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ABSTRACT

The matrix element for the interaction W+ N — 7+ N
is studied, where W is a virtual intermediate boson for the weak
interactions (or just the weak current), Weak pion production —
production of a pion by high energy neutrino collisions with nu-
cleons, and intermediate boson production by pions are governed
by this matrix element. The main case of interest is in the
energy region where the pion-nucleon 3-3 resonance is domi-
nant. ¥Formulae are derived for solving the problem in this

region.



ACKNOWLEDGEMENTS
I would like to thank Professor Murray Gell-Mann for
suggesting the topic here discussed and for help when needed,
and Professor Fredrik Zachariasen for his advice on various

points,



TABLE OF CONTENTS
PART
I The Weak Interaction Currents
II The Intermediate Boson Hypothesis
111 The Interaction W+ N—= 7+ N
v Dispersion Relations and the 3-3 Resonance
v Intermediate Boson Production in Pion-
Nucleon Collisions
APPENDIX I: The Form Factors
APPENDIX II: Evaluation of Dispersion Relations When
Phase Shift is Known
Figures 1 - 13

References

PAGE

10
16
26

64

71

76
79
89



-1-
I. THE WEAK INTERACTION CURRENTS
Introduction:
The decay of the muon is the only known example of a pure

weak interaction. All the evidence supports the following interaction

Lagrangian
fure & |

n F L Q] [I/ //-/ ?/5/(/{] (I.1)

+ H C

(v is written for the neutrino associated with the electron; v' that
associated with the muon. )

The decay rate of the muon from I.1 is

| 2 5 - -1
T; = [92 o C;u " sec (1. 2)

Berman (1) has calculated that electromagnetic corrections to muon
decay produce a factor of .9956 to the right hand side of 1.2, Thus

Gp can be determined and
C;u M,,Z = .ot <1677 (1. 3)
(with an error of around 1%)
Now let us consider weak interactions in which strongly interacting
particles are involved, but limiting ourselves to nucleons and pions
(i.e. considering only strangeness-preserving processes). Using

the notation of Ref. 2 we now write the interaction Lagrangian in

the form

G -
/an’ = Z[(/‘*-/./Z][;Zf//*?;)e
VL)W HC

where Va and PO! are the vector and axial vector weak currents of

(1.4)

the nucleons. Beta-decay experiments strongly suggest that



2=
G(Va + Pa) is like its analogue in theleptonic case, namely
Gpj:?ya (1 + yz)n for neutron beta-decay. But we do not expect
the two cases to be identical by any means; renormalisation ef-
fects due to the presence of strong interactions should produce new
renormalised coupling constants G., and (—GA), i.e. in the limit of

v

zero momentum transfer

G<plVlny — G &=« ()

G<pl Blnp —> ~G 2Ll () 9
GV and GA are the usual Fermi and Gamow-Tellef coupling con-

stants of nuclear theory.

The Vector Current:

Surprisingly it turns out experimentally that GH = CrV to
within about one per cent, and a 'universal' theory of weak inter-
action would require G'J. = G. It’ would appear unlikely that the lack
of renormalisation in the case o} Crv (GV = G) could be fortuitous.
A theoretical reason for this lack of renormalisation was produced
by Feynman and Gell-Mann (3) and some years earlier by Gersh-
tein and Zeldovich (4). The argument follows by analogy with
electromagnetism; because nucleons are coupled to the pion field
one would expect a renormalisation of the coupling of the nucleon
current to the photon field. But the charge of a proton, or of a
charged pion, is numerically that of an electron. And the reason
is simple; the total electric current of the strongly interacting
particles is conserved, i.e.

el

. /1-'7’2_ :
:"70;“ 5 L//-I-L[(P*-]‘;Q«@

¥\ ——
“(9“@) {z.cp] (1.6)



satisfies awﬁ/ = 0O

Note that although the isotopic scalar nucleon term alone is con-
served, the isotopic vector nucleon term is not, unless the pionic
term is included. Pions, too, can carry electric charge.

So this suggests the explanation in the case of the weak vector
current. If this current were conserved, one would expect no renor-
malisation of the coupling constant. Now under strong interactions
the total isotopic spin current is conserved. In particular the (+)

component is conserved

—

s iPLey 2 [0 T we -0 o]

(I.7)
v

satisfies /";*Ju = O
So, for low-energy transitions, just like electromagnetism, one
finds a coupling constant which is unchanged by the presence of
strong interactions. A further consequence of this choice is that
the interaction at the second term of \/j‘l/ with the lepton current
leads to the prediction of the process 7 - 7%+ e+ V. This has
not been observed. But as the theory implies no renormalisation
of the direct interaction, the transition rate of this decay can be
computed directly and the branching ratio to the normal mode of
decay is of the order of 10-8, which is pmm small for existing ex-
periments.

If we move from the low momentum transfer region, the

strong interactions induce further terms in the matrix element

< p/Va/n >, Again look at the electromagnetic current matrix



.
element

We know that we can write

<ol gy = e R L £TY

or in isotopic spin language

e<~1£’/N> = S0t Fre)

sv & kv‘ %o/:‘r % )Lz_"szv/kZJ (I.9)

where S and V refer to the isotopic scalar and isotopic vector parts
respectively. Fi,EZ) (kz), Fi’rzl(kz) are the proton and neutron
charge and magnetic moment form factors and have been measured
by Hofstadter and his collaborators at Stanford. }.Lp’ refers to the

anomalous proton magnetic moment.
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The measurements of the form factors have been carried out in
the range 0 < kz < 40 m WZ at the present time.
When we come to the matrix element <p /Va/n> we find from
Loorentz invariance that
¢ G,

G <Pl = G BL A8 - b Ty Bk

where Fl’ FZ are form factors and Fl(O) =1,
We can go further and remember that the isotopic spin character
of < p/Va/n> is a (+) component of an isotropic vector. So as we
only consider first order effects in the weak and electromagnetic
coupling, and as the weak and electromagnetic currents are both
relativistic currents, the matrix element < p/Va/n> and the iso-
topic vector part of <N/J§1 /N> have exactly the same form. This
could be seen before when Jﬁl and JIY were explicitly written down.

%

So

GLpIVainy = iG B I % FU&

. ~—-\V — V'z
— Lk Gt £ TE)
(I. 1)

and FIV, v

FZ , g.mv are given by I.10.

The form factors Fl, ZV(kZ) are taken to satisfy dispersion
relations. The number of subtractions in those equations is not
known but is often taken to be one for the charge form factor and
none for the magnetic moment form factor, i.e.

FoiRy) = | - & i Iry ETRY) o 7™

) (I.12)
" }Q'z(k’l +/?z~lt-}

kS
G
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60
) / = V/47) oS
F_;—-V/k) - = 5”:/'2 / } 1.12)
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These form factors are discussed in Appendix I.

The Axial Vector Current:
The first question which now must be asked for this current

-G
is whether it also is conserved. Experimentally . 1.25 so it

G

appears that a strictly conserved axial vector current is impossible,
although 1. 25 is quite 'near' unity, and so perhaps the axial vector
current is nearly conserved; tha.f is to say, it is conserved in some
limit.l It should be recalled that even the vector current is only con-~
served neglecting electromagnetic mass differences and other elec-
tromagnetic effects. The concept of a partially conserved axial
vector current is valid, but it can be shown (later) that BaPa = 0
implies that the charged pic;n does not decay in its normal mode.
So any limit in which aa PO[ were small would be one in which, for
example, the energies involved were so large that the pion mass
could be neglected.

Are there any simple alternatives other than one involving

m_ = 0? It can be readily seen that aapa is a pseudoscalar and

that the simplest pseudoscalar field is the pion field. So possibly

1

90(/9 = ‘2 7 (1.'13)

ot

where a is a real constant and 7 is the renormalised field operator
which destroys a 7 . This possibility was exhaustively studied in

Ref. 2 and some rather artificial models of the strong interactions
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in which it held were exhibited. But from I.13 immediately

(ol Pl =7 = = Bx Copmralny

and from I.5b in the limit of small momentum transfer

G PRl = -G k) G nn T

I

ZM/'G—:?) Q_chf- ZS‘“[

But

<P/®°(E(/n> = —‘;i—(,ﬁx“/n)

e

V2

— ta ) —
L/Z 3! \7: Z} u;

bt m;

(I.14)

(I.15)

(I.16)

where g is the renormalised pion-nucleon coupling constant. I.16

- should hold in the vicinity of kz = -MWZ.

So if <p/8a Pa/n> is a slowly varying function of kz we have .

- _ 22 /Gy
€ = s, m“‘/?/

(I.17)

and from I.14 the decay rate of the charged pion is given by an easy

calculation to be

A 2 2 *
T . & “o [ - f’/_“) 2*
K>tV 16w my m;‘ m
™
- G M M| )"
= o B (-
ben® 92 M "y

(1.18)

This formula was first derived by Goldberger and Treiman (5) using
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dispersion theoretic techniques and making some rather flagrant
approximations. |
But this theory is not satisfactory. Let us consider the most

general matrix element of Pa between nucleon states

: E( n = ~[ Ga o w- *
<pl Belnp (&) AR NS AT
F ok, %“CZ} u;/g/éa)‘
+ c'(F:rﬁt) (,};_7; Z;.L(; ((/62)
k., = Pf -/i: S xle) = / (1.19)

o

By time reversal invariance y(kz) = 0.
Define K(kz) by

LplX)ny = ive & »;nzg . K(F)

(1. 20)
where # )\~ = - V2 2, P .
| a "
Then from I1.19 and I. 20,
- Ga 2 20/t :a/((éz)
ZM( “'c',—_) (k) + 'é/g / (I. 21)
So

— G’,q a
= M k(o) (1.22)
a(kz), ,8(1{2), K(kz) should satisfy dispersion relations. B(kz) is the

induced pseudoscalar term of Goldberger and Treiman (6) which is
important for large momentum transfer and is significant in muon
capture. Diagrammatically it is shown in Fig. I for this case,

Thus f3 (kz) has a pion pole in its spectral representation and so

therefore has K(kz) .



a is chosen such that

k/kz) -9 +_I7(—[ A ‘7,’(/’*72)

il

R+ my - b M (1. 23(a))
oo
wt) = | - £ LT =)
T MY e mE (b)
Y . 29, ) N deZ o/g//‘?z)
ﬁ/’é - 77- 2 2 +7\’ 2 2
w R + M7 9,2 k:+ M (c)

It has thus been assumed that K(kz) is sufficiently 'non-singular’ to
satisfy a dispersion relation with no subtractions. If, in addition,
the second term in the equations is small in comparison with the
first (due to the high mass terms in the denominators of the inte-
grands) for low k?‘, then a is given as before and the formal identity
A" = 7 is not required, but A" in this region does behave like 7 .
This more recent result was first worked out by Bernstein, Fubini,

Gell-Mann, and Thirring (7). In any case it is somewhat arbitrary

which pseudoscalar field with the quantum numbers of the pion is

called the pion field.
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II. THE INTERMEDIATE BOSON HYPOTHESIS

Up to the present we have compared the weak currents to
the electromagnétic current without commenting on a fundamental
difference between the theories as they stand; namely that the inter-
action in the weak case is a four-farmion current-current interac-
tion, whereas in electromagnetism the current is coupled to a boson
field, which indicates the interaction. The other interaction that
we know something about, the Yukawa interaction, also is
by a boson. So it is tempting to ask whether in the case of weak
interactions, the universality which seems to characterise all (or
at least most) weak interactions comes from the presence of a
boson field, coupled to the weak currents with the same (bare)
coupling constant.

In such a case one would write

fim * vz, 5‘;1‘ LHC (11.1)

where Ja would represent the total weak interaction current, bq
would be the field operator appropriate to a charged spin one par-
ticle which we shall call WJL and g would be a coupling constant.

If now we take the matrix element of Ja between nucleon

states as before, we would write (for small momentum transfer)

9<p! T [ n) = g2 “ Kr(/"(“g:‘)zz’)iui (IL. 2)

and using

9 <e/J:(/v7 = ¢9/2 (ch Z;//-#Z:.)L(‘-
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for neutron B-decay we must have

290 GM
e = o (II. 3)

where MW is the mass of the boson.
MW must be larger than the K-meson mass, otherwise K would
decay much faster than it is observed to do. W decays into lep-

tons, 2w, 37w, etc. and the coupling strength is given by

2
"’*ij > 16 x 1077 (II. 4)
w
Thus the decay rates into lepton are given (8) by
3
=~ M /6 -1
T— ~ [ = _______C ud > B x 10 sec (II.5)
W—?/-u-r Wsesi 67\,\/2

As the matrix element for muon decay is now of the form

(- = - ’ k —

GM,, v ?;/H?})/—t (CS% + %f)eZ;@(/ﬂ} v _

‘/2 Q?‘ N Mg_ - L.
w

a nonlocality of size MW-l would alter slightly the predictions

of the four-fermion local theory; in general, effects would be most
noted for large momentum transfer.
The Michel parameter in muon decay is now given by

m
p=.75+ 31\2‘& approximately, which is consistent with present

experimental results. In fact, the latest measurements (9) give
p =.780+ 0.025 with MW = MK’ p = .765, which is within the ex-

perimental error.
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Also in muon capture, momentum transfer is appreciable
and the effects of W existing might be noticed. Of course, in the

limit of infinite MW’ the theory reduces to the theory of Ch. I.

Isotopic Character of W:

There are several possible theories of the intermediate
bosons and really, for us, it does not matter which we choose, as
the forthcoming calculations will refer only to a charged boson, or
equivalently, a weak current carrying electric charge. But in
order to indicate the possibilities of a theory of weak interactions
with spin one bosons, one of the simplest theories, that of Lee
and Yang (10), will be described briefly.

This theory assumes that all weak interactions (including
the strangeness changing weak interactions, which will not concern
us after this section) are transmitted through the boson field W.

%

Then it is also required that the Al = lz- rule holds for strange-

ness non-conserving decays, and that AS = + 2 interactions are

+
absent. The equality of the coupling constant connecting W
with (ev),(@v'), (np) is known from experiment.

It is clear first of all that if the simplest nucleon and strange-

ness changing currents are written down
Je = % (7P
Se = £ (AP)

(1. 7)

it

then under isotopic rotations Ia forms a component of a vector and

Saof an isotopic doublet. Then to satisfy a [AIf S-IZ- rule some

decay such as N —p+ 7~ we will need a theory including a neutral
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current and hence a neutral W. Then it would seem possible that
isotopic spin was conserved in the W-J coupling while IA;I =%—
comes from the W-S coupling. So take the triplet (W+ R WO, W)
as an isotopic vector just like (7r+, 7ro, 7 ), i.e. the W-J coupling

is
_ - [ A — o —_ +
UC;{(”F)W * ZZFP"”"]W +(7>n)\/¢/j (I1. 8)
whereas the W-S coupling is

L{(Rp)W™ = L(Aa)W| + HC .9)

thus producing a /Al/ = -12- rule.

Unfortunately under this scheme

n «—> A+w® and

AN e n+W°
So nen ¢« AN+ Wo+rn <« AN+ N
which contradicts AS # 2 for first order weak interactions.

Hence we are led to the other simple alternative in which [
is conserved in W-S couplings, and ]A_I_l = 17 arises out of the
W-J couplings, So here W+ and W° form an isotopic doublet (like
the KJr , K° doublet) and Wo, W are distinct particles (WO, W~

also form a doublet). So the W-S coupling is
£[(Rp)w™ + (Rn) W°)
F L [GAW - FAWT)

(I1.10)
The W-J coupling is now

§[aw = $[Ep-an]we)
+ H - C
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(I1.11)
(2] 4 — °
where \/\/a. = - W W
V2.
(11.12)
\ 2
and define \/‘/bo - el W’ - W/

/2

Wa s Wbo are the same sort of entities as KlO and KZQ. We can

+ e} - . . .
even take W , Wa , W as an isotopic vector which conserves

isotopic spin in the W-J interaction, letting the IA_I_} = %transition
come from a transition among the W fields themselves.
(w?w?)

i.e. (\/\/j \/\/;i W—) &

(WS W
The preceding difficulty of n + n¢» /\ +/\ does not now arise as

nen > A+ W) v+ n > N+ /N

exactly cancels

n+n > /\+\/\/¢°+né————>/\"‘/\

The main point of this discussion for our purposes is to show that
a theory of intermediate bosons can be developed in which some
triplet of the W fields transform just like pions in isotopic spin
space and form an isotopic vector. This is useful in calculations

even though the charged W only will be required. fl of this chapter
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corresponds to g/Z of the last.
Further details of the properties of the neutral W particles
and of the strangeness changing weak interactions implied by this

scheme are to be found in Ref. 10,
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III. THE INTERACTION W+ N —7 + N
Introduction:

Now that the matrix element of the weak current between
nucleon states has been found, more involved processes can be
considered. The simplest of these is pion production by the weak
current off nucleons (from now, called weak pion production).

In analogy with the case of pion electroproduction (production of
pions by virtual photons~~photons off the mass shell) we shall
consider the process

W o+ N — oV
where W represents an intermediate boson off its mass shell (in
general). In the limit of the boson mass MW becoming infinite,
the interaction becomes that expected from the four-fermion
theory. If the W is virtual, the physical situation corresponds
to a neutrino collision with a nucleon, forming a nucleon, a pion
and a lepton (muon or electron) as shown in Fig. II. The scatter-

ing amplitude for this process is given by

— . "2 ~
) R*+ M P lfulpr (do - %_éz) LBy,

(II1.1)
where Py and t, are the four-momenta of the initial nucleon and
neutrino, Py tz and q those of the final nucleon, lepton, and pion;
jp. is the total weak current, and k = tz—tl is four-momentum trans-
fer to the pion-nucleon system, in other words the momentum of

the virtual W.
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Let us write

£, = i, L(r&ly

— € (IIL.2)

and H/w = </%Cp/J/¢//O:> (IIL. 3)

is the matrix element we want to evaluate. For convenience we

will write

777 = He - 7771/ *7729 (II1. 4)

where epﬁ is an arbitrary four-vector, and777 s 777A are the parts
of the matrix element coming from the vector and axial vector
currents.

In the case of the final lepton being an electron, and neglect~-
ing the mass of the electron as an 'electrical mass difference' be-
tween the mass of it and that of the neutrino, similar to the mass
difference between the proton and neutron (which we also neglect),

we have from III.2
R-& = O (I11. 5)

Thus, in this case

= IIL. 6

l v (11L. 6)

and £ = k£ (III. 7)
a /?0

a relation which is useful in calculations. The amplitude T is a

function of the scalars



X ﬁ) (I1I. 8)

We learned in Ch. II that we could take W as a vector in
isotopic spin space. So the isotopic dependence of 77 is just like
pion-nucleon scattering; that is, let  be the isotopic state of the
+ W and & that of the pion (a,p =1, 2, 3).

Then

O
RN
il
Q—
O
*
M~
™
d
RN
]

Oz (I1I. 9)

In terms of total isotopic spin
* ! (4) (34)
S = 3 ( S r 2 O, }
— 4 %) {3/;) (IIL].O)
O, = 3 ( o - O

where we have put

Moo= 20 Mo I/

are expressions involving gamma-matrices and Oi are invariant

scalar amplitudes.

Weak Current Theory

We can first see what general results can be obtained from
the theories of the weak currents outlined in Chapter I. First con-

sider
v

M, = <{psl Ulpy e = He

together with 8 V. =0
L



o (palallpy =0 = A lpslhipy

or k.o HY = O (II1.11)

This is analogous to gauge invariance in electromagnetism. Stated
formally, gauge invariance asserts here that whenever the polarisa-
tion vector ep is replaced by the photon momentum kp‘ in the ampli-
tude for an electromagnetic process, the amplitude vanishes. We

have

777'/ = Hle H" R =

, SO 777\/' is a gauge invariant in precisely the way the concept is used
in electromagnetism.

Also, even if k*€ # 0, the vector part of T is given by

T = ~J/2 H" €& (I11.12)
£+ My

Now consider

Ty = <melElpy e

together with Ba_l_:'a.’:: iagw (I11.13)

(The vector denoted here is an isotopic vector. The same
underlining will be used where necessary to denote an ordinary,
spacelike, three-vector. It should be obvious from the context

which type of vector is meant.)

4 = "'Z—-/\z m; (—__C_’:_;g) from eqn. (I.17)
J,
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It was shown in Chapter I that III.13 holds for small kz in the sense

of eqn. I.23(a) being correct.

o {pgla®/py = ~k<pylBlp)
= calpyg/nlpy = 2<pslpky

2 2
7+

or

k- HA L ca <Pz@/f,/€>
b2+ my

where < pzq/plk > is the scattering amplitude for pion-nucleon

(II1.14)

scattering; the incoming pion having momentum k where kz is not
2

necessarily (-mﬁ). This relation connects the matrix element for

weak pion production with that for pion-nucleon scattei'ing.

The Born Approximation:

4

As we are interested in calculating an amplitude which in-
volves a strong interaction, a dispersion theoretic technique will
be used (Chapter IV), But the Born approximation is invaluable in
providing a guide to the necessary pole terms and subtractions in
the one-dimensional dispersion relation which will be employed.

The appropriate Feynman diagrams involving one-particle
intermediate states for the vector part of the amplitude are shown
in Fig. 3. Any strong two pion or three pion interaction would imply
additional terms to those here considered (for simplicity, treating
the resonances as particles in their own right, as indeed they may

be). We will omit these terms now, and look at them later.
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The expression for the Born approximation is thus

1’:2’2 ,(/{1/
N R (LW - Ak B e

22/‘22/5'
+ £ Y
3( ) - 2/‘79‘7‘/“1")) oo G 2pig

- 3, LT«J 7/}] ‘.2/5 E/Ai) (22" /?)f
622—-k)'k

(I1I.15)
Fﬁ(}xz) is the electromagnetic form factor of the pion (see Ref. 11)
which comes from (c) in Fig. 3, and is further discussed in Appendix
I. We have taken m_ as unity. Expresswion II1.15 is to be taken be=
tween Dirac spinors for the initial and final nucleon states, and
isotopic spinors for these states.,
We test the gauge invariance of this expression by replacing

e byk . We obtain
b B

31 ZY«/ \7//,;_7 [2} (/E/"’V//\z) - F;/,\t)) (II1.16)

There is no theoretical reason why these three terms should be
gauge invariant on their own; only the total amplitude must be gauge
invariant. It would however be very convenient if this were the
case, especially as the calculation in the next chapter is done essen-
tially using the Born terms as a first approximation; if gauge invar-
iance is not present initially, we would not be able to impose it on

the complete amplitude.
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In the case of an electron being produced in our reaction,
k€ =0, and TV only involves HV ° €. So if we replace ep by €

in III.15 and add

Cji [7:0 %] ‘[5

2 —V /)2
RO -,
2
\ (I11.17)
we have not changed the value of the expression but we now have
gauge invariance in this case.
If the lepton produced is a muon we cannot do this. But

note that for AZ = 0, FIV

(0) = FW(O). The structure of FW(}LZ) and
Flv(AZ) are fairly similar; it is believed that for small )LZ the dom=
inant cause of the shape of both form factors is the J =1, I =1 pion~

vV, 2

pion resonance (Appendix I}). It would be nice if FW(AZ) and F, (A7)

1
were roughly equal for small }\Z; then we would not have this prob-
lem. A pseudo-reason for believing this would be that in similar
reactions — e, g. photoproduction, electroproduction —the Born
approximation corresponding to the diagrams in Fig. 3 conspi;'es

to be gauge invariant in fact,

The expression for the Born approximation for 777A is

2, _ |
st n (L (2) ) - p) e

- 62/2 s
5 (L% (2)eth) v hopl) i 5

14

(III.18)
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corresponding to the diagrams in Fig. 4. (again ignoring pion-

pion interactions).

Two and Three Pion Exchange:

We can also consider two pion and three pion exchange. This
can be done if we take the view (supported by experiments on the elec-
tromagnetic form factors of the nucleon — see Appendix I) that there
are resonances in the I =1, J = 1 two pion system at an energy of
about 4.7 m._ in the centre of mass of the system, and a resonance
I1=0, J=1three pion system at a C.M. energy of around 3 m_.
Alternatively, following the ideas of Gell-Mann and Sakurai (12, 13,
14) among others, we can consider these resonances as occurring
through the existence of vector mesons p, w, coupled to conserved
currents.

The diagrams to be computed are shown in Fig. 5. Fig. 5(a)
for the vector current coupling to the nucleon via an w has an ampli-

tude

/‘(,\)

Vot \/wr(

e ll) ¢ byl R
- % (CV/?,\ k (&‘Hl]‘i«/ “(11.19)

ZM

where fvwﬂ and YoNN 2T€ the renormalised coupling constants for

the Vw7 and wNN vertices, F (AZ) is the form factor for the

Voo

Vwnr vertex, and Fy Zw are the 'charge' and 'magnetic moment' form
3

factors for the wNN vertex. |.LS is just the scalar anomalous magnetic

moment of the nucleon.

The expression III.19 can alternatively be written



=24 =

S T B (V)

(9//()7“*”%25 M;‘ 275[{122’} +§'c/‘7{2’/’()7])(

2M J

Fo-RY)  + /{fj(?‘[ X2 4 My

(I11. 20)

where [CLJ 4} = a.e b, P — a kP b.e

2

Approximately, we can put F (\") =1, Also,

Vo 7

[

and fyw . C3n be determined from the rate of 7ro decay (14), eesssmisg

Yonn 204 Fp 5

are discussed in Ref, 14 and in Appendix I.

In order to compute the matrix element for Fig. 5(b) we
need to know the amplitude < 7,p /PH /O >, This would be a useful
quantity if it were known, as it is connected to the amplitude for
Y-p scattering, and also to the axial vector form factors a(kz),

ﬁ(?xz). All we know is its pion pole term at present; this gives

—(2 ke Z/m,/ /;r [(i_k)L
My //\2+m:,) & 2 [%% k) X

(III. 21)
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All the quantities appearing in III. 21 are reasonably well-
known (Ref. 14 and Appendix I).

Now that these terms have been written down they will be
omitted in the calculations in the next chapter. The effects due to
the p and w have not yet been experimentally verified in photopro-
duction, a subject which has been exhaustively studied in recent
years. They do not make any significant contribution to the pion-
nucleon 3-3 resonance, and so very careful experiments have to be
done in low-energy photoproduction to see the effects and to mea-
sure the relevant coupling constants. This will no doubt be done
in the near future, but for weak pion production, with its vastly
smaller cross—section, we will concentrate on the terms most likely
to be dominant.

Terms involving \;o 7 and Ppw vertices have been o.mitte‘d
as we have made the tacit assumption of the GP iﬁvariance of the

weak currents.
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IV. DISPERSION RELATIONS AND THE 3-3 RESONANCE

Vector Part:

We can write
771 = Lo

where Mi are relativistic invariant forms involving gamma matrices
and scalars formed from k, ¢, e, P; each Mi is linear in e {(as we
take weak interaction only to first order). There are eight inde-
pendent l\/.‘[i allowed, allowing for the Dirac equation for the initial
and final nucleon spinors and energy-momentum conservation. Oi
are functions of v, VE: AZ only and are taken to obey dispersion
relations. In the case of 777V we have the further requirement of
gauge invariance which reduces the number of Mi to six.

We will take as fundamental forms for 777 (following F.N. W.,

v
Ref. 15)

M, = 3L {rY )

My 2l [Py (+)

M Gl{te )

My = 2% [ (2P} - 2m (2] )
Me = il [kq) )

Me = GlRI =)

i

/1

[

(Iv.1)
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where (a,b} = a*e b*k - a-k bre is automatically gauge invariant

and

777V - AMA +B/\48+ ‘/"‘FM;: (IV.2)

The signs in parentheses in IV.1 refer to the crossing symmetry of
the invariants.

From the isotopic spin decomposition (IIl. 9) we see that (+)
amplitudes are even and (-) are odd under crossing.

So we write one-~dimensional dispersion relations for the

energy variable v, keeping the momentum transfer variable v

B
constant, in the form
!
A (v ) = Cluvnd) « R (,v)/
[4 ) L \/B___l/‘
o0
| { !
+ — / ‘ ¢ 2 [
- VB+V) * Wfd‘/ ﬁMA‘ (ngzf\) V/___l/
%%
, )
{
vie v Vo= v oe | o
B It 2m (IV . 3)

and the + sign depends on the crossing symmetry. We are guided
to the values of Ci and Ri by the Born approximation III.15 together
with the additional term III.17.

Then we have

IJ = - £ F7)
/

§
kh
T
,\\T\
N
o
Y
&

(IV. 4)
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[CA+, CB+’ CD+ and CE+ have contributions from the three pion

intermediate state; these can be read off from equation III. 20].

From the well-known theorem of FF.N.W. we know that
the phases of the matrix elements for this process in the centre
of mass system are just the pion-nucleon phase shifts for corres-
ponding energies. We limit ourselves to low-energy final states
so that the 3~-3 resonance is dominant. Then below and in the reso-~
nance region, only the 3-3 component of Ai has any appreciable
imaginary part. So clearly, the first step in the evaluation of the
dispersioﬁ relations is the substitution of the 3-3 contributions
in place of the total amplitudes in the dispersion integrals.

We thus seem to be working in the same spirit as Chew and
his collaborators, in the original papers using dispersion tech=~
niques for pion-nucleon scattering and photoproduction in the 3-3
resonance region (Ref. 16). This can be justified for this region,
as the more modern studies using the double dispersion approach
by the Berkeley and CERN grdups {Ref. 17=21) show that the solu-~
tions to the partial-wave dispersion relations for the 3-3 state in
the static limit and to first order in L as in CGLN are essentially

M
the same. Further, the CERN groups using the method of Cini and
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Fubini (Ref. 19) show that the one-dimensional dispersion relation
in CGLN (written down in the same way as our equations) are cor-
rect in general in the low-energy region provided the strong pion-
pion effects are included — and these can simply be included by
taking these effects as due to two spin one particles p, & and just
calculating the Born approximation as we did in Chapter 3. Bow-
cock, Cottingham and Lurie (Ref. 21) show that in pion-nucleon
scattering, the term involving the exchange of a p~-meson brought
agreement with the observed s and p~-wave non~resonant scattering
phase-shifts, but contribute little to the 3-3 phase-shifts.

We should emphasize, however, that the form of the dis=-
persion equations that we have assumed is very much an assump-
tion. In order to proceed with any semblance of rigour, one should
first assume some form of double dispersion relation (with no
subtractions, say) and derive from these the one-dimensional
relations with accompanying pole terms and subtract{ons, But
for our case, in practice, this is not really necessary for a com-
putation, as the actual structure of the dispersion relations is not
as important as the existence of the final state resonance. When
we put this into the equations from the start, we essentially are
using a not-very-glorified Breit-Wigner technique. Presumably,
in order to obtain theoretically the position of the resonance we
would have to be rather more careful. But this has not yet been
done, even in the pion-nucleon scattering problem.

In order not to make the approximations of CGLN and FNW

(at least at first) we use the method of Blankenbecler and Gartenhaus
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(22) discussed in Appendix II. This method assumes the dominance
of the 3«3 final state, but treats crossing and recoil exactly, and
does not expand in either partial waves or in powers of —]-"—— It

M

is worse to make expansions in —l\—];f in weak production (and electro-
production) than in photoproduction because no longer are there only
two terms of order _I%/i" to consider, namely Tif and —l% (w= W-M,
W total C.M. energy) which are small. Terms like }LZ/M(.O also
appear in our case and for wide~-angle scattering, which is of im~
portance for the measurement of form-~factors, this term is not
small. It is possible for A~1 Bev and still produce a resonant
pion-nucleon final state.

The method assumes the phases of the amplitudes in the
dispersion relation known. Then the dispersion relations can be

solved formally, and a first approximation which could be iterated

if necessary to obtain a better approximation is given by

A" /x/ VB) /\Z) = A;E‘A [X/ V@)/\Z)

crg (X) 0o
33 REANCR7 A
- fdﬁ imdy(9) @ (4, 2 (7754)
A /+§_[_/;’
% / P (IV. 6)
Y —x-e - L7~»'-)(~f-2zfg
where
X = t/—l/B = Uz
2 M

(533(3() s the 3-3 /oAase shi £ F

N(xing) = 2005) - 200%)
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We see that

D (9,5, ) 00%) /2 (. %)
€ N

and for x in the resonance region, this function can be expanded

in the form

oS

e = |+ afly-x)+
where under the integral the second term in the expansion is small
compared with the first; as the integral is sharply peeked around
y=x_.

So now our enhancement term is approximately .

c{;}(x) x OC ——w/ + /
e O/j Sin 33/7) Q‘-/j) y._x_/é - y-rx -/-Zl/,g

4 Ay
¢ 35 ()
e Q; (X)iw%3;3 (%)
(crn(’() .
= Pf cly sin 93 (9) @:(y)
1 /+___/_.

277

( /
X{].T AR

(IV.8)
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Now the first term gives the right phase as demanded by

unitarity to the result; when put with the 3-3 part of AiB° A one gets

zdﬁ ("f) .
a.(x) + (e{;n(X)Q; ) 2 EpCx) = @ s dyy (%) cosoy(x)
X Cfé(X)

which vanishes at resonance, Also the crossed term under the

integral is small in this region and so around resonance we have

36) o2 () sind(4)
2 BA e aly)s 9
Al s, ) = A ar) + S P ay -
/*5/7‘7
(IV.9)

The principal value integral evidently gives the enhancement
to the 3-3 state, and in general will give the enhancement for a
resonance with vvidtth~ say. But we know that a Breit-Wigner
expression satisfies the dispersion equations in the resonance re-
gion ‘approximately; hence we must expect that eq. IV\,' 9 simulates
a; (% va, f\\l)

= (IV.10)

=z

A[ (x/ Vi}}/’z) = At'B.Af*/ VB)’P) *

or even in the resonance region

a; (x, v%,)Y

A l(x,)) =

(Iv.11)

that is, just the Born approximation to go into the 3-~3 state with an

enhancement factor.

So all we have to do to use any of these expressions for the
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complete amplitude is to calculate the functions Q, (% Vg,/\)

First we project out the 3/2 spin states of At\ ()(/ s, Xc}

So we write the matrix element 777)/ = 2: A/W,q in terms of two-

component spinors
_ x
a, M, u: = A Ees
€
h _ S (Iv.12)
where '*U')_V - 2 Sli Zi

t=/

and Z are defined by Ref. 23.
3

I

57 = (oK g2 57 - T3 %a

s7 . mkte 57 ey ke
5

(IV.13)
where a is the gauge-invariant three vector given by
e, ke
4= e - Lk (= €~ STk when £-§="of’o) (IV.14)

and g = /gp// p=lk] el

The relations between the SLL and A,B,...F are (compare Ref. 23)
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(IV.15)
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where El and EZ are the initial and final nucleon energies, eo, k ,

o
q, are the time components of e ) q}l- and
£+
Ol = [ﬁ,+/‘7}/&2+/\7) Oz_ - EZ"LM
L . : B. A. 2, .
Now writing the isotopic 3/2 part of Ai (x, VB’ A7) in terms

of Fl, .. °F6 we have

FB.A __2f ) /M Ml 2 (o M)(E-1)

e ik / cosfhra 2, > [E,+M)
B-A

F = V//\) ( ), e W+M @ W+ M
J 2/%' cosP +a WDV w s 2,
— B A e
F7 = 27 ‘ / 2 M
" - t 1) 2M

% /:/\) cosb- b ERv=y —-/ﬂM/M)

(IV.16)
where we have split up the results into terms linear in
v =V
/0(;(/\1)/ IL/ !//,\)/ /L‘,-r //\)
Further
% Z(_ = 9 /é Cos &
g (8] s ¥ BVN) o+ B0
oL = 2/8052 + /\\7— b - 220 'éo -+ /\Z (IVJ.?)
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Relations between El’ EZ’ ko, d, and W and 7\2 are

E - Wz’f“ Mz"" /\2
! >
24 ME )
E = X
z 2 W
CZo — w?- ME+
e
L? = w =~ Mz—u/\z
0 S

(Iv.18)

Now we can project the spin 3/2 state out of IV.16. We use

3“.—3/?. 1 ol 2
F /%/B,W): 4#[%7’“/3%%/*9—"% T'i?
| Flg' k)

(IvV.19)
Useful formulae are
! oAL2e !
—_— 2 ! a+/ A /2
9—71( Py = ey — = =
3F v o 2 Cy [ & % eﬁ")
g o,
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Z;I: ( /\CL«:# dﬂi/ = /@/a) O(\/ _ 2_' :/a) Ea//\/id
2/£ + L
— e+ /
ﬁ(q): a - a—{

S IAY AV,
- %2 9, 1 ! 7 7 7z
S N
2._/3’*—0‘_

(IV. 20)

Doing the projections and collecting terms we get for the 'magnetic

moment' terms (compare Ref. 23)
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For the 'charge' terms:

F |
_."—i* = %Z W+M 3 ))
Byess® Eor 17 o[- s ol
R L e
—— - 5 — ca
BS 2, s [LarM)/ )
/:"3
J = 3 e 5 W+ M R
= > M%(q) + V4 (/-3 22
5, W “ (EwM?(/ew-}a-( 2/ )
w(lp _
/—j - O
g
% N R 2 2 [lwar)lErm) >
T2 T I Eorr +2{(NQ)
B <oz & et
9
Py
+ 2 (E/+M)(WTM/ 5 7 Ly —
k* E, + M (£l 2*@))
%‘é
_Rw Eo+ M o E
—_ = — - & W+ M -
Bj 29 ErM < (&) 2 E#Mﬁ&)
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Finally, from the meson current we have

F -
o P 2 A1)
i - M/EL'fM—_) */é)

Bﬂ- W+ M)

F;

= -3 2M gk
- ) 217 g ) _
i Wt /] // ) “ Ez,'/'M /eovL ’\ZJ // /~ ééﬁ/é))

Er=o

—5
IL—T_ - ™ :+M -
; . - — M /é) + ng”7 é?z[ %;/ + Z:Z Z//z)
o cosD Eat/1
2 SO - - —
iom LGS 70) -2 50)
" E+M
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" R E+M _ Eyi17 —
R Moo= 2 f] —x
Zi{ A £+ M q’/,) . 53+f7 /2)
I R A B
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(IV.23)
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So the 3-3 projections & [xj V3 \}\ are found by taking these

equations, substituting them on the left hand side of IV.15 and then

solving for a,b,...f. The solutions are given explicitly by

! - J—
209 o S [ f - (wr i) B

[7 =
b= X B AR e
UMk, vy [ 2w Sl i) E
+ MVB 2 z)//:” /C") o F‘ W+ M —
/\1{WM J_4+ZW§‘2 s
= o « 2 . WM —
) 2w VR
LT — £
oL = wﬁfeoz (we-m) F v — bM (wir) F
/+

+ 2 My, /(W+M)€ + wﬁz) AT A *FZ]]

€ = \/\/—L*/wl 5 . L\/Z—ML /E’
/\L 21/\//{2 /F; - 3)
JL = *G( + W+ M - [:;- + [Z’z
~ 2
2WIE+M) >

(IV.24)
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2 !
T 3a a="3% etc. finally.

+
Remember 3

The Axial Vector Part:

We report the procedure for 777A° We no longer have gauge

invariance, so this time there are eight invariant amplitudes
~c77% =AMy + ...+ HN, (IV. 25)

where this time

M. = 2(rgle-Tely) )

A
My = 2 Pe )
M. = g (+)
My, = M e )
M, s Lk 2Pe (+) (IV. 26)

<
;

{Z/‘é i'f —)
My = ke (+)
M;/ = 12//\> /Z»e <——)

From the Born approximation III.18 we find the residues

for the dispersion relations for the A,...H(IV.3) as follows:
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RLAT = Seli)(-2)

RLc] = i) /- g:—’“l

RLH] = -3403)

All other R's are zero, and no subtraction terms Ci’

(IV.27)

[ If the two pion intermediate statewéreincluded, we see from III.Z21

that a subtraction in at least H would have been necessary . ]

In the case of k-e being zero, amplitudes G and H do not

contribute. We will project out the 3-3 states as before.

In terms of two~-component spinors
2
= %7,
00
i}/} g Z t;-(' Zc'

where

and

&=/

(IV.28)

(Iv.29)
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Then the relations for the ?‘ 's interms of A,...H are

}:: = 2—/\// '9, - (l/\/-f—M)A ‘MD
720,

F; - 2Mo '}‘71 = K + [Ww+h) E = G — (WM )H
96"

o= ZMDHSZ = A+ B -C s (wei)E — (wert) F
izk 3

o= 205 . Euen)A - (6760 »9.C - M0
N

+éa G- ’“(W’“M)[(Eﬁfz)f # 2515 +—éOF/]

F:J—: L%,?—‘—c\p/f "M_D

. 2M
Fo= 2’**'}5:-—;4-23 FC v w (E-F)

B /:5" “;7.: B+l s G -wH
o= 20y o e —(5,+&)8 - 9,C =MD
8 - yg,_ (&, 1) A (E,+£.) Z0
/

b, G + o [/E,+E;)E‘+ 90 F + ko H ]

(IV.30)
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When kre = 0, F8 become s incorporated in F7 and F4 in FZ‘ We
will project out the 3-3 part of only the terms linear in Oi(kz); if

kee = 0, these are the only terms of interest, and if not, there is

a simple way to relate the § terms to pion-nucleon scattering which

will be shown later.

So the isotopic 3/2 part of the amplitudes are given by

R o L zm%«/x/ﬁ?)

g k(acost]

ZW+/“7J 0,2 E,tM-Fs _co
/ -
-2,6 ~(Erg,+)| V.

Doing the spin 3/2 projections

F/A k(E,+M — —
L, ke Sa) + (Eyrr)BG) 4 M;’_‘MZ@/

A 9+ 1)

F/Z 2@(5 +/"7) _ —
Aof ak E,-M
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A= 2T
" 9k \(@)D((A)

(Iv. 32)

In the general formulation, equation IV.30 must now be solved for

a,b,...h in terms of F‘a, . Fi as before.
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We now have to compute the terms linear in [3(12). These are not
present in a situation where k°€ = 0, as in weak pion production
with electron. But if a muon is produced they are, and could be
appreciable for high momentum transfer. We could compute them
by the same methods that have been used up to now, but there is
a simple way to relate any term involving B(Az) to a similar term
involving a pion which can be used more generally than the other
methods (the dominance of a resonance is not required),

In our case, consider the diagram Fig. 6. For it

{rpl Blpy = <>v;%/vr,e/f?> AP
o Crpl ml p> = 5o Lgplkp

where as in III.14 <% /Dz//%/D,> describes p1on-nucleon scattering
with the initial pion off the mass shell.
Also, from the theory of the axial vector current, for AZ

not too large

s R
(el Bulo = 225 (o, 210 = 22 2 frmlsy
w My
The last matrix element is just a phase factor which we can take

equal to one.

So

— i:‘z k. e <iﬁ/kﬂ> (IV.33)
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!

ﬁ(/\l): 2 L &

M;— )\Z')“M:: (1.23(2)

So /'“//5 VLY, ke <9 alkpY (IV. 34)
vy

Now <@PZ//Q/)/> = b\(_;/—-/}—f&?"k\g)ud

where A= Aluv, X B = BlvndY

For AZ = -mi , we know that there are no one-nucleon poles in A

and that the residue for these poles in B is glz/ZM‘ So we expect

no poles here for our amplitude G, and a pole of residue

for H

_\/9//\1) i (0] F

2 M

(eq. IV.27) thus showing our choice of phase factor is correct.

Liet us put

C<palnlpy = G [-A - 2B

J‘F /_.,4-% :Z’-ég)“a

2 (IV. 35)
5T

A2+ m
We expect AO, Bo to be analytic in V7, Vg o and AZ. Write new

variables
s= _(p+ K>  E=—(p-p)”

instead of v, \/B . Then for s </M+/)Jl€<‘7,' 40/5/("/"2@9[66A7

are real for K2< 9 and we expect the following dispersion equations

to hold:
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(IV. 36)

In the same way that we discussed the functions B(AZ),K(AZ),
we expect for reasonably small AZ to be able to neglect the integrals
in these equations i’n comparison with the pion pole terms.

Now let us continue analytically in s to the resonance region;
s N(M+2)Z. The functions A, B immediately become complex as
s becomes greater than (M+l)2, and presumably so do the contin~
uvations of jm ADJ Im Eb . We know that A and B contain a large
imaginary part in the resonance region, but there is no reason to
expec t either the real or imaginary parts of ‘31\4 Ao) jm /30
become appreciably larger for these values of s than they were be-

fore. We have not continued very far. So the obvious approximation

is to write

A (e ) = Alsé-m3)

B (st = Bleé -m)

(IV.37)

So

H/é, = ‘ﬁﬁy be L Dl -me) (IV. 38)

ook B/V;VB/‘M;UL{J
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Now from the study of the pion-nucleon problem by CGLN we
Fas

h
v P /5 Wil g, @ ) e Csindis
- Ez‘f'//] 52-/\4 %
¢
23 3 / ) bore s diz
= —— (o5 P — T
s Eot 17 Eum M 9
(IV. 39)
33 (’\l 3
and g = ik AP 433’: —_‘é/ﬁ) 2;33 (1V.. 40)
/ g 9,

Static Limit

The simplest way to see what eq. IV,21,22,23 and 32 are

about is to go to the static limit, expand in L= , and keep Kz small.

M
We will need the following expansions
—_— Fese 22
x(a) = = (/ W | — 7a) = ~1S w
-2 Saqpl) = -
3 MEOT M 2 ﬁ SM"w"(/ y

Ny

— _ £ L %
o Tla) ~Qocta) = = 207 S (- .&i)
2M

35/‘44'(,‘)9'

N/a) = 2rs o
~ 3Mew {/ \277)

Tla)= ~475 1) s

15 M3 S 2M
CL: ~ /_, ,("2‘] E — M . SZ
(- & , e
kR =S /~i‘i) - i
( ZM &, Moo+ >r

= Vet § = /W™ (IV. 41)
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We have three sets of terms '5/1“/ ?3) '9“, for the vector
amplitude, The charge terms ,513 are well known to be essentially
recoil terms and can be neglected in the static limit. For the
terms ’3/[“) ?/(: =0 , ?Ms and 3“6 are small if A% is small.

!
So we are left with 3“, g and 3”3 .

Explicitly the leading terms in powers of &2 (and L ) are

M M

given by

£ '

I —_ 7 w O

= 3Ma) pals - 2 =] = =

A/“CO'SQ Aot y [3/\7or()_7 3Mevecra)

’E—;Z _ . t2+/‘4 — M/E+M — /\//) .

y = = (a) + M) (Eqr co o0 ()

- 7k(W+M)

?L

e 28 0, (Wtp) 52 9k ~ _

A 2MIEr) A 2 ) (Tees)

£ _

T A

/“.

e 3R 0w ) —

A 3 = 3 R /q)

A 2M(E,+17) LZ//Q)] 2 25

(IV. 42)
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From IV.4l, to first order

— _ 2 T 2.
o(a) = g:%f“)j (IV . 43)

So to zero order

"9‘ g - - 2 -
oA VI IS L2

2
-
2
Au

So

¥l
I
(

(Iv.14)

50
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Notice that the longitudinal terms have dropped out. It is clear that
this term is the magnetic dipole term. Indeed B(a)is a multiple of
the function termed ¥, by CGLN.

M
Finally then

33 :(f\z)&
9 = L) (2g ks i g bk pg)

(IV.45)
Next there is E . These terms are difficult to deal with con-
vincingly. The treatment of photoproduction is fairly satisfactory
in its agreement with experiment without including the pionic cur-
rent terms at resonance. Yet the F7r at first glance appear as big
as F . Indeed F ' for example is of order L whereas F ' is of
i [ M T
order one. However [-— 53[;/ /17) is fairly small although it does
not involve M, and it turns out that Fp.l is greater than FW' by about
a factor of 3/2 for the region we are interested in. Also, because
.
- = fos
of the factor [ z éﬂ‘ /é) R Fﬂ‘ and even more so /37} is a de-
creasing function of «v whereas {}P“ is roughly constant in w.
The same considerations apply to "3* and '}13 . In view of this the
enhancement integral
oo
P %(9) sin 4(9) y i 2Mw
—2=dy |y (Iv. 9)
I 7“ X
should contribute rather less to the pionic terms than to the mag-

netic terms. Finally and most important
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2f 2 —
A = - — % S //)
and so Ag.u. is about 4.7 times as large as Bvr° In view of all this,

it should be no worse to neglect the pionic terms than to neglect

terms of order % .

So the simplest approximation to “3\/ is just the magnetic

dipole term.

(IV. 46)

Next is ?AZ . We are considering the case where k°€ = 0 so the
terms in B(KZ) vanish. By inspection of IV.30 and IV. 32 we see

that the largest terms are

F S = - _
L = (‘:2+M) (a) RC _'i_Oj e - (a)
A / A, ZM A CZ%

cnd
—_—& ?é
—_ 7 o iO) - - 2y
SRS CRNN I O R e

(IV.47)

.1
to zero order in — .

M
So 33
j« _ \/32.§ ~ g g—'.é)//a) (IV. 48)
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and

,-:7_33 3 ?33

lmc/‘g:-f’) o(//\l)
A of

3w

i

/3 %*§~g-%g‘~§) (IV. 49)

Thus the principal term is of 'pseudomagnetic dipole' form.
3 33

Also Eﬁ looks appreciably larger than ;V . This is not sur=
prising, as the direct vector weak interaction — the charge term —
does not contribute in the static limit to a spin 3/2 state of the final
system; it is the weak magnetism which contributes. On the other
hand, the axial vector term can go directly in the static limit.

The next task is to find the actual amplitudes to be used in
a calculation. If we are interested only in the resonance region we
can drop both the Born terms and the crossed term in the complete
expressions for the amplitudes, and we can write the resonant term
in the form
a; (% v3, )Y
| - ;;__57“ (IV.11)

where T refers to the width of the resonance. Now in the static
limit x = w , and we recall the Chew-Low formula for the enhance~
ment factor for the pion-nucleon system in the static limit (Ref. 24):

3

5 “ (_fz) L

< -, —
e Vsind, = W o (1v. 50)

So we can write
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A[{w/ VB))\—L) = () s, Az) ¢J2s

3w @

Now the Ai are linear in the Fi and so our final expressions will be

(IV.51)

(IV.52)
This expression is given in F.N. W,
And
b £ c-) !
;l = — [~ 22 /N 3
A 3w ( G > gfj CZ
it o
(Jn d\
( 346 -~ cogee)e 9%
G 1
b (-3 e/
- ( g > ) (IV.52)

¢ (3ge-sgze)e@and,
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Let us write

M, = 2O e )
< Mof - jc(f (IV.53)

Cross Section Calculations

In general, for weak pion production with electron, we can
write

L*;Lv :Ev‘_@ Fa = ?Aé

where

?‘V = /O +/g‘@ + ﬁ‘/_o,'-‘j/ %#_Q'-f_‘z/j)

(IV.54)
We can find P, Q etc. from the definitions of ':;V and ?ﬂ in IV.13
and IV.29.
Then providing all the quantities P, Q,.... are real, we
can write (averaging over initial and summing over final nucleon

spin)

e

/9%

"

U - g .
L5, 5 ) Y EEN

2 5[ (39005, 05,)]
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P F r X, A
+ éo(/g/}(g{%_(/f) + ﬂ{,v*%@) [ o+ U4)
4@2%)&% bX et ek
+ ¥ U

@(,WOV/’L oG+ K 4 u%/\;)
- Xy [ g,\; (i/

s (T, s k) — & (9 + /%}]
Fo { Dy
(R X (B2

+ [@‘qiﬁ - é/%) (v ~ %)

+ 2¢ 50,(;4)?“

+ @[(l/,o(%/ "/,/25),) + (l/brk/ ——V%/zq,)]

£ / c é ” 2

(IV.54)



-59.
All Greek indices from now on take on the values 1,2,3. Roman will

take 1,2,3,4. € is the 3~index permutation symbol. Notice that

apy

Taﬁ has a symmetric term which does not mix vector and axial

vector components, and a completely antisymmetric term which

does.

T must be contracted with the leptonic contribution

ap
ey = SplAT(1-5)8 5005
= g[é,y{-%,+{-2°ré/5—é,'(’zozya
=3[ b bn-bby - U0

+E.,,. F é,j
2 (IV.55)

E,J £, are the four-momenta of the neutrino and electron respec~
ivel = 7 = - is the 4-i
tively, &, Z'é,_/ k= € 62) E“Fﬁ% is the 4~index completely
antisymmetric permutation symbol.
Write /777/2 = 7/ &
°(/$ %

Now the differential cross section can be written in the form

(IV.56)

29*/‘4 /777/l
BE &, Zaé/é’z <>\1+M;)2—

i

o U

(2:) ¢ pirguet-tp)

3
i/”& ﬁ C/Zéz (IV.57)

(2%’)3 /2?)3 E‘T’)3



~60-
We will be concerned with an experiment in which the initial nucleon
2z
is at rest; that is E1 = M and v = 1. However /777/ must be eval~

uated in the centre of mass system of the final nucleon and pion. So

let us use letters as before for C.M. quantities, and capital letters

for the quantities evaluated in the laboratory frame; i.e. Tl’ TZ’
K o (B = Mandp
s KO, PZ’ Q, o ( 1 = an 5 never appears).

Then the differential cross section for production of a pion

in solid angle d Qq electron in solid angle d Q’c is
2

. ot M ml®* QF T T2y ol oA§
285" QT (erd) T[T Q) - T (T- )

(IV.57)
It is possible, following Dalitz and Yennie (25}, to obtain the cross
section for inelastic lepton scattering in a simple form. (Inelastic
lepton scattering implies that only the final lepton is observed.)

First notice that

)777}1 0/3/1

3
it oYLF(/Ju—ia/?*/D;) (IV. 58)
Ea 7o
is a Lorentz scalar and hence can be evaluated in any frame; in
particular in the centre of mass frame of the final pion and nucleon.
So it is just

op, 3
Im|*® Ef_’. 0% Ovs/£1+g)c((gz+go~é,,~5,)

This can be integrated to

(IV.59)

i 2 - bwg = 2 (IV. 60)
W /777/ 0'/-/2% - VO/_QZ /7%/ V.00



61
where dS_Zq implies that we are going to average over the directions
of the final pion.

Write

<7W27 f Qﬂ%/m/zdjz; (IV. 61)

s 0 G
Then = = _j I 77 (IV. 62)
2 5 —_ e
29 7 1 (/\z . MW )
If we are not interested in looking for intermediate boson effects,
remember .
o - G
S0 b 2
N
2 \2
(A" + Mt«/) 8 (IV. 63)

2
Now we have to find the form of /7%/ in the static limit. Here

2/@%%) M, e(JﬁSm

-

u, = -R M, @(&} Sir 9 W, = 0
¢d3
_>,,< = 3% M e 3‘35/"/75'%3
J;
\ _ - M ¢ 933 J
,/ ] 2 e 5o (IV. 64)
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Then

]’W//l - 9 1/<'7' M_: [ Cgélz smltx Szml(’;é S/nz%
L) ﬁ’
Sin 33

+ Zé,z o3l — (Féli cas%cofbc(oefszg + é/\z/g-—zcg;ﬂ)]

+ 2 l:,z cos Sor

+ @iz /%’L [2612’“ b€" cosPor — 2 ks
C b koo B+ 3V

¢ ZEg b MM (k- cos it )
(IV. 65)

@ is the angle between t, and g, ¢ is the angle between the tl,k and

1
_t_l’fl; planes, L// is the angle betweenE1 and E(_ Clearly,

cosB = cos e oS Y 4 Stmorcm i cos B (1V. 66)

‘Now <7772>can be found by averaging over & and ¢. It is

$16 G2k MF (265 srp o 1Y)
PRy M et 3 g bk cos )

+ %7“6 szké/ M* M //e_/go M?p)j lfwismz(yﬂ

W

(IV.67)
In order for the final pion~nucleon system to be resonant ko must

have the right magnitude. However k and hence 7&2 are not limited.,
Hence it is possible, in theory at least, to gain information on the
form factors as functions of )\2, either by observing both the final
electron and pion (this sort of experiment has not yet even been done

for electroproduction) or by finding the energy distribution at fixed
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angle of the electron. This curve is peaked at the energy of the
electron which leads to the resonant energy of the pion-nucleon
system. The cross-section evidently increases as tlz, but in non-
forward directions kz and kz also increase and so the form factors
limit the cross section. In the forward direction {(of electron) the
M_Z term remains and increases as tlzg 7&2 = 0, and so at high ener-
gies this direction becomes increasingly dominant (as one would
expect)., The pion distribution is isotropic eventually at high éner-
gy. Curves are drawn in Figs. 7 and 8 for inelastic scattering of
the neutrino, observing the electron at 10°, for incident energies
of about 1 and 5 Bev. At 5 Bev the resonant energy can just be
reached for 10° deflection of the lepton, and thus the cross-section
is about maximum for this particular angle. At higher energy KO
will have increased beyond 200 Mev. The calculations were done
keeping a(kz) as unity. This is of course incorrect, but if three
pions inan I =1, J =1 pseudovector state do not interact strongly,
OJ(AZ) should vary slowly. As forecast previously, the axial vector
term is dominant at low energy, and less dominant at higher ener-
gies, especially if @ (}LZ) varies more like Flv (?LZ) than it is assumed
to do here. Fig. 9 shows the pion angular distribution at resonance
with a 10° deflection of the lepton at incident energy around 5 Bev.
The pion, electron and incident neutrino are taken to be in the
same plane. In this case only the axial vector term varies sig-
nificantly with the angle @. Both the vector and the » Ferference
only vary with @ through the phase space factor. So as the inter-
ference contribution is also about the same size as the vector term,

it is not drawn in Fig. 9.



-64-
V. INTERMEDIATE BOSON PRODUCTION
IN PION-NUCLEON COLLISIONS
Another process which is covered by the same amplitudes

that we have found is

TN — W+ N

It is just necessary to put )\Z = - MWZ. The value of MW is at least
MK so there is no possibility of the initial pion~nucleon state being

resonant. So let us just consider the Born approximation IV.5 and
IV.27 for this process. We could just as well use the amplitude
'\5’- as the amplitudem , and then the differential cross-section

in the centre of mass system is

0/0" 37‘ k 2
ol 8 koM .
oHiE J6w® L ot | 131 >] (V.1)

where the matrix element includes the sum over final and average
over initial spin states.

(<291 % = ) <2 l'9 g, i)

By virtue of the gauge-invariance of the vector current, the polari-

sation vector of W can be taken to be spacelike only

i.e. — 2 V.2
Also in the Born approximation we can write
(V.3)

&= XN va Y
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where P, X are real scalars, linear in e and Q, Y are real vectors,

linear in e. Then | <23 //>/Zg

N~

2T Px e (0 X)L (P
)9—'/_@)_*(-}/))2/[

= 3 5p] (P-x-iel(9-Y)) (P o vielps.Y)]
= Praxte QT YT

of

[<2191> 1% = e l1'g,iol" + | <=i*g, 11217

(V.4)
Thus we can consider f? R yg separately. For definiteness, let

us just consider

+
W++7D—/_;W+/D (V.5)

So we only need the isotopic 3/2 state

A/z/z) - A + A- ote.

For the vector amplitude 777V = Z A 1M, (IV.2) we have from

Iv.4

A = -2 R

Vg + v

B3/7_ _ {Evﬂ\nj
/\/]\/K5 [lfgvt V)
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) £ ER)

M{VB +- 1/‘)
D(E/z) - Z’Eﬂ
M vgrv) | (V.6)
£oR) - 2% ( - 2500 )
4-/\‘41/8? - A\* ZMVQ
— (32
Fe = o
2
and )\Z = - M»\/
Using equations IV.15 we can now find the amplitudes )71 - 7%

Then

](zl“ﬁu/)>/2 = ’\;/2 + ’z?‘
7.9 (Fe ) (2e3) - G
+ Zeos B [(?,-/— gq_'f ,EL—S_)[193+,3£) - 2;7»1 t;z]

+ Zco*;@[ﬁ%;lf '/'73?4 - (\?z%]

=2

(V.7)

The calculation with all form factors equal to unity is shown in
Fig. 10 for total cross~section as a function of MW at fixed energy.
The order of magnitude of the cross-section is what one would ex-
pect. However, we have not included the form factors, discussed
in detail in Appendix I. As is shown there, in order to explain the
observed electromagnetic form factors for 7L2> 0, a strong I =1,

J =1 7-7 resonance is needed (or a spin one boson) with energy of
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about 4.5 pion masses. Hence all the form factors occurring in

the vector amplitude become extremely large in the vicinity of

>L2~-ZZM7T2, From the drawn form factors, Figs. 12, 13, we can

construct the following table of the enhancement of the vector part

of the total cross section for various values of MW due to the rapid
variation of the form factors in the region around AZN-ZZm Z.

Table 1. Multiplicative factor given by 7-7 resonance to curve in

Fig. 10 for various values of MW

MW 3.5 4 4.5 5 6

Factor 7 13 39 36 5

Now we come to the axial vector part of the problem. It is

2
W

and S(-MZ) == i?_; S is the same order of magnitude as the
W B 2 kN
o 15~

uncorrected calculation for the vector part. Is there then any rea-

ZZ?

to be expected that the contribution from this part putting @ (-M,,)=1

son for expecting a(hz) also to vary quickly for low (<1 Bev™)A
The answer at present is that there is no such reason. The strong
three-pion interaction predicted to explain the scalar electromag-

2')ﬁ This

netic form factors has no place in the isotopic vector a (X
of course does not mean that no enhancement or otherwise of a(kz)
takes place as nothing at all is yet known of its structure. (A
strong 7r-/0 s-wave interaction would certainly show up in the struc-
ture of both a(?&z) and [S(KZ) ).

It is also possible to investigate the effect of the 3-3 reso-

nance on the amplitude. The simplest way to do this (for the vector

case, say) is to replace the resonant curve by a delta-function, i.e.
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%’3ww Alx) = /QHK&)cr(— fi) eke. (V.8)

where w_ refers to the position of the resonance and A33(X) is

the appropriate 3-3 projection of the Born term for A and is given
by equations IV.21, 22, 23, 24. For reasons given in Chapter IV

it is permissible to omit the Born terms generated by the pion cur-
rent IV.23 in such an approximation, and the charge terms IV, 22
are small. So we are left as before with the magnetic terms IV.21.
There is one snag. For )\2 5 - l\dwZ we are well above the 3-3 reso-
nance energy in the centre of mass system, and equations IV.21

must be analytically continued to this region. k :)kOZ-MWZ is

pure imaginary and so we have to introduce the following changes:

“o= o Je -
N~ Db E, M
29 %
sre) = | - gyw—2&QJ3
g = -a o+ /*gz/\_zﬁzg'&“)
2
(&)= 35 4 /*Bg}A._2&J{3
cos & - -?M@4%;@

—_  2F <

!
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and replace equations IV.21 by

= 3y 4+ 2 prypler By 2t //~§V7

co(E+ M) (E 3m) Lyt M

MOE 1) (G M) o eamy  ME
- w & - Z
2
gk (W+ 1)
~ é:/'f’M 2 CL
3 -2 =
2 — (/ Zq% Cor M WM B

o
_ "1 S %
s - o % #M7ﬂ,+/—Mﬁ/
/é :1+/
2
- i (€ /"7) _:LT‘ "’)
A T Z
R E,+ 1M

w/,E,——kM)/fﬁM) =, (W‘I‘M)[E_/"‘M) . wa,?/ o
29 K (6, + 1) 2 fgb/

(V.10)
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A large increase in cross-section is obtained for the energies
and values of MW so far considered. But this result should not be
taken seriously. It is only an indication that the Born approxima-
tion is not necessarily correct, even with the predicted form factors
included.

One reason why the result is rather absurd comes from look=-
ing at the value of cosa in this unphysical region. For example,
when N = 3.5 mw and for W = 12 mﬁ, -1 £ cos 8¢+ 1 in the real
world implies .75 (cos 2 7.1 1in the equations for the effect of the
3=3 resonance.

Thus, the dangers of analytic continuation, starting with
an approximate formula, are shown.

It is thus concluded that if M,,, lies between 4 and 5 pion

W
masses, the cross-section for its production off nucleons (by any

means) is much higher than would at first be thought. This effect

is due to the W resonating with the p~meson.
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APPENDIX I: The Form Factors
We expect all form factors to satisfy dispersion equations.

For example, the nucleon electromagnetic form factors:

3°(s)

Fo¢s) - ;f-fm

= d_g/ (A.
7 s/- s
—~V - L (% gVye)
l’/ /5) B h’f _@,_L ds’ (A.
- §—5

i=lor 2, s = -)\2, and we have put m_ = 1. Also the elec-

tromagnetic form factor of the pion:

4 s’- ¢

F(5) = ‘;// 5. (=) olc’ (A

Experimental information on the nucleon form factors for negative

s yields (26)

7’/7)//9/ = 5V/§)

— -\aZO o+~

717/3/5) = e 4 vﬁmgé

55(5) = b0 s —3-0

I.2)

.1 3)

0.5 (A.1.4)

Fraser and Fulco (27) pointed out that in order to obtain theoreti~
cally equations like A.I.4 for Fiv it was necessary to postulate a

resonance inthe I =1, J =1 system of two pions. They showed
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that with such a resonance the weight functions giv(s) in A.I.2 are

given approximately by

35\/ (s) = /Ef/s)/z[g.."ml (A.1.5)

where {‘gb-vff)] is given in the papers on nucleon structure neglect~
(=]
ing such 7-7 effects (28).
Bowcock, Cottingham, and Lurie (29) then assumed a Breit-

Wigner form for the I =1, J =1 scattering amplitude. They wrote

" 4 s
= —_——— = -5- A, 1.6
£rvr 57,—5-((]/3/ v Q‘S‘ / ( )
Then 5
S
A A A
| (5.-5)"+ 7'v° (A.1.7)

B.C.L. now determined S, and ¢ by comparing their final expres-
sions for FiV(s) with the experimental curves. They also computed
the contribution given by f];Tlﬂ_ to such quantities as the non-resonant

phase shifts in 7-N scattering. Their best values were

c = 224 = 3746 (A.1.8)

2
]FW(S)I is plotted with these parameters in Fig. 1l. For W pro-
duction (Chapter 5) we need Fiv(s) in the region of positive s. At
resonance, the real part of FiV(s) will vanish, so comparing A.I1.4

with A.I.6 we can expect in the resonance region

% 22
7 (20 - (A.1.9)

t
3
224 -5 =y
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The real and imaginary parts of Fiv (omitting the factor of 1.20)
are plotted in Figs. 12 and 13.
All this can be viewed in a different way according to the
vector meson theory of Gell-Mann and Zacharosen (14). We start
with an unstable I =1, J = 1 meson of mass mp = \/ZTZ’ZJ:‘, and decay

rate into two pions given by

— = Em -
o -

3/

(A.I.10)

s

Near s = mz;) , the form factor for the p 77 vertex (real pions) is
given by

2

s~ 7
E__(5) = G
/// 1 /) (A.I.ll)

2

St el

Similarly, for the pNN vertex we have the form factor

——— — m?..
e = ST~ o
! ) S_m/}*m}o; L S e o (A.1.12)

for the'charge' term.

Now, in general, the electromagnetic form factors are related to

the p form factors by

Y .
Foo(s) = A 'E—f/g) (A.1.13)

=% Bl

where Felv is any isotopic vector electromagnetic form factor, and

k8
2

Fp is the corresponding p form factor. According to the theories
of Sakurai (12) and Gell-Mann (13) the p~meson is coupled to the iso-
topic spin current which is conserved. So at zero momentum trans-
fer, it should have a universal interaction with the isotopic spin I.

This can be expressed by
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2;0 = }ﬁa’ ’E:f/o) - //wv/o/w\//) ete.
Now, we can say that

2

F.(s) = Z —
5;-,7«7{ 5—"7024-1/)’)/;;

Comparing with A.I.7 we can say that we require

/ /
-
and 3
Mo T = T lvina)
E2 34
L Uen Ly ) I 2 7.
or 3 L [Z/M,.),- = z/ / ZM/ ~ I>
by o
/
2/1
oF ik i = £¢
Lo 3 -0
Also
v Tp —m
O

for s near mp

(A.1.14)

(A.1,15)

(A.I.16)

(A.1.17)

(A.1.18)
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For s« 0, Flv(s) is real and the small imaginary term in the denom-

inator of A.I.18 can be neglected.

Then
FY(s) = Lo =
! v " (A.1.19)
/é’/\/f\/ S M/
Comparing with A.I.4 we need
_,Z;i_ ~ (2 (A.1.20)
Cownw

and an additional additive term (-.2), Perhaps this number repre-~
sents a slowly varying contribution from states other than the two-
pion.

We note in finishing this discussion that Fﬂ(s) and Flv(s) are

v

1 and

very nearly equal for s near mi , and that experimentalvly F
FZV seem to be equal.

Similar considerations can be applied to the scalar form
factors, either considering anI= 0, J =1, three pion resonance
(30); or a vector meson w with these quantum numbers (12), (13),
(14). From A.I.4 we see that m ~3.2 m_.

We know very little about the axial vector form factors a(s),
B(s). A three pion I =1, J =1 interaction would determine much

of their structure (or in vector meson language, a strong 7-p

coupling in an s state, for I = 1),
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APPENDIX II
EVALUATION OF DISPERSION RELATIONS WHEN PHASE SHIFT
IS KNOWN
A simplified version of that given in Reference 20 will be
presented.

We start with a dispersion relation in the form

A (=, Ve) = B(’()@)M :
! { / A.TLL1)
+ T‘)‘T’f ij 9m A /ﬁj/‘/é) /lj—x-(é :I:Ej+)(+2|/,3>
X,

v

Suppose that A has a known phase §(x). Then following Omnes (24)

deﬁne a function F(z) of the complex variable z by

A=) s I
e FlE= fdv Inhls,s) (5= F 5mra) am

where

0o - !
{
= =g 5/‘1)Zw P
N(z) ’TLV Y-z yrz+2% (A. L. 3)

From this last equation we can see that as z approaches the real axis

from above or below we may write

N, () ://»g@);tchX) (A.1I.4)

where

(xvy) = f[c// é\/)( } *’"’XL‘—*)
2t s 9 <1 g 112G (A.IL.5)

\
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From the original dispersion relation A.Il.1 we have

Alsvy)— Blxv) = 2¢ Lt e S Frz)

Z—> X +i¢

red
= 20 E () e”

o | Alos)] e = Bls%) + 2. /f/w@)e/o’”J (A.11.6)
Also
2N (=
Le e ()F/z} - LE o)
2w+t L =D =Tl
= Im Alxsyg) = [Alow)lsnd

- ‘ _\@F B
or e/oz ;E;/K/G) e(or_\ E»/K/l@)e ]~/H}5‘14J(A.1L7)

Now we can eliminate IA.(X, \/B)[ which is unknown and obtain
I N
ZB("/@) + 2 F;(&Va)e/hr]elsmg

- eﬁ[E/X»@) el Eapye™]

or E(x/‘@) — E(Y/VB) = evﬁS/n d B/X/ VB) (A.1I.8)

So, up to the addition of a function which is continuous across the

cuts along the real axis, F(z) is given by

=) = 3= (ay Blyg)smdly) e o

/
L g
bh-=z2 " 7+2+2VB>

(A.IL.9)
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The function g is arbitrary except it must have the continuity prop-
erty just mentioned. However we appeal to crossing symmetry and
say that only when g =+ 1 can we have a physical solution.

Then the solution of our dispersion equations is

A[X/'/B) = B/X,‘/g>

p-u; o0 ,/} | /
4—-_(?_.,__, e_ﬁy s;nor/y)gfb/‘/g) /{7-'*'/6‘ _—:7+X+27/3>"\{7
al *o ' (A.1I1.10)

In practice, we will want to use this equation when a given state
deominates, for example the 3-3 pion-nucleon resonant state. Then
clearly the easiest thing to do is to use 633 for & and b33 ( 9, ve )
for B( y, v ) under the integral.

(The solution A,II.10 is not unique as it stands. In general,
a quantity fep+ 5 can be added, where f is a polynomial in x. The

choice of f = 0 gives the simplest theory.)
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