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Chapter 2

Background

This chapter gives an overview of the background knowledges in order to understand the work in

this thesis in Chapter 3 and Chapter 4.

Firstly, the physiology of the EMG signal is introduced. This helps the readers to understand

the characteristics of the EMG signal, and the correlation between the EMG signal and the neural

activity of the spinal cord. With this understanding, readers can have a clear view of the challenges

and motivations behind the work in this thesis. In addition, the assumptions made in order to

derive the new detection and segmentation techniques in Chapter 3 and Chapter 4 are based on the

understanding of the physiology and observation of the EMG signal.

After that, the background knowledge in order to understand the detection technique in Chapter 3

is presented. The methodology consists of a combination of several techniques stemming from multi-

resolution wavelet decomposition, robust statistics, and the detection theory. Since the task is to

detect transient muscle responses, it’s apparent to review the classical detection theory. The classical

detection theory cannot be applied directly to solve the problem, but it helps readers understand

the proposed methods from a theoretical point of view. In particular, the proposed method involves

the use of the generalized likelihood ratio test. Therefore, the classical likelihood ratio test (formally

known as the Neyman-Pearson Theorem) is introduced. The use of the wavelet transform was

inspired by many literatures in the transient detection field. Detection of the transient signals

with unknown structure is generally hard, but employing certain transformation on the signal can

yield good detection result, given that the transformation exposes the unique structure of the signal.

Therefore, a review on the wavelet theory is given, and specifically a study of the frequency properties

of the wavelets is presented, since the proposed detection method makes use of them.
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2.1 Physiology of the Electromyographic (EMG) Signal

Electromyography, or EMG for short, is one of the electrophysiological recording methods. Many

people are probably more familiar with other electrophysiological recording methods: Electroen-

cephalography (EEG), the recording of electrical activity along the scalp, and Electrocardiography

(ECG, or EKG), the recording of the electrical activity of the heart, etc. Similarly, EMG is a

technique for evaluating and recording the electrical activity produced by skeletal muscles. The

instrument for performing EMG is called Electromyograph, and the record produced is called Elec-

tromyogram, or the Electromyographic signal (the EMG signal for short)

The EMG signal is essentially the voltage fluctuation resulting from ionic current flows across

the membranes of the muscle cells, when these cells are electrically or neurologically activated.

Therefore, from the EMG signal, one can analyze the underlying biological processes of muscles.

From that, one can further infer the neural activity of the spinal cord and potentially the central

nervous system. The EMG signal can be analyzed to diagnose neuromuscular deficiencies such as

caused by stroke and Parkinson’s disease [50], the biomechanics of human or animal movement.

EMG can be categorized into two kinds, surface EMG and intramuscular EMG, based on the

electrodes being used (See Figure 2.1-1). In Surface EMG (sEMG for short), a pair of electrodes or a

more complex array of multiple electrodes is placed on the surface of the skin above the muscle; while

in intramuscular EMG, (iEMG for short), typically either a monopolar or concentric needle electrode

is inserted through the skin into the muscle tissue. To perform iEMG, special treatment needs to

be taken, while sEMG is a non-intrusive, relatively simple approach. On the other hand, iEMG

electrodes can be placed much closer to the muscle of interest, while the sEMG signal is influenced

by the depth of the under-skin tissue at the site of the recording. Because of this di↵erence, iEMG

results in a much more selective, less noisy recording [53].

2.1.1 Physiology of the Generic EMG signal

Stashuk’s review paper [53] on the EMG signal decomposition gives a very good explanation of how

the EMG signal is generated. The following materials follow the discussion in that paper.

2.1.1.1 Muscle Fiber Action Potential (MFAP)

Muscle fibers are simply the colloquial term for muscle cells, or myocytes, which are the individual

components constituting skeletal muscles. Skeletal muscle is subdivided into parallel bundles of

stringlike fascicles, which themselves are bundles of even smaller stringlike multinucleated cells, the

muscle fibers. Muscle fibers typically have a length of 2� 6cm, and a diameter of 50� 100µm [26].

Each muscle fiber is normally innervated by only one motor neuron in only one place, usually near its
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(a) Schematics of typical intramuscular
electrodes [35]

(b) Picture of surface electrodes from Mo-
tion Lab Systems [56]

Figure 2.1-1: Intramuscular and surface EMG electrodes

midpoint [26]. Neuromuscular junction is the structure through which a motor neuron innervates its

muscle fiber. When a muscle fiber is excited, it fires action potentials propagating relatively slowly

(3 � 5m/s) in both direction away from the neuromuscular junction, similarly to the propagation

of action potentials (AP) along the axons of neurons. This action potential is called a muscle fiber

action potential (MFAP), and is the fundamental component contributing to the detected EMG

signal. The characteristics of MFAPs will depend upon the diameter of the fiber, the conduction

velocity, its location relative to the detection site, and the configuration and type of electrodes.

2.1.1.2 Motor Unit Action Potential (MUAP)

The fibers of a muscle are not excited individually. They are controlled together in a group, called

the motor unit. A motor unit is made up of a single motor neuron and the skeletal muscle fibers

innervated by that motor neuron. A typical muscle is controlled by about 100 large motor neurons

[26]. A motor unit can innervate anywhere from 100 to 1000 muscle fibers scattered over a substantial

part of the muscle. All of the muscle fibers innervated by the same motor neuron respond faithfully

and synchronously to each action potential of the motor neuron [26]. As a result, individual MFAPs

are normally not detected. Instead, a summation of all of a motor unit’s MFAPs is detected, known

as a motor unit action potential (MUAP).

Let MFAP
i

(t) be the waveform of a muscle fiber action potential from the i-th fiber of a motor

unit. Let MUAP
j

(t) be the electrical potential from the j-th motor unit, which arises as a sum of

all MFAPs:
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MUAP
j

(t) =

Nj
X

i=1

MFAP
i

(t� ⌧
i

)s
i

(2.1.1.1)

where ⌧
i

is the temporal o↵set of MFAP
i

(t), and N
j

is the number of fibers in motor unit j. The

binary variable s
i

represents the neuromuscular junction function that has a value of 1 if fiber i fires

and 0 if not.

⌧
i

depends on the location of the neuromuscular junction and the conduction velocity of the mus-

cle fiber. N
j

represents the size of the motor unit. As pointed out before, N
j

⇠ 100�1000. Because

a single action potential in a motor neuron can activate hundreds of muscle fibers in synchrony, the

resulting currents sum to generate an electrical signal that is readily detectable outside the muscle

itself [26]. Because of the attenuation of MFAP with distance to the detection electrode, the size

of the MUAP is in practice often dependent on the location and diameter of the closest few muscle

fibers. Figure 2.1-2 depicts the composition of a MUAP as the summation of individual MFAPs.

In general, MUAP waveforms will vary in shape due to variations in the delays of the fiber

potentials (a↵ecting ⌧
i

), possible changes in the position of the electrode relative to the muscle

fibers (a↵ecting MFAP
i

), and the possibility of a particular fiber failing to fire (a↵ecting s
i

). These

variations are the source of stochastic biological variability in the MUAP waveform [53].

2.1.1.3 Motor Unit Action Potential Train (MUAPT)

In order to maintain or increase the force generated by a muscle, the specific motor neuron must

fire a temporal sequence of action potentials, called a spike train. As discussed in last section, one

action potential from a single motor neuron results in one MUAP. Therefore, this spike train, when

arriving at the neuromuscular junctions of all muscle fibers of this motor unit, results in a temporal

sequence of MUAPs, called Motor Unit Action Potential Train (MUAPT) [53].

MUAPT
j

(t) =

Mj
X

k=1

MUAP
jk

(t� �
jk

) (2.1.1.2)

where MUAPT
j

(t) is the MUAPT of the j-th motor unit, MUAP
jk

(t) is the MUAP generated

during the k-th firing of the j-th motor unit, M
j

is the number of times the j-th motor unit fires,

and �
jk

is the k-th firing time of the j-th motor unit.

2.1.1.4 Composite EMG signal

When more than minimal force is required, many motor neurons generate an asynchronous barrage

of action potentials. Due to the property of superposition of electric fields, an electrode, either

inserted into a muscle or on the surface of the skin, measures the spatial and temporal sum of

MUAPTs contributed from all recruited motor units within the “listening sphere”. The result is a



16

Figure 2.1-2: A MUAP is composed of the summation of the MFAPs of its component muscle fibers.
(from Stashuk [53])
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Figure 2.1-3: Physiological and mathematical model for the composition of a detected EMG signal
(from Stashuk [53]).

complex pattern of electric potentials (typically in the order of 100µV in amplitude) that is called

the composite EMG signal [26]. Figure 2.1-3 presents both an anatomical and physiological model

of an EMG signal.

EMG(t) =
Nm
X

j=1

MUAPT
j

(t) + n(t) (2.1.1.3)

where MUAPT
j

(t) is the j-th MUAPT, N
m

is the number of active motor units, and n(t) is the

background instrumentation noise.

Normally, more motor units are recruited as the muscle force increases. Di↵erent motor units are

recruited at di↵erent times and stay active for di↵erent lengths of time. In addition, each MUAPT

has its own characteristics of firing intervals, and this firing interval changes within each MUAPT,

too. A general research direction is to decompose the detected EMG signal into its MUAPTs from
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Figure 2.1-4: Bar plot for the firing times obtained via the decomposition method in [38]. MU:
Motor Unit; MVC: Maximum Voluntary Contraction). (from Nawab [38])

di↵erent motor units. EMG decomposition is normally performed on the iEMG signal, since iEMG

measures a few MUAPTs while sEMG detects many more, making decomposition very di�cult.

An example of the decomposition result on the iEMG signal from Nawab’s paper [38] is shown in

Figure 2.1-4.

The sEMG signal can reveal important muscle excitation information about underlying limb

movement. As a result, a typical research direction is to detect muscle activation intervals in the

sEMG signal. Figure 2.1-5 gives an example of muscle activity onset detection using an energy

detector in [50].

As mentioned before, the shape of MUAPs depends on many di↵erent factors, such as the position

of the electrode relative to the active muscle fibers, the physical characteristics and configuration

of the electrodes. In addition, an EMG signal is composed of temporal overlapping of di↵erent

MUAPs. As a result, it’s hard to predict the actual shape of the EMG signal. This property is the

major challenge in EMG processing. However, the good news is that no matter how variable the

shapes can be, the e↵ective bandwidth of the EMG signal can be assumed as prior knowledge of the

physiology of EMG, as shown in Figure 2.1-6. This prior knowledge will be used in developing the

EMG detection method.
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Figure 2.1-5: Muscle activity onset detection result for clinical EMG signal (from Rasool [50])

Figure 2.1-6: Schematic representation of a typical sEMG power spectrum (from Day [10])
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Figure 2.1-7: Schematic of electric stimuli (the actual shape of the stimulus may look di↵erent.)

2.1.2 EMG signal Resulting from Electro-stimulation: Motor Evoked Po-

tentials

The EMG signal obtained from patients with SCI in rehabilitation training is di↵erent from the

EMG signal of normal healthy spinal cords undergoing the same motions, although the fundamental

physiology is similar. Recall from the previous discussion, patients with complete SCI lose all

sensation and voluntary movement control below the injury level. This is because the information

pathway is blocked between the brain and the neurons of the spinal cord below the lesion. As a result,

the brain can no longer send or receive information from certain parts of body. Although certain

locomotion control, such as stepping and standing, is governed in part by the neural circuitry within

the spinal cord, this neural circuitry becomes silent after the SCI because it needs modulation

and stimulation from the brain to function properly. Electro-stimulation (ES) therapy is based

on the belief that this neural circuitry is intact and can resume working if given proper electrical

stimulation and rehabilitation training due to plasticity of the neurons of the spinal cord. Specifically,

an electrode array was implanted over the spinal cord segments to stimulate the spinal cord neurons.

The electric signal can be thought of as a spike train, similar to the action potential train found in

neurons. Figure 2.1-7 gives a schematic of the electric stimuli. The actual shape of one stimulus,

though it may di↵er from the drawing, is a biphasic waveform. Each stimulus is a very short pulse,

and it is repetitive with a given frequency. Many parameters associated with the stimulation can be

adjusted, such as the pulse width �, the frequency 1/T , the amplitude A, the electrodes configuration,

and electrode polarity (shown in Figure 1.2-2).

To provide some biology background in the following discussion, electric signaling in neurons is

first explained.
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Figure 2.1-8: The membrane potential of a cell results from a di↵erence in the net electric charge on
either side of its membrane. When a neuron is at rest, there is an excess of positive charge outside
the cell and an excess of negative charge inside it. (from Kandel [26])

2.1.2.1 Signaling in Neurons

At rest, all cells, including neurons, maintain a di↵erence in the electric potential across the cell

membrane. This is called the resting membrane potential. At rest, there are more negative charges at

the cytoplasmic side, while there are more positive charges at the extracellular side (See Figure 2.1-8).

By default, the membrane potential is defined as the di↵erence obtained by subtracting extracellular

potential from cytoplasmic potential. Hence, the resting membrane potential is a negative value

(typical value for neurons is �65mV, typical value for muscle cells is �90mV) [26].

Excitable cells, such as neurons and muscle cells, di↵er from other cells in that their membrane

potentials can be significantly and quickly altered; this change can serve as a signaling mechanism.

The change in the membrane potential can be either a decrease or increase from the resting potential.

The resting membrane potential provides the baseline: a reduction in membrane potential is called

depolarization. Because depolarization enhances a cell’s ability to generate an action potential, it is

excitatory ; an increase in membrane potential is called hyperpolarization. Hyperpolarization makes

a cell less likely to generate an action potential and is therefore inhibitory. There are typically four

components associated with the electric signaling in neurons and muscle cells. The four components

in the list below are only an abstraction of the four functionality. Di↵erent cells have di↵erent

structures and mechanisms. Figure 2.1-9 show an example of the signaling in a sensory neuron.
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Figure 2.1-9: A sensory neuron transforms a physical stimulus (a stretch in this example) into electric
signals in the neuron. Each of the neuron’s four signaling components produces a characteristic
signal. (from Kandel [26])

Input : Input component produces graded local signals. This signal passively propagates to

other parts of the cell.

Trigger : Trigger component takes consideration of all input signals, and then makes the deci-

sion whether or not to generate action potentials.

Conduction : Conductive component actively propagates the action potentials down to the

other parts of the cells. Active propagation means the amplitude of the action potentials doesn’t

diminish over time or distance.

Output : Output component passes the action potentials to other neurons or muscle cells. A

synapse is a structure that permits a neuron to pass an electrical or chemical signal to another

cell (a neuron or muscle cell).

There are 3 main functional groups of neurons in the spinal cord[26]:

Sensory neurons : carry information from the body’s periphery into the nervous system for

the purpose of perception and motor coordination.

Motor neurons : carry commands from the brain or the spinal cord to muscles and glands.

Interneurons : constitute by far the largest class, consisting of all nerve cells that are not

sensory or motor neurons. They form complex neural network that enable complicated logic and

decision making.
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Figure 2.1-10: The knee jerk is an example of a monosynaptic reflex system, a simple behavior
controlled by direct connections between sensory and motor neurons. (from Kandel [26])

There are 2 types of neural circuitry in the spinal cord [26]:

Monosynaptic circuits : the sensory neurons and motor neurons executing the action are

directly connected to one another, with no interneuron intervening between them.

Polysynaptic circuits : include one or more sets of interneurons; are more amenable to mod-

ifications by the brain’s higher processing centers.

Figure 2.1-10 shows the reflex mechanism of knee jerk. In this example, The extensor motor

neuron is connected directly to the sensory neuron, thereby forming a monosynaptic circuit. It

becomes active when sensory neuron is active. On the other hand, the flexor motor neuron is

connected to the sensory neuron via an inhibitory interneuron, thereby forming a polysynaptic circuit.

As a result of the inhibitory interneuron, the flexor motor neuron becomes inhibited (or inactive)

when the sensory neuron is active. Overall, the extensor and the flexor motor neurons are coordinated

by interneurons.
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2.1.2.2 Motor Evoked Potential

Now let’s come back to the EMG signal generated from patients with SCI under electrical stimula-

tion. What happens to the neurons in the spinal cord under electrical stimulation is still an ongoing

research. Here, only the fundamentals are introduced.

From previous discussion, it is shown that the action potentials in neurons can be generated when

the membrane potential of the trigger zone or axon of a neuron depolarize to a certain threshold.

The external electric field can a↵ect di↵erent parts of the neurons in order to drive action potentials.

Here let’s focus the discussion on axons, as this is described in [26]. Again, this is only a postulate.

At the presence of the external electric field, the current needs to pass through the cell membrane

in order to drive a cell to threshold. In the vicinity of the positive electrode, current flows across the

membrane into the axon. It then flows along the axoplasmic core, eventually flowing out through

more distant regions of axonal membrane to the negative electrode in the extracellular fluids. Not

all currents pass through the cell membranes; in fact, a lot more of the stimulating current move

instead through the low-resistance pathway provided by the extracellular fluid. The axons with

lower axial resistance to the flow of longitudinal current can pass more currents, and as a result can

depolarize more e�ciently. Normally, axons with larger diameters have lower axial resistance. If an

axon depolarizes beyond threshold, it will then fire and propagate action potentials. This resulting

action potential is called compound action potential.

If the external electric field directly excites a motor neuron (e.g., by depolarizing its axon), then

the motor neuron fires an action potential and propagates it down to its muscle fibers. The result

is one MUAP. I borrow the terminology from reflex physiology and call it a monosynaptic MUAP.

If the external electric field indirectly excites a motor neuron, either by exciting its presynaptic

interneurons (the interneurons that transmit signals to this motor neuron), or by modulating the

presynaptic input signals from sensory neurons, then the motor neuron also fires an action potential

and results an MUAP. I call it a polysynaptic MUAP.

Usually, the external electric field directly excites more than one motor neuron. All excited motor

neurons will approximately fire action potentials synchronously (synchronized with the electrical

stimuli). This is the key di↵erence between the EMG signal from patients with SCI under electrical

stimulation and the generic EMG signal. In a healthy spinal cord, when multiple motor units are

recruited, they fire action potentials asynchronously because each motor neuron is modulated via

its own complex neural circuitry formed by a large number of interneurons. Regarding the EMG

signal that resulted from the electrical stimulation, because of the synchrony, all of the monosynaptic

MUAPs from multiple motor units overlap with each other, and produce one large response, which

I call the monosynaptic response.

The indirect excitation of a motor neuron is harder than direct excitation, because when a motor



25

neuron is excited via all the synapses from all presynaptic interneurons, there need to be enough

interneurons, and all the interneurons need to be coordinated properly. For example, normally,

when a motor neuron is excited, its excitatory presynaptic interneuron needs to be active while its

inhibitory presynaptic interneuron needs to be inactive. If both the inhibitory and excitatory in-

terneurons are active, the motor neuron won’t be excited. In the case of external electric stimulation,

it’s typically hard to coordinate this kind of activity among the interneurons. This is why various

configurations of electrodes and di↵erent parameters of the stimuli are chosen in order to achieve

certain neural activity within the spinal cord. The overlapping response from all the polysynaptic

MUAPs is called a polysynaptic response, and is much weaker than the monosynaptic response, since

much fewer motor neurons are indirectly excited. Because of the complex neural pathway between

the origin of the compound action potential to the motor neuron, a polysynaptic response arrives

later than a monosynaptic response, and is less synchronous with the electrical stimulus. Thereby,

a monosynaptic response is also sometimes referred to as an early response; a polysynaptic response

is referred to as a late response.

Collectively, both the monosynaptic response and the polysynaptic response are called the Motor

Evoked Potential (MEP). A MUAP is no longer a proper term in the EMG signal in this thesis, as

both monosynaptic and polysynaptic responses are somehow synchronized to the external electric

stimuli, and there is hardly an individual MUAP in the resulting EMG signal. In this thesis,

MEP refers specifically to the compound response from the patients with SCI under the electrical

stimulation. Figure 1.3-2 gives an example of both an early response and a late response after one

electrical stimulus (the stimulus is at the beginning of the plotted signal). As you can see from the

example, the early (monosynaptic) response is much stronger than the late (polysynaptic) response.

2.2 Characteristics of MEPs and Challenges of Processing

Them

The first part of this section shows some of the major characteristics of the EMG signal with example

figures. With the physiology background discussed above, the readers can have a deep understanding

of the characteristics. Next, the challenges arising from these characteristics will be listed, along

with the major insu�ciencies of some prior work.

2.2.1 Characteristics of MEPs

The biggest challenge is the randomness of the MEPs. The parameters of a MEP are not determin-

istic, and must be modeled by random variables. The actual probability model and its parameters
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Figure 2.2-1: Example EMG signal containing MEPs with low SNR (marked by red circles). (The
example EMG signal is from the muscle of left medial gastrocnemius while the patient is lying in
supine position under EES.)

are also unknown, which makes the problem even harder.

Figure 2.2-1 shows that the arrival times of the MEPs are random. The MEPs in the red circles

are polysynaptic ones (the weak ones), while the rest are monosynaptic ones (the strong ones). The

arrival times of the monosynaptic MEPs, although still random, show certain regular pattern, so a

reasonably good probability model can be su�cient. However, the arrival times of the polysynaptic

MEPs have limited pattern, and a proper probability model is therefore hard to determine. As

pointed in the physiology section of this chapter, the arrival time of a MEP depends on many

di↵erent factors, such as the conduction of the motor neuron axons, the detection location relative

to the neuromuscular junctions, and the overall conduction speed of the muscle fibers. Moreover,

in the case of polysynaptic MEPs, the neural pathway between the source of the compound action

potential and the excited motor neuron is very complex and totally unpredictable.

Figure 2.2-2 shows di↵erent waveforms of the MEPs from di↵erent muscles of one training session.

Figure 2.2-3 shows di↵erent waveforms of the MEPs from one single muscle of one training session.

The two figures show that the durations and the shapes of the MEPs vary a lot. The lack of

information on the structure of a signal leads to great di�culty in processing it. Later in this section,

this di�culty will be elaborated within the context of prior work. There are many di↵erent factors

contributing to the varying shapes of the MEPs. As shown in the physiology section, every MUAP

consists of multiple MFAPs. MUAP waveforms vary in shape due to variations in the delays of the

MFAPs, and the number of muscle fibers that fire. In addition, there is a lot of substances between

the muscle fibers and the detection site, including a layer of fat tissues and skin. All these substances
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Figure 2.2-2: Examples of MEP waveforms from di↵erent muscles of one patient under one reha-
bilitation session. The muscle from which each MEP waveform is from is shown in its short name
on the upper right corner of each subplot. For the full names of the muscles, refer to Appendix A.
(The example EMG signal is from various muscles while the patient is lying in supine position under
EES.)

degrade the MUAPs significantly. The configuration of the electrodes can also alter the waveform

in an unpredictable way. Totally, the shapes of the resulting MUAPs are completely random and

unpredictable. Moreover, an MEP is a superposition of multiple MUAPs. In the rehabilitation

training with electrical stimulation, the spinal cord is damaged, and hence there is little to know

about how many motor neurons are excited and which they are. This further adds to the complexity

of the shapes of the MEPs. The polysynaptic MEPs have a even less regular structure than the

monosynaptic ones, because the complex neural pathway results in a complicated, asynchronous

overlapping of the MUAPs. The only common feature from all the MEPs is that they all contain

multiple transient peaks, although the shapes of the peaks, such as the widths and heights, are still

random. Also the number of peaks within one MEP is unknown.

Figure 2.2-1 and Figure 2.2-4 show that the polysynaptic MEPs have an extremely low signal-

noise ratio (SNR). This is another major di↵erence between MEPs found in the electro-stimulation

induced EMG signal and the MUAPs found in the generic EMG signal. Due to the spinal cord

injury, lots of the neurons in the spinal cord below the lesion are inactive. A lot less motor neurons

can fire from the excitation of their presynaptic interneurons. As a result, the polysynaptic MEPs

are very weak.

The last characteristic of the EMG signal is shown in Figure 2.2-5. As commonly seen in the

recording of any electrical signals, the EMG signal su↵ers from the baseline fluctuation.
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Figure 2.2-3: Examples of MEP waveforms from the same muscle. (The example EMG signal is from
the muscle of left medial gastrocnemius while the patient is lying in supine position under EES.)

Figure 2.2-4: Examples of MEP waveforms with low SNR. (The example EMG signal is from the
muscle of left medial gastrocnemius while the patient is lying in supine position under EES.)
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Figure 2.2-5: Examples of the baseline fluctuation in the EMG signal. The baseline deviates from
0 (marked by a dashed horizontal line), and changes slowly over time. (The example EMG signal
is from the muscle of left medial gastrocnemius while the patient is lying in supine position under
EES.)

All the previous discussion is limited to the variations of the MEPs within one person from one

training session. In practice, all the characteristics of the MEPs also vary from session to session,

and from person to person. The spinal cord is injured di↵erently in di↵erent patients. The strength

of the muscles also varies a lot among individuals. Finally, in every training session, the EMG

electrodes are placed by practitioners manually, resulting in di↵erent detection sites. The location

of the detection site also has an impact on the shapes of the MEPs.

2.2.2 Challenges of Processing MEPs

Detailed literature reviews are given within Chapter 3 and Chapter 4. A brief introduction to the

prior work is presented here as a context for the discussion of the challenges in the EMG processing.

Traditionally, the detection of signals in a noisy observation is formulated as a binary hypothesis

testing problem in the detection theory. When the probability models of the signal and the noise are

fully known, an optimal detector with constant false-alarm rate can be formulated as a likelihood

ratio test according to Neyman-Pearson Theorem [28]. Please refer to Section 2.3 for an overview of

the binary hypothesis testing problem and the likelihood ratio test. For example, when the shape of

the signal is completely known, then a matched filter gives the optimal detection performance [28].

Normally, a matched filter is used to give the upper bound on the detection performance. On the
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contrary, if there is absolutely nothing known about the signal, then an energy detector gives the

optimal detection performance [28]. An energy detector normally serves as the lower bound when

evaluating a detector. When certain parameters in the model of either the signal or the noise are

unknown, then a generalized likelihood ratio test can be formulated with the parameters being their

maximum likelihood (ML) estimates [28]. The shapes of the MEPs are unknown, so a matched filter

cannot be applied directly. The use of an energy detector is insu�cient because it doesn’t use the

structure of the MEPs at all and hence gives the worst detection performance. The idea is to find a

certain representation of the EMG signal, such that the feature or structure of the MEP is exposed

in that representation. Then a binary hypothesis testing problem can be formulated in the new

representation.

Many di↵erent representations have been proposed in the field of transient detection. In particu-

lar, the wavelet transform is proven to be successful for a variety of signals. Wavelet transform gives

the local feature of a signal rather than a global feature. So it naturally works well on a transient

signal. In addition, Wavelet transform can expose features at di↵erent levels by specifying di↵erent

scale values. Some prior work on the transient-signal detection with wavelet transform includes [21],

in which the signal is assumed to have a known shape, but unknown arrival time and scaling. In [19],

the signal is unknown, but its bandwidth and time-bandwidth-product are assumed to be known.

The methods in the prior work are either insu�cient because of the strong constraints made on the

signal model, or not applicable to the case of peak detection.

The methodology proposed in Chapter 3 combines detection theory with wavelet transform. As

a result, a brief review of some background knowledge in the detection theory and wavelet transform

is given in Section 2.3 and Section 2.4, respectively.

2.3 Classical Detection Theory

The first task to address in this thesis is to detect the transient muscle responses (more specifically,

the MEP peaks). The detection of the signal corrupted by noise is studied in the detection theory. In

classical detection theory, the detection of the signal out of noise is formulated as a binary hypothesis

testing problem, so I will first review the binary hypothesis testing problem, and I will introduce

the fundamental theorem for solving it: the Neyman-Pearson Theorem. The theorem introduced a

detection scheme called likelihood ratio test that gives an optimal detector given the full probability

models of the signal and the noise. In the proposed detection method, a generalized likelihood ratio

test is used to tackle the problem of unknown parameters in the signal model.

In Chapter 3, the proposed detector is compared against other detectors in the literature. As

a result, a review of the performance metrics of binary detection is presented in Section 2.3.2.

There are many di↵erent evaluation metrics in di↵erent applications. This thesis uses two statistics
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called recall and precision, which are widely used in the field of pattern recognition and machine

learning. These two statistics are chosen because they give the most important information about the

detection performance in this application: detection of transient MEP peaks from an EMG signal.

Basically, from recall one can tell how many MEP peaks are detected among all the true MEP peaks,

and precision shows how many detected peaks are true MEP peaks. Recall is important because a

practical detector sometimes misses a true signal, and precision is important as any practical detector

sometimes detects noise as a signal. Other statistics are either equivalent to recall or precision, or

less important to the task.

2.3.1 Binary Hypothesis Testing and Neyman-Pearson Theorem

In classical detection theory, a signal-detection problem is often formulated as a binary hypothesis

testing problem, where under the null hypothesis H0 the signal is not present, and under the alter-

native hypothesis H1 both the signal and the noise are present.

Suppose N observations x[n], n = 0, 1, · · · , N � 1, are generated depending on the hypothesis:

H0 : x[n] = w[n] w[n] ⇠ N (0,�2) i.i.d. (2.3.1.1a)

H1 : x[n] = s[n] + w[n] w[n] ⇠ N (0,�2) i.i.d. (2.3.1.1b)

where x[n] represents a noisy observation at a discrete time n, s[n] is the transient signal to be

detected and w[n] is the background white noise.

A binary detector maps the observation into eitherH0 orH1. If I use notation P (H
i

;H
j

) to represent

the probability of deciding H
i

when H
j

is true, then there are four probability associated with a

given binary detector.

• P (H0;H0) = probability of correct non-detection

• P (H0;H1) = probability of missed detection = P
M

• P (H1;H0) = probability of false alarm = P
FA

• P (H1;H1) = probability of detection = P
D

When the full knowledge of the statistics of the signal s[n] and the noise w[n] is given, then an

optimal detector exists according to Neyman-Pearson Theorem:

Theorem 1 (Neyman-Pearson Theorem) To maximize P
D

for a given P
FA

= ↵, decide H1 if:

L(x)
def
=

p(x;H1)

p(x;H0)
> � (2.3.1.2)
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where the threshold � is found from:

P
FA

=

Z

{x:L(x)>�}
p(x;H0)dx = ↵ (2.3.1.3)

The Eq. (2.3.1.2) is called likelihood-ratio test (LRT), because the left-hand side L(x) is the ratio

of the data likelihood under H1 over H0. The detector given by the Neyman-Pearson Theorem is

also referred to as the Constant False Alarm Rate (CFAR) detection, as the detector maintains a

constant P
FA

.

The Neyman-Pearson theorem can be applied when the statistics of the signal s[n] and the noise

w[n] are fully known, so that the likelihood ratio can be analytically derived. When the statistics

of the signal s[n] are not completely known, then the generalized likelihood ratio test (GLRT) can

be formulated as follows.

Suppose the statistics of the signal s[n] depends on the parameter vector ✓, then the likelihood ratio

is:

L(x)
def
=

p(x; ✓̂,H1)

p(x;H0)
> � (2.3.1.4)

where ✓̂ is the maximum likelihood (ML) estimate of ✓:

✓̂ = argmax
✓

p(x;✓,H1) (2.3.1.5)

Two classical detectors will be derived based on Neyman-Pearson theorem. The first one is

called matched filter, which is derived when the signal is fully known. The other one is called energy

detector, which is derived when nothing is known about the signal. As a result, matched filter is

normally considered as an upper bound of the detection performance of any given detector, while

energy detector is used as a lower bound.

In both cases, assume there are N observations x[n], n = 0, 1, · · · , N � 1, with noise, w[n], being

white gaussian noise with variance �2.
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2.3.1.1 Matched Filter

When the signal s[n] is deterministic:

p(x;H1) =
1

(2⇡�)N/2
exp

h

� 1

2�2

N�1
X

n=0

(x[n]� s[n])2
i

(2.3.1.6)

p(x;H1) =
1

(2⇡�)N/2
exp

h

� 1

2�2

N�1
X

n=0

x2[n]
i

(2.3.1.7)

Therefore:

L(x) = exp
h

� 1

2�2

⇣

N�1
X

n=0

(x[n]� s[n])2 �
N�1
X

n=0

x2[n]
⌘i

> � (2.3.1.8)

Take the logarithm on both sides and simple steps yield the log likelihood ratio test:

ln(L(x)) =
1

�2

N�1
X

n=0

x[n]s[n]� 1

2�2

N�1
X

n=0

s2[n] > ln �

Since s[n] is known:

T (x)
def
=

N�1
X

n=0

x[n]s[n] > �2 ln � +
1

2

N�1
X

n=0

s2[n]
def
= �0

Or:

T (x) =
N�1
X

n=0

x[n]s[n] > �0 (2.3.1.9)

T (x) is called the test statistic, as used in statistical hypothesis testing. The test statistic in

Eq. (2.3.1.9) is obtained by correlating a known signal, or template, with the observation, and

is therefore called the matched filter. It is also sometimes referred to as the replica-correlator.

2.3.1.2 Energy Detector

When nothing is known about the signal s[n], the parameter ✓ as in the generalized likelihood ratio

test is the signal itself, ✓ = s. As a result:
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ŝ = argmax
s

p(x; s,H1)

= argmax
s

1

(2⇡�)N/2
exp

h

� 1

2�2

N�1
X

n=0

(x[n]� s[n])2
i

= x

It follows:

p(x; ŝ,H1) =
1

(2⇡�)N/2
(2.3.1.10)

p(x;H0) is the same as in Eq. (2.3.1.7). The generalized likelihood ratio test follows:

L(x) = exp
h 1

2�2

N�1
X

n=0

x2[n]
i

> � (2.3.1.11)

Take the logarithm on both sides and simple steps yield the log likelihood ratio test:

ln(L(x)) =
1

2�2

N�1
X

n=0

x2[n] > ln(�)

T (x)
def
=

N�1
X

n=0

x2[n] > 2�2 ln �
def
= �0

Or:

T (x) =
N�1
X

n=0

x2[n] > �0 (2.3.1.12)

The test statistic T (x) in Eq. (2.3.1.12) is obtained from the energy of the observation x[n], and is

therefore called the energy detector.

2.3.2 Performance Metrics of Binary Detection

The detector of a binary hypothesis testing problem is also sometimes called a binary classifier or

predictor. There are many di↵erent metrics that can be used to measure the performance of a binary

classifier. Di↵erent metrics are used in di↵erent fields due to di↵erent goals. Sometimes, the same

metrics are given di↵erent names in di↵erent applications. This section first gives a general overview

of the fundamental metrics. After that, some of the metrics that are used throughout the thesis are

highlighted.

In Eq. (2.3.1.1), the observation in which a signal is absent (e.g., null hypothesis H0 is true), is
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often called a negative; while the observation in which a signal is present (e.g., alternative hypothesis

H1 is true) is often called a positive. The detector classifies the observation as either from the

null hypothesis H0 or the alternative hypothesis H1. To evaluate the detector, one compares the

classification results to the ground truth and cross tabulates the data into a 2x2 contingency table

or confusion matrix [54].

H0 true H1 true

predict H1 False Positive True Positive

predict H0 True Negative False Negative

Table 2.1: Confusion matrix of a binary classifier

One can then evaluate the detector by counting the following 4 numbers:

• FP: number of false positives

• TP: number of true positives

• TN: number of true negatives

• FN: number of false negatives

There are 8 possible ways to evaluate the detection performance by dividing each number by its

row sum and column sum. However, only 4 of them are independent. The other 4 are just their

ones’ complements.

In the field of detection theory [28], following two statistics are often used:

• Detection rate: TP

TP+FN

, the percentage of true positives that are labeled as positives.

• False alarm rate: FP

FP+TN

, the percentage of true negatives that are labeled positives.

Ideally, the detection rate should be 1, while the false alarm rate is 0. For a practical detector,

there is always a trade-o↵ between the detection rate and the false alarm rate. To compare two

di↵erent detectors, normally people draw the Receiver Operating Characteristic (ROC) [28]. The

ROC plot illustrates the performance of a binary classifier system as its discrimination threshold

is varied. The curve is created by plotting detection rate against the false-alarm rate at various

threshold settings.

In the field of pattern recognition or machine learning, two statistics are mostly often used:

• Recall: TP

TP+FN

, the percentage of true positives that are labeled as positives.

• Precision: TP

TP+FP

, the percentage of labeled positives that are true positives.
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Recall is equivalent to detection rate in the detection theory. Ideally, both recall and precision

are 1. In practice, there is always a trade-o↵ between precision and recall: increasing recall normally

decreases precision and vice versa. By choosing a good detector, one can achieve both high recall

and precision. One can plot recall vs. precision, a plot similar to the ROC.

When precision and recall are used to quantify the performance of a classifier, it’s hard to compare

the performance of two di↵erent classifiers, since one classifier could have higher recall but lower

precision. To compare the overall performance by incorporating both recall and precision, people

commonly use the F-score. The traditional F-measure or balanced F-score (F1 score) is the harmonic

mean of the precision and the recall:

F1
def
= 2 · precision · recall

precision+ recall
(2.3.2.1)

The general formula for positive real � is:

F
�

def
= (1 + �2) · precision · recall

�2 · precision+ recall
(2.3.2.2)

By choosing di↵erent values of �, the F-score puts di↵erent weights on precision and recall: a larger

� means more emphasis on recall while a smaller � means more emphasis on precision.

There are many other statistics defined for other applications. Usually they are either equivalent

to each other, or you can find one from the other (e.g., Sum of the two is 1). For a complete list of

all the statistics, please refer to [54].

2.4 Wavelet Transform

The detection of a transient signal with unknown arrival time, unknown duration, unknown shape

is di�cult to solve, and there is no universal optimal detectors. A lot of transient detection work ex-

plored di↵erent models, transformation, or representation of the signal in order to expose its innate,

distinct structure. A proper representation of the signals that takes advantage of the prior knowl-

edge about the structure of the signals normally yields better detection performance [20, 49, 18].

The use of wavelet transform as a multi-resolution decomposition technique in the field of transient

detection has been proven successful [19, 21, 33]. The continuous wavelet transform is used by the

proposed detection methodology in Chapter 3, and therefore reviewed here. In particular, the fre-

quency properties of the wavelets are derived, because the choice of scales in the proposed detector

depends on them, and will be discussed in details in Section 3.3.2 of Chapter 3.
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Figure 2.4-1: Mexican Hat Wavelets at di↵erent scales. Mexican Hat mother wavelet is defined by
Eq. (3.3.1.1)

2.4.1 Mother Wavelet and Wavelets

A mother wavelet  (t) has the following two properties:

Z +1

�1

�

� (t)
�

�

2
dt = 1 (2.4.1.1a)

Z +1

�1
 (t)dt = 0 (2.4.1.1b)

For a mother wavelet:  (t), the wavelet with scale s and translation u is:

 
s,u

(t) =
1p
s
 (

t� u

s
) (2.4.1.2)

Eq. (2.4.1.2) indicates that the wavelet becomes wider (has larger support) as scale s increases, and

narrower (smaller support) as scale s decreases (see Fig. 2.4-1).

You can easily prove that all wavelets satisfy the properties of mother wavelet as in Eq. (2.4.1.1):

Z +1

�1

�

� 
s,u

(t)
�

�

2
dt = 1 (2.4.1.3a)

Z +1

�1
 
s,u

(t)dt = 0 (2.4.1.3b)
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2.4.2 Continuous Wavelet Transform

The continuous wavelet transform (CWT) of a function x(t) is defined as:

X(s, u)
def
=

Z +1

�1
x(t) ̄

s,u

(t)dt (2.4.2.1)

where  ̄
s,u

(t) is the complex conjugate of the wavelet  
s,u

(t).

From the definition, the wavelet transform gives the inner product between the function x(t) and

wavelet  
s,u

(t). Since  
s,u

(t) is only non-vanishing in the neighborhood of u, X(s, u) gives the local

information of x(t) around u. Furthermore, X(s, u) measures the resemblance between function x(t)

around u and  
s

(t), the mother wavelet scaled by s,

 
s

(t)
def
=  

s,0(t) =
1p
s
 (

t

s
) (2.4.2.2)

From Eq. (2.4.1.2) and Eq. (2.4.2.2), the follow equation can be derived:

 
s,u

(t) =  
s

(t� u)

Using  
s

(t) instead of  
s,u

(t), Eq. (2.4.2.1) can be rewritten as (by substituting t with t+ u):

X(s, u) =

Z +1

�1
x(t+ u) ̄

s

(t)dt (2.4.2.3)

Here is another way to view the CWT when the mother wavelet is a symmetric, real-valued function.

X(s, u) =

Z +1

�1
x(t) 

s,u

(t)dt

=

Z +1

�1
x(t) 

s

(t� u)dt

=

Z +1

�1
x(t) 

s

(u� t)dt

= (x ⇤  
s

)(u) (2.4.2.4)

From Eq. (2.4.2.4), CWT can also be viewed as a convolution between the function x(t) and scaled

mother wavelet  
s

(t), when the mother wavelet is a symmetric, real-valued function.

2.4.3 CWT on Discrete-time Signals

When implementing CWT on a computer, one need to adapt above equations to their discrete

versions. When performing the continuous wavelet transform to discrete-time signals, both signal

x(t) and wavelets  
s,u

(t) become their sampled versions x[n] and  
s,k

[n], respectively, for n 2 (Z),
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k 2 (Z).

Define:

 
s

[n]
def
=  

s,0[n] (2.4.3.1)

which is the scaled version of the discrete-time mother wavelet. Eq. (2.4.2.1) and Eq. (2.4.2.3)

become:

X
s

[k] =
+1
X

n=�1
x[n] ̄

s,k

[n] (2.4.3.2)

=
+1
X

n=�1
x[n+ k] ̄

s

[n] (2.4.3.3)

For real-valued, symmetric wavelets, Eq. (2.4.2.4) becomes:

X
s

[k] =
+1
X

n=�1
x[n] 

s

[k � n] = (x ⇤  
s

)[k] (2.4.3.4)

In all equations above, scale s can still be an arbitrary, positive real number.

2.4.4 Frequency-domain Properties of Wavelets

Suppose the Fourier transform of  (t) is  ̂(!), and the Fourier Transform of  
s,u

(t) is  ̂
s,u

(!):

 (t)
F�!  ̂(!)

 
s,u

(t)
F�!  ̂

s,u

(!)

where F is the Fourier transform.

From Eq. (2.4.1.2):

 ̂
s,u

(!) =
p
s ̂(s!)e�i2⇡u! (2.4.4.1)

The mother wavelet  (t) is essentially a band-pass filter that is centered at C
 

, and has the band-

width of BW
 

From Eq. (2.4.4.1):

C
 

(s)
def
= center frequency of wavelet  

s,u

(t)

=
1

s
C
 

(2.4.4.2a)

BW
 

(s)
def
= bandwidth of the wavelet  

s,u

(t)

=
1

s
BW

 

(2.4.4.2b)
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Figure 2.4-2: Discrete-time Fourier Transform of Mexican Hat Wavelets at di↵erent scales

Therefore, every wavelet at scale s is again a band-pass filter, although with a di↵erent center

frequency and bandwidth.  ̂
s,u

(!) is centered at C
 

(s) = 1
s

C
 

, and has a bandwidth of BW
 

(s) =

1
s

BW
 

. Fig. 2.4-2 shows the magnitude of the Discrete-time Fourier Transform (DTFT) of the

Mexican hat wavelets at di↵erent scales. The DTFT is periodic with period of 2⇡. For real-valued

signals, the magnitude of the DTFT is also symmetric. Hence, in Fig. 2.4-2, only the positive

frequency part of the DTFT is plotted with focus on the frequency from 0 to 1 for a better view,

since all the DTFTs vanish quickly beyond 1. In addition, the frequency shown in the DTFT is in

units of radians, rather than Hz. If one wants to interpret the DTFT in Hz, one needs to incorporate

the sampling rate of the signal.


