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Abstract

Previous work in cavity quantum electrodynamics has focused principally on achiev-
ing the condition of strong coupling, such that the single-photon Rabi frequency for
one atom in a cavity dominates the rates associated with all forms of dissipation and
dephasing. Although strong coupling was convincingly demonstrated in these exper-
iments, the use of thermal atomic beams as a source of atoms invariably limited the
intracavity dwell time of any given atom to values marginally longer than the system’s
characteristic dynamical timescales. Accordingly, the observation of single-atom ef-
fects in these experiments required integration over the transits of many successive
atoms through the optical resonator. In such ensemble-averaged experiments, the
quantitative effects of dissipation and measurement could always be understood from
the perspective of Master Equation formalisms.

By contrast, our most recent work has incorporated laser cooling techniques to
accomplish a thousand-fold increase in the dwell time of individual atoms while main-
taining conditions of strong coupling. With this extreme separation of timescales, the
effects of individual atoms on the cavity transmission can clearly be resolved. More-
over, detailed information on each individual atom’s spatial trajectory through the
cavity can be inferred from the time-varying amplitude and phase of the transmitted
light. Understanding the exact nature of such correlations in real laboratory measure-
ments requires not only a careful characterization of excess technical noise, but also
an in-depth study of how (and when) aspects of continuous quantum measurement
theory should properly be applied.

This thesis primarily contains a detailed description of an experiment in which
we used broadband heterodyne spectroscopy to record the complete time-evolution
of interaction energy between one atom and a high-finesse optical cavity, during in-

dividual scattering events of ~ 250 us duration. With a characteristic interaction

energy scale Ei,/h ~ 10 MHz, we achieve a shot-noise limited measurement sensi-
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tivity ~ 3 kHz/ V/Hz over a bandwidth that covers the dominant rates of variation in
E... 1 also include two brief studies in quantum measurement theory, which high-
light the significance of the experimental work for continuing research on conditional
quantum dynamics. The first investigates quantum limits to broadband measurement
of position and force, and the second proposes a novel trajectory-based approach to

quantum system identification.
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Preface

“Siz years in Kimble-group”

Upon arriving at Caltech during the summer of 1992, I was kindly greeted by my
new advisor but then summarily instructed to “make the rounds” and find myself a
research project. By some good fortune I ended up working in the lab with Eugene
Polzik, helping him and Nikos Georgiades in the very early stages of their experiment
on two-photon spectroscopy with squeezed light. I have Eugene to thank for quickly
bringing me up to speed with the basic methods of experimental quantum optics. My
year-long stage in the squeezing lab culminated in a set of measurements on blue-light
induced infrared absorption in potassium niobate, which we wrote up as a paper in

the Journal of the Optical Society of America [1].

Although it seemed clear at the time that the two-photon squeezing experiment
was building up momentum and would be destined for scientific glory, I went to Jeff
Kimble at the end of that first year with a request to forge out on an experiment
of my own. Much to my amazement, he took this sophomoric uprising in stride and
proposed that I undertake the development of quartz microsphere optical resonators
as a new technical paradigm for experiments in cavity quantum electrodynamics.

That sounded great.

My first task in this new research program was to piece together some under-
standing of the optical mode structure of microspheres, and then to compute the
set of parameters that would tell us whether microspheres could really be useful for
cavity QED. After several months I had numbers in hand, and they were sufficiently
promising that we decided to pack our bags and fly to Moscow for a hands-on lesson in
microsphere fabrication techniques with the expert members of Vladimir Braginsky’s
precision measurement group. After two weeks of practice in Russia with Vladimir

Ilchenko and Michael Gorodetsky, I returned to build up a microsphere effort of our
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own at Caltech.

The following year brought a number of important developments, beginning with
my first success in reproducing the record-high optical quality factors (~ 2 x 10%)
demonstrated in Moscow. The push towards even higher quality factors has been
carried on by David Vernooy for the past few years, and he was kind enough to ac-
knowledge my early contributions to the effort by including me as a co-author on
his recent Optics Letter [2]. That spring, Vladimir Ilchenko came to visit Caltech
for a collaborative attempt to see some actual cavity-QED signals using quartz mi-
crospheres. We didn’t manage to produce any data during Vladimir’s visit, but we
did accomplish enough to prove that microspheres were indeed a viable technology
for experiments on strong coupling with atoms. In the post-mortem analysis of our
first failed attempt at doing so, I became convinced that one needed to have a very
cold and dense sample of atoms in order to really do cavity QED with microspheres.
Although Dave has since proven me wrong, I'm glad that my beliefs at the time led
me to begin working on an apparatus in which I could form a magnetooptic trap of
Cesium atoms in close proximity to a microsphere and all its associated optics and
actuators.

In parallel with these experimental activities, Jeff and I put some serious effort

technology. Our two most interesting proposals were written up as an Optics Letter
[3], and an article in Physics Letters A that we wrote together with Russian colleagues
Sergei Vyatchanin and Andrei Matsko [4]. The Optics Letter describes a scheme
for confining cold atoms in orbit around a microsphere, using two optical fields of
disparate wavelength to establish a stable mechanical potential for atomic center-of-
mass motion. The Physics Letter presents a calculation demonstrating the feasibility
of quantum non-demolition detection of single photons in a microsphere via quantized
deflection of an atomic beam.

Just after I had seen my first Cesium trap glowing brightly in the center of the
would-be microsphere vacuum chamber (some time in the summer of 1994), Scott

Parkins came to visit our group and told us about some calculations he had done on
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all the great physics one could do by dropping cold atoms into a Fabry-Perot optical
cavity. After hearing Scott’s results, it seemed that we could be poised for a quick
kill by setting aside the microsphere business for a few months and putting a Fabry-
Perot under the trap instead. With this motivation, Quentin Turchette and I started
working together on this “little detour.”

Also during the summer of 1994 we had our first visit from Artur Ekert, who
told us about Peter Shor’s very exciting but as-yet unverified quantum factoring
algorithm. Over the course of dinner, Jeff and Artur and I came to realize that
cavity QED had all the right qualities as a candidate for experimental investigations
of quantum computing. In addition to working in the lab with Quentin, my autumn
and winter of 1994-95 were thus largely occupied by working with Jeff to properly
develop the exact relationship between strong coupling in cavity QED and bona fide
quantum logic. By the following summer Quentin and Christina Hood had made some
beautiful measurements, and together with Wolfgang Lange (who had been helping
out on all fronts) we wrote up the Physical Review Letter that officially launched our
group into the quantum computing fray [5].

In between all the quantum logic business, Quentin and I kept plugging away
at our cavity QED with cold atoms project. Gradually we came to realize that the
we had originally appreciated, and around
the beginning of summer 1995 we found ourselves ready to start over and redesign
things from scratch. So while we waited for new mirrors and a new cavity mount to
be fabricated and delivered, Quentin worked on other things and I went to spend six
weeks at the Ecole de Physique d’Ete des Houches. While there, I had a conversation
with Adriano Barenco and Peter Zoller that eventually led to a theory paper on
inversion of quantum jumps, which appeared in Physical Review Letters in early
1996 [6]. With the ideas in that paper we thought we had made some real progress
towards quantum error correction, although we were to be upstaged in that regard

by Peter Shor’s paper that appeared while ours was still in press.

During the fall of 1995, Mike Chapman joined Quentin and me in our laboratory

efforts. Mike helped us out in developing our third-generation apparatus for cavity
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QED with cold atoms. Late one night in March of 1996, we finally saw our first real-
time atom detection signals and immediately faxed them off to Jeff, who was at a
quantum measurement workshop in Germany. Luckily we caught him before his talk,
so the world got to learn of our results just as we were going to bed. Thinking (for
the second time) that a steady stream of further results must surely be just around
the corner, we decided to take what we had and quickly wrote up an Optics Letter
to put our data in print [7].

In fact, it seemed that there was so much good work to be done with our newly-
proven system that we as a group decided to build a second experimental apparatus
of the same general ilk and pursue two different objectives in parallel. So Mike went
to work with Christina on a new lab, while Quentin and I set ourselves to the task
of following up on some preliminary indications in our data that we might have been
resolving atomic center-of-mass motion with precision near the Standard Quantum
Limit. As evidenced by certain sections of this thesis, Quentin and [ had no idea at
the time of just what we were getting ourselves into.

In addition to doing laboratory work on characterizing noise sources and improving
all the servos, I spent some time during early 1996 thinking about the quantum theory
of atomic position measurements via cavity QED. Having already been exposed to
quantum trajectory theory through my work with Peter Zoller, I adopted this as the
natural mathematical tool for connecting what I knew from physics about the optical
response of a strongly-coupled atom and cavity to what I was learning in statistics
and information theory about optimal signal recovery. Some of my early results in
exploring this connection are described in a Letter to the Editor in Quantum and
Semiclassical Optics [8]. T rejoined the subject during a brief stay at the Institute for
Theoretical Physics in Santa Barbara during October of 1996, focusing principally
on the question of what the Standard Quantum Limit really meant in the context of
broadband measurements such as those we were performing in the lab. Also during the
ITP, Jeff and I had some extended discussions with Peter Zoller and Ignacio Cirac that
eventually led to the publication of a theoretical proposal for quantum state transfer

and entanglement distribution between atoms located in spatially-distant cavities [9].
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In terms of experimental work, we spent the second half of 1996 making endless in-
cremental improvements to the apparatus. The main objective was to monitor atomic
motion with a detuned probe beam, in order to circumvent the heating mechanisms
that Andrew Doherty and our other colleagues at the University of Auckland helped
us to realize were a significant problem. This entailed a complete revamping of the
way we processed the rf photocurrent, and also demanded that we somehow achieve
a drastic increase in our signal-to-noise ratio. Despite our valiant efforts, the progress
was still hard to measure by the time that January 1997 rolled around and Quentin
had to finish up and write his thesis.

At the time I was actually eager to work for a while on my own again, which I had
not had the chance to do since the microsphere era. It was clear to me that the laser-
frequency and cavity-length stabilization servos had to get much more serious than
was typical for the group in those days, and that the only way for this to happen
was for me to spend five or six months learning about feedback control the hard
way. So after completely rebuilding the experiment, I systematically went through
every feedback loop, measuring the open-loop transfer functions and designing servo
amplifiers for optimal performance. Gradually, some real improvements in the signal-
to-noise ratio started to add up, and I was finally able to produce some preliminary
versions of the kind of data that will be present

During the summer of 1997 I travelled to several workshops on quantum com-
putation in Italy. While there, Christopher Fuchs and I worked together and had
numerous discussions with other attendees on the subject of how to quantify the
entanglement of bipartite mixed states. As an outgrowth of this initial work, we
now have a many-author paper in preparation on one particular measure that we
investigated, called the Entanglement of Assistance [10].

After returning from Italy I was joined in the lab by our new postdoctoral fellow,
Jun Ye. Thanks largely to Jun’s formidable expertise in optical techniques for pre-
cision measurement, the experiment really came together during the final months of
1997. Through a sequence of final and decisive improvements to the apparatus, we

were able finally to push the signal-to-noise ratio for monitoring single-atom motion
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all the way down to the quantum limit. We took most of the data that I will discuss
in this thesis during December of 1997, although we continued to work on a number
of important calibrations and also attempted some further improvements to the ex-
periment through February of 1998. In conjunction with the writing of this thesis, I
am preparing an extended article on our apparatus and experimental results, which
will most likely be submitted to Applied Physics B [11].

As a result of some very stimulating discussions with Salman Habib earlier in
1997, I made two visits to the Los Alamos National Laboratory during September and
November. In order to lay the groundwork for our ongoing collaborations on quantum
chaos and quantum feedback control, Salman introduced me to the pertinent aspects
of high-performance computing and enabled me to start writing codes and running
jobs on some very powerful machines. I am indebted to him for making possible
most of the numerical results that are included in this thesis. I should also mention
Sze Tan’s visit to Caltech in the early months of 1996 as having made a profound
contribution to my capabilities for computational research.

Over the 1997 Christmas break, and during a workshop in early January 1998, I
finally finished up my theoretical work on characterizing quantum limits to broadband

position measurements. I have recently written them up as a paper that will appear

In choosing the material for inclusion in this thesis, I have decided to focus on the
most recent work that I have done as a graduate student at Caltech. As indicated
in the listing below, my earlier research has been reasonably well documented in ref-
ereed publications. Since our 1996 Optics Letter, my experimental and theoretical
research have really grown together to form the basis of a single long-term scientific
program. So with a view towards the future, and without any apology for the brevity
of the resulting document, I have collected together only the work in which I take the
most pride and present them under the title of Continuous observation of quantum
dynamics. Having made this choice of emphasis, descriptions of my research on mi-
crospheres and on quantum computing are notably omitted. I hope the impression

will not arise that I found my work in these areas any less formative or less gratifying,
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but I do feel that I personally identify much more strongly with my efforts to cre-
ate a foundation for investigating the dynamical evolution of continuously-observed
open quantum systems. It is my strong conviction that this constitutes a singularly
important scientific program for future research in cavity QED, so I hope that I will

have much more to say about it in years to come.
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Chapter 1 Introduction and overview

1.1 Motivation: conditional quantum dynamics

What happens after quantum measurement?
If your physics education was anything like mine, the answer should be obvious and
read something like this: “Having measured a Hermitian observable O and obtained

the outcome (eigenvalue) A;, the system is projected onto the eigenstate JZ such that
O = Mt (1.1)

Subtle things happen if A; is degenerate, but nobody really worries about that.”
Those who have thought more deeply on the subject will recognize that such
an answer completely misses the point, in that it overlooks the very important and
complexifying issue of partial measurements made on composite quantum systems.
Suppose for example that we have an atom coupled to electromagnetic fields, and that

T [ T 1 S
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7 of its internal state by placing a photon counter
to intercept some small fraction of the outgoing solid angle for spontaneous emission.
The atom should undergo radiative decay if and only if it is in an excited state, but
we can only see the photon if it is emitted in the right direction. What ezactly are we
allowed to say about the quantum state of the atom at the end of an interval of time
in which we don’t see a photon? Escalated to only slightly more complex scenarios,
this sort of issue lies at the heart of many pressing questions in the fields of quantum
measurement, decoherence, and quantum-classical correspondence.

It has long been known that the statement of equation (1.1) can be generalized
in the following manner [1, 2]. Suppose that the quantum system of interest lives in
a Hilbert space H 4, and is coupled (either by design or by nature) to some ancillary

system that lives in a Hilbert space Hp. Let the overall Hamiltonian for the system,
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ancilla, and the coupling between them be Hiw. If we can somehow assure that
the initial joint state factors as pi®* = py' ® pf, then the effect on the system state of
evolving p** under H,,; for some time and then performing a projective measurement

on the ancilla can always be written as
plt = Gipitél (1.2)

Here 7 is an index associated with the outcome of the measurement made on Hp, and
the ¢; are a set of operators on H 4. A moment’s reflection reveals that the operators

¢; should simply be given by
& = 115 exp (—iHu 7 /B) (1.3)

where 7 is the measurement interval and fIZB is a projector onto the 7' eigenstate of
whatever observable we measure on Hp. The probability of the 5*" outcome is thus
given by

Pr = Tr | piieles] (1.4)

The generalized “collapse” represented by equation (1.2) is commonly known as a
quantum operation [3], and each operator ¢ is called an operation element. It is
worth noting that a set of collapse operators {¢;} that act as in (1.2) can still be
derived if we choose to make generalized (as opposed to projective) measurements on
the ancilla. In such cases the number of operation elements will be larger than the

dimension of Hp, but one always has >, éjéz = 14 (the identity operator on H,).

If for whatever reason it is not possible to distinguish among some subset S of the
possible measurement outcomes i, we must average incoherently over the associated

operations in order to derive the evolution of the system state:

oy =Y apel. (1.5)

1€S

In the extreme, S could correspond to the entire range of measurement outcomes—
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this would be the case if instead of making a measurement on the ancilla we were
just to throw it away after jointly evolving under H,.. The choice of a particular
basis for the ¢; would then be immaterial, and the nonselective evolution (1.5) would
correspond to tracing over Hp [4].

Operationally,( the ancilla in the above discussion could be an auxilliary quantum
“device” that we introduce for the purpose of making an indirect measurement on the
system. This type of scheme is generally required for making quantum non-demolition
measurements [5], and also for implementing optimal measurements in the contexts of
quantum communication and quantum cryptography [6]. In an indirect measurement
we gain information about the system to the extent that the probabilities Pr; depend
on pg', and (1.2) or (1.5) represents the measurement backaction. Note that if we know
the measurement outcome 7 precisely, we also have the fullest possible knowledge of

the evolution of the system’s quantum state.

In contrast to the direct measurement scenario of (1.1), however, the state of the
system following an indirect measurement generally depends both on the outcome
i and the pre-measurement state pj.. Hence the evolution described by (1.2) is not
so much a collapse of the system state as a disturbance of it. As investigated in
references [10, 11], it should even be possible to implement “measurement” ¢;’s that
are nontrivial but unitary, and therefore reversible. Not surprisingly, it turns out
that quantum operations of this type don’t actually yield any information about the
system, in that the Pr; are completely independent of pg'. In general, the information
gained by performing a quantum operation necessarily comes at the cost of increasing
severity of the disturbance. For low-dimensional systems, Fuchs and Peres [12] have
even derived inference-disturbance relations similar to the Heisenberg uncertainty
principle. Hence, one can appreciate that the traditional binary opposition between
destructive and quantum non-demolition measurements represents only two isolated
points in a continuous spectrum of possible inference-disturbance tradeoffs. A primary
challenge for measurement science in the coming years will thus be to elaborate the
properties and utility of the most general quantum operations, and concurrently to

build the experimental capabilities required to implement them in the lab.
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Beyond quantum measurement, evolutions of the form (1.2,1.5) also play a cen-
tral role in the dynamics of open quantum systems. With reference once again to the
basic quantum operation scenario, note that the ancilla Hp could represent an envi-
ronmental reservoir from which we are unable fully to isolate the system of interest.
The traditional picture of decoherence in Markovian open quantum systems can in
fact be recovered [4, 7] by tracing over the reservoir and resetting p§ to some fiducial
(e.g., vacuum or thermal) state once per reservoir correlation time. One should take
particular care in dealing with an infinite-dimensional ancilla such as the electromag-
netic field [8, 9], but quantum-optical Master Equations may fairly be regarded as a

quasi-continuous limit of (1.5).

Should there not also be a differential equation associated to the unaveraged quan-
tum operation (1.2)7 Loosely speaking, the state of an open quantum system deco-
heres because available information about its evolution is not experimentally recovered
from the reservoir. The growth of (von Neumann) entropy implied by the form of most
quantum-optical Master Equations stems from the fact that the terms in the sum of
(1.5) will generally have small inner products with one another. Given an open quan-
tum system in the laboratory, it should be possible to reduce our uncertainty about
the evolving system state if we can manage to perform measurements on the reservoir
with sufficiently high bandwidth. We believe from recent work on quantum trajectory
theory [8, 7, 13] that the dynamical evolution of such a continuously-observed open
quantum system should be described by a Stochastic Schrédinger Equation (SSE). A

typical form for such an equation would be

. N N,
- —11 A ]_ < KN N < é i
di.(t) = —ﬁHodt —3 Z (c;f»cj — <C;-Cj>c> dt + Z ﬁ — 1] dN;(t) p pe(t).

(1.6)
Here N, is the total number of reservoirs coupled to the system, ¢; is a “jump op-
erator” for the j' reservoir (analogous to the operation elements introduced above),
and dN;(t) is a stochastic increment. In qualitative terms, the numerical value of

dN;(t) (here restricted to be either 0 or 1) during any given timestep dt corresponds
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to the outcome of a measurement made on the j* reservoir at time ¢. Hence, 1,/76
represents an g posteriori quantum state for the open system, conditioned upon the
classical record that we obtain from our measurements on the reservoir. At the same
time, one should keep in mind that the statistics of these measurements are deter-
mined by the expectation values of the operators é;f-éj with respect to 1;(:. This type
of dynamics for an open quantum system, in which the evolution of the system state
is conditioned upon the measurement results and vice versa, is what I mean by the

phrase “conditional quantum dynamics.”

Starting from the Stochastic Schrodinger Equation for a highly idealized, but not
completely unrealistic model of certain experimental systems that have recently been
investigated in quantum optics, one can formulate all kinds of interesting schemes
that would utilize continuous observation to accomplish novel quantum measure-
ments [14, 16], to build feedback-control devices for atom interferometry [17], or even
to implement elementary forms of quantum error correction [10]. For an experimen-
talist, the challenge thus presents itself of trying first to validate theoretical models
of conditional quantum dynamics, and then to demonstrate some of these intriguing

proposed applications.

As of the summer of 1995, when I first started to become aware of the fascinating
physics involved in the continuous observation of quantum dynamics, it was clear
that most of the basic technical tools required for such research had yet to be de-
veloped. So the essential motivation for most the work presented in this thesis has
been to create both the experimental and theoretical foundations that I think will
be needed, working within the concrete physical paradigm of cavity quantum elec-
trodynamics (cavity QED). On the experimental side, this has primarily involved the
construction of the first laboratory apparatus for achieving strong coupling between
laser-cooled atoms and quantized electromagnetic fields in an optical cavity. Beyond
initial demonstrations of this new physical system, I have worked substantially to
eliminate sources of excess technical noise that compromised the fidelity of measure-
ments made with our first-generation apparatus. My theoretical research has largely

focused on generating new ideas about what should be done in experiments on con-
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ditional quantum dynamics, and hence on sharpening up the goals for what really

needs to be done in the lab.

Before presenting a more explicit resume of the results contained in this thesis,
let me turn in the next few pages to a brief overview of the substantive (as opposed

to ideological) focus of my recent work, cavity QED with laser-cooled atoms.

1.2 Methods: cavity QED with cold atoms

The basic idea in modern cavity QED is to investigate the dramatic alterations of
atomic radiative processes within a high-finesse electromagnetic resonator, and to
utilize them for fundamental research in fields such as quantum measurement and
quantum information. The particular laboratory system of interest for this thesis
will be a single ground-state (as opposed to Rydberg) **Cs atom coupled to one

eigenmode of an optical Fabry-Perot resonator [18, 19, 20, 21].

The dynamics of such an atom-cavity system may be parametrized by a set of three
fundamental rates: the single-photon Rabi frequency 2gy, the atomic dipole decay

rate v, and the cavity field decay rate k. We require go > (v, ) in order for the

om and cavity to dominate the
dissipative processes of spontaneous emission and cavity decay. If this all-important
condition—known as strong coupling—can be achieved, we may conduct experiments
in a regime where the coupled atom-cavity system behaves essentially as a molecule
[22, 8]. Tt develops new eigenstates, which are entangled states of the atom and

cavity, and it is the corresponding excitation spectrum that must be considered when

computing the optical response of the atom-cavity system to a driving laser.

Experimentally, v, is fixed once we have chosen an atom to work with, so in order
to achieve strong coupling we need to find some way of making g, as large as possible
while keeping x relatively small. Formally, the single-photon Rabi frequency is given
by 290 = 2d - Ey/h, where d is the atomic dipole-transition matrix element and £,

is the intracavity electric field per photon. We can infer the general determinants of
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the latter quantity by considering the equation,
i o /dV (B + B ). (1.7)

Here the integral is over the volume of space in which the photon is confined, hw
is the photon energy, and the integrand is just the Maxwell energy density. Clearly
when the volume of integration gets smaller and smaller, the electric and magnetic
fields per photon must increase in order for the equation still to hold. Hence we meet
the first condition of strong coupling by making an optical resonator with very small

mode volume. A Fabry-Perot cavity consists of two spherical mirrors, so we minimize

ct

the mode volume by choosing short radii of curvature for the mirrors and by making

the overall cavity length (distance between the two mirrors) as short as we can.

Of course, as we make the cavity shorter we increase the frequency with which
a circulating photon has to bounce off of each mirror. In an empty cavity losses
only occur during bounces, so increasing go in a Fabry-Perot cavity must come at
the price of also increasing x. We can still maintain an acceptably large ratio go/k,
however, by using mirrors of very high reflectivity. By using mirrors with an overall
transmission and loss of ~ 1.5 x 107°, for example, we have go/k ~ 3.4 and go/k =~ 4
in a cavity of length ~ 107 pm ¢!
this thesis. Other efforts in our group have realized ratios as high as gg/k =~ 18 [23]
and go/v, = 46 [45]. For a more quantitative discussion of the art of Fabry-Perot

construction, see Quentin’s thesis [18].

The phenomenology of strong coupling is perhaps best characterized by a com-
plementary pair of dimensionless quantities, the critical photon number my and the

critical atom number Ny [22]:

4’)/3_ 2%’7_}_
my = —5, Ny = . 1.8
’ 398 9 (128)

In the strong coupling regime, both of these quantities are much less than one. Having

a critical photon number below unity means that one can investigate nonlinear optics
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in the quantized domain, with an average photon number less than one per mode
[24]. Such capabilities formed the basis of our group’s recent work on demonstrating
conditional phase shifts for quantum logic [25].

My experimental thesis research, on the other hand, has uniquely been enabled
by having a critical atom number Ny < 1. If we think about the optical cavity as an
input-output device (in the sense that you can shine a laser in one end and see what
comes out the back), the critical atom is a measure of how many atoms we have to
put inside the cavity before its optical response is drastically changed. One might
ask what the use is of having Ny < 1, as atoms certainly come only in integral units.
Roughly speaking, the smaller Ny is, the greater the sensitivity and bandwidth we
have for monitoring changes in the effective number of intracavity atoms. The actual
atom-cavity coupling strength g (F) should clearly vary with the atom’s position inside
the cavity, and for Cesium it also happens to vary fairly strongly with the atomic
internal (Zeeman) state.

The enhanced coupling between atoms and photons inside a high-finesse optical
cavity thus provides a novel basis for optical measurements that continuously monitor
atomic degrees of freedom. Experimentally, the principle challenge to realizing such
measurements is the need to arrange a sufficient separation of timescales between the
achievable measurement bandwidths and the evolution of monitored atomic vari
This is not an altogether trivial constraint, and in fact no cavity QED experiment
prior to our Optics Letter of 1996 [26] had managed to observe single-atom effects on
cavity transmission without integrating over the transits of many successive atoms
through a cavity. In that publication, we demonstrated that the use of simple laser
cooling techniques allowed one to achieve the required separation of timescales, and
that we did indeed thus gain the ability to detect the passage of single Cesium atoms
through an optical cavity in real téme, and with high signal-to-noise ratio.

To perform single atom detection, we monitored the transmission of a resonant
cavity probe laser after dropping atoms from a magnetooptic trap (MOT) [27] formed
over the gap between the cavity mirrors (see Figure 1.1). Before the arrival of the

freely-falling atoms, the cavity transmits a constant mean power F, which is deter-
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Figure 1.1: Schematic diagram of the basic experiment.

mined with a balanced heterodyne detector. After a mean time delay corresponding
to that required for atoms to fall from the MOT to the cavity axis, the transmitted
power exhibits distinct dips associated with intracavity absorption by single atoms
falling through the resonator mode volume.

In Figure 1.2 we display several examples of the time-varying heterodyne signal
recorded after each dropping of the MOT. Each of these is representative of the traces
that can be seen in real time, on an analog oscilloscope, while the experiment is run-
ning. There is clearly a large dispersion in the magnitude of the atom-transit signals,
just as one would expect since some atoms should fall through the wings of the cavity
mode volume while others fall right through the center. Note the logarithmic verti-
cal scale on these plots—the directly recorded data has units of dBm (photocurrent
power in the resolution bandwidth) because the heterodyne signal was processed and
detected with an HP Spectrum Analyzer (see below). Thus, some of the atom-transit
signals exhibit very high contrast (~ 100:1), but one should bear in mind that the
trace “width” associated with shot noise and technical noise is not constant along the

vertical scale of the graph.
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Figure 1.2: Time-varying cavity transmission after dropping a cesium MOT.

Figure 1.3 shows a histogram of atom arrival times for a typical run of 450 trap-
drop cycles. In this run we found an average 2.5 events/drop, although the frequency
of events can be made as high as ~ 50 prominent events/drop by optimizing the size of
the MOT. The mean arrival time in the histogram is just what it should be for atoms
falling 7 mm under the influence of gravity (this distance was verified independently),
and the variance (7 ms) of the arrival-time distribution is as expected for an atomic
sample cooled to the Doppler limit. We also show a similar histogram, generated by
the same automatic event-finding routine from a data set taken with the MOT beams
blocked. The marked difference between the two histograms demonstrates that we
have very high signal-to-noise for identifying atomic transit signals in the heterodyne

photocurrent.
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Figure 1.3: Histograms of “atom” arrival times (see text).

What really got us excited about the 1996 data, however, was what we saw when
we took individual single-atom transit signals and viewed them on an expanded time
scale. Figure 1.4 shows six notable examples that we put into the Optics Letter. I
had initially expected that we would see a smooth, gaussian envelope for the indi-
vidual atom transits, but instead we saw quite a few examples with lots of internal
structure. After thinking about it a bit, it seemed possible that we might be seeing
some signature of atomic motion relative to the standing-wave structure of the cavity
eigenmode. Since the two mirrors of the Fabry-Perot cavity resonator present re-
flecting boundary conditions for the intracavity field, the distribution of electric field
between them is a standing wave and correspondingly has nodes and anti-nodes at

a spacing of one-fourth the optical wavelength. If the atom happens to drift onto
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a node while it falls through the cavity, it temporarily decouples from the field. So
at those moments in time, we would expect the cavity transmission to come all the
way back up to the empty-cavity level. From the geometry of the cavity and MOT,
one can estimate that the average velocity of an atom along the cavity standing wave
should be ~ 1 ¢cm/s as it enters the cavity mode volume. Again from geometry, we
inferred that it should therefore coast over five or six periods of the standing wave
within its vertical transit time. That seemed consistent with the frequency of the
oscillations seen within individual transit signals, although it was also clear that we
were bandwidth-limited. The overall width of each transit signal is approximately 250
s, and the timescale for the major features was around 20 — 30 us. Our digitization

rate back in those days was only 500 kHz.

If it were really true that we could resolve atomic motion relative to the intracavity
standing wave, over timescales on the order of 100 us, we thought that we should really
be at the Standard Quantum Limit for monitoring the position of a free mass [28, 5].

Taking the standard expression,

| h
ACESQL = ﬁ ~ 150nm, (19)

where 7 = 100 us is the measurement “interval” and m is the particle (here atomic)
mass. The distance associated with oscillations in the signal due to motion over the
standing wave, for comparison, would be A\/4 ~ 213 nm. One should be careful to
note, however, that the above expression is really derived for a scenario with two
discrete measurements of the atom’s position, separated in time by an interval 7.
Our measurements, on the other hand, seemed to be nearly continuous in nature. So
we weren’t exactly sure what to say about the potential significance of our measure-
ments, but it certainly seemed imperative to get back in the lab and clarify what
we were seeing. Dimensionally, Azggr, is the only fundamental length scale you can

come up with for quantum measurements of position, so we had faith that something

interesting must happen if you could get down to that level.

In terms of the experiment, it was immediately clear that two things had to hap-
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pen. First, we had to obtain much higher analogue bandwidth and digital sampling
rate to gain some reserve between the standing-wave oscillations and the Nyquist fre-
quency. Second, we needed to find a better way to stabilize the cavity length, because
our initial scheme required us to dither the cavity length at a frequency ~ 80 — 100
kHz in order to obtain a lock-in error signal. It was not inconceivable that this dither
was responsible for at least some of the structure we saw in our early data. Soon after
we set about these two tasks, however, it also became clear that had a more funda-
mental problem in the form of heating of the atomic motion. Because we drove the
cavity with a probe beam at the atomic resonance frequency, any given atom would
absorb and emit roughly 2000 photons during the time it took to fall through the
cavity. Hence, even if it entered the top of the mode volume with a velocity ~ 1 cm/s
along the standing wave, it could quickly be kicked up to 1 m/s or greater. The real
severity of this problem was pointed out to us by Andrew Doherty, a theory student
of Dan Walls at the University of Auckland, who visited our group for several months
in order to initiate collaborative work that continues to this day. When the atomic
velocities along the standing wave exceeded even 10 cm/s, the resulting oscillations
in the heterodyne signal moved above the passband of the anti-aliasing filters we had
to apply to the photocurrent [29].

Prior to our experiment
lished a numerical simulation in which they showed that one should be able to track
atomic motion in a cavity by detuning the probe beam far from atomic resonance,
and by measuring the phase of the light transmitted through the cavity. Encouraged
by this result, we decided that we would just have to learn to make high-bandwidth,
shot-noise-limited optical phase measurements and repeat the falling atoms experi-
ment with a far-detuned probe beam. This was to be done in conjunction with some
general upgrade of the apparatus in terms of our signal bandwidth and the cavity
locking scheme. Little did we know what we were getting ourselves into.

In addition to these experimental travails, there was the unresolved interpreta-
tional matter of what exactly the quantity Azgg; was supposed to signify in the

context of “continuous” position measurements. Some theoretical work had been
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done for the special case of narrowband AC position measurements on a damped
harmonic oscillator well above its natural frequency, but we were really aiming at
broadband measurements with sensitivity over nearly two decades of frequency (from
the inverse transit time ~ 4 kHz to our eventual 6 dB bandwidth of 300 kHz). So
it seemed that we needed to spend some time thinking about quantum measurement
theory as it applied to the experiment, in addition to working on technical upgrades

in the lab.

That was the general situation two years ago, which brings us basically up to the

period that I have documented in this thesis.

1.3 Results: continuous observation of single-atom

dynamics

As of the writing of this thesis, I am fairly well satisfied that the outstanding issues
raised by our initial data of 1996 have now been resolved. Equation (1.9) is not the
right way to think about quantum limits to broadband position measurement, and
I believe that the real story is as described in the first section of Chapter 4. My
essential conclusion from
experiment with a sincere ambition to do precision measurement, in the sense that
nothing much of real scientific interest can be said about the data unless we manage

to suppress all sources of excess technical noise and reach the fundamental quantum
limits of measurement sensitivity.

In our actual experiment we do now reach the fundamental sensitivity set by het-
erodyne shot noise, although a further factor of v/3 could in principle be gained by
improving the photodetection efficiency. Chapter 2 provides a detailed technical eval-
uation of the substantial improvements we have made on the experimental apparatus,
and discusses the new data that we have obtained for monitoring atom transits with a
detuned probe beam. I also discuss my final views on resolving atomic motion relative

to the intracavity standing wave, which are essentially that we now have the sensitiv-
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ity and bandwidth to do so but suffer from a sort of “confusion limit” in which the
signals we need to see are buried in background contributions from transverse atomic
motion and/or optical pumping among atomic Zeeman states. Chapter 3 fills in some
technical details that were omitted from Chapter 2, and also discusses some of the
things that we tried to do early on and the reasons why we had to abandon them.

Getting back to the subject discussed in the first section of this chapter, I now
consider the real significance of Standard Quantum Limits in broadband measurement
scenarios to be the fact that they set a concrete benchmark that must be reached
before one can really talk about doing experiments on conditional quantum dynamics.
It seems that we have very nearly reached such a benchmark in our most recent
experimental work, so in section 2 of Chapter 4 and in Appendix B I have included
some thoughts on the kinds of things we should be setting our sights on for the next

round of experimentation.
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Figure 1.4: Six examples of transit signals associated with the passage of individual
atoms through the optical cavity. The data are normalized and taken with the same
parameters as Figure 1.2 except that F, corresponds to 3 intracavity photons.
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Chapter 2 Full observation of

single-atom dynamics in cavity QED

Optical cavity quantum electrodynamics (QED) in the strong coupling regime [22]
provides a truly unique experimental paradigm for real-time observation of quantum
dynamical processes at the single-atom level. Spectacular advances have certainly
been made in the preparation and tomography of quantum states of motion for a
single trapped ion [33, 34], but all such experiments have involved the gradual accu-
mulation of ensemble-averaged data over many successive realizations of the process
being studied. Recent studies of single-molecule dynamics have likewise demonstrated
the “immediate” detection of photochemical [31] or conformational [32] events, but
I would stress that such experiments presently lack the potential that cavity QED
provides for observing quantum processes on a timescale that makes coherent con-
trol/intervention a tangible possibility.

Real-time observation of quantum dynamics has recently been achieved in many-
atom systems, in experiments on the vibrational excitations of a trapped Bose-
Einstein condensate [35] and on the decay of coherent oscillations of an ensemble
of atoms in an optical lattice [36, 37]. In contrast to programs like these, for which
the scientific emphasis lies mainly on noninvasive observation of a system’s intrin-
sic dynamical processes, experiments in single-atom cavity QED hold great potential
for enabling the development and validation of a quantitative understanding of ex-
actly how measurement backaction alters the dynamical behavior of a continuously-
observed open quantum system [38, 4]. A theoretical basis for this endeavor is
presently maturing in the context of quantum trajectory formalisms [8, 7, 39, 13],
but some significant technical challenges remain to be solved before definitive exper-
iments can be performed in the lab. In the past two years we have managed to make

substantial progress on this front, so I hope that it will not be too much longer before
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we can begin to perform quantitative tests of measurement-based stochastic Master
equations, and perhaps even to implement some recently-proposed “applications” for
the continuous observation of dissipative quantum dynamics [40, 10, 41, 42, 14, 17].

In this chapter I focus on a detailed description of recent experiments in which we
have used broadband heterodyne spectroscopy to record the complete time-evolution
of interaction energy between one atom and a high-finesse optical cavity, during indi-
vidual scattering events of ~ 250 pus duration. The instantaneous value of this energy
depends on both the atomic position and (Zeeman) internal state, with variations
in time caused predominantly by atomic motion through the spatial structure of the
cavity eigenmode. Our measurements have been conducted in a regime of strong but
dispersive atom-cavity coupling, ensuring that dynamical variations of the interaction
energy remain within the shot-noise-limited detection bandwidth. With characteristic
atom-cavity interaction energies Fiy /i ~ 10 MHz, we achieve measurement sensitiv-
ities ~ 3 kHz/+/Hz over a bandwidth that covers the dominant rates of variation in
Eint.

Unlike typical pump-probe measurements of scattering dynamics in real (e.g., di-
atomic) molecular systems [43, 44], our experiments on the Jaynes-Cummings molecule

yield a continuous time-domain record of the atom-cavity coupling during each indi-

d

rariations caused
through the spatial structure of the cavity eigenmode and/or optical pumping among

the atomic internal (Zeeman) states. In certain parameter regimes of the detuning

and cavity driving strength, distinctive indications of the quantum-mechanical na-

ture of the atom-cavity coupling can be seen in the photocurrent recorded from just

a single atomic transit.

Because of the standing-wave spatial structure of the cavity eigenmode and the
corresponding rapid variation of the atom-cavity coupling strength over sub-wavelength
distances, our data should display a sensitivity of 107'° m//Hz to atomic displace-
ments along the cavity axis. Unfortunately, we cannot realize this figure as a precision
for monitoring the atomic position, as we do not presently have any means of sepa-

rating signal variations due to motion through the standing wave from “background”



19
contributions due to transverse motion or optical pumping. In the final section of this
chapter, I shall discuss the motivation for further work to disambiguate the nature of

rapid variations in the observed signals.

2.1 Basic theoretical description

In simple terms, our experimental procedure is to drop a cloud of cold Cesium atoms
from a magnetooptic trap (MOT) into a high-finesse optical cavity, while continu-
ously monitoring the cavity’s complex susceptibility with a weak probe laser [26, 45].
By limiting the number of atoms in the initial cloud, we can easily reach an operat-
ing regime in which atoms transit the cavity only one at a time. Using broadband
heterodyne detection and a high-speed digitizer, we continuously record both the
amplitude and phase of the transmitted probe beam during ~ 50 ms time windows.
Each window typically contains from zero to five atom transit signals.

The elementary theoretical description of such a measurement employs steady-
state solutions of the nonselective Master Equation for a stationary two-level atom
coupled to a single electromagnetic mode via the Jaynes-Cummings interaction Hamil-
tonian. In this treatment, optical pumping among Zeeman states and atomic center-
of-mass motion can only be included at the level of a time-dependent atom-cavity
coupling strength. Although this type of approach cannot make predictions about
dynamical variations in the coupling strength, it provides at least a “first-order” basis
for interpreting some time-independent features of our data.

If we let p denote the density operator for the joint state of the atom and cavity,
the nonselective Master equation (in the electric dipole and rotating-wave approxi-

mations) reads:

p = % [FJO, p] + . (2605 — 5t6p — po'6)
+ (K + Ko + Ke) (2apa’ — a'ap — alap), (2.1)
Hy = 10a'a+ hA6'6 + 2k, (a+ a') + Hin, (2.2)

Hy = hgoe )% cos (kyz) [a6t + af6] . (2.3)
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Here ~y, is the atomic dipole decay rate, x, is the cavity field decay rate through the
input mirror, r; is the cavity field decay rate through the output mirror, %, is the
cavity field decay rate due to intracavity scattering/absorption losses, A = v, — v, is
the atom-probe detuning, © = v, — v, is the cavity-probe detuning, and the coupling
strength ¢o is equal to half the maximum single-photon Rabi frequency. We treat
the atomic center-of-mass coordinates x,y, z as c-number parameters, with the z-
axis coinciding with the cavity axis and z parallel to gravity. We have written the
Master Equation in a frame rotating at the drive frequency, so £ is a constant term

proportional to the complex amplitude of the driving field.

To find the steady-state density operator as a function of driving strength and
various detunings, we simply set p,; = 0 and solve for p,s using linear algebra. The
expected amplitude and phase of the heterodyne photocurrent may then be computed
as [46, 7]

Ginee (1)) = 1y *V/2rm exp [i (Ut + 61)] T [pssil] (2.4)

where 7 represents the overall photodetection efficiency (including propagation losses
between the cavity and photodetectors, heterodyne efficiency, and detector quantum
efficiency), fr and ¢ represent the photon flux and phase of the (optical) local os-
cillator, and € is the frequency of the optical local oscillator relative to the rotating
frame (cavity driving field). In the experiment, we mix i (f) with an rf local oscil-
lator at the frequency Q (which ranges between 40 and 190 MHz) and separately
record the in-phase and quadrature components of the slowly-varying envelope (with

an analogue bandwidth of 300 kHz).

This system can also be treated semiclassically, using the optical bistability state
equation (OBSE) [47]. The OBSE is traditionally written in terms of the scaled
field variables z and y (not to be confused with the atomic coordinates), with the

correspondence

@ V2kqE
(/fa, + "ib) \/TrTO,

where the saturation photon number my is given (for a gaussian, standing-wave cavity

il

(2.5)

2
mode) by %ZQL—. For a given driving strength £, the expected intracavity field amplitude
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can be found by inverting the equation

B 20 9209
y“x<1+1+52+332+21+52+x2>’ (2:6)

where we again work in a rotating frame at the drive frequency, ¢ = (w, — wp) /7L
represents the scaled atom-probe detuning, ¢ = (w. — w,) / (ke + ks + Kc) represents

the scaled cavity-probe detuning, and the “cooperativity” C' is defined by

2
C J . (2.7)
2 (Kq + b + Ke) YL

Note that the dependence of g here on atomic position and internal state is implicit.
A semiclassical prediction for the heterodyne photocurrent is obtained by substituting

z+/myg for Tr [pssa) in equation (2.4).

Although I won’t actually make use of the equation below, I would like to note that
it should be possible to write a comprehensive quantum theory for the measurements
we perform. The selective evolution of the atom-cavity state should follow a Stochastic
Master Equation (SME) for continuous heterodyne measurement of the cavity leakage
field, as described in [7, 39]. To account for departures from the ideal scenario of a
two-level atom and single field mo
for the full manifold of Zeeman states in the Cesium D2 (F' = 4 — F' = 5) system,
quantize the atomic center-of-mass degrees of freedom, and deal with non-degeneracy

of polarization eigenmodes in the cavity. In its un-normalized form, I believe that

such an SME should read

d _ —7 T~ SN P
%pc = 'ﬁ- [H(); pc} - YL (ETEtotpc - pczzotztot)
+ 27, Z /du/\/’E(u)e‘ikL“'figﬁciieikL“'f"

e=0,%1
9556l —ala s _ 5ol
Ko | 202Pc09 — QG20 — P02
K1 (2<&1>cﬁc&i +2(al) a1 pe — aanpe — ﬁc&’{dl)

+ VI (pale — i) + 2min el €] (2.8)



22

A2

~ p ~ -~
Hy = 2—+HOll, +B. (1103 + 13
+ hAala + & (dl -+ a{)
+ hAsalas + & (5@ + a;) + Hi, (2.9)
I, = hgoe”(ﬁ2+22)/“’2 cos (kpz) [&_iil +aly,
+ ay Xt +aly, ], (2.10)
¥, = Z lg,m){e,m+¢|-C(4,m|l,e]5,m+¢), (2.11)
m=—4
Yot = 3. (2.12)
e=0,%

Note that I have not maintained a distinction between cavity losses associated with
the input mirror, output mirror, and intracavity absorption/scattering. Here £dt
is a complex Wiener increment [7], NV, (u) denotes the angular distribution for e-
polarized spontaneous emission [48], I, is a projector into the atomic excited-state
manifold, ng g and pede are total magnetic-moment operators for the atomic ground
and excited levels, B is the ambient magnetic field, and the C are relative weights for

the various Zeeman transitions [49]. We account for cavity birefringence by defining

()= 2)(0). 219

\a+/ \ef o J \a2)/

where the matrix of coefficients is the transpose of that which defines the transfor-
mation from the circular-polarization unit vectors (in the y, z-plane) to the cavity
eigenpolarizations. The driving fields &£; 5 are similarly defined. One further refine-
ment should be made to account for imperfect photodetection efficiency, but I refer

the reader to reference [7] for details.

2.2 Experimental apparatus and procedures

Figure 2.1 provides a general overview of the apparatus, indicating the schematic

arrangement of various components to be described below. The diode laser setup for
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forming the Cs MOT is not shown.

2.2.1 High-finesse microcavity

We use a Fabry-Perot high-finesse microcavity (“physics cavity”) consisting of two
spherical mirrors with 1 m radius of curvature [50]. The cavity was constructed with a
mean length [ ~ 107.5 pum, which we inferred from the cavity’s measured free spectral
range of 1.395x% 102 Hz. The measured [ and specified radii of curvature geometrically
determine the cavity’s electromagnetic mode volume for TEMy; modes near 852 nm
[51, 18]. Together with the dipole decay rate v./2m ~ 2.6 MHz for the Cs 6P3
level [52], this determines our optimal coupling constant go/2m to be ~ 11 MHz for
o+ transistions (specifically the 652 (F =4, mp = £4) — 6Py (F = 5, mp = £5))
and =~ 6 MHz for 7 transitions (6512 (F =4, mp =0) — 6P32 (I' =5,mp = 0))
within the D2 Zeeman manifold [22].

In order to maintain a reasonable opening between the edges of the mirror sub-
strates with this small [, we asked the mirror manufacturer to reduce the substrate
diameters from the standard value of 7.75 mm down to 3 mm. This machining was
done after the substrates had been superpolished and coated, but this process did not

seem significantly to degrade the mirror quality. The nominal combined trai

181111581011
and loss per mirror, before machining, was 1.5 x 107°. Direct measurements of the
cavity finesse yield F ~ 217,000 at an optical wavelength of 852.36 nm, consistent
with a combined mirror transmission and loss 7% ~ 1.45 x 107°. This value of T* is

inferred from the measured value of / and the measured cavity HWHM /27 >~ 3.21
MHz.

The cavity used throughout the work described in this paper suffers from a rather
pronounced birefringence, which for TEMyg modes near 852 nm induced a splitting of
842 MHz between linearly-polarized eigenmodes. It is not entirely clear whether this
birefrigence is a result of the substrate machining for diameter-reduction, a property
of the coatings, or something associated with the mirror-mounting procedure used

for this particular cavity. We note that recent efforts by other members of our group
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[45] have produced a cavity of approximately the same finesse with greatly-reduced
birefringence, with mirrors from a different coating run and with great care taken to

minimize cavity misalignments and stress on the mirror substrates.

Our two mirror substrates are mounted in vee-grooves atop independent aluminum
blocks, with a piezoelectric actuator between the blocks for active servo-control of the
mirror separation (cavity length). The cavity mount sits on a stack of alternating
OFHC copper blocks and viton o-rings for passive vibration isolation, all within an
ion-pumped vacuum chamber whose background pressure was typically ~ 107® torr
(inferred from the ion pump current). In order to bring the MOT as close as possible to
the central axis of the physics cavity, we had to use a rather open (and non-magnetic)
mount design, leading to some compromises in the way of mechanical stability. Sitting
on the vibration-isolation stack and under vacuum, we found that the native noise
spectrum of the cavity length extended out to about 4 kHz, with one prominent
resonance at 50 Hz (which we attribute to a transmission resonance of the isolation
stack). Due to a set of PZT-actuator resonances above 10 kHz, we have ultimately

been limited to a unity-gain bandwidth ~ 1 kHz for the cavity stabilization servo.

2.2.2 Laser and cavity locking schemes

Although the principle aim for this experiment is to stabilize the cavity length at
some precise offset (A —©)/27 ~ 0 — 100 MHz from the Cs D2 resonance at 852.359
nm, the strong atom-cavity coupling places severe restrictions on the optical power
that can be used for the purpose of generating an error signal. On resonance, the
saturation intracavity photon number for our cavity is my = 3v?% /4¢3 ~ 0.1, which
sets a fiducial cavity throughput of 4wkymg ~ 1 pW. With such low optical power
it would be extremely difficult to obtain a high-quality error signal for locking the
physics cavity. Other experiments performed in our group have circumvented this
problem by using a chopped locking scheme, in which a strong “lock beam” alternates
with a weak “probe beam” at 50% duty cycle and ~ 1 —4 kHz frequency [24, 26, 45].

However, such a strategy inherently limits the servo unity-gain bandwidths to ~ 100
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Hz at best, and would not be appropriate for future experiments with atoms trapped
inside the cavity for long periods of time.

In this work we have developed an alternative locking scheme for the physics
cavity, which employs an auxilliary diode laser at 836 nm to monitor the cavity length
on a different longitudinal mode than that which couples strongly to intracavity Cs
atoms. We use a commercial grating-stabilized diode produced by New Focus (Santa
Clara, California). With a 16 nm detuning, we can send ~ 10 nW through the
cavity and incur an AC Stark shift of only ~ 15 kHz. Using an EG&G avalanche-
photodiode/transimpedance amplifier module (model C30998) for AC detection of
transmitted 836 nm light, we obtain an FM error signal (modulation frequency 3.8
MHz) with signal-to-noise ratio (SNR) ~ 20 at 30 kHz bandwidth.

The 836 nm diode laser is stabilized to an auxilliary “transfer cavity,” which
consists of a pair of 25 cm radius-of-curvature mirrors at ~ 16 cm separation. One of
the mirrors is mounted on a piezoelectric actuator to allow cancellation of DC drift
and low-frequency noise. The transfer cavity has a linewidth ~ 100 kHz at both 836
nm and 852 nm, with an overall mode spacing ~ 300 MHz. The transfer cavity is
also used for pre-stabilization of the Ti:Sapphire laser, and some of the Ti:Sapphire
light is used in a Cs modulation-transfer spectrometer [53] to provide an absolute
reference for feedback to the trans o run we used one or
two acoustooptic modulators to offset the Ti:Sapphire/transfer-cavity lock point by
+140, +87, or +43 MHz relative to the Cs 651 2(F = 4) — 6P3/2(F' = 5) transition.

By comparison of the Ti:Sapphire and diode laser error signals in their respective
locks to the transfer cavity, we infer that the relative rms jitter between them is < 10
kHz. For both laser locks we use the Pound-Drever-Hall technique [54] of detecting
an FM signal in reflection from the tranfser cavity. The stability of the transfer
cavity resonances with respect to atomic Cs lines in a vapor cell was such that we did
not see any relative jitter beyond the measurement noise in our modulation-transfer
spectrometer (SNR ~ 50 : 1 in 30 kHz bandwidth).

The Ti:Sapphire stabilization employs two feedback loops, one with ~ 10 kHz
bandwidth to the tweeter inside the ring laser and another with ~ 100 kHz bandwidth
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to a VCO-driven, double-passed acoustooptic modulator (AOM) just outside the laser
cavity [55, 56]. The mean frequency of the AOM is 76 MHz, and the error signal going
to the VCO has a lower cutoff of ~ 10 kHz to prevent DC drifts. We note that use
of the AOM is crucial for achieving high stability of the Ti:Sapphire frequency. The
diode laser lock also uses two loops, with one providing integral gain via feedback to
the grating PZT and another providing proportional gain out to ~ 1 MHz via direct
modulation of current going to the diode laser.

Having locked both the diode laser and Ti:Sapphire to modes of the transfer
cavity, which itself is locked to Cs, we use a travelling-wave electrooptic modulator
to generate an rf sideband of the diode laser at Afy ~ 200 — 500 MHz. Either the
upper or lower sideband is used to derive an FM error signal for locking the physics
cavity by dithering Afy at 3.8 MHz. This allows us to achieve arbitrary placement
of the physics cavity mode near 852 nm, using the tunability of f;.

2.2.3 Evaluation of the physics-cavity servo

Our basic requirement for the quality of the physics-cavity servo was that relative

jitter of the cavity resonance and the probe laser frequency should not contribute a

parison to make is between the noise in both quadratures of a demodulated beatnote
and the photocurrent fluctuations produced by the local oscillator alone. Figure 2.2
shows three traces of quadrature amplitude versus time: the local oscillator alone
(BOT), the phase quadrature of a beatnote produced by light transmitted through
the cavity (MID), and the amplitude quadrature of light transmitted through the cav-
ity (TOP). The data were filtered down to a bandwidth of approximately 200 kHz.
At this bandwidth, the standard deviations of the phase and amplitude quadratures
of the transmitted probe beam were respectively 1.01 and 1.39, relative to that of the
local oscillator alone (over the 10 ms time-window shown in the figure).

Figure 2.3 shows the power spectra of noise in the quadrature amplitudes of light

transmitted through the cavity. Starting from the bottom, the three subplots show
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the spectrum recorded with a probe power that increases in 4 dB increments. The
optical local oscillator power was 1 mW per photodetector, and the bottom trace
shows the probe power level corresponding to (m) = 1.5 photons in an empty cavity.
One can clearly see the noise peaks carried by the probe beam rising up out of a
flat background of shot noise, or at least noise carried by the optical local oscillator
(see below). The most prominent features in the noise spectrum are the set of peaks
between 10 and 14 kHz (~ 0.06fyy,), a large peak near 32 kHz (~ 0.16fn,,), and
another large peak near 54 kHz (~ 0.27fy,,). One might ask whether these are
contributed mainly by vibrations of the physics cavity, or by frequency noise on
the Ti:Sapph. I think there is strong evidence for the former. First off, one sees
conspicuous features at both 10 and 14 kHz in my initial measurement of the physics
cavity transfer function. For the measured Ti:Sapph closed-loop noise spectrum,
however, things are quiet in that range, and it would look as if the tweeter resonances
at 17-20 kHz should really be the first things to show. Next, the same set of major
peaks shows up in the noise spectrum of the locking-diode/physics cavity error signal
(Figure 2.4). By taking some simultaneous recordings of the error signal and phase
quadrature amplitude, I found that the Fourier signals at these frequencies are in
fact phase coherent. This actually implies that one can subtract a bandpass-filtered
version of the simultaneously recorded error si
suppress the 10 and 14 kHz noise peaks. I found that a two-fold reduction of the
power in these peaks can be accomplished, but even this turns out to have a small

enough effect on the overall noise variance that it’s not really worth the trouble.

Another benefit of having taken simultaneous recordings of the heterodyne pho-
tocurrent and physics-cavity error signal was the opportunity to verify directly that

the atomic transits don’t effect the physics cavity servo.

2.2.4 Cesium MOT

To provide a source of cold Cs atoms, we used a standard magnetooptic trap loaded

directly from a thermal beam [57]. Our choice of thermal-beam loading, as opposed
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Figure 2.2: Examples of demodulated signals from the local oscillator alone (BOT),
the phase quadrature of a transmitted probe beam (MID), and the amplitude quadra-

ture of a transmitted probe beam (TOP). The latter two traces were recorded simul-
taneously.
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Figure 2.4: Power spectrum of noise on physics cavity error signal.



31

To heterodyne m' \
detectors < \
COVlTy mlrrors

l\/IOT cons

Probe beam
(from Ti:S)

Figure 2.5: Geometrical arrangement of the MOT beams, relative to the physics
cavity (drawing not to scale). The mirror substrates are each 3 mm in diameter and
4 mm long. The MOT forms at a height of ~ 7 mm above the cavity axis.

to loading from a background vapor, was driven by an attempt to prevent accidental
coating of the physics cavity mirrors with Cs. In more than two years of service, we
did not detect any significant (> 5%) change in the cavity finesse. Pre-cooling of the
Cs beam was not necessary for this experiment, as we required only a very low rate
of delivering single cold atoms into the cavity mode volume. Our MOT employs a
six-beam configuration, and we orient the anti-Helmholtz coils for the trap so that
their symmetry axis is parallel to that of the optical cavity. This leads to a MOT laser
beam geometry with one beam axis running parallel to and just above the cavity, plus

two beam axes in the plane of the mirror surfaces (Figure 2.5).

The light for the MOT was provided by a pair of grating-stabilized diode lasers
(SDL 5421-G2), one tuned to the Cs 6S1/2(F = 4) —6P3/2(F' = 5) cycling transition
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for trapping and the other to 6Sy2(F = 3) —6P3),(F" = 4) for repumping. The
trapping beams were ~ 1 cm diameter with anywhere from 40 pW to 4 mW of
power, depending on how many atoms we were trying to send into the physics cavity.
We typically used a Cs reservoir temperature of 60-80 C for the thermal beam, which
effused through a 200 u pinhole and travelled an overall distance of ~ 60 cm to the
trapping region (with a cold mechanical collimator in the way to reduce loading of
the ion pump). With an anti-Helmholtz field of around 25 G/cm, we could load up to
~ 2 x 10% atoms into a millimeter-sized cloud, whose mean temperature we estimate
to be ~ 100 pK based on fluorescent imaging of free expansion (Figure 2.6) and on the
spread in arrival times of individual atoms falling into the cavity (Figure 1.3). For the
MOT-expansion measurement, snapshots of the atom cloud were taken at successive
time delays using a gated intensified CCD camera and PC-based frame grabber. An
acousto-optic modulator was used to produce brief (~ 1us) pulses of diode laser light
to excite the atoms, with the ~ 100 ns wide gate for the CCD intensifier synchronized

to the leading edge of the light pulse.

When running the experiment we would load the MOT for about 0.5 s, then drop it
by quickly turning off the trapping beams with an AOM (using an rf switch with ~ 45
dB attenuation). After the trapping beams are thus extinguished, we ramp down the
anti-Helmholtz field according to an RC-filtered step with ~ 4 ms time constant. The
repumping beam was left on all the time, so that falling atoms would be shelved in the
F' = 4 ground hyperfine level before entering the cavity. No specific preparation was
performed with respect to the atomic Zeeman states. Dropping ~ 2 x 10° atoms we
would generally see 30-50 atoms falling through the central part of the cavity mode
volume, so for single-atom transit data we had to reduce the trapping beam power
by a factor of 100 to reach 0-2 atoms per drop. The overall repetition rate for the
trap-drop cycle is typically 0.6 Hz.
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Figure 2.6: Estimate of initial MOT temperature based on rate of free expansion.

2.2.5 Probe generation and photodetection

We use a balanced super-heterodyne setup in order to achieve high-efficiency, zero-
background photodetection of ~ pW levels of 852 nm light transmitted through the
physics cavity. The frequency difference between cavity probe light and the optical
local oscillator for heterodyne detection was between 40-190 MHz, depending upon
our choice for the atom-probe detuning. The probe light was generated from the
Ti:Sapphire output by cascading a +200 MHz AOM and a tunable travelling-wave
electrooptic modulator, which was driven between -245 MHz and -440 MHz to produce
the desired atom-probe detuning. This indirect method was required to prevent
contamination of the photocurrent by electronic noise at the heterodyne frequency.
Light leaving the physics cavity first hits a color-separation mirror which reflects
> 99% of the 852 nm light but transmits ~ 30% of the 836 nm light, allowing us to

recover an error signal for locking the physics cavity (see above) without compromising

the overall detection efficiency for the probe field. Residual 836 nm light going to
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the heterodyne setup amounts to only ~ 30 nW and has a negligible effect on the
photocurrent of interest.

The local oscillator (LO) for the optical heterodyne is spatially cleaned by a F ~
1000 Fabry-Perot cavity (linewidth ~ 1 MHz), which also serves to strip off spectral
noise at 76 MHz associated with the AOM servo for stabilization of the Ti:Sapphire
frequency. The cleaning cavity is locked using the Pound-Drever-Hall method [54]
with FM sidebands at 24 MHz, which likewise must be kept weak in order not to
saturate the AC gain of the heterodyne photodetectors. We use a total of ~ 2 mW in
the LO, which generates a shot-noise level ~ 5 dB above the electronic noise of the
photodetectors in the frequency range of interest.

Our photodetectors incorporate Hammamatsu S5972 Silicon PIN-diodes (Q.E.
~ 70%), and a Signetics NE5211 transimpedance amplifier as the first rf gain stage.
While this design achieved high sensitivity over nearly 300 MHz bandwidth, great
care had to be taken to surpress self-oscillations. It appears that the additional
circuitry required by such complications led to slight differences in the roll-off of one
detector relative to the other, making broadband balancing of the heterodyne rather
difficult. We can achieve ~ 20 dB balancing in narrow bandwidths, however, as

measured by the cancellation of sinusoidal amplitude modulation applied directly to

not an important issue because the frequency was so high—the main importance of
balancing was to prevent loss of heterodyne efficiency due to amplitude/phase errors
in the subtraction of the two photocurrents.

The difference photocurrent from the balanced heterodyne detectors was amplified
up to -50 dBm or higher, then divided by a 0° rf splitter. An independent signal
generator was used to produce an rf local oscillator at the heterodyne frequency, and
it was halved using a 90° rf splitter. The two identical copies of the photocurrent were
mixed with the in-phase and quadrature copies of the rf LO to produce an orthogonal
pair of quadrature amplitude (QA) signals at baseband. The QA signals were further
amplified, and passed through 300 kHz analog filters with a roll-off of 12 dB/octave.
We used a 12-bit ADC to sample both QA’s simultaneously at a rate of 10 MHz per
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channel, which is sufficiently high to avoid signal aliasing completely. Following each
drop of the trap, we continuously recorded both QA’s for a data acquisition window
of 50 ms and streamed the data to a hard drive for offline processing following the

experimental run.

Ideally, we would like the data acquisition procedure just described to yield directly
the amplitude and phase quadrature amplitudes of light transmitted through the
cavity. If we write the transmitted optical field as A(¢)e™*r', where A(¢) is a slowly-
varying complex amplitude, the amplitude z, and phase z, quadrature-amplitudes
are defined by A = z, + iz,. With respect to the quantum-mechanical theory of the
Master Equation (2.3), A « (@). Note that I am defining A to have zero phase when
the cavity is empty, so that z, should have zero mean when there are no intracavity

atoms.

Given the way that we generate the probe beam, however, we have no way of
generating a phase-locked rf local oscillator to recover z, and z, directly. The phase
of the heterodyne photocurrent differs from the phase that the light has just after it
leaves the cavity because of fluctuations in the optical path length from the cavity to
the photodetectors. So the in-phase and quadrature signals produced by mixing the
photocurrent with our rf local oscillator correspond to an orthognal, but rotated pair

of quadrature amplitudes z;, x:

<a71> <cosq§ —sin¢> (xa>
= . (2.14)
T sing  cos¢ Tp

Luckily, the characteristic timescales for fluctuations in the phase ¢ are quite long
(~ 10 — 100 ms, corresponding to acoustic disturbances) compared to the 250 us
duration of an individual atom-transit signal. In processing the recorded data to
produce the plots discussed below, I have therefore used an “adaptive” definition of
the amplitude and phase quadrature amplitudes. Within a window of 2 ms preceding
the signal of interest, I estimate the instantaneous value of ¢ by determining the
rotation of 1,z that produces one quadrature z,, with zero mean and one quadrature

Z, with positive mean. Then Z, is operationally defined to be the phase quadrature,
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and Z, is the amplitude quadrature.

2.3 Determination of intracavity photon number

In order to make quantitative comparisons between data and theory, we need to
calibrate the strength of the driving field used in each experimental run. As we will
ultimately choose to ignore DC optical phases, the relevant quantity for us will be the
number of photons (m) that builds up when the cavity is empty. This corresponds
t0 264 |E[%/ (Ko + kb + £)” in the Master Equation case and |y|?/my for the OBSE.
Our strategy for determining the intracavity photon number during experimental
runs has been to work backwards from the heterodyne photocurrent observed with

no atoms in the cavity, using the expression [46]

<§]\;>m = 2T (2k4(m)) (2.15)

where S is the peak amplitude of a demodulated quadrature amplitude signal (i.e.
the heterodyne photocurrent looks like S cos(wt+ ¢), N is the mean-squared power of
fluctuations in the same signal due to (optical) shot noise, and 7" is the measurement
interval. Note that this expression is valid for a coherent signal beam, which we
assume to be the state of the light transmitted through the cavity when no atoms
are present. For an accurate calibration, we thus need to know the output mirror
transmission ky, the total cavity loss (which can be determined from measurements
of the cavity finesse), and the overall photodetection efficiency 7. In determining (m)
from the data, we typically chose T on the order of 1 ms. The following subsections

provide further detail for each critical aspect of the calibration.

2.3.1 Evaluation of local oscillator noise

Ideally, the quantity N appearing in equation (2.15) should coincide with the pho-
tocurrent noise power n observed when the signal beam is blocked. This should allow

us to determine the intracavity photon number without having to calibrate the exact
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Figure 2.7: Plot of the photocurrent noise power versus LO optical power, with no
signal beam to the heterodyne detectors.

gains of the photocurrent amplifiers, etc. But the procedure is invalid if the optical
local oscillator carries excessive technical noise, so we briefly examined the scaling of
our nominal N with the DC optical power of the LO [58]. Figure 2.7 shows several
data points of the photocurrent noise power n (300 kHz analog bandwidth) versus
LO power P. A fit of the data to the functional form n = aP +bP? yields b/a ~ 0.11
mW~!. Given our typical operating LO power of 1 mW per detector, and considering
the relative magnitudes of other uncertainties, we approximate N =~ n. Note that the
LO does pass through an intensity stabilizer with ~ 400 Hz bandwidth just before

entering the cleaning cavity.
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2.3.2 Measurement of cavity decay rates

We directly determined the total cavity field decay rate s, + kp + k. by making a
calibrated measurement of the HWHM of a cavity TEMy, resonance. In order to
minimize systematic errors, we did this by using the heterodyne detectors to mon-
itor the transmitted optical power of a fixed-frequency Ti:Sapph probe beam while
scanning the cavity length. The cavity length was always under servocontrol during
the measurement, as we generated the scan by stepping the frequency of the rf going
to the travelling wave modulator for the locking diode laser. The total cavity field
decay rate is then given by the resonance HWHM measured in terms of the modu-
lator rf scan, times a correction factor of the ratio of the diode laser and Ti:Sapph
wavelengths. We find > x ~ 3.2 MHz.

As the mirrors used to construct the cavity should be identical, we assign half the
total losses to each mirror. Unfortunately, we did not manage to characterize the ratio
of intracavity losses k. to transmission losses k, + #, before we accidentally damaged
the cavity. Given that the mirror coatings we have previously received from the same
manufacturer have displayed very low scattering/absorption loss in the wavelength

range of interest [59], we have assumed x, = 1.6 MHz.

2.3.3 Measurement of n

Three principle factors determine the value of n = Ver: the spatial overlap V'V be-
tween the signal beam and the optical local oscillator, the photodetector quantum
efficiency ¢, and the (power) efficiency 7 with which we transfer light from the cavity
ouput to the photodetectors. Using an optical powermeter we measured 7 = 0.9,
as well as ¢ ~ (0.68,0.71), for our two photodetectors. We measured V ~ 0.65
by producing a DC fringe between the signal beam and the optical local oscillator,
with both beams adjusted to a power level of 1 pW. The power adjustments were
made upstream of the physics cavity and LO cleaning cavity, ensuring that no optical
misalignments were introduced in the process. We obtained an independent mea-

surement of Ve ~ 0.4 4 0.05 (where the quoted uncertainty indicates repeatability)
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from the heterodyne signal-to-noise ratio, as measured by our HP Spectrum Ana-
lyzer [18], obtained with a nominal signal power of 10 nW (measured with an optical
power-meter). Note that the reasonable agreement between this latter value and the
directly-measured Ve provides further indication that our optical local oscillator bears
minimal excess noise.

Although it could have been avoided, we did suffer one additional loss of detection
efficiency due to gain and phase imbalance in the subtraction of heterodyne photocur-
rents. Several weeks after we took the data sets shown below, we realized that one
photodetector output had an rf signal 4 dB higher than the other (this figure includes
both the deviation of our heterodyne beamsplitter from being 50/50, the difference
in photodiode quantum efficiencies, and the difference in transimpedance gains), and
a phase offset of 1 radian. If we write the two photocurrents (for a coherent signal
beam) as i; = %e‘i‘”“%fl and iy = :/—%e“i“’t+i¢+g§2 (where &; and & are uncorrelated
gaussian white noises with zero mean and unit variance), the difference photocurrent
is

o 14ge?
i = —-—\7%?-—@”” + 1+ g%, (2.16)

where £ is again a gaussian white noise process with zero mean and unit variance.
The complex imbalance ge*® should thus reduce the effective photodetection efficiency
(for the purpose of evaluating the heterodyne signal-to-noise ratio (2.15)) by

1 |1+ ge'|?
L L4 ge

2.17
9 14 g2 (2.17)

Using the measured g ~ 0.63 and ¢ ~ 0.85 rad, n — 0.8n, and we quote an overall
value of n =~ 0.32.

2.4 Numerical simulations

In order to facilitate the interpretation of our data, I wrote and ran a set of rudi-
mentary Monte Carlo routines to simulate the heterodyne signals that we should

see as atoms fall through the cavity. The codes simulate three-dimensional, classical
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center-of-mass motion of individual atoms under the influence of forces due to their
strong interactions with the cavity field. Gravity is also included in the kinematics,

but plays only a minor role over the ~ 1 ms duration of the simulations.

2.4.1 Overall scheme for the simulations

The basic scheme of the simulations is to precompute the values of the mean cavity-
induced force, the cavity-field-induced diffusion coefficient, and the steady-state (com-
plex) amplitude for the intracavity field as a function of atomic position. Hence, every
other degree of freedom in the simulation is adiabatically eliminated and slaved to
the atomic motion, which is assumed to be the slowest and the “stiffest” process in
the dynamics. The mean force and intracavity field are derived from steady-state so-
lutions of the Master Equation (2.3), and the cavity diffusion is computed using the
Quantum Regression Theorem [9]. In each timestep, the code first performs an inter-
polation on the precomputed tables of values to determine the appropriate change in
atomic momentum (which includes a stochastic increment consistent with the local
value of the diffusion constant), records an appropriate value for the cavity output

field, and then updates the atomic position and momentum. The simplest possible

timestep. I used a timestep of 7.5 ns in order to keep the run-times for the simulations
reasonable under Matlab on our Pentium II workstations, and this should have been
sufficiently small to keep the integration error below other sources of inaccuracy.
The principle shortcoming of this scheme is that it assumes the atomic velocity will
remain small enough that variations in the coupling strength g will be negligible over
timescales on the order of k= and 1. If this condition is violated, then the steady-
state values of the mean cavity force and cavity output are no longer appropriate.
Another major approximation was made in treating only a two-level atom—optical
pumping and/or the associated opto-mechanical effects (e.g., laser cooling) could cer-
tainly play an important role in determining the shapes of our observed transit signals.

A third, probably less significant approximation is that I treat the stochastic process
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associated with recoil from spontaneous-emissions as being statistically independent
from the one associated with dipole-force fluctuations. The possibility that interest-
ing effects could arise due to quantization of the atomic motion is of course ignored

as well.

Despite this substantial list of caveats, it’s not so easy to tell the simulated signals
apart from the experimental data. If we were to take this similarity at face value, it
would become very tempting to focus on certain characteristic “events” that occur
in both the numerical and experimental signals. In particular, signals of both origins
display sharp, isolated dips and steps that would seem to reflect something unusual
about the atomic motion. Looking at the simulations, such events are always associ-
ated with sudden changes in the component of atomic velocity along the cavity axis.
We'll look at some supporting examples in a moment, but let me first describe the

numerical method for computing the cavity diffusion coetlicients.

2.4.2 Computation of diffusion coeflicients

Following Doherty et al. [29], I computed the diffusion coefficient associated with
dipole-force fluctuations according to

D = lim Re /0 T (), £(t = 7))dr, (2.18)

t—o0

where f is the force operator
f=—ihVg(r) (a'6- —a6.) . (2.19)

Note that the vector nature of the force operator comes only from the gradient Vg (r).
Unlike the computation of mean forces and the expected intracavity field amplitude,
the evaluation of (2.18) requires an actual time-integration of the cavity-QED Master
Equation (2.3). Equation (2.18) is formally written as an expression in some sort of

Liouville-Heisenberg picture, in that the force operator is assigned a time dependence
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even though we're working with a dissipative system. What this really means is
(f(t),f(t — 7)) = Tr [fe" Epy, | — (£)?, (2.20)
where £ is the Liouville superoperator defined by

d
—p=2L 2.21

with reference to the cavity-QED Master Equation (2.3). Knowing the steady-state
atom-cavity density matrix py,, one can evaluate the correlation function in (2.20)
by integrating the Master Equation for a time 7 with fp,, as an initial condition,

multiplying the result by pss, and finally taking the trace.

The numerical integration was done by a C++/MPI code that I wrote for SGI/Cray
Origin-2000. T used a truncated basis of 25 Fock states for the cavity mode, using
an explicit Euler integration with a 1 ps timestep. The total integration time is sup-
posed to approximate oo in the upper limit of the integral in equation (2.18), and 5
us seemed to be more than long enough. Running on sixteen nodes, each point in the

lookup table took less than an hour to compute.

Figure 2.8 shows the results of such a calculation for the diffusion coefficient as
a function of atomic position along the standing wave, for an atom located on the
cavity axis. Recall that the cavity mode function varies as cos(krz) along the cavity
axis, and as a gaussian in the transverse dimensions. Starting from the top, the four
curves represent A = 0, 10, 30, and 50 MHz, all with a probe strength such that
an average of 2 photons would build up in the cavity if it were empty (and © = 0).
Figure 2.9 shows similar results, all for A = 50 MHz, but with an average intracavity
photon number (again in an empty cavity) of 8 for the top curve, 4 for the middle,
and 2 for the lowest. As the variation of ¢ along the standing wave is so much more
rapid than in the transverse (gaussian) directions, I approximated Vg (r) ~ dg/dx
in expression (2.18). The computation of f for the mean force field was of course

three-dimensional.
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Figure 2.8: Cavity diffusion coeflicients versus atomic position, for (from the top
curve going down) atom-probe detuning A = v, — 1, = 0, 10, 30, and 50 MHz, with
(m) = 2 photons.

Note that expression (2.18) gives the diffusion coefficient associated with dipole
force fluctuations only—it takes no account of recoils from spontaneous emission.
For the simulations, I therefore add a second diffusion process whose coefficient is

computed from the expectation value of the atomic excitation at each point in space:

hk1)?
Dyee = ( Qg) [(5.6_). (2.22)

Here I' is the atomic spontaneous emission rate (Einstein A coefficient), and the
number 1/25 comes from averaging over the angular distribution pattern for dipole

radiation.
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Figure 2.9: Cavity diffusion coefficients versus atomic position, for (from the top
curve going down) (m) = 8, 4, and 2 photons, with the atom-probe detuning A = 50
MHz.

2.4.3 Discussion of results

Figure 2.10 shows a set of simulated signals for A = 10 MHz and an average in-
tracavity photon number of (m) = 2. In each subplot, the upper trace shows the
amplitude quadrature versus time, and the lower trace (with zero mean value) shows
the phase quadrature versus time. Figure 2.11 shows similar signals for A = 50 MHz
and (m) = 4. In all simulations, the atom was started at a position 7 gaussian waists
above the cavity with a vertical velocity of -47 cm/s. The initial transverse position,
transverse velocity, position along the cavity standing-wave axis, and velocity along
the standing-wave were randomly assigned within parameter ranges that were narrow

enough to ensure that most simulated atom-drops produced a sizeable signal.

The signals in Figures 2.10 and 2.11 were produced by taking records of (a) versus ¢
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Figure 2.10: Some simulated atom-transit signals, for (m) = 2 and A = 10 MHz.

from the atomic motion simulator, adding shot noise to simulate photodetection with
an overall efficiency of 0.32 as in the experiment (see equation (2.15)), and filtering
down to a bandwidth of 200 kHz. They may directly be compared to the real data
shown in Figure 2.18, although the range of the time-axes differ. One feature common
to both the simulated and experimental signals is an occasional sharp dip, as in the
plots labeled “traj2.dat,” “traj4.dat” and “trajl5.dat” (especially in the amplitude
quadratures) at the points indicated by arrows. Similar dips can clearly be seen in the
lowest right subplot of Figure 2.18 near 3 x 10~* on the time axis, and also perhaps in
the supblot just above it. Another recurring feature is the type of sudden step that
occurs midway through the uppermost left subplot of Figure 2.11 (this time primarily
in the phase quadrature), and also in the subplot just below it. With only a small
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Figure 2.11: Some simulated atom-transit signals, for (m) =4 and A = 50 MHz.

amount of imagination, similar steps can be seen in the two lowest subplots of Figure
2.18.

As mentioned above, it’s difficult to know exactly what to make of such apparent
similarities. One can look at the actual events in the atomic motion that caused the
features to occur in the simulated data, but there’s no way to know for sure whether
similar events actually occurred in the experiment. In all fairness, however, it is rather
difficult to come up with any explicit suggestions for optical pumping processes, etc.,
that could provide an alternative explanation for the dips and steps. Although it’s

hard to quantify, such features really are endemic to the experimental data set.

Figures 2.12 through 2.15 show examples of the atomic position along the standing-

wave z and the atomic velocity along the standing-wave v, from four typical simu-
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lations. Also shown are the mean value of the phase quadrature amplitude and a
simulated signal with the appropriate amount of shot noise, both at a bandwidth
of 300 kHz and of 150 kHz in order to indicate the effects of low-pass filtering on
the qualitative features of the data. It certainly seems that the gross features of the
simulated signals are dominated by atomic motion along the standing wave, in that
the filtered versions tend to follow some “envelope” of it. The sharp dips would thus
seem to be associated with moments at which the atom starts to accelerate along the
standing wave, but does so slowly enough that the first few dips to g = 0 occur within
the detection bandwidth. Sudden steps would correspond to more rapid accelerations
such that the filtered signals go straight from full amplitude to half amplitude because

of averaging over the standing-wave oscillations.

Looking through all the simulated data, it unfortunately seems that most of the
virtual atoms are heated to sufficiently high velocities along the standing wave that
the signals would oscillate at frequencies approaching 1 MHz. This implies velocities
along the standing wave of 1 m/s or greater. Significant heating occurs even for the
parameters with smallest cavity diffusion that I looked at in the simulations, A = 50
MHz and (m) = 2. For the highest bandwidth experimental data that we have,
Fourier components in the range of 1 MHz would be attenuated by about a factor of
ten and be lost in the rms noise. The oscillations don’t seem to live in a sufficiently
narrow frequency range that they could be pulled out by a bandpass filter, either. Of
course, as discussed at the very beginning of this section, one has to doubt the real
accuracy of the simulation strategy when the virtual atoms reach such high velocities
along the standing wave. Neither does it seem that severe averaging over standing-
wave oscillations is such a common problem in the experimental data, as a reasonable
number of the observed signals seem to indicate atom-cavity couplings that reach the
maximum value of ¢ = 11 MHz with a nice, gradual envelope. Indeed, given the
~ 100 pm length of the cavity, real atoms in the experiment could only travel at 1
m/s speeds along the standing wave axis for ~ 100 us before crashing into one of the
mirrors. Figure 2.15 shows an example from the numerical simulations in which the

virtual atom manages to remain at very low velocities along the standing wave.
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Figure 2.12: Simulated atomic trajectory and corresponding heterodyne signal for
a single transit with (m) = 4 and A = 50 MHz. Here z is atomic position along
the cavity standing-wave (measured in units of the optical wavelength) and v, is the
atomic velocity along the standing-wave (measured in optical wavelengths per us).
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Figure 2.13: Simulated atomic trajectory and corresponding heterodyne signal for
a single transit with (m) = 4 and A = 50 MHz. Here z is atomic position along
the cavity standing-wave (measured in units of the optical wavelength) and v, is the
atomic velocity along the standing-wave (measured in optical wavelengths per pus).
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Figure 2.14: Simulated atomic trajectory and corresponding heterodyne signal for
a single transit with (m) = 2 and A = 30 MHz. Here z is atomic position along
the cavity standing-wave (measured in units of the optical wavelength) and v, is the
atomic velocity along the standing-wave (measured in optical wavelengths per us).
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Figure 2.15: Simulated atomic trajectory and corresponding heterodyne signal for
a single transit with (m) = 4 and A = 50 MHz. Here z is atomic position along
the cavity standing-wave (measured in units of the optical wavelength) and v, is the
atomic velocity along the standing-wave (measured in optical wavelengths per us).
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2.5 Data

Moving on to the real data, I'll start by discussing some transit signals displayed in
the same fashion as the simulations of Figures 2.10 and 2.11. The emphasis will be
on trying to identify features in the experimental data that resemble the dips and
steps we saw in the simulations. After that we’ll look at some transit data displayed
on the complex plane, for the primary purpose of making quantitative comparisons
with theory.

Note that all of the data to be shown were taken with cavity-probe detuning

O = v, — v, = 0, although the atom-probe detuning A = v, — v, varies.

2.5.1 High bandwidth single-atom transits

The basic unit of our experimental data is a continuous stream of quadrature-amplitude
values versus time, recorded for ~ 50 ms windows following each dropping of the
MOT. Several ~ 15 ms segments of such data are shown in Figure 2.16. These were
all taken with a detuning of A = 10 MHz and with a probe power such that an
average of 1.5 photons would build up in the cavity if it were empty (a situation I'll
continue to denote (m) = 1.5). One immediately notices some excess, low-frequency
technical noise in the phase quadrature (the one with zero mean value) relative to
the amplitude quadrature, but the correlation time of these fluctuations is sufficiently
long that they don’t really interfere with the atomic transit signals. The amplitude
quadrature is quite clean, and as discussed above comes very close to the shot-noise
limit for signal-to-noise ratio. I hope that the transit signals should be obvious—they
are the narrow events clustered between ~ 8 — 15 ms on the time axis, in which the
amplitude quadrature dips down and the phase quadrature comes up to meet it.
Zooming in on individual events, Figure 2.17 shows six of the largest signals from
our data of December 22, 1997. The detuning and photon number for each signal
are displayed by the y-axis. These are shown at our full analog bandwidth of 300
kHz (= -6dB point for power, implying that Fourier components of the signal at 300
kHz are attenuated by 0.5) and sampling rate of 10 MHz. The largest signals in the
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Figure 2.16: Three 15 ms segments of the recorded data.
data set tend not to have any significant internal structure of the type seen in
simulations, although one can see that the shapes of the overall signal envelopes do
vary quite a bit. The distribution of the atom-transit signal between amplitude and
phase quadratures clearly depends upon the probe detuning, as will be discussed in
greater detail below. The lowest right subplot, taken with A = 50 MHz and (m) ~ 9,
actually represents an anomalously large event for the given parameters. Its size is
slightly larger than the theoretical maximum for a single atom. We are therefore led
to suspect that this event may have been caused by two atoms, or perhaps the major
features of the signal were determined by one principle atom that happend to transit
the cavity while several others were floating through the gaussian tails of the cavity
mode. Generally speaking, we tried to keep the average atom number low enough so

that this sort of thing would be minimized, but there’s an obvious tradeoff between
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Figure 2.17: The largest atom-transit signals, shown at full bandwidth (see text).

11

obtaining isolated events and filling the hard drive with lots of empty traces. The
data segments shown in Figure 2.16 reflect about the maximum average atom number
per drop that we used in our experimental runs.

The only prominant feature to be seen in the high-bandwidth data of Figure 2.17
would seem to be the wiggles in the amplitude quadrature of the middle right subplot.
This particular set of six transit signals was selected on the basis of signal “size,” so
it may be that these are really events in which the atoms maintained low velocities
throughout their entire transits. For comparison, Figure 2.18 shows some signals that
were selected specifically because they seemed to have some internal structure or an
unusual overall envelope. Again, the detuning and photon number for each transit
signal is displayed by the y-axis. As mentioned in the discussion of the simulated

data, sharp dips and steps are seen in several of the subplots, and a very interesting
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Figure 2.18: Some single-atom transit signals selected specifically because they seem
to show some internal structure.

transition from a smooth signal to oscillations can be seen in the middle left subplot.
Of course, some of these features are not that much larger than noise events seen in

the baseline to either side of the transit signals.

The one thing I feel we can definitely conclude from these data is that our experi-
mental transit signals do achieve the signal-to-noise ratios that they should. Note that
the size of the expected transit-induced changes in the phase and quadrature ampli-
tudes is a strong function of the intracavity photon number (m). Our experimental
calibration of (m) was based on a comparison of the mean value of the amplitude
quadrature with no atoms in the cavity to the heterodyne shot noise, via equation
(2.15). This value was then used to fix £ in the Master Equation (2.3) to produce the
simulated signals shown in Figures 2.10 and 2.11. So the fact that the magnitudes
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of the observed signals match our theoretical expectations (further evidence for this
will be presented below) closes the loop on our overall characterization of 7, {m), and
the signal-to-noise ratio.

I would also say that the experimental signals really don’t seem to be undersam-
pled, in spite of what the numerical simulations seemed to suggest. Taken in con-
junction with our independent assessments of the technical noise (discussed above),
I feel these data demonstrate that we have in fact reached the shot-noise limit for

observing time-dependence of the atom-cavity coupling in individual transit events.

2.5.2 Transit phasors

I would also claim that certain aspects of the data show surprisingly good agree-
ment with theoretical predictions based on the cavity-QED Master Equation (2.3).
The agreement may be considered surprising because the equation I wrote ignores
birefringence of the physics cavity. This means in principle that intracavity atoms in-
teract strongly with two electromagnetic field modes rather than one. Also, it seems
that optical pumping and Zeeman coherences somehow conspire to make it possi-
ble for the atom-cavity coupling strength ¢ to reach its maximal value of 11 MHz,
which one would expect should only apply if we were drivin
6512 (F =4,mp =4) — 6P3)o (' = 5, mp = 5) Zeeman transition. Circular polar-
izations are not generally supported by our cavity, and the maximal ¢ that would
naively be possible for pi-transitions should be 6 MHz. By the time one includes the
effect of residual magnetic fields and two linearly-polarized cavity modes, however,
as in equation (2.12), the situation becomes very difficult to think about in familiar
terms. In principle it would be nice to try to simulate transit signals using the full

theory, but for the long term I think our efforts would better be spent getting rid of
the cavity birefringence altogether.

In Figures 2.19 through 2.21 I display single-transit data on the complex plane.
The basic idea is to “put the pen down” just as an atom enters the cavity, and then

continuously to trace out the curve of signal amplitude versus signal phase until the
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atom leaves. One can clearly identify the appropriate endpoints by looking at the
data as in Figure 2.18, and these transit phasors simply represent a way of looking at
the correlation between amplitude and phase with time removed from the picture. I
believe that this type of plot is the best format for comparisons to theory, because all
of the atomic internal (optical pumping among Zeeman states) and external (motion
through the cavity eigenmode) dynamics should be factored out. In the simplest
approximation, these two types of processes merely induce fluctuations in the atom-
cavity coupling g, which would only cause our hypothetical pen to move in and out
along a single parametric curve in the complex plane. The overall shape of this curve
should be dictated by the interaction Hamiltonian for the atom and cavity mode(s),
and is therefore quite easy to compute.

Figure 2.19 specifically shows transit phasors taken for positive, zero, and negative
detunings of the probe and cavity, relative to atomic resonance. Recall that A is
defined as the atomic frequency minus the probe frequency, so negative A means that
the probe is to the blue of atomic resonance. One clearly sees that the phase of the
atom-cavity response to an optical driving field changes sign with the detuning, as it
should. On resonance, there is no swing in the phase of the transmitted field.

In Figure 2.20, I show a set of transit phasors all taken with A = 10 MHz, but with
varying strengths of the driving field. Starting
data, the second column shows theoretical phasors based on the Master Equation
(2.3), the third column shows theory based on the semiclassical equation (2.6), and
the fourth column again shows data. I think it’s fair to say that the data show
some preference for the quantum theory over the semiclassical theory. Note that the
“width” of the points in the theory plots is not actually meant to reflect computed
variances, but rather just to make the lines more visible. The two experimental signals
shown per value of the driving field were selected from the data sets because they
were the largest signals at the given detuning and probe strength. So although we
are certainly in the low-statistics regime, I would claim that the signal selection was

relatively unbiased.

In Figure 2.21 I show a set of transit phasors taken at different probe detunings.
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A=-10 MHz, (m)=5.7 A=0 MHz, (m)=3.4 A=+10 MHz, (m)=7

Figure 2.19: Transit phasors showing the general trend from positive (A = v, — v, =
—10 MHz), to zero, to negative (A = +10) detuning of the probe frequency relative
to atomic resonance. The data were sampled at 10 MHz, with 12 bit resolution, and
then digitally filtered down to a bandwidth of 50 kHz for display.

The leftmost column shows quantum theory, and the other two show data selected in

the same fashion as for Figure 2.20. Again, [ think the agreement is quite encouraging.

2.6 Discussion: significance and future goals

My primary conclusion about this experimental work is that we have demonstrated
the ability to monitor dynamical variations in the atom-cavity coupling strength
during individual transit events, with nearly shot-noise limited sensitivity. This claim

is supported primarily by a direct comparison of the signal-to-noise ratio observed
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Figure 2.20: Transit phasors for fixed detuning A = 10 MHz, with variable probe
strength (as indicated). The data were digitially filtered down to a bandwidth of 100

kHz.

in our data with that produced in numerical simulations of the experiment. Looking
at the comparison of data against theory with respect to the transit phasors, it also
certainly seems that the signals are as large as allowed by the (idealized) Master
Equation model of equation (2.3). Our independent characterization of the noise
levels also suggests that we are very close to being shot-noise limited in our detection
of the transmitted probe beam as well, at least in the frequency range of interest
above several kHz. So the signal is what it should be, the noise is what it should be,
and I conclude that we have finally succeeded in our goal of suppressing the manifold

sources of technical noise in our experiment down to the level of the fundamental
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Figure 2.21: Dependence of transit phasor shapes on detuning (as indicated). The
left column shows quantum theory, the two other columns show data filtered to a
bandwidth of 100 kHz.
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vacuum-fluctuation limit for balanced heterodyne detection.

One should appreciate, of course, that all these statements are made relative to
the overall photodetection efficiency that we achieved in the experiment. I think that
our figure of n = 0.32 qualifies as being basically respectable, although it should
really be possible to reach 0.9 or greater with better photodetectors and a much
more serious effort at optimizing the spatial overlap between the signal beam and the
optical local oscillator. In order to be really serious about pursuing quantitative tests
of conditional quantum dynamics, we would also need to use a single-sided (rather
than symmetric) cavity.

Certainly the most significant result that could have come of this work, however,
would be some unambiguous evidence that we could track the motion of an individual
atom along the intracavity standing-wave. Based on a comparison of the numerical
simulations and our data, I do believe that some of the more conspicuous transient
features we observe in our signals may be attributed to atomic motion along the
standing wave. Again, however, there’s no way to be sure in the current incarnation
of the experiment.

We can look at signals such as those in Figure 2.17 and estimate the sensitivity
of our measurements to variations in g. These plots are made at a bandwidth of
300 kHz, and it would seem that the full-signal to rms-noise ratio in each quadrature
amplitude is about 5. This would set the sensitivity to fractional variations in g
at about (3 x 107%) /+/Hz. In principle, the data should therefore show an optimal
sensitivity ~ 107'° m/v/Hz to atomic displacements along the standing wave. As
will be shown in Chapter 4, the “standard quantum limit” for overall observation
time of a single atom’s position with this sensitivity should be on the order of 10
s for a signal bandwidth of 300 kHz. Recall that the characteristic width (in time)
of our transit signals is about 250 pus. What this means is that even with the most
highly-idealized, canonical, broadband position measurement allowed by quantum
mechanics, we would necessarily have to see some heating of the atomic motion (due
to measurement backaction) if we maintained a sensitivity of 10~'% m/+/Hz for a total

observation time longer than 10 us.
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But what does this imply about our actual experiment? Independent of any con-
siderations of fundamental measurement backaction, it seems that we do induce some
excess heating of the atomic motion due to dipole-force fluctuations and spontaneous-
emission recoils. We also can’t say that we’re really observing the atomic motion in
our data, due to obfuscation by atomic internal-state dynamics and motion transverse
to the standing-wave axis.

My opinion is the following. By achieving as high a sensitivity to atomic motion
as we might claim over the total observation times that we certainly do have, we have
pushed our experiments on cavity QED into a regime where it should be possible
to study conditional quantum dynamics of the sort discussed in the introduction.
But because we had insufficient control over the initial positions and velocities of the
incoming atoms, and because we could not restrain the atomic internal dynamics to
a simple two-level manifold, the equation we would have to use in conducting such
studies is just ridiculously complicated (c.f. equation (2.12)).

In order to get back into a reasonable regime for scientific inquiry, I think it’s clear
that we need to do two things. First, we have to learn to trap and cool individual
atoms inside the cavity to prepare well-defined initial states of motion. Second, we
need to make cavities with no significant birefringence, and drive the atom-cavity
ure circular polarization. Even better, we should try to
find an atom other than Cesium that has a J = 0 ground state! It might also be wise
to try a lighter atom, in the sense that life would be a lot easier if we could hold our
measurement sensitivities fixed but increase the magnitude of the backaction we wish
to study.

In any case, however, I do feel that we have achieved a significant technical advance
in our ability to perform precision measurement in the context of cavity quantum elec-
trodynamics. I have no doubt that this will enable lots of great physics that seemed
to be just out of reach several years ago—not only in the field of conditional quan-
tum dynamics, but for realizing experimental proposals for quantum logic, quantum

communication, and perhaps the observation of single-atom optical bistability as well.
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Chapter 3 Technical commentary

My primary purpose in this chapter is to fill in further technical details of exactly
how we did things. I have also tried to weave in a few historical comments on the
many rebuildings and overhauls that “the” experiment has undergone in the years
since my very first efforts with Quentin. As I would assume must be the case with
most experiments that evolve in this fashion, many aspects of what we have today
were determined more by legacy than by careful engineering. Still, I hope that I have
managed to convey some sense of why the apparatus has grown to have the form
that it does, and where possible to provide some record of the things that were tried
early on but eventually proved to be inadequate. I have also taken this Chapter as
an opportunity to try to convey some of the lessons I think I’ve learned during more
than a few hours invested in serial trial-and-error. I hope that someone may find
something of value as a result, and that everyone else will forgive the didactic urges

that occasionally possess the objective description of details.

3.1 The grand tour

In terms of hardware, the apparatus has a number of interconnected parts (see Figure
3.1). There are four lasers, three high-finesse cavities, seven major servo-loops, and
a vacuum system. At the center of it all is what I'll call the physics cavity, so let’s

take this as our point of departure for a walk-through tour of the experiment.

3.1.1 The physics cavity

The physics cavity is where we would like cavity-quantum electrodynamic interactions
to take place between individual atoms and just a few photons. Hence it has small

mode-volume, high finesse, and lives under vacuum. One particular cavity with 106
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pm length and F ~ 212,000 was used for all of the measurements described in this
thesis, although in retrospect we probably should have changed to a new one long ago.
This cavity has certainly treated us well, but it suffers from a pronounced birefringence
that completely foiled our attempts at cleanly isolating strong o transitions within

the Cesium D2 Zeeman manifold.

The choice of length ~ 100 ym was intentionally rather conservative (following
the 50 um “one-dimensional atoms” cavity [18]), to the extent of taking a rare step
backwards in the Kimble Group’s march towards ever smaller critical atom/photon
numbers. In fact this was the third cavity that we tried, having first gone through an
old-style cavity (in one of the big brass and invar mounts [19]) and a cavity with 3
mm-diameter substrates glued to a very fancy “monolithic” mount inspired by those
EDM’ed Physik Instrumente piezostages. We never saw any signals with either of the
first two cavities, and the design of the third was dictated by a play-it-safe strategy

for eliminating all the cavity-related obstacles we could think of.

Our initial experience with the old-style cavity taught us that we had to eliminate
as much metal as possible from the mount itself—scattered light from the MOT beams
was a serious nuiscence, and we could never get a trap to form anywhere close to the

cavity axis. It had also been clear to us that the standard 7 mm substrates were just
too big, but I think that at the time we were still waiting for Research Electrooptics to
turn down smaller ones. When the small substrates finally came, Quentin designed an
“open” monolithic mount that allowed us to bring the trapping beams right down to
the mirror substrates. This incorporated a plate PZT (as opposed to the traditional
tubes) along with some EDM’ed leaf springs to actuate the cavity length from below.
We never quite pinpointed the problem with this cavity, and in retrospect, it may not
have actually had any serious ones. We identified two potential problems at the time:
first, it was made from somewhat-magnetic 304 stainless steel, causing us to fear that
the falling atoms were somehow being deflected in residual magnetic fields even after
the MOT coils were turned off; second, the cavity was quite short (10 pm, I believe)
but had 3 mm-diameter substrates. Judging from what we and Hood/Chapman/Lynn

have done since, I’d guess that neither of these flaws were truly fatal. However, that
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was certainly not the right cavity to start with.

Just to save the information, let me note that the electron-discharge machining
was done quite nicely by Bangs Manufacturing of Burbank, CA (818-845-3528). They
had previously made some translation stages for Olivier Carnal, which were used to
position the gratings in the OLGA beam machine. Overall, the plate PZT/EDM’ed
springs design seems to be fine for DC positioning, but at least our mount had rather
low resonances and was mechanically pretty noisy. One should rather go the other
way and try to mount a low-mass mirror substrate directly onto a tweeter PZT to
get the fastest possible response, which Dave and Jun will presumably try to do for
the next cavity design.

As I recall, we had hoped to end up with a somewhat shorter cavity than 100
pm, but when the glue dried that was what it was. The first things we did once
the present cavity was aligned in the vacuum chamber and pumped down were to
measure its length and finesse. At that point it immediately became clear that we
had a problem with birefringence, but we pressed on anyway. One significant point
to note here is that we have not seen any degradation whatsoever in the cavity finesse
during more than two years of service. This may possibly be attributed to the fact
that we have always run a beam-loaded MOT, rather than a vapor-loaded MOT as
Lynn or a direct thermal beam as in previous experiments. Our
experience of not being able to control the cavity length and the evident problem with
birefringence have motivated Christina and Mike to develop their high-tech cavity
assembly method and jig. Given the success of their 10 um cavity, we may hope that
the problems Quentin and I initially encountered have truly become a thing of the

past.

3.1.2 Locking the physics cavity

It should come as no surprise that locking the physics cavity well has been a major
technical challenge. Quentin, Mike and I started looking for atom transits with an

old-style cavity lock, by dithering the physics cavity PZT somewhere between 30-80
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kHz and using a strong lock beam at 50% duty-cycle [18]. As opposed to the fast
electrooptic chop that Christina and company have been using of late, back then we
used a mechanical chopper in the lock-beam path that only got us up to 4 kHz or
so. A piece-of-glass type beamsplitter sent some transmitted light to a PMT, whose
photocurrent was directed to a lock-in amplifier to generate an error signal for the
physics cavity PZT. That lock was terrible.

Substantial improvement occurred when Quentin realized that we could get 100%
locking duty cycle by sifting an error signal out of the heterodyne photocurrent. This
meant that we no longer needed a super-strong lock beam, at the cost of having to
turn up the cavity dither and of sacrificing our ability to run the experiment at very
low probe powers. The heterodyne/cavity-dither method got us through the era of
the 1996 Optics Letter, but was always a severely limiting factor for the overall quality
of the data. Its major drawbacks were inherently low signal to noise (probe powers
out the back of the cavity are typically ~ picowatts), extreme nonlinearity (as input
to the lock-in we just took the logarithmic “Video Out” signal from the spectrum
analyzer), and strong cavity dither (which certainly showed up to some degree in
the data). Christina, Mike, and Theresa have implemented a significantly-improved
version of this locking method, but as my interests drove our experiment towards
the precision-measurement regime it quickl
different was called for.

In order to get an error signal with 100% duty cycle and good signal-to-noise at
high bandwidth, it seems that one has to use light that is far-detuned from Cesium
resonances. The natural scheme is to hop one or more free spectral ranges away from
852.359 nm and lock the physics cavity there. In terms of Cesium transitions, the D2
is bracketed on either side by the D1 at 894 nm and the 6FP3/; — 8512 at 794 nm.
You want to stay away from all three of these lines, which puts you either around 825
nm or 873 nm. For reasons of detector efficiency, one would rather go towards shorter
wavelengths, but I found that the 15 ppm coatings of our physics cavity rolled off
fairly steeply starting around 820 nm.

Two major technical considerations complicate this scheme: first, you clearly
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need another (diode) laser to provide light that is sufficiently far detuned from the
Ti:Sapphire at 852 nm, and second, the modes of a 100 um cavity are so sparse that
you need to find some way of locking a laser out in the middle of nowhere (with
respect to convenient atomic references, that is). A search for available diode lasers
revealed that an SDL model at 810 nm was about the best we could do, although I
would have rather stayed closer to 852 nm in order to maintain higher cavity finesse
for producing an error signal. In terms of finding something to lock to, I could only

think of two possibilities.

The first idea I investigated, but eventually abandoned, was to try to find a
reasonable set of molecular lines that would be dense enough around 810 nm to use
an rf-offset lock for stabilizing the aforementioned SDL diode laser. It turns out
that Iodine Monobromide (IBr) has lots of known transitions in that wavelenth range
[60, 61], but making an IBr cell was sufficiently nontrivial (IBr easily dissociates into
I, and Bry upon heating) and the molecular lines sufficiently weak that I decided to

try a different approach first.

That was to use an auxilliary (“transfer”) cavity for relative stabilization of the
810 nm diode to the Ti:Sapphire. I found some miscellaneous mirrors from Eugene

which had aboi bt da g aatmt o] mrirratiirn o crara o1
POIZlk S stas u vilich nada apout h 115 it transmission and curvature auu were buul—

ciently broad to support high-finesse modes at both 850 and 810 nm. Quentin and 1
assembled this into a fairly long cavity using one of the Texas-era brass/invar hous-
ings, with the ~ 15 cm length determined by the need to have a mode spacing of
~ 300 MHz or less. This constraint comes from the fact that the free spectral ranges
of the physics cavity and transfer cavity are incommensurate, so you have to be able
to find a transfer-cavity mode within electrooptic reach of some physics-cavity mode
in the neighborhood of 810 nm (the physics cavity FSR is about 3.3 nm). We use one
of the Mark Raizen travelling-wave modulators to do this. One point to note here,
however, is that we found we had to use the TWM in the path to the physics cav-
ity rather than the transfer cavity—doing things the other way around you just get

too many resonances since the TWM sideband spacing is comparable to the transfer

cavity mode spacing.
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3.1.2.1 Locking the cavity-lock diode laser

I put together a Libbrecht-design current controller and laser housing for the SDL 810
nm diode, with a current-dither around 8 MHz to generate both the diode-to-transfer-
cavity and physics-cavity-to-diode FM error signals. In early days the diode locked
to the transfer cavity extremely well, but I suspect that this should be attributed to
some fortuitous optical feedback of just the right strength to help out my electrical

Servos.

At the time we first tried the transfer-cavity scheme there was no room anywhere
on the optical table to put all this stuff, so it all went on a breadboard that we mounted
above the trapping diodes. This placement caused great inconvenience when the diode
wavelength drifted and I had to tweak the grating. Over a 4 m pathlength (with a
pinhole spatial filter and travelling wave modulator in the way), such adjustments
caused serious misalignments of the beam going to the physics cavity. So after Quentin
left to write his thesis, I decided to compactify the setup and moved everything down

as close to the physics cavity as I could manage.

This seemingly innocent move aggravated a number of problems with the SDL
diode laser setup. The worst problem was the fact that the diode laser now sat

directly under the main air-conditioning vent, which blasts very cold air down onto

@]

the optical table. This caused violent excursions (100’s of MHz peak-to-peak) of
the diode frequency, with correlation times on the order of 10 ms. There’s basically
nothing you can do to lock those out with an electronic servo. Although one might
think that a hermetic sealing of the diode laser housing should fix such problems, I
have found that the frequency of SDL diode lasers with Littrow grating feedback is
quite sensitive to any sort of pathlength jitter along the first 50-100 cm beyond the
laser housing. This is presumably due to residual optical feedback, and in any case
it makes such diodes extremely intolerant of turbulent air on the table. Rather than
attempt to enclose all the diode optics, I opted to redirect the flow of air in the lab.
Curtains around the table could probably also have done the trick, but they’re hard

to work with on a day-to-day basis.
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Somehow during the relocation of diode laser and transfer cavity, locking condi-
tions for the diode laser became much less favorable in general, and the diode-to-
transfer-cavity lock was no longer good to better than the transfer cavity FWHM. I
was using a two-branch servo scheme, with feedback to both the grating PZT (unity-
gain at 10 Hz) and the diode current (unity-gain at 6 kHz). The overall behavior of
the lock was rather strange—the laser would basically lock cleanly to a transfer cavity
resonance (to better than 5% of the cavity’s 1 MHz FWHM), but would burst into
irregular high-frequency (10’s of kHz) oscillations for several ms at a time with 10-100
ms in between. These intermittent bursts would have peak amplitudes of something
like the transfer cavity FWHM, and the physics cavity seemed to follow their ~ 10
Hz envelope. So this was a real problem. I eventually decided to buy a New Focus
diode laser system (which we run at 836 nm) to replace the ill-behaved home job,
and although that laser performs beautifully in general, it exhibits exactly the same
sort of behavior when its grating starts to creep out of alignment. Hence, my un-
derstanding is that the poor performance of the SDL diode was due to competition
between the optical feedback from its grating and from the transfer cavity. In the
New Focus laser, which is AR coated, the grating feedback is strong enough (when
optimized) to win that battle outright and keep the diode frequency pinned down.
Of course, an alternative way to go would be to set up a pathlength servo to try and
let the optical feedback from a cavity control the diode frequency instead—the New
Focus lasers are rather expensive for what they are, and it’s not clear they’re going

to continue carrying them as a commercial product.

3.1.2.2 The physics cavity itself

The physics cavity mount that we have been using since our very first atom transit
signals was designed and assembled by Mike Chapman. A drawing was included in
Quentin’s thesis. The actuator for the cavity length is a 1 cm diameter, 50 mil wall
thickness tube PZT, with some amount of precompression by a stiff metal spring.
When I set out to design a more serious servo for the physics cavity, my first step

was to try to measure the open-loop transfer function from PZT voltage to mirror
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displacement.

Unfortunately the open mount structure and small-footprint vibration isolation
stack that we have had to use are insufficient to maintain passive stability of the
cavity resonance within its narrow (F ~ 212,000) linewidth. So I had to establish a
weak lock of the physics cavity to the 810 nm diode laser first. The idea here was to
try to close the loop at some very low frequency (like 50 Hz), so that the response
up in the kilohertz regime would be more-or-less unaffected by the servo. Assuming
that the open-loop transfer function should be pretty flat at frequencies below 1 kHz,
you’d get all the necessary information to design a more serious controller that closed
as high as the open-loop response would allow. The test controller I put together was
a simple integrator (300 k2 and 1 pF around an OP27), plus an extra op-amp to sum
in sinusoidal drives from the HP Dynamic Signal Analyzer (DSA).

As it turned out, there was no way to get the cavity even vaguely locked without
turning up the gain until the unity-crossing point was way up at 885 Hz. Undaunted
by this, T recorded the closed-loop response with some modest degree of averaging
(shown in Figure 3.2). I eventually identified the mini-features below 10 kHz with
noise peaks of the 810 nm diode laser, so it appeared that the first real catastrophes in

the physics cavity response occurred at 10 kHz (the pi phase swing) and 14 kHz (the

the unity-crossing point of the servo, but I decided to write this off as a purely closed-
loop effect to begin with. Given the major features above 10 kHz, I thought 1 kHz
would be a reasonable target for closing an aggressively-designed physics cavity servo.

I built a PI controller with low-pass corners in the proportional branch at 3 Hz and
10 Hz. It hit a minimum phase of -160 degrees at 70 Hz, and had 100 dB attenuation
and -135 degrees of phase at 1 kHz. It didn’t work.

The problem seemed to be unity-gain oscillations, even though I had designed a
comfortable phase margin of 45 degrees. Looking back at the response measurement,
the closed-loop transfer function was certainly doing nontrivial things by around 3
kHz, so it seemed like it might be worth the trouble to try and divide out the con-

troller action to infer the physics cavity's open-loop response more precisely over as
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Figure 3.2: Closed-loop response of the physics cavity with test servo.
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wide a frequency range as possible. With some patience you can use the HP DSA (in
swept-sine and auto-integrate mode) to accumulate very clean transfer-function mea-

surements, and GPIB allows you to transfer these to a PC for convenient processing

with Matlab.

The standard Laplace-domain treatment of linear feedback control tells you that
the closed loop transfer function G(s), open-loop transfer function G(s), and con-

troller transfer function H(s) are related by

. G(s)

G(s) = TGO (3.1)

So having measured any two of these you can infer the third. Figure 3.3 shows the
measured G/(s) and H(s) for the physics cavity and test controller, together with the
inferred G(s). My understanding is that the feature around 50 Hz is not actually a
mount resonance, but rather a noise peak due to some resonant mode of the vibration
isolation stack. The pertinent feature of G(s) is really the ~ 30-degree phase lag
around 1 kHz, which was clearly large enough to destabilize the fancy controller. If
you have the signal-to-noise in your error signal such a problem should be quite easy
to fix, so I added a phase lead network with a zero at 500 Hz and a pole at 5 kHz on
the output side of the fancy controller. Much to my amazement, this attempt at an
intelligent fix worked quite nicely. Figure 3.4 shows the original controller transfer
function, the effect on it of the excess cavity phase lag, and the corrected controller

TF.

Despite this small triumph of local servo wisdom, we eventually replaced the fancy
controller with a JILA loop filter that Jun put together, since that design has knobs
on the outside of the box for adjusting all the gains and corners. It also features
a much cleaner, low-noise construction, which turns out to be quite important for
minimizing excess noise on the cavity lock. As far as we have been able to tell, the
dominant remaining problem with the cavity lock these days is intermittent oscillation
of those 10 and 14 kHz resonances. These oscillations seem to be electrically driven,

as we have found that we can kill one or the other of them by putting LC filters on
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Figure 3.3: Closed-loop, controller, and inferred open-loop transfer functions. In the
upper subplot, which shows magnitude, the lowest trace shows controller response,
the top trace shows the closed-loop response, and the middle trace with the peak
shows the inferred open-loop response. The lower subplot shows phase, where the
trace with what looks like a dispersive resonace is the inferred open-loop response,
the trace which wraps around from -180 to +180 degrees at ~ 500 Hz is the measured
closed-loop response, and the flat line at —90° is the controller response.

the voltage going to the physics cavity PZT. Unfortunately we can’t seem to get them

both without also eating up all our phase margin at 1 kHz.

I'd finally like to note that the switching of the magnetic field coils of the MOT
somehow kicks the cavity lock in a fairly serious way. It’s not completely clear whether
this is some kind of inductive pickup, or an actual mechanical disturbance. In any
case, I would strongly advocate minimizing the magnetic coil size in future designs, as
well as mounting them in some manner that keeps them mechanically isolated from

the vacuum chamber.
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Figure 3.4: Original, perturbed, and corrected servo transfer functions. Again, the
upper subplot shows magnitude and the lower subplot shows phase. The top trace in
each subplot shows the intended servo design, the bottom trace shows the “actual”
response due to PZT rolloff, and the middle trace shows the corrected transfer function
after adding an additional phase-lead network.

3.1.3 Locking the transfer cavity

Our original grand strategy for frequency stabilization involved locking the Ti:Sapphire
directly to Cesium saturated absorption signals, and then locking the transfer cavity
to the Ti:Sapph. This was doubly wrong-headed, as the Ti:Sapph stability is much
improved by locking to the high-contrast cavity resonances and it was basically im-
possible to lock the transfer cavity to the Ti:Sapph anyway. As I'll describe in more
detail below, our Coherent 899 has terrible passive frequency stability, exhibiting
several-MHz excursions on 1-100 ms timescales. The transfer cavity linewidth at 852
nm is around 100 kHz. Even when it was nominally locked to Cesium, the Ti:Sapph
frequency would whip through the cavity FWHM in ~ 0.1 ms as it wandered around

in frequency space, so you just can’t get the speed to establish a lock if you're driving
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one of those big tube PZT’s to actuate the cavity length. In our initial efforts with
the transfer cavity, Quentin and I figured that we could count on the cavity to have
decent high-frequency stability, and that the main point of locking it to the Ti:Sapph
was to prevent slow drift of the cavity length. Hence, we used a lock that we thought
should have negligible gain except at DC and ignored the horrible-looking error signal
that resulted. In hindsight, I don’t think we really knew what the unity-gain point of
that servo was, so I wouldn’t be too surprised if we were actually transfering Ti:Sapph
noise onto the transfer-cavity length at frequencies ~ 1 — 100 Hz.

Since Jun brought the acousto-optic laser lock back into style here (for the first
time since Tim Boyd’s days), we’ve been locking the Ti:Sapph directly to the transfer
cavity. The transfer cavity then gets guided by an error signal from a Cs spectrometer
that monitors the absolute frequency of the Ti:Sapph. I’ve been using a modulation-
transfer setup in the Cs spectrometer, both because this configuration eliminates
Doppler background from the signal and because the actual FF = 4 — F' = 5 tran-
sition is the strongest line (as opposed to the case of FM saturated-absorption spec-
troscopy, in which the 4,5 crossover dominates).

When the Ti:Sapph is locked to the transfer cavity, you can tune the bias on the
cavity PZT to scan the Ti:Sapph frequency over the Cesium lines or a resonance of
the local oscillator cleaning cavity. Judging from the excellent stability of the trace
you see when doing so, the passive stability of the transfer cavity seems to be at least

as good as 10 kHz rms in a 100 kHz bandwidth.

3.1.4 The Coherent 899 Ti:Sapphire laser

Although there are many nice things about the Coherent 899-21, it’s clear that it really
wasn’t built to be a narrow-linewidth laser. The spec they give you is something like
1 MHz, and you can tell that they were serious about trading off stability in favor of
tunability when they engineered the laser controls and intracavity elements.

First off, the 899-21 incorporates a thick-etalon servo that surpresses the occur-

rence of mode hops as you tune the brewster plate and/or thin etalon. The thick
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etalon is mounted in the ICA (intra-cavity assembly) on some sort of PZT arrange-
ment that permits 2 kHz dithering of the effective length of the thick etalon. This
produces a 2 kHz response in the laser power, which is demodulated by some electron-
ics in the 899 control box to produce an error signal for stabilizing the angle relative
to the thick etalon modes of the laser cavity. Of course, the dithering also induces a
2 kHz modulation of the laser frequency. The factory setting for the dither amplitude
was such that the frequency excursions were roughly a few hundred kHz, which is
small enough to satisfy the Coherent linewidth spec yet (presumably) large enough
that the desired error signal has sufficient signal-to-noise ratio even if the laser is oper-
ated somewhere in the tails of its tuning range. It turns out that there’s a convenient
potentiometer to control the dither amplitude, which I identified and marked on the
bootleg copy of the control-box schematics we got from a friendly Coherent engineer.
With the laser at 850 nm, and with the cavity reasonably clean and well-aligned, the
thick etalon servo is in fact okay with a much smaller dither amplitude. Having made
this adjustment, the residual frequency modulation at 2 kHz is now small enough
that it doesn’t poke up in a power spectrum of residual frequency noise of the locked

Ti:Sapph.

Another annoying feature of our 899-21 (I'm not sure if this is a design flaw, or
just a problem with our particular unit) is that something about either the brewster-
plate galvo or the galvo current driver induces an excessive amount of low-frequency
noise in the laser frequency. Line-synched glitches can actually be seen in the voltage
drop across a fake resistive load in the current loop, although it’s not completely
clear that they’re large enough to account for the problem. My general mistrust of
the brewster-plate galvo stems mainly from the fact that it’s much easier to lock the
Ti:Sapph frequency to a narrow line (like that of the transfer cavity) if you unplug the
galvo from the Coherent control box. In fact, I found that I could lock the Ti:Sapph
to the transfer cavity using only the tweeter PZT (i.e., without using an external
AOM) if and only if the galvo was disconnected. The circuit schematic for the galvo
driver indicates some sort of “centering” mechanism that may intentionally tweak the

galvo angle at regular intervals (the schematic shows a 20 ms timer), but I haven’t
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had a chance to figure out what this thing really does.

Moving on to the 899 tweeter, our unit has a much larger (in terms of both size and
capacitance) PZT than is being used in home-built Ti:Sapph’s around the lab. Figure
3.5 shows a measurement of the PZT response, as determined by driving the PZT
with a swept-sine while monitoring an FM saturated-absorption Cesium signal. The
dominant features in the transfer function are a clump of resonances around 17 kHz,
and in my experience these do set the limit of how well this Ti:Sapph can be stabilized
using the tweeter alone. Using a servo that crosses unity-gain at 9 dB/octave and
gradually gets back to 12, I've found that you can’t really close any higher than 6
kHz without seeing intermittent oscillations. Incidentally, the tweeter PZT leverage

for tuning the Ti:Sapph is about 5 MHz per volt.

3.1.5 Locking the Ti:Sapphire

The tweeter servo built into the Coherent control box for the 899 is reasonably so-
phisticated, but conservative in design. When the 899 first arrived, someone here
(probably Oliver Carnal) picked out the wires carrying the error signal intended for
locking the Ti:Sapph to its Fabry-Perot cavity and added an “external error signal”
input on the back of the control box. Driving this input, and looking at the actual
high voltage that would go to the tweeter, you find that the servo amplifier is flat from
around 1-10 Hz, rolls off towards DC (where the brewster plate galvo is presumably
meant to take over), and maintains a beautiful 9 dB/octave slope all the way out to
around 30 kHz. Looking back in my lab book, I'm not positive that I didn’t use a
signal amplifier for that measurement, but the plot I have shows an open-loop gain
of -38 dB and 40 degrees of phase margin at 30 kHz. If we had a better tweeter, it
looks like an error signal of 15 volts/MHz would let you close at 30 kHz and get about
110 dB of gain at low frequencies. To stick with a unity-gain of 6 kHz, however, 2.5
volts/MHz is about the right size for the error signal. In order to maintain adequate
phase margin, the error signal should not be filtered with a low-pass corner lower

than 30 kHz or so.
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Figure 3.5: Open-loop response of the tweeter PZT in the Coherent 899-21 Ti:Sapph.
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In order to be more aggressive at low frequencies, I’ve been bypassing the Coherent
control box and now use a home-built servo for the tweeter. The Coherent servo never
gets any steeper than 9 dB/octave, presumably in order to ensure that the loop would
remain stable even when the Ti:Sapph was out of tune (implying reduced error-signal
size). One potential drawback of bypassing the Coherent box is that you leave the
galvo out of the game, but I've found that the tweeter has more than enough range

to deal with DC drifts for hours at a time.

Figure 3.6 shows a schematic of the first servo amp I built for the tweeter, before
we started using an external AOM as well. It’s just a basic PI controller with a phase
lead compensator to provide some phase margin at 6 kHz. My experience has been
that it is generally better to implement separate proportional and integral branches
and sum them, as opposed to using an “inline” design such as (integrator — low-
pass — phase-lead network — output buffer). The latter design should theoretically
give you exactly the transfer function you want, but the ones that I’ve built tend
to misbehave (e.g., differentiate) at frequencies above 20-30 kHz. My understanding
of this is that it’s just hard to find an op-amp that can really integrate at high
frequencies, so you're better off not sending all of your feedback signal through the

integrator. At some point I put together a test circuit for checking out performance

capacitor (plus an output buffer). The winners seemed to be LT1122 and the good-old
OP27, while LF356 and AD711 were not so impressive.

The overall design of Figure 3.6 uses two RC poles at 3 Hz to suppress the AC
gain of the integral branch, so the high-frequency servo response is determined by
the proportional branch alone. The proportional branch has two poles at 30 Hz to
set the initial rolloff, plus a zero at 4 kHz to provide some phase margin and another
pole at 8 kHz to set the ultimate slope at 12 dB/octave. The relative gains of the P-
and I-branches are such that they cross around 30 Hz. This turns out to be perfectly
stable, although an earlier version with the Pl-corner at 12 Hz displayed monstrous
low-frequency oscillations. Although I can’t really claim to understand why, it seems

that you have to keep the relative phase of the P- and I-branches less than 180 degrees
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OUTPUT

Figure 3.6: Schematic for the tweeter servo amplifier. All op-amps are OP27.

at the crossover point. For any particular design, it’s worth checking out where the
closed-loop poles will be before you start soldering—the Matlab Controls toolbox
makes this a trivial exercise.

I found that it’s just barely possible to lock the Ti:Sapph to the transfer cavity
using the tweeter servo alone. As mentioned above, however, you have to unplug the
brewster-plate galvo in order to do this, and even then the lock isn’t terribly robust.
When Jun arrived last year, we set up an external AOM to get faster control over
the Ti:Sapph frequency. This lets you really crunch down the jitter. The Ti:Sapph
light now gets double-passed through an 80-MHz AOM right after it comes out of the
box. Using 15 cm lenses, and without terribly much attention to the alignment, we
seem to get adequate pointing stability for even the probe beam that travels several
meters on its way to the physics cavity. The AOM is driven by a Mini-Circuits VCO,
which has acceptably low drift but not quite the modulation bandwidth that one
would like (ours has -3 dB at about 70 kHz). Jun built a “bandpass” servo amp with

a zero around 250 Hz (AC feedback coupling prevents DC pointing errors) and one
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pole at about 2 kHz. The high-frequency rolloff of the servo loop ends up being much
harder than 6 dB/octave, however, because of the sluggish VCO and because of the
transfer cavity’s 100 kHz linewidth. We generally see unity-gain oscillations in the
neighborhood of 70-90 kHz (depending on the gain setting), and it’s clear that having
the AOM servo on lets us increase the gain of the tweeter servo without ringing the
PZT resonances at 17 kHz. I'm not really sure what the tweeter-AOM crossover point
is, but there don’t seem to be any bad interactions between the two servo loops. With
everything all locked up, the residual fluctuations of the Ti:Sapph-to-transfer cavity
error signal suggest an rms linewidth less than 10 kHz. This number is supported
by direct comparison of the Ti:Sapph to out-of-loop frequency discriminators such as
the local oscillator cleaning cavity (FWHM=1 MHz).

Figure 3.7 shows the closed-loop spectrum of residual noise on the Ti:Sapph-to-
transfer cavity error signal. Unity-gain oscillations from the AOM servo can be seen
around 70 kHz, and the resonances of the Ti:Sapph tweeter PZT can also be seen
around 17-20 kHz.

It’s worth noting that a double-passed AOM servo really cuts into the available
laser power, but we had no difficulty running the experiment with a total of ~ 50

mW of stabilized light.

3.1.6 Photodetection

Up until the last few months of the experiment, we were using the same pair of pho-
todetectors that Quentin used for all the work described in his thesis. The overall
design, which originated sometime in the ancient history of Kimble group, is wonder-
fully simple and performs fairly well. I refer the reader to Quentin’s thesis for the
circuit diagram and such, but the detector basically consists of an FND-100 photo-
diode connected directly to a GPD-201 50¢2 monolothic rf amplifier. One of the best
features of this design is that excellent matching is automatically obtained between
the gain and phase characteristics of any pair of such detectors. My experience has

been that you can easily achieve > 20 dB balancing over the heterodyne frequency
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Figure 3.7: In-loop noise spectrum of the Ti:S locked to the transfer cavity.
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range of 100 — 200 MHz with detectors of this traditional design. On the down side,
it’s difficult to obtain more than 3 or 4 dB of shot noise with these detectors at high
end of that frequency range. We typically used 4 mW of LO per detector in order to
get as far above the electronic noise as possible, but this was really too much optical
power.

If your goal is getting to the real shot-noise limit for recovery of the quadrature
amplitudes, you’d really like the electronic noise to be down by 10 dB or more. As this
clearly wasn’t going to happen with the traditional 5082 system, Jun recently built
a new pair of heterodyne detectors based on the Signetics NE5211 transimpedance
amplifier (28%Q) transimpedance gain). The photodiode is now a low-capacitance
Hammamatsu S5982, and the detectors Jun built can see shot noise from about 5-300
MHz with 1 mW of LO. In the neighborhood of 50 MHz, it’s possible to work 10
dB above the electronic noise. From ~ 100 MHz on out though, the limit still seems
to be about 5 dB. We measured the quantum efficiencies of the two Hammamatsu
photodiodes we're using to be 0.68 and 0.71, although according to spec they ought
to be more like 0.78 (the FND-100"s were both about 0.86). Unfortunately, this pair
of detectors turn out to have fairly different high-frequency rolloffs, both in terms of
gain and of phase. This makes it difficult to achieve good balancing over broad ranges
hat you can get 20 dB or so over a
10 MHz, as measured by the cancellation of AM written on the LO by joint action of
an EOM and the local oscillator cleaning cavity.

We discovered early on that one has to be fairly careful not to saturate the AC
gain of the transimpedence amps with technical noise on the LO. The frequency-
servo AOM generates a fair amount of residual modulation on the LO at 76 MHz,
for example. We actually have to strip this off in order to keep the photodetectors
happy—hence the 1 MHz FWHM LO cleaning cavity. It’s also necessary to be careful
about the FM sidebands used for locking the cleaning cavity. We lock in reflection
with weak FM sidebands at 24 MHz, which keeps the residual modulation of the

transmitted beam acceptably low.

As noted in the previous chapter, it doesn’t seem that we could ever get a very
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good spatial overlap between signal beam and local oscillator. The best we did was
a DC fringe visibility of 0.7, which is not quite up to Kimble Group standards from
the squeezing era. All I can do at this point is offer some speculation as to why
we did so badly. First, we propagated a fairly large (in the gaussian waist sense)
beam from the physics cavity output to the heterodyne detectors. Due to geometric
constraints, we had to allow the cavity output to expand for 30 cm before collimating
it. Without really thinking about implications for the beam quality, we kept the
beam like that and matched the local oscillator to it. The signal beam hit many (14)
surfaces on its way to the detectors, and its large spatial extent meant that the signal
beam wavefront was sampling abberations of these surfaces over a pretty large area.
It probably would have been better to refocus the signal beam. A second possible
problem was that our local oscillator cleaning cavity had a transverse mode spacing
that was not so different from 1/3 its free spectral range. This means that even when
we locked to a TEMyg error signal, there was probably a fair amount of transverse
spatial mode leaking through to compromise the overlap with the signal beam, which

one would like to think was a good TEMgy, when it left the physics cavity.

For anyone who might be interested, the rf components that we used for pro-
cessing the photocurrent are as follows. The outputs of the two photodiodes first
went through id
lengths of cable used to match the phases as well. The signals were then subtracted
in a 180° splitter (Mini-Circuits ZF'SCJ-2-1), and the difference photocurrent was
boosted by an rf amplifier (ZFL-500LN). The amplified current then goes to a 0°
splitter (ZFSC-2-1), whose two outputs are used to generate the pair of orthogonal
quadrature amplitudes. We use two double-balanced mixers (ZLW-1H) to bring the
heterodyne beat note down to baseband, where the two rf local oscillators are pro-
duced by running the maximum output power from an HP8656B signal generator
through a 90° splitter (ZMSCQ-2-180, -120, or -90 depending on the frequency). The

two quadrature amplitude signals then go to separate SR560 preamplifiers, which are

used to bring them up to £0.5 V.

We chose these particular components so as to have a completely SMA-connected
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system (we had problems with flakey ground contacts in an earlier BNC version),
to have the 0° and 180° splitters be as broadband as possible, to minimize insertion
losses, and to have mixers that went all the way down to DC for signals coming
out the IF ports. Note that the ZLW-1H’s are level-17 mixers, but we could only
give them around +13.5 dBm of rf local oscillator. The phase accuracy of the 90°
splitters wasn’t so great, and they were relatively narrowband. So these would be the
components to upgrade in the future. It looks like a company called Merrimack could
supply much more sophisticated devices for the job, but they would be expensive

(~ 36 — 7k) and had a lead time of several months.

3.1.7 The vacuum system

I originally ordered this vacuum chamber for an effort to see optical bistability using
an atomic beam and quartz microspheres. It’s a copy of the chamber that Zhen
Hu and Mike Winters designed for cooling and trapping experiments, built out of
303 stainless steel by NorCal. The chamber is essentially a feedthrough collar, 4
inches in height with a 6-inch conflat flange on either end. FEight 2.75-inch conflat
ports look radially into the center of the chamber, providing an optical axis every 45
degrees. Figure 3.8 shows the overall configuration of the vacuum system as we've
used it for the past two years. Even with the physics cavity, vibration-isolation stack,

and Cesium oven, a single 20 1/s Starcell ion pump suffices to keep the background

pressure in the low 1078 torr (as estimated from the pump current).

The original idea of the vacuum system design was to have a setup that could easily
be switched between running an old-style thermal beam experiment and a dropping-
MOT experiment, by raising or lowering the oven and collimating coldfinger relative
to the chamber with the cavity in it. We never actually used this flexibility, however.
It would be much nicer to have a differentially-pumped system with a Cs vapor cell
to load the inital MOT, as much of the hassle of running the experiment from day
to day was having to heat up and cool down the Cs oven, and having constantly to

refill the dry ice box for cooling the coldfinger. Heating up the oven, and also just
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Figure 3.8: The vacuum system, drawing not to scale!

having all that extra surface area in the vacuum system, certainly also compromised
the base pressure.

I think it was important to really optimze the vacuum conductance from the
cavity chamber to the ion pump, as we couldn’t seem to get as low a base pressure
in the chamber with previous configurations of the hardware that had the pump in a
different place. Having the gate valve between the cavity chamber and cesium oven
was a great convenience—it allowed us either to change the cesium without bringing
the chamber up to air, or to make adjustments to the cavity without oxidizing the

cesium.

3.1.8 The trapping lasers and magnetic coils

The light for the magnetooptic trap is generated by a pair of grating-stabilized SDL
5411 diode lasers, each of which is mounted in a slightly-modified version of Ken

Libbrecht’s laser housings and driven by Libbrecht-Hall current controllers [62]. In
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order to make the grating adjustments a bit more convenient, I'’ve been using Lees
Optical LM-1 mounts inside the laser housing in place of the original flexure mounts.
I'should also note that since the current controller was originally designed for positive-
polarity diode lasers (whereas the SDL diodes are negative), you have to ground the
diode and run the case positive in order to use the controllers without modification.
With the old STC diode lasers we would always remove the “window” (which was
really only meant to be a protective cap), which allowed us to use short working-
distance Melles-Griot compound collimating lenses (06-GLC-001/B). The windows
on the SDL diodes are not really removable, and are optically very nice anyway, so
I've been leaving them on and using long working-distance aspheres that are available
from Thor Labs (C230 TM-B). I used to worry that exposing the diode facets to air
led to some danger of water condensation, so overall I like the present configuration
much better. I think you can see some effects of optical reflections from the window
when running the diodes at low current, but well above threshold they don’t seem to

be a problem.

One nice thing about mounting the diffraction grating (1800 grooves/mm, holo-
graphic/VIS from Edumnd Scientific) on an LM-1 is that you can scan the entire
wavelength range of the diode just by turning the horizontal knob, without having

and redo the vertical ali

to stop an he vertical alig

nment. As a consequence, you can always plug
in a brand new diode and pull it to the Cesium resonances without ever using a
Wavemeter. You simply optimize the threshold at some arbitrary grating angle, turn
the current up to the desired setpoint, put a Cesium cell right at the laser output,
tune the grating angle until you see a flash in the cell (with an IR viewer), then re-
optimize the threshold at the correct grating angle. If you scan the grating and tweak

the current you should immediately be able to find lines in a saturated-absorption

setup.

I used one diode to produce trapping light on the Cesium 6Si/, F = 4 —
6P5/, " = 5 transition at 852.359 nm, and the second to produce a repumping
beam on the F' = 3 — F’ = 4 transition at 852.339 nm. I locked the diode frequen-
cies by feeding back to both the grating PZT (at something like 10-100 Hz) and the
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diode current (at something like 10-100 kHz). The DC drifts were small enough that
I didn’t bother to use an integrator. I got an error signal for the repumping diode by
modulating the current at 10 MHz and looking at saturated-absorption lines in FM.
In order to have an FM error signal for the trapping laser as well, without putting
sidebands on the trapping light (and without investing in an EOM), I made use of
optical-pumping crossovers to lock the trapping diode frequency relative to that of
the repumper.

The setup for doing this is shown in Figure 3.1. The repumping diode is first
locked to the 3 — 4 transition frequency using a standard FM saturated-absorption
setup. Some “probe” light from the repumping diode is then sent through a second
Cs vapor cell to monitor the absorption by atoms with zero velocity along the z-axis.
This type of signal should actually be quite weak, as atoms traversing the probe beam
will quickly be pumped into the dark F' = 4 ground hyperfine level. But we then also
introduce an overlapping, counterpropagating “pump” beam into the cell, derived
from the trapping laser. The probe absorption increases drastically if the “pump”
beam is tuned to either the 4 — 4 or the 4 — 3 transition, due to optical repumping
from the F' = 4 hyperfine ground level back to the F' = 3. Hence, FM detection of

the transmitted probe generates an error signal for stabilization of the pump beam

~ 1 mW /cm? intensity, with much better contrast than saturated-absorption lines
and negligible Doppler background.

To end up with light at a frequency appropriate for trapping, I send a 140-MHz
downshifted beam from an AOM into the locking setup. This means that the trapping
laser itself sits at the 4 — 4 transition plus 140 MHz, and the light for the MOT is
generated as the first-order upshifted beam from a 100 MHz AOM (resulting in a 10
MHz red-detuning from the 4 — 5 transition). The latter AOM also serves as a fast
shutter for turning the MOT on and off, and I have found that a Mini-Circuits rf
switch (ZYSWA-2-50DR) has sufficient attenuation (around 45 dB at 100 MHz rf)
to turn the light off so that there’s no residual optical molasses in the chamber—the

Isomet drivers typically don’t. The Isomet AOM’s suffer from thermal problems that
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cause the pointing of both the diffracted and zeroth-order beams to depend on the
average dissipated rf power. Hence, if you align the MOT beams with one setting
of the rf duty cycle (e.g., 100%), you can’t change the duty cycle without messing
things up. I've heard that AOM’s from NEC or Crystal Technology are much better
in this regard.

We don’t actually want to start with too many atoms in the trap for the purposes
of doing cavity QED, so I have generally used 3-4 mW in ~ 1 cm? trapping beams
during alignment and ~ 10 W /cm? beams while running the experiment. The MOT
loads directly from an uncooled atomic beam, which effuses from a Cesium oven at
~ 70 C through a 200 pm pinhole. The atomic beam is collimated by a pair of 3 mm
aperatures that we keep at dry-ice temperature. We typically load the MOT for 1 sec
each data cycle. My experience with this MOT configuration has been that you get
plenty of atoms (~ 10°) as long as the background pressure of the chamber remains

below 2 x 1077 torr, and we typically had pressures around ~ 4 x 107® torr.

In order to actually drop the MOT—as opposed to accidently launching it in some
random direction—I found that the one crucial point is to make sure the trapping
light is completely off before changing the magnetic fields. We typically used an axial
field gradient of 30 g/cm, generated by a pair of coils (~ 7 inch diameter, originally
designed by Wolfgang Lange) in the usual anti-Helmholtz configuration (6 amps into
a total of 250 windings). In order to avoid excessive transients when switching off
the current, we put a capacitor on the programming input of the current supply
that combined with the input resistance to yield a ~ 4 ms RC time constant. Even
with that precaution, we at times had trouble with mechanical vibrations associated
with the magnet switching. Our magnetic coils were designed simply to hang on the
vacuum chamber, without any additional mechanical support structure. When the
current switches on or off, the two coils pull or push each other and the mechanical
impulse gets transmitted to the vacuum chamber and also the physics cavity itself. In
the early days this would actually unlock the cavity every once in a while. With the
improved servos this no longer occurs, but you can clearly still see transients in the

physics cavity error signal. On rare occasions a faint tail of this mechanical ringdown
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would actually persist into the data window, but the residual oscillations were very
small and of low frequency (~ 300 Hz).

So mounting magnetic coils directly on the vacuum chamber is a bad idea. In
addition to unwanted mechanical impulses, we sometimes had problems with the
coils getting hot. This would then heat up the chamber itself, leading to noticeably-
increased outgassing and eventually to thermal drift of the physics cavity length.
Wolfgang actually designed these coils to be water-cooled, but we generally found that
running water through the coilforms also leads to significant vibration of the chamber.
Above and beyond these sorts of mechanical problems, the primary drawback of the
way we mounted the magnetic coils was that the null of the anti-Helmholtz field
became fixed with respect to the geometry of the chamber. It just wasn’t practical
to try to install the physics cavity such that the gap between the mirrors was really
lined up with the point at which the MOT would naturally form, so in the end we
had to align the MOT to the cavity by applying small bias magnetic fields. Physically
moving the anti-Helmholtz coils themselves would have been a much better way to
do this alignment, but again this just wasn’t practical given their extreme weight and
the intricate tangle of optic mounts that had to press right up against the windows
of the vacuum chamber. So our ability to trim the net magnetic field at the physics
cavity was compromised by the need to put the MOT in the right place, and we
ended up with a Zeeman quantization axis that pointed ~ 30 degrees off of the cavity
axis. This wasn’t really such a tragedy in our case because the cavity was birefringent
anyway, but in the future this sort of problem has to be anticipated and avoided.

Back while Quentin was still here, we briefly investigated the use of large ho-
mogeneous magnetic fields to produce frequency splittings between different Zeeman
transitions. Although the huge magnetic coils we have are clearly overkill for the
simple purpose of making a MOT, they make it easy to produce ~ 60 gauss homo-
geneous fields at the physics cavity. Taking advantage of our bipolar current supply,
we connected the coils in series with a full-wave rectifier such that they produce an
anti-Helmholtz field for positive applied voltages, and a Helmholtz field for negative

applied voltages. The circulation of current in one of the two coils changes with the
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sign of the applied potential, but stays the same in the other by action of the recti-
fier. We didn’t actually use this trick for much in the end, but I thought it was worth

passing along.

3.1.9 Data acquisition

In our initial efforts, we used a National Instruments multi-function I/O card to
digitize and record the data. At the time, NI offered two versions of the board-—one
with 250 kHz sampling rate and another with 500 kHz (both with 12-bit resolution).
I somehow felt that it was nice but extravagant to have bought the faster model, but
once the experiment actually started working it quickly became clear that we were

severely undersampled even at 500 kHz.

For a while we used an 8-bit ADC sold by Keithley-Metrabyte, which has two
independent channels that can simultaneously sample at up to 100 MHz. Although
we learned some things by looking at higher-bandwidth data with that card, eight
bits just doesn’t provide enough dynamic range. For data with gaussian noise, you
basically have to sacrifice one bit to prevent the signal from clipping, and you’re then
left with a resolution of only one percent.

We presently use a 12-bit ADC from Gage Applied Science (model 8012/A), which
also has two independent channels that can simultaneously sample at up to 100 MHz.
The card has 1 Mb of onboard RAM per channel, so it’s no problem to take 50 ms data
windows at 10 megasamples per second per channel. We were fairly conservative in
setting the analog signal bandwidth, in order to be completely sure that we were not
aliasing. In addition to using a 1.9-MHz single-pole filter on the input of the SRS560
voltage preamplifier for each quadrature amplitude signal, we set the preamp’s built-
in filters to roll off at 12 dB/octave with a 300 kHz corner. At the Nyquist frequency
of 5 MHz, we thus had 6 + 12 x log, (5/0.3) ~ 54.7 dB attenuation from the SRS560
plus an additional 3 4+ 6 x log, (5/1.9) =~ 11.4 dB from the rf filter on the input.
Fourier components of the signal at frequencies above Nyquist were thus attenuated

by more than 107%%1/2° ~ 5 x 107%. Given that the SR560 gains were set to keep
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the rms signals (which contain a large DC component) well within the dynamic range
of the ADC, this ought to provide plenty of anti-aliasing relative to the 12-bit ADC
resolution (~ 2 x 1074),

Before looking at the quadrature amplitudes data, it is necessary to numerically
remove drifts in the phase of the rf local oscillator relative to the heterodyne signal.
The basic strategy I've been using is to say that on timescales that are slow compared
to atomic transits but fast compared to any phase drifts, the phase quadrature of the
heterodyne photocurrent should be forced to have a mean value of zero. Hence the
following Matlab algorithm. First, read in the two digitized signals y1,y2, which
always represent an orthogonal pair of quadrature amplitudes but have an arbitrary,
time-varying phase ¢ relative to the actual amplitude and phase quadratures. Next,
compute ¢ by taking the arctangent of —y2/yl, as unwrap(atan2(yl,—y2)). Then
apply a running boxcar average (2 ms width) to smooth out ¢(¢). Finally, com-

pute “flattened” versions z1,z2 of the raw signals y1,y2 by applying a time-varying

(:vl) (Cosqﬁ —sinq§> (yl)
= ) (3.2)
x2 sing  cos ¢ y2

rotation,
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Chapter 4 Studies in quantum

measurement theory

4.1 Broadband measurements

Abstract: In this section, I utilize the Caves-Milburn model for continuous position
measurements to formulate a broadband version of the Standard Quantum Limit
(SQL) for monitoring the position of a free mass, and illustrate the use of Kalman fil-
tering to recover the SQL for estimating a weak classical force that acts on a quantum-
mechanical test particle under continuous observation. These derivations are intended
to clarify the interpretation of SQL’s in the context of broadband quantum measure-
ment, with particular attention paid to the question of how it might be possible to
verify that a given laboratory measurement does indeed achieve backaction-limited
sensitivity. The method used to analyze force detection may be extended to the case
of weak classical forces with arbitrary time dependence, including nonstationary and
impulsive signals.

Substantial efforts have been devoted to elaborating Standard Quantum Limits
(SQL’s) for both discrete [63, 28, 64, 5] and continuous [5, 65] measurement of the
position of a free mass. In large part, the motivation for such investigations stems
from a pressing need to identify any possible constraints imposed by the principles of
quantum measurement on the experimental possibility to detect gravitational waves
[66, 67]. My objectives in this paper will be to formulate an SQL appropriate to
broadband continuous measurements of the position of a free mass (expressed in terms
of the signal bandwidth and with measurement sensitivity given in units of length per
\/ﬁE), to discuss its proper intepretation, and to demonstrate its compatibility with
the usual SQL [5] for detecting a weak classical force. The mathematical analysis will

be adapted to the continuous measurement model of Caves and Milburn [38], which
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appears to have direct relevance for concrete experimental scenarios such as atomic
force microscopy [68] and cavity QED [16, 69].

Although the limits I derive will be familiar from previous studies of the discrete
and narrowband measurement scenarios, my emphasis here will be on formulating
these limits in a manner that is specific to broadband quantum measurement. In
particular, I have found that some care needs to be taken in deriving an SQL for de-
tecting weak forces from the SQL for continuous position measurement. The method
I use below emulates the classical technique of Kalman filtering [70, 71], and was
motivated by the general strategy of quantum system identification discussed in [14].
Throughout this paper I have adopted the time-domain, state-space perspective of
quantum measurement whose virtues have become apparent from recent advances in
adaptive quantum measurement [15] and quantum feedback [40]. Such methods hold
great promise for the challenge of formulating experimentally tenable strategies for
broadband quantum nondemolition measurement.

The mathematical formalism necessary to treat continuous quantum measure-
ments has been developed by numerous authors, with the most relevant works for the
present discussion being [38, 71, 72]. While it is not absolutely essential to go to the
continuous limit, doing so will allow us to use the convenient notation of stochastic
M 11 nnnnn +1imamnaQ
is an assumption that the timescale associated with measurement interactions and
readouts is much shorter than any timescale on which we wish to understand the
system dynamics.

In the Caves-Milburn model for continuous quantum-mechanical measurements of
position [38], there is one system of interest, and an infinite succession of identical
(and identically-prepared) “meters.” Let the meters be labelled by an index r. The
system is brought into momentary contact with the r** meter at time ¢, = r7, and the
position operator of each meter is measured sharply just after it has interacted with
the system. The string of measurement results thus generated constitutes a classical
record of the system evolution. Continuous measurement is achieved in the limit

where the time-interval between measurements 7 goes to zero, with the uncertainty
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of each individual measurement simultaneously going to infinity in an appropriate

manner.

Let z,p denote the system position and momentum operators, and X,, P, the
position and momentum operators of the 7" meter. We adopt the following time-

dependent interaction Hamiltonian between the system and the meters:
n
Hip = 6(t—r7)zP,. (4.1)
r=1

The delta-function form is chosen to facilitate the limit 7 — 0, but as discussed
above it may be viewed as the idealization of any “shrinkable” function with compact
support. We assume that each meter, just before it interacts with the system, is

prepared in the pure state |Y,) with Gaussian wave-function (X, &) =&, &)

1

(617 =T (6) = —me | 52| (12)

20

Caves and Milburn have have derived an exact expression for the conditional evolution
of the system state under the following measurement protocol: at each time %,, 1.
couple the system to the r®* meter prepared in state (4.2), iz. evolve the system and
meter under the interaction Hamiltonian (4.1), 9. perform a precise measurement
of X,. If we write p(t,—) for the system state just before the measurement at time

t, = r7, the post-measurement system state p (¢,+) is given by

pt+) = T(E)pt—)TH(E), (4.3)
TE) = (&™), (4.4)

where &, corresponds to the actual outcome of the meter projection in stage 1.
Recall that , X, P, are Hermitian operators, & is a c-number, and | Y, ) is a Hilbert-
space ket. T, is thus a quantum operation density. Qualitatively speaking, the basic
effect of (4.3) is to shift the centroid ) = Tr[zp (t,—)] of the system’s position-

space distribution towards the value conveyed by &, and to reduce its overall width
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Al = Tr[22p (t,—)] — (2)* by an amount that depends on the ratio A./o. Note that
this is not a projective measurement—the post-measurement state p (t.+) depends

on both the measurement result &, and the pre-measurement state p (t,—) .

The operation (4.4) maps Gaussian pure states of the system to Gaussian pure
states, so we can in fact parametrize the selective evolution of a free particle (initially

prepared in a Gaussian pure state) by just four real numbers. Chosing =, = (z) ,p, =
p), A, = 2 <(A:L')2>, and g, = (AzAp — ApAz) /h, Caves and Milburn derived a
set of difference equations for the evolution of these quantities with each successive
measurement. They further showed that Gaussian initial states generally converge
toward stationary evolutions, in which z, and p, evolve stochastically but A, and
¢, vary periodically—during the time intervals between measurements both widths
increase according to the free Hamiltonian, but the effect of each measurement is to
reduce them by a constant “contraction factor” €' such that A, = Tr [2%p (t,+)]—(z,)”
is independent of r. The form of the evolution equations is especially convenient in
this stationary regime, so in what follows we shall assume that stationarity has been

bootstrapped by preparing the system in an appropriate initial state.

In order to derive a broadband SQL for position measurements, we start with the

stationary difference equations (3.30a,b) from [38]:

C—1 ,
LTyl — Tp = pr% + T (fr - ﬂ?r) s
- " (6 — ) (45)
pT+1 pT o C’ r r) .

Here unprimed quantities z,,p, describe the system state just after the (r — l)th

measurement has been made, and 2/ holds just before the 7™ measurement.

We first need to rewrite the difference equations (4.5) as a stochastic differential
equation (SDE), by taking 7 — 0 together with ¢ — oo such that their product
D = o7 stays constant. Recall, from equations (3.20,3.21) of [38], that (& — z.) is a
Gaussian random variable with zero mean and variance cC/2. In the continuous limit

it also turns out that C' — 1 [38], so we immediately have an explicit (Ito) stochastic
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d() _ (p/m> dH( Oz)dW, 16
p 0 =

where dW is a Wiener increment [73].

differential equation:

To derive an SDE for the rms position, we begin by applying Ito’s formula to

derive an SDE for z,,, = (z?),

2p
d(z*) = =azdt
@) - Zoa
2
%ajmg = E(mv) (4.7)

Substituting x, p by integrals of equation (4.6), and keeping in mind that the “func-
tions” dW (t) appearing in the expressions for z and p will be identical for any given

stochastic realization,

d 2
2 e = d dt" [ aw (")
@™ = mD </ W / / v >

- t2, (4.8)
2m2D
Hence,
h
Tpms (1) = ~———=== 32, (4.9)

mv 6D

We now turn to quantify the fundamental measurement noise inherent in the
present scheme. As mentioned above, the discrete measurement errors (before taking
the continuous limit) are a stationary Gaussian process with variance Co/2. Hence,
in any given time interval B~! the sample variance for the N = (B7) " measurements

will be

(X¢) = 3

1 CoBr DB
]—V‘grms = \/ 5 — T (4.10)

L)
it
TS
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Note that v/D thus represents a measurement inaccuracy (or “sensitivity,” depending
on your point of view) in units such as meters/ vHz. In the sequel we shall regard
Z (t) as the time-domain measurement signal, so that B should be interpreted as a
low-pass bandwidth. It is important to understand that D and B are completely in-
dependent variables—D parametrizes the system-meter coupling strength (a physical
quantity), and B, the degree of smoothing applied to the measurement results (a

signal-processing quantity).

We can now formulate a condition for backaction-induced diffusion to become

visible against the fundamental measurement noise:

Trms — Erms:>
h
_h_pe ~ DB,
mv 6D /
D 2/3
t, = [ 33%} . (4.11)

This expression should be taken to predict the overall measurement time ¢, at which
backaction-diffusion should cause the rms wander z,,,s of the observed particle (with
mass m) to equal the point-to-point scatter =, in continuous measurements made
with measurement inaccuracy v/D and filtered to bandwidth B. Viewed as such, I
claim that equation (4.11) represents the most sensible form for a broadband SQL for
continuous observation of the position of a free mass. Note that the timescale for
backaction noise to manifest itself increases with increasing signal bandwidth (mea-
surement noise hides the backaction), increases with particle mass (scenario is less
“quantum”), and increases with measurement inaccuracy (need a good measurement
to get to the SQL). This picture is illustrated by Figure 4.1a (for fixed D, B, and m),

which Shows T, (), Zrms, and t, together with two stochastic realizations of z (¢).

In the special case where we choose to integrate the measurement results over all of
a given observation interval ¢, B = 1/t and we recover a single measurement scenario.
We can then derive a basic figure-of-merit for continuous measurements—defining

S = v/ D as the measurement inaccuracy and keeping ¢ as the total observation time,
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Figure 4.1: (a) Horizontal lines indicate the rms signal noise &+/(DB/2), curved lines
indicate +&,ms(t), and the vertical line indicates ¢, for D = 1.42 x 1072°, B = 107,
and m = 2.22 x 1072° (mks units). Two stochastic realizations of the measurement
signal are also shown, generated by direct simulation of equations (19)-(21). (b) The
nonstationary component of the signal & can be perfectly subtracted away to yield
eta, = & — &', which is a Gaussian noise process with variance oC/2.

i? < 3—1/4\/E (4.12)
m

in order for noise in the measurement record ultimately to be dominated by real

we find that we need

displacements of the particle due to backaction diffusion. Alternatively, we can write

down something like an inference-disturbance relation:

/D h ht
Erms * Trms > a5, t3/2 == 4.13
~ V2t my6D 2v/3m (4.13)

This relation asserts that the product of the integrated measurement accuracy and

the rms displacement of the test particle due to backaction-diffusion must exceed a
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lower bound that increases linearly with time.
We now turn to consider the estimation of weak forces acting on the test particle,

based on something like Kalman filtering of the measurement record. We begin by

writing down a modified form of the stationary difference equations (still explicit),

T C-1 ,
LTpi1 — Ty = pr;ﬁ + ——5— (fr - xr) ) (4-14)
h :
Pra1—Dr = QT+ (& — x,) . (4.15)
ovC

Here we have simply added a uniform force field o that acts on the particle at all

times [74]. Our task will be to detect o # 0.

Based on the measurement results &, we want to update recursive estimators
%, and p, for z, and p,, respectively. Assuming noiseless readout of &, the update

equations read

. R .7 C-1 .
! (4.16)
P R hi
r+1 7 Pr =

+1 J\/a'

(& — 2). (4.17)

Note that we do not include « in the update rules, as it is assumed to be an unknown
quantity. In order to infer « from the recursive estimators Z, and p,, we must focus
on the behavior of the quantity n, = & — .. As we know the distribution for &, we

can write

C
e = (@, = &) + 1/ SN0, 1], (4.18)

where N, [0, 1] is a Gaussian deviate with zero mean and unit variance. Hence, 7, will
generally be the sum of a Gaussian deviate and an uncorrelated process (the “error-

signal”) that reflects the cumulative inaccuracy of our recursive position estimator.

Note that if there is no external force acting on the particle (o = 0) there is
no measurement inaccuracy, and the recursive estimator , can be used perfectly to
subtract the backaction-induced diffusion from the signal &, (see Figure 4.1b). Indeed,

demonstrating the ability to do so would seem to be the only good way of verifying
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that an actual experimental broadband position measurement reaches the “quantum
regime” defined by equation (4.12)—unlike the scenario of optical measurements of
quadrature amplitudes, there is no way directly to compare signal and meter beams to
determine the fidelity of the measurement. If there is external force, the subtraction
will not be perfect and « will reveal itself in nonstationary behavior of 7,.

Note as well that the variance of the residual noise process %‘ZN,« [0,1] can in
principle go to zero in the limit of good measurements. At first thought this might
seem to have profound implications for the detection of weak classical forces, but in
fact the quantitative analysis below recovers the usual SQL for weak force detection.

Before proceeding any farther, let us make the transition to the continuous limit
(1 — 0, 0 — oo, D = const) [71] and collect together a complete set of SDE’s for the

physical quantities and statistical estimators:

2

p
de = —dt = adt — .
x — dt, dp = adt + 2DdVV, (4.19)
D
d¢ = xdt + 4/ 5dW, (4.20)
. 2 . h .
dz = — dp = — — zdt) . .
Z mdt, b= 5 (d€ — zdt) (4.21)

In these terms, d€/dt represents the broadband measurement record. Note that we

could also define an auxilliary variable e = x — £, in terms of which

1
de = —(p—7p .
e - (p — p)dt, (4.22)

gp = dtﬂ/h—?dW (4.23)

Our estimator for the external force o will be proportional to the time integral of
dn = d€ —idt, so what we really need to know is the rms behavior of e (¢). Developing

its SDE,

de = dx—dz,
de 1 BOfY
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d%e 1 h
de 1 b\ 4.24
dt? m <a D e) (4.24)

This shows that e (¢) behaves like a harmonic oscillator, with mass m and natural
frequency wq = ,/%, subjected to a constant external force or. So with the initial

condtion £ = z, p = p, we expect

e(t) = % {1 — oS (\/ %t)} : (4.25)

Getting back to the time integral of dn,

D[ N
O (dt' )dt —-——/ ) dt’ +\/;/O dw (t') (4.26)

from which we identify the signal ¥ and rms noise NV as

aD ImD h Dt

Setting X/N = 1 we obtain

-1
Qi = fig ;éﬁ- [t -~ \ — sm (\/ int\-l . (4.28)
Y &/ L iy Toids /-l

3

This expression gives a rigorous lower bound for the weakest detectable force, given
particular values of m, ¢, and D. In order to arrive at an SQL in the traditional sense,
what remains is to optimize over D. For fixed m and ¢, it seems reasonable that the
optimal choice of D should be simply related to %it? /m. If we substitute D = 0*ht? /m

into (4.28) and then (numerically) minimize over 8,

_ hm 9 -1 hm
Omin = mln\/%3 [0—6*sin(1/0)] " =~ BYER (4.29)

Hence we are able to recover (within a factor of ) the usual SQL for detecting a
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weak classical force via repeated position measurements on a free mass [5].

Looking back at equations (4.14-4.15), note that we are allowed to substitute an
arbitrarily time-varying external force « (t) without violating the conditions of the
derivation (gaussian propagation). Hence, one arrives at the obvious extension of
equation (4.24): ,

%gi == (a () - %) | (4.30)
The time-development of the Kalman estimator e (¢) therefore corresponds to the
response of a simple harmonic oscillator (SHO) to the applied force « (). All the
quantum measurement phenomenology seems to be distilled into the single fact that
the stiffness (resonance frequency) of this SHO scales inversely with the inaccuracy of
the broadband position measurements. Computing this response gives you the exact
waveform e (¢) that would be induced by any expected signal. Knowing this, one

could easily design a matched filter [75] for optimal detection against the gaussian
white noise /Dt/2.

Considering the simplest case a (t) = acos(ft), we could guess that an interesting

response might be obtained by choosing D such that f = (/fi/mD. Under these
conditions we can guess that e (t) = A (¢) sin(f?), so that

d’e

=5 = (= cos(ft) - fA (1) sin(f1)) (4.31)

— 2fAcos(ft) + (A - f2A) sin(f1). (4.32)

Therefore, A (t) = at (2mf)~", and

at .

e(t) = 2mf81n(ft), (4.33)
I

f = 5 (4.34)

The matched filter for this will be simply sin(ft), and

/ dt'e () sin(ft) = 277% /0 d (ft') (f¢) sin®(f#)

0
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= —2-7—:? %sinQ(ft) - (4.35)
—‘];—t sin(ft) cos(ft) + %fQi? (4.36)

The interesting regime would seem to be ft > 1, where the integrated error signal

goes like t2 (as opposed to ¢ in the case of constant «). Setting ¥ to the expression

above, and N = 1/Dt/2, we have

Omin ~ 4mft™2/Dt/2 (4.37)
hm
— - 4.
455 (4.38)

Although the derivation of this last expression has not been completely rigorous, one
sees that the use of equation (4.30) together with some intuition about the behavior
of forced harmonic oscillators provides a convenient way of thinking about optimal

signal recovery in the quantum regime of strong measurement backaction.

4.2 Quantum system identification

Abstract: The rapidly-developing theory of quantum parameter estimation (QPE)
focuses on the design of optimal measurement strategies for extracting information
about c-number parameters 0 that characterize a given quantum system. While
much progress has been made in applying QPE to the parametric identification of
prepared quantum states, little or no attention has yet been paid to the problem of
estimating parameters that characterize a dynamical quantum system. In this section
I consider the latter aspect of QPE within the context of quantum optics, and describe

a quantum trajectories method for estimating parameters that appear in the effective
Hamiltonian for a Markovian open quantum system.

Recent theoretical work in QPE [76, 77, 15] has focused on a paradigm in which
an experimenter is provided with one or more copies of a quantum state p; drawn

from a single-parameter family p(6), and is asked to determine the value 6, such



106
that pg = p(fy). The experimenter knows the form of p(f) and can make arbitrary
measurements on the states she is given, but does not know the value of 6y a priori.
In such situations one can actually derive a mathematical representation of the op-
timal quantum measurement for the purpose of estimating 6y, and optimize over all
possible statistical reductions of the measurement results as well [78]. Accordingly,
there exists a generalized version of the Cramér-Rao inequality [79] that establishes
a fundamental bound on the rate of convergence for estimators based on repeated
measurements whose marginal statistics are fully determined by a single, unchanging
density matrix [80]. My purpose here is to consider a related but distinct aspect of
QPE, namely the estimation of parameters appearing in the equations of motion that
govern the time-evolution of a quantum system. In this paradigm, which is closely
related to that of classical system identification [81], the hypothetical experimenter
wishes to determine which system model H, in a parametrized family ’H((‘/T) best ac-
counts for the dynamical behavior of a given quantum system. In contrast to the
conventional QPE scenario described above, the statistics of multiple successive mea-
surements made on a dynamical system cannot necessarily be derived from any single
density matrix. Roughly speaking, this is because every measurement disturbs the

state of the system [12] in a manner that depends on the measurement outcome, and

U UWST vl

The effects of repeated measurements on otherwise-unitary quantum evolution
have been extensively studied in quantum optics, with regard to the dynamics of
open quantum systems [9, 8. The configuration most often treated by such work
is that of a small, “encapsulated” quantum system having one or more well-defined
input/output channels associated with its coupling to the physical environment. This
picture naturally suggests a paradigm in which an experimenter attempts to paramet-
rically identify the Hamiltonian of the encapsulated quantum system by examining
the response of the output channels to driving stimuli applied to the input chan-
nels [82]. The task of quantum system identification may then be equated with that of

computing the relative likelihood of an observed sequence of measurement results =Z*
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as a function of the parameter set 5, given the external driving conditions imposed
by the erperimenter. To the extent that the environmental couplings for the sys-
tem are known, quantum trajectory theory [8, 13] suggests a simple method for the
computation, which I discuss below. Having a likelihood function f(#]Z*), one can
use maximum-likelihood or Bayesian principles [83, 81] to estimate the parameters g,
Note that it should generally be possible for the experimenter to determine optimal
driving conditions that make the system response maximally sensitive to the values
of 5, or indeed to adaptively change the driving conditions as the estimation starts to

converge [15].

To illustrate quantum system identification in a concrete setting, let us focus on
an example with relevance to current experiments in cavity quantum electrodynamics
(QED)—a single two-level atom placed within the mode volume of a driven, high-
finesse optical cavity [22, 8]. The strength of the coherent coupling between atom and
cavity mode is parametrized by the vacuum Rabi frequency g, whose value depends on
the spatial position of the atom within the cavity. For a Fabry-Perot resonator g(7) =
gocos(2mz/N) exp [—(y? + 2%)/w]], where z is the coordinate along the cavity axis
and wy is the gaussian waist of the TEMgq resonator mode. The specific task I shall
consider is that of estimating ¢g € [0, go], which I suppose to be unknown because the
atomic position is not known. The measurement procedure will simply be to monitor
the arrival-time statistics of photons emitted by the atom-cavity system for a fixed
cavity driving field. For the purposes of this discussion I shall not explicitly treat the
atom’s external degrees of freedom, imagining that they are fixed by an rf Paul trap
or similar confining mechanism [84]. However, note that the correlation of g with the
atomic position operator implies that “online” estimation of ¢ for an untrapped atom
drifting through a cavity could be viewed as a time-distributed quantum measurement

of the position of a free mass [85, 86].

For a gedanken-experiment in which the cavity is driven by a resonant cw probe
laser and both the atomic fluoresence and cavity emission are continuously monitored

by perfect photon-counting detectors [87], the evolution of the conditional state-vector
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between photodection events satisfies the effective Schrodinger equation (fi = 1)

[Ye(t +dt)) = e T y(t)), (4.39)

Her(g) = ig(aoy —alo ) +ie(a—d') —ird'a—iviopo  (4.40)

This interaction-picture expression for Heg(g) is valid under the rotating-wave and
electric-dipole approximations, and for identical atomic/cavity/probe-laser frequen-
cies. Here « is the field decay rate of the cavity, v, is the dipole decay rate of the
atom, and e represents the strength of the coherent driving field. The jump opera-
tor associated with the detection of photons spontaneously emitted by the atom is
G = /2710, and é = V/2ka is the jump operator associated with the detection of
photons leaking through the cavity mirrors.

By registering the origins {j1,...,4,} (= 0 for spontaneous emission or 1 for
cavity decays) and arrival times {t1,...,t,} of every photon emitted by the atom-
cavity system in response to the cw driving field during an observation interval [tg, ¢ ],
the hypothetical experimenter accumulates a classical record Z* = (fg, ¢y, {ji, t:}) of
the stochastic evolution of the system state. Assuming a uniform prior distribution
on g, the likelihood function f(g|Z*) then simply corresponds to a normalized version

of the exclusive probability density [8, 13]

Uerr (tf,tn ;g) éjn Uest (tmtn—l ;g) o
P (E*l g) =Tr X éleeﬁ‘ (tl, 1o ,g) p(to) UeTff (tly to 79) é;rl ’ (441)
X o Ulg (tny tae1; 9) ‘5}” Uls (t7,tn3 9)

viewed as a function of g rather than Z*. Accordingly, the maximum-likelihood esti-
mate (MLE) of g is obtained by computing the value of g which maximizes (4.41) with
=* fixed by the observed data. Here Uesg (¢',1; g) is the evolution operator from time
t to ¢’ associated with the effective Hamiltonian Heg(g) defined in equation (4.40).
In order to numerically demonstrate quantum system identification using (4.41),
I have generated a set of classical records by quantum Monte Carlo simluation [88]

of a driven atom-cavity system with (go,v1,)/2m = (57,2.5,30) MHz, and three
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Figure 4.2: Time-evolution of the mean intracavity photon number (a'a) in individual
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trace (iii) is for € = 44.3.

different powers for the driving field e = {24,34,44.3}. While this value for gy is
larger than what has been achieved experimentally [89], it should certainly be within
reach of works in progress. For the simulations I chose an arbitrary atomic position
such that g(7) = 45 MHz, and generated classical records with an observation time of
1 ps each. Figure 4.2 illustrates the stochastic time-evolution of the mean intracavity
photon number, taken from typical Monte-Carlo data sets for each of the three values
of e. The photocount statistics are clearly super-Poissonian, and the simulated data
show that quantum jumps often occur at a local rate that greatly exceeds the rate at

which the system regresses to steady state.
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Figure 4.3: Corresponding stochastic evolution of the (normalized) likelihood function
f(g|Z*) and corresponding MLE in one quantum trajectory with driving field ampli-
tude € = 34. The surface height indicates relative probability of g € [35,57], with a
resolution of 1. The “true” value of g corresponds to 45. Note that the likelihood
function is updated each time a photon is detected, so that the timelike coordinate
in this surface plot corresponds to jump number rather than absolute time.

For each Monte Carlo trajectory, an identification routine based on (4.41) was used
to compute the stochastic time-evolution of f(g|Z*), as well as the corresponding
MLE. Figure 4.3 shows one typical data set with e = 34, starting from the inital
estimate made after only one photodetection event and updated after each subsequent
photodetection. Figure 4.4 indicates the ensemble-averaged convergence of the MLE
for g, based on 2000 simulations for ¢ = 24, 300 simulations for ¢ = 34, and 150
simulations for € = 44.3. A histogram representing the time-evolution of the MLE
sampling distribution is given in Figure 4.5, for the case of € = 44.3. With this driving
field, ~ 1% accuracy in estimation of g is obtained in 1 us observation time (~ 600
quantum jumps).

It is important to note that the QPE procedure described above automatically
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Figure 4.4: Standard deviation of the maximum-likelihood estimator for g as a func-
tion of absolute time (+—e = 24, o—¢ = 34, x—€ = 44.3).

makes efficient use of any information about ¢ that is contained in higher-order corre-
lations of the classical record of counting times. Of course, not every open quantum
system will generate significant correlations of this type. In the scenario discussed
above for example, the photon stream emitted by the atom-cavity system would be-
come nearly Poissonian in the limit of either weak excitation (corrleated pairs of
photons become rare) or of weak coupling g < k, 7, (correlations become weak).
Two critical conditions for correlations to be strongly evident in individual classical
records are that the mean time between counts must be comparable to or less than
the system regression time [93], and that the system dynamics must be significantly

altered by the loss of a single quantum of excitation [90]. For systems not satisfying
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Figure 4.5: Histogram showing the evolution (in absolute time) of the sampling dis-
tribution for the MLE of g, representing 150 simulations with € = 44.3.

s described above offer no real advantage over statistical es-
timators based on only the steady-state density matrix obtained by solving the master
equation associated with (4.40). Accordingly, optimal parameter estimation in such
systems can be formulated within the paradigm of conventional QPE. Judging from
the trend shown in Figure 4.4, however, it certainly seems that the information rate
on parameters in strongly-coupled systems can be significantly larger in the strong-
driving regime [91, 92] than in the weak-field regime.

In closing, let me note that a straightforward extension of the above method would
allow the identification of non-stationary Hamiltonians in which the parameters 5(75)
vary slowly compared to the timescale for convergence of the corresponding statistical
estimators. Relative to the example discussed above, a recent cavity-QED experiment

incorporating a laser-cooled atomic source [26] has demonstrated the practical fea-
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sibility of achieving this separation of timescales. It seems reasonable to hope that
the methods proposed above could be utilized in future experimental work to track
variations in g associated with the motion of an individual atom through the mode-
volume of a high-finesse optical cavity [87]. A digital signal processor implementing
such a procedure could be used as the state observer in a “semiclassical” feedback

control loop designed to confine and cool the atom’s center-of-mass motion.
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Appendix A Semiclassical measurement

strategies

The notes in this Appendix describe some statistical methods for optimal estimation
of intracavity atom number, based on the photocount statistics of the cavity output.
All derivations are based on one very incorrect assumption, however, namely that the
cavity output remains in a coherent state regardless of the value of the cooperativity
C. After realizing that this was a fatal problem, I set off down the road that led
to the quantum system identification paper. So although the work presented below
turned out to be nothing more than an edifying exercise, I think it’s worth preserving
as a general illustration of how to apply classical parameter estimation methods in

quantum optics.

A.1 Preliminaries

We consider the difference between atom counting and atom detection from a statis-
tical point of view. In the case where one wants maximum resolution for determining
the precise number of atoms in a cavity, the appropriate figure-of-merit in parameter
space should be Fisher information on the cooperativity C. Hence the applicable sta-
tistical framework is that of point-estimation theory, and in particular one knows to
search for an efficient estimator of C'. If on the other hand one is interested only in dis-
tinguishing between the presence and absence of atoms in a cavity, hypothesis-testing
theory should be applied. Then the goal is to find a uniformly-most-powerful test of
the hypothesis that the cooperativity is greater than some threshold Cy. To illustrate
the distinction we derive optimal parameters for photon-counting measurements of
cavity transmission, with one atom in the bad-cavity limit and an on-resonance probe.

For a single atom interacting with a quantized cavity mode, Rice and Carmichael
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[93] have derived an expression for the steady-state intracavity intensity

(A1)

(0} = mo¥? ({ 1+Y? )

1+ 20@) + Y2

which is valid in the bad-cavity limit for a resonant driving field of arbitrary power
Y . Here r denotes the atom’s position inside the cavity. We restrict our attention
to this case because it’s nice to have an actual function with which to do analytic
manipulations (as opposed to the unrestrained bistability state equation). With only
one atom in the cavity the distinction between counting and detection is not so
sharp, but we’ll take atom counting to mean “precise determination of C(r),” and
atom detection to mean “deciding whether C(¥) > Cp.” Note that for our scenario
0 < CF) < (4, where C; = ¢2/2rv, is the single-atom cooperativity. Writing
C(r) = C19 (¥), we could just as well think of our real goal as being estimation of

the “position parameter” ® (¥) € [0, 1].

The photon-counting rate for the transmitted field depends upon C = C(F)

through the Poissonian mean

2KTI’In 14+ Y? \

b= K1+4C+402+Y2)’

(A.2)

where B is the detection bandwidth, 2x the energy decay rate of the cavity, and my
the critical photon number. In the following we will need the first two derivatives of

[’ with respect to C,

or 8kmoY? (14 Y2)(1+20)

9 _ : A3

aC B (1+4C 4402 4+ Y?2)? (A-3)
0T 16kmoY?(1+Y?) [3+120C +12C% —Y? (A4)
oc? B (1+4C +4C? +V?)? '

An excellent reference for the statistical theory discussed below is [83].
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A.2 Atom counting

In this section we consider the task of trying to determine the precise value of '
through photon-counting measurements of the cavity output. The number of photo-
counts received in a given detection bandwidth is a Poissonian random variable whose
mean is tied to the intracavity photon number, and therefore to C'. Having an ex-
pression for the probability distribution for different numbers of photocounts, we can
compute a quantity called the Fisher Information on C, denoted I(C). This quantity
holds great significance for our given task because the Crameéer-Rao bound states that
no statistical estimator of C' can converge with variance smaller than 1/n/(C), where
n is the number of photocount “bins” we integrate over. The information /(C) will
turn out to be a function of the driving field Y, such that we can derive an optimum

value of Y for determining C' from the photon-counting distribution.

The likelihood (i.e., probability distribution) to observe a given number of counts

r in one detection bandwidth is Poissonian,

e T _
flrloy =" (A.5)
Taking derivatives of the log-likelihood A(r |C'"), we find
I ar T BF
N(r|C) = —(55)+f(—@), (A.6)
y T\ v (or\? r [T

Using the expressions given above for derivatives of I', we arrive at the Fisher infor-

mation on C,

I(C) = —E [X’(MO)} - % (%)2, (A.8)

32kmo Y2 (1 +Y?) (1 +20)
B (14+4C +4C24+Y2)*"

(A.9)

Having this expression, we can maximize (at least numerically) with respect to Y
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and determine the optimal driving field. Note that the optimal ¥ will certainly vary
with C, so that one can only really maximize the information for a given expected
value. The goal then is to find an efficient estimator for C'. There isn’t really a
general method for deriving such an estimator; in fact, there doesn’t even seem to be
a test for the existence of an efficient estimator. However, as the sample mean 7 is
a sufficient statistic for C' in the Poisson distribution (A.5), it seems reasonable just

to invert the expression for E [r | C']. This procedure yields the “phenomenological”

26myY 4 2Kkmyg
-1+ —11Y2
\/ B +< 7B

Thus defined, C' is an unbiased estimator of C'. To show that it is in fact efficient, we

estimator

= (A.10)

1
2

would need to either compute its variance, or else show that it can be factored in the

form
C=uC)X ({r:}|C)+0(C), (A.11)
where
M} 10) = (1) o,

[ 8rmeY?  (14Y?%)(1+20)
= (1 -nF) 2 |-
. B (14+4C+4C?+Y?)

Unfortunately, the algebra gets rather cumbersome so we’ll have to leave this issue
unsettled for now. At any rate, the Cramer-Rao bound tells you that no estimator of C
can converge with variance smaller than 1/n/(C), where n is the number of detection
times you integrate over. In fact it can be shown that the Mazimum Likelihood
Estimator of C' should saturate the Crameér-Rao bound asymptotically (that is, for

large n). It would therefore be interesting to derive its form (coming soon).

In order to get a qualitative feel for what’s going on, we show in Figure A.l
the Fisher information on C as a function of driving field Y. These plots show the
optimum driving field for precise determination of an unknown but fixed cooperativity

C. Note that a slightly stronger maximum exists for C' = 1 than for higher values.
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Figure A.1: Fisher information on C versus Y, for C=1, 3, 10, 30, and 100 (appearing
left-to-right in the plot).

Figure A.2 shows I(C) for fixed driving fields Y and varying “actual” cooperativity.
The plots indicate that with too weak a driving field, there’s hardly any information
about C. For driving fields at or above saturation, good information is obtained for
some range of cooperativities whose center value increases with Y. Keep in mind that
the axes are logarithmic, so that larger driving fields also provide information for a

wider range of cooperativities.

A.3 Atom detection

We next turn to the more discrete task of deciding whether C is less than or greater

than some “detection threshold” Cy. For this task we must set aside the Crameér-Rao
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Figure A.2: Fisher information on C versus C, for Y=0.01 (dotted), 0.1 (dot-dash),
1 (dashed), 10 (solid), and 100 (solid).

bound in favor of something called the Neyman-Pearson lemma for hypothesis-testing.
We can cast our atom detection problem in the paradigm of one-sided alternatives by

formulating two hypotheses about C"

H, : C<Cy, (A.12)
H1  C > C() . (A13)

Here Hjy is the “null hypothesis” that no atoms are strongly-coupled to the cavity
(i.e., C(F) < Cp), and H; represents rejection of the null hypothesis. By fixing an
upper limit oy on the false-alarm probability (i.e., a level of significance), we can

use the following condition (a consequence of Neyman-Pearson) to derive an optimal
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testing procedure (a uniformly-most-powerful test):
PI"(TZC|C:CQ):CL’0. (A14)

Here T represents a special statistic for which f(r|C) has a monotone likelihood
ratio. Knowing the sampling distribution of T', we are meant to choose the constant
¢ so as to satisfy this condition. Then the optimal testing procedure consists of
rejecting Hy if and only if T' > ¢. The figure-of-merit with which we should optimze
Y is the integral (or average) of the power function 7(C) (defined as the probability
of rejecting Hy, given that the actual value of the cooperativity is C') over the region
Cy < C < (1. The value of this integral corresponds to the probability that a “real
event” is successfully detected (given uniform expected distribution for C, a condition

which could be relaxed), and should of course be maximized.

The computational difficulty lies in identifying a statistic T for which f(r|C')

has a monotone likelihood ratio. Specifically, we need the likelihood ratio

fal{rid [ Ca) _ ¢~(TaTy) r\™

1.3

T 41 o + Q
LILLD

to depend on the 1 data points {7;} only through a s T, and the value of
ratio must be a monotonically-increasing function of T for C, > (. As we know that
T is a strictly decreasing function of C', we know that (I',/I';)" < 1 so there is actually
an easy solution of just choosing T = (m*)_l. Using this we can then compute the

constant ¢ defined above, and then try to optimize the figure-of-merit

1 C1

1 =
= Pr(T > ¢)dC A17
= / BT ) (A17)

with respect to Y.

Carrying out this procedure, we first derive the sampling distribution for 7'. Con-
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sider first the distribution of the “sample norm” S = nF,

f(sIn.C) = > fal{r}1C) (A.18)

R —nI'TWn7
- Y (A19)
1
—nl's

where the sum is over all sets of values {r;} such that >, r;, = s. Transforming

then to the variable T'= S~!, we have

(T = tnC)=f(S=t"[nC) (A.21)
1
. —nl'11/t
= e "I ——— (A.22)
n;:;m [Tz ()
Note that the “allowed” values of T are t = 00,1, %, %, ... where inspection of ex-

pression (A.22) confirms that there is nothing pathological about the infinite value.
At this point the only remaining obstacle to determining the constant ¢ in (A.14) is
computation of the entropy-like sum in (A.22). Unfortunately, there doesn’t seem to
be a nice analytic simplification, but for reasonable values of 7 it can certainly be

4 1 1 ] 3
tabulated.

The situation is simplified greatly if we restrict our attention to the case where
n = 1. Indeed, the fact that the sample mean is a sufficient statistic for C' suggests
that we might not loose anything by increasing the integration time B! and testing
the hypothesis (A.12) one data point at a time. Then the distribution (A.22) reduces

to
e—I‘I‘\l/t

()1

Inserting this into the test condition (A.14), we can finally derive an expression for

F(T=t|C)= (A.23)

the threshold constant c:
Y L =a, (A.24)



122

26Mmy o 1+Y?
I'y= Y . A.25
°~ B (1+400+4C§+Y2 (A.25)

where

Having written this down, we can transform back to the less confusing variable s =
t~!, which ranges over the natural numbers 0, 1, 2, ... Let us also define ¢ = ¢!, so

that (A.24) becomes
Z Lo _ el (A.26)

5!
5=0

Having a threshold constant ¢’ defined in this way, the uniformly-most-powerful test
of hypothesis (A.12) will be to decide that there is an atom in the cavity if and only
if the number of counts s recieved in a detection bandwidth B is less than or equal
to c'.

For fixed significance oy and threshold-cooperativity Cy, the test-condition con-
stant ¢’ is clearly still a function of Y. In order to determine the optimal driving field,
we will also need to maximize the overall detection probability II for Cy < C < .

Recalling expression (A.17) from above,

Cq
ny) = o— L CO/ PH(T > ¢) dC,

1 [
= oG / Pr(S < ¢)dC,
1 G . “.T5(C,Y)
—_ - (C,Y) ’
o Co/ dC'e 2] , (A.27)

where the notation I'(C,Y) is meant to indicate the dependence of the expected
count-rate on C' and Y. After integrating out C' in expression (A.27), the overall
detection probability II is a function only of Y. Hence by maximizing (A.27) with
respect to ¥ we can determine the optimum driving field strength—optimum in the
sense that the false-alarm probability is < ag (by construction), and the probability
of successfully detecting a real event is as large as possible. Note that this latter
property was obtained in two steps: for fized Y, the test-condition constant ¢’ was

determined according to the critereon (A.14), which guarantees that the test T > ¢/



123
has the maximum probability to succeed, among all testing procedures of the form
T > x, for every value of C' > Cy. Then the variation with respect to Y ensures that
the overall detection probability, integrated over the possible values C' > (), is also
maximized.

Figure A.3 shows II(Y") for an example scenario, with Cy = 22, Cy = {1,5,10},
and a = 107°, for which the test-condition constants turn out to be 54, 126, and
129, respectively. In Figure A.4 we show the power function 7 (C) for the particular
case of Cy = 5. For comparison we show in Figure A.5 the Fisher information on C
at the optimum values of Y determined by the hypothesis-testing criterion. And for
completeness, Figure A.6 shows the Fisher information on C' as a function of YV, for

C ={1,5,10,22}.
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Figure A.3: Solid curves show the overall detection probability versus driving field,
for threshold Cy values of 1, 5, and 10. Dotted lines show the relative size of the
test-condition constant ¢'.
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Figure A 4.
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Appendix B Quantum feedback in state

space

The purpose of this set of notes is to lay out a strategy for exploratory work on
feedback control of open quantum systems, with an emphasis on the development
of design principles for the solution of concrete problems in real experiments. Two
particular cavity-QED applications I have in mind are using feedback to trap and cool
a single atom inside a cavity, and feedback-stabilized synthesis of arbitrary quantum
states of the electromagnetic field. A second principle which guides our approach—in
addition to the desire for “practical usability”—is to formulate the control problem
in such a way as to make clear precisely which aspects are quantum-mechanical in
nature. This speaks for a very explicit treatment of measurement processes, which
in turn suggests that we should proceed by building upon state-space methods from
classical control theory, as opposed to treatments based on the analysis of transfer

functions. Such an approach should as well make it easy to include effects associated

At the classical (macroscopic) level, feedback is necessary to compensate for the
effects of unpredictable disturbances on a system under control, or indeed to make
control possible when we simply do not know the initial state of the system. Generally
speaking, the use of feedback enables us to control open dynamical systems, i.e.,
systems that are interacting with their environment, and about which we have only
incomplete or partly-reliable prior information. To overcome such a handicap we
must continually improve our estimate of the evolving system state through real-
time measurements (generally also imperfect) made on the system as we are trying to
control it. Measurement backaction greatly complicates the notion of feedback control
when the dynamics of the controlled system are manifestly quantum-mechanical. Due

to the uncertainty principle, it is rigorously impossible to gain information about
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the state of a quantum dynamical system without perturbing it in a manner that
cannot be determined beforehand. Hence, any strategy for continually reducing one’s
uncertainty about the state of an evolving quantum system necessarily induces an

excess unpredictable component in its dynamics.

For a certain class of quantum dynamical systems — namely Markovian open quan-
tum systems [9] — stochastic equations can in fact be derived that self-consistently
incorporate the effects of continous, indirect observation on the evolution of the sys-
tem state [8]. Significantly, the form of these equations is such that they may be used
to analyze the effects of quantum feedback, which is defined as the process of con-
tinuously adjusting the system evolution operator in a manner determined by some
function of the measurement results. Having this essential tool for analysis in hand,
the next step toward experimental investigations must be to elucidate useful princi-
ples for the design of QFC systems. Fortunately, one can draw a very close analogy
between open quantum systems and the canonical “plant” of classical control theory
making it possible to generalize known principles of control-system design to include

Schrodinger-type dynamics as well as quantum-mechanical measurement backaction.

Let’s start by having a look at the schematic diagrams shown in Figures la and
1b. The flow diagram for a classical open-loop plant is traditionally drawn as shown
in Figure la. The dynamics of the plant are summarized by a differential equation of

evolution

X(t) = f [x(t), ult), m®)], (B.1)

where x(t) represents all variables required to completely represent the system state
at time t and u(t) represents the set of control inputs applied at time ¢. Equation (B.1)
is known as the process equation. In general, the system evolution (i.e., the function
/) can depend on ezogenous or “noise” variables 1;, which are collectively known
as process noise. For digital control it is convenient to discretize time according to
t, = k(, where k is an integral time index and ( is a sufficiently small real timestep.

Assuming the discretization is fine enough, the process equation may be written as a
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difference equation,
x(k) = f[x(k = 1), u(k = 1), m(k = 1)]. (B.2)

In the paradigm of state feedback control, one assumes that “direct” knowledge of
the system state x(k) is available to (or least assumed by) the controller, so that the
measurement stage is never treated explicitly. For our purposes, however, we should
consider the paradigm of output feedback control, in which the controller’s knowledge
of the system state must be inferred from the system outputs y (k). The measurement

equation (for discrete time) is written

y(k) = g [x(k), n2(k); w(k)]. (B.3)

Here 1,(k) represents the measurement noise, and we include a set of measurement
parameters w(k) to allow for strategies in which the measurement function g[-] is
probing or adaptive. In the output feedback scenario, a controller must adjust the
control inputs u(k) in order to control the evolution of the system state x(k) in a
specified manner, basing its control decisions on only the system outputs y(k). It

must do so even in the presence of uncertainties m(k), n2(k).

Figure 1b shows a schematic diagram of typical open quantum system encoun-
tered in the context of quantum optics. Such a system will generally have both
c-number control inputs u(t) (which appear as parameters in the master equation),
and quantum driving fields ZA)m(t) The system state must now be represented as a
density operator p(t), but the system outputs can still be represented as c-numbers
y(t). In an observed open quantum system, the process and measurement equations
do not separate cleanly—the system evolution and measurement results are jointly
determined by a stochastic Schrédinger equation. Nevertheless we can formulate a
well-posed problem called feedback control of open quantum systems, in which the
task of the controller is to control the evolution of the system state p(t) in a specified

manner, basing its control decisions on only the classical record of measurement re-
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sults {y(t,),y(tn-1),...} . Again we can throw in uncertainties such as measurement
noise for added realism, so that the controller must be able to execute its function

having only a noise-corrupted classical record at its disposal.

Figure 2a shows the flow diagram for state-space feedback control of a classical
plant. The diagram was drawn to emphasize a very important aspect of state-space
control design—feedback controllers can be designed as the cascade of a state observer
module and a control law module. According to the principle of separability [70], these
two stages can be designed almost completely independently! The function of the
state observer is to keep a running state estimate (k) for the control system, based
upon a record of the applied sequence of controls {u(k),u(k — 1), ...} and the observed
system outputs {y(k),y(k — 1), ...}. The controller always uses this estimated system
state to determine the appropriate set of control inputs to apply during the next
timestep, according to u(k + 1) = F'[£(k)]. The idea of separability is that one can
treat the problem of state estimation independently from that of determining a good

feedback law F'[-].

I would propose that the principle of separability could serve as the fundamental
basis of feedback design for open quantum systems as well, as suggested in Figure 2b.
In the remainder of these notes, I sketch an outline of one possible approach to the

A

formalism.

Quantum process equation: We consider a Markovian open quantum system specified
by the Lindblad Master equation (the most general local Master equation for evolution
of the density matrix)

dp (t)
dt
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u(k-1) Process x(k)

X(K)=fx(k-1),u(k-1)]

Measurement

y(K)=g[x(K)]

y(k)

Control Law

u(k)=F[g(k)]

QG

State Observer

)=GIE(k-1),u(k-1),y(k-1)]

u(k-1) Stochastic Schr.

Continuous
Measurement

y(K)=alw(k)]

I-—I-—> Equation
(K)=Alu(k-1),y(k-Dw(k-1) | _ Y(K)
I w(k)=Alu(k-1),y(k-1)Tw(k-1)

--------------------------------------------------------------------------------------------------------------------------

Control Law

u(k)=F[E(K)]

Quantum or Semiclassical feedback controller
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Here we write H (u (¢)) to indicate that the system Hamiltonian depends on a set of
parameters u that may vary with time, and in the second line define superoperators
L; to represent the partial effect of each dissipative channel on the system evolution.

The total evolution superoperator Ly is known as the Liouvillian.

Simply stated, the central problem in quantum control is to design an autonomous
controller that varies u (¢) in order to achieve desired modifications to the system
dynamics. Examples of typical control objectives would be to change the steady-state
solution of the Master equation (B.4), to modify the eigenvalues of the Liouvillian,
or to cause the system to cycle through some desired progression of “target” states.
In the feedback control scenario, it is assumed that the controller bases its actions
on the outcomes of measurements made on the reservoirs associated with selected

dissipative channels £;.

Let us assume that dgps of the d dissipative channels are subject to observation
by the controller. In the ideal case of continuous perfect detection, the evolution of

the observed system would obey a stochastic master equation such that

éip (1) &l
p(t+dt) — _fzﬁ,_(..)__z_T_ (B.6)
Tr [c]p() }
following a detection event in the ;™ channel, and
dp(t) _ ;
. = ik [H (u(?)) 7/7(75)]
1 dobs
) (cjcjp(t)—%—p ¢l c]> Z L;p(t)
Jj=1 J=dobs
A d
= i [ (w®),p ()] + Y Lip(1) (B.7)

J=dobs

during periods of time between detected quantum jumps. This defines the effective

Hamiltonian Heg (u (t)) = H (u (t)) — 3 Z obs AT" for the partially observed system.

We next transform these equations to a discrete-time formulation dt — At with

integer time index n = ¢/At, retaining terms only to first order in the time increment
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At. Hence we have the discrete observed-process equation

p(n+1)=p(n) —ihAt |He (u(n)),p(n)

d
+ Z AtLjp(n), (no jumps detected)

J=dobs
&ip (n) &l

. (jump detected inchannel j) (B.8)
Tr [éjp (n) é;]

The probability for a quantum jump of type j to occur during a timestep of duration

At is given by Pr(j) = AtTr {p (n) A}éj} .

Inference-update equation: Unfortunately, it will never be possible to detect these
quantum jumps with perfect efficiency in any real experimental setup. In general,
the detectors monitoring the system under control will register an ostensible sequence
of quantum jumps {m;} that corresponds to a noisy version of the “true” sequence
{7:}. If an event m; is detected at time n;, we would like to have a rule for updating
our conditional density matrix (estimate of the evolving system state) that embodies
some sort of optimal filtration of the detection noise. A straightforward application

of Bayes’ rule yields

Pr(m;|j;) Pr(j;)

Prom) (B.9)

Pr(ji|ms, pi) =

where the “prior distribution” Pr(j;) = Tr[é}iéjiﬁi], and Pr(m,|j;) is given by the
description of the detector noise/inefficiency. Note that g; with a tilde represents the
controller’s internal (recursive) estimate of the evolving system state, and we have

introduced the simplifying notation g (n;) <> p;. Averaging over quantum jumps,

pivs = D Prlislmy) [epel, /11| (B.10)
= i 2 Prm PG [,/ -] (B.11)
= ﬁ(%i_)ZPr(miyji) &, picl, . (B.12)
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Recall that m,; is here considered to be an observed, fixed value. Also, note that the
marginal probability for observing the detector response m; is given by the trace of
Zji Pr(m; | 7;) éjipié;f-i, S0 p;.1 1s indeed normalized.

The form of the control law for determining u (n) thus takes the form u; = F [p;],
where F may a priori be some arbitrarily complicated functional. Once a fixed
control law has been designed, however, the task of simulating the closed loop system
evolution reduces to jointly evolving the coupled stochastic Master equation (B.4)
and the recursive update rule (B.12).

Optimal control equation: In this section we formulate recurrence equations for
optimal control design, relative to a given cost function R [p (n),u (n),n]. We assume

that R is of the form

Rlp(n),u(n),n] =Y Pi(a) Te[Ep ()] +Qulu(n)],

where the set {Et“} defines an aribtrary postive operator-valued measure (POVM)
on the system state space. Here P, (a)is any real-valued function of the POVM index
a, and Q; is any real-valued function of the control parameters u (n). By restricting
Rlp(n),u(n),n] to depend on p(n) only through the outcome of a POVM, we
achieve linearity with respect to probabilistic enser
allowing the control problem to be specified in terms of any measurable property of
the system state at time n.

The objective of optimal control is to determine the control law that minimizes

the ezpected value of the total cost Iy [p(1)],

Inlp(W=) Rlp(n),u(n),n]. (B.13)

In all but simple cases restricted to linear instantaneous feedback, it is not yet known
how to derive a closed analytical form for this equation. However, the problem can
certainly be specified in terms of coupled difference equations amenable to numerical

solution. We therefore propose to undertake the development of efficient algorithms
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to solve such optimization problems for a broad class of quantum-optical open systems

that will be the subject of experimental investigations in the near future.
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