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ABSTRACT

Phase retrieval is the problemof recovering a signal from its Fouriermagnitude. This
inverse problem arises in many areas of engineering and applied physics, and has
been studied for nearly a century. Due to the absence of Fourier phase, the available
information is incomplete in general. Classic identifiability results state that phase
retrieval of one-dimensional signals is impossible, and that phase retrieval of higher-
dimensional signals is almost surely possible under mild conditions. However,
there are no efficient recovery algorithms with theoretical guarantees. Classic
algorithms are based on the method of alternating projections. These algorithms do
not have theoretical guarantees, and have limited recovery abilities due to the issue
of convergence to local optima.

Recently, there has been a renewed interest in phase retrieval due to technological
advances in measurement systems and theoretical developments in structured signal
recovery. In particular, it is now possible to obtain specific kinds of additional
magnitude-only information about the signal, depending on the application. The
premise is that, by carefully redesigning the measurement process, one could poten-
tially overcome the issues of phase retrieval. To this end, another approach could
be to impose certain kinds of prior on the signal, depending on the application.
On the algorithmic side, convex programming based approaches have played a key
role in modern phase retrieval, inspired by their success in provably solving several
quadratic constrained problems.

In this work, we study several variants of phase retrieval using modern tools, with
focus on applications like X-ray crystallography, diffraction imaging, optics, astron-
omy and radar. In the one-dimensional setup, we first develop conditions, which
when satisfied, allow unique reconstruction. Then, we develop efficient recovery
algorithms based on convex programming, and provide theoretical guarantees. The
theory and algorithms we develop are independent of the dimension of the signal,
and hence can be used in all the aforementioned applications. We also perform a
comparative numerical study of the convex programming and the alternating pro-
jection based algorithms. Numerical simulations clearly demonstrate the superior
ability of the convex programming based methods, both in terms of successful
recovery in the noiseless setting and stable reconstruction in the noisy setting.
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C h a p t e r 1

MOTIVATION

Phase retrieval is the problemof recovering a signal from themagnitude of its Fourier
transform. This inverse problem has a rich history [Pat34; Pat44], motivated by
applications such as X-ray crystallography [Mil90], optics [Wal63] and astronomy
[FD87], where the measurable quantity is the magnitude-square of the Fourier
transform of the signal of interest. In applications such as radar [GZW88] and blind
channel estimation [Bay04; Ton+95], measuring the Fourier magnitude-square of
the signal of interest is significantly easier thanmeasuring the Fourier phase. In such
settings, phase retrieval leads to simple and cost-effective measurement systems. In
the rest of this chapter, we briefly describe the origin of phase retrieval in various
applications.

1.1 X-ray Crystallography/ Coherent Diffraction Imaging
X-ray crystallography is a technique used to identifymolecular and atomic structures
of crystals. This method has been used to identify the structure and function of many
basic molecules, including table salt [Bra13], DNA [W+53] and proteins [Dre07].
A typical experimental setup, courtesy of [260], is detailed in Fig. 1.1. A focused
monochromatic X-ray beam is incident on the crystal whose structure one wishes
to determine. The crystal causes the incident beam to diffract in a specific manner.
By rotating the crystal, multiple two-dimensional diffraction patterns are recorded
using photosensitive films or CCD cameras. A three-dimensional picture of the
density of the electrons is then reconstructed from these measurements by solving
an inverse problem.

Let ψ(x, y, z) denote the three-dimensional electron density of the object, centered
at the origin. Also, let the direction of light be parallel to the z-axis, the plane of
the two-dimensional detector be perpendicular to the z-axis such that z = z′, and
I (x′, y′) denote the diffraction pattern collected at (x′, y′, z′) for various (x′, y′).

The Huygens-Fresnel principle states that every point which a luminous distur-
bance reaches becomes a source of a secondary spherical wave, and that the sum
of these secondary waves determines the wave at any subsequent time [Huy85].
Let ψtrans (x, y) denote the secondary source at (x, y, 0) produced by the electron
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Figure 1.1: A typical X-ray Crystallography or Coherent Diffraction Imaging (CDI)
setup (courtesy of [260]).

densities ψ(x, y, z) for all z. The quantity ψtrans (x, y) is well-approximated by the
line integral of ψ(x, y, z) along the z direction [Goo05a], i.e.,

ψtrans (x, y) =
∫

ψ(x, y, z)dz.

The wave at (x′, y′), due to a unit point source at (x, y), is given by the scalar Green’s
function

ei 2πλ
√

(x−x′)2+(y−y′)2+z′2

4π
√

(x − x′)2 + (y − y′)2 + z′2
, (1.1)

where λ is the wavelength [Goo05a]. Therefore, the wave at (x′, y′), denoted by
ψdi f f (x′, y′), is such that

ψdi f f (x′, y′) ∝
"

ψtrans (x, y)
ei 2πλ
√

(x−x′)2+(y−y′)2+z′2√
(x − x′)2 + (y − y′)2 + z′2

dxdy.

The Fraunhofer approximation (also known as the far field approximation) involves
the following steps: The

√
(x − x′)2 + (y − y′)2 + z′2 term is approximated by z′ +

x′2+y′2−(2xx′+2yy′)
2z′ , which holds when ��z′�� � ��x − x′�� and ��z′�� � ��y − y′�� (detectors

sufficiently far away). The
√

(x − x′)2 + (y − y′)2 + z′2 term in the denominator
is further approximated by z′, which holds when ��z′�� � ��x − x′�� and ��z′�� �
��y − y′�� (object restricted to a small region). Consequently, the wave ψdi f f (x′, y′) is
Fraunhofer-approximated by

ψ
Fraunho f er
di f f (x′, y′) ∝

ei 2πλ z′

z′
ei πλ

x ′2+y ′2
z ′

"
ψtrans (x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy.

Detection devices like CCD cameras and photosensitive films cannot measure the
phase of the light wave, and instead measure the photon flux, which is proportional
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f f

Figure 1.2: A picture depicting the Fourier transforming property of lenses.

to the intensity of the light wave. Therefore, the diffraction pattern measurements
correspond to

I (x′, y′) ∝
�����

"
ψtrans (x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy

�����

2

∝
�����

$
ψ(x, y, z)ei 2πλ

−x ′x−y ′y−0z ′z
z ′ dxdydz

�����

2

∝

������
ψ̂

(
x′

λz′
,
y′

λz′
, 0

) ������

2

, (1.2)

where ψ̂ is the three-dimensional Fourier transform of ψ. Hence, the measurements
correspond to the magnitude-square of the three-dimensional Fourier transform of
the underlying signal, along a two-dimensional plane. By rotating the crystal, the
magnitude-square along various two-dimensional planes of the three-dimensional
Fourier transform are obtained. The electron density is then reconstructed by solving
the phase retrieval problem.

1.2 Optics
The propagation of light through a lens is an essential part in many imaging systems.
The phase retrieval problem arises in such setups due to the Fourier transforming
property of lenses, i.e., if a transmissive object is placed one focal length in front of a
lens, then its Fourier transform is formed one focal length behind the lens [Goo05b].
A pictorial representation of this property is provided in Fig. 1.2.

Let ψ(x, y) denote the two dimensional object placed one focal length in front of
the lens. As a consequence of Huygens principle, this is equivalent to placing a
transmissive source ψ(x, y) if the object is uniformly illuminated. The wave before
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the lens, denoted by ψ−(x′, y′), is then given by

ψ−(x′, y′) =
"

ψ(x, y)
ei 2πλ
√

(x−x′)2+(y−y′)2+ f 2√
(x − x′)2 + (y − y′)2 + f 2

dxdy,

using the steps described in the previous section (superposition principle, along with
the scalar Green’s function (1.1)).

The Fresnel approximation (also known as the near field approximation) involves
the following steps: The

√
(x − x′)2 + (y − y′)2 + f 2 term is approximated by

f + x′2+y′2−(2xx′+2yy′)+x2+y2

2 f , which holds when �� f �� � ��x − x′�� and �� f �� � ��y − y′��
(object restricted to a small region). The

√
(x − x′)2 + (y − y′)2 + f 2 term in the

denominator is further approximated by f . Consequently, the Fresnel-approximated
wave is given by

ψFresnel
− (x′, y′) ∝ ei πλ

x ′2+y ′2
f

"
ψ(x, y)ei 2πλ

−x ′x−y ′y
f ei πλ

x2+y2
f dxdy.

If the lens is thin, then the incoming wave at (x′, y′) leaves at (x′, y′). Due to the
fact that waves travel slower in a refractive medium when compared to free space,
the wave at (x′, y′) undergoes a phase delay proportional to the thickness of the lens
at (x′, y′). The phase shift at (x′, y′) is calculated, using paraxial approximation

[Goo05b], to be proportional to e−i πλ
x ′2+y ′2

f . Therefore, the wave immediately after
the lens is given by

ψFresnel
+ (x′, y′) ∝

"
ψ(x, y)ei 2πλ

−x ′x−y ′y
f ei πλ

x2+y2
f dxdy.

The Fresnel-approximated wave at the detector is hence given by

ψFresnel
di f f (x′′, y′′) ∝ ei πλ

x ′′2+y ′′2
f

"
ψFresnel
+ (x′, y′)ei 2πλ

−x ′′x ′−y ′′y ′

f ei πλ
x ′2+y ′2

f dx′dy′,

which, upon substitution and integration with respect to x′ and y′, gives

ψFresnel
di f f (x′′, y′′) ∝

"
ψ(x, y)ei 2πλ

−x ′′x−y ′′y
f dxdy

∝ ψ̂

(
x′′

λ f
,
y′′

λ f

)
, (1.3)

where ψ̂ is the two-dimensional Fourier transform of ψ. Hence, if photosensitive
films or CCD cameras are used as detectors, then the reconstruction of the object
involves solving the phase retrieval problem.
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1.3 Astronomy
In optical astronomy, objects in space are imaged using a ground based telescope.
Even at the best observation sites, the image resolution is typically limited by
atmospheric turbulence. This is due to refractive index variations of the atmosphere
[FD87].

Let O(x, y) denote the object intensity one wishes to estimate. If I (x, y) denotes the
intensity measurements obtained using a telescope, then we have

I (x, y) = O(x, y) ∗��p(x, y)��2 ,

where ��p(x, y)��2 is the point spread function introduced by the atmosphere [Har98].
In the spatial frequency domain, this relationship is equivalent to

Î (x′, y′) = Ô(x′, y′)P̂(x′, y′),

where Î (x′, y′), Ô(x′, y′) and P̂(x′, y′) are the spatial Fourier transforms of I (x, y),
O(x, y) and ��p(x, y)��2 respectively.

It is well established that, when the measurements are taken at short exposures (in
order to “freeze” the atmosphere), the atmospheric turbulence primarily affects the
phase of P̂(x′, y′), and that ���P̂(x′, y′)���

2
obeys the same statistics acrossmeasurements

with similar atmospheric conditions [Fri66]. A popular technique called speckle
interferometry [Lab70] uses this fact to extract high spatial frequency information
from such measurements. It involves collecting R measurements at short exposures
under similar atmospheric conditions, so that we have

Îr (x′, y′) = Ô(x′, y′)P̂r (x′, y′) for r = 1, 2, . . . , R.

Consequently, we have

*.
,

1
R

R∑
r=1

���Îr (x′, y′)���
2+/

-
=

���Ô(x′, y′)���
2 *.

,

1
R

R∑
r=1

���P̂r (x′, y′)���
2+/

-
. (1.4)

The term 1
R
∑R

r=1
���Îr (x′, y′)���

2
is calculated from the measurements and the term

1
R
∑R

r=1
���P̂r (x′, y′)���

2
is reliably estimated by observing a point object under similar

atmospheric conditions1. Therefore, the quantity ���Ô(x′, y′)���
2
is reliably obtained

from these measurements. The object intensity O(x, y) is then reconstructed by
solving the phase retrieval problem.

1The average 1
R

∑R
r=1 Îr (x ′, y′) does not provide useful information due to the fact that P̂r (x ′, y′)

has different statistics across measurements [Bat82].



6

Figure 1.3: An example of the input and output data in speckle interferometry
(courtesy of [Hir+11] and [Ran+13]). (A) A set of 10 low resolution speckle images.
(B) The high resolution image of the stars is obtained through phase retrieval.

1.4 Direction of Arrival (DoA) Estimation
The need for estimating the direction of wave propagation arises in many appli-
cations, including radar [Zha+10], wireless communications [God97] and object
tracking [RSZ94]. An active setup involves a transmitter which transmits narrow-
band waves (with center frequency ωc =

2πc
λ ) and an array of, say M , receivers.

Consider the two-dimensional setup such that the transmitter and receivers are
placed along the x-axis at the origin and x = ( λ2 ,

2λ
2 , . . . ,

Mλ
2 ) respectively, and the

transmission is uniform in the positive y half of the two-dimensional space (see Fig.
1.4). Suppose there are K objects which reflect the transmitted wave, where the kth
object is located at a distance rk and an angle θk from the origin.

transmi(er* ULA*

�/2

Figure 1.4: An active setup to estimate the position of objects in space (ULA =
Uniform Linear Array).

If s(t) denotes the base-band transmitted signal andx(t) = (x (t)[1], x (t)[2], . . . , x (t)[M])T

denotes the M × 1 narrow-band vector measured by the receivers at time t, then we
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have

x (t)[m] =
K∑

k=1
s *

,
t −

2rk −
mλ
2 sin θk

c
+
-

e
iωc

*
,
t−

2rk−
mλ
2 sin θk
c

+
-ρk,

where ρk is a function of the reflectivity of the object and its distance from the
transmitter [TF09]. Here, we use the fact that the total distance travelled by the
wave reflected by the kth object onto the mth receiver is well-approximated by
2rk −

mλ
2 sin θk . Since s(t) is slowly varying (base-band assumption), the quantity

s
(
t − 2rk−mλ

2 sin θk
c

)
is approximated by s(t). In the frequency domain, this leads to

the following relationship:

y(ω)[m] =
K∑

k=1
ŝ(ω − ωc)e−iωc

2rk−
mλ
2 sin θk
c ρk

∝

K∑
k=1

eiπm sin θk
(
ρk e−

i2ωc rk
c

)
, (1.5)

where ŝ(ω) is the Fourier transform of s(t). Therefore, the vector y corresponds
to the M low-frequency terms of the Fourier transform of a signal which has an
amplitude ρk e−

i2ωc rk
c at location sin θk

2 , for 1 ≤ k ≤ K . The inverse problem of
recovering the various θk from y is referred to as direction of arrival estimation (also
commonly known as super-resolution). Classic algorithms to solve this problem
include MUSIC [Sch86] and ESPRIT [RK89].

This setup requires coherent detection, i.e., the receivers must be perfectly synchro-
nized and be able to measure the phase of the incoming wave accurately. In practice,
this is very difficult to achieve, particularly when the number of receivers is large.
The measurements, due to such errors, are of the form

y[m] ∝ eiφm
K∑

k=1
eiπm sin θk

(
ρk e−

i2ωc rk
c

)
,

for some unknown φm. A potential approach to overcome this issue is to discard the
phase measurements and only consider the magnitude measurements, i.e.,

Z[m] ∝
�������

K∑
k=1

eiπm sin θk
(
ρk e−

i2ωc rk
c

) �������

2

.

This inverse problem is a combination of phase retrieval and super-resolution. We
refer to this problem as phaseless super-resolution [Jag+16].
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C h a p t e r 2

INTRODUCTION

In this chapter, we mathematically set up the phase retrieval problem, and provide an
overview of the classic and the modern approaches. For the sake of exposition, we
consider the discretized 1D setting1. Let x = (x[0], x[1], . . . , x[N − 1])T be a signal
of length N . Denote by y = (y[0], y[1], . . . , y[N − 1])T its N point Discrete Fourier
Transform (DFT) and letZ = (Z[0], Z[1], . . . , Z[N−1])T be the Fourier magnitude-
squaremeasurements (i.e., Z[m] = ��y[m]��2). Phase retrieval is the following recovery
problem:

find x (2.1)

subject to Z[m] = ��〈fm, x〉��2 for 0 ≤ m ≤ N − 1,

where fm is the conjugate of the mth column of the N point DFT matrix, with
elements {ei2π mn

N }N−1n=0 , and 〈., .〉 is the standard inner product operator. Since
Fourier magnitude-square (i.e., power spectral density) and circular autocorre-
lation are Fourier pairs, phase retrieval can also be equivalently stated as the
problem of recovering a signal from its circular autocorrelation, denoted by b =
(b[0], b[1], . . . , b[N − 1])T , i.e.,

find x (2.2)

subject to b[m] =
N−1∑
n=0

x[n]x?[(n + m) mod N] for 0 ≤ m ≤ N − 1.

2.1 Uniqueness
Due to the absence of Fourier phase information, the available data is highly incom-
plete. For any given Fourier magnitude, the Fourier phase can be chosen from an
N-dimensional set. Since distinct phases correspond to different signals in general,
the feasible set of (2.1) is an N-dimensional manifold, rendering phase retrieval a
very ill-posed problem.

In fact, it is well known that the Fourier phase quite often contains more information
than the Fouriermagnitude. To demonstrate this fact, a synthetic example is provided

1The theory and algorithms developed in this work generalize to higher dimensions. We provide
more details in the appropriate sections.
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Figure 2.1: A synthetic example demonstrating the importance of Fourier phase in
reconstructing a signal from its Fourier transform.

in Fig. 2.1. The figure shows the result of the following numerical simulation:
Two images (of Alisha and Babu2) are Fourier transformed, their Fourier phases
are swapped and then they are inverse Fourier transformed. The result clearly
demonstrates the importance of Fourier phase.

A popular approach to mitigate the ill-posedness of phase retrieval is to use an
M > N point DFT. In practice, this is done by increasing the density of the
detectors. A typical choice is M = 2N . This setting is mathematically equivalent
to zero-padding the signal x with N zeros, and considering the 2N point DFT of
(x[0], x[1], . . . , x[N − 1], 0, 0, . . . , 0)T . The term oversampling is used to refer to
this setting.

Phase retrieval with oversampling can therefore be stated as the problem of recov-
ering a signal from its autocorrelation, denoted by a = (a[0], a[1], . . . , a[N − 1])T ,
i.e.,

find x (2.3)

subject to a[m] =
N−1−m∑

n=0
x[n]x?[n + m] for 0 ≤ m ≤ N − 1.

Remark: If M ≥ 2N , then the inverse problem is equivalent to (2.3) irrespective of
the value of M . Hence, increasing the density of the detectors does not help beyond
a certain point.

2Alisha and Babu are the Indian counterparts of Alice and Bob respectively.
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Trivial Ambiguities

Observe that the operations of time-shift, conjugate-flip and global phase-change on
the signal do not affect the autocorrelation, or equivalently, the oversampled DFT
magnitude. Indeed, if y = (y[0], y[1], . . . , y[M − 1])T is the oversampled DFT of
x, then y = (y[0], ein0 y[1], . . . , ein0(M−1)y[M − 1])T is the oversampled DFT of x
time-shifted by n0 units, y = (y?[0], y?[1], . . . , y?[M−1])T is the oversampled DFT
of the conjugate-flip of x, and eiφy is the oversampled DFT of eiφx. Each of these
operations only affect the phase of the oversampled DFT.

Hence, a signal can only be reconstructed up to a time-shift, conjugate-flip and
global phase without additional information. These ambiguities are referred to as
trivial ambiguities, and signals obtained by these operations are considered to be
equivalent. In most applications of phase retrieval, it is good enough if a signal
is reconstructed up to these ambiguities. For example, in astronomy, where the
underlying signal corresponds to stars in the sky, or in X-ray crystallography, where
the underlying signal corresponds to atoms or molecules in a crystal, equivalent
solutions are equally informative [Mil90].

In order to calculate the number of non-equivalent solutions to (2.3), we rewrite the
equations in the z-transform domain. We have

A(z) = X (z)X?(z−?), (2.4)

where A(z) and X (z) are the z-transforms of a and x respectively. Since A(z) =
A?(z−?), if z0 is a zero of A(z), then z−?0 is also a zero. Hence, the zeros of A(z)
appear in pairs of the form (z0, z−?0 ). The reconstruction of x from a, or equivalently
X (z) from A(z), is known as spectral factorization, and deals with the distribution
of these pairs of zeros between X (z) and X?(z−?).

The trivial ambiguities can be understood in this framework as follows: The z

transform of x time-shifted by n0 units is X (z)zn0 . Consequently, the z transform
of its autocorrelation is given by X (z)zn0 × z−n0 X?(z−?) = X (z)X?(z−?). The z

transform of the conjugate-flip of x is X?(z−?), due to which the z transform of
its autocorrelation is given by X?(z−?)X (z). Indeed, this solution corresponds to
“wrongly” assigning the zeros in every pair of zeros. The z transform of eiφx is
eiφX (z). Therefore, the z transformof its autocorrelation is eiφX (z)×e−iφX?(z−?) =
X (z)X?(z−?).

1D setting: Since X (z) is a univariate polynomial of degree N − 1, it has N − 1
zeros (fundamental theorem of algebra [FR12]), denoted by rn for 1 ≤ n ≤ N − 1.
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Consequently, A(z) has N − 1 pairs of zeros (rn, r−?n ). For every pair (rn, r−?n ), we
can either assign rn to X (z) and r−?n to X?(z−?), or assign r−?n to X (z) and rn to
X?(z−?). Hence, the total number of non-equivalent solutions is at most 2N−1. If
the zeros of X (z) are distinct, then the number of non-equivalent solutions is exactly
2N−1. While this is a significant improvement when compared to the number of
non-equivalent solutions of (2.2), 2N−1 is still a prohibitive number, due to which
phase retrieval with oversampling in 1D remains ill-posed. Additional assumptions
on the signal are required in order to be able to guarantee unique reconstruction.

≥2D setting: Here, X (z1, z2, . . . , zd) is a multivariate polynomial. In [HM82], it is
shown that almost all polynomials in two or more variables are irreducible. Hence,
in theory, almost all signals can be uniquely reconstructed, up to trivial ambiguities,
by factorizing the polynomial A(z1, z2, . . . , zd). Consequently, with the exception
of a set of signals of measure zero, phase retrieval in ≥2D with oversampling is a
well-posed problem.

2.2 Classic Approaches
Earlier approaches to phase retrieval were based on the method of alternating projec-
tions, pioneered by the work of Gerchberg and Saxton [GS72]. The phase retrieval
problem (with oversampling, i.e., M = 2N) is reformulated as the following least-
squares problem:

min
x

2N−1∑
m=0

(√
Z[m] −��〈fm, x〉��

)2
(2.5)

subject to x[n] = 0 for N ≤ n ≤ 2N − 1.

Here, fm is the conjugate of the mth column of the 2N point DFT matrix, with
elements ei2π mn

2N . The underlying signal has nonzero values only within the interval
[0, N − 1], and has a value 0 outside this interval, i.e., in the interval [N, 2N − 1].

The Gerchberg-Saxton (GS) algorithm attempts to minimize this non-convex ob-
jective by starting with a random initialization and iteratively imposing the time
domain constraints (for example, nonzero values only within the interval [0, N − 1])
and Fourier domain constraints (given Fourier magnitude measurements) using pro-
jections. The details of the various steps are provided in Algorithm 1.

The intuition behind the algorithm is the following: The underlying signal is known
to be in S1 ∩ S2, where S1 is the set of all signals which satisfy the time domain
constraints, and S2 is the set of all signals which satisfy the Fourier magnitude
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Algorithm 1 Gerchberg-Saxton (GS) Algorithm
Input: Fourier magnitude-square measurements Z
Output: Estimate x̂ of the underlying signal
Initialize: Choose a random input signal x(0), ` = 0
while halting criterion false do
` ← ` + 1
Compute the DFT of x(`−1): y(`) = Fx(`−1)

Impose Fourier magnitude constraints: y′(`)[m] = y(`)[m]
|y(`)[m]|

√
Z[m]

Compute the inverse DFT of y′(`): x′(`) = F−1y′(`)

Impose time domain constraints to obtain x(`)

end while
return x̂← x(`)

measurements. From any signal, it is typically straightforward to calculate the
projection onto S1 or S2. If S1 is the set of all signals which have nonzero values
only within the interval [0, N − 1], then the projection onto this set is obtained by
forcing the values outside this interval to 0. The projection onto S2 is the signal
obtained by calculating the Fourier transform, replacing the magnitude with the
measured magnitude, and taking the inverse Fourier transform.

If the sets S1 and S2 are both convex, then the method of alternating projections
always converges to a signal which lies in S1 ∩ S2 (assuming this set is not a null
set). In the phase retrieval setup, since S2 is non-convex, this method has limited
abilities. The objective function value is shown to be non-increasing with each
iteration, due to which the algorithm always converges:

2N−1∑
m=0

(√
Z[m] −

����
〈
fm, x(`−1)

〉����

)2
=

2N−1∑
m=0

(����〈fm, x′(`)
〉���� −

����
〈
fm, x(`−1)

〉����

)2
=

2N−1∑
m=0

����
〈
fm, x′(`)

〉
−

〈
fm, x(`−1)

〉����
2
= ‖x′(`) − x(`−1) ‖2F

≥ ‖x′(`) − x(`) ‖2F =
2N−1∑
m=0

����
〈
fm, x′(`)

〉
−

〈
fm, x(`)

〉����
2

≥

2N−1∑
m=0

(����〈fm, x′(`)
〉���� −

����
〈
fm, x(`)

〉����

)2
=

2N−1∑
m=0

(√
Z[m] −

����
〈
fm, x(`)

〉����

)2
,

due to the fact that x′(l) has the same Fourier magnitude as the measurements, x′(l)
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and x(l−1) have the same Fourier phase, Parseval’s theorem, and x′(l) is closer to x(l)

when compared to x(l−1).

The converged signal is often a local minimizer of the objective function, due to the
fact that S2 is non-convex. In order to mitigate this issue, Fienup, in his seminal
work [Fie82], extended this method by introducing additional correction terms to
the time domain step (see Hybrid Input-Output (HIO) algorithm [Fie82] for details).
The HIO algorithm is not guaranteed to converge, and when it does converge, it
may be to a local minimum. We refer the readers to [BCL02] and [Mar07] for a
theoretical and numerical investigation of such methods, and to [Fie82] for a survey
of classic approaches.

2.3 Modern Approaches
The classic algorithms have limited recovery abilities, and do not have theoretical
recovery guarantees. Due to these reasons, phase retrieval is still an active research
problem. Recent developments in measurement technologies and advances in op-
timization methods have inspired a host of new approaches to phase retrieval. The
modern approaches can be broadly classified into three categories:

(i) Additional prior information: Inspired by results in the area of compressed
sensing [CT05; EK12; Cha+12; Tro15], various researchers have explored the idea
of sparsity as a prior information on the signal. A signal of length N is said to be
k-sparse if it has k locations with nonzero values and k � N . The exact locations
and values of the nonzero elements are not known a priori. The approach has been to
develop conditions under which only one sparse signal satisfies the autocorrelation
measurements, and to develop algorithms which exploit the sparsity prior.

(ii)Additionalmagnitude-onlymeasurements: Technological advances have enabled
the possibility of obtaining additional information about the signal. In particular,
magnitude-square measurements of the form

Z[m] = ��〈fm,Dx〉��2 (2.6)

can be obtained in many phase retrieval applications, where D is an N × N diagonal
matrix. This can be done in practice in various ways, depending on the application.
Common approaches include the use of masks [Joh+08], optical gratings [LP97]
and structured illuminations [Far+10]. The idea is to overcome the uniqueness
and algorithmic issues of phase retrieval by obtaining measurements from multiple
carefully designed diagonal matrices.
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(iii) Random phaseless measurements: A popular trend for analysis purposes is to
replace the Fourier vectors with random vectors. The measurements considered are
of the form

Z[m] = ��〈am, x〉��2 , (2.7)

where am is a genericmeasurement vector. A natural question to ask is howmany and
which measurement vectors can uniquely identify the underlying signal. Another
interesting problem is to identify a set of measurement vectors for which there is
an efficient and stable reconstruction algorithm. Since our work focuses on Fourier
vectors which naturally come up in many applications, we do not pursue this line of
work. We refer the interested readers to [BCE06; Bal+09; CSV13; LV13; NJS13;
EM14; Ale+14; BR15; CLS15b; Oym+15; PLR14; SR15; Tro15] for details.

Semidefinite Programming (SDP)

On the algorithmic front, one of the recent popular approaches to treat phase re-
trieval problems is to use semidefinite programming methods. SDP algorithms have
been shown to yield robust solutions to various quadratic-constrained optimization
problems (see [Lov79; GW95] and references therein). Since phase retrieval results
in quadratic constraints, it is natural to use SDP techniques to try and solve such
problems. An SDP formulation of phase retrieval (2.1) can be obtained by a proce-
dure popularly known as lifting: We embed x in a higher dimensional space using
the transformation X = xx?. The Fourier magnitude measurements are then linear
in the matrix X:

Z[m] = ��〈fm, x〉��2 = x?fmf?mx = trace(fmf?mxx?) = trace(fmf?mX).

Consequently, phase retrieval reduces to finding a rank one positive semidefinite ma-
trix X which satisfies these affine measurement constraints, leading to the following
reformulation:

minimize rank(X)

subject to Z[m] = trace(fmf?mX) for 0 ≤ m ≤ N − 1

X < 0.

However, rank minimization is known to be NP-hard in general. To obtain an SDP
algorithm, one possibility is to replace rank(X) by a convex surrogate trace(X)
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[RFP10], resulting in the following convex program:

minimize trace(X) (2.8)

subject to Z[m] = trace(fmf?mX) for 0 ≤ m ≤ N − 1

X < 0.

If the underlying signal is known to be sparse, then one could add an ‖X‖1 cost
to the objective function [CT05]. Measurements of the form (2.6) will appear as
linear constraints of the form Z[m] = trace(D?fmf?mDX). The approach has been
to develop conditions under which x0x?0 , where x0 is the underlying signal, is the
unique optimizer of (2.8). We refer the readers to [She+15; JEH15a] for an overview
of contemporary methods.

2.4 Organization
The rest of this work is organized as follows: In Chapter 3, we motivate sparse phase
retrieval, which is the problem of recovering a sparse signal from its Fourier mag-
nitude. We first give conditions, which when satisfied, allow unique reconstruction.
Then, we develop an SDP based reconstruction algorithm (TSPR), and provide the-
oretical guarantees. Chapter 4 considers phase retrieval using masks. We propose
two simple mask designs, and show that the SDP method provably reconstructs
most signals when measurements are obtained using these masks. In Chapter 5,
we study Short-Time Fourier Transform (STFT) phase retrieval in which the mea-
surements correspond to the STFT magnitude. We give conditions under which
signals can be uniquely reconstructed, and also provide theoretical guarantees for
reconstruction using the SDP method (STliFT). In Chapter 6, we consider phaseless
super-resolution, which is the combination of phase retrieval and super-resolution.
We propose a simple structured illumination design, and show that the SDP method
provably reconstructs most signals using the information from such measurements.
Chapter 7 concludes the work with a summary and discussion on future directions.
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C h a p t e r 3

SPARSE PHASE RETRIEVAL

In many phase retrieval applications, the signal of interest is naturally sparse. For
example, electron microscopy deals with sparsely distributed atoms or molecules
[Mil90], while astronomical imaging tends to consider sparsely distributed stars
[FD87]. If it is known a priori that the signal of interest is sparse, then one
could potentially solve for the sparsest solution satisfying the Fourier magnitude
measurements, and be able to uniquely and efficiently identify the underlying signal
up to trivial ambiguities (the trivial ambiguities cannot be resolved with a sparsity
prior). Sparse phase retrieval can be mathematically written as

minimize ‖x‖0 (3.1)

subject to Z[m] = ��〈fm, x〉��2 for 0 ≤ m ≤ M − 1,

where ‖.‖0 is the `0 normwhich counts the number of nonzero entries of its argument,
and M is the size of the DFT. When M = 2N , sparse phase retrieval is equivalent to
the problem of recovering a sparse signal from its autocorrelation, i.e.,

minimize ‖x‖0 (3.2)

subject to a[m] =
N−1−m∑

n=0
x[n]x?[n + m] for 0 ≤ m ≤ N − 1.

3.1 Contributions
In this chapter, we first show that almost all signals with aperiodic support (defined
in Section 3.2) can, in theory, be uniquely recovered by solving (3.2). In other
words, if the signal of interest is known to have aperiodic support, then we show
that the sparse phase retrieval problem is almost surely well-posed.

We then develop the TSPR algorithm to efficiently solve (3.2), and provide the
following recovery guarantees: (i) Most O(N

1
2−ε )-sparse signals can be recovered

uniquely by TSPR. (ii) Most O(N
1
4−ε )-sparse signals can be recovered robustly by

TSPR when the measurements are corrupted by additive noise. Numerical simula-
tions complement our theoretical analysis, and show that TSPR can perform better
than alternating projection methods, and as good as the other popular sparse phase
retrieval algorithms (which enjoy empirical success, but do not have theoretical
guarantees).
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Related Work

In [Ran+13], it is shown that the knowledge of the autocorrelation is sufficient to
uniquely identify 1D sparse signals if the autocorrelation is “collision free”, as long
as the sparsity k , 6. A signal x is said to have a collision free autocorrelation if
for all indices {i1, i2, i3, i4} such that {x[i1], x[i2], x[i3], x[i4]} , 0, we have |i1 − i2 | ,

|i3 − i4 |. In words, a signal is said to have a collision free autocorrelation if no
two pairs of locations with nonzero values in the signal are separated by the same
distance. For higher dimensions, the authors show that the requirement k , 6 is not
necessary. This result has been further refined in [OE14], where it is shown that k2−

k + 1 Fourier magnitude measurements are sufficient to recover the autocorrelation.

We would like to note that the collision-free property generically holds only for
O(N

1
4−ε )-sparse signals, whereas our uniqueness results apply for (N − 1)-sparse

signals. To the best of our knowledge, TSPR is the first efficient sparse phase
retrieval algorithm with strong theoretical guarantees.

3.2 Uniqueness
In this section, we present our identifiability results for the sparse phase retrieval
problem (3.2).

Definition: A signal is said to have periodic or aperiodic support if the locations of
its nonzero components are uniformly spaced or not uniformly spaced respectively.

For example: Consider the signal x = (x[0], x[1], x[2], x[3], x[4]) of length N = 5.

(i) Aperiodic support: {n|x[n] , 0} = {0, 1, 3}, {1, 2, 4}.

(ii) Periodic support: {n|x[n] , 0} = {0, 2, 4}, {0, 1, 2, 3, 4}.

We prove the following result:

Theorem 3.2.1. Let Sk represent the set of all k-sparse signals of length n with
aperiodic support, where 3 ≤ k ≤ n − 1. Almost all signals in Sk can be uniquely
recovered by solving (3.2).

Proof. The proof technique we use is popularly known in literature as dimension
counting. Since Sk represents the set of all k-sparse signals with aperiodic support,
it is a manifold with 2k degrees of freedom (each nonzero location has 2 degrees of
freedom, as the value can be complex). We show that the set of signals in Sk which



18

cannot be uniquely recovered by solving (3.2) is a manifold with degrees of freedom
less than or equal to 2k − 1 and hence, almost all signals in Sk can be uniquely
recovered by solving (3.2). The details are provided in Appendix 8.1. �

Signals with sparsity k ≤ 2 can always be recovered by solving (3.2) (the quadratic
system of equations can be solved trivially).

Remark: Sparse signals with periodic support can be viewed as an oversampled
version of a signal which is not sparse. The sparse phase retrieval problem (3.2)
reduces to the phase retrieval problem (2.3), and hence these signals cannot be
uniquely recovered from their autocorrelation without further assumptions. For a
detailed discussion, we refer the readers to Section II in [LV11].

3.3 Two-stage Sparse Phase Retrieval (TSPR)
In this section, we discuss the drawbacks of the standard approaches to solve (3.2)
and then develop TSPR [JOH13b].

The Fienup HIO algorithm has been extended to solve sparse phase retrieval by
adapting the step involving time domain constraints to promote sparsity. This can
be achieved in several ways. For example, the locations with absolute values less
than a particular threshold may be set to zero. Alternatively, the k locations with
the highest absolute values can be retained and the rest set to zero [MS12]. In the
noiseless setting, the sparsity constraint partially alleviates the convergence issues
if multiple random initializations are considered and the underlying signals are
sufficiently sparse. However, in the noisy setting, convergence issues still remain.

In [SBE14; SBE12], a sparse optimization based greedy search method called
GESPAR (GrEedy Sparse PhAse Retrieval) is proposed. Sparse phase retrieval is
reformulated as the following sparsity-constrained least-squares problem:

min
x

M−1∑
m=0

(
Z[m] −��〈fm, x〉��2

)2
(3.3)

subject to ‖x‖0 ≤ k .

GESPAR is a local search method, based on iteratively updating the signal support,
and seeking a vector that corresponds to themeasurements under the current support.
A location-search method is repeatedly invoked, beginning with an initial random
support set. Then, at each iteration, a swap is performed between a support and
a non-support index. Only two elements are changed in the swap (one in the
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support and one in the non-support), following the so-called 2-opt method [PS82].
Given the support of the signal, phase retrieval is then treated as a non-convex
optimization problem, and approximated using the damped Gauss-Newton method
[Ber99]. While the algorithm enjoys empirical success, there are no theoretical
guarantees.

Since the solution we desire is both sparse and low rank, a natural convex approach
would be to solve:

minimize trace(X) + λ‖X‖1 (3.4)

subject to a[m] = trace(AmX) for 0 ≤ m ≤ N − 1

X < 0,

for some regularizer λ, where the matrices Am are given by

Amgh =




1 if |h − g | = m = 0
1
2 if |h − g | = m , 0

0 otherwise.

(3.5)

However, this approach does not work, as the issue of trivial ambiguities (due to
time-shift and conjugate-flip) is still unresolved. If X0 = x0x?0 is the desired sparse
solution, then X̃0 = x̃0x̃?0 , where x̃0 is the conjugate-flipped version of x0,Xi = xix?i ,
where xi is the signal obtained by time-shifting x0 by i units, and X̃i = x̃ix̃?i , where
x̃i is the signal obtained by time-shifting x̃0 by i units are also feasible with the same
objective value as X0. Since (3.4) is a convex program, any convex combination of
these solutions is also feasible and has an objective value less than or equal to that of
X0, because of which the optimizer is neither sparse nor rank one. One approach to
break this symmetry would be to solve a weighted `1 minimization problem, which
can potentially introduce a bias towards a particular equivalent solution. Numerical
simulations suggest that this approach does not help in the sparse phase retrieval
setup.

Many iterative heuristics have been proposed to solve (3.4). In [Can+15], the log-det
function is used as a surrogate for rank (see [FHB03]). In [Sza+12], the solution
space is iteratively reduced by calculating bounds on the support of the signal.
Reweighted minimization (see [CWB08]) is explored in [JOH12b; JOH13a], where
the weights are chosen based on the solution of the previous iteration. While these
methods enjoy empirical success, no theoretical guarantees are available.
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Figure 3.1: Probability of successful signal recovery of (3.6) (with λ = 0) for
various sparsities for N = 32, 64, 128, 256.

The time-shift and time-reversal ambiguities stem from the fact that the support of
the signal is not known. Therefore, let us momentarily assume that we somehow
know the support of the signal (denoted from now on by V , which is the set of
locations of the nonzero components of x), (3.4) can be reformulated as

minimize trace(X) + λ‖X‖1 (3.6)

subject to a[m] = trace(AmX) for 0 ≤ m ≤ N − 1

X[n,m] = 0 if n,m < V

X < 0.

Fig. 3.1 plots the probability of successful recovery of (3.6) (with λ = 0) against
various sparsities k for N = 32, 64, 128, 256. For a given signal length N and
sparsity k, the k nonzero locations were chosen uniformly at random and the signal
values in the support were chosen from an i.i.d. standard normal distribution. It
can be observed that (3.6) recovers the signal with very high probability in the
k ≤ N

2 regime1. This observation suggests a two-stage algorithm: one where we
first recover the support of the signal and then use it to solve (3.6).

1This is an empirical observation. In this work, we provide recovery guarantees only for
O(N

1
2−ε )-sparse signals.
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Algorithm 2 Two-stage Sparse Phase Retrieval (TSPR)
Input: Autocorrelation a of the signal of interest
Output: Sparse signal x which has an autocorrelation a

(i) Recover V using Algorithm 3

(ii) Recover x by solving (3.6) with λ = 0.

It is difficult to characterize the set of signals that can be reconstructed using TSPR.
In order to provide recovery guarantees, we consider a probabilistic approach. In
particular, we assume that the sparse signal is drawn from the Bernoulli-Gaussian
distribution BN (N, θ), defined as follows:

(i) Support is chosen from an i.i.d. Bern
(

Nθ

N

)
distribution

(ii) Signal values in the support are chosen from an i.i.d. CN (0, 1) distribution.

We prove the following result:

Theorem 3.3.1. If sparse signals are drawn from the BN (N, θ) distribution, where
the parameter θ satisfies 0 < θ ≤ 1

2 − ε for some constant ε > 0, then the failure
probability of TSPR is O(N−0.1ε ).

Proof. This is a direct consequence of Theorem 3.3.2 and 3.3.3. �

For convenience of notation, we define the quantity s = N θ . Note that s controls
the distribution of the sparsity of the signals. In particular, if k denotes the sparsity
of the signal, then E[k] = s. Further, the probability that an integer belongs to the
support is given by s

N .

Support Recovery
Consider the problem of recovery of the support of the signal V from the support of
the autocorrelation (denoted from now on by W ). We will assume that if a[i] = 0,
then no two elements in x are separated by a distance i, i.e.,

a[i] = 0⇒ x[ j]x?[i + j] = 0 ∀ j .

This holds with probability one if the nonzero components of the signal are chosen
from a continuous i.i.d. distribution. With this assumption, the support recovery
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problem can be stated as

find V subject to {|i − j | | i, j ∈ V } = W, (3.7)

which is the problem of recovering an integer set from its pairwise distance set (also
known as the Turnpike Problem2).

For example, consider the set V = {2, 5, 13, 31, 44}. Its pairwise distance set is given
by W = {0, 3, 8, 11, 13, 18, 26, 29, 31, 39, 42}. The Turnpike problem (and (3.7)) is
the problem of reconstruction of the set V from the set W . We refer the interested
readers to [JH13] for more details.

In [SSL90], a backtracking based algorithm is proposed to solve the turnpike prob-
lem. The algorithm needs multiplicity information of the pairwise distances which
is not available in the phase retrieval setup, and is known to have a worst case
exponential O(2k )-complexity. In [LW88], a polynomial factorization based algo-
rithm with complexity O(kd) is proposed, where d is the largest pairwise distance.
[Dak00] provides a comprehensive summary of the existing algorithms for the turn-
pike problem. In the following part, we will develop a O(k4)-complexity algorithm
which can provably recover most O(N

1
2−ε )-sparse integer sets.

Suppose V = {v0, v1, . . . , vk−1} is a set of k integers and W = {w0,w1, . . . ,wK−1} is
its pairwise distance set4.

If V has a pairwise distance set W , then sets c ± V also have a pairwise distance
set W for any integer c, because of which there are trivial ambiguities. These
solutions are considered equivalent, we attempt to recover the equivalent solution
U = {u0, u1, . . . , uk−1} defined as follows:

U =



V − v0 if v1 − v0 ≤ vk−1 − vk−2

vk−1 − V otherwise,

i.e., the equivalent solution setU we attempt to recover has the following properties:

(i) u0 = 0

(ii) u1 − u0 ≤ uk−1 − uk−2.
2Many papers consider the problem of recovering a set of integers from the multiset of their

pairwise distances, i.e., multiplicity of pairwise distances is known. We provide a solution without
using multiplicity information.

4The elements of V and W are assumed to be in ascending order without loss of generality for
convenience of notation, i.e., v0 < v1 < . . . < vk−1 and w0 < w1 < . . . < wK−1.
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Let ui j = |u j − ui | for 0 ≤ i ≤ j ≤ k − 1. With this definition, W = {ui j : 0 ≤ i ≤

j ≤ k − 1} and U = {u0 j : 0 ≤ j ≤ k − 1}. The reason for choosing to recover the
equivalent solution U is the following: We have the property U ⊆ W . Algorithm
3, in essence, crosses out all the integers in W that do not belong to U using two
instances of Intersection Step and one instance of Graph Step.

Algorithm 3 Support Recovery: Combinatorial Algorithm
Input: Pairwise distance set W
Output: Integer set U which has W as its pairwise distance set

1. u01 = wK−1 − wK−2

2. Intersection Step using u01: get Z = 0 ∪
(
W ∩ (W + u01)

)
3. Graph Step using (Z,W ): get {u0p : 0 ≤ p ≤ t = 3

√
log(s)} (smallest t+1 integers

which have an edge with u0,k−1)

4. Intersection Step using {u0p : 1 ≤ p ≤ t}: get U = {u0p : 0 ≤ p ≤ t − 1} ∪(
W ∩

(⋂t
p=1(W + u0p)

))

Inferring u01

The largest integer in W (i.e., wK−1) corresponds to the term u0,k−1 and the second
largest integer in W (i.e., wK−2) corresponds to the term u1,k−1 (due to u1 − u0 ≤

uk−1 − uk−2). Hence, wK−1 − wK−2 = u0,k−1 − u1,k−1 = u01. Observe that u01 = v01

if v1 − v0 ≤ vk−1 − vk−2 and u01 = vk−2,k−1 otherwise.

Intersection Step

The key idea of this step can be summarized as follows: suppose we know the value
of u0p for some p, then

{u0 j : p ≤ j ≤ k − 1} ⊆ W ∩ (W + u0p),

where the set (W + u0p) is the set obtained by adding the integer u0p to each integer
in the setW . This can be seen as follows: u0 j ∈ W by construction for 0 ≤ j ≤ k−1.
upj ∈ W by construction for p ≤ j ≤ k − 1, which when added by u0p, gives u0 j and
hence u0 j ∈ (W + u0p) for p ≤ j ≤ k − 1.
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The idea can be generalized to multiple intersections. Suppose we know {u0p : 1 ≤
p ≤ t}, we can construct {(W + u0p) : 1 ≤ p ≤ t} and see that

{u0 j : t ≤ j ≤ k − 1} ⊆ W ∩
(
∩t

p=1(W + u0p)
)
.

The idea can also be extended to the case when we know the value of uq,k−1 for some
q:

{u j,k−1 : 0 ≤ j ≤ q} ⊆ W ∩ (W + uq,k−1),

which can be seen as follows: u j,k−1 ∈ W by construction for 0 ≤ j ≤ k−1. u jq ∈ W

by construction for 0 ≤ j ≤ q, which when added by uq,k−1, gives u j,k−1 and hence
u j,k−1 ∈ (W + uq,k−1) for 0 ≤ j ≤ q.

Consider the exampleV = {2, 5, 13, 31, 44},W = {0, 3, 8, 11, 13, 18, 26, 29, 31, 39, 42}.
We have u01 = 3, because of which W1 = {3, 6, 11, 14, 16, 21, 29, 32, 34, 42, 45} and
hence W ∩W1 = {3, 11, 29, 42}, which contains {u01, u02, u03, u04} = {3, 11, 29, 42}.

Graph Step

For an integer set U whose pairwise distance set is W , consider any set Z =

{z0, z1, . . . , z |Z |−1} which satisfies U ⊆ Z ⊆ W . Construct a graph G(Z,W ) with
|Z | vertices (each vertex corresponding to an integer in Z) such that there exists an
edge between zi and z j iff the following two conditions are satisfied:

(i) ∀zg, zh ∈ Z, zg − zh , zi − z j unless (i, j) = (g, h)

(ii) |zi − z j | ∈ W ,

i.e., there exists an edge between two vertices iff their corresponding pairwise
distance is unique and belongs to W .

The main idea of this step is as follows: suppose we draw a graph G(Z,W ) where
U ⊆ Z ⊆ W . If there exists an edge between a pair of integers zi, z j ∈ Z , then
zi, z j ∈ U. This holds because if zi, z j < U, then since |zi − z j | ∈ W there has to
be another pair of integers in U (and hence in Z) which have a pairwise distance
|zi − z j |. This would contradict the fact that an edge exists between zi and z j in
G(Z,W ).

Consider the exampleV = {2, 5, 13, 31, 44},W = {0, 3, 8, 11, 13, 18, 26, 29, 31, 39, 42}.
Suppose we have Z = {0, 3, 8, 11, 29, 42}. There will be an edge between 11 and 42
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as they have a difference of 31, which belongs to W and there are no other integer
pairs in Z which have a difference of 31. Hence, the only way a pairwise distance
of 31 in W can be explained is if 11, 42 ∈ U .

Theorem 3.3.2. If sparse signals are drawn from the BN (n, θ) distribution, where
the parameter θ satisfies 0 < θ ≤ 1

2 − ε for some constant ε > 0, then the failure
probability of Algorithm 3 is O(n−0.1ε ).

Proof. The proof of this theorem is constructive, i.e., we prove the correctness of
the various steps involved in Algorithm 3 with the desired probability. The outline
is as follows:

Due to U ⊆ W property, we noted that Algorithm 3 aims to cross out integers in W

that do not belong to U (undesired integers). The Intersection Step and Graph Step
are designed such that they never cross out integers which belong to U , and cross
out undesired integers with certain probabilities.

Lemma 8.2.2 provides a O
(

s4
n2

)
bound on the probability that a particular undesired

integer does not get crossed out in the first Intersection Step. If 0 < θ ≤ 1
5 , then

Lemma 8.2.3 shows that the support is recovered at the end of the first Intersection
Step itself with the desired probability.

The Graph Step and the second instance of the Intersection Step cross out undesired
integers, if any, when 1

5 < θ. Lemma 8.2.6 shows that {v0p : 1 ≤ p ≤ t = 3
√
log(s)}

can be recovered by Graph Step with the desired probability. Finally, Lemmas 8.2.4
and 8.2.5 show that the support is recovered at the end of the second Intersection Step
with the desired probability. We refer the readers to Appendix 8.2 for details. �

Signal Recovery (with known support)
Once the support is recovered, the signal can be recovered by solving (3.6). We use
λ = 0 as the support constraints promote sparsity by themselves.

Theorem 3.3.3. If the sparse signal x0 is drawn from the BN (n, θ) distribution,
where the parameter θ satisfies 0 < θ ≤ 1

2 − ε for some constant ε > 0, then the
probability that the optimizer of (3.6), with λ = 0, is not X0 = x0x?0 is O(n−1).

Proof. Analysis of semidefinite relaxation based programs with such deterministic
measurements is a difficult task in general. We will instead analyze (3.8), which is a
further relaxation of (3.6), and show that (3.8) has X0 = x0x?0 as its optimizer with
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the desired probability, which is sufficient to prove the theorem as x0x?0 is a feasible
point of (3.6).

We use the following notation: H (U) = G(U,W ) (see the description of Graph
Step). In other words, H (U) is a graph with k vertices, where each vertex cor-
responds to an integer in U and two vertices have an edge between them if their
corresponding integers have a unique pairwise distance.

The key idea is the following: If there exists an edge between vertices corre-
sponding to ui and u j in the graph H (U), then X[ui, u j] can be deduced from
the autocorrelation. This is because if there is an edge between ui and u j , then
a[|ui − u j |] = x[ui]x?[u j], which by definition is X[ui, u j]. The convex program
(3.6) can be relaxed by using only such autocorrelation constraints which fix certain
entries ofX (and discarding the rest), and by replacing the positive semidefinite con-
straint with the constraint that every 2 × 2 submatrix of X is positive semidefinite,
i.e.,

minimize trace(X) (3.8)

subject to X[ui, u j] = a[|ui − u j |] if ui ↔ u j in H (U)

X[i, j] = 0 if i, j < U

X[i, i]X[ j, j] ≥ ��X[i, j]��2 ∀ i , j & X[i, i] ≥ 0 ∀ i,

where ui ↔ u j means that there exists an edge between vertices corresponding to ui

and u j in H (U).

Note that log6(s) ≤ k holds with the desired probability. The events are first
conditioned with respect to a fixed k in this interval, a union bound over all values
of k in this interval completes the bound.

Lemma 8.3.3 shows that the minimum degree of H (U), denoted by dmin(H (U)),
satisfies dmin(H (U)) > k (1 − 1

t ), where t = log2(s), with the desired probability.
Hajnal-Szemeredi theorem on disjoint cliques [HS70] states that such graphs contain
k
t vertex disjoint union of complete graphs of size t.

Lemma 8.3.1, along with a union bound, shows that the entries of the optimizer of
(3.8) match with the entries of X0 = x0x?0 on each of these k

t complete graphs with
the desired probability. Consequently, the diagonal entries of the optimizer of (3.8)
match with the diagonal entries of X0 = x0x?0 with the desired probability.

Also, since the graph H (U) has a Hamiltonian cycle (Lemma 8.3.3), by rearranging
the indices, we see that the first off-diagonal entries of the optimizer of (3.8) also
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match with the first off-diagonal entries of X0 = x0x?0 . Since the optimizer’s
diagonal and first off-diagonal entries are sampled from a rank one matrix, there
is exactly one positive semidefinite completion, which is the rank one completion
x0x?0 . Since the optimizer also satisfies all the constraints of (3.6), X0 = x0x?0 is the
unique minimizer of (3.6) with the desired probability.

We refer the readers to Appendix 8.3 for details. �

3.4 Stability
In practice, the measured autocorrelation is corrupted with additive noise, i.e., the
measurements are of the form

a[m] =
N−1−m∑

n=0
x[n]x?[n + m] + z[m] for 0 ≤ m ≤ N − 1,

where z = (z0, z1, . . . , zN−1) is the additive noise. TSPR, in its pure form (support
recovery using Algorithm 3), is not robust to noise as the u01 identification step
and Graph Step are not robust. In this section, we present a modified version of
TSPR, which in essence, considers the pairwise distance set of the pairwise distance
set to identify ui0 j0 , for some 0 ≤ i0 < j0 ≤ 2c + 1, robustly and then uses a
sequence of generalized Intersection Steps to provably recover the true support of
most O(n

1
4−ε )-sparse signals.

The support of the noisy autocorrelation, denoted byW† = (w†0,w
†

1, . . . ,w
†

K†−1), can
be defined as the set of integers { n | |a[n]| ≥ τ} where τ is a threshold parameter.
Let T† = {(w†i ,w

†

j ) : 0 ≤ i < j ≤ K† − 1} denote the set containing the
(

K†
2

)
integer

pairs formed using the K† integers in W†. Let T†sub be a subset of T† which contains
all the integer pairs (w†i ,w

†

j ) (where j > i), satisfying the following two conditions:

(i) w†j − w†i ∈ W†

(ii) ∃
√

K†
4 integers {g1, g2, . . . , g√K†

4

}, such that gl, gl + w†j − w†i ∈ T† for 1 ≤

l ≤
√

K†
4 .

The first condition requires that the difference between the integers in the pair should
be in W† and the second condition requires that at least

√
K†
4 integer pairs in W†

should be separated by the same difference.

As earlier, let W denote the support of the autocorrelation (in the absence of noise).
LetWins denote the set of integers which belong toW† but do not belong toW : these
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Algorithm 4 Two-stage Sparse Phase Retrieval: Noisy Setup
Input: Noisy autocorrelation a of the signal of interest, threshold τ, η such that
‖z‖2 ≤ η, constant c
Output: Sparse signal x̂ satisfying the noisy autocorrelation measurements

(i) W† = { n | |a[n]| ≥ τ}

(ii) ui0 j0 = w†max − w†min, where 0 ≤ i0 < j0 ≤ 2c + 1: w†min is the largest integer
for which there exists an integer w†max > w†min such that (w†min,w

†
max) ∈ T†sub

(iii) Intersection Step using ui0 j0: get {ui0q0, ui0q1, . . . , ui0qc+1 }, where
{q0, q1, . . . , qc+1} ≥ (k−1)− (3c+1) (largest c+2 integers inW†∩ (W†+ui0 j0 ))

(iv) Intersection Step using each of the
(

c+2
2

)
terms {uqiqj

: 0 ≤ i <

j ≤ c + 1}: obtain {u0, u1, . . . , u√K†

4 −1
} (largest

√
K†
4 integers in⋃

0≤i< j≤c+1
(
(W† ∩ (W† + uqiqj )) + uqjqc+1

)
correspond to {uiqc+1 : 0 ≤ i ≤

√
K†
4 − 1})

(v) Intersection Step using each of the
(

c+2
2

)
terms {ui j : 0 ≤ i < j ≤ c +

1}: obtain {u√
K†

4

, u√
K†

4 +1
, . . . , uk−1} (all the integers greater than u√

K†

4 −1
in⋃

0≤i< j≤c+1
(
(W† ∩ (W† + ui j )) + u0i

)
)

(vi) Obtain X† by solving

minimize trace(X) (3.9)
subject to |a[m] − trace(AmX) | ≤ η for 0 ≤ m ≤ N − 1

X[n,m] = 0 if n,m < U & X < 0

(vii) Return x†, where x†x†? is the best rank one approximation of X†

are the integers which got inserted due to a noise value higher than the threshold.
Also, let Wdel denote the set of integers which belong to W but do not belong to
W†: these are the integers which got deleted due to the autocorrelation value being
below the threshold or due to noise reducing the autocorrelation value below the
threshold. We have:

W† = (W ∪Wins)\Wdel . (3.10)

Theorem 3.4.1. If the sparse signal x0 is drawn from the BN (n, θ) distribution,
where the parameter θ satisfies 0 < θ ≤ 1

4 − ε for some constant ε > 0, then TSPR
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(noisy setup) can recover it from its noisy autocorrelation measurements (‖z‖2 ≤ η)
with an estimation error

‖X† − x0x?0 ‖2 ≤ 4kη

with probability at least 1 − c0n−4ε , for some numerical constant c0, if the noise
vector z and threshold τ are such that for some constant c, we have

(i) Wins has i.i.d. Bern(p) distribution, where p = o
(

s2
n

)
(ii) For each 0 ≤ i ≤ k − 1, Wdel contains at most c terms of the form {vi j : 0 ≤

j ≤ k − 1}, and v0,k−1 < Wdel .

Proof. The proof of this theorem is constructive, i.e., we prove the correctness of
the various steps involved with the desired probability.

We refer the readers to Appendix 8.4 for details. The outline is as follows: Lemma
8.4.1 bounds the probability of the first step failing by O(n−4ε ). Then, a detailed
discussion of the Generalized Intersection Step is provided. Finally, Lemma 8.4.2,
combined with Lemma 8.2.3, shows that TSPR (noisy setup) can precisely recover
the support of the signal with the desired probability. We then show that the signal
values can be robustly recovered by the convex relaxation based program. �

3.5 Extension to 2D

The theory and algorithms developed in this chapter can be generalized to 2D using
the following trick: Let x be a two-dimensional signal with N1 rows and N2 columns,
and a be its two-dimensional autocorrelation with 2N1−1 rows and 2N2−1 columns.
Let x1D = vec(x) denote the one-dimensional vector constructed by stacking the
columns of x on top of each other. The one-dimensional autocorrelation of x1D,
denoted by a1D, can be inferred from a. This can be seen as follows:

a1D[m] =
N1N2−1−m∑

n=0
x1D[n]x?1D[n + m]

=

N2−1−b m
N1
c∑

l=0

N1−1−(m) mod N1∑
n=0

x1D[n + lN1]x?1D[n + lN1 + m]

+

N2−2−b m
N1
c∑

l=0

N1−1∑
n=N1−(m) mod N1

x1D[n + lN1]x?1D[n + lN1 + m]
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=

N2−1−b m
N1
c∑

l=0

N1−1−(m) mod N1∑
n=0

x[n, l]x?[n + (m) mod N1, l +
⌊ m

N1

⌋
]

+

N2−2−b m
N1
c∑

l=0

N1−1∑
n=N1−(m) mod N1

x[n, l]x?[n − N1 + (m) mod N1, l +
⌊ m

N1

⌋
+ 1]

= a[(m) mod N1,
⌊ m

N1

⌋
] + a[−N1 + (m) mod N1,

⌊ m
N1

⌋
+ 1].

Since we know the autocorrelation a1D of the sparse one-dimensional signal x1D =

vec(x), the results derived in this chapter apply to x1D. Consequently, x1D can be
uniquely reconstructed up to trivial ambiguities. However, note that the time-shift
ambiguity of x1D and the time-shift ambiguity of x are slightly different. In order to
overcome this issue, one needs to make use of the sparsity structure of a to reduce the
number of possible time-shifts of x1D. We refer the interested readers to [KEO16]
for a detailed discussion on this technique.

Remark: This trick also works when the one-dimensional signal is obtained by
stacking the rows next to each other.

Alternately, one could also generalize TSPR to 2D directly as the principles involved
in the Intersection Step and the Graph Step are dimension independent. However,
the theoretical analysis needs to be redone if this approach is used.

3.6 Numerical Simulations
In this section, we demonstrate the performance of TSPR using numerical simu-
lations. The procedure is as follows: for a given N and k, the k locations of the
nonzero components were chosen uniformly at random. The signal values in the
chosen support were drawn from an i.i.d. standard normal distribution.

Success probability
In the first set of simulations, we demonstrate the performance of TSPR for N =

12500, N = 25000 and N = 50000 for various sparsities. The results of the
simulations are shown in Fig. 3.2, the O(N

1
2−ε ) theoretical prediction can be clearly

seen. For instance, N = 12500, k = 80 and N = 50000, k = 160 have a success
probability of 0.5 and so on.

Failure exponent
In the second set of simulations, we numerically study the failure probability of
TSPR, denoted by δ. For θ = 0.42, 0.44, 0.46, we plot log2(δ) versus log2(N ) for
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Figure 3.2: Probability of successful signal recovery of TSPR for various sparsities
and N = 12500, 25000, 50000.
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Figure 3.3: Failure probability of TSPR for various N and θ = 0.42, 0.44, 0.46.

various choices of N . Theorem 3.3.1 upper bounds the slope by −0.1 × ( 12 − θ).
The results of the simulations are shown in Fig. 3.3. It can be seen that the results
are in accordance with the bounds provided by Theorem 3.3.1. It is also clear that
−0.1× ( 12 −θ) is not a tight bound, which is not surprising as the analysis in Theorem
3.3.1 involved many union bounds, which are typically not tight.

Comparison with fast algorithms
In this set of simulations, we compare the recovery ability of TSPR with other
popular sparse phase retrieval algorithms. We choose N = 6400 and plot the success
probabilities of the algorithms TSPR, GESPAR [SBE14] and Sparse-Fienup (100
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Figure 3.4: Probability of successful signal recovery of various efficient sparse
phase retrieval algorithms for various sparsities and N = 6400.

random initializations) [Fie82] for sparsities 20 ≤ k ≤ 90. The results of the
simulations are shown in Fig. 3.4.

Fig. 3.4 shows that TSPR outperforms Sparse-Fienup algorithm and is almost on
par with GESPAR. We expect TSPR to outperform GESPAR for higher values of
N due to the fact that it can recover O(N

1
2−ε )-sparse signals (GESPAR empirically

recovers O(N
1
3 )-sparse signals). We suspect that the recovery ability of the two

algorithms for N = 6400 is similar due to the effect of the constants multiplying
these terms. We were unable to compare the performances for higher values of N

due to scalability limitations of GESPAR. For instance, TSPR took an average run
time of 80ms to recover a signal with N = 25000 and k = 100 whereas GESPAR
needed an average run time of 33s to recover a signal with N = 512 and k = 35.

Comparison with SDP algorithms
In this set of simulations, we compare the recovery ability of TSPR with the SDP
heuristic (based on log-det minimization) proposed in [Can+15]. We choose N = 64
and plot the success probabilities for sparsities 0 ≤ k ≤ 20. The results are shown
in Fig. 3.5, we observe that the performances are similar.

Image reconstruction
Finally, we test the performance of TSPR on real images. To this end, we use a
54 × 64 image of the M73 asterism in the constellation of Aquarius [NCK]. The
original image (Fig. 3.6a) is converted into a sparse binary image by thresholding.
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Figure 3.5: Probability of successful signal recovery of various SDP based sparse
phase retrieval algorithms for various sparsities and N = 64.

(a) (b) (c) (d)

Figure 3.6: Reconstruction of sparse images using TSPR. (a) A 54 × 64 image
of the M73 asterism in the constellation of Aquarius (courtesy of [NCK]). (b) A
44-sparse binary image obtained using hard-thresholding. (c) Output of TSPR. (d)
Reconstruction error, after accounting for trivial ambiguities.

In particular, by using a threshold value equal to 25% of the maximum value, a
binary image with sparsity 44 is obtained (Fig. 3.6b). The reconstructed image and
the error are shown in Fig. 3.6c and 3.6d respectively. The output of TSPR has
sparsity 47: the original 44 support locations are accurately reconstructed, and only
3 undesired support locations were not crossed out.

3.7 Conclusions and Future Work
We have identified the following problems as potential directions for future research:

• We showed that almost all signals with aperiodic support can be recovered
by solving (3.2). Note that most signals with sparsity up to N − 1 have
aperiodic support. TSPR can efficiently solve (3.2) with high probability if
the signals are O(N

1
2−ε )-sparse. It is unclear whether signals with sparsity
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greater than O(N
1
2 ) can be reconstructed efficiently by any algorithm. In

several related sparse quadratic constrained problems like sparse PCA [B+13;
BR13] and sparse recovery from random phaseless measurements [LV13;
Oym+15], there is a fundamental gap between the set of signals that can be
identified and the set of signals that can be efficiently identified (the bottleneck
happens at O(N

1
2 ) sparsity [JOH13a]). Hence, a precise characterization of

the set of signals that can be efficiently reconstructed from their autocorrelation
by any algorithm would provide valuable insights into our understanding of
general sparse quadratic constrained problems.

• We showed that O(N
1
4−ε )-sparse signals can be recovered robustly by TSPR

in the presence of additive noise. A precise characterization of the set of
signals that can be efficiently and robustly reconstructed by any algorithm is
another interesting open question.
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C h a p t e r 4

PHASE RETRIEVAL WITH MASKS

In this chapter, we explore the idea of obtaining additional magnitude-only measure-
ments, in order to be able to uniquely and efficiently identify the signal of interest.
In particular, we consider measurements of the form

Z[m] = ��〈fm,Dx〉��2 , (4.1)

where D is an N × N diagonal matrix. Note that

Dx =



d[0] 0 . . . 0
0 d[1] . . . 0

0 0 . . . d[N − 1]





x[0]
x[1]

x[N − 1]



=



d[0]x[0]
d[1]x[1]

d[N − 1]x[N − 1]



.

Effectively, the underlying signal is Hadamard-multiplied with a modulating vector
(d[0], d[1], . . . , d[N − 1])T , and the Fourier magnitude-square of the modulated
signal is assumed to be available as additional information.

There are many ways in which this can be done in practice, depending on the
application. Several such methods are summarized in [CLS15a]. In this chapter,
we focus on “masking”, a technique where the signal is modified by the use of a
mask or a phase plate [Joh+08]. A schematic representation, courtesy of [CLS15a],
is provided in Fig. 4.1.

Suppose Fourier magnitude-square measurements are collected using R masks. For
0 ≤ r ≤ R − 1, let Dr be an N × N diagonal matrix, corresponding to the rth
mask, with diagonal entries (dr[0], dr[1], . . . , dr[N − 1]). Let Z denote the N × R

magnitude-square measurements, such that the rth column of Z corresponds to the
magnitude-square of the N point DFT of the masked signal Drx. Phase retrieval
using masks then reduces to the following recovery problem:

find x (4.2)

subject to Z[m, r] = ��〈fm,Drx〉��2 for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1,
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Figure 4.1: A typical setup for phase retrieval using masks (courtesy of [CLS15a]).

or equivalently,

find x (4.3)

subject to b[m, r] =
N−1∑
n=0

dr[n]x[n]d?r [(n + m) mod N]x?[(n + m) mod N]

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1.

In the oversampled setting, this recovery problem can be rewritten as

find x (4.4)

subject to a[m, r] =
N−1−m∑

n=0
dr[n]x[n]d?r [n + m]x?[n + m]

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1.

A natural question to ask is which masks guarantee uniqueness, and allow efficient
recovery.

4.1 Literature Survey
Phase retrieval algorithms based on SDP and stochastic gradient descent (Wirtinger
Flow algorithm [CLS15b]) have been adapted to solve phase retrieval for some
choice of masks. Combinatorial algorithms have also been developed for specific
mask designswhich allow unique and efficient reconstruction in the noiseless setting.
In what follows, we first review the existing literature, and then present our results.

A combinatorial algorithm is proposed in [Can+15] for the three masks {I, I+Ds, I−
iDs}, where s is any integer coprimewith N andD is a diagonal matrix with diagonal
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entries
d[n] = ei2π n

N for 0 ≤ n ≤ N − 1.

It is shown that signals with non-vanishing N point DFT can be uniquely recovered
using these masks up to a global phase. Indeed, the measurements obtained in this
case provide the knowledge of ��y[n]��2, ��y[n] + y[n − s]��2 and ��y[n] − iy[n − s]��2 for
0 ≤ n ≤ N − 1 (n − s is understood modulo N). Writing y[n] = ��y[n]�� eiφ[n] for
0 ≤ n ≤ N − 1, we have

��y[n] + y[n − s]��2 = ��y[n]��2 +��y[n − s]��2 + 2��y[n]����y[n − s]��Re(ei(φ[n−s]−φ[n])),

��y[n] − iy[n − s]��2 = ��y[n]��2 +��y[n − s]��2 + 2��y[n]����y[n − s]�� Im(ei(φ[n−s]−φ[n])).

Consequently, if y[n] , 0 for 0 ≤ n ≤ N − 1, then the measurements provide the
relative phases φ[n − s] − φ[n] for 0 ≤ n ≤ N − 1. Since s is coprime with N , by
setting φ[0] = 0 without loss of generality, φ[n] can be inferred for 1 ≤ n ≤ N − 1.
Since most signals have a non-vanishing N point DFT, these three masks may be
used to recover most signals efficiently.

In order to be able to recover all signals (as opposed to most signals), a polarization
based technique is proposed in [Ale+14; BCM14]. It is shown that O(log N ) masks
(see [Ale+14] for design details) are sufficient for this technique.

In [PLR14], the authors consider a combinatorial algorithm, based on coding the-
oretic tools, for the 3 masks {I, I + e0e?0, I + ie0e?0 }, where e0 is the N × 1 column
vector (1, 0, . . . , 0)T . For signals with x[0] , 0, it is shown that the value of |x[0]|
can be uniquely found with high probability. The phase of x[0] is set to 0 without
loss of generality, and the phase of x[n] relative to x[0] for 0 ≤ n ≤ N −1 is inferred
by solving a set of algebraic equations.

These methods are typically unstable in the presence of noise, due to the issue
of error propagation. SDP based phase retrieval has been adapted to account for
random masks in [CLS15a] by solving

minimize trace(X) (4.5)

subject to Z[m, r] = trace( D?
r fmf?mDrX ) for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1

X < 0.

In order to provide recovery guarantees, the masks in [CLS15a] are chosen from
a random model. In particular, the diagonal matrices Dr are assumed to be i.i.d.
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copies of a matrix D, whose entries consist of i.i.d. copies of a random variable d

satisfying the following properties:

E[d] = 0 E[d2] = 0 E|d |4 = 2E|d |2.

An example of an admissible random variable is given by d = b1b2, where b1 and
b2 are independent and distributed as

b1 =




1 with prob. 1
4

−1 with prob. 1
4

i with prob. 1
4

−i with prob. 1
4

b2 =



1 with prob. 4
5

√
6 with prob. 1

5

. (4.6)

Under this model, it is shown that R ≥ c log4 N masks, for some numerical constant
c, are sufficient for the convex program (4.5) to uniquely recover the underlying
signal up to a global phase with high probability in the noiseless setting. This result
has been further refined to R ≥ c log2 N in [GKK15].

An alternative recovery approach for masked signals is based on the Wirtinger flow
method [CLS15b], which applies gradient descent to the least squares problem:

min
x

R−1∑
r=0

N−1∑
m=0

(
Z[m, r] −��〈fm,Drx〉��2

)2
. (4.7)

Minimizing such non-convex objectives is known to beNP-hard in general. Gradient
descent-type methods have shown promise in solving such problems, however, their
performance is very dependent on the initialization and update rules due to the fact
that different initialization and update strategies lead to convergence to different
(possibly local) minima.

Wirtinger flow (WF) is a gradient descent-type algorithm which starts with a careful
initialization obtained by means of a spectral method. We refer the readers to
[CLS15b] for a discussion on various spectral method based initialization strategies.
The initial estimate is then iteratively refined using particular update rules. It is
argued that the average WF update is the same as the average stochastic gradient
scheme update. Consequently, WF can be viewed as a stochastic gradient descent
algorithm, in which only an unbiased estimate of the true gradient is observed.
The authors recommend the use of smaller step-sizes in the early iterations and
larger step-sizes in later iterations. When the masks are chosen from a random
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O(log4 N ) random masks, whose diagonal entries are
i.i.d. copies of a random variable satisfying some prop-
erties, are sufficient for the SDP/ WF algorithm with
high probability [CLS15a; CLS15b]

Robust methods 2 specific masks with oversampling or 3 easy-to-
implement masks with oversampling are sufficient for
the SDP algorithm almost surely [This work]
O(log N ) masks are sufficient for a polarization based
algorithm [BCM14]

Combinatorial methods For signals with non-vanishing DFT, 3 specific masks
are sufficient [Can+15]
For signals satisfying x[0] , 0, 3 specific masks are
sufficient [PLR14]

Table 4.1: Various results for phase retrieval using masks.

model with a distribution satisfying properties similar to (4.6), it is shown that
R ≥ c log4 N masks, for some numerical constant c, are sufficient for the WF
algorithm to uniquely recover the underlying signal up to a global phase with high
probability in the noiseless setting. The aforementioned results are summarized in
Table 4.1.

4.2 Contributions
Note that the stable algorithms require at leastO(log2(N )) i.i.d. masks. Such masks
are difficult to implement in practice, and O(log2(N )) is a prohibitive number in
general. In this chapter, inspired by practical applications, we focus our attention
on simple masks which physically block the light from reaching parts of the sample
(see Fig. 4.2 for a pictorial example). In particular, we propose two simple mask
designs, one uses only 2 specific masks and the other uses only 3 easy-to-implement
masks. We show that the SDP algorithm can provably reconstruct most signals
when oversampled measurements are obtained using such masks. If oversampled
measurements are unavailable, then the number of masks increases to 5 and 7
respectively. Numerical simulations show that the reconstruction is stable in the
presence of measurement noise. These results are a significant improvement over
the existing results, due to the simplicity and the number of masks considered, and
the fact that there exists a stable reconstruction algorithm.
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mask%sample%source% detector%

Figure 4.2: A pictorial example of the implementation of a simple mask in an optical
setting.

4.3 Design #1
Let D1 and D2 be diagonal matrices with diagonal entries

d1[n] = 1 for 0 ≤ n ≤ N − 1 (4.8)

d2[n] =



0 for n = 0

1 for 1 ≤ n ≤ N − 1.

Essentially, D1 corresponds to measurements without using any mask, and D2

corresponds to measurements where the mask blocks only the first location in the
sample (see Fig. 4.3a for an example). We consider the SDP formulation

minimize trace(X) (4.9)

subject to trace(D?
r AmDrX) = a[m, r] for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1

X < 0,

where the matrices Am are defined in (3.5), and prove the following result:

Theorem 4.3.1. Consider any signal x0 such that x0[0] , 0. Suppose oversampled
measurements are taken using the masks defined byD1 andD2. The convex program
(4.9) has a unique feasible point, namely, x0x?0 , and hence x0 can be uniquely
recovered up to a global phase.

Proof. In the oversampled setting, there is a simple combinatorial recovery algo-
rithm for this particular choice of masks. The measurements obtained using the
masks defined by D1 and D2 are

a1[m] =
N−1−m∑

n=0
x[n]x?[n + m] (4.10)

a2[m] =
N−1−m∑

n=1
x[n]x?[n + m],
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for 0 ≤ m ≤ N − 1. Since a1[0] − a2[0] = x[0]x?[0], we can infer x[0] up to a
phase. Using a1[m]−a2[m] = x[0]x?[m] for 1 ≤ m ≤ N −1, we can infer the entire
signal x up to a global phase. However, this method of recovery is unstable in the
presence of measurement noise as it does not optimally make use of the available
measurements.

From a matrix sensing perspective, the set of measurements

a1[m] =
N−1−m∑

n=0
X[n, n + m] & a2[m] =

N−1−m∑
n=1

X[n, n + m], (4.11)

denoted by A(X) = c, fix (i) the entries of the first row and column of X (can
be seen by subtracting a2 from a1) (ii) the sum along the mth off-diagonal of X
excluding the first row and column for each m (can be seen as measurements due to
a2). We will show the following: If x0x?0 satisfies (4.11), then it is the only positive
semidefinite matrix which satisfies (4.11).

Let T be the set of symmetric matrices of the form

T = {X = x0w? + wx?0 : w ∈ CN }

and T⊥ be its orthogonal complement. T can be interpreted as the tangent space at
x0x?0 to the manifold of symmetric matrices of rank one. Influenced by [CSV13],
we use XT and XT⊥ to denote the projection of a matrix X onto the subspaces T and
T⊥ respectively.

Standard duality arguments in semidefinite programming show that the following
set of conditions are sufficient for x0x?0 to be the unique optimizer to (4.9):

(i) Condition 1: X ∈ T & A(X) = 0⇒ X = 0

(ii) Condition 2: There exists a dual certificate W in the range space of A?

obeying:

• Wx0 = 0

• rank(W) = N − 1

• W < 0.

First, we will show that the measurement operator A obtained with the masks
defined by D1 and D2 satisfies Condition 1.
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The set of constraints A(X) = 0 fix the entries of the first row and column of X to
0, i.e., X[0,m] = X[m, 0] = 0 for 0 ≤ m ≤ N − 1. Since X ∈ T , we can write
X = x0w? + wx?0 for some w = (w[0],w[1], . . . ,w[N − 1])T , from which we infer
w[m] = icx0[m] for some constant c. Hence,X = x0w?+wx?0 = −icx0x?0+icx0x?0 =
0.

Next, we will show that Condition 2 is satisfied. The range space of A? obtained
with the masks defined by D1 and D2 is the set of all symmetric matrices whose
principal submatrix obtained by removing the first row and column has Toeplitz
structure (this can be easily seen by writing the dual of (4.9)). Suppose z =
−(x0[1], x0[2], . . . , x0[N − 1])T/x0[0] (well defined if x0[0] , 0) and IN−1 is the
identity matrix of size N − 1. Consider the following dual certificate:

W =



z?z z?

z IN−1



. (4.12)

W is in the range space of A? as IN−1 has Toeplitz structure. Also, Wx0 = 0 as
zx0[0]+(x0[1], x0[2], . . . , x[N−1])T = 0. Bywriting out the characteristic equation,
it is straightforward to see that the eigenvalues of W are {1 + ‖z‖2, 1, 1, . . . , 1, 0}.
Hence, rank(W) = N − 1 andW < 0. This completes the proof. �

This result can also be extended to the setting with N point DFT measurements.
Note that, if a signal is such that it has N

2 consecutive zeros in the beginning or the
end, then its circular autocorrelation and autocorrelation are the same. Consider the
following SDP formulation:

minimize trace(X) (4.13)

subject to trace(D?
r BmDrX) = b[m, r] for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1

X < 0,

where the matrices Bm are given by

Bmgh =




1 if h − g = m = 0

1 if (h − g) mod N = m , 0

0 otherwise.
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Suppose the measurements are obtained using the masks defined by

d3[n] =



1 0 ≤ n ≤ N
2 − 1

0 N
2 ≤ n ≤ N − 1

(4.14)

d4[n] =




0 n = 0

1 1 ≤ n ≤ N
2 − 1

0 N
2 ≤ n ≤ N − 1

d5[n] =



0 0 ≤ n ≤ N
2

1 N
2 + 1 ≤ n ≤ N − 1

d6[n] =



0 0 ≤ n ≤ N
2 − 1

1 N
2 ≤ n ≤ N − 1

d7[n] =




0 0 ≤ n ≤ N
4 − 1

1 N
4 ≤ n ≤ 3N

4 − 1

0 3N
4 ≤ n ≤ N − 1.

The matrices D3 and D4 are such that the nth diagonal element is 0 when N
2 ≤ n ≤

N − 1. Consequently, the circular autocorrelation and the autocorrelation of the
modulated signals D3x and D4x are the same. The values of x0[n] in the region
0 ≤ n ≤ N

2 − 1 can be inferred up to a global phase using calculations identical
to the calculations following (4.10). Similarly, using the matrices D5 and D6, the
values of x0[n] in the region N

2 ≤ n ≤ N − 1 can be inferred up to a global phase.
The matrix D6 resolves the relative phase between these two regions.

Theorem 4.3.2. Consider any signal x0 such that x0[0], x0[N
2 − 1], x0[N

2 ] , 0.
Suppose measurements are taken using the masks defined byD3,D4,D5, D6 andD7.
The convex program (4.13) has a unique feasible point, namely, x0x?0 , and hence x0
can be uniquely recovered up to a global phase.

Proof. Consider the set of measurements obtained with the masks defined by D3

and D4. Since both these masks are zero throughout the region N
2 ≤ n ≤ N − 1,

Theorem 4.3.1 applies with N replaced by N
2 . Hence, if x[0] , 0, then X[n,m] in

the region 0 ≤ n,m ≤ N
2 − 1 can be uniquely recovered.

Similarly, using the measurements obtained with the masks defined by D5 and D6,
X[n,m] in the region N

2 ≤ n,m ≤ N − 1 can be uniquely recovered if x[N
2 ] , 0.
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Figure 4.3: An example of measurements using the proposed mask designs. (a)
The autocorrelation of the signals x and x1 are obtained as measurements. (b) The
autocorrelation of the signals x, x1 and x2 are obtained as measurements.

The measurements obtained with the mask defined by D7 recover the value of
X[N

2 − 1, N
2 ]. If X[N

2 − 1, N
2 ] , 0, then, given the aforementioned determined

entries, it is straightforward to see that x0x?0 is the only feasible positive semidefinite
completion. Hence, x0 can be uniquely identified up to a global phase. �

4.4 Design #2
The masks described in the previous section, albeit simple, have two practical
drawbacks:

(a) The reconstruction is sensitive to the value of x0[0]. In fact, if x0[0] = 0,
then the problem reduces to the standard phase retrieval problem with no additional
measurements.

(b) In practice, it is not easy to accurately implement masks which have zero at only
one location.

With this in mind, for the oversampled setup, we propose the following easy-to-
implement design: Let D8, D9 and D10 be diagonal matrices with diagonal entries
given by

d8[n] =



1 0 ≤ n ≤ N
2 − 1

0 N
2 ≤ n ≤ N − 1

(4.15)

d9[n] =



0 0 ≤ n ≤ N
2 − 1

1 N
2 ≤ n ≤ N − 1

d10[n] = 1 0 ≤ n ≤ N − 1.

Observe that D10 corresponds to the measurements without using any mask, D8

corresponds to the measurements where the right half of the signal is blocked by
the mask so that the autocorrelation of the left half of the signal is measured,
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and D9 corresponds to the measurements where the left half is blocked and the
autocorrelation of the right half is measured (see Fig. 4.3b for an example). Let
x1 = (x[0], x[1], . . . , x[N

2 − 1])
T and x2 = (x[N

2 ], x[N
2 + 1], . . . , x[N − 1])T .

Theorem 4.4.1. Consider the set of signals x0 = (x1; x2) such that z
N
2 −1X1(z)

and z
N
2 −1X2(z) do not have any common factors, and x0[0], x0[N

2 ] , 0. Suppose
oversampled measurements are taken with the masks defined by D8, D9, and D10.
The convex program (4.9) has a unique feasible point, namely, x0x?0 , almost surely.

Proof. The intuition behind this mask construction is the following: The mea-
surements corresponding to D8 and D9 provide X1(z)X?

1 (z−?) and X2(z)X?
2 (z−?)

respectively. The measurement corresponding to D10 provides(
X1(z) + z−

N
2 X2(z)

) (
X?
1 (z−?) + z

N
2 X?

2 (z−?)
)
.

By subtracting out the known quantities X1(z)X?
1 (z−?) and X2(z)X?

2 (z−?), we can
infer z−

N
2 X2(z)X?

1 (z−?)+z
N
2 X1(z)X?

2 (z−?). The first quantity only has termswhich
involve negative powers of z, and the second quantity only has terms which involve
positive powers of z. Due to this, we can infer X2(z)X?

1 (z−?) and X1(z)X?
2 (z−?).

Essentially, the measurements provide the knowledge of the autocorrelations of x1,
x2 and their cross-correlation. If the polynomials X1(z) and X2(z) do not have any
common factors, then they can be uniquely reconstructed by looking at the common
factors of X1(z)X?

1 (z−?) and X1(z)X?
2 (z−?), and X2(z)X?

2 (z−?) and X2(z)X?
1 (z−?)

respectively.

The proof of this theorem is identical to the proof of Theorem 4.3.1.

The range space ofA?, with these measurements, is the set of all symmetric N × N

matrices which are such that the submatrix corresponding to the 0 ≤ n ≤ N
2 − 1

rows and columns, N
2 ≤ n ≤ N − 1 rows and columns, 0 ≤ n ≤ N

2 − 1 rows and
N
2 ≤ n ≤ N − 1 columns, and N

2 ≤ n ≤ N − 1 rows and 0 ≤ n ≤ N
2 − 1 columns are

all Toeplitz.

We first show that the measurement operatorA satisfies Condition 1. Since X ∈ T ,
we can writeX = x0w?+wx?0 for somew = (w[0],w[1], . . . ,w[N−1])T . Therefore,
A(X) = 0 can be equivalently written as T(x0)(Re(wT ), Im(wT ))T = 0, where T
is a 2N × 2N matrix which is a function of x0. The determinant of any submatrix
of T is a rational function of Re(x0) and Im(x0). Therefore, it is either identically
0, or almost always nonzero. By substituting x0 = (1, 0, . . . , 0)T , one can see that



46

there exists an N − 1 × N − 1 submatrix with nonzero determinant almost always.
Since w = icx0 is in the null space of T, we infer that the rank of T is almost always
N − 1. Consequently, we almost surely have w = icx0 as the only solution, which
corresponds to X = −icx0x?0 + icx0x?0 = 0.

We now show that Condition 2 is satisfied. We construct a dual certificate based
on Sylvester matrices [Bit+78], which often come up in problems involving finding
common roots of two polynomials [DBD12].

Let S be an N × N Sylvester matrix corresponding to the two polynomials z
N
2 X1(z)

and z
N
2 X2(z), i.e.,

S =



x2[0] 0 . . 0 −x1[0] 0 . . 0
x2[1] x2[0] . . 0 −x1[1] −x1[0] . . 0
. x2[1] . . . . −x1[1] . . .

. . . . . . . . . .

x2[ N2 − 1] . . . x2[0] −x1[ N2 − 1] . . . −x1[0]
0 x2[ N2 − 1] . . x2[1] 0 −x1[ N2 − 1] . . −x1[1]
0 0 . . . 0 0 . . .

. 0 . . . . 0 . . .

. . . . x2[ N2 − 1] . . . . −x1[ N2 − 1]
0 0 . . 0 0 0 . . 0



. (4.16)

The rank of the Sylvester matrix is known to be N − c, where c is the number
of common roots between the two polynomials [Bit+78]. In our setup, we have
rank(S) = N −1, as z = 0 is the only common root between z

N
2 X1(z) and z

N
2 X2(z).

By construction, we have Sx0 = 0. We consider the following dual certificate:

W = S?S. (4.17)

Clearly, W is positive semidefinite, has rank N − 1 and Wx0 = 0. Also, S?S is
a “block” Toeplitz matrix which is in the range space of A?. This completes the
proof. �

Remark 1: The number of phaseless measurements considered by Design #1
is 4N (2N measurements per mask). In fact, the effective number of phaseless
measurements considered by Design #2 is 4N too, and not 6N . This is due to the
fact that the second and the third masks measure the autocorrelation of a signal of
length N

2 , and therefore use only N phaseless measurements (either the entire N

point DFT or N measurements from the 2N point DFT).

Remark 2: Similar to Theorem 4.3.2, Theorem 4.4.1 can be extended to the N point
DFT setup by making use of 2 × 3 + 1 = 7 masks.
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x1 x2

x3

Figure 4.4: A 2D example of measurements using Design #2. The 2D autocorrela-
tion of signals x1, x2 and x3 are obtained as measurements.

4.5 Extension to 2D

The results in this chapter can be immediately extended to 2D by making use of the
trick described in Section 3.5. Let x be a two-dimensional signal with N1 rows and
N2 columns, and a be its two-dimensional autocorrelation with 2N1 − 1 rows and
2N2 − 1 columns. As earlier, let x1D = vec(x) denote the one-dimensional vector
constructed by stacking the columns of x on top of each other. In Section 3.5, we
showed that the one-dimensional autocorrelation of x1D can be inferred from a.

Therefore, the results of Design #1 can be generalized to 2D if the first mask is
chosen such that its diagonal entries are equal to 1 everywhere, and the second mask
is chosen such that d[0, 0] is zero and the remaining diagonal entries are equal to
1. Similarly, the results of Design #2 can be generalized to 2D if the first mask is
chosen such that its diagonal entries are equal to 1 everywhere, the second mask is
chosen such that d[n,m] = 0 when m ≥ N2

2 and 1 otherwise, and the third mask
is chosen such that d[n,m] = 1 when m ≥ N2

2 and 0 otherwise (see Fig. 4.4 for a
pictorial example).

Remark: Due to the assumption x0[0] , 0 in Theorem 4.3.1 and x0[0], x0[N
2 ] , 0

in Theorem 4.4.1, there are no ambiguities due to time-shift.

4.6 Numerical Simulations
In this section, we demonstrate the performance of the proposed methods in the
noisy setting. Signals of length N = 32 are chosen from an i.i.d. complex normal
distribution, and the normalized mean squared-error is plotted as a function of SNR.

The performance of the SDPmethod whenmeasurements are obtained using Design
#1 and #2 is plotted in Fig. 4.5a and 4.5b respectively. The plots show that the
reconstruction is stable. For Design #2, we also evaluate the performance of the
Sylvester matrix based common factor finding approach proposed in [Ton+95],
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Figure 4.5: NMSE vs SNR of the SDP method for (a) Design #1 (b) Design #2.

where the authors aim to do blind channel estimation (the mathematical problem
encountered is the same). The simulations clearly demonstrate the superior ability
of the SDP method.

4.7 Conclusions and Future Work
In this chapter, we showed that oversampled measurements from two specific masks
or three easy-to-implement masks are enough for the SDP method to provably
reconstruct most signals. For both these designs, we showed that the total number
of phaseless measurements considered is 4N . Further, simulations showed that the
reconstruction is stable in the noisy setting.

A natural direction for future study is stability analysis. In [JEH15d], we provided
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loose bounds on the reconstruction error in the noisy setting. Given the practicality
of the proposed designs, tight bounds on the reconstruction error would be very
insightful in various applications.

Providing theoretical guarantees for 2D signals by viewing them as 2D signals
instead of vectorizing them into 1D signals is another interesting problem. The
approach used in Section 4.5 is suboptimal due to the fact that information from a
lot of 2D measurements are not considered.
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C h a p t e r 5

STFT PHASE RETRIEVAL

In this chapter, we consider STFT phase retrieval, which is the problem of recovering
a signal from its STFT magnitude. The STFT of a signal is defined as follows:

Let w = (w[0],w[1], . . . ,w[W − 1])T be a window of length W such that it has
nonzero values only within the interval [0,W − 1]. The STFT of x with respect to
w, denoted by Yw, is defined as

Yw[m, r] =
N−1∑
n=0

x[n]w[rL − n]e−i2π mn
N for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R− 1,

(5.1)
where the parameter L denotes the separation in time between adjacent short-time
sections and the parameter R = dN+W−1

L e denotes the number of short-time sections
considered.

The STFT can be interpreted as follows: Suppose wr denotes the signal obtained
by shifting the flipped window w by rL time units (i.e., wr[n] = w[rL − n]) and
◦ is the Hadamard (element-wise) product operator. The rth column of Yw, for
0 ≤ r ≤ R− 1, corresponds to the N point DFT of x ◦wr . In essence, the window is
flipped and slid across the signal (see Figure 5.1 for a pictorial representation), and
Yw corresponds to the Fourier transform of the windowed signal recorded at regular
intervals. This interpretation is known as the sliding window interpretation.

Let Zw be the N × R measurements corresponding to the magnitude-square of the
STFT of xwith respect tow so that Zw[m, r] = |Yw[m, r]|2. LetWr , for 0 ≤ r ≤ R−1,
be the N ×N diagonal matrix with diagonal elements (wr[0],wr[1], . . . ,wr[N −1]).
STFT phase retrieval can be mathematically stated as:

find x (5.2)

subject to Zw[m, r] = ��〈fm,Wrx〉��2

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1, where fm is the conjugate of the mth column
of the N point DFT matrix and 〈., .〉 is the inner product operator. In fact, STFT
phase retrieval can be equivalently stated by only considering the measurements
corresponding to 0 ≤ r ≤ R − 1 and 1 ≤ m ≤ M , for any parameter M satisfying
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w[4] w[3] w[2] w[1] w[0]

w[4] w[3] w[2] w[1] w[0]

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

w[4] w[3] w[2] w[1] w[0]

[3][4]

r = 0

r = 1

r = 2

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

x ◦ w0

x ◦ w1

x ◦ w2

Figure 5.1: Sliding window interpretation of the STFT for N = 7, W = 5 and L = 4.
The shifted window overlaps with the signal for 3 shifts, and hence R = 3 short-time
sections are considered.

2W ≤ M ≤ N (see Section 9.1 for details). This equivalence significantly reduces
the number of measurements obtained when W � N 1.

The motivation for STFT phase retrieval is two-fold: First, a lot of redundancy
can be introduced in the magnitude-only measurements by maintaining a substantial
overlap between adjacent short-time sections. Aswewill see, the redundancy offered
by the STFT enables unique, efficient and robust recovery in many cases. Second,
it is possible to obtain such measurements in many phase retrieval applications by
introducing certain modifications in the measurement systems. In the following, we
first describe the origin of STFT phase retrieval in two such applications, and then
present our results.

5.1 Ptychography/ Fourier Ptychography
Ptychography is a technology invented by Walter Hoppe [Fra+12] as a means to
obtain additional information about the underlying signal, in order to overcome the
uniqueness issues of phase retrieval in diffraction imaging. Ptychography, along
with developments in detector and computing technologies, have resulted in X-
ray, optical and electron microscopes with increased spatial resolution without the
need for advanced lenses. A typical ptychography setup, courtesy of [Nas+14], is
described in Fig. 5.2.

Let ψ(x, y) denote the object, centered at the origin. Also, let the direction of light
be parallel to the z-axis, and the plane of the object and the two-dimensional detector

1We further reduce the number of measurements per short-time section through super-resolution.
In particular, we consider the setup with 2L ≤ W ≤ N

2 and 4L ≤ M ≤ N .
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Figure 5.2: A typical ptychography setup (courtesy of [Nas+14]).

be perpendicular to the z-axis such that z = 0 and z = z′ respectively. In a standard
diffraction imaging setup, the entire object is illuminated and the diffraction patterns
are recorded. In ptychography, only a small part of the sample is illuminated (as
seen in Fig. 5.2) in each recording. This can be done by using focusing lenses, or
by physically blocking the light source using masks. Multiple diffraction patterns
are collected by moving the object in step-sizes much smaller than the window size,
so that there is a substantial overlap between adjacent measurements.

LetWr (x, y) be the indicator function, such that it has a value 1 if (x, y) is illuminated
during the rth measurement, and 0 otherwise. By using Huygens principle (same
arguments as in Section 1.1), ifψtrans,r (x, y) denotes the secondary source at (x, y, 0)
produced by ψ(x, y), then we have ψtrans,r (x, y) =Wr (x, y)ψ(x, y).

Also, let Ir (x′, y′) denote the intensities recorded during the rth measurement at
(x′, y′, z′) for various (x′, y′). Through the Fraunhofer approximation (see Section
1.1), we have

Ir (x′, y′) ∝
�����

"
ψtrans,r (x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy

�����

2

∝
�����

"
Wr (x, y)ψ(x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy

�����

2
. (5.3)

If the measurements are recorded at regular intervals, i.e., the step size between
adjacent measurements remains constant, then these measurements are precisely the
two-dimensional STFT magnitude-squares of ψ(x, y).

Observe that the ptychography setup involves moving parts, which is suboptimal, as
it requires precision control over actuation, optical alignment and motion tracking.
More recently, a related technology called Fourier ptychography was proposed in
[ZHY13; Ou+13] as a solution to this problem. The setup is detailed in Fig. 5.3.



53

Figure 5.3: Fourier ptychography setup (courtesy of [ZHY13]).

In Fourier ptychography, instead of recording measurements from a single source,
measurements are recorded from a two-dimensional array of sources (say, located
at z = − f ).

Suppose the source at (xr, yr,− f ) is the only source which is on. If (xr, yr ) , (0, 0),
then different points (x, y) in the object are at a different distance from this source.
Due to this, while the amplitude of the illumination is uniform, there is a phase delay
proportional to the distance from this source. In particular, the illumination of the
sample at (x, y) is proportional to ei 2πλ

xr x+yr y
f (see [HY14] for details). Consequently,

the secondary source ψtrans,r (x, y) is equal to ei 2πλ
xr x+yr y

f ψ(x, y).

A lens, with focal length f , is used to Fourier transform the wave due to this
secondary source (see Section 1.2, Fourier plane in Fig. 5.3). In the Fourier
plane, the wave is given by ψ̂( x′−xr

λ f ,
y′−yr
λ f ), where ψ̂ is the two-dimensional Fourier

transform of the object.

For different values of (xr, yr ), the wave in the Fourier plane corresponds to dif-
ferent shifts of ψ̂. Only a small part of ψ̂( x′−xr

λ f ,
y′−yr
λ f ) is allowed to pass through

and the diffraction pattern is recorded using CCD cameras (a fixed mask physically
blocks most of the wave). IfW (x′, y′) denotes the indicator function, such that
it has a value 1 if the wave at (x′, y′) is allowed to pass through, and 0 other-
wise, then the measurements are the magnitude-squares of the Fourier transform
ofW (x′, y′)ψ̂( x′−xr

λ f ,
y′−yr
λ f ). Observe that the role of the object space and Fourier

space are permuted.

If the sources are placed uniformly in the cartesian grid, then these measurements
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are precisely the two-dimensional STFT magnitude-squares of ψ(x, y).

5.2 Contributions
In this chapter, our contribution is two-fold:

(i) Uniqueness guarantees: Researchers have previously developed conditions under
which the STFTmagnitude uniquely identifies signals up to a global phase. However,
either prior information on the signal is assumed in order to provide the guarantees,
or the guarantees are limited. For instance, the results provided in [NQL83] require
exact knowledge of a small portion of the underlying signal. In [Eld+15], the
guarantees developed are for the setup in which adjacent short-time sections differ in
only one index. These limitations are primarily due to a small number of adversarial
signals which cannot be uniquely identified from their STFT magnitude. Here, in
contrast, we develop conditions under which the STFTmagnitude is an almost surely
unique signal representation. In particular, we show that, with the exception of a set
of signals of measure zero, non-vanishing signals can be uniquely identified up to
a global phase from their STFT magnitude if adjacent short-time sections overlap
(Theorem 5.3.1). We then extend this result to incorporate sparse signals which
have a limited number of consecutive zeros (Corollary 5.3.1).

(ii) Recovery algorithms: Researchers have previously developed efficient iterative
algorithms based on classic optimization frameworks to solve the STFT phase re-
trieval problem. Examples include the Griffin-Lim (GL) algorithm [GL84] and
STFT-GESPAR for sparse signals [Eld+15]. While these techniques work well
in practice, they do not have theoretical guarantees. In [JEH15b] and [SS12], a
semidefinite relaxation based STFT phase retrieval algorithm, called STliFT (see
Algorithm 6 below), was proposed. In this work, we conduct extensive numerical
simulations and provide theoretical guarantees for STliFT. In particular, we con-
jecture that STliFT can recover most non-vanishing signals up to a global phase
from their STFT magnitude if adjacent short-time sections differ in at most half the
indices (Conjecture 5.4.1). When this condition is satisfied, we argue that one can
super-resolve (i.e., discard high frequency measurements) and reduce the number of
measurements to (4 + o(1))N , where N is the length of the complex signal. There-
fore, STliFT recovers most non-vanishing signals uniquely, efficiently and robustly,
using an order-wise optimal number of phaseless measurements.

We prove this conjecture for the setup in which the exact knowledge of a small
portion of the underlying signal is available (Theorem 5.4.1). For particular choices
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of STFT parameters, this portion vanishes asymptotically, due to which this setup
is asymptotically reasonable. We also prove this conjecture for the case in which
adjacent short-time sections differ in only one index (Theorem 5.4.2). We then
extend these results to incorporate sparse signals which have a limited number of
consecutive zeros (Corollary 5.4.1).

5.3 Uniqueness
In this section, we first review the existing results regarding uniqueness of STFT
phase retrieval, and then present our results. A signal x is non-vanishing if x[n] , 0
for each 0 ≤ n ≤ N − 1. Similarly, a window w is called non-vanishing if w[n] , 0
for all 0 ≤ n ≤ W − 1. These results are summarized in Table 5.1.

First, we argue that, for W < N (which is typically the case), L < W is a necessary
condition in order to be able to uniquely identify most signals: If L > W , then
the STFT magnitude does not contain any information from some locations of the
signal, because of which most signals cannot be uniquely identified. If L = W , then
the adjacent short-time sections do not overlap and hence STFT phase retrieval is
equivalent to a series of non-overlapping phase retrieval problems. Consequently,
as in the case of phase retrieval, most 1D signals are not uniquely identifiable. For
higher dimensions (2D and above), almost all windowed signals corresponding to
each of the short-time sections are uniquely identified up to trivial ambiguities if
w is non-vanishing. However, since there is no way of establishing relative phase,
time-shift or conjugate-flip between the windowed signals corresponding to the
various short-time sections, most signals cannot be uniquely identified. For example,
suppose we choose L = W = 2 and w[n] = 1 for all 0 ≤ n ≤ W − 1. Consider the
signal x1 = (1, 2, 3)T of length N = 3. Signals x1 and x2 = (1,−2,−3)T have the
same STFT magnitude. In fact, more generally, signals x1 and (1, eiφ2, eiφ3)T , for
any φ, have the same STFT magnitude.

For some specific choices of {w, L}, it has been shown that all non-vanishing signals
can be uniquely identified from their STFT magnitude up to a global phase. In
[Eld+15], it is proven that the STFT magnitude uniquely identifies non-vanishing
signals up to a global phase for L = 1 if the window w is chosen such that the N

point DFT of ( |w[0]|2, |w[1]|2, . . . , |w[N − 1]|2) is non-vanishing, 2 ≤ W ≤ N+1
2

and W − 1 is coprime with N . In [NQL83], the authors prove that if the first L

samples are known a priori, then the STFT magnitude can uniquely identify non-
vanishing signals for any L if the window w is chosen such that it is non-vanishing
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Uniqueness if the first L samples are known a priori,
2L ≤ W ≤ N

2 and w is non-vanishing [NQL83]
Non-vanishing signals

{x[n] , 0 for all
0 ≤ n ≤ N − 1}

Uniqueness up to a global phase if L = 1, 2 ≤ W ≤
N+1
2 , W − 1 coprime with N and mild conditions on w

[Eld+15]
Uniqueness up to a global phase for almost all signals if
L < W ≤ N

2 and w is non-vanishing [JEH15c]
Uniqueness for signals with at most W − 2L consecu-
tive zeros if the first L samples, starting from the first
nonzero sample, are known a priori, 2L ≤ W ≤ N

2 and
w is non-vanishing [NQL83]

Sparse signals
{x[n] = 0 for at least one

0 ≤ n ≤ N − 1}
No uniqueness for most signals with W consecutive
zeros [Eld+15]
Uniqueness up to a global phase and time-shift for al-
most all signalswith less thanmin{W−L, L} consecutive
zeros if L < W ≤ N

2 and w is non-vanishing [JEH15c]

Table 5.1: Uniqueness results for STFT phase retrieval (2W ≤ M ≤ N).

and 2L ≤ W ≤ N
2 .

We prove the following result for non-vanishing signals:

Theorem 5.3.1. Almost all non-vanishing signals can be uniquely identified up to
a global phase from their STFT magnitude if {w, L, M } satisfy

(i) w is non-vanishing

(ii) L < W ≤ N
2

(iii) 2W ≤ M ≤ N .

Proof. The proof is based on a technique commonly known as dimension counting.
The outline is as follows (see Section 9.2 for details):

Consider the short-time sections r and r + 1. Since adjacent short-time sections
overlap (due to L < W ), there exists at least one index, say n0, where both x ◦ wr

and x ◦ wr+1 have nonzero values.

SinceW ≤ N
2 , there can be at most 2W distinct windowed signals x◦wr up to a phase

that have the same Fourier magnitude [Hof64]. Consequently, |x[n0]| is restricted to
2W values by the rth column of the STFT magnitude (let Sr denote the set of these
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values). Similarly, |x[n0]| is restricted to 2W values by the r + 1th column of the
STFT magnitude (denote the set of these values by Sr+1).

By construction,Sr∩Sr+1 , φ as the STFTmagnitude is generated by an underlying
signal x0, i.e., |x0[n0]| ∈ Sr ∩ Sr+1. Using Lemma 9.2.1 and Theorem 9.2.1, we
show that, for almost all non-vanishing signals, Sr ∩ Sr+1 has cardinality one. In
other words, x ◦ wr is uniquely identified up to a phase almost surely.

Since adjacent short-time sections overlap, non-vanishing signals are uniquely iden-
tified up to a global phase from the knowledge of x ◦ wr (up to a phase) for
0 ≤ r ≤ R − 1 if w is non-vanishing. �

Sparse Signals
While the aforementioned results provide guarantees for non-vanishing signals, they
do not say anything about sparse signals. Reconstruction of sparse signals involves
certain challenges which are not encountered in the reconstruction of non-vanishing
signals.

The following example is provided in [Eld+15] to show that the time-shift ambiguity
cannot be resolved for some classes of sparse signals and some choices of {w, L}:
Suppose {w, L} is chosen such that L ≥ 2, W is a multiple of L and w[n] = 1 for all
0 ≤ n ≤ W − 1. Consider a signal x1 of length N ≥ L + 1 such that it has nonzero
values only within an interval of the form [(t−1)L+1, (t−1)L+ L− p] ⊂ [0, N −1]
for some integers 1 ≤ p ≤ L − 1 and t ≥ 1. The signal x2 obtained by time-shifting
x1 by q ≤ p units (i.e., x2[i] = x1[i − q]) has the same STFT magnitude. The
issue with this class of sparse signals is that the STFT magnitude is identical to the
Fourier magnitude because of which the time-shift and conjugate-flip ambiguities
cannot be resolved.

It is also shown that some sparse signals cannot be uniquely recovered even up to
trivial ambiguities for some choices of {w, L} using the following example: Consider
two non-overlapping intervals [u1, v1], [u2, v2] ⊂ [0, N−1] such that u2−v1 > W , and
take a signal x1 supported on [u1, v1] and x2 supported on [u2, v2]. The magnitude-
square of the STFT of x1 + x2 and of x1 − x2 are equal for any choice of L. The
difficulty with this class of sparse signals is that the two intervals with nonzero
values are separated by a distance greater than W because of which there is no way
of establishing relative phase using a window of length W .

These examples demonstrate the fact that sparse signals are harder to recover than
non-vanishing signals in this setup. Since the aforementioned issues are primarily
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due to a large number of consecutive zeros, the uniqueness guarantees for non-
vanishing signals have been extended to incorporate sparse signals with limits on
the number of consecutive zeros. In [NQL83], it was shown that if L consecutive
samples, starting from the first nonzero sample, are known a priori, then the STFT
magnitude can uniquely identify signals with less than W − 2L consecutive zeros
for any L if the window w is chosen such that it is non-vanishing and 2L ≤ W ≤ N

2 .

Below, we extend Theorem 5.3.1 to prove the following result for sparse signals:

Corollary 5.3.1. Almost all sparse signals with less thanmin{W −L, L} consecutive
zeros can be uniquely identified up to a global phase and time-shift from their STFT
magnitude if {w, L, M } satisfy

(i) w is non-vanishing

(ii) L < W ≤ N
2

(iii) 2W ≤ M ≤ N .

Proof. The min{W − L, L} bound on consecutive zeros ensures the following: For
sufficient pairs of adjacent short-time sections, there is at least one index among the
overlapping and non-overlapping indices respectively, where the underlying signal
has a nonzero value. We refer the readers to Section 9.3 for details. �

5.4 STliFT
In this section, we first discuss the alternating projection based algorithm, and then
present our results for the SDP algorithm.

Alternating Projections
The classic alternating projection algorithm to solve phase retrieval [GS72] has been
adapted to solve STFT phase retrieval by Griffin and Lim [GL84]. To this end, STFT
phase retrieval is reformulated as the following least-squares problem:

min
x

R−1∑
r=0

N−1∑
m=0

(√
Zw[m, r] −��〈fm,Wrx〉��

)2
. (5.4)

The Griffin-Lim (GL) algorithm attempts to minimize this objective by starting
with a random initialization and imposing the time domain and STFT magnitude
constraints alternately using projections. The details of the various steps are sum-
marized in Algorithm 5.
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The objective is shown to be monotonically decreasing as the iterations progress.
An important feature of the GL algorithm is its empirical ability to converge to
the global minimum when there is substantial overlap between adjacent short-time
sections [BE15]. However, no theoretical recovery guarantees are available. To
establish such guarantees, we rely on a semidefinite relaxation approach.

Algorithm 5 Griffin-Lim (GL) Algorithm
Input: STFT magnitude-square measurements Zw and window w
Output: Estimate x̂ of the underlying signal
Initialize: Choose a random input signal x(0), ` = 0
while halting criterion false do
` ← ` + 1
Compute the STFT of x(`−1): Y (`)

w [m, r] =
∑N−1

n=0 x (`−1)[n]w[rL − n]e−i2π mn
N

Impose STFT magnitude constraints: Y ′(`)
w [m, r] = Y (`)

w [m,r]
���Y

(`)
w [m,r]���

√
Zw[m, r]

Compute the inverse DFT of Y′(`)
w for each short-time section to obtain win-

dowed signals x′(`)
r

Impose time domain constraints to obtain x(`): x (`)[n] =
∑

r x′(`)
r [n]w?[rL−n]∑
r|w[rL−n]|2

end while
return x̂← x(`)

Semidefinite Relaxation
A semidefinite relaxation based STFT phase retrieval algorithm (STliFT) was ex-
plored in [SS12; JEH15b; Hor+15]. The details of the algorithm are provided in
Algorithm 6. In the following, we develop conditions on {x0,w, L, M } which ensure
that the convex program (5.5) has X0 = x0x?0 as the unique solution. Consequently,
under these conditions, STliFT uniquely recovers the underlying signal up to a global
phase.

Based on extensive numerical simulations, we conjecture the following:

Conjecture 5.4.1. The convex program (5.5) has a unique solution X0 = x0x?0 , for
most non-vanishing signals x0, if

(i) w is non-vanishing

(ii) 2L ≤ W ≤ N
2

(iii) 4L ≤ M ≤ N .
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Algorithm 6 STliFT
Input: STFTmagnitude measurements Zw[m, r] for 1 ≤ m ≤ M and 0 ≤ r ≤ R−1,
{w, L}.
Output: Estimate x̂ of the underlying signal x0.

• Obtain X̂ by solving:

minimize trace(X) (5.5)
subject to Zw[m, r] = trace(W?

r fmf?mWrX)
X < 0

for 1 ≤ m ≤ M and 0 ≤ r ≤ R − 1.

• Return x̂, where x̂x̂? is the best rank-one approximation of X̂.

The number of phaseless measurements considered can be calculated as follows:
The total number of short-time sections is dN+W−1

L e. For each short-time section,
M = 4L phaselessmeasurements are sufficient. Hence, the total number of phaseless
measurements is dN+W−1

L e×4L ≤ 4 (N +W )+2W . Consequently, whenW = o(N ),
this number is (4+o(1))N , which is order-wise optimal. In fact, in generalized phase
retrieval, it is conjectured that (4 − o(1))N phaseless measurements are necessary
[Bal+09; BCE06].

The proof techniques used in [Can+15] and [CSV13] are not applicable in the STFT
setup. In [Can+15] and [CSV13], the measurement vectors are chosen from a
random distribution such that they satisfy the restricted isometry property. Further-
more, the randomness in the measurement vectors is used to construct approximate
dual certificates based on concentration inequalities. In the STFT setup, testing
whether the given measurement vectors satisfy the restricted isometry property is
difficult. Also, due to the lack of randomness in the measurement vectors, a different
approach is required to construct dual certificates.

In the following, we develop a proof technique for the STFT setup, and use it to
prove Conjecture 5.4.1, with additional assumptions.

Theorem 5.4.1. The convex program (5.5) has a unique feasible matrix X0 = x0x?0 ,
for almost all non-vanishing signals x0, if

(i) w is non-vanishing

(ii) 2L ≤ W ≤ N
2
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(iii) 4L ≤ M ≤ N

(iv) x0[n] for 0 ≤ n ≤
⌊

L
2

⌋
is known a priori.

Proof. See Section 9.4. �

While it is sufficient to show that (5.5) has a unique solution X0 = x0x?0 , observe
that Theorem 5.4.1 ensures that (5.5) has a unique feasible matrix. This is a stronger
condition, and as a consequence, the choice of the objective function does not matter
in the noiseless setting. While this might suggest that the requirements of the setup
are strong, we argue that it is not the case. In fact, this phenomenon is also observed
in generalized phase retrieval (Section 1.3 in [CSV13]) and phase retrieval using
random masks (Theorem 1.1 in [Can+15]).

Theorem 5.4.1 assumes prior knowledge of the first d L
2 e samples, i.e., half of the

second short-time section is required to be known a priori. This is not a lot of prior
information if W � N , which is typically the case. When W = o(N ), the fraction
of the signal that is required to be known a priori is less than W

N , which tends to 0 as
N → ∞.

Theorem 5.4.2. The convex program (5.5) has a unique feasible matrix X0 = x0x?0 ,
for almost all non-vanishing signals x0, if

(i) w is non-vanishing

(ii) 2 ≤ W ≤ N
2

(iii) 4 ≤ M ≤ N

(iv) L = 1.

Proof. This is a direct consequence of Theorem 5.4.1. The value of |x0[0]| (and
hence x0[0], without loss of generality) can be inferred from the STFT magnitude
if L = 1. �

When L = 1, the number of phaseless measurements is 4(N +W ), which is again
order-wise optimal. For example, when W = 2, at most 4N + 8 phaseless measure-
ments are considered. Unlike Theorem 5.4.1, no prior information is necessary.

Theorems 5.4.1 and 5.4.2 can be seamlessly extended to incorporate sparse signals:
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Corollary 5.4.1. The convex program (5.5) has a unique feasible matrixX0 = x0x?0 ,
for almost all sparse signals x0 which have at most W − 2L consecutive zeros, if

(i) w is non-vanishing

(ii) 2L ≤ W ≤ N
2

(iii) 4L ≤ M ≤ N

(iv) Either L = 1 or x0[n] for i0 ≤ n < i0 + L is known a priori, where i0 is the
smallest index such that x0[i0] , 0.

Proof. See Section 9.4. �

5.5 Stability
In practice, the measurements are contaminated by additive noise, i.e., the measure-
ments are of the form

Zw[m, r] = ��〈fm,Wrx〉��2 + z[m, r]

for 1 ≤ m ≤ M and 0 ≤ r ≤ R − 1, where zr = (z[0, r], z[1, r], . . . , z[M − 1, r])T

is the additive noise corresponding to the rth short-time section and 4L ≤ M ≤ N .
STliFT, in the noisy setting, can be implemented as follows: Suppose ‖zr ‖2 ≤ η for
all 0 ≤ r ≤ R − 1. The constraints in the convex program (5.5) can be replaced by

M∑
m=1

(
Zw[m, r] − trace(W?

r fmf?mWrX)
)2
≤ η2 (5.6)

for 0 ≤ r ≤ R − 1. We recommend the use of trace minimization as the objective
function. Numerical simulations strongly suggest that the reconstruction is stable in
the noisy setting.

5.6 Extension to 2D

We refer the readers to Sections 3.5 and 4.5. In summary, the arguments in this
chapter can be directly extended to 2D, if the adjacent short-time sections are such
that they have identical rows and differ in the appropriate number of columns, or
if they have identical columns and differ in the appropriate number of rows. For
example, for STliFT to work, the adjacent short-time sections should be such that
they share the same rows and differ in at most 50% of the columns, or share the
same columns and differ in at most 50% of the rows.



63

5.7 Numerical Simulations
In this section, we demonstrate the empirical abilities of STliFT using numerical
simulations.

In the first set of simulations, we evaluate the performance of STliFT and GL
algorithm as a function of window and shift lengths. We choose N = 32, and vary
{L,W }. For each choice of {L,W }, we consider M = 4L phaseless measurements
and perform 100 trials. In every trial, we choose a random signal such that the values
in each location are drawn from an i.i.d. standard complex normal distribution. We
select the window w such that w[n] = 1 for all 0 ≤ n ≤ W − 1. The probability
of successful recovery as a function of {L,W } is plotted in Fig. 5.4a and 5.4b
respectively.

Observe that STliFT successfully recovers the underlying signal with very high
probability when 2L ≤ W ≤ N

2 and fails with very high probability when 2L > W .
The choice of {L,W } = { N

4 ,
N
2 } uses only six short-time sections and STliFT recovers

the underlying signal with very high probability, which, given the limited success
of semidefinite relaxation based algorithms in the Fourier phase retrieval setup, is
very encouraging. Also, the superior recovery ability of STliFT when compared to
the alternating projection based GL algorithm can be clearly seen.

In the second set of simulations, we evaluate the performance of STliFT as a function
of shift length and measurements per short-time section. We choose N = 32 and
W = 16, and vary {L, M }. For each choice of {L, M }, we perform 100 trials as
before. The probability of successful recovery as a function of {L, M } is plotted in
Fig. 5.5. Observe that recovery is successful in the 4L ≤ M < 2W regime, which
demonstrates super-resolution.

In the third set of simulations, we evaluate the performance of STliFT and GL
algorithm in the noisy setting. We choose M = 2W , the rest of the parameters are
the same as the first set of simulations. The normalized mean-squared error, given
by

N MSE = min
|c |=1

‖x0 − cx̂‖2

‖x0‖2
, (5.7)

is plotted as a function of SNR in Fig. 5.6a and 5.6b. The linear relationship
between them in Fig. 5.6a shows that STliFT stably recovers the underlying signal
in the presence of noise. Further, the plots demonstrate the superior reconstruction
ability of STliFT when compared to GL algorithm. It can also be observed that the
choices of {W, L} which correspond to significant overlap between adjacent short-
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(a) STliFT.
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(b) GL algorithm.

Figure 5.4: Probability of successful recovery, for N = 32, M = 4L, and various
choices of {L,W }, in the noiseless setting (white region: success with probability 1,
black region: success with probability 0).

time sections tend to recover signals more stably compared to values of {W, L}which
correspond to less overlap, which is not surprising.

5.8 Conclusions and Future Work
In this chapter, we considered the STFT phase retrieval problem. We showed that, if
L < W ≤ N

2 , then almost all non-vanishing signals can be uniquely identified from
their STFT magnitude up to a global phase, and extended this result to incorporate
sparse signals which have less than min{W − L, L} consecutive zeros.

For 2L ≤ W ≤ N
2 , we conjectured that most non-vanishing signals can be recovered
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Figure 5.5: Probability of successful recovery using STliFT for N = 32, W = 16,
and various choices of {L, M } (white region: success with probability 1, black
region: success with probability 0).

up to a global phase by a semidefinite relaxation based algorithm (STliFT). When
W = o(N ), through super-resolution, we reduced the number of phaseless measure-
ments to (4 + o(1))N . We proved this conjecture for the setup in which the first⌊

L
2 + 1

⌋
samples are known, and for the case in which L = 1. We argued that the

additional assumptions are asymptotically reasonable when W � N , which is typ-
ically the case in practical methods. We then extended these results to incorporate
sparse signals which have at most W − 2L consecutive zeros.

Directions for future study include a proof of this conjecture without any additional
assumptions, and a stability analysis in the noisy setting.

Also, a thorough analysis of the phase transition at 2L = W will provide a more
complete characterization of STliFT. In particular, showing why the recovery fails
when the overlap is less than 50% is an interesting direction. Observe that when
2L = W , the total number of phaseless measurements considered is approximately
4N , a quantity which comes up inmany phase retrieval problems. Hence, an analysis
of this phase transition would improve our fundamental understanding of recovery
from phaseless measurements in general.
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Figure 5.6: NMSE (dB) vs SNR (dB) in the noisy setting for N = 32, M = 2W .
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C h a p t e r 6

PHASELESS SUPER-RESOLUTION

Before introducing phaseless super-resolution, we briefly discuss super-resolution.
The problem of recovering a signal from its low-frequency Fourier measurements is
referred to as super-resolution. It is a fundamental problem in signal processing, and
comes up in applications where it is difficult to obtain high-frequency measurements
due to physical limitations. For example, in optical systems, there is a fundamental
resolution limit due to diffraction [BW00]. In radar systems, there is a limit due to
the size of the detectors [OBP94].

Due to the absence of high-frequency information, super-resolution is an ill-posed
problem. There is a fundamental limit, called the Rayleigh criterion [Ray79], on
the minimum separation between two locations with nonzero values, in order to be
able to stably recover the signal. A pictorial representation of this criterion is shown
in Fig. 6.1. In other words, signals which have two locations with nonzero values
closer than the Rayleigh criterion cannot be resolved stably. If M low-frequencies
from the N point DFT are available as measurements, then this limit turns out to be
N
M [Don92].

On the algorithmic front, the classic super-resolution algorithms include MUSIC
[Sch86] and ESPRIT [RK89]. More recently, a convex programming based algo-
rithm has been proposed in [CF14; Tan+13]. In particular, the authors show that
signals with minimum separation at least 4× N

M can be stably reconstructed through
`1 minimization (total variation minimization for the continuous model).

Figure 6.1: Rayleigh criterion: If two locations with nonzero values are located
such that the first zero of one sinc coincides with the maximum of the other, then
the signal is barely resolvable (courtesy of [Hyp]).
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In this chapter, we consider phaseless super-resolution, which is the problem of
recovering a signal from its low-frequency Fouriermagnitude-squaremeasurements.
Mathematically, it is the following recovery problem:

find x (6.1)

subject to Z[m] = ��〈fm, x〉��2 for 0 ≤ m ≤ M − 1,

where fm is the conjugate of the mth column of the N point DFT matrix F, and
Z = (Z[0], Z[1], . . . , Z[M − 1])T is the M × 1 vector corresponding to the low-
frequency magnitude-square measurements.

Phaseless super-resolution is the combination of two classic signal processing prob-
lems: phase retrieval and super-resolution. Consequently, in order to solve phaseless
super-resolution, it is necessary to overcome the uniqueness issues of phase retrieval
and super-resolution. To this end, we consider the use of additional magnitude-only
measurements and impose a minimum separation prior on the signal.

The minimum separation of x0, denoted by ∆(x0), is defined as the closest distance
between any two nonzero entries in x0, i.e,

∆(x0) = min
n,m,x0[n],0,x0[m],0

(n − m) mod N . (6.2)

Here, the distance is defined in a cyclic manner. For example, if N = 100, then the
distance between n = 90 and m = 10 is 20.

The masks proposed in Chapter 4 do not work in the super-resolution setup as they
require the knowledge of the autocorrelation of the signal, which is available only
when the entire Fourier magnitude-square information is available. In this chapter,
we focus on “structured illuminations”, a technique where the illuminating beam is
made to hit the sample at specific angles [Far+10]. A schematic representation is
provided in Fig. 6.2.

Keeping in mind practical applications (described in the next section), for −R ≤

r ≤ R, let Dr be an N × N diagonal matrix, corresponding to the rth structured
illumination, with diagonal entries given by (dr[0], dr[1], . . . , dr[N − 1]), such that

dr[n] =




1 if r = 0

1 + ei2π nr
N if 1 ≤ r ≤ R

1 − iei2π n|r |
N otherwise.

(6.3)
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Figure 6.2: A schematic representation of structured illuminations in an optical
setting.

Observe that the diagonal entries ofD0 are equivalent to f0. Further, when r > 0 and
r < 0, the diagonal entries of Dr are equivalent to f0 + fr and f0 − if|r | respectively.
Our objective is to solve the following reconstruction problem:

find x (6.4)

subject to Z[m, r] = ��〈fm,Drx〉��2

for 0 ≤ m ≤ M − 1 and − R ≤ r ≤ R,

where Z is an M × (2R+1) matrix, such that Z[m, r] corresponds to the magnitude-
square of the mth low-frequency measurement using the rth structured illumination.

Notation: FM denotes the M × N submatrix of F constructed using the first M

rows. The signal of interest is represented by x0 as before, and the vector y0 =
(y0[0], y0[1], . . . , y0[N − 1])T represents the N point Fourier transform of x0.

In what follows, we describe the strategy for obtaining such measurements in two
applications. Then, we present our results.

6.1 X-ray Crystallography/ Coherent Diffraction Imaging
Let ψ(x, y) denote the two-dimensional object, centered at the origin. Also, let the
plane of the object and the two-dimensional detector be perpendicular to the z-axis
such that z = 0 and z = z′ respectively. In a standard diffraction imaging setup,
the entire object is illuminated using a single source placed at (0, 0,−d), and the
diffraction patterns are recorded. Alternately, consider the setup where the object
is illuminated using two sources, one placed at (0, 0,−d) and the other placed at
(xr, yr,−d).

Suppose the two sources are coherent. By using Huygens principle (same argu-
ments as in Section 1.1), if ψtrans,r (x, y) denotes the secondary source at (x, y, 0)
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produced by ψ(x, y), then we have ψtrans,r (x, y) = ψtrans,1(x, y) + ψtrans,2(x, y),
where ψtrans,1(x, y) and ψtrans,2(x, y) are the secondary sources at (x, y, 0) pro-
duced by ψ(x, y) due to the two sources individually. Using the calculations from
Section 5.1, we have ψtrans,1(x, y) = ψ(x, y) and ψtrans,2(x, y) = ei 2πλ

xr x+yr y
d ψ(x, y).

Consequently, the diffraction pattern intensities measured are proportional to the
magnitude-square of the Fourier transform of

ψtrans,r (x, y) =
(
1 + ei 2πλ

xr x+yr y
d

)
ψ(x, y). (6.5)

In other words, the measurements are such that

Ir (x′, y′) ∝
�����

"
ψtrans,r (x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy

�����

2

∝
�����

" (
1 + ei 2πλ

xr x+yr y
d

)
ψ(x, y)ei 2πλ

−x ′x−y ′y
z ′ dxdy

�����

2

∝

������
ψ̂

(
x′

λz′
,
y′

λz′

)
+ ψ̂

(
x′

λz′
−

xr

λd
,
y′

λz′
−

yr

λd

) ������

2

.

For instance, in the one-dimensional setup, if the distance between adjacent detectors
is given by δ and xr = rδ d

z′ , then the diagonal entries of Dr are f0 + fr .

If the two sources are ninety-degrees out of phase, then we have

ψtrans,r (x, y) =
(
1 − iei 2πλ

xr x+yr y
d

)
ψ(x, y), (6.6)

and the corresponding diagonal entries of Dr are f0 − ifr .

6.2 Direction of Arrival Estimation
In Section 1.4, we considered the classic direction of arrival estimation setup, which
involves one transmitter and M receivers placed uniformly. Alternately, consider
the setup where two transmitters, one placed at the origin and the other placed at
x = − λ2 , are used (see Fig. 6.3).

Suppose the two sources are coherent. The received vector is the sum of the received
signals due to the two transmitters individually, i.e.,

y(ω)[m] =
K∑

k=1
ŝ(ω − ωc)e−iωc

2rk−
mλ
2 sin θk
c ρk +

K∑
k=1

ŝ(ω − ωc)e−iωc
2rk+

λ
2 sin θk−

mλ
2 sin θk

c ρk

∝

K∑
k=1

(1 + e−iπ sin θk )eiπm sin θk
(
ρk e−

i2ωc rk
c

)
, (6.7)
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Figure 6.3: Implementation of the proposed additional magnitude-only measure-
ments in the Direction of Arrival Estimation setup (ULA=Uniform Linear Array).

which is precisely the measurements due to the matrix with diagonal entries f0+ f−1.
Here, we used the fact that the total distance travelled by the wave transmitted by
the source at x = − λ2 , reflected by object k onto receiver m is well-approximated
by 2rk +

λ
2 sin θk −

mλ
2 sin θk . In order to change the diagonal entries to f0 + fr , the

second transmitter has to be placed at x = rλ
2 instead. Also, if the two sources are

ninety-degrees out of phase, then the diagonal entries become f0 − ifr .

Remark: When the M receivers are placed uniformly, the number of objects that
can be detected is well-known to be O(M). Recently, in [PV11; VP11], the authors
proposed “coprime arrays”, where two uniform arrays with M1 and M2 receivers
and spacings M2λ

2 and M1λ
2 respectively are considered. The number of objects that

can be detected is shown to be O(M1M2). Suppose three transmitters, one placed
at the origin and the other two placed at x = −M1λ

2 and x = −M2λ
2 , are used. If

the first and the third transmitters are on while the second is off, then the setting is
similar to two transmitters and M1 uniformly placed receivers. Similarly, if the first
and the second transmitters are on while the third is off, then the setting is similar
to two transmitters and M2 uniformly placed receivers. Consequently, using three
transmitters instead of two, the theory in this section can be applied to coprime
arrays. The same idea also applies to “nested arrays”, which are concatenations of
two uniform arrays [PV10].

6.3 Contributions
In this chapter, we show that the SDP algorithm can provably recover most signals
whenmeasurements are obtained using 3 simple structured illuminations (i.e., R = 1
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is sufficient). As shown in the previous section, these structured illuminations can
be implemented by using just two sources in several applications. We also show
that the reconstruction is stable in the noisy setting. Indeed, the stability parameter
depends on the number of sources and structured illuminations considered.

6.4 Methodology
Two-Stage Combinatorial Reconstruction
In the noiseless setting, phase can be uniquely resolved up to a global factor if R ≥ 1.
In [Can+15], the following arguments are provided: The measurements obtained
provide the knowledge of ��y0[n]��2, ��y0[n] + y0[n − 1]��2 and ��y0[n] − iy0[n − 1]��2 for
0 ≤ n ≤ M − 1. Writing y0[n] = ��y0[n]�� eiφ0[n] for 0 ≤ n ≤ M − 1, we have

��y0[n] + y0[n − 1]��2 = ��y0[n]��2 +��y0[n − 1]��2 + 2��y0[n]����y0[n − 1]��Re(ei(φ0[n−1]−φ0[n])),

��y0[n] − iy0[n − 1]��2 = ��y0[n]��2 +��y0[n − 1]��2 + 2��y0[n]����y0[n − 1]�� Im(ei(φ0[n−1]−φ0[n])).

Consequently, if y0[n] , 0 for 0 ≤ n ≤ M − 1, then the measurements provide the
relative phases φ0[n − 1] − φ0[n] for 0 ≤ n ≤ M − 1. By setting φ0[0] = 0 without
loss of generality, φ0[n] can be inferred for 1 ≤ n ≤ M − 1.

Once phase is resolved, phaseless super-resolution reduces to reconstructing x0 from
eiφFMx0, which is the super-resolution problem. Hence, by using such measure-
ments, any super-resolution algorithm can be extended to solve phaseless super-
resolution if R ≥ 1. It is well-known that a k-sparse signal x0 can be reconstructed
from FMx0 if M ≥ 2k + 1 (e.g., matrix pencil method [HS90]). Consequently,
k-sparse signals can be reconstructed from (2k + 1) × 3 = 6k + 3 low-frequency
Fourier magnitude measurements.

However, such an approach cannot be used in the noisy setting due to error propa-
gation issues. In the next subsection, we consider the SDP algorithm.

Semidefinite Relaxation
The matrix X0 = x0x?0 we are interested in recovering is both sparse and low-rank.
The most natural objective function to recover such a matrix is a linear combination
of the `1 norm and the nuclear norm (which is equal to the trace norm for positive
semidefinite matrices). Since the measurement corresponding to r = 0 and m = 0
fixes trace(X), we consider the following convex algorithm:
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Algorithm 7 SDP based Phaseless Super-resolution
Input: Masked low-frequency Fourier magnitude measurements Z
Output: Sparse signal x̂ satisfying the measurements

• Solve for X̂:

minimize ‖X‖1 (6.8)
subject to Z[m, r] = trace( D?

r fmf?mDrX )
for 0 ≤ m ≤ M − 1 and − R ≤ r ≤ R,

X < 0.

• Return x̂, where x̂ is the best rank-one approximation of X̂.

Theorem 6.4.1. ThematrixX0 = x0x?0 is the unique optimizer of (6.8), and therefore
x0 can be uniquely reconstructed up to a global phase if

(i) R ≥ 1

(ii) ∆(x0) ≥ 4.76N
M

(iii) y0[0], y0[1], . . . , y0[M − 1] , 0.

Proof. Analyzing convex programs with deterministic measurement vectors is a
difficult task in general. In order to analyze (6.8), inspired by [BR15], we use the
following approach: We first show that the affine constraints in (6.8) are of the
form trace(cr,mcT

r,mW), where W = FMXF?M and cr,m is an M × 1 sensing vector
corresponding to each measurement. For the matrices defined in (6.3), we then
calculate the sensing vectors and show that they, along with the positive semidefinite
condition, uniquely determine W. We finally use the results of [CF14; Tan+13] to
show that X0 is the unique optimizer of (6.8).

We now show the first step of the aforementioned approach. For each r , let
(sr[0], sr[1], . . . , sr[N − 1])T denote the N point DFT of (dr[0], dr[1], . . . , dr[N −
1])T and for each l, let Diag(fl ) be an N × N diagonal matrix with diagonal entries
fl . We have

f?mDr =
*.
,

N−1∑
l=0

sr[l] f?mDiag(fl )+/
-
.
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Since f?mDiag(fl ) = f?m−l , for every m and r , the aforementioned expression can be
rewritten as

f?mDr =

N−1∑
l=0

sr[l]f?m−l =

N−1∑
l=0

sr[l]e?m−lF,

where em is the mth column of the identity matrix.

The matrices defined in (6.3) satisfy sr[l] = 0 for every l > r . Consequently,
in the regime r ≤ m ≤ M − 1, we have 0 ≤ m − l ≤ M − 1 when sr[l] , 0.
Therefore, sr[l]e?m−lF is equivalent to sr[l]e?m−lFM , due to which we can rewrite
trace(D?

r fmf?mDrX) as:

trace
*..
,

*.
,

M−1∑
l=0

s?r [l]em−l
+/
-

*.
,

M−1∑
l=0

sr[l]e?m−l
+/
-
FMXF?M

+//
-
. (6.9)

We now calculate the sensing vectors when measurements are obtained using the
matrices defined in (6.3). The values of sr[l] are:

s0[l] =



1 for l = 0

0 otherwise
(6.10)

sr[l] =




1 for l = 0

−i for l = −r if r < 0

1 for l = r if r > 0

0 otherwise.

Substituting these values in (6.9), the measurement corresponding to r = 0 and
any 0 ≤ m ≤ M − 1 fixes W [m,m]. Similarly, the measurements corresponding to
r = ±1 and any 1 ≤ m ≤ M − 1 fix the values of W [m − 1,m − 1] +W [m − 1,m] +
W [m,m−1]+W [m,m] andW [m−1,m−1]+iW [m−1,m]−iW [m,m−1]+W [m,m].
These measurements, combined with the measurements corresponding to r = 0, fix
W [m − 1,m] and W [m,m − 1].

Hence, the diagonal and the first off-diagonal entries of every feasible W match
the diagonal and the first off-diagonal entries of the matrix (FMx0)(FMx0)?. Since
the entries are sampled from a rank one matrix with non-zero diagonal entries (the
first M values of the N point DFT of x0 are non-zero), there is exactly one positive
semidefinite completion, which is the rank one completion (FMx0)(FMx0)?.
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In particular, due to the fact thatW < 0 andFMx0 is non-vanishing, (FMx0)(FMx0)?

is the only feasibleW. The reconstruction problem is therefore reduced to

minimize ‖X‖1 (6.11)

subject to FMXF?M = FMx0x?0F
?
M

X < 0.

This is precisely the two-dimensional super-resolution problem. Since the conditions
of Theorem 1.3 in [CF14] are satisfied by x0x?0 , x0x

?
0 is the unique optimizer of

(6.11). �

6.5 Stability
We now consider the impact of measurement noise on the performance of the
proposed SDP algorithm. Specifically, we consider measurements of the form

Z[m, r] = ��〈fm,Drx〉��2 + z[m, r] (6.12)

for 0 ≤ m ≤ M − 1 and −R ≤ r ≤ R, where zr = (z[0, r], z[1, r], . . . , z[M − 1, r])T

is the additive noise corresponding to the measurements from the rth structured
illumination. The SDP algorithm, in the noisy setting, can be implemented as
follows: Suppose the `1 norm of the noise vector is bounded by η, the affine
constraints in the convex program can be replaced by

R∑
r=−R

M−1∑
m=0

���Z[m, r] − trace( D?
r fmf?mDrX )��� ≤ η.

In this setting, we prove the following theorem:

Theorem 6.5.1. The optimizer X̂ of (6.8), in the noisy setting, satisfies

‖X̂ − X0‖1 ≤ C
‖w0‖

2
2γ

2
max

γ3min

RM4SRF4η

for some positive constant C, where γmax = max{��y0[0]��2 ,��y0[1]��2 , . . . ,��y0[M − 1]��2}
and γmin = min

0≤m<M−R
max{��y0[m]��2 , . . . ,��y0[m + R − 1]��2}, if

(i) R ≥ 1

(ii) ∆(x0) ≥ 4.76N
M

(iii) γmin > 0.

Proof. See Appendix 10.1. �
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6.6 Extension to 2D

Consider the one-dimensional example with R = 1, where two transmitters, one
placed at 0 and the other placed at x1, are used. We showed that three structured
illuminations from these transmitters are sufficient for the SDP method to work:
The first transmission involves just the transmitter at 0, and the second and the
third involve coherent and ninety-degrees out of phase transmissions from the two
transmitters respectively.

The theory developed in this chapter can be extended to incorporate two-dimensional
signals as follows: Three transmitters are used, where one is placed at (0, 0) and the
other two are placed at (x1, 0) and (0, x1). A total of five structured illuminations
are used: The first transmission involves just the transmitter at (0, 0), the second
and the third involve coherent and ninety-degrees out of phase transmissions from
the first and the second transmitter respectively, and the fourth and the fifth involve
coherent and ninety-degrees out of phase transmissions from the first and the third
transmitter respectively. The correctness of this method can be seen by using a
vectorizing operator on FMxF?M , similar to the arguments in Sections 3.5 and 4.5.

6.7 Numerical Simulations
In this section, we demonstrate the performance of the proposed method using
numerical simulations.

In the first set of simulations, we choose N = 32, R = 1, and evaluate the perfor-
mance for various choices of minimum-spacing∆(x0) and number of low-frequency
measurements M . For each choice of ∆(x0) and M , we perform 25 trials using the
parser YALMIP and the solver SeDuMi. For each trial, a complex signal is randomly
generated as follows: Starting from an empty support, 100 indices in the range 0 and
N − 1 are generated uniformly at random (with repetition) and sequentially added
as long as the minimum-spacing criterion is not violated. The signal values in the
support are drawn from a standard complex Gaussian distribution independently.
The probability of successful recovery is plotted in Fig. 6.4. The black region
corresponds to a success probability of 0 and the white region corresponds to a
success probability of 1. If M & 2N

∆(x0) , then the SDP algorithm recovers the signal
with very high probability.

In the second set of simulations, we evaluate the performance of the SDP algorithm
in the noisy setting. We choose N = 32, M = 10, R = 1, 2, 3, 4 and ∆(x0) = 8.
The lifted signal X0 is normalized so that ‖X0‖1 = 1, and the value of ‖X0 − X̂‖1 is
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Figure 6.4: Probability of successful recovery for N = 32, R = 1, and various
choices of M and ∆(x0).
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Figure 6.5: Stability of the SDP algorithm in the noisy setting for N = 32, M = 10,
∆(x0) = 8, and various choices of R.

plotted as a function of the `1 norm of the noise vector. The results of the simulations
are shown in Fig. 6.5. The plots demonstrate that the reconstruction is stable in the
noisy setting.

6.8 Conclusions and Future Work
We considered the problem of phaseless super-resolution. We showed that any
super-resolution algorithmcan be extended to solve phaseless super-resolution, when
certain additional magnitude-only measurements are available. We also described
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the practical implementation of such measurements in various applications.

We then focused our attention on the SDP algorithm, and provided theoretical
guarantees. In particular, we extended the super-resolution results of [CF14] to
incorporate phaseless super-resolution.

We have identified the following set of questions as potential directions for future
study:

• Numerical simulations suggest that the stability analysis provided in this
chapter is not tight. Given the practicality of the proposed designs, it would
be very useful to have tight bounds on the reconstruction error.

• Suppose the structured illuminations are implemented using exactly T trans-
mitters. Where should the transmitters be placed, and what structured illumi-
nations should be used, so that the SDP method provably works, and is most
stable? The answer to this question would be very helpful from a practical
point of view in applications like optics, diffraction imaging, crystallography
and radar. While a tight stability analysis would help answer this question, a
loose stability analysis which mirrors the simulations in terms of trends would
also be very useful.
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C h a p t e r 7

CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this work, we studied several variants of the phase retrieval problem using convex
optimization theory.

With focus on applications like astronomy and crystallography, we studied the sparse
phase retrieval problem in Chapter 3. We first showed that most (N − 1)-sparse
signals can be uniquely recovered from oversampled measurements. Then, we
developed the TSPR algorithm and provided theoretical guarantees. In particular,
we showed that TSPR can provably recover mostO(N

1
2−ε )-sparse signals, and stably

reconstruct most O(N
1
4−ε )-sparse signals.

In Chapter 4, we considered the problem of phase retrieval using masks, with focus
on applications like crystallography, diffraction imaging and optics. We showed that
oversampled measurements using two specific masks, or three simple-to-implement
masks, are sufficient for the SDP method to provably recover most signals. If
oversampled measurements are unavailable, then we argued that five specific masks,
or seven simple-to-implement masks, are sufficient.

Keeping in mind applications like ptychography and Fourier ptychography, we
studied the STFT phase retrieval problem in Chapter 5. We showed that almost
all signals can be uniquely identified if L < W ≤ N

2 (i.e., adjacent short-time
sections overlap). We also showed that the SDP method provably recovers most
signals if 2L ≤ W ≤ N

2 (i.e., adjacent short-time sections overlap by 50%) under
asymptotically reasonable assumptions.

In Chapter 6, we considered the problem of phaseless super-resolution, with focus
on diffraction imaging, optics and radar applications. We showed that measurements
using three structured illuminations are sufficient for the SDP method to provably
recover most signals. We also described the implementation of these structured
illuminations in various applications.

These results establish that convex optimization is a powerful tool to study phase
retrieval type problems. Furthermore, the comparative numerical study of the SDP
and the alternating projection based methods clearly demonstrated the superior
abilities of the SDP based methods.
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Below, we describe several natural directions for future research.

7.1 Precise Stability Analysis
In this work, we provided strong theoretical recovery guarantees for the SDPmethod
in the noiseless setting, alongwith aweak stability analysis inmany cases. Empirical
evidence shows that the reconstruction is very stable in the noisy setting. Indeed, a
natural direction for future study is precise stability analysis. Tight bounds on the
reconstruction error would be very useful in several applications.

In the following, we describe the key quantities involved in the stability analysis.
The semidefinite programs considered in this work can be written as

minimize trace(X) + λ‖X‖1 (7.1)

subject to A(X) = b

X < 0.

Themethod of dual certificates involved the construction of a dual certificateWwith
certain properties. Precise lower bounds on the following quantities can potentially
result in a tight bound:

• Second smallest singular value ofW

• min
h

‖A(x0h?+hx?0 )‖
‖x0h?+hx?0 ‖

.

In a compressed sensing style analysis, concentration inequalities play a critical
role in bounding these quantities. Indeed, the second quantity is reminiscent of the
Restricted Isometry Property (RIP). However, when themeasurements are determin-
istic, a different approach is required. We refer the interested readers to [JEH15d;
Jag+16] for details.

7.2 Non-Convex Optimization
Recently, researchers have successfully analyzed the problem of signal recovery
from random phaseless measurements using tools from non-convex optimization.
In particular, measurements of the form

Z[m] = ��〈am, x〉��2 , (7.2)

where am is sampled from a generic distribution, are assumed to be available. In
[NJS13], theoretical guarantees were provided for the alternating projection based



81

algorithm. In [CLS15b], the authors provided theoretical guarantees for a stochastic
gradient descent based algorithm (called the WF algorithm). A carefully chosen
initialization and concentration inequalities are an integral part of these methods.

A natural question is whether one can extend these results to the setups considered
in this work. Indeed, a different approach is required as the measurements are
deterministic. In this regard, the dual certificates (4.12, 4.17, 9.8, 10.2) could
potentially be very useful. If that is indeed the case, then the convex frameworkmight
provide valuable insights into our understanding of the alternating projection and
the stochastic gradient descent methods. The framework could also help standardize
the tools for analyzing such non-convex methods.

7.3 General Theory for QCQPs
At a very high level, the approach used in this work can be summarized as follows:

• Find an algebraic reconstruction method

• Construct a dual certificate using ideas from the algebraic method

In particular, the dual certificate (4.12) uses ideas from the algebraic method de-
scribed in (4.10). The dual certificate (4.17) uses ideas from the Sylvester matrix
based algebraic method (4.16). The algebraic methods described in [NQL83] and
[Can+15] influenced the construction of the dual certificates (9.8) and (10.2) re-
spectively.

The exact relationship between these algebraic reconstruction methods and dual
certificates is unclear. We strongly suspect the existence of a fundamental quantity
which connects these results. If that is the case, then identifying this quantity would
improve our understanding of semidefinite relaxation and its role in solving general
QCQPs.
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C h a p t e r 8

SUPPLEMENTARY MATERIALS FOR CHAPTER III

8.1 Proof of Theorem 3.2.1
We use the following notation in this section: If x is a signal of length lx , then
x = {x0, x1, . . . , xlx−1} and {x0, xlx−1} , 0. ≡ implies equality up to time-shift,
conjugate-flip and global phase, i.e., equality up to trivial ambiguities. x̃ denotes
the signal obtained by conjugate-flipping x, i.e., x̃ = {x?lx−1, x?lx−2, . . . , x?0 }.

In order to characterize the set of signals with aperiodic support which cannot be
uniquely recovered by (3.2), we make use of the following lemma:

Lemma 8.1.1. If two non-equivalent signals x1 and x2 have the same autocor-
relation, then there exist signals g and h, of lengths lg and lh respectively, such
that

(i) x1 ≡ g? h & x2 ≡ g? h̃

(ii) lg + lh − 1 = lx , and lg, lh ≥ 2

(iii) h0 = 1, hlh−1 , 0, g0 , 0, glg−1 , 0

(iv) lg ≥ lh.

Proof. (i) Let X1(z), X2(z), G(z) and H (z) be the z-transforms of the signals x1,
x2, g and h respectively. Since x1 and x2 have the same autocorrelation, we have

A(z) = X1(z)X?
1 (z−?) = X2(z)X?

2 (z−?),

where A(z) is the z-transform of the autocorrelation of x1 and x2. If z0 is a zero
of A(z), then z−?0 is also a zero of A(z)4. For every such pair of zeros (z0, z−?0 ), z0
can be assigned to X1(z) or X?

1 (z−?), and X2(z) or X?
2 (z−?). Let P1(z), P2(z) and

P3(z) be the polynomials constructed from such pairs of zeros which are assigned
4The problem of recovering X (z) from A(z) is hence equivalent to the problem of assigning pairs

of zeros of the form (z0, z−?0 ) between X (z) and X?(z−?) (see [Hof64; JOH12c]). Since A(z) can
have at most n such pairs, this can be done in at most 2n ways and hence for a given autocorrelation,
there can be at most 2n non-equivalent solutions.
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to (X1(z), X2(z)), (X1(z), X?
2 (z−?)) and (X?

1 (z−?), X2(z)) respectively. Note that
P3(z) ≡ P?2 (z−?). We have

X1(z) ≡ P1(z)P2(z) & X2(z) ≡ P1(z)P?2 (z−?),

and hence X1(z) and X2(z) can be written as

X1(z) ≡ G(z)H (z) X2(z) ≡ G(z)H?(z−?),

where G(z) = P1(z) and H (z) = P2(z), or equivalently

x1 ≡ g? h x2 ≡ g? h̃

in the time domain.

(ii) If two signals of lengths lg and lh are convolved, the resulting signal (in this case
x1 or x2) will be of length lg + lh −1. lg and lh are greater than or equal to 2 because
otherwise, x1 and x2 will be equivalent.

(iii) Since g and h are signals of lengths lg and lh respectively, {h0, hlh−1, g0, glg−1} ,

0 by definition. The signals (g?h) and (αg?h/α) are the same for any constant α.
Hence, without loss of generality, we can set h0 = 1.

(iv) Suppose lg < lh. Since x1 and x̃2 have the same autocorrelation, we can apply
part (i) of this lemma to signals x1 and x̃2 to get x1 = h? g and x̃2 = h? g̃. Hence,
without loss of generality, the signals g and h can be interchanged. �

First, we will prove the theorem for the k = n − 1 case as it is relatively easier and
provides intuition for the k < n − 1 case.

Case I: k = n − 1

Sn−1, i.e., the set of signals with aperiodic support and sparsity equal to n − 1, has
2(n−1) degrees of freedom (as each nonzero location can have a complex value and
hence can have 2 degrees of freedom). We will show that the set of signals in Sn−1

that cannot be recovered by (3.2) has degrees of freedom strictly less than 2(n − 1).

Suppose x1 ∈ Sn−1 is not recoverable by (3.2), then there must exist another signal
x2, with sparsity less than or equal to n − 1, which has the same autocorrelation.
At least one location in both x1 and x2 have a value zero, say x1,i = 0 and x2, j = 0
for some 1 ≤ i, j ≤ n − 2. Note that we can always find an i and j in this range as
x1 has aperiodic support and the lengths of x1 and x2 are the same. From Lemma
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8.1.1, there must exist two signals g and h, of lengths l and n − l + 1 for some
n+1
2 ≤ l ≤ n − 1, such that∑

r

gr hi−r = 0 &
∑

r

gr h?n−l− j+r = 0 (8.1)

and {g0, gl−1, hn−l } , 0, h0 = 1.

Our strategy is the following: We will count the degrees of freedom of the set of
all possible {g, h} which satisfy (8.1) for some choice of {l, i, j} and show that it is
strictly less than 2(n − 1).

The following arguments can be made for any particular choice of {l, i, j}: the two
bilinear equations in (8.1) can be represented in the matrix form as

Hg = 0,

where g is the column vector {g0, g1, . . . , gl−1}
T andH is the 2× l matrix containing

the corresponding entries of h given by (8.1). For example, if i < j < l − 1, then
(8.1) can be written as



hi hi−1 ... h0 ... 0 0 ...

h?n−l− j h?n−l− j+1 ... ... ... h?n−l 0 ...





g0

g1

...

gl−1



= 0.

The degrees of freedom of the set of all possible {g, h} which satisfy the system of
equations (8.1) can be calculated as follows: Since h is a complex vector of length
n − l + 1 and h0 = 1, h can have 2(n − l) degrees of freedom. For each h, since
each independent row of H restricts g by one dimension in the complex space, or
equivalently, 2 degrees of freedom, g can have 2l −2× rank(H) degrees of freedom.

There are two possibilities:

(i) rank(H) = 2: This happens generically, hence h can have 2(n − l) degrees of
freedom. For each choice of h such that rank(H) = 2, g can have 2(l − 2) degrees
of freedom. Hence, the degrees of freedom of the set of all possible {g, h} in this
case which satisfy (8.1) is 2(n − l) + 2(l − 2) = 2(n − 2).

(ii) rank(H) = 1: In this case, each 2×2 submatrix ofHmust be rank 1, which could
happen for some h. The set of such h has degrees of freedom at most 2(n− l)−1, as
the degrees of freedom of at least one entry of h gets reduced by one. For example,
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if the 2 × 2 submatrix is [h1, h0; h?n−l−1, h
?
n−l], then h?n−l−1 =

h1h?
n−l

h0
and hence, once

h1 and hn−l are chosen, h1 can take precisely one value and hence 2 degrees of
freedom are lost for h1. For some 2 × 2 matrices, like [h1, h0; h?0, h

?
1 ], the condition

is |h1 | = |h0 | because of which there will be a loss of one degree of freedom for h1.
For each choice of h such that rank(H) = 1, g can have 2(l − 1) degrees of freedom.
Hence, the degrees of freedom of the set of all possible {g, h} in this case which
satisfy (8.1) is at most 2(n − l) − 1 + 2(l − 1) = 2(n − 1) − 1.

We have shown that for any particular choice of {l, i, j}, the degrees of freedom of
the set of all possible {g, h} which satisfy (8.1) is at most 2(n−1)−1. The degrees of
freedom of the set of all possible {g, h} which satisfy (8.1) for some choice of {l, i, j}

can be obtained by considering each valid choice of {l, i, j} and taking a union of
the resulting {g, h}. Since the union of a finite number of manifolds with degrees
of freedom at most 2(n − 1) − 1 is a manifold with degrees of freedom at most
2(n − 1) − 1, the set of signals in Sn−1 which cannot be recovered uniquely by (3.2)
is a manifold of dimension at most 2(n − 1) − 1, which is strictly less than 2(n − 1).
Hence, almost all signals in Sn−1 can be uniquely recovered by solving (3.2).

(ii) Case II: k ≤ n − 1

Sk , i.e., the set of signals with aperiodic support and sparsity equal to k, has 2k

degrees of freedom (as each nonzero location can have a complex value and hence
can have 2 degrees of freedom). This can also be calculated as follows:

Consider the set of signals of length lx ≥ 3 which have zeros in the locations
{i1, i2, . . . , ilx−k } (the indices are arranged in increasing order, i1 ≥ 1 and ilx−k ≤

lx − 2 by definition). Since any x of length lx can be written as g ? h, where g
and h are signals of lengths l and lx − l + 1 for any 2 ≤ l ≤ lx − 1 (see proof of
Lemma 8.1.1), there must exist two signals g and h, of lengths l and lx − l + 1 for
any 2 ≤ l ≤ lx − 1 such that∑

r

gr hip−r = 0 ∀ 1 ≤ p ≤ lx − k (8.2)

and {g0, gl−1, hlx−l } , 0, h0 = 1. The degrees of freedom of the set of all possible
{g, h} which satisfy the system of equations (8.2) can be calculated as follows:
LetM1 be the manifold containing the set of all possible {g, h} which satisfy the
following set of equations:∑

r

gr hip−r = 0 ∀ 1 ≤ p ≤ z1, (8.3)
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where z1 is the maximum integer such that iz1 < l −1. Also, letM2 be the manifold
containing the set of all possible {g, h} which satisfy the following set of equations:∑

r

gr hip−r = 0 ∀ z1 + 1 ≤ p ≤ lx − k . (8.4)

The bilinear equations in (8.3) can be represented in the matrix form as

H1g = 0,

where g is the column vector {g0, g1, . . . , gl−1}
T andH1 is a z1 × l matrix containing

the corresponding entries of h given by (8.3). The matrix H1 can be obtained by
considering the rows corresponding to {i1, i2, . . . , iz1 } of the following matrix:



h0 0 0 ... ... 0 0
h1 h0 0 ... ... 0 0
h2 h1 h0 0 ... 0 0

...

...

... h1 h0 0



.

Note that rank(H1) = z1 for all choices of h due to the fact that the columns
corresponding to {i1, i2, . . . , iz1 } of H1 have a lower triangular structure and h0 = 1.
Since h is a vector of length lx− l+1 with h0 = 1, h has 2(lx− l) degrees of freedom.
g is a vector of length l and for each h, since each independent row of H restricts g
by one dimension in the complex space, or equivalently, 2 degrees of freedom, g can
have 2l −2× rank(H1) = 2l −2z1 degrees of freedom. Hence, the manifoldM1 has
2l − 2z1 + 2(lx − l) = 2(lx − z1) degrees of freedom. In other words, the manifold
M1 has lost 2z1 degrees of freedom (from the maximum possible 2lx degrees of
freedom).

Similarly, the bilinear equations in (8.4) can be represented in the matrix form as

H2g = 0,

where g is the column vector {g0, g1, . . . , gl−1}
T and H2 is a (lx − k − z1) × l matrix

containing the corresponding entries of h given by (8.4). The matrix H2 can be
obtained by considering the rows corresponding to {iz1+1, iz1+2, . . . , ilx−k } of the
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following matrix:


... ... ... h2 h1 h0
0 ... ... ... ... h2 h1
0 0 ... ... ... ... h2

...

... 0 hlx−l hlx−l−1

... 0 0 hlx−l


and hence rank(H2) = lx − k − z1 for all choices of h due to the fact that the
columns corresponding to {iz1+1, iz1+2, . . . , ilx−k } have an upper triangular structure
and hlx−l , 0. Since h is a vector of length lx − l + 1 with h0 = 1, h can
have 2(lx − l) degrees of freedom, and since g is a vector of length l, it can have
2l−2× rank(H2) = 2l−2(lx − k− z1) degrees of freedom. Hence, the manifoldM2

has 2l − 2(lx − k − z1) + 2(lx − l) = 2(k + z1) degrees of freedom. In other words,
the manifoldM2 has lost 2lx − 2(k + z1) degrees of freedom (from the maximum
possible 2lx degrees of freedom).

The number of degrees of freedom lost by the manifoldM1 ∩M2 is, in this case,
given by the sum of the number of degrees of freedom lost by the manifoldsM1

andM2, i.e., 2lx − 2k (see [Fan12] for a proof based on codimension). This can be
seen as follows: The total loss of degrees of freedom in the manifoldM1 ∩M2 is
given by the sum of the loss of degrees of freedom in each individual set minus the
degrees lost due to overcounting (due to the fact that some linear combinations of
the bilinear equations inM2 can be written as linear combinations of the bilinear
equations in M1 for all possible {g, h} considered in M1 (or vice versa)). Since
gl−1 , 0, by observing the coefficients of gl−1 in M1 and M2, it can be seen
that a necessary condition for some linear combinations of the bilinear equations
in M2 to be written as linear combinations of the bilinear equations in M1 for
all possible {g, h} considered inM1 is that the corresponding linear combinations
of {hilx−k−l+1, hilx−k−1−l+1, . . . , hiz1+1−l+1} must be zero for all h considered in M1.
Hence, if {hilx−k−l+1, hilx−k−1−l+1, . . . , hiz1+1−l+1} were to be chosen from a manifold
which has lost 2c degrees of freedom, at most c independent linear combinations
of {hilx−k−l+1, hilx−k−1−l+1, . . . , hiz1+1−l+1} could be zero (as each independent linear
combination reduces one dimension in the complex space, or equivalently, two
degrees of freedom), and hence removal of c independent linear combinations
of the bilinear equations in M2 will definitely make the two systems of bilinear
equations independent. Hence, the loss of degrees of freedom of M1 and M2 is
2z1 + 2c and at least 2lx − 2(k + z1) − 2c respectively (for any valid choice of c),
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because of which the loss of degrees of freedom ofM1 ∩M2 is at least 2lx − 2k.
Since for c = 0, this bound is tight, the degrees of freedom of the setM1 ∩M2 is
2k.

The set Sk is constructed by considering every possible choice of {i1, . . . , ilx−k, l, lx }

and taking a union of the corresponding {g, h}. Since the union of a finite number
of manifolds with degrees of freedom 2k is a manifold with degrees of freedom 2k,
Sk has 2k degrees of freedom.

Suppose x1 ∈ Sk , of length lx , is not recoverable by (3.2), then there must exist
another signal x2 of length lx , with sparsity less than or equal to k, which has the
same autocorrelation. At least lx−k locations in both x1 and x2 have a value zero, let
these locations be denoted by {i1, i2, . . . , ilx−k } and { j1, j2, . . . , jlx−k } respectively.
Then from Lemma 8.1.1, there must exist two signals g and h, of lengths l and
lx − l + 1 for some lx+1

2 ≤ l ≤ lx − 1, such that∑
r

gr hip−r = 0 &
∑

r

gr h?lx−l− jp+r = 0 (8.5)

and {g0, gl−1, hlx−l } , 0, h0 = 1.

Our strategy is the following: We will count the degrees of freedom of the set of all
possible {g, h}which satisfy (8.5) for some choice of {l, lx, i1, . . . , ilx−k, j1, . . . , jlx−k }

and show that it is strictly less than 2k if x1 has aperiodic support. First, we will
show that the degrees of freedom of this set is strictly less than 2k if there is some
1 ≤ p ≤ lx − k such that jp < {i1, i2, . . . , ilx−k }, i.e., when the two signals x1
and x2 have different support (as a consequence, for most signals, this proves that
(3.2) correctly identifies their support, irrespective of whether they have periodic
or aperiodic support). We then show that if there is no 1 ≤ p ≤ lx − k such that
jp < {i1, i2, . . . , ilx−k }, i.e., the two signals x1 and x2 have the same support, the
degrees of freedom is strictly less than 2k if the support of x1 (or equivalently x2) is
aperiodic.

The following arguments hold for any particular {l, lx, i1, . . . , ilx−k, j1, . . . , jlx−k }:

Suppose there exists at least one 1 ≤ p ≤ lx − k such that jp < {i1, i2, . . . , ilx−k }.
If jp < l − 1, construct the manifold M0

1 using the z1 + 1 bilinear equations
corresponding to the indices {i1, i2, . . . , iz1 } and jp. In matrix notation, these bilinear
equations can be represented as H3g = 0 where rank(H3) = z1 + 1 as the columns
corresponding to the indices {i1, i2, . . . , iz1, jp} (rearrange the indices in increasing
order) has a lower triangular structure and h0 = 1, hlx−l , 0. Hence,M0

1 has lost
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2(z1 + 1) degrees of freedom. The manifoldM0
2 can be constructed the same way

asM2 and henceM0
2 has lost 2lx − 2(k + z1) degrees of freedom. Due to the same

arguments as in the case ofM1∩M2,M0
1 ∩M

0
2 loses 2(z1 + 1) + 2lx − 2(k + z1) =

2lx − 2k + 2 degrees of freedom, i.e., has 2k − 2 degrees of freedom. If jp ≥ l − 1,
the arguments can be repeated by incorporating the bilinear equation corresponding
to jp inM0

2 instead ofM
0
1 to see thatM

0
1 ∩M

0
2 has strictly less than 2k degrees of

freedom.

By considering every possible choice of {lx, l, i1, i2, . . . , ilx−k, j1, j2, . . . , jlx−k } such
that there is some 1 ≤ p ≤ lx − k such that jp < {i1, i2, . . . , ilx−k }, and taking a union
of the corresponding {g, h}, we see that the set of signals x1 ∈ Sk which cannot be
recovered by (3.2), due to the fact that there exists another (≤ k)-sparse signal which
has the same autocorrelation and different support, is a manifold with degrees of
freedom strictly less than 2k.

Suppose there is no 1 ≤ p ≤ lx − k such that jp < {i1, i2, . . . , ilx−k }. This is
the case when x1 and x2 have the same support and the same autocorrelation.
The manifoldM1

1 is constructed using the 2z1 equations corresponding to the in-
dices {i1, j1, i2, j2, . . . , iz1, jz1 } (the corresponding equations in matrix notation being
H5g = 0) and the manifoldM1

2 is constructed using the 2(lx − k − z1) equations cor-
responding to the indices {iz1+1, jz1+1, . . . ilx−k, jlx−k } (the corresponding equations
in the matrix notation being H6g = 0).

In this case, rank(H5) ≥ z1 for all choices of h. For the choices of hwith rank(H5) ≥
z1+1, the manifoldM1

1 loses at least 2(z1+1) degrees of freedom, because of which
M1

1 ∩M
1
2 will have at most 2k − 2 degrees of freedom due to the same arguments

as in the case ofM1 ∩M2. For the choices of h with rank(H) = z1, we will show
that the degrees of freedom corresponding to the entry hlx−l will go down by at least
one if x1 has aperiodic support, because of whichM1

2 will lose 2z1 + 1 degrees of
freedom, and henceM1

1 ∩M
1
2 will have at most 2k − 1 degrees of freedom.

Consider every 2 × 2 submatrix involving the first two rows of H5. If even one
of them is full rank, then the rank of H5 would be at least z1 + 1. If the rank
of all such submatrices are 1, then they have to satisfy equations of the form
h?lx−l h1 = h0h?lx−l−1, and so on. This equation, for example, removes at least one
degree of freedom for hlx−l unless h1 = hlx−l−1 = 0. By considering every 2 × 2
submatrix involving the first two rows ofH5 and involving the column corresponding
to i1, we can conclude that there is a loss in the degrees of freedom of hlx−l unless
hi1 = hi1−1 = ... = h1 = 0. In this event, the first two rows become equivalent to the
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condition gi1 = 0 as h0 = 1. By considering the third and fourth row and repeating
the same arguments, we can conclude that there is a loss in the degrees of freedom
of hlx−l unless gi2 = 0. Continuing similarly, we see that a necessary condition for
the degrees of freedom of hlx−l to not go down when rank(H5) = z1 is: gip = 0
for all 1 ≤ p ≤ z1. The arguments can be repeated exactly the same way using
H6 (going from last row to first as it is upper triangular) to get a further necessary
condition hip−l+1 = 0 for all z1 + 1 ≤ p ≤ lx − k.

We have established that there is a loss of degrees of freedom of hlx−l unless h has
lx − k − z1 particular entries with value 0 and g has z1 particular entries with value
0. Consider the set of all possible {g, h} such that gip = 0 for all 1 ≤ p ≤ z1 and
hip−l+1 = 0 for all z1 + 1 ≤ p ≤ lx − k. The set of the signals g? h obtained from
such g and h is a manifold with 2k degrees of freedom. We will show that most of
these signals have a sparsity strictly greater than k if the support of x1 is aperiodic,
which will complete the proof as the degrees of freedom of the set of such {g, h}
which satisfy (8.5) has to further reduce by at least one in order to meet the sparsity
constraints.

Consider the set of all g that have nonzero entries in the indices {u0 = 0, u1, . . . , ua−1}

(and zero in other indices) and the set of all h that have nonzero entries in the indices
{v0 = 0, v1, . . . , vb−1} (and zero in other indices). Then, almost surely (the set of
violations is measure zero), the set of all possible g?h will have nonzero entries in
the following a + b − 1 locations: {u0 = 0, u1, . . . , ua−1, ua−1 + v1, . . . , ua−1 + vb−1}.
If there has to be no more locations with nonzero entries almost surely: Consider
the terms of the form ua−2 + vp for 0 ≤ p ≤ b − 1. Since there can be b such
terms, and all of them are greater than ua−3 and lesser than ua−1 + vb−1, they have
to precisely be equal to the following b terms in the same order: {ua−2, ua−1, ua−1 +

v1, . . . , ua−1 + vb−2}. This gives the condition that vp − vp−1 is equal to ua−1 − ua−2

for all 1 ≤ p ≤ b − 1. Similarly, by observing that the following a + b − 1 locations
{v0 = 0, v1, . . . , vb−1, vb−1 + u1, . . . , vb−1 + ua−1} almost surely have nonzero values
and considering terms of the form vb−2 + up for 0 ≤ p ≤ a − 1, we get the condition
that up − up−1 is equal to vb−1 − vb−2 for all 1 ≤ p ≤ a − 1. Hence, if the signal has
aperiodic support, then almost all g? h have strictly greater than a + b − 1 nonzero
entries. Substituting a = l − z1 and b = k + z1 − l + 1, we see that a + b − 1 = k

and hence, almost always, the resulting convolved signal has sparsity strictly greater
than k.

By considering every possible choice of {lx, l, i1, i2, . . . , ilx−k, j1, j2, . . . , jlx−k, } such
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that there is no 1 ≤ p ≤ lx−k such that jp < {i1, i2, . . . , ilx−k } and taking the union of
the corresponding {g, h}, we conclude that the set of signals x1 ∈ Sk which cannot
be recovered by (3.2), due to the fact that there exists another signal with the same
autocorrelation and same support, is a manifold with degrees of freedom strictly
less than 2k.

Hence, we have shown that (3.2) can recover almost all sparse signals with aperiodic
support for every sparsity k such that k ≤ n − 1.

8.2 Proof of Theorem 3.3.2
In this section, V is a subset of {0, 1, . . . , n − 1}, constructed as follows: For each
0 ≤ i ≤ n − 1, i belongs to the support independently with probability s

n . In order
to resolve the trivial ambiguity due to time-shift, we will shift the set so that i = 0
belongs to the support. Let these entries be denoted by V = {v0, v1, . . . , vk−1}. We
have v0 = 0, which will ensure V ⊆ W . The distribution of V (if the time-shift was
c units) is as follows: 0 ∈ V with probability 1. For all 0 < i < n − c, i ∈ V with
probability s

n independently, and for all i ≥ n − c, i ∈ V with probability 0. Hence,
irrespective of the value of the time-shift c, the following bound can be used: For
any i > 0, i ∈ V with probability less than or equal to s

n independently.

Instead of resolving the trivial ambiguity due to flipping, we will use the following
proof strategy (as the distribution of V is easier to work with compared to U):
We will show that if the steps of the support recovery algorithm are done using
entries of the form v0i, the failure probability can be bounded by O(n−0.1ε ). The
same arguments can be used to show that if the steps are done using entries of the
form vk−i−1,k−1, the failure probability can be bounded by O(n−0.1ε ). Since u0i is
either equal to v0i or vk−i−1,k−1, this would imply that if the steps are done using
entries of the form u0i, the support recovery algorithm will succeed with the desired
probability.

Lemma 8.2.1. The probability that an integer l > 0, which does not belong to V ,
belongs to W is bounded by O

(
s2
n

)
.

Proof. For l ∈ W to happen, there must exist at least one g such that g, g + l ∈ V .
Hence,

Pr {l ∈ W } = Pr
{ n−l−1⋃

g=0
g, g + l ∈ V

}
.

There can be two cases:
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(i) g = 0: In this case, Pr {g, g + l ∈ V } = Pr {l ∈ V }.

(ii) g > 0: In this case, for each g, Pr {g, g + l ∈ V } ≤
(

s
n

)2
due to independence.

Also, since g can take at most n − l distinct values, by union bound, we have:

Pr {l ∈ W } =
n−l−1∑
g=0

Pr
{
{g, g + l} ∈ V

}
≤ Pr {l ∈ V } +

s2

n
.

Pr {l ∈ W } can be written as:

Pr {l ∈ W |l ∈ V }Pr {l ∈ V } + Pr {l ∈ W |l < V }Pr {l < V }.

Since Pr {l ∈ W |l ∈ V } = 1 (as 0, l ∈ V ), we have

Pr {l ∈ W |l < V } =
Pr {l ∈ W } − Pr {l ∈ V }

Pr {l < V }
.

Using the fact that Pr {l < V } ≥ 1 − s
n , we can obtain the following bound:

Pr {l ∈ W |l < V } ≤
s2
n

1 − s
n
= O *

,

s2

n
+
-
. (8.6)

In fact, since s ≤ n
1
2 , we have s

n ≤
1

n
1
2
which is less than 1

2 for n ≥ 4. Consequently,

we have the upper bound 2s2
n for n ≥ 4. �

Lemma 8.2.2 (Intersection Step). The probability that an integer l > v01, which
does not belong to V , belongs to W ∩ (W + v01) is bounded by O

(
s4
n2

)
.

Proof. We can write

Pr {l ∈ W ∩ (W + v01)} = Pr { l, l − v01 ∈ W }

=
∑

d

Pr {v01 = d} × Pr { l, l − d ∈ W |v01 = d}.

For the two events l, l−d ∈ W to happen, there has to be some g such that g, g+l ∈ V

(this explains the event l ∈ W ) and some h such that h, h + l − d ∈ V (this explains
the event l − d ∈ W ). Since we are conditioning on v01 = d, note that 0, d ∈ V , and
1, 2, . . . , d − 1 < V and for all i > d, i ∈ V with probability less than or equal to s

n

independently.

Case I: d , l
2

The events l, l − d ∈ W can happen due to one of the following cases:
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(i) There exists some integer g whose presence in V , using 0, d ∈ V , explains both
the events l ∈ W and l − d ∈ W . g = l is the only integer which comes under this
case (i.e., if l ∈ V , then both the events can be explained). The probability of this
case happening is Pr {l ∈ V }.

(ii) There exists some distinct pair of integers {g, h} whose presence in V , using
0, d ∈ V , explains both the events l ∈ W and l − d ∈ W . There are at most three
possibilities: {g, h} = {{l − d, l + d}, {l, l − d}, {l, l + d}} (possibilities involving l − d

can happen only for l > 2d, hence there is only one possibility for l < 2d). The
probability of each of these possibilities can be bounded s2

n2 , hence the probability
of this case happening is bounded by 3s2

n2 .

(iii) There exists some integer g whose presence in V , using 0, d ∈ V , explains
exactly one of the events l ∈ W or l − d ∈ W . There are two possibilities as g can
be {l − d, l + d} (possibilities involving l − d can happen only for l > 2d, there
is only one possibility for l < 2d), and hence the probability of this happening is
less than or equal to 2s

n . Consider the possibility where l + d ∈ V (happens with
probability at most s

n and the event l − d ∈ W has to be explained). This can happen
if 2l ∈ V or 2d ∈ V as they are separated from l + d by l − d (the probability of
this happening is bounded by 2s

n ) or there exists an integer h such that h, h + l ∈ V ,
where both {h, h + l} are distinct from {0, d, l + d} (h can be chosen in at most n

different ways and for each h, the probability is bounded by s2
n2 , the probability of

this happening can hence be bounded by s2
n ). The same arguments hold for the

l − d case too. Hence, the probability of this case happening is upper bounded by
2 ×

(
s
n

) (
s2
n +

2s
n

)
= 2s3

n2 +
4s2
n2 .

(iv) Both the events l ∈ W and l−d ∈ W are explained by integers inV not involving
0, d ∈ V . This can happen in two ways:

(a) There exists integers g and h such that g, g+ l, h, h+ l − d are distinct and belong
to V . In this case, g can be chosen in at most n different ways and for each g, the
probability of g, g + l ∈ V is bounded by s2

n2 . Similarly, h can be chosen in at most n

different ways and for each h, the probability of h, h + l − d ∈ V is bounded by s2
n2 .

The probability of this case is hence upper bounded by n2 × s4
n4 =

s4
n2 .

(b) There exists integers g and h such that {g, g + l, h, h + l − d} belong to V and
only three of them are distinct (there is an overlap). This overlap can happen in four
ways: g = h, g + l = h, g = h + l − d or g + l = h + l − d. g can be chosen in n

different ways as in the previous case, and for each g, the probability of g, g + l ∈ V
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is bounded by s2
n2 . However, for each g, only 4 choices of h are valid as there are four

ways of overlap. Also, the probability of h, h+ l − d ∈ V conditioned on g, g+ l ∈ V

is bounded by s
n as one of {h, h + l − d} already belongs to V due to overlap, and

the other can belong to V with probability at most s
n due to independence. The

probability of this case is hence upper bounded by 4 × n × s3
n3 =

4s3
n2 . Note that the

overlap requirement has reduced the choice of h from n to 4 and increased the bound
on the probability of h, h + l − d ∈ V from s2

n2 to
s
n .

Case II: d = l
2

In this case, the event d ∈ W is already explained by 0, d ∈ V and hence only
2d ∈ W has to be explained. This can happen due to one of the following cases:

(i) There exists some integer g whose presence in V , using 0, d ∈ V , can explain
2d ∈ W . g = {2d, 3d} are the two possibilities, hence the probability of this case is
upper bounded by 2 × s

n =
2s
n .

(ii) The event 2d ∈ W is explained by integers not involving 0, d ∈ V . This can
happen when there is an integer g such that g, g+2d ∈ V . As earlier, the probability
of this event can be bounded by s2

n as g can take at most n distinct values and for
each value of g, the probability is less than or equal to s2

n2 .

Pr {l, l − d ∈ W |v01 = d} can be upper bounded, by summing all the aforementioned
probabilities. For d , l

2 , we have the bound s4
n2 +

6s3
n2 +

7s2
n2 + Pr {l ∈ V }. For

d = l
2 , similarly, we have the upper bound s2

n +
2s
n . Since Pr {v01 = l/2} ≤ s

n and∑
d,l/2 Pr {v01 = d} ≤ 1, we have

Pr {l ∈ W ∩W1} ≤
c2s4

n2
+ Pr {l ∈ V }

for some constant c2. By using the same arguments as (8.6), we get

Pr {l ∈ W ∩W1 |l < V } = O *
,

s4

n2
+
-
.

�

Lemma 8.2.3. V = 0∪ (W ∩ (W +v01)) holds with probability at least 1−O(n−0.1ε )
when 0 < θ ≤ 1

5 .

Proof. Since all nonzero l ∈ V also belong to (W ∩ (W + v01)) by construction
(Intersection Step), it suffices to bound the probability that some l < V belongs to
(W ∩ (W + v01)).
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Let T be a random variable defined as the number of integers, that do not belong to
V , that belong to the set (W ∩ (W + v01)). Pr {T ≥ 1} can be bounded as follows:

E[T] =
∑

l

Pr {l ∈ (W ∩ (W + v01)) |l < V }.

From Lemma 8.2.2, we have

E[T] ≤ n ×O *
,

s4

n2
+
-
= O(n−0.2)

when s ≤ n1/5. Using Markov inequality, we get

Pr {T ≥ 1} ≤
E[T]
1
= O(n−0.2)

and hence T is 0 with probability at least 1 −O(n−0.1ε ). �

Lemma 8.2.4 (Multiple Intersection Step). The probability that an integer l >

v0t , which does not belong to V , belongs to
(⋂t

p=0(W + v0p)
)
is bounded by

O *.
,
s
(

s2
n

) 1
4 t

1
2 +/

-
for t = 3

√
log(s).

Proof. This lemma, which takes into account multiple intersections, is a general-
ization of Lemma 8.2.2. The bounds derived in this lemma are very loose, but
sufficient for the proof of Theorem 3.3.2.

As in Lemma 8.2.2, we have Pr {l ∈
(
∩t

p=0(W + v0p)
)
}

=
∑

d1,d2...,dt

(Pr {v0p = dp : 0 ≤ p ≤ t}×

Pr { {l − dp : 0 ≤ p ≤ t} ∈ W |v0p = dp : 0 ≤ p ≤ t}),

where d0 = 0. Note that the integers {dp : 0 ≤ p ≤ t} have unique pairwise distances
with probability at least 1 −O(n−

1
4 ). This can be seen as follows: For some {i1, j1}

and {i2, j2} (without loss of generality j2 > j1) (i) If i2 > j1 (the intervals do not
overlap), Pr {di2 j2 = di1 j1 } ≤

s
n due to independence. (ii) If i2 < j1, di2 j2 = di1 j1 can

equivalently be written as d j1 j2 = di1i2 which involves non-overlapping intervals.
Hence the probability can still be bounded by s

n . Since there are (t + 1)4 ways of
choosing {i1, j1, i2, j2}, the probability that the pairwise distances of {dp : 0 ≤ p ≤ t}

are not distinct can be upper bounded by (t+1)4s
n = O(n−

1
4 ). Since this probability

is less than O(n−
ε
5 ), which is the error probability we are aiming for, the pairwise
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distances of {dp : 0 ≤ p ≤ t} are assumed to be distinct in the rest of the proof
without loss of generality.

Wewill bound the probabilitywithwhich the t+1 events {l−dp : 0 ≤ p ≤ t} ∈ W can
happen, conditioned on {v0p = dp : 0 ≤ p ≤ t}, or equivalently, 0, d1, d2, . . . , dt ∈ V ,
no other {0 ≤ i ≤ dt } belong to V . For i > dt , i ∈ V happens with probability less
than or equal to s

n independently.

Since 0, d1, d2, . . . , dt ∈ V , they can explain some of the t + 1 events due to pairwise
distances among themselves. These integers cannot explain more than t+1

2 events
due to pairwise distances among themselves, which can be seen as follows: Suppose
there exists a 0 ≤ p ≤ t such that dp − di1 = l − d j1 and dp − di2 = l − d j2 for some
{i1, j1, i2, j2} (where i1 and i2 are distinct), by subtracting, we get di2−di1 = d j2−d j1 ,
which is a contradiction. Hence, for each dp, there can be at most one i such that
dp − di can explain one of the t + 1 events. Consider a graph with t + 1 nodes such
that each term dp for 0 ≤ p ≤ t corresponds to a node. Draw an edge between two
nodes {p, i} in this graph if dp − di can explain one of the t + 1 events. Since no
vertex in this graph can have a degree greater than 1, this graph can have at most t+1

2
edges, because of which 0, d1, d2, . . . , dt ∈ V can explain at most t+1

2 events due to
pairwise distances among themselves.

Hence, at least t+1
2 events must be explained by other integers greater than dt in V .

This can happen due to one of the following cases:

(i) There exists some integer g whose presence in V , using 0, d1, d2, . . . , dt ∈ V ,
explains at least two of the t + 1 events {l − dp : 0 ≤ p ≤ t} ∈ W . g = l is the
only integer which comes under this case, which can be seen as follows: If for some
g, we have g − di1 = l − d j1 and g − di2 = l − d j2 for some {i1, j1, i2, j2}, then by
subtracting, we get di1 − di2 = d j1 − d j2 which is a contradiction unless i1 = i2 and
j1 = j2. Hence, l ∈ V is the only possibility, the probability of this case is given by
Pr {l ∈ V }.

Let G1 be the set of integers g whose presence in V , using only integers from
0, d1, d2, . . . , dt ∈ V , can explain exactly one of the t + 1 events. The size of this set
is less than or equal to (t + 1)2: For any g to belong to this set, it has to be a distance
l − d j away from some integer di, where 0 ≤ i, j ≤ t. Hence, there can be at most
(t + 1) × (t + 1) such integers.

(ii) Consider the case where at least t+1
4 of the events are explained by integer pairs

in V such that one integer is in G1 and the other is in {0, d1, d2, . . . , dt }. Since the
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number of ways in which c integers in G1 can be chosen is bounded by (t + 1)2c, the
probability of this case is bounded by

(t+1)2∑
c= t+1

4

(t + 1)2c
( s

n

)c
≤ (t + 1)2+2(t+1)2

( s
n

) t+1
4
,

as each term involved in the summation can be bounded by (t + 1)2(t+1)2
(

s
n

) t+1
4 .

More integers might be required to be present in V to explain all the events, which
might decrease the probability of this case further. However, this bound is sufficient.
Since t = 3

√
log(s), we can write (t + 1)2+2(t+1)2 = O(s). The probability of this

case is hence bounded by O(s
(

s
n

) t+1
4 ).

If less than t+1
4 events are explained by integer pairs in V such that one integer is

in G1 and the other is in {0, d1, d2, . . . , dt }: Since the integers in G1 can explain at
most t+1

4 events using 0, d1, d2, . . . , dt ∈ V , at least t+1
4 events must be explained by

integer pairs in V such that both the integers in the pair are greater than v0t .

(iii) At least t+1
4 events are explained by pairs of integers not involving {0 ≤ i ≤

dt } ∈ V . This can happen in two ways:

(a) There exist integers {g1, g2, . . . , g t+1
4
} such that {g1, g1 + l − dp1, g2, g2 + l −

dp2, . . . , g t+1
4
, g t+1

4
+ l − dp t+1

4
} are distinct and belong to V . In this case, each gi can

be chosen in n ways and the probability of gi, gi + l − dpi ∈ V is bounded by s2
n2 . The

probability of this case is hence bounded by
(

s2
n

) t+1
4
.

(b) There exist integers {g1, g2, . . . , g t+1
4
} such that {g1, g1 + l − dp1, g2, g2 + l −

dp2, . . . , g t+1
4
, g t+1

4
+l−dp t+1

4
} are not distinct. The following steps are a generalization

of this case in Lemma 8.2.2: Consider a graph of t+1
4 vertices where each node

corresponds to a pair {gi, gi + l − dpi }. An edge is drawn between vertices {i, j} if
{gi, gi + l − dpi } and {g j, g j + l − dpj } overlap, i.e., have an integer in common. This
can happen due to 4 different cases, as in Lemma 8.2.2. Hence, between each pair
{i, j}, there are at most 5 possibilities, which bounds the total number of possibilities
by 5t2 .

For this graph, the following can be said: (i) The number of distinct integers in
{g1, g1 + l − dp1, g2, g2 + l − dp2, . . . , g t+1

4
, g t+1

4
+ l − dp t+1

4
}, say c, must be at least

1
2 t

1
2 . (ii) The number of forests in the graph is less than or equal to c

2 (as each forest
must have at least two distinct integers).
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Since the number of gi which can be chosen in n different ways is equal to the
number of forests in the graph and the rest of the gi get fixed due to overlap, the
probability of this case can be bounded by

2t∑
c= 1

2 t
1
2

5t2n
c
2

( s
n

)c
≤ 2t(5t2 ) *

,

s2

n
+
-

1
4 t

1
2

.

Since 2t(5t2 ) = O(s), the probability of this case can be bounded by O(s
(

s2
n

) 1
4 t

1
2

).

Since the expressions are independent of {d0p : 1 ≤ p ≤ t}, we have the following
bound for Pr {l ∈

(
∩t

p=0(W + v0p)
)
}:

Pr {l ∈ V } +O
*...
,

s
( s

n

) t+1
4
+ s *

,

s2

n
+
-

1
4 t

1
2

+ *
,

s2

n
+
-

t+1
4 +///

-

,

which can be simplified as O *.
,
s
(

s2
n

) 1
4 t

1
2 +/

-
+ Pr {l ∈ V }.

Conditioning on l < V , using the same argument as (8.6), we have the following
bound:

Pr {l ∈
(
∩t

p=0(W + v0p)
)
| l < V } = O

*...
,

s *
,

s2

n
+
-

1
4 t

1
2 +///

-

.

�

Lemma 8.2.5. V = {v00, v01, . . . , v0,t−1} ∪
(⋂t

p=0(W + v0p)
)
holds with probability

at least 1 −O(n−0.1ε ) when t = 3
√
log(s) and 0 < θ ≤ 1

2 − ε .

Proof. The proof is identical to Lemma 8.2.3. Let T be a random variable de-
fined as the number of integers, that do not belong to V , that belong to the set(⋂t

p=0(W + v0p)
)
. Pr {T ≥ 1} can be bounded as follows:

E[T] =
∑

l

Pr {l ∈
(
∩t

p=0(W + v0p)
)
|l < V }

= O
*...
,

ns *
,

s2

n
+
-

1
4 t

1
2 +///

-

∈ O
*...
,

ns *
,

s2

n
+
-

1
4

6√log(nε )+///
-

.
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This can be further upper bounded by O(n−0.1ε ), since the expression is of the form
O(n

3
2−

ε
2

6√ε log(n)). Using Markov inequality, we get

Pr {T ≥ 1} ≤
E[T]
1
= O(n−0.1ε ),

which completes the proof. �

Lemma 8.2.6 (Graph Step). In the graph G({0} ∪ (W ∩ (W + v01)),W ), integers
{v0p : 1 ≤ p ≤ t = 3

√
log(s)} have an edge with v0,k−1 with probability at least

1 −O(n−0.1ε ) when 1
5 ≤ θ ≤

1
2 − ε .

Proof. For any p such that 1 ≤ p ≤ t, the terms v0p and v0,k−1 have a difference
vp,k−1. For there to be no edge between v0p and v0,k−1, another integer pair in
{0} ∪ (W ∩ (W + v01)) should have the same difference. For this to happen, at
least one of the integers in this integer pair should be greater than vp,k−1. The only
integers greater than vp,k−1 in W can be terms of the form {vi j : 0 ≤ i ≤ p−1, j > i}.
These terms can be split into two cases:

(i) j ≤ k − s
ε
2 : Note that Pr {v0t > v

k−s
ε
2 ,k−1} = O(s−

ε
2 ) if t = 3

√
log(s). This can be

shown as follows: v0t concentrates around its mean tn
s with a variance bounded by

2tn2
s2 . v

k−s
ε
2 ,k−1 concentrates around its mean s

ε
2 n
s with a variance bounded by 2s

ε
2 n2
s2 .

Chebyshev’s inequality completes the proof. Using this, we see that

vi j ≤ v0t + vpj < v
k−s

ε
2 ,k−1 + vp,k−s

ε
2
= vp,k−1

with probability at least 1 − O(s−
ε
2 ). Hence, with probability O(n−0.1ε ), one or

more of these terms can be the greater term in an integer pair which can produce a
difference vp,k−1.

(ii) k − s
ε
2 < j: There are at most ts

ε
2 such terms and p can be chosen in t different

ways. For each of these terms and each choice of p, vi j − vp,k−1 = vip − v j,k−1 can
belong to W ∩ (W + v01) with a probability at most O

(
(t2 + sε )( 1s +

s2
n )

)
(Lemma

8.2.7 and Corollary 8.2.1), hence the probability that at least one of these terms will
belong toW∩(W+v01) can be union bounded bymultiplying this probability by t2s

ε
2 .

This probability is therefore bounded byO
(

s1.6ε
s +

s2+1.6ε
n

)
using t2 = O(s0.1ε ). Since

n
1
5 < s ≤ n

1
2−ε , this is simplified as O

(
n−

1
5 (1−1.6ε ) + n(1+0.8ε )(1−2ε )−1

)
= O(n−0.1ε )

due to ε ≤ 0.3.

Hence, with probability at least 1 −O(n−0.1ε ), there will be no other integer pair in
{0} ∪ (W ∩ (W + v01)) with a difference vp,k−1 for each 1 ≤ p ≤ t, because of which
there will be an edge between v0p and v0,k−1 for each 1 ≤ p ≤ t. �
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Lemma 8.2.7. The probability that {v0p − vk−1−q,k−1} ∈ W , for any 0 < p, q < s
4 , is

bounded by O
(
(p2 + q2)

(
1
s +

s2
n

))
.

Proof. We can write Pr {{v0p − vk−1−q,k−1} ∈ W } as∑
d1,d2,l

Pr {{v0p, vk−1−q,k−1, v0,k−1} = {d1, d2, l}}

×Pr {d1 − d2 ∈ W |v0p = d1, vk−1−q,k−1 = d2, v0,k−1 = l}.

The distribution of V , conditioned by v0p = d1, vk−1−q,k−1 = d2, and v0,k−1 = l is
as follows (note that we are not conditioning on the exact value of k as k ≥ s

2 is
sufficient for this proof): v0p = d1 ensures that there are p − 1 integers in between
1 and d1 − 1 (call this region R1), the p − 1 elements will be uniformly distributed
in R1. Similarly, vk−1−q,k−1 = d2 ensures that there will be q − 1 integers uniformly
distributed in the range l − d2 + 1 to l − 1 (call this region R3). Since we have
not fixed k to any particular value, the probability that an i in the range d1 + 1 to
l−d2−1 (call this region R2) will belong toV can be bounded using an independent
Bern( cs

n ) distribution, for some constant c.

For d1 − d2 to belong to W , there must be a pair of integers g, g + d1 − d2 ∈ V . This
can happen in the following ways:

(i) If both g, g + d1 − d2 ∈ V are in (a) R2: the probability of this happening (using
arguments similar to Lemma 8.2.1) can be upper bounded by c2s2

n2 × l ≤ c2s2
n . (b)

R1: the probability of this is bounded by (p−12 )
(d1−12 )

× (d1 − 2) ≤ (p−1)2
(d1−1) . (c) R3: this

probability is, similarly, bounded by (q−1)2

(d2−1) .

(ii) If g, g + d1 − d2 ∈ V are such that (a) one of them is in R1 and the other is in
R2: the probability of this is bounded by (p−1)

(d1−1) ×
cs
n × (d1 − 1) which can be upper

bounded by pcs
n . (b) one of them is in R2 and the other is in R3: this probability is

similarly upper bounded by qcs
n . (c) one of them is in R1 and the other is in R3: the

probability of this is bounded by (q−1)
(d2−1)

(p−1)
(d1−1) × (d2 − 1) or (q−1)

(d2−1)
(p−1)
(d1−1) × (d1 − 1).

(iii) If one of g or g + d1 − d2 is in {0, d1, l − d2, l}: the other can be chosen in at
most six ways, this probability can be upper bounded by O( s

n +
p−1
d1−1 +

q−1
d2−1 ).

The summation of the probabilities can be bounded by O( s2
n +

(p−1)2
d1−1 +

(q−1)2

d2−1 ). The
term s2

n doesn’t depend on {d1, d2, l} and since
∑

d1,d2,l Pr {{v0p, vk−1−q,k−1, vk−1} =

d1, d2, l} ≤ 1, this bound remains the same after the summation. The term (p−1)2
d1−1
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depends on d1 and the summation can be bounded as follows:∑
2≤d1≤ n

s2

Pr {v0p = d1}
1

d1 − 1
+

∑
d1> n

s2

Pr {v0p = d1}
1

d1 − 1
.

In the first sum, Pr {v01 = d1} can be bounded by O( s
n ) and 1

d1−1 can be bounded by
1. In the second sum, 1

d1−1 can be bounded by s2
n and

∑
d1> n

s2
Pr {v0p = d1} can be

bounded by 1, to bound the total summation by p2O
(
1
s +

s2
n

)
. Similarly, the term

involving d2 can be bounded by q2O
(
1
s +

s2
n

)
.

(iv) Both g and g + d1 − d2 are in {0, d1, l − d2, l}. This can happen only when:
l = 2d1 or l = 2d1 − d2 or d1 = 2d2. The probability of each of these happening is
bounded by O( s

n ).

Hence, the total probability can be upper bounded by O
(
(p2 + q2)

(
1
s +

s2
n

))
. �

Corollary 8.2.1. The probability that {vr1p ± vk−1−q,k−1−r2 } ∈ W , for some 0 ≤ r1 <

p, 0 ≤ r2 < q and any 0 < p, q < s
4 is bounded by O

(
(p2 + q2)

(
1
s +

s2
n

))
.

Remark: The proof also works for the case when the k locations of the support
are chosen uniformly at random, if k ≤ n

1
2−ε . This is due to the fact that all the

probability upper bounds derived in this section still hold true up to a constant
scaling. For example, the probability that g, g + l ∈ V for l > 0 can be bounded
by (k2)

(n2)
≤

(
k

n/2

)2
=

(
2k
n

)2
. This probability is bounded by

(
s
n

)2
in the BN (n, θ)

setting. Even though the events i ∈ V are no longer independent, the bounds will be
identical up to a constant scaling.

8.3 Proof of Theorem 3.3.3
The lemmas in this section assume that the sparse signal is drawn from theBN (n, θ)
distribution, where the parameter θ satisfies 0 < θ ≤ 1

2−ε for some positive constant
ε . The events in this section are conditioned with respect to a fixed k ≥ log6(s).
Consequently, the probability that i ∈ V is bounded by O( k

n ), and the probability
that i, j ∈ V is bounded by O( k2

n2 ) (see Remark at the end of the proof of Theorem
3.3.2).

Consider the following matrix completion problem: Let R0 = rr? be a positive
semidefinite t × t matrix with all the off-diagonal components known, where r =
(r0, r1, . . . , rt−1) is a t×1 vector. The objective is to recover the diagonal components
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(robustly) by solving a convex program. Since R is positive semidefinite, any 2 × 2
submatrix of R is also positive semidefinite. Consider the convex program

minimize trace(R) (8.7)

subject to Rii R j j ≥ ( |ri | |r j |)2 ∀ i , j

Rii ≥ 0 ∀ i.

Lemma 8.3.1. R0 = rr? is the unique optimizer of (8.7) with probability at least
1 −O(te−

t
4 ).

Proof. Suppose R0 = rr? is not the unique optimizer of (8.7). If R† , R0 is the
optimizer, then there exists at least one i such that R†ii < |ri |

2. For this i, R†ii can then
be expressed as (1 − γ) |ri |

2 for some γ > 0. The constraints of (8.7) corresponding
to Rii (i.e., Rii R j j ≥ ( |ri | |r j |)2 for all j , i) will ensure that all other diagonal
components R j j, j , i be greater than or equal to 1

1−γ |r j |
2, which also implies that

R j j is greater than (1 + γ) |r j |
2 (as 1

1−γ > 1 + γ) . The objective function value at
the optimum can be written as

trace(R†) =
i=t∑
i=1

R†ii >
∑

j

|r j |
2 + γ(

∑
j,i

|r j |
2 − |ri |

2).

If we can ensure that (
∑

j,i |r j |
2 − |ri |

2) > 0 for all i, we are through because
trace(R†) is greater than

∑
j r2j , which is a contradiction. Since the signal values

in the support are chosen from an i.i.d. standard complex normal distribution, the
quantity

√∑
j,i |r j |

2 concentrates around
√

t − 1 (see the proof of Lemma 5.33 in

[Ver10]), the probability that |ri | ≥

√
t−1
2 is bounded by O(e−

t
4 ). Union bounding

over all i, we obtain the bound O(te−
t
4 ). �

Lemma 8.3.2. The probability that there exists an edge between any two particular
vertices in H (U) is at least 1 −O

(
k2
n

)
.

Proof. Consider any pair of integers {i, j}. There will be no edge between their
corresponding vertices if there exists another pair of integers g, g + j − i ∈ V . For
any particular g such that {g, g+ j − i} are distinct from both i and j, g, g+ j − i ∈ V

happens with probability at most O
(

k2
n2

)
. Since g can be chosen in at most n distinct

ways, this probability can be bounded by O( k2
n ). If one of {g, g + j − i} is equal to i

or j, then there are two possibilities and the probability of each of the possibilities
can be bounded by O( k

n ). Hence, the probability that there is no edge between any
two particular vertices can be bounded by O( k2

n +
2k
n ) = O( k2

n ). �
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Lemma 8.3.3. Suppose dmin(H (U)) denotes the minimum degree of the graph
H (U), then dmin(H (U)) ≥ k (1 − 1/t) where t = log2(s), with probability at least
1 −O(n−1). Such a graph also has a Hamiltonian cycle.

Proof. Consider a vertex ui. Construct a graph Hi from H (U) by removing all
the edges which do not involve the vertex ui. Let us consider the vertex exposure
martingale [AS15; JOH12a] on this graph Hi with the graph function d(ui), where
d(u) denotes the degree of the vertex u. Let Fj be the induced subgraph of Hi formed
by exposed vertices after j exposures. We define a martingale X0, X1, . . . , Xk−1 as
follows:

X j = E[d(ui) |Fj]

We have X0 = E[d(ui)] ≥ k (1−O( k2
n )) and Xk−1 = d(ui). Note that |X j+1 − X j | ≤

1 ∀ 0 ≤ j ≤ k − 2. Azuma’s inequality [AS15] gives us

Pr {d(ui) < E[d(ui)] − λ} ≤ 2e−λ
2/2k

for λ > 0. Choosing λ = k
(
1
t −O( k2

n )
)
and t = log2(s), we get

Pr {d(ui) < k
(
1 −

1
t

)
} ≤ 2e

− k
2

(
1
t −O( k

2
n )

)2
.

Using union bound to accommodate all the vertices ui for i = {0, 1, . . . , k − 1}, we
get

Pr {∃i : d(ui) < k
(
1 −

1
t

)
} ≤ 2ke

− k
2

(
1
t −O( k

2
n )

)2
= O(n−1).

Every vertex in this graph has a degree at least k
2 (even t = 2 is sufficient for this).

Dirac’s theorem states that such graphs have a Hamiltonian cycle. �

8.4 Proof of Theorem 3.4.1
The lemmas in this section assume that the sparse signal is drawn from theBN (n, θ)
distribution, where the parameter θ satisfies 0 < θ ≤ 1

4 − ε .

Lemma 8.4.1. The output of the first step is a term of the form vi0 j0 or vk−1− j0,k−1−i0 ,
where 0 ≤ i0 < j0 ≤ 2c + 1, with probability at least 1 −O(n−4ε ).

Proof. Consider the terms of the form {v0i : 1 ≤ i ≤ 2c + 1}. Since at most c of
them belong to Wdel , at least c + 1 of them belong to W†. Similarly, at least c + 1
terms of the form {vi,k−1 : 1 ≤ i ≤ 2c+ 1} belong to W†. Hence, there exists at least
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one integer (denote the minimum of them by l1) which satisfies 1 ≤ l1 ≤ 2c+ 1 and
v0l1, vl1,k−1 ∈ W†.

Since v0,k−1 ∈ W†, we have vl1,k−1, v0,k−1 ∈ T†sub as both the conditions are satisfied:

(i) They have a difference v0l1 , which belongs to W†.

(ii) The integer pairs of the form {v0i, vl1i} for 2c + 2 ≤ i ≤ k − 1 have a difference
v0l1 , and since at most 2c of the terms involved belong to Wdel , at least

√
K†
4 such

pairs belong to W†.

Similarly, we have v0,k−1−l2, v0,k−1 ∈ T†sub for some 1 ≤ l2 ≤ 2c + 1. Hence, the first
step chooses a value of w†min which is at least max{vl1,k−1, v0,k−1−l2 }, which results
in a value of v0 j0 or vk−1− j0,k−1 for some 0 < j0 ≤ 2c + 1.

If w†min is a value higher than max{vl1,k−1, v0,k−1−l2 }, one of the following two cases
must happen:

(i) w†min = vi j for some 0 ≤ i ≤ 2c + 1 and k − 1 − (2c + 1) ≤ j ≤ k − 1: For each
such vi j , this can happen in two ways: (a) The integer pair involving w†min which
satisfies both the conditions contains another (strictly greater) term of the form vi′ j ′

which belongs to W . This can happen only if vi′ j ′ − vi j ∈ W or vi′ j ′ − vi j ∈ Wins

for some vi′ j ′ ∈ W . If i′ = i or j′ = j, the resulting value is either v j j ′ or vi′i

respectively, which is within the requirements of this step. If i′ , i and j′ , j, the
probability of vi′ j ′ − vi j ∈ W can be bounded, using Corollary 8.2.1, by c0

(
1
s +

s2
n

)
for some constant c0 and the probability of vi′ j ′ − vi j ∈ Wins can be bounded by
p ≤ s2

n due to the independence of Wins and W . The total number of ways in which
{i′, j′} can be chosen is bounded by a constant. (b) The integer pair involving w†min

which satisfies both the conditions contains a (strictly greater) term g which belongs
to Wins. This can happen if g − vi j ∈ W or g − vi j ∈ Wins for some g ∈ Wins. The
event g − vi j ∈ W is equivalent to the event vi′ j ′ + vi j ∈ Wins for some {i′, j′}, the
probability of which can be bounded by O( s4

n ) as the probability for each {i′, j′} is
bounded by p ≤ s2

n due to independence and {i′, j′} can have at most O(s2) different
values. The probability of g − vi j ∈ Wins for a particular {i, j} can be bounded as
follows: Two integers in Wins must be separated by vi j , i.e., g, g − vi j ∈ Wins. This
can be bounded by p2n ≤ s4

n (using the same arguments as Lemma 8.2.1).

Since the total number of ways in which {i, j} can be chosen is bounded by a constant,
the probability of this case happening can be bounded by O(n−4ε ) due to s ≤ n

1
4−ε .

(ii) w†min = g for some g ∈ Wins: For each such g, this can happen in two ways:
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(a) The integer pair involving g which satisfies both the conditions contains a
(strictly greater) term of the form vi′ j ′ which belongs to W . This can happen only
if vi′ j ′ − g ∈ W or vi′ j ′ − g ∈ Wins for some vi′ j ′ ∈ W . The event vi′ j ′ − g ∈ W

is equivalent to vi′ j ′ − vi′′ j ′′ = g for some {i′′, j′′}. This probability is bounded by
O( s3

n ) as the probability is bounded by s
n for each {i′′, j′′} and the total number of

ways in which {i′′, j′′} can be chosen is bounded by O(s2), and the total number of
ways in which {i′, j′} can be chosen is bounded by a constant. The probability of
vi′ j ′ − g ∈ Wins can be bounded by p ≤ s2

n for every {i′, j′} and the total number of
ways in which {i′, j′} can be chosen is bounded by a constant. (b) The integer pair
involving g which satisfies both the conditions contains another (strictly greater)
term g′ which belongs to Wins. For each such g′, the probability of g′ − g ∈ W

can be bounded by 2s2
n (Lemma 8.2.1) and the probability of g′ − g ∈ Wins can

be bounded by p ≤ s2
n due to independence. The number of such g′ in Wins can

be calculated as follows: Since g′ has to be greater than max{vl1,k−1, v0,k−1−l2 }, the
range of values it can take is limited by min{v0,l1, vk−1−l2,k−1}. Hence, the expected
number of such g′ is less than or equal to (2c + 1) n

s p = (2c + 1)o(s). Hence, the
number of such g′ is O(s) (Markov inequality). The probability of this event can
hence be bounded by O( s3

n ).

Since the total number of such g is similarly O(s), the probability of this case
happening can be bounded by O(n−4ε ) when s ≤ n

1
4−ε .

Hence, the output of the first step is vi0 j0 or vk−1− j0,k−1−i0 , where 0 ≤ i0 < j0 ≤ 2c+1
with the desired probability. �

To resolve the flip ambiguity, we aim to recover the support U such that ui0 j0 is the
output of the first step. We will provide the details for the case where ui0 j0 = vi0 j0 ,
the calculations are identical for the case where ui0 j0 = vk−1− j0,k−1−i0 .

Consider the set W† ∩ (W† + vi0 j0 ). At least 2c + 2 terms of the form {vi0 j :
(k − 1) − (3c + 1) ≤ j ≤ k − 1} belong to W† and at least 2c + 2 terms of the form
{v j0 j : (k−1)−(3c+1) ≤ j ≤ k−1} belong toW† (which, when added by vi0 j0 , gives
vi0 j). Hence, at least c + 2 terms of the form {vi0 j : (k − 1) − (3c + 1) ≤ j ≤ k − 1}
belong to W† ∩ (W† + vi0 j0 ).

Consider the integers in between v(k−1)−(3c+1) and vk−1. For any integer, not in V , to
belong to W† ∩ (W† + vi0 j0 ) in this region, one of the following cases has to happen:

(i) The integer has to belong to W ∩ (W + vi0 j0 ): The probability of this happening
can be bounded by c0s4

n2 (Lemma 8.4.2). Hence, the probability that some integer
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which is not in V , in this region, belongs to W ∩ (W + vi0 j0 ) is union bounded by
O( s4

n2 ) × n = O( s4
n ).

(ii) The integer has to belong to Wins ∩ (Wins + vi0 j0 ): For this to happen, there
must exist two integers, say g1 and g2, in Wins which are separated by vi0 j0 . This
probability is bounded by p2n ≤ s4

n .

(iii) The integer has to belong to Wins ∩ (W + vi0 j0 ) or W ∩ (Wins + vi0 j0 ): For
each vi j ∈ W , the probability of {vi j ± vi0 j0 } ∈ Wins can be bounded by 2p ≤ 2s2

n .
Therefore, this probability can be bounded by O( s4

n ).

Hence, the largest c + 2 integers in W† ∩ (W† + vi0 j0 ) correspond to the pairwise
distance between vi0 and v j for some (k − 1) − (3c + 1) ≤ j ≤ k − 1 (denote these
integers by {vq0, vq1, . . . , vqc+1 }) with the desired probability.

For every 0 ≤ p ≤ k
2 , there exist at least two terms, say qi and qj such that vpqi, vpqj ∈

W† and hence vpqc+1 will belong to the intersection
(
W† ∩ (W† + vqiqj )

)
+ vqjqc+1 .

Hence, by considering intersections with each of the
(

c+2
2

)
pairs {vqi, vqj } and taking

a union of the resulting integer sets, we can ensure that all the terms of the form
vpqc+1 , where 0 ≤ p ≤ k

2 , belong to the resulting integer set. The probability that
some other integer in this range will belong to the integer set can be union bounded
by (c + 2)2 times the probability calculated above in the case of intersection with
vi0 j0 .

Using the fact that v0p = v0qc+1 − vpqc+1 , v0p for 0 ≤ p ≤ k
2 can be recovered. Using

the first c+2 of these terms, by considering intersections with each of the
(

c+2
2

)
pairs

{vi, v j } and taking a union of the resulting integer sets, we can similarly recover all
the terms of the form v0p, where k

2 ≤ p ≤ k − 1.

Lemma 8.4.2. For any integer l > v0 k
2
such that l does not belong to V , the

probability that l − vi0 belongs to W ∩ (W + vi0 j0 ), where 0 ≤ i0 < j0 ≤ c for some
constant c, is bounded by O( s4

n2 ).

Proof. This is a generalization of Lemma 8.2.2, the events are conditioned on
vi0 = d1 and vi0 j0 = d2 instead. The conditional distribution of V is as follows:
vi0 = d1 ensures that there are i0 − 1 integers in the range 1 to d1 − 1 (these integers
will be uniformly distributed in this range). vi0 j0 = d2 ensures that there are j0−i0−1
integers in the range d1+1 to d1+d2−1 (these integers will be uniformly distributed
in this range). Any integer greater than d1 + d2 will belong to V with a probability
at most s

n independently.
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If s ≤ n
1
4−ε , then H (U) is a clique1 with probability at least 1 − O( s4

n ) (Lemma
8.3.2 bounds the probability of each edge missing by O( s2

n ), a simple union bound
completes the proof), from which we have d1 , d2. Also, if i0 , 0, then d1 ≥

n
s2

holds with probability at least 1 −O( s
n ) (see proof of Lemma 8.2.7).

For two events l − d1, l − d1 − d2 ∈ W to happen, there has to be some g such that
g, g + l − d1 ∈ V and some h such that h, h + l − d1 − d2 ∈ V . Note that g + l − d1

and g + l − d1 − d2 are greater than d1 + d2 due to l ≥ v0 k
2
and i0 < j0 ≤ c.

Lemma 8.2.2 provides the bound O( s4
n2 ) for all the cases by which the two events

can be explained except for four cases, the bounds for which are provided here
(see Remark at the end of the proof of Theorem 3.3.2 for relationship between
calculations of independent Bernoulli and uniform distributions):

(i) There exists one integer g in the range 1 to d1 − 1 or d1 + 1 to d1 + d2 − 1, whose
presence in V , using another integer in V greater than d1 + d2, explains exactly
one event. Since the probability of g ∈ V in this range can be bounded by i0−1

d1−1 or
j0−i0−1

d2−1 respectively, and the number of ways in which g can be chosen is bounded
by d1 − 1 or d2 − 1 respectively, the probability of this happening can be bounded
by i0−1

d1−1
s
n (d1 − 1) + j0−i0−1

d2−1
s
n (d2 − 1) = O( s

n ). The probability of this case can be
bounded, using the same arguments as that of the third case (under Case I) in Lemma
8.2.2, by 2 ×O( s

n ) ×
(

s2
n +

2s
n

)
= O( s3

n2 ).

(ii) There exists one integer g in the range 1 to d1 − 1 or d1 + 1 to d1 + d2 − 1,
whose presence in V , using two integers in V greater than d1 + d2, explains both
the events. The probability of g ∈ V can be bounded the same way as in the first
case. Hence, the probability of this case can be bounded by i0−1

d1−1

(
s
n

)2
(d1 − 1) +

j0−i0−1
d2−1

(
s
n

)2
(d2 − 1) = O( s2

n2 ).

(iii) There exist two integers {g, h} in the range 1 to d1−1 or d1+1 to d1+d2−1, whose
presence in V , using one another integer in V greater than d1 + d2, explains both the
events. For this to happen, there must exist two integers g, g + d2 ∈ V in this range.
If both of them are in the range 1 to d1 − 1, the probability of g, g + d2 ∈ V can be
bounded by 4

(
i0−1
d1−1

)2
and the number of ways in which g can be chosen is bounded

by d1−1. If one of them is in the range 1 to d1−1 and the other is in the range d1+1
to d1+ d2−1, the probability of g, g+ d2 ∈ V can be bounded by i0−1

d1−1
j0−i0−1

d2−1 and the
number ofways inwhich g can be chosen is bounded by d2−1. Hence, the probability
of this case is bounded by 4

(
i0−1
d1−1

)2 s
n (d1 − 1) + i0−1

d1−1
j0−i0−1

d2−1
s
n (d2 − 1) = O( s3

n2 ).
1The collision-free property in [Ran+13] is equivalent to H (U) being a clique, in our notation.
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(iv) There exist two integers {g, h} in the range 1 to d1 − 1 or d1 + 1 to d1 + d2 − 1,
whose presence in V , using two other integers in V greater than d1 + d2, explains
both the events. This probability can be bounded by O

(
s
n

)2
, as the probability to

explain each event can be bounded by O( s
n ) using the same arguments as that of the

first case. �

In order to analyze the error in the recovered signal values, we use a technique
similar to the proof of Theorem 3.3.3. If s ≤ n

1
4−ε , then the graph H (U) is a clique

with probability at least 1 −O( s4
n ) (see proof of Lemma 8.4.2). Hence, we analyze

minimize trace(X) (8.8)

subject to |Xuiu j − a|ui−u j | | ≤ η if ui ↔ u j in H (U)

Xi j = 0 if i, j < U, X < 0

as follows: Let R0 = rr? be a k × k matrix whose off-diagonal components are
measured with additive noise, i.e., Qi j = rir?j + zi j for 0 ≤ i , j ≤ k − 1, where
r = (r0, r1, . . . , rk−1)T and the noise satisfies |zi j | ≤ η. The objective is to recover
the diagonal components robustly. Consider the program

minimize trace(R) (8.9)

subject to |Qi j − Ri j | ≤ η for 0 ≤ i , j ≤ k − 1

R < 0.

If R† is the optimizer of (8.9), for all 0 ≤ i , j ≤ k − 1,

|R†i j − rir?j | ≤ |R
†

i j −Qi j | + |Qi j − rir?j | ≤ 2η.

By using AM-GM inequality, we get |R†i j |
2 ≥ (|ri |

2 − 2η)( |r j |
2 − 2η) for all i , j.

Since for all off-diagonal components, we have |R†i j |
2 ≥ (|ri |

2 − 2η)(|r j |
2 − 2η),

at most one of the diagonal terms (say i) is such that R†ii < ( |ri |
2 − 2η). If R†ii <

( |ri |
2 − kη), then the 2× 2 positive semidefinite constraints would ensure that for all

j , i, R†j j > (|r j |
2 + α jη), where α j ≥ (k − 4) |r j |

2

|ri |2
− 4. The optimum value would,

similar to the proof of Theorem 3.3.3, strictly increase with the desired probability.
Hence, the optimizer has diagonal components R†j j ≥ |r j |

2−2η for 0 ≤ j , i ≤ k−1
and R†ii ≥ |ri |

2 − kη.

Since the objective function value at the optimizer is less than or equal to
∑

j |r j |
2,

we have the bound
∑

j

(
R†j j − |r j |

2
)2
≤ (2η)2(k − 1) + (ηk)2 + (3ηk)2 ≤ 12k2η2.
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Since there are at most k2 off-diagonal entries and each of them are measured with
an error of at most 2η, we have

‖X† − x0x?0 ‖
2
2 ≤ 12k2η2 + 4η2k2 ≤ 16k2η2,

which concludes the proof.
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C h a p t e r 9

SUPPLEMENTARY MATERIALS FOR CHAPTER V

9.1 Equivalent Definition of STFT Phase Retrieval
Since we consider an N point DFT and W satisfies W ≤ N

2 , STFT phase retrieval
can be equivalently stated in terms of the short-time autocorrelation aw [Hof64]:

find x (9.1)

subject to

aw[m, r] =
N−1−m∑

n=0
x[n]w[rL − n]x?[n + m]w?[rL − (n + m)]

for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1.

The knowledge of the short-time autocorrelation is sufficient for all the guarantees
provided in this paper. Note that the rth column of Zw and the rth column of aw
are Fourier pairs. Hence, for a particular r , if Zw[m, r] for 0 ≤ m ≤ N − 1 is
available, then aw[m, r] for 0 ≤ m ≤ N − 1 can be calculated by taking an inverse
Fourier transform. The following lemma shows that 2W phaseless measurements
per short-time section are sufficient to infer the short-time autocorrelation.

Lemma 9.1.1. Zw[m, r] for 1 ≤ m ≤ 2W − 1 is sufficient to calculate aw[m, r] for
0 ≤ m ≤ N − 1.

Proof. If the window length is W , then aw has nonzero values only in the interval
0 ≤ m ≤ W − 1 and N − W + 1 ≤ m ≤ N − 1. Let bw be the signal obtained
by circularly shifting aw by W − 1 rows, so that bw has nonzero values only in the
interval 0 ≤ m ≤ 2W − 2. Since the submatrix of the N point DFT matrix obtained
by considering the first 2W − 1 columns and any 2W − 1 rows is invertible (the
Vandermonde structure is retained), Zw[m, r] for 1 ≤ m ≤ 2W − 1 and bw[m, r]
for 0 ≤ m ≤ 2W − 2 are related by an invertible matrix. Note that aw[m, r] for
0 ≤ m ≤ N − 1 can be trivially calculated from bw[m, r] for 0 ≤ m ≤ 2W − 2. �

Consequently, if the N point DFT is used and 2W ≤ M ≤ N is satisfied, the affine
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constraints in (5.5) can be rewritten in terms of aw and X as:

aw[m, r] =
N−1−m∑

n=0
X[n, n + m]w[rL − n]w?[rL − (n + m)].

9.2 Proof of Theorem 5.3.1
The symbol ≡ is used to denote equality up to a global phase and time-shift4. We
say that two signals x1 and x2 are distinct if x1 . x2, and equivalent if x1 ≡ x2.

Let P denote the set of all distinct non-vanishing complex signals of length N . P is
a manifold of dimension 2N −1, i.e., P locally resembles a real 2N −1 dimensional
space. This can be seen as follows: In order to discard the global phase of non-
vanishing signals, we can assume that x[n0] is real and positive at one index n0,
without loss of generality. Hence, x[n0] can take any value in R+, and x[n], for each
0 ≤ n ≤ N −1 not equal to n0, can take any value in R2\{0, 0}, due to the one-to-one
correspondence between C and R2.

Let Pc ⊂ P be the set of distinct non-vanishing complex signals which cannot be
uniquely identified from their STFT magnitude if w is chosen such that it is non-
vanishing and W ≤ N

2 . We show that Pc has measure zero in P. In order to do so,
our strategy is as follows:

We first characterize Pc using Lemma 9.2.1. In particular, we show that Pc is a
finite union of images of continuously differentiable maps from R2N−2 to P. Since
P is a manifold of dimension 2N − 1, the following result completes the proof:

Theorem 9.2.1 ([OR70], Chapter 5). If f : RN0 → RN1 is a continuously differen-
tiable map, then the image of f has measure zero in RN1 , provided N0 < N1.

We use the following notation in this section: If g is a signal of length lg, then
g = (g[0], g[1], . . . , g[lg − 1])T such that {g[0], g[lg − 1]} , 0 and g[n] = 0 outside
the interval [0, lg − 1]. The vector g̃ denotes the conjugate-flipped version of g, i.e.,
g̃ = (g?[lg−1], g?[lg−2], . . . , g?[0])T . Let ur and vr denote the smallest and largest
index where the windowed signal x ◦ wr has a nonzero value respectively.

Lemma 9.2.1. Consider two signals x1 . x2 of length N which have the same STFT
magnitude. If the window w is chosen such that it is non-vanishing and W ≤ N

2 ,
4For non-vanishing signals, there is no ambiguity due to time-shift.
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then, for each r , there exists signals gr and hr , of lengths lgr and lhr respectively,
such that

(i) x1 ◦ wr ≡ gr ? hr, x2 ◦ wr ≡ gr ? h̃r

(ii) lgr + lhr − 1 = vr − ur + 1

(iii) gr[lgr − 1] = 1 and {gr[0], hr[0], hr[lhr − 1]} , 0

where ? is the convolution operator. Further, there exists at least one r such that

(iv) lhr ≥ 2, hr[0] is real and positive.

Proof. In Lemma 7.1 of [JOH13b], it is shown that if two non-equivalent signals of
length N have the same Fourier magnitude and if the DFT dimension is at least 2N

(this would imply that they have the same autocorrelation), then there exists signals
g and h, of lengths lg and lh respectively, such that one signal can be decomposed as
g?h and the other signal can be decomposed as g? h̃. For each r , the rth column of
the STFT magnitude is equivalent to the Fourier magnitude of the windowed signal
x ◦ wr . The DFT dimension is N , and the windowed signal length is vr − ur + 1
(which is less than or equal to N

2 ). Since for every r , x1 ◦ wr and x2 ◦ wr have the
same Fourier magnitude, the aforementioned result proves (i).

The conditions (ii) and (iii) are properties of convolution (see Lemma 7.1 of
[JOH13b] for details), and therefore hold for every r .

Furthermore, if lhr = 1 for all 0 ≤ r ≤ R − 1, then x1 ≡ x2. Hence, lhr ≥ 2 for at
least one r . For this r , since eiφ1x1 and eiφ2x2 have the same STFT magnitude, hr[0]
can be assumed to be real and positive without loss of generality. Hence, (iv) holds
for at least one r . �

Consequently, for each x ∈ Pc, condition (iv) of Lemma 9.2.1 holds for at least one r .
Let Prlr lr+1

c ⊂ Pc denote the set of signals for which lhr = lr ≥ 2 and lh,r+1 = lr+12.
It suffices to show that for each r , lr and lr+1, there exists a set Qrlr lr+1

c ⊇ P
rlr lr+1
c ,

which is the image of a continuously differentiable map from R2N−2 to P.
2When r = R, we consider the short-time section r − 1 instead of r + 1. We show the detailed

calculations for the case when short-time section r + 1 is considered, the arguments are symmetric
for r − 1.
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We first show the arguments for the L = W −1 case as the expressions are simple and
provide intuition for the technique. Then, we show the arguments for the L < W − 1
case.

(i) L = W − 1 :

The set Qrlr lr+1
c is constructed as follows: Consider the variables {gr, hr, gr+1, hr+1}

satisfying lhr = lr ≥ 2 and lh,r+1 = lr+1, and x[n] for n ∈ [0, ur ) ∪ (vr+1, N − 1].
The map f = ( f0, f1, . . . , f N−1)T from these variables to P is the following:

fn =




x[n] for n ∈ [0, ur ) ∪ (vr+1, N − 1]∑n−ur
m=0 gr[m]hr[n − ur − m]

for n ∈ [ur, vr]∑n−ur+1
m=0 gr+1[m]hr+1[n − ur+1 − m]

for n ∈ [ur+1, vr+1].

(9.2)

Observe that, for n = ur+1 = vr , fn has two definitions. The variables can admit only
those values for which the two definitions have the same value. In the following, we
show that there is a one-to-one correspondence between the set of admissible values
of the variables and a subset of R2N−2.

Each x[n], for n ∈ [0, ur ) ∪ (vr+1, N − 1], can be chosen from ⊂ R2. The set of
{gr+1, hr+1} is a subset of R2(vr+1−ur+1+1), which can be seen as follows: gr+1[lg,r+1 −
1] = 1 is fixed (see Lemma 9.2.1), there are vr+1 − ur+1 + 1 other terms and each
can be chosen from ⊆ R2.

For each choice of {gr+1, hr+1}, consider the set of {gr, hr } excluding the terms hr[0]
and hr[lhr − 1]: gr[lgr − 1] = 1 is fixed, there are vr − ur − 1 other terms and each
can be chosen from ⊆ R2. Hence, this set is a subset of R2(vr−ur−1).

Since the short-time sections r and r+1 overlap in the index vr , gr?hr and gr+1?hr+1

must be consistent in this index, i.e., {gr, hr } must satisfy:

1
w[0]

hr[lhr − 1] =
1

w[W − 1]
gr+1[0]hr+1[0]. (9.3)

Due to Lemma 9.2.1, gr ? h̃r and gr+1 ? h̃r+1 must also be consistent in this index
up to a phase, i.e., {gr, hr } must also satisfy:

hr[0] ≡
w[0]

w[W − 1]
gr+1[0]h?r+1[lh,r+1 − 1]. (9.4)
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Observe that ≡ is used in (9.4), due to the fact that the equality is only up to a phase.
However, hr[0] is real and positive (see Lemma 9.2.1), due to which (9.4) fixes
hr[0].

Consequently, the set of admissible values of the variables, excluding hr[0] and
hr[lhr−1], is a subset ofR2N−2, as 2(N−vr+1+ur−1+vr+1−ur+1+1+vr−ur−1) =
2N − 2. For each point in this set, hr[0] and hr[lhr − 1] are uniquely determined.
It is straightforward to check that the map f from this set to P is continuously
differentiable. Consequently, Qrlr lr+1

c is the image of a continuously differentiable
map from R2N−2 to P.

(ii) L < W − 1 :

Consider the setup for which 2L ≥ W . The set of {gr+1, hr+1}, as earlier, is a subset
of R2(vr+1−ur+1+1).

The short-time sections r and r+1 overlap in the interval [ur+1, vr]. Let vr−ur+1+1 =
T (the number of indices in the overlapping interval). Due to 2L ≥ W , we have
T = W − L ≤ bW

2 c. Hence, for each choice of {gr+1, hr+1}, {gr, hr } must satisfy:

n+ur+1−ur∑
m=0

1
wr[ur + m]

gr[m]hr[n + ur+1 − ur − m] (9.5)

=

n∑
m=0

1
wr+1[ur+1 + m]

gr+1[m]hr+1[n − m]

for 0 ≤ n ≤ T − 1. In addition, {gr, hr } must also satisfy:

1
w[0]

hr[0] ≡
T−1∑
m=0

1
wr+1[ur+1 + m]

gr+1[m]hr+1[T − 1 − m]. (9.6)

If lhr ≥ b
W
2 c + 1, then the T bilinear equations (9.5) can be written as Ghr = c,

where G has upper triangular structure with unit diagonal entries, due to which
rank(G) = T . The set of gr is a subset of R2(lgr−1). For each choice of gr , the terms
{hr[lhr − T], . . . , hr[lhr − 1]} are fixed by Ghr = c. The constraint (9.6) fixes the
value of hr[0], as earlier. Each of the remaining (lhr − 1 − T ) terms of hr may be
chosen from ⊆ R2.

Hence, the set of admissible values of the variables, excluding {hr[lhr −T], hr[lhr −

T + 1], . . . , hr[lhr − 1]} and hr[0], is a subset of R2N−2, due to the fact that
2(N − vr+1 + ur − 1 + vr+1 − ur+1 + 1 + vr − ur − T ) = 2N − 2 (as lgr + lhr − 1 =
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vr − ur + 1). For each point in this set, hr[0] and {hr[lhr − T], . . . , hr[lhr − 1]} are
uniquely determined. The rest of the arguments are identical to those of L = W − 1.

If lgr ≥ b
W
2 c+1 instead, then the bilinear equations (9.5) can be equivalently written

as Hgr = c, the same arguments may be applied to draw the same conclusion. For
the setup with 2L > W , the same arguments hold for the short-time sections r and
r+ t, where t is the largest integer such that the short-time sections r and r+ t overlap
(this ensures T ≤ bW

2 c).

9.3 Proof of Corollary 5.3.1
We now extend Theorem 5.3.1 to incorporate sparse signals. Let PS denote the set
of all distinct complex signals of length N with a support S. Here, S is a binary
vector of length N , such that x[n] , 0 whenever S[n] = 1 and x[n] = 0 whenever
S[n] = 0. Further, S has less than min{L,W − L} consecutive zeros.

Let PS
c ⊂ P

S denote the set of signals which cannot be uniquely identified from
their STFT magnitude if w is chosen such that it is non-vanishing and W ≤ N

2 . We
show that PS

c has measure zero in PS.

In the proof of Theorem 5.3.1, in order to show dimension reduction, we used the
fact that for sufficient pairs of adjacent short-time sections r and r +1, the following
holds:

(i) There is at least one index in the non-overlapping indices [ur, ur+1 − 1] or [vr +

1, vr+1] where the signals x1 and x2 have a nonzero value. This ensures that hr[0]
is not constrained by {gr+1, hr+1} in general. This condition can be ensured by
imposing the constraint that the sparse signal cannot have L consecutive zeros.

(ii) There is at least one index in the overlapping indices [ur+1, vr] where the signals
x1 and x2 have a nonzero value. This ensures that hr[0] is constrained by {gr+1, hr+1}

(9.4) for signals which cannot be uniquely identified by their STFT magnitude. This
condition can be ensured by imposing the constraint that the sparse signal cannot
have W − L consecutive zeros.

The only difference in the proof is the following: Unlike in the case of non-vanishing
signals, there is time-shift ambiguity. Hence, the constraint (9.6) is replaced by

1
w[0]

hr[0] ≡
n∑

m=0

1
wr+1[ur+1 + m]

gr+1[m]hr+1[n − m] (9.7)

for some 0 ≤ n ≤ T − 1. This fixes the value of hr[0] to one of at most T values,
due to which there is a dimension reduction.
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9.4 Proof of Theorem 5.4.1
We first show the arguments for the case 2W ≤ M ≤ N (short-time autocorrelation
known) as the expressions are simple and provide intuition. Then, we show the
arguments for the case 4L ≤ M < 2W (super-resolution).

(i) 2W ≤ M ≤ N :

The affine constraints in (5.5) can be rewritten as (see Section 9.1):

aw[m, r] =
N−1−m∑

n=0
X[n, n + m]w[rL − n]w?[rL − (n + m)].

The proof strategy is as follows: We begin by focusing our attention on short-
time section r = 1. We show that the prior information available, along with
the affine autocorrelation measurements corresponding to r = 1 and the posi-
tive semidefinite constraint, will ensure that every feasible matrix of (5.5) satisfies
X[n,m] = x0[n]x?0 [m] for 0 ≤ n,m ≤ L. We then apply this argument incremen-
tally, i.e., we show that the affine measurements corresponding to short-time section
r , along with the entries of X uniquely determined and the positive semidefinite
constraint, will ensure that X[n,m] = x0[n]x?0 [m] for ur ≤ n,m ≤ vr , where ur and
vr denote the smallest and largest index where wr has a nonzero value respectively.
Consequently, the entries along the diagonal and the first W − L off-diagonals of
every feasible matrix of (5.5) match the entries along the diagonal and the first
W − L off-diagonals of the matrix x0x?0 . Since the entries are sampled from a rank
one matrix with nonzero diagonal entries (i.e., x0x?0 ), there is exactly one positive
semidefinite completion, which is the rank one completion x0x?0 [HJ12].

Let s0 = (x0[0], x0[1], . . . , x0[L])T be a length L + 1 subsignal of x0, and S be the
(L + 1) × (L + 1) submatrix of X corresponding to the first L + 1 rows and columns.
We now show that S = s0s?0 is the only feasible matrix under the constraints of (5.5).

Since x0[n] for 0 ≤ n ≤
⌊

L
2

⌋
is known a priori, we have S[n,m] = x0[n]x?0 [m] for

0 ≤ n,m ≤
⌊

L
2

⌋
. Let A(S) = c denote these constraints due to prior information,

along with the affine constraints corresponding to r = 1. In particular, A(S) = c
denotes the following set of constraints:

S[n,m] = x0[n]x?0 [m] for 0 ≤ n,m ≤
⌊ L
2

⌋
,

aw[m, 1] =
L−m∑
n=0

S[n, n + m]w[L − n]w?[L − (n + m)].
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For each feasible matrix S, these set of measurements fix (i) the
⌊

L
2 + 1

⌋
×

⌊
L
2 + 1

⌋

submatrix, corresponding to the first
⌊

L
2 + 1

⌋
rows and columns, of S (ii) the appro-

priately weighted sum along the diagonal and each off-diagonal of S (2L ≤ W is
implicitly used here).

Lemma9.4.1. IfS0 = s0s?0 satisfiesA(S) = c, then it is the only positive semidefinite
matrix which satisfies A(S) = c.

Proof. Let T be the set of Hermitian matrices of the form

T = {S = s0v? + vs?0 : v ∈ Cn}

and T⊥ be its orthogonal complement. The set T may be interpreted as the tangent
space at s0s?0 to the manifold of Hermitian matrices of rank one. Influenced by
[CSV13], we use ST and ST⊥ to denote the projection of a matrix S onto the
subspaces T and T⊥ respectively.

Standard duality arguments in semidefinite programming show that the following is
sufficient for S0 = s0s?0 to be the unique optimizer of (5.5):

(i) Condition 1: S ∈ T and A(S) = 0⇒ S = 0.

(ii) Condition 2: There exists a dual certificate M in the range space of A?

obeying:

• Ms0 = 0

• rank(M) = L

• M < 0.

The proof of this result is based onKKT conditions, and can be found in any standard
reference on semidefinite programming (for example, see [VB96]).

We first show that Condition 1 is satisfied. The set of constraints in A(S) = 0 due
to prior information fix the entries of the first

⌊
L
2 + 1

⌋
rows and columns of S to

0. Since S = s0v? + vs?0 for some v = (v[0], v[1], . . . , v[L])T (due to S ∈ T), we
infer that v[n] = icx0[n] for 0 ≤ n ≤

⌊
L
2

⌋
, for some real constant c. Indeed, the

equations of the form s0[n]v?[n] + v[n]s?0 [n] = 0 imply v[n] = icnx0[n], for some
real constant cn. The equations s0[n]v?[m] + v[n]s?0 [m] = 0 imply cn = cm.
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The set of constraints in A(S) = 0 due to the measurements corresponding to
r = 1, along with v[n] = icx0[n] for 0 ≤ n ≤

⌊
L
2

⌋
, imply v[n] = icx0[n] for⌊

L
2 + 1

⌋
≤ n ≤ L. Hence, for S ∈ T , A(S) = 0 implies v = ics0, which in turn

implies S = −ics0s?0 + ics0s?0 = 0.

We next establishCondition 2. For simplicity of notation, we consider the casewhere
w[n] = 1 for 0 ≤ n ≤ W − 1. For a general non-vanishing w, the same arguments
hold (the Toeplitz matrix considered is appropriately redefined with weights).

The range space ofA? is the set of all L + 1× L + 1 matrices which are a sum of the
following twomatrices: The firstmatrix can have any value in the

⌊
L
2 + 1

⌋
×

⌊
L
2 + 1

⌋

submatrix corresponding to the first
⌊

L
2 + 1

⌋
rows and columns, and has a value zero

outside this submatrix (dual of the set of constraints due to prior information). The
second matrix has a Toeplitz structure (dual of the measurements corresponding to
r = 1).

Suppose s1 is the vector containing the first
⌊

L
2 + 1

⌋
entries of s0 and s2 is the vector

containing the remaining entries of s0. Here, s1 corresponds to the locations where
we have knowledge of the entries and s2 corresponds to the locations where the
entries are not determined. Let L be a lower triangular

⌈
L
2

⌉
×

⌊
L
2 + 1

⌋
Toeplitz

matrix satisfying Ls1 + s2 = 0. Such an L always exists if s1[0] is nonzero and the
length of s1 is greater than or equal to the length of s2. LetΛ be any

⌊
L
2 + 1

⌋
×

⌊
L
2 + 1

⌋

positive semidefinite matrix with rank
⌊

L
2

⌋
satisfying Λs1 = 0. Again, such a Λ

always exists (any positive semidefinite matrix with eigenvectors perpendicular to
s1). Consider the following dual certificate:

M =



L?L + Λ L?

L I⌈
L
2

⌉



. (9.8)

Clearly, M is in the range space of A?. Also, Ms0 = 0 by construction. From the
Schur complement, it is straightforward to see that rank(M) = L andM < 0. �

We have shown that S0 = s0s?0 is the only positive semidefinite matrix which satisfies
the prior information and the measurements corresponding to r = 1. Redefine s0
and S such that s0 = (x0[0], x0[1], . . . , x0[2L])T is the 2L + 1 length subsignal of x
and S is the (2L + 1) × (2L + 1) submatrix of X corresponding to the first 2L + 1
rows and columns.
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We already have S[n,m] = x0[n]x?0 [m] for 0 ≤ n,m ≤ L from above. LetA(S) = c
denote these constraints, along with the affine constraints corresponding to r = 2.
Due to 2L ≤ W , Lemma 9.4.1 proves that S0 = s0s?0 is the only psd matrix which
satisfies the prior information and the measurements corresponding to r = 1, 2.
Applying this argument incrementally, the entries along the diagonal and the first
W − L off-diagonals of every feasible matrix of (5.5) match the entries along the
diagonal and the first W − L off-diagonals of the matrix x0x?0 .

Sparse signals: The arguments can be seamlessly extended to incorporate sparse
signals.

(i) The fact that there exists a unique positive semidefinite completion once the
diagonal and the first W − L off-diagonal entries are sampled from x0x?0 holds when
x0 has less than W − L consecutive zeros.

(ii) Note that the length of s2 is at most L, as it corresponds to the locations
in the window where the entries are not determined. Since we know x0[n] for
i0 ≤ n < i0 + L a priori, where i0 is the smallest index such that x0[i0] , 0, the
length of s1 is W − L. Redefine s1 so that it corresponds to the locations in the
window where the entries are determined, starting from the smallest index which
has a nonzero value in order to ensure s1[0] , 0. If x0 has atmostW−2L consecutive
zeros, then the length of s1 is at least (W − L) − (W − 2L) = L. Hence, a lower
triangular Toeplitz matrix L, satisfying Ls1 + s2 = 0, always exists.

(ii) 4L ≤ M < 2W :

The range space of the dual certificate is the set of all L + 1 × L + 1 matrices which
are a sum of the following two matrices: The first matrix can have any value in the⌊

L
2 + 1

⌋
×

⌊
L
2 + 1

⌋
submatrix corresponding to the first

⌊
L
2 + 1

⌋
rows and columns,

and has a value zero outside this submatrix (dual of the set of constraints due to
prior information). The second matrix has the form

∑M
m=1 αmW?

r fmf?mWr , where
αm is real-valued for each m (dual of the measurements corresponding to r = 1).

Let l = (l[0], l[1], . . . , l[N − 1])T be a vector that satisfies:

(i) l[0] = 1, l[n] = l[N − n] = 0 for 1 ≤ n ≤
⌈

L
2

⌉
− 1

(ii)
∑m

n=0 x0[n]l[m − n] =
∑m

n=0 x?0 [n]l[N −m + n] = 0 for
⌊

L
2 + 1

⌋
≤ m ≤ L

(iii) f?ml = 0 for M + 1 ≤ m ≤ N .
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These constraints together can be written as Al = b. When M ≥ 4d L
2 e, the matrix

A is square or wide, and almost always (pseudo) invertible. This can be seen as
follows: The determinant of A is a polynomial function of the entries of x0, due to
which it is either always zero or almost surely nonzero. By substituting x0[0] = 1
and x0[n] = 0 for n , 0, it is straightforward to check that the determinant is
nonzero. Hence, such an l almost always exists.

If the last row in (9.8) is chosen as (l[L], l[L − 1], . . . , l[0]), then we have: (i) The
lower right block is an identity matrix. (ii) Ls1 + s2 = 0 is satisfied. (iii) Since b
is a real vector, l satisfies l[n] = l?[N − n]. Therefore, l is in the range space of∑M

m=1 αmfm where αm is real-valued, due to which the resulting second matrix is in
the range space of

∑M
m=1 αmW?

r fmf?mWr .

Therefore,M satisfies all the requirements. The arguments are applied incrementally
as earlier, with M ≥ 4L for r > 1.

9.5 Alternative Proof of Theorem 5.4.2
The affine constraints in (5.5) can be rewritten as (see Section 9.1):

aw[m, r] =
N−1−m∑

n=0
X[n, n + m]w[rL − n]w?[rL − (n + m)].

Due the constraint corresponding to r = 0, X has to satisfy:

|w[0]|2 X[0, 0] = aw[0, 0] = |w[0]|2 |x0[0]|2 ,

because of which X[0, 0] is fixed to |x0[0]|2 as w[0] , 0. Due to the constraints
corresponding to r = 1, X has to satisfy:

|w[0]|2 X[1, 1] + |w[1]|2 X[0, 0] = aw[0, 1]

= |w[0]|2 |x0[1]|2 + |w[1]|2 |x0[0]|2 ,

w?[0]w[1]X[0, 1] = aw[1, 1] = w?[0]w[1]x0[0]x?0 [1].

Since X[0, 0] = |x0[0]|2 and w[0]w[1] , 0, X[1, 1] and X[0, 1] are fixed to |x0[1]|2

and x0[0]x?0 [1] respectively.

Applying this argument incrementally, the measurements corresponding to short-
time section r , with the help of the entries of X uniquely determined, fix the value
of X[r, r] and X[r − 1, r] to |x0[r]|2 and x0[r − 1]x?0 [r] respectively. Hence, the
diagonal and the first off-diagonal entries of every feasible matrix of (5.5) match
the diagonal and the first off-diagonal entries of the matrix x0x?0 . Since the entries
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are sampled from a rank one matrix with nonzero diagonal entries (i.e., x0x?0 ), there
is exactly one positive semidefinite completion, which is the rank one completion
x0x?0 [HJ12].

In particular, due to the aforementioned determined entries of X and the positive
semidefinite constraint X < 0, the convex program (5.5) has only one feasible
matrix, given by x0x?0 . The underlying signal x0 can be recovered (up to a global
phase) by a simple decomposition.
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C h a p t e r 10

SUPPLEMENTARY MATERIALS FOR CHAPTER VI

10.1 Proof of Theorem 6.5.1
In the proof of Theorem 6.4.1, we showed that the measurements corresponding to
the 0th mask determine the diagonal entries ofW = FMXF?M , and the measurements
corresponding to the 0,±rth mask determine the entries along the rth off-diagonal
ofW.

In order to prove this theorem, we will use a proof technique commonly known as
dual certificate method. Let w0 = (y0[0], y0[1], . . . , y0[M − 1])T , T be the set of
symmetric matrices of the form

T = {W = w0v? + vw?
0 : v ∈ CM }

and T⊥ be its orthogonal complement. T may be interpreted as the tangent space at
w0w?

0 to the manifold of symmetric matrices of rank one. Influenced by [CSV13],
we use WT and WT⊥ to denote the projection of a matrix W onto the subspaces T

and T⊥ respectively.

Standard duality arguments in semidefinite programming show that sufficient con-
ditions for w0w?

0 to be the unique optimizer of

minimize 0 (10.1)

subject to A(W) = c

W < 0,

where A(W) = c denotes the set of constraints corresponding to the knowledge of
the diagonal and the first R off-diagonal entries of W, i.e., W [n,m] = w0[n]w?0 [m]
for |n − m | ≤ R, is:

(i) Condition 1: W ∈ T & A(W) = 0⇒W = 0.

(ii) Condition 2: There exists a dual certificate M in the range space of A?

obeying:

• Mw0 = 0
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• rank(M) = M − 1

• M < 0.

The range space of A? is the set of all matrices which have nonzero entries only
along the diagonal or the first R off-diagonals (dual of the measurement constraints).
For the setup with R = 1, consider the following dual certificate:

M =
M−2∑
m=0

um,m+1u?m,m+1, (10.2)

where, for each m, um,m+1 is an M × 1 vector such that um,m+1[m] = w?0 [m+1]
‖w0‖2

,

um,m+1[m + 1] = −
w?0 [m]
‖w0‖2

, and zero everywhere else.

We first show that Condition 1 is satisfied. Since the diagonal entries ofW are fixed
by the measurements, we have the identity w0[m]v?[m] + v[m]w?0 [m] = 0 for each
m. Consequently, v[m] = icmw0[m] holds for some real constant cm. Since the
first off-diagonal entries ofW are determined by the measurements too, we have the
identity w0[m]v?[m + 1]+ v[m]w?0 [m + 1] = 0 for each m. We infer cm = cm+1, due
to which v = icw0 for some real constant c. Hence, for W ∈ T , A(W) = 0 implies
v = icw0, which in turn impliesW = −icw0w?

0 + icw0w?
0 = 0.

We next establish Condition 2. By construction, u?m,m+1w0 = 0 holds for all m,
due to which we have Mw0 = 0. Also, since

∑M−2
m=0 αm,m+1um,m+1 = 0 implies

αm,m+1 = 0 for all m (linear independence of um,m+1), we have rank(M) = M − 1.
The matrixM is positive semidefinite by construction.

For the setup with R > 1, we now construct a dual certificate (10.3), which is similar
in nature to (10.2).

Let p1[m] and p2[m] be integers between 0 and M − 1, for 0 ≤ m ≤ M − 2, chosen
as follows: We set p1[0] to be the index in w0 with the largest absolute value, and
p2[m] = p1[0] + 1 + m where m ranges from 0 until p2[m] = M − 1 (say, this
equality happens at m = m0 − 1). For these choices of m, we choose p1[m] to
be the index in the range {p2[m] − R, p2[m] − 1} with the largest absolute value
in w0. Then, we set p2[m0 + m] = p1[0] − 1 − m where m ranges from 0 until
p2[m0 + m] = 0. For these choices of m, we choose p1[m0 + m] to be the index
in the range {p2[m + m0] + 1, p2[m + m0] + R} with the largest absolute value in
w0. The intuition is the following: Instead of setting the phase of w0[0] to zero
and decoding the phases of w0[m] in the increasing order of m using relative phase
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information of w0[m − 1] and w0[m], we can instead initialize this process at the
index corresponding to the largest absolute value in w0, and decode such that, at the
mth step, we decode the phase of w0[p2[m]] using the relative phase information
of w0[p1[m]] and w0[p2[m]]. By doing so, we ensure ��w0[p1[m]]��2 ≥ γmin for all
m, which mitigates the impact of indices with low absolute values in the decoding
process.

In particular, we consider the dual certificate

M =
M−2∑
m=0

up1[m],p2[m]u?p1[m],p2[m], (10.3)

where, for each m, up1[m],p2[m] is an M × 1 vector such that up1[m],p2[m][p1[m]] =
w?0 [p2[m]]
‖w0‖2

, up1[m],p2[m][p2[m]] = −w?0 [p1[m]]
‖w0‖2

, and zero everywhere else. It is straight-
forward to check that all the conditions are satisfied, using the same arguments as
earlier. We will now use this dual certificate (10.3) to bound the reconstruction
error, for a given bound on the `1 norm of the noise vector η.

Let Ŵ = w0w?
0+H be the optimizer of (10.1) in the noisy setting, i.e., with ‖A(W)−

c‖1 ≤ η. Since bothw0w?
0 and Ŵ are feasible, we infer

R∑
r=−R

∑
m |H[m,m + r]| ≤ 2η.

Upper bound of ‖HT⊥ ‖2:

We have 〈M,H〉 = trace(M?H) ≤ ‖M‖∞
R∑

r=−R

∑
m |H[m,m + r]| ≤ 2R γmax

‖w0‖
2
2
× 2η,

where we use the fact that γmax

‖w0‖
2
2
bounds the infinity norm of each term of the sum-

mation in (10.3), and each location can be nonzero in at most 2R of the summands.
Also, note that 〈M,H〉 = 〈M,HT 〉 + 〈M,HT⊥〉 ≥ ‖HT⊥ ‖2σ(M), where σ(M) is the
smallest nonzero singular value ofM. Here, we use 〈M,HT 〉 = 0 (due toMw0 = 0)
and HT⊥ < 0. Consequently, ‖HT⊥ ‖2 ≤

4Rγmax

‖w0‖
2
2σ(M)

η = θ(w0)η, for convenience of
notation.

Calculation of σ(M):

Suppose min
h?w0=0,‖h‖2=1

h?Mh ≤ δ2. Then, for each m, we have |u?p1[m],p2[m]h| ≤ δ, or

in other words,
����

h[p1[m]]
w0[p1[m]] −

h[p2[m]]
w0[p2[m]]

���� ≤
δ‖w0‖2

|w0[p1[m]]w0[p2[m]]|
. Consequently,

����
h[p2[m]]
w0[p2[m]]

���� ≥����
h[p1[m]]
w0[p1[m]]

���� −
δ‖w0‖2

|w0[p1[m]]w0[p2[m]|
.

By iteration, we have
����

h[p2[m]]
w0[p2[m]]

���� ≥
����

h[p1[0]]
w0[p1[0]]

���� −
δ‖w0‖2

|w0[p1[m]]w0[p2[m]|
−

Mδ‖w0‖2
γmin

. For

convenience of notation, let α = h[p1[0]]
w0[p1[0]] ‖w0‖2 ≥ 0 without loss of generality
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(global phase factor ambiguity). If δ < γmin

4M ‖w0‖
2
2
, then hTw0 =

∑
m

h[m]
w0[m] |w0[m]|2 >

(α − 1/4)‖w0‖2 −
‖w0‖

2
1

4M ‖w0‖2
, due to the fact that √γmin ≤ ��w[p1[m]]�� ≤ ‖w0‖1 for all

m. If we show that α ≥ 1
2 , then we are through as h

?w0 > 0 is a contradiction. Note
that h?h = 1 =

∑
m

���
h[m]
w0[m]

���
2
|w0[m]|2 ≤

∑
m

(
α+1/4
‖w0‖2

+
‖w0‖1

4M|w0[m]| ‖w0‖2

)2
|w0[m]|2 ≤

(α + 1/4)2 + 2(α + 1/4)1/4 + 1/16 = (α + 1/2)2, which completes the proof.
Therefore, σ(M) ≥ γ2min

16M2‖w0‖
4
2
.

Upper bound of ‖HT ‖2:

We have
R∑

r=−R

∑
m |HT [m,m + r] + HT⊥[m,m + r]| ≤ 2η, from which we can in-

fer
R∑

r=−R

∑
m

���w0[m]w?0 [m + r]���
����
v?[m+r]
w?0 [m+r] +

v[m]
w0[m]

���� ≤
∑

r
∑

m |HT⊥[m,m + r]| + 2η ≤

(θ(w0)
√

M+2)η. When r > R,
����
v?[m+r]
w?0 [m+r] +

v[m]
w0[m]

���� can be expressed using a summation

of terms with differences ≤ R, i.e.,
����
v?[m+r]
w?0 [m+r] + . . . −

v?[m+r1]
w?0 [m+r1]

+
v?[m+r1]
w?0 [m+r1]

+
v[m]
w0[m]

���� with
r1 ≤ R, r2−r1 ≤ R and so on, while ensuring|w0[m + ri]|2 ≥ γmin. By using triangle
inequality, we get

∑
r
���w0[m]w?0 [m + r]���

����
v?[m+r]
w?0 [m+r] +

v[m]
w0[m]

���� ≤
γmax

γmin
M × (θ(w0)

√
M +

2)η, by using the fact that ���w0[m]w?0 [m + r]��� =
���w0[m]w?0 [m + ri]���

����
w?0 [m+r]
w?0 [m+ri ]

���� ≤���w0[m]w?0 [m + ri]���
γmax

γmin
. The same quantity also bounds the sum of the absolute

values along each column, and the spectral norm ofHT (due to Holder’s inequality).
Consequently, ‖HT ‖2 ≤ 2‖HT ‖ ≤ 2γmax

γmin
M (θ(w0)

√
M + 2)η.

Combining the expressions, we infer ‖H‖2 = ‖HT ‖2+‖HT⊥ ‖2 ≤ C0
‖w0‖

2
2γ

2
max

γ3min

RM3.5η.

In other words, we have ‖Ŵ −W0‖1 ≤ C0
‖w0‖

2
2γ

2
max

γ3min

RM4η.

The next step is to bound ‖X̂−X0‖1, where X̂ is the solution of the convex program
(6.8) in the noisy setting. This can be done by extending the arguments in the proof
of Theorem 1.5 in [CF14].

Let P = X̂ − X0, and PS,., P.,S and PS,S denote the projections onto the linear space
of matrices supported on rows indexed by S, columns indexed by S, and rows and
columns indexed by S respectively. Also, let PM = F?MFM and P⊥M = I − F?MFM .

A straightforward extension of Lemma 3.1 in [CF14] results in the bound ‖PS,S‖1 ≤

ρ‖PSc,S + PS,Sc + PSc,Sc ‖1, for any P satisfying FMPF?M = 0, where ρ = 1 − α
SRF4 .

Here, SRF is the super-resolution factor N
M and α is a positive constant.

We have ‖X0‖1 ≥ ‖X0+P‖1 ≥ ‖X0+P
⊥
MPPM+PMPP⊥M+P

⊥
MPP⊥M ‖1−‖PMPPM ‖1,

which leads to ‖X0‖1 ≥ ‖X0‖1+‖(P⊥MPPM+PMPP⊥M+P
⊥
MPP⊥M )Sc,Sc+(P⊥MPPM+
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PMPP⊥M + P
⊥
MPP⊥M )Sc,S + (P⊥MPPM + PMPP⊥M + P

⊥
MPP⊥M )S,Sc ‖1 − ‖(P⊥MPPM +

PMPP⊥M + P
⊥
MPP⊥M )S,S‖1 − ‖PMPPM ‖1.

Consequently, we infer ‖(P⊥MPPM + PMPP⊥M + P
⊥
MPP⊥M ){S,Sc }∪{Sc,S}∪{Sc,Sc }‖1 ≤

1
1−ρ ‖PMPPM ‖1. Combining the bounds, we get

‖P‖1 ≤ ‖PMPPM ‖1 + ‖P
⊥
MPPM + PMPP⊥M + P

⊥
MPP⊥M ‖1 ≤

2
1−ρ ‖PMPPM ‖1 ≤

4
1−ρ ‖Ŵ −W0‖1.

Since 1−ρ is of the form α
SRF4 , the upper bound is of the formC

‖w0‖
2
2γ

2
max

γ3min

RM4SRF4η.
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