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Abstract	

Direct	solar	energy	conversion	is	one	of	few	sustainable	energy	resources	able	to	wholly	

satisfy	global	energy	demand;	however,	utility	scale	adoption	and	reliance	are	currently	

limited	by	the	lack	of	a	cost	effective	energy	storage	technology.		The	production	of	fuel	

from	 sunlight	 (solar	 fuels)	 enables	 solar	 energy	 storage	 in	 chemical	 bonds,	 a	

volumetrically	 and	 gravimetrically	 dense	 form	 compatible	 with	 current	 infrastructure	

worldwide.	 	 Hydrogen	 production	 via	 water	 splitting	 is	 a	 first	 generation	 solar	 fuel	

targeted	 herein	 that	 is	 currently	 used	 for	 hydrocarbon	 up-grading	 and	 fertilizer	

production	 and	 could	 further	 be	 utilized	 in	 combustion	 cycles	 and/or	 fuel	 cells	 for	

electricity	and	heat	production	and	transportation.	

	

This	thesis	presents	achievements	that	form	the	foundation	for	Si	microwire	array	based	

solar	water	 splitting	 devices	 beginning	with	 a	 tandem	 junction	 device	 design	 using	 Si	

microwire	 arrays	 as	 the	 architectural	 motif	 and	 one	 of	 many	 active	 components.	 	 Si	

microwire	 arrays	 have	 potential	 advantages	 over	 two	 dimensional	 planar	 device	

architectures	such	as	minimized	resistance	losses,	lower	semiconductor	material	usage,	

and	embedment	in	a	polymeric	membrane	enabling	a	flexible	device.			

	

Experimental	fabrication	and	characterization	of	this	tandem	junction	device	design	was	

realized	in	the	form	of	a	np+-Si	microwire	array	coated	by	either	tungsten	oxide	(WO3)	or	

titanium	 dioxide	 (TiO2)	 as	 the	 second	 tandem	 semiconductor.	 	 The	 Si/TiO2	 device	
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demonstrated	the	highest	performance	with	an	expected	solar-to-hydrogen	efficiency	

of	0.39%.		To	achieve	these	demonstrations	new	processing	methods	were	needed	and	

developed	for	formation	of	the	np+-Si	microwire	array	homojunction	and	formation	of	a	

low	resistance	contact	between	the	p+-Si	and	second	semiconductor	using	sputtered	tin-

doped	indium	oxide	(ITO)	and	spray	pyrolyzed	fluorine-doped	tin	oxide	(FTO).	

	

Another	 achievement	 includes	 demonstration	 of	 the	 longest	 known	 (>2200	 hours)	

photoanode	stability	for	water	oxidation	using	a	np+-Si	microwire	array	coated	with	an	in-

house	 developed	 amorphous	 TiO2	 protection	 layer	 and	 NiCrOx	 electrocatalyst.		

Additionally,	 the	 Si	 microwire	 array	 architecture	 was	 used	 to	 enable	 decoupling	 of	

semiconductor	 light	 absorption	 and	 catalytic	 activity,	 two	 performance	 metrics	 that	

ideally	are	maximized	simultaneously.		However,	all	previous	demonstrations	have	shown	

anti-correlation	 between	 these	 performance	metrics	 because	 planar	 architectures	 are	

subject	 to	 a	 trade-off	 where	 adding	 electrocatalyst	 increases	 catalytic	 activity,	 but	

decreases	semiconductor	light	absorption	and	vice	versa.	

	

Finally,	 a	 techno-economic	 analysis	 of	 solar	 water	 splitting	 production	 facilities	 was	

performed	 to	assess	economic	 competitiveness	because	 this	 is	 the	ultimate	metric	by	

which	all	energy	production	technologies	are	currently	evaluated.		This	analysis	suggests	

that	 a	 hydrogen	 production	 facility	 that	 is	 cosmetically	 similar	 to	 current	 solar	 panel	

installations	with	hydrogen	collection	from	distributed	tilted	panels	is	unlikely	to	achieve	
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cost	competitiveness	with	fossil	fuel	derived	hydrogen	due	to	the	balance	of	systems	

costs	alone.		A	cost	of	CO2	greater	than	~$800	(ton	CO2)
-1	was	estimated	to	be	necessary	

for	 the	 least	 expensive	 base-case	 solar-to-hydrogen	 system	 to	 reach	 price	 parity	with	

hydrogen	derived	from	steam	reforming	of	methane	priced	at	$3	(MM	BTU)-1	($1.39	(kg	

H2)
-1).	 	 Direct	 CO2	 reduction	 systems	 were	 also	 explored	 and	 resulted	 in	 even	 larger	

challenges	than	hydrogen	production.		Accordingly,	major	facility	wide	breakthroughs	are	

required	to	obtain	viable	economic	costs	for	solar	hydrogen	production,	but	the	barriers	

to	achieve	cost-competitiveness	with	existing	large-scale	thermochemical	processes	for	

CO2	reduction	are	even	greater.
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1 Introduction	

1.1 The	Energy	Landscape	

The	energy	derived	from	fossil	fuels	has	enabled	the	remarkable	advancement	of	civilization	over	

the	past	century	and	a	half.		Consider	our	current	ability	to	feed,	house,	transport,	and	maintain	

the	health	of	7+	billion	people	as	compared	to	less	than	1	billion	prior	to	fossil	fuel	adoption.		The	

fundamental	characteristics	that	make	fossil	fuels	unique	are	their	abundance	and	relatively	large	

energy	surplus,	measured	as	the	quantity	of	energy	extracted	versus	the	quantity	of	energy	used	

to	perform	the	extraction.1	However,	fossil	fuels	are	finite	in	supply	and	a	source	of	increased	

atmospheric	carbon	dioxide	and	any	associated	effects,	as	well	as	geopolitically	destabilizing.2-4	

It	is	unknown	when	one	or	a	combination	of	these	effects	will	become	unacceptable	in	the	form	

of	climactic	events	and/or	social	and	political	conflict,	but	their	finite	nature	ensures	that	it	will	

in	the	absence	of	other	options.		Accordingly,	alternate	energy	sources	are	desired,	but	to	provide	

the	same	opportunity	for	a	high	quality	of	life	that	fossil	fuels	have	facilitated	they	must	possess	

similar	abundance	and	energy	surplus	characteristics	

	

Direct	conversion	of	solar	irradiation	into	electricity	or	chemical	fuels	is	one	of	two	technically	

proven	alternative	primary	energy	sources	(the	other	being	controlled	nuclear	fission)	that	has	

the	abundance	to	meet	worldwide	energy	demand	for	thousands	of	years	to	come	(debates	are	

ongoing	for	the	potential	of	wind	power).5,6	However,	the	spatial	and	temporal	(seasonal,	diurnal,	

intra-day	weather	affects,	etc.)	intermittencies	of	terrestrial	solar	irradiation,	in	general,	do	not	

match	the	spatial	and	temporal	energy	demands	of	prosperous	societies.	 	Thus,	a	method	for	
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storing	solar	energy	in	a	way	that	allows	for	on-demand	use	would	enable	higher	solar	energy	

contributions	 to	 total	 energy	 consumption.	 	 Conversion	 of	 sunlight	 into	 chemical	 fuels	 (solar	

fuels)	addresses	this	issue	by	storing	the	photon	energy	in	chemical	bonds	that	can	be	used	for	

on-demand	energy	production	identical	to	the	way	in	which	fossil	fuels	are	used	today.		To	serve	

as	a	viable	alternative	to	fossil	fuels,	solar	fuel	technology	development	must	focus	on	generating	

an	energy	surplus	comparable	to	fossil	fuels.	

	

1.2 Fundamentals	of	Solar	Fuels	

1.2.1 Photoelectrochemistry	

Photoelectrochemistry	 is	 the	 conversion	of	 electromagnetic	 radiation	 into	 chemical	 bonds	 or	

stable	excited	states	and	forms	the	foundation	for	the	solar	fuel	devices	described	herein.	This	

thesis	 is	 focused	 on	 a	 subset	 of	 photelectrochemical	 devices,	 namely	 photoelectrosynthetic	

devices	 that	 perform	 nonspontaneous	 (ΔGrxn	 >	 0)	 reactions	 effectively	 storing	 the	 energy	

contained	within	 the	 incident	electromagnetic	 radiation	 in	 the	 form	of	 chemical	bonds.7	 	 For	

example,	Equation	1.1	shows	the	water	splitting	reaction,	which	has	a	ΔG0	=	237	kJ	(mol	H2)
-1	and	

E0	=	-1.23	V	and	is	the	reaction	pursued	throughout	this	thesis.	

	 !"#	 → 	!" 	+	
1

2
#"	 	1.1	

A	 photoelectrosynthetic	 device	 consists	 of	 a	 semiconductor	 or	 set	 of	 semiconductors	 that	

generate	excited	electron-hole	pairs	via	photon	absorption	and	separate	the	excited	electron-

hole	 pairs	 such	 that	 the	 electrons	 and	 holes	 can	 be	 collected	 at	 separate	 locations.	 	 These	

photoexcited	 and	 separated	 electrons	 and	 holes	 are	 transferred	 to	 their	 respective	
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electrocatalysts	 that	 perform	 the	 desired	 reduction	 and	 oxidation	 reactions.	 Ionic	 transport	

between	 the	 reduction	 and	 oxidation	 sites	 completes	 the	 electrochemical	 circuit	 shown	

schematically	in	Figure	1.1.	

	

Figure	 1.1:	 Photoelectrosynthetic	 device	 schematic	 A	 photoelectrosythetic	 device	 schematic	

shown	performing	the	water	splitting	reaction.		Each	piece	of	this	device	is	described	in	detail	in	

the	following	sections.			

	

1.2.2 Semiconductor	Physics	

A	description	of	semiconductor	physics	relevant	to	this	thesis	is	presented	below.	The	reader	is	

directed	to	more	comprehensive	texts	for	further	specifics	and	information.8-12	

	

The	semiconductor	component	of	a	photoelectrosynthetic	device	is	responsible	for	conversion	

of	photons	into	electrical	power.		This	occurs	via	generation	of	excess	electron-hole	pairs	through	
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photon	absorption,	separation	of	the	excess	electron-hole	pairs	via	an	electrochemical	potential	

gradient,	and	collection	of	the	separated	charge	carriers	at	their	respective	contacts.	

	

1.2.2.1 Generation	

A	semiconductor	is	defined	as	a	material	that	has	a	conductivity	between	that	of	a	conductor	and	

an	insulator.		This	property	arises	due	to	the	presence	of	an	energy	bandwidth	over	which	the	

density	of	electronic	states	is	zero,	known	as	a	bandgap	(Figure	1.2).		The	lower	and	higher	energy	

bounds	of	the	bandgap	are	known	as	the	valence	and	conduction	bands,	respectively.		Insulators	

also	posses	a	bandgap,	but	differentiation	arises	from	the	size	of	the	bandgap	with	 insulators	

possessing	larger	bandgaps;	the	exact	bandgap	size	at	which	the	switch	occurs	is	not	rigorously	

defined.	
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Figure	 1.2:	 Semiconductor	 bandgap	 and	 density	 of	 states	 A	 simplified	 representation	 of	 a	

bandgap	with	 the	 valence	 (VB)	 and	 conduction	 (CB)	 bands	 labeled	 and	 the	 density	 of	 states	

depicted	on	the	right.	 	Eg	 is	the	bandgap	energy	(eV).	 	The	valence	band	electronic	states	are	

almost	completely	filled	with	electrons	(black	fill)	and	relatively	few	holes	(white	circles)	present	

due	to	thermal	excitations.		The	conduction	band	electronic	states	are	almost	completely	empty	

with	relatively	few	electrons	present	due	to	thermal	excitations.	

Photons	incident	on	a	semiconductor	that	have	an	energy	larger	than	the	bandgap	can	result	in	

absorption	and	consequent	excitation	of	an	electron	from	the	valence	band	to	the	conduction	

band,	leaving	behind	a	hole	(absence	of	an	electron)	in	the	valence	band.		This	process	is	known	

as	generation	and	creates	excess	electron-hole	pairs	(Figure	1.3).		It	is	assumed	that	the	excited	

electron	and	hole	relax	to	the	conduction	and	valence	band	edges	immediately	(thermalization)	

and	 thus	 any	 energy	 difference	 between	 the	 incident	 photon	 and	 bandgap	 is	 lost	 as	 heat.		
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Multiple	semiconductor	devices	with	differing	bandgaps	can	be	stacked	on	top	of	each	other,	

forming	a	multi-junction	device,	where	the	bandgap	of	the	devices	decreases	monotonically	from	

the	light	incident	side.		In	this	way	thermalization	losses	can	be	decreased	because	photons	of	

higher	energy	are	absorbed	in	semiconductors	of	larger	bandgap	(Figure	1.3b).			

	

Figure	1.3:	Multijunction	concept	a)	A	simplified	representation	of	a	bandgap	with	the	valence	

(VB)	and	conduction	(CB)	bands	labeled.		The	thermazliation	process	is	demonstrated	where	two	

photons	of	 differing	 energy	 create	 electron-hole	 pairs	with	 the	higher	 energy	photons	 (blue)	

excited	electron	losing	its	excess	energy	as	heat	and	relaxing	to	the	conduction	band	minimum	

energy.	 b)	 A	 schematic	 demonstrating	 the	multijunction	 concept	where	 photons	 of	 differing	

energy	 are	 absorbed	 by	 semiconductors	 with	 different	 bandgap	 energies,	 Eg,	 such	 that	

thermalization	losses	are	reduced.	
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1.2.2.2 Separation	and	Collection	

To	perform	useful	work	 these	photoexcited,	or	excess,	carriers	must	be	collected	at	separate	

locations	 and	 electrochemical	 potentials.	 	 The	 rate	 at	 which	 the	 carriers	 are	 collected	 is	

proportional	to	the	current,	the	potential	difference	between	the	collected	carriers	is	the	voltage,	

and	the	product	of	the	two	is	the	power	(P	=	IV).		An	electrochemical	potential	gradient	is	required	

to	effect	carrier	separation	and	 is	achieved	through	the	presence	of	a	 junction	and	an	excess	

carrier	concentration	from	photon	absorption.			

	

A	junction	is	formed	by	joining	two	materials	of	differing	chemical	potential	and	can	be	the	same	

material	with	different	levels	and/or	types	of	doping	(homo-junction)	or	two	different	materials	

(hetero-junction).		Here	at	least	one	material	must	be	a	semiconductor	and	the	other	can	be	a	

semiconductor,	metal,	or	liquid	with	a	redox	potential	(Figure	1.4a,b).		The	chemical	potential	of	

a	pure	and	chemically	pristine	semiconductor	at	equilibrium	(T	>	0	K)	lies	within	the	bandgap,	

defines	 the	 concentration	 of	 electrons	 and	 holes	 in	 the	 conduction	 and	 valence	 bands,	

respectively,	and	can	be	altered	by	the	presence	of	intrinsic	or	extrinsic	(doping)	defects.		These	

defects	result	 in	either	 (i)	 the	addition	of	electrons	to	the	conduction	band	and	simultaneous	

reduction	of	holes	in	the	valence	band	(law	of	mass	action),	forming	an	n-type	semiconductor,	or	

(ii)	 the	addition	of	holes	 to	 the	valence	band	and	 simultaneous	 reduction	of	electrons	 in	 the	

conduction	band	forming	a	p-type	semiconductor.	

	

Equilibrium	across	this	junction	is	represented	by	an	equal	electrochemical	potential	(aka	Fermi	

level)	everywhere	(Figure	1.4a,b).		The	initial	difference	in	chemical	potential	between	the	two	
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junction	forming	materials	is	exactly	offset	by	formation	of	an	electric	field	near	the	junction	that	

has	an	equal	and	opposite	electric	potential.		The	electric	field	is	formed	by	transfer	of	electrons	

from	the	material	of	higher	chemical	potential	to	the	material	of	lower	chemical	potential	leaving	

behind	 fixed	 positive	 charges	 in	 the	material	 of	 higher	 chemical	 potential	 and	 forming	 fixed	

negative	charges	in	the	material	of	lower	chemical	potential.		The	ratio	of	potential	drop	in	each	

material	is	related	to	the	ratio	of	capacitances;	the	lower	capacitance	material,	almost	always	the	

photoactive	semiconductor,	assumes	the	majority	of	the	potential	drop.	

	

Figure	 1.4:	 Semiconductor	 junction	 energetics	 a)	 A	 solid	 state	 semiconductor	 pn-junction	 at	

equilibrium.		The	electrochemical	potential	(EF,	Fermi	level)	is	equal	everywhere	throughout	the	

device.	 b)	 A	 semiconductor	 liquid	 junction	 at	 equilibrium	 where	 the	 semiconductor	

electrochemical	 potential	 is	 equal	 to	 the	 redox	 potential	 in	 solution.	 c)	 A	 solid	 state	

semiconductor	 pn-junction	 under	 illumination	 conditions	 where	 EF,n	 and	 EF,p	 represent	 the	
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electron	 and	 hole	 electrochemical	 potentials	 separately	 (quasi-Fermi	 levels).	 	 The	 potential	

difference	 between	 the	 two	 contacts	 determines	 the	 operating	 voltage.	 d)	 A	 semiconductor	

liquid	junction	under	illumination	where	the	electron	quasi-Fermi	level	is	level	with	the	solution	

redox	potential,	assuming	no	electrocatalytic	overpotential.	

An	excess	carrier	concentration	perturbs	the	equilibrium	electrochemical	potential	creating	two	

separate	 electrochemical	 potentials	 (quasi-Fermi	 levels),	 one	 for	 electrons	 and	 one	 for	 holes	

(Figure	1.4c,d).		This	change	in	electrochemical	potential	is	entirely	due	to	a	decrease	in	the	initial	

chemical	potential	difference,	prior	to	any	carrier	separation,	because	the	excess	electron-hole	

pairs	 formed	 act	 to	 overwhelm	 the	 equilibrium	 concentrations.	 	 In	 the	 limit	 of	 very	 high	

generation	rates,	known	as	high	level	injection,	the	concentrations	of	electrons	and	holes,	and	

thus	their	respective	chemical	potentials,	are	identical	everywhere	assuming	uniform	generation	

rates.	However,	the	electric	potential	remains	constant	and	thus	an	electrochemical	gradient	is	

formed.	

	

Given	 a	 constant	 photon	 flux,	 a	 steady-state	 concentration	 of	 excess	 electrons	 and	 holes	 is	

present	such	that	the	sum	of	the	current	collected	due	to	the	electrochemical	potential	gradient	

and	current	lost	to	recombination	equals	the	absorbed	photon	flux	(Figure	1.4c,d).		A	voltage	can	

be	 applied	 across	 the	 device	 that	 affects	 the	 portion	 of	 successful	 carrier	 separation	 and	

collection	(current)	and	deleterious	recombination.		This	is	a	non-linear	process	described	by	the	

diode	 equation	 (Equation	 1.2)	 with	 limiting	 cases	 for	 power	 production	 under	 illumination	

represented	by	the	open	circuit	voltage	(Voc)	where	no	current	flows	and	the	short	circuit	current	

density	(Jsc)	where	no	potential	difference	exists	between	the	two	contacts	(Figure	1.5).		Here	J	

is	the	current	density,	jph	is	the	light	limited	current	density,	j0	is	the	exchange	current	density,	q	
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is	the	charge	of	an	electron,	V	 is	the	voltage,	nd	is	the	diode	quality	factor,	k	is	the	Boltzmann	

constant,	and	T	is	the	temperature.	The	maximum	efficiency	the	device	can	operate	at	is	defined	

in	Equation	1.3,	where	the	denominator,	1000	W	m-2,	is	the	standardized	power	input	and	the	fill	

factor	(FF)	accounts	for	the	ratio	between	the	operating	current	density	and	voltage,	and	Jsc	and	

Voc.	
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Figure	1.5:	Illuminated	semiconductor	diode	behavior	Current	density	versus	voltage	behavior	

for	a	semiconductor	diode	under	illumination	as	described	by	the	diode	equation	(Equation	1.2)	
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with	jph	=	30	mA	cm-2,	j0	=	10
-11	mA	cm-2	and	nd	=	1.		The	Voc,	Jsc	and	FF	are	identified	where	the	

FF	is	the	ratio	of	the	areas	of	the	two	rectangles	or	the	ratio	between	the	product	of	the	maximum	

power	point	current	density	(JMP)	and	voltage	(VMP)	and	JSC	and	VOC.Applications	to	Solar	Fuels	

and	Thermodynamic	Limits	

The	operating	current	and	voltage	of	a	photovoltaic	device	can	be	chosen	at	will	over	the	entire	

devices	 current-voltage	 behavior.	 	 However,	 solar	 fuel	 device	 operation	 is	 fundamentally	

different,	as	the	operating	voltage	is	determined	by	the	reaction	thermodynamics	and	the	extra	

voltage	needed	to	drive	the	reaction	at	a	given	rate	(overpotential).		Thus	the	goal	for	solar	fuel	

devices	 is	 to	 produce	 the	 maximum	 current	 density	 (Jop)	 possible	 given	 the	 reaction	

thermodynamics	 and	 overpotentials,	 as	 evidenced	 by	 the	 Equation	 1.4,	 which	 defines	 the	

efficiency	for	a	photoelectrosynthetic	device	performing	the	water	splitting	reaction.		

	 8 = 	
1.23	: 	);,
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Chemical	biases	 in	the	form	of	operating	partial	pressure	can	be	used	to	adjust	the	operating	

point,	but	the	range	over	which	the	operating	point	can	be	modulated	is	limited.	For	example,	

using	Equation	1.5	the	thermodynamic	potential	required	for	water	splitting	can	range	from	1.23	

V	for	1	atm	of	H2(g)	and	O2(g)	to	1.36	V	for	10
3	atm	of	H2(g)	and	O2(g),	assuming	ideal	behavior	

and	no	change	in	proton/hydroxide	concentration	between	either	reaction	site.		Here,	DEF4
/ 	is	the	

reaction	standard	potential,	GHI
JKI 	and	GLI

JMI 	are	the	hydrogen	and	oxygen	activity	coefficients,	

respectively,	raised	to	the	power	of	their	respective	stoichiometric	coefficient,	n	is	the	number	

of	electrons	passed	during	the	reaction,	F	is	Faraday’s	constant,	R	is	the	gas	constant,	T	is	the	

temperature,	and	P	is	the	pressure.	
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The	 thermodynamic	 limit	 and	 experimentally	 realized	 Voc	 for	 a	 semiconductor	 junction	 is	

between	300-400	mV	and	400-500	mV,	 respectively,	 less	 than	 the	bandgap	and	 results	 from	

entropy	increase	upon	absorption	of	essentially	point	source	photons	from	the	sun	and	radiative	

emission	 of	 photons	 over	 all	 angles.13	 This	 upper	 bound	 on	 Voc	 for	 a	 single	 semiconductor	

junction,	the	voltage	requirements	for	the	reaction	of	choice	(water	splitting,	1.23	V)	and	the	

solar	 spectrum	 together	 define	 the	 optimum	 number	 of	 semiconductor	 junctions	 and	 their	

bandgaps.		

	

For	a	single	semiconductor	junction	(single	junction)	device	the	bandgap	must	be	>2.1	eV	when	

accounting	for	realistic	overpotentials.		The	thermodynamic	efficiency	limits	for	a	single	junction	

device	are	thus	17.4%	and	30.7%	(430	mV	at	the	operating	current	density)	with	and	without	

accounting	for	overpotentials,	respectively.		These	values	are	low	because	of	the	high	bandgap	

required	and	thus	the	inability	to	utilize	a	majority	of	the	solar	spectrum.14	

	

Multi-junction	devices,	 arranged	electrically	 in	 series	 to	produce	higher	voltages,	have	higher	

thermodynamic	 efficiency	 limits	 due	 to	 better	 utilization	 of	 the	 solar	 spectrum	 and	 voltage	

matching	 with	 the	 water	 splitting	 voltage	 requirements.	 	 Tandem	 junction	 devices	 split	 the	

voltage	production	requirement	between	two	junctions	with	optimized	bandgaps	of	~1.1	eV	and	

~1.7	 eV	 for	 water	 splitting	 given	 realistic	 assumptions	 on	 the	 overpotential	 needed.	 	 The	

thermodynamic	efficiency	limits	for	a	tandem	junction	device	are	thus	24%	and	43%	with	(430	

mV	at	the	operating	current	density)	and	without	accounting	for	overpotentials,	respectively.15	
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Triple	and	higher	number	junction	devices	utilize	the	solar	spectrum	better	for	each	additional	

junction,	but	their	thermodynamic	efficiency	limit	for	water	splitting	is	 lower	than	for	tandem	

junction	 devices	 because	 the	 Jsc	 decreases	 at	 the	 expense	 of	 an	 increased	 Voc,	 which	 is	 not	

needed.		Accordingly,	tandem	junction	devices	posses	the	highest	thermodynamic	efficiency	limit	

for	 solar	 water	 splitting	 and	 is	 evidenced	 by	 their	 world	 record	 efficiencies	 in	 experimental	

devices.16,17	Note	that	this	argument	only	holds	for	integrated	photoelectrosynthetic	devices;	the	

thermodynamic	efficiency	limit	does	continue	to	increase	with	junction	number	for	a	system	that	

consists	 of	 discrete	 photovoltaic	 and	 electrolysis	 devices	 separated	 by	 power	 electronics	 to	

optimize	the	operation	of	both	devices	independently.	

	

1.2.3 Catalysis	

A	description	of	heterogeneous	catalysis	relevant	to	this	thesis	is	presented	below.	The	reader	is	

directed	to	more	comprehensive	texts	for	further	specifics	and	information.18	

	

Catalysts	are	used	to	increase	the	power	conversion	efficiency	of	photoelectrosynthetic	devices	

by	 decreasing	 the	 activation	 energy	 for	 a	 given	 reaction	 pathway.	 At	 equilibrium,	 a	 catalyst	

produces	no	net	reaction	but	performs	both	the	forward	and	reverse	reactions	at	equal	rates,	

known	 as	 the	 exchange	 current	 density	 (j0,cat).	 	 In	 general,	 the	 higher	 the	 j0,cat	 the	 higher	

performance	(activity)	the	catalyst	will	demonstrate.	Under	applied	bias	(voltage)	one	reaction	

direction	proceeds	at	a	higher	rate	the	the	other	direction	and	thus	net	product	is	formed.	This	

behavior	 is	 non-linear	 with	 respect	 to	 voltage	 and	 can	 be	 described	 by	 the	 Butler-Volmer	
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equation	for	a	one	electron	process,	Equation	1.6.	Here	α	is	the	charge	transfer	coefficient	with	

subscripts	A	for	anodic	and	C	for	cathodic	reactions,	j0,cat	is	the	catalyst	exchange	current	density,	

ne	is	the	number	of	electrons	transferred	to	produce	one	molecule	of	product,	j	is	the	current	

density	(negative	(positive)	for	a	cathode	(anode)),	and	η	is	the	overpotential	define	as	η	≡	V	–	

E0rxn.	

	 ) = +/,<ON 0
YZ4[\]
^7 − 01

Y_4[\]
^7 	 1.6	

The	overpotential	is	a	measure	of	the	catalyst	efficiency	for	a	given	current	density;	the	lower	

the	overpotential	the	less	excess	voltage	that	the	semiconductor	needs	to	supply.	In	general,	the	

catalyst	 material	 is	 different	 than	 but	 in	 electrical	 contact	 with	 the	 semiconductor	 device	

component.	

	

Water	splitting	consists	of	two	half	reactions:	the	hydrogen	evolution	reaction	(Equation	1.7)	and	

oxygen	evolution	reaction	(Equation	1.8).	State-of-the-art	catalysts	for	the	hydrogen	and	oxygen	

evolution	reactions	have	overpotentials	of	40	mV	(platinum)	and	340	mV	(iridium	oxide	in	1.0	M	

H2SO4	and	NiMoFe	in	1.0	M	KOH),	respectively,	at	10	mA	cm-2,	which	is	near	the	current	density	

expected	for	devices	limited	by	the	solar	photon	flux.19	
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1.2.4 Ionic	Transport	

Ion	transport	is	the	current	carrying	component	in	liquid	systems	as	electrons	are	in	solids.	For	

water	 splitting	 in	 acidic	 media,	 protons	 are	 made	 during	 oxygen	 evolution	 and	 must	 be	
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transported	to	hydrogen	evolution	sites	for	reduction	to	hydrogen;	in	basic	media	hydroxide	ions	

formed	during	hydrogen	evolution	must	be	transported	to	oxygen	evolution	sites.		

	

At	steady-state	the	transference	number	(the	ratio	of	current	carried	by	protons	and	hydroxide	

ions	to	total	current)	is	by	definition	unity.	Thus,	as	the	proton	or	hydroxide	ion	concentration	

decreases	 the	excess	 voltage	 required	 to	 support	 the	 same	 ionic	 transport	 rate	 (current)	will	

increase	due	to	solution	resistance.	Putting	an	upper	limit	on	the	acceptable	voltage	loss	due	to	

solution	transport	of	100	mV	at	10	mA	cm-2	dictates	that	the	solution	pH	must	be	greater	than	

13	or	less	than	1.20	

	

A	common	method	of	increasing	the	solution	conductivity	is	by	adding	a	supporting	electrolyte.	

However,	 during	 initial,	 unsteady	 state	 operation	 the	 transference	 number	 of	 protons	 and	

hydroxide	 ions	 is	not	unity.	 Instead	current	 is	 also	 carried	by	 the	 supporting	electrolyte	 ions,	

which	 leads	 to	 electrodialysis	 of	 the	 supporting	 electrolyte	 and	 a	 proton	 or	 hydroxide	 ion	

concentration	 gradient	 creating	 large	 internal	 solution	 resistances.20,21	 Nature	 has	 this	 same	

problem,	but	is	able	to	use	the	potential	created	by	the	concentration	gradients	to	perform	useful	

functions	in	the	dark;	no	such	analog	has	been	developed	for	solar	fuel	devices.	

	

Solution	agitation	and	turbulence	can	suppress	some	of	the	electrodialysis	related	resistances,	

but	a	boundary	layer	exists	at	each	electrode	that	will	still	contain	these	concentration	gradients.	

At	solar	flux	current	densities	these	potential	losses	do	not	allow	extension	of	the	pH	operating	

range	given	above.20	
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1.2.5 Product	Separation	

Maintaining	 separation	 of	 oxygen	 and	 hydrogen	 is	 both	 a	 safety	 and	 overall	 plant	 efficiency	

concern.	Explosive	mixtures	of	hydrogen	and	oxygen	span	the	range	of	4%	v/v	H2	in	O2	to	5%	v/v	

O2	in	H2	and	are	not	welcomed	by	industry.		Additionally,	crossover	of	H2	or	O2	can	lead	to	losses	

in	efficiency	due	to	H2	oxidation	back	to	protons	and	O2	reduction	back	to	water	(in	acid)	and	the	

need	for	downstream	separation	units	that	require	additional	energy	to	operate.	

	

To	 achieve	 sufficient	 H2	 and	 O2	 separation	 an	 ionically	 conductive,	 yet	 low	 gas	 permeability	

membrane,	 is	 needed.20,22	 The	 permeability	 required	 is	 a	 function	 of	 the	 partial	 pressure	

difference	for	each	gas,	the	residence	time	of	each	gas	in	its	headspace,	and	the	gas	production	

rate.	Calculations	have	shown	that,	 for	a	current	density	of	10	mA	cm-2	and	H2	and	O2	partial	

pressures	of	1	atm	on	either	side	of	a	membrane,	decreasing	the	membrane	gas	permeability	of	

current	state-of-the-art	proton	exchange	membranes	(PEM),	Nafion®,	has	diminishing	returns	as	

measured	by	the	hydrogen	collection	efficiency;	this	suggests	a	10x	reduction	in	gas	permeability	

relative	to	Nafion®	is	ideal.22	Ionically	conductive	polymeric	membranes,	such	as	Nafion®,	are	the	

preferred	 materials	 that	 meet	 these	 requirements	 as	 evidenced	 by	 their	 use	 in	 commercial	

electrolysis	and	fuel	cell	devices.		Nafion®	is	a	proton	exchange	membrane	(PEM)	that	finds	heavy	

commercially	use	in	PEM	electrolysis	and	fuel	cell	devices,	but	is	only	applicable	to	acidic	systems;	

systems	 in	 basic	media	 require	 anion	 exchange	membranes	 (AEM)	which	 are	 produced	 at	 a	

smaller	 scale	or	are	 still	 under	 fundamental	 research	as	 they	generally	 lack	 the	 suite	of	 ionic	
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conductivity,	stability,	mechanical	processability,	and	low	gas	permeability	that	makes	Nafion®	

successful.	

	

1.2.6 Stability	

Operational	stability	of	all	components	is	critical	for	any	commercial	product,	especially	one	that	

is	expected	to	perform	for	20+	years.	This	requires	merging	stability	requirements	of	electrolysis	

units	which	operate	under	oxidizing	and	reducing	conditions	with	photovoltaics	which	are	sealed	

from	the	atmosphere	to	remove	oxygen	and	water	contact.	

	

1.2.7 Complete	Photoelectrode	Behavior	

A	 photoelectrochemical	 device	 is	 a	 combination	 of	 all	 the	 individual	 phenomena	 described	

above,	which	can	be	difficult	to	separate	and	understand	in	a	full	device	or	single	photoelectrode	

experiment.	 	 A	 mathematical	 description	 of	 a	 photoelectrode	 and	 its	 components	 can	

compliment	such	experiments	by	providing	insight	into	the	contribution	of	individual	phenomena	

to	the	overall	device	performance	and	 identification	of	the	performance,	 limiting	phenomena	

and	ultimately	predictive	capabilities	that	can	guide	future	experiments.	

	

An	 analytical	 expression	 that	 describes	 the	 behavior	 of	 a	 photoelectrode	 containing	 a	 single	

junction	 semiconductor	 device	 coupled	 directly	 to	 an	 electrocatalyst	 can	 be	 obtained	 by	

combining	the	analytical	expressions	in	Equations	1.2	and	1.6	that	describe	the	semiconductor	

and	electrocatalytic	device	components,	respectively.23		A	series	resistance	is	added	to	account	

for	interfacial,	material	and	solution	resistances	present	in	any	photoelectrosynthetic	device.23	
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The	series	connected	nature	of	a	photoelectrochemical	devices	electrochemical	circuit	(Figure	

1.6a)	indicates	that	the	system	voltage	is	a	linear	combination	of	the	voltage	generated	by	the	

semiconductor	device,	VPV(j),	that	used	by	the	electrocatalyst,	η(j),	and	that	used	to	overcome	

system	series	resistances,	Vseries(j),	as	shown	in	Equation	1.9.	

	 : + = 	:93 + − 	8 + −	:=aEba=(+)	 1.9	

Solving	 Equations	 1.2	 and	 1.6	 for	 voltage	 as	 a	 function	 of	 current	 density	 (j)	 for	 two	 sets	 of	

assumptions	for	the	catalyst	behavior	and	plugging	them	into	Equation	1.9	results	in	Equations	

1.10	and	1.11,	which	are	 in	 the	 form	of	 a	 three-electrode-power-saved-relative-to-an-ideally-

non-polarizable-dark-electrode	measurement.23,24	
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Here	j0,PV	denotes	the	semiconductor	device	dark	current	densty,	jL	is	the	light-induced	current	

(negative	 (positive)	 for	a	photocathode	 (photoanode)),	nd	 is	 the	diode	quality	 factor,	α	 is	 the	

charge	transfer	coefficient	with	subscripts	A	for	anodic	and	C	for	cathodic	reactions,	j0,cat	is	the	

catalyst	 exchange	 current	 density,	 ne	 is	 the	 number	 of	 electrons	 transferred,	 j	 is	 the	 current	

density	 (negative	 (positive)	 for	 a	 cathode	 (anode)),	 and	Rs	 is	 the	 total	 area-normalized	 series	

resistance.	The	Butler-Volmer	equation	 (Equation	1.6)	was	solved	 for	voltage	assuming	either	

equal	charge	transfer	coefficients	(	αA	=	αC	=	α	),	Equation	1.10,	or	Tafel	behavior	(reverse	reaction	

rate	is	negligible	as	compared	to	the	forward	reaction	rate),	Equation	1.11.		Figure	1.6b	shows	

the	 normalized	 behavior	 for	 a	 stand-alone	 photovoltaic	 device	 (Equation	 1.2)	 and	 the	
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photoelectrode	 device	 (Equation	 1.10),	 demonstrating	 the	 affect	 of	 solution	 resistance	 and	

catalytic	overpotential	on	the	device	performance	as	compared	to	a	photovoltaic.		Figure	1.6c	

demonstrates	the	analytical	solution’s	(Equation	1.10)	ability	to	reproduce	the	behavior	of	a	high	

efficiency	experimental	photoelectrode.	

	

Figure	1.6:	Analytically	modeled	photoelectrode	behavior	a)	A	general	schematic	and	equivalent	

circuit	 diagram	 depicting	 the	 photoelectrode,	 electrocatalyst,	 and	 solution	 resistance	

components	 of	 the	 power	 saved	 measurement	 relative	 to	 an	 ideally	 non-polarizable	 dark	

electrode.	 b)	Modeled	 normalized	 current	 density	 versus	 normalized	 voltage	 behavior	 of	 an	

isolated	single	junction	semiconductor	device	and	coupled	semiconductor-electrocatalyst	device.	

Equation	1.10	was	used	for	the	coupled	device	behavior,	with	jL	=	35	mA	cm-2,	j0,PV	=	5	x	10
-11	mA	

cm-2,	j0,cat	=	0.25	mA	cm-2,	ne	=	2,	nd	=	1,	α	=	0.5	and	Rs	=	0	Ω-cm
2.	c)	Experimental	and	modeled	

current	 density	 versus	 voltage	 behavior	 of	 hybrid	 InP/InOx/Rh	 semiconductor-electrocatalyst	
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device.	Note	that	 the	photocurrent	variations	of	 the	half	cell	 result	 from	hydrogen	evolution.	

Equation	1.10	was	used	to	model	the	coupled	device	with	jL	=	35	mA	cm-2,	j0,PV	=	3	x	10
-11	mA	cm-

2,	j0,cat	=	0.25	mA	cm-2,	ne	=	2,	nd	=	1	and	α	=	0.5.	Rs	was	floated	to	find	the	best	fit,	which	resulted	

in	Rs	=	0	Ω-cm
2.	

	

1.3 Solar	Fuels	History	

Solar	 fuels	 in	their	current	 form	for	the	context	of	 this	 thesis	were	first	reported	 in	1972	and	

involved	solar	water	splitting	on	a	titanium	dioxide	(TiO2)	single	crystal.
25	The	concept	consisted	

of	a	single	junction	semiconducting	solid	material	that	absorbed	incident	sunlight,	converted	the	

absorbed	photons	into	excited	charges,	and	collected	these	excited	charges	and	used	them	to	

convert	a	reactant	(water)	into	products	(hydrogen	and	oxygen)	that	could	be	used	as	an	energy	

storage	mechanism	for	solar	energy.	

	

The	past	43	years	have	seen	a	variety	of	different	materials	and	approaches	taken	for	solar	fuels	

formation	with	the	majority	of	work	focusing	on	water	splitting	to	form	hydrogen	and	oxygen.	

Semiconductor	and	electrochemical	engineering	calculations	were	performed	not	long	after	the	

initial	1972	report	to	determine	the	theoretical	and	practical	system	configurations	and	efficiency	

limits.14	 These	 calculations	 have	 been	 revisited	 recently,	 although	 the	 conclusions	 remain	

identical	to	those	published	earlier	and	have	been	described	above.15	

	

Developing	experimental	devices	that	approach	the	maximum	achievable	efficiencies	has	proven	

challenging.	Devices	possessing	 two	 solid	 state	 junctions,	 identical	 to	photovoltaic	 cells,	 have	
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record	efficiencies	of	18%,	while	systems	with	at	 least	one	solid-liquid	 junction	have	a	record	

efficiency	of	12.4%.16,26	Stability	and	discovering	a	material	with	the	proper	wide	bandgap	for	the	

tandem	 configuration	 were	 recognized	 in	 1975	 as	 the	 main	 challenges.	 	 Despite	 continued	

investigation	these	two	issues	remain	as	the	fields	major	challenges.27	Until	the	early	2000's	many	

of	the	device	reports	focused	on	achieving	ever	higher	efficiencies;	however,	a	recent	shift	has	

occurred	to	lower	efficiency	materials	with	more	potential	for	long	term	operational	stability.28-

31	The	reader	is	directed	to	a	recent	publication	for	a	more	detailed	history	of	solar	fuels.32	

	

1.4 Scientific	Gap	

The	majority	of	research	performed	on	solar	fuel	devices	has	focused	on	a	single	semiconductor	

and	catalyst	combination	for	either	the	reduction	or	oxidation	reaction	to	maintain	experimental	

simplicity	 and	 analytic	 tractability.	 	 Accordingly,	 relatively	 few	 studies	 have	 investigated	

multijunction	photoelectrodes	and	of	 those	 that	have	all	 have	been	planar	 architectures	 and	

nearly	all	have	utilized	semiconductor	devices	designed	for	the	photovoltaic	 industry	(tandem	

junction	 Si/Al0.15Ga0.85As
16,	 GaAs/GaAsP2

33,	 Ga0.35In0.65P/Ga0.83In0.17As
34;	 triple	 junction	 a-

Si33,35,36).	 	 One	 noteworthy	 exception	 is	 a	 tandem	 junction	 GaAs/GaAsP2	 planar	 device	 that	

consisted	of	a	GaAs	homojunction	and	a	GaAsP2/liquid	junction	and	holds	the	record	solar	water	

splitting	efficiency	for	a	device	with	at	least	one	liquid	junction	at	12.4%.26	However,	this	device	

was	unstable	for	less	than	24	hours	of	continuous	operation	due	to	photocorrosion	of	the	GaAsP2	

semiconductor.	
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Consequently,	a	gap	exists	for	exploring	tandem	junction	devices	designed	specificially	for	the	

solar	water	splitting	application	and	that	incorporate	the	efficiency,	stability	and	safety	metrics	

needed	to	attract	commercial	interest.		Further,	non-planar	tandem	junction	architectures	did	

not	exist	prior	to	this	thesis	and	possess	possible	technical	and	economic	advantages	over	planar	

designs.	

	

In	addition,	critical	economic	analyses	of	technically	proven,	yet	economically	unattractive	solar	

fuel	 technologies	 are	 deficient.	 	 Such	 analyses	 can	 and	 should	 guide	 resource	 allocation	 and	

research	milestones	toward	development	of	commercially	attractive	solar	fuel	generators.	

	

1.5 Thesis	Statement	

Inline	 with	 the	 knowledge	 gaps	 mentioned	 above,	 I	 hypothesize	 that	 a	 three	 dimensionally	

structured	 (silicon	 microwire	 array)	 tandem	 junction	 device,	 with	 the	 necessary	 catalyst	 and	

stabilization	 layers,	can	provide	an	optimized	design	and	operate	efficiently	and	be	 integrated	

into	 a	 system	 that	 can	 produce	 a	 solar	 fuel	 (hydrogen)	 safely,	 stably	 and	 at	 an	 economically	

competitive	value.	Accordingly,	this	thesis	focuses	on	the	design	of	and	experimental	fabrication	

and	 characterization	 efforts	 toward	 a	 complete	 Si	 microwire	 array	 tandem	 junction	 device,	

experimental	optimization	efforts	that	leverage	the	Si	microwire	array	architecture	and	focus	on	

a	subset	of	the	phenomena	present	in	a	complete	photoelectrosynthetic	device,	and	a	techno-

economic	 analysis	 of	 solar	 water	 splitting	 technologies	 aimed	 at	 understanding	 the	 current	

landscape	and	progress	required	to	achieve	economic	competitiveness.	
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2 Si	Microwire	Device	Design	and	Fabrication	

2.1 Si	Microwire	Background	

Si	microwire	arrays	have	been	studied	for	photovoltaic	and	photoelectrochemical	applications	

due	to	their	potential	advantages	over	the	planar	designs	that	dominate	these	fields.37-41	The	Si	

microwire	 architecture	 effects	 orthogonalization	 of	 the	 light	 absorption	 and	minority	 carrier	

collection	directions,	 enabling	 lower	material	usage	due	 to	 the	architecturally	enhanced	 light	

absorption39,42,	lower	purity	material	requirements	due	to	the	short	minority	carrier	collection	

lengths43,	minimized	distance	for	ionic	transport	between	the	reduction	and	oxidation	sites41,44,	

and	 robustness	 against	 single	 Si	 microwire	 point	 failure	 due	 to	 the	 parallel	 nature	 of	 each	

individual	 microwire	 device,	 all	 as	 compared	 to	 planar	 designs.17,31,43,45-47	 	 Figure	 2.1	

schematically	 demonstrates	 orthogonalization	 of	 the	 light	 absorption	 and	 minority	 carrier	

collection	directions	where	light	is	absorbed	along	the	length	of	a	microwire,	identical	to	planar	

designs,	while	minority	carriers	are	collected	over	the	much	shorter	radial	dimension.	

	
Figure	2.1:	Si	microwire	array	orthogonalization	concept	A	schematic	depicting	the	concept	of	

directional	 orthogonalization	of	 light	 absorption	and	minority	 carrier	 collection.	 	 a)	An	 image	
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demonstrating	the	identical	directionality	of	light	absorption	and	minority	carrier	collection	for	a	

traditional	planar	device.		This	dictates	that	to	collect	minority	carriers	efficiently	the	absorption	

length	(α	is	the	absorption	coefficient	[1/length])	for	a	given	photon	energy	(ℏω)	must	be	shorter	

than	 the	 minority	 carrier	 diffusion	 length	 (Ln).	 	 b)	 An	 image	 demonstration	 the	 orthogonal	

directionality	of	light	absorption	and	minority	carrier	collection	for	a	microwire	device.		Here	the	

absorption	 direction	 remains	 along	 the	 vertical	 direction	 of	 the	microwire,	 but	 the	minority	

carrier	 collection	 direction	 is	 radial.	 	 This	 decoupling	 allows	 optimization	 of	 the	 length	 for	

absorption	and	minority	carrier	collection	independently.	(Image	Credit:	Michael	Kelzenberg)	

  
Photovoltaic	 demonstrations	 using	 Si	 microwire	 arrays	 have	 consisted	 of	 single	 pn+-junction	

devices	with	champion	array	and	single	microwire	efficiencies	of	7.9%	and	17%,	respectively.	40,48		

Near	 complete	 above	 bandgap	 light	 absorption	 has	 been	 achieved	 through	 introduction	 of	

scattering	elements	into	the	unoccupied	space	within	the	microwire	array,	thus	leaving	material,	

junction,	 and	 surface	 quality	 as	 the	 main	 factors	 that	 will	 affect	 performance.39	

Photoelectrochemical	 applications	 using	 Si	 microwire	 arrays	 have	 focused	 on	 the	 hydrogen	

evolution	half	reaction	with	single	pn+-junction	devices	coated	with	an	electrocatalyst	such	as	Pt.	

37,49,50	 	Attempts	 to	 incorporate	a	second,	wider	bandgap	material	 into	Si	microwire	arrays	 to	

form	 a	 tandem	 junction	 structure	 have	 been	 challenging	 due	 to	 the	 complex	 nature	 of	 the	

exposed	Si	crystal	facets	on	which	a	material	must	be	grown	and	the	choice	of	wide	bandgap	

material	(GaP,	GaInP)	which	all	require	high	quality	epitaxial	growth	on	the	complex	and	non-

traditional	Si	crystal	faces	present	on	the	microwire	sidewalls.	51-53	Additionally,	these	materials	

are	unstable	under	oxidizing	and/or	reducing	conditions	at	the	pH	values	required	for	efficient	

operation.	
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2.2 Tandem	Junction	Si	Microwire	Design	for	Solar	Water	Splitting	

Accordingly,	 an	 alternative	 design	 architecture	 for	 tandem	 Si	 microwire	 array	 devices	 was	

developed	to	allow	incorporation	of	a	wider	variety	of	wide	bandgap	materials,	some	of	which	

possess	intrinsic	stability	under	reducing	or	oxidizing	conditions.31		Figure	2.2a	shows	this	core-

shell	design	on	the	scale	of	a	microwire	array	and	Figure	#b	shows	an	individual	microwire	two-

dimensional	unit	cell	of	the	design.	Each	Si	microwire	is	a	complete	device	that	consists	of	a	np+-

Si	homo-junction,	conformally	coated	with	a	bilayer	consisting	of	a	transparent	conductive	oxide	

(TCO)	to	provide	low	resistance	contact	between	the	semiconductor	devices	and	an	n-type	wide	

bandgap	semiconductor	that	forms	a	semiconductor-liquid	junction	with	solution	(Figure	2.2b).		

Electrocatalysts,	if	necessary,	are	present	at	both	the	oxidation	and	reduction	sites	as	dictated	by	

the	device	polarity.		A	polymeric,	gas	impermeable,	ionically	conductive	membrane	lies	between	

the	individual	microwires,	providing	mechanical	support	for	the	array.		The	np+-Si	homo-junction	

is	 of	 opposite	 polarity	 to	 the	 existing	 work	 on	 Si	 microwire	 array	 photovoltaics	 and	

photoelectrodes	and	thus	required	development	of	new	fabrication	procedures	and	subsequent	

characterization.		The	TCO	layer	is	present	to	provide,	in	addition	to	a	low	contact	resistance,	a	

protection	mechanism	for	the	underlying	Si	homo-junction,	which	will	oxidize	in	the	presence	of	

water	and	a	robust	layer	upon	which	many	of	the	currently	studied	metal	oxide	wide	bandgap	

semiconductors	can	be	deposited	on	without	changing	the	underlying	device.	



	

	

51	

	

Figure	2.2:	Tandem	junction	Si	microwire	array	design	a)	A	schematic	of	the	tandem	junction	

microwire	array	device	with	the	dimensions,	site	of	both	water	splitting	half	reactions,	and	ionic	

transport	pathway	 indicated.	 	Oxygen	evolution	catalysts	are	decorated	on	the	surface	of	 the	
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wide	bandgap	 semiconductor.	b)	A	 two-dimensional	 single	microwire	 cross-section	with	each	

layer	labeled.		The	device	is	supported	in	a	gas	impermeable,	ionically	conductive	membrane	and	

consists	of	an	np+-Si	homo-junction	core	covered	by	a	transparent	conductive	oxide	(TCO)	and	a	

wide	bandgap	semiconductor	(SC).			

Tin-doped	indium	oxide	(ITO)	and	fluorine-doped	tin	oxide	(FTO)	were	both	investigated	as	the	

TCO	material	due	to	their	compatibility	with	Si,	high	performance	as	TCOs,	and	relative	stability	

under	 oxidizing	 conditions.	 	 The	 wide	 bandgap	 material	 choice	 began	 with	 many	 more	

candidates,	but	based	on	a	combination	of	stability	under	oxidizing	or	reducing	conditions	and	

the	maximum	Voc	known	for	the	material	was	narrowed	down	to	WO3	and	TiO2.		The	bandgaps	

of	 WO3	 and	 TiO2	 are	 2.7	 eV	 and	 3.0	 eV,	 respectively,	 which	 severely	 limit	 the	 maximum	

photocurrent	density	(<	5	mA	cm-2)	and	thus	efficiency	possible	given	the	solar	spectrum,	but	are	

the	only	materials	that	provide	intrinsic	stability	under	the	operating	conditions	and	thus	were	

used	for	these	proof	of	principle	studies.	

	

Figure	 2.3a	 and	 Figure	 2.3b	 depict	 the	 device	 electronic	 band	 structures	 in	 the	 absence	 and	

presence	of	illumination,	respectively.	Illumination	(Figure	2.3b)	results	in	splitting	of	the	quasi-

Fermi	levels	at	both	junctions,	generating	two	voltage	sources	in	series.	Photoexcited	majority-

carrier	 electrons	 in	 the	 n-Si	 core	 are	 transported	 axially	 to	 the	 back	 contact	 through	 the	

degenerately	doped	substrate	 (n+-Si)	 to	perform	the	hydrogen-evolution	 reaction	 (HER)	at	an	

electrocatalyst	site,	while	photoexcited	minority-carrier	holes	are	collected	radially	in	the	p+-Si	

sheath.	The	holes	 in	Si	 recombine	with	photoexcited	majority-carrier	electrons	from	the	wide	

bandgap	semiconductor	at	the	TCO	contact,	while	minority-carrier	holes	that	are	photoexcited	
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in	the	wide	bandgap	semiconductor	are	collected	at	the	liquid	interface	and	drive	the	oxidation	

of	water	or	anolyte.54	

	

Figure	 2.3:	 Equilibrium	 and	 operating	 tandem	 junction	 device	 electronic	 structure	 a)	 The	

electronic	 structure	 of	 the	 tandem	 junction	 device	 in	 the	 dark,	 at	 equilibrium,	 where	 the	

electrochemical	potential	is	equal	across	the	entire	device	and	is	defined	by	the	oxygen	evolution	

potential	here.	 	 It	 is	 important	to	note	that	a	complete	device,	with	hydrogen	and	oxygen	on	

opposite	sides,	is	not	at	equilibrium	as	a	non-zero	ΔG	exists.		This	is	the	reason	for	omitting	the	

hydrogen	evolution	reaction	in	this	picture.	b)	The	electronic	structure	of	the	tandem	junction	
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device	under	operation	with	illumination.		The	electrochemical	potentials	(quasi-Fermi	levels)	for	

electrons	(EFn)	and	holes	(EFp)	are	not	equal	in	some	parts	of	the	device,	which	is	responsible	for	

the	current	and	voltage	production.		An	offset	between	the	oxygen	evolution	potential	and	the	

EFp	is	needed	to	overcome	the	overpotential	required	to	drive	the	reaction	at	rates	comparable	

to	the	solar	flux	(10-20	mA	cm-2).		Photoexcited	electron-hole	pair	production	and	transport	is	

shown	to	indicate	the	direction	of	current	flow.	

During	 the	 course	 of	 this	 work,	 a	 similar	 yet	 distinct	 device	 that	 performs	 unassisted	 water	

splitting	was	reported,	which	incorporates	a	p-n+-Si	nanowire	junction	connected	to	TiO2	by	the	

p-Si	nanowire	core	(referred	to	as	Si/TiO2).
30	One	major	difference	between	the	device	design	

presented	here	 (referred	 to	as	 Si/WO3)	 and	 the	Si/TiO2	design	 is	 the	 collection	probability	of	

excess	charge	carriers	in	Si.		Excess	minority	carriers	are	collected	radially	throughout	the	Si	wire	

for	the	Si/WO3	design,	maintaining	collection	lengths	(<	2	μm)	shorter	than	reported	minority-

carrier	diffusion	lengths	(~10	μm).48,55	Conversely,	excess	minority	carriers	are	collected	axially	in	

the	 top	 half	 of	 the	 Si/TiO2	 design,	 requiring	 collection	 lengths	much	 longer	 than	 the	 largest	

diffusion	 lengths	 measured	 in	 Si	 microwires	 (~10	 μm).48,55	 Si	 nanowires	 also	 have	 excessive	

junction	 area	 that	 leads	 to	 high	 rates	 of	 carrier	 recombination	 relative	 to	 the	 use	 of	 Si	

microwires.43	 Optical	 absorption	 modelling	 of	 Si	 microwires	 indicates	 that	 a	 majority	 of	 the	

incident	light	is	absorbed	near	the	top	of	the	wire,	emphasizing	the	need	for	efficient	minority-

carrier	collection	 in	 this	 region.56	This	difference	 is	apparent	as	a	VOC	difference	between	 the	

Si/TiO2	device	(370	mV)	and	the	Si/WO3	device	(480	mV).		The	Si/TiO2	device	utilized	two	masking	

steps	to	define	the	structure	and	a	top-down	fabrication	process	that	began	with	a	high-quality	

photo-active	 p-Si	 wafer,	 whereas	 fabrication	 of	 the	 Si/WO3	 device	 consisted	 of	 sequential	
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deposition	 of	 the	 active	 materials	 with	 a	 single	 masking	 step	 and	 featured	 a	 bottom-up	

fabrication	process	from	a	re-usable	photo-inactive	n+-Si	substrate.57	

	

In	 addition	 to	 this	 tandem	 junction	design,	 Si	microwire	arrays	were	also	used	 to	design	and	

demonstrate	 a	 hydrogen	 evolution	 photoelectrode	 that	 decouples	 light	 absorption	 in	 the	

microwires	and	catalytic	activity	using	a	non-noble	metal	catalyst,	which	has	traditionally	limited	

planar	designs	 (Chapter	6).	 	 Si	microwire	arrays	were	also	used	 to	extend	a	newly	developed	

oxidatively	protective	coating	to	a	three	dimensional	photoelectrode	geometery	(Chapter	5).	

	

2.3 Device	Fabrication	

Below	is	a	high	level	description	of	the	fabrication	process	for	the	main	device	structures	studied	

in	this	thesis.		Complete	fabrication	details	for	all	devices	can	be	found	in	Appendix	A.	

	

2.3.1 Si	Microwire	Arrays	

Figure	 2.4	 shows	 the	 Si	microwire	 fabrication	process	 used	 for	 all	 studies	 in	 this	 thesis.	 	 The	

process	begins	with	a	<111>	Si	wafer	doped	according	to	the	experimental	design	and	with	400-

500	nm	of	a	thermally	grown	SiO2	(Figure	2.4a).		3	µm	diameter	holes	in	a	7	µm	x	7	µm	square	

lattice	 are	 formed	 in	 the	 SiO2	 layer	 using	 photolithographically	 defined	mask	 and	 by	 etching	

through	 the	 SiO2	 using	 buffered	hydrofluoric	 acid	 (BHF,	 aq.).	 	 500	nm	of	 copper	 (Cu)	 is	 then	

deposited	and	the	photoresist	is	removed,	lifting	off	the	Cu	on	top	of	it,	and	leaving	behind	Cu	in	

the	3	µm	diameter	holes	only	where	it	directly	contacts	the	<111>	Si	growth	wafer	(Figure	2.4b).	
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Si	 microwires	 are	 then	 grown	 in	 a	 vapor-liquid-solid	 (VLS)	 chemical	 vapor	 deposition	 (CVD)	

process	using	the	Cu	as	a	catalyst	to	crack	SiCl4(g)	such	that	Si	becomes	dissolved	in	the	Cu.		When	

the	Cu	becomes	supersaturated	with	Si,	the	Si	deposits	epitaxially	on	the	underlying	<111>	Si,	

thereby	growing	a	vertically	aligned	microwire	(Figure	2.4c).	

	

Figure	2.4:	Si	microwire	fabrication	process	a)	A	Si	wafer	with	400-500	nm	of	thermally	grown	

SiO2.	b)	Photolithographically	patterned	Cu	growth	catalysts	in	the	SiO2	layer.	c)	A	Si	microwire	

array	as	grown.	d)	RCA	I	(organics)	and	II	(metals)	cleaned	Si	microwire	array.	e)	~100	nm	growth	

of	thermal	SiO2.	f)	PDMS	infilled	(10	µm)	Si	microwire	array	to	mask	the	SiO2	near	the	microwire	

bases.	g)	HF	etched	Si	microwire	array	where	the	exposed	SiO2	has	been	removed.	h)	Post	PDMS	

removal	with	the	masked	SiO2	visible.	i)	A	homo-junction	Si	microwire	array	with	an	emitter	of	

the	opposite	doping	type	as	the	core.	

Following	the	growth	of	a	Si	microwire	array,	further	processing	is	required	to	make	an	efficient	

homo-junction.		This	begins	by	removing	metals	and	organics	on	or	near	the	surface	using	RCA	II	

and	I	etches,	respectively	(Figure	2.4d).		Next	a	~100	nm	thick	dry	thermal	oxide	is	grown	that	is	

used	to	provide	electronic	isolation	between	the	growth	wafer	and	emitter	(Figure	2.4e).		For	all	
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devices,	except	those	in	Chapter	6,	a	10-15	µm	layer	of	polymethyldisiloxane	(PDMS)	is	deposited	

at	the	base	of	the	microwire	array	to	mask	this	region	of	SiO2	(Figure	2.4f).		The	exposed	SiO2	is	

removed	by	BHF	(Figure	2.4g)	and	followed	by	removal	of	the	PDMS	layer	(Figure	2.4h).	 	This	

forms	a	“boot”	of	SiO2	at	the	base	of	the	microwire.	 	A	~100	nm	thick	emitter	of	high	doping	

density	and	opposition	doping	type	than	the	Si	microwire	core	is	formed	via	solid	state	diffusion	

and	is	the	source	of	the	homo-junction	(Figure	2.4i).		For	devices	used	in	Chapter	6	the	SiO2	layer	

on	 the	 Si	microwire	 and	 that	 between	 the	microwires	 is	 removed	 using	 BHF,	 leaving	 bare	 Si	

everywhere.		An	emitter	is	then	formed	everywhere	on	the	device.	

	

2.3.2 Further	Device	Processing	Specific	Experimental	Designs	

Following	 formation	 of	 Si	 microwire	 array	 homo-junction	 devices,	 additional	 and	 specific	

processing	was	required	to	fabricate	functioning	devices	for	each	set	of	experiments.		For	tandem	

junction	devices	(Chapters	3	and	4)	a	Si	microwire	array	that	consisted	of	a	moderately	doped	n-

type	core	and	heavily	doped	p-type	emitter	(np+-Si)	was	conformally	coated	with	a	transparent	

conductive	oxide	(TCO)	to	provide	low	resistance	electrical	contact	between	the	Si	homo-junction	

and	 the	 wide	 bandgap	 semiconductor	 (outermost	 layer)	 while	 remaining	 as	 transparent	 as	

possible	to	photons	above	Si’s	bandgap.		A	photoactive	wide	bandgap	semiconductor	layer	was	

then	deposited	conformally	on	the	np+-Si/TCO	structure	to	form	a	semiconductor-liquid	junction	

with	solution	(the	devices	second	junction).		For	oxidatively	stable	and	electrocatalytically	active	

np+-Si	microwire	array	devices	(Chapter	5)	a	layer	of	amorphous	TiO2	was	conformally	deposited	

on	the	np+-Si	microwire	array	followed	by	a	nickel-chromium	oxide	(NiCrOx),	which	only	coated	

near	the	microwire	tops.		Finally,	for	pn+-Si	microwire	array	hydrogen	evolution	devices	(Chapter	



	

	

58	

6)	 a	 nanoparticulate	 bilayer	 of	 nickel-molybdenum	 (Ni-Mo)	 electrocatalyst	 covered	 TiO2	 was	

deposited	 by	 centrifugation	 to	 form	 an	 optoelectronically	 optimized	 photoelectrode	

architecture.
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3 Photoelectrochemistry	 of	 Core–Shell	 Tandem	 Junction	 n-p+-

Si/n-WO3	Microwire	Array	Photoelectrodes	

3.1 Introduction	and	Motivation	

Si	microwire	array	photocathodes	have	been	shown	to	generate	photovoltages	in	excess	of	500	

mV	 in	 acidic	 aqueous	 environments,	 and	 provide	 a	 preferred	 geometry,	 relative	 to	 planar	

structures,	 for	 devices	 that	 effect	 the	 unassisted	 generation	 of	 fuels	 from	 sunlight.37,38,41	

Microwire	 arrays	 benefit	 from	 orthogonalization	 of	 the	 directions	 of	 light	 absorption	 and	

minority-carrier	collection,17,43,45-47	as	well	as	from	light-trapping	effects,39,42	an	increased	surface	

area	for	catalyst	loading	per	unit	of	geometric	area,49,58	a	small	solution	resistance	as	compared	

to	 planar	 designs,41,44	 a	 reduced	material	 usage	 through	 reusable	 substrates,57	 and	 from	 the	

ability	to	embed	the	microwires	into	ion	exchange	membranes	that	exhibit	little	permeability	to	

H2	and	O2,
59	 thereby	producing	 flexible	devices	that	persistently	separate	the	products	of	 the	

water-splitting	 reaction.	 	 However,	 the	 voltage	 generated	 from	 single-junction	 Si	 microwire	

arrays	is	much	lower	than	the	1.23	V	required	for	solar-driven	water	splitting,	so	a	wider	band	

gap	partner	light	absorber	must	be	introduced	electrically	in	tandem	(Si/partner	tandem	device)	

to	generate	useful	current	at	voltages	that	exceed	the	thermodynamically	required	values	for	

fuel	 production.	 	 Accordingly,	 tandem-junction	 devices	 offer	 the	 highest	 theoretical14	 and	

experimentally	realized17	efficiencies	 for	solar-driven	water	splitting	through	additive	voltages	

across	 two	 photoabsorbers	 that	 effectively	 utilize	 multiple	 regions	 of	 the	 solar	 spectrum.		

Tandem	device	structures	are	also	simpler	to	fabricate	and	operate	effectively	under	a	greater	



	

	

60	

variety	of	insolation	conditions	than	more	complex	3-	or	4-junction	devices.		Additionally,	when	

kinetic	overpotentials	are	considered	in	detail,	water-splitting	devices	will	most	likely	require	a	

tandem	architecture	to	achieve	appreciable	current	densities,	i.e.,	10	mA-cm-2,	thereby	further	

motivating	the	use	of	tandem	structures	in	such	applications.	

	

In	addition	to	band	gap	considerations	 for	a	Si/partner	 tandem	system,	achieving	the	desired	

electronic	behaviour	at	the	interface	between	Si	and	its	tandem	partner	presents	a	significant	

challenge	for	production	of	an	integrated	solar	fuels	generation	device.			The	materials	must	be	

mutually	 compatible	 and	 generally	 must	 operate	 in	 a	 batch	 reactor	 that	 contains	 a	 single,	

concentrated	(1.0M)	41,60	aqueous	electrolyte.		Such	materials	considerations	are	important	to	

the	 performance	 of	 a	 functioning	 device	 that	 consists	 of	 microwires	 embedded	 in	 a	 gas	

impermeable,	 ion-exchange	 membrane,	 because	 both	 semiconductors	 need	 to	 be	

simultaneously	 in	 contact	 with	 the	 electrolyte	 to	 produce	 a	 full	 solar-driven	 water-splitting	

device.		Tandem	junction	water-splitting	devices	using	nanoscopic	or	microscopic	materials	have	

focused	on	a	single-junction	n–n	hetero-junction	design	in	series	with	a	liquid	second	junction.	

61,62	In	contrast,	the	highest	efficiency	water-splitting	devices16,17	consist	of	planar	tandem	homo-

junction	 photovoltaic	 cells	 that	 are	 physically	 isolated	 from	 the	 solution	 and	 are	 electrically	

connected	 to	 the	 catalysts	 in	 contact	 with	 solution.	 	 	 The	 materials	 currently	 used	 in	 high-

efficiency	 planar	 tandem	 devices	 are	 not	 stable	 in	 concentrated	 aqueous	 electrolyte	

environments.		Nevertheless,	the	concept	of	buried	p-n	homo-junctions	is	a	promising	route	to	

increase	the	efficiency	of	solar-driven	water-splitting	devices	relative	to	systems	that	utilize	n-n	

hetero-junctions.30,37,61-63	To	realize	the	advantages	of	replacing	the	n-n	hetero-junction	with	a	
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p-n	homo-junction,	ohmic	behaviour	at	the	Si/tandem	partner	interface	is	required.		This	ohmic	

behaviour	can	be	achieved	in	at	least	two	ways:	(i)	the	Si	tandem	partner	must	have	proper	band	

alignment	(type	III,	broken	gap)	such	that	upon	direct	contact,	ohmic	behaviour	is	produced	or	

(ii)	a	discrete	 intermediate	third	material	must	be	 introduced	that	facilitates	ohmic	behaviour	

between	the	Si	and	the	tandem	partner	light	absorbers.	

	

TiO2,	WO3,	BiVO4,	and	Fe2O3	are	stable	in	concentrated	aqueous	electrolytes	and	form	suitable	

tandem	partners	for	Si.		However,	Si	is	stable	only	in	acidic	aqueous	environments,	limiting	the	

presently	available	partner	materials	that	are	stable	under	such	conditions	to	only	TiO2	and	WO3.		

WO3	 is	 the	 preferred	material	 because	 of	 its	 smaller	 band	 gap	 (Eg	 ≈	 2.6	 eV)	 and	 significant	

photocurrent	 response	 to	 visible-light	 illumination.64	 The	 electronic	 behaviour	 of	 the	 Si/WO3	

interface	has	recently	been	shown	to	be	non-ohmic,	but	addition	of	an	intermediate	tin-doped	

indium	oxide	(ITO)	layer	has	been	shown	to	provide	low	resistance,	ohmic	behaviour	between	p-

type,	or	p+-type,	Si	and	WO3.
65	Thus,	a	Si/WO3	microwire	device	with	an	intermediate	ITO	layer	

presents	 an	opportunity	 to	demonstrate	 an	unassisted	 integrated	 solar-driven	water-splitting	

device	that	exploits	of	the	advantages	of	the	microwire-array	architecture.	

	

We	describe	herein	a	tandem	core-shell	photoelectrochemical	device	that	consists	of	a	periodic	

array	of	buried	homo-junction	n-p+-Si	microwires	that	have	been	sequentially	coated	with	a	radial	

sheath	of	ITO	and	WO3.	When	immersed	in	air-saturated	1.0	M	H2SO4,	the	dual	radial-junction	

microwire	structure	enables	efficient	carrier	collection	from	both	the	Si	and	WO3	light	absorbers,	

despite	 short	 minority-carrier	 diffusion	 lengths,	 i.e.,	 ~10	 µm	 in	 Si48	 and	 ~1	 µm	 in	 WO3.	 	 A	
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necessary	feature	of	this	tandem	architecture	is	the	incorporation	of	the	ITO	layer	between	the	

Si	and	WO3	 light-absorbing	materials.	 	 This	ohmic	contact	 layer	ensures	 facile,	 low-resistance	

carrier	 transport	 between	 the	 Si	 and	 WO3	 and	 relaxes	 the	 requirements	 for	 proper	 band	

alignment	between	the	p+-Si	emitter	and	the	WO3.	Transparent	conductive	oxides,	such	as	FTO	

or	ITO,	are	commonly	used	as	back	contacts	to	metal	oxides;	thus	this	design	is	expected	to	be	

robust	 towards	 implementation	of	 newly	 discovered	materials,	 because	 the	 ITO	 layer	will	 be	

amenable	to	many	different	Si	tandem	partner	absorbers.	

	

3.2 Device	Fabrication	

	

Figure	 3.1:	 Si/WO3	 tandem	 junction	 microwire	 array	 fabrication	 and	 SEM	 images	 a)	

Photolithographically	patterned	n+-Si	<111>	wafer	with	a	SiO2	mask	layer	and	Cu	catalyst	in	the	

desired	growth	pattern.	b)	VLS	Cu-catalyzed	growth	of	n-type	Si	microwires	on	n+-Si	substrate	

followed	by	a	metal	etch	(RCA	2).	c)	SiO2	diffusion	barrier	(boot)	formation	via	SiO2	growth,	PDMS	

infill,	HF	etch,	and	PDMS	removal.	d)	p+-Si	emitter	drive-in	from	BCl3	precursor	at	950°C	for	30min	
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in	a	CVD	furnace.	d)	Conformal	DC	sputter	coating	of	ITO.	f)	Conformal	n-WO3	electrodeposition	

and	annealing	at	400	°C	for	2h.	g)	Fully	assembled	tandem	junction	device	array	SEM	(scale	bar	=	

10	μm).	h)	Cross-sectional	SEM	of	a	fully	assembled	tandem	junction	single	wire	demonstrating	

the	layered	structure	of	the	device	(scale	bar	=	500	nm).	

Figure	3.1a-f	depicts	the	process	used	to	fabricate	on-wafer	devices	used	herein	and	is	described	

in	detail	in	Chapter	2	and	Appendix	A.		Figure	3.1g	displays	an	image	of	a	completed	device	wire	

array,	while	Figure	3.1f	shows	a	cross-section	of	a	single	wire	demonstrating	the	layered	device	

structure.		The	Si	microwires	were	40-70	μm	in	length,	had	a	diameter	of	~	2	μm	and	had	doping	

densities	on	the	order	of	1017	cm-3.		Secondary-ion	mass	spectrometry	data	from	planar	samples	

indicated	that	the	p+-Si	emitter	thickness	was	~	200	nm.		The	sequential,	conformal	layers	of	ITO	

and	WO3	were	~100	nm	and	~400	nm,	respectively.	

	

3.3 Photoelectrochemical	and	Optoelectronic	Modeling	Results	

3.3.1 np+-Si	Microwire	Non-Aqueous	PEC		

	

Figure	3.2:	Non-aqueous	PEC	characterization	of	Si/WO3	device	a)	Non-aqueous	PEC	(forward	

scan,	scan	rate	=	20	mV-s-1)	results	using	ferrocene+/0	(black)	and	cobaltocene+/0	(blue)	as	redox	
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couples	to	probe	the	np+-Si	buried	junction	performance	in	microwires	arrays.	The	dark	scans	are	

dashed	 lines	 and	 light	 scans	 are	 shown	 as	 solid	 lines.	 	 b)	 Redox	 potentials	 of	 cobaltocene	

((Cp)2Co
+/0)	and	ferrocene	((Cp)2Fe

+/0)	with	respect	to	the	potentials	of	the	conduction	band	edge	

and	the	valence	band	edge	of	Si.	

The	performance	of	individual	buried	junction	np+-Si	microwire	array	devices	was	investigated	

through	non-aqueous	photoelectrochemical	(PEC)	measurements	in	contact	with	a	series	of	one-

electron,	outer-sphere	redox	couples	(Figure	3.2).		The	cobaltocene+/0	(CoCp2
+/0)	and	ferrocene+/0	

(FeCp2
+/0)	redox	species	were	used	to	determine	the	quality	of	the	buried	junction,	by	probing	

the	n-	and	p-type	character	at	the	Si–liquid	interface.	Figure	3.2b	displays	the	redox	potentials	of	

CoCp2
+/0	and	FeCp2

+/0	with	respect	to	the	potentials	of	the	Si	conduction	and	valence	bands.			The	

p+-Si	radial	sheath	is	expected	theoretically,	and	was	observed	experimentally,	to	form	an	ohmic	

contact	to	FeCp2
+/0	and	to	form	a	tunnel	junction	to	CoCp2

+/0.		For	a	fully	buried	junction,	similar	

performance	 should	 therefore	 be	 observed	 in	 contact	 with	 both	 of	 these	 redox	 systems.		

However	exposed	n-Si	forms	is	expected	theoretically	and	is	observed	experimentally	to	form	an	

electrical	short	(i.e.,	an	ohmic	contact)	to	CoCp2
+/0	and	a	rectifying	contact	to	FeCp2

+/0.		

	

In	contact	with	FeCp2
+/0	under	100	mW-cm-2	of	simulated	Air	Mass	1.5G	illumination,	the	n-p+-Si	

microwire	array	devices	exhibited	an	open-circuit	potential	of	Eoc	=	-0.5	V	versus	solution,	and	a	

short-circuit	current	density	of	Jsc	=	8.7	mA-cm-2,	with	a	fill	factor	of	0.44	(Figure	3.2a).		Similar	

performance	 was	 observed	 for	 microwire	 structures	 in	 contact	 with	 CoCp2
+/0,	 and	 the	

comparable	photodiode	performance	characteristic	indicates	that	the	performance	is	due	to	the	

buried	n-p+-Si	junction.	
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The	0.1	V	decrease	in	Eoc	observed	for	the	CoCp2+/0	contact	compared	to	the	FeCp2
+/0	contact	is	

consistent	 with	 the	 presence	 of	 exposed	 n-Si	 near	 the	 SiO2/Si	 boundary	 (boot),	 creating	 an	

electrical	short	to	solution.49	This	is	important	to	note;	however,	it	has	been	shown	that	the	n-

Si/ITO	interface	produces	a	barrier	rather	than	an	electrical	short	like	n-Si/CoCp2
+/0.65	Thus,	the	

np+-Si-microwire	part	of	the	ultimate	tandem	structure	is	expected	to	contribute	an	open-circuit	

voltage	of	Voc	=	0.5	V	and	is	not	expected	to	limit	the	current	of	the	tandem	device,	because	the	

maximum	possible	Jsc	from	WO3	is	~5	mA-cm-2.66	

	

3.3.2 Single	(WO3)	and	Tandem	(Si/WO3)	Junction	PEC	

	

Figure	3.3:	Si/WO3	PEC	water	splitting	performance	under	simulated	1	Sun	illumination	Three-

electrode	PEC	(forward	scan,	scan	rate	=	20	mV-s-1)	performance	for	single	(black)	and	tandem	

(blue)	junction	microwire	devices	in	contact	with	1.0	M	H2SO4(aq).	The	single	junction	microwire	

device	consisted	of	WO3	supported	on	p-Si	microwires	that	had	been	coated	with	ITO.		Here	the	
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p-Si/ITO	contact	is	ohmic	so	the	only	rectifying	junction	is	at	the	WO3/liquid	junction.		These	data	

demonstrate	 the	 presence	 of	 an	 additive	 voltage	 from	 each	 junction,	with	 0.73	 V	 and	 0.5	 V	

produced	by	 the	WO3/liquid	 and	n-p
+-Si	 buried	 junctions,	 respectively.	 	 The	Eoc	 for	 the	 single	

junction	device	was	defined	as	the	point	at	which	the	dark	current,	due	to	capacitive	charging,	

and	the	illuminated	current	separated.		The	Eoc	for	the	tandem	junction	device	was	defined	as	

the	point	at	which	no	current	was	flowing	because	no	positive	dark	current	existed	in	this	region.	

Figure	 3.3	 shows	 the	 photoelectrochemical	 (PEC)	 behaviour	 of	 single	 junction	 (p-Si/ITO/n-

WO3/1.0	M	H2SO4)	 and	 tandem	 junction	 (n-Si/p+-Si/ITO/n-WO3/1.0	M	H2SO4)	microwire	array	

devices	under	simulated	one	Sun	illumination	conditions.	 	The	p-Si/ITO	and	p+-Si/ITO	contacts	

have	been	shown	to	produce	ohmic	behaviour	allowing	isolation	of	the	n-WO3/1.0M	H2SO4	liquid	

junction	performance	in	the	single	junction	case	and	efficient	use	of	the	buried	n-p+-Si	junction	

in	the	tandem	junction	case.65	The	single-	and	tandem-junction	microwire	devices	exhibited	J	=	

0.50	mA-cm-2	and	J	=	0.58	mA-cm-2,	respectively,	at	Eo’(O2/H2O).		The	first	peak	in	photocurrent	

density	is	a	dark	redox	process	that	results	in	the	photochromism	of	WO3,	whereupon	reverse	

scans	the	WO3	film	is	reduced	through	proton	intercalation,	and	is	subsequently	oxidized	on	the	

forward	scan.	 	The	second	peak	is	associated	with	photocurrent	that	results	 in	actual	solution	

redox	reactions.		The	slightly	lower	current	density	exhibited	by	the	single	junction	is	consistent	

with	decreased	absorption	due	to	the	use	of	shorter	microwire	arrays.	

	

The	open-circuit	potentials	were	Eoc	=	-0.73	V	vs.	Eo’(O2/H2O)		and	Eoc	=	-1.21	V	vs.	Eo’(O2/H2O)	for	

the	single-	and	tandem-junction	devices,	respectively.		The	Eoc	for	the	WO3/liquid	contact	is	in	

accord	with	expectations	for	WO3	photoanodes	operating	under	these	conditions.
19	The	0.48	V	

shift	 in	 Eoc	 of	 the	 tandem	 junction	 device	 relative	 to	 the	 single	 junction	 device	 is	 therefore	
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attributable	to	the	presence	of	the	np+-Si	buried	junction	in	the	tandem	device	(Figure	3.2).		This	

voltage	shift	demonstrates	that	the	buried	np+-Si	junction	increases	the	voltage	generated	by	Si	

as	compared	to	n-Si/n-type	metal-oxide	heterojunction	devices.61,62	

	

3.3.3 Load-line	Analysis	

	

Figure	 3.4:	 Si/WO3	 PEC	water	 splitting	 performance	 and	 stability	 under	 simulated	 11	 Suns	

illumination	 a)	 J–E	 curves	 and	 load-line	 analysis	 of	 the	 tandem	 junction	 (n-p+-Si/ITO/WO3)	

microwire	device	at	12	suns	(AM1.5D)	plotted	against	the	dark	HER	curves	(mirrored	about	the	

abscissa)	using	a	Pt	disc	electrode	in	an	Ar(g)-	or	H2(g)-saturated	solution.		These	measurements	

were	conducted	in	a	two-electrode	cell	with	1	M	H2SO4	in	both	compartments	separated	by	a	

Nafion	membrane	to	maintain	product	separation.		The	Pt	disc	HER	curves	include	solution	and	

membrane	resistances	because	the	reference	electrode	(SCE)	was	placed	in	the	opposite	cell	at	

the	same	location	used	for	the	tandem	microwire	array	device.		The	inset	is	a	zoomed	in	view	

around	the	operational	points,	which	are	indicated	by	the	red	(Ar)	and	blue	(H2)	circles.		b)	Two-

electrode	measurements	at	0	V	applied	bias	between	the	tandem	junction	device	(concentrated	

illumination)	and	Pt	disc	electrode	in	either	Ar(g)-	or	H2(g)-saturated	solution.		Turning	the	light	

off,	as	indicated,	demonstrated	that	the	positive	current	was	photoinduced.	
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Under	 modest	 optical	 concentration	 (12	 Suns,	 AM.15D),	 tandem	 junction	 microwire-array	

devices	 exhibited	Eoc	 =	 -1.27	V	 vs	E0’(O2/H2O),	which	 exceeds	 the	 1.23	V	 potential	 difference	

necessary	 for	 unassisted	 water	 splitting	 under	 standard-state	 conditions	 (Figure	 3.4a).	 	 The	

operating	current	for	this	device	under	modest	optical	concentration	can	be	predicted	using	a	

load-line	 analysis.67	 Figure	 3.4a	 shows	 the	 I-E	 behaviour	 of	 an	 illuminated	 tandem	microwire	

device,	along	with	the	I-E	behaviour,	mirrored	about	the	abscissa,	of	a	Pt	disc	electrode	of	similar	

projected	area,	in	contact	with	either	a	saturated	Ar	(g)	or	H2(g)	solution	at	1	atm.		In	a	Ar(g)-

saturated	 solution,	 the	 onset	 potential	 for	 the	 HER	 was	 shifted	 positive	 compared	 to	 that	

observed	in	a	H2(g)-saturated	solution,	in	accordance	with	Le	Chatelier’s	principle.		These	data	

were	obtained	using	a	two-compartment	cell	with	a	Nafion	membrane	separating	the	anode	and	

cathode	compartments.		The	I-E	behaviour	of	the	Pt	disc	includes	the	solution	and	membrane	

resistances	 of	 the	 electrochemical	 cell,	 because	 the	 reference	 electrode	 was	 placed	 in	 the	

opposite	(anode)	compartment.		This	type	of	measurement	provides	a	robust	prediction	of	the	

unassisted	operating	current	that	should	be	obtained	between	an	illuminated	Si/WO3	microwire	

array	device	and	a	Pt	button	electrode	in	the	same	geometry	and	physical	location.		The	anolyte	

was	not	purged	with	O2	because	the	primary	oxidation	product	from	WO3	under	these	conditions	

has	been	shown	to	be	peroxydisulfate.21	

	

Figure	3.4b	displays	the	chronoamperometric	response	from	a	two-electrode	experiment	at	0	V	

applied	bias	between	an	illuminated	tandem	junction	WO3/Si	microwire	array	device	and	a	Pt	

disc	 electrode.	 	 The	 devices	 produced	 solar-to-hydrogen	 energy	 conversion	 efficiencies	 of	

0.0068%	(6.5x10-3	mA,	0.060	mA-cm-2)	and	0.0019%	(1.9x10-3	mA,	0.017	mA-cm-2)	when	the	Pt	
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disc	was	in	contact	with	Ar(g)-	and	H2(g)-saturated	solutions,	respectively,	which	agree	with	the	

predicted	operating	points	from	the	load-line	analysis	(dots	at	intersection	points	in	Figure	3.4	

insets).		The	peroxydisulfate/sulfate	redox	system	has	a	formal	reduction	potential	that	is	~	0.75	

V	positive	of	Eo’(O2/H2O),	indicating	that	the	tandem	core-shell	microwire	device	generated	~	1.8	

V	of	photopotential	under	these	conditions.		Device	photostability	was	demonstrated	for	over	10	

min	by	 the	H2(g)-purged	device.	 	Thus,	 the	decrease	 in	 current	 for	 the	Ar(g)-purged	device	 is	

attributable	to	an	increasing	H2	concentration	in	solution	from	the	HER	at	the	Pt	disc	electrode.		

Additionally,	 the	chopped-light	 response	demonstrated	that	 the	observed	current	was	photo-

induced.		The	negative	current	observed	in	the	dark	for	the	H2(g)-purged	device	is	consistent	with	

O2	 (g)	 and	H2(g)	 recombination	 to	 form	water,	 similar	 to	 fuel	 cell	 operation.	 	 This	 behaviour	

demonstrates	 that	 the	 operating	 voltage	 of	 the	 device	 can	 be	 tuned	 by	 changing	 the	 partial	

pressures	 of	 the	 photoelectrochemical	 reaction	 products,	 i.e.,	 by	 changing	 the	 chemical	 load	

across	the	device,	which	can	be	calculated	using	the	Nernst	equation.	

	

3.3.4 Product	Analysis	

Product	analysis	was	performed	separately	on	the	oxidation	and	reduction	products	 in	1.0	M	

H2SO4.	 	 As	 reported	 previously,	 electrolyte	 buffer	 species	 are	 oxidized	 preferentially	 at	 the	

WO3/liquid	interface,	relative	to	the	oxidation	of	water.
54	Thus,	in	contact	with	H2SO4(aq),	sulfate	

(SO4
2-)	is	preferentially	oxidized	to	peroxydisulfate	(S2O8

2-),	which	was	confirmed	as	an	oxidative	

product	by	UV-vis	spectroscopy	as	published	previously.54	Although	direct	oxygen	evolution	was	

not	 realized	 due	 to	 WO3’s	 poor	 O2	 evolution	 kinetics,	 peroxydisulfate	 has	 been	 shown	 to	

stoichiometrically	evolve	O2	using	Ag
+	as	a	catalyst.54		
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At	 the	Pt	 disc	 cathode,	H2(g)	 production	was	detected	by	mass	 spectrometry	of	 the	 reaction	

products	when	the	operational	current	density	was	passed	at	the	Pt	disc	electrode.		Due	to	the	

small	 amount	 of	 H2(g)	 produced,	 direct	 quantification	 of	 the	 faradaic	 efficiency	 was	 not	

performed;	however,	no	other	products	are	expected	due	to	the	use	of	trace	metal	grade	H2SO4.	

	

3.3.5 1D	Optoelectronic	Model	

	

Figure	3.5:	Modeled	PEC	behavior	of	Si/WO3	device	Modeled	J–E	curves	and	load-line	analysis	

for	unconcentrated	(a)	and	concentrated	(b)	illumination	conditions	that	match	the	experimental	

photon	 fluxes	 at	 1	 and	12	 Suns	 (AM	1.5D).	 	 The	 Si	 homo-junction	 is	 shown	with	 (green)	 and	

without	(black)	inclusion	of	realistic	hydrogen	evolution	catalytic	overpotentials.		Butler–Volmer	

kinetics	with	α	=	1	and	j0	=	10
-3	A-cm-2	was	used	to	calculate	the	catalytic	overpotentials	in	the	

absence	of	mass	transport	limitations.		The	insets	show	the	operating	point	for	unconcentrated	

illumination	(black	dot)	and	for	concentrated	illumination,	with	(green	dot)	and	without	(black	

dot)	overpotential	due	to	HER	catalysis	included.		The	rate	of	catalysis	is	not	expected	to	affect	

the	WO3	J-E	behaviour	due	to	the	 large	band	gap	of	WO3	and	proximity	of	Eo’(O2/H2O)	to	the	

potential	of	the	conduction	band	of	WO3.	
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Figure	3.5	shows	J–E	behaviour	and	simulated	load-line	analyses	of	the	one-dimensional	device	

architecture	 in	 the	 bulk	 recombination	 limit	 under	 both	 unconcentrated	 (1	 Sun)	 and	

concentrated	 illumination	to	match	the	experimental	photon	flux.	 	Here,	the	Si	homojunction	

performance	 is	 shown	 in	 the	 absence	 of	 mass-transport	 limitations,	 with	 and	 without	 the	

incorporation	of	 catalytic	overpotentials	 (η)	 associated	with	 the	HER,	which	 is	present	 in	any	

actual	water	splitting	device.	The	maximum	predicted	operating	points	from	this	analysis	are	0.5	

mA-cm-2	(Figure	3.5a	inset)	and	5.7	mA-cm-2	(Figure	3.5b	inset)	for	unconcentrated	(one	Sun)	and	

concentrated	illumination,	respectively.	This	corresponds	to	an	Eoc	=	-1.29	V	vs.	E0’(O2/H2O)	for	

unconcentrated	illumination	and	Eoc	=	-1.44	V	vs.	E0’(O2/H2O)	for	concentrated	illumination.		The	

modelled	J-E	behaviour	for	a	Pt	electrode	performing	the	HER	under	1	atm	of	H2	included	the	

electrocatalytic	behavior	only	and	excluded	any	mass-transport	resistances.			

	

3.3.6 2D	Microwire	Optical	Modeling	

Table	3.1:	Modeled	PEC	current	density	values	for	differing	WO3	thicknesses	Dependence	of	the	

light	 limited	photocurrent	density	 (Jph)	on	 the	WO3	coating	 thickness	 for	 light	above	the	WO3	

band	gap	in:		(i)	all	photoactive	material	in	the	core-shell	tandem	structure	(Si	+	WO3),	(ii)	WO3	

and	(iii)	WO3	on	the	microwire	sidewalls	only	 (WO3	on	Microwire).	 	Jph	 is	calculated	assuming	

unity	IQE.	

WO3 
Thickness 

(nm) 

Geometric Filling 
Fraction (%) 

Si + WO3 Jph 
<476nm (mA-

cm-2) 

WO3 Jph 
(mA-cm-2) 

WO3 on Microwire Jph 
(mA-cm-2) 

300 11.7 3.34 0.56 0.41 
500 15.4 3.43 0.7 0.54 
700 19.6 3.47 0.8 0.65 
1000 26.9 3.53 0.89 0.79 
1500 41.7 3.52 1.08 1.07 
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Table	3.1	shows	the	light-limited	photocurrent	densities	(Jph)	that	were	calculated	assuming	unity	

internal	quantum	efficiency	(IQE)	for	the	tandem	structure	for	varying	WO3	coating	thicknesses:	

(i)	the	entire	device	(Si	and	WO3),	(ii)	only	WO3,	and	(iii)	WO3	coating	the	microwire	sidewalls	

only.	

	

3.4 Discussion	

3.4.1 Tandem	Junction	Performance	

The	Eoc	=	-1.27	V	vs	Eo’(O2/H2O)	exhibited	by	the	tandem	junction	np+-Si/ITO/n-WO3	microwire	

array	device	indicates	that	the	structure	provides	enough	voltage	to	drive	unassisted	solar-driven	

water	splitting	under	standard-state	conditions	and	12	Suns	illumination	(AM1.5D).		Additionally,	

H2(g)	was	detected	as	a	reduction	product	confirming	unassisted	hydrogen	production.		To	realize	

a	 complete,	 direct	 water-splitting	 device,	 an	 oxygen-evolution	 catalyst	 coupled	 to	 the	 WO3	

surface	would	 be	 required.	 	 Two-electrode	 operation	with	 a	 Pt	HER	 electrode	 demonstrated	

stable	operation	of	the	device	as	well	as	validation	of	the	operating	point	determined	by	the	load-

line	analysis.		This	demonstration	therefore	provides	a	proof-of-concept	for	the	development	of	

core-shell	high-aspect	ratio	 tandem	junction	devices	 for	 fuel	 formation	directly	 from	sunlight.	

Such	a	device	could	be	embedded	in	a	gas	impermeable,	ion-selective	membrane59	and	removed	

from	 a	 reusable	 substrate57	 to	 form	 a	 free-standing	 device.	 	 This	 architecture	minimizes	 the	

distance	ions	must	travel	to	complete	the	fuel-forming	circuit,	thus	minimizing	the	potential	drop	

due	to	solution	resistance	effects.	
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3.4.2 1D	Optoelectronic	Modeling	

The	 performance	 of	 the	 tandem	 junction	 n-p+-Si/ITO/n-WO3	 device	 described	 herein	 is	

fundamentally	limited	in	two	ways	by	WO3:	(i)	its	wide	band	gap	(~2.6	eV)	limits	the	maximum	

current	density	to	~5	mA-cm-2	under	AM1.5G	illumination	conditions;	and	(ii)	the	barrier	height	

between	WO3	and	Eo’(O2/H2O)	limits	the	Eoc	to	less	than	half	of	the	band	gap.		Given	these	two	

limitations,	a	one-dimensional	optoelectronic	model	for	the	tandem	structure	was	developed	to	

investigate	the	maximum	performance	that	could	be	expected	from	the	Si/WO3	device	and	can	

be	compared	to	the	experimental	results.		

	

The	modeled	 Eoc	 values	 are	 80	mV	 and	 170	mV	 larger,	 respectively,	 than	 the	 experimentally	

observed	Eoc	values,	which	can	be	ascribed	to	an	increased	junction	area	(~9x)	in	the	experiment	

as	compared	to	the	planar	model.	These	open	circuit	potential	differences	manifest	themselves	

as	large	differences	between	the	modeled	and	experimental	two-electrode	operating	points	due	

to	the	proximity	of	the	modeled	operating	point	to	the	maximum	power	point	in	the	WO3	J-E	

behaviour;	any	unaccounted	for	resistances	and/or	open	circuit	potential	losses	between	model	

and	 experiment,	 such	 as	 junction	 area,	 will	 therefore	 cause	 a	 precipitous	 decrease	 in	 the	

experimental	 operating	 current	 density.	 This	 is	 observed	 in	 both	 experimental	 illumination	

conditions	where	under	one	Sun	 illumination	 the	Eoc	 is	 less	 than	1.23	V	 such	 that	 the	device	

cannot	 perform	 unassisted	 water	 splitting	 at	 standard	 conditions.	 	 Under	 concentrated	

illumination	 the	 experimental	 Eoc	 exceeds	 1.23	 V,	 but	 is	 lower	 than	 the	modeled	 value	 and	

explains	the	cause	for	the	difference	in	operating	points.	
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3.4.3 2D	Optical	Modeling	

As	shown	in	Figure	2.2a,	b,	WO3	forms	a	conformal	coating	on	the	Si	microwires	and	the	planar,	

degenerate	 Si	 base,	 all	 of	which	 can	 result	 in	photocurrent.	 	 To	 investigate	 the	photocurrent	

contribution	 from	WO3	 on	 the	microwire	 sidewalls	 relative	 to	 that	 from	WO3	 on	 the	 planar,	

degenerate	 Si	 base,	 two-dimensional	 finite-difference	 time	 domain	 (FDTD)	 electromagnetic	

modelling	was	performed.	Table	3.1	demonstrates	that	for	thin	WO3	coatings	(300nm),	only	17%	

(0.56	mA-cm-2)	of	the	above	band	gap	light	absorbed	by	the	device	is	absorbed	in	WO3.		The	WO3	

absorption	 fraction	 increases	 to	 31%	 (1.08	mA-cm-2)	 for	 thicker	WO3	 coatings	 (1.5	μm).	 	 The	

carrier	generation	rate	spatial	profiles	demonstrate	that	the	majority	of	the	WO3	absorption	is	

within	the	top	10	μm	of	the	device,	with	many	photons	whose	energies	are	larger	than	the	energy	

of	the	WO3	band	gap	transmitted	through	the	WO3	to	the	underlying	Si,	where	absorption	is	not	

useful	 due	 to	 the	 current	 limiting	 absorption	 in	 the	 WO3.	 	 This	 behaviour	 implies	 that	 an	

alternative	 WO3	 geometry	 is	 desired	 to	 enhance	 the	 WO3	 absorption.	 	 However,	 a	 device	

geometry	designed	to	increase	the	WO3	absorption	should	optimally	accommodate	the	~1	μm	

minority	carrier	diffusion	length	of	WO3,	implying	the	beneficial	use	of	WO3	layers	<1	μm	thick.	

	

For	300	nm	thick	WO3	coatings,	73%	of	the	total	WO3	optical	absorption	occurred	in	WO3	on	the	

sidewalls	of	the	Si	microwires.		This	absorption	fraction	increased	to	99%	for	1.5	μm	thick	WO3	

coatings;	 the	 500nm	 thick	 WO3	 coatings	 used	 experimentally	 are	 projected	 at	 ~76%.	 	 This	

substantial	 fraction	 of	 absorption	 along	 the	 sidewalls	 versus	 at	 the	 bottom	 of	 the	 device	

architecture	indicates	that	similar	performance	is	expected	for	on-wafer	microwires	compared	

to	free-standing	microwire	array	devices	that	have	been	removed	from	the	growth	wafer,	which	
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will	 be	 a	 crucial	 step	 for	 integration	 of	 this	 tandem	 device	 into	 a	 fully	 functional	 solar	 fuels	

generator.		Additionally,	scattering	particles	could	be	introduced	to	redirect	more	light	toward	

the	microwire	sidewalls	for	enhanced	WO3	absorption.
37,39	

	

3.4.4 Toward	Higher	Efficiency	Devices	 	

Integration	 of	 new	 photoanode	materials	 in	 place	 of	WO3	 has	 the	 potential	 to	 increase	 the	

performance	of	the	tandem	device	by	producing	more	negative	Eoc	values	as	well	as	much	larger	

values	of	the	current	density	at	E	=	Eo’(O2/H2O).		To	produce	a	more	negative	value	of	Eoc,	the	

potential	of	the	conduction	band	of	the	anode	material	must	be	more	negative	than	the	potential	

of	the	conduction	band	of	WO3,	i.e.,	closer	to	the	vacuum,	thereby	increasing	the	barrier	height	

at	the	semiconductor/liquid	junction.		Recent	studies	of	mixed-metal	oxides	have	demonstrated	

photoanode	 materials	 with	 smaller	 electron	 affinities	 than	 WO3.
28,68,69	 The	 production	 of	

increased	current	density	at	E	=	Eo’(O2/H2O)	will	 require	 lowering	 the	 recombination	 rates	by	

improving	the	material	quality	and	passivating	surface	states,	as	well	as	discovering	narrower	

band	gap	materials	that	are	stable	under	oxidizing	conditions.		Additionally	the	anodes	must	be	

stable	 under	 conditions	 where	 the	 cathode	 and	 membrane	 materials	 are	 stable,	 and	 under	

conditions	where	the	membrane	exhibits	high	transference	numbers	for	protons,	to	allow	for	

effective,	passive	neutralization	of	 the	pH	gradient	between	 the	 sites	of	water	oxidation	and	

water	 reduction	 while	 maintaining	 product	 separation	 for	 intrinsically	 safe	 operation	 of	 the	

system	under	varying	levels	of	illumination.	
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3.5 Conclusions	

A	Si/WO3	integrated	tandem	junction	device	capable	of	unassisted	solar-driven	water-	splitting	

has	been	developed	and	used	to	demonstrate	unassisted	hydrogen	evolution	under	moderate	

light	 concentration.	 This	 system	 provides	 proof-of-principle	 for	 the	 design.	 The	 approach	 is	

attractive	 because	 it	 provides	 materials	 flexibility	 for	 the	 Si	 tandem	 partner	 absorber,	 an	

optimized	electrochemical	geometry,	embedment	in	a	flexible,	gas	impermeable,	ion	exchange	

membrane,	and	enhanced	absorption	and	carrier	collection	properties	relative	to	planar	designs.	

The	Si/WO3	described	herein	demonstrated	additive	voltages	across	the	tandem	device	resulting	

in	an	Eoc	=	-1.21	V	vs	Eo’(O2/H2O)	Modest	optical	concentration	(12	Suns)	produced	a	shift	in	Eoc	

to	potentials	negative	of	Eo’(O2/H2O)	indicating	that	the	device	could	split	water	in	an	unassisted	

fashion.	Two-electrode	measurements	performed	with	no	applied	bias	between	the	photoanode	

and	a	Pt	disc	cathode	resulted	in	hydrogen	production	at	current	densities	of	0.060	mA-cm-2	and	

0.017	 mA-cm-2	 when	 the	 catholyte	 was	 saturated	 with	 Ar(g)	 and	 H2(g),	 respectively.	 These	

operating	points	 agreed	well	with	 the	 values	 that	were	predicted	 from	 the	 load-line	 analysis	

based	 on	 separate	 measurements	 of	 the	 performance	 of	 the	 cathodic	 and	 photoanodic	

electrodes.	The	low	energy	conversion	efficiencies	result	from	a	highly	non-optimal	band	gap	and	

photovoltage	of	the	WO3/liquid	contact,	and	much	higher	efficiencies	could	be	obtained	 if	an	

alternative	suitable	photoanode	system	were	 identified	that	was	also	stable	under	conditions	

where	the	remainder	of	the	system	was	stable.	
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4 Si/TiO2	 Tandem-Junction	 Microwire	 Arrays	 for	 Unassisted	

Solar-Driven	Water	Splitting	

4.1 Introduction	and	Motivation	

Arrays	of	semiconducting	nanowires	or	microwires	provide	an	interesting	morphology	for	solar	

fuels	generation,	due	to	a	minimized	ionic	transport	length	between	the	anode	and	cathode,	the	

arrangement	of	 individual	and	complete	device	units	 in	parallel	 to	provide	protection	against	

catastrophic	failure	in	the	event	that	a	single	device	unit	fails,	reduced	materials	purity	and	usage	

requirements	due	to	orthogonalized	directions	of	light	absorption	and	minority-carrier	collection,	

the	 ability	 to	 decouple	 optical	 absorption	 and	 catalytic	 activity	 of	 metallic	 electrocatalysts	

through	strategic	placement	of	the	catalyst	in	the	internal	volume	of	the	array,	and	a	high	internal	

surface	 area	 for	 facile	 functional	 support	 of	 earth-abundant	 electrocatalysts.31,41,43	 	 Single-

junction	Si	microwires	cannot	provide	sufficient	voltage	to	perform	unassisted	solar-driven	water	

splitting	 (1.23	 V	 at	 STP),	 and	 hence	 tandem	 core-shell	 structures	 or	 dual	 microwire	 array	

structures	are	being	explored.		Theoretical	calculations	indicate	that	tandem-junction	devices	can	

produce	high	efficiencies	for	integrated	solar-driven	water	splitting,	and	hence	both	planar	and	

non-planar	tandem-junction	systems	have	been	designed	and	fabricated.14-17,30,62	

	

Typical	 demonstration	 tandem-junction	 devices	 have	 been	 fabricated	 using	 either	 a	

homojunction	or	heterojunction	on	a	Si	microwire	core.		The	core	is	surrounded	by	a	wide	band	

gap	absorber	that	forms	the	second	junction,	which	is	generally	a	semiconductor-liquid	junction.		
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Si	 micro-	 and	 nano-	 wire	 tandem-junction	 devices	 have,	 however,	 exhibited	 low	 operating	

current	 densities	 for	 water	 splitting,	 due	 to	 the	 need	 for	 large	 open-circuit	 voltages	 (Voc)	 to	

overcome	the	thermodynamic	and	kinetic	requirements	for	sustained	H2(g)	and	O2(g)	production	

under	standard-state	conditions.30,62		WO3	is	attractive	for	a	demonstration	system	because	it	is	

acid-stable,	 as	 is	 Si	 and	 Nafion,	 enabling	 the	 construction	 of	 a	 fully	 functional	 membrane-

embedded	device	for	operation	in	locally	acidic	conditions.		

	

In	such	structures,	the	open	circuit	potential	(Eoc)	of	the	WO3/liquid	contact	ultimately	limits	the	

water-splitting	performance	of	microwire	Si/WO3	core-shell	tandem	devices.31			Si/WO3	devices	

fabricated	 previously	 also	 included	 a	 tin-doped	 indium	 oxide	 (ITO)	 layer	 to	 provide	 efficient	

charge	 transfer	 between	 the	 Si	 and	 WO3,	 but	 the	 ITO	 layer	 was	 unstable	 under	 operating	

conditions	and	thus	limited	the	ultimate	device	stability.31	

	

Larger	 Eoc	 values	 have	 been	 obtained	 from	 nanowire	 Si/TiO2	 core-shell	 structures	 than	 from	

microwire	 Si/WO3	 structures	 because	 the	 wide	 band	 gap	 TiO2	 produces	 a	 relatively	 large	

photovoltage	 for	 the	 device	 as	 a	 whole.	 	 In	 such	 structures,	 relatively	 low	 Eoc	 values	 were,	

however,	observed	from	the	radial	Si	junction,30	limiting	the	observed	solar-to-hydrogen	(STH)	

efficiency,	ηSTH,	of	devices	reported	to	date.		We	describe	herein	the	fabrication	and	properties	

of	a	device	in	which	the	WO3	has	been	replaced	by	TiO2,	to	generate	a	larger	Eoc,	and	in	which	

the	ITO	has	been	replaced	by	fluorine-doped	tin	oxide	(FTO),	to	improve	the	long-term	stability	

of	the	demonstration	device.		In	conjunction	with	the	high	band	gap	of	TiO2,	the	presence	of	a	

high-quality	np+-Si	homojunction	is	expected	to	result	in	a	larger	complete	device	Eoc	that	should	
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enable	 higher	 operating	 current	 densities	 and	 thus	 produce	 improved	 STH	 efficiencies	 in	 a	

demonstration-type	of	device.	

	

4.2 Fabrication	Methods	

	

Figure	4.1:	 Si/TiO2	 tandem	 junction	device	 fabrication	process	 a)	 3	µm	diameter	 circular	Cu	

growth	catalysts	photolithographically	patterned	in	a	7	µm	x	7	µm	matrix	in	a	500	nm	thick	SiO2	

layer	on	an	n+-Si	(111)-oriented	wafer.		b)	n-Si	microwire	array	growth	at	1000	°C	in	a	flowing	gas	

consisting	of	SiCl4	and	PH3	in	H2.		c)	Metal	and	organic	cleaned	Si	microwire	array	that	has	a	SiO2	

diffusion	barrier	around	each	wire’s	base,	 formed	by	a	dry	oxidation	of	 the	entire	wire	array	

followed	 by	 a	 polymetyldisiloxane	mask	 infill	 and	 subsequent	 etch	 in	 HF(aq)	 to	 remove	 the	

exposed	SiO2.		d)	p
+-Si	emitter	formation	by	gas	phase	doping	with	BCl3.	e)	Conformal	deposition	

of	FTO	by	spray	pyrolysis	at	500°	C	in	air.		f)	TiO2	deposition	by	an	aqueous	hydrothermal	process	

followed	by	a	30	min	anneal	at	450	°C	in	air.	
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np+-Si/FTO/TiO2	 devices	 were	 fabricated	 through	 formation	 of	 a	 radial	 np+-Si	 microwire	

homojunction,	 followed	 by	 sequential	 deposition	 of	 conformal	 FTO	 and	 TiO2	 layers	 (see	 the	

Appendix	A	 for	 complete	 details).	 	 Si	microwires	were	 first	 grown	on	 a	 photolithographically	

patterned	wafer	in	which	3	µm	diameter	circular	Cu	catalysts	were	deposited	in	a	7	µm	x	7	µm	

square	pattern,	with	a	SiO2	mask	layer	on	the	remainder	of	the	Si	surface	(Figure	4.1a).		The	Si	

microwires	were	grown	using	a	vapor-liquid-solid	(VLS)	chemical-vapor	deposition	(CVD)	process	

in	which	SiCl4	at	1000	˚C	 in	H2(g)	was	the	Si	source,	and	PH3(g)	was	the	n-type	dopant	source	

(Figure	4.1b).		The	Si	microwire	arrays	were	then	cleaned	using	RCA	I	and	II	processes	to	remove	

organics	and	metals,	respectively,	including	the	remaining	Cu	catalyst.		A	SiO2	diffusion	barrier	

was	formed	at	the	microwire	bases	by	producing	a	SiO2	layer	using	a	dry	oxidation,	masking	the	

bottom	of	 the	microwire	 array	with	 polydimethylsilicon	 (PDMS),	 etching	 the	 exposed	 SiO2	 in	

HF(aq),	 and	 then	 removing	 the	 PDMS	 layer	 (Figure	 4.1c).	 	 Radial	 p+-Si	 emitters	were	 formed	

through	gas-phase	diffusional	doping	using	BCl3	at	950˚C	in	H2(g)	(Figure	4.1d).		A	conformal	FTO	

layer	was	 then	 deposited	 on	 a	 Si	microwire	 array	 via	 spray	 pyrolysis	 of	 0.015	M	 ammonium	

fluoride	 and	 0.49	M	butyltin	 trichloride	 in	 an	 ethanol/water	 solution	 (Figure	 4.1e),	while	 the	

sample	was	placed	on	a	hotplate	and	maintained	at	500	˚C.			Finally,	a	conformal	nano-structured	

TiO2	layer	was	deposited	at	150	˚C	for	6	h	on	the	FTO	in	a	hydrothermal	process	that	used	an	

aqueous	solution	of	0.05	M	titanium	n-butoxide	and	6	M	HCl.70	 	Subsequent	annealing	of	the	

array	at	450	˚C	for	30	min	resulted	in	the	formation	of	a	nano-structured,	conformal	rutile	TiO2	

(Figure	 4.1f)	 coating.	 	 Figure	 4.2	 shows	 scanning-electron	 micrograph	 (SEM)	 images	 of	 the	

structures	obtained	after	the	process	steps	depicted	schematically	in	Figure	4.1d-f.	
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Figure	 4.2:	 SEM	 images	 throughout	 Si/TiO2	 device	 fabrication	 process	 Scanning-electron	

microscopy	 (SEM)	 images	 showing	 samples	at	 various	 stages	 in	 the	 fabrication	process.	 	 a)	A	

radial	junction	np+-Si	microwire	array	(Figure	4.1d).		Inset	shows	a	zoomed-in	image	of	the	SiO2	

diffusion	barrier	at	the	bases	of	the	microwires.	 	b)	FTO-coated	np+-Si	microwire	array	(Figure	

4.1e).	c)	TiO2-coated	np
+-Si/FTO	microwire	array	(Figure	4.1f).		d)	Cross	section	of	a	single	np+-

Si/FTO/TiO2	microwire	with	each	layer	labeled.	

	

4.3 Photoelectrochemical	Performance	

In	contact	with	a	non-aqueous	ferrocenium/ferrocene	redox	couple,	the	np+-Si	microwire	arrays	

demonstrated	 similar	 performance	 to	 arrays	 reported	 previously,	 exhibiting	Voc	 =	 0.483	 V,	 a	

short-circuit	current	density	(Jsc)	of	13	mA	cm-2,	and	a	fill	factor	(ff)	of	0.48,	resulting	in	an	ideal	
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regenerative	cell	efficiency,	η,	of	3.0%.31,71		Contact	resistance	measurements	between	p+-Si	and	

FTO	performed	on	planar	substrates	using	the	circular	transmission	line	measurement	technique	

(see	 Supplementary	 Information	 for	 complete	 details)72	 	 yielded	 a	 specific	 contact	 resistance	

value	of	16.6	±	9.3	Ω	cm2.		This	resistance	corresponds	to	a	~3	mV	voltage	loss	due	to	the	p+-

Si/FTO	contact,	assuming	light-limited	current	densities	of	~	2	mA	cm-2	for	rutile	TiO2	under	Air	

Mass	 (AM)	 1.5G	 illumination	 conditions	 and	 the	 ~10x	 surface	 area	 increase	 of	 Si	microwires	

relative	to	the	area	of	an	analogous	planar	device.			At	geometric	current	densities	of	~	10	mA	

cm-2,	 the	voltage	 losses	due	to	this	contact	resistance	will	be	~16	mV	and	~160	mV	for	the	Si	

microwire	and	planar	architectures,	 respectively.	 	 Therefore	 the	 contact	 resistance	of	 the	p+-

Si/FTO	interface	is	sufficiently	low	as	to	allow	use	of	Si	microwire	arrays	under	1	Sun	illumination	

conditions.		However,	further	contact	development	is	required	for	planar	architectures	because	

a	160	mV	contact	resistance	would	significantly	affect	the	overall	device	performance.	
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Figure	4.3:	PEC	behavior	of	 Si/TiO2	device	 in	acid	and	base	 Current	density	 versus	potential	

behavior	 of	 p+-Si/FTO/TiO2	 microwire	 array	 photoelectrodes	 under	 dark	 (1.0	 M	 KOH)	 and	

simulated	1	Sun	conditions	in	1.0	M	KOH(aq)	and	in	1.0	M	H2SO4(aq).		This	behavior	demonstrates	

the	superior	photoanode	performance	in	1.0	M	KOH,	consistent	with	higher	catalytic	activity	for	

oxygen	evolution	on	the	TiO2	surface	in	alkaline	media	relative	to	under	acidic	conditions.	

	

Figure	4.3	shows	the	current	density	versus	potential	(J-E)	behavior	of	p+-Si/FTO/TiO2	microwire	

arrays	in	1.0	M	H2SO4(aq)	and	1.0	M	KOH(aq),	respectively,	in	a	three-electrode	electrochemical	

cell	configuration.		In	1.0	M	KOH,	p+-Si/FTO/TiO2	microwire	arrays,	in	which	the	p+-Si	microwires	

acted	 as	 a	 physical	 scaffold	 that	 facilitated	 evaluation	 of	 the	 performance	 of	 the	 TiO2	 in	 the	

microwire	geometry,	exhibited	an	open-circuit	potential,	Eoc	=	 -1.0	V	vs	E0’(OH-/O2),	a	current	

density	at	E0’(OH-/O2)	=	0.89	mA	cm-2,	and	ff	=	0.39,	for	a	solar-to-oxygen	ideal	regenerative	cell	

efficiency	of	ηIRC	=	0.35%	(Figure	4.4).		In	contrast,	complete	np+-Si/FTO/TiO2	core-shell	microwire	
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array	 devices	 exhibited	 voltage	 addition	 across	 the	 series-connected	 np+-Si	 and	 TiO2-liquid	

junctions,	with	Eoc	=	 -1.41	±	0.11	V	vs	E0’(OH-/O2),	as	expected	for	this	 tandem	junction.	 	The	

devices	exhibited	J	=	0.62	±	0.20	mA	cm-2	at	E	=	E0’(OH-/O2)		ff	=	0.52	±	0.04,	and	ηIRC	=	0.47	±	

0.18%	over	the	9	photoelectrodes	tested.		Figure	4.4	presents	the	behavior	for	one	of	the	best	

performing	devices	tested,	which	exhibited	Eoc	=	-1.50	V	vs	E0’(OH-/O2),		J	=	0.78	mA	cm-2	at	E	=	

E0’(OH-/O2),	ff	=	0.51,	and	ηIRC	=	0.60%.		Due	to	the	low	current	densities,	this	device	is	expected	

to	operate	near	0	V	vs	the	reversible	hydrogen	electrode	(RHE)	for	unassisted	water	splitting,	and	

thus	ought	to	exhibit	J	=	0.32	mA	cm-2	and	ηSTH	=	0.39%	in	a	two-electrode	full	cell	configuration.	

	

Figure	 4.4:	 Tandem	 and	 single	 junction	 Si/TiO2	 device	 performance	 under	 simulated	 1	 Sun	

illumination	 Current	 density	 versus	 potential	 behavior	 of	 p+-Si/FTO/TiO2	 and	 np
+-Si/FTO/TiO2	

microwire	 array	 photoelectrodes	 in	 the	 dark	 and	 under	 simulated	 1	 Sun	 conditions.	 	 This	

demonstrates	the	additive	voltage	of	the	tandem	junction	device	and	its	high	EOC,	-1.5	V	vs	E0’(OH-
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/O2),	allowing	for	a	relatively	high	current	density	of	0.32	mA	cm-2	at	E	=	-1.23	V	vs	E0’(OH-/O2)	(0	

V	vs	RHE).	

	

The	efficiency	of	complete	core-shell	np+-Si/FTO/TiO2	microwire-based	devices	was	higher	in	1.0	

M	KOH(aq)	than	in	1.0	M	H2SO4(aq),	consistent	with	the	reduced	catalytic	activity	of	TiO2	for	the	

oxygen-evolution	 reaction	 in	 acidic	 media	 relative	 to	 the	 catalytic	 activity	 under	 alkaline	

conditions.		In	contact	with	1.0	M	H2SO4(aq),	addition	of	an	IrO2	electrocatalyst	to	the	TiO2	surface	

only	slightly	enhanced	the	fill	factor,	in	accord	with	prior	work.30	

	

Figure	4.5:	24	hour	PEC	stability	of	Si/TiO2	device	Current	density	versus	time	behavior	of	np+-

Si/FTO/TiO2	 microwire	 array	 photoelectrodes	 under	 simulated	 1	 Sun	 conditions	 and	 held	

potentiostatically	 at	 0	 V	 vs	 RHE.	 	 The	 first	 run	 lasted	 24	 h	 and	was	 followed	 by	 1	 h	without	
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illumination	 at	 open	 circuit,	 in	 addition	 to	 a	 subsequent	 4	 hour	 run	 under	 simulated	 1	 Sun	

conditions	while	being	held	potentiostatically	at	E	=	-1.23	V	vs	E0’(OH-/O2)	(0	V	vs	RHE).	

	

Under	1	Sun	of	simulated	sunlight,	the	current	density	decreased	by	~15%	from	its	initial	value	

during	24	h	of	continuous	operation	under	potential	control	at	0	V	vs	RHE	(Figure	4.5).		However,	

when	the	illumination	was	discontinued	for	1	h	and	then	reestablished,	the	electrode	returned	

to	near	its	initial	performance	and	subsequently	exhibited	a	similar,	albeit	slightly	lower,	current	

density	 vs	 time	 behavior	 as	 that	 observed	 in	 the	 initial	 stability	 measurement.	 	 Cyclic	

voltammograms	taken	throughout	the	stability	measurement	demonstrate	a	decreased	current	

density	 near	 Eoc	 as	 the	measurement	 progressed.	 	 However,	 at	more	 positive	 potentials	 the	

current	 density	 was	 essentially	 constant	 vs	 time,	 suggesting	 that	 a	 potential	 dependent	

mechanism	affects	the	current	density	at	the	most	negative	potentials.	 	Two	possible	physical	

mechanisms	consistent	with	a	long	time	constant	and	potential	dependent	behavior	include	a	

surface	 reaction	 at	 the	 TiO2/liquid	 interface	 that	 interferes	 with	 catalysis	 and/or	 carrier	

separation	and	activation	of	trap	states	within	the	TiO2	layer.	

	

4.4 Discussion	and	Conclusions	

Although	the	results	herein	demonstrate	an	improvement	in	open-circuit	voltage	and	stability	for	

microwire	array	devices	when	used	to	effect	unassisted	solar-driven	water	splitting	relative	to	

the	 behavior	 of	 np+-Si	 microwire/WO3	 devices,	 the	 band	 gap	 of	 the	 TiO2	 severely	 limits	 the	

current	density	achievable	under	1	Sun	 illumination	conditions.	 	Accordingly,	maintaining	 the	

high	Eoc	from	the	wide-band	gap	material	while	narrowing	the	band	gap	of	the	top	absorber	layer	
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is	 crucial	 to	 obtain	 further	 significant	 efficiency	 improvements,	 as	 has	 been	demonstrated	 in	

many	planar	designs.16,17		To	date,	incorporation	of	lower	band	gap,	high	quality	materials	has	

been	challenging	on	Si	microwire	arrays	and	other	similar	semiconductor	architectures.51,52	

	

The	combination	of	material	stability	and	sufficient	voltage	production	has	limited	and	continues	

to	limit	microwire	and	similar	three	dimensionally	structured	water	splitting	device	efficiencies.		

Furthermore,	 the	 operational	 conditions	 under	 which	 the	 highest	 performance	 is	 achieved	

further	limit	options	for	free-standing	device	fabrication,	such	as	membrane	compatibility.		For	

example,	the	TiO2	used	herein	limits	operation	to	aqueous	alkaline	conditions,	which	requires	an	

anion	 exchange	 membrane	 to	 provide	 ionic	 conductivity	 and	 gas	 separation	 capabilities.		

However,	 anion	exchange	membranes	 remain	at	 the	 fundamental	 research	 level	 and	are	not	

generally	designed	to	be	recast	in	Si	microwire	arrays	while	also	providing	suitable	mechanical	

support	 when	 removed	 from	 the	 growth	 substrate.	 	 To-date,	 attempts	 to	 incorporate	 anion	

exchange	membranes	into	these	devices	and	thereby	obtain	a	free-standing	device	failed	due	to	

the	 inability	 of	 the	 membrane	 casting	 process	 to	 infiltrate	 the	 Si	 microwire	 array	 and/or	

membrane	brittleness	thwarting	attempts	to	remove	the	arrays	intact	from	the	substrate.	

	

The	 tandem-junction	 np+-Si/FTO/TiO2	 microwire	 device	 reported	 herein	 demonstrates	 an	

efficiency	and	stability	improvement	over	previously	reported	devices.		This	improvement	was	

achieved	 by	 combining	 two	 high	 output-voltage	 junctions	 with	 complementary	 absorption	

regimes	 that	 simultaneously	 provide	 intrinsic	 stability	 under	 the	 designated	 operational	

conditions.	 	 Incorporation	of	an	 intermediate	FTO	 layer	provided	a	 sufficiently	 low	resistance	
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contact	 between	 the	 p+-Si	 and	 TiO2.	 	 Further	 efforts	 to	 develop	 compatible	 anion	 exchange	

membranes	 or	 to	 improve	 the	 performance	 in	 acidic	 media	 should	 provide	 additional	

improvements	that	are	necessary	for	application	of	free-standing	devices	in	scalable	solar-driven	

water-splitting	systems.
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5 Stabilization	 of	 Si	 Microwire	 Arrays	 for	 Solar-Driven	 H2O	

Oxidation	to	O2(g)	in	1.0	M	KOH(aq)	using	Conformal	Coatings	

of	Amorphous	TiO2	

5.1 Motivation	

Technologically	 important,	 small	 band-gap	 semiconductors	 such	 as	 Si	 are	 highly	 attractive	

materials	 for	 use	 as	 photoanodes	 to	 oxidize	 water,	 but	 are	 unstable	 to	 corrosion	 and/or	

passivation	under	anodic	conditions	in	aqueous	electrolytes.73		Single	crystalline	n-Si,	n-GaAs,	n-

GaP,	n-CdTe,	and	n-BiVO4	photoanodes	have	all	 recently	demonstrated	enhanced	stability	 (4-

100+	 hours)	 under	 continuous	 operation	 for	 water	 oxidation	 to	 O2(g)	 in	 aqueous	 alkaline	

electrolytes,	 with	 100%	 Faradaic	 efficiency,	 by	 use	 of	 electrically	 conductive,	 optically	

transparent,	 10-100	 nm	 thick	 protective	 films	 of	 amorphous	 TiO2	 deposited	 by	 atomic-layer	

deposition	(ALD).74-77	 	Arrays	of	semiconductor	microwires	or	nanowires	provide	an	especially	

attractive	system	architecture	for	the	direct	production	of	fuels	from	sunlight,	because	such	a	

structure	 provides	 a	 minimal	 path	 for	 ionic	 conduction,	 high	 optical	 absorption,	 78-82	 a	 high	

surface-area	 support	 for	 electrocatalyst	 loading49,	 and	 other	 distinctive,	 advantageous	

operational	features.41	The	application	of	conformal	protective	films	to	such	highly	anisotropic	

structures	by	use	of	sputtering	or	evaporation	is	expected	to	be	difficult,	whereas	the	self-limiting	

ALD	surface	condensation	reaction	technique	is	a	conformal	coating	process.	 	Accordingly,	we	

describe	 herein	 the	 use	 of	 ALD-deposited	 amorphous	 TiO2	 films	 to	 enable	 the	 continuous	
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oxidation	of	water	to	O2(g)	by	Si	microwire	array	photoanodes	for	>	2200	h	in	1.0	M	KOH(aq)	

under	simulated	1	Sun	illumination	conditions.	

	

5.2 Fabrication	Methods	

To	fabricate	the	structures	of	interest,	arrays	of	n-type	and	np+-radial	junction	Si	microwires	were	

coated	 with	 ALD-grown	 TiO2,
77	 followed	 by	 deposition	 of	 a	 nickel-chromium	 oxide	 oxygen-

evolution	catalyst	using	magnetron-sputtering	(see	the	Appendix	A	for	full	experimental	details).		

Figure	5.1a	 shows	a	 schematic	of	 the	process,	 and	Figure	5.1b	and	 c	 show	scanning-electron	

micrographs	(SEM)	of	the	Si	microwire	arrays	before	and	after	deposition	of	the	TiO2	protective	

coating	(2000	ALD	cycles,	~94	nm)	and	the	NiCrOx	catalyst	layer	(20	min	sputtering,	~40	nm	planar	

equivalent),	 respectively.	 	 Figure	 5.1d	 shows	 a	 cross-section	 near	 the	 base	 of	 a	 single	 fully	

processed	 (np+-Si/TiO2/NiCrOx)	microwire	within	 an	 array,	 demonstrating	 that	 the	 fabrication	

produced	the	desired	structure	as	well	as	a	conformal	layer	of	TiO2	having	a	relatively	uniform	

thickness	 along	 the	 height	 of	 the	 wire.	 	 A	 detailed	 inspection	 of	 an	 individual	 Si	 microwire	

indicated	that	the	NiCrOx	deposited	at	the	top	and	base	of	each	Si	microwire,	due	to	the	relatively	

line-of-site	 deposition	 profile	 of	 the	magnetron	 sputtering	 process.	 	 Only	 the	 regions	 of	 the	

NiCrOx	catalyst	on	the	surfaces	of	the	wires	are	expected	to	be	electrocatalytically	active,	due	to	

the	electrically	insulating	SiO2	on	the	sample	substrate.		
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Figure	5.1:	Fabrication	process	and	corresponding	SEM	images	of	a	TiO2	protected	Si	microwire	

array	 photoanode	 a)	 Schematic	 of	 a	 structure	 that	 consists	 of	 an	 np+-Si	 microwire-array	

conformally	coated	with	a	protective,	transparent,	and	hole-conducting	TiO2	layer,	with	the	TiO2	

layer	 subsequently	 coated	 with	 a	 NiCrOx	 oxygen-evolution	 catalyst.	 b)	 Scanning-electron	

micrograph	(SEM)	images	of	an	np+-Si	microwire-array	prior	to	further	processing.	c)	SEM	image	

of	a	fully	processed	microwire	array.	d)	SEM	cross-section	near	the	base	of	a	single	microwire,	

showing	the	conformality	of	the	TiO2	coating	with	a	thickness	of	94	nm.	
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5.3 Aqueous	Photoelectrochemical	Behavior	

Figure	 5.2	 shows	 the	 current	 density	 vs	 potential	 (J-E)	 behavior	 of	 an	 np+-Si/TiO2/NiCrOx	

microwire-array	photoelectrode	in	contact	with	(a)	1.0	M	KOH(aq)	(pH	=	13.6)	and	(b)	0.50	M	

K2SO4-0.050	M	K3Fe(CN)6-0.35	M	K4Fe(CN)6(aq)	in	the	presence	and	absence,	respectively,	of	100	

mW	cm-2	of	simulated	Air	Mass	(AM)	1.5	illumination.		Figure	5.2a	also	depicts	the	J-E	behavior	

of	a	p+-Si/TiO2/NiCrOx	microwire-array	electrode	 in	the	absence	of	 illumination,	to	allow	for	a	

comparison	of	the	onset	potentials	for	the	oxygen-evolution	reaction	between	the	illuminated	

photoanode	 and	 a	 degenerately	 doped	 unilluminated	 p+-Si	 anode.	 	 The	 one-electron,	 outer-

sphere,	reversible	Fe(CN)6
3–/4–	redox	couple	was	used	to	measure	the	intrinsic	energy-conversion	

properties	of	the	microwire-array	photoanodes.		Under	100	mW	cm-2	of	simulated	Air	Mass	(AM)	

1.5G	 illumination,	 the	 np+-Si/TiO2/NiCrOx	microwire-array	 produced	 an	 open-circuit	 potential	

(Eoc)	 of	 -0.62	 V	 vs.	 the	 formal	 potential	 for	water	 oxidation,	 E0�(O2/OH
-),	 and	 a	 light-limited	

photocurrent	density	(Jph)	of	7.1	mA	cm-2	in	1.0	M	KOH(aq),	and	produced	Eoc	=	-0.44	V	vs.	the	

Nernstian	potential	of	the	solution	(E(Fe(CN)63–/4–))	and	Jph	=		7.3	mA-cm-2	in	contact	with	Fe(CN)3-

/4-(aq).		A	diode	quality	factor	of	1.9-2.2	was	measured	in	contact	with	Fe(CN)3-/4-(aq)	from	the	J-

E	data	obtained	as	a	function	of	illumination	intensity.78,83	The	intrinsic	photoelectrode	behavior	

observed	 for	 the	np+-Si/TiO2/NiCrOx	photoanode	 in	 contact	with	 the	one-electron,	 reversible,	

Fe(CN)6
3-/4-	 redox	 system	 (Figure	5.2b)	demonstrated	an	energy	conversion	efficiency	of	1.8%	

with	a	fill	factor	of	0.54.			
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Figure	5.2:	PEC	behavior	of	an	n-Si/a-TiO2	microwire	array	photoelectrode	in	contact	with	1.0	

M	KOH	and	Fe(CN)63-/4-(aq)	Current	density	versus	potential	performance	of	np+-Si/TiO2/NiCrOx	

microwire-array	photoelectrodes	in	contact	with	a)	1.0	M	KOH(aq)	and	b)	Fe(CN)6
3-/4-(aq).		a)	The	

solid	 blue	 curve	 is	 under	 1-Sun	 simulated	 illumination,	 the	 solid	 black	 curve	 is	 under	 no	

illumination	 (dark),	 and	 the	 dashed	 black	 curve	 is	 the	 performance	 of	 a	 p+-Si/TiO2/NiCrOx	

microwire-array	electrode.	b)	The	illumination	intensity	was	adjusted	using	a	series	of	0.3	optical	

density	neutral-density	filters,	with	the	illumination	intensity	labelled	on	the	plot.	

For	comparison,	Figure	5.3	shows	the	J-E	behavior	in	the	presence	and	absence	of	illumination,	

respectively,	of	n-Si/TiO2/NiCrOx	microwire-array	photoelectrodes	in	(a)	1.0	M	KOH	and	(b)	an	

aqueous	Fe(CN)6
3-/4-	solution.		In	contact	with	1.0	M	KOH(aq),	these	samples	exhibited	Eoc	=	0.49	

V	vs.	E0�(O2/OH
-)	and	Jph	=	3.7	mA-cm-2	(Figure	5.3a),	whereas	in	contact	with	Fe(CN)6

3–/4–(aq)	the	

n-Si/TiO2/NiCrOx	microwire-arrays	exhibited	Eoc	=	0.18	V	vs.	E(Fe(CN)63–/4–)	and	Jph	=	3.1	mA-cm-2.	

The	intrinsic	photoelectrode	behavior	observed	for	the	n-Si/TiO2/NiCrOx	photoanode	in	contact	

with	the	Fe(CN)6
3-/4-	redox	system	(Figure	5.3b)	demonstrated	an	energy	conversion	efficiency	of	

0.3%	with	a	fill	factor	of	0.51.	When	measured	under	nominally	identical	conditions,	all	six	of	the	

microwire-array	 photoelectrodes	 studied	 herein	 showed	mutually	 similar	 photovoltages,	 but	
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exhibited	variable	photocurrent	densities	with	a	spread	of	~5	mA-cm-2,	consistent	with	a	variation	

in	wire	height	at	various	locations	on	the	wafer	from	which	the	electrodes	were	fabricated.84,85	

The	addition	of	scattering	particles	can	significantly	 increase	Jph	by	 increasing	the	 illumination	

path	length	through	the	photoactive	Si	microwire	array.39		

	

Figure	5.3:	PEC	behavior	of	an	np+-Si/a-TiO2	microwire	array	photoelectrode	in	contact	with	1.0	

M	KOH	and	Fe(CN)63-/4-(aq)		Current	density	versus	potential	data	for	n-Si/TiO2/NiCrOx	microwire-

array	photoelectrodes	in	contact	with	a)	1.0	M	KOH(aq)	and	b)	Fe(CN)6
3-/4-(aq).		a)	The	solid	blue	

curve	is	under	1	Sun	simulated	illumination,	the	solid	black	curve	is	in	the	absence	of	illumination	

(dark),	and	 the	dashed	black	curve	 is	 the	performance	of	a	p+-Si/TiO2/NiCrOx	microwire-array	

electrode.		b)	The	illumination	intensity	was	adjusted	using	a	series	of	0.3	optical	density	neutral-

density	filters,	with	the	resulting	illumination	intensity	labeled	on	the	plot.	

Figure	5.4a	shows	the	external	quantum	yield	(Φext)	for	np
+-Si/TiO2/NiCrOx	and	n-Si/TiO2/NiCrOx	

microwire-array	photoelectrodes	 in	contact	with	1.0	M	KOH(aq).	 	The	observed	behavior	was	

similar	 to	 that	 obtained	 previously	 for	 microwire-array	 photocathodes	 and	 photovoltaics	 at	

normal	incidence.39			The	Φext	exhibited	a	similar	dependence	on	wavelength	for	both	the	np+-Si	

and	the	n-Si	microwire-arrays,	consistent	with	behavior	dominated	by	absorption	and	charge-
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carrier	 collection	 in	 a	 microwire	 array.	 	 Integration	 of	 the	 wavelength-dependent	 spectral	

response	data	of	protected	np+-Si	and	n-Si	microwire-arrays	with	respect	to	the	AM	1.5G	solar	

spectrum	 yielded	 calculated	 photocurrent	 densities	 of	 7.9	 mA-cm-2	 and	 2.9	 mA-cm-2,	

respectively,	in	excellent	agreement	with	the	Jph	values	measured	from	the	J-E	behavior.		

	

Figure	5.4:	External	quantum	yield	of	n-Si	and	np+-Si	microwire	array	photoelectrodes	in	1.0	M	

KOH	External	quantum	yield	(Φext)	versus	wavelength	plot	of	representative	protected	n-Si	and	

np+-Si	microwire-array	photoelectrodes	in	contact	with	1.0	M	KOH(aq).			

Figure	5.5a	shows	the	time	dependence	of	the	photocurrent	density	of	an	np+-Si	microwire-array	

under	potentiostatic	control	at	0.36	V	vs.	E0�(O2/OH
-)	(0.70	V	vs.	a	Hg/HgO	reference	electrode).		

Figure	 5.5b	 shows	 the	 J-E	 data	 at	 10	 h	 intervals	 throughout	 the	 stability	 test,	 showing	 no	

significant	change	in	Jph,	Eoc	or	fill	factor	during	the	stability	evaluation.		As	shown	in	Figure	5.5c,	

a	comparison	between	the	amount	of	O2(g)	expected	based	on	Coulomb’s	law	and	the	amount	
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of	O2(g)	detected	using	a	calibrated	fluorescent	O2(g)	probe	indicated	~100%	Faradaic	efficiency	

for	 oxygen	 evolution.	 	 Assuming	 four	 electrons	 per	 Si	 atom	 dissolved,	 the	 total	 number	 of	

coulombs	of	charged	passed	during	the	stability	test,	6000	C,	exceeded	by	a	factor	of	20	the	300	

C	 of	 charge	 that	 would	 have	 been	 required	 to	 dissolve	 the	 entire	 Si	 microwire	 array.		

Furthermore,	assuming	that	10	nm	of	oxide	formation	would	result	in	complete	passivation	of	

the	electrode,	the	amount	of	charge	passed	establishes	a	lower	limit	of	9	x	104	on	the	branching	

ratio	for	water	oxidation	to	O2(g)	relative	to	oxidation	of	the	Si.			
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Figure	 5.5:	 >2200	 hour	 stability	 and	 oxygen	 evolution	 faradaic	 efficiency	 of	 np+-Si/a-TiO2	

microwire	 array	 photoelectrode	 a)	 Current	 density	 versus	 time	 for	 an	 n-p+-Si/TiO2/NiCrOx	

microwire-array	 photoelectrode	 under	 1	 Sun	 simulated	 illumination	 in	 1.0	M	 KOH(aq)	 under	

potential	control	at	0.36	V	vs	E0�(OH-/O2).		b)	Current	density	versus	potential	behavior	of	cyclic	

voltammograms	taken	at	10	h	intervals	throughout	the	duration	of	the	stability	test.	c)	Oxygen	

production	as	a	function	of	time	in	1.0	M	KOH(aq)	while	under	potential	control	at	0.36	V	vs	E0�

(OH-/O2).	 	The	Faradaic	efficiency	for	oxygen	evolution,	~100%,	was	determined	by	comparing	

the	 observed	 oxygen	 produced	 relative	 to	 the	 amount	 expected	 based	 on	 the	 total	 current	

passed	in	conjunction	with	the	use	of	Faraday’s	law.	



	

	

98	

5.4 Discussion	and	Conclusions	

Accounting	 for	 the	 ~20%	 capacity	 factor	 of	 sunlight,	 the	 2200	 h	 of	 continuous	 operation	

contained	the	same	amount	of	charge	as	would	be	passed	during	>	1	year	of	outdoor	operation.		

Because	 lower	 current	densities	 away	 from	peak	 illumination	 times	would	 likely	 increase	 the	

stability,	this	projected	>	1	year	stability	plausibly	represents	a	lower	limit	on	the	actual	stability	

of	 the	NiOx-coated	Si	 photoanodes	under	operational	 conditions.	 	 	A	detailed	 failure	analysis	

study	and	validated	accelerated	testing	protocols,	additionally	incorporating	possible	effects	of	

temperature	cycling	and	extended	periods	of	no	photocurrent	current	due	to	day/night	cycling,	

would	 clearly	 be	 required	 to	 establish	 the	 ultimate	 limit	 on	 the	 stability	 of	 the	 photoanodes	

described	 herein.	 	 The	 high	 internal	 surface	 area	 of	 a	 highly	 anisotropic	 structure	 such	 as	 a	

microwire	 array	produces	 a	 correspondingly	 low	 current	density	 at	 the	 areas	 exposed	 to	 the	

electrolyte.		This	low	current	density	is	expected	to	beneficially	reduce	the	rate	of	light-intensity-

dependent	 photocorrosion	 or	 photopassivation	 processes,	 because	 the	 photon	 flux	 per	

projected	 geometric	 area	 provided	 by	 sunlight	 produces	 minority-	 carrier	 currents	 that	 are	

distributed	over	a	large	internal	surface	area	of	the	solid/liquid	contact	in	the	internal	volume	of	

a	microwire-array.		Consistently,	the	microwire	arrays	exhibited	a	greater	degree	of	stability	than	

crystalline	Si	electrodes	protected	by	amorphous	TiO2	films	and	operated	at	30	mA	cm-2,	which	

exhibited	a	small	but	significant	decay	in	photocurrent	after	24	h	of	continuous	operation	in	the	

same	electrolyte.77	Incorporation	of	the	np+-Si/TiO2/NiCrOx	photoanode	into	a	complete	water	

splitting	 device	 operating	 at	 10%	 solar-to-hydrogen	 efficiency	would	 require	 a	 photocathode	

capable	of	producing	>10	mA-cm-2	at	1.5	V	and	addition	of	scattering	particles	to	increase	the	

absorption	 and	 current	 density	 in	 the	 Si	 microwires.39	 	 For	 efficient	 operation,	 such	 a	
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photocathode,	operating	near	its	Shockley-Quiesser	limit,	would	need	to	have	a	band-gap	of	~2.0	

eV	with	either	a	buried	junction	or	proper	band	positioning	relative	to	the	hydrogen	evolution	

potential.			The	observations	reported	herein	therefore	illustrate	an	additional	advantage	of	the	

amorphous	TiO2-based	protection	strategy	in	that	the	deposition	method,	ALD,	is	especially	well	

suited	 to	 be	 compatible	 with	 a	 wide	 range	 of	 high-efficiency	 materials	 while	 also	 being	

compatible	with	a	broad	range	of	morphologies	associated	with	highly	anisotropic	structures	of	

the	light	absorber.
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6 Functional	 Integration	 of	 Ni-Mo	 Electrocatalysts	 with	 Si	

Microwire	 Array	 Photocathodes	 to	 Simultaneously	 Achieve	

High	Fill	Factors	and	Light-Limited	Photocurrent	Densities	for	

Solar-Driven	Hydrogen	Evolution	

6.1 Introduction	

Photon	management	is	an	important	attribute	of	photoelectrodes	used	for	solar-driven	water-

splitting,	 especially	 for	 device	 architectures	 that	 incorporate	 optically	 opaque	 electrocatalyst	

coatings	 on	 the	 surface	 of	 a	 light	 absorbing	 material.49,86-88	 Specifically,	 the	 fill	 factor	 (ff)	 is	

generally	 negatively	 correlated	 with	 the	 light-limited	 photocurrent	 density	 (Jph),	 because	

increases	in	catalyst	loading	increase	the	ff,	but	also	produce	larger	parasitic	optical	absorption	

losses	and	thus	decrease	the	value	of	Jph	(Figure	6.1).49	Such	behavior	is	especially	apparent	for	

earth-abundant	electrocatalysts	for	the	hydrogen-evolution	reaction	(HER),	which	are	generally	

optically	opaque	and	require	large	mass	loadings	(≥	1	mg	cm-2)	to	achieve	the	requisite	catalytic	

activity.89-91	 Similar	 issues	 can	 also	 preclude	 optimal	 functional	 incorporation	 of	 currently	

available	electrocatalysts	 for	 the	oxygen-evolution	reaction	(OER)	 into	 integrated	photoanode	

structures	for	the	solar-driven	oxidation	of	H2O	to	O2(g).
39,92		
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Figure	 6.1:	 Generic	 planar	 water	 splitting	 device	 demonstrating	 deletrious	 catalyst	 light	

absorption	a)	Schematic	of	a	water-splitting	device	incorporating	two	planar	light	absorbers	in	a	

tandem	configuration,	two	electrocatalysts,	and	a	single	tunnel	junction	to	allow	serial	addition	

of	the	photovoltages	produced	by	each	semiconducting	light-absorber	unit.		The	opaque	catalyst	

on	the	light-incident	surface	(left	side)	is	the	source	of	the	trade-off	between	the	fill	factor	(ff)	

and	the	light-limited	current	density	(Jph).			

	

For	planar	photoelectrode	architectures,	 various	options	 to	mitigate	 this	 deleterious	 tradeoff	

between	 catalytic	 activity	 and	 optical	 transparency	 have	 been	 developed.	 	 For	 discrete	

photovoltaic	(PV)-biased	electrolysis	systems7,49,86-88,	the	PV	device	can	be	connected	electrically	
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to	discrete,	catalytic	electrodes	that	do	not	physically	obscure	incoming	light	from	the	PV	cell,	

with	 the	 interfacial	 reactions	 being	 performed	 by	 majority	 carriers.16,49	 Alternatively,	 in	

photoelectrode	structures	composed	of	a	single	photoabsorber,	a	transparent	back	contact	can	

be	used	in	conjunction	with	“backside”	illumination	so	that	the	catalyst	layer	is	not	in	the	optical	

path	 of	 the	 semiconductor.28,89-91	 For	 integrated	 photoelectrodes	 in	 which	 the	 interfacial	

reactions	can	be	performed	by	photogenerated	minority	carriers	(as	well	as	by	majority	carriers,	

for	structures	that	contain	a	buried	junction7,39,92),	the	thickness	of	the	electrocatalyst	film	can	

be	adjusted	to	obtain	an	optimum	compromise	between	the	optical	density	and	activity	of	the	

electrocatalyst	 film.	 	 This	 type	 of	 optimization	 favors	 the	 use	 of	 an	 extremely	 thin	 (<	 5	 nm)	

catalytic	 layer,	 at	 the	expense	of	 catalytic	 activity.92	 In	 certain	 instances,	nanostructuring	 can	

produce	optically	transparent,	highly	active	films	of	noble	metal	electrocatalysts.88	Yet	another	

method	involves	optimization	of	the	spatial	location	and	areal	coverage	of	islands	of	an	active,	

but	optically	absorbing	electrocatalyst	film,	by	use	of	a	photolithographic	or	shadow	mask.93	This	

approach	is	analogous	to	the	use	of	grid-line	top	contacts	in	photovoltaics.	

	

Absorbers	that	are	structured	in	three	dimensions,	such	as	Si	microwire	arrays43,46,94,95,	provide	

an	alternative,	general	approach	to	ameliorating	the	negative	correlation	between	the	ff	and	Jph.		

In	 such	systems,	a	 relatively	high	 loading	of	 catalyst	 can	be	positioned	at	 the	base	of	a	high-

aspect-ratio	microwire	array,	 leaving	exposed	a	 large	proportion	of	the	array	(Figure	6.2).	For	

example,	 earth-abundant	 metal	 catalysts	 such	 as	 Ni–Mo89,	 Ni	 or	 Co	 phosphide90,91,	 or	 Mo	

chalcogenides96	with	mass	 loadings	on	 the	order	of	 1	mg	 cm-2	 (i.e.,	 several	μm	thick)	 exhibit	

comparable	geometric	HER	activity	to	a	planar	>	10	nm	thick	Pt	film.		By	comparison,	the	depth	
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over	which	light	can	be	completely	absorbed	in	a	sparse	silicon	microwire	array	with	appropriate	

scattering	elements	is	on	the	order	of	100	μm.	The	relatively	low	proportional	volume	occupied	

by	high	catalyst	mass	loadings	can	therefore	enable	high	overall	catalytic	activity	while	preserving	

optical	accessibility	to	the	majority	of	the	light-absorber	material.		

	

	

Figure	 6.2:	 Si	 microwire-catalyst	 design	 to	 decouple	 light	 absorption	 and	 catalytic	 activity	

Schematic	 depiction	 of	 the	 membrane-electrode	 assembly	 (MEA)-type	 hydrogen-evolving	

photocathode	based	on	arrays	of	Si	microwires	embedded	 in	a	membrane	or	supported	on	a	

substrate,	with	a	layer	of	a	non-noble	catalyst	deposited	at	the	base	of	the	array	and	covered	by	

a	light-scattering	layer.	

	

A	recent	study	has	shown	that	a	CoP	HER	electrocatalyst	could	be	deposited	at	the	base	of	a	Si	

microwire	array,	yielding	activity	toward	photoelectrochemical	hydrogen	evolution	comparable	

to	that	of	a	control	sample	that	instead	used	Pt	as	the	HER	electrocatalyst.97	Si	microwire	arrays,	

however,	do	not	absorb	a	large	proportion	of	incoming,	normally	incident	photons	on	the	“first	
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pass”	 of	 such	 photons	 through	 the	 structure	 of	 the	 device.39	 As	 a	 result,	 significant	 parasitic	

optical	absorption	occurs	in	such	devices	even	with	the	catalyst	film	deposited	exclusively	at	the	

base	of	the	array.	An	improved	device	structure,	which	we	denote	as	the	“MEA”	architecture,	

resembles	a	fuel	cell	or	an	electrolyzer	membrane-electrode	assembly	(MEA)	(Figure	6.2).	Such	a	

structure	is	characterized	by	a	Si	microwire	array	on	the	order	of	100	μm	in	height	with	a	5–10	

μm	thick	porous	catalyst	layer	consisting	of	an	earth-abundant	electrocatalyst,	such	as	Ni–Mo,	

Mo	sulfide,	or	a	transition-metal	phosphide,	in	addition	to	a	1–3	μm	thick	porous	light-scattering	

layer,	such	as	particulate	TiO2	or	another	high-dielectric	scattering	material.	The	catalyst	layer	is	

analogous	to	the	one	found	in	a	conventional	MEA,	whereas	the	light-scattering	layer	serves	as	

an	 optical	 scattering	 element	 as	 well	 as	 a	 gas-diffusion	 layer.	 The	microwires	 act	 as	 current	

collectors	by	absorbing	solar	photons	and	producing	sufficient	electrochemical	potential	to	effect	

the	HER.	

	

In	this	approach,	if	the	catalyst	and	scattering	layers	are	both	sufficiently	porous,	reactant	species	

(e.g.,	water	or	H+)	can	diffuse	through	and	hydrogen	gas	can	diffuse	out	of	the	internal	volume	

of	the	device.		However,	when	incident	on	the	scattering	layer,	photons	will	be	reflected	laterally	

and	will	therefore	pass	multiple	times	through	the	Si	microwires.		An	analogous	light-scattering	

design	 was	 proposed	 and	 validated	 for	 Si	 microwire	 photovoltaics,	 and	 high	 light-limited	

photocurrent	 densities	 (>	 15	 mA	 cm-2	 at	 100	 mW	 cm-2	 of	 Air	 Mass	 (AM)	 1.5G	 simulated	

illumination	intensity)	were	indeed	obtained	in	that	system.39,40	In	principle,	the	MEA	approach	

allows	 for	 simultaneous	 maximization	 of	 the	 catalytic	 activity	 and	 optical	 absorption	 in	 the	

semiconducting	material,	even	when	a	relatively	large	mass	loading	of	electrocatalyst	is	required.		
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In	 this	 work,	 we	 have	 modeled	 and	 validated	 the	 MEA	 design	 using	 Si	 microwire-array	

photocathodes	to	drive	the	HER	in	conjunction	with	a	Ni–Mo	nanopowder	catalyst	and	a	TiO2	

light-scattering	layer.		All	experimental	details	can	be	found	in	Appendix	A.	

	 	

6.2 Photoelectrochemical	and	Optoelectronic	Modeling	Results	

	

Figure	6.3:	Modeled	behavior	of	Si	microwire	MEA	design	Current-density	versus	potential	(J-E)	

behavior	 obtained	 from	 the	 modeling	 of	 an	 n+p-Si	 microwire-array	 membrane-electrode	

assembly	(MEA,	magenta	curve)	and	for	a	stand-alone	n+p-Si	microwire-array	photovoltaic	device	

wired	 to	a	discrete,	purely	catalytic	electrode	 (red	curve).	 	Ni-Mo	was	used	as	 the	hydrogen-

evolution	 catalyst	 in	 both	 cases,	 and	 the	 dark	 catalytic	 activity	 of	 the	 catalyst	 was	modeled	

according	to	experimental	observations	(blue	curve).	
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Figure	6.3	shows	the	modeling	results	for	a	photocathode	consisting	of	an	n+p-Si	microwire	array	

in	 conjunction	 with	 a	 Ni–Mo	 nanopowder	 catalyst	 covered	 by	 a	 porous	 TiO2	 light-scattering	

overlayer.		To	provide	a	first-order	approximation	to	the	maximum	expected	device	performance	

for	such	a	structure,	the	modeling	treated	the	integrated	photoelectrode	as	a	zero-dimensional,	

series-connected	n+p-Si	junction	coupled	to	a	catalyst	layer	and	to	a	resistive	circuit	element.	The	

increased	dark-current	junction	area	(γ	in	Equation	A.4.2),	and	the	series	resistance	required	to	

transport	electrons	down	the	length	of	the	microwire	through	the	n+-Si	emitter	to	the	catalyst,	

were	 considered	 explicitly.	 The	 light-limited	 current	 density	 was	 obtained	 through	 two-

dimensional	full-wave	electromagnetic	simulations	of	a	Si	microwire	array	architecture.87,88	The	

modeling	 indicated	that	utilization	of	a	stand-alone	n+p-Si	microwire	array	PV	device	having	a	

solar	 energy-conversion	 efficiency	 of	 12.9%	 could,	 in	 principle,	 yield	 a	 maximum	 ideal	

regenerative	cell	efficiency	(ηIRC)
98	of	11.2%	based	on	the	hydrogen-evolution	half-reaction	being	

performed	at	such	a	photocathode.		This	value	is	essentially	the	same	as	the	value	that	would	be	

obtained	by	wiring	the	respective	photovoltaic	device	to	a	discrete,	catalytic	electrode	obtained	

by	using	a	high	mass-loading	of	the	Ni–Mo	HER	catalyst	on	an	inert	conducting	substrate.	
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Figure	6.4:	SEM	images	of	Si	microwire	MEA	device	and	optical	 images	of	Si	microwire	MEA	

variations	a)	Scanning-electron	micrographs	of	a	silicon	microwire	array	onto	which	a	layer	of	

Ni–Mo	 nanopowder	 and	 a	 layer	 of	 TiO2	 light-scattering	 particles	 have	 been	 deposited	

sequentially.	b)	Detail	of	the	boxed	area	in	a,	highlighted	to	delineate	the	Ni-Mo	nanopowder	

layer	beneath	the	layer	of	TiO2	particles.	c)	Optical	image	of	four	microwire	arrays	with	different	

nanoparticulate	depositions	within	the	array.	

Figure	6.4a,b	shows	a	scanning-electron	micrograph	of	a	Si	microwire	array	coated	at	the	base	

by	a	layer	of	Ni–Mo	nanopowder,	with	the	Si	and	Ni–Mo	bound	together	by	a	small	quantity	of	

poly-tetrafluoroethylene	(PTFE).		The	structure	also	contained	an	overlayer	of	TiO2	nanoparticles	

bound	 together	 with	 a	 Nafion	 ionomer,	 in	 accord	 with	 the	 full	 device	 structure	 depicted	
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schematically	in	Figure	6.2.99	Figure	6.4b	has	been	highlighted	to	delineate	the	layers	of	Ni–Mo	

and	TiO2,	respectively,	and	clearly	demonstrates	the	successful	fabrication	of	the	desired	MEA	

photocathode	structure.	Figure	6.4c	shows	an	optical	image	of	four	microwire	samples.		A	bare	

Si	microwire	array	was	iridescent	and	reflective,	similar	to	the	starting	wafer	prior	to	microwire	

growth,	because	of	the	highly	ordered,	sparse	microwire	array.		However,	the	addition	of	a	Ni-

Mo	catalyst	layer	altered	the	appearance	to	a	matte	black,	due	to	the	optical	absorption	in	both	

the	microwires	and	the	Ni-Mo	electrocatalyst.	Deposition	of	a	nanoparticulate	TiO2	layer	directly	

onto	the	base	of	the	Si	microwire	array,	or	over	a	Ni–Mo	film,	yielded	a	gray	photoelectrode,	

consistent	with	scattering	of	a	large	proportion	of	the	incoming	light	into	the	vertically	oriented	

Si	microwires.		The	sample	that	contained	an	underlying	Ni-Mo	layer	was	slightly	darker,	due	to	

imperfect	Ni-Mo	deposition	leaving	some	residual	optically	absorbing	catalyst	on	the	sidewalls	

of	the	microwires.	

	

Figure	 6.5:	 Dark	 catalytic	 performance	 of	 Ni-Mo	 electrocatalyst	 in	 Si	 microwire	 MEA	

configurations	Dark	J-E	behavior	for	electrodes	with	the	noted	compositions.	The	Si	microwire	
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samples	were	degenerately	doped	p-type	and	were	metallized	with	Ag	to	minimize	the	interfacial	

contact	resistance.	All	of	the	samples	were	evaluated	in	1.0	M	H2SO4(aq),	and	Ni–Mo	samples	

had	mass	loadings	of	~1	mg	cm-2,	except	for	the	Ti	foil	Ni–Mo/TiO2	sample,	which	had	a	mass	

loading	of	~3	mg	cm-2.	

Figure	6.5	shows	the	J-E	behavior	for	dark	HER	electrocatalysis	by	Ni–Mo	nanopowders	deposited	

on	planar	Ti	substrates,	as	well	as	for	Ni-Mo	nanopowders	deposited	at	the	bases	of	degenerately	

doped	p-type	 Si	microwire	 arrays	 (p+-Si	MWs),	with	 and	without	 overlayers	 of	 TiO2	 particles,	

respectively.	Before	 catalyst	deposition,	 the	Si	microwire	arrays	were	metallized	with	Ag	and	

annealed	to	minimize	any	effects	of	interfacial	contact	resistance	with	the	catalyst	materials.		As	

indicated	 in	 Figure	 6.5,	 the	 dark	 catalytic	 HER	 performance	 of	 the	 Ni–Mo	 films	 on	 the	 Si	

microwires	matched,	or	 slightly	exceeded,	 that	exhibited	by	 the	same	 loading	of	pure	Ni–Mo	

nanopowder	on	planar	Ti	electrodes.	
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Figure	 6.6:	 PEC	 performance	 of	 pn+-Si/Ni-Mo	 microwire	 photocathode	 under	 a	 variety	 of	

illumination	 intensities	Current-density	 versus	 potential	 (J-E)	 behavior	 of	 a	 planar	 n+p-Si/Ni–

Mo/TiO2	photocathode	in	contact	with	0.5	M	H2SO4(aq)	over	a	range	of	illumination	intensities	

from	 dark	 to	 ~10	 Suns,	with	 the	 light	 having	 an	 AM	 1.5G	 simulated	 spectral	 distribution.	 	 A	

polished	Pt	button	control	electrode	is	shown	for	reference.	

Figure	 6.6	 depicts	 the	 J-E	 behavior	 observed	 for	 illuminated	 planar	 Si	 n+p-junction	

photoelectrodes	 coated	 with	 a	 Ni–Mo/TiO2	 MEA	 composite	 film.	 For	 Ni-Mo	 catalyst	 mass	

loadings	on	the	order	of	1	mg	cm-2,	the	catalyst	and	scattering	film	produced	nearly	complete	

blocking	of	the	incident	light.		For	example,	with	the	MEA	layers	present,	the	planar	n+p-Si	device	

produced	|Jph|	<	1	mA	cm-2,	as	compared	to	|Jph|	>	25	mA	cm-2	for	low	loadings	of	Pt	on	planar	

n+p-Si	photocathodes.37			Increasing	the	light	intensity	to	~10	Suns	resulted	in	Jph	≈	-7.5	mA	cm-2,	

accompanied	by	a	rapid	onset	of	cathodic	photocurrent,	attesting	to	the	high	activity	of	the	Ni–

Mo	catalyst.	Similar	results	were	obtained	for	Ni–Mo	films	alone	on	planar	Si	substrates,	attesting	

to	the	extremely	high	optical	opacity	of	a	µm-thick,	nanostructured,	metallic	Ni-Mo	catalyst	film.	
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Figure	6.7:	Behavior	of	 the	best-performing	Si	microwire	array	MEA	photocathodes	of	each	

type	Current-density	versus	potential	 (J-E)	behavior	of	the	best-performing	Si	microwire-array	

devices	prepared	in	this	work,	as	well	as	for	control	samples	involving	Si	microwires	without	the	

catalyst	(n+p-Si/TiO2)	and	instead	utilizing	only	a	Pt	electrode	in	the	dark.	

Figure	 6.7	 presents	 the	 J-E	 behavior	 of	 the	 best-performing	 Si	 n+p-junction	 microwire	 array	

devices	prepared	in	this	work	that	also	contained	electrocatalyst	and/or	scattering	composites.		

To	 investigate	 the	 maximum	 light-limited	 current	 density	 generated	 solely	 by	 the	 n+p-Si	

microwires,	 a	 TiO2	 scattering	 layer	was	 introduced	 at	 the	 base	 of	 such	 a	microwire	 array	 to	

remove	any	influence	from	the	growth	substrate	and	to	increase	the	length	of	the	optical	path	

through	 the	 microwires.	 	 Without	 a	 catalyst,	 the	 light-limited	 current	 densities	 for	 such	 a	

structure	 approached	 25	 mA	 cm-2,	 in	 agreement	 with	 two-dimensional	 full-wave	 modeling	
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simulations.	 However,	 illuminated	 Si	 microwire	 arrays	 without	 an	 electrocatalyst	 exhibited	

negligible	photocurrent	density	at	potentials	positive	of	0	V	vs	RHE.		In	contrast	to	the	behavior	

without	a	catalyst,	deposition	of	2	mg-cm-2	of	Ni–Mo	at	the	base	of	the	microwire	array	produced	

similar	Jph	values	and	fill	factors	to	those	observed	when	Pt	was	electrolessly	deposited	on	the	

microwire	sidewalls	(Figure	6.7).	

Table	6.1:	Figures	of	merit	for	the	best-performing	Si	microwire	devices	of	each	type	

Device	 Voc	(mV)	 Jsc	(mA	cm-2)	 ff	 ηIRC	(%)	

TiO2	layer	 n/a	 25	 0	 0	

TiO2/Pt	 510	 20.2	 0.49	 5	

TiO2/Ni–Mo	 420	 14.3	 0.48	 2.9	
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Figure	6.8:	SEM	images	of	the	best-performing	devices	prepared	in	this	work	a)	Microwire	array	

with	a	TiO2	scattering	layer	only;	b)	Microwire	array	with	a	TiO2	scattering	layer	as	well	as	with	

electrolessly	 deposited	Pt	 catalyst	 at	 the	 tops	of	 the	microwires;	 c)	Ni–Mo/TiO2/Si	microwire	

array	full	MEA	device.	

Table	6.1	presents	the	compiled	results	for	photoelectrodes	of	each	type,	and	Figure	6.8	presents	

SEM	images	each	type	of	device.	The	best-performing	MEA-type	device	incorporating	the	Ni–Mo	

HER	catalyst	exhibited	Voc	=	0.42	V,	Jsc	=	-14.3	mA	cm-2,	and	a	fill	factor,	ff	=	0.48,	resulting	in	ηIRC	

=	 2.9%,	 without	 any	 corrections	 for	 solution	 or	 mass-transport	 losses.	 	 This	 efficiency	 value	

exceeds	 previous	 values	 of	 ηIRC	 =	 2.2%	produced	by	 electrodeposition	 of	Ni–Mo	onto	 Si	 n+p-
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junction	microwires.16,49	For	comparison,	a	device	with	a	TiO2	scattering	layer	and	a	Pt	catalyst	

electrolessly	deposited	on	the	sidewalls	of	the	microwires	produced	Voc	=	0.51	V,	Jsc	=	-20.2	mA	

cm-2,	and	ff	=	0.49,	resulting	in	ηIRC	=	5.0%.		Performance	statistics	are	given	in	Table	S1	for	MEA-

type	device	electrodes	along	with	n+p-Si/Pt	planar	electrodes.	

	

Figure	6.9:	Spectral	response	behavior	of	best-performing	Si	microwire	array	MEA	type	devices	

Spectral	response	data	for	the	best-performing	n+p-Si	microwire-array	photocathode	loaded	with	

Ni–Mo	and	TiO2	scattering	particles	(blue	curve)	and	for	the	best-performing	n+p-Si	microwire-

array	photocathode	loaded	with	Pt	and	TiO2	scattering	particles	(black	curve).		Integration	of	each	

data	set	with	the	AM	1.5G	spectrum	binned	at	the	same	intervals	(50	nm)	resulted	in	light-limited	

photocurrent	densities	of	15.8	and	17.5	mA	cm-2	for	the	Ni–Mo	and	Pt	samples,	respectively.		The	

slightly	lower	integrated	current	density	than	the	Jsc	measured	for	the	Pt	sample	could	be	due	to	
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morphological	 changes	 in	 the	 Pt	 between	 the	 J-E	 and	 spectral	 response	 measurements	 (>1	

month).	

	

Figure	6.9	 shows	 the	spectral	 response	data	 for	 the	best-performing	Ni–Mo/TiO2	and	Pt/TiO2	

devices.		Integration	of	the	spectral	response	data	with	the	AM	1.5G	spectrum	produced	light-

limited	photocurrent	densities	of	15.8	and	17.5	mA	cm-2	for	the	Ni-Mo/TiO2	and	Pt/TiO2	devices,	

respectively.		These	values	reflect	the	trend	observed	in	the	J-E	behavior	of	each	device	(c.f.Figure	

6.7).	 Consistent	 with	 previous	 reports37,92,	 the	maximum	 external	 quantum	 yield	 for	 the	 Pt-

deposited	sample	was	~0.6	at	~540	nm,	with	a	monotonic	decrease	at	longer	wavelengths.			

	

Figure	6.10:	Hydrogen	evolution	behavior	of	Si	microwire	array	MEA	devices	 to	understand	

voltage	loss	with	Ni-Mo	Current-density	versus	potential	(J-E)	behavior	for	three	samples	in	1.0	



	

	

116	

M	H2SO4(aq),	demonstrating	the	decrease	in	open-circuit	voltage	(Voc)	consistently	observed	in	

the	Ni–Mo	containing	samples	as	compared	to	in	samples	that	were	coated	with	Pt.		A	Voc	similar	

to	 that	 exhibited	 by	 the	 Pt-coated	 Si	microwire	 arrays	was	 observed	 upon	 introduction	 of	 a	

carbon-supported	 Ni-Mo	 catalyst	 that	 did	 not	 require	 annealing	 to	 activate	 the	 Ni-Mo	 after	

deposition.	

	

Diminished	photovoltages	were	 generally	 observed	 for	 Si/Ni–Mo	MEA	devices	 that	had	been	

treated	under	reducing	atmosphere	at	moderate	temperatures	 (450	°C),	 relative	to	Pt-coated	

samples	that	had	not	been	annealed.	To	address	this	disparity,	a	modified	Ni–Mo	nanopowder	

synthesis	was	developed	 involving	 reduction	of	 the	Ni–Mo	oxide	 intermediate	powder	 in	 the	

presence	of	carbon	black.	This	carbon-containing	catalyst	(Ni–Mo/C)	did	not	require	an	annealing	

step	 after	 deposition	 onto	 Si	 substrates.	 Figure	 6.10	 compares	 the	 J–E	 behavior	 for	 n+p-Si	

microwire-array	photocathodes	 loaded	with	the	standard	Ni–Mo	and	Ni–Mo/C	catalysts,	with	

the	latter	samples	not	annealed	after	deposition	of	the	catalyst	layer.		These	data	demonstrate	a	

recovery	of	the	Voc	upon	removal	of	the	catalyst-activation	annealing	step.			

	

6.3 Discussion	and	Future	Directions	

6.3.1 Model	

The	 modeling	 indicated	 the	 performance	 advantages	 provided,	 in	 principle,	 by	 the	 MEA	

architecture	relative	to	many	other	designs	for	integrated	photoelectrodes	that	contain	earth-

abundant	electrocatalysts.		Specifically,	the	modeling	predicts	that	ηIRC	>10%	is	possible	(Figure	

6.3),	with	the	main	contribution	to	higher	ηIRC	being	provided	by	the	decoupling	of	the	optical	
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absorption	and	catalytic	activity	of	the	electrocatalyst,	allowing	for	simultaneous	achievement	of	

high	ff	and	Jph	values.		These	predicted	efficiencies	rival	the	best-performing	previously	reported	

devices	for	hydrogen-evolving	photocathodes	that	involve	noble-metal	catalysts.28,100		

	

6.3.1.1 Performance	of	Ni–Mo	Nanopowder	Electrocatalysts	

Realization	of	the	predicted	high	ηIRC	values	requires	fabrication	of	high-performance	individual	

components,	along	with	synergistic	integration	to	form	full	MEA	device	architectures.		One	crucial	

component	is	the	hydrogen-evolution	catalyst.		Ni-Mo	nanopowders	have	exhibited	high	activity	

using	a	Ni–Mo	nanopowder	catalyst	on	planar	Ti	substrates	(Figure	6.5),	yielding	overpotentials	

of	 -80	 mV	 to	 produce	 current	 densities	 of	 -10	 mA	 cm-2	 for	 H2(g)	 production	 in	 1.0	 M	

H2SO4.
43,46,89,94,95	As	shown	in	Figure	6.5,	this	performance	was	matched	 in	the	MEA	structure	

with	 Ni–Mo/TiO2	 layers	 at	 the	 base	 of	 the	metallized	 Si	 microwire	 array.	 	 Furthermore,	 the	

catalytic	activity	observed	for	Ni–Mo	even	when	deposited	at	the	base	of	a	Si	microwire	array	

indicated	that	mass	transport	of	reactants	and	products	was	not	significantly	attenuated	by	the	

presence	of	the	microwires	or	by	the	porous	TiO2	scattering	layer.
44	The	data	also	illustrate	that	

Ni–Mo/TiO2	MEA	composite	electrodes	can	be	characterized	in	strongly	acidic	solutions,	due	to	

the	high	 activity	 and	 relatively	 stable	 initial	 performance	of	Ni–Mo	nanopowders	under	 such	

conditions.89	We	note,	however,	that	Ni–Mo	nanopowders	produced	in	this	way	do	not	exhibit	

indefinite	stability	under	acidic	conditions.	
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6.3.2 Photoelectrode	results	

The	 other	main	 components	 of	 the	MEA	 photocathode	 are	 the	 absorber	 and	 photovoltage-

producing	junction,	both	of	which	are	provided	by	the	n+p	Si	microwire	array.		The	observed	ηIRC	

=	5%	from	photoelectrodes	formed	using	thin	Pt	electrocatalyst	layers	indicated	the	formation	

of	high-quality	homojunctions	in	the	Si	microwires,	with	high	accompanying	optical	absorption	

in	the	material	(Figure	6.7).		This	combined	behavior	thus	produced	similar	performance	to	the	

best-performing	 microwire-array	 photocathodes	 that	 have	 been	 reported	 previously.37,90,91	

Integration	of	the	Ni–Mo	and	TiO2	layers	to	form	the	complete	MEA	device	depicted	in	Figure	6.2	

resulted	in	a	ηIRC	=	2.9%	for	the	best-performing	Si	microwire	photocathodes	in	conjunction	with	

earth-abundant	electrocatalysts	that	were	prepared	in	this	work.		This	level	of	performance	was	

obtained	by	maintaining	high	catalytic	activity	and	high	open-circuit	voltages,	in	conjunction	with	

Jph	values	50%	larger	than	those	obtained	for	devices	having	catalysts	deposited	on	the	sidewalls	

of	the	microwires.49,96	Additionally,	these	devices	far	outperformed	planar	devices	having	similar	

catalyst	loadings,	demonstrating	the	merits	of	decoupling	the	catalytic	activity	with	respect	to	

the	light-limited	current	density.	

	

6.3.3 Potential	for	Improved	Device	Performance	

A	comparison	between	the	best-performing	device	prepared	in	this	work,	ηIRC	=	2.9%,	and	the	

predictions	of	the	modeling	indicates	significant	potential	for	improvement	by	optimization	of	

the	microwire	device	architecture.	The	observed	Voc	and	Jph	values	were	markedly	 lower	than	

those	 predicted	 by	 the	 idealized,	 series-connected	 equivalent-circuit	 representation	 of	 the	

individual	components.	Specifically,	the	best-performing	n+p-Si	microwire-array	photoelectrodes	
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investigated	herein	exhibited	Voc	values	between	450	and	550	mV	at	light	intensities	sufficient	to	

produce	light-limited	photocurrent	densities	of	5–25	mA	cm-2.		A	statistical	analysis	on	nine	MEA-

type	 electrodes	 indicated	 a	 lower	 average	 Voc	 value,	 of	 330	 mV,	 for	 MEA	 devices	 that	

incorporated	the	Ni–Mo	catalyst.		These	values	contrast	with	the	Voc	=	600	mV	value	used	in	the	

modeling	of	the	optimal	device	performance.		Significant	contributors	to	the	difference	include	

limitations	with	the	Si	microwire	synthesis	and	resulting	device	fidelity.		Additionally,	the	Si-based	

Ni–Mo/TiO2	 MEA	 devices	 suffered	 from	 adventitious	 deposition	 of	 catalyst	 and	 scattering	

particles	on	the	microwire	sidewalls	consistent	with	physisoprtion	and/or	chemisorption	forces	

that	 are	 stronger	 than	 the	 centrifugal	 force	 imparted	 throughout	 the	 flocculation	 process.		

Deposition	of	either	nanopowder	material	on	the	microwire	sidewalls	acts	to	reduce	the	light-

limited	photocurrent	density,	as	discussed	further	in	the	Supporting	Information.	Each	of	these	

performance	 issues	 can	 presumably	 be	 addressed	 with	 improved	 attention	 to	 growth	 and	

processing	procedures	for	Si	microwire	arrays,	providing	a	credible	path	to	ηIRC	>	10%	for	MEA	

photocathodes.	

	

To	illustrate	the	possibility	of	improving	further	the	performance	of	the	MEA	devices,	the	origin	

of	the	low	observed	Voc	values	for	devices	that	incorporated	the	Ni–Mo	catalyst	was	investigated.	

Metal	incorporation	via	solid-state	reactivity	and	subsequent	diffusion	into	the	Si	absorber	during	

the	catalyst-activation	annealing	step	likely	degrades	the	minority-carrier	lifetime	of	the	Si.	Mo	

concentrations	of	<1012	cm-3	can	significantly	decrease	the	minority-carrier	lifetimes	in	p-Si.39,101	

Although	these	low	impurity	concentrations	are	difficult	to	detect	analytically,	decreases	in	Voc	

were	observed	for	Si	microwire	n+p-junction	samples	that	contained	Ni–Mo	particles	and	were	
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subsequently	annealed	at	450	°C,	as	compared	to	samples	from	the	same	substrate	that	were	

instead	 coated	with	Pt	 at	 room	 temperature	 (Figure	6.10).	 	 The	observed	difference	 in	Voc	 is	

therefore	consistent	with	a	decrease	in	charge-carrier	lifetime	due	to	the	presence	of	impurities	

in	 the	 Si.	 To	 remedy	 this	 deficiency,	 carbon-supported	 Ni–Mo	 catalysts	 (Ni–Mo/C)	 were	

synthesized	without	an	annealing	step	following	the	deposition	of	the	catalyst	into	the	microwire	

array.	Figure	6.10	demonstrates	a	recovery	of	the	Voc	when	Ni–Mo/C	catalyst	was	used	without	

a	 post-deposition	 annealing	 step;	 however,	 significant	 sidewall	 deposition,	 due	 to	 a	 reduced	

efficiency	of	centrifugal	flocculation,	precluded	these	samples	from	also	obtaining	exhibiting	high	

Jph	values.		Further	efforts	to	improve	the	device	fidelity,	as	well	as	to	optimize	the	MEA-layer	

deposition	conditions,	are	warranted	to	achieve	 further	 improvements	 in	 the	performance	of	

such	photocathodes.	

	

Optimization	of	the	Ni-Mo	and	TiO2	layer	thicknesses	could	also	provide	improved	performance.	

Increasing	 the	 thickness	 of	 the	Ni-Mo	 layer	 is	 expected	 to	 improve	 the	 catalytic	 activity,	 but	

assuming	that	the	TiO2	thickness	remains	constant,	the	reflectivity	of	the	device	would	increase	

due	to	the	increase	in	the	height	of	the	Si	microwires	that	protrude	from	the	Ni-Mo/TiO2	layers.		

Similarly,	an	increase	in	the	TiO2	layer	thickness	is	expected	to	increase	the	light	scattering	until	

the	layer	becomes	optically	dense,	at	which	point	the	light	scattering	properties	are	expected	to	

remain	 relatively	 constant.	 	However,	 in	 an	analogous	 fashion	 to	 the	effect	of	 increasing	 the	

thickness	of	the	Ni-Mo	layer,	an	increase	in	the	thickness	of	the	TiO2	is	expected	to	increase	the	

device	reflectivity	by	decreasing	the	Si	microwire	height	that	is	available	for	light	absorption.	

	



	

	

121	

6.3.4 Device	Stability	

Direct	 stability	 measurements	 were	 not	 performed	 because	 these	 Ni-Mo	 nanopowder	

electrocatalyts	 are	 known	 to	 degrade	 rapidly	 after	 ~7	 h	 of	 operation	 in	 acidic	 conditions	

consistent	with	the	known	chemical	instabilities	of	the	individual	elements.89	The	device	stability	

is	not	expected	to	be	 limited	by	Si	or	TiO2,	as	both	materials	are	chemically	stable	under	 the	

operating	 conditions.	 SEM	 images	 taken	 after	 photoelectrochemical	 testing	 confirm	 that	 the	

sample	 construct	 remained	 intact	 throughout	 PEC	 testing,	 suggesting	 that	 the	 Ni-Mo	

electrocatalyst	under	the	test	conditions	will	provide	the	ultimate	stability	limit	for	this	particular	

device.	 	 Accordingly,	 mutual	 compatibility	 of	 all	 components	 is	 ultimately	 desired	 and	 thus	

incorporation	 of	 hydrogen-evolution	 electrocatalysts	 with	 long-term	 stability	 in	 acid	 media	

should	result	in	improved	overall	device	longevity.		The	device	architecture	described	herein	can	

accommodate	high	mass	loadings	to	allow	for	the	use	of	electrocatalysts	that	have	a	relatively	

low	intrinsic	catalytic	activity,	thereby	expanding	the	range	of	electrocatalyst	activity	as	a	trade-

off	for	stability,	if	needed.	

	

6.4 Conclusions	

We	have	designed,	fabricated,	and	experimentally	verified	a	broadly	applicable	photoelectrode	

architecture	that	circumvents	the	trade-off	between	catalytic	activity	(ff)	and	optical	absorption	

in	 the	 overlayer.	 This	 trade-off	 would	 otherwise	 significantly	 reduce	 the	 light-limited	

photocurrent	 density	 (Jph)	 and,	 unless	mitigated,	 would	 preclude	 efficient	 solar-driven	water	

splitting.	 	 The	 architecture	 consists	 of	 a	 high	 aspect-ratio	 three-dimensional	 semiconductor	

structure	 (e.g.,	 Si	 microwires)	 with	 a	 particulate	 catalyst	 layer	 covered	 by	 a	 high-dielectric	
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particulate	 layer	 that	 scatters	 light	 back	 into	 the	 semiconductor	 structure.	 	Modeling	 of	 the	

design	 suggests	 that	 ηIRC	 >	 10%	 is	 possible	with	 earth-abundant	 electrocatalysts	 that	 have	 a	

relatively	 low	 per-atom	 activity.	 	 The	 best-performing	 Si	 homojunction	 microwire-array	

photocathodes	investigated	herein	with	~1–2	mg	cm-2	of	a	Ni–Mo	nanoparticulate	catalyst	layer,	

covered	by	a	TiO2	nanoparticulate	light	scattering	layer,	demonstrated	a	ηIRC	=	2.9%.		Replacing	

the	 Ni–Mo	 nanoparticulate	 layer	 with	 electrolessly	 deposited	 Pt	 on	 the	 microwire	 sidewalls	

resulted	 in	ηIRC	=	5%,	similar	to	that	of	the	best-performing	previously	published	Si	microwire	

device.37	The	modeling	indicated	that	still	higher	ηIRC	values	can	be	obtained	by	optimization	of	

the	microwire	growth	and	doping	process,	 in	conjunction	with	optimization	of	 the	deposition	

procedures	used	for	the	catalyst	and	optical	scattering	layers.
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7 A	 Comparative	 Techno-Economic	 Analysis	 of	 Renewable	

Hydrogen	Production	Using	Solar	Energy	

7.1 Motivation	

Electrolysis	using	solar	energy	as	a	potential	commercial	source	of	hydrogen	from	water	has	been	

pursued	for	over	four	decades.1	Solar-driven	water	electrolysis	has	been	practiced	in	two	basic	

system	configurations:	(1)	photoelectrochemical	(PEC)	water	splitting,	which	consists	of	a	single,	

fully	 integrated	 unit	 that	 absorbs	 sunlight	 and	 produces	 hydrogen	 and	 oxygen,	 and	 (2)	

photovoltaic	electrolysis	(PV-E),	which	consists	of	independent	photovoltaic	modules	that	drive	

separate	electrolyzer	units.	To	have	significant	impact	on	the	worldwide	supply	of	energy,	these	

technological	 solutions	must	 necessarily	 be	 competitive	 within	 the	 economic	 realities	 of	 the	

marketplace.	 	 Rigorous	 economic	 competitive	 analyses,	 applied	 to	 these	 proof-of-concept	

research	and	development	technologies,	can	provide	critical	guidance	on	their	further	resource	

allocation,	priorities,	and	trajectory.	Accordingly,	we	describe	a	technoeconomic	evaluation	of	

renewable	and	carbon-free	hydrogen	production	by	solar-driven	water	splitting.		In	so	doing	we	

build	 on	 existing	 literature	 by	 adding	 (i)	 an	 updated	 technoeconomic	 evaluation	 of	

photoelectrochemical	 systems	 based	 on	 recent	 engineering	 designs	 and	 prototypes,	 (ii)	 a	

complete	 plant	 design	 evaluation	 and	 direct	 comparison	 of	 photoelectrochemical	 and	

photovoltaic-electrolysis	 technologies,	 (iii)	 a	 comparison	 of	 solar	 hydrogen	 production	

technoeconomics	to	other	low-carbon	technological	options,	and	(iv)	an	extension	of	the	solar	

hydrogen	technoeconomic	analysis	to	solar-driven	CO2	reduction	systems.	
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The	systems	analyzed	herein	include	two	integrated	PEC	designs,	as	well	as	grid	electrolysis	with	

proton-exchange	 membrane	 electrolyzers	 and	 two	 PV-E	 designs	 using	 discrete	 photovoltaic	

modules	and	electrolyzer	units.		Current	and	predicted	hydrogen	production	prices	from	steam	

reforming	of	natural	gas	(SMR)	are	reported	as	a	benchmark.		The	capital	and	operating	expenses	

for	 each	 system	 have	 been	 estimated	 based	 on	 technical	 design	 specifications	 and	 allowed	

calculation	of	an	estimated	plant-gate	levelized	cost	of	hydrogen	such	that	the	net	present	value	

is	zero	at	the	end	of	the	plant	life.		

	

Prior	to	broader	comparisons,	an	initial	comparison	between	solar	hydrogen	production	methods	

has	been	performed	to	determine	the	least	expensive	technology	and	to	suggest	future	research	

needs.	 Integrated	 photoelectrochemical	 hydrogen	 production	 and	 discrete	 photovoltaic	

electrolysis	 hydrogen	 production	 constitute	 functionally	 identical	 systems	 and	 hence	 can	 be	

compared	directly	on	a	cost-basis.		The	trade-offs	involving	construction	of	a	single	integrated	

unit	 that	 has	 potentially	 fewer	 components	 and	 directly	 produces	 hydrogen,	 relative	 to	 the	

increased	 operational	 flexibility	 of	 the	 discrete	 photovoltaic	 electrolysis	 configuration,	 will	

therefore	ultimately	determine	the	most	economic	technology	that	provides	this	specific	quality	

and	quantity	of	energy.	

	

Subsequently,	the	most	economic	solar	hydrogen	source	is	compared	to	steam	reforming	(SR)	of	

relatively	low-cost	fossil	hydrocarbons,	the	dominant	current	source	of	molecular	hydrogen.		The	

costs	of	production	of	hydrogen	by	SR	are	well	known	at	~	$1.39	kg-1	or	$0.042	kWh-1	($3	(MM	
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BTU	natural	gas)-1),	which	is	less	than	current	US	average	electricity	prices.2	In	the	absence	of	a	

price	 applied	 to	 CO2	 production,	 or	 other	 policy-driven	mandates	 such	 as	 a	 renewable	 fuels	

standard,	all	hydrogen	production	technologies	will	compete	in	the	marketplace	directly	against	

fossil	 fuels	 for	 energy	 production	 and	 storage.	 	 Because	 photovoltaic	 electricity	 production	

currently	is	more	expensive	in	most	locations	than	levelized	electricity	prices	of	$0.07	kWh-1,	the	

more	 complicated	 task	 of	 solar	 hydrogen	 production	 by	 stand-alone	 or	 grid	 assisted	 PV-

electrolysis	is	not	expected	to	be	economically	favored	relative	to	fossil-fuel-derived	energy	or	

hydrogen.		Given	the	length	of	energy	system	transitions	being	generally	40-60	years	or	more3,	

under	 this	 scenario,	 fossil	 fuels	 are	 thus	 expected	 to	 continue	 to	 dominate	 over	 any	 solar	

hydrogen	system	throughout	at	least	the	first	half	of	this	century.	

	

However,	solar	hydrogen	technologies	constitute	a	carbon-neutral	source	of	energy	production	

and	storage,	and	thus	provide	a	differentiated	quality	of	energy	that	may	eventually	be	valued	in	

the	marketplace.			Therefore	we	have	also	compared	the	cost	of	solar	hydrogen	to	other	carbon	

neutral	or	low	carbon	sources	of	hydrogen	that	could	play	a	role	in	a	carbon-constrained	energy	

market.	 	 Nuclear	 fission-based	 grid	 electrolysis	 and	 biomass	 reforming	 are	 two	 of	 the	 main	

alternative	technical	approaches,	though	biomass-derived	energy	is	potentially	limited	in	scale	

due	 to	 land	 area	 constraints.	 	 Another	 potential	 low-carbon	 technology	 option	 is	 fossil-fuel-

derived	grid	electrolysis	in	conjunction	with	carbon	capture	and	storage	(CCS).	

	

We	have	also	compared	the	cost	of	solar	hydrogen	to	other	approaches	that	can	provide	similar	

functionality	as	a	part	of	a	 low-carbon	energy	system.		Carbon-neutral	energy	production	and	
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storage	technologies,	such	as	electricity	derived	from	either	nuclear	fission	or	solar	electricity,	in	

conjunction	 with	 battery	 storage,	 pumped	 hydroelectricity,	 or	 compressed	 air-based	 energy	

storage,	provide	alternative	technological	options	relative	to	the	use	of	solar	hydrogen	in	the	grid	

storage	and,	in	some	cases,	the	transportation	sectors.		These	technologies	mainly	compete	with	

the	electrolysis	unit,	and	all	of	the	approaches	will	have	different	operational	efficiencies	as	well	

as	mutually	different	capital	and	operating	expenses.		Many	of	these	existing	technologies	have	

a	 first-to-market	 advantage,	while	 PEC-derived	 hydrogen	 remains	 at	 a	 fundamental	 research	

level.	

7.1.1 Solar	Hydrogen	Technologies	

In	each	of	the	PEC	and	PV-E	system	configurations,	solar	photons	are	absorbed	in	semiconducting	

materials	that	have	at	least	one	junction	that	converts	photogenerated	electron/hole	pairs	into	

incipient	electrical	energy.		The	photogenerated	electrons	and	holes	are	collected	asymmetrically	

at	the	two	electrodes	and	are	transferred	to	electrocatalysts	or	electrocatalytic	sites	to	perform	

the	respective	hydrogen-	and	oxygen-evolution	reactions.	 	The	ions	that	are	generated	at	one	

electrode	surface	must	be	transported	through	a	membrane	and/or	electrolyte	to	complete	the	

electrochemical	circuit,	and	must	react	to	form	the	complementary	product	without	an	explosion	

hazard	being	present.	The	products	are	collected	separately,	or	alternatively	must	be	separated	

subsequent	to	collection	and	then	processed	for	final	use.	

	

Numerous	types	of	photoelectrochemical	cells	have	been	demonstrated	at	the	laboratory	scale,	

with	 solar-to-hydrogen	 (STH)	 efficiencies	 as	 high	 as	 12.4%	 for	 a	 cell	 possessing	 at	 least	 one	

semiconductor-liquid	 junction4	and	18%	 for	a	cell	 constructed	 from	semiconductors	 that	only	
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contain	 buried	 semiconductor	 junctions.5-7	Many	 small-scale	 demonstrations	 of	 photovoltaic-

based	 electrolysis	 systems,	 and	models	 optimizing	 their	 behavior,	 have	 been	 described,	with	

differing	 levels	 of	 complexity	 of	 the	 connection	 between	 the	 photovoltaic	 modules	 and	

electrolyzers	 leading	 to	 differing	 operational	 flexibility	 and	 ultimately	 to	 different	 system	

efficiencies.8-10	 In	 general,	 the	 efficiency	 of	 a	 PV-E	 system	 is	 the	 product	 of	 the	 individual	

efficiencies	of	the	photovoltaic	module,	the	power	electronics,	and	the	electrolyzer	unit.		

	

The	current	costs	of	photovoltaic	installations	and	components	are	well	known,	with	national-	

and	state-level	monitoring	of	the	total	installed	costs	for	residential,	commercial,	and	utility-scale	

photovoltaic	 systems	 performed	 extensively	 throughout	 the	 United	 States	 and	 parts	 of	

Europe.11,12	 Commercial	 electrolyzer	 costs,	 including	 proton-exchange	 membrane	 (PEM)	 and	

alkaline	electrolyzers,	are	also	known,	with	published	values	verified	by	system	manufacturers.13		

	

Many	configurations	are	possible	 for	a	photovoltaic	electrolysis	system,	each	having	different	

systems	economics.		One	of	two	configurations	analyzed	herein	consists	of	a	photovoltaic	array	

interfaced	directly	to	a	PEM	electrolyzer.		The	electrolyzer	units	have	been	sized	to	accept	all,	or	

most,	of	the	maximum	instantaneous	power	produced	by	the	photovoltaic	array.	 	This	design	

results	in	a	capacity	factor	for	the	electrolyzer	equal	to	that	of	the	photovoltaic	array	(~20%).		The	

second	configuration	analyzed	 includes	a	grid	 connection	 to	 supplement	 the	electrical	power	

supplied	 by	 the	 photovoltaic	 array,	 such	 that	 the	 electrolyzers	 are	 able	 to	 operate	 at	 their	

maximum	capacity	 factor	 (97%),	with	 the	photovoltaics	being	 sized	 such	 that	 their	maximum	

instantaneous	power	matches	the	capacity	of	the	electrolyzers.		Another	system	not	investigated	
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herein,	but	 that	 could	provide	an	economic	opportunity,	 is	a	H2	and	electricity	 co-generation	

system	 that	 consists	 of	 an	 overcapacity	 of	 the	 photovoltaic	 component	 as	 compared	 to	 the	

electrolysis	 component,	 similar	 to	 current	 photovoltaic	 installations	 that	 are	 limited	 by	 the	

capacity	of	the	inverter.11	This	type	of	configuration	would	yield	a	slight	increase	in	the	capacity	

factor	of	the	electrolyzer,	as	 is	demonstrated	by	recent	photovoltaic	 installations11,	and	could	

generate	added	revenue	from	sale	of	the	excess	electricity	during	times	of	peak	solar	flux.	

	

The	key	active	components	of	PEC-based	systems	are	currently	the	subject	of	intense	research	

and	 development.	 	 Many	 potential	 configurations	 exist,	 including	 non-concentrating	 and	

concentrating	planar	semiconductor	designs	(Type	3	&	4,	respectively),14	as	well	as	slurry	systems	

that	 utilize	 particulate	 semiconductors	 suspended	 in	 a	 solution	 to	 absorb	 light	 and	 effect	

hydrogen	and	oxygen	evolution	(Type	1	&	2).14,15	The	Type	3	&	4	technologies	can,	and	have,	

made	 use	 of	 existing	 knowledge	 from	 the	 photovoltaic	 industry,	 and	 are	 thus	 further	 in	

development	than	Type	1	&	2	technologies.		Accordingly,	the	costs	of	PEC	systems	are	less	well	

understood	 as	 compared	 to	 PV-E	 systems,	 because	 no	 commercial	 PEC	 systems	 have	 been	

constructed	 and	 operated	 to	 date.	 	 To	 obtain	 reasonable	 estimates	 and	 guide	 research,	

technoeconomic	analyses	have	been	performed	for	these	Type	1-4	system	configurations	and	

technology	options.14,15	 The	predicted	 levelized	 cost	of	hydrogen	 (LCH)	 is	 lowest	 for	 the	 less-

developed	 Type	 1	 &	 2	 systems,14	 albeit	 with	 far	 more	 unknowns	 and	 thus	more	 associated	

technological	as	well	as	market	risk,	relative	to	the	Type	3	&	4	technologies.		We	update	and	build	

on	these	analyses	herein	by	focusing	on	recent	PEC	system	engineering	designs,	broadening	the	
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scope	of	comparison	to	discrete	PV-E	systems	and	other	technological	options,	and	extending	

the	analyses	to	CO2	reduction	concepts.	

	

7.2 Assumptions	and	Analytical	Methods	

7.2.1 Capital	Cost	Analysis	

Table	 7.1	 lists	 that	 base-case	 design	 specification	 and	 financial	 parameters	 that	 were	 used	 to	

evaluate	the	capital	costs	for	each	3.65	kiloton	per	year	(10,000	kg/day,	13.8	MW	of	H2,	5.1	MWe	

given	current	MW-scale	storage	and	fuel	cell	efficiencies)	system.		All	capital	costs	and	results	

were	inflation	adjusted	to	2014	dollars.111	

	

Table	7.1:	Operating	and	Financial	Parameters	Used	for	All	Systems	Analyzed	

Parameter	 Value	

Hydrogen	production	rate111	 10,000	kg/day	

Plant	Lifetime110	 20	years	

Hydrogen	plant	gate	pressure110	 450	psi	

Solar	capacity	factor	(2008-2013	average)113	 0.204	

Discount	rate	(r)	 12%	

Inflation	rate111	 1.9%	

$	Basis	year	 2014	

	

7.2.2 Systems		

Figure	7.1	displays	schematically	the	five	types	of	systems	that	were	evaluated	herein.		The	first	

two	systems	are	photoelectrochemical	in	nature,	with	the	first	consisting	of	a	louvered	design	

having	slats	of	a	semiconductor	and	catalyst	oriented	towards	the	sun	and	slats	of	a	membrane	
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oriented	perpendicular	to	the	sun,	all	held	within	a	chassis	that	allows	light	penetration	while	

holding	the	aqueous	electrolyte17.		This	system	is	similar	to	the	Type	3	system	that	was	the	subject	

of	a	previous	technoeconomic	analysis.14	The	second	PEC	system	considered	herein	is	similar	to	

the	first,	but	includes	10x	optical	concentration	and	pressurized	gas	production	of	10	atm	from	

the	PEC	module.		This	system	is	similar	to	a	Type	4	system	that	has	been	evaluated	previously.		In	

both	PEC	systems,	H2	gas	is	collected	via	polyvinylchloride	(PVC)	piping	that	has	been	sized	to	

balance	pipe	usage	against	pumping	losses.14		

	

The	next	two	systems	considered	herein	consist	of	photovoltaic	modules	connected	through	DC	

power	electronics	to	discrete	electrolysis	units.		One	system,	referred	to	as	PV-E,	relies	solely	on	

solar	 energy	 for	 hydrogen	 production.	 In	 this	 system,	 the	 electrolyzers	 are	 connected	 to	 the	

photovoltaics	with	or	without	a	DC-DC	converter,	and	are	sized	to	match	the	maximum	output	

of	the	photovoltaics.		The	second	system,	referred	to	as	GSPV-E,	includes	a	grid	connection	and	

sized	 the	 electrolysis	 units	 based	 on	 their	maximum	 capacity	 factor	 such	 that	 grid	 electricity	

supplements	the	photovoltaic	electricity	whenever	the	photovoltaic	modules	are	not	operating	

at	their	maximum	capacity.	

	

The	last	system,	grid	electrolysis,	which	served	as	a	benchmark	by	which	to	measure	the	above	

four	systems,	 is	the	predominant	currently	practiced	technique	for	hydrogen	production	from	

electricity.			
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A	 final	 general	 scenario	 is	 mapped	 out	 over	 a	 range	 of	 capital	 expenses	 and	 STH	 full	 plant	

efficiency	 values,	 to	 demonstrate	 their	 relationship	 to	 the	 LCH,	 as	 well	 as	 to	 describe	 the	

performance	 and	 economic	 values	 that	must	 be	met	 for	 solar	 hydrogen	 to	 be	 economically	

competitive	with	existing	and	developing	technologies.	

	

	

Figure	 7.1:	 Hydrogen	 production	 facility	 schematics	 for	 all	 designs	 analyzed	 and	 active	

component	architectures	a)	Block	diagram	depicting	the	power	flow	through	a	PEC	plant.		The	
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cell	specifics	for	the	Type	3	and	4	systems	are	shown	in	the	insets.		b)	Block	diagram	of	the	power	

flow	through	photovoltaic	electrolysis	(PV-E),	grid	assisted	photovoltaic	electrolysis	(GSPV-E),	and	

grid	electrolysis	plants.	

	

7.2.3 Techno-economic	Assumptions	

All	economic	assumptions	are	based	on	values	taken	from	the	U.S.	market.		In	general,	material	

and	equipment	capital	expenses	are	transferrable	globally,	but	installation	labor	and	other	soft	

balance	 of	 system	 costs	 such	 as	 customer	 acquisition	 and	 permitting	 can	 be	 more	 location	

dependent.	 	Weighted	average	capital	costs	for	utility	scale	photovoltaic	 installations	in	2013-

2014	were	~$2.3	Wp
-1	in	the	U.S.	with	only	Europe	and	China	having	lower	costs	at	~$1.9	Wp

-1	

and	~$1.6	Wp
-1,	respectively.18	 	Such	differences	are	likely	due	to	soft	balance	of	systems	cost	

differences	 as	 is	 the	 case	 for	 residential	 systems,	 but	 the	 magnitude	 of	 the	 differences	 is	

significantly	smaller	for	utility-scale	installation.19	These	capital	cost	differences	for	utility-scale	

systems	 	 are	 roughly	 offset	 by	 the	 higher	 capacity	 factors	 in	 the	 U.S.,	 suggesting	 that	 the	

conclusions	discussed	herein	remain	valid	irrespective	of	the	location	dependent	cost	differences	

and	are	representative	of	the	state-of-the-art	costs	globally.18	

	

7.2.3.1 Photovoltaic	Electrolysis	(PV-E)	System	
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Table	7.2:	PV-E	system	technical	parameters	and	capital	and	operating	expenses.	

System	Specific	Technical	Parameters	

STH	Efficiency	 9.76%	

Electrolyzer	Efficiency	 61%	

Electrolyzer	and	PV	Capacity	Factor	 0.204	

Photovoltaic	Efficiency	 16%	

Photovoltaic	Area	 7.5	x	105	m2	

Number	of	PEM	stacks	(500	kg	day-1	stack-1)	 99	

Capital	Expenses	

Component	 2014	$	mS
-2	

Electrolyzer	Stacks110	 65	

Photovoltaic	Modules115	 96	

Wiring116,117	 16	

Other	Electrolyzer	Hard	BoS110	 61	

Panel	Mounting	Materials116,117	 29	

PV	Installation	Labor116,117	 29	

Electrolyzer	Installation	Labor110	 19	

Other	PV	Soft	BoS116,117	 56	

		

	

	

	

	

Table	 7.2	 shows	 the	 system	 specific	 technical	 parameters	 and	 capital	 expenses	 for	 the	 PV-E	

system.		Values	for	non-subsidized,	single	crystalline	Si	photovoltaic	module	costs	are	taken	from	

very	 recent	wholesale	 prices;	 these	 costs	 include	 the	 cells	 along	with	 the	 encapsulation	 and	

electronics	necessary	for	operation	and	stability	for	20+	years.20	Wiring,	panel	mounting	material,	



	

	

134	

and	 other	 hardware	 balance-of-system	 (BoS)	 costs	 are	 taken	 from	 very	 recent	 utility-scale	

photovoltaic	 installation	 costs.22	 A	 direct	 connection	was	 assumed	 between	 the	 photovoltaic	

modules	and	electrolyzers,	because	the	efficiency	loss	due	to	non-optimal	operation	is	similar	to	

the	efficiency	losses	incurred	with	a	DC-DC	converter	which	can	provide	optimal	operation	at	all	

times	but	incurs	additional	costs	for	the	converter	unit.23,24	The	assumed	electrolyzer	unit	costs	

are	identical	to	those	assumed	for	the	grid	electrolysis	system	evaluated	below.13	Photovoltaic	

installation	labor	and	other	soft	BoS	costs	are	taken	from	very	recent	utility-scale	PV	installation	

costs.21,22	

	

The	 base-case	 system	 STH	 efficiency	was	 assumed	 to	 be	 9.76%,	which	 is	 the	 product	 of	 the	

photovoltaic	 module	 efficiency	 of	 16%	 and	 the	 electrolyzer	 plant	 efficiency	 of	 61%.13,21,22	

Replacement	 expenses	 for	 the	 electrolyzer	were	 assumed	 to	 be	 identical	 to	 that	 of	 the	 grid	

electrolysis	system,	whereas	the	photovoltaics	were	assumed	to	last	the	lifetime	of	the	plant.	13	

	

7.2.3.2 Grid	Supplemented	Photovoltaic	Electrolysis	(GSPV-E)	System	
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Table	7.3:	Grid-assisted	PV-E	system	technical	parameters	and	capital	and	operating	expenses.	
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System	Specific	Technical	Parameters	

STH	Efficiency	 9.76%	

Electrolyzer	Efficiency	 61%	

Electrolyzer	Capacity	Factor	 0.97	

Photovoltaic	Efficiency	 16%	

Photovoltaic	Area	 1.8	x	105	m2	

Number	of	PEM	stacks	(500	kg	day-1	stack-1)	 21	

Capital	Expenses	

Component	 2014	$	mS
-2	

Electrolyzer	Stack110	 64	

Photovoltaic	Modules115	 96	

Wiring116,117	 16	

DC-DC	Converter	 51	

AC-DC	Rectifier110	 30	

Other	Electrolyzer	Hard	BoS110	 61	

Panel	Mounting	Materials116,117	 29	

Photovoltaic	Installation	Labor116,117	 29	

Electrolyzer	Installation	Labor110	 19	

Other	Soft	BoS116,117	 56	

Operating	and	Maintenance	Expenses	

Electricity118	 $0.07	kWh-1	

	

Table	7.3	shows	the	assumed	GSPV-E	system	specific	technical	parameters,	capital	expenses,	and	

electricity	price.		All	costs	are	identical	to	the	PV-E	system,	except	that	grid	electricity	operating	

costs	and	the	capital	costs	of	an	AC-DC	rectifier	and	DC-DC	converter	are	 included	for	proper	

electrical	control.13,26	The	electrolysis	units	were	sized	based	on	their	maximum	capacity	factor	

(0.97),	and	the	photovoltaics	were	sized	such	that	their	maximum	instantaneous	power	output	
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(at	1000	W	m-2)	matched	the	electrolysis	capacity	(1.8	x	105	m2).		The	electrolyzer	stack	cost	per	

solar	collection	area	is	the	same	as	for	the	PV-E	system	because	both	systems	are	sized	to	match	

the	electrolyzer	to	the	maximum	instantaneous	power	output	of	the	photovoltaic	array.		Thus,	

the	 area	 of	 solar	 collection	 determines	 the	 number	 of	 electrolyzers	 or	 vice	 versa,	 and	 the	

electrolyzer	cost	per	photovoltaic	area	remains	constant	for	the	PV-E	and	GSPV-E	systems,	aside	

from	 the	 slightly	 sub-unity	 electrolyzer	 capacity	 factor	 for	 the	 GSPV-E	 system.	 	 This	 set	 of	

assumptions	resulted	in	21%	of	the	hydrogen	produced	by	the	solar	energy	input	and	79%	of	the	

hydrogen	resulting	from	the	input	of	grid	power.		The	replacement	expenses	for	the	electrolyzer	

were	 assumed	 to	 be	 identical	 to	 those	 assumed	 for	 the	 grid	 electrolysis	 system,	 and	 the	

photovoltaics	were	assumed	to	last	the	lifetime	of	the	plant.		Implicit	in	the	electricity	price	is	the	

cost	 of	 the	 existing	 transmission	 and	 distribution	 system;	 if,	 however,	 new	 transmission	 and	

distribution	 is	 required	 for	 such	a	GSPV-E	system	due	 to	 remote	siting	of	 the	solar	electricity	

installation,	the	electricity	price	could	be	significantly	higher	than	the	base-case	assumption.	

7.2.3.3 Type	3	PEC	System	

	

	

	

	

	

	

	

	

	

	



	

	

138	

Table	7.4:	Type	3	PEC	system	technical	parameters	and	capital	and	operating	expenses.	

System	Specific	Technical	Parameters	

STH	efficiency	 9.76%	

PEC	Area	 7.6	x	105	m2	

Capital	Expenses	

Component	 2014	$	mS
-2	

Window	(AR	coated	glass)120	 5	

Chassis	(Polypropylene)121	 33	

Semiconductors	(c-Si,	16%	S-E)	115,122	 48	

Catalyst	(Pt,	IrOx)119	 8	

Membrane	(Nafion,	5	mil)123	 50	

PEC	Cell	Assembly	Labor110	 10	

Compressors	(2	stage)111	 16	

Water	Condenser111	 0.3	

Heat	Exchangers111	 0.4	

Piping	(PVC)111	 3.4	

Control	Systems111	 5.4	

Panel	Mounting	Materials116,117	 29	

Installation	Labor116,117	 29	

Other	BOS116,117	 56	

	

Table	7.4	shows	the	assumed	Type	3	PEC	system	specific	technical	parameters,	capital	expenses,	

and	electricity	price.	 	The	semiconductor	component	cost	was	assumed	to	be	 identical	 to	the	

current	Si	photovoltaic	cell	cost	($0.38	Wp
-1)	and	is	distinct	from	the	photovoltaic	module	cost	for	

the	PV-E	and	GSPV-E	systems	(	
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Table	7.2	and	Table	7.3)	because	these	costs	only	encompass	the	photoelectrode	semiconductor	

material	and	fabrication	costs	and	do	not	include	the	module	material	and	assembly	costs.		Costs	

for	 junction	formation	and	front	contact	metallization,	which	compose	approximately	20%,	or	

$0.08	Wp
-1,	of	the	cell	cost,	were	excluded	because	PEC	systems	can	utilize	semiconductor-liquid	

junctions.20,29	 This	 assumes	 that	 a	 tandem	 and/or	 triple-junction	 stacked	 structure	 can	 be	

fabricated	 at	 costs	 equivalent	 to	 Si	 cell	 fabrication	 today,	 with	 a	 solar-to-electric	 efficiency	

equivalent	 to	 16%	and	with	 current	 and	 voltage	 characteristics	 optimized	 for	 the	 electrolysis	

current	 and	 voltage	 load	 characteristics.	 	 Because	 this	 assumption	 has	 yet	 to	 be	 realized	

commercially,	three	high-photovoltage	(>650	mV)	Si	photovoltaic	cells	could	be	arranged	side-

by-side	and	wired	electrically	in	series,	to	produce	the	necessary	voltage	while	still	achieving	the	

efficiency	metrics	assumed;	multiple	architectures	for	such	a	device	have	been	outlined	and/or	

demonstrated	 previously.	 	 Figure	 7.2	 depicts	 one	 possible	 architecture	 with	 no	 major	 cost	

differences	expected	between	different	side-by-side	system	designs.31,32	The	semiconductor	cell	

cost	would	increase	by	$13	m-2	(to	$61	m-2)	relative	to	the	Si	cell	cost	of	$48	m-2	($0.3	Wp
-1)	as	

specified	 in	Table	7.4	 to	 include	 junction	 formation	and	 front	contact	metallization	costs;	 the	

overall	PV	efficiency	would	remain	identical	being	equivalent	to	that	of	an	individual	cell.		The	

major	 cost	 differentiator	 between	 these	 two	 architectural	 options,	 stacked	 tandem	or	 triple-

junction	 cell	 versus	 side-by-side,	 is	 the	 semiconductor	 cell	 costs;	 all	 other	 components	 are	

expected	to	be	identical.		Thus,	at	present	the	side-by-side	design	is	expected	to	be	the	lowest	

cost	option	commercially	and	the	challenge	for	stacked	cells	is	to	outcompete	single	junction	Si	

cells.	
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Including	the	PEC	chassis	material,	PEC	module	labor	and	AR	coated	glass	window	would	result	

in	a	component	similar	to	a	PV	module	with	costs	(not	including	membrane	or	catalyst	costs)	of	

$96	m-2,	identical	to	the	PV	module	areal	cost.		Thus,	any	capital	cost	differences	between	the	

Type	3	and	PV-E	systems	will	be	due	to	balance	of	system	costs	or	any	material	differences	for	

the	electrolysis	portion	of	the	system.			

	

Figure	7.2:	Side-by-side	Si	PV-MEA	PEC	architecture	One	possible	architecture	(not	to	scale)	for	

a	 series	 connected	side-by-side	 triple	 junction	Si	PV	cell	 structure	directly	 integrated	 into	 the	

chassis	of	an	electrolysis	unit	designed	for	the	Si	device	output.	 	Such	a	structure	would	be	a	

single	unit	that	could	be	installed	like	a	traditional	PV	panel,	identical	to	the	base	case	Type	3	

design,	with	gas	collection	as	opposed	to	electrical	connections.	

	

This	 near-term	 demonstration	 system	 serves	 as	 a	 baseline	 for	 comparison	 with	

photoelectrochemical	approaches	on	a	technoeconomic	basis.		Platinum	(Pt)	and	iridium	oxide	

(IrOx)	catalysts	were	assumed	a	worst-case	cost	scenario	because	of	the	high	spot	prices	for	both	
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materials.		The	$8	mS
-2	cost	of	the	catalyst	for	a	specified	solar	collection	area	(mS

2)	is	assumed	

to	 be	 identical	 to	 that	 of	 the	 PV-E	 system	because	 state-of-the-art	 PEM	electrolyzer	 catalyst	

loadings,	~1	mg	cm-2	of	Pt	(466	nm	thick)	and	~2	mg	cm-2	of	IrO2	(1.7	µm	thick)33	for	1-10	A	cm-2	

operating	current	density,	correspond	to	similar	total	catalyst	mass	loadings	as	state-of-the-art	

photoelectrochemical	catalyst	loadings,	1-10	µg	cm-2	(0.5	–	5	nm	thick)	of	Pt	and	2	–	20	µg	cm-2	

of	IrO2	(1.7-	17	nm	thick)	for	10	mA	cm-2	of	operating	current	density	in	a	PEC	system.26	

	

A	Nafion	PEM	was	assumed	to	serve	as	the	ionically	conductive,	gas	impermeable	membrane,	

with	costs	of	$2000	kg-1	estimated	based	on	current	production	volume	prices	for	a	5	mil	(127	

µm)	 thick	membrane.30	 Based	 on	 the	 photoelectrochemical	 cell	 design,	 the	membrane	 area	

required	is	10%	of	the	solar	collection	area.34	A	polypropylene	chassis	having	a	1	cm	thickness	

and	an	area	equal	 to	 the	PEC	area	was	assumed,	with	a	 raw	material	price	of	$1.5/kg.28	The	

chassis	was	assumed	to	be	manufactured	via	injection	molding,	where	the	raw	materials	cost	is	

approximately	43%	of	 the	 total	manufactured	chassis	cost.35	The	window	was	assumed	to	be	

made	from	high	quality,	anti-reflective	glass	used	by	the	photovoltaic	industry	that	is	compatible	

with	acidic	media.27	Replacing	the	back	of	the	polypropylene	chassis	with	glass	would	decrease	

the	 materials	 cost	 of	 the	 PEC	 module.	 	 However,	 the	 cost	 differential	 is	 relatively	 small	 as	

compared	to	the	total	capital	cost,	and	increases	in	handling	related	costs	due	to	the	different	

mechanical	properties	of	glass	versus	polypropylene	could	nullify	the	material	cost	differential.		

If,	however,	a	measurable	difference	in	the	base-case	capital	costs	assumed	herein	exists,	the	

impact	of	these	differences	on	the	LCH	can	be	assessed	using	the	analysis	summarized	below	(in	

Figure	7.10).		These	cell	materials	were	assumed	to	be	resistant	to	degradation	by	sunlight	over	
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the	lifetime	of	the	device,	and	any	mechanical	 issues	related	to	thermal	mismatches	between	

materials	 were	 assumed	 to	 be	 solved	 for	 the	 quoted	 costs	 of	 the	 base	 case.	 The	

photoelectrochemical	 module	 assembly	 labor	 was	 assumed	 to	 be	 equal	 to	 the	 electrolyzer	

assembly	cost	on	a	$	W-1	basis	because	both	systems	entail	assembly	of	the	chassis	and	active	

components	 (membrane	 electrode	 assembly	 for	 an	 electrolyzer	 and	 membrane	 and	

photoelectrode(s)	for	a	PEC	device).13	This	is	a	reasonable	estimate	given	publicly	available	data,	

but	is	likely	an	optimistic	lower	bound	because	the	PEC	system	areal	power	density	(W	m-2)	is	

roughly	two	orders	of	magnitude	lower	than	the	electrolyzers,	requiring	significantly	larger	areas	

of	PEC	components	to	be	assembled	and/or	seamless	integration	of	the	materials	to	allow	for	

fabrication	integrally	and/or	with	minimal	labor.	

	

The	water	delivery	 and	gas	 collection,	processing,	 and	 control	 system	costs	were	 taken	 from	

previous	work14,	but	the	compressors	were	assumed	to	provide	a	higher	compression	ratio	of	

~5.5:1	versus	4.5:1	in	the	reference	case	evaluated	previously.		Polyvinyl	chloride	(PVC)	piping	

was	 assumed	 in	 the	 base	 case	 due	 to	 the	 sufficiently	 low	 hydrogen	 permeability	 and	

embrittlement	 of	 PVC	 at	 the	 modest	 hydrogen	 collection	 pressures	 present	 in	 both	 PEC	

systems.26,36	These	assumptions	result	 in	gas	processing	and	water	delivery	unit	costs	 ($	ms
-2)	

that	are	roughly	half	the	cost	of	the	units	used	to	perform	the	same	tasks	in	the	PV-E	design.		

Confidence	is	higher	on	the	PV-E	hard	BoS	costs	due	to	the	commercial	maturity	of	each	of	the	

individual	 systems,	while	 the	PEC	 system	costs	have	only	undergone	a	high-level	engineering	

design	because	no	known	systems	have	received	design	certifications	and	permitting	nor	been	

constructed.14	Thus	the	potential	for	significant	changes	to	the	PEC	system	hard	BoS	costs	exists,	
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with	 the	 values	 assumed	 herein	 likely	 representing	 an	 optimistic	 cost	 scenario.	 	 The	 panel	

mounting	materials,	installation	labor,	and	other	soft	balance	of	systems	(BoS)	costs	were	taken	

directly	from	utility-scale	photovoltaic	panel	installations	on	a	$	mS
-2	basis.21,22	The	installation	

was	 assumed	 to	 be	 sited	 in	 areas	 that	 historically	 on	 a	 decade-scale	 have	 little	 chance	 of	

experiencing	a	hard	freeze,	specifically	in	plant	hardiness	zones	8	and	above	(i.e.,	where	citrus	

trees	are	planted	and	thrive);	consequently,	additional	costs	associated	with	heating	to	avoid	any	

liquid	water	from	freezing	were	not	included.37	

	

The	 active	 components	 (semiconductors,	 catalyst,	membrane)	were	 assumed	 to	 be	 replaced	

every	7	years,	based	on	expected	component	lifetimes	from	the	electrolyzer	industry,	though	no	

complete	PEC	 cell	 that	performs	unassisted	water	 splitting	has	 yet	been	demonstrated	 to	be	

stable	for	more	than	one	week.13,17	The	installation	cost	for	replacement	components	were	taken	

to	be	15%	of	the	component	cost.		All	other	components	were	assumed	to	need	no	replacement	

over	the	system	lifetime.	 	An	annual	operating	and	maintenance	cost	of	3.2%	of	the	 installed	

capital	was	taken	from	the	PEM	electrolyzer	industry.13	All	of	the	other	components	(DI	water	

production,	 initial	 charge	 of	 acid	 or	 base,	 etc.)	 were	 not	 considered	 independently	 because	

previous	 studies	 have	 found	 these	 costs	 to	 be	 insignificant	 relative	 to	 the	 other	 capital	 and	

operating	cost	contributions.14,15	

	

The	plant	efficiency	was	assumed	to	be	identical	to	that	of	the	PV-E	system,	9.76%.		This	efficiency	

is	 consistent	 with	 a	 photovoltaic	 component	 efficiency	 of	 16%,	 an	 electrolysis	 and	

electrochemical	cell	efficiency	of	70%	(1.75	V),	and	a	gas	collection	and	processing	efficiency	of	
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87%.	 	 A	 maximum	 practical	 PEC	 efficiency	 of	 25%	 was	 estimated	 using	 the	 product	 of	 the	

maximum	 predicted	 efficiency	 of	 the	 PEC	 cell	 (28.7%,	 radiative	 recombination-limited	

photovoltaics	and	state-of-the-art	catalysts)38	and	a	gas	collection	and	processing	efficiency	of	

87%.		

	

7.2.3.4 Type	4	System	

	

Table	7.5:	Type	4	PEC	system	technical	parameters	and	capital	and	operating	expenses.	
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System	Specific	Technical	Parameters	

STH	efficiency	 20%	

Capacity	Factor	 0.186	

PEC	Area	 3.7	x	105	m2	

Capital	Expenses	

Component	 2014	$	mS
-2	

Window	(AR	coated	glass)120	 0.5	

Chassis	(Polypropylene)	121,125	 6.6	

Semiconductors	(InGaP/GaAs)128	 175	

Catalyst	(Pt,	IrOx)119	 8	

Membrane	(Nafion,	5	mil)123	 5	

Tracker	Hardware129	 44.8	

Concentrators	(Parabolic)130		 48	

Compressor	(1	stage)111	 14.5	

Water	Condenser111	 0.2	

Heat	Exchanger111	 0.4	

Piping	(PVC)111	 1.6	

Control	Systems111	 8.9	

Panel	Mounting	Materials116,117	 29	

Installation	Labor116,117	 29	

Other	BOS116,117	 59	

	

	

Table	7.5	lists	the	system	specific	technical	parameters	and	capital	expenses	assumed	for	the	Type	

4	base-case	system	design.		A	medium-range	predicted	cost	for	a	high-efficiency	tandem-junction	

photovoltaic	 cell	 was	 assumed	 at	 $5.8	 Wp
-1,	 commensurate	 with	 state-of-the-art	 III-V	

photovoltaic	fabrication	methods	at	present.39	Pt	and	IrOx	catalysts	were	taken	to	be	the	same	

for	the	same	solar	collection	areal	cost	as	the	Type	3	system;	this	assumption	is	consistent	with	
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a	situation	in	which	a	10x	increase	in	the	catalyst	thickness	offsets	the	10x	decrease	in	the	area	

of	the	semiconductor.		The	Type	4	chassis	was	assumed	to	be	twice	as	thick	(2	cm)	as	that	in	the	

Type	3	system,	to	withstand	the	higher	hydrogen	pressure	assumed	in	the	Type	4	system.14	Two-

dimensional	 parabolic	 trough	 concentrators	 were	 assumed	 for	 the	 concentrating	 optics.41	

Additional	costs	for	tracking	hardware	were	taken	from	the	difference	between	utility-scale	fixed	

and	single-axis	tracking	capital	costs,	$0.28	Wp
-1	or	$44.8	mS

-2,	for	16%	efficiency	modules.40	

	

In	this	Type	4	base-case	system,	the	assumed	electrochemical	compression	to	10	atm	reduces	

the	required	downstream	compression	to	a	single	stage,	with	a	single	heat	exchanger,	relative	to	

the	 two-stage	 compressor	 assumed	 in	 the	 base-case	 Type	 3	 system.	 	 Increased	 controls	 are	

needed	in	the	base-case	Type	4	system	to	handle	the	collection	of	pressurized	gas	from	the	PEC	

panels.14	All	of	the	other	component	capital	costs	are	identical	to	those	for	the	Type	3	system,	

but	 the	 cost	 per	 unit	 of	 PEC	 area	 is	 different	 from	 the	 Type	 3	 base-case	 system	 due	 to	 the	

increased	 efficiency	 and	 thus	 decreased	 PEC	 area	 in	 the	 Type	 4	 base-case	 system.	 	 The	

components	replaced	and	replacement	period	(7	years)	and	installation	expense	for	the	Type	4	

base-case	system	are	assumed	to	be	identical	to	those	assumed	for	the	base-case	Type	3	system.	

	

The	capacity	factor	for	the	Type	4	base-case	system	is	 lower	than	that	assumed	for	the	other	

systems,	 because	 it	 is	 assumed	 that	 the	 concentrators	 cannot	 collect	 diffuse	 sunlight	 (see	

supplementary	 information	 for	 calculation).	 	 The	 plant	 efficiency	 was	 assumed	 to	 be	 20%,	

consistent	with	component	efficiencies	of	33%	for	the	photovoltaic,	68%	(1.8	V)	for	electrolysis	

and	the	electrochemical	cell,	and	90%	for	the	gas	collection	and	processing.	



	

	

147	

	

7.2.3.5 Grid	Electrolysis	System	

Table	7.6	shows	the	specific	technical	parameters,	capital	expenses,	and	electricity	prices	assumed	

for	the	grid	electrolysis	benchmark	system,	as	based	on	a	recent	technoeconomic	analysis	of	PEM	

electrolyzers.13	The	only	change	between	the	two	analyses	is	associated	with	the	electricity	price,	

which	was	taken	herein	to	be	the	current	average	industrial	retail	price	in	the	U.S.	and	includes	

generation,	transmission,	and	distribution	costs.25	The	number	of	electrolyzer	stacks	is	a	function	

of	the	system	capacity	factor	and	individual	stack	capacity.		Replacement	of	major	components	

every	7	years	was	assumed	to	be	15%	of	the	installed	capital	expense.13	

	

	

	

	

	

	

	

	

Table	7.6:	PEM	electrolysis	system	technical	parameters	and	capital	and	operating	expenses.	
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System	Specific	Technical	Parameters	

Plant	Efficiency	 61%	

Capacity	Factor	 0.97	

Number	of	PEM	stacks	(500	kg	day-1	stack-1)	 21	

Capital	Expenses	

Component	 2014	$	W-1	

Electrolyzer	Stacks110	 0.4	

Balance	of	Systems110	 0.57	

Installation	(12%	of	un-installed	capital)	110	 0.12	

Contingency	Factor	(15%	of	un-installed	capital)	110	 0.15	

Site	Preparation	(18%	of	un-installed	capital)	110	 0.18	

Operating	and	Maintenance	Expenses	

Electricity118	 $0.07	kWh-1	

	

7.2.4 Net	Present	Value	(NPV)	Analysis	

A	standard	discounted	cash	flow	was	applied	to	each	technology	and	sensitivity	case	over	the	

assumed	 plant	 lifetime.	 	 The	 capital	 expenditure	 was	 assumed	 to	 occur	 over	 a	 one-year	

construction	period.		All	of	the	operating	expenses	and	product	revenues	depend	on	the	LCH	and	

were	discounted	to	the	year	of	construction	(Equations	7.1	and	7.2).		Replacement	costs	were	

included	as	operating	expenses	every	7th	year.	 	A	pre-tax	environment	was	assumed	and	thus	

depreciation	was	not	applied	to	any	capital	assets.		The	LCH	was	calculated	by	adjusting	its	value	

such	 that	 the	 net	 present	 value	 of	 the	 capital	 and	 operating	 expenses	 and	 product	 revenue	

summed	to	zero	(Equation	7.3).	

	 #q0rGstSu	vwxs	V: = 	
#vb
1 + r b

4

byn:4
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7.3 Analysis	Results	

7.3.1 PV-E	System	

A	combination	of	discrete	photovoltaic	and	electrolyzer	units	is	an	important	benchmark	

comparison	to	photoelectrochemical	systems.		PV	and	electrolyzer	systems	are	commercial	items	

with	 known	 costs.	 	 This	 combination	 can	 provide	 the	 highest	 solar-to-chemical	 conversion	

efficiency	because	each	unit	can	be	 independently	operated	and	optimized.	 	Accordingly,	 the	

system	 efficiency	 is	 limited	 by	 the	 product	 of	 the	 independent	 photovoltaic	 and	 electrolyzer	

thermodynamic	efficiency	limits	rather	than	the	coupled	PEC	system	thermodynamic	efficiency	

limit.38,42		

	

Given	the	base-case	capital	and	operating	expenses,	and	the	technical	parameter	assumptions,	

the	LCH	and	total	capital	expense	values	for	the	base-case	PV-E	system	were	found	to	be	$12.1	

kg-1	 and	 $260	MM	 ($371	mS
-2),	 respectively.	 	 Figure	 7.3	 displays	 the	 impact	 of	 the	 two	most	

sensitive	parameters,	plant	efficiency	and	active	component	capital	expense	per	area	of	solar	

collection,	mS
-2,	 on	 the	 LCH	 of	 the	 base-case	 PV-E	 system.	 	 This	 analysis	 thus	 indicates	 that	

improving	the	plant	efficiency	has	the	largest	 impact	on	the	LCH.	 	 Improved	system	efficiency	
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could	in	principle	be	achieved	through	technological	improvements	in	both	the	photovoltaic	and	

electrolyzer	units.		For	example,	achieving	the	current	photovoltaic	cell	record-efficiency,	46%43,	

with	all	other	parameters	and	capital	expenses	identical	to	the	base-case	system,	results	in	LCH	

values	of	$9.4	kg-1	for	the	PV-E	system.		Decreases	in	the	capital	cost	of	the	photovoltaic	and/or	

electrolyzer	units	lead	to	diminishing	returns	because	the	hard	and	soft	BoS	costs	remain,	and	

constitute	the	dominant	costs	of	an	installed	system.		

	

Figure	7.3:	LCH	contour	plot	of	plant	efficiency	versus	PV	module	and	electrolyzer	costs	for	the	

PV-E	system	A	contour	plot	of	the	LCH	($	kg-1)	 for	the	PV-E	system	as	a	 function	of	the	plant	

efficiency	and	active	component	(PV	modules	and	electrolyzers)	areal	capital	expense	normalized	

by	the	required	solar	collection	area	 ($	mS
-2).	 	The	base-case	result	 is	 indicated	by	the	yellow	

circle.		Contours	are	labeled	at	$2	kg-1	intervals.	



	

	

151	

For	 a	 broader	 perspective,	 Figure	 7.4	 illustrates	 the	 impact	 that	 the	 PV	 and	 electrolyzer	

subsystem	costs	have	on	the	levelized	cost	of	hydrogen.		As	an	example,	assume	that	PV	systems	

can	achieve	levelized	cost	of	electricity	(LCOE)	value	of	$0.02	kWh-1,	which	would	require	a	capital	

cost	of	~$0.5	Wp
-1	 (assuming	a	25	year	 lifetime,	10%	discount	 rate,	and	30%	capacity	 factor).		

Figure	 7.4	 demonstrates	 that	 at	 a	 PV	 subsystem	 cost	 of	 $0.5	Wp
-1,	 a	 free	 electrolyzer	would	

produce	a	levelized	cost	of	hydrogen	of	$2.50	kg-1.		This	situation	reflects	the	cost	per	joule	of	

electricity	at	$0.02	kWh-1,	converted	directly	into	a	cost	per	joule	of	H2,	in	conjunction	with	an	

electricity-to-H2	system	conversion	efficiency	of	61%,	with	no	cost	for	the	conversion	unit.			To	

obtain	a	cost	of	$3	kg-1	of	H2	with	a	PV	capital	cost	of	$0.5	Wp
-1,	the	electrolyzer	capital	cost	must	

be	<$0.1	W-1,	an	order	of	magnitude	lower	than	current	capital	cost	values.		The	development	of	

a	truly	disruptive	electrolysis	technology	is	required	to	attain	these	costs,	because	electrolysis	

and	the	closely	related	chlor-alkali	process	have	been	practiced	at	scale	for	over	a	century.		The	

current	global	chlor-alkali	production	of	60	million	metric	tons	per	year	consumes	~	150	TWh	of	

electricity	annually,	which	is	similar	to	the	current	worldwide	annual	solar	electricity	production	

of	~280	TWh	(178	GW	installed,	18%	capacity	factor).				These	large	reductions	in	capital	costs	are	

required	due	 to	 the	 low	 capacity	 factor	 of	 solar	 electricity	 as	well	 as	 the	modest	 electrolysis	

efficiency.	
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Figure	7.4:	LCH	contour	plot	of	PV	capital	expense	versus	electrolyzer	capital	expense	for	the	

PV-E	system	A	contour	plot	of	the	LCH	($	kg-1)	for	the	PV-E	system	as	a	function	of	the	PV	and	

electrolyzer	subsystem	capital	expenses	in	$	W-1.		The	base-case	result	is	indicated	by	the	yellow	

circle.		Contours	are	labeled	at	$2	kg-1	intervals.	

An	 alternative	 scenario	 could	 include	 a	 combination	 of	 photovoltaics	 and	 wind	 turbines	 to	

increase	the	capacity	factor	of	the	electrolyzers	while	maintaining	100%	carbon	free	electricity.		

If	electricity	prices	as	 low	as	$0.03	kWh-1	and	an	electrolyzer	capacity	 factor	of	75%	could	be	

achieved	 (to	estimate	an	optimistic	projected	situation	 for	 large-scale	PV	and	wind	electricity	

combined,	with	no	storage,	as	the	sole	electricity	generation	sources,	and	assuming	negligible	

costs	for	any	needed	new	transmission	lines),	the	resultant	LCH	value	is	$3.8	kg-1	assuming	all	

other	base-case	values	are	constant.		To	reach	$3	kg-1	or	$2	kg-1	would	require	electrolyzer	capital	

cost	reductions	of	60%	(to	$0.6	W-1)	or	80%	(to	$0.16	W-1),	 respectively.	 	 If,	alternatively,	 the	
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electrolyzer	 is	 free	 and	 the	 capacity	 factor	 remains	 at	 75%,	 the	 electricity	 price	 required	 to	

achieve	LCH	values	of	$3	kg-1	and	$2	kg-1	is	$0.055	kWh-1	or	$0.037	kWh-1,	respectively.	

	

7.3.2 GSPV-E	System	

Capacity	 factors	are	critical	 to	any	commercial	operation	and	are	a	 fundamental	 limitation	of	

terrestrial	 solar	energy	 systems.	 Increases	 in	 the	electrolyzer	 capacity	 factor	 can	be	obtained	

during	non-peak	solar	hours	and	at	night	by	supplementing	the	PV	electricity	with	grid	electricity.		

The	GSPV-E	 system	 thus	 constitutes	a	hybrid	of	 grid	electrolysis	 and	photovoltaic	electrolysis	

systems,	with	~75%	of	the	hydrogen	produced	by	power	supplied	by	grid	electricity.		

	

The	LCH	and	total	capital	expense	values	for	the	GSPV-E	system	are	$6.1	kg-1	and	$66	MM	($441	

mS
-2),	 respectively.	 	 Figure	 7.5	 displays	 the	 impact	 of	 the	 two	most	 sensitive	 parameters,	 the	

photovoltaic	efficiency	and	the	electricity	price,	on	the	LCH	of	the	GSPV-E	system.		This	analysis	

suggests	that	at	high	photovoltaic	efficiencies	(	>	~25%)	the	electricity	price	has	the	largest	impact	

on	the	LCH	because	the	photovoltaic	areal	requirement,	and	thus	capital	cost,	decreases	with	

increasing	efficiency.		However,	the	photovoltaic	efficiency	becomes	more	impactful	at	values	<	

~25%,	because	of	the	increase	in	photovoltaic	areal	requirements.		Achieving	the	current	record-

efficiency	 photovoltaic	 cells	 (46%43)	within	 this	 device,	 assuming	 base-case	 capital	 expenses,	

results	in	LCH	values	of	$5.6	kg-1	for	the	GSPV-E	system.		Such	high	module	efficiency	values	have	

not	yet	been	demonstrated	and	will	require	multi-junction	architectures	that	can	achieve	cost	

metrics	similar	to	Si	on	a	$	W-1	basis.		
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Figure	7.5:	LCH	contour	plot	of	PV	efficiency	versus	electricity	price	for	the	GSPV-E	system	A	

contour	plot	of	the	LCH	($	kg-1)	for	the	GSPV-E	system	as	a	function	of	the	photovoltaic	efficiency	

and	electricity	price	($	kWh-1).		The	base-case	result	is	indicated	by	the	blue	circle.		Contours	are	

labeled	at	$1	kg-1	intervals.	

	

7.3.3 Grid	Electrolysis	

Grid	 electrolysis	 using	 alkaline	 or	 proton-exchange	 membrane	 electrolyzers	 are	 mature,	

commercial	technologies	that	are	used	herein	as	a	benchmark.		Prior	studies	have	investigated	

the	 detailed	 costs	 of	 each	 component	 of	 a	 PEM	 electrolysis	 system	 and	 are	 used	 herein.13	

However,	the	total	capital	cost	of	PEM	and	alkaline	electrolysis	facilities	are	similar,	such	that	all	

conclusions	 based	 on	 the	 PEM	 systems	 apply	 approximately	 to	 alkaline	 systems	 as	 well.		

Supported	by	these	previous	studies,	a	high-level	analysis	was	performed	and	resulted	in	a	base-
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case	LCH	and	capital	cost	for	grid	electrolysis	of	$5.5	kg-1	and	$34	MM,	respectively.		Operating	

expenses,	 in	 the	 form	 of	 the	 cost	 of	 electricity,	 constituted	 the	 largest	 component	 of	 and	

sensitivity	to	the	LCH,	as	has	been	shown	previously.13			

	

7.3.4 Type	3	PEC	System	

The	 Type	 3	 base-case	 LCH	 and	 capital	 cost	 values	 are	 $11.4	 kg-1	 and	 $205	MM	 ($293	mS
-2),	

respectively,	which	are	lower	than	the	LCH	for	the	comparable	base-case	PV-E	systems.		Relative	

to	the	base	case,	the	PV-E	system	must	exhibit	an	efficiency	increase	to	11.5%,	or	a	decrease	in	

the	capital	expense	to	$245	MM	($351	mS
-2),	to	overcome	this	difference	and	reach	cost	parity	

with	the	base-case	Type	3	PEC	system.	

	

Figure	7.6	demonstrates	the	impact	of	the	two	most	sensitive	parameters,	plant	efficiency	and	

active	component	capital	expenses,	on	the	Type	3	system	LCH	value.		Similar	to	the	PV-E	system,	

the	efficiency	has	the	largest	impact	on	the	LCH	value,	while	decreases	in	the	active	component	

capital	expenses	have	diminishing	returns	due	to	the	continuing	presence,	and	dominance,	of	the	

hard	and	soft	BoS	costs.		Achieving	a	maximum	practical	plant	efficiency	of	25%	at	the	base-case	

capital	cost	would	result	 in	a	$5.1	kg-1	H2	LCH,	while	maintaining	the	base-case	efficiency	and	

reducing	 the	 photovoltaic	 stack,	membrane	 and	 catalyst	 component	 costs	 to	 $0	mS
-2,	 a	 non-

practical	value,	would	result	in	a	~	$6.1	kg-1	H2	LCH.		Improvements	in	the	efficiency	of	Type	3	

systems	can	be	achieved	by	focusing	on	the	most	optimal	tandem	junction	band-gap	pairs38,42,	

optimizing	 the	 semiconductor	 material	 growth	 quality	 and	 electronic	 properties44,45	 and	

improving	 the	 oxygen-evolution	 reaction	 efficiency	 through	 catalyst	 development.	 	 These	
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advances	must	be	achieved	with	cost	effective	materials	and	fabrication	techniques	to	justify	any	

resulting	increase	in	efficiency	relative	to	the	assumed	base-case	system	characteristics.			

	

Figure	7.6:	LCH	contour	plot	of	plant	efficiency	versus	semiconductor,	membrane,	and	catalyst	

cost	for	the	Type	3	PEC	system	A	contour	plot	of	the	LCH	($	kg-1)	for	the	Type	3	PEC	system	as	a	

function	of	the	plant	efficiency	and	active	component	(semiconductor,	membrane	and	catalyst)	

capital	expense	normalized	by	the	required	solar	collection	area	($	mS
-2).		The	base-case	result	is	

indicated	by	the	yellow	circle.		Contours	are	labeled	at	$2	kg-1	intervals	and	the	practical	efficiency	

limit	 for	 PEC	 systems	 is	 indicated	 assuming	 direct	 electrical	 connection	 between	 the	

semiconductor	and	catalyst	components	without	additional	power	electronics.	

	

The	Type	3	bill	of	materials	 (Table	7.4)	 indicates	 that	 the	capital	 costs	of	 the	electrocatalysts	

constitute	a	minor	contribution	to	the	active	material	costs,	and	moreover,	to	the	total	capital	

cost	of	the	Type	3	base-case	system.		Furthermore,	the	base-case	catalyst	costs	assumed	use	of	
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the	most	expensive	catalysts,	platinum	and	iridium	oxide;	use	of	any	other	catalyst	would	only	

decrease	the	catalyst	capital	cost	contribution.		These	findings	are	consistent	with,	and	reinforce,	

a	 recently	 performed	 analysis	 that	 focused	 only	 on	 the	 active	 components	 of	 a	 generic	 PEC	

system.			That	study	found	that,	for	an	optimized	system,	the	catalyst	capital	costs	of	even	the	

most	 expensive	 catalysts	 are	 insignificant	 compared	 to	 the	 capital	 costs	 of	 the	

semiconductors.134	 This	 conclusion	 is	 also	 consistent	 with	 commercial	 PEM	 electrolyzer	 cost	

breakdowns,	which	 indicate	 that	 the	catalysts	 constitute	<	7%	of	 the	 total	 capital	 cost	of	 the	

system.119	

	

7.3.5 Type	4	PEC	System	

The	 Type	 4	 base-case	 LCH	 and	 capital	 cost	 values	were	 $9.2	 kg-1	 and	 $160	MM	 ($428	mS
-2),	

respectively,	and	are	also	lower	than	the	LCH	of	the	base-case	PV-E	system.		The	PV-E	system	

must	exhibit	an	efficiency	of	>	16%,	or	must	have	a	decrease	in	capital	expense	to	$175	MM	($251	

mS
-2),	to	overcome	this	difference	and	reach	cost	parity	with	the	base-case	Type	4	PEC	system.	

	

Figure	7.7	demonstrates	the	impact	of	the	two	most	sensitive	parameters,	plant	efficiency	and	

active	component	capital	expenses,	on	the	base-case	Type	4	system	LCH	value.		In	contrast	to	the	

base-case	PV-E	and	Type	3	PEC	systems,	the	active	component	cost	has	the	largest	impact	on	the	

LCH	value	of	the	base-case	Type	4	PEC	system,	mainly	because	of	the	current	high	cost	and	level	

of	 uncertainty	 in	 the	 component	 cost	 of	 the	 III-V	 high-efficiency	 photovoltaic	 materials.		

Achieving	a	maximum	practical	plant	efficiency	of	25%	at	the	base-case	capital	cost	would	result	

in	a	LCH	of	~	$7.4	kg-1	H2.	 	 In	contrast,	maintaining	the	base-case	efficiency	and	reducing	the	
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capital	cost	to	$283	mS
-2,	consistent	with	lowering	photovoltaic	component	cost	to	$30	mS

-2	or	

$0.1	Wp
-1	at	30%	photovoltaic	efficiency,	would	result	in	a	LCH	of	$5.2	kg-1	H2.	

	

Figure	7.7:	LCH	contour	plot	of	plant	efficiency	versus	semiconductor,	membrane,	and	catalyst	

cost	for	the	Type	4	PEC	system	A	contour	plot	of	the	LCH	($	kg-1)	for	the	Type	4	PEC	system	as	a	

function	of	the	plant	efficiency	and	active	component	(semiconductor,	membrane	and	catalyst)	

capital	expense	normalized	by	the	required	solar	collection	area	($	mS
-2).		The	base-case	result	is	

indicated	by	the	yellow	circle.		Contours	are	labeled	at	$2	kg-1	intervals	and	the	practical	efficiency	

limit	 for	 PEC	 systems	 is	 indicated	 assuming	 direct	 electrical	 connection	 between	 the	

semiconductor	and	catalyst	components	without	additional	power	electronics.	

7.3.6 Type	3	PEC	vs	PV-E	System	Comparison	

To	support	deployment	at	scale,	PEC	systems	must	be	cost-advantaged	relative	to	PV-E	systems,	

because	 both	 systems	 provide	 identical	 functionality	 and	 energy	 quality.	 	 To	 understand	 the	

source	of	this	difference	in	LCH,	the	capital	expenses	for	each	system	were	separated	into	active	
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module,	 hard	 BoS,	 and	 soft	 BoS	 capital	 expenses,	 according	 to	 the	 technical	 and	 economic	

assumptions	associated	with	each	base-case	scenario.		We	note,	however,	that	the	PEC	system	

technical	 hurdles	 of	 simultaneous	 stability,	 efficiency,	 and	 operational	 safety	 that	 have	

challenged	the	field	for	40+	years	were	assumed	to	be	satisfied	simultaneously	in	a	single	large	

area	system.			

	

Given	these	assumptions,	Table	7.7	presents	the	discretized	capital	expenses	for	the	PEC	and	PV-

E	systems,	respectively.		The	difference	in	active	component	and	soft	BoS	expenses	between	each	

system	is	relatively	small,	especially	given	the	uncertainty	in	PEC	active	component	expenses	due	

to	 an	 absence	 of	 any	 commercial	 experience.	 	 The	 hard	 BoS	 costs	 demonstrate	 the	 largest	

difference	with	the	PEC	system	estimated	to	be	~2x	lower	than	those	of	the	PV-E	system.			

	

This	difference	is	due	to	different	modes	of	energy	transmission	within	the	PEC	and	PV-E	plants	

as	 well	 as	 the	 fact	 that	 the	 PV-E	 system	 has	 two	 sets	 of	 hard	 BoS	 expenses,	 one	 for	 the	

photovoltaic	and	one	for	the	electrolyzer	units,	while	the	PEC	system	has	one	set	of	hard	BoS	

costs	for	its	sole,	integrated	unit.		In	the	PV-E	system,	electricity	is	the	major	energy	carrier	being	

transported	from	the	photovoltaic	modules	to	the	electrolyzers	(Figure	7.1).		However,	in	the	PEC	

system,	hydrogen	is	the	energy	carrier	being	transported	from	the	modules	to	the	gas	processing	

systems	 and	 to	 the	 plant	 gate	 (Figure	 7.1).	 	 This	 difference	 indicates	 that	 transportation	 of	

hydrogen	gas	at	low	pressure,	and	subsequent	compression	of	the	H2,	is	less	expensive	per	joule	

of	energy	transmitted	than	transportation	and	conditioning	of	relatively	low	power	electricity.		

This	 result	 is	 consistent	 with	 capital	 expenses	 for	 high	 power	 transmission	 lines,	 in	 which	
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electricity	transmission	expenses	are	~$1	MM	(GW-mile)-1	47,48	as	compared	to	hydrogen	pipeline	

expenses	of	~$0.1MM	(GW-mile)-1.49,50	The	LCH	difference	between	both	systems	 is	 relatively	

small,	<	$1	(kg	H2)
-1,	and	thus	only	a	slight	advantage	lies	with	PEC	systems.	

Table	7.7:	PEC	versus	PV-E	capital	expense	comparison	for	systems	without	light	concentration	

in	$	mS
-2	of	solar	collection	area	

PEC	(ηSTH	=	10%)	 PV-E	(ηSTH	=	10%)	

Active	Components	

Membrane	 50	$	mS
-2	 Electrolyzer	Stack	 65	$	mS

-2	

Catalyst	 8	 Photovoltaic	Module	 96	

Semiconductor	 48	 	 	

Chassis	 38	 	 	

Assembly	Labor	 10	 	 	

	 	 	 	

Subtotal	 154	 Subtotal	 161	

Hard	BoS	

Gas	Processing	 20	$	mS
-2	 Wiring	 16	$	mS

-2	

Control	Systems	 6	 Other	Electrolyzer	Hard	BoS	 61	

Panel	Mounting	Materials	 29	 Panel	Mounting	Materials	 29	

	 	 	 	

Subtotal	 55	 Subtotal	 151	

Soft	BoS	

Install	Labor	 29	$	mS
-2	 PV	Install	Labor	 29	$	mS

-2	

Other	Soft	BoS	 56	 Electrolyzer	Install	 19	

	 	 Other	Soft	BoS	 56	

	 	 	 	

Subtotal	 85	 Subtotal	 104	

	



	

	

161	

7.4 Summary,	Comparative	Analysis	Beyond	Solar	Fuels	and	Extenstion	

to	CO2	Reduction	Systems	

7.4.1 Summary	of	LCH	and	Sensitivity	Results	

Figure	7.8	presents	the	base-case	estimated	LCH	values	for	all	systems	analyzed	herein.		The	LCH	

sensitivity	 to	 either	 system	 or	 photovoltaic	 efficiency,	whichever	 is	most	 appropriate,	 is	 also	

presented	in	Figure	7.8,	because	efficiency	has	the	greatest	impact	on	LCH,	by	virtue	of	the	areal	

dependencies	of	most	of	the	component	costs.			

	

Figure	7.8:	LCH	summary	of	all	systems	analyzed	A	summary	of	the	base-case	scenario	results	

with	the	current	and	future	predicted	market	hydrogen	value	without	a	CO2	tax	indicated	(dashed	

line,	SMR	current).		

	



	

	

162	

7.4.2 Solar	H2	vs	Fossil	Fuels	

As	compared	to	other,	commercial,	energy	production	and	storage	technologies,	the	solar-driven	

technologies	analyzed	herein	are	limited	by	an	intrinsically	diffuse	solar	power	density	of	<1	kW	

m-2,	as	well	as	by	a	low	capacity	factor,	of	under	25%,	for	fixed-tilt	panels	in	the	optimal	locations	

in	 the	 U.S.,	 and	 by	 a	 conversion	 efficiency	 of	 under	 20%.	 	 These	 limitations,	 combined	with	

relatively	high	capital	expenses,	result	in	estimated	untaxed	levelized	hydrogen	production	costs	

that	are	far	larger	than	the	cost	of	hydrogen	derived	from	steam	methane	reforming	(SMR)	or	

grid	electrolysis	using	electricity	derived	from	fossil	fuel.		Accordingly,	in	an	unconstrained	CO2	

energy	market,	 solar	 electrolysis	 technologies	 based	 on	 the	 embodiments	 considered	 herein	

should	not	be	expected	to	compete	on	a	cost	basis	with	fossil	fuel-derived	H2	for	hydrocarbon	

upgrading	or	ammonia	production.		A	CO2	tax	of	$1000	(ton	CO2)
-1,	$800	(ton	CO2)

-1,	$1200	(ton	

CO2)
-1and	$450	(ton	CO2)

-1	would	be	required	to	increase	the	price	of	SMR	to	parity	with	the	base-

case	 Type	 3	 and	 Type	 4	 PEC,	 PV-E,	 and	 GSPV-E	 (assuming	 CO2-free	 electricity)	 technologies,	

respectively.		

	

The	 difference	 between	 the	 grid	 electrolysis	 and	 solar	 hydrogen	 systems	 suggests	 that	 the	

effective	price	of	solar	electricity	embedded	within	the	PEC	and	PV-E	systems	is	more	than	double	

the	industrial	average	grid	electricity	price	of	$0.07	kWh-1.		Similarly,	at	current	electricity	pricing,	

the	use	of	solar	electricity	as	only	a	fraction	of	the	total	electricity	input,	with	the	remainder	of	

the	 input	as	grid	electricity,	while	utilizing	the	electrolyzer	unit	at	near	 its	 full	capacity	factor,	

resulted	in	a	higher	LCH	than	the	sole	use	of	grid	electricity	as	the	input.		These	findings	thus	both	

individually	and	collectively	indicate	that	solar	electricity	has	not	reached	grid	parity,	because	the	
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generally	quoted	solar	electricity	production	costs	do	not	include	the	cost	of	the	fossil	fuel	back-

up	 capacity	 required	 to	 provide	 the	 reliability	 required	 from,	 and	 achieved	 by,	 utilities.	 	 In	

contrast,	 the	 solar	 fuel	 plants	 analyzed	 herein	 could,	 in	 principle,	 provide	 the	 required	 high	

capacity	 factor	 and	 attendant	 grid	 reliability	 by	 themselves.	 	 Succinctly,	 even	 at	 comparable	

LCOEs,	the	value	of	electricity	produced	from	an	intermittent	source	such	as	sunlight	is	less	than	

the	value	of	electricity	that	can	be	dispatched	with	high	reliability	to	meet	demand.	

	

7.4.3 Grid	Electrolysis	vs	Fossil	Fuels	

The	LCH	for	both	grid	electrolysis	and	fossil	fuel	reforming	is	dominated	by	operating	expenses	

in	the	form	of	fuel	costs.		Current	natural	gas	prices	of	~$3	(MM	BTU)-1	result	in	a	LCH	of	$1.39	

kg-1	or	$0.042	kWh-1	(33.3	kWh	kg-1),	which	is	less	than	the	average	“fuel”	(industrial	electricity)	

price	in	the	U.S.,	$0.07	kWh-1.26	Natural	gas	prices	would	have	to	increase	to	$8.2	(MM	BTU)-1	to	

reach	 parity	 with	 100%	 efficient,	 zero	 capital	 cost	 grid	 electrolysis	 at	 the	 current	 average	

industrial	electricity	price.		If	the	base-case	grid	electrolysis	plant	efficiency	of	61%	is	assumed,	

the	result	is	a	natural	gas	parity	point	of	$13.4	(MM	BTU)-1.		For	comparison,	liquefied	natural	gas	

(LNG)	prices	in	Japan,	where	LNG	prices	have	traditionally	been	highest	worldwide,	are	currently	

<	$8	(MM	BTU)-1.51	Thus,	H2	produced	by	grid	electrolysis	 is	more	costly	than	H2	produced	by	

SMR,	as	is	evidenced	by	the	current	market	dominance	of	SMR	for	hydrogen	production.	

	

Grid	electrolysis	capital	costs	constitute	26%	of	the	annual	costs	and	are	dominated	by	BoS	costs,	

59%,	 in	comparison	with	41%	for	 the	stack	capital	costs.13	The	active	catalyst	and	membrane	

component	costs	constitute	<25%	of	the	stack	capital	costs,	suggesting	that	research	on	lowering	
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these	costs	will	provide	small	returns	and	thus	the	predominant	efforts	should	be	focused	on	

cost-effective	efficiency	improvements.26	Predicted	advances	suggest	an	18%	decrease	in	LCH	for	

future	 grid	 electrolysis	 systems,	 based	 on	 increased	 efficiency	 and	 decreased	 capital	 costs,	

though	such	advances	still	 result	 in	LCH	values	far	higher	than	that	of	H2	produced	by	SMR.13	

Therfore,	disruptive	approaches	to	electrolysis	that	can	provide	high	efficiencies	at	very	low	costs	

compared	to	the	current	approaches,	including	those	related	to	the	chlor-alkai	process	that	has	

been	practiced	at	scale	for	over	a	century,	constitute	an	important	avenue	for	sustained	research	

and	development	efforts.	

	

7.4.4 Solar	H2	vs	low	CO2	or	CO2-Neutral	Hydrogen	Production	

Hydrogen	is	an	essential	chemical	feedstock	in	fertilizer	production	and	fossil	fuel	upgrading,	with	

demand	expected	to	continue	for	fertilizer	production	and	possibly	biomass	upgrading	even	in	a	

CO2-neutral	 economy.	 	 It	 is	 therefore	 important	 to	 assess	 different	 hydrogen	 production	

pathways	and	their	economic	competitiveness.	Biomass	reforming,	CO2-free	grid	electrolysis,	and	

SMR	with	carbon	capture	and	storage	(CCS)	are	alternative	routes	to	low	CO2	and	CO2-neutral	

hydrogen	 production.	 	 Technoeconomic	 studies	 of	 biomass	 reforming	 and	 gasification	 have	

yielded	 estimated	 hydrogen	 production	 costs	 of	 <$3.0	 kg-1	 (adjusted	 to	 2014	 dollars).52,53	

However,	 the	 LCH	 is	 highly	 dependent	 on	 the	 feedstock	 type	 as	 well	 as	 on	 production	 and	

transportation	costs.	 	Biomass	energy	production,	 in	general,	 is	geographically	constrained	 to	

areas	not	in	competition	with	food	production.		Given	this	constraint,	estimates	for	the	US	and	

California	suggest	that	only	a	small	portion	of	the	projected	liquid	fuel	demand	could	be	met	by	

biomass.54,55	Dedicated	use	of	biofuels	for	peaking	capacity	is	possible,	and	given	the	enormous	
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installed	storage	capacity	of	gas	pipelines,	power	production	by	combustion	of	carbon-neutral	

biogas	may	provide	a	low-cost	solution	for	some	peaking	applications.	

	

Nuclear	fission	reactors	coupled	with	electrolyzers	would	produce	hydrogen	at	$7.4	kg-1	using	

estimated	nuclear	electricity	production	costs	of	$0.1	kWh-1.56	This	scenario	of	course	explicitly	

assumes	 that	 the	 required	 nuclear	 fission	 power	 plants	 can	 overcome	 the	 financial	 and	

sociopolitical	challenges	such	that	sufficient	numbers	of	plants	are	constructed	and	operated.		

	

Natural	gas-	or	coal-fired	power	plants	with	CCS	constitute	a	low	CO2	electricity	technology	at	

pilot-plant	scale.		The	added	cost	of	CCS	to	fossil-fuel-derived	electricity	is	a	subject	of	current	

debate,	with	predicted	n-th	plant	electricity	costs	for	natural	gas	plants	estimated	to	be	~	$0.1	

kWh-1,	yielding	a	LCH	of	$7.4	kg-1	H2	for	systems	that	are	designed	to	have	an	~80%	CO2	capture	

efficiency.56	 However,	 this	 value	 assumes	 that	 the	 sequestration	 site	 exploration,	 and	 other	

currently	 large	 costs,	 as	 well	 as	 long-term	 technical	 and	 financial	 liability	 issues	 can	 be	

overcome.57	Alternatively,	CCS	directly	integrated	with	steam	methane	reforming	is	expected	to	

increase	the	cost	of	SMR-derived	H2	by	~$1	kg
-1,	to	~$2.5	(kg	H2)

-1,	given	estimated	CCS	costs	of	

~$100	(ton	CO2)
-1	and	a	SMR	CO2	intensity	of	10	ton	CO2	per	ton	H2.	

	

7.4.5 Solar	 H2	 vs	 Low	 CO2	 or	 CO2-Neutral	 Energy	 Production	 and	 Storage	

Technologies	

Two	forms	of	energy	consumption	are	considered	here:	electricity	and	transportation	fuels.		For	

low	 CO2	 or	 CO2-neutral	 electricity	 production,	 nuclear	 fission	 and	 fossil	 fuels	 with	 CCS	
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technologies	will	compete	with	wind	and	solar	systems	that	incorporate	storage	in	the	form	of	

batteries,	fuels	(H2),	pumped	hydro,	compressed	air,	or	other	energy	storage	technologies.			As	

discussed	 above,	 nuclear	 fission	 and	 fossil	 fuels	 plus	 CCS	 have	 a	 mutually	 similar	 predicted	

electricity	production	price	of	~$0.1	kWh-1	assuming	the	challenges,	also	discussed	above,	 for	

each	of	these	technologies	can	be	surmounted.	

	

Capital	costs	for	fully	installed	battery	systems	are	between	$500	to	$1000	kWh-1	or	more	per	

kWh	of	capacity.58	The	 levelized	cost	of	storage,	excluding	 input	electricity	costs,	ranges	from	

$0.25	kWh-1	to	$0.49	kWh-1	for	a	capital	cost	range	of	$500	kWh-1	to	$1000	kWh-1	(assuming	a	10	

year	lifetime,	one	cycle	per	day,	a	10%	discount	rate,	92%	round-trip	efficiency,	and	a	linear	decay	

to	80%	of	capacity	at	the	end	of	life).		To	provide	reliability	commensurate	with	current	base-load	

utility	generation	systems,	battery	systems	coupled	to	wind	or	solar	systems	would	need	to	be	

significantly	 oversized	 to	 accommodate	 resource	 availability	 extremes	 (days	with	 little	 or	 no	

sunshine	or	wind),	which	would	increase	the	battery	storage	costs	further	due	to	lower	utilization	

rates	 than	 those	assumed	herein.	 	 The	needs	 for	 research	and	development	 to	develop	new	

battery	 chemistries	 that	 could	 provide	 cost-effective	 grid-scale	 energy	 storage	 are	 widely	

recognized.	

	

Conversion	of	hydrogen	into	electricity	requires	storage	and	an	energy	conversion	process.		Little	

information	 is	 available	on	 real-world	 compression	efficiencies	 for	hydrogen	 storage,	 but	 the	

existing	 data	 suggest	 that	 compression	 from	 14	 bar	 to	 430	 bar,	 roughly	 equivalent	 to	 high	

pressure	 storage	 conditions,	 is	 75%	 efficient.59	 MW-scale	 fuel	 cell	 systems	 have	 efficiencies	
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ranging	from	40-49%.60-62	Including	the	efficiency	losses	only,	with	no	inclusion	of	extra	capital	

costs,	the	cost	of	electricity	that	results	from	hydrogen	production	costs	of	$11.4	kg-1	and	$13.4	

kg-1	 H2,	 respectively,	 in	 conjunction	 with	 the	 above	 compression	 and	 fuel-cell	 conversion	

efficiencies,	 are	 $0.92	 kWh-1	 and	 $1.09	 kWh-1,	 respectively.	 	 Because	 H2	 storage	 is	 relatively	

inexpensive,	the	cost	associated	with	extra	storage	capacity	for	overcoming	resource	availability	

extremes	 is	expected	to	be	 less	than	the	cost	 to	achieve	the	same	functionality	using	battery	

storage.59					

	

Pumped	 hydroelectric	 and	 compressed	 air	 storage	 in	 suitable	 geologic	 formations	 are	 less	

expensive	 than	 batteries	 and	 hydrogen	 for	 energy	 storage	 applications,	 but	 the	 geologically	

constrained	capacity	limits	may	require	other	technologies	to	make	up	the	needed	balance	of	

storage	capacity,	which	can	be	a	majority	in	a	low-CO2	energy	system	that	has	a	large	amount	of	

renewables	 in	the	generation	mix.63	The	total	capacity	required	for	future	energy	storage	will	

depend	upon	the	ultimate	mix	of	generation	capacity	and	demand.	

	

The	above	analysis	suggests	that	solar	or	wind	systems	that	utilize	current	battery	or	fuel	storage	

to	obtain	reliability	metrics	similar	to	that	of	current	base-load	or	dispatchable	load	power	plants	

have	costs	that	are	one	order	of	magnitude	higher	than	current	electricity	prices	and	than	the	

expected	prices	of	nuclear	or	fossil	fuel	with	CCS	alternatives.		Within	storage	technologies	for	

intermittent	energy	sources,	the	high	cost	of	both	battery	and	fuel	storage	options	suggests	that	

neither	is	clearly	advantaged.		Consequently,	dramatic	cost	reductions	are	required	to	achieve	

competitiveness	 with	 other	 electricity	 technologies	 that	 can	 provide	 electricity	 on	 demand,	
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providing	 a	 need	 for	 the	 development	 of	 disruptive	 technologies	 for	 cost-effective	 grid-scale	

energy	storage.	

	

A	second	possible	market	for	solar	hydrogen	is	transportation	in	the	form	of	fuel	cell	vehicles,	

where	H2	is	suited	for	use	in	light-duty	vehicles	as	well	as	in	some	larger	vehicles,	such	as	buses.		

Hydrogen’s	 relatively	 low	 volumetric	 energy	density	 (4	MJ	 L-1	 at	 10,000	psi),	 as	 compared	 to	

conventional	aviation	and	diesel	fuels	(35	MJ	L-1),	provides	at	present	a	technical	barrier	to	the	

use	of	high-pressure	hydrogen	fuel	 in	these	sectors.64	Significant	 improvements	 in	hydrogen’s	

stored	 volumetric	 system	 energy	 density,	 through	 hydrogen	 storage	 research,	 can	 make	

hydrogen	suitable	for	markets	that	have	fewer	and/or	more	expensive	technology	alternatives.	

	

In	currently	suitable	markets,	hydrogen	will	compete	primarily	with	batteries.		Land	requirements	

may	constrain	biofuels	to	a	relatively	low	maximum	penetration	level,	even	if	solar	hydrogen	is	

used	for	biofuel	upgrading.		As	discussed	above,	the	costs	of	storage	in	the	form	of	batteries	or	

hydrogen	are	similar	yet	high,	and	thus	neither	has	a	clear	advantage;	both	electric	and	fuel	cell	

vehicles	 are	 available	 to	 consumers	 although	 in	 limited	 quantities.	 	 The	 recharge	 times	 of	

batteries	 also	 are	 limited	 due	 to	 resistive	 heating	 losses,	 providing	 a	 refueling	 advantage	 to	

hydrogen.			

	

7.4.6 Comparisons	to	Previous	Work	

The	findings	presented	herein	are	consistent	with	previous	life-cycle	analysis	(LCA)	studies.65	In	

particular,	 the	 energy-return	 on	 energy-invested	 (EROEI	 or	 EROI)	 for	 a	 large	
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photoelectrochemical	 hydrogen	 production	 facility	 has	 been	 shown	 to	 be	 positive,	 with	 a	

maximum	EROI	value,	based	on	any	single	parameter	sensitivity,	of	<3:1,	and	a	base-case	EROI	of	

1.66.		The	minimum	EROI	(petroleum	based)	necessary	to	sustain	the	minimum	standards	of	life	

is	reported	to	be	3:1,	but	to	sustain	present	standards	of	life	in	first-world	countries	the	minimum	

EROI	 is	generally	higher,	upwards	of	14:1,	for	many	of	the	luxuries	we	currently	enjoy	(health	

care,	athletics,	art,	etc.).66	Current	EROI	values	for	petroleum	are	20:1	–	30:1,	and	preferred	new	

energy	generation	technologies	would	have	similar	EROI	values,	thereby	allowing	impoverished	

people	to	raise	their	standard	of	living	to	that	of	first-world	countries.66	Both	the	economic	and	

EROI	assessments	for	base	case	solar	hydrogen	systems	are	an	order	of	magnitude	lower	than	

currently	competitive	values.		The	broad	agreement	with	the	analysis	presented	herein	grounds	

our	results,	future	outlook,	and	suggested	research	avenues	for	solar	electrolysis	technologies.		

Specifically,	such	applications	provide	an	opportunity	for	foundational	research	to	contribute	to	

the	development	of	disruptive	approaches	to	solar	fuels	generation	systems	that	can	offer	higher	

performance	at	much	lower	costs	than	current	embodiments	of	solar	fuels	generators.			

	

Additionally,	 previous	 technoeconomic	 analyses	 have	 been	 performed	 on	 different	 solar	

hydrogen	technologies	at	different	levels	of	depth.		A	1998	report	covering	PEC	and	PV-E	systems	

found	LCH	values	similar	to	those	calculated	herein	for	their	base-case	systems.67	However,	their	

predicted	advancements	in	both	PEC	and	electrolysis	performance	and	economics	have	not	yet	

been	realized.		Thus	current	costs,	as	presented	herein,	remain	aligned	with	the	base-case	values	

in	the	previous	report.		That	report	suggested	that	PEC	technologies	could	be	advantaged	over	

PV-E	systems	if	the	performance	and	economic	goals	set	therein	were	met,	but	no	quantitative	
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argument	was	presented	to	determine	the	source	of	this	advantage.		In	2009,	a	comprehensive	

technoeconomic	 analysis	 focused	 solely	 on	 PEC	 systems.26	Many	 of	 the	 PEC	 plant	 economic	

assumptions	made	herein	were	taken	directly	from	that	report.		LCH	values	for	panel-based	PEC	

systems	therein	were	similar	to	the	LCH	values	for	the	PEC	systems	evaluated	herein	(Type	3	and	

4	systems),	though	their	systems	did	not	explicitly	include	the	costs	for	a	membrane,	as	is	done	

herein.	However,	two	other	particle-based	systems	were	studied	therein	and	found	to	possess	

the	potential	for	significantly	reduced	LCH	values	due	to	reduced	balance	of	system	costs.		Finally,	

a	recent	report	that	was	focused	on	the	PEC	cell	alone	found	that	the	catalyst	cost	contribution	

was	negligible	for	even	the	most	expensive	electrocatalysts,	Pt	and	Ir.46	This	finding	is	consistent	

with	the	full	technoeconomic	analysis	of	both	the	components	and	installed	system	presented	

herein.	

	

7.4.7 Direct	Solar	CO2	Reduction	Potential	

Recent	efforts	have	refocused	attention	on	the	direct	electrochemical	reduction	of	CO2,	which	

has	the	possibility	of	making	higher-value	products	that	could	potentially	support	a	higher	capital	

cost	than	can	be	supported	by	a	hydrogen	production	process.			

	

The	direct	use	of	CO2	as	an	electrochemical	reactant	involves	many	chemical,	engineering,	and	

economic	challenges	due	to	the	relatively	low	temperature	and	low	electrode	reaction	rates,	the	

absence	 of	 active	 and	 selective	 electrocatalysts,	 and	 the	 low	 concentration	 of	 CO2	 in	 the	

atmosphere,	the	ultimate	source	for	a	closed-cycle	sustainable	CO2-based	energy	scenario.		By	

necessity,	 a	 CO2-reduction	 system	 needs	 an	 inexpensive	 source	 of	 CO2	 (as	 compared	 to	 the	
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product	 value)	 delivered	 to	 the	 catalyst	 surface	 at	 a	 rate	 greater	 than	 the	 current	 density	

provided	by	the	photovoltaic	component	(24	mA	cm-2	for	an	ideal	tandem	junction	device38	or	

equivalently	
".W	×	n/ÑÖ

#	of	electrons	per	product	molecule
	mol	CO2	s

-1	m-2).	The	low	concentration	of	CO2	in	air	highly	

favors,	 and	 may	 require,	 capturing	 the	 atmospheric	 CO2	 from	 a	 much	 larger	 area	 than	 is	

subtended	by	the	solar	capture	area.		Capturing	CO2	from	air	is	projected	to	cost	more	than	$600	

(ton	CO2)
-1,	which	eliminates	many	CO2	reduction	products	in	an	unconstrained	energy	market	

because	their	market	prices,	in	$-(ton	CO2)
-1	equivalence,	are	less	than	$600	(ton	CO2)

-1	(Figure	

7.9).68,69	The	products	shown	in	Figure	7.9	are	species	that	have	been	measured	and	quantified	

during	the	electrocatalytic	reduction	of	CO2	using	copper	electrodes.
70		Additional	routes	include	

a	two-step	procedure	consisting	of	an	initial	electrocatalytic	step	followed	by	a	thermochemical	

step	to	produce	ethylene	glycol	from	CO2.
71	Delivering	CO2	in	aqueous	systems	at	a	rate	that	is	

not	 limiting	 at	 1	 Sun	 solar	 fluxes	 requires	 a	mass	 transport	 coefficient	 at	 least	 two	orders	of	

magnitude	 higher	 than	 is	 achievable	 for	 natural	 transport	 under	 optimistic	 conditions	 (high	

winds,	 limited	 by	 mass	 transport	 in	 the	 liquid	 phase)	 (see	 supplementary	 information	 for	

details).72	The	concentrated	CO2	sources	and/or	forced	convection	systems	that	are	needed	to	

overcome	mass	transport	limitations	will	add	cost	to	the	overall	system	and	product.	
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Figure	7.9:	Breakeven	cost	of	CO2	for	a	variety	of	know	Cu	CO2	reduction	products	The	cost	of	

CO2	 equivalence	 for	 a	 variety	 of	 known	 CO2	 electrochemical	 reduction	 products	 on	 Cu.	 	 The	

conversion	calculation	assumed	100%	utilization	of	CO2	and	converted	based	on	the	mass	of	CO2	

retained	in	the	product	molecule.		The	CO2	price	of	atmospheric	capture	(estimated)	and	state-

of-the-art	flue	gas	capture	are	shown	for	comparison.	

	

One	concentrated	CO2	source,	shown	in	Figure	7.9,	is	carbon	captured	from	flue	gas,	with	current	

state-of-the-art	CO2	costs	of	$50	(ton	CO2)
-1.73	Product	use	in	distributed	applications	would	make	

the	 system	 a	 twice-thru	 carbon	 system	 that	 could	 serve	 to	 improve	 the	 efficiency	 of	 carbon	

utilization.	 	 The	 lower	 CO2	 cost	 expands	 the	 possible	 reduction	 products	 from	 an	 economic	

perspective.		These	value-added	products	are	used	today	for	their	chemical	attributes	and	not	as	

fuel	sources,	and	all	current	fuels	are	more	costly	to	produce	by	CO2	reduction	than	by	current	

means	even	with	CO2	at	$50	(ton	CO2)
-1.		Figure	7.9	also	provides	information	on	the	most	value-

added	 target	products	 for	near-term	CO2	 reduction	approaches.	 	 Interestingly,	 an	early-stage	
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company,	 Liquid	 Light,	 focused	on	 electrochemical	 CO2	 reduction	 is	 targeting	 ethylene	 glycol	

production,	likely	in	part	due	to	the	large	spread	at	present	between	the	reactant	cost	and	the	

product	value.71		

	

Methanation	of	solar	hydrogen	with	gas-phase	CO2	may	circumvent	the	mass	transport	issue	that	

is	a	barrier	to	sustainable	CO2	reduction	in	water.		Other	competing	options	for	CO2	reduction	

include	 known	 commercial	 thermochemical	 processes	 including	 Fischer-Tropsch	 and	

intermediate	methanol	synthesis	using	Cu-ZnO	catalysts.		Irrespective	of	the	pathway	chosen	the	

challenge	of	a	relatively	expensive	reactant	(CO2)	remains.	Further	evaluation	against	the	direct	

use	of	hydrogen	is	needed	to	understand	these	comparisons	in	more	detail.	

	

7.4.8 Guidance	for	Research	

Solar	 hydrogen	 production	 systems,	 which	 are	 at	 a	 laboratory	 research	 scale,	 have	 been	

compared	herein	to	more	mature	technologies,	because	such	systems	are	ultimately	what	solar	

hydrogen	will	 compete	against	 in	 the	 commercial	 arena.	 	 The	base-case	 scenarios	herein	are	

representative	 of	 the	 best-case	 currently	 available	 PEC	 systems	 based	 on	 laboratory	

demonstrations,	and	are	representative	of	current	PV	and	electrolyzer	systems.		Our	conclusions	

are	 based	 on	 these	 comparisons	 and	 identify	 the	 largest	 opportunities	 for	 achieving	 cost-

competitive	solar	hydrogen	production	technologies.	

	

The	results	indicate	that	aggressive	performance	improvements	and	capital	cost	reductions	are	

required	simultaneously	for	solar	hydrogen	to	achieve	parity	with	fossil-fuel-derived	hydrogen	
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costs.		Specifically,	achieving	a	maximum	practical	plant	efficiency	of	25%	at	the	base-case	PEC	

costs	is	not	sufficient	to	attain	this	goal.		Figure	7.10	illustrates	this	case	and	depicts	the	broader	

impact	that	changes	 in	the	total	capital	expense	and	plant	efficiency	can	have	on	the	LCH	for	

generic	PEC	systems.		

	

The	maturity	of	the	photovoltaic	and	electrolyzer	industries,	respectively,	suggests	that	present	

balance	of	systems	costs,	combined	with	non-zero	costs	of	the	active	components,	will	serve	as	

barriers	to	constructing	cost-effective	solar	hydrogen	production	facilities	based	on	technologies	

that	are	cosmetically	similar	to	current	photovoltaic	installations.		Consequently,	radically	new	

plant-wide	 designs	 are	 needed,	 and	 the	 economics	 of	 such	 technologies	 should	 be	 validated	

through	collaboration	with	chemical	plant	design	engineers.	For	example,	large-area	installations	

of	artificial	turf,	a	relatively	inexpensive	robust	outdoor	material,	cost	~$110	mS
-2.74	For	such	an	

installation	 ($110	 mS
-2)	 but	 composed	 of	 photoactive	 solar	 hydrogen	 generating	 materials	

operating	at	 the	maximum	practical	efficiency	of	25%	having	a	plant	 lifetime	of	20	years	and	

active	component	lifetime	of	7	years,	the	LCH	would	be	~$1.8	kg-1	H2.		This	LCH	is	thus	comparable	

to,	but	still	somewhat	higher	than,	current	H2	derived	from	fossil	fuels.			

	

These	metrics	of	25%	plant-wide	STH	efficiency	and	7	year	active	component	lifetime	are	similar	

to	the	25%	efficiency,	10-year	electrode	 lifetime	that	comprise	DOE	targets	 for	PEC	hydrogen	

production,	but	are	significantly	higher	than	the	10%	efficiency,	5-year	particle	lifetime	in	DOE	

targets	 for	PEC	hydrogen	production	using	Type	1	and	2	baggie	systems.	 	The	analysis	herein	

suggests	that	irrespective	of	the	active	component	architecture	and	cost,	very	high	efficiencies	
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are	 required,	 and	 thus	 all	 system	 efficiency	 targets	 should	 be	 ~25%	 with	 active	 component	

lifetimes	of	7-10	years.	

	

PEC	technologies	may	be	advantaged	because	they	may	facilitate	the	 implementation	of	such	

new	plant	designs.		For	example,	the	Type	1	and	2	designs	(particles	in	low	cost	polymeric	bags)	

entail	a	completely	different	form	factor	that	is	predicted	to	produce	hydrogen	at	costs	much	

closer	 to	 current	 market	 prices.14	 Another	 potential	 design	 includes	 a	 flexible,	 membrane	

embedded	device	(using	Si	microwires	for	example)	that	could	be	rolled	out	like	artificial	turf	with	

a	 hydrogen	 collection	 system	 similar	 to	 that	 used	 for	 landfill	 methane	 collection.75,76	 The	

practicality	of	such	designs	should	be	rigorously	analyzed	to	understand	the	potential	advantages	

of	each	approach	and	thus	to	guide	research	and	development	trajectories	and	milestones.		

	

Assuming	 such	 radically	 new	 designs	 are	 possible,	 the	 performance	 and	 cost	 of	 the	 active	

components	remain	to	be	demonstrated	simultaneously.	 	A	consistent	 theme	throughout	the	

solar	 hydrogen	 technoeconomic	 analysis	 is	 that	 membrane	 and	 semiconductor	 costs	 are	

dominant	 while	 the	 semiconductor	 efficiency	 and	 stability	 are	 the	 limiting	 performance	

components.		Accordingly,	one	conclusion	is	that	electrocatalysts	contribute	little	to	the	overall	

capital	 cost,	and	 the	performance	of	known	electrocatalysts	 is	 sufficient	 to	 reach	 the	needed	

performance	targets	in	several	possible	implementations	of	the	technology.46	The	main	area	seen	

for	potential	impact	is	in	acid-	stable	oxygen	evolution	catalysts,	where	iridium	oxide	is	the	only	

known	material	 to	exhibit	 satisfactory	performance	characteristics.	 77	However,	 Ir	 is	 the	 least	

abundant	 element	 in	 the	 Earth’s	 crust,	 and	 the	 scarcity	 of	 Ir	 would	 preclude	 scaling	 the	



	

	

176	

technology	to	terawatt	 levels	of	solar	hydrogen	capacity.78	Thus,	acid	stable	oxygen	evolution	

electrocatalysts	that	have	a	performance	similar	to	that	of	iridium	oxide	would	be	required	to	

achieve	 very	 high	 penetration	 scenarios	 using	 this	 particular	 electrolysis	 technology	

implementation.			

	

Additionally,	the	limiting	semiconductor	component	is	the	wide	bandgap	material	in	a	tandem	

stack.		Few	materials	exist	with	the	proper	bandgap,	and	of	those	that	do,	all	are	unstable	under	

solar	fuels	operating	conditions	and	are	much	too	expensive	due	to	growth	methods	that	require	

epitaxy	 to	achieve	high	performance.	 	This	 later	point	has	been	a	continual	 challenge	 for	 the	

photovoltaic	 industry	 where	 tunnel	 junction	 formation	 and	 lattice	 matching	 constraints	

substantially	restrict	materials	compatibility.		Concepts	such	as	spectral	splitting	or	multi-terminal	

electronic	architectures	could	relax	some	of	the	challenges	involved	with	materials	growth,	but	

introduce	their	own	challenges	that	have,	to	date,	been	less	attractive	than	traditional	epitaxial	

growth	 solutions.	 	 Another	 potential	 solution	 is	 nanowire	 growth,	 which	 can	 relax	 lattice	

mismatch	 growth	 defects	more	 readily	 than	 planar	 architectures,	 and	 thus	may	 broaden	 the	

range	of	materials	compatibility.	

	

Membrane	development	is	another	important	area	because	the	membranes	used	in	electrolyzers	

are	too	expensive	for	implementation	in	base-case	solar	fuels	systems	achitectures	and	moreover	

have	 higher	 ionic	 conductivities	 than	 needed	 for	 PEC	 devices.79	 Thus,	 membranes	 designed	

specifically	for	PEC	may	enable	lower	costs	due	to	different	required	performance	targets	in	the	

associated	technology	implementation.			
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Device	stability	is	critical	to	a	cost-effective	solar	hydrogen	technology.		Protection	of	known	high-

efficiency	 semiconductors	 is	 likely	 the	 largest	 challenge.	 	 Improving	 recently	 developed	

protection	 and	 stabilization	 methods,	 and/or	 developing	 entirely	 new	 approaches	 that	 can	

protect	square	meters	of	semiconductor	for	years,	while	maintaining	high	efficiency,	is	needed	

to	 facilitate	 a	 viable,	 scalable	 solar	 hydrogen	 technology.80-82	 In	 addition,	 typical	 stability	

measurements	 are	 performed	 with	 no	 standard	 protocol	 and	 generally	 under	 constant	

illumination;	hence	protocols	should	be	developed	to	facilitate	the	intercomparison	of	results,	

and	 measurements	 should	 be	 extended	 to	 include	 dark	 conditions	 as	 well	 as	 the	 stresses	

associated	with	diurnal	cycling	for	extended	periods	of	time.	
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Figure	7.10:	LCH	contour	plot	of	plant	efficiency	versus	capital	expense	for	a	generic	PEC	system	

A	contour	plot	of	the	LCH	($	kg-1)	for	a	generic	PEC	system	as	a	function	of	the	plant	efficiency	

and	capital	expense	($	mS
-2).		This	calculation	includes	identical	assumptions	to	the	specific	PEC	

analyses	above,	except	that	the	replacement	costs	at	7	and	14	years	are	assumed	to	be	15%	of	

the	total	capital	expense.		Contours	are	labeled	at	$2	kg-1	intervals	and	the	practical	efficiency	

limit	 for	 PEC	 systems	 is	 indicated	 assuming	 direct	 electrical	 connection	 between	 the	

semiconductor	and	catalyst	components	without	additional	power	electronics.	

	

7.5 Summary	and	Conclusions	

Applied	research	based	on	firm	scientific	principles	guided	by	realistic	production	and	economic	

constraints	is	a	foundation	of	societal	progress.		To	have	significant	impact	on	the	major	problems	

of	society,	technological	solutions	must	necessarily	be	competitive	within	the	economic	realities	

of	 the	marketplace.	 	 Rigorous	 economic	 competitive	 analyses,	 applied	 after	 proof-of-concept	
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research	 and	 development,	 can	 provide	 critical	 guidance	 on	 a	 project’s	 further	 resource	

allocation,	priorities,	and	trajectory.		This	paradigm	for	applied	research	maintains	unrestricted	

scientific	imagination	along	with	foundational	research,	while	providing	an	economic	rationale	

to	calibrate	the	intensity	of	additional	human	and	financial	capital	for	applied	research.			

	

To	this	end,	a	comparative	technoeconomic	analysis	of	photoelectrochemical	and	photovoltaic-

electrolytic	solar	hydrogen	production	systems	was	performed.		The	results	indicate	an	estimated	

levelized	cost	of	hydrogen	(LCH)	 for	base-case	Type	3	and	4	photoelectrochemical	systems	of	

$11.4	kg-1	and	$9.2	kg-1,	respectively.		For	comparison,	the	estimated	LCH	for	base-case	PV-E	and	

GSPV-E	 systems	were	 $13.4	 kg-1	 and	 $6.1	 kg-1,	 respectively.	 	 The	 base-case	 PEC	 systems	 are	

advantaged	over	 the	base-case	PV-E	 systems	because	hydrogen	 transport	 from	the	panels	 to	

compression	units	is	less	expensive	than	electricity	transport	and	conditioning	from	the	PV	panels	

to	the	electrolyzers.	

	

Successful	 research	 and	 development,	 measured	 solely	 by	 achieving	 a	 system	 efficiency	 of	

greater	 than	20%	within	 the	 current	embodiments	of	 solar	H2	generators,	 is	not	 sufficient	 to	

produce	systems	with	LCH	values	comparable	to	the	LCH	of	fossil-fuel	derived	electricity.		Panel	

mounting	 materials,	 labor,	 and	 other	 balance	 of	 systems	 costs,	 irrespective	 of	 the	 active	

materials,	amount	to	LCH	values	in	excess	of	current	hydrogen	and	energy	prices.		For	base-case	

PEC	systems,	a	carbon	tax	of	greater	than	$800	(ton	CO2)
-1	would	be	required	in	an	unconstrained	

CO2	energy	market	for	SMR	to	reach	hydrogen	price	parity	with	these	solar	technologies.			
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Expected	electricity	prices	from	CO2-neutral	nuclear	and	low-CO2	fossil	fuel	with	CCS	technologies	

are	currently	an	order	of	magnitude	lower	than	expected	electricity	prices	from	solar	or	wind	

systems	with	battery	or	fuel	storage	solutions	that	provide	reliability	similar	to	that	of	current	

base-load	or	dispatchable	generation	technologies.		Given	these	low	electricity	prices,	electrolytic	

hydrogen	 prices	 are	 also	 projected	 to	 be	 significantly	 lower	 than	 the	 solar	 hydrogen	 routes	

analyzed	herein,	 requiring	disruptive	approaches	 to	solar	hydrogen	generation	relative	 to	 the	

present	embodiments	of	the	technology.	

	

The	 capacity	 factor	 of	 presently	 known	 solar-based	 energy	 systems	 is	 their	 fundamental	

limitation;	any	capital	item	used	only	20%	or	less	of	the	day	will	be	at	a	disadvantage	to	capital	

used	more	effectively.		Efforts	to	increase	the	low	capacity	factor	of	terrestrial	solar	power,	as	

well	 as	 re-designed	 solar	 installation	 schemes	 that	 significantly	 reduce	 the	balance	of	 system	

costs	 and	 increase	 the	 efficiency	 to	 near	 the	 Shockley-Queisser	 limit	 without	 increasing	 the	

capital	 cost,	 will	 have	 the	 largest	 impacts	 on	 the	 economic	 competitiveness	 of	 the	 resulting	

technology	 implementations.	 	 Radically	 new	materials	 and	 system	 designs	 that	 achieve	 fully	

installed	 costs	 similar	 to	 simple	 material	 installations	 such	 as	 artificial	 grass	 are	 required	 to	

achieve	the	equally	dramatic	cost	reductions	needed	for	solar	or	wind	power	to	compete	with	

current	generation	technologies.	
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8 Conclusions	

8.1 	Thesis	Summary	

This	thesis	has	focused	on	design,	fabrication,	and	experimental	characterization	of	Si	microwire	

array	based	photoelectrodes	for	unassisted	solar	water	splitting.		Chapter	1	provided	motivation,	

historical	 context,	 and	 a	 discussion	 of	 the	 relevant	 physical	 phenomena	 for	 this	 thesis	work.		

Chapter	2	described	a	complete	water	splitting	tandem	junction	Si	microwire	array	device	design	

and	the	general	fabrication	procedure	for	Si	microwire	array	devices.		Chapter	3	investigated	the	

first	of	two	Si	microwire	array	tandem	junction	devices,	this	one	consisting	of	a	np+-Si	microwire	

homojunction	 array	 coated	 by	 tin-doped	 indium	 oxide	 (ITO)	 and	 tungsten	 oxide	 (WO3),	

sequentially.		This	device	showed	proof-of-principle,	but	lacked	the	voltage	necessary	to	perform	

unassisted	water	splitting	under	1	sun	illumination	conditions.31	A	second	tandem	junction	device	

was	thus	investigated	in	Chapter	4	to	improve	on	the	WO3	device	and	consisted	of	the	same	np+-

Si	microwire	homojunction	array,	but	now	coated	with	the	more	stable	fluorine-doped	tin	oxide	

(FTO)	and	 titanium	oxide	 (TiO2).	 	 This	device	achieved	unassisted	water	 splitting	under	1	 sun	

illumination	and	improved	stability	over	the	ITO/WO3	device.		In	sum,	these	two	devices	have	

laid	the	groundwork	for	one	embodiment	of	a	Si	microwire	array	based	device	for	solar	water	

splitting	that	could	be	improved	upon	through	incorporation	of	a	narrower	bandgap	replacement	

for	WO3	and	TiO2	that	produces	similar	or	higher	voltages	than	TiO2	and	simultaneously	higher	

current	densities	due	to	the	smaller	bandgap.			
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Chapter	5	applied	a	recently	developed	amorphous,	oxidatively-protective	TiO2	coating	to	np
+-Si	

microwire	arrays	and	demonstrated	>2200	hours	of	stability	for	oxygen	evolution.71	Chapter	6	

investigated	 a	 Si	 microwire	 array	 based	 photocathode	 design	 aimed	 at	 decoupling	 light	

absorption	and	catalytic	activity,	two	parameters	that	are	traditionally	anti-correlated	in	planar	

systems.50	

	

The	guiding	theme	throughout	these	experimental	efforts	has	been	that	Si	microwire	arrays,	or	

similar	 three-dimensionally	 structured	materials,	may	 provide	 performance	 and/or	 economic	

benefits	 for	 solar	 water	 splitting	 devices	 as	 compared	 to	 the	 planar	 designs	 that	 nearly	 all	

previous	research	has	focused	on	(Chapter	2).	To	understand	the	validity	of	these	claims	and	how	

solar	 fuels	 compares	 in	 the	 broader	 energy	 generation	 and	 storage	 sector	 a	 detailed	

technoeconomic	 analysis	 was	 performed	 (Chapter	 7).	 	 The	 results	 confirm	 reality	 in	 that	 no	

commercial	solar	hydrogen	facilities	have	been	constructed	to	date	because	the	economics	are	

unfavorable.	 	Projected	hydrogen	production	costs,	based	on	state-of-the-art	 laboratory-scale	

solar	water	splitting	devices	or	photovoltaics	connected	to	electrolyzers,	are	at	least	one	order	

of	magnitude	more	 expensive	 than	 fossil	 fuel	 derived	 hydrogen.	 	 The	 analysis	 suggests	 that	

radically	different	plant-wide	designs	along	with	higher	efficiencies,	yet	to	be	demonstrated,	are	

needed	to	compete	economically.		

	

8.2 	Technoeconomic	Realities	

Terrestrial	solar	power	conversion	is	fundamentally	constrained	by	a	low	power	density	(1	kW	m-

2),	low	capacity	factor	(<	25%	for	non-tracking	systems),	and	high	resource	variability	as	compared	
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to	conventional	 fossil	 fuel	and	nuclear-based	power	production.	 	These	constraints	combined	

with	 the	high	 front	 loaded	 capital	 costs	of	 solar	power	 conversion	 facilities	have	made	 them	

economically	 unattractive	 to-date;	 it	 is	 only	 through	 large	 governmental	 subsidies	 that	 solar	

photovoltaics	have	seen	recent	high	growth.			

	

The	maturity	of	the	photovoltaic	and	electrolysis	industries	suggests	that	achieving	the	ten	times	

cost	reductions	needed	to	enable	solar	fuels	to	compete	economically	should	not	be	expected.		

Alternatively,	 Si	microwire	 arrays	 enable	 flexible	 device	 architectures	 that	 could	 provide	 the	

foundation	for	the	radically	different	facility	wide	changes	needed.		For	example,	a	flexible	device	

could	 be	 rolled	 out	 utilizing	 similar	 methods	 to	 landfill	 methane	 collection	 for	 hydrogen	

collection.			However,	such	radically	new	designs	still	require	the	same	technical	attributes,	such	

as	 high	 device	 efficiency	 and	 electrochemical	 and	 mechanical	 stability,	 that	 have	 not	 been	

demonstrated	on	any	architecture,	let	alone	Si	microwire	arrays,	and	need	significant	engineering	

scouting	to	verify	that	such	optimistic	ideas	would	actually	enable	the	level	of	facility-wide	cost	

reductions	needed.	

	

If	Si	microwire	arrays	are	going	to	have	a	chance	of	making	solar	fuels	at	a	scale	that	impacts	the	

world,	a	host	of	technical	challenges	remain	(most	of	these	challenges	remain	for	planar	devices	

as	well).	

1. Si	 microwire	 array	 efficiency:	 The	 highest	 reported	 efficiency	 for	 single	 junction	 Si	

microwire	 arrays	 remains	 below	 that	 needed	 to	 achieve	 20%	STH	 efficiency	 in	 a	 tandem	

configuration,	 irrespective	 of	 the	 wide	 bandgap	 absorber.37,40	 	 Photovoltaic	 efficiencies	

should	be	doubled	to	>15%	with	significant	improvement	needed	in	the	longer	wavelength	
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spectral	response	as	these	are	the	photons	that	Si	will	see	in	a	tandem	device	and	is	currently	

the	worst	performing	region	of	the	spectral	response.		Light	scattering	elements	have	been	

shown	 to	 improve	 the	 broadband	 absorption	 characteristics	 of	 Si	 microwire	 arrays,	 but	

translation	into	the	high	spectral	response	values	needed	at	long	wavelengths	has	not	been	

demonstrated	to	the	degree	necessary.	

2. Wide	bandgap	 semiconductor:	 A	high	 efficiency	wide	bandgap	 tandem	partner	 for	 Si	 is	

required	with	a	bandgap	near	1.7	eV.	 	Semiconductors	with	the	proper	bandgap	exist,	but	

integration	 with	 Si	 is	 difficult;	 the	 current	 growth	methods	 employed	 (MO-CVD)	 are	 not	

economically	 scalable	 to-date	 and	 the	 efficiencies	 are	 low	 due	 to	 epitaxial	 growth	

challenges.52		Discovery	of	a	new	material	is	a	continual	hope,	but	impossible	to	predict	the	

timing	 of	 and,	 if	 history	 is	 repeated,	 requires	 significant	 research	 and	 development	 time	

before	being	commercially	relevant.			

3. Tunnel	junction:	A	low	resistance,	transparent	connection	between	Si	and	the	wide	bandgap	

semiconductor	is	required	for	high	efficiency	operation.		This	has	been	a	major	road	block	for	

integrating	 known	 materials	 on	 traditional	 surface	 orientations	 of	 Si	 through	 epitaxial	

growth.139	 Si	 microwire	 arrays	 have	 been	 even	 more	 difficult	 due	 to	 the	 multiple	 non-

traditional	crystallographic	orientations	present	on	the	surface.52	Alternative	non-epitaxial	

methods	may	 exist	 such	 as	 amorphous	TiO2	 and	 transparent	 conductive	 oxides,	 but	 their	

ability	to	perform	this	task	with	high	efficiency	devices	has	yet	to	be	demonstrated.	

4. Membrane	embedment:	 An	 ionically	 conductive,	 gas	 impermeable	membrane	 should	be	

able	to	be	embedded	in	and	provide	mechanical	support	for	the	microwire	array.		This	has	

been	demonstrated	for	bare	Si	microwire	arrays	with	Nafion®,	a	proton	exchange	membrane	

suitable	 in	 acidic	media	 and	 that	 is	 too	 expensive	 at	 current	 prices,	 and	QAPSF,	 an	 anion	

exchange	membrane	suitable	in	basic	media	and	that	remains	at	an	academic	research	level.59		
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These	have	not	been	demonstrated	in	a	tandem	microwire	array	device	and	the	operational	

mechanical	stability	of	such	a	structure	is	unknown.	

5. Stability:	The	complete	device	must	be	electrochemically	and	mechanically	stable	for	many	

years.		Many,	if	not	all,	of	the	known	and	relevant	wide	bandgap	semiconductors	are	not	stable	

under	operation	for	either	hydrogen	or	oxygen	evolution	and	thus	must	be	protected.		Recent	

progress	has	been	made	using	a	variety	of	protective	coatings,	but	these	demonstrations	are	

only	possible	on	very	small	(<<	1	cm2)	areas	and	for	limited	times	(<40	hours).77		Stability	of	

the	 many	 interfaces	 within	 the	 device	 also	 needs	 to	 be	 proven.	 	 Examples	 include	

catalyst/semiconductor,	membrane/semiconductor,	Si/tunnel	junction/semiconductor,	etc.	

6. Integration:	Many	different	materials	must	be	present	for	efficient	operation	of	such	a	device	

and	 their	 integration	with	 one	 another	must	 be	 compatible	 and	 optimized.	 	 For	 example,	

catalyst	 integration	with	semiconductors	has	proven	to	give	non-intuitive	results	with	the	

best	 semiconductors	 and	 best	 catalyst	 not	 necessarily	 producing	 the	 highest	 efficiency	

combination.173	

7. Dark	conditions:	Nearly	all	experiments	are	performed	under	simulated	solar	illumination	

only.		What	happens	in	the	dark?		If	a	material	is	stable	due	to	cathodic	or	anodic	protection	

under	operation,	what	happens	at	night?		If	1	atm	of	H2	and	O2	are	present	on	their	respective	

sides	at	night	a	chemical	potential	gradient	exists	across	the	device.	 	The	device	would	be	

under	forward	bias	and	short	circuited	in	this	configuration	and	thus	is	expected	to	run	in	

reverse	unless	the	H2	and	O2	are	actively	pumped	from	the	system	every	day.	 	Can	this	be	

done	economically?		Do	efficient	enough	hydrogen	and	oxygen	evolution	catalysts	exist	that	

simultaneously	 have	 sufficiently	 suppressed	 activity	 for	 the	 reverse	 reactions?	 	 Is	 there	

another	technical	solution?	
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The	ultimate	success	of	large-scale	projects	is	largely	determined	by	economics.		Accordingly,	the	

combination	of	 technical	and	economic	hurdles	 for	 solar	 fuels	 technologies,	discussed	above,	

must	be	acknowledged	and	addressed	directly	if	we	are	to	be	successful.		The	active	components	

that	the	research	community	works	so	hard	on	make	up	only	a	piece,	and	sometimes	a	small	

piece,	of	the	cost	of	an	energy	generation	facility.	 	Using	the	bottom	up,	 linear	approach	that	

focuses	on	individual	components	first	and	leaves	integration	and	other	higher	level	challenges	

until	 later,	and	has	been	the	paradigm	for	the	 last	40+	years,	may	not	be	the	most	expedient	

route.	 	 Rather,	 a	 top	 down	 approach	 that	 allows	 for	 periodic	 evaluation	 of	 a	 solar	 fuel’s	

technoeconomics	would	 better	 direct	 subsequent	 funding	 allocation	 decisions	 and	milestone	

goals.	 	For	 instance,	directed	questions	as	to	what	parameters	need	to	be	meet	for	achieving	

commercial	 success	 and	 the	 presence	 or	 absence	 of	 thermodynamically	 and	 economically	

credible	pathways	able	to	meet	those	achievement	metrics	are	crucial.		These	points	of	reference	

would	better	provide	starting	points	to	guide	research	efforts	towards	those	areas	that	will	have	

the	most	impact.	

	

Inexpensive	 and	 abundant	 energy	 is	 the	 foundation	 of	 our	 highly	 efficient	 and	 productive	

civilization.		Maintaining	this	favorable	environment	for	future	generations	will	require	energy	

resources	on	the	scale	of	and	with	an	energy	surplus	similar	to	fossil	fuels.		This	challenge	is	too	

large	and	important	not	to	use	all	available	tools,	technical	and	economic,	to	focus	our	efforts	on	

those	technologies	and	their	rate	limiting	challenges	that	can	most	effectively	and	sustainably	

provide	for	humanities	advancement.
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A Detailed	Fabrication	Processes	for	Si	Microwire	Devices	

A.1 	Chapter	3:	Si/WO3	Tandem	Device	Methods	

A.1.1 	Si	Microwire	Array	Growth		

Phosphorous-doped	(ND	=3	x	10
17	cm-3)	and	boron-doped	(NA	=	1	x	10

17	cm-3)	Si	microwire	

arrays	were	grown	via	a	Cu-catalyzed	vapor-liquid-solid	(VLS)	process	on	As-doped	n+-Si	

or	on	B-doped	p+-Si	<111>	wafers	(<0.005	Ω-cm,	Addison).38,46,48		The	n+-Si	and	p+-Si	<111>	

growth	wafers	were	 received	with	a	400	nm	thick	 thermal	oxide	 (SiO2)	 that	had	been	

photolithographically	patterned	to	produce	3	μm	diameter	holes	filled	with	Cu	in	a	square	

lattice	(7	μm	x	7	μm).	The	growth	of	Si	microwire	arrays	was	performed	in	a	chemical-

vapor	deposition	(CVD)	furnace	at	atmospheric	pressure	using	SiCl4	(Strem,	99.9999+%)	

at	 25	 sccm	 flow	 rate,	 H2	 (Matheson,	 research	 grade)	 at	 500	 sccm	 flow	 rate,	 and	 BCl3	

(Matheson,	0.25%	in	H2)	at	1	sccm	flow	rate	for	20	min	or	PH3	(Matheson,	100ppm	in	H2)	

at	0.3	sccm	flow	rate	for	9	min.		Following	growth,	the	samples	were	cooled	to	~	200	°C	

under	a	500	sccm	flow	of	He.	

	

A.1.2 Microwire	Array	Processing	

Microwire	 arrays	 were	 cleaned	 using	 a	 6:1:1	 (by	 volume)	 H2O:HCl(fuming,	

aqueous):H2O2(30%	in	H2O)	metal	etch	(RCA	2)	for	20	min	at	60	°C.		The	samples	were	

then	 subjected	 to	a	15	 s	etch	 in	buffered	HF(aq)	 (BHF)	etch,	 an	H2O	 rinse,	 an	organic	
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(piranha)	 etch	 in	 3:1	 H2SO4(99.6%,	 aqueous):H2O2(30%	 in	 H2O)	 for	 10	 min	 at	 room	

temperature,	and	an	H2O	rinse.	Following	a	30	s	etch	in	10%	BHF	and	a	rinse	with	H2O,	a	

150	nm	thick	SiO2	layer	was	grown	via	dry	thermal	oxidation	in	a	tube	furnace	at	1050	°C	

under	an	O2	atmosphere	for	2.5	h.		A	15	μm	thick	PDMS	layer	was	deposited	at	the	base	

of	the	wires	by	spin	coating	a	solution,	consisting	of	1.1	g	of	polydimethylsiloxane	(PDMS,	

Sylgard	185,	Dow	Corning)	and	0.1	g	of	PDMS	curing	agent	dissolved	in	5	mL	of	toluene,	

on	the	sample	at	3000	rpm	for	30	s,	followed	by	a	30	min	cure	in	vacuum	oven	at	150	°C.		

These	PDMS-infilled	arrays	were	submerged	in	BHF	for	5	min,	to	remove	the	SiO2	on	the	

exposed	microwire	surfaces.		The	PDMS	was	removed	by	a	30	min	soak	in	3:1	N-methyl-

2-pyrrolidone(NMP):tetrabutylammonium	fluoride(TBAF,	aq	75	wt%),	followed	by	a	30	s	

rinse	with	H2O.		The	samples	were	then	dried	under	a	stream	of	N2(g).		Residual	organics	

were	then	removed	by	a	10	min	etch	in	a	piranha	solution.	

	

A.1.3 Si	Homo-junction	Formation	

A	boron-doped	p+-Si	radial	emitter	was	formed	on	the	n-Si	microwire	arrays	and	on	planar	

<111>	n-Si	wafers	(Silicon	Inc.,	0.7Ω-cm)	by	exposure	of	the	samples	in	a	CVD	furnace	to	

a	20:400	sccm	flow	of	BCl3	(Matheson,	0.25%	in	H2):H2(Matheson,	research	grade)	at	950	

°C	for	30	min,	immediately	following	a	30	sec	etch	in10%	BHF.		The	samples	were	then	

rinsed	with	H2O	and	dried	under	a	stream	of	N2(g).			
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A.1.4 ITO	Deposition	

Immediately	following	a	15	sec	etch	in	10%	BHF,	a	rinse	in	H2O	and	drying	under	a	stream	

of	N2(g),	400	nm	of	In-doped	tin	oxide	was	sputtered	(48	W,	3	mTorr,	20:0.75	sccm	Ar:10%	

O2	 in	 Ar)	 onto	 n-p
+-Si	 microwire	 arrays	 and	 p-Si	 microwire	 arrays,	 by	 DC	 magnetron	

sputtering	 under	 10	 W	 of	 substrate	 bias	 (to	 facilitate	 conformal	 deposition	 on	 the	

microwire	 sidewalls).	 	 The	 thickness	 of	 the	 ITO	 was	 determined	 by	 spectroscopic	

ellipsometry	measurements	on	a	planar	Si	sample.	

	

A.1.5 WO3	Deposition	

n-WO3	 was	 electrodeposited	 from	 a	 tungstic	 peroxy-acid	 solution,	 as	 described	

previously54.	 	 Briefly,	 4.6	 g	 of	 tungsten	 powder	 (0.6-1μm,	 99.99%,	 Sigma	Aldrich)	was	

dissolved	in	molar	excess	(60	mL)	of	H2O2	(30%	in	H2O).	 	Excess	H2O2	was	dissolved	by	

addition	 of	 a	 trace	 amount	 of	 Pt	 black	 (99.9%,	 Sigma	 Aldrich)	 for	 24	 h.	 	 The	 H2O2	

concentration	 was	 monitored	 by	 peroxide	 test	 strips	 (EM	 Quant)	 unitl	 final	 peroxide	

concentration	was	<	30	ppm.		A	concentrated	stock	solution	was	made	by	addition	of	80	

mL	of	H2O	and	60	mL	of	isopropyl	alcohol	(IPA)	to	the	as	made	solution.		To	increase	its	

lifetime,	the	stock	solution	was	protected	from	light	and	stored	at	2°C	in	a	refrigerator.		A	

3:7	IPA:H2O	mixture	was	used	to	dilute	the	stock	solution	(3:2	IPA/H2O	mix:stock	solution)	

to	generate	the	deposition	solution.		Stock	solutions	were	used	for	one	week	before	and	

thereafter	were	 freshly	 prepared.	 	 All	 ITO-coated	 samples	were	 used	 as	 prepared	 for	
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deposition	of	WO3,	and	were	contacted	directly	to	the	ITO	layer	using	a	flat	alligator	clip.	

Deposition	of	WO3	on	n-p
+-Si	and	p-Si	microwire	arrays	was	performed	potentiostatically	

at	-0.5	V	vs	Ag/AgCl	for	60	min.		After	deposition,	all	samples	were	annealed	in	air	at	400	

°C	for	2	h.		This	process	formed	monoclinic	WO3,	as	confirmed	by	X-ray	diffraction	data.			

	

A.1.6 Product	Analysis	

Oxidation	products	(peroxydisulfate	(S2O8
2-))	generated	at	the	WO3/1.0M	H2SO4	interface	

were	detected	using	a	UV-visable	spectrophotometer	(Agilent	8453,	1-cm	quartz	cuvette)	

as	 reported	 previously.54	 	 Working	 curves	 were	 determined	 using	 potassium	

peroxydisulfate	(K2S2O8).	

	

Reduction	products	(H2(g))	generated	at	the	Pt	disc/1.0M	H2SO4	interface	were	detected	

using	a	mass	spectrometer	(Hiden	Analytical	HPR-20	QIC).		Current	was	passed	through	

the	Pt	disc	electrode	for	40	min	under	identical	conditions	(identical	electrochemical	cell,	

current	(-6.5	μA),	solution	(trace	metal	grade	1.0M	H2SO4)	and	Ar(g)	purge)	as	used	in	the	

two-electrode	 experiment	 described	 above.	 	 The	 experiment	 was	 started	 only	 after	

obtaining	a	steady	baseline.	
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A.1.7 Light	Absorption	Simulation	

1D	and	2D	light	absorption	was	simulated	 in	Lumerical	FDTD,	a	commercially	available	

Maxwell’s	equation	solver	 that	uses	 the	FDTD	method.	 	The	experimentally	 fabricated	

microwire	structures	were	reproduced	in	the	Lumerical	workspace	in	2D.		Bloch	boundary	

conditions	were	used	to	model	an	infinite	planar	structure	and	an	infinite	2D	microwire	

array.	 	 Each	 structure	 was	 illuminated	 with	 single-wavelength	 plane	 waves	 with	 the	

electric	 field	polarized	 in	the	2D	structured	plane,	at	wavelengths	ranging	from	350	to	

1100	nm	in	50	nm	intervals.	 	Partial	spectral	averaging	was	used	to	remove	simulation	

artifacts	that	were	caused	by	the	use	of	single-wavelength	simulations.		The	structure	was	

meshed	with	20	mesh	boxes	per	wavelength.		The	spatially	resolved	electric	field,	E,	and	

complex	 refractive	 index	 (Ü)	 were	 recorded	 and	 then	 used	 to	 calculate	 the	 spatially	

resolved	carrier	generation	rate,	Cgen	(Equation	A.1.1):	

	 váa4 =
à � "tAGu Ü

ℎ
	 A.1.1	

where	h	is	Planck’s	constant.		The	spatially	resolved	carrier	generation	rate	was	used	as	

the	optical	input	for	the	electronic	simulations.	The	power	absorbed	in	each	material	was	

calculated	by	integrating	the	spatially	resolved	absorbed	power,	Pabs	(Equation	A.1.2).	

	 VOä= = −0.5å D "tAGu Ü 	 A.1.2	

The	absorbed	photon	flux	in	each	material	as	a	function	of	wavelength	was	weighted	with	

the	AM1.5G	spectrum,	integrated	over	wavelength,	and	multiplied	by	Faraday’s	constant	
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to	obtain	a	short-circuit	current	density	assuming	unity	internal	quantum	yield	(IQY).		The	

concentrated	 illumination	 modeling	 was	 performed	 at	 11	 Suns	 using	 the	 AM1.5G	

spectrum	to	match	the	experimental	photon	flux	of	12x	of	AM1.5D.	

	

A.1.8 Electronic	Simulations	

Electronic	 device	 simulations	 were	 performed	 in	 Synopsys	 Sentaurus,	 a	 commercially	

developed	software	package	that	solves	the	drift-diffusion	equation	for	charge	carriers	

using	a	finite-element	method.		For	simplicity,	a	single	n-p+-Si	homo-junction	and	an	n-

WO3/(O2/H2O)	liquid	junction	were	modeled	separately.		

	

A.1.8.1 n-p+-Si	junction	

The	 built-in	 materials	 parameter	 file	 for	 Si	 was	 used	 with	 modified	 time	 constants	

(τn(NA=10
20	cm-3)	=	3x10-6	s;	τp-(ND=10

17	cm-3)	=	1x10-3	s).	 	The	silicon	p+-n	junction	was	

constructed	with	a	100	µm	thick	n-region	with	ND=10
17	cm-3	and	a	0.2	μm	thick	p+-region	

with	NA=10
20	cm-3.		In	the	quasi-neutral	bulk	of	the	n-Si,	a	standard	mesh	size	of	500	nm	

and	5	µm	was	used	transverse	and	parallel	to	the	junction,	respectively.		Near	the	ohmic	

contact	with	n-Si,	the	mesh	was	refined	to	500	nm	and	100	nm,	and	near	the	junction,	

the	mesh	was	refined	to	500	nm	and	20	nm,	to	accurately	model	band-bending	in	these	

regions.	 	 The	 J-E	 (current	 density	 vs.	 potential)	 characteristics	 of	 this	 structure	 were	

obtained	by	first	solving	for	the	V	=	0	case	in	the	dark.			Subsequently,	the	voltage	was	
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stepped	at	0.010	V	intervals	in	both	the	positive	and	negative	directions,	to	obtain	the	

dark	 J-E	 behaviour.	 	 The	 carrier	 generation	 rate	 from	 Lumerical	 was	 then	 applied	 to	

extract	the	J-E	characteristics	in	the	presence	of	illumination.		Similarly,	the	V	=	0	case	in	

the	light	was	solved	first,	and	then	the	voltage	was	stepped	at	0.010	V	intervals,	to	obtain	

the	 light	 J-E	 performance.	 	 Shockley–Read–Hall	 recombination	 was	 used	 for	 all	

simulations.	

	

A.1.8.2 WO3-liquid	junction	

The	built-in	“oxide	as	semiconductor”	materials	parameter	file	was	used	to	model	WO3,	

with	the	following	parameters	and	their	values	in	parentheses:	modified	band-gap	(Eg	=	

2.6	 eV),	 work	 function	 (χ	 =	 4.4	 eV),	 relative	 permittivity	 (εr	 =	 5.76),	 conduction-	 and	

valence-band	density	of	states	(NC	=	1.8	x	10
19	cm-3,	NV	=	7.1x10

19	cm-3),	recombination	

time	constant	(τn	=	τp	=	1	x	10
-8	s)	and	mobility	(µn	=	µp	=	40	cm

2	V-1	s-1).		The	band-gap	was	

experimentally	measured	 from	 absorption	measurements	 using	 an	 integrating	 sphere	

and	 a	 Tauc	 plot.	 	 The	 relative	 permittivity	 was	 calculated	 from	 ellipsometric	

measurements	of	the	complex	refractive	index.		The	work	function	was	chosen	based	on	

reports	found	in	the	literature.174			The	density	of	states	can	be	calculated	from	m*,	the	

effective	mass	 of	 holes	 in	 the	 valence	 band	 and	 of	 electrons	 in	 the	 conduction	 band	

(Equation	A.1.3):	
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A.1.3	

Effective	masses	in	the	conduction	band	have	been	reported	to	be	~	0.8	m0,
175	where	m0	

is	the	mass	of	a	free	electron.		Density	functional	theory	calculations	of	the	band	structure	

of	WO3	 indicate	 that	 the	 valence	 band	 has	 less	 curvature	 than	 the	 conduction	 band,	

indicating	heavier	holes	and	leading	to	an	estimate	of	2	m0	for	the	hole	effective	mass.176	

The	 mobility	 values	 were	 also	 taken	 from	 the	 literature.175	 Preliminary	 experimental	

measurements	 indicated	 a	 diffusion	 length	 of	 1	 µm,	 thereby	 determining	 the	 time	

constant.	

	

The	 WO3/liquid	 junction	 was	 modeled	 as	 a	 Schottky	 junction,	 with	 the	 metal	 work	

function	equal	to	the	water	oxidation	redox	potential,	χ	=	5.68	eV,	which	was	in	contact	

with	 a	 1	 µm	 thick	 slab	 of	WO3.	 	 A	 value	 of	 ND	=	 10
15	 cm-3	 was	 chosen	 to	match	 the	

experimentally	 observed	 short-circuit	 current	 density	 and	 open-circuit	 voltage.	 	Mesh	

sizes	 of	 10	 nm	 and	 250	 nm	 were	 used	 perpendicular	 and	 parallel	 to	 the	 junction,	

respectively.		The	method	to	obtain	the	dark	and	light	J-E	behaviour	was	identical	to	that	

used	 for	modeling	 the	 Si	 junction.	 	 Shockley-Reed-Hall	 recombination	 and	 thermionic	

emission	physics	were	used	for	these	simulations.	
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A.1.8.3 Hydrogen	Evolution	Catalysis	Modeling	

Butler–Volmer	kinetics	in	the	absence	of	mass	transport	limitations	were	used	with	α	=	1	

and	j0	=	10
-3	A-cm-2,	to	simulate	the	cathodic	overpotential	(Equation	A.1.4)	of	platinum	

(Pt)	for	hydrogen	evolution	in	1.0	M	H2SO4.	

	
8 = −

QR

>
ÅS

+

+/
+ 1 	

A.1.4	

The	overpotential	was	added	to	the	n-p+-Si	homo-junction	J-E	data	at	the	same	current	

density	 to	yield	a	simulated	hydrogen	generation	device	curve	 in	 the	absence	of	mass	

transport.		

	

A.2 Chapter	4:	Si/TiO2	Tandem	Device	Methods	

A.2.1 Chemicals	

All	chemicals	were	used	as	received	unless	noted	otherwise.		Water	was	filtered	using	a	

MilliPore	system	and	had	a	resistivity	>	18	MΩ-cm.	

	

A.2.2 Si	Microwire	Fabrication	

Phosphorous-doped	(ND	=3	x	10
17	cm-3)	n-type	Si	(n-Si)	and	highly	boron-doped	p+-type	Si	

(p+-Si)	microwire	arrays	were	grown	via	a	Cu-catalyzed	vapor-liquid-solid	(VLS)	process	on	

As-doped	n+-Si	<111>	or	B-doped	p+-Si	<111>	wafers	(<0.005	Ω-cm,	Addison).38,46,48	The	

growth	wafers	were	received	as	3”	wafers	with	a	500	nm	thick	thermal	oxide	(SiO2)	and	
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were	photolithographically	patterned	to	form	an	array	of	3	μm	diameter	holes	filled	with	

Cu	 in	 a	 7	 μm	 x	 7	 μm	 square	 lattice.	 	 The	 photolithography	 process	 began	 with	 the	

application	of	a	positive	photoresist	layer	(Shipley	S1813)	to	the	SiO2	surface.		Next,	the	

photoresist	was	exposed	to	UV	illumination	through	a	mask	that	contained	the	growth	

pattern	(3	μm	diameter	holes	in	a	7	μm	x	7	μm	square	lattice),	and	the	exposed	and	cured	

photoresist	was	removed	with	a	developer	(Microposit	MF-319).		This	process	left	3	μm	

diameter	holes	 in	 the	photoresist	 through	which	 the	underlying	SiO2	was	etched	with	

buffered	HF(aq)	(BHF)	(Transene	Inc.),	to	reveal	the	underlying	Si.		500nm	of	high-purity	

Cu	(EPSI	6N)	was	then	thermally	evaporated	onto	the	sample.		All	of	the	Cu,	except	for	

that	in	the	3	μm	diameter	holes,	was	removed	in	a	lift-off	process	that	utilized	acetone	to	

remove	the	remaining	photoresist.		This	entire	process	produced	3”	growth	wafers	that	

were	diced	to	fit	into	the	microwire	array	growth	tube	furnace.	

	

Growth	of	Si	microwire	arrays	was	performed	in	a	chemical-vapor	deposition	(CVD)	tube	

furnace	at	atmospheric	pressure	using	SiCl4	(Strem,	99.9999+%)	at	25	sccm	flow	rate,	H2	

(Matheson,	research	grade)	at	500	sccm	flow	rate,	and	either	BCl3	(Matheson,	0.25%	in	

H2)	at	1	sccm	flow	rate	for	20	min	(p+-Si)	or	PH3	(Matheson,	100ppm	in	H2)	at	0.3	sccm	

flow	rate	for	9	min	(n-Si).		Following	growth,	the	samples	were	cooled	to	~	200	°C	under	

a	500	sccm	flow	of	He.	
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A.2.2.1 Microwire	Array	Processing	

Microwire	 arrays	 were	 cleaned	 using	 a	 6:1:1	 (by	 volume)	 H2O:HCl(fuming,	

aqueous):H2O2(30%	in	H2O)	metal	etch	(RCA	2)	for	20	min	at	60	°C.		The	samples	were	

then	subjected	sequentially	to	a	15	s	BHF	etch,	a	H2O	rinse,	a	10	min	organic	(piranha)	

etch	 in	3:1	H2SO4(99.6%,	aqueous):H2O2(30%	 in	H2O)	at	 room	temperature,	and	a	H2O	

rinse.	Following	a	30	s	etch	in	10%	BHF	and	H2O	rinse,	a	150	nm	thick	SiO2	layer	was	grown	

via	dry	thermal	oxidation	in	a	tube	furnace	for	2.5	h	at	1050	°C	under	an	O2	atmosphere.		

A	 15	 μm	 thick	 PDMS	 layer	was	 deposited	 at	 the	 base	 of	 the	wires	 by	 spin	 coating	 a	

solution,	consisting	of	1.1	g	of	polydimethylsiloxane	(PDMS,	Sylgard	185,	Dow	Corning)	

and	0.1	g	of	PDMS	curing	agent	dissolved	in	5	mL	of	toluene,	onto	the	sample	at	3000	rpm	

for	30	s,	followed	by	a	30	min	cure	in	a	vacuum	oven	at	150°C.		These	PDMS-infilled	arrays	

were	submerged	in	BHF	for	3	min,	to	remove	the	SiO2	on	the	exposed	microwire	surfaces.		

The	 PDMS	 was	 removed	 by	 a	 30	 min	 soak	 in	 3:1	 N-methyl-2-

pyrrolidone(NMP):tetrabutylammonium	 fluoride(TBAF,	aq	75	wt%),	 followed	by	a	30	 s	

H2O	rinse.		The	samples	were	then	dried	under	a	stream	of	N2(g)	and	residual	organics	

were	removed	by	a	10	min	piranha	etch.	

	

A.2.2.2 p+	Emitter	Formation	

A	boron-doped	p+-Si	radial	emitter	was	formed	on	the	processed	n-Si	microwire	arrays	by	

exposure	of	the	samples	in	a	CVD	furnace	to	a	20:400	sccm	flow	of	BCl3	(Matheson,	0.25%	
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in	H2):H2(Matheson,	research	grade)	at	950	°C	for	30	min,	immediately	following	a	30	s	

etch	in	10%	BHF.		The	samples	were	then	rinsed	with	H2O	and	dried	under	a	stream	of	

N2(g).	

	

A.2.2.3 FTO	Deposition	

np+-Si	and	p+-Si	microwire	arrays	were	etched	in	BHF	for	15	s	and	placed	on	a	hotplate	

that	had	been	preheated	to	500	°C	in	a	chemical	hood.		The	microwire	sample	was	secured	

to	the	hotplate	by	placing	ceramic	weights	onto	the	corners	of	the	chip.		Fluorine-doped	

tin	oxide	(FTO)	was	deposited	using	an	airbrush	gun	(Aztek	A220	Broad	Stroke)	using	air	

that	was	pressurized	at	60	psi.		The	precursor	solution	consisted	of	0.015	M	ammonium	

fluoride	(KMG,	40%	Cleanroom®	MB)	and	0.49	M	butyltin	trichloride	(Strem,	95%	min)	in	

an	ethanol/water	solution.		This	solution	was	made	by	mixing	a	97%	by	volume	solution	

of	 0.5	 M	 butyltin	 trichloride	 in	 200	 proof	 ethanol	 (Sigma	 Aldrich,	

HPLC/spectrophotometric	 grade)	 with	 a	 3%	 by	 volume	 solution	 of	 0.5	M	 ammonium	

fluoride	in	H2O.		A	single	FTO	deposition	cycle	consisted	of	a	2-3	s	spray	followed	by	a	12-

13	s	pause,	to	reestablish	a	stable	substrate	temperature	following	the	spray.		30	total	

cycles	were	used	to	obtain	the	FTO	layers	used	throughout	this	study.		The	sample	was	

not	rotated	during	the	deposition,	however	conformal	coverage	was	obtained	with	no	

directionality	observable	in	SEM	images	of	the	resulting	device.		Samples	were	removed	
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from	 the	 hotplate	 following	 the	 last	 deposition	 cycle	 and	were	 cooled	 in	 air	 to	 room	

temperature.	

	

A.2.2.4 TiO2	Deposition	

A	conformal	nano-structured	TiO2	layer	was	deposited	on	FTO	coated	microwire	arrays	

from	an	aqueous	 solution	of	0.05M	 titanium	n-butoxide	and	6M	HCl.70	 	 10	mL	of	 this	

solution	was	placed	into	an	~15	mL	Teflon	cell	made	for	hydrothermal	processing.		FTO	

coated	Si	microwire	arrays	were	then	placed	into	this	solution	and	rested	vertically	with	

support	from	the	Teflon	cell	sidewalls.		The	hydrothermal	bomb	was	placed	in	a	muffle	

furnace	 that	was	 subsequently	heated	 to	150˚C	and	 remained	 there	 for	6	hours.	 	The	

furnace	was	allowed	to	cool	to	room	temperature	and	the	sample	was	removed	from	the	

Teflon	cell.		Next	the	TiO2	coated	microwire	array	was	annealed	at	450˚C	for	30	minutes	

in	air.	

	

A.2.3 Electrode	Fabrication	

Electrodes	were	fabricated	from	diced	pieces	of	processed	microwire	growth	arrays	that	

had	 undergone	 the	 appropriate	 fabrication	 process.	 	 To	 make	 ohmic	 contact	 to	 the	

samples,	 In-Ga	 (99.99%,	 Alfa-Aesar)	 eutectic	 was	 scratched	 into	 the	 back-side	 of	 the	

growth	wafer	with	a	diamond-tipped	scribe.		Exposed	In-Ga	(Si	electrodes)	was	affixed	to	

a	coiled	Cu-Sn	wire	with	Ag	paint	(SPI	05001-AB).		The	active	area	was	defined	with	epoxy	
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(Loctite	Hysol	9460)	and	the	entire	electrode	was	sealed	with	epoxy	to	the	bottom	of	a	

glass	tube	(6mm	O.D.).		The	electrode	orientation,	down-	or	side-facing,	was	determined	

by	the	orientation	of	the	coiled	wire	that	protruded	from	the	glass	tube.		Geometric	areas	

were	measured	by	scanning	the	active	area,	and	using	software	(ImageJ)	to	calculate	the	

area.	

	

A.2.4 Photoelectrochemical	Measurements	in	Aqueous	Solutions	

Side-facing	electrodes	were	used	in	both	1.0	M	KOH	and	1.0	M	H2SO4	solutions.	Three-

electrode	cyclic	voltammetry	(CV)	measurements	were	conducted	using	a	Biologic	(SP-

200)	potentiostat	in	conjunction	with	a	borosilicate	single-compartment	cell	that	had	a	

flat	quartz	glass	window	mounted	on	the	side	of	the	cell.		A	saturated	calomel	reference	

electrode	(SCE)	(CH	Instruments,	CHI	150)	reference	electrode	and	a	fritted	Pt	counter	

electrode	were	used	for	measurements	in	1.0	M	KOH	and	1.0	M	H2SO4.	Illumination	was	

provided	 by	 a	 Xe	 lamp	 (Oriel	 67005,	 Newport	 Corporation)	 with	 an	 AM1.5G	 filter	

(Newport	Instruments	81094)	that	was	calibrated	to	1	Sun	by	a	calibrated	Si	photodiode.		

Calibration	was	performed	such	that	the	highest	light	intensity	anywhere	in	the	cell	was	

at	the	cited	light	intensity,	and	the	position	of	the	photodiode	at	this	light	intensity	was	

marked	to	assure	sample	positioning	was	at	the	same	point.	 	All	of	the	measurements	

were	referenced	to	the	potential	of	the	RHE	(E(H+/H2)),	obtained	empirically	using	a	Pt	

disc	electrode	under	1	atm	of	H2(g),	-0.255	V	vs.	SCE.	
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A.2.5 Photoelectrochemical	Characterization	in	Non-Aqueous	Solvents	

Bottom-facing	electrodes	that	contained	np+-Si	microwire	arrays	were	etched	for	10	s	in	

BHF	immediately	prior	to	introducing	the	samples	into	a	N2-filled	glove	box.		Solutions	for	

photoelectrochemical	 measurements	 consisted	 of	 CH3CN	 (anhydrous,	 99.8%,	 Sigma	

Aldrich)	dried	through	Al2O3	sieves	 in	a	solvent	column	system	and	stored	over	3Å	dry	

molecular	 sieves,	 1M	 LiClO4	 (battery	 grade,	 99.99%,	 Sigma	 Aldrich),	 and	 25	 mM	

bis(cyclopentadienyl)	 iron(II)	 (ferrocene,	 FeCp2
0,	 Sigma	 Aldrich)	 and	 3	 mM	

bis(cyclopentadienyl)	iron(III)	tetrafluoroborate	(ferrocenium,	FeCp2
+·BF4

-,	Sigma	Aldrich).		

Ferrocene	was	purified	by	vacuum	sublimation	at	room	temperature,	and	ferrocenium	

was	recrystallized	prior	to	use.		An	ELH-type	W–halogen	lamp	with	a	dichroic	rear	reflector	

was	 used	 for	 illumination,	 and	 was	 set	 to	 produce	 the	 same	 current	 density	 on	 a	

calibrated	 Si	 photodiode	 as	 was	 obtained	 from	 100	 mW	 cm-2	 of	 1	 Sun	 AM1.5	 G	

illumination.	 	 Three-electrode	 photoelectrochemical	 data	 were	 obtained	 in	 a	 single-

compartment	 boroscilicate	 glass	 cell	 with	 a	 flat	 bottom	window	 by	 use	 of	 a	 Biologic	

potentiostat	(SP-200),	with	a	Pt	counter	electrode	and	a	Pt	quasi-reference	electrode	at	

scan	rates	of	20	mV-s-1.		
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A.2.6 Circular	Transmission	Line	Measurements	(cTLM)	

cTLM	measurements	were	made	on	photolithographically	patterned	FTO	architectures	

on	p+-Si	(0.003	ohm-cm)	wafers.		The	processing	scheme	to	achieve	the	samples	began	

with	a	standard	FTO	deposition	on	a	planar	p+-Si	wafer	as	described	above.		Next,	the	FTO	

coated	wafer	was	subjected	to	an	identical	Shipley	S1813	photolithographic	patterning	

procedure	as	for	the	microwire	growth	substrates	with	the	exception	of	the	mask.		The	

mask	was	printed	on	a	transparency	slide	and	was	affixed	to	a	glass	plate	for	mounting	

purposes	in	the	mask	aligner.		The	mask	consisted	of	18	test	sites	with	a	constant	inner	

pad	diameter	of	180	µm	and	a	varying	space	between	the	outer	pad	from	30	µm	to	120	

µm.	

	

The	 FTO	 etch	 procedure	 implemented	was	 adopted	 from	US	 patent	 7115212	B2.	 	 An	

aqueous	etch	solution	of	0.5	M	HCl,	0.4	M	FeSO4•H2O	and	0.1	M	FeCl3	was	poured	~	5	

mm	high	in	a	~2”	diameter	glass	petri	dish.		The	FTO	coated	Si	wafer	covered	in	patterned	

photoresist	was	submersed	in	the	solution	and	3.5	g	Zn	powder	(<10	microns)	was	poured	

slowly	 into	 the	 solution	while	manually	 shaking	 the	petri	 dish	 for	 agitation.	 	 Vigorous	

reaction	occurred	and	after	~2	min	the	solution	became	clear	and	the	reaction	ceased.		

Following	this,	the	sample	was	soaked	for	30	s	in	an	aqueous	solution	of	1.0	M	HCl	and	

0.5	 FeCl3	 to	 remove	 any	 residual	 metal	 left	 from	 previous	 etch.	 	 No	 visible	 reaction	

occurred	on	the	surface.		The	photoresist	was	removed	with	a	~30	s	soak	in	acetone.	
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These	samples	were	tested	using	two	and	four	point	probe	solid-state	measurements,	

though	both	provided	nearly	identical	data.		Analysis	was	performed	for	a	current	range	

that	corresponded	to	current	densities	expected	for	solar	fluxes	<100	mA	cm-2,	based	on	

the	inner	pad	area.		A	previously	published	method	for	determining	the	contact	resistance	

was	used	herein.72	

	

A.2.7 X-Ray	Diffraction	(XRD)	Measurements	

XRD	 measurements	 were	 made	 on	 a	 Bruker	 D2	 Phaser	 desktop	 instrument.	 	 Peak	

positions	 were	 identified	 using	 the	 ICSD	 database	 (https://icsd.fiz-

karlsruhe.de/search/basic.xhtml).	

	

A.2.8 Imaging	

All	scanning-electron	micrograph	(SEMs)	were	taken	on	an	FEI	Nova	NanoSEM	450.		

	

A.3 Chapter	5:	Si	Photoanodic	Protection	Methods	

A.3.1 Chemicals	

All	chemicals	were	used	as	received	unless	noted	otherwise.		Water	was	filtered	using	a	

MilliPore	system	and	had	a	resistivity	>	18	MΩ-cm.	
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A.3.2 Si	Microwire	Fabrication	

Phosphorous-doped	(ND	=3	x	10
17	cm-3)	Si	microwire	arrays	were	grown	via	a	Cu-catalyzed	

vapor-liquid-solid	 (VLS)	 process	 on	 As-doped	 n+-Si	 <111>	 wafers	 (<0.005	 Ω-cm,	

Addison)38,46,48.		The	n+-Si	<111>	growth	wafers	were	received	as	3”	wafers	with	a	500	nm	

thick	thermal	oxide	(SiO2)	and	were	photolithographically	patterned	to	form	an	array	of	

3	μm	diameter	holes	filled	with	Cu	in	a	7	μm	x	7	μm	square	lattice.		The	photolithography	

process	began	with	the	application	of	a	positive	photoresist	layer	(Shipley	S1813)	to	the	

SiO2	surface.		Next,	the	photoresist	was	exposed	to	UV	illumination	through	a	mask	that	

contained	the	growth	pattern	(3	μm	diameter	holes	in	a	7	μm	x	7	μm	square	lattice),	and	

the	exposed	and	cured	photoresist	was	removed	with	a	developer	(Microposit	MF-319).		

This	process	 left	3	μm	diameter	holes	 in	the	photoresist	through	which	the	underlying	

SiO2	was	etched	with	buffered	HF(aq)	(BHF)	(Transene	Inc.),	to	reveal	the	underlying	Si.		

500nm	 of	 high-purity	 Cu	 (EPSI	 6N)	 was	 then	 thermally	 evaporated	 onto	 the	 sample.		

Through	a	lift-off	process,	all	of	the	Cu,	except	for	that	in	the	3	μm	diameter	holes,	was	

removed.		This	entire	process	produced	3”	growth	wafers	that	were	diced	to	fit	into	the	

tube	furnace.	

	

Growth	of	Si	microwire	arrays	was	performed	in	a	chemical-vapor	deposition	(CVD)	tube	

furnace	at	atmospheric	pressure	using	SiCl4	(Strem,	99.9999+%)	at	25	sccm	flow	rate,	H2	
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(Matheson,	research	grade)	at	500	sccm	flow	rate,	and	PH3	(Matheson,	100ppm	in	H2)	at	

0.3	sccm	flow	rate	 for	9	min.	 	Following	growth,	 the	samples	were	cooled	to	~	200	°C	

under	a	500	sccm	flow	of	He.	

	

A.3.3 Microwire	Array	Processing	

Microwire	 arrays	 were	 cleaned	 using	 a	 6:1:1	 (by	 volume)	 H2O:HCl(fuming,	

aqueous):H2O2(30%	in	H2O)	metal	etch	(RCA	2)	for	20	min	at	60	°C.		The	samples	were	

then	subjected	sequentially	to	a	15	s	BHF	etch,	a	H2O	rinse,	a	10	min	organic	(piranha)	

etch	 in	3:1	H2SO4(99.6%,	aqueous):H2O2(30%	 in	H2O)	at	 room	temperature,	and	a	H2O	

rinse.	Following	a	30	s	etch	in	10%	BHF	and	H2O	rinse,	a	150	nm	thick	SiO2	layer	was	grown	

via	dry	thermal	oxidation	in	a	tube	furnace	for	2.5	h	at	1050	°C	under	an	O2	atmosphere.		

A	 15	 μm	 thick	 PDMS	 layer	was	 deposited	 at	 the	 base	 of	 the	wires	 by	 spin	 coating	 a	

solution,	consisting	of	1.1	g	of	polydimethylsiloxane	(PDMS,	Sylgard	185,	Dow	Corning)	

and	0.1	g	of	PDMS	curing	agent	dissolved	in	5	mL	of	toluene,	onto	the	sample	at	3000	rpm	

for	30	s,	followed	by	a	30	min	cure	in	a	vacuum	oven	at	150	°C.		These	PDMS-infilled	arrays	

were	submerged	in	BHF	for	3	min,	to	remove	the	SiO2	on	the	exposed	microwire	surfaces.		

The	 PDMS	 was	 removed	 by	 a	 30	 min	 soak	 in	 3:1	 N-methyl-2-

pyrrolidone(NMP):tetrabutylammonium	 fluoride(TBAF,	aq	75	wt%),	 followed	by	a	30	 s	

H2O	rinse.		The	samples	were	then	dried	under	a	stream	of	N2(g)	and	residual	organics	

were	removed	by	a	10	min	piranha	etch.	
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A.3.3.1 p+	Emitter	Formation	

A	boron-doped	p+-Si	radial	emitter	was	formed	on	the	processed	n-Si	microwire	arrays	by	

exposure	of	the	samples	in	a	CVD	furnace	to	a	20:400	sccm	flow	of	BCl3	(Matheson,	0.25%	

in	H2):H2(Matheson,	research	grade)	at	950	°C	for	30	min,	immediately	following	a	30	s	

etch	in	10%	BHF.		The	samples	were	then	rinsed	with	H2O	and	dried	under	a	stream	of	

N2(g).	

	

A.3.4 TiO2	Deposition	

TiO2	was	deposited	by	atomic-layer	deposition	(ALD)	on	np+-Si	microwires	at	150	°C	using	

tetrakis(dimethylamino)titanium	(TDMAT)	as	the	Ti	source	heated	to	75	°C	and	H2O	as	the	

O	source.		2000	cycles	were	performed	with	pulse	and	purge	times	of	0.1	s	and	15	s	for	

the	TDMAT,	respectively	and	0.015	s	and	15	s	for	the	H2O	respectively,	with	the	H2O	pulse	

beginning	each	new	cycle.		Prior	to	ALD	deposition,	the	samples	were	etched	for	15	s	in	

10%	HF(aq),	cleaned	using	a	RCA	SC-2	procedure,	and	dried	with	N2(g).		In	the	RCA	SC-2	

procedure,	 the	 samples	 were	 immersed	 in	 a	 5:1:1	 (by	 volume)	 solution	 of	 H2O,	

concentrated	hydrochloric	acid	(11.1	M),	and	hydrogen	peroxide	(conc.~	1	M)	for	10	min	

at	75	°C.	
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A.3.5 NiCrOx	Deposition	

NiCrOx	 was	 deposited	 on	 np
+-Si/TiO2	 microwire	 arrays	 by	 reactive	 RF	 magnetron	

sputtering	(AJA)	with	separate	Ni	and	Cr	targets	at	150	W	and	90	W,	respectively.		The	

deposition	chamber	was	at	a	pressure	of	5	mTorr,	fed	by	20	sccm	N2(g)	and	1	sccm	of	

O2(g).	The	deposition	time	was	20	min,	which	resulted	in	a	thickness	of	~	40	nm	planar	

equivalent.	

	

A.3.6 Electrode	Fabrication	

Electrodes	were	fabricated	from	diced	pieces	of	each	processed	microwire	growth	array.		

To	make	ohmic	contact	to	the	samples,	In-Ga	(99.99%,	Alfa-Aesar)	eutectic	was	scratched	

into	the	back-side	of	the	growth	wafer	with	a	diamond-tipped	scribe.		Exposed	In-Ga	(Si	

electrodes)	was	affixed	to	a	coiled	Cu-Sn	wire	with	Ag	paint	(SPI	05001-AB).		The	active	

area	was	defined	with	epoxy	 (Loctite	Hysol	9460)	and	the	entire	electrode	was	sealed	

with	epoxy	to	the	bottom	of	a	glass	tube	(6mm	O.D.).		The	electrode	orientation,	down-	

or	side-facing,	was	determined	by	the	orientation	of	the	coiled	wire	that	protruded	from	

the	glass	tube.		Geometric	areas	were	measured	by	scanning	the	active	area,	and	using	

software	(ImageJ)	to	calculate	the	area.	
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A.3.7 Photoelectrochemical	Measurements	in	Aqueous	Solutions	

Bottom-facing	electrodes	were	used	in	both	1	M	KOH	and	aqueous	ferri-/ferro-cyanide	

solutions.		Four	np+-Si/TiO2/NiCrOx	and	two	n-Si/TiO2/NiCrOx	microwire	array	electrodes	

were	made	and	tested,	with	the	reported	results	being	representative	of	all	electrodes	in	

each	 specified	 class.	 	 Three-electrode	 cyclic	 voltammetry	 (CV)	 measurements	 were	

conducted	using	a	Biologic	(SP-200)	potentiostat	in	conjunction	with	a	borosilicate	single-

compartment	 cell	 that	 had	 a	 flat-bottom	 glass	 window.	 	 A	mercurous/mercury	 oxide	

(Hg/HgO,	1.0	M	KOH	filling	solution)	(CH	Instruments)	reference	electrode	and	a	fritted	

carbon	counterelectrode	were	used	for	measurements	 in	1	M	KOH,	whereas	a	Luggin-

capillary	 Pt	 reference	 electrode	 placed	 as	 close	 to	 the	 working	 electrode	 surface	 as	

possible	 and	 a	 Pt	 mesh	 counterelectrode	 were	 used	 for	 measurements	 in	 ferri-

/ferrocyanide	solutions.	 	The	 ferri-/ferrocyanide	data	were	plotted	versus	 the	solution	

potential	at	the	reference	electrode,	while	the	potential	axis	for	the	1	M	KOH	data	was	

shifted	to	the	reversible	hydrogen	electrode	(RHE)	scale	based	on	the	value	provided	by	

CH	Instruments,	0.14	V	vs	RHE.		For	these	experiments,	illumination	was	provided	by	a	Xe	

lamp	(Oriel	67005,	Newport	Corporation)	with	an	AM1.5G	filter	 (Newport	 Instruments	

81094)	that	was	calibrated	to	1	Sun	by	a	calibrated	Si	photodiode.		A	mirror	(10Q20BB.HR	

broadband	dielectric	mirror,	Newport	Corporation)	was	used	to	direct	 the	horizontally	

projected	 illumination	 from	 the	 lamp	 in	 the	 vertical	 direction,	 to	 produce	 normal	

incidence	light	for	the	bottom-facing	electrodes.		Calibration	was	performed	such	that	the	
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highest	light	intensity	anywhere	in	the	cell	was	at	the	cited	light	intensity,	and	the	position	

of	the	photodiode	at	this	light	intensity	was	marked	to	assure	sample	positioning	was	at	

the	same	point.		Varying	illumination	intensities	were	achieved	through	the	use	of	neutral	

density	filters	(ND	0.3)	(Newport	FSQ-OD30).		This	approach	allowed	determination	of	the	

diode	quality	factor	by	a	linear	line	fit	to	a	plot	of	the	open-circuit	potential	vs.	ln(Jph).	

	

A.3.8 Photoelectrochemical	Characterization	in	Non-Aqueous	Solvents	

Bottom-facing	electrodes	that	contained	n-p+-Si	microwire	arrays	were	etched	for	10	s	in	

BHF	 immediately	 prior	 to	 introducing	 the	 samples	 into	 a	 glove	 box.	 	 Solutions	 for	

photoelectrochemical	 measurements	 consisted	 of	 CH3CN	 (anhydrous,	 99.8%,	 Sigma	

Aldrich)	dried	through	Al2O3	sieves	 in	a	solvent	column	system	and	stored	over	3Å	dry	

molecular	 sieves,	 1M	 LiClO4	 (battery	 grade,	 99.99%,	 Sigma	 Aldrich),	 and	 25	 mM	

bis(cyclopentadienyl)	 iron(II)	 (ferrocene,	 FeCp2
0,	 Sigma	 Aldrich)	 and	 3	 mM	

bis(cyclopentadienyl)	iron(III)	tetrafluoroborate	(ferrocenium,	FeCp2
+·BF4

-,	Sigma	Aldrich).		

Ferrocene	was	purified	by	vacuum	sublimation	at	room	temperature,	and	ferrocenium	

was	recrystallized	prior	to	use.		An	ELH-type	W–halogen	lamp	with	a	dichroic	rear	reflector	

was	 used	 for	 illumination,	 and	 was	 set	 to	 produce	 the	 same	 current	 density	 on	 a	

calibrated	 Si	 photodiode	 as	 was	 obtained	 from	 100	 mW	 cm-2	 of	 1	 Sun	 AM1.5	 G	

illumination.	 	 Three-electrode	 photoelectrochemical	 data	 were	 obtained	 in	 a	 single-
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compartment	cell	by	use	of	a	Biologic	potentiostat	(SP-200),	with	a	Pt	counter	electrode	

and	a	Pt	quasi-reference	electrode	at	scan	rates	of	20	mV-s-1.		

	

A.3.9 Spectral	Response	

Spectral	 response	 measurements	 were	 obtained	 to	 determine	 the	 external	 quantum	

efficiency	(Φext)	as	a	function	of	wavelength.		Monochromatic	light	with	a	bandwidth	of	

10	nm	was	produced	using	an	Oriel	monochromator	and	an	Oriel	Xe	lamp.		The	beam	was	

chopped	at	20	Hz	and	was	focused	to	a	spot	size	that	under-filled	the	sample.		A	mirror	

(10Q20BB.HR	broadband	dielectric	mirror,	Newport	Corporation)	was	used	to	direct	the	

horizontal	beam	vertically	for	the	bottom-facing	electrodes.			The	electrodes	were	tested	

in	 the	 same	 photoelectrochemcial	 cell	 as	 described	 above	 for	 the	 1	 M	 KOH	

measurements.	 	 Each	 electrode	 was	 held	 potentiostatically	 at	 1.63	 V	 vs	 RHE	 with	 a	

Biologic	 potentiostat	 (SP200)	 that	 was	 connected	 to	 a	 lock-in	 amplifier	 (SRS	 830).	 	 A	

second	 lock-in	 amplifier	 was	 connected	 to	 a	 second	 photodiode	 that	 continuously	

monitored	 the	 light	 intensity	 provided	 by	 a	 quartz	 beam-split	 portion	 of	 the	 incident	

beam.		Calibration	of	the	light	incident	on	the	electrodes	was	performed	using	a	bottom-

facing	calibrated	photodiode	(Newport	FDS100-CAL)	that	was	placed	in	the	same	location	

as	the	electrodes.			
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A.3.10 Oxygen-Evolution	Faradaic	Efficiency	

The	 Faradaic	 efficiency	 for	 oxygen	 evolution	 of	 a	 single	 np+-Si/TiO2/NiCrOx	microwire	

array	 electrode	 was	 measured	 in	 the	 same	 cell	 as	 for	 the	 1	 M	 KOH	 measurements	

described	 above.	 	 Both	 the	 oxygen	 concentration	 and	 the	 charge	 passed	 were	

simultaneously	monitored	over	a	40	min	photoelectrochemical	measurement,		After	a	10-

min	waiting	period	at	open	circuit,	the	microwire	electrode	was	held	potentiostatically	at	

1.63	 V	 vs	 RHE	 with	 a	 Biologic	 potentiostat	 (SP200)	 for	 30	 min,	 and	 the	 oxygen	

concentration	 in	 solution	was	measured	over	 the	entire	40	min	period	with	an	Ocean	

Optics	fluorescent	probe	(NeoFox	HIOXY).		Illumination	was	provided	by	a	Xe	lamp	(Oriel	

67005,	Newport	Corporation)	with	a	AM	1.5G	filter	and	was	calibrated	to	1-Sun	intensity	

with	 a	 Si	 photodiode.	 	 Prior	 to	 measurement,	 the	 solution	 (approximately	 48	 mL	 in	

volume)	was	purged	with	N2(g)	for	~	20	min	to	obtain	a	near	oxygen-free	environment		

The10-min	 measurement	 at	 open	 circuit	 without	 oxygen	 production	 provided	 a	

measurement	of	 the	oxygen	 leak	 rate	of	 the	 cell.	 	 These	 leak	 rates	were	 interpolated	

during	 the	 40	min	photoelectrochemical	measurement	 and	were	 subtracted	 from	 the	

overall	oxygen	detection	to	yield	an	oxygen	evolution	rate	for	the	electrode	itself.		The	

corrected	oxygen	concentration	data	were	then	converted	to	micrograms	of	O2,	using	the	

amount	of	O2	dissolved	 in	water	 at	 room	 temperature	under	1	 atm	 (7700	µg·L-1),	 the	

solution	volumne	(~48	mL),	and	the	concentration	of	O2	in	air	under	1	atm	at	25�C	(20.9%).		

100%	Faradaic	efficiency	was	assumed	as	4	electrons	are	used	to	generate	1	O2	molecule,	
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i.e.	0.33	mA	h	of	charge	passed	to	generate	100	µg	of	O2.			All	the	data	were	processed	

using	a	Matlab	script.			

	

A.3.11 Imaging	

All	scanning-electron	micrograph	(SEMs)	were	taken	on	an	FEI	Nova	NanoSEM	450.		

	

A.4 Chapter	6:	Si/Ni-Mo	Photocathode	Methods	

A.4.1 Modeling	

A	 zero-dimensional	 model	 was	 constructed	 to	 predict	 the	 maximum	 performance	

expected	 from	 the	 MEA-type	 photocathode	 device,	 based	 on	 a	 previously	 derived	

analytical	 expression	 for	 a	 buried	 junction	 in	 series	 with	 a	 catalyst	 and	 an	 additional	

resistor.23	The	expression	was	modified	to	produce	Equation	A.4.1,	where	the	γ	 factor	

(calculation	shown	in	Equation	A.4.2)	accounts	for	the	additional	junction	area	compared	

to	the	geometric	(projected)	area	of	illumination	for	a	microwire	array.43,177	Here	nd	is	the	

diode	quality	factor,	k	is	Boltzmann’s	constant,	T	is	the	temperature	in	K,	q	is	the	unsigned	

charge	on	a	single	electron,	JL	is	the	light-	limited	current	density,	J0,PV	is	the	diode	dark-

current	density,	α	 is	 the	catalytic	 charge-transfer	 coefficient	 (assumed	 to	be	equal	 for	

both	forward	and	reverse	directions),	ne	is	the	number	of	electrons	transferred,	J0,cat	 is	

the	catalyst	exchange-current	density,	and	Rs	is	the	series	resistance.	
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Table	A.	1:	Values	used	for	the	zero-dimensional	model	

Variable	 Value	

nd	 1.75	

k	 1.38	x	10-23	m2	kg	s-2	K-1	

T	 298	K	

q	 1.6	x	10-19	C	

JL	 25	mA	–	cm-2	

γ	 8	

J0,PV	 10-7	A	cm-2	

α	 0.5	

ne	 2	electrons	

J0,cat	 1.3	mA	cm-2	

Rs	 2.6	x	10-6	Ohm	cm2	
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Table	A.	1	 shows	 the	 values	 used	 for	 the	 parameters	 in	 the	model.	 	 The	 light-limited	

current	 density,	 Jph,	 was	 determined	 through	 two-dimensional	 full-wave	 simulations	

using	a	Maxwell’s	equations	solver	(Lumerical)	employing	finite-difference	time-domain	

algorithms.87	Each	simulation	consisted	of	a	60	μm	tall	and	2	μm	diameter	Si	microwire	

loaded	at	the	base	by	a	layer	of	200	nm	diameter	Ni-Mo	particles	at	a	mass	loading	of	~1	

mg	 cm-2,	 covered	by	 a	 layer	 of	 200	nm	diameter	 TiO2	 particles	 (~1	mg	 cm-2).	 	 A	 two-

dimensional,	7	μm	wide,	unit	cell	was	used	with	Bloch	boundary	conditions	on	the	sides,	

to	simulate	an	 infinite	array	as	well	as	 to	yield	transmissive	top	and	bottom	boundary	

conditions.		Light	was	incident	at	an	angle	of	30	degrees.		Single-wavelength	simulations	

at	50	nm	intervals	from	350	nm	–	1050	nm	were	performed	and	integrated	using	the	AM	

1.5G	spectrum	that	had	been	binned	to	match	the	intervals	at	which	the	simulation	data	

were	computed.		A	100	nm	thick	n+-Si	emitter	layer	on	the	outer	edge	of	the	Si	microwire	

was	assumed	to	recombine	all	photoexcited	carriers,	and	thus	make	no	contribution	to	

the	Jph	value.	 	The	maximum	Jph	value	was	calculated	by	summing	all	of	the	calculated	

photocurrent	 densities	 over	 the	 range	 of	 excitation	 wavelengths	 considered	 in	 the	

simulation.	

	

The	roughness	factor,	γ,	was	calculated	for	an	array	of	1.9	μm	diameter	and	70	μm	tall	

microwires.	 	The	dark	saturation-current	density	 for	 the	p-Si	microwires	with	 radial	n+	

emitters,	 J0,PV,	 grown	 by	 the	 vapor-liquid-solid	 growth	 method,	 was	 taken	 from	 the	
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literature.48	The	exchange-current	density	for	the	Ni-Mo	catalyst,	J
0,cat

,	was	determined	

by	modeling	experimental	data	using	the	Butler-Volmer	equation	and	by	evaluation	of	

the	series	resistance	as	determined	by	impedance	measurements	(Figure	3	in	main	text).		

The	series	resistance,	Rs,	was	a	general	lumped	circuit-element	term	that	accounted	for	

any	additional	resistances	in	the	system.		The	sole	contribution	to	Rs	considered	for	this	

model	 was	 electron	 transport	 down	 the	 n+-Si	 emitter	 to	 reach	 the	 Ni-Mo	 catalyst	

deposited	at	the	base	of	each	microwire.		The	value	of	Rs	was	determined	by	assuming	

that	all	of	the	current	flowed	down	the	entire	70	μm	length	of	the	microwire,	through	a	

200	nm	thick	emitter	with	a	carrier	concentration	of	1019	cm-3	on	a	1.9	µm	diameter	Si	

microwire.		

	

A.4.2 Fabrication	of	Electrodes	

Boron-doped	(NA	=	1	x	10
17	cm-3)	Si	microwire	arrays	were	grown	via	a	Cu-catalyzed	vapor-

liquid-solid	(VLS)	process	on	B-doped	(111)-oriented	p-Si	wafers	(0.1–1	Ω-cm	resistivity,	

Silicon	Inc.).38	Three-inch	diameter	p-Si(111)	growth	wafers	were	received	with	a	500	nm	

thick	 thermal	oxide	 (SiO2)	 and	were	patterned	photolithographically	 (MCC	Primer	 and	

Shipley	1813	Microchem	photoresist)	using	a	mask	with	square	pattern	of	3	μm	diameter	

holes	on	a	7	μm	pitch.		The	exposed	holes	were	etched	through	to	the	underlying	Si	by	

use	of	buffered	hydrofluoric	acid	(BHF,	Transene	Inc.)	for	5	min.	500	nm	of	Cu	(EPSI	6N)	

was	then	thermally	evaporated	onto	the	wafer	and	the	Cu	was	removed	from	everywhere	
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but	the	3	μm	holes	by	lift-off	in	acetone.		The	wafer	was	diced	to	pieces	that	fit	a	1”	(OD)	

home-built	chemical-vapor	deposition	(CVD)	tube	furnace,	for	microwire	growth.			

	

Si	microwires	were	grown	at	atmospheric	pressure	using	SiCl4	(Strem,	99.9999+%)	at	25	

sccm	flow	rate,	H2	(Matheson,	research	grade)	at	500	sccm	flow	rate,	and	BCl3	(Matheson,	

0.25%	in	H2)	at	1	sccm	flow	rate	for	15	min.		Following	growth,	the	samples	were	cooled	

to	~	200	°C	under	a	500	sccm	flow	of	He.		Microwire	arrays	were	cleaned	using	a	6:1:1	(by	

volume)	H2O:HCl	(12	M,	aqueous):H2O2	(9.8	M,	30	wt%)	metal	etch	(RCA	2)	for	20	min	at	

70	°C.		The	samples	were	then	subjected	to	a	15	s	etch	in	BHF	etch,	a	H2O	rinse,	a	45	s	

etch	with	5.4	M	(30	wt%)	KOH	(semiconductor	grade,	Aldrich),	and	a	H2O	rinse.		A	100	nm	

thick	 SiO2	 layer	 was	 then	 grown	 via	 dry	 thermal	 oxidation	 for	 100	 min	 under	 an	 O2	

atmosphere	in	a	tube	furnace	at	1050	°C.		The	samples	were	then	etched	for	3	min	in	BHF	

to	remove	the	oxide.		This	oxidation	step	is	thought	to	getter	Cu	and	other	impurities	from	

the	core	of	the	Si	microwire,	and	etching	of	the	oxide	layer	removes	50–100	nm	of	the	

metal-rich	Si	surface	layer.38	

	

Photoactive	devices	were	made	by	forming	phosphorus-doped	n+-Si	radial	emitters	and	

aluminum-doped	p+-Si	back	 surface	 fields	on	 the	p-Si	microwire	arrays	and	on	planar,	

single-side-polished	 (111)-oriented	p-Si	wafers	 (Silicon	 Inc.,	0.7	Ω-cm).	 	 The	 substrates	

were	 first	etched	 in	BHF	 for	15	s,	 then	rinsed	with	H2O,	and	cleaned	using	a	5:1:1	 (by	
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volume)	H2O:NH4OH(aqueous):H2O2(30%	in	H2O)	organic	etch	(RCA	1)	for	20	min	at	70	°C.		

The	samples	were	then	etched	in	BHF	for	15	s,	rinsed	with	H2O	and	cleaned	using	the	RCA	

2	metal	etch	for	20	min	at	70	°C.	The	samples	were	then	etched	in	BHF	for	15	s,	rinsed	in	

H2O,	dried	in	a	stream	of	N2(g),	and	the	unpolished	side	of	the	sample	was	coated	with	

100	nm	of	aluminum	by	electron-beam	evaporation.		These	samples	were	coated	with	a	

spin-on	 dopant	 (P509	 Filmtronics)	 by	 spin	 coating	 at	 2000	 rpm	 for	 30	 s.	 	 The	 spin-on	

dopant	was	 cured	 for	 15	min	 at	 200	 °C	 on	 a	 hotplate	 in	 air.	 	 The	 samples	were	 then	

annealed	in	a	rapid	thermal	annealing	(RTA)	furnace	under	a	15	L	min-1	flow	of	N2(g)	with	

the	following	process:	a	20	s	ramp	to	880	°C,	a	30	s	soak	at	880	°C,	a	180	s	linear	cool	to	

820	°C,	and	a	cool	to	~200	°C	in	a	flow	of	N2(g).
178	In	the	RTA	furnace,	a	3”	or	4”	diameter	

Si	wafer	that	had	been	coated	once	with	spin-on	dopant	and	cured	was	used	as	a	holder	

for	the	samples.		The	planar	and	microwire	samples	were	placed	with	the	spin-on-dopant	

side	 facing	 downwards	 on	 the	 spin-on-dopant	 face	 of	 the	 Si	 holder	 wafer.	 	 This	

configuration	allowed	for	gas-phase	access	of	phosphorus	dopants	to	any	uncoated	parts	

of	the	Si	microwires	from	the	Si	holder	wafer	during	the	doping	process.		After	cooling,	

the	samples	were	etched	in	BHF	for	3	min,	rinsed	with	H2O,	and	dried	in	a	stream	of	N2(g).		

A	 porous	 underlayer	 (resulting	 from	 the	 spin-on	 dopant)	 that	 was	 not	 susceptible	 to	

etching	in	BHF	remained	near	the	microwire	bases.		To	remove	this	residual	material,	an	

oxidation	that	consisted	of	a	10	min	dry	oxidation	(3	L	min-1	O2)	at	800	°C,	a	40	min	wet	

oxidation	at	800	°C	with	Ar	bubbling	through	95	°C	water,	and	an	additional	10	min	dry	
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oxidation	at	800	°C,	was	performed.		The	warm	up	and	cool	down	were	performed	under	

a	3	L	min-1	flow	of	Ar.		A	final	3	min	etch	in	BHF	removed	the	residual	defects,	resulting	in	

clean	microwire	and	planar	samples	that	were	washed	with	H2O	and	dried	under	a	stream	

of	N2(g).	 	 Immediately	prior	 to	deposition	of	 the	catalyst/scattering	 layer,	 the	samples	

were	etched	for	15	s	in	BHF,	washed	in	H2O,	and	dried	in	a	stream	of	N2(g).	

	

After	the	processing	had	been	completed,	ohmic	contact	was	made	to	the	Si	substrates	

using	an	In-Ga	(99.99%,	Alfa-Aesar)	eutectic	that	was	scratched	into	the	rear	surface	of	

the	samples.		Both	Si	and	Ti	foil	substrates	were	affixed	to	a	coiled	Cu-Sn	wire	with	Ag	

paint	(SPI	05001-AB),	with	the	Ag	paint	contacting	the	In-Ga	on	the	Si	substrates.	 	The	

active	area	of	the	electrode	was	defined	with	epoxy	(Loctite	Hysol	9460),	and	the	entire	

electrode	was	sealed	with	epoxy	to	the	opening	of	a	glass	tube	(6	mm	outer	diameter).		

The	 electrode	 orientation	 was	 determined	 by	 the	 orientation	 of	 the	 coiled	 wire	 that	

protruded	from	the	glass	tube.		Geometric	areas	were	measured	by	imaging	the	active	

area	 using	 a	 calibrated	 flat-bed	 scanner,	 and	 using	 software	 (ImageJ)	 to	 calculate	 the	

electrode	area.	
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A.4.3 Synthesis	and	Deposition	of	Electrocatalysts	

For	synthesis	and	preparation	of	catalysts	and	photoelectrodes,	all	chemicals	were	used	

as	received	unless	noted	otherwise.		Water	was	filtered	using	a	MilliPore	system	and	had	

a	resistivity	>	18	MΩ-cm.	

	

Ni–Mo	nanopowder	was	synthesized	following	a	previously	reported	procedure.89	Briefly,	

an	 ammoniacal	 solution	 of	 nickel	 nitrate	 hexahydrate	 and	 ammonium	 molybdate	

containing	a	3:2	ratio	of	Ni	to	Mo	was	mixed	with	diethylene	glycol	and	heated	rapidly	to	

precipitate	a	mixed	Ni-Mo	oxide.		The	oxide	was	recovered	and	purified	by	consecutive	

washing	and	centrifugation	first	with	water,	then	with	acetone,	and	then	with	methanol,	

and	was	then	dried	in	air.	The	resulting	pale	green	powder	was	reduced	under	forming	

gas	 (5%	H2(g)	 in	N2(g))	 at	 400-500	 °C	 for	 >	 60	min	 to	 yield	 a	 black,	 pyrophoric	Ni-Mo	

nanopowder.	 This	 powder	 was	 carefully	 suspended	 in	 isopropanol	 and	 the	 resulting	

colloid	was	used	to	generate	catalyst	inks.		

	

The	synthesis	was	slightly	modified	to	produce	Ni–Mo/C	nanopowder,	whereby	the	oxide	

was	 mixed	 with	 20%	 by	 mass	 of	 carbon	 black	 (Vulcan	 XC72)	 and	 the	 mixture	 was	

thoroughly	ground	with	a	mortar	and	pestle.	The	subsequent	reduction	step	was	carried	

out	as	with	the	standard	Ni–Mo	nanopowder.	The	resulting	carbon-composite	powder	
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was	~50%	carbon	content	by	mass	and	was	significantly	less	pyrophoric	than	the	pure	Ni–

Mo	nanopowder.	

	

Ni–Mo	nanopowder	was	deposited	on	Ti	foil	electrodes	and	on	Si	photoelectrodes	(both	

planar	and	microwire	arrays)	by	centrifugal	flocculation	from	the	nanoparticle	inks.	The	

inks	consisted	of	1–2	mg	mL-1	of	Ni-Mo	nanopowder	suspended	in	isopropanol	with	the	

addition	of	~	2%	(by	weight,	relative	to	Ni-Mo)	polytetrafluoroethylene	(PTFE)	particles	

from	a	water/alcohol	suspension	(Aldrich).	The	PTFE	was	added	to	increase	the	adherence	

of	the	nanoparticles	to	planar	substrates.		For	deposition,	the	substrate	was	placed	on	a	

flat	surface	of	polydimethysiloxane	(PDMS)	in	a	centrifugation	vial,	and	the	appropriate	

amount	of	ink	was	added	to	achieve	mass	loadings	of	~1	mg	cm-2.		Prior	to	deposition,	the	

ink	was	sonicated	using	a	bath	sonicator	(Branson)	for	at	least	30	min.		The	Ni-Mo/PTFE	

films	were	then	flocculated	by	centrifugation	at	3000	rpm	for	at	least	5	min,	after	which	

the	films	were	carefully	removed	and	either	air	dried	(planar	samples)	or	manually	dried	

by	placing	the	films	face-down	on	a	paper	tissue	(Kimtech	Kimwipe).	

	

The	PDMS/centrifugation-vial	construct	described	above	was	produced	by	centrifuging	

the	PDMS	mixture	overnight	at	3000	rpm,	which	had	the	beneficial	effects	of	removing	

air	 bubbles	 and	 producing	 a	 flat	 PDMS	 surface.	 	 Following	 deposition,	 the	 Si/Ni-Mo	
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samples	were	annealed	in	forming	gas	for	30	min	at	450	°C,	but	samples	that	contained	

Ni-Mo/C	catalyst	did	not	require	this	anneal.	

	

TiO2	 nanoparticle	 suspensions	 were	 generated	 from	 hydrophobized	 TiO2	 pigment	

particles	(DuPont	TiPure	R-105)	suspended	in	isopropanol	at	a	concentration	of	100	mg	

mL-1	of	TiO2	mass	loading	with	2%	Nafion	(by	weight,	relative	to	TiO2;	Aldrich).		Deposition	

was	performed	in	the	same	centrifugation	vials	as	for	Ni-Mo	deposition,	and	consisted	of	

drop-casting	15	μL	of	the	TiO2	ink	and	immediately	centrifuging	the	electrode	at	3000	rpm	

for	several	min.		The	Nafion	was	then	cured	by	an	anneal	at	150	°C	for	15	min	in	air.		Initial	

experiments	were	performed	with	both	hydrophobic	and	hydrophilic	TiO2	particles,	with	

the	hydrophobic	particles	showing	superior	performance.		

	

Platinum	particles	were	deposited	electrolessly	on	Si	substrates	by	use	of	a	solution	that	

consisted	of	1	mM	Pt	and	2%	HF	in	H2O.		Each	electrode	was	etched	for	15	s	in	buffered	

HF(aq)	solution,	washed,	dried	under	a	stream	of	N2(g),	and	submerged	for	1	min	in	the	

electroless	Pt	deposition	bath.	 	The	electrode	was	then	washed	with	H2O,	dried	with	a	

stream	of	N2(g)	and	immediately	tested	to	determine	the	photoelectrochemical	behavior	

of	the	sample.	
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A.4.4 Characterization	of	Electrodes	

Structural	characterization	of	 the	various	electrocatalyst	deposits	on	Si	electrodes	was	

performed	using	a	FEI	Nova	NanoSEM	scanning-electron	microscope.	The	current	density	

vs	potential	behavior	of	the	catalytic	electrodes	and	photoelectrodes	was	measured	using	

either	a	Gamry	Reference	600	or	a	Biologic	SP-200	potentiostat.		

	

Electrochemical	measurements	were	performed	using	either	0.5	M	or	1.0	M	trace-metal	

grade	H2SO4	aqueous	solutions	(Fischer)	as	the	electrolyte.		Electrochemical	experiments	

were	performed	in	a	two-compartment	Pyrex	cell	that 	was 	equipped	with	a	flat	Pyrex	

window	 and	 with	 a	 Ag/AgCl	 reference	 electrode	 that	 was	 located	 in	 the	 same	

compartment	as	the	working	electrode.		A	Pt	mesh	or	Ir/Ru/Ti	oxide	counter	electrode	

was	contained	in	a	separate	compartment	that	was	isolated	from	the	main	cell	compartment	

by	a	 fine-porosity	 frit	or	by	a	Nafion	membrane.	 All	of	 the	electrochemical	data	were	

collected	with	 rapid	 stirring	of	 the	 solution,	to	minimize	mass-transport	effects	and	 to	

rapidly	remove	nucleated	bubbles	from	the	electrode	surface.	

	

The	electrolyte	was	constantly	bubbled	with	research	grade	H2(g)	(Air	Liquide)	to	maintain	

a	constant	reversible	hydrogen	electrode	(RHE)	potential,	as	 determined	by	measurement	

of	the	open-circuit	potential	of	a	platinized	Pt	wire.	The	electrochemical	potentials	were	

adjusted	to	the	RHE	scale	after	data	collection.	
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Electrodes	were	tested	using	cyclic	voltammetry	(CV)	or	linear-sweep	voltammetry	(LSV),	

at	scan	rates	ranging	from	5–20	mV	s-1,	which	were	sufficiently	slow	to	produce	quasi	

steady-state	 behavior	 (validated	 by	 independent	 potentiostatic	 measurements).	 	 The	

current-	 density	 versus	 potential	 (J–E)	 data	 were	 not	 corrected	 for	 uncompensated	

resistance	 losses	or	 for	 concentration	overpotentials.	 Forward	 and	 reverse	 CV	 sweeps	

generally	showed	minimal	hysteresis.		When	hysteresis	was	observed,	the	data	collected	

while	sweeping	from	negative	toward	positive	potentials	(reverse	sweep)	corresponded	

better	 to	 the	 steady-state	 polarization	 measurements,	 and	 thus	 were	 used	 for	 final	

analysis.	 	 LSV	measurements	generally	were	 initiated	 at	 potentials	 that	 were	 several	

hundred	mV	negative	of	ERHE,	and	were	terminated	at	potentials	just	positive	of	where	

the	electrode	began	 to	pass	anodic	current.	 This	protocol	effectively	prevented	 the	 Si	

surface	from	oxidizing	and	minimized	anodic	stripping	of	the	non-noble	catalyst	particles	

from	the	electrode	surface.	

	

The	characteristics	of	the	photoelectrodes	were	evaluated	under	simulated	sunlight	that	

was	provided	by	a	custom-built	ELH-type	tungsten-halogen	 light	source	or	by	a	Xe	lamp	

(Oriel	 67005,	 Newport	 Instruments)	 equipped	 with	 an	 AM	 1.5G	 filter	 (Newport	

Instruments	81094).	The	light	source	was	placed	at	a	distance	from	the	electrochemical	

cell	sufficient	to	generate	an	incoming	photon	flux	above	the	Si	indirect	band	gap	(1.1	eV)	
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equivalent	 to	1	 Sun	 illumination,	as	measured	by	a	 Si	 photodiode	 (Thorlabs)	 that	 was	

calibrated	relative	to	a	NIST-traceable	standard	(Solarex).	

	

The	ideal	regenerative	cell	efficiency	(ηIRC)	was	adopted	as	the	figure-of-merit	for	device	

performance.98	The	value	of	ηIRC	corresponds	to	the	system	efficiency	of	a	two-electrode	

cell	 operating	 such	 that	 no	 net	 chemical	 reactions	 occur,	 in	 which	 the	 second,	 dark	

electrode	 is	 an	 ideally	 non-polarizable	 electrode	performing	 the	 same	 reaction	 as	 the	

photoelectrode,	but	in	the	reverse	direction.		Equation	A.4.4	describes	calculation	of	ηIRC,	

which	is	identical	to	the	calculation	of	the	efficiency	of	a	photovoltaic	cell.		Here	Vmp	and	

Jmp	are	the	voltage	and	photocurrent	density	at	the	maximum	power	point	and	Ps	is	the	

input	solar	power	density;	equivalently,	Voc	 is	 the	open-circuit	voltage,	 Jsc	 is	 the	short-

circuit	current	density	and	ff	is	the	fill	factor	of	the	device.	
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