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ABSTRACT

This dissertation comprises three essays in Econometrics and Political Econ-
omy offering both methodological and substantive contributions to the study
of electoral coalitions (Chapter 2), the effectiveness of campaign expenditures
(Chapter 3), and the general practice of experimentation (Chapter 4).

Chapter 2 presents an empirical investigation of coalition formation in elec-
tions. Despite its prevalence in most democracies, there is little evidence doc-
umenting the impact of electoral coalition formation on election outcomes. To
address this imbalance, I develop and estimate a structural model of electoral
competition that enables me to conduct counterfactual analyses of election out-
comes under alternative coalitional scenarios. The results uncover substantial
equilibrium savings in campaign expenditures from coalition formation, as well
as significant electoral gains benefitting electorally weaker partners.

Chapter 3, co-authored with Benjamin J. Gillen, Hyungsik Roger Moon, and
Matthew Shum, proposes a novel data-driven approach to the problem of vari-
able selection in econometric models of discrete choice estimated using aggre-
gate data. Our approach applies penalized estimation algorithms imported
from the machine learning literature along with confidence intervals that are
robust to variable selection. We illustrate our approach with an application
that explores the effect of campaign expenditures on candidate vote shares in
data from Mexican elections.

Chapter 4, co-authored with Abhijit Banerjee, Sylvain Chassang, and Erik
Snowberg, provides a decision-theoretic framework in which to study the ques-
tion of optimal experiment design. We model experimenters as ambiguity-
averse decision makers who trade off their own subjective expected payoff
against that of an adversarial audience. We establish that ambiguity aversion
is required for randomized controlled trials to be optimal. We also use this
framework to shed light on the important practical questions of rerandomiza-
tion and resampling.
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C h a p t e r 1

INTRODUCTION

This dissertation comprises three essays addressing questions from several ar-
eas of Econometrics and Political Economy. The essays offer both methodolog-
ical and substantive contributions to the study of electoral coalitions (Chapter
2), the effectiveness of campaign expenditures (Chapter 3), and the general
practice of experimentation (Chapter 4).

Chapter 2 presents an empirical investigation of coalition formation in elec-
tions. Despite its prevalence in most democracies, there is little evidence doc-
umenting the impact of electoral coalition formation on election outcomes. To
address this imbalance, I study coalition formation in the context of legislative
elections where coordination among coalition partners takes the form of joint
nominations across distinct consituencies—e.g., electoral districts. Specifically,
I develop and estimate a structural model of electoral competition in which: (i)
parties can form coalitions to coordinate their candidate nominations, and (ii)
parties invest in campaign activities in support of their candidates. The model
is estimated using data from the 2012 Mexican Chamber of Deputies election,
which offers district-level variation in coalition formation. I conduct counter-
factual experiments to study election outcomes under alternative coalitional
scenarios. The results uncover substantial equilibrium savings in campaign
expenditures from coalition formation, as well as significant electoral gains
benefitting electorally weaker partners.

Chapter 3, co-authored with Benjamin J. Gillen, Hyungsik Roger Moon, and
Matthew Shum, proposes a novel approach to the problem of variable selec-
tion in econometric models of discrete choice estimated using aggregate data.
Economists often study consumers’ aggregate behavior across markets choos-
ing from a menu of differentiated products. In this analysis, local demographic
characteristics can serve as controls for market-specific heterogeneity in prod-
uct preferences. Given rich demographic data, implementing these models re-
quires specifying which variables to include in the analysis, an ad hoc process
typically guided primarily by a researcher’s intuition. We propose a data-
driven approach to estimate these models applying penalized estimation algo-
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rithms imported from the machine learning literature along with confidence
intervals that are robust to variable selection. Our application explores the ef-
fect of campaign expenditures on candidate vote shares in data from Mexican
elections, a central question in Political Economy with an answer that is often
sensitive to the choice of controls.

Chapter 4, co-authored with Abhijit Banerjee, Sylvain Chassang, and Erik
Snowberg, provides a decision-theoretic framework in which to study the ques-
tion of optimal experiment design. We model experimenters as ambiguity-
averse decision makers who trade off their own subjective expected payoff
against that of an adversarial audience. We establish that ambiguity aver-
sion is required for randomized controlled trials to be optimal. Moreover, the
model matches other stylized facts about experimental practice: randomiza-
tion occurs when the sample is large enough, and when the weight on the
experimenter’s own subjective payoff is small. We use this framework to shed
light on the important practical questions of rerandomization and resampling.
Rerandomization creates a trade-off between subjective balance and robust-
ness; however, the costs of rerandomization are very small. We propose a
simple rule of thumb for using rerandomization and resampling in practice.
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C h a p t e r 2

GOING IT ALONE? AN EMPIRICAL STUDY OF
COALITION FORMATION IN ELECTIONS

2.1 Introduction

Electoral coalitions are common in most democracies (Golder, 2006). In hopes
of influencing election outcomes, like-minded political parties often coordinate
their electoral strategies, typically by fielding joint candidates for office. This
manipulation of the electoral supply—i.e., the alternatives available to voters—
may significantly affect representation and post-election policy choices. De-
spite its prevalence, however, there is little evidence documenting the impact
of coalition formation on election outcomes.1

To address this imbalance, this paper studies coalition formation in the con-
text of legislative elections where coordination among coalition partners takes
the form of joint candidate nominations across distinct constituencies—e.g.,
electoral districts. Most electoral coalitions throughout the world arise in this
context (Ferrara and Herron, 2005; Golder, 2006). Specifically, I develop and
estimate a structural model of electoral competition in which: (i) parties can
make coalition formation commitments, which determine the menu of candi-
dates competing in each constituency, and (ii) parties invest in campaign ac-
tivities in support of their candidates. The model is used to simulate election
outcomes under counterfactual coalitional scenarios. The goal is to quanti-
tatively assess the tradeoffs involved in coalition formation as well as how it
affects parties’ campaign expenditures, voter behavior, and the post-election
distribution of legislative power. To my knowledge, this paper is the first to
address these questions empirically.

The model is estimated using data from the 2012 Mexican Chamber of Deputies
1The existing literature on electoral (also called pre-electoral) coalitions/alliances has

focused on comparing electoral systems in terms of their conduciveness to coalition forma-
tion, or on the role of electoral coalitions in shaping government formation in parliamentary
democracies (e.g., Ferrara and Herron, 2005; Golder, 2006; Carroll and Cox, 2007; Bandy-
opadhyay et al., 2011). With the exception of Kaminski (2001), there is no systematic
evidence available, beyond informal media accounts, of the electoral significance of electoral
coalitions.
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election, which is appealing for two reasons. First, the Mexican Chamber of
Deputies follows a mixed electoral system whereby three fifths of the seats
in the chamber are contested in winner-takes-all district races, and the re-
maining seats are assigned to registered parties in accordance with a national
proportional representation rule. While the specifics differ across countries,
most legislative elections follow either a pure winner-takes-all system, a pure
proportional representation system, or a mixed system like Mexico (Bormann
and Golder, 2013). From an institutional design perspective, studying coali-
tion formation in a mixed electoral system such as Mexico’s can help shed light
on the separate roles of the winner-takes-all and proportional-representation
components of the election in shaping coalition formation incentives and its
consequences.

Second, while elections in most democracies usually offer a single observation
of coalition formation, parties in Mexico are allowed to form partial coalitions
in national legislative elections: i.e., coalition partners may nominate joint
candidates in only a fraction of the contested races, while running indepen-
dently elsewhere.2 In particular, in the 2012 Chamber of Deputies election, two
parties, the Institutional Revolutionary Party (Partido Revolucionario Insti-
tucional, PRI) and the Ecologist Green Party of Mexico (Partido Verde Ecolo-
gista de México, PVEM), formed a partial coalition, nominating joint coalition
candidates in only two thirds of the national electoral districts. As a result,
the election offers a sample of district races, otherwise identical in terms of the
underlying electoral environment, where outcomes with and without coalition
candidates can be observed. The structural model leverages this variation
and focuses on capturing the incentives driving PRI and PVEM’s choice of
coalition configuration. To quantify the tradeoffs entailed by this choice as
well as its impact on the election, I use the model to conduct counterfactual
experiments examining two extreme cases: I simulate the election outcomes
that would have prevailed had PRI and PVEM either not formed a coalition or
formed a total coalition instead (nominating joint candidates in all districts).

The estimation strategy proceeds in three stages, exploiting insights from the
empirical industrial organization literature on entry and competition in mar-
kets with differentiated products. First, voters’ preferences are estimated from
district-level voting data following the aggregate discrete choice approach to

2This is not unique to Mexico: France (Blais and Indridason, 2007) and India (Bandy-
opadhyay et al., 2011), for instance, permit similar arrangements.
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demand estimation (e.g., Berry, 1994; Berry et al., 1995). Second, the param-
eters of parties’ payoffs driving campaign spending decisions are estimated by
fitting predicted to observed campaign spending levels.3 Lastly, the remain-
ing parameters of parties’ payoffs relevant for coalition formation decisions
are partially identified from moment inequalities analogous to market entry
conditions.4 I follow the two-step procedure of Shi and Shum (2015) for infer-
ence in this setting where only a subset of the model’s parameters is partially
identified via moment inequalities.5

Reduced-form evidence and the results of the counterfactual experiments doc-
ument substantial electoral gains from coalition formation. In terms of jointly
held seats in the Chamber of Deputies, PRI and PVEM’s partial coalition
allowed them to close the gap to obtaining a legislative majority by almost
half; and they would have been able to close it by 71% had they run together
in all districts. These gains, however, accrue at the expense of the electorally
stronger partner, PRI, due to institutional features of the election detailed in
the following section. Relative to not forming a coalition, PRI lost 6% of its
seats by running with PVEM as observed in the data, and would have lost an
additional 3% by forming a total coalition. Thus, the results reveal that the
partial coalition arrangement constituted a compromise in balancing net gains
to the coalition with PRI’s losses.

With regard to campaign expenditures, the counterfactual experiments un-
cover significant efficiency gains from coalition formation. The ratio between
PRI and PVEM’s joint spending and joint vote share provides a rough esti-
mate of how much the two parties need to spend—in equilibrium—to produce
1 percentage point of joint vote share. On average across districts, this ratio
drops from about 2,000 USD when they run independently to about 1,750 USD
when they run together, which implies cost savings of 12.5% from joint nom-
inations.6 Moreover, average spending across parties also drops in response

3Having estimated voters’ preferences, the model’s spending predictions are obtained as
parties’ best responses to their rivals’ observed spending in each district.

4These entry conditions require computation of the set of campaign spending equilibria.
At the estimated parameter values obtained from the first two stages, the campaign spending
game played by parties exhibits (strict) strategic complementarities, facilitating computation
of all equilibria (Echenique, 2007).

5See, e.g., Chernozhukov et al. (2007), Beresteanu et al. (2011), and Pakes et al. (2015)
for more on estimation and inference in partially identified models.

6All monetary quantities in this paper have been converted from Mexican pesos to U.S.
dollars.
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to joint PRI-PVEM nominations. This is consistent with the intuition that
differentiation via campaign advertising becomes relatively more valuable in a
more crowded—and hence less polarized—field, leading parties to invest more
heavily (see, e.g., Ashworth and Bueno de Mesquita, 2009).

The paper proceeds as follows. Section 2.2 describes the institutional back-
ground and provides a preliminary analysis of the data to inform the structural
model. Section 2.3 introduces the model and empirical strategy. Section 2.4
summarizes the estimation results, and Section 2.5, the counterfactual exper-
iments. Section 2.6 discusses the main findings and concludes.

2.2 Mexican Elections: Background and Data

Mexico is a federal republic with 31 states and the capital, Mexico City. The
executive branch of the federal government is headed by the president, and
legislative power is vested in a bicameral Congress. Federal elections are held
every 6 years to elect a new president and new members of both chambers
of Congress. No incumbent can stand for consecutive re-election.7 The lower
chamber, the Chamber of Deputies, is further renewed following midterm fed-
eral elections in the third year of every presidential term.

For electoral purposes, Mexico is divided into 300 districts.8 The Chamber of
Deputies has 500 total members, 300 of whom directly represent a district after
being elected by direct ballot under simple plurality voting. The remaining 200
seats in the chamber are assigned to the national political parties in accordance
with a proportional representation (PR) rule: the votes cast across the 300
district races are pooled nationally, and each party is given a share of the
200 seats proportional to the share of votes received by the party’s candidates
in the district races.9 Disproportionality restrictions preclude any party from
obtaining more than 300 total seats or a share of seats that exceeds by more

7Presidential re-election is prohibited. Legislators can be re-elected in non-consecutive
terms.

8The current district lines were drawn in 2005 by the national electoral authority with
the objective of equalizing population while preserving state boundaries and ensuring each
state a minimum of two districts.

9The division of seats follows the largest remainder method using Hare quotas (Bormann
and Golder, 2013). Only parties that secure at least 2% of the national vote are eligible
to hold seats in the legislature; otherwise, they lose their registration and their votes are
annulled.
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than 8 percentage points the party’s national vote share, in which case the
excess PR seats are divided proportionally among the remaining parties.10

In addition to the composition of the legislature, at stake in each Chamber of
Deputies election is registered parties’ funding for the subsequent three years.
By law, Mexican parties are primarily funded from the federal budget. The
baseline amount to be distributed yearly to the parties equals 65% of Mexico
City’s legal daily minimum wage multiplied by the number of registered voters
in the country. In 2012, for example, this totaled about 250 million USD. For
campaign purposes, an additional 50% of the year’s baseline is provided to the
parties in presidential election years, while 30% is provided in midterm election
years. The final amount is distributed as follows: 30% is divided equally
among all registered parties, and the remaining 70% is divided in proportion
to their national vote shares in the most recent Chamber of Deputies election.
To ensure the primacy of public funding, funds from outside sources such as
member fees or private contributions are capped at 2% of the year’s public
funding. Thus, Mexican parties compete in this election to secure not only
seats in the legislature but also their funding for day-to-day operations and
campaign activities for the following three years.

Prior to each Chamber of Deputies election, parties are allowed to form coali-
tions, which enable them to coordinate their candidate nominations for the
direct representation (DR) district races. Coalition partners may not, how-
ever, coordinate on the PR component of the election: national lists of up to
200 candidates for the PR seats in the chamber must be submitted indepen-
dently by each party.

Coalition agreements are negotiated by the parties’ national leadership and
must be publicly registered before the national electoral authority, the National
Electoral Institute (Instituto Nacional Electoral, INE). The agreements consti-
tute binding commitments specifying, for each electoral district: (i) whether
the coalition partners will nominate a joint candidate or independent candi-
dates, and (ii) in the case of a joint nomination, from which party’s ranks will
the coalition candidate be drawn.11 After the election, coalition agreements

10The adjustment is carried out only once: if a party exceeds the 8-percentage-points
restriction after an initial round of adjustment, the process does not iterate.

11In 2012, prospective coalition partners formally had to choose from two available for-
mats: they could either form a partial coalition, enabling them to nominate joint candidates
in at most 200 districts, or they could from a total coalition, requiring them to nominate a
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imply no formal obligations for coalition victors in the legislature, who retain
their original party affiliation. Thus, by supporting a partner’s candidate via
a joint nomination, the remaining coalition partners forgo the corresponding
district seat in the chamber.

A model of coalition formation in this environment must, therefore, capture
this key feature of the decision problem faced by party leaders: by running
independently in a district, coalition partners risk splitting the vote and losing
the district to a rival party, but a joint nomination entails an agreement about
which partners should stand down altogether. Moreover, while coalition part-
ners may not coordinate on the PR component of the election, the decision of
where to run together and independently may affect their national vote shares
and, consequently, their PR performance and future funding.

When deciding whether to vote for a coalition candidate, Mexican voters in
fact have some control over how their vote should be counted for PR (and
funding) purposes. The ballots presented to the voters on election day feature
one box per registered party containing the name of the party’s candidate for
that district.12 If a candidate is nominated by a coalition, their name appears
inside each of the coalition partners’ boxes. To cast their vote in favor of a
coalition candidate, voters can mark any subset of the coalition’s boxes on the
ballot. Regardless of the chosen subset, the vote is counted as a single vote in
favor of the coalition candidate for the purpose of selecting that district’s DR
deputy. However, the vote is split equally among the chosen subset for PR
purposes. For example, a citizen who wishes to vote for a candidate nominated
by parties A, B, and C could mark all three boxes: while the candidate would
receive 1 vote for the district seat, each party would get a third of her vote for
PR purposes. The voter alternatively could mark A and B’s boxes, in which
case A and B would each get 50% of her vote but C would get zero. Or she
could just mark party A’s box giving A 100% of the vote. This feature of the
Mexican Chamber of Deputies election contrasts with other PR systems where
coalition partners are allowed to submit joint lists of PR candidates. In such

joint candidate in every district. The PRI-PVEM coalition that is the focus of this paper
was not in practice bound by the size constraint on partial coalitions, and the counterfactual
experiments of Section 2.5 consider only the no-coalition and total-coalition extremes, so
this constraint is ignored in what follows.

12Independent candidacies or write-in campaigns are also allowed, but their vote shares
are negligible. Moreover, voters supporting independent or write-in candidates forgo par-
ticipation in the PR component of the election.
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systems, votes in favor of a coalition are simply aggregated, and the number of
PR seats each partner gets is determined by the composition of their joint list
(i.e., the ranking of candidates), over which the partners bargain prior to the
election. In Mexico, voters have more direct control over the PR component
of the election.

Another key component of party leaders’ decision problem concerns campaign
expenditures. Due to the constraints on parties’ outside funding, fundraising
by candidates is effectively absent from the Chamber of Deputies election.
As a result, the parties’ national leadership directly fund their candidates’
campaigns, making a centralized decision of how much to spend in each district.
In the case of coalition candidates, partners may share campaign costs freely.
Thus, pooling resources in favor of a joint candidate, instead of campaigning
against each other, may also encourage coalition formation.

Events in an election year unfold as follows. First, as described, coalitions are
publicly registered. Next, candidates are selected and nominated accordingly.
Campaigns then take place within a fixed timeframe.13 And, finally, ballots
are cast.

2.2.1 The 2012 Election: Preliminary Data Analysis

In the 2012 Chamber of Deputies election, 2 parties, the National Action Party
(Partido Acción Nacional, PAN) and the New Alliance Party (Partido Nueva
Alianza, NA), participated independently; 3 parties, the Party of the Demo-
cratic Revolution (Partido de la Revolución Democrática, PRD), the Labor
Party (Partido del Trabajo, PT), and the Citizens’ Movement (Movimiento
Ciudadano, MC), formed a total coalition called the Progressive Movement
(Movimiento Progresista, MP); and PRI and PVEM formed a partial coalition
called Commitment for Mexico (Compromiso por México, CM), joining forces
in 199 of the 300 electoral districts. Of the 199 jointly contested districts, PRI
and PVEM jointly nominated a PRI candidate in 156 districts and a PVEM
candidate in the remaining 43 districts (see Figure 2.1).

As shown in Figure 2.2, which is based on a nationally representative poll of
ideological identification conducted by a leading public opinion consultancy in
2012, the parties can be roughly placed on a one-dimensional ideology spec-

13Campaigns must end 3 days before election day, and they may last up to 90 days in
presidential election years and up to 60 days in midterm election years.
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Joint PRI candidate

Joint PVEM candidate

Figure 2.1: Districts with joint PRI-PVEM candidates

trum as follows; from left to right: the MP parties, NA, PVEM, PRI, and PAN.
Figure 2.2 also presents the parties’ national vote shares in the 2012 election
to illustrate their relative strengths. PRI, PAN, and PRD are the main po-
litical forces, in that order; together they account for more than 80% of votes
nationally. Of the smaller parties, the centrist PVEM is the strongest, with
nearly a third of PRD’s vote share. The shares in Figure 2.2, however, were
shaped by the coalitions that formed prior to the election. The main objective
of this paper is to quantify this effect: specifically, conditional on PAN and
NA running independently and the MP parties forming a total coalition as
observed, how would the election outcomes have changed had PRI and PVEM
either not formed a coalition or formed a total coalition instead?

1 2 3 4 5

PT
(4.8%)

PRD
(19.3%)

MC
(4.2%)

NA
(4.3%)

PVEM
(6.4%) voter

Average PRI
(33.6%)

PAN
(27.3%)

Source: Consulta Mitofsky (2012). One thousand registered voters were asked in
December 2012 to place the parties and themselves on a five-point, left-right ideology
scale. Arrows point to national averages. Parties’ vote shares in parentheses.

Figure 2.2: Left-right ideological identification of Mexican parties and voters

District-level election outcomes are published by INE. The data include vote
totals by distinct alternative available to voters in each district; that is, in
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districts with coalition candidates, vote totals for all subsets of the coalitions
(as explained above) are available.

As a coalition, PRI and PVEM were very successful, winning 122 of the 199
districts they shared: 103 victories with a joint PRI candidate (out of 156
districts) and 16 victories with a joint PVEM candidate (out of 43). Inde-
pendently, PRI obtained 52 additional victories, and PVEM obtained 3. The
final composition of the Chamber of Deputies, including the PR seats, is pre-
sented in Table 2.1 (hereafter, I treat the total coalition MP as a single party).
PRI’s proportionally smaller share of the PR seats is a consequence of the
restriction mentioned in Section 2.2 that a party’s total share of seats cannot
exceed by more than 8 percentage points its national vote share.14 Without
this constraint, PRI would have obtained 67 PR seats instead of 49.

Table 2.1: Chamber of Deputies composition after 2012 election

Party Direct representation Proportional representation Total
seats seats

PRI 158 49 207
PVEM 19 15 34
PAN 52 62 114
MP 71 64 135
NA 10 10

Total 300 200 500

Table 2.2 shows a breakdown of election outcomes by type of candidate ran by
PRI and PVEM. Victory rates (percentage of districts won) and average vote
shares are computed for each party. Table 2.2 suggests that, in terms of vote
share, PVEM benefitted significantly from a joint nomination at the expense
of PRI, with both parties doing better with a joint candidate drawn from their
own ranks. In particular, PVEM benefitted from coalition supporters splitting
their vote between the two parties—see Table 2.3—an important feature of
the election captured by the model developed in Section 2.3. With respect
to victory rates, joint PRI candidates were the most successful. The clear
loser from a joint PRI-PVEM nomination appears to have been NA, while

14See Section 2.5 for details.
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MP and PAN exhibit mixed effects. These crude comparisons, however, do
not account for PRI and PVEM’s strategic choice of where and how to run
together, influenced by differences in the electorate across districts and in the
parties’ campaign strategies.

Table 2.2: Election outcomes by PRI-PVEM coalition configuration

Districts with distinct Districts with joint Districts with joint
PRI, PVEM candidates PRI candidate PVEM candidate

Party Victory Avg. vote Victory Avg. vote Victory Avg. vote
rate share rate share rate share
(%) (%) (%) (%) (%) (%)

PRI 51.5 36.7 66.0 33.2 - 28.7
PVEM 3.0 4.9 - 7.0 37.2 7.7
PAN 22.8 27.6 10.9 26.4 27.9 28.4
MP 22.8 25.5 21.2 29.4 34.9 31.4
NA 0 5.3 0 3.9 0 3.8

Table 2.3: Votes in support of PRI-PVEM coalition candidates

Districts with joint Districts with joint
PRI candidate PVEM candidate

Type of Avg. vote Avg. vote
vote share share

(%) (%)

PRI 30.0 25.7
PVEM 3.8 4.6
50-50 split 6.4 6.1

The first two rows represent voters who gave 100% of their vote to the
corresponding party (see Section 2.2). Thus, adding half of the third
row to the other two yields the parties’ final vote shares as shown in
Table 2.2.

To keep the structural model presented below as parsimonious as possible, I use
only 4 broad demographics to describe the electorate: gender, age, education,
and income.15 The data are taken from the 2010 population census, which the

15Section 2.5.1 discusses a richer specification.
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National Statistics and Geography Institute (Instituto Nacional de Estadística
y Geografía, INEGI) makes available on a geo-electoral scale. For gender, as an
indicator of the importance of women in the electorate, I use the percentage of
households with a female head. Age is captured by the percentage of the voting
age population aged 65 and older, and education is measured by average years
of schooling (among population 15 and older). Income is not available in census
data; as a proxy, I use the percentage of households that own an automobile.
Table 2.4 provides a summary description of the electoral districts by type of
candidate ran by PRI and PVEM, as in Table 2.2.

Table 2.4: District characteristics

Districts with distinct Districts with joint Districts with joint
PRI, PVEM candidates PRI candidate PVEM candidate

Variable Mean Std. dev. Mean Std. dev. Mean Std. dev.

Female head
of household 23.8 3.1 24.7 4.3 26.8 5.1
(% of total)

Pop. over 64 10.6 2.6 9.5 2.8 10.1 2.5
(% of over 17)

Avg. years
of schooling 7.8 1.3 8.3 1.5 9.1 1.6
(pop. over 14)

Household
owns a car 45.3 17.7 41.0 14.5 47.9 14.0
(% of total)

Finally, Table 2.5 summarizes campaign spending in the district races—i.e.,
total expenditure in support of a candidate—by type of candidate ran by PRI
and PVEM. The data can be requested directly from IFE.16 While it would be
preferable to obtain a detailed account of campaign activities (e.g., town hall
meetings, media advertising, billboards, etc.), as well as information about
the content of campaign advertising, the available data provide only a coarse
description of monetary expenses. Consequently, I focus on total spending
per candidate as a broad measure of the intensity of campaign efforts. A key

16Campaign spending data are self-reported by the parties to the electoral authority.
These reports are subject to audits by IFE. However, audited data after 2006 are not yet
available. For comparison, campaign expenditures were overreported by about 4% in 2006,
while no discrepancies were found in 2003. I therefore ignore potential measurement error
in the data and rely on the unaudited reports.
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feature of the model presented in the following section is that parties’ make
strategic spending decisions on a district-by-district basis (as opposed to sim-
ply dividing up resources by state or regionally). To evaluate this assumption,
Figure A.1 in Appendix A.3 maps each party’s geographic distribution of cam-
paign spending. As expected, there is substantial variation across neighboring
districts, beyond anything that could be driven solely by differences in cam-
paign costs considering that any relatively high-spending district for one party
is a relatively low-spending district for another (and vice versa).17

Table 2.5: Campaign spending (in thousands of USD)

Districts with distinct Districts with joint Districts with joint
PRI, PVEM candidates PRI candidate PVEM candidate

Party Mean Std. dev. Mean Std. dev. Mean Std. dev.

PRI 54.9 11.0 80.6 27.3 94.3 40.9
PVEM 18.3 7.6
PAN 38.0 10.4 41.4 12.7 44.6 14.2
MP 56.4 19.7 55.1 11.7 56.6 14.3
NA 19.7 8.5 16.7 4.4 19.1 8.5

2.3 Model and Empirical Strategy

Recall from Section 2.2 that the timing of events in the Mexican Chamber of
Deputies election is as follows. First, parties make their coalition formation
commitments. Conditional on these agreements, candidates for the district
races are selected and registered, along with candidate lists for the PR as-
signment of seats. Campaigns then take place, and finally ballots are cast.
The model I develop to examine the consequences of PRI and PVEM’s partial
coalition captures this timing in three stages: a coalition formation stage, a
campaign stage, and a voting stage.

As mentioned previously, the analysis that follows focuses on the PRI-PVEM
coalition while conditioning on all other parties running as observed in the
data. The implicit assumption is that modifying PRI and PVEM’s coalition

17In contrast, spending variation driven solely by cost differences would affect parties
symmetrically; e.g., if campaigning is comparatively cheaper in a district, then all parties
would be expected to spend relatively little there.
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configuration wouldn’t have affected the other parties’ coalition formation de-
cisions.18 Accordingly, the coalition formation stage of the model is concerned
only with PRI and PVEM’s choice of where and how to run together. While
it might be intriguing to consider, for example, a breakup of the MP coali-
tion, or the formation of coalitions not in the data, this would require making
strong assumptions regarding voting behavior. Only voting choices from three
menus are observed: all three include an MP candidate, an NA candidate, and
a PAN candidate, and they vary only with respect to PRI and PVEM’s coali-
tion configuration. Allowing for unrestricted coalition formation would involve
predicting voting choices from menus of candidates not in the data. Rather
than placing additional ad hoc structure on the model to accomplish this task,
I leverage the information directly available in the data. The objective is thus
to understand PRI and PVEM’s strategic choice of coalition configuration and
its effect on election outcomes.

I describe the model backwards from the voting stage. Before introducing the
model, I develop some useful notation.

Notation. Districts are indexed by d, parties by p, and voters by i. The
indicatorMd ∈ {PRI,PVEM, IND} describes the menu of candidates available
to voters in district d as a result of PRI and PVEM’s coalition configuration:
Md = PRI indicates that PRI and PVEM jointly nominate a PRI candidate
in district d, Md = PVEM indicates that they jointly nominate a PVEM
candidate, and Md = IND indicates that they nominate distinct candidates
and thus run independently.

2.3.1 Model

Voting stage. There are two tactics available to parties by which they can
hope to influence election outcomes. One is by manipulating the electoral
supply via coalition formation. The other is through campaign advertising. To
study their effectiveness, voters’ preferences are modeled as menu-dependent
and susceptible of persuasion.

Recall that, by casting their ballot, voters simultaneously select a candidate
and a party list. If a candidate is nominated by a coalition, voters can de-

18Without this assumption, the results of Section 2.5 may nevertheless be interpreted as
partial effects of the PRI-PVEM coalition on election outcomes.
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cide how to split their vote among the nominating parties’ lists (see Section
2.2). However, the selection of a candidate is the preeminent choice. I there-
fore model voting choices as a two-tier decision: voters first select a candi-
date and then, if necessary, how to split their vote. I describe the two tiers
in turn.

When choosing a candidate, voters care about both the nominating party or
coalition’s policy platform and the candidate’s quality (or valence). The policy
platform summarizes the legislative objectives that the party or coalition hopes
to achieve and that the candidate is expected to support if elected.19 Quality,
on the other hand, refers to characteristics of the candidate that all voters in
the district may find appealing, such as charisma, intelligence, or competence
(Groseclose, 2001); it may be interpreted as the candidate’s ability to represent
the district’s interests in legislative bargaining. Lastly, voters may also care
about the intensity of campaign efforts in support of a candidate; i.e., they
can be persuaded by campaign advertising. Formally, voters’ preferences take
the following form: if the menu of candidates available to voters in district d
is Md = m ∈ {PRI,PVEM, IND}, voter i’s utility from voting for candidate
j ∈ m is

umijd = α1cjd + α2c
2
jd︸ ︷︷ ︸

effect of campaign spending

+ x′dβ
m
j︸ ︷︷ ︸

policy platform

+ ξmjd︸︷︷︸
candidate quality

+ εmijd︸︷︷︸
random utility shock

,
(2.1)

where cjd denotes campaign spending in support of candidate j, xd is a vector
of district demographics, ξmjd measures candidate quality, and εmijd is a random
utility shock that is independent of the other components of i’s utility and
captures individual heterogeneity.

While parties are required by law to announce their policy platforms prior
to the election, data on individual or district-level policy preferences are un-
available. Policy platforms are nevertheless allowed to influence local voting
preferences by means of interactions between district demographics and menu-
dependent party or coalition fixed effects. Thus, the term x′dβ

m
j measures the

relative appeal—with respect to other available candidates—of j’s platform
for the electorate of district d. In contrast, the coefficients α1 and α2 are fixed

19Data on candidates’ individual policy positions are unavailable.
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across candidates and menus. The underlying assumption is that all parties
potentially have access to the same campaigning technology but spend vary-
ing amounts of effort—i.e., money—trying to persuade voters. The quadratic
term α2c

2
jd is introduced to capture diminishing marginal returns to spend-

ing. Having common coefficients, however, does not imply a constant—across
candidates, menus, or districts—marginal effect of campaign spending on vote
shares (see (2.7) below). The effectiveness of a party’s spending depends on
all other components of voters’ utilities.

In the style of probabilistic voting models with aggregate popularity shocks
(see, for example, Persson and Tabellini, 2000, chap. 3), the random utility
term is assumed to have the following structure:

εmijd = ηmj + e m
ijd, (2.2)

where ηmj and e m
ijd are independently distributed with a zero-mean, Type-I

Extreme Value distribution. Thus,

δmjd = α1cjd + α2c
2
jd + x′dβ

m
j + ξmjd + ηmj (2.3)

represents mean voter utility from voting for candidate j in district d. The
term ηmj is an aggregate—national—popularity shock. It can be viewed as a
random component of voters’ tastes for j’s policy platform.

In every menu, voters additionally have available a compound outside option,
j = 0, of either not voting, casting a null vote, or writing in the name of an
unregistered candidate. As is standard in discrete-choice models, the mean
utility of this outside option is normalized to zero: δm0d = 0. This normaliza-
tion is without loss of generality for within-menu choices. Imposing a common
normalization across menus provides a shared baseline against which to inter-
pret the menu-dependent coefficients. How voters respond to changes in the
electoral supply can thus be inferred directly from a comparison of coefficients
across menus.

To complete the specification of the first tier of the voting stage, voters are
assumed to behave expressively or sincerely, i.e., they choose the alternative
they prefer the most without any strategic considerations. This defines a ho-
mogeneous logit model of demand in the spirit of Berry et al. (1995).20 While

20In related work, Gillen et al. (2015) explore alternative formulations of vot-
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accounting for strategic voting behavior is beyond the scope of this paper,
the reward structure for parties following the Chamber of Deputies election
(specifically, the proportional allocation of seats and future funding) arguably
encourages sincere voting and warrants this assumption.21 Indeed, Ferrara
(2006) argues that this is to be expected in a single-ballot mixed system with
national lists such as Mexico’s for the election of deputies. Nevertheless, the
menu-dependent structure of voters’ preferences implicitly allows for poten-
tially strategic responses to changes in the electoral supply.

Finally, the second tier of the voting stage takes a similar form: if the menu
available to voters in district d contains a PRI-PVEM coalition candidate,
i.e., Md = m 6= IND, then voters can decide whether to split their vote 50-50
between the coalition partners or give 100% of their vote to one of them, where
voter i’s utility from choosing alternative j out of these three options is

uST,mijd = x′dβ
ST,m
j + ξST,mjd + εST,mijd . (2.4)

Here, βST,m
j and ξST,mjd are the analogs of βmj and ξmjd from the first tier, re-

spectively, and εST,mijd has the same structure as in (2.2) above.22 The only
difference between the two tiers is that the second tier is unaffected by cam-
paign spending. Campaigns are candidate-centric and, as such, are assumed
to affect only the first-tier candidate choice.

Campaign stage. This stage follows the coalition formation stage and cor-
responding candidate nominations. The objective for parties is to decide how
much to spend in support of their registered candidates. Given Md = m, de-
termined in the coalition formation stage, the candidate quality terms ξmjd are
commonly observed by all parties (but unobserved by the researcher). Hence,
parties can tailor their spending to their candidates’ relative strengths. The
voters’ random utility shocks, however, are unknown to the parties (and the
researcher); only their distribution is known.

ing preferences—including the workhorse random coefficients logit model of demand
estimation—using the same data from the 2012 Mexican Chamber of Deputies election.
As discussed there, the results of Section 2.4 are fairly robust to different specifications and
to variable selection of the demographic controls in xd.

21See Kawai and Watanabe (2013) for a recent example of the challenges involved in
identifying strategic voting.

22That is: εST,m
ijd = ηST,m

j + e ST,m
ijd , independently distributed with a zero-mean, Type-I

Extreme Value distribution.
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As discussed in Section 2.2, parties care not only about winning district races
but also about their final vote share, as it determines the number of PR seats
they shall receive and also their future funding. Thus, when deciding how
much to spend in each district, parties care about both their probability of
winning the district seat and their expected vote share in the district. For
analytical convenience, I assume that parties have a flexible national budget
constraint. In particular, parties are assumed to make independent spend-
ing decisions across districts. The parties’ payoff structure described below
ensures that the spending levels predicted by the model conform to the lev-
els observed in the data. But, rather than imposing a hard national budget
constraint which would significantly complicate the analysis that follows, the
model allows certain flexibility with respect to the parties’ total spending un-
der alternative scenarios. This assumption is not unreasonable, particularly for
the 2012 election, which coincided with the senate and presidential elections.
Indeed, parties are free to transfer resources between the elections. While the
senate and presidential contests are outside the scope of this paper, any oppor-
tunity costs of such transfers are implicitly captured by the payoff structure
described below.

The campaign stage therefore consists of parties playing an independent cam-
paign spending game in each district (with complete information and simulta-
neous moves). The parties’ payoffs are defined as follows. Given Md = m, if
party p enters a candidate in district d, its payoff is

πmpd = θPWp log
(
PWm

pd

)
+ θESp log

(
ESmpd

)
− cpd, (2.5)

where PWm
pd and ESmpd denote, respectively, party p’s probability of winning

and expected vote share in the district (derivations of which can be found in
Appendix A.1), and cpd is p’s spending in support of its candidate. Thus, the
coefficients θPWp and θESp measure the monetary value of (the log of) PWm

pd

and ESmpd. This value represents—in relative terms to each party’s available
resources—not only the benefits derived from the election outcomes but also
any opportunity costs of cpd as discussed above.

For the PRI-PVEM coalition partners, if p ∈ {PRI,PVEM} doesn’t enter a
candidate in district d, i.e., if m /∈ {p, IND}, then p’s payoff is

πmpd = θNCp + θESp log
(
ESmpd

)
− cpd. (2.6)
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In this case, the coefficient θNCp measures the value of not fielding a candidate
to support one’s partner’s candidate instead.23

When PRI and PVEM nominate a joint candidate, i.e., Md = m 6= IND, they
must jointly decide how much to spend to support her. Only their joint spend-
ing cPRI,d + cPVEM,d enters (2.1) and determines the candidate’s probability of
winning and their expected vote shares. Given the quasilinear structure of pay-
offs, I remain agnostic about how PRI and PVEM divide this amount between
them and simply assume that it maximizes their joint surplus πmPRI,d+πmPVEM,d.
In other words, joint spending is assumed to be Pareto optimal for the coali-
tion. Hence, in districts whereMd = m 6= IND, PRI and PVEM act as a single
player in the spending game against other parties, who chooses cPRI,d+cPVEM,d

with joint payoff πmPRI,d + πmPVEM,d.

At the estimated parameter values of the voting stage and the parties’ payoffs,
and regardless of the menu of candidates, the resulting campaign spending
game played in each district exhibits strict strategic complementarities (see
Appendix A.1 for details). A formal definition of this class of games can be
found in Echenique and Edlin (2004). It suffices here to point out three key
properties of such games. First, existence of equilibrium is guaranteed (Vives,
1990). Second, mixed-strategy equilibria are not good predictions in these
games, so their omission is justified (Echenique and Edlin, 2004). Third, the
set of all pure-strategy equilibria can be feasibly computed (Echenique, 2007).
This implies that full consideration of potential multiplicity of equilibria is
feasible. At the estimated parameter values, however, the campaign spending
games exhibit unique equilibria. Therefore, for ease of exposition, I proceed
with the description of the model and the empirical strategy under the pre-
sumption that the spending game in each district has a unique equilibrium.24

Coalition formation stage. This stage completes the description of the
model. As stated, the objective is to understand PRI and PVEM’s choice of
where and how to run together, conditional on all other parties running as
observed in the data.

23This formulation allows partners to potentially prefer a joint nomination over having
negligible chances of winning a district—by avoiding any fixed administrative or operational
costs of candidate nominations.

24A note providing guidance on how to deal with multiplicity of equilibria is available on
request from the author.
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Recall that coalition formation decisions precede candidate nominations. In
particular, I assume that, when PRI and PVEM choose their coalition config-
uration, they don’t yet know the candidate qualities (ξmj )j,m, only their dis-
tribution.25 This assumption is justified by the following observations. First,
while party leaders may have some information regarding potential candi-
dates, internal candidate selection processes are inherently random and thus
difficult to anticipate precisely. Parties use a combination of procedures to
select their candidates—most notably, primaries and appointments by local
committees—which are beyond the direct control of the national leadership.
Second, candidates for the district races are relatively inexperienced compared
to candidates in the parties’ PR lists. Career politicians with substantial in-
fluence within their party and national exposure generally don’t seek district
seats; they rather attempt to secure a favorable position on their party’s PR
list, which virtually guarantees them participation in the legislature. Indeed,
this concern has fueled recent calls for reducing the number of PR legislators.26

Similarly to joint spending decisions, I therefore assume that Md is chosen to
maximize PRI and PVEM’s ex-ante expected joint surplus—i.e., before can-
didate qualities are realized. Formally, Md ∈ arg maxm E(πmPRI,d +πmPVEM,d|xd).
The expectation here is taken with respect to the campaign spending equi-
librium and election outcomes induced by the candidate qualities.27 This
resembles nonnegative-profit entry conditions in models of market entry. A
significant difference, however, is that the entry decision here conditions only
on the observable district characteristics, xd, not on the yet unknown product
quality, ξmj .

2.3.2 Empirical Strategy

Estimation of the model mirrors its three-stage structure. Step 1 deals with the
voting stage and recovers the parameters of (2.1) and (2.4). Step 2 obtains the
coefficients θPWp and θESp of the parties’ payoffs by matching the spending levels
observed in the data with the model’s predictions from the campaign stage.

25The ξmj are independent, following a zero-mean, Normal distribution with standard
deviation σmj .

26One of the current president’s campaign proposals in 2012 was reducing to 100 the
number of PR seats in the Chamber of Deputies.

27Given the structure of the model, there is a unique optimal coalition configuration
almost surely.
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Finally, the entry conditions of the coalition formation stage are exploited in
Step 3 to partially recover θNCPRI and θNCPVEM.

Step 1. The voting stage is estimated following the discrete choice approach
to demand estimation (Berry et al., 1995). Given that districts are large
(>185,000 registered voters), by a law of large numbers approximation, can-
didate j’s vote share, denoted Smjd, can be written in the familiar multinomial
logit form:

Smjd =
exp(δmjd)

1 +
∑

k 6=0 exp(δmkd)
. (2.7)

After taking logs and subtracting the (logged) share of the outside option,
(2.7) yields the linear demand system:

log(Smjd)− log(Sm0d) = δmjd = α1cjd + α2c
2
jd + x′dβ

m
j + ξmjd + ηmj . (2.8)

The second-tier coefficients of (2.4) are recovered analogously: letting SST,m
pd

and SST,m
0d denote, respectively, the shares of PRI-PVEM coalition supporters

who give their vote to p ∈ {PRI,PVEM} or who split their vote 50-50, it
follows that

log(SST,m
pd )− log(SST,m

0d ) = δST,mjd = x′dβ
ST,m
j + ξST,mjd + ηST,mj . (2.9)

Identification of the voting stage parameters is obtained as follows. First, re-
call from the coalition formation stage that PRI and PVEM’s choice of Md

conditions only on the observable district characteristics, xd; all other com-
ponents of the right-hand sides of (2.8) and (2.9) are unknown to PRI and
PVEM at the time of their decision. This selection on observables implies
that realized vote shares are independent of Md conditional on xd, ensuring
that voters’ preferences relative to menu m can be directly estimated from the
subsample of districts where Md = m.

Second, since parties tailor their spending to their candidates’ qualities, cjd
is correlated with ξmjd and so is endogenous. Instrumental variables are there-
fore necessary to identify the effect of campaign spending on candidates’ vote
shares. I use average spending by rival parties in neighboring districts (with
the same menu of candidates) to instrument for the endogenous cjd. Parties
best respond to their rivals’ spending, and campaigning costs are likely to be
similar in neighboring districts (e.g., wages and transportation costs). By av-
eraging rivals’ spending in nearby districts, the presence of local cost shifters
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provides exogenous variation in spending levels with which to identify α1 and
α2.28

Estimation of (2.8)-(2.9) and inference proceed using standard methods for lin-
ear random-effects (due to the aggregate popularity shocks) panel data models.
The residuals of (2.8) and (2.9)—demeaned for each (j,m) pair to difference
out the random effects ηmj and ηST,mj —deliver consistent estimates of ξmjd and
ξST,mjd for the district races as observed in the data, which are required for
Step 2. Moreover, the standard deviations of these residuals yield estimates of
their population counterparts—recall that ξmjd

i.i.d.∼ N(0, (σmj )2), and similarly

ξST,mjd

i.i.d.∼ N(0, (σST,mj )2)—which are necessary to simulate counterfactuals.

Step 2. The parameters θPWp and θESp of the parties’ payoff functions are
estimated by fitting predicted to observed campaign spending levels. For each
party p /∈ {PRI,PVEM}, let ĉp = (ĉpd)d∈{1,...,300} denote the party’s spending
levels as observed in the data, and let c̃p = (c̃pd)d∈{1,...,300} denote their pre-
dicted counterparts. These predictions are computed as follows. Given the
estimates of the voting stage and candidate qualities obtained in Step 1, and
for each possible value of θp = (θPWp , θESp ) ∈ R2

+, I simulate p’s best responses
to its rivals’ observed spending in each district, collected in c̃p. I omit the de-
pendence of these predictions on the estimates from Step 1 and simply write
c̃p = c̃p(θp). Then θp is estimated by minimizing the distance between ĉp and
c̃p(θp), i.e., by minimizing the norm:

Qp(θp) =
(
ĉp − c̃p(θp)

)′
Wp

(
ĉp − c̃p(θp)

)
,

where Wp is a positive definite, diagonal weighting matrix. I initially estimate
θp using the identity as weighting matrix. I then re-weight each district d
by the reciprocal of the variance of the estimation error for the subsample of
districts with the same menu of candidates as d.

For PRI and PVEM, θPRI = (θPWPRI, θ
ES
PRI) and θPVEM = (θPWPVEM, θ

ES
PVEM) are

estimated similarly. Let ĉ be a stacking of PRI and PVEM’s observed joint
spending levels along with their observed individual spending levels. That is, ĉ
contains 199 observations corresponding to the districts where PRI and PVEM
ran together, plus 2×101 observations corresponding to the 101 districts where

28The results are robust to alternative choices of instruments, including lagged spending
from the 2009 election. See Gillen et al. (2015) for details.
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they ran independently. Let c̃ contain their predicted counterparts. Then θPRI
and θPVEM are estimated by minimizing

QPRI-PVEM(θPRI, θPVEM) =
(
ĉ− c̃(θPRI, θPVEM)

)′
WPRI-PVEM

(
ĉ− c̃(θPRI, θPVEM)

)
,

as before.

Standard errors for these estimates are obtained by bootstrapping.

Step 3. Finally, the parameters θNCPRI and θNCPVEM are partially identified from
the moment inequalities implied by the optimality of Md for the PRI-PVEM
coalition in each district. Recall from Section 2.3.1 thatMd ∈ arg maxm E(πmPRI,d+

πmPVEM,d|xd). This implies that
E(πMd

PRI,d+π
Md
PVEM,d|xd) ≥ E(πmPRI,d+π

m
PVEM,d|xd) for allm ∈ {PRI,PVEM, IND},

which in turn implies the unconditional moment inequality

E
(
πMd
PRI,d + πMd

PVEM,d − (πmPRI,d + πmPVEM,d)
)
≥ 0 (2.10)

for each m. Computation of (2.10) is via simulation, and it involves the
estimates from Steps 1 and 2.

Shi and Shum (2015) propose a simple inference procedure for models with
such a structure, i.e., models where a subset of parameters is point identified
and estimated in a preliminary stage—in this case, Steps 1 and 2—and the
remaining parameters are related to the point-identified parameters through
inequality/equality restrictions—in this case, the inequalities in (2.10). To
implement their procedure, which requires both equalities and inequalities, I
introduce slackness parameters as suggested by Shi and Shum: for each m,
(2.10) becomes an equality restriction,

E
(
πMd
PRI,d + πMd

PVEM,d − (πmPRI,d + πmPVEM,d)
)

+ γm = 0,

and the slackness parameter satisfies γm ≥ 0. A criterion function is con-
structed as follows. With a slight abuse of notation, let β be a vector collecting
the output of Steps 1 and 2, and let θ = (θNCPRI, θ

NC
PRI, γPRI, γPVEM, γIND). Then,

following Shi and Shum’s notation, define ge(θ, β) = (gem(θ, β))m∈{PRI,PVEM,IND}
by

gem(θ, β) = E
(
πMd
PRI,d + πMd

PVEM,d − (πmPRI,d + πmPVEM,d)
)

+ γm,

and let gie(θ) = (giem(θ))m∈{PRI,PVEM,IND} = (γm)m∈{PRI,PVEM,IND}. Thus, ge

summarizes the equality restrictions involving all the parameters of the model,



25

and gie summarizes the inequality restrictions involving only θ. Letting β0

denote the true value of β, the identified set of θ is

Θ0 = {θ : ge(θ, β0) = 0 and gie(θ) ≥ 0}.

The criterion function is defined by

Q(θ, β;W ) = ge(θ, β)′Wge(θ, β),

whereW is a positive definite matrix. It follows that Θ0 = arg minθQ(θ, β0;W )

subject to gie(θ) ≥ 0. Shi and Shum show that the following is a confidence
set of level α ∈ (0, 1) for θ:

CS = {θ : gie(θ) ≥ 0 and Q(θ, β̂, Ŵ ) ≤ χ2
(3)(α)/N},

where χ2
(3)(α) is the α-th quantile of the χ2 distribution with 3 degrees of

freedom (the number of restrictions in ge), β̂ is the estimate of β0 from Steps
1 and 2, N is the number of observations used to estimate β̂, and

Ŵ =
[
G(θ, β̂)V̂βG(θ, β̂)′

]−1

with G(θ, β̂) = ∂ge(θ, β̂)/∂β′ and V̂β a consistent estimate of the asymptotic
variance of β̂.

As ge(θ, β) and gie(θ) are in fact linear in θ (recall (2.6)), Q(θ, β̂; Ŵ ) has a
unique minimizer subject to gie(θ) ≥ 0, which provides a useful point estimate
for the counterfactual experiments of Section 2.5. Moreover, CS is convex, so
upper and lower bounds of marginal confidence intervals for θNCPRI and θNCPRI can
be computed by optimizing fp(θ) = θNCp subject to θ ∈ CS.29

2.4 Estimation Results

This section summarizes the main estimation results. The discussion follows
the structure of the model, beginning with the voting stage. A goodness of fit
evaluation of the model is also provided.

29As discussed by Shi and Shum, the slackness parameters γm are nuisance parameters
which may lead to conservative confidence sets for the parameters of interest. This does not
seem to be a problem in this application, however, as the confidence intervals reported in
Section 2.4 are fairly tight.
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Estimates of voters’ preferences. Tables A.1-A.5 in Appendix A.3 present
estimates of the coefficients βmj capturing voters’ menu-dependent preferences
for candidate j’s policy platform across the three menusMd = m ∈ {PRI,PVEM, IND}.
The estimates are overall consistent with the interpretation of district demo-
graphics introduced in Section 2.2.1: male-dominated districts with an older
electorate are more likely to prefer candidates nominated by the right-wing
parties PAN and PRI, and they are less likely to prefer a left-wing candidate
from MP (although the effects for the latter are generally imprecise). Higher
income is also associated with a preference for PAN candidates and a disliking
of MP candidates. The intermediate parties in the ideology spectrum, NA and
PVEM, exhibit mixed effects.

For a closer look at the menu-dependence of preferences, I discuss each party’s
coefficients in turn.

Preference for an MP candidate. The MP coefficients are the most stable in
magnitude across menus, indicating that MP supporters were the least af-
fected by the PRI-PVEM coalition. This is not surprising given that MP is
the most ideologically distant from the coalition partners. The only significant
cross-menu differences are with respect to gender and education. While female-
dominated districts strongly support MP candidates when a PVEM candidate
is in the race, i.e., when Md = IND or Md = PVEM, this support fades
when Md = PRI.30 This suggests that the presence of more ideologically-close
competitors potentially splitting the vote—i.e., both NA and PVEM—drives
female-dominated districts to rally behind MP.31 With respect to education,
support for MP candidates considerably increases in better-educated districts
when PRI and PVEM nominate a joint coalition candidate.32 This perhaps
reveals a desire to counterbalance the strength of the PRI-PVEM coalition.
Consistently across menus, higher income depresses support for MP candi-
dates.

Preference for an NA candidate. When PRI and PVEM run independently,
30Notice that, while the gender coefficients are negative for all other parties, the estimates

for MP are positive and significant when Md = IND or Md = PVEM. For the cross-menu
differences in the MP coefficients, the p-value is 0.037 for Md = IND versus Md = PRI, and
0.066 for Md = PVEM versus Md = PRI.

31Abortion, for example, is only broadly allowed in Mexico City, an MP stronghold.
32The MP coefficients are positive, significant, and largest in magnitude among all parties

when Md = PRI or Md = PVEM. The p-values for the differences are 0.002 and 0.052 for
Md = IND versus Md = PRI and Md = PVEM, respectively.
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NA has substantial support in better-educated districts.33 This support shifts
to MP, however, when PRI and PVEM nominate a joint candidate.34 As
discussed, this might be due to a desire to counterbalance the PRI-PVEM
coalition by deserting the weaker NA for the stronger ideological neighbor
MP. In contrast, while higher-income districts dislike NA candidates when
Md = IND, this effect disappears when PRI and PVEM run together.

Preference for a PAN candidate. Districts with an older electorate strongly
support PAN candidates, and their support intensifies in response to a joint
nomination from PRI and PVEM—particularly when they nominate a joint,
ideologically closer, PRI candidate.35 Similarly, support for PAN candidates
in higher-income districts rises when PRI and PVEM nominate a joint candi-
date.36 This suggests that conservative districts rally behind PAN to counter-
balance the PRI-PVEM coalition.

Preference for a PRI candidate. PRI candidates have weak but consistent sup-
port in better-educated districts. Coalition PRI candidates gain considerable
support relative to independent PRI candidates in older, male-dominated dis-
tricts, indicating that the PRI-PVEM coalition primarily competes with PAN
to attract conservative voters.37

Preference for a PVEM candidate. The most striking cross-menu differences
relate to PVEM candidates. While independent PVEM candidates are strongly
disliked in districts with an older electorate, coalition PVEM candidates obtain
considerable support.38 Higher-income districts also increase their support for
coalition PVEM candidates substantially relative to independent PVEM can-
didates. Again, this suggests that the PRI-PVEM coalition primarily competes
with PAN for supporters.

Regarding the second-tier choice for PRI-PVEM coalition supporters of how
to split their vote between the two parties, Table A.6 shows estimates of the
coefficients describing the choice of giving PRI 100% of the vote, and Table A.7

33The coefficient is positive, significant, and largest in magnitude among all parties.
34The p-values for the differences are 0.006 and 0.002 for Md = IND versus Md = PRI

and Md = PVEM, respectively.
35The age coefficients for PAN are positive and largest in magnitude among all parties.

The p-value for the difference between Md = IND and Md = PRI is 0.023.
36The p-values are 0.078 and 0.003 for Md = IND versus Md = PRI and Md = PVEM,

respectively.
37The p-value for the gender difference is 0.021, and for the age difference is 0.067.
38The age coefficients for PVEM are the largest and second-largest in magnitude when

Md = IND and Md = PVEM, respectively. The p-value for the difference is 0.014.
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shows the analogous estimates for PVEM. The outside option here is splitting
the vote 50-50 between the parties. Female-dominated districts are generally
more likely to split their vote between the parties, while districts with an older
electorate are more likely to give 100% of their vote to PRI.

Finally, Table 2.6 reports estimates of α1 and α2, the parameters describ-
ing the persuasive effect of campaign spending on voters’ preferences. The
first column presents ordinary least squares (OLS) estimates, while the second
column controls for the endogeneity of spending via two-stage least squares
(2SLS) as explained in Section 2.3.2. Both sets of estimates indicate that
campaign spending has a significant and initially positive persuasive effect on
voters’ preferences, which is mitigated by diminishing marginal returns. In
fact, the OLS and 2SLS estimates agree with respect to the point at which
the effect turns negative: spending more than 197,000 USD is detrimental to
a candidate, revealing potential voter fatigue from excessive advertising. OLS
considerably underestimates the overall persuasiveness of campaign spending.
The 2SLS estimates imply that, for a candidate with an average vote share
(∼ 23%) and average spending (∼ 45,000 USD), a 1% increase in campaign
spending raises her vote share by about 0.95%, almost a one-to-one relation-
ship. In contrast, the same calculation using the OLS estimates yields an
increase of only 0.22%.

Estimates of parties’ payoffs. Table 2.7 shows estimates of the coefficients
θPWp and θESp of parties’ payoffs (measured in tens of thousands of USD). With
the sole exception of NA, the results suggest that parties care only about their
expected vote share when deciding how much to spend in a district. This is
not surprising considering that their funding for the three following years and
the number of PR seats they receive are both tied to their final vote share in
the election. NA appears to have placed substantial weight on its probability
of winning, though it was ultimately unsuccessful in the district races.

Table 2.8 reports 95% confidence intervals for the partially identified param-
eters θNCPRI and θNCPVEM of PRI and PVEM’s payoffs when they don’t enter a
candidate in a district. Point estimates, which are necessary for the coun-
terfactual experiments of Section 2.5, can be obtained as θNCPRI = −1.555 and
θNCPVEM = −0.443. These values can be interpreted as direct compensation the
parties demand in exchange for supporting their partner’s candidate, revealing
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Table 2.6: Structural estimates of persuasive effect of campaign
spending (in tens of thousands of USD)

(OLS) (2SLS)

Coefficient Estimate Estimate
(St. Error) (St. Error)

α1 0.118 0.511
(0.019) (0.174)

α2 -0.006 -0.026
(0.001) (0.010)

F -statistic (first stage) 34.570

Ordinary and two-stage least squares estimates of random effects
model (2.8) with robust standard errors clustered by candidate’s
party affiliation and PRI-PVEM’s coalition configuration.

their relative bargaining power in the choice of coalition candidates.

Goodness of fit. To evaluate the performance of the model, Table 2.9 pro-
vides a comparison of the model’s main predictions with their counterparts
in the data. The predictions are computed from an ex-ante perspective—i.e.,
before candidate qualities are known—as follows. Conditional on PRI and
PVEM’s observed coalition configuration, one thousand elections are simu-
lated by drawing candidate qualities for each district, calculating the campaign
spending equilibria played by the parties, and computing the resulting election
outcomes. From these simulations, 95% confidence intervals are constructed
for each party’s final vote share and seat count, as shown in Table 2.9.

Despite its parsimonious structure, the model overall fits the data well; it only
slightly overestimates PRI and PVEM’s performance at the expense of NA’s.

2.5 Counterfactual Experiments

The primary objective of this paper is to quantify the extent to which PRI
and PVEM’s coalition affected election outcomes and the composition of the
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Table 2.7: Structural estimates of parties’ payoffs

θPWp θESp

Party Estimate Estimate
(St. Error) (St. Error)

PRI 0.077 8.027
(0.354) (3.028)

PVEM 0.101 3.203
(0.438) (1.172)

PAN 0.142 5.554
(0.533) (1.700)

MP 0.007 7.460
(0.065) (2.556)

NA 1.759 0.921
(0.834) (0.423)

First column corresponds to probability of win-
ning. Second column corresponds to expected
vote share. Bootstrapped standard errors in
parentheses.

Table 2.8: Structural estimates of θNCPRI and θNCPVEM.

θNCp

Party Confidence interval (95%)

PRI [−1.961,−0.210]

PVEM [−1.419,−0.270]

Chamber of Deputies in 2012. To this end, I conduct two counterfactual
experiments. First, I study what would have happened had PRI and PVEM
not formed a coalition. That is, I simulate election outcomes (as described
in Section 2.4) imposing Md = IND in all districts where PRI and PVEM
nominated a joint coalition candidate. Second, at the other extreme, I examine
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Table 2.9: Goodness of fit: observed versus predicted seats and vote shares

Vote share (%) Seats

Party Observed Predicted Observed Predicted
(95% conf. interval) (95% conf. interval)

PRI 33.6 [33.8, 35.5] 207 [209, 217]

PVEM 6.4 [6.2, 6.9] 34 [36, 48]

PAN 27.3 [25.5, 27.3] 114 [99, 119]

MP 28.3 [27.3, 29.3] 135 [115, 138]

NA 4.3 [3.8, 4.2] 10 [8, 10]

the effects of constraining PRI and PVEM to form a total coalition. For this
experiment, in all districts where PRI and PVEM ran independently, I force
PRI and PVEM to run together by restricting the choices available to them in
the coalition formation stage of the model to Md ∈ {PRI,PVEM}. Thus, PRI
and PVEM are constrained to run together in all districts, but they optimally
select the party affiliation of their coalition candidates.

Table 2.10 presents the results of these experiments. For comparison, the first
column reproduces the outcomes observed in the data. The second column
reports predicted counterfactual vote shares and seats for each party under
the no PRI-PVEM coalition treatment, and the third column reports their
counterparts under the total PRI-PVEM coalition treatment. Individually,
PRI and PVEM faced opposing consequences of their coalition: while PVEM
benefitted greatly, both in terms of seats and vote share, these benefits accrued
at the expense of PRI. Relative to not forming a coalition, by running with
PRI as observed in the data, PVEM managed to secure almost thrice as many
seats—13 versus 34—and to increase its vote share by about 42%—from 4.5%
to 6.4%. Forming a total coalition would have given PVEM 10 additional seats
and raised its vote share to 6.9%. On the other hand, by running as observed,
PRI lost 6% of its seats—221 versus 207—and 7% of its vote share—36.3%
versus 33.6%. By running together with PVEM in all districts, PRI would
have additionally lost 5 seats and 1.1 percentage points in vote share. Overall,
however, the PRI-PVEM coalition obtained net gains in terms of jointly held
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seats in the chamber. By running as observed, PRI and PVEM closed the gap
to obtaining a legislative majority (i.e., 251 seats) by almost half—from 17
seats to 10; and they would have closed it by 71% had they run together in all
districts—from 17 to 5. Thus, the results reveal that the observed coalition
configuration constituted a compromise in balancing net gains to the coalition
with PRI’s individual losses.

Table 2.10: Counterfactual outcomes under no coalition or total coalition

Vote share (%)

Party Observed No coalition Total coalition

PRI 33.6 (+2.7 =) 36.3 (−1.1 =) 32.5

PVEM 6.4 (−1.9 =) 4.5 (+0.5 =) 6.9

PAN 27.3 (−0.1 =) 27.2 (+0.7 =) 28.0

MP 28.3 (−1.3 =) 27.0 (+0.1 =) 28.4

NA 4.3 (+0.7 =) 5.0 (−0.2 =) 4.1

Seats

Party Observed No coalition Total coalition

PRI 207 (+14 =) 221 (−5 =) 202

PVEM 34 (−21 =) 13 (+10 =) 44

PAN 114 (+8 =) 122 (+3 =) 117

MP 135 (−2 =) 133 (−7 =) 128

NA 10 (+1 =) 11 (−1 =) 9

Differences in parentheses are with respect to first column. Sec-
ond and third columns correspond to counterfactual outcomes
had PRI and PVEM run independently or together in all dis-
tricts, respectively.

The source of PRI’s losses is voting behavior. Table 2.10 shows that PRI
and PVEM command roughly 40% of the national vote share, regardless of
how they run. But PRI’s individual vote share drops substantially when PRI
and PVEM join forces, as a consequence of the way in which PRI-PVEM
coalition supporters split their vote between the two parties. When PRI and
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PVEM jointly nominate a PRI candidate, on average, 74.5% of coalition sup-
porters give 100% of their vote to PRI, 9.6% give their vote to PVEM, and
15.8% split their vote 50-50. These percentages change to 71.4%, 12.9%,
and 15.7%, respectively, when PRI and PVEM jointly nominate a PVEM
candidate. As a result, PRI’s expected vote share with a joint PRI candi-
date is about 33%, and with a joint PVEM candidate, about 31.7%. Com-
pared to its vote share of 36.3% when it runs independently, PRI experiences
considerable losses from joint nominations. Lost vote share then translates
into seat losses for PRI via the restriction on the PR assignment of seats
discussed in Section 2.2. The exact form of the restriction is: if a party’s
vote share is Sp, it cannot hold more than b500(Sp + 0.08)c total seats. No-
tice that, across the three columns of Table 2.10, PRI is bound by this re-
striction.39 Thus, PRI is severely capacity constrained in the Chamber of
Deputies election.

For a closer look at the district races, Table 2.11 breaks down the seat counts
in Table 2.10 by type of seat—i.e., direct representation (DR) seats and PR
seats. The DR seat counts reveal that there are few competitive districts in
Mexico. Relative to not forming a coalition, there are only 9 districts that PRI
and PVEM can steal from their competition by joining forces; and this number
is independent of whether they run as observed in the data or together in all
districts. Consistent with the discussion of Section 2.4, Table 2.11 shows that
PAN was the most affected by the PRI-PVEM coalition: of the 9 additional
victories that PRI and PVEM obtained by running as observed in the data,
8 were from PAN-leaning districts. Interestingly, forcing PRI and PVEM to
run together in all districts would cause the coalition to target MP-leaning
districts via joint PVEM candidate nominations. Against a total PRI-PVEM
coalition, PAN would only lose 4 districts, but MP would lose 5 instead of just
1.

In addition to its effects on seats and vote share, I consider how the PRI-
PVEM coalition affected campaign spending in the district races. While the
model refrains from specifying PRI and PVEM’s individual shares of spending
in support of coalition candidates, it is possible to examine whether there were
any aggregate financial gains for the parties from coalition formation. First,
in terms of total surplus for the coalition partners, which takes into account

39That is, 207 = b500(0.335953 + 0.08)c, 221 = b500(0.363 + 0.08)c, and 202 =
b500(0.325 + 0.08)c.
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Table 2.11: Counterfactual outcomes by type of seat

Observed No coalition Total coalition

Party DR seats PR seats DR seats PR seats DR seats PR seats

PRI 158 49 165 56 148 54

PVEM 19 15 3 10 29 15

PAN 52 62 60 61 56 61

MP 71 64 72 61 67 61

NA 10 11 9

their preferences over election outcomes as expressed by their payoffs in (2.5)
and (2.6), the model estimates the value of running as observed in the data,
relative to running independently, at about 1.8 million USD.40 This amount
equals approximately 8% of PRI and PVEM’s observed total spending in the
election, and it can be interpreted as a willingness-to-pay measure of the value
of the coalition for the two parties. In contrast, the value of forming a total
coalition, relative to running independently, is only half: about 900,000 USD.
Though substantially smaller, this value reveals that, if PRI and PVEM had
been constrained to choose only between not forming a coalition or forming
a total one, they would have nonetheless formed a coalition, and the election
outcomes would have been those in the third column of Table 2.10.

As a more direct measure of financial gains from coalition formation, the ratio
between PRI and PVEM’s joint spending and joint vote share provides a rough
estimate of how much the two parties need to spend—in equilibrium—to pro-
duce 1 percentage point of joint vote share. On average across districts, this
ratio is about 2,036 USD when PRI and PVEM run independently, 1,812 USD
when they nominate a joint PRI candidate, and 1,701 USD when they nomi-
nate a joint PVEM candidate, which implies cost savings of 11% to 16% from
joint nominations. Thus, by not having to campaign against each other, joint
nominations allow PRI and PVEM to internalize externalities, substantially
increasing the effectiveness of their spending.

40Total surplus is calculated as the sum of E(πmPRI,d+πmPVEM,d|Xd) over all districts, with
the appropriate value of m for each scenario.



35

Finally, Table 2.12 shows how average spending across parties would have
changed under the two counterfactual scenarios. It is interesting to note that,
with the sole exception of MP, spending is increasing in the number of com-
peting candidates. This is consistent with the intuition that differentiation via
campaign advertising becomes relatively more valuable in a more crowded—
and hence less polarized—field, leading parties to invest more heavily (see, for
example, Ashworth and Bueno de Mesquita, 2009; Iaryczower and Mattozzi,
2013). Indeed, total spending in the election is highest when PRI and PVEM
run independently in all districts and lowest when they form a total coalition.

Table 2.12: Counterfactual spending (in thousands of USD)

Average spending per district

Party Observed No coalition Total coalition

PRI+PVEM 80.1 88.6 78.3

PAN 40.7 40.9 40.4

MP 55.8 55.1 56.1

NA 18.1 19.7 17.6

2.5.1 Robustness to Richer Specification

As explained in Section 2.3.2, one of the key identifying assumptions under-
pinning the counterfactuals presented above is that PRI and PVEM’s optimal
choice of where and how to run together conditions only on the observable dis-
trict characteristics. If PRI and PVEM had additional information on which to
base their decision, the results could be severely biased. One way in which this
concern can be addressed is via a richer specification of the model. Specifically,
expanding xd with other district characteristics related to voting behavior can
help mitigate any potential omitted-variables bias.

Accordingly, to evaluate the robustness of the results, I estimate a richer ver-
sion of the model with 14 demographics instead of 4, including regional fixed
effects to capture any spatial features of voting preferences. For a complete
list of the variables used, see Appendix A.2. As shown in Table A.8, which re-
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produces Table 2.10 using the predictions of the richer model, the main results
of the counterfactual experiments remain virtually unchanged.41

2.6 Discussion

The results of the previous section provide a rich picture of the effects of
electoral coalition formation on voter behavior, political campaigns, and elec-
tion outcomes. The counterfactual experiments document the willingness of
an electorally strong but capacity-constrained party to sacrifice its individ-
ual position—in terms of both seats and vote share—in order to substantially
build up a weaker partner. The results also reveal considerable financial gains
from coalition formation: by supporting common candidates instead of cam-
paigning against each other, coalition partners can increase the effectiveness
of their campaign expenditures.

While post-election legislative bargaining is not explicitly considered in this
paper, the results are suggestive of the importance of electoral coalition forma-
tion as a preliminary stage of the legislative bargaining process. Parties can
use electoral coalitions to pre-select and foster legislative bargaining partners.
Indeed, a cursory look at legislative voting data for the Mexican Chamber
of Deputies following the 2012 election reveals an extremely high degree of
(but not complete) coherence between PRI and PVEM legislators. However,
electoral coalitions are not mergers, and post-election disagreements among
electoral coalition partners are not uncommon. Further research is needed to
fully understand the role of electoral coalitions in shaping both electoral and
legislative output.

The potential for financial incentives in coalition formation had been previ-
ously unrecognized. In settings where parties and candidates are not publicly
funded, these incentives may even be stronger, as coalition partners can share
the burdens of fundraising. Moreover, potential donors may be more willing
to back coalition candidates with broader support, further prompting parties
to make joint nominations. Understanding the role of fundraising in coalition
formation is an interesting open question for future research.

Lastly, the results indicate that coalition formation can lead to an overall
reduction in total campaign expenditures. The net welfare impact of this ef-

41Detailed results from the richer model are available on request from the author.
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fect hinges on whether campaign advertising provides valuable information to
voters. Martin (2014) finds, using data from U.S. Senate and gubernatorial
elections, that the informational content of campaign advertising is limited:
political campaigns have a primarily persuasive—rather than informative—
effect on voter behavior. If the social opportunity cost of resources devoted
to political campaigns is believed to be high, then the results suggest that
electoral coalition formation can deliver a welfare-improving reduction of cam-
paign expenditures. As noted by Iaryczower and Mattozzi (2013), however,
this conclusion may be sensitive to the institutional environment.
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C h a p t e r 3

BLP-LASSO FOR AGGREGATE DISCRETE-CHOICE
MODELS APPLIED TO ELECTIONS WITH RICH

DEMOGRAPHIC COVARIATES

3.1 Introduction

When analyzing aggregated data about consumers’ choices in different regional
markets, researchers must account for the demographic characteristics of local
markets that might drive observable variability in consumers’ preferences and
firms’ pricing policies. The abundance of such variables, whether from census
data, localized search trends, or local media viewership surveys, immediately
confronts researchers defining which model to adopt for this analysis with dif-
ficult questions. Which variables should be included in the model? Which
controls can be excluded from the analysis without introducing omitted vari-
able bias? How sensitive are the estimated effects of a firm’s pricing policy on
their market share to these specification decisions?

In the current paper, we hope to help answer these questions by providing
data-driven algorithms for addressing model selection in analyzing consumer
demand data. Our main contribution here is to apply recent econometric
results from the variable selection literature to a popular nonlinear aggregate
demand model. Specifically, our technique generalizes procedures from Belloni
et al. (2012) and Belloni et al. (2013a) for selecting variables to a nonlinear
Berry et al. (1995) model of consumer demand with random coefficients. Our
asymptotic results extend Gillen et al. (2014)’s results by adopting techniques
from Fan and Liao (2014)’s analysis of penalized GMM estimators, particularly
the conditions for an oracle property that ensures all necessary variables are
included in the model.

The specific problem of interest addresses high-dimensional demographic data
for local markets that may help characterize local preferences. To address this
problem, we adopt techniques proposed by the literature on machine learn-
ing to identify the demographic characteristics that exert the most important
influence on observed market shares. As we discuss in section 3.2.1, these in-
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novative algorithms present powerful devices for variable selection that require
some care in their implementation. When properly deployed through multiple
iterations of variable selection with appropriate penalization, these algorithms
identify all the variables necessary for valid inference in the model.

We conduct an empirical investigation of campaign expenditures’ influence
on election outcomes, utilizing structural models inspired by the industrial
organization and marketing literatures. In elections, the “consumers” are the
voters, the “market” is the voting district, and the set of available “products”
is the set of political parties running in the district. We use our technique
to analyze the impact of campaign expenditures on candidate vote shares in
Mexican elections. With access to the full census records for Mexico, we have
rich demographic data for each voting district. We also have some variability in
the “market structure” or the set of political parties competing in each district,
since Mexican elections allow parties to form partial coalitions. In districts
where parties coordinate, the number of competing candidates is smaller than
in those districts where they compete. Our analysis yields the robust finding
that campaign expenditures significantly influence voter preferences.

We present our inferential technique in a series of four progressively more
complex models. We introduce the simple discrete choice approach to testing
the influence of campaign expenditures on voting in section 3.4. This simple
setting assumes voters vote for their most preferred candidate, with voter
preferences represented by a linear utility function. This simplicity admits a
standard generalized linear model, which we refer to as Model LM-F (Linear
Model with Fixed Controls), for candidate vote shares, providing a first look
at the influence of campaign expenditures on vote shares in Mexican elections
with a pre-selected model. The results show that campaign expenditures make
a positive and significant contribution to a candidate’s vote share, though this
contribution is mitigated by diminishing marginal returns.

We then introduce data-driven variable selection for the demographic controls
we include in the model. In so doing, section 3.5 applies the techniques pro-
posed in Belloni et al. (2012) and Belloni et al. (2013b) to develop our second
empirical specification, Model LM-S (Linear Model with Selected Controls).
In this discussion, we explicitly present the sparsity assumptions required for
consistent and valid inference and describe the exact algorithm for performing
that analysis. Implementing Model LM-S for the Mexican voting data, we
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illustrate how the algorithm can provide an agnostic characterization of the
robustness of our results to model specification. In particular, the variable se-
lection algorithm is governed by only two “tuning” parameters, both of which
are constrained by theory to lie in a reasonably small band of candidate val-
ues. Varying these tuning parameters allows us to verify the robustness of our
empirical findings from Model LM-F to different specifications.

Next, Model RC-F (Random Coefficients with Fixed Controls) allows hetero-
geneity in voters’ responses to campaign expenditures in section 3.6. This
specification corresponds to the “BLP” random coefficients logit model (Berry
et al. (1995)), which is a workhorse model in empirical industrial organization.
We fit Model RC-F to Mexican data using the same pre-specified set of demo-
graphic variables for controls used in the linear Model LM-F. Though we find
very little evidence of heterogeneous impressionability, the impact of campaign
expenditures on vote shares from the linear specification remains robust.

Our main innovation lies in the final specification, Model RC-S (Random
Coefficients with Selected Controls). This model extends the results from
Gillen et al. (2014) to a setting where the number of potential parameters
grows exponentially with the sample size. Estimation and inference here poses
some conceptual and computational challenges. The analytical development
incorporates asymptotic results from Fan and Liao (2014), which builds on
Caner and Zhang (2013) and Belloni et al. (2012) by establishing an oracle
property for penalized GMM estimators in the ultra-high dimensional setting.
Computationally, we start by fitting Model RC-F with the variables selected
by Model LM-S to recover latent mean utilities and optimal instruments from
the nonlinear BLP voting model. We then select a series of additional variables
for robust inference, specifically including controls for observable heterogene-
ity in the optimal instruments. Finally, we verify the first order conditions of
the penalized GMM-estimator to ensure we find a local optimum to which we
can apply Fan and Liao (2014)’s oracle property.

3.2 Related Literature

The current paper sits at the intersection of political science, economics, and
statistics. Our application addresses a well-worn question on how expenditures
by a political campaign influence the outcome of an election. The inferential
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model we use to investigate this question is grounded in structural econometric
methods used for consumer demand estimation by researchers in industrial
organization and marketing. Finally, the statistical techniques we apply utilize
recent innovations in machine learning developing automated techniques for
variable selection.

3.2.1 Model Selection and Inference

Data-driven approaches to variable selection represents one of the most active
areas of statistical research today. Tibshirani (1996)’s Lasso estimator ushered
in a new approach to estimation in high-dimensional settings by incorporating
convex penalties to least-squares objective functions. The penalized estimation
technique has been further developed by Fan and Li (2001)’s SCAD penalty,
Zou and Hastie (2005)’s elastic net and Huang et al. (2008)’s Bridge estimator,
Bickel et al. (2009)’s infeasible lasso, and Zhang (2010)’s minimax concave
penalty. This literature has also inspired several closely related estimators,
including Candes and Tao (2007)’s Dantzig selector and Gautier and Tsybakov
(2011)’s feasible Dantzig selector as well as Belloni et al. (2011)’s Square-Root
Lasso. Each of these estimators incorporate some form of L1-regularization
to the objective function’s maximization problem, selecting variables for the
model by imposing a large number of zero coefficients on the solution.

For an estimator that imposes a large number of zero coefficients in the solution
to be consistent, it must be the case that a large number of zero coefficients are
present in true model for the data generating process. This restriction on the
true parameters of the model takes the form of a sparsity assumption. In its
early formulations, the sparsity restriction was stated as an upper bound on
the L0 or L1 norm of the true coefficients.1 If an estimator classifies zero and
non-zero coefficients with perfect accuracy as the sample grows, the estimator
satifies an oracle property. In order to establish an oracle property, the sparsity
restrictions need to be coupled with a minimum absolute value for non-zero
coefficients to ensure they are selected by the penalized estimator. Intuitively,
the variability of a single residual (which could be explained by an erroneously
included explanatory variable) needs to be dominated by the penalty, which

1Generalized notions of sparsity appear in Zhang and Huang (2008) and Horowitz and
Huang (2010), which allow for local perturbations in which the zero-coefficients are very
small. A similar approach appears in Belloni et al. (2012) and Belloni et al. (2013a) char-
acterizing inference under an approximate sparsity condition that constrains the error in a
sparse representation of the true data generating process.
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in turn needs to be dominated by the effect of a non-zero regressor (to justify
the penalty associated with the coefficient’s non-zero value).

Performing inference after model selection, even with an estimator that sat-
isfies the oracle property, has presented a non-trivial challenge to interpret-
ing the results of estimators that incorporate these techniques. Leeb and
Pötscher (2005, 2006, 2008) present early critiques of the sampling proper-
ties for naïvely-constructed test statistics after model selection, illustrating
the failure of asymptotic normality to hold uniformly and the fragility of the
bootstrap for computing standard errors in the selected model. Lockhart et al.
(2014), published with a series of comments, propose significance tests for
lasso estimators that perform well on “large” coefficients but are less effec-
tive for potentially “small” coefficients for which the significance tests are not
pivotal due to the randomness of the null hypothesis. In a series of papers,
Belloni et al. (2013a) and Belloni et al. (2012) propose techniques for inference
on treatment effects in linear, instrumental variables, and logistic regression
problems. These techniques incorporate multiple stages of variable selection
with data-driven penalties that ensure the relevant controls are included in
the econometric model before performing inference in an unpenalized post-
selection model. By focusing on inference for a predefined, fixed-dimensional,
subset of coefficients, the selected models represent a desparsified data gener-
ating process, with inference results from van de Geer et al. (2014) providing
uniformly valid confidence intervals.

Extending these techniques from least squares regression models to more gen-
eral settings presents additional challenges. Fan and Li (2001), Zou and Li
(2008), Bradic et al. (2011), and Fan and Lv (2011) propose methods for ana-
lyzing models defined by quasi-likelihood. Our application focuses on GMM es-
timators, whose properties in high-dimensions are considered by Caner (2009),
Caner and Zhang (2013), Liao (2013), Cheng and Liao (2015), and Fan and
Liao (2014). Several of these papers address the issue of moment selection, as
in Andrews (1999) and Andrews and Lu (2001). As our application considers
an environment with a fixed set of instruments, our analysis does not require
moment selection but makes heavy use of the oracle properties established by
Fan and Liao (2014).

Our model builds directly on Gillen et al. (2014)’s analysis of demand models
with complex products. The Gillen et al. (2014) application considers aggre-
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gate demand models where the dimension of the vector of product character-
istics is large, on the same order of magnitude as the number of observations.
Our current application utilizes variable selection to mitigate an incidental pa-
rameter problem in characterizing voter preferences. This utilization is similar
in motivation to Harding and Lamarche (2015), who use a penalized quan-
tile regression to allow for heterogeneity in individual nutritional preferences
when analyzing a household grocery consumption data. In addition to apply-
ing Gillen et al. (2014)’s approach to an interactive fixed-effects model, our
analysis allows for material weaker conditions on the data generating process
than in Gillen et al. (2014). Notably, by applying Fan and Liao (2014)’s oracle
properties, we can allow for the number of parameters to grow exponentially
with the number of observations, rather than linearly.

3.2.2 Structural Models of Campaign Spending and Voting

Empirical analysis of voting data presents a particularly challenging exercise
for political scientists due to the large number of factors driving voter be-
havior, endogeneity induced by party competition and candidate selection,
and behavioral phenomena driving individual voter decisions. Including early
work from Rothschild (1978) and Jacobson (1978), a number of political scien-
tists have explored the effect of campaign spending on aggregate vote shares,
often coming to different conclusions on its importance in influencing vote
share by informing, motivating, and persuading voters. These inconclusive
results arise in part due to challenges in identifying valid and relevant instru-
ments (Jacobson, 1985; Green and Krasno, 1988; Gerber, 1998). Gordon et al.
(2012) discuss several challenges to this research agenda, highlighting the value
of incorporating historically underutilized empirical methods from marketing
researchers.

A nascent literature in political science adopts structural approaches to in-
ference for analyzing political data. Discrete choice approaches to analyzing
voting data date back to Poole and Rosenthal (1985) and King (1997). Among
the early adopters of this approach are Che et al. (2007), who utilize a nested
logit model that takes advantage of individual voter data to identify the im-
pact of advertisement exposure on their behavior. The problem we consider is
closest to Rekkas (2007), Milligan and Rekkas (2008), and Gordon and Hart-
mann (2013), who apply a Berry et al. (1995) model to infer the impact of
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campaign expenditures on aggregate voting data. The analysis presented in
Gordon and Hartmann (2013) provides an excellent motivation for our pro-
posed inference technique. Though they find a robust evidence that campaign
spending on advertisement positively contributes to a candidate’s vote share,
the magnitude of this contribution varies by a factor of 3 depending on the
specification of controls adopted. Their extremely large sample allows them
to adopt very rich models of fixed effects and, in the most flexible models, the
significance of the contribution of campaign expenditures to vote shares drops
to 10%. A natural concern is that this loss of significance is in part due to an
excessively conservative model of control variables. Our data-driven approach
to selecting these control variables provides an agnostic approach to address-
ing some of the inherent ambiguity in determining which of these estimates is
“most correct.”

A number of other researchers have also adopted a structural approach to an-
alyze voting behavior. Degan and Merlo (2011) present a structural model for
analyzing multiple concurrent elections in US Congressional and Presidential
elections, with an extension by Levonyan (2013) analyzing the influence of
the Presidential election on the outcome of California’s Proposition 8. Kawai
and Watanabe (2013) adopt a structural approach in investigating strategic
voting behavior using Japanese general election data. Kawai (2014) provides
a dynamic extension of Erikson and Palfrey (2000)’s model of fund-raising
and campaigning to analyze elections for US House of Representatives while
adopting a control function approach to mitigate unobserved heterogeneity
in voter behavior. Our application is clearly most closely related to Montero
(2015)’s structural analysis of the incentives for coalition formation in Mexican
elections.

Beyond structural approaches for analyzing equilibrium outcomes, a massive
body of empirical research investigates the influence of campaign expenditures
on vote shares using natural and field experiments. These investigations are
particularly valuable in their ability to differentiate how different styles of
campaign advertising influences voter behavior. Gerber (2011) surveys much
of this literature. Though our inference technique is derived in the context of
a structural model of voting, the approach to selecting demographic control
variables could be readily adopted to these environments.
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3.3 Voting in Mexico

We utilize the data analyzed by Montero (2015)’s investigation of the coali-
tion formation incentives of political parties. To control for observable hetero-
geneity in voter preferences by district, we have access to rich demographic
data—over 200 variables—from the 2010 population census.

3.4 Model LM-F: Homogeneous Voters with Fixed Con-

trols

We begin by introducing the structural model for voting in a setting free of
complication by variable selection and nonlinear effects. This approach allows
us to describe the economic environment for voting decisions and preferences
before focusing on the methodological issues introduced by model specifica-
tion tests. We then estimate a pre-selected model for control variables and
instruments for the voting data in Mexico.

3.4.1 The Structural Model and Estimation Strategy

In district t, we observe vote shares based on individual voters (indexed by i)
who choose from among the candidates competing in the district (indexed by
j = 1, . . . , J). We represent the option to not vote or to write in a non-party
candidate as an “outside good” indexed by j = 0. To characterize preferences
for a representative voter in the district, we observe a vector ofK0 demographic
characteristics for the district, denoted x0t and K1 characteristics describing
the candidate for party j in that district, denoted x1jt. The endogenous treat-
ment variable of interest, campaign spending in the district by a candidate,
is represented by pjt.2 Finally, we allow exogenous unmodelled variation in
voters’ preferences through a product-market specific latent shock, ξjt.

We begin by introducing preferences to our model in a restrictively homoge-
neous setting without random effects in preference characteristics, though we
will relax these assumptions later. In district t, suppose consumer preferences
are homogeneous up to an idiosyncratic, individual specific shock, denoted

2For expositional purposes, we treat pjt as a scalar, though it could be interpreted as
a fixed-dimensional vector of treatment variables. Our empirical specification will allow
for campaign expenditures to exert both a linear and quadratic influence on voter latent
utilities.
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εijt. This simplification allows us to represent consumer i’s latent utility from
voting for candidate j:

uijt = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt + εijt. (3.1)

Note that, though the candidate-specific characteristics influence voter pref-
erences in a common way across parties, district-specific demographics act
as interactive fixed-effects, impacting voter preferences differently for differ-
ent parties. The latter form of heterogeneity allows national party platform
positions to influence local voting preferences depending on the district’s de-
mographic composition.

Assuming the individual εijt shocks are independently distributed with a Type-
I Extreme Value distribution and normalizing the utility of not voting to 0,
the probability of a randomly-selected district t voter choosing candidate j is
given by the usual logit form:

Pr {yijt = j} =
exp{x′0tβ0j + x′1jtβ1 + pjtβp + ξjt}

1 +
∑J

r=1 exp{x′0tβ0r + x′1rtβ1 + prtβip + ξrt}κrt
. (3.2)

The modification κrt ≡ 1 {Party r runs in District t} reflects the impact coali-
tion formation has on the menu of parties available to voters in each district.
This formulation assumes that voters cast their ballots “sincerely" in favor of
their most preferred candidate, without any strategic considerations. While
accounting for strategic voting is beyond the scope of this paper, the pro-
portional nature of the post-election allocation of seats and future funding
among parties described in Section 3 provides support for the sincere voting
assumption.3

Let candidate j’s vote share in district t be denoted by sjt. The current setting,
in which the expected vote share simply equals the choice probabilities, admits
a linear “demand” system. Denoting the share of voters abstaining or writing-
in candidates by s0t, the logged vote shares (given a large number of voters)
take the form:

Sjt ≡ log sjt − log s0t = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt. (3.3)

Among other sources, endogeneity arises from parties’ consideration of unob-
served local shocks to voter preferences when determining expenditures. This

3See Kawai and Watanabe (2013) for an example of the challenges involved in identifying
strategic voting.
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reaction induces correlation between the unobserved shock ξjt and spending
levels pjt. However, these expenditures also respond to L exogenous instru-
ments zjt, allowing us to identify the causal relationship between campaign
expenditures and their impact on vote shares. Imposing an (admittedly re-
strictive) linear structural relationship on expenditures and these features,
suppose:

pjt = x′0tπ0j + x′1jtπ1 + z′jtπz + νjt, E[νjt|x0t, x1jt, zjt] = 0. (3.4)

Finally, suppose that district-specific shocks to preferences take a linear form:

ξjt = ρνjt + ηjt, E[ηjt|νjt] = 0. (3.5)

Assumption 3.1. Linear Logit Truthful Voting Structural Model:

1. In each of T districts, a large and representative sample of voters truth-
fully vote for their most-preferred candidate under equation (3.1)’s utility
specification.

2. Logged vote shares are linear in K0 district characteristics x0t, K1 candi-
date characteristics x1jt, and campaign spending pjt according to equation
(3.3).

3. Campaign spending is linear in the district and candidate characteristics
x0t and x1jt as well as L exogenous instruments zjt, as in equation (3.4).

4. Residual vote share correlates endogenously with campaign spending, as
in equation 3.5, but is exogenous with respect to instruments:
E[ηjt|x0t, x1jt, zjt] = 0.

We consolidate the above statements about the data generating process for
observed vote shares in Assumption 3.1. This setting presents a simple model
for evaluating the influence of campaign spending on voter preferences, in
which instrumental variables via two-stage least squares estimation can be
used for accurate inference. With standard regularity conditions, consistent
inference on βp can proceed using a standard IV regression of the model:

Sjt = x′0tβ0j + x′1jtβ1 + pjtβp + ξjt, E[ξjt|x0t, x1jt, zjt] = 0. (3.6)
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Fitting the first stage regression from equation 3.4 gives fitted values for pjt,

p̂jt = x′0tπ̂0j + x′1jtπ̂1 + z′jtπ̂z. (3.7)

The second stage then fits the regression using these fitted values:

Sjt = x′0tβ̂0j + x′1jtβ̂1 + p̂jtβ̂p + ξjt, E[ξjt|x0t, x1jt, zjt, p̂jt] = 0. (3.8)

Under standard conditions, these estimates will be asymptotically normal with
the usual variance-covariance matrix, admitting standard hypothesis tests for
inference.

3.4.2 A Preselected Model for Returns to Campaign Spending

As a first-pass in our empirical analysis, we present the results for the lin-
ear model using a preselected set of control variables. The selected control
variables, summarized in table 3.1, relate to regional dummies, economic char-
acteristics, education levels, and household structures. We allow for both a
linear and quadratic impact of campaign spending on candidate vote share,
with the latter reflecting diminishing marginal returns to campaign expen-
diture. As instruments for campaign spending, we include lagged campaign
expenditures, campaign expenditures by competitors in nearby districts, and,
as cost shifters, the population density of the district and the percent of the
population with internet access.

Table 3.1: Pre-Selected Controls for Fixed Model of Voting

Regional Dummies Demographics Economic Status

Region 1 % of Pop Age 18-24 Unemployment

Region 2 % of Pop Age 65+ % of Households w/Car

Region 3 % of Pop that’s Married % of Households w/Refrigerators

Region 4 Average Years of Education % of Households w/o Basic Utils

Region 5 % of Pop with Elementary Ed % of Households w/Female Head

This table presents demographic control variables taken from the census measured
at the district-level that are included in a pre-specified model of voter preferences.
Each of these controls is associated with a party-specific fixed effect, x0t in the utility
model.

The main results in table 3.2’s Panel A indicate a positive first-order return to
campaign spending, with the linear contribution of campaign expenditure to
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vote share indicating a 0.63% expected increase from raising campaign spend-
ing by $10,000 USD. The coefficient for squared campaign spending indicates
the second-order effect diminishes this contribution by 0.03%. Both of these
effects are highly statistically significant.

Investigating the interactive fixed-effects for demographic characteristics shows
that many of these fixed-effects are statistically insignificant. Panel B in ta-
ble 3.2 reports the p-Value for the t-Statistics associated with each of these
individual fixed effects. The majority (77%) of these coefficients do not have
a statistically significant effect on expected vote shares. This result motivates
our application of variable selection techniques in the current problem. Can we
reduce the number of parameters we need to estimate? Will doing so provide
more robust results?

3.5 Model LM-S: Variable Selection and Inference

Without pre-specifying which demographic controls to include in the analy-
sis, our application includes more potential parameters in the model than we
have available observations. These demographic characteristics may be either
irrelevant or redundant in describing voting preferences, with many controls re-
porting similar information with slightly different measures. As such, it’s both
reasonable and necessary to ignore those demographic variables that have little
explanatory power. This variable selection exercise, however, has the poten-
tial to distort inference on the effect of campaign spending on vote shares and
so our goal is to conduct this exercise while maintaining consistent and valid
inference.

As discussed in section 3.2.1, a considerable literature in econometrics and
statistics explores the effect of model selection on inference in cases where the
number of variables exceeds the number of observations. Performing infer-
ence in this environment depends critically on restricting the data generating
process to satisfy some form of “sparsity.” Even though there may be a large
number of possible parameters, only a relatively small number of those param-
eters are truly non-zero in a sparse model. Consequently, estimation requires
selecting which variables are actually relevant to the estimation problem and
excluding the irrelevant variables. We now formally introduce the notion of
sparsity we assume and review existing results for consistent inference in the



50

Table 3.2: Estimated Returns to Campaign Spending in Pre-Selected Model
(Model LM-F)

Panel A: Main Results

Coefficient Std Error t-Stat p-Value
Expenditures 0.627 0.213 2.95 0%∗∗
Expenditures2 -0.033 0.011 3.03 0%∗∗

Panel B: Significance of Demographic Controls (p-Values)

Party Region 1 Region 2 Region 3 Region 4 Region 5
MP 45% 0%∗∗ 63% 15% 80%
NA 2%∗ 12% 29% 51% 92%
PAN 44% 0%∗∗ 4%∗ 1%∗ 26%
PRI 88% 48% 86% 37% 73%
PVEM 8% 79% 1%∗∗ 87% 8%
CM 11% 98% 5% 18% 14%

% of Households with
Party Unempl Car Refrigerator Utilities Female Head
MP 19% 0%∗∗ 9% 17% 1%∗
NA 26% 41% 0%∗∗ 0%∗∗ 47%
PAN 39% 13% 1%∗ 41% 88%
PRI 36% 1%∗∗ 23% 9% 3%∗
PVEM 52% 8% 59% 50% 35%
CM 11% 81% 63% 64% 0%∗∗

Avg Years
Party Pop 18-24 Pop 65+ Married Element Ed + School
MP 66% 73% 61% 3%∗ 1%∗∗
NA 10% 5%∗ 3%∗ 9% 8%
PAN 91% 1%∗∗ 31% 4%∗ 29%
PRI 38% 86% 32% 6% 77%
PVEM 2%∗ 35% 68% 92% 4%∗
CM 17% 48% 1%∗∗ 37% 49%

Panel A reports the return to campaign expenditures and squared campaign expenditures
using the linear logit voting model estimated from equation (3.8) with interactive fixed effects
between the political party and demographic controls listed in Table 3.1. Panel B reports
the significance of each of the interactive fixed-effects by party, with ∗ and ∗∗ indicating
significance at the 5% and 1% levels, respectively.

simple environment described above.

3.5.1 Sparsity Assumptions and Regularity Conditions

Sampling approximations for high-dimensional inference require an asymptotic
framework that allows the number of parameters (here, JK0 + K1) to grow
with the number of observations. We treat each district as the unit of obser-
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vation, due to obvious correlation in the vote shares across parties within a
given district. For convenience, we’ll assume that number of candidate-specific
characteristics, K1, and the number of excluded instruments, L, remain fixed
but allow the number of coefficients associated with district demographic char-
acteristics, K0, to become large as T → ∞. For measurement purposes, in-
troducing sample-size dependent variable specifications requires indexing the
data generating process, which we’ll denote PT , by the sample size. Within
this sequence of data generating processes, we allow KT ≡ JK0T + K1 to be
much larger than sample size T , requiring only log (KT ) = o

(
T 1/3

)
.4

Assumption 3.2. Exact Sparsity in Preferences and Spending:

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
z]
′. Each data generating process in

the sequence {PT}∞T=1 has KT possible parameters. Allowing for the possibility
that KT > T , only kT < T of these parameters are non-zero. We also allow
for the possibility that both KT →

T→∞
∞ and kT →

T→∞
∞, but we fix the number

of excluded instruments in z at L ≥ 2.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, so the number of non-zero variables
k2
T log2 (KT ∨ T ) = o (T−1)

3. The Gram matrix satisfies a sparse eigenvalue condition that ensures
finite-sample identification of the sparse model.

4. Non-zero coefficients are bounded away from zero.

5. The distribution of controls, instruments, and vote shares have exponen-
tial tails.

A more detailed exposition of Assumption 3.2 appears in Appendix B.2.2,
along with additional commentary. This assumption consolidates the restric-
tions in Belloni et al. (2013a)’s (ASTE) condition with Belloni et al. (2012)’s
(AS) condition in an exactly sparse specification given a fixed number of ex-
cluded instruments. The first two conditions ensure that the true model has

4Note that our limits are taken with respect to a large number of markets (T → ∞)
for a fixed number of products competing in each market. Other analyses of demand data
consider the problem where J → ∞; we maintain J as fixed. We could allow J to grow
with the main restriction that log (JK0 +K1) = o

(
(JT )

1/3
)
, which is already satisfied by

Assumption 3.2.1.
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sufficient structure and enough zeros to be estimable with available data. The
third assumption ensures that, even though the complete empirical Gram ma-
trix (“X ′X”) will be non-invertible (becauseKT > T ), the sub-matrices formed
from the variables associated with non-zero coefficients are almost surely well-
behaved. The fourth assumption ensures that non-zero coefficients satisfy the
conditions for an oracle inequality to be selected by a Lasso estimator. The
last assumption allows the application of large deviation theory to bound the
probability of mis-classifying zero-coefficients with a fixed penalty weighting.

Additionally, we require regularity conditions on variability in the data gen-
erating process summarized in Assumption 3.3 for well-behaved asymptotic
properties of the post-selection estimator. For completeness, the technical
details and additional discussion appear in Appendix B.2. These conditions
present a special case of the regularity conditions embedded in Belloni et al.
(2013a) and Belloni et al. (2012)’s condition RF. In their detailed remarks,
BCH and BCCH present a number of plausible sufficient conditions that il-
lustrate these assumptions are not overly restrictive. These restrictions are
sufficient to apply the asymptotic results for post-selection estimators estab-
lished in Belloni et al. (2012).

Assumption 3.3. High-Dimensional Linear Logit Regularity Conditions:

1. Sufficient moments for unmodeled variability in the data admit a LLN
and CLT.

2. Variability in observables and their impact on unobservables is bounded.

3. Regularity conditions for asymptotic theory with i.n.i.d. sampling.

4. Regularity conditions for optimal instruments from first-stage regression.

3.5.2 Selecting Control Variables for Inference

Our inference strategy proceeds in two stages of penalized estimation for se-
lecting control variables followed by a two-state-least-squares estimator using
the selected controls in an unpenalized model. The two stages of selection
reflect our need to model conditional expectations for the expected impact of
control variables on both (i) the campaign spending treatment variable and
(ii) the vote share outcome. We perform each of the variable selection exer-
cises using a lasso regression, which minimizes the sum of squared residuals
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Algorithm 1 Post-Selection Estimation and Inference on Treatment Effects
after Double-Selection of Controls in High-Dimensional Logit Voting Model

I. Select controls for expected vote share. Let xI ≡
{
x|β̃I (x) 6= 0

}
, where:

β̃I = arg min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+
λβ
T
‖Υ̂ββ‖1.

II. Select controls for campaign spending. Let xII ≡ {x|ω̃ (x) 6= 0}, where:

ω̃ = arg min
ω∈RKT

1

JT

T∑
t=1

J∑
j=1

(
pjt−x′0tω0j−x′1jtω1

)2
+
λω
T
‖Υ̂ωω‖1.

III. Post-Selection Estimation and Inference. Let x̃ = xI
⋃
xII and compute

the unpenalized IV regression:

Sjt = x̃′0tβ0j+x̃
′
1jtβ1+pjtβp + ξjt, E[ξjt|pjt, x̃0t, x̃1jt, zjt] = 0.

Details: λ(β) = 2c
√
TΦ−1 (1− γ/(2KT + 2)) and λ(ω) = 2c

√
TΦ−1 (1− γ/(2KT )),

with c = 1.1 and γ = 0.05
log(KT∨T ) , satisfying the restrictions c > 1 and γ =

o (log (KT ∨ T )). Υ̂β is a diagonal matrix whose ideal (k, k) entry is
√
Ē
[
x2
k,jtε

2
jt

]
,

with xk representing the kth regressor and residuals εjt = Sjt−x′0tβ0j−x′1jtβ1−pjtβp.
Υ̂ω is defined analogously for the regression in step (II). Since the residuals are un-
observed, these penalty loadings are feasibly calculated using the iterative algorithm
presented in Appendix B.1.

subject to an L1 penalty on the regression coefficients. For ease of reference,
we summarize our inference approach in Algorithm 1.

Our variable selection exercise identifies the controls that are important for pre-
dicting vote shares and campaign spending. For both of these stages, we apply
the iterated Lasso estimator proposed in Belloni et al. (2012) for heteroskedas-
tic, non-Gaussian models. In short, candidate and demographic characteristics
that drive variation in p but have little explanatory power for vote shares tend
not to be selected by the first lasso (Step I), inviting an omitted variable bias.
The second stage of selection (Step II) mitigates this potential distortion by
explicitly modeling the campaign spending process.

The Lasso estimator’s loss function represents a convex optimization problem
with a penalty that enforces many of the estimated coefficients to be exactly
zero. As such, it presents a computationally tractable and convenient model
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selection device. We note here that we allow for the demographic variables se-
lected as relevant interactive fixed-effects to differ across parties. For instance,
Unemployment may be a relevant control for the PRI party but not for the
other parties. This yields a very flexible control strategy without introducing
six new parameters for each demographic variable under consideration.

3.5.3 Post-Selection Estimation and Inference

The previous subsections focus on penalization strategies for estimating sparse
models, particularly as a device for selecting which variables to include and
which to exclude from the model. We now take these selected variables and
consolidate them into a post-selection model for unpenalized estimation via
a control function approach. We collect the controls selected by either of
the variable screening devices into x̃ = xI ∪ xII , the number of which we
denote by k̃T . Note that we allow each of the parties to have fixed-effects for
different demographic variables and, as such, no longer distinguish between
demographic and candidate-specific control variables.

After selection, we can use the usual 2SLS approach to estimate the effect of
campaign spending on vote share. Estimating the unpenalized, post-selection,
first-stage regression:

pjt = x̃′jtπx + z′jtπz + ν̃jt, gives fitted values p̃jt = x̃′jtπ̃x + z′jtπ̃z. (3.9)

This first-stage regression gives Belloni et al. (2012)’s optimal instruments in
the presence of a high-dimensional vector of controls with a fixed number of
instruments. To characterize the residual variation in p̃ after controlling for
the selected demographic variables, which will characterize the denominator
for our standard errors, compute the regression:

p̃jt = x̃′jtψx + p̆jt, which gives fitted residuals ˆ̆pjt = p̃jt − x̃′jtψ̃x. (3.10)

Finally, we use the first-stage estimate of exogenous variation in campaign
spending and the selected control variables in our second-stage regression.

Sjt = p̃jtβp + x̃′jtβx + ξjt, E[ξjt|x̃jt, p̃jt] = 0. (3.11)

The second-stage results provide a consistent estimator for the treatment effect
of campaign spending on candidate vote share. Our regularity conditions
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imposed thus far are sufficient to yield asymptotic normality of the estimate
for βp, allowing the application of standard hypothesis tests. This result follows
immediately from Theorem 3 in Belloni et al. (2012).

Theorem 3.1 (Inference on Returns to Campaign Spending under Sparsity).
Suppose Assumptions 1-3 hold. The estimated treatment effect of campaign
spending on candidate vote share, β̂p, from fitting equation (3.11) is asymptot-
ically normal:

V ∞−1/2
p

√
JT
(
β̂p − βp

)
→d N (0, 1) , with V ∞p = Ē

[
p̆2
jt

]−2
Ē
[
p̆2
jtξ

2
jt

]
.

Here p̆jt is the residual exogenous variation in the optimal instrument after
regressing p̃jt on x̃jt. Letting ξ̂jt = Sjt − p̃jtβ̂p − x̃′jtβ̂x represent the residuals
from the regression (3.11), define:

Ω̂ ≡ 1

JT

J,T∑
j,t=1

ˆ̆p2
jt →p Ē

[
p̆2
jt

]−2
,

Σ̂ ≡ 1

JT

J,T∑
j,t=1

J,T∑
k,s=1

ρ{jt,ks} ˆ̆pjt ˆ̆pksξ̂jtξ̂ks →p Ē
[
p̆2
jtξ

2
jt

]
,

where ρ{jt,ks} represents the regularization coefficient for a HAC variance esti-
mator. Consequently, V ∞p can be consistently estimated using V̂ ∞p ≡ Ω̂−1Σ̂Ω̂−1,
and replacing V ∞−1/2

p with V̂ ∞−1/2
p preserves the t-statistic’s asymptotic stan-

dard normal distribution.

3.5.4 Returns to Campaign Expenditures after Control Selection

We now investigate the robustness of our findings on campaign spending from
section 3.4.2 to the fixed specification. Instead of restricting our attention
to a fixed set of control variables, we allow for fixed effects driven by any of
the 210 demographic variables captured in the Mexican census either linearly,
quadratically, or in logs. With six parties’ fixed effects, the most unstructured
representation of this model allows for over 3,780 parameters when we have
only 300 markets and 1,301 total observed market shares.

Table 3.3’s Panel A presents the headline results for the flagship specifica-
tion with the tuning parameters c = 1.1 and γ = 0.05/ log(T ∨ KT ). This
double-lasso model, which includes 20 interactive fixed effects, is much more
parsimonious than the pre-selected model, which allowed for 90 such free pa-
rameters. With the reduced number of included controls, the magnitude of
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the effect of $10,000 in campaign expenditures on vote share declines from
0.63% to 0.42%. However, this reduction in magnitude brings with it much
lower standard errors, resulting in a much more significant t-Statistic. The
second-order effect is also somewhat reduced, from -0.033% to -0.019%, which
remains significant at reasonable confidence levels though slightly less so than
in the pre-selected model.

Panel B in Table 3.3 reflects the sensitivity of these estimates to the tuning
parameters c and γ, illustrating the robustness of these results. Under reason-
able specifications of the penalty, the estimated first-order effect ranges from
0.378% to 0.426% with all t-Statistics greater than 3. The second-order effect
maintains its significance in these specifications as well, with an effect size
ranging from -0.014% to -0.027%. At extreme levels of penalization, the mag-
nitude of the contribution diminishes severely and loses statistical significance
in a model that includes only three interactive fixed-effects. These findings
are consistent with the guidance by Belloni et al. (2012) that the value for c
should be set close to unity and that the selection mechanism may encounter
problems when c becomes too large.

Finally, Panel C reports the number of selected control variables under the flag-
ship variable-selection specification. These results illustrate how large penalty
terms effectively reduce the model to one in which no controls are included
to mitigate observed heterogeneity in voting preferences and campaign expen-
ditures. Interestingly, the number of included controls roughly matches the
number of significant controls from the pre-specified model. However, we note
that these controls are all different.

3.6 Model RC-F: Heterogeneous Impressionability with

Fixed Controls

The linear vote share model imposes a strong homogeneity restriction on voter
preferences within any given district with potentially material empirical impli-
cations. In the literature on demand estimation, one approach to allowing for
heterogeneity in preferences allows for random-coefficients in the individual’s
utility model. We incorporate this heterogenity here by allowing voters to
have heterogeneous impressionability, introducing a random-coefficient to the
individual influence of campaign spending. Among other sources, these ran-



57

Table 3.3: Campaign Expenditure and Vote Shares with Control Selection
(Model LM-S)

Panel A: Main Results

Coefficient Std Error t-Stat p-Value
Expenditures 0.423 0.098 4.32 0%
Expenditures2 -0.019 0.006 2.97 0%

Panel B: Robustness to Tuning Parameters

Expenditure - Coefficient (Std Err) Expenditure2 - Coefficient (Std Err)
γ log(KT ∨ T ) γ log(KT ∨ T )

c 0.01 0.05 0.1 0.2 c 0.01 0.05 0.1 0.2

1 0.423 0.421 0.421 0.491 1 -0.019 -0.019 -0.019 -0.027
(0.098) (0.098) (0.098) (0.149) (0.006) (0.006) (0.006) (0.009)

1.1 0.426 0.423 0.423 0.423 1.1 -0.019 -0.019 -0.019 -0.019
(0.097) (0.098) (0.098) (0.098) (0.006) (0.006) (0.006) (0.006)

1.25 0.381 0.407 0.398 0.426 1.25 -0.014 -0.016 -0.017 -0.019
(0.098) (0.098) (0.096) (0.097) (0.007) (0.007) (0.006) (0.006)

1.5 0.378 0.379 0.381 0.381 1.5 -0.014 -0.014 -0.014 -0.014
(0.101) (0.098) (0.099) (0.099) (0.007) (0.007) (0.007) (0.007)

1.75 0.412 0.387 0.397 0.378 1.75 -0.015† -0.015 -0.015 -0.014
(0.125) (0.102) (0.102) (0.101) (0.008) (0.007) (0.007) (0.007)

2 0.102† 0.182† 0.225† 0.412 2 0.004† 0.000† -0.003† -0.015†
(0.130) (0.139) (0.119) (0.125) (0.009) (0.010) (0.008) (0.008)

† Statistically insignificant at the 5% Level

Panel C: Number of Selected Interactive Fixed Effects

c
γ log(KT ∨ T ) 1.00 1.10 1.25 1.50 1.75 2.00

0.01 20 19 15 11 8 3
0.05 21 20 17 12 11 5
0.1 21 20 18 14 10 6
0.2 24 20 19 14 11 8

This table reports the contribution of campaign expenditures to a candidate’s vote share af-
ter data-driven selection of demographic controls for interactive fixed-effects using Algorithm
1. Panel A reports the first- and second-order contribution for a benchmark specification
with tuning parameters c = 1.1 and γ log(KT ∨ T ) = 0.1. Panel B reports the robustness
of this result with respect to these tuning parameters. Panel C indicates the number of
interactive fixed-effects included under each of the model specifications.

dom coefficients could reflect heterogeneous levels of attention paid by different
voters in the population.
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3.6.1 GMM Estimation with the BLP Model

We begin by focusing on the structural model for preferences without address-
ing the variable selection step necessary to address the high dimensionality of
the problem. To model heterogeneity in preferences, let an individual voter’s
preference for candidate j be defined as:

uijt = x0tβ0j + x′1jtβ1 + pjtβ0p + pjtbip + ξjt + εijt, bip ∼ N
(
0, v2

p

)
. (3.12)

Conditional on bip, when εijt has the usual Type-I extreme value distribution,
voter i’s decision will be governed by the logit choice probabilities:

Pr {yijt = j|bi} =
exp
{
x0tβ0j + x′1jtβ1 + pjtβp + pjtbi + ξjt

}
1 +

∑J
r=1 exp{x0tβ0r + x′1rtβ1 + prtβp + prtbi + ξrt}

.

(3.13)
Since these individual shocks to voter sensitivity aren’t observed, we need to
integrate equation 3.13 to compute the expected vote share for a candidate in
the district. Letting Φ represent the standard normal distribution’s cumulative
density, gives:

sjt =

∫
Pr {yijt = j|bi} dΦ (bi/vp) . (3.14)

The nonlinear form of the expected vote share in equation 3.14 complicates
inference because we can no longer transform the vote shares into a generalized
linear model. As such, we follow Berry et al. (1995)’s (BLP) approach to
identify the model by exploiting the exogeneity of the party-district specific
shocks to expected utility. Given a candidate specification for parameter values
θ, Berry et al. (1995) show that a contraction mapping recovers these shocks,
which we denote ξjt (θ,X, p, s). Under the true values for θ, the instruments are
orthogonal to these shocks, i.e., E[ξjt (θ,X, p, s) |zjt] = 0, so that θ is estimated
using a GMM objective function with weighting matrix W :

Q (θ, x, z, p, s) =
1

JT
ξjt (θ,X, p, s)′ zWz′ξjt (θ,X, p, s) . (3.15)

In the standard setting with a fixed number of controls and instruments, for
any positive-definite W , minimizing equation 3.15 provides an asymptotically
normal estimator for the parameters in θ. To address numerical issues in the
evaluation of this estimator, Dube et al. (2012) present an MPEC algorithm,
which we also use here.

One last sensitivity associated with the GMM objective function above relates
to the instruments themselves. Berry et al. (1999) present an early discussion



59

on the importance of using Chamberlain (1987) optimal instruments in eval-
uating (3.15). Gandhi and Houde (2015) illustrate how to utilize vote shares
themselves as valuable instruments. Reynaert and Verboven (2014) illustrate
how sensitive the estimator is to implementation with optimal instruments,
particularly with respect to estimating the variance parameters vp. Our im-
plementation adopts this latter approach, since the Reynaert and Verboven
(2014) instruments are easily recovered from the gradient of the constraints in
the MPEC algorithm.

Assumption 3.4. BLP Truthful Voting Structural Model:

1. In each of T districts, a large number of voters truthfully vote for the can-
didate they most prefer given the utility specification for uijt in equation
3.12.

2. Expected vote shares are non-linear in K0 district characteristics x0t, K1

candidate characteristics x1jt, and campaign spending pjt as in equation
3.14.

3. Campaign spending is linear in the district and candidate characteristics
x0t and x1jt as well as L exogenous instruments zjt, as in equation 3.4.

4. Residual shocks to expected voter preferences in a district are endoge-
nously correlated with unmodeled variation in campaign spending, as in
equation 3.5, but have a zero conditional expectation given district and
candidate district characteristics and observable instruments:
E[ξjt|x0t, x1jt, zjt] = 0.

Assumption 3.5 contains regularity conditions, which are fairly standard for
GMM estimation with i.n.i.d. data (additional technical details for these con-
ditions are presented in Appendix B.2). By textbook analysis, assumptions
3.4 and 3.5 are sufficient to establish the usual consistency and asymptotic
normality results for the value of θ that minimizes equation (3.15).

Assumption 3.5. Regularity Conditions for GMM Estimator:

1. Compactness of parameter space: The true parameter values θ0 ∈ ΘKT
,

where ΘK ⊂ RKT +2 is compact, with a compact limit set Θ∞ ≡ lim
T→∞

ΘK.

2. Continuity and differentiability of sample-analog and population moment
conditions in parameter space.
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3. Letting gjt (θ) ≡
[
x′0t, x

′
1jt, z

′
jt

]′
ξjt (θ), a uniform law of large numbers

ensures the sample-analog, 1
JT

∑JT
j,t=1 gjt (θ), converges to the population

moment condition.

4. A uniform law of large numbers applies to Hessian of sample analog to
the population moment condition, ĜT (θ) ≡ 1

JT

∑J,T
j,t=1

∂gjt(θ)

∂θ′
.

5. The weighting matrix, WT , is positive definite and converges to W , a
symmetric, positive definite, and finite matrix.

6. The expected outer product of the score, Ω ≡ lim
T→∞

(JT )−1
J,T∑
j,t=1

E
[
gjt (θ) gjt (θ)′

]
,

is a positive definite, finite matrix.

7. The matrix Σ ≡ G (θ0)′Ω−1G (θ0) is almost surely positive definite and
finite.

3.6.2 Campaign Spending with Heterogeneous Impressionability

We again begin our empirical analysis of heterogeneous impressionability in
voting for Mexico using the pre-specified set of controls considered in table
3.1. These results allow us to differentiate the influence of heterogeneity in the
model from the effects of control selection.

Table 3.4’s Panel A reports the expected coefficients and standard deviation
of coefficients associated with campaign expenditures’ influence on voters’ la-
tent utility. The results indicate that heterogeneous impressionability is not a
prominent feature of preferences, as revealed through the low variance of the
coefficients themselves, which are not statistically distinguishable from zero.

Partly as a consequence of this limited heterogeneity, the expected coefficients
are rather similar to those reported in Table 3.3. Estimating standard errors
with the sandwich covariance matrix we find weaker, but still significant, ev-
idence for the significance of campaign expenditure on candidate vote share.
The linear term’s p-value rises to 4% and the negative quadratic effect loses
statistical significance with a p-value of 17%.

As in our analysis of the linear model, 3.4’s Panel B reports the significance
of the demographic controls included in the model with heterogeneous im-
pressionability. With the higher variance of the estimates under the random
coefficients specification, we find a slightly smaller share of the interactive
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fixed effects achieve the threshold for a statistically significant influence on
voter preferences.

Table 3.4: Campaign Expenditure and Vote Shares with Heterogeneous Im-
pressionability (Model RC-F)

Panel A: Main Results

Expected Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.77 0.38 2.04 4%
Expenditures2 -0.04 0.03 -1.39 17%
Variance of Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.11 0.40 0.27 79%
Expenditures2 0.00 0.04 0.00 100%

Panel B: Significance of Demographic Controls (p-Values)

Party Region 1 Region 2 Region 3 Region 4 Region 5
MP 15% 0%∗ 84% 35% 85%
NA 2%∗ 11% 52% 41% 53%
PAN 0%∗ 0%∗ 4%∗ 10% 47%
PRI 62% 46% 89% 28% 58%
PVEM 11% 43% 1%∗ 95% 10%
CXM 32% 98% 10% 29% 27%

% of Households with
Party Unempl Car Refrigerator Utilities Female Head
MP 29% 0%∗ 14% 18% 5%
NA 24% 51% 0%∗ 0%∗ 71%
PAN 50% 30% 0%∗ 44% 96%
PRI 40% 2%∗ 22% 10% 5%∗
PVEM 35% 16% 35% 58% 44%
CXM 28% 90% 64% 86% 4%∗

Avg Years
Party Pop 18-24 Pop 65+ Married Element Ed + School
MP 81% 92% 50% 13% 2%∗
NA 6% 2%∗ 2%∗ 12% 7%
PAN 95% 2%∗ 23% 6% 46%
PRI 36% 99% 35% 13% 77%
PVEM 1%∗ 30% 65% 70% 4%∗
CXM 38% 52% 10% 58% 50%

Panel A reports the return to campaign expenditures and squared campaign expenditures
using the nonlinear BLP voting model with heterogeneous impressionability estimated from
equation (3.15) with interactive fixed effects between the political party and demographic
controls listed in Table 3.1. Panel B reports the significance of each of the interactive fixed-
effects by party, with ∗ and ∗∗ indicating significance at the 5% and 1% levels, respectively.
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3.7 Model RC-S: Variable Selection in the BLP Voting

Model

We now address the implications of the high-dimensional setting on the BLP
model, particularly when there are more control variables than observations.
Inference in this setting is non-trivial, since the model is unidentified in finite
samples. That is, there exists a multiplicity of values for the parameters θ for
which the residual shock to preferences, ξjt, can be equal to zero for all observa-
tions. As in the linear setting, a sparsity condition on the coefficients suggests
incorporating a penalty to the criterion function that admits consistent infer-
ence. Our approach builds on the proposed technique from Gillen et al. (2014),
which presents a model for inference in demand models after selection from
a high-dimensional set of product characteristics when the number of control
variables is of the same order of magnitude as the number of markets.

Our analysis here extends the Gillen et al. (2014) approach to a “non-polynomial”
setting that allows the number of possible control variables to grow expo-
nentially with the number of markets. Implementing selection in this “ultra-
high” dimensional setting must confront two significant complications. The
first is computational, as optimizing nonlinear objective functions with a non-
polynomial number of parameters is simply infeasible in most circumstances.
The second is analytical, in that we must apply the oracle properties es-
tablished in Fan and Liao (2014)’s analysis of penalized estimation in high-
dimensional GMM problems. We begin this section by discussing the con-
ditions for valid inference under a penalized GMM objective function before
turning to the computational issues and empirical results.

3.7.1 Sparsity Assumptions and Regularity Conditions

We begin by laying out the sparsity conditions required for establishing the
oracle properties from Fan and Liao (2014)’s analysis of penalized estimation
in high-dimensional GMM problems. These properties allow us to generalize
the results from Gillen et al. (2014) to apply to a higher-dimensional setting.
Gillen et al. (2014) relied on the asymptotic theory of Caner and Zhang (2013),
who establish oracle properties for Zou and Hastie (2005)’s Elastic Net in an
environment where the number of parameters grows more slowly than the
number of observations, so that KT/T → 0. In contrast, the oracle properties
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in Fan and Liao (2014) apply to the setting where the dimensionality grows
non-polynomially with the sample size, requiring only that log(KT )/T 1/3 → 0.
These requirements are summarized in Assumption 3.6, which slightly tightens
the restrictions of the linear model in Assumption 3.2, with the technical details
relegated to Appendix B.2.

Assumption 3.6. Sparsity Assumptions for High-Dimensional BLP Model:

Each data generating process in the sequence {PT}∞T=1, has KT > T possible
parameters, kT < T of which are non-zero, where both KT →

T→∞
∞ and kT →

T→∞
∞. Further, the number of excluded instruments in z is fixed at L ≥ 2.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, with the number of non-zero variables, k3
T log kT =

o (T−1)

3. The Gram matrix for controls with non-zero influence on vote shares is
almost surely postive definite with finite eigenvalues.

4. The Hessian of the objective function with respect to non-zero variables
is almost surely positive definite.

5. Non-zero coefficients are bounded away from zero.

6. The marginal distributions for controls, instruments, and residual vote
shares have exponentially decaying tails.

These assumptions are sufficient to establish an oracle property for the lasso-
penalized GMM estimator, ensuring that the penalized estimator accurately
identifies all non-zero coefficients and effectively thresholds all irrelevant coeffi-
cients at zero. Coupled with the continuity and uniform laws of large numbers
of the GMM objective function from assumption 3.5, the results from Fan and
Liao (2014) establish sufficient conditions on the penalty term for the penalized
GMM estimator to achieve the near oracle convergence rate.

The first stage of inference requires solving a penalized GMM objective func-
tion with a lasso penalty. Similar to the linear demand model, we apply a
data-dependent penalization that is robust to heteroskedasticity in sampling
across markets:

θ̃ = arg min
θ∈RKT+2

Q (θ, x, z, p, s)+
λθ
T
‖Υ̂θθ‖1. (3.16)
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Our penalty loading, λθ = 2c
√
TΦ−1 (1− γ/(2 (KT + 4)) satisfies the restric-

tions in Fan and Liao (2014) for a lasso penalty loading to be kT
√
kT/
√
T ≺

λθ/T ≺ 1/
√
kT when c = 0.05 and γ = 0.1/ log (KT ∨ T ). As in the lin-

ear model, Υθ is a diagonal matrix, with the ideal weights for β0j,k equal to√
Ē
[
x2

0t,kξ
2
jt

]
, for β1,k equal to

√
Ē
[
x2

1jt,kξ
2
jt

]
, and for βp equal to

√
Ē
[
p2
jtξ

2
jt

]
.

For the heterogeneity coefficient, vp, the ideal value in the Υθ matrix is√
Ē
[
∂ξjt(θ,x,z,p,s)

∂vp

2
ξ2
jt

]
. Since ξjt is unobserved, Appendix B.1 reports the fea-

sible iterated algorithm used to calculate Υθ.

3.7.2 Implementing Variable Selection via Penalized GMM

We now describe the approach we use for selecting variables using a penalized
GMM estimator, since it is computationally infeasible to directly optimize the
GMM objective function in extremely high-dimensional problems. We begin
by fitting the nonlinear model with heterogeneous impressionability to the
model selected by Algorithm 1. Within this fitted model, we can approximate
the optimal instruments for the nonlinear features of the model, selecting the
relevant demographic controls for observed heterogeneity in these features. We
augment the selected demographic controls from Algorithm 1 with the controls
for the latent utilities and optimal instruments for nonlinear features of the
model. With this robustly augmented set of control variables, we compute
unpenalized GMM estimates for the selected variables. We then verify that
the first order conditions for the selected model are satisfied in the larger model
with all included controls. The steps presented in Algorithm 2 summarize our
approach to this implementation.

Our implementation picks up from where Algorithm 1 leaves off, defining the
post-selection model including demographic controls x̃. With this model, we
solve the GMM objective function without any penalization:

θ̃ = arg minQ (θ, x̃, z, p, s) . (3.17)

Given the solution θ̃, we can recover the latent mean utilities:

δ̃jt = x̃′jtβ̃j + x′1jtβ̃1 + pjtβ̃p + ξ̃jt.

These provide the outcome variable for which we need to select the relevant
demographic controls using another application of the lasso. In parallel to the
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linear model’s treatment, let xIII ≡
{
x|φ̃ (x) 6= 0

}
, where:

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖Υ̂φφ‖1. (3.18)

The penalization term λφ has the same expected form as previous applications.
The Υφ matrix requires a slight adjustment to account for estimation error in
the δ̃jt’s. Defining εδ,jt ≡ δjt − δ̃jt and εφ,jt ≡ δ̃jt − x′0tφ0j − x′1jtφ1, the ideal

weight for ζ0j,k is equal to
√
Ē
[
x2

0t,k (εδ,jt + εφ,jt)
2] and√Ē

[
x2

1jt,k (εδ,jt + εφ,jt)
2]

for β1,k. The additional residuals can be characterized by using the asymp-
totic covariance matrix for θ̃, which can be consistently estimated using the
sandwich covariance matrix from the penalized GMM estimator.

We note that, by applying Algorithm 1, we have already selected the demo-
graphic controls necessary to explain observable variation in campaign expen-
diture. Now we select the demographic controls that explain variation across
districts in the heterogeneity of impressionability. To do this, we need the
optimal instruments for the heterogeneity parameters to identify the relevant
controls for their first-order impact on model fit. Using the fitted model from
equation (3.17), we compute the derivative of the objective function with re-
spect to vp:

z̃v,jt =
∂

∂vp
ξjt (θ, x̃, z, p, s) |θ=θ̃.

The formula for z̃v,jt from Berry et al. (1999) is presented in Nevo (2000)’s
appendix and easily recovered from the Jacobian of the constraint for the
MPEC objective function. We can then select demographic control variables
that explain heterogeneity in this optimal instrument using a last application
of the lasso estimator. Let xIV ≡

{
x|ζ̃ (x) 6= 0

}
, where:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1. (3.19)

Since z̃v,jt represents a generated regressor, we may wish to incorporate the
variance induced by estimation error in its definition when determining the
adapted penalty factor for equation (3.19), as in Υφ. However, by defining z̃v,jt
as our identifying instrument, we only need to select demographic controls for
variation in the generated z̃v,jt without regard to the population zv,jt, which
plays no direct role in our estimation. Consequently, when computing the
values for Υζ , we ignore the generated-regressors problem.
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3.7.3 Post-Selection Inference via Unpenalized GMM

Combining the selected controls from Algorithm 1, x̃ with xIII and xIV , de-
fine x̃∗ = x̃

⋃
xIII

⋃
xIV . We then compute the unpenalized, post-selection

estimator
θ̃∗ = arg minQ (θ, x̃∗, z, p, s) . (3.20)

To maximize the efficiency of our estimates, we first compute the optimal
instruments for the Berry et al. (1995) model as discussed in Berry et al.
(1999) and Reynaert and Verboven (2014). For the demographic controls and
candidate characteristics, the selected variables themselves present the optimal
instruments. We computed the optimal instruments for heterogeneity, z̃v, in
the variable selection stage. Finally, the optimal instruments for campaign
expenditures can be easily estimated by an unpenalized first-stage regression
which contains the selected controls and excluded instruments as regressors:

z̃p,jt = x̃∗′jtπ̂x + z′jtπ̂z.

Denoting the optimal instruments by z̃ and the selected control variables by
x̃, we then compute the post-selection estimator for the voting model with
heterogeneous impressionability as the solution to:

θ = arg min
θ∈Rk∗

T
+2

Q (θ, x̃, z̃, p, s) . (3.21)

The last step then verifies that this solution also satisfies the first-order con-
ditions for the penalized objective function (3.16) to ensure we have not erro-
neously excluded any variables. We perform this test sequentially, evaluating
the first-order conditions with respect to each excluded variable and verifying
that they are dominated by the magnitude of the penalty term. As when
calculating the optimal instruments for the variance parameters in the model,
these gradients can be recovered from the Jacobian of the constraint in the
MPEC objective function:

qk ≡
∂

∂β0jk

Q
(
θ̃∗, x̃k, z, p, s

)
< λθυk, k = 1, . . . , K0, j = 1, . . . , J.

Any variables whose first-order conditions dominate the penalty should be
included within the selected model. This requirement leads to an iterative
process that, in our experience, converges within two iterations.
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Given assumptions 3.5 and 3.6, the post-selection estimator for the treatment
effects βp and their heterogeneity vp will be consistent and asymptotically
normal. It is straightforward to show that the oracle property established
in Fan and Liao (2014) satisfies the High-Level Model Selection condition in
Belloni et al. (2012), giving the asymptotic result:

Theorem 3.2 (Inference on Returns to Campaign Spending under Sparsity).
Suppose Assumptions 4-6 hold. The estimated effect of campaign spending on
mean latent voter utilities is asymptotically normal. That is:

V ∞−1/2
p

√
JT
(
β̂p − βp

)
→d N (0, 1) .

The asymptotic variance V ∞p is the element in the sandwich covariance ma-
trix for θ̃∗ corresponding to βp. Specifically, defining the limit of the i.n.i.d.
expectations:

G0 ≡ Ē

[
∂gjt (θ)

∂θ′

]
|θ=θ0, Ω0 ≡ Ē

[
gjt (θ0) gjt (θ0)′

]
, and Σ0 ≡ G (θ0)′Ω−1G (θ0) ,

then V ∞θ ≡ (G′0G0)−1 Σ0 (G′0G0)−1, which can be estimated with:

ĜT ≡
1

JT

J,T∑
j,t=1

∂gjt (θ)

∂θ′
|θ=θ̃∗ →p G0, and Ω̂ ≡ 1

JT

J,T∑
j,t=1

gjt

(
θ̃∗
)
gjt

(
θ̃∗
)′
→p Ω0.

Consequently, Σ̂T ≡ Ĝ′T Ω̂ĜT →p Σ0 and

V̂ ∞θ ≡
(
Ĝ′T ĜT

)−1

Σ̂T

(
Ĝ′T ĜT

)−1

→ V ∞θ ,

so replacing V ∞−
1
2

p with V̂
∞− 1

2
p preserves the t-statistic’s asymptotic normal

distribution.

Further, if vp > δ > 0, the estimated variance of campaign spending’s impact
on voter utlities is also asymptotically normal with asymptotic variance of the
estimate given by the sandwich covariance matrix.

3.7.4 Heterogeneous Impressionability after Control Selection

Even with only validating local optimality conditions for the selected model,
practical implementation of Algorithm 2 is quite computationally intensive.
In analyzing the Mexican voting data, fitting a single penalty specification re-
quires approximately 80 core-hours of computation. Due to the intensive com-
putational resources required for estimation, we focus our empirical analysis on
the benchmark penalty specification where c = 1.1 and γ log (KT ∨ T ) = 0.10.



68

Panel A of Table 3.5 reports the impact of campaign expenditures on mean
utilities. The estimated first-order mean effect of 0.465 is a bit lower than the
pre-selected model’s result of 0.767. This result matches the impact of vari-
able selection on the estimated effect in the linear model, which dropped to
0.423 from 0.627 after variable selection. The standard error of the model with
variable selection is lower than the pre-specified model’s, yielding very similar
t-Statistics for both the first- and second-order effects. As in the pre-selected
model, the variance coefficients reflecting heterogeneity in preferences are in-
distinguishable from zero, indicating that there may not be much heterogeneity
in voter impressionability.

Table 3.5: Campaign Expenditures and Candidate Vote Share with Heteroge-
neous Impressionability and Selected Controls (Model RC-S)

Panel A: Main Results

Expected Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.465 0.198 2.35 2%
Expenditures2 -0.020 0.015 -1.33 18%

Variance of Coefficients Coefficient Std Error t-Stat p-Value
Expenditures 0.05 0.67 0.07 94%
Expenditures2 0.00 0.06 0.01 99%

Panel B: Selected Demographic Controls

MP NA PAN

Party FE (+)∗∗ Party FE (–) Party FE (–)∗∗
Female Popn >60 (–)∗∗ % Female HoH (–)

% Pop 18-24 (–)
% Pop Married (+)

PVEM % Pop w/Elementary Ed (–)∗ CXM

Party FE (–)∗∗ Female Popn >60 (–) Party FE (–)∗∗
% HH w/o Utils (–) Total Popn >65 (–) Region 4 Dummy (–)
% HH w/o Fridge (–) Male Pop >15 w/Ed (–)∗ % Female HoH (–)∗∗
Total Popn >65 (–) Popn in Private Dwell (+)∗∗ Female Pop w/o Ed (+)∗∗

Popn in Private Dwell (+)∗∗ Avg Num People/Dwell (–) Pop w/Social Medicine (+)
Avg Num People/Dwell (–)∗∗ Travel Time to Polls (+)

PRI

Party FE (–)∗∗

Panel B of Table 3.5 reports the actual demographic controls affecting vot-
ers’ preferences for each party’s candidates. For the two largest parties, PAN
and PRI, only the party fixed effects were selected to control for voter pref-
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erences. For the coalition parties, more controls were incorporated to reflect
heterogeneity in preferences. Interestingly, these demographic controls were
most important for characterizing voter preferences for parties that sit in the
middle of the policy spectrum. Panel B also indicates the significance and
sign of the controls’ impact on voter preferences. However, we caution against
drawing too many conclusions from their selection. These controls were se-
lected to identify the impact of campaign expenditures on voter preferences,
not as independent causal elements driving voter preferences. As such, their
selection may only be as proxies representing the effect of other variables on
preferences and spending.

3.8 Generalizations and Extensions

Our results imposed an exact sparsity condition, requiring that the negligible
coefficients in the model are exactly equal to zero. This restriction is quite
a bit stronger than the approximate sparsity condition presented in Belloni
et al. (2012) and Belloni et al. (2013a). The sampling properties of the pe-
nalized GMM estimator presented in Fan and Liao (2014) are robust to local
perturbations, suggesting that exact sparsity could be weakened to the gener-
alized forms of sparsity considered by Zhang and Huang (2008) and Horowitz
and Huang (2010). Some additional regularity conditions may be required on
the nonlinear features recovering latent mean utilities from observed market
shares, but such an extension should be viable.

Though our analysis focused on GMM as an approach for estimating the vot-
ing model, alternative estimation strategies could also be considered after per-
forming a selection step. Empirical likelihood approaches following Kitamura
(2001) and Donald et al. (2003) have been adapted to demand estimation by
Moon et al. (2014) and Conlon (2013). The Fan and Liao (2014) asymptotic
analysis also applies to empirical likelihood estimators that could be mapped
onto these techniques.

Though we allow for correlation among vote shares across parties within a
district, we note that our analysis leans heavily on an independence assumption
for sampling across districts. Limited spatial correlation could be accounted
for by computing robust standard errors in estimating the covariance matrix
of residuals. As long as strong-mixing and ergodicity conditions are met, this



70

sort of dependence should not preclude effective variable selection.

There is some tension between our assumption of a linear campaign financing
rule in light of a structural model of competition between parties. Indeed,
Montero (2015) solves the equilibrium campaign financing rule in the Mexican
election environment and shows it to be highly nonlinear. One way to address
this issue characterizes the linearized campaign finance rule as an approxima-
tion to the structural finance rule, bounding the approximation error relative
to instrumental variability, and showing that the approximation error doesn’t
affect variable selection and inference. Another strategy might adopt a control
function approach to estimation, perhaps following Kawai (2014)’s strategy of
incorporating techniques from production function estimation.

3.9 Conclusion

We present several results in high-dimensional inference and apply these tech-
niques in an empirical analysis of voting behavior in Mexican elections. Our
analysis applies high-dimensional inference techniques for estimating aggregate
demand models with a very large number of demographic covariates. Though
our statistical analysis is largely informed by previously established properties
of these techniques, the extensions to the specific application are not trivial.

Our results show, robustly, that campaign expenditures have a significant and
positive impact on voters’ latent utilities for a candidate, with indications
that the impact of these expenditures diminishes with the amount of campaign
spending. Strikingly, we find little evidence of heterogeneity in voters’ response
to campaign expenditure, perhaps because limited variability in the slate of
candidates provides little opportunity for this heterogeneity to impact vote
shares.
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Algorithm 2 Post-Selection Estimation and Inference with Double-Selection
from High-Dimensional Controls in a Voting Model with Heterogeneous Im-
pressionability

I. Apply Algorithm 1 to select x̃ = xI
⋃
xII as the controls for a homogeneous

model.
II. Compute GMM estimates for heterogeneous model using selected controls.

Let δ̃jt ≡ x̃′jtβ̃j + x′1jtβ̃1 + pjtβ̃p + ξjt

(
θ̃, x, z, p, s

)
, where θ̃ ≡

[
β̃′1, . . . , β̃

′
J , β̃1, ṽp

]′
:

θ̃ = arg minQ (θ, x̃, z, p, s) .

III. Estimate optimal instruments for heterogeneity in impressionability. Com-
pute the derivative of the moment condition with respect to the variability parameter
vp:

z̃v,jt =
∂

∂vp
ξjt (θ, x̃, z, p, s) |θ=θ̃.

IV. Select controls for mean utilities. Let xIII ≡
{
x|φ̃ (x) 6= 0

}
, where:

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2
+
λφ
T
‖Υ̂φφ‖1.

V. Select controls for optimal nonlinear instruments. Let xIV ≡
{
x|ζ̃ (x) 6= 0

}
,

where:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1.

VI. Post-selection estimation and inference. Let x̃∗ = x̃
⋃
xIII

⋃
xIV and compute

the unpenalized GMM estimate:

θ̃∗ = arg minQ (θ, x̃∗, z, p, s) .

VII. Verify First Order Conditions in Unselected Model. For each excluded demo-
graphic control x0k, define x̃k = x̃∗

⋃
x0k. Verify the first order improvement in the

objective function from including this variable x0k for any party is dominated by the
penalty:

qk ≡
∂

∂β0jk
Q
(
θ̃∗, x̃k, z, p, s

)
< λθΥθ,(k,k), k = 1, . . . ,K0, j = 1, . . . , J.

VIII. Add improperly excluded variables to the model and iterate. Define the
set of controls that fail to satisfy first order conditions in step (VII) as xV ={
xk : qk > λθΥθ,(k,k)

}
. Redefine x̃ = x̃∗

⋃
xV and return to Step (II) until there are

no changes in the set of included variables.

Details: λφ = λζ = 2c
√
TΦ−1 (1− γ/(2KT )), and λθ = 2c

√
TΦ−1 (1− γ/(2KT + 8)) with

c = 1.1 and γ = 0.05
log(KT∨T ) . The details for calculating the diagonal factor loading matrices

Υ̂(·), whose ideal entries reflect the square root of the expected product of the squared
residual and control variable, are discussed in the text. The iterative algorithms by which
we feasibly calculate these values are detailed in Appendix B.1.
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C h a p t e r 4

A THEORY OF EXPERIMENTERS

4.1 Introduction

As the use of experiments spreads in academia, business, and public policy,
there has been a growing need for tools to increase the reliability of experimen-
tal findings. The experimental community has responded through the intro-
duction of registries, and spirited discussions of practices such as pre-analysis
plans, rerandomization, and statistical techniques (Bruhn and McKenzie, 2009;
Deaton, 2010; Duflo et al., 2008; Humphreys et al., 2013; Imbens, 2010; Olken,
2015). Quite surprisingly, however, there is no comprehensive decision theo-
retic framework for optimal experiment design to guide these efforts. This
paper seeks to provide such a framework.

A framework for optimal experiment design requires a model of experimenters
and their objectives. While models of information acquisition feature promi-
nently in modern microeconomic theory (Rothschild, 1974; Grossman and
Stiglitz, 1980; Aghion et al., 1991; Bergemann and Välimäki, 1996; Persico,
2000; Bergemann and Välimäki, 2002, 2006), they fail to predict a key feature
of the way scientists learn: by running randomized controlled trials (RCTs; see
Kasy, 2013). The reason for this is that much of applied microeconomic the-
ory models decision makers using subjective expected utility (Savage, 1954).
Mixed strategies are never strictly optimal for such a decision maker. Since
RCTs are mixed strategies over experimental assignments, they can never be
strictly optimal.

As experimenters do, quite often, randomize their experimental allocations, it
is important to understand why in order to establish experimental practices
that are optimal from their point of view. We propose to replace subjective ex-
pected utility with ambiguity averse preferences, specifically minmax expected
utility as axiomatized by Gilboa and Schmeidler (1989). In our model, an am-
biguity averse decision-maker must make a binary policy choice a ∈ {0, 1}
affecting a population of individuals with characteristics x ∈ X ⊂ Rm and
conditionally independent outcomes. To improve the quality of her decision-
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making, the decision-maker runs an experiment that assigns a given number
N of participants to either treatment and control. Each experimental par-
ticipant obtains an outcome y ∈ {0, 1} observed by the decision-maker. The
decision-maker’s final policy choice depends on her beliefs and the experimen-
tal assignment and outcomes.

Under an innocuous assumption, we show that the decision maker can be
thought of as maximizing the weighted average of a Bayesian subjective ex-
pected utility term and an adversarial maxmin-expected-utility term. We
interpret this decomposition as a decision maker who has a subjective view of
the world but must also satisfy an adversarial audience with veto power. The
relative weights that the decision maker places on the subjective and minmax
terms permit informative comparative static exercises.

The paper reports two main sets of results. Our first set shows describes when
RCTs are optimal for an ambiguity averse decision maker. If the decision
maker places non-zero weight on satisfying her adversarial audience, then, for
sufficiently large sample sizes, it is always strictly optimal for the decision
maker to use an RCT. Such trials permit robust, prior-free inference, and
achieve assignment losses of order 1√

N
. Additionally, for any sample size,

deterministic experiments are generically strictly optimal when the decision
maker puts sufficiently high weight on the expected utility term.

These results are descriptively accurate of experimental practice: Randomized
experiments are optimal when the decision maker puts high value on convinc-
ing an adversarial audience (science, pharmaceutical companies), or when the
decision maker can afford large samples (experiments in online marketing).
Whenever data points are expensive and the decision maker puts little weight
on satisfying an adversarial audience, optimal experiments are deterministic,
and finely optimize the subjective decision-making value of each acquired data
point (firms testing new products in select markets, politicians testing plat-
forms in specific states, etc. . . ). Both in practice and in theory, RCTs are not
always optimal, and our model fits the observed heterogeneity well.

Our second set of results exploits our framework to shed light on the important
practical question of rerandomization (Morgan and Rubin, 2012). Rerandom-
ization consists of drawing multiple treatment assignments, and choosing one
that maximizes the balance between groups on some covariates. For example,
a medical researcher may want to ensure that treatment and control groups
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are similar in terms of gender, age, race, and baseline health variables such as
blood pressure and weight. Despite the practical ease of using rerandomiza-
tion to ensure balance, there is the concern that it may affect the reliability of
findings (Bruhn and McKenzie, 2009).

We show that the trade-offs at the heart of rerandomization are well captured
in our framework. Successive rerandomizations improve balance, as captured
by the subjective expected utility component of preferences. However, reran-
domization reduces robustness, as captured by the adversarial component of
preferences. In the extreme case where the allocation is rerandomized until
perfect balance is achieved, the allocation is effectively deterministic and the
adversarial term remains bounded away from first best.

While there exists a tradeoff between balance and robustness, we show that
the costs of rerandomization are small. In order to significantly affect the
robustness of decision making, the number of rerandomizations needs to be on
the order of exponential in the sample size. Thus, at the conclusion of this set
of results, we suggest a rule of thumb for rerandomization that will markedly
improve balance, while keeping the robustness costs small.

In addition to the practical considerations just described, our work suggests
that models of information acquisition need to take non-Bayesian perspectives
seriously. As our work emphasizes, this allows for satisfactory microfounda-
tions for some elements of experimental practice, and makes useful positive
predictions. However, the usefulness of this perspective does not stop there:
valid normative conclusions require accurate assessments of the underlying
preferences and motives of experimenters and decision makers.

4.2 A Framework for Optimal Experiment Design

Decisions and payoffs. A decision maker chooses whether or not to imple-
ment a policy that provides a treatment τ ∈ {0, 1} to a unit mass of individuals
indexed by i ∈ [0, 1]. Potential outcomes for subject i with treatment status
τi ∈ {0, 1} are random variables Y τ

i ∈ {0, 1}; Y = 1 is referred to as a success.
Each individual i is associated with covariates xi ∈ X ⊂ Rm, where X is finite.
Covariates x ∈ X are observable and affect the distribution of outcomes Y .
The distribution q ∈ ∆(X) of covariates in the population is known and has
full support, and outcomes Yi are i.i.d. conditional on covariates. The proba-
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bility of success given covariate x is denoted by pτx ≡ prob(Y τ
i = 1|xi = x).

The state of the world is described by the the finite-dimensional vector p of
success probabilities conditional on covariates, p = (p0

x, p
1
x)x∈X ∈ [0, 1]2X ≡ P.

Note that state space P is compact, convex, and finite-dimensional. Given a
state p and a policy decision a ∈ {0, 1}, the decision maker’s payoff u(p, a) is

u(p, a) ≡ EpY a =
∑
x∈X

q(x)pax.

Experiments and strategies. To maximize her odds of making the correct
policy choice, the decision maker can run an experiment on N participants.
For simplicity, we assume that N is even, and exogenously given. Formally, an
experiment is a tuple e = (xi, τi)i∈{1,...,N} ∈ (X × {0, 1})N ≡ E. Experiment e
generates outcome data y = (yi)i∈{1,...,N} ∈ {0, 1}N ≡ Y , with yis independent
realizations of Y τi

i given (xi, τi).

The decision maker’s strategy consists of both an experimental design E ∈
∆(E)—a mixed strategy over experimental assignments—and an allocation
rule α : E × Y → ∆({0, 1}) which maps experimental data (e, y) to policy
decisions a ∈ {0, 1}. We denote by A the set of such mappings. A strati-
fied RCT, assigning a share π ∈ (0, 1) of participants to treatment τ = 1,
corresponds to a strategy (E1, α1) such that:

• E1 samples N subjects with covariates independently drawn according
to q;

• E1 assigns treatment τi = 1i≤πN ;

• α1(e, y) ≡ 1y1≥y0 , where yτ ≡
∑N

i=1 yi1τi=τ
/∑N

i=1 1τi=τ .

Preferences. The decision maker is ambiguity averse with standard maxmin
preferences (Gilboa and Schmeidler, 1989). She chooses a strategy (E , α) that
solves

max
α∈A
E∈∆(E)

U(E , α), where U(E , α) ≡ min
h∈Ĥ

Eh,E [u(p, α(e, y))] (4.1)

and Ĥ is a convex set of priors h ∈ ∆(P ) over states p ∈ P . This can be
thought of as a zero-sum game in which nature picks distribution h ∈ Ĥ after
the decision maker picks a strategy (E , α). Randomizations in mixed strategies
are independent of moves by nature.



76

We use the usual statistical distance d(h, h′) ≡ sup A⊂P
A meas.

|h(A)−h′(A)| on dis-
tributions whenever making genericity statements. Almost-surely statements
are made with respect to the Lebesgue measure.

Equivalent experiments. As we are assuming that subjects are exchange-
able conditional on covariates, experiments that differ only by a permutation
of subjects with identical covariates are equivalent from a decision-making
perspective. It is useful to formalize this point in the context of maxmin
preferences.

Definition 4.1 (equivalent experiments). Two experiments e = (xi, τi)i∈{1,...,N}

and e′ = (x′i, τ
′
i)i∈{1,...,N} are equivalent, denoted by e ∼ e′, if there exists

a permutation σ : {1, . . . , N} → {1, . . . , N} of the subjects’ labels such that
(xi, τi) = (x′σ(i), τ

′
σ(i)) for all i. The equivalence class of an experiment e is

denoted by [e].1 We denote by [E] the partition of possible experiments in
equivalence classes. We say that two experimental designs E and E ′ are equiv-
alent, denoted by E ∼ E ′, if they induce the same distribution over [E]

Lemma 4.1. Whenever E ∼ E ′, max
α∈A

U(E , α) = max
α∈A

U(E ′, α).

Thus, equivalent experiments guarantee the decision maker the same utility.

4.2.1 Key Assumptions

We place two additional assumptions on the model of Section 4.2. The first
is innocuous, and allows the decision marker’s objective to be expressed as a
weighted average of a Bayesian subjective expected utility term and a maxmin
expected utility term.

The second is more substantial: it ensures that the set of possible priors en-
tertained by the decision-maker is rich enough that for any given experimental
assignment, there exists a prior under which this assignment does not per-
mit efficient decision-making. Note that the order of quantifiers is important:
given a realized experimental assignment, we can find such a prior h. Indeed,
we show in Proposition 4.3 that randomized experiments yield approximately
efficient decisions for all priors.

1It is convenient to include distributions E with support in [e] in the equivalence class
of e.
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Decomposition of Maxmin Preferences

The following assumption leads to a useful decomposition of the decision
maker’s preferences.

Assumption 4.1 (absolute continuity). There exist h0 and λ ∈ (0, 1) such
that for every prior h ∈ Ĥ and almost every state p ∈ P ,

h(p) ≥ λh0(p). (4.2)

Absolute continuity requirement (4.2) implies that every prior ĥ ∈ Ĥ can be
written as ĥ = λh0 + (1− λ)h, where h ∈ H ≡ 1

1−λ(Ĥ − λh0). Condition (4.2)
moreover implies that elements h ∈ H are themselves probability distributions
over states p ∈ P , and the set H is also compact and convex.

Altogether, this implies that the decision maker’s objective (4.1) can be rewrit-
ten as

U(E , α) ≡ λEh0,E [u(p, α(e, y))] + (1− λ) min
h∈H

Eh,E [u(p, α(e, y))]. (4.3)

Keeping h0 and H fixed, parameter λ provides a convenient and continuous
measure of the decision maker’s degree of ambiguity aversion. With λ = 1 this
nests standard subjective expected utility maximization; thus, we sometimes
refer to such a decision maker as Bayesian.

This yields a useful interpretation: The decision maker wants to make a de-
cision that is successful under her own subjective prior h0, but also satisfies
an audience of players with priors h ∈ H. Weights λ and 1− λ represent the
respective weights that the decision maker places on her own subjective utility
and that of her audience. In a traditional model of ambiguity aversion, the
possible priors are all internal to the decision maker; here we add an additional
interpretation, that they come from an adversarial audience.2

Limited Extrapolation

Throughout we assume that N ≤ |X| so that, even though there are finitely
many covariate profiles x ∈ X, assigning each of them to treatment and control
is not feasible. This condition is assumed to hold even as we take N to be large.

2Note that if the audience has veto power and enjoys some outside option, then the
weight ratio 1−λ

λ would be interpreted as the appropriate Lagrange multiplier on satisfying
the audience’s individual rationality constraint.
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This allows us to impose the following limited extrapolation condition on X,
N , and H. Denote by pa ≡

∑
x∈X q(x)pax the expected probability of success

given policy a ∈ {0, 1}. Given an experiment e = (τi, xi)i∈{1,··· ,N}, denote by
pe ≡ (pτixi)i∈{1,··· ,N} the subset of success rates for experimental subjects. Vector
pe is thus an upper bound to the information generated by experiment e.

Assumption 4.2 (limited extrapolation). There exists ε > 0 such that, for
all e ∈ E, there exists a prior h ∈ arg minh∈H Eh(maxa∈{0,1} p

a) such that, for
almost every pe,

min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] ,Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ε.

Limited extrapolation implies that for any realized experimental assignment
there exists a prior h ∈ H under which that assignment does not allow for
first-best decision-making. That is, conditional on the data generated by any
experiment, their exists a prior such that the residual uncertainty about which
policy maximizes population-level outcomes remains bounded away from 0.

4.3 Optimal Design and Randomization

We now use our framework to characterize optimal experimental design.

4.3.1 Bayesian Experimentation

When λ = 1, the decision maker is a standard subjective expected utility
maximizer. It is immediate, and well understood, that in this case determinis-
tic experiments are weakly optimal. We show that for generically every prior
(that is, for an open and dense set of priors), deterministic experiments are in
fact strictly optimal when λ is close to one.

Proposition 4.2 (near-Bayesians do not randomize). For generically every
prior h0, there exist λ ∈ (0, 1) and a unique equivalence class of experiments
[e∗] such that for all λ > λ, a (potentially mixed) experiment E ∈ ∆(E) solves
(4.3) if and only if supp E ⊂ [e∗].

In recent work, Kasy (2013) uses a specialization of Proposition 4.2 to the
case where λ = 1 to conclude that RCTs are suboptimal. We believe that
rather than invalidating the use of RCTs, Proposition 4.2 highlights the limits
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of subjective expected utility maximization as a suitable positive model of ex-
perimenters. We argue instead that the adversarial framework of (4.3) is much
more successful in explaining the range of information acquisition strategies
observed in practice.

4.3.2 Adversarial Experimentation

We now assume that the decision maker puts a fixed positive weight on satis-
fying her audience, and study comparative statics as the sample size becomes
large.

Proposition 4.3. Take weight λ ∈ (0, 1) as given. There exists N such that
for all N ≥ N , any optimal experiment is randomized. More precisely, the
following hold:

(i) For any N , any optimal experiment E∗ satisfies

max
α

min
h∈H

Eh,E∗ [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−
√

1

N
.

(ii) For any N , all deterministic experiments e ∈ E are bounded away from
first-best:

∀e ∈ E, max
α∈A

min
h∈H

Eh,e [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ε.

The first part of the proposition shows that the optimal experiment produces
an erroneous policy decision less than

√
1/N of the time. The second part

shows that a deterministic experiment produces the incorrect policy ε of the
time. Thus, as N grows, the optimal experiment cannot be deterministic: it
must be randomized. Intuitively, the decision maker is playing a zero-sum
game against nature (with probably 1 − λ). After the decision maker picks
an experiment, nature picks the prior which maximizes the chance of picking
the wrong policy, given that experimental design. If there is any clear pattern
in the decision maker’s assignment of treatment, nature will exploit these.
Randomization eliminates patterns for nature to exploit.

Figure 4.1 maps out implications of Propositions 4.2 and 4.3 for practical
experiment design. Proposition 4.2 shows that when sample points are scarce,
or when the decision maker does not put much weight on satisfying anyone
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sample size

randomize

do not randomize 

medical research

development economics

online marketingproduct design

political speech

adversarial
audience 
      *
do I care

Figure 4.1: Maximizing subjective decision-making value vs. adversarial, prior-
free inference.

else (λ close to 1), optimal experimentation will be Bayesian. That is, the
experimenter will focus on assigning treatment and control observations to
the subjects from whom she expects to learn the most. This is the case, for
example, when a firm is implementing a costly new process in a handful of
production sites: The firm will focus on a few teams where it can learn the
most. Similarly, a politician trying out platforms will do so at a few carefully
chosen venues in front of carefully chosen audiences.

However, when the decision maker must satisfy an adversarial audience, or
has a sufficiently large sample, she will randomize as in Proposition 4.3. The
former is the case in scientific research. The latter is the case for firms dealing
online with many end users: Although the firm only needs to convince itself
of the effectiveness of a particular ad or UI design, observations are plentiful
so randomization is cheap, and used.

Proposition 4.3, in particular, has constructive applications to experimental
practice. First, it implies that a decision maker who randomizes even without
understanding all its ramifications—why she is randomizing, what audience the
experiment is meant to satisfy—will nevertheless produce an almost-optimal
experiment for large values of N . Even if someone (or her own doubts) pro-
duces a particularly challenging prior, the decision rule is still likely to be close
to optimal. Further, this proposition highlights the importance of actually ran-
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domizing. An experiment that adopts a protocol that is only “nearly” random,
such as assignment based on time of day of an experimental session (see Green
and Tusicisny, 2012, for a critique), or the first letter of an experimental sub-
ject’s name (as was the case in the deworming study of Miguel and Kremer,
2004; see Deaton, 2010 for a critique), will tend to find a skeptical prior in its
audience. Randomization provides a defense against the most skeptical priors,
but near-randomization offers no such protection.

4.4 Rerandomization and Resampling

Proposition 4.3 established that randomization is essential to guarantee suc-
cessful prior-free inference. Although the outcome of that randomization is
not relevant to the inferential process, in practice, experimenters often care
about whether a sample is balanced—that is, whether there are differences be-
tween the samples on some set of covariates. This may be because unbalanced
samples can lead to re-evaluation and criticism of a study’s findings Banerjee
et al. (forthcoming); Gerber and Green (2000); Imai (2005). A common tool to
achieve balance is the practice of rerandomization—redrawing an assignment
until an acceptable balance is achieved. However, concerns about the effects of
rerandomization on the robustness of inference from RCTs lead many scholars
to hide the fact that they have rerandomized (Bruhn and McKenzie, 2009).
While scholars are often advised to use stratification or matching to achieve
balance instead, this is often quite difficult to implement when stratifying on
multiple continuous covariates; thus, researchers turn to rerandomization. Our
framework lets us formalize the robustness loss to rerandomization, and leads
to a useful rule of thumb for experimental practice.

Definitions. For all results in this section, we assume that the experimenter
seeks to find a realized experimental design, out of some set of experimental
designs of cardinality K, that maximizes some arbitrary balance function,
B(e).3 A focal balance function is

B(e) =

∣∣∣∣∣
∣∣∣∣∣ ∑
i|τi=1

xi −
∑
i|τi=0

xi

∣∣∣∣∣
∣∣∣∣∣ (4.4)

3Rerandomization rules may also use a stopping time to endogenously pick the number
of randomizations (Morgan and Rubin, 2012). Provided the stopping time has an upper
bound K, all our results apply for this bound.
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for some appropriate norm || · || in Rm.4 However, B(e) may be any criterion
that reflects preferences over realized assignments. These preferences may
come from the experimenter, or from research partners, funders, etc. We
provide examples in Section 4.5.

In addition, we assume that the policy function α is set to the near-optimum
for a randomized experiment used in Proposition 4.3. That is, α(e, y) ≡
arg maxa∈{0,1} y

a − y1−a.

4.4.1 Rerandomization

Given K, rerandomized experiment EK proceeds as follows:

1. For a fixed sample of xs drawn according to population distribution
q ∈ ∆(X), independently draw a set of K assignments {e1, · · · , eK} with
each (possibly stratified) ek = (xi, τi,k) such that a fraction π ∈ (0, 1) of
participants receives treatment τ = 1;

2. Select an assignment e∗K ∈ arg maxe∈{e1,··· ,eK}B(e) that maximizes bal-
ance function B(e), breaking ties randomly;

3. Run the experiment e∗K .

It is immediate that B(e∗K) first-order stochastically dominates B(e∗K−1). This
is the value of rerandomization. The question, therefore, is whether rerandom-
ization can adversely affect robustness. We show that it can:

Proposition 4.4. Consider rerandomized experiment EK. There exists ρ > 0

such that for generically every h0, and for every N , if K ≥ (2|X|)N , then

max
α

min
h∈H

Eh,EK [u(p, α(e, y))] < min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρε.

Intuitively, when K is sufficiently large, the allocation is essentially determin-
istic, which by Proposition 4.3 precludes first-best robustness. However, the
number of rerandomizationsK needed for Proposition 4.4 to apply is extremely
large: it is exponential in the sample size. This suggests that the cost of reran-
domization may be quite small for reasonable numbers of rerandomizations.
Indeed, this is the case:

4This nests the Mahalanobis distance commonly used in multivariate matching (Rubin,
1980; Cochrane and Rubin, 1973; Rubin, 1979).
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Proposition 4.5. Given K ≥ 2, consider a rerandomized experiment EK
assigning treatment to a proportion π ∈ (0, 1) of participants. Then,

min
h∈H

Eh,EK [u(p, α(e, y))] ≥ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
−
√

log(K)

κN
,

where κ = min{π, 1− π}.

Comparing this with Proposition 4.3, frequentist decision making is optimal
up to a loss bounded by

√
max{1,log(K)/κ}

N
. The additional loss from reran-

domization,
√

log(K), is rleatively small: between 1.5 and 3 for sample sizes
between 10 and 10,000. However, the additional loss to robustness due to
increasing K falls off relatively slowly. On the other hand, balance is estab-
lished very quickly: K rerandomizations guarantee that the final sample will
be within the group of 5% most balanced samples with probability 1− 0.95K ,
and the improvement in balance falls off relatively quickly. Observing that
1 − 0.95100 > 0.99, we suggest the following simple rule of thumb for reran-
domization:

Rule of Thumb. Set K = min{N, 100}.

4.4.2 Resampling

Although rarely used in practice, we examine resampling as it allows us to
make a subtle point: more randomization is not always better. Resampling
reformulates the first step in the process outlined in the previous subsection:

1.’ Independently draw a set of K assignments {e1, · · · , eK} with each ek =

(xi,k, τi,k) with xs (possibly stratified) drawn according to population
distribution q ∈ ∆(X), and a (possibly stratified) fraction π ∈ (0, 1) of
participants receives treatment τ = 1.

The relative merits of different sampling schemes may depend on the balance
function used to choose from the set of possible experiments. To examine
a worst-case scenario, we define a “demon” function that always selects the
worst possible experiment from the set of available experiments, breaking ties
randomly:

DK
(
p, (ek, yk)k∈{1,...,K}

)
∈ arg min
{e1,··· ,eK}

u(p, α(ek, yk)).
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In practice, such a function will not exist. However, it is useful for establishing
the following result:

Corollary 4.6. Suppose the experimental implementation is chosen according
to DK. Then, the expected loss from resampling is greater than from reran-
domization, and this differential grows with K.

The intuition behind this result is simple, but subtle. Under rerandomization,
the sample is fixed, and therefore there may simply not exist an allocation of
subjects to treatment and control that causes the decision maker to make a
mistaken policy decision. However, with resampling, a new sample is drawn
each time, increasing the chances that there is a sample-allocation pair that
will cause the decision maker to make a mistake. The result points out that,
while randomization generally protects against poor interpretation of the data,
it will not always have that effect.

4.5 Simulations

We illustrate the usefulness of our rerandomization results using a simple sim-
ulation with a single covariate x ∈ X = {1, 2, . . . , 10,000}. Even covariates are
twice as likely as odd covariates, and the treatment effect is small and negative
for even covariates, and large and positive for odd covariates. Specifically, for
n ∈ {1, 2, . . . , 5,000},

q(2n− 1) =
q(2n)

2
=

2

3|X|
, p1

2n−1 = 4p0
2n−1 =

4

5
, and p1

2n =
p0

2n

2
=

1

4
.

Thus, on aggregate, u(p, 1) = 13
30
> 2

5
= u(p, 0), so treatment is beneficial,

and α = 1 is the “correct” decision. This setup is meant to make attempts to
balance the sample likely to cause inferential mistakes—balancing will tend to
pair odd observations with the more numerous even observations, which are
not an appropriate comparison group.5

In all of the simulations that follow, we use stratified random sampling with
π = 1

2
—that is, exactly half of the sample is assigned to treatment and half to

control.
5Indeed, using pairwise matching to assign treatment and control status increases infer-

ential errors, but does so equally for randomization, rerandomization, and resampling.
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Figure 4.2 examines the error rates (that is, percent of the time that α = 0

is chosen based on the outcome of the experiment), and balance, according to
(4.4) using the l1 norm, of three different ways of selecting a sample: random-
ization, rerandomization, and resampling. As can be seen in the first panel,
all three give roughly the same error rate. This is because the chosen balance
function, B(e), in these simulations is very unlikely to select a more biased
sample allocation. While in any specific application the interaction of the
model parameters and the balance function may produce different results, it
appears quite difficult to find a balance function that might actually be used
and is particularly pernicious.
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Figure 4.2: In simulations, resampling and rerandomization substantially in-
crease balance with no cost to robustness.

On the other hand, rerandomization and resampling both substantially im-
prove the balance of the samples. This is particularly true for small and mod-
erate sample sizes, up to the order of 1,000, although even with 10,000 sample
points there is an improvement in balance, even though we only re-draw the
allocation (and sample) 100 times. However, resampling adds no additional
balance to simple rerandomization.

This difficulty in finding a balance function that results in a substantial loss
of robustness motivates the use of the demon function DK , defined in the last
subsection, that chooses a treatment assignment that produces an erroneous
decision whenever one is available. As expected, this substantially increases
the error rates of both resampling and rerandomization, as shown in Figure
4.3. However, in keeping with Corollary 4.6, it can be seen that the error
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rate is substantially lower under rerandomization until sample sizes are of
order 10,000. Indeed, for small to moderate sample sizes, the demon function
is always able to find a sample and allocation that induces a mistake under
resampling, but this is not the case with rerandomization.
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Figure 4.3: Rerandomization is less likely to produce errors than resampling.

4.6 Discussion

We have shown that a maxmin framework for experimental design produces
reliable positive results, and can be used to inform practice. Elsewhere, we
informally apply this framework to discuss other aspects of experimental de-
sign, including registration, pre-analysis plans, and external validity (Banerjee
et al., forthcoming).

Before closing, we make a final comment that can tie together the findings from
both sets of our results. In Section 4.3 we discuss the issues with quasi-random
assignment, and discuss as an example the seminal work on field trials in de-
velopment by Miguel and Kremer (2004), and the criticism of that work by
Deaton (2010). At issue was the authors use of treatment assignment to every
third village, alphabetically.6 This was done to satisfy implementing partners,
who were uncomfortable with randomization. Our proposal for rerandomiza-
tion could provide a middle ground: specifically, Miguel and Kremer could
have drawn up K = N = 75 lists of possible allocations, and allowed the

6All villages eventually got the treatment, but in three waves. The first, fourth, seventh,
etc. villages were assigned to Wave I, and the second, fifth, eighth, etc. to Wave II, and the
third, sixth, ninth, etc to Wave III.
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implementing partner to pick which one they preferred. This would come at
little cost of robustness to the trial, and may have satisfied the implementing
partners need for a feeling of control. However, to be sure of this, one would
need a theory of implementing partners, which is beyond the scope of this
paper.
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A p p e n d i x A

APPENDIX TO CHAPTER 2

A.1 Campaign Stage Details

Closed-form expressions for the candidates’ probability of winning can be ob-
tained as follows. Recall from (2.7) that candidate j’s vote share can be written
as

Smjd =
exp(δ̄mjd + ηmj )

1 +
∑

k 6=0 exp(δ̄mkd + ηmk )
, (A.1)

where δ̄mkd = α1ckd +α2c
2
kd + x′dβ

m
k + ξmkd. Since (ηmk )k 6=0 are i.i.d. with a Type-I

Extreme Value distribution, ties occur with probability zero, and j’s probabil-
ity of winning also takes a multinomial logit form:

PWm
jd = Pr

(
∩k/∈{j,0}{Smjd > Smkd}

)
= Pr

(
∩k/∈{j,0}{δ̄mjd + ηmj > δ̄mkd + ηmk }

)
=

exp(δ̄mjd)∑
k 6=0 exp(δ̄mkd)

.

(A.2)

Candidate j’s expected vote share is obtained by integrating (A.1) with respect
to the distribution of (ηmk )k 6=0, which can be easily simulated.

Computation of PRI and PVEM’s individual vote shares when they nominate
a joint coalition candidate involves the second tier of the voting stage. As in
the first tier, let δST,mjd = δ̄ST,mjd + ηST,mj = x′dβ

ST,m
j + ξST,mjd + ηST,mj represent

mean voter utility from selecting alternative j in the second tier of the voting
stage. Normalizing to zero the mean utility of splitting the vote 50-50 between
PRI and PVEM, and denoting by j = p ∈ {PRI,PVEM} the option of giving
party p 100% of the vote, p’s vote share is given by (again using a law of large
numbers approximation)

Smpd = SmPRI-PVEM,d

(
0.5 + exp(δ̄ST,mpd + ηST,mp )

1 +
∑

j∈{PRI,PVEM} exp(δ̄ST,mjd + ηST,mj )

)
, (A.3)

where SmPRI-PVEM,d is the coalition candidate’s total share of votes in accordance
with (A.1). Integration of (A.3) with respect to the distribution of (ηmk )k 6=0

and (ηST,mj )j∈{PRI,PVEM} yields p’s expected vote share.
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Games with strategic complementarities. Formally, the campaign spend-
ing game played in each district is described as follows. As discussed in Section
2.3.1, the set of players is composed of all 5 parties when Md = IND, and PRI
and PVEM act as a single player when Md 6= IND. The strategy space avail-
able to each player is R+, the set of nonnegative expenditure levels, and the
players’ payoffs are defined in (2.5) and (2.6).

While I refer the reader to Echenique and Edlin (2004) for a formal definition of
games with strict strategic complementarities (GSSC), I discuss here properties
of the parties’ payoff functions, satisfied at the estimated parameter values,
which imply that the spending games belong to this class. First, since α1 >

0 > α2 (see Table 2.6), the effect of campaign spending on δ̄mjd is maximized
at c̄ = −α1/(2α2). Given that candidate j’s vote share and probability of
winning are strictly increasing in δ̄mjd, they are also maximized at c̄. It then
follows that spending more than c̄ is a strictly dominated strategy for all
players in the spending games. That is, regardless of their rivals’ spending,
each player’s payoff is higher at c̄ than at any level exceeding c̄. Thus, the
players’ effective strategy space is [0, c̄], a compact interval, which satisfies
condition 1 of the definition of GSSC in Echenique and Edlin (2004). Second,
it can be verified that, at the estimated parameter values, the parties’ payoff
functions are twice differentiable with positive cross partial derivatives, which
implies the remaining conditions of the definition of GSSC.

As mentioned in Section 2.3.1, GSSC have three useful properties. First, ex-
istence of equilibrium is guaranteed (Vives, 1990). Second, mixed-strategy
equilibria are unstable, so their omission is justified (Echenique and Edlin,
2004). Lastly, Echenique (2007) provides a simple and fast algorithm for com-
puting the set of all pure-strategy equilibria. This set has an additional key
property; it has a largest and a smallest equilibrium, providing a simple test of
uniqueness: if the largest and smallest equilibria coincide, the resulting strat-
egy profile is the unique equilibrium of the game. These extremal equilibria
can be easily computed by iterating best responses; see Echenique (2007) for
details. As previewed in Section 2.3.1, the largest and smallest equilibria of
the campaign spending games analyzed in this paper always coincide.
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A.2 Richer Specification

For the results of Section 2.5.1, I expand xd by incorporating the following.
First, the electoral authority groups districts into 5 electoral regions (see Figure
A.2). Accordingly, I use regional fixed effects to capture any spatial features of
voting preferences. In addition, I consider the unemployment rate, marriage
(as a percentage of population 15 and older), and I enrich the description of
age, education, and income by including: the percentage of the voting-age
population aged 24 and under, the percentage of the voting-age population
without post-elementary education, the percentage of households with refrig-
erators, and the percentage of households without basic utilities (power and
plumbing).

A.3 Figures and Tables

Table A.1: Structural parameters βmj of candidate choice j = MP

m = IND m = PRI m = PVEM

Coefficient Estimate Estimate Estimate
(St. Error) (St. Error) (St. Error)

Intercept -3.297 -3.800 -4.719
(1.503) (1.428) (1.562)

Female head of household 0.032 -0.010 0.037
(0.016) (0.013) (0.020)

Age (over 64) -0.017 -0.014 -0.030
(0.020) (0.015) (0.027)

Schooling 0.099 0.292 0.258
(0.050) (0.038) (0.064)

Income (owns a car) -0.028 -0.026 -0.024
(0.004) (0.003) (0.005)

Two-stage least squares estimates of random effects model (2.8) with robust
standard errors clustered by candidate’s party affiliation and PRI-PVEM’s
coalition configuration. Demographics as in Table 2.4.
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(a) PAN (b) MP

(c) NA (d) PRI+PVEM

(e) PRI (alone) (f) PVEM (alone)

0-20th percentile 20-40th 40-60th 60-80th 80-100th

Figure A.1: Geographic distribution of campaign spending by party
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Table A.2: Structural parameters βmj of candidate choice j = NA

m = IND m = PRI m = PVEM

Coefficient Estimate Estimate Estimate
(St. Error) (St. Error) (St. Error)

Intercept -3.839 -3.251 -3.681
(1.462) (1.310) (1.349)

Female head of household -0.065 -0.041 -0.012
(0.022) (0.012) (0.017)

Age (over 64) -0.003 0.014 0.016
(0.029) (0.014) (0.024)

Schooling 0.274 0.056 -0.015
(0.071) (0.038) (0.062)

Income (owns a car) -0.012 0.001 0.004
(0.005) (0.003) (0.005)

Two-stage least squares estimates of random effects model (2.8) with robust
standard errors clustered by candidate’s party affiliation and PRI-PVEM’s
coalition configuration. Demographics as in Table 2.4.

Table A.3: Structural parameters βmj of candidate choice j = PAN

m = IND m = PRI m = PVEM

Coefficient Estimate Estimate Estimate
(St. Error) (St. Error) (St. Error)

Intercept -2.666 -2.216 -1.419
(1.389) (1.336) (1.355)

Female head of household -0.085 -0.008 -0.040
(0.020) (0.015) (0.020)

Age (over 64) 0.024 0.085 0.077
(0.020) (0.017) (0.029)

Schooling 0.234 -0.147 -0.197
(0.052) (0.056) (0.074)

Income (owns a car) -0.002 0.006 0.018
(0.004) (0.004) (0.005)

Two-stage least squares estimates of random effects model (2.8) with robust
standard errors clustered by candidate’s party affiliation and PRI-PVEM’s
coalition configuration. Demographics as in Table 2.4.



93

Table A.4: Structural parameters βmj of candidate choice j = PRI

m = IND m = PRI m = PVEM

Coefficient Estimate Estimate Estimate
(St. Error) (St. Error) (St. Error)

Intercept -2.931 -2.670
(1.467) (1.689)

Female head of household -0.020 -0.055
(0.012) (0.011)

Age (over 64) 0.024 0.057
(0.015) (0.010)

Schooling 0.103 0.135
(0.037) (0.048)

Income (owns a car) -0.009 -0.007
(0.003) (0.003)

Two-stage least squares estimates of random effects model (2.8) with robust
standard errors clustered by candidate’s party affiliation and PRI-PVEM’s
coalition configuration. Demographics as in Table 2.4.

Table A.5: Structural parameters βmj of candidate choice j = PVEM

m = IND m = PRI m = PVEM

Coefficient Estimate Estimate Estimate
(St. Error) (St. Error) (St. Error)

Intercept -1.942 -2.586
(1.450) (1.734)

Female head of household -0.036 -0.002
(0.023) (0.019)

Age (over 64) -0.041 0.038
(0.027) (0.018)

Schooling 0.062 0.005
(0.067) (0.069)

Income (owns a car) -0.025 -0.009
(0.005) (0.006)

Two-stage least squares estimates of random effects model (2.8) with robust
standard errors clustered by candidate’s party affiliation and PRI-PVEM’s
coalition configuration. Demographics as in Table 2.4.
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Table A.6: Structural parameters βST,m
j of party choice j = PRI

conditional on voting for PRI-PVEM coalition candidate

m = PRI m = PVEM

Coefficient Estimate Estimate
(St. Error) (St. Error)

Intercept 2.091 2.111
(1.293) (1.311)

Female head of household -0.047 -0.054
(0.009) (0.012)

Age (over 64) 0.059 0.086
(0.010) (0.017)

Schooling -0.007 -0.038
(0.026) (0.040)

Income (owns a car) 0.003 0.006
(0.002) (0.003)

Generalized least squares estimates of random effects model
(2.9) with robust standard errors clustered by party and coali-
tion candidate’s party affiliation. Outside option is 50-50 vote
split between PRI and PVEM. Demographics as in Table 2.4.

Figure A.2: Mexican electoral regions (color-coded) and districts (delimited)
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Table A.7: Structural parameters βST,m
j of party choice j =

PVEM conditional on voting for PRI-PVEM coalition candidate

m = PRI m = PVEM

Coefficient Estimate Estimate
(St. Error) (St. Error)

Intercept -0.204 0.503
(1.326) (1.433)

Female head of household 0.008 -0.058
(0.018) (0.029)

Age (over 64) 0.001 0.036
(0.021) (0.041)

Schooling -0.091 0.078
(0.054) (0.096)

Income (owns a car) 0.003 -0.009
(0.004) (0.008)

Generalized least squares estimates of random effects model
(2.9) with robust standard errors clustered by party and coali-
tion candidate’s party affiliation. Outside option is 50-50 vote
split between PRI and PVEM. Demographics as in Table 2.4.
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Table A.8: Counterfactual outcomes using richer model (see Appendix A.2)

Vote share (%)

Party Observed No coalition Total coalition

PRI 33.6 (+3.1 =) 36.7 (−0.7 =) 32.9

PVEM 6.4 (−2.1 =) 4.3 (+0.5 =) 6.9

PAN 27.3 (−0.3 =) 27.0 (+0.6 =) 27.9

MP 28.3 (−1.4 =) 26.9 (+0.1 =) 28.4

NA 4.3 (+0.7 =) 5.0 (−0.4 =) 3.9

Seats

Party Observed No coalition Total coalition

PRI 207 (+16 =) 223 (−3 =) 204

PVEM 34 (−20 =) 14 (+11 =) 45

PAN 114 (+5 =) 119 (+1 =) 115

MP 135 (−3 =) 132 (−8 =) 127

NA 10 (+2 =) 12 (−1 =) 9

Differences in parentheses are with respect to first column. Sec-
ond and third columns correspond to counterfactual outcomes
had PRI and PVEM run independently or together in all dis-
tricts, respectively.
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A p p e n d i x B

APPENDIX TO CHAPTER 3

B.1 Iterative Computation of Penalty Loadings

The penalized estimators apply data-dependent factor loadings for each of the
coefficients included in the model. The data-dependent factor loadings scale
the penalty for each coefficient according to the variability of the associated
coefficient and the model residual. These loadings appear in Υβ and Υω in
Algorithm 1, Υθ in equation (3.16), Υφ in equation (3.18), and Υζ in equation
(3.19). Here we review the application of Belloni et al. (2013a)’s iterative
approach to computing these penalty loadings.

B.1.1 Iterative Computation for Linear Models

Recalling the formula for step I of Algorithm 1:

min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+
λβ
T
‖Υ̂ββ‖1.

As discussed in the details, λβ = 2c
√
JTΦ−1 (1− γ/2(KT + 1)), with Belloni

et al. (2013a)’s recommended values being c = 1.1 and γ = 0.05/ log(KT +

1 ∨ T ). The kth diagonal entry in Υ̂β scales the penalty according to the
variability in the kth regressor, which we’ll denote xk,jt, and the residual εjt ≡
Sjt−x′0tβ0j−x′1jtβ1−pjtβp. The infeasible ideal sets Υ̂β,{k,k} =

√
E
[
x2
k,jtε

2
jt

]
.

The iterative Algorithm B.1 initializes Υβ with the expected squared value of
each regressor, fits the lasso regression, recovers the residuals, and uses these
residuals to compute the sample analog to the ideal value. This algorithm
extends immediately to Υω. Defining the residual εjt ≡ pjt−x′0tω0j−x′1jtω1,

the infeasible ideal penalty values for this problem are Υ̂ω,{k,k} =
√
E
[
x2
k,jtε

2
jt

]
.

For completeness, the calculation is detailed in Algorithm B.2.

B.1.2 Iterative Computation for Nonlinear Models

The selection in nonlinear models requires accounting for the additional esti-
mation error introduced by selection on a generated regressor. Consequently,
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Algorithm B.1 Iterative Algorithm for Υβ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve β̂ = arg min
β∈RKT+1

1

JT

T∑
t=1

J∑
j=1

(
Sjt−x′0tβ0j−x′1jtβ1−pjtβp

)2
+

λβ
T
‖ΥI−1β‖1.

b) Compute the Residuals: ε̂jt ≡ Sjt−x′0tβ̂0j−x′1jtβ̂1−pjtβ̂p.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
jt, k = 1, . . . , KT .

III. Set Υ̂β = ΥI .

Algorithm B.2 Iterative Algorithm for Υω

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve ω̂ = min
ω∈RKT

1

JT

T∑
t=1

J∑
j=1

(
pjt−x′0tω0j−x′1jtω1

)2
+
λω
T
‖Υ̂ωω‖1.

b) Compute the Residuals: ε̂jt ≡ pjt−x′0tω̂0j−x′1jtω̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
jt, k = 1, . . . , KT .

III. Set Υ̂ω = ΥI .

the residual with which to scale the regressor’s variability must be augmented
by the variance of the generated selection target. Recall the selection problem
in equation (3.18):

φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖Υ̂φφ‖1.

The Υφ matrix requires a slight adjustment to account for estimation error in
the δ̃jt’s. Defining

εδ,jt ≡ δjt − δ̃jt = δ̃jt = x̃′jt

(
β̃j − βj

)
+ x′1jt

(
β̃1 − β1

)
+ pjt

(
β̃p − βp

)
+ ξ̃jt − ξjt
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and εφ,jt ≡ δ̃jt − x′0tφ0j − x′1jtφ1, the ideal weight for φ0j,k is equal to√
Ē
[
x2

0t,k (εδ,jt + εφ,jt)
2] and √Ē

[
x2

1jt,k (εδ,jt + εφ,jt)
2] for φ1,k.

We can define x̄jt =
[
x̃′jtx

′
1jt, pjt

]′ and Σj as the rows and columns of the
variance-covariance matrix for β̃ computed using the sandwich covariance ma-
trix from the solution to (3.17):

ε̂2δ,jt = E
[
ε2δ,jt
]

= x̄′jtΣjx̄jt + σ2
ξ .

For feasible implementation, we again initialize the Υφ matrix with the diago-
nal variances of the regressors. We then recursively solve (3.18) to recover the
residuals εφ,jt and update the Υφ accordingly.

Algorithm B.3 Iterative Algorithm for Υφ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. Compute ε̂2δ,jt = x̄′jtΣjx̄jt + σ2
ξ from the solution to the feasible GMM

problem (3.17).

III. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve φ̃ = arg min
φ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
δ̃jt−x′0tφ0j−x′1jtφ1

)2

+
λφ
T
‖ΥI−1φ‖1.

b) Compute the Residuals: ε̂φ,jt ≡ δ̃jt − x′0tφ̂0j − x′1jtφ̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,t

(
ε̂2φ,jt + ε̂2δ,jt

)
, k = 1, . . . , KT .

IV. Set Υ̂φ = ΥI .

The approach above doesn’t apply as readily to the solution for (3.19), as we
cannot easily characterize the variance of the optimum instruments for the
nonlinear features of the model. However, we don’t need to account for the
population variance of the asymptotic optimal instruments in our selection
of controls. Importantly, the estimated optimal instruments provide the only
source of exogenous variation used to identify the heterogeneity in voter im-
pressionability. Consequently, performing selection on the utilized instruments
as if they represented the population optimal instruments suffices to control
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for observable heterogeneity. Recalling the penalization problem:

ζ̃ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1

and defining the residual εζ = z̃v,jt−x′0tζ0j−x′1jtζ1, the ideal (k, k)th entry in
Υζ = E

[
x2
k,jtε

2
ζ

]
. We can then apply the approach from Algorithms B.1 and

B.2.

Algorithm B.4 Iterative Algorithm for Υζ

I. Initialize Υ0
k,k =

√
1
JT

∑JT
j,t=1 x

2
k,j,t, k = 1, . . . , KT .

II. For I = 1, ..., Ī, or until ‖ΥI −ΥI−1‖ < δ:

a) Solve ζ̂ = arg min
ζ∈RKT

1

JT

T∑
t=1

J∑
j=1

(
z̃v,jt−x′0tζ0j−x′1jtζ1

)2
+
λζ
T
‖Υ̂ζζ‖1.

b) Compute the Residuals: ε̂ζ,jt = z̃v,jt−x′0tζ̂0j−x′1jtζ̂1.

c) Update ΥIk,k =
√

1
JT

∑JT
j,t=1 x

2
k,j,tε̂

2
ζ,jt, k = 1, . . . , KT .

III. Set Υ̂ζ = ΥI .

B.1.3 GMM Penalty for Verifying First Order Conditions

While we do not directly evaluate the objective function in the global param-
eter space for equation (3.16), we do need to verify the first-order conditions
for the local solution based on the selected model in the last step of Algorithm
2:

qk ≡
∂

∂β0jk

Q
(
θ̃∗, x̃k, z, p, s

)
< λθυk, k = 1, . . . , K0, j = 1, . . . , J.

As discussed in the text, the infeasible ideal value of υk =
√
Ē
[
x2

0t,kξ
2
jt

]
.

Here, we are already working from a (putative) local optimum, so we can take
the estimated values ξ

(
θ̃∗, x̃, z, p, s

)
to estimate the empirical analog to the

expectation:

υ̂k =

√√√√ 1

JT

J,T∑
j,t=1

x2
0t,kξ̃

2
jt.

This calculation has the added benefit of being computable variable-by-variable
to mitigate memory and computational limitations.
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B.2 Detailed Statements of Model Assumptions

B.2.1 Notation

• ĒT represents the average expectation of a series, for example, ĒT [x0tx
′
0t] =

1
T

∑T
t=1 E[x0tx

′
0t].

• ET represents the empirical average of a series, for example, ET [x0tx
′
0t] =

1
T

∑T
t=1 x0tx

′
0t.

• φmin (c) {Σ} and φmax (c) {Σ} represent the cth smallest and largest eigen-
values of the matrix Σ.

B.2.2 Exact Sparsity in Preferences and Spending

Assumption B.2. Exact Sparsity in Preferences and Spending:

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
z]
′. Each data generating process in

the sequence {PT}∞T=1, has KT > T possible parameters, 1 ≤ kT < T of which
are non-zero, where both KT →

T→∞
∞ and kT →

T→∞
∞. Further, the number of

excluded instruments in z is fixed at L ≥ 2. Finally, there exists a sequence
{δT ,∆T} →T→∞ 0.

1. The parameter space isn’t too large: logKT ≤ (TδT )1/3.

2. The model is sufficiently sparse: k2
T log2 (KT ∨ T ) /T ≤ δT .

a) The number of variables explicitly included, K1 +L in the model is
fixed.

b) In equation (3.1), the true coefficients have
∑J

j=1‖β0j‖0 ≤ kT .

c) In the campaign spending equation (3.4), the true coefficients have∑J
j=1‖π0j‖0 ≤ kT .

3. Sparse eigenvalues for Gram matrix: There exists a sequence `T → 0,
κ′, and κ′′ such that, with probability 1−∆T :

0 ≤ κ′ ≤ φmin (`nkT )
{
ĒT [x0tx

′
0t]
}
≤ φmax (`nkT )

{
ĒT [x0tx

′
0t]
}
≤ κ′′ <∞.

4. Detectable Non-zero Coefficients: min {|θk| |θk 6= 0} > δT .

5. Exponential tails: There exists b > 0 and r > 0 such that, for any τ > 0,
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a) P (|ξjt| > τ) ≤ exp (− (τ/b)r) ;

b) ∀k, P (|x0t,k| > τ) ≤ exp (− (τ/b)r) .

As discussed in the main text, assumptions 2.1-2.4 consolidate the restrictions
in Belloni et al. (2012) and Belloni et al. (2013a) for the voting application
with a fixed number of excluded instruments. The restriction on exponential
tails isn’t strictly necessary for application in the linear model, as we adopt
the Belloni et al. (2012) penalization strategy that applies moderate deviation
theory for self-normalized sums to bound deviations in the maximal element
of the score vector. However, we maintain the restriction, as it allows us to
use Fan and Liao (2014)’s results, which require results from large deviation
theory, in the nonlinear GMM setting.

B.2.3 Regularity Conditions for High-Dimensional Linear Model

Assumption B.3. Linear Logit DGP Regularity Conditions:

Each data generating process in the sequence {PT}∞T=1, has KT > T possible
parameters, 1 ≤ kT < T of which are non-zero, where both KT →

T→∞
∞ and

kT →
T→∞

∞, but the number of excluded instruments in z is fixed at L ≥ 2.
Finally, there exists a sequence {δT ,∆T} →T→∞ 0 and fixed constants 0 < c <

C <∞.

1. Sufficient moments for unmodeled variability in the data admit a LLN
and CLT:

a) Ē [|ξjt|q + |νjt|q] ≤ C,

b) c ≤ Ē
[
ξ2
jt|xjt, νjt

]
≤ C, a.s., and,

c) c ≤ Ē
[
ν2
jt|xjt, zjt

]
≤ C, a.s.

2. Variability in observables and their impact on unobservables is bounded:

a) Demographics Controls: max
t≤T
‖x2

0t‖∞kTT (−1
2

+ 2
q ) ≤ δT w.p. 1−∆T .

b) Candidate Characteristics: Ē [|x1jt,k|q] ≤ C, and |β1,k| < C, k =

1, . . . , K1.

c) Campaign Expenditure and Impact: Ē [|pjt|q] ≤ C, and |βp| < C.

3. Additional regularity restrictions for asymptotic theory with i.n.i.d. sam-
pling:
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a) max
j≤J

Ē[|ξjt|q]+Ē[|Sjt|q]+max
k≤KT

{
Ē
[
x2
jt,kS2

jt

]
+Ē

[
|x3
jt,kξ

3
jt|
]
+1/Ē

[
x2
jt,k

]}
≤

C.

b) max
k≤KT ,j≤J

{
|
(
ET−Ē

)[
x2
jt,kξ

2
jt

]
|+|
(
ET−Ē

)[
x2
jt,kS2

jt

]
|
}
+max
t≤T
‖x0t‖2

∞
kT log(T∨KT )

T
≤

δT .

4. Regularity restrictions for first-stage regression: Let p̃jt ≡ pjt − Ē [pjt],

a) max
j≤J

Ē
[
p̃2
jt

]
+ max

l≤L

{
Ē
[
z2
jt,lp̃

2
jt

]
+ 1/Ē

[
z2
jt,lν

2
jt

]}
+ max

k≤K0

{
Ē
[
x2

0t,kp̃
2
jt

]
+ 1/Ē

[
x2

0t,kν
2
jt

]}
+ max

k≤K1

{
Ē
[
x2

1jt,kp̃
2
jt

]
+ 1/Ē

[
x2

1jt,kν
2
jt

]}
. 1.

b) max
j≤J

{
max
k≤K0

Ē
[
|x3

0t,kν
3
jt|
]

+ max
k≤K1

Ē
[
|x3

1jt,kν
3
jt|
]

+ max
l≤L

Ē
[
|z3
jt,lν

3
jt|
]}
.

κT with κ2
T log3 (KT ∨ T ) = o (T ).

c) max
t≤T,j≤J

(
max
l≤L

z2
jt,l + max

k≤K0

x2
0t,k + max

k≤K1

x2
1jt,k

)
[s log (KT ∨ T )] /T →p 0.

d) max
j≤J

max
l≤L

{
|
(
E−Ē

)[
z2
jt,lν

2
jt

]
|+|
(
E−Ē

)[
z2
jt,lp̃

2
jt

]
|
}

+ max
k≤K0

{
|
(
E−Ē

)[
x2

0t,kν
2
jt

]
|+|
(
E−Ē

)[
x2

0t,kp̃
2
jt

]
|
}

+

max
k≤K1

{
|
(
E−Ē

)[
x2

1jt,kν
2
jt

]
|+|
(
E−Ē

)[
x2

1jt,kp̃
2
jt

]
|
}
→p 0.

The regularity conditions here require somewhat cumbersome notation to spec-
ify explicitly. The conditions presented in assumption 3.3 are sufficient to
ensure a law of large numbers and central limit theorem apply to the post-
selection estimator with heteroskedastic and non-Gaussian residuals. With
the exponential tails assumption in B.2.5, the assumptions restricting the sup-
norm of regressors (B.3.2(a) and 3(b)) can be weakened. In our discussion
of the GMM estimator, many of these restrictions are subsumed by simply
assuming a uniform law of large numbers applies to the score of the objective
function. Assumption B.3.3 provides sufficient conditions for such a ULLN to
apply in the linear environment. The regularity conditions for the first-stage
regression in Assumption B.3.4 come from Belloni et al. (2012) and ensure
the existence of optimal instruments for the endogenous campaign spending
and the ability to consistently estimate these instruments via the first-stage
regression.

B.2.4 Regularity Conditions for GMM Estimator

Assumption B.5. Regularity Conditions for GMM Estimator:
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Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
z, vb]

′. For all T , each data generat-
ing process in the sequence {PT}∞T=1, satisfies the following restrictions:

1. Compactness of Parameter Set: The true parameter values θ0 ∈ ΘKT
,

where ΘK ⊂ RKT +2 is compact, with a compact limit set Θ∞ ≡ lim
T→∞

ΘK.

2. Continuity of Moment Conditions:

a) The unconditional moment condition E [zjt,lξjt (θ)] is continuously
differentiable in θ, ∀j ≤ J, t ≤ T, and, l ≤ L.

b) For the full-sample moment conditionmlT (θ) ≡ Ē
[

1
J

∑J
j=1 E [zjt,lξjt (θ)]

]
,

i. mlT (θ) →
T→∞

ml (θ) uniformly for θ ∈ ΘKT
, for all KT ,

ii. mlT (θ) is continuously differentiable and its limit ml (θ) is con-
tinuous in θ, and,

iii. mlT (θ0) = 0 and mlT (θ) 6= 0,∀θ 6= θ0.

3. Uniform LLN for Sample Analog: Let gjt (θ) ≡
[
x′0t, x

′
1jt, z

′
jt

]′
ξjt (θ), the

following uniform law of large numbers applies:

sup
k≤KT

sup
θ∈Θk

‖ 1

JT

J,T∑
j,t=1

(
gjt (θ)− Ē [gjt (θ)]

)
‖ −−−→

T→∞ p
0.

4. Define the LT ×KT matrix ĜT (θ) ≡ 1
JT

∑J,T
j,t=1

∂gjt(θ)

∂θ′
:

a) A uniform law of large numbers holds in a neighborhood of θ0 for
all KT :

‖ĜT (θ)−G (θ)‖2
2 →p
T→∞

0.

b) The limiting matrix G (θ) is continuous in θ and G (θ0) has full
column rank KT .

5. WT is a positive definite matrix with ‖WT −W‖2
2 →p 0, with W a sym-

metric, positive definite, and finite matrix.

6. The expected outer product of the score, Ω ≡ lim
T→∞

(JT )−1
J,T∑
j,t=1

E
[
gjt (θ) gjt (θ)′

]
is a positive definite, finite matrix.

7. The minimal and maximal eigenvalues of Σ ≡ G (θ0)′Ω−1G (θ0), denoted
e and ē, are finite and bounded between finite constants 0 < c ≤e≤ ē ≤
C <∞.
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The GMM regularity conditions are very similar to those in Gillen et al. (2014),
reflecting fairly standard restrictions on GMM estimators. The discussion in
Caner and Zhang (2013) and Fan and Liao (2014) provide more primitive con-
ditions for these results, though their restrictions are stated for i.i.d. sampling
environments, requiring some additional notation to extend to the i.n.i.d. set-
ting here. These assumptions are fairly standard in the literature on GMM
estimation, with references to Newey (1990), Newey (1993), Caner (2009), and
Newey and Windmeijer (2009).

B.2.5 Sparsity Assumptions for High-Dimensional BLP Model

Assumption B.6. Sparsity Assumptions for High-Dimensional BLP Model:

Let θ = [β′01, . . . , β
′
0J , β

′
1, π

′
01, . . . , π

′
0J , π

′
1, π

′
zvp]

′. Each data generating process
in the sequence {PT}∞T=1, has KT > T possible parameters, 1 ≤ kT < T of
which are non-zero, where both KT →

T→∞
∞ and kT →

T→∞
∞. Further, the

number of excluded instruments in z is fixed at L ≥ 2. Finally, there exists a
sequence {δT ,∆T} →T→∞ 0 with

√
kT log kT

T
> δT >

kT
T
.

1. The parameter space isn’t too large, with log (KT ) = o
(
T−1/3

)
.

2. The model is sparse, with the number of non-zero variables, k3
T log kT =

o (T−1).

3. The Gram matrix for controls satisfies restricted eigenvalues of Assump-
tion 2.3.

4. The Hessian of the objective function with respect to non-zero variables
is almost surely positive definite. There exists a sequence `T → 0, κ′,
and κ′′ such that, with probability 1−∆T :

0 ≤ κ′ ≤ φmin (`nkT ) {Ω} ≤ φmax (`nkT ) {Ω} ≤ κ′′ <∞.

5. Non-zero coefficients are bounded away from zero: min {|θk| s.t. θk 6= 0} >
2δT .

6. The marginal distributions for controls, instruments, and residual vote
shares have exponentially decaying tails.
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The additional sparsity restrictions for the high-dimensional BLP model are
not that different from those in the linear model. The sparsity restriction is
a bit tighter, accounting for the need to select variables on estimated optimal
instruments. The restricted eigenvalue assumption needs to be extended to the
outer product of the gradients, and the exponential tail restriction is extended
to the optimal instruments.
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A p p e n d i x C

APPENDIX TO CHAPTER 4

C.1 Proofs

Proof of Lemma 4.1. The decision-maker’s indirect utility from running
experiment E , V (E) ≡ maxα∈A U(E , α) = maxα∈Aminh∈Ĥ Eh,E [u(p, α(e, y))],
can be viewed as the value of a zero-sum game where player 1, the decision-
maker, chooses an allocation rule α ∈ A, and player 2, nature, chooses a prior
h ∈ Ĥ. By standard arguments, this game has a Nash equilibrium, implying
that V (E) = minh∈Ĥ maxα∈A Eh,E [u(p, α(e, y))].

Given h, the decision-maker’s payoff from running experiment E can be written
as

max
α∈A

Eh,E [u(p, α(e, y))] = max
α∈A

∑
e∈E

E(e)Ep∼h

[∑
y∈Y

prob(y|p, e)u(p, α(e, y))

]
=
∑
e∈E

E(e)
∑
y∈Y

max
a∈{0,1}

Ep∼h [prob(y|p, e)u(p, a)]

=
∑
e∈E

E(e)v(h, e),

where v(h, e) ≡
∑

y∈Y maxa∈{0,1} Ep∼h [prob(y|p, e)u(p, a)]. Since v(h, e) =

v(h, e′) ≡ v(h, [e]) for all e′ ∈ [e], it follows that V (E) = minh∈Ĥ
∑

[e]∈[E] E([e])v(h, [e]).
Thus, if E and E ′ induce the same distribution over [E], V (E) = V (E ′). �

Proof of Proposition 4.2. We first show the result in the specific case where
λ = 1 — the more general result then obtains by continuity.

As in the proof of Lemma 4.1, the decision-maker’s payoff from running ex-
periment E can be written as

max
α∈A

Eh0,E [u(p, α(e, y))] =
∑

[e]∈[E]

E([e])v(h0, [e]) ≤ max
[e]∈[E]

v(h0, [e]).

Therefore, E solves (4.3) if and only if supp E ⊂ arg max
[e]∈[E]

v(h0, [e]).

Let us now show that arg max[e]∈[E] v(h0, [e]) is generically a singleton. We first
show that the set of priors h0 such that there is a uniquely optimal equivalence
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class of experiments is open. Suppose that [e0] is uniquely optimal under h0.
Since E is finite, there exists η > 0 such that v(h0, [e]) < v(h0, [e0]) − η for
all [e] 6= [e0]. Since v(h, e) is continuous in h, this implies that there exists a
neighborhood H0 of h0 such that, for all h ∈ H0, v(h, [e]) < v(h, [e0]) − η/2.
Hence, [e0] is the uniquely optimal design for all priors h ∈ H0.

We now prove that the set of priors h0 such that there is a uniquely op-
timal equivalence class of experiments is dense. The proof is by induction
on the number of equivalence classes [e0] ∈ arg max[e]∈[E] v(h0, [e]). We show
that if there exist n such equivalence classes, then in any neighborhood of h0

there exists a prior h such that there are at most n− 1 equivalence classes in
arg max[e]∈[E] v(h, [e]).

Indeed, assume that [e0] 6= [e1] both belong to arg max[e]∈[E] v(h0, [e]). For
θ > 0, consider the polynomial Mθ(p) in p ∈ P defined by

Mθ(p) = v ((1− θ)h0 + θp, [e0])− v ((1− θ)h0 + θp, [e1]) ,

where (1−θ)h0 +θp denotes the mixture probability measure that places mass
1− θ on h, and mass θ on the Dirac mass at p. Since [E] is finite, for all θ > 0

small enough, it must be that

arg max
[e]∈[E]

v((1− θ)h0 + θp, [e]) ⊂ arg max
[e]∈[E]

v(h0, [e]).

Consider such a θ > 0. The fact that [e0] 6= [e1] implies that Mθ(p) is not
identically equal to 0. Hence, there exists p such that v ((1− θ)h0 + θp, [e0]) 6=
v ((1− θ)h0 + θp, [e1]). This implies that the inductive step holds at prior
h̃ = (1− θ)h0 + θp. Using the fact that [E] is finite and v(h, [e]) is continuous
in h, this implies that the inductive step holds at a prior that admits a density
against the Lebesgue measure. Thus, when λ = 1, deterministic experiments
are generically strictly optimal.

Now, given any λ, h, and [e], since the decision maker’s utility only takes
values in [0, 1], letting α0 ∈ arg maxα∈A Eh0,e[u(p, α(e, y))] we have

v(λh0 + (1− λ)h, [e]) ≤ λv(h0, [e]) + (1− λ)v(h, [e]) ≤ v(h0, [e]) + (1− λ) and

v(λh0 + (1− λ)h, [e]) ≥ λv(h0, [e]) + (1− λ)Eh,e[u(p, α0(e, y))] ≥ v(h0, [e])− (1− λ).

As there are finitely many experiments, if [e0] is the unique maximizer of
v(h0, [e]), there exists η > 0 such that, for all [e] 6= [e0], v(h0, [e0]) > v(h0, [e])+
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η. Together, this implies that there exists λ ∈ (0, 1) such that, for all λ > λ,
objective (4.3) is maximized at E if and only if supp E ⊂ [e0]. �

Proof of Proposition 4.3. To establish point (i) we use the strategy (E1, α1)

such that

• E1 consists of sampling N subjects with covariates independently drawn
according to q and assigning treatments τi = 1i≤N/2;

• α1(e, y) ≡ 1y1>y0 , where yτ is the sample average of outcomes among
subjects with treatment status τ .

Losses L(p) from first best, given state of the world p, are defined as

L(p) ≡ max
a∈{0,1}

pa − Ep,E1
[
p1y1−y0>0

]
.

By symmetry, it suffices to treat the case where p1 − p0 > 0. In this case,
we have L(p) = (p1 − p0)probp,E1(y

1 − y0 ≤ 0). The probability of choosing
the suboptimal policy can be bounded using McDiarmid’s inequality.1 By
applying McDiarmid’s inequality to f(y) ≡ 2

N

∑N/2
i=1 y

0
i+N/2 − y1

i , we obtain

probp,E1(y
1 − y0 ≤ 0) = probp,E1

(
y0 − y1 − (p0 − p1) ≥ (p1 − p0)

)
≤ exp

(
−(N/2)(p1 − p0)2

)
.

For any a > 0, x 7→ x exp(−ax2) is log-concave and maximized at x = (2a)−1/2.
This implies that

max
a∈{0,1}

pa − Ep,E1
[
p1y1−y0>0

]
≤ 1√

N
. (C.1)

An analogous argument delivers (C.1) also for the case where p1 − p0 ≤ 0.
Hence, given any h ∈ H,

Eh
(

max
a∈{0,1}

u(p, a)

)
− Eh,E1 [u(p, α1(e, y))] ≤ 1√

N
.

To establish point (ii), fix a deterministic experiment e ∈ E. From Assumption
4.2, there exists h ∈ H such that for almost every pe,

1McDiarmid’s (1989) inequality can be stated as follows. Let X1, . . . , Xn be independent
random variables, with Xk taking values in a set Ak for each k. Suppose that the (mea-
surable) function f : ×kAk → R satisfies |f(x)− f(x′)| ≤ ck whenever x and x′ differ only
in the kth coordinate. Then, for any t > 0, prob (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤
exp

(
−2t2/

∑
k c

2
k

)
.
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min

{
Eh
[

max
a∈{0,1}

pa − p0
∣∣pe] , Eh [ max

a∈{0,1}
pa − p1

∣∣pe]} > ε. Hence,

max
α

Eh,e [u(p, α(e, y))] ≤ Eh,e
[

max
a∈{0,1}

Eh,e [u(p, a)|pe]
]

≤ Eh,e
[

max
a∈{0,1}

u(p, a)

]
− ε.

�

Proof of Proposition 4.4. Fix any e† ∈ arg maxe∈supp EK B(e). The kth
rerandomized trial, k ∈ {1, . . . , K}, selects each experiment in its support
with probability at least r ≡ (qπ)N , where q ≡ minx∈X q(x) ≤ 1/|X| and
π ≡ min{π, 1 − π} ≤ 1/2. Therefore, the odds of rerandomization picking
experiment e† are at least ρ ≡ 1− (1− r)K . For K ≥ (2|X|)N ,

ρ = 1− exp(K log(1− r)) ∼ 1− exp(−Kr) ≥ 1− 1/ exp > 0.

Hence, there exists ρ > 0 such that, for all N , rerandomized experiment EK
selects deterministic experiment e† with probability at least ρ.

The proof of Proposition 4.3 implies that there exists h† ∈ H such that

∀e ∈ E, max
α∈A

Eh†,e[u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
,

and max
α∈A

Eh†,e† [u(p, α(e†, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ε.

Hence, max
α∈A

min
h∈H

Eh,EK [u(p, α(e, y))] ≤ min
h∈H

Eh
(

max
a∈{0,1}

u(p, a)

)
− ρε.

�

Proof of Proposition 4.5. Denote by (y0,k, y1,k) the sample average of out-
comes by treatment group for experiment ek, and by (y∗0, y

∗
1) the sample average

of outcomes by treatment group for the experimental design e∗K selected by
rerandomized experiment EK .

Losses L(p) from first best given state of the world p are defined as L(p) ≡
maxa∈{0,1} p

a − Ep,EK
[
p
1y∗1−y∗0>0

]
. By symmetry, it suffices to treat the case
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where p1 − p0 > 0. In this case, we have

L(p) = (p1 − p0)probp,EK (y∗1 − y∗0 ≤ 0)

≤ (p1 − p0)probp,EK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
≤ (p1 − p0) min

{
1,

K∑
k=1

probp,EK (y1,k − y0,k ≤ 0)

}
≤ (p1 − p0) min

{
1, K exp

(
−2π(1− π)(p1 − p0)2N

)}
≤ (p1 − p0) min

{
1, K exp

(
−κ(p1 − p0)2N

)}
,

where the second-to-last step used McDiarmid’s inequality (McDiarmid, 1989),
already invoked in the proof of Proposition 4.3, applied to f(y) ≡ y0,k − y1,k,
and the last step follows from 2π(1− π) ≥ κ ≡ min{π, 1− π}.

We have that K exp(−κ(p1 − p0)2N) ≤ 1 ⇐⇒ p1 − p0 ≥
√

log(K)
κN

, which
implies that

L(p) ≤

 p1 − p0 if p1 − p0 <
√

log(K)
κN

,

K(p1 − p0) exp(−κ(p1 − p0)2N) if p1 − p0 ≥
√

log(K)
κN

.
(C.2)

The mapping x 7→ x exp(−κNx2) is log-concave and maximized at x =
√

1
2κN

.

Since K ≥ 2, we have that
√

log(K)
κN

≥
√

1
2κN

, which implies that both terms

on the right-hand side of (C.2) are maximized at p1 − p0 =
√

log(K)
κN

. This

implies that indeed L(p) ≤
√

log(K)
κN

. Identical reasoning applies in the case
where p1 − p0 < 0. �

Proof of Corollary 4.6. By symmetry, it suffices to treat the case where
p1 − p0 > 0. Since DK picks an assignment that leads to incorrect inference
whenever possible, we have

L(p) = (p1 − p0)probp,DK

(
min

k∈{1,...,K}
y1,k − y0,k ≤ 0

)
= (p1 − p0)

[
1− probp,DK

(
∩k∈{1,...,K}{y1,k − y0,k > 0}

)]
.

Under rerandomization, y1,k − y0,k are i.i.d. conditional on the initial draw of
subjects from the population, that is, conditional on (xi, y

0
i , y

1
i )i≤N , thus

probp,DK

(
∩k∈{1,...,K} {y1,k − y0,k > 0}

)
= Ep,DK

[
probDK

(
y1,1 − y0,1 > 0 | (xi, y0

i , y
1
i )i≤N

)K]
.
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Under resampling, y1,k − y0,k are unconditionally i.i.d., so

probp,DK

(
∩k∈{1,...,K} {y1,k − y0,k > 0}

)
= Ep,DK

[
probDK

(
y1,1 − y0,1 > 0 | (xi,1, y0

i,1, y
1
i,1)i≤N

)]K
.

The corollary follows by Jensen’s inequality. �
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