified as real peaks;

peaks below the threshold are considered noise. This method cannot work well, if the sampling rate

is high or the SNR is low. In either case, the problems occur when noise results in peaks on the

rising and falling side of a true EMG peak. These peaks normally have large amplitude such that

they pass the threshold, but arise from noise.

A better method is to incorporate some prior knowledge about the peak shapes: only peaks with

certain width are considered real peaks, assuming peaks from noise have small width. Therefore,

the simple thresholding method can be improved by eliminating peaks from noise that are near

a true peak. This way, the peaks on the rising and falling sides are shadowed by the true peak.

Specifically, a threshold on the minimum separation between two peaks is set: if two peaks are

within the separation threshold, the smaller one is removed, and only the larger one is kept. This

method is referred to as the improved amplitude thresholding in this thesis. In the implementation,

the separation threshold is set to be 5 samples which is 2.5ms, considering the data sampling rate is

2000Hz. This threshold is based on the fact that the simulated peaks have a base frequency of 60Hz.

However, this method puts too much restrictions on the width of the peaks. If the peak signals have

a wide range of widths, then the performance of this method would be a↵ected a lot.

A further improved method is to use digital filtering before peak detection. By digitally low-pass

filtering the data, peaks from noise will be removed, and this works for a wide range of shapes

of peaks, unlike the method above. I used Matlab’s digital filter design tool to implement this

filter with passband of 400Hz and stopband of 450Hz. However, digital filtering can only suppress

noise to a certain level. Because a digital filter must allow all peaks of interest to pass, it must

have a relatively wide passband. Therefore, for a peak with a particular frequency component, the

filtering performance is not very good. In other words, digital filtering is not very selective to the

peak signals. In fact, for very low SNR data, digital filtering wouldn’t separate real peaks from

noise very well. This is where the wavelet method shines. CWT at each scale is similar to digital

filtering with a specific passband. Hence, for every peak signal, with a proper choice of density value,

there would exists a couple of selected scale values, such that the passband of the wavelets at those

scales cover the major frequency components of the peak signal. As a result, the CWT is much

more selective than simple digital filtering. In addition, the additional process of ridge identification
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further separates the peak signals from the noise.

To compare with classical transient detection methods, Nuttall’s classical power-law detector [43]

was selected as a benchmark. Consider a window size of 2w + 1, w 2 Z+, then the power at sample

i given data x[k], k 2 Z is defined as:

p[i]
def
=

1

2w + 1

i+w

X

k=i�w

x[k]2

The threshold on the power is chosen to be a coe�cient times the power of the noise (the variance).

This method is termed Nuttall’s power detector.

To compare with other peak detection method using the wavelet transform, Du’s wavelet-based

detector [13] was selected for comparison. Du’s paper o↵ers very good peak detection results in

mass spectroscopy when compared to other classical peak detection algorithms. But the proposed

wavelet-based double thresholding method in this thesis o↵ers more theoretical support and allows

users to fine tune the parameters specifically for their applications. It will be seen that this detector

o↵ers better detection results compared to Du’s method. I call this method Du’s wavelet detector.

As a upper bound for the peak detection performance, I also proposed a method similar to the

“Matched Filtering” in classical detection theory, termed the matched filter. This method uses the

peak signal itself as the digital filter, and find the correlation (by running convolution) between data

and the peak signal (See Eq. (2.3.1.9). After that, peaks above a certain threshold are selected to

be actual peaks. This method makes use of full knowledge of the signals, so it naturally gives the

optimal performance, and serves as a upper bound for evaluating the peak detection algorithm.

In summary, I have implemented the following 7 methods (6 from literature for comparison;

“wavelet” refers to the wavelet-based double-thresholding method proposed in this thesis), and have

performed experiments on simulated data with these methods. The legends on the resulting plots

will match the method names given in the following list.

• amplitude thresholding

• improved amplitude thresholding

• low-pass filter

• power-law detector

• Du’s paper

• wavelet (developed in this thesis)

• matched filter
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Figure 3.4-3: Example of simulated data with 10 peak signals (60Hz peak with SNR = 1)

3.4.4.2 Test Results on the Generic Peak Signal

Fig. 3.4-3 shows a section of an example simulated peak signals with SNR being 1. This plot shows

that for data with very low SNR (e.g., SNR = 1), it’s almost impossible to visually detect the real

signals. Since the EMG signal has most of its frequency component around 60Hz, peak detection will

be evaluated on the generic peak signal of 60Hz. Fig. 3.4-4 compares the recall vs. precision curves of

all seven methods previously described in Section 3.4.4.1. In addition, the recall vs. threshold curves

and the precision vs. threshold curves are plotted to give the readers more insights. Figure 3.4-4a

verifies the basic intuition about the 7 methods: amplitude thresholding, being the simplest method,

performs worst; improved amplitude thresholding gives slightly better results; more complex meth-

ods, such as low-pass filtering, power-law detector, and Du’s method give even better performance.

The wavelet-based algorithm performs significantly better than all of those methods. In fact, the

performance of the wavelet-based algorithm is close to the upper bound given by the matched fil-

tering. As can be seen from Fig. 3.4-4b, the recall for the wavelet-based method is similar to that

of low-pass filtering, but lower than Du’s method. However, the precision evaluation in Fig. 3.4-4c

shows that the wavelet-based method has the highest precision among all methods. Even though the

power-law detector gives close precision, its recall is much worse. In general, there is always a trade-

o↵ between precision and recall: a method giving good recall usually su↵ers from bad precision, vice

versa. The wavelet method is designed to give a good overall performance (good recall vs. precision

curve) without sacrificing too much on either recall or precision. The fact that the wavelet method

gives best precision and reasonable recall comes from the intuition behind the method: by imposing

double-thresholding, the amount of false positives can be reduced, hence increasing precision, while
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(a) recall vs. precision

(b) recall vs. threshold (c) precision vs. threshold

Figure 3.4-4: Experimental Results on the generic peak signal. Recall and precision are calculated
under di↵erent thresholds for the proposed wavelet method (labeled as “wavelet“ in the plot), as
well as other six methods for comparison. For detailed descriptions on what methods the labels
refer to, please see Section 3.4.4.1. The frequency of the peak signal is 60Hz, and the SNR is
1. (a) gives the recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the
precision vs. threshold curves.

not hurting too much the detection rate, or recall.

Now compare the 7 methods in terms of their F-scores. Fig. 3.4-5 calculates the recall, precision,

and F-score of the 7 methods for peak signals with SNR ranging from 1 to 50. Naturally, a higher

SNR signal gives better detection performance, as shown in all three plots. From Fig. 3.4-5a, the

wavelet-based method performs much better than all other methods except the power-law detector,

and almost as well as the matched filtering method, the theoretical upper bound. The wavelet

method gives slightly lower F-score compared to the power-law detector in high-SNR range (which

is less interesting in the application), but if one zooms in on the low-SNR range, then the power-law

detector drops its F-score significantly. Since the goal of this thesis is to detect low-SNR EMG

peaks, the wavelet method is much better than the power-law detector. If looking at the recall
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(a) F-score vs. SNR

(b) recall vs. SNR (c) precision vs. SNR

Figure 3.4-5: Experimental results on the generic peak signal. Recall and precision are calculated
under di↵erent SNRs for the proposed wavelet method (labeled as “wavelet“ in the plot), as well as
other six methods for comparison. For detailed descriptions on what methods the labels refer to,
please see Section 3.4.4.1. The frequency of the peak signal is 60Hz, and the SNR is 1. (a) gives the
F-score vs. SNR curves; (b) gives the recall vs. SNR curves; (c) gives the precision vs. SNR curves.

and precision plots, one can tell that the wavelet-based method has slightly lower recall as Du’s

method, but much better precision over Du’s method. This again justifies my observation in the

recall vs. precision curves: Du’s method gives good recall while the power-law gives good precision,

but the wavelet method gives the best overall performance.

3.4.4.3 Test Results on the EMG signal

To demonstrate that the wavelet-based peak detection algorithm works for various shapes of EMG

signals, I synthesized three simulated EMG signals. Each simulated EMG signal uses one real EMG

waveform from Fig. 3.4-2. As can be seen from that figure, the EMG waveforms are very di↵erent

from each other. In total, peak detection is performed on three synthesized EMG signals. In the

following, I will present the experimental results on all three synthesized EMG signals.
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For the EMG signal, there doesn’t exist a matched filtering method. I can only compare the

wavelet-based method with the rest of methods from literature. Also, from last section, the F-

score isn’t highly discriminative since the focus is on the low-SNR range, and hence only the re-

call vs.precision curves are plotted for comparison.

As can be seen from Figure 3.4-6, Figure 3.4-7 and Figure 3.4-8, the detection performance is

consistent among all three synthesized EMG signals. The wavelet-based method always has better

overall recall vs. precision curves than other methods for all three types of synthesized EMG signals.

As predicted, the wavelet-based method has a high precision due to its double thresholding approach,

without hurting the detection rate performance too much. Since this detection performance is similar

to the one realized in the generic peak signal of the last section, I will not analyze every curve in

details. The results are given to demonstrate the e↵ectiveness of the wavelet-based method on the

EMG signal. The performances on three di↵erent EMG signals of very di↵erent shapes demonstrate

that the wavelet method can tackle the main challenge in the detection of the EMG signal.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-6: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2a. The SNR is 1. Recall and precision are calculated under di↵erent thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-7: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2b. The SNR is 10. Recall and precision are calculated under di↵erent thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.
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(a) Recall vs. Precision

(b) Recall vs. Threshold (c) Precision vs. Threshold

Figure 3.4-8: Experimental results on the synthesized EMG signal with EMG waveform from Fig. 3.4-
2c. The SNR is 10. Recall and precision are calculated under di↵erent thresholds for the proposed
wavelet method (labeled as “wavelet“ in the plot), as well as other five methods for comparison. For
detailed descriptions on what methods the labels refer to, please see Section 3.4.4.1. (a) gives the
recall vs. precision curves; (b) gives the recall vs. threshold curves; (c) gives the precision vs. threshold
curves.


