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ABSTRACT

The mathematical formulation and evaluation of the radiation
field for general elastodynamic sources is given and applications of
the theory to the description of source fields of geophysical interest
are treated, The study was primarily undertaken to provide a
theoretical basis for estimating the propertics of the tectonic stress
field and parameters of rupture phenomenon in the earth through
observations of the radiation field from earthquakes and other
tectonic sources.

Thus the description of the tectonic source is particularly
emphasized, both as to its physical origins and with respect to the
rédiation field to be expected from it. The mathematical description
of the tectonic source field is achieved in terms of an elastic relaxation
theory of radiation which corresponds to a generalized initial value
problem involving the initial prestress field. As a consequence,
the radiation field is obtained in terms of the rupture expansion rate
(velocity of rupture), the rupture dimensions and orientation and the
- magnitude and orientation of the initial stress field. Inertial condi-
tions are inherent in the relaxation theory so that the time dependence
of the fiald is automatically specified. Careful attention is given to
causality relationships so that the resulting field expressions contain
the complicated space-time relationships associated with a tectonic
source field, Enei;gy and equilibrium relations are considered and
expressions are obtained for the estimated energy release and the

final static field in terms of the source parameters.
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Detailed properties of the radiation field are given in the form
of source field amplitude and phase spectra. Spatial radiation pat-
.terns are obtained showing the direction properties as functions of
frequency, prestress and other source parameters. Similar results
are given for shock induced rupture under prestress conditions, along
with estimates of tectonic energy release,

It is concluded that the theoretical predictions for the proper-
ties of the radiation field from a spontaneous rupture source are in
general agreement with the actual observations of the field from such
a source, but that accurate estimatés of the prestress and rupture
parameters require a more complete coverage and analysis of the
field than is usually the éase, It is concluded from a preliminary
analysis of the Ranier nuclear explosion that tectonic energy release
did occur and that the anomalous radiation observed would correspond
to a prestress shear field of the order of 20 bars,

The most likely mechanism of rupture at depth in the earth is
considered to be unstable creep phenomenon resulting in phase change
(melting) and the rupture source models adopted are not inconsistent

with this hypothesis,
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Chapter 1

_ELASTODYNAMIC SOURCE THEORY AND ITS
APPLICATION TO TECTONIC SOURCES

1,1. Historical Development

The basis for a theory of elastic sources was already well
developed by the middie of the last century (see for example Love,
1944), Indeed a complete mathematical statement of the theory
describing elastodynamic source radiation has been known since
that time and can be set down, at least formally, in a single line in
terms of a Green's function formulation (e. g., Morse and Feshbach,
1953). In a logical sense then, successive theoretical work has
constituted various applications of this formulation.

In contrast to the activity in electromagnetic source theory
however, there seems to have been no very great motivation to
apply the formai theory to the study of natural sources of elastic
radiation, even though there were no doubt as many earthquakes in
the last century as in this. It is perhaps the aura of mystery that
yet surrounds this particular phenomenon (e.g., the belief that it
is chaotic), even in .the scientific mind, that precluded more pro-
found work on this subject. Certainly such an investigation was
within the capabilities and fields of interest of many scientists of the
day. In any event, current interest in Geophysics, particularly
seismology, seems to be rapidly changing the situation toward a
more deterministic point of view.

Thus Lovels work, undertaken at the beginning of this century
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and based on the consideration of various simple point forces and
couples within or on the surface of an elastic medium, using methods
‘developed by Kelvin and Lorenz (Love, 1944), was utilized twenty
years later as a means of describing the source mechanism of an
earthquake. (For reviews and extensive bibliographies, see Honda
(1957, 1962) or Balakina, Savarenski and Vvedenskaya {1961) wherein
the original work of Byerly, Hodgson, Nakano and others is discussed,)
While the first approach appears to be inadcquatc in many
respects, it does nevertheless provide some information concerning
the character of this source, In the last decade or two a host of
theories and models have been proposed and compared to the facts
with varying degrees of success. By and large they are of two types,
either based on the dislocation theory (e.g., Knopoff and Gilbert
(1959, 1960); Balakina, Savarenski and Vvedonskaya (1961); Steketee
(1958); Droste and Teisseyre (1956, 1960); Housner (1955) ), first
proposed by Volterra (1907), or are generalized point source theories
employing propagation of the source to describe the phenomenon of
rupture (Ben Menahem, 1961). These recent source theories have
generally attempted to model the rupture phenomenon in order to
predict the radiation field while earlier models were in the nature of
equivalent sources, deduced from incomplete observations of the radi-
ation fields, Most of thesec models and theories are summarized in-
section 3,3 where they are compared to some of the results and

conclusions of the present study.
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1. 2. Scope, Objectives and Methods of the Present Study

The Chapters following the present introduction are relatively
self contained, as in fact are most of the sections into which they
are divided. The intention is to present a definitive study of the
elastodynamic source in a form which lends itself to direct
practical application with respect to natural and induced sources
within the earth. In this regard the most important consideration
to be undertaken is a description of tectonic sources, both as to
their probable cause and with respect to the radiation field to be
expected from them.

The present study provides a dual result in that the purely
mathematical formulation and evaluation of the source field for a
group of very general sources is given and second a detailed and
explicit dynamical field theory for tectonic sources is obtained.
The latter incorporates the important physical properties of the
rupture expansion rate or velocity, the physical orientation,
location and dimensions of the rupture, the time dependence of
the radiation field and the magnitude and orientation of the initial
stress field in the vicinity of the rupture. This tectonic source
theory is considered in the light of what is known and implied by
experimental. work concerning the physics of the rupture processes
within the earth and several detailed models are adopted, consistent
with these implications. Evaluation and numerical investigation of
the resulting solutions as functions of the source parameters,

particularly the initial stress field and rate of rupture expansion,
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is given in order to clearly delineate the complicated radiation
properties of this source., In addition,a theory of induced tectonic
radiation, resulting f{rom an explosive source in prestressed
media, is proposed and considered simultaneously with the theory
of spontaneous rupture. Thus, expressions for the dynamic and
static fields to be expected from these tectonic source types are
given along with numerical examples and theoretical energy esti-
mates.

An ultimate objective of this study is to provide the theore-
tical basis for a detailed study of the stress field within the earth
through observations of the radiation field from both earthquakes
and large nuclear or chemical explosions in a prestressed medium.
A more immediate objective is to provide the means for a better
understanding of the mechanisms of spontaneous rupture through
observations of the radiation field. In the realization of these goals
it is intended that explosive induced tectonic sources assume the
role of controlled experiments wherein most of the source param-
eters are known beforehand. A demonstration of the apprecach is
given in chapter 4 of this study. The second and third chapters are
devoted to the detailed evaluation of the radiation field from
general elastodynamic sources along with an explanation and for-
mulation of the tectonic source as an elastic relaxation phenomenon
associated with the initial elastic stress field. Chapter 4 then
presents some of the properties of the tectonic sourcc in the form

of radiation patterns and spec#za along with some preliminary



applications.,

In total the study constitutes a very detailed investigation of
the elastodynamic source from the theoretical point of view., With
due regard to previous theories of the tectonic source, it is con-
cluded that this particular type of source arises from the relaxation
of an initial shear stress field in response to the growth of a
rupture within which the rigidity modulus is vanishingly small, imply-
ing that phase change (melting) is the mechanism of tectonic rupture
or is, at least, intimately associated with it. In this case a con-
dition of vanishing shear stress at the expanding rupture boundary
applies and the initial stress field must adjust to this boundary
condition, so that elastic radiation from the stressed medium
exterior to the rupture ensues and thereby the stress is reduced
to the required levels. The phenomenon is formulated as a
generalized initial value problem thereby allowing the resulting
radiation field to be described and investigated in complete detail.
By this approach both the final static field and the total energy
radiated are also obtained in terms of the initial stress field and
the other source and medium parameters.

The initial chapter in this investigation serves, in part,
as a mathematical introduction to the remaining discussion. In
particular the basic formulation of the source problem is reviewed
(section 2. 2) and emphasis is placed upon the initial value problem
and its relationship to elastodynamic source theory. The basic

relationship of the radiation field to the equilibrium field of the
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elastic medium is erﬁphasized, in particular for cases in which

the medium is initially in a prestressed condition. The essentials
of the boundary value problem arising in practical applications of
the source theory to determine the excitation of layered models

of the earth is also given and the form of the solutions is specified.
Next the sources are classified as to their mathematical form,

that is according to whether the source function appearing in the
equations of motion is a separable function of the spatial coordinates
and time or not. Elementary multipole expansions are obtained

for the two general types of source by a technique corresponding

to a generalization of that used by Love, Kelvin and Lorenz (Love,
1944) for more specialized sources (sections 2,3-2.6). Interestingly
enough it is shown that a rather simple relationship exists between
the dynamic and static displacement fields due to an externally
applied force field. The effect of non-separability of the source
function is deduced and comparison made with the case in which the
source function is separable. This phase of the investigation is
meant to provide a degree of insight to the general source problem
as well as explicit expressions for the field due to an externally
applied force system, as opposed to a relaxation source. An
alternate expansion for such a force system is given in section (2, 9)
in a form more amenable to practical use. Consideration is also.
given to sources of the relaxation type (section 2,7), where an
elementary initial value source, suitable for later generalization

in the descritpion of the tectonic source, is evaluated by making
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use of the special properties of the equilibrium field to which the
dynamical field is, for this source, directly and intimately
related. The essential results of the chapter are summarized
briefly in section (2.10) as an aid to rapid comprehension of the
theoretical diécussiono

The following chapter (3) deals in detail with the tectonic

source as the central problem of this study. The general physical
concepts leading to the description of the tectonic source in terms

of elastic relaxation are discussed in section (3. 2) while the follow-
ing section (3. 3) is devoted to a review of previous theories and
models of the tectonic source. These earlier ideas and models

are compared to the preliminary results of chapter 2 and the general
physical concepts advanced from the viewpoint of the present study.

The next three sections are concerned with the physical

realizability of the various models and theories of tectonic rupture,
including those of the present study. Underlying the discussion is
the contention that the macroscopic 'z‘ﬁGOn‘g- advanced to model
the rupture phenomenon,to the extent necessary for adescription

vf the radiation field,be at least compatible with the following
conditions:

(1) The physical mechanism of rupture implied by the theory
must result in a net reduction of stored elastic energy
within the medium,

{2) The mechanism must restore the system (the finite

medium) to a final state of equilibrium.
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(3) The mechanism must be more likely to occur under the
thermodynamic (and stress) conditions within the earth
than other competing mechanisms.

While the mechanism of rupture is undoubtedly nonlinear it is clear
that these conditions are independent of this particular detail.

On the basis of the first of these conditions . most of the
dislocation theories are rejected as physical models since the
potential energy of the system can be shown to increase upon their
creation, They are therefore in the classification of the largely
arbitrary "equivalent sources" along with the equivalent point forces
and couples often used to model an earthquake, the meaning and
validity of which are considered, in this study at least, to be in
serious doubt. From a review of the microscopic theory of defor-
mation and rupture as well as from a review of the experimental
evidence (section 3. 4) it is concluded along with Orowan, Handin
and 6riggs (1960), on the basis of the condition (3) above, that
unstable creep resulting in strain concentration and eventual phase
change is the most likely mechanism of rupture at depths below a
few kilometers in the earth, while ordinary fracture phenomenon
is rejected as a much less likely competing mechanism. The
macroscopic manifestations of the creep mechanism are also con-
sidered as they relate to aftershock phenomenon, the observations
of reduced rigidity in long linear fault zones at the surface and the
like,

With this background the present theory is discussed in
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terms of its compatability with the microscopic physical theory of
rupture (section 3, 5) and found to be adequate. The following
section (3. 6) discusses some of the approximations nevertheless
inherent in the present theory and concludes that the effects
neglected are likely to be small. The likelihood of fracture
phenomenon at shallow depths is noted and special detailed source
models are advanced to deal with this contingency.

Sections (3. 7) and (3. 8) show that the first rand second of
the conditions indicated above are satisfied by an elastic relaxation
source theory. In addition,theoretical expressions for the energy
released by such a source are obtained and the mathematical
formulation of the basic equilibrium problem for the source is
given for later application in the dynamical theory. These sections
provide the essential physical insight to the theory as well as its
formal justification.

The following sections (3. 9) and (3.10) give the detailed
formulation of the dynamical theory for the source and these consti-
tute the main theoretical results of the present study. Throughout,
careful attention is given to causality relationships and inertial
effects so that the resulting expressions contain the complicated
space-time relationships inherent in such a source. The remaining
sections of the chapter give the detailed evaluations of the fields
for models of rupture consistent with either spontaneous rupture
or shock inducéd rupture. The results are expressed in forms

which lend themselves to the explicit computations required for
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the detailed investizations considered in chapter 4.

Chapter 4 takes up a preliminary investigation of the source
theory given in the preceding sections. Many of the important
properties of the radiation field are graphically illustrated (in the
form of radiation patterns and spectra) and it is found from these
numerical studies that the source theory is in agreement with
what is already known or suspected concerning the radiation fields
from earthquakes, while also providing additional precise theo-
retical predictions. In particular the effects of rupture expansion
are clearly evident in the directional asymmetry of the radiation
field. The directional properties of the phase and amplitude
spectra are observed to be frequency dependent. The directional
properties of the amplitude are similar to those obtained by
Ben Menahem (1961) for wavelengths approaching the length of
rupture. The properties of the source field are investigated for
wavelengths both shorter than, equal to and much longer than the
rupture length and the character of the source is discussed for each
of those ranges. Both the amplitude and phase characteristics
of the source field are found to be sensitive functions of the initial
stress field magnitude and orientation. Rupture orientation with
respect to the eartls free surface is investigated in a preliminary
manner and it is found that there are considerable differences to
be expected between "strike slip" and "dip slip" ruptures due to
differences in fhe direction of rupture expansion and in the

orientation of the initial stress field.
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By virtue of this effort, a means of automatic computation
of the source field exists so that additional, more extensive
numerical studies and applications can be made in future studies
with relative ease,

A basic theoretical study of the question of tectonic energy
release by explosions producing shock induced rupture is initiated
by considerations of energy release from a tectonic stress field. A
means of estimating the tectonic energy release as a function of
the explosive energy and the initial prestress field is devised on
the combined basis of the work of Haskell (1961) and Press and
Archambecau (1962), and applicd tc a particular casc. Thec anomalous
radiation field associated with the tectonic energy release is also
computed and compared to that obtained for spontaneous rupture
from a source of similar energy.

Since a very large number of symbols and special functions
are used, an appendix listing most of these quantities is included
(Appendix (11) ). The symbols and functions are therein defined
and reference is given to the equation or section in which they are
first introduced or defined.

The conclusions of the"study are summarized in the final

chapter.
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Chapter 2

MATHEMATICAL THEORY OF ELASTODYNAMIC SOURCES

2.1. Introduction

The present chapter is devoted primarily to a formal logical
development of the source theory and its relationship to general
boundary value problems of interest. The representations are
effected in terms of potential fields, since the potential method is
found to be the most flexible in the representation of very compli-
cated sources, In this regard the dilatation and rotation vector
are found to be most usefully empldyeda

The formalism of an initial value problem, first given by
Poisson (Love, 1944) for elastic wave propagation, is used in a
somewhat generalized form to describe a relaxation source of an
elementary type. This elementary source solution will be used Lo
generate a rupture source field by a superposition technique in
chapter 3.

The practicality of the present investigations are enhanced
by the successful formulation of the direct field from the source in
terms of eigenfunction expansions in spherical, rectangular and
cylindrical coordinates. These expansions of the source field
allow computation of the radiation field to be extended throughout
a layered model of the earth, so that both "body wave" and "surface
wave" excitation .rnay be predicted. Such a capability is of course
required for the experimental determination of source properties

inasmuch as the prediction of the elastic field at the earth's
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surface depends upon it,

There have been many previous mathematical treatments of
elastodynamic sources. From a purely mathematical standpoint,
every representation is or may be obtained from a Green's function
intcgral solution, although it is often difficult to perceive clearly
that this formulation underlies the theory in many particular cases.
The basic integral formulation can vary of course, depending on
whether vector or scaler equations are used, among other variables.
In particular, the vector equation of motion can be treated directly
or vector wave equations may be used, in either case the Green's
function is a tensor (Morse and Feshbach, 1953, chapter 13). If
scalar wave equations are used, the Green's function is a scaler
function.

Thus, for example, in the present study potentials are intro-
duced and only scaler wave equations are considered, so that a
simple scalar Green's function is involved. On the other hand,
Knopoff (1956) and deHoop (1958) consider the vector wave equations
of elastodynamics using a tensor Green's function. The resulting
representation theory is a very general one and is most appropriate
to problems of diffraction. For source representation problems,
however, the scaler theory is much more convenient. In addition,
the initial value problem associated with stress relaxation is simply
formulated, applied, and finally evaluated, through use of the

properties of the potentials and the scaler Green's function,
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2, 2. Fundamental Relations

The equations of motion for a homogeneous, isotropic elastic

solid may be written in the vector form

2
N+ VAV w) +pV% +pf = p 25 u (2. 2.1)

ot
where f denotes the body force density and u the displacement
vector. The vector f =pf may be used to represent a source
within or on the boundary of the elastic solid, as is well known.,
Therefore, letting T denote a source volume, B"r a surface en-
closing T which will be called the source boundary, take i to be

constrained according to

f(x,t}) # 0, r within or on B,
(2.2.2)

f(zx,t) =0, r exterior to B_
In this representation, the source boundary need not be fixed in
space (or time), nor need this 'boundary' necessarily represent a
physical discontinuity in the medium.

Now, f is a spatial and time dependent field and may be

decomposed into the potential form
f=V® +VXB (2. 2, 3)

where @& and B are scaler and vector functions of the spatial
coordinates. For an unbounded medium, where the source boundary

B(T) is not a physical discontinuity or is 'at infinity', then (Love,
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1944)

EMNEOIE

- ' _- (2.2.4)
B:ZI?S‘,SY _Ji’XV(—j;) ar

The integration is over the primed coordinates throughout the whole
1
space, i is the vector field as a function of the primed coordinates

and

with r denoting the fixed distance from the origin of source coordi-
nates to the point of observation (Figure 1). The relations (2. 2. 3)
and (2. 2.4) clearly hold whether [ is time dependent or not. Note
Introducing the decomposition (2. 2. 3) into the equations of

motion (2. 2.1), and by decomposing the vector field u to the form

u=Vay +VXy

as is always possible, then it is found that (2. 2.1) is satisfied, pro-

vided the potentials » and Yy are solutions of

2
2, , @& 1 9%y
Vo + = — —=
NF2p C 2 2 |
P
) (2. 2. 5)
2, . 1 )
Vg + =B == =54

L
B v2 at
s
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where v and vp are the shear and compressional wave velocities
given by

L]

p p

Alternately, equation (2. 2.1) may be written in the form

2
(Nt 2p)V(V - 8) - pUXV X +pf = p > u (2. 2. 6)
ot

Operating on this equation with the divergence and curl operators,

defining
©=V-u
(2. 2.7)
= 1
Q= > VXu
the dilatation and rotation, then (2. 2. 6) is satisfied if
2
2 1 9°0@
VO - =~ = (V- f)
22 Ntz + Zn
p
(2. 2. 8)
2 1 9% 1
Ve - — ""‘2’_Q= ""Z—(VX_L)
- v ot P

These equations are valid irrespective of the physical nature of the
source boundary BT and clearly, V. =0.

Invariably the source function f will be assumed to obey the
constraints previously imposed, in particular that the function
vanishes outside some finite source volume. Consequently, if the

equations (2. Z. 8) are considered as the fundamental relations, and
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solutions for € and §) are obtained, then the equation of motion
(2.2, 6) can be used to obtain the corresponding acceleration field,

thus
82
p-——-—2—2=()\+29)v9-2p.v><_3:2_ (2. 2.9)
ot

with r exterior to B(T). This relationship allows the transform
of the displacement field to be computed as well. Due to the simi-
larity of the relationship (2. 2. 9) with that between the ordinary
scaler and vector potentials and the displacement field, the dilatation
and rotation will be termed physical potentials.

From a purely mathematical point of view, the problem of
source representation reduces to a consideration of the solutions
of the inhomogeneous scaler and vector wave equations, of equations
(2. 2.5) or (2. 2.8). If the Cartesian components of the vectors v
or § are used, then the equations (2. 2.5) and (2. 2. 8) correspond,
in each case, to a set of four inhomogeneous scaler wave equations

of the general form

2. 1 8%
VX - = =-5(r, t) (2. 2,10)
2 ,,2 —
v© ot
Thus, the solutions of the equations of motion with a source term
may be reduced to a consideration of solutions for the inhomogeneous
scaler wave equation (2. 2.10).

A Green's function solution of (2. 2.10) affords a completely

general integral relationship between the source function S(r,t)
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the initial values of x and 8x /8t, and the potential field ¥, at
all points and at any time. It is possible to generalize the usual
formulation slightly. In particular, the time at which the initial
values of ¥ and 98X /0t are defined, need not be taken to be the
same at every point within the source region. Thus if the initial

3
values of the potentials X and 98X /8t are defined at a time T = 0,

(1)

: %* .
where T may depend on the source coordinates ESY then

+ .
t
-
X (r,t) = 4,"510 dt XYS G(_r_,t/ro,to)S(zo,to) dr
| ¢t .
+Z¥r§0 dtOSS' ds - (GVOX - xVQ)
ox
(8t X) * ( Bt ) 497,
o=T t,=T

tTot+e, 0O<ex<<l (2. 2.11)

the Green's function G(_:g_,t/;o, to) being a solution of the inhomo-
geneous wave equation

2

2 . 1 9
\% G(_r_s t/'EO’ to) T2 3 G(_I_'_s t/_]:o: tO)
: v 0ot
= - 4mw6(x - ro)6(t - to) (2. 2.12)

(1)

In section (3. 9) a detailed derivation of a result equivalent to

(2. 2.11) will be obtained through the use of transform methods.
The formula of (2. 2.11) is a slight generalization of the classical
Green's function integral solution (e.g., Morse and Feshbach,
pp. 834-837, 1953). The actual proof of its validity rests on the

derivation in section (3. 9).
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with E and t, denoting the source coordinates and time re-
spectively,

The surface integral in (2. 2.11) corresponds to a general
solution of the homogeneous wave equation, without source terms
or inilial values., The rémaining volume integrals taken together
correspond to a particular solution of the inhomogeneous equation
(2. 2.10) and are of the most immediate interest in the present
study., Thecsc particular solutions will be termed the primary

(1)(r, t). Follow-

source field and will be denoted as the potential ¥
ing this decomposition of the solution, the homogeneous part of
the general solution can he expressed in terms of a superposition
of eigenfunctions with variable coefficients appropriate for combi-
nation with the primary field solutions in problems involving
sources in a medium with boundaries, rather than as surface inte-
grals over the boundaries. This technique of combining general
eigenfunction solutions of the homogeneous wave equations with the

(1)(1', t) is particularly appropriate for

particular solutions ¥
consideration of wave propagation in a layered half space or sphere
and is commonly used (e. g., Ewing, Jardetzky and Press, 1957).
Thus, if the source is located in a particular layer in a layered earth
model, which may be a half space or sphere, then the equation of
motion for the material points of the layer is the inhomogeneous
equation (2. 2.1) with elastic constants and density appropriate for

the layer. Considering only a single source in a particular layer,

then the squations of motion for the remaining layers are all homo-
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geneous equations. The general solution for the source layer is

theretfore given by

M

n

(0)

Xn(ﬁst)=x n

(r,t) +x_ (r,t) (2. 2.13)

where n denotes the nth layer or source layer and X;O) denotes
the general solution of the homogeneous equation in that layer. In

the remaining (N-1) layers, the solutions are simply

0 . .
xjmt =x w0 5 j=L2,..LN, j#a (2. 2.14)

The required solution for elastic wave propagation in such a medium
is obtained by adjustment of the undetermined coefficients in the
homogeneous eigenfunction solutions X(jO)’ i=1,2,...,N, so as to
satisfy the boundary conditions of stress and displacement continuity
at the layer interfaces and source boundary. In this manner, the
classical modal solutions are obtained. Typical examples of the
procedure for point source problems in layered media are given by
Gilbert and MacDonald (1960) for a spherical earth and by Harkrider
(Thesis, C,I. T., 1963) for a layered half space. The involved com-
putations required for the solution of the characteristic equation and
subsequent evaluation of the amplitudes of the functions XJ(O) is
effected by use of the Thomson-Haskell matrix technique (Haskell,
1953),

This technique is not as general as the integral Green's

function method, but, when applicable, does of course give an equiva-

lent result in an interpretively simple form. In practice it suffers
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from fairly severe geometrical restrictions which effectively limit
ils applicability to prublems involving media such that all the
boundaries correspond to coordinate surfaces of a single coordinate,

(1)

in a system in which the wave equation is separable. Most of the
following applications correspond to one of the following three cases:

(1). All the boundaries are planes and are parallel.

(2). All the boundaries are coaxial cylinders.

(3). All the boundaries are spherical with a common origin.
These conditions do not include the source boundary, if it represents
a physical discontinuity in the elastic properties, since it is sus~-
ceptible to special treatment and can therefore be considered sepa-
rately.

In view of the practical boundary constraints listed, it is
clear that only three possible coordinate systems are utilized,
namely, the Cartesian, cylindrical and spherical systems. Thus
the eigenfunction expansions of importance for ¥ (O), ij=1,2,...,N

are

1)

A less restrictive condition is that every boundary must corre-
spond to some coordinate surface in one of the coordinate systems
in which the wave equation is separable and that the eigenfunctions
in any one of the separable systems can be expanded in terms of
the eigenfunctions of all and any of the other systems. The re-
quired eigenfunction expansions are known only in a few cases

(i. e., Cartesian, cylindrical and spherical systems) and even in
these cases, the "mixed" boundary problem becomes very com-
plicated and algebraically cumbersome. Usually the solution
cannot be expressed in closed form in such cases.,
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(O) ! +o0 ; +00 ~r+oo -1(1{ -k )1/2
X; ZTFS‘CD d‘”g 5 {G(k1 ks wle
‘/z.
1(1{ k
+ 500y, Ky, we ] } exp{lk x+1k2y} dk, dk,
j=1,2,...,N-1
2.2.15)
1/2 (
) 1 "'00 ; ('—l-oo +oo (k3 KN)
XN = I dw N(kl’kZ’ w)e
-co

X exp {iklx + ikzy} dkl dk2

with .
| - VR VI

PR R =<_J___J, o

U J Pj £

in Cartesian coordinates, and

+oo X Ao . _i(,{_Z_kz)l/.zZ
(0) . LT ot () :
X505 2 oo e do z S‘O [{Gm (k, w)e
m=0
1/2
. 1(K -k")
S(J)(k, w)e J } cos m¢
() —1(K -k )1/2 () 1(1{ -k )1/2
{8J oo ¥ 3];1 (koo sinm ]Jm(kp)dk
i=142,...,N-1 (2.2.16)
X 2.1/2
oo \’ o (k -K..Y ' "=
X](.\(I)) = —2-1;-1. g! e’-@tdw S [Sg)(k’ w)e N: cos md
T m=0 0
~(Ke-k )1/2
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in cylindrical coordinates. Both of these expansions are appropriate
to layered half space models of the earth, where the Nth layer
extends to unbounded values of z. The radiation condition has been
applied to the expansion for the Nth layer in each system.

The expansion in spherical coordinates for a finite, spheri-

cally layered earth model is

i
too - €"g
XJ(O) =_Zl'r_r\§_00 e de ;;g () w)Jl(I{ r) +B(J) (w) E(Kjr)}cos mé

j=1,2,cnu,N"1
(2.2,17)

where the spherical Bessel and Neumann functions jl (L) and n, (L)
may be replaced by spherical Hankel functions hél)(g) and héz)({,),

since
he L) = gy () +iny (@)
Bg?(0) = 5y (€) - iny (0)

The expansion 2. 2.17 is appropriate for a layered sphere with j = N

denoting the inner layer containing the origin of the coordinates.
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(1)

Only if the primary radiation field X

is expressed in
terms of one of the eigenfunction expansions (2.2.15)-(2. 2.17) is
this superposition method feasible, since only in this case do the
boundary conditions at the interfaces of the nth (source) layer
reduce to algebraic expressions independent of the variable
coordinates on the boundary. However, when the source repre-
sentation is expressed in such a form, then the usual techniques,
such as thosc uscd by the previously mentioned authors, mmay be
utilized to obtain the complete solution at any point in the medium.
Therefore, a requirement for the representation is the expansion
of the source field in terms of the previously noted eigenfunction
representations.

It is clear that the solutions X;O) represent the reflected,
refracted and diffracted radiation field associated with the presence
of boundaries. As a consequence of this fact, one observes that the

direct radiation from the sources, ¥ (1

s is the infinite space soclu-
tion of the inhomogeneous wave equation and is obtained by taking
the Green's function solution of (2. 2.12) for an infinite space. One

has

%
sfX - (t-t ) .
Glr,t/r_,t ) = = o} P P
T

as the appropriate solution, After substitution into (2, 2.11),
followed by integi‘ation over the source time to’ then Y (1)(__7:, t)

is given by



sk
S(r_,t- —)
(1) 13’5‘5‘ o’
X HE,t) = 4= = dr
%k
1 (e " 61(3—+T - t)
- 25‘8 S dr {x(r ,T) %
4v i r
( Bx (_1_’O,to)) s(X- +r"-1) ( |
-\ y 2.2.18
ato t '-"l""< r*

where
+

« ,
r " _ 0 r R
51(7+T't)—§t-{5(—v‘+7 t)}

and 6(x - Xo) is the Dirac Delta function.

The initial value of the potential and its first time derivative
("velocity") are clearly source terms which arise due to a pre-
existing condition of the medium. In the present context, this
condition may be associated with the existence of a prestressed
condition of the medium due to the existence of tectonic forces in
the earth.» The creation of a rupture in such a medium will alter
the boundary conditions for the stress field and requires a readjust-
ment of this static stress field so as to maintain equilibrium. The
amount of readjustfnent or relaxation required will define an initial
value for the ensuing dynamical readjustment in which radiation of
elastic energy is the primary mechanism. The initial values defined
by the rupture will naturally be complicated functions of position
relative to the rupture. In addition, since the rupture will change

its dimensions with time, the equilibrium value of the potential will
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actually vary with time so that the term "initial value" is only
meaningful as a limit concept corresponding to the change in the
equilibrium field due to a differential increment of rupture growth.
The formulation of the initial value problem included in (2. 2.18),
therefore relates only to the radiation field due to a differential
increment of rupture. However this elementary source is capable
of generalization to include the complications of finite rupturing.
These considerations will be taken up more fully in chapter 3,

For the present, only the properties of the elementary source will
be investigated, the resulting solution playing the role of a Green's
function for the rupture source.

Thus the initial value source term in (2. 2.18) will, in the
present theory, be of relatively greater importance than the usual
source term involving S(r,t). It is of some importance to note
that the source ‘term associated with the initial values, to be termed
a relaxation source hereafter, is independent of the source factor
associated with S(_g,t). In particular, the source potential field is
a superposition of these distinct source mechanisms, and each
factor may be treated independently in a formal mathematical theory.
Furthermore, the initial values associated with a relaxation source
do not appear explicitly in the equations of motion as does S(r,t),
Lul may be introduced by the usual procedures involving a Fourier
transformation to the equations of motion., For this reason and in
order to obtain expansions of the source field similar to (2. 2.15) -

(2. 2,17), it is convenient to transform (2. 2.18) to the frequenc
y
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domain, using the Fourier transform operator

gyee!
(1) =S‘ (1) -iet
3{x Wiz, 0} = _xPoe

Thus, the primary radiation field has the transformed solution,

)Z(l)(f_a w)

with K= w/v,

-iKr
X(l)(_l:: = ) Sg. S(r ,w)( ) dzo

*® 3
% e‘i(KI' +0.)T )
at t —T¥—1wx(r T ) —_— d_l_'o

and it is quite clear that the integrals may be combined to provide

a single source term

*
(1) 21 & . 1 ?L -1WT
X (r,w)-—ggy{g(r yw) T -—'( ) e

e

) * —iw’r* e-iKrF
- X(ﬁo, T )e = dr (2.2.19)

-0
r

From the previous brief discussion of the relaxation source
mechanism, it is reasonably obvious that the only term involved
in the representation of such a source will be the initial value

X (_;O,‘T*). In ;che following mathematical considerations of this
equation, the factors g(_go, w} and —-é-%) x(_x_'o,'r*)exp{ —ioﬂ‘*} will
be considered separately on some oc‘::asions, since it is of con-

siderable advantage to make use of the special properties of the
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initial value function X(Eo’ T*), In particular, this function is the
difference between the equilibrium field before the creation of a
boundary element in the medium and the equilibrium field with the
boundary. It is not difficult to show (see section 3.7) that the
difference field X(E-o’ T*) satisfies Lthe equations of equilibrium
without a body force term, corresponding to the tectonic forces,
or any other force field such as gravity. It follows, then that if
the potential X represents one of the potentials > or qu, i=1,2,3,
then X(EO’T) is a biharmonic function, while if X represents one
of the physical potentials © or Qj" j =1, 2,3, then the initial value
X (_1:0, 'T*) is a harmonic function. A detailed investigation and sub-
stantiation of these properties of the initial value function will be
provided in chapter 3, wherein all of the foregoing remarks will be
expanded. In view of the mathematical simplicity of harmonic
functions, it will be most convenient to treat the so-called physical
potentials rather than the regular scaler and vector potentials in
problems associated with a relaxation source. Thus, due to their
relative simplicity and physical significance, the dilatation and
rotation are considered the fundamental potentials for source repre-
sentations,

The t_ransformed wave equations appropriate to the source

problcm arc, from cquations (2. 2, 5)



(2. 2.20)

IS

K
_J—(anl(-_r_,t)) e—w’rz
vz ot t:’?‘:;=<

VZJJ£+ kz’% = - (lp )]~3£+[££ Yy (xs ‘r;)
v

where

(2.2.21)

with k = m/v and ks = m‘/vs., The primary source field appropriate

to these equations is from (2. 2.19)

(1) _ 1 3 oy
S, @) = 47()\"‘2}1.)555 [‘I’(Eo’ @) +{p(6t ) o
. olt=T1
. ) * 1
% —iw’T; —lkpr
- iwp,ﬁ«(_r_o, ‘T‘l> e 3———;‘2—— d'EO

(2.2.22)
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S
1

%
75 for the two different potentials. These solutions are seen to be

where the general delay time T is taken to have the value T, or
the source terms from a generalized Kirchhoff solution of the in-
homogeneous Helmholtz equations of (2. 2. 20). It is clear that,

in- general, the source terms in (2. 2. 20) and in the solution (2. 2. 22)

may be written in an abbreviated notational form, for example as

%
~1 ~ a!& A’ "iw‘Tl
6] (r,w) = @(_z_', w) + p( ) - iwpd(z, Tl) e (2. 2. 23)
t=T%
i

ot
where various of the source terms may be set to zero in (2. 2. 23) for
the consideration of special sources.,
Corresponding to this dynamical solution, one has the static

or equilibrium relations

n O(r )
1 1 -
s = Fn(NT2n) S‘S‘\S ¥4

r
1 y y 5 B,(x,)
—_— ————— dr
4y x -0

which provide solutions to (2. 2. 5) or (2. 2.1) when the inertial term

(2. 2. 24)

o (=)

is absent. The source potentials ® and B are

o~ & I o
Blr) = 21?55‘5‘ i<£')><<7<—1;;> dr’

(2. 2. 25)
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This formulation, in terms of the potentials & and g, will be
investigated under the condition &' = & for the relationship of the
dynamic to the static source field.

The problem may also be formulated in terms of the physical

potentials, the dilatation © and rotation §, as

%

. 96(r, t) -iwT

N EP _1_2(__:___) 17N
t=T

2 1 ot
v v -
P P 1
VEQ + K2R = - = Uxf
*
. 282 -iwT
iw * 1 — 2
[ae-5(7) ]
s Vs 2

* *®
Now, since the initial values @(_r_. 7‘1) and Qf(r, 'rz) are also equili-
brium values in applications to relaxation sources, it is convenient

to use the definitions

ez, ) = V- u'(z)

ES
with u (r) representing an equilibrium displacement field, and to
set the initial time derivative term to zero under these conditions.

Then (2. 2. 26) becomes
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*

~ ~ - . ~iwT
V2@ +k§@= - (X—%E;)[ch_-ipr*'gae 1]
% (2. 2. 27)
- -iwT
vzg+k§_@= —.Zlﬁ[vx_):-iwpvx_l_l*e 2]

Solutions for the primary source field are therefore, from (2. 2.19)

_in* —ikpf*
D > %k J
Steo) = grgiey § §§ [7 -sonve s e
Ir
(2.2, 28)
) *
—iw'T* -lksr
ﬁ Ly = 2 7 . * 2le 1
__(_sw) = mSjS‘S‘ [VX_f_-lprX_g e ]—'E?"'" d_1:

r

~ *g
The sonrce terms involving f and iwpu are again seen to give a

superposition field so that each may be considered separately in
the following evaluation of (2. 2. 28).

In order to effect a useful source representation, it will be
ne céssary to evaluate the integral solutions (2. 2. 21) and (2. 2. 28)
for general spatial distributions of the source function f and initial
values, such as E*’ and to express the results in terms of the
eigenfunction expansions previously considered. These essen-
tially mathematical considerations will be taken up in the following

sections of the present chapter,
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2.3. Elementary Multipole Representation for Stationary Sources

Let the source function in the dynamic case be of the sepa-

rable form
f(xr,t) = S(t)R(x) (2.3.1)

Such a separable source function will be termed a 'stationary

source'. The equivalent static source will be defined as
f(zr) = R(x) (2.3.2)

Therfore, the source potentials are, from (2. 2. 21)

F(z. o) S““’ fﬁ Rz V(——)ow = &(2)5(w)

(2.3.3)

Bz, o) S“”’fﬁ R(x )xw—— )ar' = B(r)S(w)

where @(r) and B(r) are the potentials for the equivalent static

problem. Since

r o= [rz- erlcosy + rlz] 1/2

-
then (r ) 1 may be expanded as

©
rln
————— . !
é rn+1 Pn(cos Y); r>r
1 n=0

0 0]

§ T
[ . !
x — Pn(cos v): r<r

n=0



-34-

~

The potentials & and _fé: are to be specified in the region
outside the source volume, thus r > r'. The expansion of (—11 )

r
with r > r' is most conveniently expressed in the operational form

n=0

n 1 n, 1 . 1
(£ s >

in view of the form of the integrands in (2. 3.3), Here, the com-
ponents _1:' are {x;} and those of r are denoted by {Xi}.. This
expansion implies that the source is distributed within a finite
volume, On the other hand, once the representation is achieved
in terms of the 'source potentials' &(r) and B(r), [r]| > [r'|, then
these potentials represent a 'source' distributed throughout the
the infinite sp.ace, since these potentials are source terms for the
solutions of (2. 2. 5).

Therefore, the source potentials are, after interchanging
summation and integration, where it may be noted that the integra-

tion is with respect to the primed coordinates only

$(r, ) = S“‘”Z (° fﬂ &)V (w2 ) ar'

~ .5 n ~
o) ) 2 O aewwiet nedyar

n=0 T

E(E: w) =

Now, expansion of the operator R- V(_I;'-V)n gives:
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(
! n, 1 LI |
R VMz - V) (?)'—26?,:L Xy Xy eaeXy

0 1 "2 n
where the summation convention over the repeated indices is em-
ployed and iV:1,2,3 forall v=0,1,.,.,n.

A similar expansion of the operator R X V(x' V)* gives:

; 3 (2 t) -/

! nl e
RXVNz- V) (=)=¢ Rx co o X, m—TIr.. e
_— — T OJk J 11 ln axh ax[/“‘gxi;‘ °

with _
+1 if io, Jj» k an even permutation of 1, 2, 3
eiojk= -1 if iO’ j» k an odd permutation of 1, 2, 3
0 if any of the indices iO’ js k are equal

ei = (el, ez, e3), basis vectors in the unprimed coordinate
system

Finally, substituting these expressions into the potential
equations, interchanging summation and integration and setting:

oripr e e eaip) SS‘ x ar' (2.3.4)

n

r(0H)

corresponding to a tensor of rank (n+1), gives:

[8 0]
~ = (n+1) -1
= _ S(w) > (-7 (),
@(E,(L)) - 411_ '~ n! R (10:'093111) aX unnax.
1 1
= 0 n
- (2. 3. 5)
~ +) -1 :
~ _ S{w) (-1)* reH) pl® y A
Blr,w) = 7= ar iojk TS )Bxkﬁx Cee o, 'eio

n=0 1 n
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Thus, the R(n+1)(io. o in) correspond to multipole moments. For

example, if n = 0:
1
rRM () = S‘XS‘ R, (xr)dr, i.=1,2,3
. iy'= 0
T

and this is just the resultant vector force for the source with com-
ponents (R, RM(2), RM(3) ). Thus, if we set R ={R(1)(io)}

denoting this resultant, then from the equations (2. 3. 5)
Bz, o) = S“*’) R- V(1) = S0 ®(z)
Bz, o = S‘“’gx V(%) = SwB(x)

This corresponds to a result obtained by Love (1944, p. 304). This
simple case {i.e., n = 0) is used as a basis for much of the present
source representation theory.

. -1 . . . s
Since r is a solution of Laplace's equation, then it is

B(P+q+s) 1
seen that any derivative —————— (—) is another. These
Bx; 0x38x]

quantities are therefore solid harmonics of the type r_n_ISn(G,d>)

with n=p +q +s and where:

sn(e, ) = (amncos m¢ + b ns1n m¢)P {cos 0)

iMw

denotes a surface harmonic. The associated Legrende runction

P?(cos 0) introduced here may be defined by
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1 2 2 d
pg) = LD g - g2/ g-g2ye
2™n 1 dag™
The derivatives of different order (n) in (2. 3.5) may be written
as a single harmonic function by combining the linearly dependent

functions of the series in (2. 3.5). Thus

o) Snn'®® (qpH g Hi )2 p(ntl), -1
n+2 n! 0’11’“" n'dx. ,,.Bx.
r 1 1
0 n
. (2. 3. 6)
1
plntl) | n+1(e ?) _ (= )27l R T e
nt2 n? €i jk Jotype ooty Bx, Ox, ... O,
r 0 1 i i

with P(n+1) defined as the magnitude of the multipole

3 3
pfl) | (nﬂ){Z Z R .. ] 2}1/2 (2.3.7)
=l 1n—1

(iy)
and where the angular functions Sn+1(9, ¢) and Sn_'(_)l (6,9) are of

the form

sn(e, $) = Z (anmcos ma + ﬁnmsin ma)P;n(cos )
S(Iil)(ﬂ,dl) =Z ('\'(.(Iillncos mo + g,(iz’nsin m¢)an(cos )

corresponding to surface harmonics. The coefficients e o etc,

are combinations of the factors R(nﬂ)(k,i )/P(nﬂ) which may

.9.1
1 n
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be interpreted as generalized direction cosines. A compilation of
these coefficients for the cases n = 0,1 is given in Appendix 1.
Thus, if

Gy,
S.nfeer=¢8 o ®i,

then the potentials of (2. 3. 3) may be written as

~ RN S ..(6,9) _
Bl = - SO ot 012 T 5

n=0 r

(2.3.8)

(0.0
< (n+1) N
moa) = -3 T s (6,4) = S@B()

2.4. Multipole Representations of Arbitrary (Non-Stationary)
Sources

If the source function cannot be expressed in a separable
form, as in (2. 3.1), then the connection between the static and
dynamic source potentials is not of the simple form given by (2. 3. 8).
However, the formal development of the dynamic source potential
is not altered by the essentially more complicated nature of an
arbitrary volume source. In particular, if the source function is
of an unseparable form, _1_’_(3, t), then the equivalent static source
is given by

f(r) = Lim f(zr,t) or f(x)= Lim J(z, )
t—>oo W00
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and the transformed dynamic source potentials are

e AN R
T

T

(2.4.1)

B(z, o) =4in§j;§ 1(3',w)><w;1§)d7’

Quite clearly, these potentials may be expanded into a multipole
representation by the same methods used for the stationary source,

Thus, the general representation is

(6, $)

XK S
~ 1 + +
R ‘1‘1;;1{?2‘““

(2.4, 2)

with

n
s_(6,9) =Z (@ _(w)cos m$ +B__(w)sin m¢)P:1n(cos 0)
m=0
(2. 4. 3)

n
gl(;)(o,cp) = Z(y;;m(w)cos mo + gjl'm(w)sin m‘l’)an(COS 9)

m=0

and as before

3

P () - (n+1){§3: Z [R(nﬂ)(io, ..,.,in;w)]z}l/z

10=1 1n=1
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The multipole coefficients are now frequency dependent-and are

linear combinations of the tensor components

(ntl),. . . _ 1 ' H 1
) (10,11,...,1n) = 5\515‘ ']iio(z ,co)xil..oxi dr (2. 1. 4)
T n

The source potentials & and E are formally invarient to the
detailed properties of f, the expressions (2.4. 2) being valid for
all _Jio Therefore, the precise character of the source does not
alter the formal development of the theory and it is clearly possible
to proccced to obtain formal expressions pnfithe displacement ficld

in the medium without considering the detailed nature of the source.
In the following sections, all formal expression of the dependence

of the multipole coefficients on the angular frequency (w) will be
suppressed, but may, nevertheless, be considered as implied in
all the resilts. In later sections, multipole coefficients for specific
sources of interest will be computed, and it will be shown that in
genéral they are frequency dependent,

For purposes of reference, sources which may only be
described by non-separable source functions f(r,t) will be termed
non-stationary, since their non-separability is due, primarily, to
allowance for the prupagation of the source boundary. This should
occur, for example, if the boundary is controlled by a propagating

rupture surface or shock front,
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2.5, Kvaluation of the Static Displacement Field

By way of a preliminary approach to the dynamic problem,
it will be useful to consider the displacement potential in the static

limit, As has been indicated, these potentials are given by

2 D

v'§+-——)\+2p =0
(2. 5.1}
2 1
\Y% ~B=0
G+ 2B

where ®(r) and B(r) are given by (2.2.25). From (2.3.8) then,
infinite space solutions, analogous to the primary radiation field

in the dynamic case, are

) 1 i (n+l) 5‘5‘ L San@h9 N
R, S [ EFL UL
16n°(\+2p) e\ ™

v
(2. 5. 2)
1= £1'2 1
E(l)(r) = - 161 Z P(n+1)|:§‘g‘5 ,‘" n+1(e ¢ )1‘ dV]
T pn =0
(2. 5.3)

Since components of the vector potential i}(l) arise from integrals

identical, except for constant factors, to that generating ,&(1), it

will be sufficient to consider only ,&(1). (Here, the evaluation of

the volume integrals depends only on the fact that the integrand is
*

a harmonic function multiplied by 1/r , as will be shown below. )

Making use of a method which was also used by Love (pp. -

304-5) in similar circumstances, we may partition the space into
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spherical shells with origin at the point of observation and of radius
(Figure 2). Then the volume integral in (2, 5. 2) may be written

in the form:
el 1 % . t ¢1
! Sn+1( ,$7) av! = D dar ¢ Sn-f-l(e :¢) 4
=\ T _mtz B 2 nt2 2
v r T 0O r 3 T

It is not difficult to show (see Appendix (2)) that for harmonic

with n= 0

2 Sn_‘_l(e: ¢) . sk
1 1 n+2 s or I < T
Sn+1(e ’ d) ) r
SS ———-——————-r' ) da = (2. 5. 4)
S 0 ; ric >r

functions of the type Sn+1(6', Cb!)/r' nt2

The proof of this statement follows directly from the mean value

theorem for harmonic functions (Brand, 1955). Therefore:

(o', ¢") S, 400, ¢) T
+1 ' 1 *
SS( ( . nf2 )dv =4"('£?PFT )5 r dr
r 0
S _..(8,9)
= ar( =)

Using this result in (2.5. 2) and for the components of )

(2. 5. 3) as well

P(n+1)

(1
> r) = m Z n+1(e’q))

(2.5.5)

[o.0]
(1) _ 1 (n+1)

n=0
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The displacement field corresponding to these potentials is:

WP = vz + vx yB)

aPe) = - §1_ Z pinil) [7\.+2|.L V( —

T r
n=0

1 1
+ E V X (;'E _g_’n+1(e: cp)il (20 5¢ 6)

1
For the case of a horizontal point force taken in the x direction,
one observes that the source integrals giving the multipole
coefficients (2. 3.4) go to zero with the exception of R(l)(l) which

has the simple form

ﬂ”m:&ﬁ&ﬁw&@awmﬂdx@dz=m
T

with M a constant. Using the results of Appendix (1), the Cartesian

components of the displacement field are found to be

u(ll)(_l_') =M [—l——- f;l(cos ¢ P{(cos 0)

8w |\ f2p
1 9 1 0 0
+ =4 —, (sin ¢ P {cos 8) ) - —, (-P. (cos 8) )}]
i 8XZ 1 8x3 1
1,,_ M [ N 1 19 . 1
u 2 (_1_'_) = -gT—I‘ 'ﬂ?ﬁ -8—;2(COS ¢P1(COS 9) ) - E -5}—{ (Sln CbPl(CDS e))]
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2

(1) _ M 1 ) 4 1 1
uy (xr) = 73_1_7[__— ;;-3(cos ¢ Pl(cos 9)) - m axl

At2p

and observing that

8_1'1 = cos @ Pl(cos 0); dr _ sin ¢ P]'(cos 9); Bx
1 2 1 a3
ox ox
3 3 .
Y 2oz, N (=) o
~ 9%’ T o Ox?
j=1 j=1

then these components may be written as

2
W, v _ _ MAH) 8°r M
1 (z) = 8mp{N+2p) 9yl2  4mpr
My - MOd)  8%r
) (x) = - 8w (N+2p) NP

oDy = - M) 8%
3 = 8mu(A+2p) 93 52

(P?(cos 6)]

P(I)(cos 9)

These are precisely the results given by Love (p. 185) for this

simple source and provide a check on the methods used to obtain

(2.5.6).

In order to apply these results to geophysical problems of

interest, it is necessary to consider various transformations of

the potentials to coordinates other than that with an origin at the

source. In particular, an important transformation is a simple

translation from the source to the center of a spherical earth

model. The Appendix (3) gives the potentials in terms of coordi-
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nates transliated along the z axis of the source coordinates with
no relative rotations of the two systems, For Geophysical appli-
cations, such a coordinate change is sufficiently general, since the
source coordinates may usually be chosen with the z axis normal
to the earth's surface. In addition, it is often more convenient to
express the components of displacement as spherical components
rather than as Cartesian components. The relationship of
curvilinear components of displacement to the scalar potential and
the Cartesian components of the vector potential is given in
Appendix (4). Application of these relations to the transformed
potentials provides, finally, expressions for the spherical com-
ponents of the displacement field in terms of spherical coordinates
at the center of the earth., These results are given in Appendix (3)

as well,

2. 6. Evaluation of the Primary Dynamic Radiation Field: The
Propagation Function

Turning to the dynamic problem for the stationary source,
equations (2. 2. 21), (2.2.22), and (2. 3. 8) provide the potentials in

terms of the integrals

* S
P x -ik_vr .
S (10 = - _Sle) Z o(ntl) ng” . p bnﬂ'(e;;p) -
x i‘ : n
167 ()\'f'Zp,) rs v . -
(2.6.1)
x -ik r*

~(1) _ E(m) (n+1) (l S 1 ! !
$rr, w) = - ——TZ P\ ‘S‘J E e r* rrﬁ'l'z §(9 ,0 ) dV
v

16w (DprS
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1)

Here again, the volume integrals for i are of the same form

(1)

as those for ¥ '. It is seen that the integrations may be performed
in exactly the same manner as were those in the static case. There-

fore, from (2. 5.4), one has immediately

~(1) E(o.)) x P(n'l'l) Ty -il<pr>:< %
N, @) = - TN o0) r(nﬂ)snﬂ(e,cb)yon e dr
n=0

Integration by parts therefore gives

o0

~ +1)
~0), . . S(w) Z pin
n=0 T
2 —ikpr
X [e (ik_ r +1) - 1] {2. 6, 2)
kzr2 P
P
Likewise
w e
~ P(nﬂ) -ik r
e = - goﬁ Z T Hal09 "'2'27 [e ; (iksrﬂ)'l]
— T k™r
n=0 S
(2. 6, 3)
Introducing the function
Q(kr) = 22 5 [e_ikr(il{r +1) - l] (2. 6.4)
K r

which will be termed a propagation function, the potentials may be

written:



-47-

Q0

~ p (n) ~

b(l)(};, w) = -gﬂs—)\(%zz”@ Q(kpr) Z -En—_T S (8,9) = S(w)ﬂ(kpl‘)f&(l)(}j)
n=1

(2. 6. 5)
30 Salg g o B . ()
Y, o) = - gk 1) ) 7 8.6, 9) = S(0)Q(k )L ()
n=1

Here, ,5(1)(_1_') and _L_ll_(l)(_];’) are the static potentials, equations (2. 6.5)
showing the relationship between the static and dynamic fields.
Further, the dynamic potential s of (2. 6. 5) may also be expressed

in terms of the source patentials given by (2. 3. 8), and the propa-
gation functions. Finally, the transform of the dynamic displace-

ment field E‘”(;_-, w) has the form
2V 0 = 30 [P @, + e nvx ¥

+ (VR 7) 10 () + vk 2 x 54_‘1)(_1;)] (2. 6. 6)

expressed in terms of the static potentials.

For the more general non-stationary source, the potentials
,5(1) and _4_1(1) are formally given by the equations (2. 6. 2) and
(2. 6. 3), provided the multipole coefficients are taken to be fre-
quenéy dependent. Furthermore, the transform E(w) must be
considered to be unity if these equations are to be used for the non-
stationary source, unless it happens that the multipoles have a
common frequency factor, in which case a function g(w) could

(1)

be factored out. In any case, the solutions & and E(l) for any

source whatsoever, are given formally by
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Qk 1) ¥ ont)
p (w)
"B L m o oaat® )
n=_0

S0y, o) -
(2. 6.7)

Qk_ 1) X onH)
~(1) _ 1S4 )
Yz, w) = - -—STT'E—— z —rT(ﬂ _é}nﬂ(ﬁ.d))
n=0

As has been shown for the stationary source, these solutions may be
expressed in terms of the static solutions in special cases; but
in general, it is important to note that the multipole coefficients
are linearly independent fﬁnctions of frequency and that consequently
any simple relationship to the static solution will be fortuitous. In
tile developments to follow, both stationary and non-stationary
sources can be considered simultaneously, since the results are
seen to be at least formally similar.

The results expressed in the equations (2. 6, 2) through
(2. 6, 7) constitute an expansion of the source radiation field in a
form not previously. discovered., Its chief value lies in the insight
to be gained from the demonstrated relationship between the static
and dynamic fields in the case of the stationary source and from the
simple properties of the multipole coefficients and the propagation
functions in the general case., It thereby provides the means of
relating the radiation fields from complicated sources through a
simple common field expansion, In a more practical sense it is
clear that the representation of (2. 6. 7) may be used to compute the

body wave radiation field. This evaluation of the direct radiation



-49-

field thus reduces to the computation of the multipole factors from
' (2.4, 4) for the appropriate force system. In addition, the formu-
lation developed here allows some investigation of the more abstract
properties of the dynamic source. Thus it is clear from (2. 6. 7)
that the independent time dependence of the multipole factors
renders the convolution technique, for generalizing the time
variation at the source, ineffective except for a stationary source,
Investigation of the propcrties of the propagation function will
demonstrate other characteristics of the field,

The propagation functions Q(Kr), K = kp, ks’ may be ex-
pressed in a number of different ways. In particular, the spherical

Hankel and Bessel functions may be defined by (Jeffreys, p. 558),
5lt) f e R e =

—i?;
wP) - /T 7Y n <e>-<1>c(§d§>(_1§)

one has, for example,

.2 y s
Q(Kr) = - 2 (7;1:) +ih{"(m~) (2. 6. 8)

On the other hand, if f(kr) is expanded in a power series,

then, with 1 1(a,b z) denoting a hypergeometric function

(o8]
Q(kr) = Z ( 1 ) (cikr) [,y (253 iKT) (2. 6. 9)

\4 v!
v=0 1+_2:
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Therefore, since K takes on the values ks = ;“—)— and k= —5)— s
S P

then in the limit as w—" 0 (i.e., the static limit), k— 0 also,
and from the series

Lim Q(kr) =1 ; Lim VQ(kr) =0

w0 w0
Hence, the transformed dynamic field, _11(]')(_1:, w) given by (2, 6, 6),
reduces to the static result (2. 5. 6) in the limit «© —> 0, as it should,
provided of course that S{w) is properly behaved,

The reduction of the dynamic field to the static field in the

zero frequency limit has not been previously demonstrated. Further

the properties of the propagation function indicate that in the near

where Kr<< 1

1, wher 1, the source field behaves like a static
field insofar as its dependence on the spatial coordinates is con-
cerned. On the other hand, for Kr >> 1, the field behaves as a
true radiation field, having a radial dependence of essentially the
form exp {-ikr}/kr. The situation is perfectly analogous to the
case for an electromagnetic source of radiation (e.g., Jackson,
1962). In the latter case the intermediate field, where Kr~1,
is called the induction field and has the same formal properties as
does the elastic field in fhis range,

Again, consider the special problem of a point force in the

xl direction, as was done in the static case. It is seen that equation

(2. 6, 6) written in its component form as
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~(1) . 882 (k_1)
~ o~ ey i ~(1)
ui(_l_',w) = S(w) [ aX ﬂ(kpr) + eijk ——-—axk Q(k r) + 5 3x
Bﬂ(k r) .
P A

is most convenient, since the previous results for the static prob-
lem may be utilized. As was previously indicated, all the multipole

coefficients vanish except

RV = Mm
and since
BQ(f{r) - 243 [ 1Kr(1l€r+1) _ 1] dr +_2_,e-iKr(_i')_r__)
ox’ K°r o T o’

then U.](.l)(_ll, w), for example, is found to be

~ 2 -1 -ik T -ik (1)
1), __S{w)M 87 r 1 P Gk o -6 S T
u.1 (_1_, w) = 4mp ( ax'z ) ["‘_wz{e (1kp +1) (lks +1)}}

. . - -ik r
JStaM ar 211 THST 1 HSTL BoM e ®
(g )4=Se P -=e + ( )
ox' 2 2 2
S

4Trpr 41TPVS r

(2. 6.10)

Comparing this result with that given by Love (p. 305) as

2{x(t-r/v )}
iz, ) = )5 t'x(t-t')dt' + o g ){ = £
P
x (t - r/vs) 1 X {t - r/vs)
2 L
VS 4TI'PV§( r )

where
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Fxe)f =M. 5

one observes that

r/v - -ik _r -ik r
?{5 S tiy (t-t') dt'} = - S(w)e M| 2=de P (ik_rtl)-e ° (ik_rl
r/vp } w [wZ{ P Xy }]

SG{X (- r/v)} = g(w)’Me—mr ; =w/v with v=v_ or Vo

and therefore that (2.6.10) is the Fourier transform of Love's
result. The other components :1(;) and E(g) can likewise be shown

to be equivalent to those obtained by Love. This provides a simple
check on the dynamic solutions in equations (2. 6. 2) and (2. 6. 3).

Although the representation obtained and expressed by either
equations (2. 6.5) or (2. 6. 7) is a relatively simple one, an application
of these results in all but the simplest boundary value problems of
interest proves to be very awkward. This is particularly true for
wave propagation in a layered half space or sphere. The difficulty
can, in principle, be resolved by a suitable transformation of coordi-
nates, the particular transformation to be used depends upon the
geometry of the boundaries.

As with the static ‘solution, the difficulties encountered in the
application of these solutions in a spherically inhomogeneous body
may be resolved, at least in theory, by simply translating the
reference system. In particular, if the inhomogeneities of a spherical

earth are approximated by a layered sphere, then the boundary value

problem for the forced motion of the body may be solved, provided
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the source potentials are expressed in a form compatible with the
solutions of the homogeneous equations in each layer. Thus, it is
necessary that the source potentials be expressed in terms of
spherical coordinates with origin at the center of the earth. In
addition, the potentials must be expressed in terms of a linear com-
bination of the angular eigenfunctions, P:l(cos 9)eiim¢, of the
homogeneous wave equation. Under these conditions, the boundary
conditions give a set of algebraic equations defining the characteristic
equation for the system.

A translation of the coordinates to an arbitrary origin of
coordinates, in particular that at the center of a spherically layered
earth model, can be accomplished by more or less the same pro-
cedures used for the static case in Appendix (3). In addition, the
resulting transformed source potentials may be expressed in terms
of the appropriate angular eigenfunctions. The transformed potentials
are, however, found to be expressible only as a rather complicated
seriés and the series is not, unfortunately, rapidly convergent under
normal circumstances., For this reason, the results will not be
repfiteduced here. It seel;ns sufficient, in fact, to simply state that
all attempts to transform the source potentials obtained above to a

(1)

more widely'™’ useful form have been, in any practical sense, un-
successful. Thus it appears that one must be content primarily with

the insight to be gained from the particular solutions rather than

(1)That is, to forms suitable for the computation of the resonance
spectrum for a layered model of the earth.
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with any great utility that they might possess. 1) For the stated
purposes of this study, this result is quite adequate, especially

since other representations are readily available and will be developed
in the following sections. An important special case will be con-

sidered in the following section.

2.7 Representations for Initial Value (Relaxation) Sources

Consider now the 'physical potentials' of the form (2. 2. 28)

#*

-i(.o‘T* _ikpr
B v . r
(2, 7.1)
. * =ik r
~ -1wT S
ol o - ?S%TE S‘S“S”[v' xf" - iwe7ca’e Z}P—"‘r‘ dr'
v T

: e
For the important case in which only the initial value factor - iwpu

is considered, then the source factors V- 1_1>}< and the components
of VX E* are harmonic, The harmonic nature of these initial
value functions follows from the fact that they correspond to differ-
ences in equilibrium values of dilatation and rotation, which are
themselves harmonic; In particular, with the initial value function

sk
1  defined throughout the whole space and consirained to vanish with

. -
distance as r , o = 2, then

(1)

The solutions can of course be used for the prediction of body
wave radiation. This, however, is of marginal importance from
the point of view of the present study.
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@ = V.u =0"% ; 20

b < -
VXE%=O(1~ 0'); a=2

il

£ #*
and it follows that © and Qi , i=1, 2, 3 are of the form

0 n
AN n+l & m
0 = 2/ (;) Z{anmcos mo + b sin rndJ} P _‘(cos 0)
m=0

n=]
% €K 1 n+it '—12‘ (.) (-)
QJ = z (—I-.- ) Z {c I‘lmcos mé + dr.:n]m sin md)} Prr:l(cos 0)
n= m=0

These properties will be shown to follow directly from the definition
of the initial values for these potentials in section 3.7. For the
developments of the present section these results will be anticipated
beforehand,

In order to maintain generality in the evaluation of the
relaxation field it is necessary Lo introduce, explicitly, a causality
relationship between the relaxation of the equilibrium field and the
physical phenomenon initiating this effect. More specifically,
taking the origin of the source coordinates at the point at which an
elementary rupture increment, or any perturbation in the physical
properties of the medium, is introduced, one may conclude that no
relaxation of the potentials at a point r' is possible until information
concerning the existence of the perturbation has propagated over the
distance interval r'. Thus the "initial value", @*, for the dilatation

is not defined until a time
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after the creation of the rupture. By the same reasoning

is the delay time for the rotation. Now since the dynamic field is

at least of the order (1/r) while the initial values @* and Qt};

are of the order (1/r2), then for 1/r << 1, it is reasonable to approxi-
mate the initial field by taking 6" and Q: to be zero outside a
spherical region of radius R_, with (1/RS)2 << 1. Thus in this

approximation, one has, for example,

(1) _-iwp 2T X n+l
@ (1‘ (D) = 4,"_()\_'_2” S.. S‘ S (—) Sn(e':¢')

-ik r

e p 2 . 1
X ———a— r!'® sin 0! d6' d¢' dr!
T
) sk % )
with r =71 +r'., Now since
£
-ik r oo
—?——E-J-—— = - ik Z (2L H)P, (cos y}i, (k r')h(z)(k r); r >R =t
¥ P 2 VI ARG T8y AR, T s

£=0

and

AL
S‘ 5 P, (cOs y)S (9' $')sin 6' d6' d' = 2 +l S (0 <I>)6

)

then making use of these relations in the previous integral for

gives
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~(1) 2 (2) nH -ik r! 5
W (x, w) = - —EZ (k,7)S, (8, ¢>j (—T> e P Jplly 7 ax?

n=1

The integral over the radial coordinates may be evaluated as a Mellin

transform (Erdelyi et al., 1954, Vol. 1, p. 328): and therefore one
(1)

has

Rs 1 n+l -ikpr' 5
. 2y..9 '
S.O ("'Tr ) e Jn(kpr Yyrtdr

n 2
o 1/2 kp R, P 7 B
=(3) erEy P 2 (0, 233, 2nt2;-2ik R ) (2.7.2)
Tn+3/2)" P

so that

6(1)(_1;, w) = Z/ Z {Anmcos me + B sin m¢} hflz)(kpr)P:l(COS 0)

n=1 m=0
(2.7, 32)
@8 |
ﬁgl)(ﬁ, w) = Z Z {ngncos mo + Dgr)nsin m¢} h;z)(ksr)P;n(cos 0)
n=1m=0
with
(Anm) - 1/2 k}r; 2 ] (anm)
A (3) Y +3/2)( k,R)",Fyntl, 2:3, 2n+25-2ik R ) b
‘ (2. 7. 3b)
CEIL) SV 2 S
(D(j) =-(3) zn+3/2r(n+3/2)(kSRS) ,F,(n4l, 2;3, 2n¥2;-ik _R )(d(']) )
nm nm

(I)Alternate evaluations of the radial integral in question are possible,
In this regard see Erdelyi et al., 1954, Vol. 2, p. 335-336; No, 16
and 26,
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The function ZFZ is a hypergeometric function given by

(Erdelyi et al., 1954b; Higher Transcendental Functions (H, T, F.),

vol, 1)

Y Tlatr#)T(zat2) [ 2 ) 2R
2¥ o0t 233, 2nt2;-2ik R ) = I'Erzlnir-i-Z)l"(I;lﬂ) (r+2) TG
2=0
convergent for all values of its argument, It is not difficult to see
that the series (2.7.3a) converges and that the convergence is very
rapid for H <1,

Therefore the coefficients of the dynamic field are seen to
be related to those of the equilibrium field in a rather complicated,
yet calculable, manner., Added complications arise in applications
of this elementary source solution to the analytical description of a
nonsymmetrically propagating rupture. These problems will be taken
up in the following chapter,

It is clear from the preceding manipulations that a physical
interpretation of the radial factor Rs can be made by introducing
the notion of an effective source volume. This simply amounts to
a recognition of the fact that the overwhelming preponderance of
radiated energy arises from the region immediately surrounding a
rupture or other strong perturbation. Thus, in a demonstrable
mathematical sense, an effective boundary to the source region can
be justifiably introduced and further, the parameter RS, arising
from this procedure has physical significance,

For long period radiation satisfying the conditions
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kR <k R <<1 (2.7.4)
P s s s

the integrals over the radial coordinate may be approximated as

s 1 n-1 ke Rs 1 n-1
‘Sﬂo (‘;T) e jn(Kr')dr':§0 (—;r) jn(I{r') dr' (2.7.5)

where K = kp or k_. The approximation implies that, although the
stress release throughout the region bounded by a sphere of radius
RS is not inslantaneous throughout the volume, the difference in
phase between the long wave length radiation from even the most
distantly separated points is negligible. In this case one has, after

ral of {2.7.5) as a Hankle

et al. {1954), vol. 2, p, 22, No. 4)

~
T
s
3
S
1l

_(ER)'— Vi kg—l g R (anm>

B Vo LGr‘(ntl/Z) R‘Sl'1 b
(2. 7. 6)
(3) (j)
Cnm k v kn_l j. 4{k_R )} “hm
( ) - _( __s_) S _'n-1""s"'s ( )
pl) Vs/|2®T@wn/z) R o)

This simpler relationshiﬁ between the coefficients for the radiation
field and those for the change in the equilibrium field are applicable
to the calculation of the long wave length radiation, such as for long
period surface waves and lower order modes of oscillation for a

finite body,
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If the effective source volume is very large, then the limiting
values of the coelfficienls given by (2.7, 3) may be determined by.

taking

~iK'r!,

n-1
)} e Jn(Kr') dr’

s n-1 . o
1 -ikr!, 1
S‘ =r) e jpler'y de' 2 ) (=
b 0 O
(2.7.7)
when KRS >> 1, For this approximation the parameter K' in the
exponential is taken to be greater than K, corresponding to an initi-

ation of the relaxation mechanism at times determined by velocities

which are lower than the P and S wave velocities, Thus

K!'> K (2, 7. 8)

for the evaluation of the integral of (2.7.7). The limiting case
K' ~ K can then be considered. Thus from Erdelyi et al. (1954),
vol. 2, p. 37, No, 32 and p. 33, No. 7,

o0 n-1

l 'iK’I". 1 1

S‘ (;T) e Jn(l{r ) dr

_ - N
22 Hrm+3 /) 2

Fy(1, 3/2;n-1j3/2;(I€/K')2) (2.7, 9)

However, the hypergeometric function ,Fy has the limiting value

. W _ Tn+3/2)T(n-1)
,F (L, 3/2;5m+3/251) = l"(?xﬂ 5 T) , for n>1

thus, if n>1 then

el Ty - Vm kP2
=) e j_(kr')dr' = {2.7.10)
S‘O i n 2n+1(n-l)l"(n+l./2)
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Since it will be s_hown in a later section (3. 14) that the relaxation
will require n= 2, then (2.7.10) will be generally applicable. In
addition from the previous study of the static field and its interpre-
tation in terms of multipoles or equivalent force systems in section
2.5, it is seen that the case n =1 corresponds to an unbalanced
force at the source. Since a naturally induced source, such as that
associated with rupture and stress relaxation, can have no net un-
balanced force (or moment), inasmuch as there are no suddenly
applied forces (or torques) to maintain the equilibrium of the body
after rupture, then for such sources the coefficients corresponding
to n =1 in the expressions for the change in the equilibrium field
must vanish, Thus by this argument alone the assertion that n>1
for a relaxation source becomes quite plausible. In Chapter 3 the
assertion will be shown to be valid by direct computation,

In any case, for KRS >>1 and n >1, the dynamic field

coefficients in (2. 7. 3) have the limiting values

(Anm) ~ 1 vV kE anm)
Bn:m o Vo 2n+1(n-1)1"(n+1/2) bnm
(2. 7.11)
Cf‘;jl?n 1[ T kn C](.‘;jlzll
( (3) ) ~ — : ( (3)
Dnm — Vs 2n+l(n-1)1"(n'1;1/2 dnm

The solutions (2,7, 2) satisfy homogeneous wave equations in
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the region r > O, (1) Hence, in view of the definitions of the 'physical
potentials' é(” and ﬁgl) given by (2. 2.7), these potentials are
associated with a vector displacement field satisfying the homo-
geneous equation of motion if r > 0, given by

W) m_, 8% M

(M 2p)V(Ve u'™) - pV XV X u P~ u
ot

Or, transforming this equation to the frequency domain and using the

definitions of é(l) and ﬁ}l), one has

Therefore, the displacement field associated with these potentials is

Wz, = - Lv 8 + 2 g xgl) (2.7.12)
- - k Kk o
p S

The importance of this relationship is that it allows the stress field
associated with the source radiation to be calculated by the use of

the dilatation and rotation vector, Since the boundary conditions
require continuity of stress, then it is clearly necessary that the
stresses be calculated for the solution of any boundary value problem.

(1)

The displacement field is, in terms ofthe potentials

~(1)
¥

(1)Direct substitution of the potentials et and ﬁ(jl) in (2, 7. 2) into
the equations (Vz‘l'k;')é(l) =0 and (V2+k§)§§1) = 0 shows this to be

the case.
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3(1)(3, w) = V3 47 x ip_‘”
and the similarity of this relationship with that in (2. 7.12) is the basis

for the designation of © and 2 as potentials,

2.8, Transformations of the Primary Field for the Initial Value
Source

The power of the representation given by (2, 7. 2) arises from

the existence of methods of transforming these solutions into
expansions in terms of the eigenfunctions of the wave equation in

other coordinate systems. Thus, if the translation (without relative

rotations) of the spherical coordinates from the source origin to the
center of a spherical earth is considered, as in Figure 15, with r ,
90 and ¢o the coordinates of the new origin with respect to the

source origin, then Friedman and Russek (1954) have shown(l)

(1) Ben-Menahem {1962) has given operational forms to certain addi-
tional theoremes of this type which are analytically uscful.
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v=0 p=-v
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x oHmip)e, zipa( lm |, |p|spon, v)
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Xh(z)(lcr )Pm—m(cos 0 )
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r'< r
0

@ v
Z Z i¥ TP 2v 41) E:; > ;: iy tex )

v=0p=-v

(2.8.1)

: 1
X P';L(cos 9')e-1p'¢
i(mtp)d
e Ozipa(lm"lpl;p,nsv)
P

(2) M
X hP (Kr )Pp {cos 90)

- r'>r
o

(2pH){ntv-p-1)!!

allml, lelipe 0 v) = C S o T T

X

e

1
o

J
J

(“) (ntjt[m )t (v-|m|-jtp)! im(}(ntp-v)+|m|+j)
(n-j-|m|)! (v+{m[+j-p)! ‘

(2.8, 2)

a=p-|m|-|p| ; (s)11=s(s-2)...20r1; ()11 =(-1)11=1
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and p runs over the set v +n, v+n-2... v -n,
The general translation of potentials like those in (2.7.2)
is easily obtained through use of this addition theorem. The solutions

of the form

¢ §
5(3,@ =Z >_, {Anmcos m¢+Bnmsin m¢} hilz)(kpr)PIr:l(cos )

n=1m=1

may also be written as

— a,
5(_:;_, w) = Z hflz)(kpr) >J : o.;lmP;n(cos S)elmcp (2. 8. 3)
n=1 m=-n
with
| 1
2 (Anm - 1Bnm) m > 0
a! = A m=0
nm nm
1 . (nt|m|)!
2 (Anm+ anm) (n-|m{)! m <0

a form to which the addition theorem is easily applied. Thus,

requiring the translated. potential to have the form
J
~ - - )
®(z', ) =§ Z g, (r', 0)PX(cos 0"e K (2. 8.4)
- L Lk 4
£=0k=-1

then, after substitution of (2. 8,1) into (2. 8. 3) and equating the result

to the above desired expansion, one has immediately
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(2 . )' (kpr') n
Gﬂk(r w) = (24 +1) TEn )i ( k ] )) z Z ar’lm

n=1 m=-n
(2)
{+n h™'(k_r ) ;
o i(k+mdd
X Z ipa(lmi, !k|;p,n,!l)( )Pk+m(cos 0 e °
h(z)(k rl) p o
P=f-n P o)
(2. 8. 5)

where the upper pair of Bessel functions are used when r'< T

and lower when »'> r

o

If the translation is constrained so that 60 =, ¢O =0,
corresponding to a translation along the z axis, as is often adequate,

then this addition thearem reduces to a simpler form in the primed

coordinates due to the conditions

0, p# -m
Pmﬁ‘t(l) =5 -
p Ps —IM1

1, p=-m

mip, oy o (o Prm-p pmip
PP (-1) = (-1) Pp (1)

Thus, in this case

. jﬁ(kpr') .
Opylr’s @) = (224) (£+El1: )p( ek
Jplk r ) =
p o n=|k|
| IR
Z(—npa(lkl, iki;p,n,z)( PP °> (2.8.6)
P

(2) '
hP (kpr )

These expansions are of a form compatible with the solutions (2. 2.17)

for the homogeneous equations of motion in a layered spherical body,
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since both solutions, of the form (2, 8.4), have the same angular
dependence. These results are therefore useful for the explicit
computation of the excitation of the modes of vibration for a layered
spherical earth,

In addition to the transformation of the representation from

one spherical coordinate system to another, it is also possible to
transform the solution into representations in terms of'the eigen-
functions for the wave equation in both the rectangular and cylindrical

coordinate system.

Thus, Sato (1950a) has shown

o0
h(z)(ICr)P (cos 0) = {7 2My” S 3 (kp)Pm{(K kz)l/z/.‘{}

{Kz k2}1/2

Y

(k'

.h-2m +o0 Hdoo k=|:1k
h(i) (Kr)P;n(cos O)e FHmo ( > § g {

X Pt(1m) {(Kz—kg)l/z/lc} exp {iklxﬁkzy—i(lfz—kg)l/z z}

(2.8.7)

X (K k3) -1/2 dk, dk,
where 5:1(5)' denotes Hobson's definition of the associated
Legendre function and an(é) is the usual definition of Ferrers,

that is
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P() = (1-£3™/2 jng ) = a-e2™/2plm) )

) = (2™ 2 Pl = (2-1y™/ 2p{m) )

and finally, where kl’ kz, k3, and k are wave numbers, with

- 1/2
k =k = [kl + X ]

K = (kp, ks); kp = w/vp » kg = w/vs

Therefore, the source radiation field in cylindrical coordinates is

given by

e
E(P, z,$;0) = z Z {Ar'lmcos mo + Bl'lmsin m¢}

n=1} m=0 /
2.1/2z
§oo _ (k k )1/21 -1(1: k%)
J (kP k dk
X g ™ n kp j (ks _ 1/2
(2. 8. 8a)
© n
x (p, 2z, P;w) -Z Z{C(J) cos mo +D(J) sin m¢} g J (kp
n=1 m=0
a2 kB2 k- k 2)t/2z
b= S % ¢ k dk (2. 8. 8b)
X Fq { K } 2 - k572

S

where
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Al A
B! - k B
P nm

nm
o (2- 8- 9)
() (3
C’nm - ei(n-‘Zm)w/Z 1 Cnm
pli)! k_J\ pli)
nm nm
; 1§ ) B . . .
with Anm’ b0 Dnm given by expressions such as those in section

Likewise, in Cartesian coordinates

S 3 3 00 ([ e} ]

n=1 m=0

- Hkﬂk } { 1k}] (m){(k k?z’l/z/k}

exp {1k x + 1k2y - 1(k k )1/2 }

73 1/2
(kp - 3

e P C I E s S e

n=1m=0

4 ipU )'[{k +1k} { } ]}F(m {(k kz)l/z/k}

1/2
expd4d i x+1ky—1(k k)
» {kl 2 2}

z 2.1/2
(kS- k3)

dk dk (2. 8.10a)

dk, dk, (2. 8.10b)
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with A;lm, coos Dgzrll | defined as in {2. 8. 9) above,

The representation of (2. 8. 8) and (2. 8.10) are appropriate
expansions fdr the study of surface wave excitation in a layered half
space. Thus, a layered half space earth model, which is a
reasonable model for the higher frequency surface waves, may be
used along with these solutions to predict surface waves for different
sources in terms of their physical properties or, conversely, the
source properties may be deduced from the observed surface wave
radiation. Such investigations may also be carried out (somewhat
more accurately) using the spherical earth model and the source
solutions (2.8.4). The details will be taken up in the following

chapters.,

2.9. General Representations for Finite Volume Sources

More generally, if the source terms in (2.7.1) are not
restricted to initial values and are not, therefore, necessarily har-
monic functions, then it is necessary to resort either to the multipole
theory developed earlier or to performing the integrations in (2.7.1)
directly. If, however, the source terms in question are not initial
values, then, ruling out general body forces such as gravity, they
will be limited to some finite volume within the medium. Thus, a
direct integration is formally possible, since one may use the
expansions of exp (-iKr*)/r;:< introduced previously and the addition

theorem
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Pn(cos Y) =Z .(Z-Smo) Ei;rnrt;: P:ln(cos G)P;n(cos e")

m=0

X [cos mé cos md' + sin me sin m‘t"]

to write (2.7.1) in the form

- -ik SRS
9’(1', w) -m%m ZJ /) {c‘ﬂnmcos mé + mnmsin m¢}
n=0 m=0

m (2),. v
X Pn (cos 0) hn (kpr)

k o n (2.9.1)
- '— = . .
Q. (r, w) = 81Tp. __/ Z {Pgr)n cos m¢ + GflJr)n sin m¢}
n=0 m=0
X P]T(cos 0) h1(12)(ksr)
where
By 27
nm \ _ {n-m)! 1
(m >-( )(nm), (2n +1)§ S [g (Ve f )i, (k r'! dr]
nm
¢
XP ™ (cos 8") (COS ™ ) sin §' do' d¢’
n .
sin mo
(2.10. 2)
o)

Qnm &

m cos m¢
Pn (cos 8) sin 0' d6' d¢'

sin mo

nim (n m) 2m (\'IT b ~ 2
( {3) ) (2-81110) (ntm (2 +1)§ J S‘ (Uxf )jn(ksr')r' dr'
_ 0 Y0

The limits of the integral over r' are finite and, therefore, the
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integration presents no fundamental difficulties. In this regard, an
integral theorem due to Hobson is useful (Hobson, p. 161, (1931) ).
Thus, by a minor rearrangement and condensation of Hobson's
result, one has the general integral relation -

(2T

L2k
a . n 2%n!
-)o go f(x,y,2) S (0, 9) sin 0 d6 d$ = 47r oy (2k)"(2n+2k+1) T
k=0

0 9 2k
x [Yn( 8x 3 'é—}; 2 —a—z' )v f(x, Vs, Z)]

x:y:z:O (2° 9.3
where f(x,y,z) is any function representable by an absolutely and
uniformly convergent power series within the region bounded by a
sphere of radius R > r and centered at (0,0,0), Also

cosmb; a=0

sf‘l(e, d) = P;n(cos 9){

sinméd ; a=1

3
Y2(0, 9) = r"82(6, 9) = Yo(x, v, 2)

where the solid harmonic YG' may be expressed as a multinomial

8 8 2

in x%x, y and z. Thus, the operalor Yn( 3%’ 3y az) is obtained

from the multinomial form by replacing X, by 58-}-{—- , 1=1,2,3, so

%% -Z Ag 2y ) 22y
oy -5— - P, P, Pylox By 9z
P, P, P,

Y(ax,

Therefore, if the limits of the integral over r1 in (2. 9. 2) are

independent of ©' and ¢', then the integration over 8' and ¢' may
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be performed first, and so using (2. 9. 3), one has, for example

(n-m)! 2%n1 N Ay

n-m n nk

fam = 428, ) Gy N BT/, BRI TR T
k=0

b
X y r2k+n+zj (k_r') dr'
n p

with

A(O) {Y(Bx’ gy Bz v [ z]}x=y=i=0

The integral over the radial coordinate may be evaluated as a Hankel

transform, since

b 1/2
5 12kt Ar dr = (3 )
a P
X [ S‘O (k) (. M1 /2) N, ) 1/2 gp
- S.r) (k)(r') Jn+(1/2 (k T )(k 1")1/2 dr' ]
with 2kl L
s r a;

_{b, i=1
a, =¢ "
a, 1i=2

Therefore (Erdclyi_&_:_‘g_a_l, 1954),

ai<r'<oo

3

[}
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1
5, Zkint3

b
Zk+n+2, N mE L
Sa T Jn(kpr ydar' = ( 2) (kp ) {(2k+2n+1) {(kpb)Jn+;2__(ka)

x _ . _ .
Satctnth, n-30p2) ~ U043 0,20 S n_%(kpa)]
[k 028 i3 /2), mr g

; (kpa)Jn_%(kpa)SZk_l_n+(3/2)’n+_é_(kpa)] } (2.9.4)

where S‘.L v(z) is Lommel's function, defined in terms of more
3

elementary functions by

S () = L1 P (1 Bovi3 pivid 2
B,V (p-vH){ptvl) 17 2

z_
2 2 7 4

+ 2“‘"1 I—:(E-ZV+1>I‘(E'+;+1 >[31(<P"7_1-}- 1T>JV(Z)
- cos (ﬁz‘i n-) Nv(z)]

where ,F, is a generalized hypergeometric function and Nv(z)

is the Bessel function of the second kind.

If a =0 in the integral, then (2.9.4) becomes

b % . 2knt3
'2k+n+2. 1y 1 ¢TI __1_

X {(2k+zn+1)4kpb)Jn 132550 g 3 (6p0)

-k b),_, (k b)S

n+{(3/2)
! 2k +(3/2), n+3tpP * 2 TnH3/2) )gk%

(2.9.5)
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Denoting the value of the integral over the radial variable in (2. 9. 4)
or (2. 9.5) by Rnk(a, b;kp), then, when a and b are independent of

® and ¢ in (2.9.2),

(snm = 4m(2-8 )(n-m)l anH)-2nt 2%n1
E Bty N Py b B

nm
Z nk(a, b;kp) A(I(l)li
(2k) ! 1(2n+2k+1) 1! A(l)
nk

(2. 9. 6)

2
I _ (n m),
(Q > = 4m(2-8 mo) (n+fm)1 (2n4)) T3 (2 )”

nm
(0] (0)
% & (2, bik ) ( jr‘nk>
. @RIz k1]

k=

where

03 {5 5 V[V s

Jrl'fla() { (0)( ox ’ gy 'E_?g ) vZk [V Xz_] j}r=0

Thus, under the conditions stated for a and b, the evaluation of the
integrals in (2.9 . 2) can be accomplished, the results being a
rapidly converging series, If‘ a and b depend on 8 and ¢, then
the integration over the radial variable must be performed first. In
any case, the integration is a Hankel transform. Once the transform
is evaluated in terms of 8 and ¢ as parameters, then Hobson's

result (2. 9. 3) may be applied as in the case just computed.



-76-

In any case, the potentials of (2. 9.1) are of the form of
(2. 7. 8), and, .therefo:re, the transformations to the various coordi-
nate systemé previously considered may be applied to this solution
as well; the results are therefore as given in the equations (2. 8. 2)
through (2. 8. 7).

The displacement field in the region outside the source
volume may be obtained from the equations of motion. Unlike the
case for an initial value source, the equations of motion contain

an explicit source term, in particular
2%

P
ot

_1_1(1) = (N + Zp.)Vél)— 2uV Xgl_(l) +f ; forall r

However, for the region ontside the finite source zone, f=0 by

definition and therefore, when é(]‘) and _@(1) have been determined,
then _1_~1(1) is given by
Bz = 4780 + L X
kp kS

Applications of the appropriate representation to source
problems of geophysical interest will be considered in subsequent
chapters. Of the various source types of general interest, special
consideration will be given to the tectonic source, and consequently

the potentials given by the equations (2. 7. 2) will be the most useful,
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2,10, Summary of Theoretical Results

The theoretical developements of the previous sections have

provided a number of results of a relatively general nature. They

can be summarized as follows:

(1) The primary source field has been expressed in three

different forms, appropriate for the investigation and

prediction of the source field under somewhat different

initial conditions and from alternate points of view,

In particular:

(a) Multipole field expansions, useful for the

(b)

(c)

1

properties.
Spherical wave expansions, more practically
useful general representations of the field

in terms of spherical waves. ()
A spherical wave expansion for the initial
value elastic field, wherein the series coef-
ficients are algebraically related to the initial

field, and the source time variation is auto-

matically specified.

(2) The dynamic source field approaches the static source

field in the limit, w —> 0,

(3) A general volume source may always be expressed as a

(I)In both cases, the appropriate solution coefficients for any given
. body force distribution are given in terms of multipole integrals
and differential formulas, respectively,



-78 -

multipole field. For separable source functions,
J(r,t), appearing in the equations of motion, it has been
shown that a special relationship exists between the
static and dynamic fields, in that the transformed
dynamic field is given by the simple product of the
static field and a propagation function, For non-
separable source functions, the dynamic field is given
by the product of the propagation function and a multi-
pole field with frequency dependent multipole coef-
ficients. The latter field is identical with the static
field in the limit as w — 0, and the frequency dependent
coefficients are in general linearly independent functions
of frequency.
Physical interpretations and applications of these rather
formal mathematical results will be made in:subsequent sections.
One cannot fail to note, however,from the preceeding
considerations, that the appealing purity and power of a purely
mathematical approach is considerably diluted by the physical

sterility of the resilts.
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Chapter 3

TECTONIC SOURCE THEORY

3.1, Introduction

The intent of the present chapter is to incorporate within
the basic structure of the mathematical theory of elastic sources
the salient features of tectonic (or natural) sources. It seems hardly
necessary to point out that such sources are basically non-linear in
nature and, from a physical as well as mathematical standpoint,
extremely complex, so that an attempt to describe the radiation
field in precise terms will require some idealization of the physical
processes involved. In the following developments an attempt will
be made to clearly set forth the idealizations required in the theory.
It is not, however, always possible to clearly and precisely estimate
the degree of approximation associated with such a theory or even
with one single aspect of the theory since our experimental knowledge
is so limited. Therefore in the formulation of the field theory, the
most generally accepted principles and phenomenon associated
with material rupture will be adopted as a basis for the theory, On
such a basis the genéral mathematical theory will be developed, the
precepts of the theory then being largely associated with observational
facts of a macroscopic nature,

Thus the elastic rebound theory (Reid, 1933) is used as an
initial model of rupture and is generalized to include modes of rupture
other than simple fracture., In addition the mechanism of releasé of

elastic energy is generalized to include volume radiation due to
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stress relaxation in the vicinity of a rupture zone,

In addition to a macroscopic rupture theory, which serves
as an appropriate dynamical model, the microscopic mechanisms
associated with rupture, in particular the observations of physical

N

dislocations and related phenomena {creep), are reviewed, The
microscopic theories of rupture consistent with the experimental
evidence of deformation and rupture in metals and earth materials
at normal and elevated pressurcs and tcmpcraturcs arc discussed
and related to repture in the earth, This physical theory is shown
to be consistent with the less detailed elastic relaxation model,
The mathematical description of the radiation field

associated with the tectonic source will constitute an extension of

the mathematical theory in Chapter 2, incorporating additional

physical properties associated with rupture and stress relaxation.

3. 2, Macroscopic Mechanisms of Seismic Rupture

Reid's elastic rebound theory may be summarized as
follows (e. g. Teisseyre, 1960)
(1) A fracture occurs as a result of the elastic strain
exceeding the strength of the material, whereby mutual
displacement of the surrounding masses takes place.

(2) Displacements do not originate suddenly and the

()

In the present context the term physical dislocation refers to the
microscopic imperfections of the crystalline lattice as opposed

to the purely mathematical concept of a dislocation or discontinuity
in the displacement field within an elastic continuum.
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velocities of the material points reach a maximum only
after a finite time,
(3) The movement is a rapid elastic rebound of the sides
of the fracture towards a position of no elastic strain.
{4) The dynamic processes start on a small area, which
subsequently are rapidly enlarged. Radiation of elastic
energy occurs from the surface of the fracture.
(5) The source of the elastic energy is the elastic strain
energy of the medium.
Of these concepts, all except the last will be altered in order that
they conform more closely with the concept of stress relaxation and
the ensuing radiation from the volume surrounding the rupture.
Thus since the source of elastic energy in the radiation field is in
the initial strain field of the medium, it follows that once the rupture
is initiated, then the stress field must readjust toward a state of
equilibrium determined by boundary conditions on the rupture surface.
This readjustment or relaxation must be accomplished by radiation
of seismic energy whenever the medium is ideally elastic, since
there is no other mechanism. However the behavior of the medium
undoubtedly departs appreciably from that of a perfect elastic solid
in the region _immediately surrounding the rupture. Therefore in this
region the stress relaxation is considered to be accomplished pri-
marily by flow on microscopic fracture phenomenon rather than by
radiation. In this zone however, the essential feature introduced,

is an inability of at least some of the material to sustain tectonic
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shear stress. As a first model, the whole non-linear region will be
considered a sheér free region. As an idealization of the process
then, the whole rupture zone will be considered to be enclosed within
a surface over which the shear tractions vanish, so that the equili-
brigm state of the medium is determined by this boundary condition,
The width of the rupture zone is in all likelihood small, however,in
the theory to follow,this dimension is treated as finite and is repre-
sented parametrically in the formulation. In the limit it may, of
course, be considered very small or zero in which case the rupture
volume reduces to the rupture plane itself,

The tacit assumption that the whole rupture volume remains
essentially fluid throughout the time interval of rupturing is rather
a tenuous proposiﬁon, at least at depths where the temperature is
rather far from the melting point. While phase change, particularly
melting, is a highly plausible rupture mechanism at all depths,
except possibly within a few kilometers of the earth's surface, it is
quite possible that recrystallization and an accompanying increase
in viscosity of the melt will follow rapidly in the wake of the melting
or rupture front, Hence a growing rupture boundary of zero traction
might not be the most realistic model for all depths in the earth. In
such circumstances, or in instances of brittle rupture, a more
plausible modél can be used. Thus as a second model of natural
rupture, a region of zero rigidity will be assumed to propagate over
the total zone of rupture. In this case the boundary condition on this

propagating volume is taken as the vanishing of the tractions, as in
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the previous model, but the boundary itself is defined over only a
relatively small region at the front of the rupture zone. The material
which had previously been within this moving rupture zone is assumed
to have at least partially recrystallized, so that this old rupture will
be considered as healed and necessarily in a manner such that the
equilibrium field in the region surrounding the rupture boundary is,

at any time, that which is appropriate to the rupture in the presence
of the initial tectonic stress field.

The two models of rupture are represented schematically in
Figure 3. In general the first of these spontaneous rupture models
will be referred to in terms of rupture growth, while the second in
terms of rupture propagation.

Thus the dynamical properties of a tectonic source will be
described in terms of a readjustment or relaxation of pre-existing
stress by elastic radiation from the vicinity of a region in which
the physical properties, priximlly the rigidity modulus, are changed
abruptly. The tectonic source is therefore viewed in terms of the
release of potential strain energy from within the elastic zone of the
medium itself, Within the non=elastic rupture zone the stress
release is accomplished by flow, fracture phenomenon or phase
change, and the original strain energy stored within this volume is
assumed to be taken up in the work of non-elastic deformation. The
energy would appéar, in part, as heét rather than as (seismic) elastic
radiation and so further reduce the effective rigidity of the material

during the initial rupturing.
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As a consequence of the emphasis placed on the stress
relaxation coneept in the development of the tectonic source in the
present study., it is convenient to describe the theory, which will be
developed more fully, as an elastic relaxation theory in order to
distinguish it from other theories, principly the elastic rebound
theory and various mathematical dislocation models. Although
these approaches to a description and explanation of the tectonic
source are certainly not without common features, there are at
least some fundamental differences which will result in different
predicted characteristics for the source.

The relaxation theory incorporates the main features of the
elastic rebound theory as a posésible special case. However the theory
is generalized so as to include the specific role of the initial strain
field, the associated effect of the volume radiation and further the
effects of a rupture volume, and its boundary surface which expand
or propagate as the case may be, with a finite rupture velocity.

The essential features of the relaxation theory to be utilized
in the following dévelopments may be summarized as follows:

(1} A rupture zone occurs as a result of the accumulated
strain exceeding the "strength" of the material and repre-
sents a region of large relative displacement and defor-
mation beyond the elastic limits. The rupture volume is
characterized as a region of vanishing shear strength.

(2) All processes, including elastic relaxation, require

finite and physically realizable time intervals for their
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accomplishment. The rupture volume and its boundary
surface are fﬁnctions of time and their growth or propa-
gation may be characterized by a definite and finite
velocity function,

After a proper time delay, the material points exterior
to the rupture volume move toward new positions of
elastic equilibrium, determined by the vanishing of shear
traction on the boundary surface of the rupture volume
and by the dimensions of the boundary surface.

The dynamic relaxation processes start at the position
of initial rupture and subsequently expand throughout the
volume of the prestressed medium with the appropriate
compressional or shear wave velocity. Radiation of
elastic energy occurs from throughout the prestressed
volume exterior to the rupture zone.

The source of the elastic energy is the elastic strain

energy of the medium.

It is evident that the relaxation process is complicated by the pro-

pagation of the rupture boundary and the fact that the medium is

characterized by two vclocitics of wave propagation. The dynamical

effects of an elementary rupture in a prestressed material have been

described as a generalized initial value problem in Chapter 2. The

introduction of potentials has served to separate effects occurring

with the two characteristic wave velocities of the medium. The

synthesis of the elementary source solution to yield a solution for a
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time dependent rupture or growth propagation is a matter of some
complexity in detail but in essence the method is one of superposition,
The problem. will be simplified in the present chapter by the explicit
introduction of a source time variable T, in analogy with the usual
Green's function technique. By superposing the elementary solutions
over a source time interval corresponding to an appropriate expansion
of the rupture, it will be possible to approximate the rupture growth
or propagation and the accompanying stress relaxation.

The source model and representation theory of the present
study therefore includes as physical parameters, the rupture velocity,
initial stress field (assumed homogeneous to first order) and source
dimensions.

An additional and important feature of the elastic relaxation
theory is the specification of the time variation of the radiation field
from the tectonic source. Thus, since the time variation of the
relaxation mechanism is automatically determined from a formulation
of the process as the "initial value" problem described previously,
then as a necessary consequence the radiation field will be seen to
follow a prescribed time variation. In addition the total energy
radiated from the source may be computed from the difference between
the initial or prestress field and the final equilibrium stress field in
the medium. To a good approximation the strain energy reduction
so obtained may be interpreted as til'e energy radiated from the
effective source volume.

Knopoff {1958) originally computed the energy release
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associated with the introduction of a two-dimensional rupture
surface (infinite sheet) into an infinite,prestressed medium. Later
Keylis-Borok (1959) extended this approach to a three-dimensional
spheroidal model of a fault where the major dimensions were circu-
lar. Press and Archambéau (1962) applied the concept to an
explosive induced tectonic source and computed the strain energy
release to be expected from the vicinity of a spherical shock zone
in prestressed media. Knopoff's original model implies a dynamical
model at least similar to that introduced in this’ study and can be
considered the staticdl predecessor of the present detailed
dynamical theory.

The present relaxation model of tectonic sources has been
framed in terms of natural or earthquake sources, however essen-
tially the same mechanism would apply to any process in which the
properties of the material are changed abruptly. As a consequence
one may conclude that stress relaxation in a prestrained medium
may also be induced artificially by an explosive source producing
a strong shock wave in thé material. In this case a rupture zone is
created by the shock wave (e, g., Haskell, 1961), interior to which the
medium is assumed to be altered so as not to be able to sustain
tectonic shear stress. Quite clearly this shock induced rupture zone
is equivalent to that previously poustulated for the general leclonic
source, so that the general theory is'épplicable. Press and
Archambeau used these same physical arguments for their compu-

tation of tectonic energy radiated from such a source. This source
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will be treated in the fullest detail in the following sections,

3.3. A Comparative Review of Tectonic Source Theory

A great many tectonic source models have been suggested
and used with varied success in the past. In general a particular
mpdcl is suitable [or the explanation of some particular aspect of
the observed radiation field, Until quite recently the tectonic
source was most successfully described in terms of an equivalent
point source or in terms of an equivalent volume source. Balakina,
Savarensky, and Vvedenskaya (1961) have reviewed the tectonic
source theory up to 1960, Honda (1962 and 1957) gives a similar and
somewhat more extensive review. In all cases extensive biblio-
graphies are compiled. The source models may be considered
equivalent multipole sources and for the purposes of this study may
be conveniently summarized as follows:(l)

(1} Byerly-Hodgson point source model: On the basis of an

early theoretical study by Nakano (1923), Byerly and later
Hodgson assumed a double force with moment (single
couple) tectonic source model and compared the predicted

(2)

polarity'™ of the radiated P waves as a function of the

(l)Since only a very superficial survey of the methods and theory of the
equivalent point and volume sources commonly used is given here,
reference can be made to Balakina, Savarensky and Vvedenskaya
(1961) or Honda (1957} and (1962) for a more complete discussion and
listing of the contributions from the numerous researchers involved
in the establishment and application of these representations.

(Z)In the present context the term polarity is used to imply direction-
ality of the first motion. Thus for example an outwardly directed
P first motion is considered positive, and inward, toward the
source, as negative,
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(3)
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angular coordinates with that observed for numerous
earthquakes., Using only the polarity of first motions of

P waves, these investigators followed by many others
obtain a simple and reasonable, although not unambiguous,
interpretation of the source mechanism.,

Keylis-Borok point source models: Numerous point
sources based on the strain nuclei introduced by Love
(1944) are considered as possible source representations.
Using the theoretically predicted amplitudes and polarities
as functions of the angular coordinates for P, SH and SV
waves, Keylis-Borok and others conclude that, of the
point sources considered, the single couple generally
gives the best overall agreement with the observed
polarity of P and S waves,

Honda volume source models: Earthquake foci are repre-
sented by a small spherical distribution of forces arranged
in a particular manner. That is, the spherical volume is
divided into four parts by two mutually perpendicular planes
and in two opposite parts, forces of compression are
assumed while in the remaining two quadrants tensional
forces are assumed. This system is clearly equivalent
té a point multipole source and may in fact be seen to be
equivalent to a double couple. Using this model Honda
and othe rs have obtained agreement with the polarity of

the radiated first motions of P and occasionally S
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waves and to some degree, statical agreement with the
displacements at the surface for shallow tectonic sources.
An equivalent multipole system has long been considered a

valid representation scheme for the usual type of volume source.
This contention has in fact been shown to be valid in general for
bounded force distributions by the theory of Chapter 2. Since the
models summarized above are equivalent to multipole field solutions,
although of a very select type, the representations dou therefure have
a clear logical basis. In addition the Byerly-Hodgson and Keylis-
Borok representations, which are equivalent, are also, loosely
speaking, in apparent first order agreement with elastic rebound
theory if the single couple is envisioned as the force pair giving a
sudden relative shearing movement to opposite sides of a rupture.
However, even in terms of the rather severely idealized elastic
rebound theory, both the single couple and double couple sources
represent highly restricted representations which either arbitrarily
assume or completely ignore the effects of the actual physical dimen-
sions of the sources, the complicated time dependence of the ruptur-
ing and resulting radiation and the relationship of the initial stress
field to the radiation field. Therefore these multipole sources are
usually considered as valid representations of only the initial
"movement” at the source, that is at the focus of the tcctonic sourcc,
The initial motion may, possibly, be indicative of the fault mechanism,
However,the precise relationship of the first motions from a tectonic

source to the total motion and source mechanism has never been
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clearly established.

If the additional source properties were included, an objec-
tive analysis of the observed radiation in terms of a multipole
theory would require a representation involving a superposition of
multipoles. This follows from the theory of Chapter 2 :in which a
distributed force system of arbitrary time dependence, that is,
where the time and spatial dependence of the force system need not
be separable, will in general give rise to a superposed multipole
radiation field. It was shown that in general the multipole coef-
ficients for the transformed field were independent functions of
frequency, so that the source may have quite a different radiation
pattern for any two different frequency ranges. Further, the equilib-
rium requirements on the stress field during rupturing require
readjustment in all stresses, including compressional stresses as
well as all the shear stress components, regardless of the orienta-
tion of the rupture with respect to the initial shear field, so that the
simple physical interpretations commonly given to the couple sources
are unrealistic, Thus for these reasons, one would expect greater
complicatione in the first motion radiation and in its interpretation
than is afforded by the single couple and double couple sources,

It would therefore be expected that the initial features of the
motion asseciated with the radiation field would normally be described
by a superposition of multipole fields with particular multipoles or
combinations of multipoles being dominant at certain frequencies and

within certain distances and azimuths from the source. In addition,
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~ the conditions for the dominance of a particular multipole are clearly
critically dependeffon the initial shear field and the geometrical
nature of the .rupturing taking place over a time interval comparable
to the periods of the displacements associated with the initial P and
S wave motion, In view of these considerations, it seems likely
that the agreement between a single or a double couple source model
with the observed first motion of P and S waves for many earth-
quakes represents a determination of the dominant multipole contri-
butions from the initial motion at the beginning of the rupturing,

{See also Knopoff and Gilbert (1960} in this regard.) Aki's (1964)
experimental studies tend to confirm this line of reasoning, Thus
Aki argues, on the basis of his own and other experimental evidence
obtained largely from surface wave studies, that in most cases a
single couple source model does not explain the observed long period
surface wave radiation from strike slip faulting and that a double
couple model is better., He notes however that single couple models
give better agreement for dip slip faults. Consequently the author
adopts a modified source consisting of a particular superposition of
single and double couples weighted so as to give reasonable agree-
ment with surface wave observations from a number of earthquakes.
In terms of the present point of view, to be theoretically substantiated
in the following sections, this procedure amounts to the adoption of
the dominant part of the multipole solution previously discussed, Thus
the multipole coefficients correspond to the weighting of the couples

and are chosen (experimentally) so as to be approximately valid for
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the long period radiation observed. In a different frequency range and
also for different initial stress fields and rupture orientations, these
weighting factors should be different, so that the modified couple
model would have to be superimposed in a different manner. Thus

it is not unlikely that shorter period radiation would indicate an
entirely different model or that the model would change somewhat
from earthquake to earthquake indicating a difference in the basic
rupture parameters,

Recently, some relatively sophisticated theoretical source
models have been advanced. Honda (1962) includes a brief descrip-
tion of some of the models in his review of tectonic sonrce theoary.
The models may be conveniently grouped and summarized as follows:

1. Elastic Dislocation (¥, T.D.} Models: Two possible

mechanisms for earthquakes have been advanced, based on analogies
with the physical dislocation theory appropriate to plastic deforma-
tions in crystals. Some basic dislocation types are shown in Figure 4.
These dislocations are described generally by Volterra's theory of
dislocations (e. g. Love, 1944, § 146A), The static elastic field
associated with such an infinitesimal dislocation was computed by
Burgers (1939) and the results were extended by Nabarro (1951) to

give the instantaneous displacements produced by a moving disloca-
tion of the edée type. The dislocation movement is effected by a
synthesis of dislocations in a stress field, the instantaneous displace-
ments produced by the sudden creation of an infinitesimal dislocation

loop are also, thcreforc, obtained in conjunction with the synthesis,
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Vvedenskaya {Balakina, Savarensky and Vvedenskaya, 1960)
considers an earthquake to be equivalent to the creation of a dislo-
cation and uses Nabarro's results to model the source. The author
considers the formation of a rupture to be equivalent to the instan-
taneous removal of stresses from the fault suriace which is taken,
in turn, to be equivalent to a sudden application of stresses in an
unstressed medium, This procedure gives an equivalent source
which corresponds to the double couple point source, as was pointed
out by Honda (1962),

Droste and Teisseyre (1959, 1960), Teisseyre (1961) consider
the basic earthquake mechanism to consist of a mutual annihilation
of a pair of dislocations or in the release of potential energy in a
dislocation as it moves to or across a boundary with rigidity contrast.
These authors compute the energy associated with the dislocation
annihilation and boundary release at the free surface of the earth.
Using Nabarro's results they obtain expressions for the static field
to be expected from an earthquake of either type and approximate
expressions for the radiation field due to the rapid movement and
annihilation of a single dislocation at the surface or a pair of dis-
locations at depth (Téisseyre, 1961). The authors compare their
results with the observed energies of earthquakes and the static
displacements measured geodetically near surface faults (Byerly
and DeNoyer, 1958). The dynamical predictions of the model were
not utilized by the authors, however their roughly computed radiation

field appears to correspond to the double couple point source. By
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choice of suitable dislocation parameters and elastic constants,
the authors achieve approximate agreement between predicted energy
release a;nd fhe surface static field and the empirical values observed
for these quantities. This model provides a rather detailed model
of the earthquake mechanism wherein the time variation at the source
is also predicted and constitutes an important feature.

Steketee (1958) and Chinnery (1960, 1961) have considered
energy and equilibrium properties of a dislocation and applications
of the general theory to geophysical problems associated with faulting
are discussed in general terms, Steketee (1958) has shown that
creation of a dislocation in either a stressed or unstressed medium
will increase the strain energy of the medium so that external forces
would be necessary to create a dislocation. Various types of dis-
locations are considered and Steketee shows that the dislocation
equivalent to the double couple point source is in equilibrium, while
that equivalent to a single couple is not. That is, static equilibrium
of the medium is maintained only by the application of a moment at the
medium boundary in the case of a single couple source. Chinnery
(1960) takes up this argument in the dynamic case and making use of
some of the results stated by Knopoff and Gilbert (1960), concludes
that for first _motion at least, the medium must continuously adjust
to equilibrium as the rupture breaks. That is, 'that the impulse
delivered by the source tothe medium must be in equilibrium’.
Coupled with the static equilibrium argument of Steketee, the author

suggests that a double couple source is most tenable with these
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etjuilibrium arguments. Ixtending the hypothesis of the double
couple source, Chinnery (1961) uses the static field from a disloca-
tion equivalent to a double couple to interpret the observed surface
displacements near several faults. The author achieves reasonable
good agreement with the observed field and further concludes that
non-elastic effects are confined to a small zone in the immediate
neighborhood of the fault,

Housner (1955) considered a distribution of "shear dislocations"
as a model of a fault plane and assumed that faulting was equivalent
to the relaxation of the accumulated shear stresses on the individual
dislocations, He assumed that the relaxation of each individual
dislocation was dynamically equivalent to a single couple and that
the total field was a superposition of the fields from these couples.
No detailed predictions concerning the radiation field were made but
statistical considerations were advanced to show that such a model
could be put into general statistical agreement with observations of
the strong motion in the neighborhood of earthquakes. This type of
source corresponds to the adoption of an equivalent volume distri-
bution of sources and the concept of a dislocation distribution, which
is treated loosely, was introduced as a basis for the choice of the
elemental equivalent source.

In this context, a more rigorous treatment of the concept of
a dislocation distribution has been given by Weertman (1964). In
this case an initial two—dimensiopal distribution is assumed corre-

sponding to a pre-existing fault plane and this distribution is fixed
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by the frictional forces and the stress field due to tectonic forces.
When the applied tectonic stress exceeds the frictional forces, the
continuum of. dislocations is free to move and redistribute so as to
releave the stress, The treatment is limited to equilibrium consider-
ationc where certain initial and final distributions arc considered

but the dynamical implications suggest radiation from the propagating
dislocations (Nabarro, 1951}, so that the total radiation field would

be due to the superposition of fields from a "swarm" of propagating
dislocations.

Weertman shows that on the basis of this approach, an
anomalously low value of the coefficient of friction is required
within the eartHs crust in order to explain the observed surface
rupturing and the Simultaneously observed,rather deep epicenters
of some earthquakes.

While there are some basic difficulties associated with the
use of dislocation models involving the creation, propagation or
annihilation of a single large dislocation (see section 3. 4), these
same problems are avoided or at least are not evident, when a
continuum distribution of infinitesimal dislocations is used to
describe the rupture process. Indeed the results of the present
study, wherein the radiation and static fields associated with rupture
are predicted, can be described equivalently as resulting from the
propagation or expansion of a volume distribution of dislocations.
While Weertman treats the equilibrium of a two-dimensional array

of dislocations and considers the process to be essentially one of
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fracture on a pre-existing fault plane, the consensus reached in the
present study favors a volume distribution of dislocations and
associated unstable creep phenomenon at even modest depths
(Orowan, 1960) or shear melting (Griggs and Handin, 1960).

Fracture is considered likely at only shallow depths, less than
approximately 10 km. Thus the mechanism of rupture is considered
to be basically the disordering phenomenon associated with infinitesi-
mal dislocationes resulting in a loss of cohesion due to the resulting
unstable creep, phase change,or fracture at the shallow depths.

It seems possible that near surface fracture could occur with, or as
a result of, unstable creep or phase change at greater depth so that
deep epicenters and observed surface fracture corresponding to a
very shallow dislocation distribution could correspond to two differ-
ent but associated phenomenon. Thus as an alternate to Weertmans
conclusion of a low coefficient of friction, one might describe the
observations by saying that the distribution of dislocations behaves in
different ways and induces a different failure mode under different
pressure and temperature conditions and that these modes of behavior
may occur together or be influenced by one another.

2. Knopoff-Gilbert dislocation models: Knopoff and Gilbert

(1959, 1960) consider the rupture to be equivalent to a discontinuity

in both strain and displacement along a two-dimensional surface.
The authors restrict their investigations to first motions and approxi-
mate the physical model accordingly. In general they consider a

propagating rupture wherein the particles adjacent to the fault are
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initially asaumed quiet until the passage of the fault front, at which
time the particles on opposite sides of the fault plane are suddenly
displaced in opposite directions parallel to the fault plane. The
displacements are taken to conform in magnitude to the static values
of displacement along an infinite two-dimensional crack in a homo-
geneously strained infinite medium (Knopoff, 1958), the time variation
is taken to be in the form of a unit step function. When the effect of
the second, depth, dimenszion is ignored, so that the source model is
reduced to a line source, then the radiation field may be computed
exactly, These results are further approximated to facilitate the
computations, and first motion radiation equivalent to a double
couple is obtained, (Knopoff and Gilbert, 1959). Alternately, taking
the first motions of the P and S wave radiation to depend exclusively
on the initial breaking at the focus of the earthquake, the authors
consider all possible initial dislocations corresponding to this initial
motion model, Neglecting the radiation from all points on the fault
plane except that from the focus, the authors conclude that two of the
possible dislocations are physically significant, namely a sudden
displacement dislocation parallel to the fault and a sudden shear-
strain dislocation., The displacement dislocation corresponds to a
double couple and the strain dislocation to an isolated force. A third
model is also considered possible on the basis of the fault-plane
solutions obtained from the previously descrybed Byerly-Hodgson
source model, In this case a sudden rélease of shear strain in a

laminar region ("laminar strain dislocation") is shown to correspond
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to the single couple source. In all cases the time dependence of the
first motion at the focus is taken to be a step function and it is

argued that should the time dependence be otherwise, a simple con-
volution would provide the correct radiation field and in any event
cannot affect the spatial dependence of the first motion radiation field,

3. Ben Menahem's propagafing source models: Ben Menahem,

(1961, 1962) adopts a clever device to represent the propagation of the
ruptune and associated stress release during an earthquake. Taking
a directed point force as an elemental source, the author, following
Yanovskaya (1958), obtains the surface wave excitation in a half space.
Next assuming a finite line distribution of such sources, the author
integrates the surface wave solution previously obtained with respect
to this (depth) variable, Finally assuming that this line segment

of sources moves with the rupture velocity over a finite distance,

the reby defining the fault plane, the previous line source solutions

are integraled over the [aull length assuming a finite speed of move-
ment for the line source, Thus by superposition of an elementary
source solution, Ben Menahem achieves an effect at least similar to
that to be expected from an actual propagating rupture. In the course
of synthesizing the source, several approximations are introduced

in order that the various integrations may be performed, in particular
that the distance of the point of observation from the focus be much
larger than both the wave length of the radiation field and the greatest
rupture dimension. For the intended application of the model to

surface waves these restrictions are not considered to seriously
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impair the generality of the theory. Press, Ben Menahem and
Toksoz (1961) verified the mathematical validity of the theory by
model studieé and its physical relationship to actual faulting through
the verification of the predicted surface wave radiation from the
Chilean earthquake of 1960, In particular the theory predicts a direc-
tional modulation of the surface wave radiation associated with the
movement of the line source distribution ("directivity function"),
the parameters of this factor depending on the fault length, rupture
velocity and direction of the rupturing. Proper choice of these
parameters give general agreement with the observed radiation
spectra in this respect, and thc paramctcrs co chosen are in first
order agreement with the same parameters estimated by other
means. A similar directivity factor is obtained for the body wave
radiation (Ben Menahem, 1962). Predictions for the body waves have
not been verified however. Ben Menahem points out that the model
is capable of further generalization in that other, higher order
elemental sources such as couples etc.,, may be obtained by differ-
entiation and combination of the results for the vector source.
Haskell (1963) has recently undertaken this generalization,

The theory has been used by Ben Menahem and Toksoz (1962,
1963), to estimate fault length and rupture velocity of earthquakes.
Quite reasonable values are obtained which are in general agreement

with values estimated by other observations.
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3.4, The Physics of Dislocation Rupture in the Earth

In view of Steketee's result regarding the energetics of dis-
locations, sudden creation of a very large dislocation per se, is
considered unlikely, if not an impossible physical process in the
earth, since such an event would require a large sudden increase in
the tectonic forces. The theoretical source models explicitly based
on such a mechanism are therefore physically implausible and as a
consequence quite arbitrary. Symptomatic of this condition is the
arbitrary time dependence of the source models used by Vvedenskaya
and Knopoff and Gilbert.

The dislocation processes which are relevant to rupture in
the earth appear to be assodiated with the same or similar mecha-
hisms leading to creep in crystalline solids. In this context then,
the term dislocation refers to the microscopic disordering of the
ideal crystal lattice rather than to any single, large macroscopic
discontinuity of the displacement field within an elastic continuum.
Confusion of the two concepts, the first being essentially a physical
concept, the second mathematical, arises from the recent use of
the microscopic dislocation theory (e.g. Droste and Teisseyre,
1959, 1960, and Vvedenskaya, 1960) and particularly the physical
concepts assqciated with it, as models for macroscopic seismic
rupture, Therefore, while a microscopic description of rupture
in terms of dislocation theory is appropriate, use of these concepts
in a maeroscopic sense seems inappropriate,

Thus creation and synthesis of physical dislocations on a
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microscopic level is quite certainly an active process in a tectoni-
cally strained region and is probably manifested in the observed
creep phenomenoh near tectonically active regions. However,
contrary to the viewpoint of Droste and Teisseyre, a slow synthesis
of the infinitesimal disloctions treated in Nabarro's theory to give
very large dislocations is highly unlikely in a heterogeneous,
crystalline medium like the earth. The unlikelihood of such a
phenomenon is due to: (1) thc presence of impurity atoms in the
crystal lattice which tend to pin the dislocations and impede their
movement and synthesis, (2) grain boundaries or crystal boundaries
presenting effective barriers to the growth or movement of dislo-
cations within the medium, and (3) the existence of stable node
points for a network of dislocations in a stress field (Mason;,  Chap. IX,
1958). The role of these inhomogeneities in the dynamics of dislo-
cation growth and movement has been extensively studied (e. g.,
Mason, 1958; Cottrell, 1953; Read, 1953) in conjunction with detailed
studies of the non-elastic properties of polycrystalline solids.

The actual behavior of dislocations in the presence of a
stress field and their interaction with other inhomogeneities within
a crystalline solid is extremely complex and varied. Certainly not
all the possib_ilities of interaction have been thoroughly investigated
nor are all of their manifestations in terms of bulk properties of the
solid completely understood. However, the gross behavior of

dislocations in polycrystalline material as a function of shear stress
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is fairly well understood (e. g. Mason, Chap. IX, 1958), (1)

In particular, moderately high stresses are required to unpin
a dislocation from an impurity atom and at moderate stress, the
process is not unstable., That is, once unpinned from the impurity
atos, lhe dislocation loop is still attached at the node points or
intersection points with other dislocations so that it is not free to
move nor combine,

Creation of additional dislocation loops at higher stress
occurs, and the mechanism is described by the Frank-Read disloca-
tion source. This process is activated when the stresses are large
enough to unpin a dislocation. For a sufficiently large applied
stress, the unpinned loop bulges out until it reaches a semicircular
form. Any further stress causes the loop to become unstable and
it begins to increase in area. If the loop does not strike any ob-
structions, it will follow the steps shown in Figure 5 until it doubles
back on itself and forms a free loop and a new pinned dislocation.
For high stresses the process will be repeated and a large number
of loops are formed. Basically then, high stress fields will cause
an unstable generation of dislocations rather than a synthesis of free
dislocations to form a small number of very large dislocations, as
envisioned by Diroste and Teisseyre in their theory of dislocation an-

nihilation. In addition, the physical possibility of the creation of the

mThere is in fact, little doubt that dislocations and dislocation inter-
action phenomenon constitute the mechanisms responsible for
ductile rupture and creep under moderate stress.
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very large dislocation hypothesized by Vvedenskaya is seen to be at
variance with the actual mechanisms of dislocation growth and
generation. That is, the process is essentially that of creep.

The probability that seismic rupture at depth in the earth is
associated with unstable creep phenomenon seems relatively great.
Such a mechanism has in fact been suggested by Orowan (1960).
Thus if a creep mechanism is relevant, and arguments will be
presented in its favor, then a microscopic description of the
phenomenon will be provided by dislocation. theory. The likelihood
of the creep mechanism arises in part from the experimental facts
relating to the behavior of dislocations at relatively low shear
stresses. In addition to unstable creep or ductile processes of
rupture, brittle fracture and uncontrolled phase change may be
initiated, and thereby controlled, by the presence of dislocations
within the crystalline matrix. Thus certain aspects of the micro-
scopic theory of lattice defects in a crystalline solid, in particular
those related to dislocations, are likely to be pertinent to an under-
standing of the origins of seismic rupture, The mechanisms of
importance will be described in a qualitative manner in this section.

The dislocation mechanism leading to ductile rupture at
relatively high stresses seems to be connected with the Frank-Read
dislocation m.echanism. The process has been observed to consist of
two stages, dependent on the magnitude of the applied stress. For
stresses somewhat below that required for rupture, unstable Frank-

Read dislocation loops are produced, but are prevented from going
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through the reprqduction process indicated in Figure 5 by the
presence of dislocations in other slip planes, In particular when
the loop becdmes unstable and strikes an obstructing dislocation, it
may cut through several such dislocations but is eventually held

by so many cross-dislocations that the stress on the free dislocation
is not sufficient to cut them, and the generation of multiple loops

is prevented. However an important side effect of a dislocation
cutting a screw dislocation is the production of a jog on each dis-
location, or a dislocation of a dislocation.

At this level of stress the process is anelastic, that is, if
the stress is reduced the dislocations return to their former state
and the process can be reproduced. However, a plastic strain is
introduced in addition to elastic strain, and so the shear modulus,
which is just the ratio of the stress to the total strain, is reduced.

If the applied stress is increased further, the jogs produced
in the cross-dislocations duc to cutting by the unpinned Frank-Read
dislocations will create vacancies as they move through the material
under the action of the stress field (Friedel, 1956; Seegar, 1955; and
Mason, 1958). At this level of stress the material develops fatigue
cracks and then fractures. It is believed that the rupture phase is
due to the dislocation loops cutting through the pinning dislocations
and producing jogs, vacancies and an uncontrolled number of Frank-
Read loops. (A large number of vacancies in the lattice are pro-
duced by a jog, and actual pictures of vacancy production have been

obtained by Dash (1958).) According to Mott (1956), the vacancies
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can accumulate to initiate fatigue cracks. The "cracks" may occur
when the vacancy-filled material recrystallizes on the distorted
material on either side of the slip band.

Once such cracks are produced, rupture can follow if the
stress is large enough to cause separation of the crystal planes
between cracks, that is, by a Griffith crack propagation mechanism
(e. g. Griffith, 1920; Sneddon, 1951) or if the recrystallization or
melting is uncontrolled alung planes of vacancies, These
mechanisms require considerably less energy than does rupture
due to actual separation of undistorted crystal planes (Seitz, 1940,

p. 98).

Numerous other mechanisms involving dislocation imper-
fections, in addition to vacancy production and recrystallization or
melting, may also result in the production of cracks and cavities of
microscopic dimensions within crystals or along grain boundaries.
The presence of such flaws, defining a "weak zone, " can then lead
to brittle fracture at low confining pressure and temperature. A few
of these mechanisms are considered by Orowan (1954). Thus
QOrowan suggests the formation of cracks due to high tensile stresses
generated by the accumulation of a large number of edge dislocations
at a lattice inhomogeneity, such as a hard percipitate, a grain
boundary or crossed dislocations due to proceeding plastic deforma-
tion. In this case the dislocations accumulate in a commeon slip
plane and superposition of their associated stress fields can locally

exceed the tensile strength of the material, thereby producing a
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fracture with its long axis normal to the slip plane. A similar
phenomenon arises from a row of edge dislocations in parallel slip
planes. In this case the superposed dislocation fields give rise to
a large tensile stress at the end of the row which would lead to
cracking along a slip plane.

The effect of accumulated dislocations and resulting high
stress fields could also lead to localized phase change under high
temperature and pressure conditions. This may occur when the
dislocations accumulate at lattic inhomogeneities and increase the
strain energy of the lattice and its surroundings to a level at which
a changc of statc is possible,

The mechanisms described in the preceeding paragraphs are
considered, in the present study at least, to be the most likely
microscopic process leading to seismic rupture. While most of the
detailed observations concerning the dislocation mechanisms con-
sidered above have been made on laboratory samples of metals at
relatively high frequencies of applied stress, it has been shown,
(Mason, 1958; Cottrell, 1953) that these mechanisms are essentially
independent of frequency at high stress and apply to other crystalline
materials as well. In particular dislocations and dislocation induced
vacancies have been shown to be responsible for a number of non-
elastic processes observed in quartz and other non-metallic crystals
(Mason, Chap. X, 1958), In addition numerous high pressure and
temperature deformation experiments with rocks have demonstrated

the plastic or ductile properties of the constituents of the earth at



-109-

moderate depths (Griggs et al., 1960), Therefore it is concluded
that the ductile processes described apply at least down to a depth
above which the rock is yet crystalline,

This conclusion is also supported by Orowan's (1960) theoreti-
cal inferrences and by the deductions of Griggs and Handin (1960)
based on their experimental work in rock rupture and deformation
under high pressures. Thus Orowan has concluded that effects of
temperature and especially pressure below 5 - 10 km, in the earth
precludes all the classical mechanisms of earthquakes (e. g. fracture
and release of static friction followed by sliding) and that plastic
deformation (creep) is the only plausible alternate presently
available. Although not mentioning the precise microscopic
mechanisms involved, Orowan arrives at the same conclusions
reached in the present survey; namely a mechanism associated with
creep instability. Griggs and Handin also conclude that ordinary
coulomb fracture, even at a féw tens of kilometers, is clearly im-
possible in view of the high pressure and the finite coefficient of
friction,and that the most reasonable mechanism of energy release
at great depth is a phase change and that the most probable phase
change is melting. In particular the authors state that calculations
suggest that, once a crack or flaw exists, there is ample elastic
energy to propagate the 'crack' by shear melting even if the stress
difference is only a few tens of bars. The dislocation induced "flaws"
and melt zones are just the processes required by Griggs and Handin

to initiate sheur meltings Thus in addition to the possibility of
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rupture by separation of crystal planes between cracks (friction
rupturing of weakened material), shear melting or uncontrolled
recrystallization due to stress concentration at moderate and great
depth constitutes an additional mechanism of 'rupture' requiring
only small shear stresses,

On a microscopic level, a description of the seismic rupture
mechanism in terms of dislocation theory can hardly be avoided if
the material is crystalline, inasmuch as a dislocation theory is
nothing more than a means of describing the departures of the
crystalline material from an ideal crystal. Thus, the grain boundaries
in a polycrystalline solid are described in terms of locked-in dis-
locations., Ewven a single crystal, formed under ideal conditions,
will contain a large number of dislocations. Further, the deforma-
tion of a crystalline solid under non-hydrostatic stress is necessarily
described on a microscopic level by dislocation movement and inter-
action,

Thusr since the material of the earths crust and upper mantle
is almost certainly crystalline, then the existence of dislocation
imperfections in this region is quite certain, The presence of
non-hydrostatic stress fields within the crust and upper mantle is
suggested by_numerous lines of evidence, the most recent and direct
evidence in'this regard arising from observations of large scale
perturbations in the earth's gravity field (e.g. Kaula, 1963). These
observations imply a strength of the order of 300 bars for the crust

and 100 bars (108 dynes/cmz) for the upper mantle, The presence of
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a non-hydrostatic stress field of the order of 108 dynes/cm?' must
therefore initiate movement and interaction among the existing
dislocations and the eventual generation of additional dislocations
(unstable creep).

The question seems to be then, which of the rupture mecha-
nisms described by dislocation phenomenon is pertinent to the earth?
Clearly the temperature and pressure conditions will, at least in
part, control the mode of rupture.

At shallow depths stress concentration due to an accumulation
of dislocations would initiate tension cracks which could grow by a
Griffith crack propagation mechanism. The material at such depths
would then be considered brittle. At greater depths the high pressure
would preclude the possibility of brittle rupture mechanisms depen-
dent on the existence of initial voids or cracks. At such depths
unstable creep associated with Frank-Read dislocation sources can
result in creep rupture described macroscopically as shear melting
or uncontrolled recrystallization.

Thus, dislocations exist, the non-hydrostatic stress field
required for interaction and movement of these dislocations is
present and there are a number of microscopic mechanisms associ-
ated with dislocations which would lead to stress concentration and
cither brittle or crecep rupture, dependent upon the tempceraturc and
stress condition,-

Dislocation theory should provide a description of other

observed macroscopic phenomenon arising from further departure
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of the material from the ideal crystalline state under applied stress.,
Most of this phenomenon is associated with rupture. Thus Lhe
existence of .unconsolidated weak zones among a fault would result

in a concentration of stress with a subsequent generation of dis-
locations om creep in the surrounding material. Hence, the nhserved
creep along lateral faults can be viewed in terms of plastic deforma-
tion described by microscopic dislocation movement. The density

of dislocations would however be higher at the ends of the unconsoli-
dated portions of the fault in view of the tendency for elastic stress
concentration, as at the extremities of a crack, leading to possible
additional rupture. The shear strain observed at the earth's surface
along an active fault trace would correspond in part to plastic strain
under this interpretation, The effective rigidity of the region would
depend on the dislocation mechanisms activated, that is on the level
of the applied stress. In any case the effective rigidity corresponding
to the tectonic stresses would be reduced due to plastic strain pro-
duced in addition to the elastic strain.

Orowan (1960) has discussed fore-shock and after-shock
sequences as phenomenon related to creep instability rupture.
Benioff (1951) previously proposed a visco-elastic mechanism involving
an "anelastic" strain relaxation within the material surrounding a
friction fault, allowing recurring stress accumulation on the fault
and a sequence of seismic events., Orowan has compared the two
hypotheses and shown that either could account for the observed

effects. Orowan's discussion shows that a creep mechanism would
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normally result in a series of seismic events since any initial rup-
turing due to creep would result in a high stress concentration along
the margins.of the rupture resulting in further creep instability as
was suggested in the preceeding paragraph. Microscopically the
creep instability is associated with the generation of dislocations
which will tend to concentrate in a narrow band of slip planes, and
clearly the time required for a concentration sufficient to initiate a
phase change will depend on the stress and temperature levels, and
the nature of the material, Thus an initial rdpture would naturally
be followed by further creep rupturing until the regional stress was
reduced to a low level. The seismic sequences associated with what
is probably brittle fracture at shallower depths could be explained
by stress concentration and a similar generation of dislocations in
parallel slip planes near the ends of the rupture. In this case the
thermodynamic environment, particularly the temperature, would
not favor easy movement of the dislocations in the polycrystalline
matrix but rather an accumulation of dislocations at grain boundaries
and at impurities resulting eventually in tension cracks and further
large scale rupture. Thus the basic mechanism for near surface
rupture is probably the same as for creep instability at greater
depths and a sequence of seismic events would be expected in view
of the time required for the generation and movement of dislocations

in the stress field.
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3.5. Compatibility of the Macroscopic and Microscopic Mechanisms

of Seismic Rupture

It seems reasonably clear that the macroscopic description
of seismic faulting provided by the elastic relaxation process
de.scribed earlier is in accord with the microscopic mechanisms
just outlined. A consistent theory encompassing both the non-
linear mechanisms associated with dislocations and the linear
relaxation processes resulting in the radiation of stored elastic
energy is achieved by postulating the existence of a well defined
uniformly propagating or growing rupture surface surrounding a
zone of zero shear strength. In this manner the necessity of
explicitly delineating the detailed nature of the rupturing is in
reality aveided in the macroscopic theory, except in so far as it is
necessary to show that a propagating or growing rupture volume,
as the case may be, has physical signifiecance. On the other hand,
the conclusion that the radiation field is an elastic volume radiation
effect can be proved whenever such a surface is introduced into a
strained medium.

The existence of such an idealized surface follows from the
previous discussion of the rupture mechanism, It will be considered
the boundary between the narrow melt or fracture zone and the
stressed, eséentially elastic, surrounding material. The important
assumption that the frictional coupling across the boundary is
negligible seems justified in view of the likelihood of a rupture

mechanism involving phase change, particularly melting, Indeed
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the plausibility of such a mechanism arises from the fact that
frictional effects are very small.

Fven in the case of brittle fracture at shallow depths, as
described in the preceding section, dislocation mechanisms and
resulting plastic deformation are fundamentally involved in the
process of stress concentration. When such brittle rupture is
appropriate, it is reasonable to assume that a loss of cohesion,
plastic flow and melting would be associated with the large and
rapid stress changes in the immediate vicinity of the fracture.
Frictional coupling between the clastic zone and the rupture volume
would undoubtedly be larger than for "creep rupture, yet still
probably small compared to the changes in the traction at the bound-
ary. This assumption would clearly fail very near the surface
however, since while the frictional forces would tend to decrease
somewhat, the comparative shear stress changes would tend to
decrease much faster,

Thus a boundary enclosing a region of vanishing effective
rigidity appears to be a reasonable first order description in all
cases except very near the free surface. In cases when the rupture
zone intersects the free surface it is likely then that the present
model may not accurately predict the radiation from the near surface
zone. Theré are also other difficulties associated with "surface
rupturing” which reduce the clear applicability of the source theory
developed in this study to occurrences of rupture at depth (i. e., not

intersecting the surface).
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On the basis of the microscopic processes involved in rupture,
there is little to choose from between the growth model of rupture
and the propagating rupture. However the assumptions involving
frictional coupling across the rupture boundary are less severe for
the propagating rupture model and for this reason this model is pre-
ferred at shallow depths, and certainly for brittle rupturc.

Due to melting and probably large deformations within the
rupture zone, it is further concluded that the previously stored
strain energy goes into heat rather than into elastic radiation. This
too is entirely plausible in view of the deformation mechanisms
involved in faulting. Further one mijght suppose that the heat generated
within the rupture zone will further reduce the possibility of frictionv
at the boundary.

In view of the detachment of the radiation theory from the
details of the mechanisms leading to faulting, the method is applicable
to tectonic sources in genéraL Thus the theory is applied to the cal-
culation of the tectonic radiation from explosions in pre-strained
material,

While it is possible, in theory at least, to predict the nature

of the 'rupture'

volume growth from the physics of the mechanisms
leading to rupture, such an undertaking, while undoubtedly ultimately
desirable, is considered outside our present grasp due to a general
lack of knowledge'concerning the detailed physical state of the mate-~
rial at depth in the earth,

The following list of generally measurable quantities,
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associated at least indirectly with the source mechanism, may be
predicted in terms of the source parameters and provides an
indication of the generality of the present source theory and a means
of checking the validity of the models and theory.
(1) Prediction of body on direct wave spectira.
(2) Prediction of surface wave radiation, directional pro-
perties, mode excitation, etc.
(3) Prediction of the total energy radiated.
(4) Prediction of the oscillations in an inhomogeneous
spherical earth.
(5) Prediction of the static displacements at the earths
surface.
(6) Prediction of initial phases "at the source, "
On the other hand, if the source parameters can be chosen so as
to give good agfeement with the observable variables enumerated
above, then such a "fit" will provide a determination of the source
parameters, although not necessarily a unique one., These param-
eters are:
{1} The rupture velocity function and final fault dimensions
in terms of the semi-axes of an ellipsoid.
(2) Ir_litial stress state of the medium,
(3) Location and orientation of the rupture.
It is clear that a general lack of uniqueness exists. That is,
although a reasonable fit to the observed field properties may be

achieved by choice of the source parameters, this in itself does not
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insure that the set of parameters is the only set capable of providing
a fit. In addition, the effect of errors in both the observations and
the fit would be unknown., The uncertainty may be reduced by com-
paring the source parameters obtained with direct, independent ob-
servations of some of the parameters, when possible,

More basic uncertainties are also involved. In particular,
the macroscopic source model does not explicitly specify the nature
of the rupture mechanism., Thus any deductions concerning the
physics of the source, based on estimates of the source parameters,
must be predicatéd on additional hypotheses. If a plausible micro-
scopic mechanism of rupture is assumed, then the parameters
estimated from the radiation field could well be useful in assessing

the validity of such a mechanism.,

3. 6. Approximations for Dynamical Models of the Tectonic Source

The models of Knopoff and Gilbert are first motion models,
by contrast the presentltheory represents an extension of the mathe-
matical theory to encompass the total motion and in addition proposes
a physical theory of rupture. The dislocation and first motion models
are essentially arbitrary, inasmuch as both the time variation and the
displacement or strain discontinuities across the rupture or at the
focus are chosen on a subjective basis. Thus while Knopoff and
Gilbert observe that the true time variation may be obtained by
simple convolution, this is only true if the source function £(x,t),
as considered in Chapter 2, is a separable function in r and ¢t

If the function cannot be so separated then, as 'was shown in
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Chapter 2, each multipole coefficient giving the radiation field is,
in general, a different function of frequency. In the present chapter
it will be shown that this condition prevails for fault sources and
consequently that it is therefore not always possible to achieve
generality by convolution, Further the volume properties of the
source are in effect represented by a discontinuity in displacement
which is propagated down the fault surface and the equivalence of
this representation and the properties of volume radiation is not
obvious., If there is an equivalence, it is likely to be found by first
solving the initial value problem associated with an elastic relaxa-
tion theory, as will be shown in Section 3. 9.

Ben Menahem's source model is similarly arbitrary in both
the choice of time variation and the fundamental source nuclei.
Thus the model avoids consideration of the properties of volume
radiation and the dependence of the radiation on the initial stress
field. The model may be viewed as a moving equivalent source, and
is consequently similar to the Knopoff and Gilbert model. Ben
Menahem's successful evaluation of the far field radiation from
the model and the first order agreement achieved with the observed
spectrum of surface waves tends to support the contention that a
moving source is, at least with respect to the amplitude dependence
of surface waves within a restricted frequency and distance range;
an adequate first order model. In physical terms this agreement
appears to result from the relatively large and rapid stress changes

occurring at the propagating "front" of the rupture, which for large
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distances from the fault will approximate a moving point or line
source., The detailed nature of the moving line source, that is the
appropriate fime and spatial dependence of the force system of this
equivalent source, can in principle be obtained from the present
elastic relaxation theory and would be expressed in terms of the
fundamental parameters of the initial stress field and rupture surface.
Mathematically, the crux of the difference between a relaxa-
tion theory and the previous thcorics rcviewed liee in the difference
between an initial value problem and a boundary value problem.
Thus Chinnery (1960) may only speculate on the nature of the relaxa-
tion of the stress, while in the present theory the process is
analytically prescribed. In this connection, the stress relaxation
is a manifestation of dynamical equilibrium wherein an equilibrium
value of the stressfield is defined at every instant, in the static
sense, and the stress changes in a manner determined by the dynami-
cal equations toward a stress state consistent with this equilibrium
state. This does not, however, imply that the stressfield is con-
tinuously in static equilibrium with the propagating rupture but
only that the field continuously adjusts in a manner determined by
the equilibrium field. Since this adjustment requires finite time,
one may conclude that the field is never in equilibrium with the
rupture surface at any given time during rupture. The precise
relationship is analytically described in a following section. Thus
while Steketee's and Chinnery's arguments concerning equilibrium

in the static case are applicable, the extension of these arguments
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to the dynamic problem is not so clear.

The present model should yicld more meaningful estimates
of tectonic source parameters and a more complete description of
the source and its radiation field in layered media than has been
possihle before. This contention ig based primarily on the reasonable
physical basis for the relaxation model of the source. Nevertheless
it is worthwhile to note the limitations and approximate nature of
the theoretical predictions arising from the necessarily idealized
physical models and their approximate mathematical representation.
Among the more important physical effects not explicitly accounted
for in the models are:

1. The effects of perturbations of the density within the
rupture volume arising from phase change or recrystal-
lization.

2. Departures from ideal elastic behavior and variations in
the clastic constants énd dcnsity in the exterior "elastic”
zone due to large changes in the equilibrium stress field.

3. Interaction of the rupture boundary with the radiation
field, giving rise to possible interface waves.

4, Frictional coupling between the material within the rupture
zone and the elastic zone.

In addition, some compromises in the gene rality of the mathematical
representation will be made in order to simplify both the analysis
and the theoretical results, The approximations are equivalent to

the following assumptions.
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The growing rupture zone is, at any time, ellipsoidal

and the "width" of the zone is small compared to any of
the other dimensions.

The propagating rupture sweeps out an ellipsoidal

region during the course of its movement, at any time

the traction free rupture surface is a small fraction of
the total rupture surface.

The diffractcd and reflccted field from the rupture is neg-
ligible outside the immediate vicinity of the rupture vol-
ume and does not influence the stress relaxation phenome-
non,

The elastic tectonic stress field is locally homogeneous
outside a narrow zone of stress concentration (i, e. the
relaxation field is assumed to be derived from a homo-
geneous initial elastic field).

The rupture growth and/or propagation is with a rupture
velocity VR which is constant.

Stress relaxation is a local effect in the strict sense.

That is, changes in the equilibrium field are induced at a
point primarily by changes in the form of the rupture

boundary nearest  the point in question.

If the neglected physical effects are not of second order or if

the assumptions required for mathematical tractability are not ful-

filled, then special modifications or additions to the theory will be

required in those exceptional cases. It is, however, difficult to
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see how any of the approximations in the theory could have any large
or critical effect on the predicted radiation field with the possible
‘exceptions of an inhomogeneous initial stress field or a density
perturbation. In regard to the latter, Benioff (1963) has speculated
that this phenomenon might well explain the observed radiation
from several deep focus earthquakes. The effect, when not of
second order compared to stress relaxation effects, is probably
confined to deep focus sources in a very restricted depth range,

A secondary effect, arising from the omission of density
variations, is that the body forces such:as gravity play only a very
indirect part in determining the radiation field. In the following
section, the constant body forces will in fact be shown to vanish
identically from the equations determining the change in the equili-
brium field during rupture. The initial stress field would in theory
however contain the stress due to the gravitational forces. Since
the change in the equilibr;'.unl field depends on the value of the initial
field, then the gravitational stresses would implicitly be :accounted
for. However the initial field in the present theory is assumed to
be homogeneous and pure shear which will result in a2 good approxi-
mation if the tectonic stress is locally quite uniform and if changes
in the shear stresses are larger than the dynamical fluctuations in
the hydrostatic pressure during rupture. Nevertheless part of the
initial stress field can in general be considered to be associated
with gravitational forces.,

Love {1944), p. 109-111, considers the general case in which
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the density is allowed to change. It is clear that the gravitation
forces at least, would in such cases give rise to an energy release
corresponding to a liberation of a relatively small amount of
potential energy if a localized density change occurs. Thus the effect
of the body forces can only be indirect in terms of the present
theory, in that the initial stress field and the rupture parameters,

such as the velocity of boundary propagation, may be affected.

3. 7. Basic Equilibrium Relationships

Clearly the ecsscntial problem in the representation of a
tectonic source is a dynamical description of stress relaxation. A
basis for a mathematical description is provided by an elementary

(1)

consideration of equilibrium. In order to simplify the discussion
and to temporarily eliminate the effects of rupture propagation or
growth from the problem, consider the instantaneous creation of a
traction free surface in 'a prestrained medium as in Chapter 2. The
boundary of the surface, once inserted into the medium, is then con-
sidered fixed. Prior to the creation of the boundary, each material
point of the continuum is in a state of equilibrium with a tectonic
force field f. Thus the pre-stressed state of the medium is given
by equations of the form

8ol ) (x)

— =
—_L——axi + pfi 0 (3.7.1)

(1)

Love (1944), 88 128, considers equilibrium aspects associated
with a suddenly applied or reversed load which is a similar prob-
lem to that considered here.
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where 0{?) is the initial stress field and fi is the tectonic force
density. After creation of the boundary, however, the new equili-

1)

brium state is given by a stress field O'g) determined by

boiP(x)
__L_aXi + Pfi =0 (3. 7. 2a)

with the added boundary condition

Q_ _,.
ﬂ-ij nj—O,_I_'EB ’ (3. 7. 2b)

where B denotes the traction free surface with normal n,

Thus, it is intuitively clear at least, that each element of
the medium acts as a source of seismic energy. The total energy,
W released as radiation at a given point x, is determined by

the net change in the equilibrium stress at the point, that is by

_1 (0)_ {1),2
ws(_gq) =7 (crij - o-ij ) (3. 7. 3)

where p is the rigidity. This contention will in fact be proved in
the following section,

The change in the equilibrium value of the field may be de-
duced from a solution of the static equations (3, 7.1) and (3. 7. 2).
In order to provide for later generalizations, it is convenient to

define a (source) time parameter T. The dimensions of the boundary

(I)As was previously noted, the theory is concerned with first order
effects and the second order phenomenon associated with changes
in the elastic constants and density are neglected.
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will be considered as specified by the value of T given, Therefore
the boundary B is a function of the parameter T, as was previously
indicated in Figure 3, and consequently so are the field variables,
such as dilatation. This dependence on T will be displayed explicitly
throughout the formulation,

The change in the equilibrium value of stress is

U',j.:j(}‘_, T) = o‘é?) (x) = o-é?(_r_,‘l’) (3. 7. 4)

and thercforc the cquations of cquilibrium (3, 7.1} and (3. 7, 2) show

*
that LET is given by

derjk.
= =0

j (3. 7. 5)
(O'(i(;) - G;)nj =0; re B(T)

where T 1is considered’'a fixed parameter. In addition to the

&
boundary condition at B(7T), a condition on the field T35 at large
distances from the boundary will be imposed, namely that

_u_*(g,T) = O(—%) a= 2
T

This will insure that the field at large distances approaches o-(io.).,
The boundary value problem for the changes in the equilibrium

values of the stresses or displacements is therefore given by,

{o = N2 p) )
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(1-20)7%u" + V(7 u*) = 0
vi=oL) ; e=2 (3. 7. 6)
r

0'._.n. (0) . 3 r e B(T)
i IR | B

The solution of (3. 7. 6) may be obtained by a number of well known
%
methods, in particular (Landau and Lifshitz, 1959) u may be

taken as an arbitrary biharmonic vector function

Viu

—

=0 (3.7.7)

and by adjustment of the undetermined coefficients, the equations
in (3. 7. 6) may be satisfied, Love, (1944, p. 265) gives general
integrals of the equilibrium equations in terms of spherical har-

monics, and if, as in Chapter 2,

n
G N Tl (3 m .
(9 o) S, (o, 43 Z/ [ cos md + bnms:.n mCIJ] Pn (cos 9) ej

then

n+1
V4 A+

(3.7.8)

Thus the coefficients a(j) s b(j) and order n of (3. 7. 8) may be
nm’ ~nm

adjusted to satisfjr the boundary conditions of (3. 7. 6). Further,
solutions of different orders may be superposed for additional

generality., Examples of solutions using these two approaches are
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used in a later section for the computation of radiation fields.
More generally, the biharmonic "Galerkin vector" G pro-
vides general integrals of the equilibrium equations (Landau and

Lifschitz, 1959) given by

* _ 2. 1 .
u =VG - 5y VIV-G) (3. 7. 9)
where
vig =0 (3. 7. 10)

Thus, the first of the equations (3. 7. 6) is satisfied and the arbitrary
coefficients of G may be determined so as to satisfy the boundary
conditions in (3. 7. 6).

Solutions of the biharmonic equations (3. 7. 7) and (3, 7.10)
may be obtained by the methods of Chapter 2. Thus taking the

Cartesian component equations of (3. 7.10), for example, gives
vA(via,) =0

Thus, if F; is harmonic then VZFi = 0, and therefore if

G =- F. (3. 7. 11)

then Cri is biharmonic. But solutions of (3. 7.11) are

Gi(—r—) = Im .S SS Fi(r')(—%) dr! (3. 7.12)
¥

="l = |z -z
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b3 -
However, if u is to be of the order r 2 for large r, then from
the first term of (3, 7. 9) one sees that Fi must be a harmonic
function of at least the order r—z, hence an appropriate Fi function

for an application to the boundary value problem (3. 7. 6) is

1 2N (4) m
Fi =Z(-—r—) Z {anmcos mo + 6nms1n m¢} Pn (cos 6)
n=1 m=0
with Fi of this form (n = 1), the evaluation of (3.7.12) as given

in Chapter 2 gives for Gi(_g)

n-12 . .
Gi(_g) = 'liz (-il;) Z {a;llncos mo + ﬁgrllsin m¢} P:ln cos 0

n=l m=0 (3. 7.13)

This particular solution is therefore appropriate to the description
of the equilibrium field in a pre-stressed medium with a cavity. The
general solution is clearly obtained by adding to (3. 7.13) harmonic

functions corresponding to VZGi =0,

ke % 3%
Finally, the dilatation © = V- u and rotation = 12- VX _g*
are, from (3.7.9)
* .1 - 2¢ . 2
0 - )V (VoG)
(3. 7. 14)

And operating on these equations with the Laplacian Vz, and using

(3. 7.10), gives
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vZe*

1]
(o]

(3. 7. 15)

2 %

vie" =0

Thus both the dilatation and rotation are harmonic functions, This |
faqt will prove to be very useful in the evaluation of the associated
radiation field, as was previously indicated in Chapter 2.

Sternberg and Eubanks (1957) have shown that solutions of

the inhomogeneous equation
2 b 1 ES _
V™ +1—_—2—;V(VE)—0—Vf

are

2* = V(¢ +_£:o9> - 4(1-0)w (3. 7.16)

with ¢ and « given by

2 ' 2, ,1-2c
V@ =0 and V(b-a(———-———z(l_o_))f (3. 7.17)

Therefore in the present case f= 0, so that both ¢ and w are har-
mnonic, Thus general solutions are given by (3. 7.16) to the boundary
value problem posed in (3. 7. 6) in terms of harmonic functions ¢
and w. |

The alternate methods of solution given ahove will be used in
solving several static problems in the following sections. The method
used in a given case will depend on the geometry of the boundaries
within the medium,

Finally, since it is always possible to introduce displacement

potentials 3 and -*:.. such that
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¥ , *
ut =T+ U Xy

*® *
then, from (3,7.7) it may be seen that & and Yy may be taken te

be biharmonijc, so
Vi =0, Vi =0 (3. 7.18)

and the equations (3. 7. 6) may be satisfied by adjustment of the unde-
termined coefficients of these biharmonic functions. Thus these
potentials are analogous to the potentials & and Yy for the dynamic

case, but are biharmonic,

3.8, Radiation Energy from Elastic Relaxation Sources

As was previously noted, Knopoff (1958) has computed the
energy release due to the insertion of an infinite two-dimensional
traction free boundary in a prestrained medium. It was argued
therein that the difference between the elastic strain field before
and after insertion of the boundary must necessarily account for the
elastic energy radiated when the result indicated a net reduction of
strain energy and so long as the medium behaved elastically.

This basic argument will be extended and generalized to a
form applicable to the present dyhamical model of the source. Thus
regardless Qf the microscopic details of rupture formation, if the
initial and final equilibrium states of stress in the medium are such
that a net reduction of strain potential energy results from the
creation of a rupture, then the macroscopic rupture mechanism

will be viewed as a reasonable spontaneous process which is possible,
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even under the stringent conditions of ideal elastic behavior, without
the sudden application of external forces. A reduction of elastic
strain energy is then interpreted as the energy radiated seismically.
Such a result would be in contrast to that obtained for the macroscopic
dislocation models of rupture in prestrained media, where the forma-
tion of the dislocation would increase the potential energy of the
medium rather than lower it (Steketee, 1958),

Explicit consideration will be given to the growing rupture
model wherein the whole rupture zone is maintaine‘d in a shear free
state for a period of time long compared to the time interval of
rupturing. In this case a final shear free rupture volume is defined,
so that a calculation of the tﬁtal energy change in the region outside
this final volume can easily be made by utilizing the boundary con-
dition of zero traction. On the other hand, while the propagating
rupture model will define a region in which rupture has taken place,
the region is also essentially healed by the time this final zone is
defined. Hence, no boundary condition, except that of continuity, is
applicable to this region. Nevertheless, the energy of the radiation
field is derived from the change in the equilibrium field outside
this volume and may be obtained by integrating or adding up the
energy change at every external point just as with the previous model.
In either casé it will be shown that insertion of a shear free volume
element reduces the potential energy of the medium, so that on the

basis of potential energy considerations, both models are reasonable,

In view of the fact that relaxation is a local effect and that most of the
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energy is released at the "front" of the rupture zone, whether it is
represented by a growing or propagating shear free volume, then it
is reasonable to assume that both models will release essentially
the same total energy. Thus for the sake of convenience, the calcu-
lation of total energy released as radiation by either model will be
made on the basis of a growing rupture model with a well defined
final boundary condition of vanishing traction, and the energy value
obtained will be used as an order of magnitude estimate for
spontaneous rupture in general,

The generalization of the two-dimensional theory of energy
release to a three-dimensional form suitable both for computation
and interpretation requires a somewhat different mathematical
approach than was employed by Knopoff. The method is essentially
that used by Press and Archambeau {1962).

In terms of the field variables and relations expressed in
equations (3. 7.1) through (3. 7. 6), the change in the potential energy
of the medium after complete formation of the rupture volume is

defined by(l')

- wl0 w1 55‘ 3 <0) gg» (11; g)} (3. 8.1)

where Vo is the rupture region and Vl the region outside the rupture
volume as is indicated in Figure 6. From the previous formulation

of the equilibrium problem, it is seen that the region V1 is bounded

&) The usual modified tensor notation will be used, that is, the sum-
mation convention and the notation for differentiation, e.g.
ui}s Bui/axj etc.
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~internally by the rupture surface B, and that

(1) : o—gl.) n, = , r € B
ij
(3. 8. 2)
(i) uJ (.0) u‘” o( L) ez

On the other hand, an alternate pair of conditions may be utilized
in the present context, Thus the medium may be assumed to be

externally bounded by a free surface, S, so that

(i) O'S]:)nj =0 ; reB
(3. 8. 3)
(ii) O'S)nj =0 ; resS

Quite clearly this case corresponds to the problems of interest in

the present study at least as well as does the previous set,

The reciprocity thcorem of Betti and Rayleigh (Sokolnikoff,

1956, p. 390) states that

3955 o efares 1T o fer
v A%

Therefore, with o'J (?) - 0'( ,]>’ etc,

1STE 0 e - 301 i
o 1
S ¥
m ;

and the change in strain energy can be expressed as
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s A0S S0
§§§ De (3.8, 4)

o
The final two integrals may be transformed by noting that

3 ¥ % S * A
eoﬁ.Eu._.. - .. with ., = -l-(u. .-u. L)
ij i3] ij ij 21, ol
o:(.l)wfk. =0
1] 1

Thus, coupled with the identity

I SN N
1_] i,j ij i, i 15,3

and the equations of equilibrium

) =-F,
71j, ; i

then the final integrals become, after also applying the divergence

theorem

5 om0ty on s STt
1
gggFu ar
((ure®n aas| § { rufar

B

I

SV{S‘Y 0'(35) e;kj a7
(1)

Now since the surface tractions Uij nj vanish on the rupture
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.~ boundary B, then the surface integrals over B vanish. In addition
the surface integral over S, in the case of an infinite medium
approximation, where the conditions (3. 8. 2) hold, vanishes in the

limit as S recedes to infinity provided

I
o35 O(rp), p>0 (3. 8. 5)

or if the angular dependence of the integrand is such that the contri-

butions over the surface cancel for the terms of (T( ) which are not

-B

of the order r ", If the medium is bounded by a free surface, then
the vanishing of the surface integral over S is immediate, owing to

the second of the conditions in (3. 8. 3). Thus one has

STy I8 met
ngv%’e* m Ffer

and collecting results,

vt LS o A St oSSt e

The interpretation of this formal result is straightforward,

the first term is merely the change in the elastic strain energy within
the rupture zone and is positive definite, so that the energy is avail-
able for the formation of the rupture zone. However, this term

cannot be considered a realistic estimate of the energy change within
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. a rupture zone, since by definition the energy change in Vo is ac-
complished by nonlinear processes. Certainly then elastic stresses
0'_8:) and strains e( ) are not appropriate representations of the
residual deformed state of the material in this region. In the present
context, the elastic stresses and strains following rupture, should

be replaced by the corresponding plastic strains etc. within V .
Under these conditions, carrying out the transformation of (3.8.1)

only with respect to the elastic field in Vl, an alternate expression

for 6W  is obtained

[%ggg U(ﬁ)e(ﬁ)d_’r _ %Sgg (ry €5+ 2€) dT]
[o] o]
+_§H ol ar +§§5Fu ar (3.8.7)

with Tij and eij representing the non-elastic deformation within

VO and the term & denoting the energy required for recrystallization,
phase change or fraction, etc., accompanying the formation of a rup-
ture zone. Under the assumptions of the present rupture model,

the shear stresses associated with Tij are small compared to

P = 3 (Tt Tyt Tyg),

the fact that the initial elastic stress and strain are equilibrium

(0)

the hydrostatic pressure in Vo° In view of

values, then the diagonal terms of the tensor %4 must be such

that p = (0'(](:_)1) + (202’ + (O)) To first order thcn, the cncrgy

derived from the diagonal terms of the initial elastic energy density
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t.ensor -12'0'(;;) e(i(;) compensate the energy required for the plastic
deformation, Thus, when the shear stress energy of the initial field
is of the order of the energy &, the energy required for the non-
linear processes (including work done against the gravitational

forces), then rupture can occur. A necessary coandition for rupture

is therefore that

L 0‘(.0.) e(.o.) > L T,.€.. 1€
2 1] Tij 2 ijij
or approximately
1 2@ . i
zp (.Yij) =2 3 i# J (3¢ So 8)

where 'él'"p (y;)z represents the shear stress energy released at and
within the rupture zone for a unit volume of increase in the rupture,
while & is the energy required for a unit volume increase of the
rupture zone, and is associated with the mechanisms of the type
previously noted. Further, for propagation or growth of the rupture,

it is also necessary that (Sneddon, 1951; Griggs and Handin, 1960)
9 1 *,2
ﬁ .—é;; ('Yij) = 8} -.>_ O (39 80 9)

with T denofing the rupture volume. In view of the discussion cul-
minating in equation (3. 8. 8), it is concluded that most of the radiation
field arises from the shear stresses. In later applications then the
initial prestress will be taken as pure shear.

The second energy integral in (3. 8. 6) or (3. 8. 7),involving
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the €lastic field in Vl’ is necessarily positive definite and repre-
sents the strain energy reduction in the elastic zone. In the present
context, the integrand of this energy term is interpreted as the
energy density, w*, for the elastic stress relaxation mechanism
appropriate to the material points in the medium outside the rupture

zone, Thus one may take

whi=1 (0’(0)

5 (o) - cr(ilj))(e(i(;) - e(ilj)) (3. 8.10)
as the total energy radiated via elastic stress relaxation at a point,

The final integral in (3.8, 7) involves the bbdy forces, in-
cluding gravity and the tectonic forces. The term represents
either the total work done by these forces during rupture, in which
case the term is positive, or else it is the work done against the
forces and is negative. In either case its magnitude is likely to be
much smaller than either of the other terms, since the displacement
field u? is very localized (i. e., uf: O{-—l,—k ) with a = 2), and the
tectonic force field is probably non-zero ;nly in a very restricted
region reglatively far removed from the rupture zone. The effect
of gravity can be shown to be small in the elastic region.

Thus the term of significance for dynamical considerations
is the relaxation energy term and as an estimated lower bound on

the energy radiated during rupture, Er’ one has

£ = S‘S’S‘ w* dr = 1 S.gg o‘ik.eik. darT (3.8, 11)
r 2 i} 1]
Vl V1
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This value of the energy will be a lower bound since the volume
integration is taken over only the volume outside the final riupture
zone., Hence contributions arising from those points outside the
rupture zone during its growth, yet eventually within the final
rupture volume Vo’ arc cxcluded. Theoe contributions may not
be negligible if the final rupture volume is large., As an upper
bound on the total energy radiated, one may use the first term in
(3.8.7) for an estimate of the contributions to the field from this

source, Thus taking only the initial shear energy density terms

(0)(0)
1) 1)
assuming € in {(3.8.7) to be relatively small, then

%5556%'6"*' dr = E_= 'LS‘SS e’ ar +5§§Hef9)ef9) ar
B ro 2 R ij Tij
Vi v, v

(3.8.12)

2pe as an upper limit on the radiation energy available,

This relation provides an order of magnitude estimate of the energy
radiation of a tectonic source and will be applied to give theoretical
estimates.

The processes associated with anelastic creep phenomenon
resulting in delayed radiation effects are assumed to have characteris-
tic relaxation times at least in excess of the time interval of rupturing.
If, as was previously suggested, this known effect manifests itself
only in the observed aftershock phenomenon corresponding to a long
relaxation time, then no serious error in the estimate of the radiated

energy by purely elastic relaxation should occur.
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3.9. Dynamical Elastic Relaxation.

Having demonstrated the nature and existence of the solutions
for the equilibrium field, consider the dynamical equations for the

medium

oo azui
== - pf, =p
ij i 81:2

The static force term may be eliminated by defining a relative

dynamic stress and displacement

Tyl /1) = oytn t/m) - ol (@)

| 0
y;(x, t/7) = u(z, t/7) - ul )(_1;)
And in terms of these functions, the dynamical equations are simply

aTij azyi
: =p (3. 9. 2)
9x. 31:2

In vector form (3. 9. 2) becomes
2

(X + 20V (Ve y) -pVXVX_z=P—aL-2— b (3. 9. 3)
ot

Operating on this equation successively with the divergence and curl,

one obtains the two familiar wave equations

2
vze' —Lz" 9——2— =0
v ot
P
(3.9, 4)
2 1 82
V- = —2=0
v ot
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where © and {2 are the dynamic dilatation and rotation. In addition
the equilibrium values of these field variables satisfy Laplace's

equation and are therefore harmonic as was previously remarked in
2
Chapter 2. The acceleration field -(?-Z—X can be obtained in terms
ot
of © and §2 from the equations of motion (as in Chapter 2), since

from (3. 9. 3)

2 L 2ve- . 2yxQ
atzx—vp Vs

Thus the Fourier traneforms of y and these physical potentials are

related by

<
X
Eo}!

§=-—%V®+ (3. 9. 5)
k
P

"l
U.‘NN

The radiation field may also be described in terms of the usual

dynamic pote.ntials, so that

y(z, t/T) = Uz, t/7) +V X Y(z, t/T)

provided ¥ and Y are solutions of the wave equations

: 2
v ot
P
. (3. 9. 6)
2 1 9o
V- S5 4=0
- Vz 61:2—

The equilibrium values of these potentials have been shown to satisfy

the biharmonic equations (3. 7.18). Thus the radiation field due to
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the growth of a traction free boundary B(T) within the pre-strained
medium may be obtained in terms of either the dilatation or rotation,
in which case @*(_1;, 7) and Q_*(.E’ T) are harmonic functions
specifying the initial values, or in terms of the displacement poten-
tials, in which case the biharmonic functions ,&r*(_;_, 7) and E*(_l_', T)
are the initial values.

Due to the mathematical similarity of the two approaches to
the problem, generalized poteatials ¢(r, t/T) and x (z, t/T) will be

used, where

Oz, t/7) . R
d(r, t/T) = & (x,T) = *
Mz, t/7) N EN
e 2 (r, t/7) e Q™ (x,m)
x\r,t/7T} = x (z,t) =
g (r, t/7) $H(z, T

with &, é* etc. representing either dilatation or scaler displacement
potentials etc. Wherever these symbolic potentials are used, the
formulas will be valid for either set of field variables.

In Chapter 2 the radiation associated with the relaxation of the
elastic stresses due to the insertion of a traction free boundary was
computed. In view of the actual growth of propagation of a rupture
boundary at éome finite velocity, it is necessary to interpret that
result as the radiation due to the growth of an infinitesimal rupture
with a speed larger than the compressional wave velocity in the

medium. In such a case the rupture volume is effectively created
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instantaneously, since when the rupture velocity VR is larger
than the compressional velocity, the existence of the rupture is not
manifested until it has reached its final dimensions. Thereafter
relaxation at a given point in the medium will begin after a time
appropriate to the propagation of signal from the rupture surface
to the point in question. Taking the rupture element to be roughly

spherical, of radius 6R, and outside of the constant factors

SR 6R SR SR
v~ v, @ ot
R P R s

then the delay in the initiation of the relaxation at a point is r/v_,
for the dilatation or scaler potential and r/vS for the rotation or
vector potcntial, as was asserted in Chapter 2. Thus the arrival

of signal from the boundary, the signal itself being the result of
relaxation along the boundary and at intermediate surrounding points,
is taken to define a change in the potential field, an "initial value, "
which would reduce the field to a value in eqp.ilibrium with the entire
rupture. The actual dynamical relaxation of the potential will begin
at this time in a manner determined by this "initial value” and the
dynamical equations of motion., While this view of the process of
relaxation will be adopted throughout, only in the case in which the
rupture boundary is controlled by propagating shock front can the
instantaneous rupture model be directly utilized., Thus the results
previously obtained are applicable to tectonic energy release associ-

ated with shock induced rupture.
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On the other hand spontaneous rupture proceeds with a velocity
which is less than the shear wave velocity, so that the actual growth
or propagation of a rupture will affect the relaxation and therefore
the radiation field. In ordertoprovide for this anticipated complica-
tion it is only necessary to generalize, but slightly, the previous
formulation of the dynamical effects of elastic relaxation. This is
easily accomplished through use of the source time parameter T,

Thus let the total variation of the equilibrium potentials and
rupture boundary over the complete time interval of rupturing be
subdivided at source times Ty '7‘2, oeas Tk, 0eoy TN—l’ TN’ into equal,
infinitesimal time intervals 67T. Further let the change in the rup-
ture surface and the equilibrium potentials in these intervals be
represented by discrete jumps or steps, the total variation of the
potential or rupture dimension over any particular interval
oT = Tr+1™ Tk being accomplished in a single jump within the inter-

val, By consideration of an arbitrary source time T, and time

k
interval 0T, the radiation field resulting from a single discrete
(infinitesimal) change in the rupture boundary may be computed and
then superposition with proper time delays will give the effect of the
boundary growth, In addition, a continuous rupture growth can be
effected by a suitable limit of the superposition procedure.

Hence take the rupture boundary to be of finite size appropri-
ate to the rupture surface at some arbitrary time, Tk’ during its

propagation or growth. Then the radiation fitld associated with a

discrete change in the rupture boundary (and equilibrium potential
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fields) in a source time interval 6T is given in terms of the following

initial value problem

2 1 82
Ve (x, /7)) - i @(z,t/7]) = 0

_2 / 1 32
\% X'(E:t ) - ‘—X.(E,t/'T") =0
J k vi Btz J k
(3.9.7)

Lim [‘ID(_I_‘_,T'-E/T{() - @(E,‘T'i'e/?‘l'()] = ¢ (x,7,) - @ (z, T +o7)
€0 .

. " Yy L n Y PR -y X
?—Ln(; [Xj(_{:T E/'Tk) Xj(_r_’T +E/Tk)]—xj("];" Tk.) Xj(ﬁaTk+6T)

1 - . ! -
'rij(g, t/'rk)nj =0 ; reB(n), T <7 <T FOET=T 4
where the source time is restricted to the value Ti( and the initial
values for the dynamic potentials are given in terms of limits for

enerality, The "jumps" occurr at
g y J P

b3
t=7'=7!' +7, =7! + 8§/v 3.9.8
k 1 k j/p ( )

for &(r, t/'!'i(), with §{r,t) denoting the minimum distance from the
rupture surface to the point at which relaxation‘ occurs, Figure 7,

and at

ot ¥ L '
t._'r _Tk-I-rrz-'rk-I-VS (3. 9. 9)

for Xj(_l:, t/T{{).. Here again the causality relationship between the

rupture and the relaxation of the elastic field is accounted for by
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1

the rupture dimensions as well as on r, the coordinates of the point,

delay times T, and T:, The minimal distance { will depend on the
An essential difference between the growing or expanding rupture
model and a propagating rupture will be in the evaluation of this
minimal distance, to be taken up in the following section.

The solution of the problem posed in (3, 9. 7) may be obtained
through use of the Fourier transform with respect to the real time

variable t. Thus, applying the transform

+oo . . -
${<I>} 1 5 Be I g - ®(r, w/T) (3. 9. 10)
W 2m Y-o

to the equations of (3, 9. 7) and taking into account the discontinuities

of & and xj, yields

- . . . L
V2 &(r, why) k] Bz, o/r) - —LZ‘*-’; (;12-)5@ (r,me ™ =0
1Y

~ 2~ : 1 * - 'T"
vzxj(_r_,w/r;{) Flgx (e /) - 558z e T

.\/Zw v2

3

= 0 (30 90 11)

"~ ' _ .
'rij(_{, co/’l"k)nj =0 ; r € B(1)

with
kp = co/vp s kS = u)/vs
and where the discontinuities in the equilibrium fields are denoted by

6¢I>*(£, 'rl'() = <I)*(_1:, 'rk) - <b*(_1'-_,'r +6T)

k
(3.9.12)

* - ok
GXJ (_E: Tk) - X.J (_£s Tk) XJ (_:E’ Tk+ GT)
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Particular solutions of {3, 9.11) corresponding to the source
radiation, or "primary field," are obtained from the Kirchoff
solution of the inhomogeneous Helmholtz equation (e, g. Chapter 2,
eqs. (2.2.22) and (2. 2.28) ). Thus, with R®(T) denoting the region
outside the boundary B(T), as indicated in Figure 7, one has for

~

$, and analogously for ;(j, i=1,2,3,

e 3
~ S 1) 1 6& (', T!) -ik _(r +v_T")
‘I>(5_,w/‘rk) = . 2 ( — )S‘§S - k e . P P dﬁ’
Vp ~ R(T) r

%
with r =1 - r'. This may be regarded as a formal solution of
the hypothetical problem previously posed. By summing the contri-

butions from a succession of such problems, each with a different

k

dimensions, it is clearly possible to generalize to the case of either

value for the parameter 7] corresponding to different boundary

a propagating or an expanding rupture. The superposition may be
best accomplished by first transforming (3. 9.13) back to the real
time domain., First defining a generalized delta function, ﬁn(t), in

terms of its Fourier transform by

a}

: +00 .
(211')1/ ZY 6n(t)e'1“’" dt = (iw) (3. 9.14)

=00

where it may also be observed that, formally

(n)
=4

and then applying the inverse transform F1 o (3.9 13),yields
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5 (x', 7!) 0
B(r,t/7]) = - — 55‘5 S (- - ) ar' (3.9.15)

4-rrvP (1) r D
and analogoﬁ'sly
) >k
X’-(_:E: t/T-L_) = S‘S’S. "—‘1——""‘—‘ 5 (t- — 'T") dr!
Vs R(T) Vs

(3.9.16)

Comparing these integral solutions to those for a medium with
external sources of energy, it is seen that a source term
- (/v 2)6<I>*(r 7"1’{)6 (t-7') in an unstrained medium gives a result
equivalent to (3. 9.15) and a source term - (l/v )6)( (r, 6 (t T
a result equivalent to (3, 9.16). If the potentials (ID and Xj are
taken to represent the dilatation and rotation, for example, then the

equivalent inhomogeneous equations are, for r € R,

2 1 1 32 1 1 * . .
v ot v
p P
5 5

The source term. for the dilatation,for example, can be interpreted

4

as delivering an impulse at a time t = 'ri( + -2 which develops for a
P

short time until the required initial displacement is achieved., At this

time a second impulse is applied to reduce the velocity to zero but

leave the displacement unchanged. The source term has the explicit

form described if it is written as
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50 (x, T8 (t-7") =5 lim [59*{ 5(‘:"‘"'+€)’5(t'7"€)}]

e—0 2€

"U<N| =
*d<w|"'

The foregoing therefore describes a means of simulating the relaxa-
tion effect in the medium surrounding a rupture by means of a
voiume distribution of equivalent sources. The time dependence is
seen to be a doublet impulse for both the dilatation and rotation, but
that the action of these two distortional processes beginsat different
times, determined by the shear and compressionai velocities of the
medium. Furthermore both the magnitude and time at which the
source is activated depends on the distance and angular location: of
the point relative to the rupfureo

It is instructive to consider the nature of the distribution of
equivalent sources onthe rupture surface that would give a radiation
field at least similar to that of the relaxation field. A reduction to
surface sources canbemade by direct modification of the results
(3. 9.15) and (3. 9.16). Thus taking the potentials <I>* and x;: to be
the dilatation ©  and rotation Q;k, noting that

60 = Ve su", 69 = lzv X 60

then the integrands of (3,9,15) and (3. 9.16) may be written as
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; &, (t- — - ) 5. (t- =— - 7
* * _ J 1V v 1V v Z
ECEE =v~{aﬁ( : )}- (——)
T

r

% %
; - pn X
SN ¥ . 6, (t v, ") 5, (t 7 ™) .
1"y _ "
— 5t~ I - 7") =VUx<bu ( S ) V(—-———*———)XSE
T S r T

Thus the solutions for this elementary relaxation source may be put

in the form
*

-7y
b
O(zx, t/‘T ) = - -———Sg fu » n ds!

™p B(T)
o) (t — -
Sk
) « Su dr'
RAT) %*
N SN
. al(t - 'z'k) .
Q(zx, t/”'l,{) = - 3 S.Sl *S Su Xn ds
81mv B(7) r
X
8y (t- = - ")
* 125§5v< = )Xﬁg*d_r_'
81rvS alt) T

The final volume integrals in these expressions are of the same
order as the surface integrals and therefore they cannot be neglected.
They may be reduced to surface integrals through use of the mean
value theorem. In particular the region may be divided into sectors
such that in each, the functions V{ﬁ (t-(r /vp— ™) /r }and

V{S (t-(x /v )- 'r“)/r } are of constant sign. Applying the mean
value theorem to each separate integral so formed, one has for

example



-152-

b

5.t - — - T

5535‘7( 1 r:p ' )’yﬁg*ds'z
Zﬁu G- (00 ( *p l)>d£,

R (7)

b
5. (t - — - T1)

o 1 v k -
258 ( 7 )5%"3 as
N Ir

J BJ-(T)

~ * -~
where 6_1_1j = 6u (I-j’ 'Tl’<) is a value of the increment in the equilibrium
field within the volume sector ﬁ?,:.r(‘T), evaluated at a point r, such

that, with R the radial coordinate of the rupture surface,

5=
A similar evaluation applievs to the volume integral for the rotation,
where however the partitioning of the volume &{7T) is different and
s0 is the increment in the equilibrium field, GEJ. » corresponding to

~

‘3Ej° The solutions in terms of surface integrals are therefore

*
8 (6 ‘v" T L
O(z, t/Tl'() = Z SIS‘ (6u - 6Ej) » nds
p j B ('r)
>:=
- T{{)
2 e/ - - 5 > ﬁ (8u*- 63 X dx
Vs i B (T)

E J—
These representations show that sources (6u —SEj) * né/(t-7) and
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(51_1* - 6_—131) Xnb(t - _’T{() for the two poentials, distributed along the
rupture surface, will give rise to a radiation field equivalent to the
volume relaxation field, the dilatational field being generated by

a displacement in the direction of the normal to the rupture and
rotalion by a displacement along the rupture surface. Due to the
presence of the factors 6§j and 61__11, it is:clear that the radiation
field is not determined solely by the actual physical displacements
on the rupture surface, as is implied by dislocation theory, Further,
the displacements 6_1_~1J. and 6—2-1 are functions of the source time so
that as the rupture propagates or grows, these factors will also
change, and values of the equilibrium displacement field throughout
the volume surrounding the rupture will be involved in the equivalent
surface source, Thus the equivalent displacements on the rupture
surface will bear little relationship to the actual physical displace-
ments on this surface and are in fact intimately connected with the
details of the relaxation field surrounding the rupture.

Returning to the fundamental solutions (3.9.15) and (3. 9.16),
some minor amplifications of the form of these solutions are
desirable. Tzrcating only thc scalcr potential ® explicitly, thc samec
comments being equally valid for each of the components of the

vector potential, equation (3.9.15) may be written as

oo 5(19*(1:’,7") * :
B(r, t/m}) = - J—zgg ae —— 5 (e-'- 2 )rr?
4y RQ,t) ¢ p

(3. 9.19)
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where R(Q, T) is the radial coordinate from the origin of the coordi-
nates to B(T), while df2 denotes the solid angle subtended by an
element of a spherical surface of radius r'. Figure 7 shows the
relationships of these variables to the rupture surface and to each
other, If the rupture surface B(T) is not spherical for all T,

then R is a function of both T and £ as indicated.

3.10, Rupture Propagation and Growth Effects

First consider a growing rupture model and take the rupture
surface to be, in general, ellipsoidal, for any source time T,
with axes a, b, c. Let the time when the rupture reaches its final
dimensions be denoted by To° The effect of the growth of the rupture
at an arbitrary point of observation is a superposition of the contri-
butions to the radiation from each increment of growth in the
boundary, that is a superposition of elementary solutions of the form
obtained in section 3. 9. These increments where taken to be finite,
but arbitrarily small, so that if the time interval of rupturing,
T=0 to T = L is divided into N intervals 67 and if ®(r,t) and
xj(z, t) are the composite fields due to the rupture at any time t,

then the indicated superposition is given by

. N
&(r,t) = Lim 5 @(E,t/’Tl'{) ; Xj(f.’t) = Lim Z Xj(_g,t/‘Tl'()
N=c0 7, N~ 0 ‘
50 &0

Here the summations are implicitly limited to a source time interval

T e Thie dependence can be made explicit. That is, using the
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results of the form given by (3. 9. 20}, one has for example

B(z,1) = - ( 12> Lim

47v N

ST—0 k=1
£
gt T
o Sé*(_l_'_',Tl'() 61(1:'1‘!’ v ) 5
X S‘S dSZS 5T o P 1% qgr'| o7
R(Q, T) T

and in the limit the summation can be written as an integral over the

source time, which gives

1 t
O(r,t) = -( 2) 5 S('r—'ro) ‘
4v 0 %
p T N
o, (t-7"- —)

*

o'} 2® (r',T!) v

xg‘g 9 ( - k> —L—r'%drtar
R(22, T) T

(3,10, 2)

where S('r-'ro) is a step function defining the duration of rupturing,

1, 0=717=T1T
S(t-T,) = ©

0, otherwise

and

=T+ 2
v
P

Here 8® /8T denotes the partial derivative of ® with respect to
the source time. The solution (3.10, 2) represents a complete formal
solution for the growing rupture, and in fact applies to the propagating

rupture model as well, The evaluation of this integral, and those of
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similar form for xj(g, t), may be effected after taking advantage of
the special properties of spontaneous rupturing, that is, after intro-
ducing simplifications based on the particular models of rupture
adopted in this study.

In particular, the radial factor R(Q2,T) was originally intro-
duced into the integrations for the primary radiation field in order
to exclude the non-linear rupture zone, Considering a growing

rupture, taking the ellipsoidal parameters to be of the form

alt) = vR'r

b(T) = (bo/ao)vR'T (3.10, 3)
c{T) = (CD/aO)VR‘T

where a, > bo > c(') are the final dimensions of the rupture, then it
is reasonable to assume, on physical grounds, that the "width" c
of this region will be much smaller than the "length" a, That is,
in view of the likelihood of high stress concentration in a long
narrow zone by the mechanisms of creep, resulting in phasc changec

or melting within the zone, then it follows that for such a mechanism
c << a
o o

(3.10. 4)

and that the volume of melting and plastic deformation is very small

compared to the total volume contributing to the radiation field.
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Thus if the radial factor R(2,T) appearing in (3.10.2) is
neglected, that is set equal to zero, then this is clearly equivalent
to assuming c = 0, While there is little doubt that a non-linear
zone of some thickness will appear during rupture, it could be
argued that recrystallization of the melt along the contact with the
crystalline surrounding material would rapidly reduce the thickness
to a rather thin zone, much as is assumed for the propagating
rupture, yet not with the same complete and rapid solidification as
is proposed in this latter case.

Thus simplifying the formal solution by setting ®(82, T)
to zero and therehy adopting the physical assumptions stated above,
one can rewrite (3.10,2) in the form

t * o1 K
B(r, t) = _( 1 )SXS‘(.;{E) ar’ 505(7-70)(5’% )61(1:-7'- Sy ar

2
4
T, P

Observing that

A&
L+r - d

\4 ) = dt b(t--
P

%
{+r
=)

51(1:-'1‘—
p
then the integral over the surface time parameter T becomes

t * ' * t * %
. fﬁ’_>_d I =4 - L VT 4
SOS(T 70)( 5 13t 6(t-T Vp ) dT = T OS(‘T 'ro)( 5T )’5(1; T Vp ) d7

¥ %
- s(t-ro)(ag.r_) 5( Q%)ff_)

T=t

If the point of observation at r is never on the rupture boundary,
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then the last term of this expression will vanish due to the delta

function, Therefore

B(z, t) = —( : )S'SS (-;1;‘) dr’

4v
t * *
,jd _ 8d o Ltr
x{dt fos(T To) ('?a"F ) 8(t-T v

2
p

) dv} (3.10, 5)

and likewise

X5z t) =-( L QSXX(;%) dr'

4mv

s

t By * %
d L+r
X aTgOS(T—TU)(_é?‘J ) 6(t—T- T— ) dq} (30 100 6)

provided, in both cases that

r ¢ B(7)

An important common characteristic of both the propagating
and expanding ruptures is that the elemental field solution is applicable
to both models, Therefore the field potential (3,10, 2} is appropriate
for cithecr model. If the propagating rupture is taken to be represented
geometrically by an ellipsoidal region which both grows, that is
changes dimension with time, and translates in some direction with
time as in Figure 10b, then, under the same conditions on the
dimensions of this ellipsoid as were assumed for the growing ellipsoid,
the radial factor R{R, T) may be neglected in the integrations. The

results given by (3.10.5) and (3.10. 6) will then follow.
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On the ot_her hand, suppose the propagating rupture zone
is represented by a translating and dimensionally time variable
sphere as in Figure 10a, In view of the relative simplicity of the
calculations of the equilibrium fields, <I>"'"’€, x;k , for a spherical
rupture, such a model has merit if only because of this simplicity
and since it would be expected that the changes in the stress field
surrounding such a spherical rupture at any time would not differ
appreciably from those in the vicinity of a comparable propagating
ellipsoidal rupture. Aside from these considerations, it is con-
ceivable that a melt zone, for example, might well be roughly
spherical,

In any event, adoption of such a model in itself prevents the
use of the previous arguments for the simplification of (3,10, 2),
That is, it is not possible nor logically consistent to consider the
thickness of the rupture zone to be small compared to the other
dimensions in view of the very nature of the model. While such a
contention has a reasonable physical basis for a description of
natural rupture, it is by no means a certainty. Thus, by considering
a propagating spherical rupture, it is possible to relax the condition
that the rupture zone be narrow, as well as to drop the condition
that the boundary condition be well defined over the total interval of
rupturing and at all points on the rupture envelope.

At the moment however it is difficult to delete the contributions
to the field from within the spherical rupture zone except in the very

formal manner indicated by the results (3.10. 2). Nevertheless the
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expression of the_z field indicated by (3.10, 2) must be simplified and
made more explicit if the integrals in this expression are to be
evaluated and the results used to compute the excitation of the
medium. The issue may be sidestepped momentarily by including
the contributions to the field from within the spherical rupture region
|z'| = R(Q, 7). If this is done the procedures leading to the results
(3.10, 5) and (3.10, 6) are valid and the simplification of the expres-
sions for the field is thereby accomplished. In order to then recover
the contributions from within the propagating rupture zone and
exclude them from the final field representation, the integral solutions
in (3,10, 5) and (3,10, 6) must be secparated into tcrms which rcprcscnt
the field contributions from specific regions within and without the
rupture zone. This procedure will be adopted and eventually carried
out in final detail in section 3.12 for this model. For the moment the
results (3.10.5) and (3.10. 6) will be taken to represent the field

from this model with the provision of later modification along the
lines indicated.

In addition to the effects of rupture expansion or propagation
on the delay factor .§, the equilibrium fields fb* and Xj* will
clearly depend upon the nature of the rupture formation. Indeed the
effects of rupture growth or propagation will manifest themselves
primarily in the variation of the equilibrium fields with respect to the
source time., Thus, proceeding with this most direct effect first,
let the generalized potentials ﬂé* and x;‘ be taken to be the dilatation

*
oF and rotation QJ respectively, ILet O" be the origin of a coordi-
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nate system centered at the point of intersection of the rupture
ellipsoid axes or at the center of a spherical rupture at any source
time T, with the coordinate axis xg taken in the direction of the
major axis, or in the direction of rupture propagation, as shown in
Figure 8. Such a coordinate system therefore will more or translate

with the rupture. At any source time 7T the equilibrium potentials,

when expressed in this translating system, are

9 n ) "
@*(5", T) = n:z, (;:—,,)n”’éo [l U (T) COS M+ B, (2} Sin m¢} F (coss)
(3.10. 7)

bk o2 G ; . m
9;‘(3",7) -2 {;’;-,,)n z {Y"[m)h:') cosme”+ g:‘:(r) Smm«#} R, (cos g)
n=! m=p

in view of the results given by (3. 7.15). That is, both o* and Q:
are harmonic and are taken to be of order (r")_(1 with a = 2, so
that the displacement field uﬂ< is at least O(r"_z), as is required
by the houndary conditions on the equilibrinm field, (equations
(3. 7.6) )« Here the dependence of the coefficients @ Toee etc,
on the source time T is through the dependence of the rupture
dimensions on the source time and not through the dependence of
the rupture position on T,

This latter effect is obtained by expressing the potentials in
terms of a fixed coordinate system., Thus choosing a fixed system
with origin at O', the point of initial rupture, taking the coordinate

axis XE)’ coincident with the axis X; of the translaling syslem and
letting
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d(T) represent the physical separation of the origins, as in Figure 8,

one has immediately from Appendix 3

ko . ’ = $ (n-m +$)!
Z (+) " ’Z i wml(TlCOS mo' +8 () Smm¢}sz_a<‘” ST (n-m)]

ms=o

(‘9""’) > (cosel)  dm<r

oF - o , (3.10. 8)
Z' (-;)’“”( (T)) Z {oem(ﬂ cosmo'+ g () Sin md:'}
m=Q
m+$s (n.pm-rs)! r )m+s m " >R’
xsZom) s s Pty (cose’) ; A
oo n
A (——,‘;)"“Z { v5) (z) cos mp'+ s, " iz) Sin m¢} 2(—\)
n=} m=o Sz 0
(n-mes)! 2z) Cose
ST (n-m)y] ( ) nq-g( ) &(t)(ﬂ.
QF-

= on i nel n ) (3’ 10. 9)
) zeGm) & {Yom(@ COS Mg+ 5 )y sin m '

n=|

= ’ m+s
Z mes (nemes)] = P™ (cose') x>

-1

sto( ) (2m+s)! (n-m)! (&(r)) mes

These solutions for the equilibrium "potentials" are now in
the form appropriate for the description of the equilibrium field in
the vicinity of any kind of growing or propagating rupture. The only
unspecified factors are the "multipole coefficients™ qnm('r) cso etce
and the rupture translation factor d(7). This latter function depends
on the model of rupture used, that is, it is determined by the choice
of model. The rupture models indicated in Figures 9 and 10 provide

values for the various models of interest.

In practice the "multipole coefficients" are obtained by
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solving for the equilibrium field at an arbitrary, fixed, source time
T in the translating coordinates by the methods outlined in section 3.
In this situation the solutions will be parametric functions of the
ellipsoidal axes a, b, c, which are appropriate to a rupture of
arbitrary dimensions with a geometrical shape determined by their
relative magnitudes. Thus replacement of these dimension param--
eters by appropriate functions of the source time T, determined by
the model, will give the equilibrium field potentials appropriate to
an expanding rupture at any instant, in the form (3.10. 7). This
procedure is carried out for several models in later sections.
Finally, in order to proceed with the evaluation of the
potentials given by (3.10. 5) and (3.10. 6), it is necessary to devote
some attention to the explicit form of the delay factor, ¢(T), for
particular models of rupture. After a little consideration of the
geometrical relationships indicated in Figures 9 and 10 it is clear
that the precise value of { is a rather complicated function of the
source time T, through the geometrical dependence on the rupture
dimensions and position, and the coordinates of the source point at
To An approximation for the expanding ruplure models represented
in Figure 9 can however be obtained without much difficulty. Thus

referring to the diagram in Figure 9, it is seen that
2 2 2 I
(RQ}™ = (0Q)™ + (OR)” - 2(OQ)}{OR) ces 0

To a good approximation, for the minor axis ¢<< b < a,
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RQ=2{(r) + (b sin 8' sin®') sin 6' sin ¢'

OR a (d + a cos 6')

and by definition

Thus, for rather small values of 8', utilizing the fact that most of
the energy is released from the region near the rupture, particularly

near either end, then
(RQ)?% =~ (0Q - OR cos 012
Therefore
(1) ~ |r' - d cos 8" - a cos0'| - b sin®0' sinZd' (3.10.10)

For the bilateral and unilateral ruptures of Figure 9, uniform

growth or expansion is assumed and consequently

dO a'O bO )
d =(———-———a Td ) VRT , a -:( a—-——_——‘f‘d )VRT, b =( -g— VR'I‘
(o] o] o] o v ]
(3.10.11)

where ags b0 are the final rupture axes, again the minor axis <,
is assumed to be small, and d0 is the final value of the translation
parameter, When dO =ag these equations represent unilateral
rupture, as is illustrated in Figure 3a. If do = 0, then the ruptufe
is equilateral and the equations (3.10.8) and (3.10. 9) reduce to those

of (3.10. 7), while the delay factor (T} likewise simplifies somewhat.
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To a further approximation (3.10.10) will be modified so as to
* *
give a representation compatible with those for © and QJ. in

the equations (3.10. 8) and (3.10.9), that is

L{t) 2 r' - VR ( a_fd )cosZG' +( i% )cos o'
_ a57% 2579

b
+(__c_)) sinze' sin2<l>' T
aO
and with
ao 2 do
I'l(ﬁ',¢') =< ) )cos o' +(a e )cos g’
2% o o
b 2 2
+(—9 sin” ' sin“¢' (3.10.12a)
a‘0
then
6(r) = r' - vp T (67, ¢) 7T (3.10.12b)

This expression most accurately approximates the minimum distance
to the rupture in the regions near either end of the rupture. That is
near the points (0,0, a+d) and (0,0,d-a) in Figure 9, Since most
of the energy is released near these points during the course of
rupture, it is desirable that such agreement be achieved. At those
points where the api)roxirnation is not very accurate, the energy
release is, fortunately, relatively small.

The choice of rupture dimension parameters is such that the
front of the rupture is extended with a rupture velocity VR’ which
is constant. This condition is used for all the rupture models. The
expanding ellipsoidal rupture models will be denoted by the model

index M =1, while the propagating ruptures of Figure 10 are denoted
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by M = 2, for the spherical rupture, and M =3 for the ellipsoidal
case.

Precisely the same procedures leading to (3.10.10) may be
applied to the propagating rupture models. Subsequent approxima-
tions are, however, best deduced by first choosing the gencral form
of the (approximate) result desired. In view of the previous result,

it is natural to require
~ 7l - 1 ! '
Lty r' - vpT (8", ¢")T (3.10.13)

in all cases, with Fm (m =1, 2,3) appropriate to the particular
model in question, The value of this approach arises from the fact
that it is possible to deduce the effect of T’ , the only "free
parameter" in (3.10,13), on the radiation field. With this additional
knowledge, the approximations for the propagating rupture can be
made under criteria which are known to improve the validity and
simplicity of the final result for the radiation field.

Thus adopting this approximation for the delay factor the

potentials (3,10, 5) and (3.10, 6) are of the form

© 2E"
®(r,t) = —47,.v SSS {%:SS(Z'—T,,) I g(t-(a—\{/&;rm)r

- J'L-PI'L )CQT}

Setting
ok

r**=r*+r' t#‘:—l--[t-r ]
M \
P

T]m(e', ¢l) =1- (VR/VP)Tm (3,10, 14)
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and making use of the delta function, gives

0B
B(r,t) = -47'7.%2 Sjj (—ﬁﬁ){%[s&ﬁ“q)(;—g)ﬁt*ﬂ A (3.10.15)

From this expression it is cloar that if t:; > 7, orif t; <0, then
the contribution to the field, given by <I>., will at such times, be
zero. Thus, from (3.10.14), when t < r**/vp, then the field is
zero, in that the effect has not yet reached the point of observation.
It is worth noting that the radiation from an arbitrary source point

E',does not contribute to the radiation field observed at any point

=

until after a time appropriate to the propagation of a disturbance
from the origin, or point of. initial rupture, to r'. Then, in
addition to this delay there is the usual delay in the propagation
from r' to the point of observation at r. The extra delay factor
is clearly due to the causality relationship between the relaxation
at the source point r' and the rupture surface.

In addition to this rather obvious causality effect, it is
apparent that the growth and/or propagation of the rupture surface
affecte the field through the precscnce of the angular factor nm(e’,¢ "
in the definition for t:., In particular, if 'r]m is negative for some
values of 8' and ¢', then such points will contribute to the observed
field when t < r**/vp, which is of course physically impossible in
view of the preceding interpretation of the time r**/vp, It is clear
then, that in the approximation of ¢{ by (3.10,13), that Pm(e',¢')

must be such that
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v
n, (8% ") =1 —(;—E)I‘m(e', $') = 0, for all 0',¢'  (3.10.16)

: *
If m_ =0, for some values of 0',¢', then t. >T_ or t <0 at any
m . P (o) P

ek
time t# r /vp, and all such source points will not contribute to
deske
the field, except (possibly) at the time t = r ¢ /vp. Ordinarily then,

it would be expected that

-
n,(84he" =1 —(;—S >I‘m(e_',c|>')> 0 for all ©',9'

Indeed from the previous considerations of the growing or expanding

ellipsoidal rupture model, it may be verified that

20 2 d5 Po\ 2., 2
l"l(e’, ¢I) = m cos“@' + 5 +d cos 0' + E_ sin G'Sin ¢"
(0] 0 (o] (o]

o]

is such that

. v v
n, (8%, ¢ =1 - ;,—f (6", ¢") >1 -V—: >0

so long as b < a_ and under the assumption that v, <v_<v_,

o] o] R s P
Consequently, for this model, it may be shown that every point
contributes to the radiation field over the total time interval of
rupturing.

Consider then the model described as a propagating spherical
rupture, schematically represented in Figure 10a. Proceeding with

the evaluation of { along the same lines as for the growing rupture

models
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(RQ)Z- = (OQ)2 + (OR)2 - 2(OQ)(OR)cos 6'~~ (OQ-OR cos e')2
where
RQ = 4(7) + R(T)
OR = d(T)
oQ = r'
so that
t(r) = |r' - d(7) cos 8'| - R(T) (3,10.17)

In the case illustrated, the rupture parameters R{T) and d(T) are
chosen so that the envelope of the propagating rupture is an ellipsoid.
Therefore R(T) is chosen so that it is zeroat T7=0 and T = To

and has a maximum value at 70/2 of bo,, Since

2a
0
To ™ %2
R
then
b0 vRT
R(‘T') = '5:; (2 - —é;- > VR'T (3» 10, 18)

with a, and b0 being the major and minor axes of the final ellipsoid
envelope. If the rupture "front" is constrained to propagate with a

constant velocity VR then d(T) turns out to be given by

b VR'T
dir) = |1 - 3-‘-’ (z - - ) vRT (3.10.19)
. o [e]

As with the ellipsoidal model, the absolute value in (3.10.18) will be

ignored, so'that when r' < d(T) cos 8', then the value of {(T) will
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be in error. However within this region the contributions to the
radiation field would normally be expected to be small compared to
those from r'> d(T) cos 6'. In addition such a modification of
(3.10.18) tends to delay these contributions more than normal and
therefore to enhance the poseibility of excluding the contributione
from within that part of this region which corresponds to the rupture
zone., Figure 11 shows the region r' < d(7T) cos 08' for the spherical
rupture and the equivalent region r' < a(T) cosze' +d(T) cos 8' for
the ellipsoidal ruptures, relative to the rupture zones appropriate
to the models.

Thus dropping the absolute value in (3.10.17) and substituting

(3.10,18) and (3.10.19) into the resulting representation of {(T) gives

T b
or) >~ r' - vR{cos o' + (2 - Vf ) 32 (1 - cos 9')} T

O O

If the average value of (2 - v 'T/ao) is used, which is adequate

R

for the present approximation since the formula need only be highly

accurate when (bo/ao)(l - cos 0') is small, then

b
(r) ~ r' - vR{cos g' + %(-59) (1 - cos 9')}1‘ (3.10, 20)
o

Thus n, is given by
VR ’
1 1y _ 1 i
n,(0%¢7) =1 —-—vp I',(6', 9" (3.10, 21a)

with

[on

a
o)

T,(6%,¢") = {cos o' + %(-—9) (1 - cos e'} (3.10, 21b)
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Figure 12a shows the numerical value of the factor n, asa function
of ©' for a representative choice of Bos 2y vp and VR In all
cases it may be shown that 1]2(6', oY) > 0.

Finally, for the propagating ellipsoidal rupture, one has by
the approach leading to (3.10.10), that same result, which is, after

dropping the absolute value as before
] ' 2 ' k3 2 ‘ - 2
Lry= r'-{dcos 8" +acos™8" +b sin"9' sin ¢}

By the same reasoning which led to the expressions for the spherical

rupture parameters

O
bo VT
b(T) = 'é_ <2 - T)VRT (3c ].O. 22)
o] o]
v, T
_ R
d(T) = 1—ao( -——O—)VRT

Again N and bo represent the final rupture envelope axes. The
constant a determines the maximum length of the major axis of
the propagating rupture during the period of rupturing, T, = Zao/vR°
Since this is chosen to occur at T = TO/Z for the model of Figure

10b, then

a('ro/Z) =a_a_ (3.10. 23)

Following the approximation procedures leading to (3.10. 20) for

the propagating spherical rupture, one has
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VR
1’13(9',4) ') = 1- (Tp > I’3(9',¢')
(3.10. 24)

1" (0, o") -{ (1- —3— a_)cos 8! +-3Z[a0cosze’

o]

b
+ = sin2 e'sin2¢>'] }

o}
Numerical values of the angular delay factors 'r]1 and yPp for
special representative ranges of the angular variables and rupture
parameters are shown in Figures 12b Lu 124,

Solutions of the form given by equation (3.10.15) are there-
fore appropriate to all the source models introduced. A treatment
of the potentials in the frequency domain however, considerably
simplifies the evaluation of the spatial integrals, as well as the
interpretation and application of the results, Thus taking the

Fourier transform of (3.10.15) gives

S - 33 [ o ] {B),_ e 2527

s
The Fourier integral may be transformed to an integral over tIS,
since from (3.10,14)

Hk
r

v
P p

t=m_ ¢¥

Thus, introdlicing this relationship gives

Bz o = sy ﬁf(n* )&!—L):S (ét,,) Sty N D2
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*
Since 1:p now appears only as a dummy variable, there is no longer
any need to retain any special notation for this symbol and it may

be replaced by a time factor T. Finally, then

B(r, ) ‘41rv SSS Lf Y dre {Y].,, a§ it aQZ'}

(3,10, 25)

If xj(r_, t} is considered, the same procedures as were used in
deriving (3,10, 25) from (3,10, 5) are valid throughout and one need
only replace vp wherever it appears by Vo Introducing an angular

delay factor

Em(e',«i:') corresponding to nm(e',¢') and obtained

by replacing Vp by vy in Ny One has then, the results

-ideg [kl
.o. AX -iW§,T
= v L T

(3.10, 26)

§m=Lim M,; m=123

vV
P S

3,11, Primary Field Potentials for Natural Tectonic Sources:

Expanding Ellipsoidal Rupture

As was previously asserted, two physically distinct types of
tectonic source are of interest in the present study. They are those
due to naturally induced rupture, or faulting, and those associated
with explosive sources in a pre-strained medium, Of these two

processes resulting in the release of tectonic energy, that associated
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with natural rupture is the more difficult to describe analytically
since the process involves growth or propagation of the rupture
surface in a nonsymmetrical manner with a velocity which is less
than either of the two velocities of wave propagation in the medium,
Nevertheless an analytical formulation appropriate to the description
of the radiation field from such a source was obtained in the
previous section and can be used to give explicit expression to the
radiation properties of a natural tectonic source. As an extension
of the results of the previous section, the expression of the radiation
field from fault sources will be considered. In a following section
the expressions for the tectonic radiation asscciated with an exploesion
in prestrained media will be obtained.

In order to describe the direct or "primary" field from a
fault source by means of any one of the specific models introduced,
it is simplest to take for the potentials in (3.10, 26) and (3,10, 27),

the dilatation é(l)(z, w) and rotation ﬁgl) (r, w)s (1) Thus

~i T ® _;
é(l)(ﬁ, W) = 477‘\/? 555( dep T on ﬁ?mgo %% 2 wqmthT}

(3.11.1)
LW Jix_fe I‘L*"' c)ﬂ* -'u)';"l.'
5(1 - = ¢82Sm
Q(J')(E’ w) = 4—7TV$"§SS ( ¥ {?mg = AT

* %
In this case the "initial value" functions © and Qj are given by

(3.10, 8) and (3.10.9).

(l)Alternately, the scalar and vector potentials, ¢ and Y could be
used,as was pointed out in section 3. 7.
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Consider first the expanding ellipsoidal rupture models.
Propagating ruptures will be considered in the next section. In the

case of an expanding rupture, M =1, so

d, 3,74,
AT \gFa- /YRT* "o~ %
o o
and the:equilibrium field is given by

0, (', 1) ; r'> —-do— T or T<a°+d° xl
. 1T TN TR )R v |
@m(_x:',‘r) - 0o o© R o]

@* o - ' do. . ao+do !
2(_1:,1*),1-< g JVRT °F T> 5 (—d—-)
o o R o}
(3.11. 2a)
where
N a n+l n '
@1 (31’7-) = Z Z {o(nm(’l“j cos mg +@“m('t)$ln m¢§
n=| m=0
I L,
X Z(- s! .Z;+;>)l ( a,+ ) ) ( ) “*S(QOSQ)
S=2 0
(3.11. 2b)

oz, = i (_:,.)'nni {qnmm cos mo'+ B,,,(T)Sin mcp’}
m=0

n=|
néEmM+S+i htinest!
a+dL,

= ms (nemes) ! ot s i e m(COSé)
: ZH) (Zm-t-s)!("-m)!( 42, (\"&t) GRS

sS=0

* .
and similarly for the rotation components QJ. . Again treating only

é(l)(_g, w) explicitly, the solution becomes, after taking careful note
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*
of the discontinuous nature of O,

f ip ()
~(1) _ W fa " 2 OF -Lw’zr
© E’“"MTVJ&SS ‘mg ("-* ) 69“” ('a’”)
aﬁo o 0
Ve * ® ik ¥
ae,_ LLUI?, 9. r )2 .
o jfeif’(""} oz o@t‘} Sj&n.i( et >n o

[W'S )L“‘”?' &‘Z} (3.11.13)

Here the integration over the radial coordinate r' has been
broken into two parts, (0, do) and (do, o), so that the transforms
with respect to T can be written explicitly in terms of @;k and @;‘.
The time interval for the first of the transforms in (3.11.3) is such
that r'> d(r), yet with r'< do' This contribution is important,
especially when |a(T) £ d(7)]| < d_. The second T integral repre-
sents a time interval such that r' <d(r) < do’ It represents the
contribution to the field from the region near the rupture origin and

(1)

usually' ' from the region well behind the rupture "fronts" at
a(t) +d(t) and d(t) - a(T). The region is indicated in Figures 1l and
13, for all the rupture models, by the spherical region of radius d4(7).

During the time interval represented by the limits of integration

ao-,-do ( r! ) a0+d0
—_ to

YR do R

the relaxation and consequently the radiation from this region will be

(1)

Exceptions occur for certain bilateral rupture geometrics, these
exceptions are considered later,
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small in view of the nearly constant dimensions of the rupture surface
in this zone, Thﬁs, once again making use of the fact that most of
the radiation will be derived from the region near the rupture front
where the boundary changes are most rapid and large, this integral
will be neglected in the evaluation of the field since it will be
relatively small. In addition it can be argued that neglecting this
particular term should actually improve the validity of the model,
since it is equivalent to relaxing the condition of a well defined
rupture surface in this region.

The final time transform corresponds to a time interval such
that r'> do > d(T) and this term will be small compared to the first,
until Ia(‘r) + d(T) l > do, thereafter it will be larger. The term must
certainly be retained, but clearly for first motion studies the first
time transform is all that need be considered. In the present study
however, the total field is desired while the first motions are of but
secondary interest.

The appropriate modified form of the solution is therefore

a+.£, n)
& )(r,w) 417,\/2{ SS &D.g (

(%,
)n'zaen’(}ﬂj (ii) me;?z
Somg ( ghesn fz,,Qn' rz.g V“(i@{) FHONT gy

(3.11, 4)

with an equivalent form for ﬁ(jl)(_r_, w)e
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It should be mentioned, if not emphasized at this point, that
the integral neglected in (3.11. 4) is not especially difficult to treat
~and may be evaluated without difficulty., Furthermore all the
spatial integrations arising from this term can likewise be evaluated,
although in a somewhat approximate fashion, The fact that the
neglected term may be evaluated is not especially significant except
in cases of bilateral rupture for which d0 < ao/Zo In such cases
the rupture "front" at d(T) - a{T) (Figure 11) is always within the
region r' = d(T) and hence would be neglected by‘(3,11,4). It would
seem then that, in such instances, (3.ll.3) should be used in its
entirety. However the application of (3,11, 4) is actually not so
restricted as is implied by fhese remarks and the converse condition
d, = a /2. In particular, when d_=a_, the condition for unilateral
rupture, only one end of the ellipsoidal rupture changes its position
with time so that the region near the fixed end of the rupture at the
origin is excluded by (3.11,4). This is clearly justified in terms of
the argument that the energy release from this zone will be small at:
times such that the rupture "front" is well away from this region,
More precisely ther_l, the applicability of (3.11. 4) is limited to ruptures

Essentially, the representation afforded by (3.11.4) is restricted to
ruptures which are nearly unilateral or equilateral. In the present

study, detailed consideration of general bilateral rupturing will be
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- omitted, so that the subsequent development of the theory will
utilize (3.11,4) exclusively. The more complicated analysis of the
bilateral rupture will be deferred until some verification of the
simpler related models and theory has been obtained.

Some further approximations of the field representations are
warranted in the cases of near unilateral or equilateral rupture.
Reference to Figures 12b and 12d shows that, for representative
cases of equilateral and unilateral rupture, the angular delay factor
nl(S', $') is a very slowly varying function of the angular variables,
especially in the regions of greatest energy release, For equilateral
rupture the regions of maximum energy release will certainly be
within the ranges 0 = 0'= tan_1 (Zbo/ao) and T=8'=s 'rr-tan-l(Zbo/ao)
while for unilateral rupture only the region in which 0 = 8' =
tan_l(Zbo/ao) is of importance. In any case i {and él) is
nearly constant within such ranges for the two types of rupture and
consequenlly can be approximaled by a constant in (3.11. 4}, provided
the range of dO is suitably restricted to the unilateral and equilateral
cases. The restrictions on d0 must be somewhat more severe than
have been indicated previously. In the bilateral rupture case shown
in Figure l2c¢ it is clear that, while d0 < aO/Z and nl is nearly
constant in the regions of maximum energy release, nevertheless m
assumes different constant values near 6' =0 and 6'=w. Thus,
this delay factor has a spatial asymmetry which cannot be approxi-
mated by the same constant value in the two regions of importance.

As the rupture becomes nearly equilateral the limiting values of the
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two "constants" approach the same value. Thus in (3.11.4),

restricting d.0 to be such that
d >~ a or 4 =0 (3.1L. 5)

then L is, Lo a good approximation, given by

Sag td, >(b0 )z
__1 - ~ +d 5 (3,11, 6)
O 0 0]

where the appropriate mean value of 0' has been chosen to be

-1 bo
o! = tan (—-———
mean ZaO

3
v = a +d b 2
_+__R [ 270 "o o
€1-1 pe {1 ( =T XZa ) } (3.11, 7)
S o] 0O [0}

This approximation will result in a considerable simplification

likewise

in the evaluation of (3.11.4). In particular consider the simplest case,
namely equilateral rupture. In this case do’—"‘-— 0 and (3.11.4)

reduces to

e A/ VR

oWz, = 22, ﬂcmj ;—L: "~ n’zln.< j 2 6 ’L“""i&)

(3.11, 8)

with
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61 5 )™ v '+ ilsinma]

n=/

(3.11.9)

Integrals of the type {3.11,8) have been treated in section 2.8. Thus
by arguing that, at large distances from the rupture, the "initial
¢ %

values" © and Q’j are negligible, so that within this region
bounded by a sphere of radius Rs’
. *

-ik r
<

s = _L'Jgpez (22+1) f(cos ?‘)}1(]2,,'?") 'g«:)(&p’z) 3 >R 27

r

then proceeding as in Section 2.7
%0 n

Al () .

&Mz, ) = > (&P",)Z [ﬁm(w) Cosm+ B, w)Sin mq&] P leoso)
n=1 m=g0

(3.11.10)

oo n
fi}flﬁ, w) = 2 22 () Z [ C:) (w) cosmg + D w) sinmq’] Peoss)
n=1 m=o

(1)

where,

(1)A1ternate expressions for the coefficients Apm(w), etc. may also
be obtained as suggested in Section 2.7, the long and short period
limits may be obtained from (2. 7. 6) and (2. 7.11) respectively.
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Anm(w) ] 3 gEnm (W)} = F(’t s+1) ( k R >S+2_
_ nf +S+| | 2
4Ve (24) < Bpm (W) Z [ (zn+s+2) (5*"-) -

Bnm(w) $=0 M(s+1)
(3.11.11)
() ~
CY (w) YSlw) ) = _ 32
L fg 2,) [~ [C(n+s+1) (‘s‘i‘z) (2t k.R,)
G) s § (W) M (en+s+2) C(s+1)
DY (w) s=o
nm
with
~ a'o/VR
"nan - Sl Wiz 4
= q, d Enm(t) 2 T
B l®) ©o o 0F
(3.11.12)
~(3) %o/ Ve )
Vnm(w) ) zntm (t) wET
= ?: d Sv&':v)\_(’[) At
%(iln(w) 0 9T

The contention that 0" and 9;‘ are negligible at large dis-
tances from the rupture is basic to the development of the fundamental
representations (3.11.1), as well as to the particular results given by
(3.11.10) - (3.11.12). That is, implicit in every approximation leading
to the final fprmulas for the radiation from naturally induced rupture,
has been a condition implying that a change in the equilibrium field
can be associated, almost completely, with a change in the local
rupture boundary shape or position while changes in the boundary

at greater distances have a rapidly diminishing influence (with dis-
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| tance). This is me rély an assertion that stress relaxation is a
very local effect and clearly implies that o* and QT rapidly
diminish with distance from the rupture boundary. Indeed @* and
Q;‘ will be shown to be of the order 1/r3, which is a rapid fall off
compared to the usual 1/r dependence of a radiation field.

This entire line of reasoning is further enforced by physical
arguments based on the observation that the strain released after
earthquakes near active faults has heen found to be relatively
localized {e. g. Byerly and De Noyer, 1958), These measurements
can be taken as direct evidence of the localized nature of stress
relaxation associated with the tectonic source,

Finally it should be mentioned that while the equilibrium
stresses giving the relaxation field 9* and Q;k, are obtained from
solutions in an infinite space, this only means in practice that
boundaries and various other strong inhomogeneities within the
medium are assumed to be sufficiently far removed as to be negli-
gible in their effect on stress relaxation. Thus the basis upon
which the equilibrium field compuhtion is made, is seen to involve
the condition that the changes in the equilibrium field itself be
strongly local to the rupture region. In view of the observations of
strain release, this approach seems entirely reasonable.

Turning again to the evaluation of the integral solutions for
the radiation field from a rupture source, consider the more compli-
cated case of unilateral rupture expansion. From (3.11.4) - (3.11.7),

*

setting do = a,
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%o —AJLP(n.+n_J
)(1,w) = 477—\/;{ SX L0 o re Z Q! (V],S

cﬂe (™ +r) 20.,/ Vg
12 -L ,'Z.-
55&'&5 (‘7 gg‘ we &t)

AN
98, ibw”'f@z*)
3T

(3.11.13)
with
(o o] n
et = Z (,—'L:)"HZ {o(m(r) COS Q'+ Borm (T) Sin m(p'z
n=1
s(nm+s)| VAR = .
X Z( " si(n- m)i( K)("—') li‘s(cose) (3.11.14)

:1-_‘1_3 -.§ ’_b_o_z
M v 12 \ 7z
P [e]

Similar expressions may be written for ﬁ(jl) by using Vg in place
‘of v in (3.11.13), while (”Qf replaces @{7). The coefficients
a e lsnm replaced by Y(riin and Gggn will transform @T(‘T') in
(3.1.14) to ),

In order to evaluate the first of the volume integrals in
(3.11.13) it is necessary to be more explicit, In particular the depen-
dence of @f (T) on the source time variable T must be specified if
the evaluation is to proceed further. For this purpose it is sufficient
to assume that the T dependent coefficients, L. and ﬁnm, are

analytic and may be expanded as series in 7. The assumption is only

a temporary expedient since it will be shown that the coefficients are,
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for all models, simple low order polynomials in T, Thus the coef-

ficients will be taken as

o (1) = Z Agr’r)l'rp , B__(r) = Z Bfﬂl#’ (3.11.15)
P=0 P=0

so as to provide the explicit T dependence required. The coefficients

A (p) and B (p) will be obtained later as functions of the source
nm nm

model parameters.
Using these expansions in (3.1l.14) along with the expansions

3k

-ikpr 00
e - : 1 (2) . !
———-——r* = 1kp £§’O (22 +1)P£ (cos y),]ﬂ (kpr )h2 (kpr) ;T > Rs > r

P, (cosy) = P,{cosd cos @' + sin 6 sin 6' cos (d-0'"))

)
=P, (cos B)Pz (cos 0') + 2 —%—;—_—%}- Pif(cos G)Pf(cos 0" cos m(d-9")
k=1

(1

In (3,11,13), then after substitution and rearrangement

(1)Some special matrix notations will be introduced in order to shorten
In particular

some of the expressions to follow.
X .
) denotes the usual column matrix, but Xl} will be used to
2

(1
*2
denote the new matrix (X1X2)° Thus, for example, as in (3.11.16)

X Y — y -
1 (1)_(};};)( l>_xy +x.y
{X2= 12 172 Y5 171 272
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6 (T @) = —-—ﬂ- Z (L&«—/}Z Z Z( 0 S(’j 7+S,),j), }L‘z)(je r)

!=0 n=! wm=g S=0

{ S”’j B (cost) P (cose) { } o' m( S °(,.ri"(m9
cosY) B, . (cose sine'de o
" P Py

~ifprt’ (s) Rs
£ ) , , J (a,) n+s-i
X ’(n,)n-l 1’1”2;”&) &£n' + }?. (" 5_‘(;)(& )) g (#) 2 Lhepmt 7(33 ’L)ﬁnz
wg Yo

a’o
(3.11,16)
where
(s) 2 /Ng
I S (r') s s =<y, () —twhT
na = (&) (L S s ™ L.
( T,(AS)(I") ) - (Z') (rﬁ) X . 9T )iz- ( @hm(‘L")) L &'Z’
n p “o -
zdo/ Vg (3,11.17)

(s) Xy (T) -lw
IO A o] Sl
J(S) (a ) z (gnm(t)
n o 0
or, using the relations (3.11.15), and from Erdelyi et al. (1954, Vol. 1)

P

(S) 1 P,
ala (=) H,f,,), 2 ~2iwh i
( (s) ): E (B‘P’ (VR-) F(stpistpri; Ve ) (3.11.18)
n'p () Pzo "

with 1F1 denoting a confluent hypergeometric function, so that

o0

(-2in .k, )2
. e _ s+p 1R
F,(s+p;stpil;-2inkpr') -Z sTpiq T(q*1)
q=0

Likewise
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(s) e :
nJa (ao) _ \H”m) E_a:o)Pa‘S ‘E(S.'.Pis-kp'!‘ls-z’;“&ga‘,)] (3 11 19)
() B® Ve/ ° o
nJ‘3 (a,) nm

P20
In both expressions kRE co/vR . Thus, using the orthogonal properties

of the trigonometric and Legendre functions to evaluate the angular

integrals in (3,11,16), in particular the results

2mem m cos mo'
S‘ P, (cos y)Pn+S(cos 9')( > sin 0" d40' d¢'
0 Yo sin m¢'
4n cos mo
=20 1 (COS 9)( ) 6n-i-s 2
sin m¢ ’

with'

0, nts#1
o) =
nts, L 1, nts =4

then (3.1l.16) can be written in the convenient form

6( )(r w) Z } (Z)(k r){@zk(w)cos mé + ﬁlk(w)smmcb}P (cos 8)

£=1 k=0
(3,11, 20)

where, with s={ - n

Gyl K20, 2 Ang | (%41
( >= ‘P/p Z 7 Z(— ( ) T@nen ] (n-£4)

sz(w) n=1i

o n-p-i -ide,
X[g ;";) ,E(S+P;S+P+13-ZH7,3E.QI'L’)_Q R URDV

o

Rs
a,s:P F (svpisepr ','Z”l»&aaa) S; ( l Lga ""?,L(ye ) ‘Qn]
’ (3.11. 21)
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The integrals appearing in {3,11, 21) are of the same general type
trcatced beforce, Their cvaluation and the subsequent algcbraic
simplification of (3.11, 21) is given in Appendix 5.

The expressions for the rotation vector components are ob-
tained in precisely the same manner as is the dilatation. The
complete description of the direct field from the unilaterally ex-
panding rupture is therefore given by
ém(r, W) = /91“’(& n_)z {aﬂ,_ (w)Cos et + B 505 (W) Sm—%cp} ﬂ’chsg)

2=

(3.11, 22)
Z ‘ ) = k
o~ (Z N J J) .
Q(jl)(_l_'_: W) = - )LL (fe, ) &E {C_;g:(w) cos ko +°D;I¢(w) S/l’lﬂe(b} Fi(cos o)

where all the coefficients in (3,11, 22) are given by the results of '

Appendix 5, as

(G“‘w))-  (zk,0,)" S (24) Z o (A@> [(f-ke1)
B0 FV on 1) Qe Teked)

x(z) q:o% [Em(q.;?f o5kyd,) +f, (*7,,05405&@)]

MY
[M> (3.11,23)
r’(gf/)
(J)( w)

(P)
: £ a)ﬂ/z_/g__)_,__.
(;g(J)( )) g (e'é Q)Z (fd) 2 ) (o f(/ﬁ+/)/k?‘k+l)

ARG (O-n+p)
x(é,)goméf—)f} 5,7 30 3,004, G 034, :R R)]

(208 keds)?
[7g+1) . (3,11, 24)
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with

vy=EL -n+tptq

The functions of the form E}(ll)(p.,y;x;by) are defined by the series

representation

st NIt
W ey = 7 LR+ 7 1] (Ziby)
£, {1, vix3bY) —/g F(zl-/—/(he) (Y+f(+2 / (g’) Fleer)

(3.11, 25)

They may also be expressed in terms of hypergeometric functions.

The coefficients Aiﬁg .00 etc. are given by

( )= E ( (p)) ™ ( () > => ( (p))'rp (3. 11, 26)
B 8TV o=\ D

Paxl™’ p=0 Bnx P=0  j nk

with ank('r) eoo €tc., being the coefficients in the multipole solution
for the equilibrium field at an arbitrary source time T, Calculation
of these factors, using the methods of section 3.7, will provide then,
the complete solution for the direct or primary field for the expanding
rupture models treated in this section., These equilibrium calcula-

tions will be considered in section 3,14,

3,12, Primary Field Potentials for Natural Tectonic Sources:

Propagating Ruptures

The development of the field representations for the propa-
gating ruptures will proceed along the same lines as for the unilateral

rupture of the previous section. Thus, from the potentials of (3.11.1),
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one has for either of the propagating rupture models

v [ff( e " )C/ﬂ [7m 36—9 " ¢

(3.12.1)

sz(l)(r @) = //[( Nl 1 ng f ;[) —4w§m C/ff

It is possible to treat both ellipsoidal and spherical rupture

Bt Nz, w) =

propagation simultaneously., In particular the translation parameter,

d(T), for either model can be written in the form
. - m " -
d(7) = [1 (2 VR’T‘/aO)] vpT (3.12. 2)

where the parameter o.zn, m = 2,3 depends on the model and is
defined by equation (3,10.19) for spherical rupture and equations

(3.10. 22) and (3.10, 23) for the ellipsoidal case. That is,

(2) _ .
a,’ = bo/ao (spherical case)
(3.12. 3)

(3)— a_ = a(TO/Z)/aO (ellipsoidal. case)

Here, 'T“O is the time interval of rupturing and is, for either model

Thus, af)n is a measure of the shape and size of the propa-
gating rupture and will be termed the "form factor." In the ellipsoidal

case af) is treated as a "free" parameter, that is, it is independent
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of the other rupture parameters as b, e etc.

o
The rupture parameter a:;n plays a rather crucial role in
the development of the solutions (3.12.1). In particular two classes

will be distinguished, first those ruptures for which

1/10_<.‘u.2n <1/2 (3.12. 4)

and secondly the remaining ruptures for which

m

a <1/10 | (3.12.5)

In the first case the propagating rupture zone can be rather large
and roughly comparable in its maximum dimensions to the final
rupture envelope. The second case, (3.12.5), will be used to
describe a smaller propagating rupture zone and while d(7), as
given by (3.12, 2), will be used with the larger values of alc;n given
by (3.12.4), an approximate form of d(T) will be used, when con-
venient, when a;n is small, as in (3.12.5). Thus, as an approxi-

mation
a(t) =~ (1 - agn) vpT  when afj‘ < 1/10 (3.12. 6)

In addition to the features of the propagating ruptures pre-
viouely pointed out, these models have other useful and interesting

geometrical properties which engender considerable representational

(3)

flexibility. For example if al

< bo/ao, in the case of a propagating
ellipsoidal rupture, then the ellipsoid is elongated in a direction
normal to the direction of rupture propagation, while if af) > bo/ao

the elongation is in the direction of propagation, In the limit a. = 0,
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the ellipsoid degenerates to a propagating "line" source of variable
length. When af__’z) — 0, in the spherical case, the source reduces
to a propagating "point" source. In either case the time dependence
of the rupture parameters has been chosen so that the actual rupture
has zero volume initiailly but grows as it propagates, reaching a
maximum volume at a source time To/ 2, thereafter decreasing to
zero again at L

The equilibrium fields 6* and ﬂ;‘ in (3,12,1) are given by

(3,10, 8) and (3.10.9)s Thus when
1/10 = agn <1/2

then d(7) is given by (3.12, 2) and for either model

s @f (', T) 5 ' >d(T)
© (zla T) =

@;(5’,'1') ;or!<d(T)

where

o¥(z!,m) = Z (/[ )MZ/ [o(,,k Cos kb +,5”k5/0/€¢f2v(/)5,((7;z37)[6z)3

Z(K>(5‘ (-2l (V7’) /D Cose’)

J)'J

62(_1;',7) =2~[_/)m/2 22(,,,&(’1“)005/@%14/5;6 (7")5/}7[’@:?
n=/ k=o
~Grelprsei)

A,L / k45t o
520( ! (zé++537 ?J? ) (Vf ) ) Z(/ é VT}

s (/(/)/-’*‘5 ﬁ, (cos®”)

(3.12. 8)
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with similar expressions for QT(I”T)'

As was the case with the expanding ellipsoidal ruptures it is
advantageous to stipulate the source time intervals corresponding to
the inequalities r'$ d(T) in (3.12,7). Thus inverting these expres-
sions gives

2

ag 1-2ar0n ' 1 ! 1/2 1-20.2rl a,
T2 P = | T & - m v (3.12.9)
R 2a a a0 2a
o o o

This expression will be approximated over appropriate ranges of

v}

the variable r'., Thus for

(1—2(121)2

0=r'< —a (3,12,10)
m 0
4q o

the quadratic may be expanded, to yield
1-2a™ 2q™ 2 , 2a™ 4 v 2
> 0 1 o r 1 o r
T< m L= m/\a / .m m J\a, )T
2a 2a_"\1-2a o 8a_ \1-2a o
o} o o o o

ao l—Za;n a,
(%) (=) =
YR ZQ? YR

Approximating the series as a first order term in (r'/ao) gives,

after estimating the higher order terms,

l‘am / 1
72( 2 )(E—) (3.12.11)
1-2.a1c')n YR

appropriate to the region given by (3.12,10),

Next (3.12,9) will be approximated over the range
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a =r'<(p +1)C|.O a (3.12,12)

o]

where ﬁm will be chosen so that T = Zao/vR = T, when
r! = (5m+1)aglao. However, regardless of the value of ﬁm, (3.12.12)

gives

so that (3.12. 9) may be written as

a 1- 2 2 1/2 1-2a a
S o ) o) o
R Zu.o R

and expansion of the quadratic in powers of E],Al(;n(r'/ ao) - Bm} is

convergent, In particular, to first order
a, 1—2a2n 2 1/2 P l-Za;n 2 -1
T2 Vo ( m ) * ﬁm ) ( m ) * Bm
R 2a 2a
0 o)
1-2¢y a 1-2a 2 -1/2 1
EEENC RN
2™ /YR 2™ [\ 27 m YR
o o o

For convenience let

f (1 2(1 ) .
o [f +;3m]1 {———[f +B ] }—fm (3.12.13)

aQ
]

oy
3
1
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°3
[ansmae |
+
™
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e
~
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so that

a ]
> 2 X
TZ gm( VR) + hrn( VR) {3.12,14)

Now, if it is required that Bm be such that the right side of (3.12.14)
approach 2a /v, as r' approaches (§ +H1)a™a _, then this is
o/ "R m o o!

equivalent to the condition
+ +1) g™ = £
g (B_*)a h =2 (3.12,15)

or, that

‘ 1/2

2 1 2
£24p, + 3= (_+2) [fm + sm]

Solving for ﬁm, the required value is given by

2
3+4f  -f 1/2
By = —5—— +-1—[f4+8f3+26f2+24f ) SRV
m 2 2l'm m m m es
4 )
Thus, the partitioning O £A'<°? , 2 £ 7<2%  phas been made:
If Ve
(1-2a™2
40.0
then
" - 1_0,1;’1 . (3.12.16)
@ =®1 when T<< m)(r)
1-2a R
o
or

1-a 1
®*=®: when T>( o )(_r__ )
, 1-2a2n YR
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(1-2a™)2 m
o a =r'<(p_H)a "a
4am Q m o ©
o
then
(3.12,17)
* _ o %o r' |
o =@1 when 7<g |—)+h |(=—
YR YR
or
0" =0,

25 r!
2 when T>gm—— +hm;’—-
YR R

The functions ﬁm, g and hm are shown in Figﬁre 13. Figure l4a
shows the spatial partitioning chosen for various values of the form
factor a;n’ while Figure 14b indicates the resulting approximate time
partitioning appropriate to the spatial division for the representative
case, azn = 1/8. The cxact timc partitioning appropriate to (3,12, 7),
as given by equation (3,12, 9), is indicated as well and it is seen

that the approximations given by (3,12,16) and (3.12.17) are quite
accurate, It is also clear that when r'= 2a_, then the case r! > d(T)

in (3,12,7) prevails. In fact, Bm has been so chosen that when

r!' = (ﬁmﬂ)a;nao,then r' > d(1). This is indicated in Figure 14 as

well. Thus:
If
3 m

r = (ﬁmﬂ)ao a,

' (3,12.18)
then

®*='@* when 0 =7= 2a /V

1 o/ "R

Translating this manipulation of the source variable domain

into a subdivision of the integration range for the radiation field in
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(3.12,1) gives, for example
‘ mz my 7
- 20 \ 1T
(—12” ) /-2 )T/

@(1)(1,w)=4ﬁ;§.0—1{02fyfﬂ2§j i ( )/! afz/? 9‘9* “llr

0
g\_/a_o (pm+l)°( CI
/3 —cawn, T -
+7m ‘3?6286 7/»&[‘ _‘_g é/épﬂ)/z c/ /
LA A (-2,
/~2:" )\ 4,(

C«’M(Q‘Z)f-l\m (%/’l') 276’2 45,)7”,//‘
X[}?Mf _e]_@* cd)?,,,q/‘r -/—7,,,4(' 43 ___‘ﬁ 6{7‘

a0 p ()
e;é /z zao/(/ gm(‘/ )’ M(%
+J 7 ) /4 -4@7,,7;/71‘) (3.12.19)
(é&*’)aé”'ao J’P

The practical result of the p_revious (approximate) partitioning of the
space-time domain for the source is that it allows the solution to be
written out explicitly in terms of @f and @;, and in terms of
integrals whose limits are linear functions of r'. This procedure
will, in fact, riiake possible the evaluation of the integrals in question
through use of the results of the previous section. In addition the
break-up of the domain of integration makes it possible to reject,
at least in part, that part of the field arising from within the actual
rupture zone., Thus the opportunity of correcting the field represen-
tation for the propagating spherical rupture model is at hand.

In particular, the time integrals involving (*3*2 in (3.12.19)
all arise from the region within or behind the propagating rupture.’
This follows from the same interpretation as was placed on similar
integrals appearing in the integral solution for the expanding ruptures

~ of the previous section, In the present circumstances the elimination
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of these contributions is of more crucial importance, in view of the
nature of the spherical rupture model. This, excluding these contri-
butions to the field, which corresponds to omission of the energy

radiated from the spherical region r' = d(T) indicated in Figure 1,

gives (/‘ 27,

8N, ) = s ”CIQ{ 5 e Z)/f ‘//7/7»»[0;: )‘“‘/07»1&)

. (Bt )% d” e 3’"(-7)/7 ( )
(/~20<2”) 7)” ﬂ()?,,, C/T')
—-Lléf/z ' 2 X [w )
- (W7,
J‘ )/7 o ( f 5‘2@’ )y (3.12.20)
/gm*/)a(”’d
Q( )(r w) = &4) fc/ﬂér (’4(5:/ "'ér/a-l(:\‘ .
l* )/( 74
/ )"“
¥ 2 7 _ § ezl
(§m f Jib,*e “ IJr)
27 7
oy _Lé r gm (g'%}}j” (V;) .
+ S )/[/zd//z( b1/} f—é@gm/(jT>
c/azdo")zz ° 27
Aot
7o '__w/z , (0¥ oG T
+5 )ﬁi///(f f o)JzJ sl ¥3, 12, 21)
(@)% a

)

where the rotation is obtained in the same way as in ('“)(

%
J

(r,w), and
is given by (3.12.8) with the coefficients a_, and B, replaced
by YS}Z and 61(1‘]11 , respectively, These then are the appropriate

integral solutions for propagating ruptures, in the range

1/10= o* <1/2
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Consider the case in which
m
a < 1/10

In this circumstance (3.12, 6) will be applied to (3.12.7) to give, as

an approximate relationship
* m 1 r'
.t - =
{@1 ; r'> {1 a )VR'T , or when T < — ( )
O

ok, r'> (l-af)n)vR'T‘ , or when T > 1 (_r_ >

(3,12, 22)

2 2

*x %k
where @1 and @2 are as given in equation (3.12.8). Again parti-
tioning the space-time domain, the solutions may be put into the

form

z(/-o(ow’)do_ » 7= 7 (V
00 - do, ([dod [ (2 )ity [ 205 nT
==t ) e A ’”J o7 or

24, /4,

* oo R
+ y s " ) J ke ) .
m\ T u 2dr
? -—;,(%) <7 O/¢ ) l*

(’7 SD f*cd‘mm?\o/f) f

*
Excluding the integral involving @2, for the reasons previously

sited, one has for the solution in this case
2 (-

50, ) = é'_éu__z ﬂc{a (SJ (e ~ckp 1 )/Z
i N

» 20«2,

(3.12.23)
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26-xC )d » )/mézé’ (/;2* -3@;,,,&7)

Q( )(r,w) 71/1 ffo/ﬂ{f
(C—f 29 dad a U wET
4 Oél (5 )“QJ € 7’)

2(- o(
(3.12, 24)

Now, for any of the solutions (3.12, 20) - (3,12, 21) or
(3.12,23) - (3,12, 24), the angular delay factors yi and §m are
to first order constant, This follows from the fact that the energy
release is local to the rupture surface and since the delay factors
are very slowly varying functions of 6' and ¢', as is illustrated
in Figures 12a and 12d for the cases m = 2 and 3. The delay

factors are, for the two cases in question

v b
=1- R 1 3(_o - 1
n, = 1 = [cos o' + 2( = )(1 cos 0 )]

P
(3.12, 25)
v b
=1 - __Rl 1 ,;’_ o _ x]
‘g',z =1- = [cos o' + 2(—;—-)(1 cos 8')
s o
v b
1 _Rf_3 ', 3 2,___0_.2..2,]
My = 1 Vp[_ > ao)cos o' + > (aocos o' + . sin~0'sin"¢")
(3.12, 26)
VR[, 3 3 2.0 .% . 2., .2
§3 =1 --;/_—[ -3 ao)cos 0! +-—2- (aocos o' +E— sin"0'sin ¢’)]
s o

Therefore, taking an appropriate mean value for 6', in particular

b

1 "'1 o]
&~ tan -

me an 2a
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as was done in the previous section, and setting ¢' = w/2, then

vy [ b 37
n g]_-__B ]_-é .._0_.
2 v 2\ 2a
P L °r (3.12. 27)
v b 3
o~ RN.3_2
Ea=1-5 1 Z(Za)
s L o
v [ b \27]
~1--Rlp-Lpo2 °
N3 =1 -z 0 2“)(2a>

L J (3.12, 28)

v
p
r —
gzl_.ZB 1_l(1_2a)_1i°_2
3 Vg 2 20 ZaO

Under these conditions it is clear that the solutions may be evaluated
in precisely the same way as in the preceding section.

Thus consider first the representation of (3,12, 20} and
(3.12, 21). The procedures of the previous section (e.g. equations

3.11.17) through (3,11, 25) ) result in the following expansion

Or-des)/
é(l)(ﬁ"’?) - Z (z,lf/)z ZZ ?%';‘ji 4 /()

47/*}/ o Fzo n=! b=0 5=0

4T f f Clos1) B os) 5 1L Jeo/;p]
(7, f (;;%) ‘;,,’,’/Z] (bt )'e, fm)(K f(/”)

”/,?.’L ;(/e ey ( [)@)f )M?‘é?(éﬂ)&)
/7

/

(3.12. 29)
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as was done in the previous section, and setting ¢' = /2, then

1
L_ °r (3,12, 27)

vy [ b_\2]
ner-Bliba-gep(o2)
P ° (3.12. 28)
er 9 2—1
v_ (1_—a)<2a
5 L.

Under these conditions it is clear that the solutions may be evaluated
in precisely the same way as in the preceding section,

Thus consider first the representation of (3,12, 20) and
(3.12. 21). The procedures of the previous section (e.g. equations

3,11.17) through (3,11, 25) ) result in the following expansion

) N A T
RN T v A
i ,[=0

; [ f v Pém) /Zf(co;e) cos mJ f st O /QO/W]

/Z(n)

w0 ) _wé,,/? ) K. (/z))
X (7;,7f (1— [5)( )) ( ),,/ ] (ép/z c//l 4-7 /j[m)(nk(’)(lz)

A

8

¢4 5.9 @ L ibn ‘,
(/r)n—/;/(/?/?)o/ﬂ%7(jrs)(4a)f (/Z) - J(bpl)o,/l)

/

(3.12, 29)
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with
HAm) =

o -
(3.12. 30)

W= (g +1aa

and M given by (3,12, 27) or (3,12, 28). The functions nl(j) {(r') oo

etc, are
/ -o,™
/ -2%

1(s)

2Plc g M”’f(” nf?)f” ]
( (S)> & )J Pk (1.

(3.12, 31)

k() G2t hy (I )
( K(s)) /)2(0()( )u//“’“/) J(V) J&_[( h@ fﬁ/ T
B B (0 J7

(3.12, 32)
o) 24./1,
_,5__/—’——(/—20( ) N & k(]) 5+J (4)
(J(s>> JZ G- ( D”( ) Bl

{3.12, 33)

Introducing the expansions for the coefficients a . {T) and Byl

of equation (3,11.15), with the same provisions previously stated, so
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P=0 P=0

then (3.12.31) - (3,12, 33) may be integrated to yield

)2 6 e

Pzo

ot - - i, o™ )
' Grapid s Soprint 3o, (5 Vb ')
) O o ) £ (3.12. 34)

(s) ¢P) .
nKa - /4 0(0 a0 5 T+
( K(s>> "”’> Z (55) &5 24 )

n f

( )/ INTH )+ '/Féﬁ‘ﬁ_pl/';j/_/gﬂjf‘/)'-—/.74”(?,0461‘})“[9%3?’)

(3. 12. 35)

) . _
24 m 5 J Std
( J(s) }glo(—\—/—zf(ﬂ (P)>Z )( J)/JI(/"ZOC’ ) 24d,)
x ,/,”/6’4/7*,}35*/0”‘“5“2/2,,@4») (3.12. 36)

with

e 2 S st (il
1 Filstptisstptjtl;-ix) -z (si'p'l'j‘l'q) I‘(lc};ﬂ)
q=0
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Finally, utilizing the orthogonal properties of the angular functions

in (3.12. 29) gives, upon integration over 0' and ¢'

Wz, w) = ? Z él (}ep/y) a, k@)co;é¢+@’k@)f/hé¢j 5/}@56)

4=/ k=0 (3.12.37)

where, with 5=j—n

s)- e ) S en(g) @)

Pz o
{-n-j 5+
X (- 2 AN n-p-j-1
G )/)u [l f o) Arpidispeies;

+;9*J

“7»10’ ket ) e ]z(/e,,m)J/z + Guas)
{" + P+ . -L ”
J‘ln) Cl ) (/+ >5 ’ J/jCSfPt/ sstpriH=E, £ (74 hﬂ)}

S+P1J
jl(}e /l)o//l +a. ) F(ﬂpw 57‘,01#’—2‘%,&4 (3.12,38)
X jm Gt J/”] )’

Ent1re1y equlvalent results apply to the rotation, ﬁ(jl) °

The integrals appearing in this rather complicated and lengthy
expression are of precisely the form already treated in Appendix 5.
These results are utilized in Appendix 6 to reduce (3.12.38) to a

convenient algebraic form. One has from Appendix 6, the final results

for both 6(1) and ﬁ(i)
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. @(1)(1' w) Z Z / (k /Z)fd /w)(ya,,é;p*@’ (a:)smé;ﬂj/p/dm’&)

[,/ zo
(3.12. 39)
W i & 7% P o)
Yz, 0) 42 V3 4/()[ (w)caségw . W) smbp$ K tese
= "0

Gy ) | z L-r /Z/Z%/)
. (w))= ’Z”&,,@M' }g:( )Z/) 4] (;

(P)
(t’)> 2 “ /?/) //_20(0‘”)/—#— _(,_/_-_U_/_‘fié_)__
k) iso [ I (Lot fl //’/7»‘/’/4"1?)

(BT E s ) G5 12

/'é( A/f/
@/ﬂ>z§w( NS p/ﬁ).f(@,,a/z,,é%;(
[+ (3.1Z, 40)
(zgz kiao)
ey [C7Y /
(lkw R )y 5 ki) (2
: 2m (4 da - -t/ /
sﬂl‘w) A\, (9 Fro Z(/) %///77 4)

c D\ g,
J h(‘;) & /2> G-z (I-nrPel)
Dk Iio i) [Ufn- [,+/) (jmﬁlﬂg)

;(%% £l 50560001 (ﬁ—)ff/"")

/%(M/f/)
< f/\//fojf/f/*fm(fo/z”’ é/?f)jz
(Z/fm za,)f (3,12, 41)

['(g+7)
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with
L - agn
a=f -n+p+L +q , de =
1l1- 2a
(o]
R n+ta+2
1) o ,_z T(L +r+1) 1 { o
Ep (s ;R KR) = T2l +r+2) \ oFri2 1-\R
r=0
+2
-23 r
x (——ﬁ’%})ﬂ—— (3,12, 42)

As for the case of rupture expansion in the previous section, the
results are expressed in a form which is appropriate for the com-
putation of the solution coefficients.

Finally in the case

m
a, < 1/10

the appropriate solutions are given by (3.12, 23), and after intro-
%
ducing the expansion (3.12,8) for @1" , gives for example,

[ o0 n o

N 2 @)
W (r, w) = £2 (zﬁ/)z Z E o)’ Gten ! A; (k)

4?% ﬂ'—'O H=t k=o S=0 ‘S—'//h—'é)./

[ f/O(ccmr)/7 éas&)fj“mg)}f/wc/w{@

(m)

[ ( ) 4

<))

(5 J Gf et

(3.12, 43)
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with
(m)

= 201 - uf)n)ao (3,12, 44)

and where ., is given by (3.12.27) or (3,12, 28), The functions

nIciS)(r’) 00 €tc, are
3
L, <fs) 5 |
I x") / s;a/ ~Z_/_,_~(-zq/) (l/) 2 (1\) o
(nc(Ls) :) *6;’) . [a, )G-J)/J/ R 57 ,@nh('l‘) TSJC’ "
kg () J7o -
2%
e

J(s)(a ) 5 D(m J std Jo) k T)) ] o T
n"a Yo'\ _ A ) Q/"" (V L th 5 7»1
( )2 G /m) 7 4 7T [; @)’ e dr

(s)
nJﬁS (ao) J=0 P

After introducing the expansions for ank('r) and Bnk(T) given pre-

viously, integration of these expressions gives, where

b = 1
m 1- af)n
(s},
I, (r )
__ 20, .ﬂ—/’*d
( RagIe '> )65””’ ﬂa G’-J)//’ T ¢ )é

y(/?/)/”4J/f6/+,p¢J ;SAPHI /5-/7,,, é,,,/é/z/f)

(3,12, 45)
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1) a,)
(anf’)( ) Z(M)( ;. Z(% m)/ﬂ(/”m) “eaf

Po

X/f(ﬁ’ﬂ“/o‘fhg/ ;‘57‘/01‘</+/j—2/?m'é/€aa> (3. 120 46)

Thus, as before, using the orthogonal properties of the angular

functions in (3.12.43), gives upon integration

£
M (r,0) = Zf % &P z)Zr ajé@) cv;éw@ é@)f/'ﬁ,éQ} 5 (€05 6)

l =/ —-a

(3.12,47)

® ‘
(- £27 y St ey (3 )L &

Byl /=0

(m)

g L-n+P)
(/-2 - p
(4-7- Jflﬂ [ (7?) /: (5Pt ;5401 )¢

(7 b £ fz)f“é/’/"] ()t +é4) e

x1/7(57‘/07‘,/",'5¢p*J¥/5"2/7,béfao) (l c’ J(k }Z)Jk
(3.12, 48)

with s = £ - n, The radial integrals appearing in this result are
those treated in Appendix 6, In fact, comparing (3.12, 48) with the

coefficients previously computed and expressed in (3.12, 38), it is

(m)

and Ty (m)

(m) are both set equal to r, and

seen that if ry

= (1—a?)/(1—2a;n) replaced by bm, then (3,12, 38) reduces to
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(3,12, 48), Using these replacements then, gives

Gl _ Ly LS (o L Fllder) 71
(mk(w)) ) 42‘2 @’@0,,)/%(%)%[_/) [Crn-k+1) (zld)

/4 ®) j"f? 4 [_”_ A
ak (f(°m/2)x (7-2") (P 4P
By [ [Un-titl) 2 Lo prlotd) L9)

h

‘ o
{ﬁ ?7,”)% 505k, //' ) ,45/]/ (w/é “ /(,—-Zj“’—“;,;”é <
(212, 49)

zk(‘*‘)) __ % (9b.4,) S (24, L-re [l-£k#2) /1 \

(n Z( 2() [Tt +7) (Zd’)
8y () Pro
C P )/_” .

(J.DM?"’) Y ()T Ll
Jnk [Cit) Fn-ti 1) Z (l-r+pt ?

4:0

@) , -
{é; K{’-’?)o{/.o )‘éf[z(”o)"é()(/’ho .J’/?z( ié@)}

. 3,12, 50
¥ (‘Zlgm/é,edo)? ( )
with [ G)
a={-ntlLiptq, b_ = 1 - rgm) = 2(1—ar0n)ao
1_
(o]

The application of thesc rcsults, as in the case of the expanding
rupture models, awaits only the calculation of the source field

() zlp) @) (p) ;
coefficients A ok’ 'Bnk’Jan , and an appropriate to the model.

These calculations are considered in section 3,14,
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3,13, Shock Induced Tectonic Radiation from a Homogeneously

Prestrained Medium

The representation of the radiation field from the prestrained
region around an explosive source can be developed directly from
the theory and results of section 2,7. It is only necessary to observe
that the rupture zone is created by a shock wave propagating through
the medium with a velocity which is larger than the compressional
velocity {Duvall, 1962}, In this case a spherical or nearly spherical

(1)

rupture volume' ' would be created with a rupture \}elocity VR equal

to the shock velocity and such that

VR> vp > v _ (3.13.1)

For tectonic stress relaxation, this is equivalent to instantaneous
creation of the rupture, in view of the causality relationships
appropriate to stress relaxation and by virtue of the symmetry of

the rupture. The prestress energy of the material within the rupture
zone is assumed to be taken up in the non-elastic processes of
rupture and flow, so that the radiation field is derived from the
stress relaxation in the elastic region exterior to the rupture zone
and from the conve réion of the shock wave to a compressional elastic
wave, In this section the tectonic radiation will be considered, the
detailed treatment of shock transition being outside the scope of the

present study.

1) It is acsumed that the material is nearly isotropic and homogeneous
in the region affected by the shock wave and the ensuing stress
relaxation. Only a large departure from this condition could
seriously affect the results of this section,
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Thus it seems clear that this tectonic source may be treated
as an initial value problem, where the initial values of the dilatation
and rotation are determined from the boundary condition of zero

traction on the final spherical rupture surface. Therefore from

section 2.7

% if ot
, N Dl e TP ’
6(1)(_1:, w) = _é—'—éz f[f 5*(/_? ) ¢ (eﬂJ‘ )Jg

4TV,
i
(3,13, 2)
%
. /\* . R
~ : ¥, ~¢@&lh [&7S /
W0 = A )1 QU )e (~—; )o/,
ATV
v

where, in the present application, the rupture volume is to be ex-
cluded as a source of radiation. Therefore, taking the origin time to
be the instant at which the explosion occurs, then with Ro the

rupture radius

(3.13, 3)

The difference or change in the equilibrium field due to the creation

of the rupture zone will be of the form

oF = Z' (/?/_)/7”2’3 {O(nm cosmgp +/5m» Y mpf//?mfcafg)
n=/ m=0

(3,13, 4)

Q;k= Z (/%yf; {Yn:) cos mP+ 5::}; S/bmﬁj/gmfc'om)

n=/
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Under these conditions the expressions for the radiation field have

the form
{/’ o
RSN n-1
i(@)@)S/ﬂ@Jg C/QD f[/z(—,)
£,

4 oo (1= Vo A )R, 2r
6(1)(3, w) = —éiéﬂ— & f J'

pravi =)
“C/é /([ -‘Cé,o/( /
Thus introducing the expression
) *
-ik_r .
e 7 = -ik z (2L H)P, (cos y)j, (k r')h(z)(k r); r>R_>r'
% o) L YNy P 1 p s

r

£=0

and integrating over the angular variables, using the orthogonality

properties of the Legendre functions, gives

4
~ VoAl 2
500 - _é ik >/PZ%()(,€,,/Z)Z/Z(0{% Coskp 4.5,k

s

/7/c Ly’
o “05‘935 (7’(7)”’5"‘ ” Ozz(’épwc//z’

<
Or, rearranging terms

Z .
~ (2) : k
6W(z, ) = 2 ﬁz (/QP/()Z [/41/2/5,)) @5é¢ ,Lé;/@o’/nk,aizfz%we)(&mo 5)
L=/ ,é:O

where

A (w) . b, -V )/9 )

() g S [ Gy e
Byl 7R

(3.13, 6)
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The integrals in (3.13. 6) have been evaluated in Appendices 5 and 6.
Thus

R
S éz
g (L) /l(kpﬂ)o’/z 7 R el

9 E((,c 42;5,217‘2,'-20?,0/@)

J(_ﬂ, b 1 Gy, % &
1+3/.2/7/*3/)

oo (444,25 332/*25"“7‘Aér”’€)
These results may be substituted back into (3,13, 6) and after re-

arrangement, the final solutions are, with RS the radius of the

volume in which stress relaxation occurs,
&y £, 4
(:)(1)(5’ w) = Z %I C/gp/z)Z[/it@)ijéﬁ/-ééfw)ﬁ”/f?]/lﬂ(cw{a)
152 k=0
(3.13.7)

Q(n(r, w) = 2 g (@1)2 [C (w) 6’05/8? *‘D @)5//?/(’¢]/y($oa§)
A=z

where
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( zk(w)> (/ ko (=B ) By o,
21 () i —f%) ¢ (é,é,a) {5/{>
Z'O [Usnes) }' +z @é@f“z
xh:o [Cetsre) Gm)) /"ﬁ?j/) (3.13. 8)
(Cg‘“” |\ b GNP
szjll(m)> i (47,)6 k) ( éci))

n+2
Z /,[mu)( Zr (,e)"’*z C20b./2)
T limz) 2*" < [orer)
Clearly the series in (£} converge rapidly. In some cases of
interest k RS and ksRS will be small and in this case the coef-

fieicents for L =2 and k =0,1,2 are the ones of greatest impor-

tance and are, to a first approximation

Ay (w)

2k'© N 1 ) > 4 %2k
= T 30v (Rs B Ro) kp

B gy (@) P P o

C(J)(w) (3)

Y2k
1 2 2, 1.4
. - (R”-R7O)k ( >
(D(Z_]ll(w)> 30vS s o' s 6%{(

when

1> 2k R > 2k R
s's P s

In any event the radiation field is given by the equations
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(3.13.7) and (3.13.8). Consider now the evaluation of the coefficients

a , B , etc, for the initial value field. The procedures for
nm’ "nm

this computation have been outlined in section 3.7, the present

computation will serve as an application of these methods,

Thus, let the initial stress field be homogeneous and pure

shear. In this case the initial stress Ug)) is given by
(0) (0)
O o o3
0)_( (0) (0)
o35 =\ o1z 0 T3 (3,13, 9)
(0) _(0)
13 %23 0

with the matrix elements all_ constants,
In this case, following Liandau and Lifshitz (1959) p. 24,

consider solutions of the equation (3.7.7)
&
vha® = 0 (3.13,10)
which satisfy the boundary value problem posed in equalion (3,7, 6) as

(1-200V2" +V(V-u') = 0

u = 04", az2 (3.13.11)
® - (0) _
O'ij'l']j —o‘ij ”r]j, when [_1:] -RO

Since any solution of the biharmonic equation can be written as a
linear combination of centrally symmetric solutions and their spatial

derivatives of various orders, L.andau and Lifshitz consider the
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(1)

symmetric functions r and r—l and obtain the solution

3
* s ﬂ—a"-)of (a)'; ga
ui_/{(’/—a‘ D kI, A ?}"(707) el 7. J/TJX(>

- é:_/@j___ @ 53
Tp(7-57) Tt S XX,

satisfying all the equations above, From this result one finds for

() (3.13.12)

the dilatation, rotation and stress fields:

@ (r) = 56 // 257) (")g 2! P a/(a)_é_j'{/ /_@/o)gi/g"

/.2 /3
//(7—4-{) XY, | DX,

;I;’?'ZJ
(3.13.13)
% 3, 7 ) ‘
Ql(}_‘) _ 5L / 0,)[0/_(0 94_1 0;3( )_92-/'— J_fai?/?/, (/0)92 -/
plr-55) A X
2
* A ) o - ’
Q,(x) = /; A7) ()2—— 0oy 24 “f/zfa)gyl (3/0)214]
A (7- XX, YK K3

_Q(r)‘“ﬂp(r) J‘“JQZ:J_@@%’ @) f dz/@) -
(7-25-) X, 2 2
al 2 ) & X Ty
(3.13.14)

(1)The notation of the prescnt study diffcrs slightly from that uscd by
o= o), o = oD

() i

1s the change in

Landau and Lifshitz, for equivalence:

ae - o)
1

the equihbrmm stress field in the notation of the authors,

»

, Where 0'( )1s the initial field and o,
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ooy (T) == — [’P>0" @237’/ .?a’)fj(fc)j? L ﬁ)/fe_) f/f) (j
) (0?1{0)’?/(”1 ’ ‘9;1(0)’7 .Z(7-o’f) (% F) fj 7( /67))2 Zm Ton A
2(7»55) (72’) 290/"(’?}”’ ck %(0)}7 on (3.13.15)
where

(nk) = (n,, n,, n3) = (sin 8 cos ¢, sin 8 sin 9, cos 0) = xk/r

The dilatation and rotation are clearly harmonic functions and may be

put in the form of equation (3.13.4), thus

0 (x) = L Z { cos Mep ,Lﬁwg/',?/,@} /20”'/@5&)

(3.13.16)
Q¥ = z ol @), ”
il :FZ Z(XZ”' Cos mgp + é?-m Sl MQJ?{ZO (6056)
m=0
where, from Appendix 1, one has immediately {m = 0,1, 2)
_ 5(1-20) 3 (0)
(QZm)__ p(7-50) Ro (0 713 0)
(3.13.,17)
_ 5(1-20) 3 (0) (0)
(ﬁZm) ~ u{7-50) Ro (0 23 /2)
ay o) (o) (o)
Yzo b.(z-: 22 7% O”; 25’/5
(Y(J) ) = ?fzf) ),2727 3:;27 - _'34/;@) 0 % 2K f)/)f’ (3.13.18)
G (3 (3 @ o 5%

X’w %o ).(22 o "O;; -
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Zn O L )
gzo Sﬁl ‘ ggg. 0 & 'J’; /2
Dy ® @ o P
(6211'1) - SZD 52_, 522 = O —6;2 d—fo)z 5‘(__0,.) 3 (3. 13o 19)
@ > @ //67«&7‘)
>
gﬂa gl, S)@ o 073{0 o

It is seen from these results that the initial value field is such that
L >1, as was previously inferred. Indeed only the quadrapole
field (£ = 2) is present.
Therefore, the dynamic dilatation and rotation fields associ-
ated with the relaxation of stress in the region surrounding the shock

i1

induced “crushed zone" of radius Ro is, from equations (3.13.7),

(3.13. 8) and (3.13,17) through (3. 13,19)
60 (s, w) = QZ () cosm@+ L (w)sinm a2 P )
(r,w) = Z f/lzmco osm P+ [, (w)ss jSg %,/F)¢ (558

{3.13. 20)

2
~(1 () 7). . 2) m
S'Z§ )(_];_s W) = mzo ;C;”j ee) 805/’7¢71 QM (w) 5///”7%{5 (%S/Z))i) (6’056)

with (m = 0,1, 2)

@)

(A2m>= 5725 (,e)@ Vet t//%)f( % O >
B A

/- o"a’) (o) @
2on °© I On %

T Y, ,@) 572
Z‘”’)[ %) (2(5*4)

(3.13. 21)



-219-

3&;3(’) 0/_2(0) o;j,/){z
. | @ 2
(C(ZJI)n y = $0-57) (_,@) (ésé)lezéj(/— VeAp)€, (=30, @(;
/4///"~{cr) Vs 0 @ o
T a3 "OE
= + (—2&,/@)5*2
’26*’)[/”(‘/@ Y st (3.13. 22)
Aos. e
- I#g) o
| ) o O -G/
Gy . s0-0) sy (I=U/B)E [ o £ )
(Pom) = 2005 (8 Yo BT 575 G &%
o g% ¢

22 o 512
' gﬁﬁ)}:(%){](/’%éfg)‘ (3.13, 23)

Here m =0,1,2, and j =1, 2,3 for the components of the rotation,
The coefficients have been condensed to matrix form where the index

m is used as a column index. Thus for example

(1) (1) (1)
Cxo Ca ©u3

(i) (2) (2) (2)
(Com!= C20 Ca 22

(3) (3) 503
CZO Cgl) CZZ

The displacement field is, from the transformed equations

of motion

;J.(_:;_, @ = - —%—3—% + 5= (3.13. 24)
and using the formulas expressed in Appendix 4, the spherical com-
ponents of the displacement ;r’ ;9 and ;4) may be obtained. In

general, and specifically in the present case, the nature of the radi-
ation field is much more apparent from an inspection of the solutions

for the dilatation and rotation than from a similar consideration of
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the displacement components, For the present it is sufficient to note
that the solutions show that the dilatation and rotation components of
the field exhibit a quadrupole radiation pattern around the source., A
more detailed investigation of this radiation field will be made in the
following chapter.

Perhaps the most important property of these solutions is the
ease with which they may be transformed to other coordinate systems
and into other types of curvilinear coordinates. As has been indicated
in section 2.8, the transformation to a system of spherical coordinates
with origin at the center of a spherical earth is possible, In the
present case it is only necessary to translate j:he origin of coordinates
along the z axis with no rotations, so that with r', 8' and ¢' the
coordinates of an arbitrary point with respect to the new system of

coordinates and r, the separation of the new and old origins, then

4
o~ é _ , P
8W (! w) =Z Z @é//zjw /10(005@’) - ‘AP
ot (3.13. 25)
9( (B 22— 1k (/7 w)/m"/cosg’)e
L=0 bk=-1
with o
/-
ate) D! e, Oy Ta fd,ﬁ,,(“){
Clsfe) ! P=A-2
e A 1 .
¢-2
RS AP XX T
7‘;" ﬂ/7ﬂo .

(3.13. 26)
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L+2
. 3 ) &)
o) Q0! 7 ) 1770 2 anh, () §
T Rf2

A +kD)
cz(f?(r', w) = for 1<t _ L L2 >
@1+1) %: J/ (/65/10)54 M,éfj;%_fp gp (}(’s/z/)}
L. il (3.13. 27)
with
12- (A, - iB,); for k>0
0, =& B,y s for k=0
lz zgf ff))i (A, +1iB,,); for k<0

. %(C(Zjll - iDgll) ; for k >0
W) = { )
2k C20 ; for k=20

1 (2+[k|)!

5 BRI (C%jl){+iD(2:jll) ; for k<O

and where, from section 2.8 the constants a_ are, in the present

case, given by

=allkl,lkl5e.2 1) = GPr 1) (Pt 1)
¥ ‘ 7 T ) (2rp-L) 1+ p-2)1] (Prh+3)!!
Yy,

xZ'(P—g/é/ Cielk) ¢2)! Aofo)-g 420! 61#(%/##%?@/)
vl Ca-J-Jb1 )| Lalhl+]-P)/ |

The index p ranges through the set £ + 2, £,4-2,

Likewise, one has the results given by the equations (2. 8, 5)
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through (2.8.7) for the transformation of the solution to cylindrical
or rectangular coordinates, Thus the solutions fur induced tectonic

radiation are in these systems

5(9: z, $;0) =22— {/]z; Cos mp + 52;5//'7/?@;/\]; (/e/a) E?(EEE)’?

sz 2N\NA
ok

N % (3.13, 28)
Gez- ™)
~ ' Yy e
Q(ps 2, $30) = Z' f[ casm¢+g,ﬂ 5mm¢?/j’a70) {,/?Jj
_a(,éf,—é)ﬁz

(b~ k)"

for the cylindrical coordinates and

swnmaio 5[ [ (4174257 ety

20 00—

B[ ) By

y(jx/:fé;Zv‘ b Y- (& ’é)/z{a/écf,é
Ckr-kID*

mxy,zw>=~ffj<@' /eﬂéj (ﬂe ‘/?}]

=0 L5 oo

7T féﬂgj b ééj’”]}ﬁf(@ bV S

v cxpl s ik - (674, Yz} Sk b (3.13. 31)
)

(3.13. 30)
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in rectangular coordinates, ) In these expressions the coefficients

A'Zm etc. are related to those in (3,13, 21) through (3.13, 23), by

1 (' (G)
A A C C

2m - (—l)m—l(k )—1 2m : (2;’151 - (_1)m--1(k )-1 Zm

Zm 2m 2m 2m

In the application of these results to wave propagation in a
layered model of the earth it is usually convenient to use (3,13, 25)
for the long period radiation where the curvature will be an important
consideration and (3.13. 30) or (3.13; 31) for shorter periods and for
distances reasonably close to the source where the effects of curva-
ture are unimportant, In this latter case a plane layered model of
the earth is adequate. The application of these results to spherical
or plane layered earth models is quite straightforward, inasmuch
as the solutions have been put in the form of the solutions for the
homogeneous equations of motion (equations @, 2. 15) through (2. 2.17)

and the discussion relevant to them).

)

Here
(m}, ., 4
Pn' (z) = ( 'a';) Pn(z)

FO(z) = (22-)™/? j—rzl——n P_(z)
Z
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3,14, Tectonic Radiation Due to Spontaneous Rupture in a Homo-

geneously Prestrained Medium

Formal expansions for the radiation field associated with
several models of spontaneous rupture have been obtained in sections
3,11 and 3,12, These representations are valid for the growth or
propagation of a rupture zone within an arbitrarily stressed medium.
As in the previous section however, the initial stress field will be
taken to be homogeneous and pure shear. More general cases can
be investigated in the future should this assumption prove too strong.

In the derivations of all these field representations, it has
been assumed that the multipole coefficients for the equilibrium field

could be expanded in the forms

™) a®)
( ) - Z ( (p) ) ™
pnm(T) P=0 Bnm
(3.14.1)
v jcgzx)l
) - Z o/
6nm(T) P=0 anm

.In the course of caléulating the equilibrium fields for the various
rupture models in this section, this unfinished business will be con-
cluded and the assertion will be shown to be valid.

In view of the availability of the results for the change in the
equilibrit'zm ficld in the vicinity of a spherical rupture, the propagating

spherical rupture model will be treated first. In particular, from
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section 3,13, the change in the equilibrium field at a source time T

is

2
®='s(_1;, T) = 721_3; {o(ﬂm(’r)wsmg; +/dzm(’l’)5jh m¢} Em@asa)
m=0

(3.14. 2)
* LS @ "
ngﬂﬁ ‘aZf;gmewavm¢+&m@9ﬂwm?§f’éuﬂﬂ
m=0
where

(a5m(™ )= 2EED TR (0 o7 0)

(Bym(™ ) = ZEADIRMNIP (0 o5} of))/2)

30 (0 0/

%12 %23
: } (3,14, 3)
() = 22 (rm)? (=36l 0 o972
(0) __(0)
0 -o3 "o
0 0 (0)/2
() (g = 5{1-0) 3 0 L0
(650 (™) = T [R(MIT) 0 -opy 3 /2
(0)
0 o3 0

The rupture radius as a function of the source time is, from equation

(3.10,18)

R(T) = — (2 -—=—) vgT (3.14. 4)
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Incorporating this definition in the results (3.14, 3) and recasting

the expressions into the form of (3,14.1) gives

AlP)

( aZm(T)) 6 om .
6. () 2 ( r{P) > T (3. 14, 5)
2m Zm

P=3

A(P) (/42»1 - 3/(40)/42,,4 ” /4 (‘Vf)%z /{V >/42(3>>
58 = (82, -3 gmfi%@@@?Jée(@

(3.14, 6)
e SEEB @) (o0
” 3 )
o = 2203 Gen Y (o e )
ey & o)
b (3.14. 6)
( 5(3)( )> Z( D(P))
P=3 j 2m

3 3>
j (21:1)1_ (J(‘zmaa—%(ac,lzm 5/4(V)2,/ 2m 5“5,< >CZ’”

_]D(Zl?fl)’l - ( 2m ) /Z (V> Dzm /4( ) DZ"' p) /8(\/ > GX)

@)
@ 7 (3% g 4, 5
c3) _ f_Q_:‘;)—- (2"( /e) -3 g0 ” 3(0) (3.14.7)
i 2m = M G-57) 7 o O,/
(o) 0)
o ~ 027 -f/z[
)
&(1-a7? 3 ’ ° "
p3) _ ot/md (zo( g) - g 0)

P2m = //(7-57) o V2 Trs /2
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These results show that the change in the equilibrium field is de-
pendent on r_3 and that the expansion (3.14,1) is also valid. There-

fore the results of section 3,12 are appropriate and so for the case

1/10 < a(oz) <1/2

the radiation field is given by

6z, ) = j ﬁ (/ép/z)[d (@) Coskp + G (o) ’@’] (cose)

,z 2
(3.14, 8)
N = ) 9) ) p
9(?(_1;, w) = Z Z ﬁt ( /fs/z)[ 6} k(w) C'os,@ff og ;/a))j/hé,@]/f (o5 ©)
L=2 k=0 ‘
with
Gm‘“”) (
-4 /)
( o s Sty ()
P
/—z

r%) (/_20(0(2))1 522 f//-/fé—g) {(C] /Z(z))
/W'H) [-L-0 At pil 7-2)

(// @ A (x+1) (2/% )N
(72,o< o sk, A, >)+(Z‘)HZ;24/H) [ )

) y 7 @l (3.14. 9)
L, Qlin s b )L, fz)o;z/‘;/e,,@}

. (ﬂ@,égdo)i
F(?r/)
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7 {3)

G, (w) :

fl; = (A/)j'/:i /4&4,)‘( /"/J—éw)Z (g_@ ( ) :

s 414 [G-8) &, e/ sz)
é( X )" (124" /+ l2) ;( e
T+ r'(l—b—/) (Zfﬁflntj—,z) )

2o

X’é (5230()0 S/Zb&)) (%_) Z%( jvf (S.z;N R&)kg‘ @)

+£”(g o3t AR C2iE ko)

F(gH) : (3.14.10)
whe re
a=L +p+qt+tk-2
and
. Iz
W i ery 2 S L) /R ”*“*2]631/0@
B (s G5RiR) _Z [ fsr+2) (XHH,? / Gé) Fhe1)

Z=0
The parémeters appearing in these results have the following

definitions in terms of a, and b o the final rupture dimensions of

length and depth or width respectively:

a(oz) = ("form factor™)
1- 2a(2)
(55F)
2"\ 0
. o]
3+4f2'f§ 1 4.0.3..,.2 /2 2
52 = — +—Z [f2+8f2+26f2+24f2+8] o~ ——a(z) -1
(o]

B -
g = [f§+52]1/2{1 - - (548, 1} ”



d, = o = :
2 1 - ZOLO12) vp 2a
2y - ZQE,Z))Z VR 5( P \3
o (2) %o §2=1—;— 1__2(_3—
40;0 s o}
1‘{2) - (‘32-]- 1)0'(2)3 kp = “/Vp’ kR = w/vR

The radial parameter RS again denotes the volume within which
essentially all the stress relaxation occurs, That is, it is the radius
of the effective source volume, It is clear that in an application of
this theory to the description of a ncar surfacc carthquake, an error
will arise from the implicit assumption that stress relaxation takes
place throughout a spherical volume surrounding the rupture. In
actual fact this obviously cannot be the case since the medium does
not extend beyond the bounding free surface. However, if the actual
rupture zone is not too near the free surface, this error will be
negligible since the contributions to the theoretically predicted field
from the effective source region actually lying beyond the true
boundary oif the medium will arise from changes in the theoretical
equilibrium field which are small compared to those near the rupture,
so that the radiation contribution from this fictitous zone also be
small,

The radiation field for this propagating spherical rupture is

seen to correspond to a superposition of multipoles, the lowest being
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a quadrupole term, The coefficients for the multipole terms are
proportional to [I‘(l +1)] -1 and so the multipole contributions fall
off with increasing !, Thus the quadrupole field is, on this simple
minded basis, weighted more heavily than the higher multipoles.
Clearly however, the dominent multipole contribution to the field

at a given distance from the rupture will depend on the frequency
range of the radiation observed, particularly in view of the factors
(kpao)jz and (ksao)l in these results, Thus, for frequencies at
which these factors are appreciably greater than one, other higher
multipoles may be dominant or at least comparable to the quadrupole
term. In addition, the results show a rather complicated dependence
on the source parameters. In view of this complexity, a numerical
investigation of the coefficients as functions of w and the source
parameters is carried out in the following chapter,

The field for the case
(2)
o < 1/10

is obtained in exactly the same manner., The results are given by
the equations (3.14. 6) - (3.14. 8) without modification, while the
coefficients sz, etc., in the multipole or spherical wave expansions
have the approximate values given by (3.12.49) and (3.12.50). Thus,

with n = 2 in these latter relations
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G, (w)
(Ik >=(/) _’71(4130) /{;’HJZ(%‘)(@) ( (p))

Byl
L-2
Z "Qaj/:z) G ,za((z))'('l’ 2\ (Aeprli-2)
D ey L deptgd)

() . (2) &) (2) /P (-,2[ .Z,z’éfao
{ﬁ; (Tup¢ 505 ko, )+£ (Z,05% 3 p )/"(7"/) (3,14, 11)

#2

(J)(w)
(AS‘(({JIZ(w): (—/) f @b a» )1 /—Zl’é#/)z (m>(z'5;> ( rP))

-k
£

[

Z Y )L (7-2.2)" tioz eprdt)
i ey L, eptlt 72

L=o
7<
“a. @ “ 22 k.K,) EBARN
(3.14.12)

with a=1 +p+ q+ L - 2, The parameters previously listed define
most of the symbols appearing in these results and the additional

parameters are defined by

1 (2) (2)
b, = —5+ r, =2(1-a
277 o2 T2 (A -a57)2,
o
The radiation field associated with an ellipsoidal rupture,
whether of the propagating or expanding rupture variety, is dependent

upon the multipole coefficients appropriate to the equilibrium field

in the region surrounding an ellipsoidal, traction free boundary within
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the prestressed medium., Therefore consider the formulation of
this latter problem in the form given by the equations (3. 7.10) -

(3.7.17), that is for

2 %

vi* 4+ (Ve = 0 (3.14.13)

T -

u = of/rY), e=s2
where, on the ellipsoidal boundary

(c::) -0, )n, =0 (3.14,14)
then solutions of (3.14,13) are

= V(6 + e w) - 4(1-0)w (3.14.15)

with the potentials ¢ and w given by

V=0, Viw=0 (3. 14.16)

Thus ¢ and the Cartesian components of w are harmonic functions.
In view of the geometry of the boundary value problem, it is obwviously
best to treat the problem in ellipsoidal coordinates from the beginning,
This syétem is described in Appendix 7. If the prestress field o-j(‘:?)

is prescribed as a homogeneous field in Cartesian coordim tes, then it
will be neces'sary to transform this representation to the ellipsoidal
system, Thus adopting this initial description of the prestress field,

the required transformed stress ficld is given in Appendix 7. Further-

more, it is of considerable advantage to use the Cartesian components
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of the vector potential w, expressed however in the ellipsoidal
variables, In this case ¢ and the components s k=1,2,3,

may be treated together as harmonic functions, The expression of
the stress U; in terms of ¢ and the @ is also given in Appendix

7, so that the boundary conditions (3,14, 14) take the form

* _ (0)

T 2

PR P

* _ 0)
o-pv = crpv . (3.14.17)
(T* = (T(O)

pp PP

on the ellipsoid surface p = constant, and these expressions provide
the necessary conditions on the potentials to determine all arbitrary
coefficients,

The potentials ¢ and W, are ellipsoidal harmonics, a
description of the properties of these functions and a list of the first
few are given in Appendix 8, The theory and notation employed is
that given by Hobson (1931). Thus, in terms of the Lame functions

defined in Appendix 8

cb(PaHa V) = Z

(3.14.18)

Substitution of these solutions into the boundary conditions {3.14,17)

gives a set of equations which determine the coefficients a,, and
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k . . .

C(mi' These equations are extremely cumbersome as is evident from

the expressions given for the stresses and strains in Appendix 7, but
it may be seen by inspection that the boundary conditions may be

satisfied if the potentials are chosen to have the forms (expressed

explicitly in terms of the functions and parameters given in Appendix

8)
Pp,p,v) = 2;4 # —f(f’ 4)0<f[1/+—a(/o 4)«}
z fd)f R kAl
Gy G o P T G [ R
+ Qs ’f(/)./ 2 4 //ZZ:/" /é"._y" [6=v* (3,14, 19)
o o I [+« G T

/Z)F ’//)/"V # C}f/;fﬁ)l//?’f/z“ =Y (3.14.20)
o= CE p e ST /[;7/—'

€
xS}
[
O
~

As a practical matter the coefficients in these solutions are obtained
by substitution of these potentials into the stated boundary conditions
and by then equating the coefficients of the independent functions of p
and v to zero. The procedure is extremely arduous, but neverthe-
less posses no basic difficulties., Tnasmuch as an acceptihle ruptui'e
model has been obtained in the form of the propagating spherical
rupture, the determination of these coefficients in terms of the

ellipsoidal rupture dimensions, is not a pressing requirement for
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the preliminary applications to be considered in the present study.
Therefore the results as expressed in (3,14,19) - (3,14, 20) are con-
sidered adequate for the purposes of the present study, and represent
a starting point for future applications.

While it is deemed reasonablc to postpone the explicit doter-
mination of the coefficients, it is however necessary to show that the
dilatation and rotation derived from these potentials can be put in
the form of a series of spherical harmonics as in (3,10.7), since this
is required in the dynamical theory previously formulated. In
particular it is necessary to compute the coefficients in a spherical
harmonic expansion of the equilibrium field, This can be accomplished
by transforming the ellipsoidal harmonics to spherical harmonics,
This is done in Appendix 9, employing the operation relations given
by Hobson (Chap. XI), Since the dilatation and rotation are related

to the vector potential w by (Appendix 7, equation (7-13) )

Bwk
© = - 2(L - 2¢) T
k
(3.14. 2)
Q;=-20-0) €ijk Bx

k

then it is only neceésary to consider the expansion of the potentials

w, of (3.14. 20), The required expansion is given by the results (9-7)
through (9-9) in Appendix 9 and when incorporated in (3. 14. 21), givés
the necessary spherical harmonic expansion for © and the com-
ponents of §.

Therefore, in principle the proper expansions for the equili-
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brium field have been obtained and the results of section 3.1l and
3,12 are directly applicable., Practical application of the results
yet requires some rather tedious algebraic manipulation however
and will be taken up in future studies.

As was the case in the previous section, it is possible to
express the solutions for either the propagating or expanding
rupture models in other coordinate systems by applying the results
of section 2,8, Here'the solutions for all the rupture models have
the form of (3.14.2), which is, as required, also the same form
as for the case of induced rupture. However in the present case
the transformation is not quite as straightforward, since the
source coordinates are fixed by the long (a) axis of the rupture
ellipsoid. For the induced spherical rupture it was clearly possible
to choose the source coordinates so that the =z axis was either
parallel to the eartHs polar axis or normal to the earths surface
directly above the source, since the initial stress field could always
be adjusted to conform to the system desired, For spontaneous
rupture however, the rupture surface itself has been used to fix
the coordinates so that a rotation of the source coordinates to a
suitable fixed reference frame is eventually necessary for applica-
tions, In this way the remaining source parameters specifying the
orientation of the rupture relative to the earths surface (strike and
dip) and its location relative to the polar and equitorial axes (hypo-
center) will be incorporated in the solutions,

The solutions are best transformed by first cxprcseing them
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in a translated spherical system at the center of the earth, by the
formutas (2. 8. 3) - (2. 8, 5) of section 2. 8, The coordinate relation-
ships involved are indicated in Figure 15, These results are ob-
tained by mere substitution of (3.14.9) - (3.14,10), for example, in
the indicatcd rclations and ncéd not be reproducced heres As a
second step the boundary conditions fixing the coefficients in the
homogeneous solutions would be applied to yield the complete solu-
tion in a layered spherical earth model. Such a solution would be
expressed in terms of spherical coordinates relative to a system
whoseé polar axis did not necessarily coincide with the rotational axis
of the earth as in Figure 15, These solutions could however be
expressed in a system coinciding with the rotational axis by utilizing
the relationships between the surface harmonics in two relatively
rotated systems. In particular Sato (1950b) has given explicit
relationships suitable for computational purposes, These relations
need not be given here since it seems sufficient, for the present
study at least, only to make note of their existence in order to outline
the general approach for future applications of the source solutions,
Thus, it seems clearly estahlished that the general solutions
obtained for spontaneous rupture can be transformed in a manner
which allows the oscillations within é. spherically layered earth model
fo be calculated, The sdlution will contain as parameters, the co-
ordinates of the hypocenter of the source as well as the rupture
orientation and dimensions, the initial stress field and the speed of

rupture growth or propagation.
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Chapter 4

PRELIMINARY APPLICATIONS OF THE THEORY

4.1. Introduction

The applicationslof the present chapter will be those which,
while making use of the previous general theory, are the simplest
and most straightforward. There will be no special attempt to
follow therather systematic development of the preceding chapters,
but rather a few problems will be selected and treéted in a rather
prcliminary and looscly connected fashion. Most of the applications
considered are indicative and generally connected to some of the
more ambitious applications that are envisioned for the future.

Some of these programs are mentioned below. The following
practical considerations will serve as an illustration of the potentiali~-
ties of the theoretical solutions in the analysis of the many aspects

of rupture phenomenon in the earth.

The most directly related applications of the theory are
comparative studies desighed to show the degree of accuracy with
which the radiation field is predicted by one or the other of the
models proposed in this study. Next, the inverse problem involving
the prediction of the source parameters would be of even greater
interest and iinportance. Unfortunately crucial uncertainties usually
exist in the independent estimates of the source parameters. There-
fore a rather wide range of source parametcrs could rcasonably be
used in a comparative study with a measured field and the results

of such a study would not be very discriminating.
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Ideally, a controlled experiment in which the source param-
eters are known with certainty is the most suitable approach at
present. In this case the predicted field could be compared with that
observed and the accuracy of the model assessed, while an estimate
of the nature of the uncertainties in predicting source parameters by
forcing a match of the fields could also be made. While the required
control is, almost by definition, absent from occurrences of spontane-
ous rupture, some degree of control is present in the case of shock
induced rupture associated with underground nuclear testing. Thus,
while uncertainties in the source parameters are not totally absent,
they are reduced to a relative minimum and it appears that under-
ground nuclear explosions may provide the most controlled experi-

() Indeed the development of the theory for shock

ment available.
induced tectonic radiation has been, at least in part, motivated by
the possibility of its use in a controlled experiment. Thus in the
present chapter, many of the applications made are constructed to
serve as a means of accurately predicting the radiation field through
use of the available nuclear blast data.

The first order of business then is to show that tectonic energy
release can and in fact does occur with such an explosion in pre-

stressed media. Next, the detailed evaluation and subsequent com-

parative study of the radiation field from such a source would follow,

(I)Certainly laboratory modeling of a tectonic source is an alternative.
However a realistic model of a tectonic source is non-existent and is
probably some few years in the future.
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In the present chapter the theoretical phase and amplitude spectrums
for shock induced tectonic radiation are computed as is the expected
energy release. Using Haskell's static theory for contained under- .
ground explosions, (Haskell, 1961}, the radius of the rupture zone,
as-a function of explosive energy, is estimated and a theoretical
"scaling law" for tectonic energy release versus explosive energy
and initial stress is obtained, The tectonic energy release predicted
by this law for several assumed prestress fields and known bomb
yields is compared with the observed energy of anomalous radiation(l)
from a particular underground explosion experiment. From these
considerations, the inevitability of tcctonic encrgy release from
explosions in prestressed media is established. Further, the con-
jecture that all or nearly all of the anomalous radiation observed
arises from this particular phenomenon becomes, as a consequence
of the relatively low prestress values that are required in order to
give an energy release of the order of that observed, highly plausible,
Indeed, in view of other supporting evidence such as the occurrence
of rather distant associated after.shocks, a conclusion to this effect
is almost inescapable., Since the magnitude of the stress field re-
quired to explain the anomalous radiation is reasonable, then it is
concluded that a controlled comparative study is possible, the only

unknown source parameter being the orientation of this initial stresas

1)

The anomalous radiation is that part of the observed radiation
field which cannot be assigned directly to the conversion of the
shock wave to a compressional elastic wave.
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field. Under these conditions a comparative study of the controlled
type desired could be made with minimum uncertainty by varying

the orientation of the initial stress field to give the best fit to the
observed radiation. Thusv, the radiation field computed should pro-
vide the means of predicting the detailed nature of the anomalous
radiation and in addition the means of deducing the detailed nature

of the initial stress field. A study of shock induced radiation can
thereforc lcad to cstimates of the prestress condition of the material
near the earths surface in tectonically active regions, Further, the
stress field determined in this manner could be used to predict the
radiation field from any nearby earthquakes, assuming the initial
stress field to be regional in character. In this way a reasonably
controlled comparative study of the two types of tectonic source
could also be made, In addition one might at least hope that some
easily detectible differences between the radiation fields from
underground explosions and earthquakes could be substantiated in the
course of such a comparative study.

All of the more extensive and detailed applications for con-
tinued study are basically related to the preliminary applications
considered in this éhapter. Some of these projected studies are
as follows:

(1) Numerical computation of the surface wave and forced oscil-
lation excitation for all source models as a function of period

and the source parameters for use in comparative studies.



(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Extended computations of body wave spectra, with considera-
tion of propagation effects, especially on amplitudes. (Near
surface reverberation, dissipation and dispersion effects,
interference of the phases, refraction effects, etc.)

Energy calculations for all source models and comparison
with "observed" values.

Computation of theoretical first motions for P and S waves
and comparison with existing theory and observation.
Comparison of the observed near source static strain with that
predicted theoretically,

Deduction of the rupture zone orientation and dimensions, the
rupture velocity and nature of the initial tectonic stress field
from measurements of the radiation from rupture sources,
utilizing both body wave and surface wave amplitudes and phase
information.

Coupled with (6), a comparison of rupture models in an etfort
to determine which rupture model best agrees with the ampli-
tude and phase characteristics observed for a given rupture
event,

Investigation of observed source characteristics with respect
to epicenter and depth, to ascertain whether fundamental
differences in source characteristics occur between different
spatial domains.

Coupled with the comparative studies above, a simultaneous
study cf uniqueness and error estimation.

By and large these efforts at comparative studies are already
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underway, although with greatly simplified source models. An
accurate estimation of thesource properties, especially the initial
stress field, is probably the most important information to be
obtained from a comparative study in view of the physical inferences
that could be drawn on the basis of such information,

In the context of the above framework of experimental and
applied work, the applications of this chapter are an attempt to
accomplish the preliminary work required for an approach to any one

of the detailed programs contemplated above.

4, 2. The Radiation Field from Natural Tectonic Sources as a

Function of the Ruptui'e Dynamics and Geometry

In order to utilize the theoretical predictions expressed in the
previous chapter in a practical way, it is necessary to have the
capability of expressing the radiation field numerically, Indeed it is
imperative that the complicated representation be reduced to a simple
and readily available numerical representation for comparison with
the observed field if the applications suggested in {4.1) are to be
realized. This is accomplished in the present study via a computer
prograrﬁ which fumishes the radiation patterns for tectonic sources
as predicted by the results of Chapter 3.

In particular the amplitude and phase of the direct radiation
field from the propagating rupture source are computed as functions
of frequency in terms of the multipole coefficients for the dilatation
and rotation. In addition the amplitude at any frequency, or for any

range of frequencies, is computed as a function of the azimuthal
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angle around the source,providing then a means of completely
specifying the directional properties of the field. These numerical
results can of course be obtained for any distance and for any com-
bination of initial stress, rupture velocity and so on. Examples are
given in the present section to illustrate some of the important
properties of the field.

Consider then the radiation patterns to be observed on a plane,
corresponding to the surface of the earth, located a distance H away
from the point of initial rupture. Two cases will be distinguished in
this preliminary study, that is ruptﬁre corresponding to purely
"strike slip" faulting and to "dip slip" faulting., In the former the
direction of rupture propagation is parallel to the earths surface
while in the latter it is normal to and away from the surface. Figure
16 indicates these relationships schematically, wherein a surface
azimuth X\ and. epicentral distance p are introduced. The direct
radiation field from the source is projected on to this surface and
the radiation patterns computed in terms of \ and p.

The computation of the source field envolves, essentially,
the computation of the multipole coefficients given by (3.14.9 )
or (3,14, /1), asc ie appropriate. Figure 17 givee the amplitudes of
the first few of these (i.e., for £ = 2, 3,4) as functions of frequency
while Figure 18 indicates the phase variations, The particular
rupture parameters chosen are given in Figure 17, The amplitude
and phase characteristics of these coefficients can be described in

terms of the ratio of radiated wavelength \ to the length of the
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rupture zone 2. Here \ is va or vST, depending on the type

of wave in question. Thus for [ao/).] <<'1 the phases of all the
coefficients are nearly constant and -equal to zero {or 2w), The
amplitudes on the other hand are widely separated and the various
coefficients vary as [ao/?\]ﬂ, essentially. Thus the coefficients with
the lowest values of £ dominate, that is, those with £ = 2. The
field is therefore quite simple in this long wavelength 1limit since the
lowest order multipole completely dominates all others as is indi-
cated in Figure 17. This will manifest itself in the theoretical radi-
ation patterns as well, In the intermediate range where ao/K

is approaching unity, the other multipole coefficients begin to become
comparable to the quadrapole term (L = 2) and the dependence of the
amplitudes on frequency is more complex, although yet approximately
the same as in the long period range. Thec phascs in this range

vary relatively rapidly, although monotonically. Near [ao/}\]“' 1

a rather rapid transition occurs and a point is reached where the size
of the coefficients is nearly the same and the slopes of the curves
have decreased indicating, to first order, a power law dependence on
the ratio [ao/)\] which is different than in the long period limit. The
phase variation is somewhat similar in that a limiting value is
approached at short periods. This period range is by far the most
interesting in that it shows the effects of rupture growth and the
causality effects associated with stress relaxation. The computations
were carried out up to the radiation frequency corresponding to

wavelengths of about | the rupture length,
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It should be emphasized that the variations of the coefficients
shown in these figures as functions of frequency are to an appreciable
extent. independent of the rupture dimensions, but strongly dependent
on the ratio | a0/7\] - In particular the slopes and transition regions
for these coefficients as functions of period depend.almost entirely
on this dimensionless ratio, so that effects can be scaled to represent
any rupture length. The magnitudes of the individual multipole
coetificients do however increase directly with the length of rupture
and the magnitude of the initial stress field.

In order to demonstrate more clearly the nature of the field and
its dependence on the rupture parameters, radiation patterns are
shown for two extremes in the frequency range and for different
orientations of the initial stress field. Thus at a period of 1. 25 sec,
corresponding for rotational waves to a wavelength such that ao/xzﬂ. 65,
Figure 19 shows the radiation pattern for the dilatation and rotation
components for a strike slip fault at a distance of about 300 km. These
patterns show the displacement amplitude and phase as functions of
the azimuthal angle around the source. The scale divisions for the
amplitude are indicated for each separate radiation pattern. The
arrow denotes the direction of rupture propagation and the x and =z
axes on the plane, repre sentirig the garth's surface, are also indicated
(See Figure 16.) The depth of source H, is 3 km and the initial stress
field is such that the corresponding strain is, in terms of the initial

field parameters s., = 2e,.,
1] 1)

= L -
€;2 = 3 8y, = 0.0005
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The patterns shown correspond to a superposition of the first
four significant multipoles (£ = 2,...,5), and it is evident that at
this period the individual multipoles superpose in such a way as to
give a rather strong directional asymmetry, in the direction of
rupture propagation. Thus with reference to the previous figures
(17-18), this case corresponds to a period value at which the multi-
pole coefficients are of comparable magnitude, although the magnitudes
decrease with increasing order £. In addition the amplitudes and
phases are just such that the field has the expected asymmetry for
radiation approaching the rupture dimensions. This property of
tectonic sources has in effect been observed by Ben Menahem and
Toksoz (1962) as was previously noted,

These particular computations show that both the amplitude
and the phase is affected by the rupture growth and from this example
and subsequent computations, it is observed that the phase is some-
what more sensitive to rupture growth. The relative magnitudes
of dilatation and rotation for this particular case indicate that the
dilatation is at least ten times smaller than any of the rotation com-
ponents. The fact that P wave amplitudes ape apprsciably smaller
than S wave amplitudes for tectonic sources is a well established
fact, however the differences do not seemingly amount to so large a
factor. However the spectral character of the P and S body
phases is not known with any high degree of certainty, indeed little

precise work has been done, so detailed conformation of this particular
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aspect of the results may come when more detailed investigations
are performed, It is, however, undoubtedly true that if a density
change were incorporated or if the initial hydrostatic field were
accounted for in the theory, then a larger dilatation field would resuit.
Of the field components shown,the rotational components
(91 and 93) corresponding to vertically polarized shear waves (SV)
are large compared to the other motions. This result is dependent
on the orientation of the initial shear field relative to the rupture,
Figure 20 shows the effect of a change in orientation of the
initial shear field. In this case the only parameter changed from
the previous computation in Figure 19 is the initial strain, taken as
€53 = 0.0005, In this case it is interesting to note that asymmetrical
radiatiqn occurs, but that the largest motion, corresponding to Ql’
is in the opposite direction to the rupture propagation. Thus con-
structive interference may occur either in the direction of rupture
propagation or opposite to this direction. Both the phase and ampli-
tude of ), show this effect. Ben Menahem's (1961) "directivity
function" indicates a similar result for surface waves generated by a
moving line source., All the other motions have "normal" directional
properties and it appears then that SH and SV waves from the same
source can show, simultaneously, opposing directional asymmetries.
The affect is undoubtedly due to the propagation of the rupture zone
but nevertheless depends on the relative orientation of the prestress
with respect to the rupture zone, since this affect was not manifested

in Figure 19. The phenomenon is further complicated by the dependence
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on the rupture velocity.

Figure 21 shows the radiation patterns for the same rupture
parameters as before but with yet a different orientation of the stress
field. In this case the component 92 of the rotation is larger than
all others indicating large SH wave generation. Constructive inter-
ference occurs in a direction opposite to the direction of rupture pro-
pagation for this rotational component while the components for SV
type motion and dilatation are normally directional and of nearly
equal magnitude. From the three sets of radiation patterns in
Figures 19 through 21 it is evident that the properties of the radiation
field are strongly dependent upon the orientation of the initial stress
field with respect to the rupture and the surface of measurement,

Figure 22 corresponds to theradiation patterns of Figure 19
for longer period radiation. In this case [ao/)\]"' 0.16 and so,
corresponds to the intermediate range of frequencies where the quad-
rapole term is beginning to dominate the other multipole contributions.,
It is clear that the amplitude variation has lost most of its asymmetry
at this longer period. A close inspection of the patterns does show
a residual asymmetry along the line of rupture propagation, but it is
slight. The phase asymmetry is observed to be somewhat more pro-
nounced than that of the amplitudes., Figure 23 shows the radiation
of 5 sec period for a stress distribution corresponding to that of
Figure 21, with the other rupture parameters the same as well., Again
the effect of the rupture propagation is slight.

It is clear from ctomparisons at these two periods then, that
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at longer periods the tectonic source has essentially the properties
of a simple quadrapole. The effects of rupture growth or propaga-
tion however continuously manifest themselves, becoming more and
more pronounced at the higher frequencies. In particular, the volume
effects of stress relaxation and rupture propagation for thc modcl
considered become noticeable for frequencies such that [aO/X] > 2m,
that is,such that kao > 1 where k is the wave number appropriate
to the type of radiation in question. This phenome_non is well within
the range of seismic observation and indeed for large earthquakes
corresponds to the frequency range of maximum observed energy.

Figure 24 shows the radiation patterns for "dip slip" rupture,
where the rupture propagation is away from the plane over which the
field is projected as in Figure 16. The rupture parameters are the
same as in the previous examples except for the orientation of the
rupture. The stress field is taken to correspond to that considered
in Figures 19 and 22. Thus it is clear that even at this relatively short
period, there is no observed asymmetry due to rupture propagation.
The reason for this is easy to visualize since the enhanced radiation
amplitude is either in the direction of rupture growth or oppositc to it
and when projected on the plane normal to this direction cannot be
seen. In a spherical earth however the asymmetry would be observed
at distances éuch that the normal to the surface of observation is not
coincident with the direction of rupturing.

In any event, it is clear that "dip slip" rupturing will appear,

in terms of its radiation pattern, to be considerably different than
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than "strike slip" rupturing. This implies that the effect of the
rupture orientation with respect to the normal to the surface over
which the field is observed, strongly affects the observed field
symmetry,

The nature of the radiation field from a tectonic source is then,
as is observed, most strongly influenced by the magnitude and orienta-
tion of the initial stress field and the rate and orientation of the
rupture propagation. The examples of the present section have
served to illustrate these properties in detail, but most important
for future work is the existence of the means for rapid automatic
computation of the multipole coefficients, Thus, coupled with the
expansions given in section 2. 8 and the theoretical considerations
for the boundary value problem in layered earth models of section 2. 2,
these results can be used to compute the excitation of oscillation
spectra for the earth in a relatively straightforward manner. Such
computations then lead to comparisons with the observed spectrums
and estimates of the initial stress and rupture parameters. On the
~ other hand the present results can be used directly for prediction

and comparison of body wave radiation.

4,3, Energy From Tectonic Sources

It has already been shown in section 3. 8 that an estimate for
the bounds on the energy Er radiated from a tectonic source is

given by
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1 %k 1 (0) (0)
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! " (4.3.1)
This relation will be used to compute the energy release due to shock
induced rupture in a prestressed medium (Press and Archambeau,

1962).

Let the initial displacement field be

A~

(0)
1251

u = s (4.3. 2)

and in this case the prestress is a pure shear field such that

%12 T H512

The appropriate boundary value problem is that given by (3. 7. 6) and

the general solution given by Love (1944) is, from (3. 7. 8)

9 8 9, 1*2  3a+8p o, 2

*_ 2 _ ~2 1
Bo= (BTG o Bx, ) T3 300w U3 T3

1 2 3 r r r
(4. 5. 3)
where B and C are constants given by
3(AFp) _ 30 2
B = gaFidu R%Z, c N4y R%s7) (4.3.4)

with R the rupture radius,

b A
The strain differences eij are easily shown to have the form
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«  5BP.(0,0) 5CQ, (e, 9)

eij = r5 + r3 (4. 3. 5)

where r, 8 and ¢ are spherical coordinates and the matrices Pij
and Qij are given in the Appendix 10, On the other hand the initial

strain is of course just

JM0) 1

12 = 3 %12 (4.3.6)

in this case.
Substitution of these relations for the strains into the energy

integrals of (4. 5.1) yields upon integration

2 2
P12 4 _ 3, p L < M12 403
s= (3 L) = E = —=5 (7)) [1+4(£)]
(4, 3. 7)
with
378 +1596( £ ) +1568 (&)2
f(%): A N

576 +1764( &) +1372( & )2

The function f( % ) is a rather slowly varying function of the ratio

})% and has bounds

wl

= f J)i\ ) = 1,14
For the most common situation A a p and
f(1) = 0,957 =< 1.0

Thus it would seem that aboul an equal amount of energy is released
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from outside the ruﬁture due to relaxation as was originally stored
within the spherical rupture zone. Thus the bounds on the tectonic
energy released are, approximately, between the total shear strain
energy originally stored within the rupture zone and twice that value.
As a conservative estimate, Er will be taken as the lower bound,
the energy originally stored within the rupture volume being at
least in part assumed lost to the coherent radiation field. Thus

for this induced rupture phenomenon the tectonic energy release is,

approximately
HSZ
~ 12 2R3y B
Er___ > (31TR)f()\) (4. 3. 8)

It is clear from this expression that the energy release is critically
dependent uponthe volume of the rupture region created by the ex-
plosion. In the following section an estimate of the value of R for
a given explosi{re energy will be made based on the static theory
proposed by ITaskell (1961), It can be seen that the liklihood of an
appreciable tectonic energy release is critically dependent upon this
estimate,

The energy release associated with natural rupture in the earth
is likewise computed in the same manner, that is using (4. 3.1) with the
appropriate expressions for ellipsoidal rupture. The expressions
given in section 3,14 for the equilibrium field in .the neighborhood
of such a rupture are appropriate, the integrations being straight-
forward but tedious, This particular computation will be left for

future consideration,
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4.4, Scaling Laws for Tectonic Energy Release Associated with

Explosive Sources

The evidence in favor of the occurrence of appreciable tectonic
energy release from several nuclear explosions has accumulated from
a number of studies since the initial study of this possibility by Press
and Archambeau (1961). These authors, following suggestions of the
possibility by Porzel (1959) and Latter (1960), estimated the energy
release by use of formula (4. 3. 8) and concluded, tentatively, that
while such release of energy undoubtedly did occur, its affect on
the radiation field observed would be small. It now appears that the
magnitude of the affect was underestimated and that certain features
of the radiation field are strongly affected.

The original phenomenon observed which suggested tectonic
stress release was the large SH wave motion in the radiation field
from some underground explosions of large energy, in particular the
Ranier nuclear explosion. Since it is not difficult to show that no
radiation of this sort would be generated by an ideal explosive source
in a layered earth model, it was naturally concluded that some
appreciable departure from the idealized model was responsible, A
number of possibilities are apparent, in particular

(1) Mode conversion of compressional or SV type motions along
the path due to lateral inhomogeneities within the medium. -

(2) Strong inhomogeneities of structure or in the yield character-
istics of the material in the source region leading to mode

conversion essentially within the source volume itself.
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(3) Tectonic energy release due to stress relaxation in the elastic
zone around the shock induced rupture volume.

(4) Tectonic energy release due to secondary rupture arising from
the existence of a weak zone and pre-existing stress which,
when coupled to the pressure field from the explosion, results
in failure (fracture) along the weak zone (!triggering of an
earthquake").

The first of these possibilities was considcred unlikely by
Press and Archambeau inasmuch as the travel times of the SH phases
indicated that they originated within the neighborhood of the explosion,
In addition the abrupt initial motion associated with these waves is not
indicative of mode conversion along a long path., Finally, the fact
that many air explosions and earthquakes having almost no SH motion
have been observed, indicates that very little mode conversion occurs
along paths within the earth,

It is more difficult to chose among the remaining three. The
second of the possibilities corresponds to the residue of all non linear
behavior not inconsistent with the observation of SH motion generation
within or very near the source volume., As such it is difficult to
conclusively eliminate or,on the other hand,to accept on the basis of
the available evidence., A different tactic may be adopted however,
and that is to show that all the observations including SH wave-
radiation are consistent with tectonic energy release. Indeed tectonic
release must occur, the question being only whether the affect is

large enough to explain all the observations.
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The necessity of tectonic release follows from the fact that
the region in which the explosions took place is known to be tectoni-
cally active and numerous earthquakes have occurred nearby. From
the previous theoretical considerations it follows that introduction of
a cavity or crushed zone, as is associated with such an explosion,
into a prestressed medium must result in the release of strain energy
in the form of elastic waves.,

The essential qualitative observations concern first, the fact
that aftershocks have been observed from the near vicinity of the
explosions (Press 1963). This indicates first the existence of a
tectonic stress field which was probably a shear field since failure
occurs most readily in this case,and second that a large and drastic
readjustment must have occurred in this field resulting in creep
phenomenon and eventually further rupture. In addition,Hoy (1963)
has observed displacements within an active fault zone in the vicinity
of one of the large detonations (37kT yield). In particular the motion
was such as to create a vertical scarp with maximum displacement
of 3 inches which could be traced 6000' north and 10, 000" south from
the point on the rupture closest to the explosion point, which was 3300’
east of the fault, Thus the movement in the fracture zone centered
at a point 2000’ south of the point nearest the shot point rather than
at this point. In addition the displacement on the fracture was down
on the side toward the shot consistent with previous tectonic move-
ment, If the movement had been due solely to the shock wave from

thc sourcc, one would expcct the displacement to have:centered at
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the point closest to the shot and that the motion would have been, if
anything, upward on the side towards the shot since the explosion

was centered at a depth of nearly 1500 ft. Hoy thus suggests tectonic
stress release on essentially these grounds. In this case it would
appear that both (3) and (4) of the possibilities listed occurred,

Not in all other cases in which anomalous SH wave radiation occurred
was secondary rupture of this sort observed, but in such cases (3)
alone could serve to explain the phenomenon,

More quantitatively, P waves observed from these explosions
always show compressional form as expected for a purely explosive
source, The release of tectonic energy is consistent with this
observation inasmuch as the P wave has been shown to be much
smaller than the SH motion for certain stress distributions associated
with spontaneous rupture. This will also be shown to hold for shock
induced rupturev in the following section. Thus large SH wave motion
can be produced, having in fact energies much larger than the energy
associated with the observed P wave, without affecting to any dis-
cernible degree, the compressional first motions for the P waves
from such a composite source,

Toksoz, Ben Menahem and Harkrider (1964) and Brune (1963)
observed that the surface wave radiation patterns, in particular
Rayleigh waves, from a number of underground nuclear explosions
showed clear e_vidénce of quadrapole radiation., Thus, in addition
to the existence of SH motion, such as short period Love waves,

the Rayleigh type surface waves also exhibit an anomalous component.
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It has been shown in section 3.13 that shock induced tectonic radi-
ation exhibits just such quadrapole radiation. In the following
section detailed numerical examples are worked out which show these
properties and that this particular type of tectonic source has no
asymmetry due to rupture propagation as does spontaneous rupture.
Thus due to this difference, the possibility of distinguishing between
secondary rupture and shock induced rupture as the major source

of the anomalous radiation exists. Toksoz, Ben Menahem and
Harkrider have in fact shown that the observed Rayleigh radiation
can be described by the superposition of a symmetric compression
source and a symmetric quadrapole, suggesting shock induced
tectonic release,

The observations are then consistent with the tectonic release
hypothesés. It is difficult to conceive of a nonlinear mechanism at the
source which could explain these observations so well. The final
conclusive acceptance can come only with many observations of the
different manifestations of tectonic release, however the evidence
cited above, by itself, seems quite strong., Theoretical estimates
concerning the expected energy release from particular explosions
exhibiting anomalous radiation provide the final conclusive evidence,
from the viewpoint of the present study. In particular, these energy
considerations, given below, show that ample radiation energy can
be derived from tectonic release due to shock inducted rupture for in-
itial stresses of the order expected in the earths crust. Coupled

with the dynamical results obtained in 3.13 and the following section,
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this mechanism of stress release is accepted as being the process
responsible for the observations. Consequently the energy release
formulas obtained below are intended to serve as scaling laws for
the prediction of energy release for additional work, as suggested in
4.1,

The non-linear phenomenon giving rise to a rupture zone
has been described in numerous reports and publications (e. g.
Haskell (1961), Bisﬁop (1963) ). Figure 25 furnishes a schematic
representation of the zones of non-linear behavior around the ex-
plosion. The zonal radii used have been chosen to correspond,
approximately, with those employed by Haskell while the division
into zones of behavior is a modification of Bishops detailed description.
From the viewpoint of the present study, the rupture radius, which
is denoted as RZ here, is the parameter of interest.

Haskells application of a modified Coulomb-Mohr yield
criteria to the rupture phenomenon gives an estimate of RZ in

terms of the other source parameters. This estimate is given in

terms of the following set of equations.,

B\ L k(o +P,) R\ 3(o)+P ) L4 4K (f‘_z)
R;) p(3-K) R] GaFz ) 3-k \K;

R\™ 1/3 .
- 3.g1__+;<_) (.ﬁ) { ] (4. 4.1)
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p = 3l (-R-") (4. 4. 3)
4R 1
o
where
R = Vaporized cavity radius

o]

R1 = Final cavity radius after compression of the medium

RZ = Radius of the rupture zone

W = Explosive yield in ergs (1 kiloton = 4, 2 X 1019 ergs =

1012 calories)

= Final cavity pressure

i

Initial hydrostatic pressure within the medium, at the

shot point (overburden pressure)
A, b = Elastic constants of the medium

= Ratio of specific heats of the gas formed within the cavity

k = sin ¢; tan ¢ = Coefficient of internal friction on internal
vield surfaces within the medium
¢1 = ¢0 - ptan ¢; o, = Related to the uniaxial tensile strength

of the material, o ,by o =13 ol +sin $)/sin ¢

o
p = Fluid pressure in the pore spaces within the material

m = 4k/(1 + k)

In order to obtain R.2 from a given explosion event it is evi-
dent that knowledge of a considerable number of source and medium
parameters is required. It happens that many of these can be
measured directly or in general deduced from independent theoretical
considerations. Thus the procedure followed in the present study was

to assume knowledge of all the parameters except RZ’ P and the
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friction parameter k. For this starting condition an automatic
computational scheme (I, B, M., 7090 Program) was adopted using
(4. 4.1),

In detail, a particular set of values of k were chosen and for
each k a range of values of the ratio RZ/Rl was also chosen, Then
the corresponding values of the ratio R, /R1 were computed from
(4.4.1) for a particular k and for all the set of ratios RZ/Rl. In
each case W and P wvalues were also computed from (4. 4. 2)
and (4.4.3). This procedure was repeated for each k value,

When the computed values of RZ/RI and W were equal to the
known values for the explosion a solution was obtained and the cor-
responding values of k and R2 were duely. recorded,

The particular example of interest in the present study is the
Ranier explosion since the parameters required are known and since
tectonic energy was apparently released., In addition Haskell gives

the appropriate parameters as follows:

Ranier Nuclear Explosion, after Haskell (1961)

R, =18,9 m,

1
Ro = 2.3 m.

P_=4.724X10" dynes/cm?
b =5,38 X107 dynes/cm’

A =9, 56X 109 dynes/cmz

y =L2

7 2 B
o =~ 2 36 X10' dynes/cm (o-o = 0)
W= 7.1 x10"7 ergs (1.7 kT)
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Using the procedure.outlined above, the values k = 0.1 and R2 = 312 m,
were obtained for this explosion, Figure 26 shows the manner

in which the Iappropriate k wvalue can be obtained. In this figure all
the curves of constant k are for R, fixed at 18.9 m. , so that this

will relate R0 to W via equation (4.4.1) and (4. 4. 2). For a known
yield energy W and radius Ro then the proper value of k may be
chosen,

With this k wvaluec, RZ may be obtained as in I"igure 27. The
two Figures 26 and 27 show the procedure graphically, while in
practice it is carried out automatically by the computer. Figure 28
shows the appropriate final cavity pressure for this explosion,

Haskell obtained k = 0.1 from near field displacement measure-
ments and noted that the value was lower than what might be expected.
However if the material was prestressed it would tend to fracture
more easily under shock and the net effect might be to give a low value
for k when observations of the displacement field are used. Even
if this were the case,the k value so obtained would be appropriate for
the estimate of R2 since a low value of k leads to larger R2 values
which would be expected as the prestress would favor easier fracturing,
Under conditions of prestress it would be expected that the rupture
zone would be somewhat asymmetric (ellipsoidal) due to easier
rupturc in a ];;referred direction, This effect is probably small
however and will be ignored here.

Having obtained the rupture radius from Haskells theory it is

only necessary to use the value RZ in equation (4. 3. 8) in order to
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obtain an estimate of the tectonic energy release for various assumed
values of the prestress field. It is worth noting however,that ideally
the theory considered in (4. 3) is appropriate to the region within the
"quasi-elastic" plastic boundary, as indicated in Figure 25, in view

of the boundary condition of vanishing traction imposed at the rupture
boundary. The boundary conditions used by Haskell are not inconsist=
ent with this condition and the use of a Coulomb-Mohr criterion implies
that the material has the mechanical properties of a "nearly incoherent
\

In this case R2 as obtained from Haskells

approach should be quite near the value appropriate to the plastic

granular aggregate, '

zone boundary, although it would, if anything, probably be somewhat
larger than the true plastic radius. It is also to be noted, however,
that the radial cracking in the zone beyond the plastic region would
also lead to stress release so that an additional contribution from
this region wouid arise, For example, use of Bishop's calculated
yield curves applied to the Ranier explosion gives limits for the
radius of the radial cracking zone of from 366 m, to 488 m. Taking
all these factors into account, use of the value R2 in the relation
for the tectonic energy release ought to give a fairly good estimate for
the energy.

Thus,added to the automatic procedure for the computation
of RZ’ k and P previously outlined, the value of ES was computed
for each trial value of R2 by the formula

2

s
_ 12 .4 .3 s
E =—= (3"R2)f(x) (4. 4. 4)
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along with W, the corresponding explosion yield. Thus when W
assumes the value appropriate to the particular explosion under con-
sideration, the proper value of Es will be obtained. Figure 29 indi-
cates the nature of the computation for the case appropriate to the
Ranier nuclear test. The three curves correspond to the three k
constant curves considered in Figures 26 through 28, Thus for the
Ranier explosion, with the proper value of W and using the appro-
priatc curve along which k = 0,1, the value E =3 6 X 1018 ergs is
obtained when the prestress field is taken to have the representative
value of 5,38 X 107 dynes/cm2 (53.8 bars), Ia order to compare this
energy ia the radiation field with that contributed directly by the shock

wave from the blast, the equivalent seismic magnitude (Mo) is com-

puted via the relation

i = og P 2 (4. 4. 5)
Here P represents the efficiency factor for the conversion of the
total bomb yield energy into seismic energy. In the computations of
Figure 29 this was taken as 0,05, which is an over-estimate, The
resulting magnitudeé Mo are given on the scale at the top of the
Figure opposite to W while oa the scale opposite to ES, the seismic
magnitudes M3 appropriate to the tectonic energy release are

given. These are computed using

—10g ES - 904

Mg = 7,14

(4. 4. 6)
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A line along which 'MS and Mo are equal then gives the points where
the radiation field is made up equally of tectonic and explosive contri-
butions, It is sccn that the point appropriate to the Ranier shot lies
nearly on this equipartition line, Thus the theory predicts a 50 %
contribution to the radiation field from tectonic stress release for
this assumed prestress. About this much anomalous radiation
energy was observed from this test,

Griggs and Press (1961) have given values of B, appearing
in (4. 4.5), estimated from observations of alarge number of ex-
plosions in various ervironments, From their estimates f = 0,001
is considered most appropriate to an explosion like that of Ranier,
Thus, if this value is assumed and if the prestress is varied so as to
give a tectonic yield about equal to the direct seismic energy from
the shock wave, then a more accurate estimate of the prestress can
be obtained. Figure 30 shows the result of varying the prestress for
the curve k = 0,1 of the previous Figure., The strain parameter s

12

is twice the usually defined strain so that the stress is

0., = 2ZM

12 €12 T MEp2

With this more appropriate value of B, then the stress corresponding
to equipartitiﬁn of energy is oy, = 1. 56 X 107 dynes/cm2 or approxi-
mately 15 bars. Perturbations of the various parameters toward

values which tend to be more conservative (i.e. decreasing R2

and increasing P) yet consistent with the observations, T, " 25 bars,
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It appears thén that tectonic release did occur for the example
studied and that the prestress of the material in shear was probably
of the order of 20 bars, This value is well within the levels of
stress that are usually associated with tectonically active regions
and well below the estimates of the crustal shear strength of 300 bars

{e. g. Kaula (1963) ).

4,5, Anomalous Tectonic Radiation from an Explosive Source in a

Homogeneously Prestrained Medium and Comparisons with

Spontaneous Rupture

Using a computational program essentially identical to that
employed for spontaneous rupture, the radiation patterns and source
spectrums for induced rupture were computed. The choice of rupture
parameters was made to correspond roughly to the Ranier explosion
previously treated. In addition the choice of the spontaneous rupture
parameters in the examples of section 4, 3 are such that they are
roughly comparable, in terms of total energy, to theexamples of
the present section. The formulas utilized in the present computation
are those given in section 3.13. Thus the means of rapidly computing
the radiation field for any induced tectonic source is provided by this
program,

Figure 31 gives the amplitude spectrums of the quadrapole
coefficients in 3la,and 31b the spectrums of the dilatation and rotation
components at an émpicentral distance of 344 km and an azimuth of

60° are also given, The distance and azimuthal angles are measured
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as for the "dip slip" rupture in Figure 16b, As was the case for
spontaneous rupture, the multipole coefficient spectrums can be
described in te rms of a dimensionless parameter, in this case ob-
viously [RO/K] » Where RO is the rupture radius. Precisely the
same sort of description of the spectrum applies, that is for

[RO/)\] <<1 these quadrapole coefficients follow a dependence which

is approximately [RO/)\] 4, When [Ro/k] approaches unity a transition
occurs and for short periods such that [RO/)\] = 1 an essentially differ-
ent power law dependence approximates the spectrums. The exact
expressions are of course given in section 3,13, The frequency range
shown in 3la is such that the variation at Ro/k ~1 is not apparent
since the radius is small, of the order of 300 meters.

Comparison of these spectrums with those for the spontaneous
tectonic source in 4, 2, Figure 17, shows that while the tectonic energy
release is compérable in the two cases, the multipole spectrums have
a different distribution with period. That is the spontaneous rupture
source multipole spectrums show a variation and change of slope at
longer periods thah do the induced rupture coefficients, Essentially
the spontaneous rupture will appear to have more energy at the longer
periods than will the induced rupture source of the same energy due
to this difference. This is seen to be associated with the difference
in the characteristic source dimensions,

The potential spectrums in 31b begin to show an amplitude
slope change at the short periods. 7This characteristic is primarily

a propagational effect rather than a property of the source and occurs
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- similarly for the spontaneous rupture source as well. In particular
the spherical Hankel functions in the solutibns show a dependence on
frequency and distance which is proportional to (l{r)_l, so that
especially for (kr) > 1, the higher frequencies will be observed to
suffer an attenuation proportional to w_l. The value K is kp for
the dilatation and ks for the rotation components and due to the higher
value of the compressional velocity in the medium, the effects of
propagation will manifest themselves at higher freqnecies for ©
compared to {2}, as can be observed from 31b,

Figure 32 shows the quadrapole phases for the induced source.
The variation is not unlike that for the spontaneous rupture source.
One observes however that the induced source is purely a quadrapole
and that no superposition of multipoles is involved. Thus the
induced source will not show any asymmetry as did the spontaneous
rupture and physically this is just due to the symmetry of the rupture
volume. Similar symmetry would also be expected for bilateral
spontaneous rupture treated in section 3,11,

Thus Figure 33 shows the expected quadrapole pattern for a
particular initial strcss and for rupture parameters appropriate to
the Ranier experiment. The depth of the source is however taken
at 3 km ratherl than at about 0.3 km as would be appropriate for the
Ranier explosion, Figure 34 shows the effect of a change in stress
orientation, the radiation patterns being drastically changed from

those of the previous Figure., Figure 35 shows yet another
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prestress case,while Figure 36 shows the affect of a small change

in the stress properties on the radiation patterns. Thus comparing
Figures 35 a.ﬁd 36 gives an indication of the sensitivity of the radiation
to rather small changes in the initial prestress. One observes that
the dependence of the field, as a function of azimuth, is indeed very
sensitive to the nature of the initial prestress,

In all these computations only the radiation from the tectonic
release has been considered and the ¥Figures show only this contribu-
tion to the field. It is necessary of course to add to this,the direct
field from the explosion itself, This will result in the superposition
of a spherically symmectric dilatational contribution to the dilatation
due to tectonic release. Since most of the tectonic energy is seen to
be in the rotational field and since the scaling procedure of the
previous section has shown that the energies in the explosive-tectonic
contributions are usually about equal, then it follows that the affect
of tectonic release on the direct dilatation field from the explosion
itself is small. As was previously remarked this is consistent with
the observations. The dilatation pattern will therefore be wery nearly
circular,

The quadrapole nature of this induced tectonic radiation is con-
sistent with th¢ observations of the field by Toks°o°z, Harkrider and
Ben Menahem, It is evident that the "dip slip" radiation pattern
(Figure 24) has characteristics similar to that for induced rupture.
However in a spherical earth the effects of rupture propagation would

show up for the "dip slip" case while this would not be the case for
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- the induced rupture. In addition, the added dilatation field from

the shock wave would provide a difference in the dilatational com-
ponents of the two types of source. Consequently, one may conclude
that while the fields from the spontaneous rupture and induced
rupture-expolsive sources have some similarities, there are never-
theless the strong differences predicted that provide the means of
differentiating between them.,

The clear possvibility of secondary rupture under prestress
conditions requires however that this conclusion be taken with some
obvious provisions, Thus the theory shows that for instances in
which secondary rupture is a factor, the differences in the field
properties of the two sources will be more subtle. In this case more
detailed application of the present theory is called for in order to
delineate all the possible differences, However even at the present
stage, the theory suggests a dilatational component of the field which
is essentially characteristic of an explosion, that is uniformly compres-
sional. This however depends on the size of secondary rupture, or in
other words on the size of the prestress field.

In any case it seems clear that with ample instrumental
coverage with respect to azimuth and distance,the tectonic source
field can provide detailed information concerning the initial prestress
field at the source. Analysis of the spectrums and azimuthal pro- |
perties of the various types of motion will indicate the degree of
coverage necessary but it is evident that precise estimates of the
tectonic stress will require more detailed work than has previously

been attempted.
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Chapter 5

CONCLUSIONS

5.1. A Resume of Results and Conclusions

The theoretical results and conclusions of Chapter 2 are
summarized in section 2,10 and need not be considered further here.
The important physical inferences to be drawn from the formal theory
given have, in any event, been incorporated in the subsequent develop-
ments of this study.

From a review of the microscopic characteristics of rupture
and with due regard to the experimental evidence, it is concluded that
the processes leading to rupture in the earth can best be described
microscopically in terms of dislocation phenomenon. The mechanism
is essentially quantization of the stress field in the form of dislocations
with interactions between dislocations giving the material a finite
strength at low stresses. As the tectonic forces become larger an
unstable generation of dislocations and dislocation movement occurs
which is manifested macroscopically as creep. At this stage the
creep strength of the material has been exceeded. Since dislocations
tend to be self generating then once the processes have been initiated
it tends to concentrate and a "weak zone" develops. Several possi-
bilities of rupture can be distinguished depending on the thermo-
dynamic state of the material. At low temperatures and pressures
the relative immobility of the dislocations suggests dislocation

accumulation at inhomogeneities with stress accumulation and eventual
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_fracture or shear melting. At higher temperatures and pressures
phase change associated with the unstable generation of dislocations
and vacancies is considered most likely,

The continuum mechanical models of the rupture phenomenon
which are introduced are at least consistent with the microscopic
hypotheses of rupture and embody the essential properties of the
medium in parametric form, particularly its stress condition,

While no attempt is made to show any uniqueness between the phase
change hypothesis of rupture and the theoretical models proposed,

nor does it seem possible to do so, the models are considered to most
closely represent an expanding phase change (melting) phenomenon,

The mathematical treatment accorded the tectonic source is
based on the standard method of treating an initial value problem,

It is concluded that this description provides the only means of
completely specifying the radiation field from tectonic rupturing,
including its time dependence. The theory is in total best described
as a relaxation theory and this relaxation concept is considered to be
an accurate description of the physical origins of the radiation field.

Applications of the theory to the detailed description of the
radiation field from tectonic sources in layered models of the earth is
shown to be feasible and straightforward. It is concluded that an
application of the theory for the experimental determination of the
prestress condition of the material in the vicinity of a rupture is
possible and that the induced rupture theory can provide the means of

obtaining stress information from explosive sources.
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From the examples of radiati.on from spontaneocus and induced
tectonic sources and in view of the large number of source parameters.
which affect the radiation ficld, it is concluded that more complete
and detailed analysis of the field than has previously been the case,
is required in order to form precise estimates of the source
parameters,

The preliminary applications of the theory show that the
spontaneous rupture source has a directional asymmetry as would be
expected and that constructive enhancement of the amplitude of the
radiation field can occur either in the forward or backward directions
along the axis of rupture propagation. The asymmetry is frequency
dependent and is shown to diminish with increasing period. The
spontaneous rupture source has a quadrapole azimuthal distribution
at wavelengths long compared to the maximum rupture dimension,
The radiation field is shown to be strongly dependent on rupture
orientation with respect to the stress field and the surface of the earth.
In particular "dip slip" radiation is shown to be quite different than
"strike slip" rupture radiation due simply to orientation. It is con-
cluded that these properties are in ganeral agreement with the obser-
- vations, although detailed experimental work is required for full and
detailed conform ation,

Consideration of induced rupture associated with explosions
leads to the conclusion that such an effect occurs and is responsible
for the major part of the anomalous radiation observed from nuclear

underground explosions. In particular detailed investigation of the
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. Ranier nuclear test suggests that a prestress of the order of 20 bars
was the origin of the observed anomalous radiation from this ex-
plosion., In thc coursc of this investigation scaling laws for tectonic
energy release from primary shock induced rupture are obtained

and are considered applicable to other such explosions,
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APPENDIX 1

MULTIPOLE COEFFICIENTS

In the following, use is made of the equations (2. 3. 6) and
(2. 3.7) of the text to compute the multipole coefficients a ,
- 1) (i) nil,m
o} : -
pnﬂ, m’ Yn+1,m’ and 6n+1, m with i = 1, 2,3, for the two cases

n=0 and n =1, The equations to be used are

(n+') m<+l

PY_IH'Z' Z. (umt,m Cos m¢) @M_.Jm swn "‘4’) Pm_\(CosB) —
n=0
S R("m( Lo n) Q!
n! 37{"' %XL
° " (1-1)
(n-H) _— . )
P (Lb) (la‘ ‘ m
e Z ( Xm—h"\ Cos m$ > SM\),,\ Sin mcb) PM‘ (Cos e) =
n=0
)Ml (n+1) (Mhr"
S R
7 Sk ol ),axk Ty
where \
(n+1) > 3 (n+D ny %
P = ey {2 -z IR™ (- )] S
l.b“:l L=

(1-2)

Rt iy = Jff R, okt

{a) Case n=0

From the first equation of (1-1), one has for n=20



-283-

® | Z_ [leCos mé + @‘m Sin m&] Tf‘m(c“e)/rz —
wm=p
O 3 - Q) rar" ) ?\’:) 1
R -+ R+ R@ 2

A 3

or, in terms of trigonometric functions

8D ) ) .
P [<><IOCDS G‘j + GD [0(“ Cos® Sme-}'@”S\nfb s&in 9] =
(
R(‘B(l) Sim O Cosd) + ? IS(.Q_.) S B Sin d} -+ R(?a) Cos@

Thus we obtain

o " (0
RY QL O R @
o<l0 = @)(0 J o(“ = (F,(n ) @I\—; GDL‘) (1-3)

From the second of the equations (1-1), one has three equations

given by
(i) 0y : (L)
(D) >
S (e,4) © £ S si §

9 %% _ c + sin m | P (Cono
ﬁ r? : rz Z:o l: e % m(b im ] >

e, Ply 2r

L k. LJ ) 3x

with i = 1,2,3, And so for i, = 1
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)

oy (M 0 ,
[P {KI C.ase—l-X\ Cos ¢ Sa'ne—}-é” Smd’ Sm@} =

r* o |

(1) ( . .
.lr_i {R (2) cos6 - R'LBS) sn S S*beg

From which one gets

(O .
\6(0_ R (2) . ‘6(‘)__ 5 (S(‘\___ R(\(gy
o T [P“) J o ) Yn T T __GSCT (1-4)
Foxr i =2
o)

lo

—— { KL?JCGSB + ( \6|('ZSC,(SS Cb -+ Slﬁus n ¢) Sin 6 } —

QD) ) )
_%1 {ng) sSin 6 ccscb—R(,) C,asG}

Hence
() W
o PO > T g » 9y =0 (1-5)

And finally for ij=3

R
2) D ) .
0’:’ { Xlo Cos 8 + (X‘\-‘“ Cos d) -+ 5“ Sim é) Sun 6} —

rZ.

> : N
~lr:;_ { RLI(I) sine sind — Rtl(z) sime Cos § 73
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.80 that
W )
P o P R ® . §¥_ R
0 =05 W T Tew 5 N T T 1-6)

Collecting these results for easy reference gives the array

3 0
R'& YR (%l R ¢l
o<|o = o TS T m w
Ga(\\ e P
) () ("
_Re (P, PR o fl e
=y = N N N T el W RO
M (=) N Q)
“@ (‘)__ R@ § —o 5(3 — Rw
@\\ = GO(\\ noo (P(" " u Qb(l)

For the special case of the horizontally directed force field

(ﬂ,l#: o, RZ = fR,3 = 0) as a source, one has Ru)(z) = R(l)(S) =0 and

the only non-vanishing coefficients are, in this case

(2) (3)
=1 9, =1

< = | N o

For the vertically directed force field

, m
RO(I) = R|(2> =0

and the non-vanishing coefficients are
by M l )
O<IL\: l p) n T I

These simple cases are often used, most recently by Ben-Menahem

(1961) and Harkrider (1963), to construct more general sources or to
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compute the effect of a particular source on the amplitudes of the

waves in a layered medium.,

(b} Case n=1

For the dipole moments, the first ofthe equations (1-1) takes

the form
NG d’> [RLZE‘ N rl + R ?,;x + RO, xgﬂ
+[p‘(221, D) :;r;;‘ -+ R("ZZ,Z\ _;3%:'_‘_R('282)3 %:Tr;-xj (1-8)
+[Ea(\3,15 or .1- Rmﬁs,ﬂ I + Rm(?:ﬁ) falr;‘
4,2, IR A, X,

For the computation of these multipole coefficients, the following

identity is useful

\
( 3 .8M6 Castd) —(\)/r'-” (s sind smg Cas;d?)/r3 (3 sm@ (ose Cos@ﬁﬁ

(..'azr_l. ) =1\ (3she sind cas‘t’)/ra (3 sin’a sfd’“)/ﬁ (3sme c"ses"“@/ﬁ

(2sin6 ca @ Cos d))/,ﬁ (258 CosE s.‘ntj))/,ﬂ (325”0 —0/\?

Using this identity in the right side of (1-8) and expanding the left side

of (1-8) in trigonometric functions gives
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P [ = .
2z ‘ .

[ .;,o (3 Cosa —I) <+ 0(7—1 (3 Sin@ C0sSH CdsC&\ +€Z-l k’s sm @ Coso Smtb\)

+ 0(12(3 S‘Inze Coszq) —3 S‘m?‘e, 5"“2¢3 _\_‘aplz(as‘.nze 5\.n 4) Cos ¢§]:

(2:1) [3 sin®g cosd - 1 {R (i) +R™z, 'ﬂ [3 sh'e sind Cuscb] !

[R(zzlﬁ) + 'Eu)(s);)\j [3 smo Cmo Co'sq)] —+ R(?Z“Z>T_3 5',“"9 smzd?_“&_‘_
[Qm@_@ t i’m(aﬂﬂ [3 Sin8 Lo s 45] + ?3(2‘2353 e css2o - 1‘-&

From this expansion one gets immediately

2 25 (2)
o — RL 21,3) +RL283,1) _ B R z2,3)+R (3,2)
2 \ ) 2y 2>
® ®
) 2
é’zz: RG2 ¥ Ii_w(z’ D (1-9)
2@

Further, the remaining terms on the right side of the expression may

be recombined by use of the identity VZ(Lr ) = 0, while the identity
3 sin'G Cos%h ~ 35in2E somtd =g (3 S§n26 C.as’%}—pﬁ-# (3 (’,052(-}‘\3

may be used with the remaining terms on the left side and the reduced

equation becomes
()

@ (°<“’ + % (3 szsze—|>—\~ 2, (3 sth?@ Cos’d —\)X —

[‘?LZ(:,IB - RhZz,z;& (3 sm2g cosid- |> + X_‘E\a 3) —Rbaz}z;& (3 Co5%6 —D

Thus

(2>

R R U )) R (2,2) (1-10)
22 > (Pb')
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which in turn yields

(2) 6 2
R (3 ) =R (,D N r 83)3) - R( )(2,1)

(P ) @L )

(1-11)

From the second of the equations (1-1), ocue has the foliowing set of

equations which determine the remaining coefficients

(2>

_'(;- L.\e q") R (2 N (3 B COSO CGS(b) { (2, 2)T'R (3 3)]
( She G G 5m<b> R( (3 D) (35\»’\ e sm(b C,us<b>—\- RL (2 3) >
_ R (3,2) (651."26 S;nzap_)) (1-12)
3

rs

(P( (@ $) — {ra&% s (3sine cx?d-D+ (R - Rﬁ\,.}] ‘
(s Sme o5 Co'scb> + %2 (ssinte sind Cas@ (113}
- E(z)(m} (3sme cose s ) —E(?n,s) bCﬂS}G”D)E

-@— SLS%G ) = -{[ﬁ anN—-R (2,2)] [= site sing cosd | + R@(}\Jz)(ssm '@ i dr!)

~ RG> (352 cxte —\3—% R(23(\,3) (3smecme sm¢> - (1-14)

Ru'zz,a) (3sme cxe c&s¢> 73

Using the identity

(=)
cS(J )(6* d) = ED {[ ﬁm R LQ] (3 Cos é —*l» + X (ss"\e cose 6059

4+ éq)Cs sn@ casesu‘nd)\) + 2 ?(:i)(s site cogd - l}
+.ZC§ (68;»\7‘9 sind Q%¢B .3
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with j = 1,2,3, to expand the left sides of these equations, the desired
multipole coeffici ents may be obtained after minor manipulations
using trigonomectric identities previously introduced. These coeffi-

cients are, along with those already mentioned

i =1 (1-15)
(2) (. ) 2 2)
\6(‘3_ 2R LLz,3§+R 2(’3,2) (S (‘):___ 'R(()z,z)_RL(a,e)
o @ " =
o @ (@) 0 R,
Xn R, O/GD ‘glz = @

15“ R0 2 P

i =2 (1-16)

o
() )
X(‘) 2 R L\ 3) + Rz(s ) é("j_ R 0,2
ta 2y T T T (2)
2) 2) )
xw . RL [€3D) -R(U,D 5(2) _ K@G2
nwoo 5 (2 iz 2 Gam
XLZ) _ 7’(‘3 ))
12 - 2 @Lz)
i =3 (1-17)
b}
(® _ R -Ri: $O_ R0
10 @Lz\ TR QDL'n
2 2)
Xm _ EL )Cz,s) 5(3)_ R"’)Q,;)-é(z,z)
no PN 12 T 2, Qozz)
2)
XL?:\ _ RCZ) ")_)_ ,R (.3 ’>

and (1-18)
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2)

)
R (,3) +R (3,0

D(H—; =

5
v - R -Rea)
X2 ‘2) G,D(z)

2) 2
R&z,s} + R( Zs,z)
e

(,z\ )
_ RU2+R%,)
— 2 Q:)LZ) |

@lz

GAR

2 ) 2 2
o = R >(3,3)"R 1) R&3)- RL (Dz.z)
- + =
©
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APPENDIX 2

A THEOREM FOR HARMONIC FUNCTIONS

Let ¥ (1_'_') be a harmonic function in a region R, where

r'# 0. Thus x({r') satisfies the Laplace equation in R

2
Vix=o0 (2-1)

and is of the form
) ;A\ _
X - (7—) Y (@ p) (2-2)
If S is a spherical enclosing R with center at the point P (see

*
Figure 37 ) and of radius r < r, then one has immediately from

the mean value theorem for harmonic functions {(Brand, p. 240)

X&) - - //X//é')oé [V ary (2-3)
)

172
On the other hand, consider a spherical surface of radius r>=< >r
about the point P, then let R be the region between this surface,
call it S,v and a second spherical surface So of radius r: > r* > 1,
(See Figure 37., permit S as shown to expand to contain (o), but
to be within So)o

Now, Green's second identity gives, for any two functions ¥

and Y, continuous up to their second derivatives in R

[[[reoy-rndar- [[oxdt- v 214
R 5%

dn the normal to ds
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Taking X as in (2-1) and { to be harmonic in R as well, then

\72¢ = VZX =0, and

H[X \(l]ds o (2-4)

S+,
Now, considering X as represented by (2-2) with n = 1, note that

K Xle ' Xy .
N -
IX]S 2w /J?T{ L &) 5 ot s
Hence first choosing { =1, then from (2-4)

(694 -+ [ -

However, using the bounds given by (2-5)

IX)gs] < ()" f j K
Uf (/?o> ) [(/{3)2-/' /42(%;)5’05X/_7n/ﬂ3/2

where y' denotes the angle between r and ré . Now, allowing

/

Je dy

Ig | =~ o in this expression gives

Oéli“iw/[f(%ws
Ky

: M
éi/m (‘_;’Fz - O )‘ér nh=l
4 moss M,

14

A

Therefore

«

[ --
S,

for S, taken to infinity, Therefore from (2-6)

g (C%)JS =< (2-8)
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Now, taking U =-L, then from (2-4) and using (2-7) and (2-8)
r

[ £+ [[x 4G -

)
But

50 - d (-G

and so

(/;w*)zgxa_f : <7%})2H9c¢/5 -0

Now since Ix | = K(r')—n—i; ‘then after permitting So to recede to

infinity

f“f =0, 1% (2-9)

s

. +1
Consequently, for harmonic functions x = Yn(e‘,¢‘)/r‘“ .

VA TONER 27
f g X5 = (2-10)

g ) j/Z%>/Z

n=1
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APPENDIX 3

TRANSFORMATIONS OF THE STATIC SOURCE FIELD
Observing from the diagram in Figure 3§. that
2 z 2 ’
il s X oppwse’ , peg

then one may write the static potentials in the form

L7 5, (69
Erlarap) &y X7

)
N (@)

) =2 )
S A5 Y £ 8, )
B ) _‘%’/—}/—”—n—./ Zmr T s

and consider the effect of the transformation on the solid harmonics

n+l

of the form (-1; ) sn(ev, ¢), However, since ¢ = ¢', it is clear that

1.,nH

one need consider only the transformation of (-I-_) P:l(cos 0).

From Hobson, p. 140, and Sato (1953), one has

rn+/

=0
Fwose) / )T (n-m+5L [}
-ﬂ"—‘—“‘” = I% mlg 1) ST (el T (JQ) m-s/dasg) L<H

/7 /(,055) ,M/ 2'( h @,»5)/ (/Z )/9@59) 7>

Y sl (e (n-m)/

Thus, for example
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.,
/‘j((ﬁ )= gy‘cﬁrz ){} (/Z) Z(/Z)@fgjz e [Z( C’OJMQ,;Q;,,WW)

)/ ” N A
;(/) g’/f':fi?w(/?f) ”*5/20549)]3/?/10
/.

=0

), , , X ) [ ’
) - W//p/} {/,L/z) (%)6659 };%,Lza@m@mm

N+S5+7 m
ST 12 )Z[/) _@_’_‘_J:__ /Z) . ’]"ga
P Sl ) 5 el

Further, the recursion relation (Hobson, p. 290)
” ” ”
) = (-t )/& (u) — ) =0
(Z‘nu)/x/,?/ 2 s H (rem) /5, /(/z

can be used to remove the cos 6’ P;I_;S (cos 8') factor from the above

equations, Therefore

«) (rH/ el
J (R =

Cos Mg */5” ngﬁmﬁg(-/)ﬁz~m+f+l)l

EW(?T#—V) nu N Seo 6-/ﬁ1-n7+1)1
x(/z )’” 2 oM
& P V4 /' 2] /971‘2
SN L/ @os, Qe
m*sf//cogg ’ (/?’) 55*/ &z %.?5?"5 ""5*2 Gaseie é';j;g:",’

X 5‘?@“‘9% ] ] s a5/,

and
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3(1)0?/) _ ; og(nw)[ oo ‘ , oo(—/ fhfﬂ+2
E/( 5 ¢,c/5 smm¢)£

gﬂ"f/’lfi//)n: '74-/ w N, m

¥ Chemssai)l @("\“‘5 m N, e p” , " )
//o) /:145/&9519)4. %, //)DVfS/caﬂs) < Qﬂsz E+%‘9

@mez)! -m )]

. 7 , ,
(e, e k] e

With similar expressions for each of the components of the vector
@ m )
potential 1/ 9] (Here,, g (Coso)=0 5 if m>n and dISO

E,?C’as@g =0 2.

A convenient form for the transformed field is, for example

oo L
) : £
J ) = _L_,.ZZ{z e Doosép + b @’)a’//zé?}/péos&')
& y7) P 4
4%/2%,94/)130 yo o

Thus it is necessary to contract the expressions obtained to the form
(3-1). This is most easily accomplished by using the orthogonality
properties of the Legendre functions P;f(cos 8'). and the trigonometric

functions. The necessary relations for the Legrende functions are

summarized by

»m
m m . ) ,
J/f (Cos@’)f Gose)sirode = 2 (mem! 5,

amt+! (n- )l
S E{o s n#l
he / 3 /?:Z
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Thus, equation (3-1) to the previous expressions obtained for
fﬁr(l)(_lz'), multiplying both sides of the resulting equation by
cos k}d)'Pi{(cos 0') or sin k¢'Pﬂk(cos 0') and integrating over 0' and

¢' in each case, one gets for Gy, when r'> T

(r/f- ) -
a,fx - 4, S h-frst)! /( )mf
{ 2 24 “nerte / (-0) STrbe1)] [( (ﬂo)) "
- o[ S (2 -/é»‘.é o
2( ){Z/Ifz{fj ”*5*21 % ;/7,45115] S H,
Thus, combining terms gives
) = Mo LN 2% 3o
ﬂ //{ ( ) i,é 'L ( /é, ( )
whe re
Z-/ ,
=Z Oo(ru ) /!7—/ //é)/ [ (‘ﬁ /]
4 (En)r-tor 1) 2| ek
(3-3)
) £ f(”“/) l- 1=
dl,é =Z 7 & é_(:f_’f_Q,/,._— <7~—) /f,épr(
e 4 e N )" N2l =77 e, e

In these and following expressions the usual conventions for
summations are employed. That is, none of the integers n, 1, k
may be negative, so that for k =0 in (3-3), the summation index
n =0 at the lower limit., In addition, the sum is empty if the upper
limit is negative. Finally, 1= k by the definition of the Legrende

functions,
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In the case r'<r ,'

(/Z) zﬂo{ma/‘g ﬂum kz( ﬂ—”ﬁz;fmvf-s*/)/ (i)m“

(am+s){(n- mu)/

from which, by combining factors, one gets

Ve J+3
/ A 3)
Gt - (—’ z/e *(/z, o (3-4)
Where oo /,,,,u)
Z )" 07*/*’)/ [ e v ]
(s ) lnre+)] m/m// D) ek
o0 {(3-5)
dm [FMH)(/)W[ nedes)! Z;+ 2(,—1““* )] s
=/ e+
hobos
By the sam= procedure, the function blk(r') is
Ler, )
b, (17 = /./ZL) » . (%) é‘é e 5o
b f (P[”"/) C[ 4 N lp - )] /5 L
£ fe ~ 4 /{vﬂ (Z—/?—/)/ﬁ?’»@-H)/ I4-/ Nt
£ pm ! 3-7
Z i ) )] [( () (3-7)
(P12 )P~ el —Aw /Ji,*, b
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y / rz) I\42  (3)

/ 974 4 . /
G Y I WL G-
@ ?w KO a9 1) L YOy Y v R

- - + +2 /?+5é
b 7 “ k) r-kes D! Kn*ﬁ/l///)] "

Rabey 7 (3-9)
3 Zao (1) nel fjw) nr L+
% - i 67/1 O il /é+/)/[ (555t

R=p—/

The vector potential _L_IJ_(l)(_E) may be attacked in exactly the
same way, by considering each Cartesian component separately.

Thus, for the ith component

U

\/éf'( 4 ———Z [Zf‘ lk(/?)wsljw a/ //f)fw/”ﬁ))p@sé')l 10)

3 1 H w, 0
where the functions iS¢ k(r } and idl k(r ) are, by a repetition of the

computations for alk(r’) and blk(r“)

Gy = (/70 . //7 )ﬂ"’ a o (3-11)

) ['/
: S TZ Q‘D_/:’H)/.)/-/y -1 t6)! [/+2 fop— )] 2
a2 (-l n k) 2207) T
o L

:Ge = ﬁEﬁ?*” -1 (D-ho#): / ce?
ﬂé Z '6” (/) (/-,,)//ﬁ,é+/)//2_éf/ 2[_1%?-’%{ Xn,t/),é

=~/

(3-12)
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and
G, 0= () @)@
(% e% () S ek (3-13)
.c(z)zz WMH)/—/)MZ (lrad 1) 4 “=e) ] ﬂ)
£ Uk ., VAL '“‘—‘“-‘M/&__éﬁ)/ s dei)2l-1) | ‘vt ko
=~/
(3-14)
» oz 47 #/) ()
o FET gl a1
¢ Lk 2z el )] oo 775/
N=d-/
Likewise, the functions .d,, (r') are giveﬁ by
, 94?7 = {/? ﬁ/ @) /) 3 £>As  (3-15)
L7 .
17 ,,./) 3 -~ / ot (5)
Zf,:; ot AR L )] S0
,é [d-n /)//”"é”)
h=ko~1
(3-16)
[’) @(n ') &r /t‘/éf/] (c)
7Y,
2_— (Z /7)1‘//?‘” /é"/)/{( ’/e*l-/ Z[‘/) A’n'l'( /e
h=k-l
Lz ,
mﬁpﬁ(/(’) (L) (aéé ‘ (f) 0/ 7'< M, (3-17)

oo do[m/) /, /7+/ (ﬂ{j ) [ e ,éz) ;(:‘)k
VAS C/»‘é)/(h—/eu)/ /74J+/)Q/ NENAL
-/ (3-18)

|I

M

(nry) « L
o el 20! [ 2(t2) 5
A k)] (n-fe+ )} nilsk

(.?)

&\

e~
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The potentials may thus be written as

2 -/ e L+i
W[Z @7207)105; ©.97 *[2; (79 S @p) | x>,
NAZoB £
Wz ), (e¢)+267—) S,@9) x5k
#=e (3-19)
L~ z)

gﬂ/{ [Z (zﬁ) ( ,¢)2 ’) 5495”) 1>,

IV((ZZ_/) _ _ e l=0
S g (%')25 WWZ ([ M}];ﬂ’%

where

24 ) , P / 4 ,
P.S;(@;Q’)=Z(%Z@Séﬁvkb[éS/”/é@)/f/cas@) 5 P=0,/,2,3
k=0
(3-20)

03 (bl o bt s i

Finally, the displacement field _1_1(1)(3) expressed as spherical com-
ponents in the translated coordinate system r',0',¢' is obtained using
the formulas of the Appendix 4 (e.g., see equation 4-7). Thus, by

an application of the equations (4-7) of Appendix 4,
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APPENDIX 4

TRANSFORMATION OF THE VECTOR DISPLACEMENT FIELD
TO CURVILINEAR COORDINATES

Consider the displacement field given hy

U= Vo + Vx¥ (4-1)

In terms of general curvilinear coordinates (51,52,5,3), where the

metric elements are defined by(l)

= Aiz(déé )Z=S£L("lél)z ) AM:L'LzL\sdE"O}gC{g

m£n
’}Xm g)(;] S M - \/ <. g —_ © ’ (4-2)
8“- ’55 'ag ) L.L 3"(« J 3"‘" { \ m

one has the following relations

BICT RS B T IS T A
vd)—‘h Ay N
\
VY= 0y {agt "1’3“" ; (b, “P>+5'%3(L‘L“V)} (4-3)
N
VXA;P —_— E“‘k e‘-Jk 9%3 k>

. J\}fa& “gd; fa hik, 'Acb}
vd::hlek3 {-%;_(hﬁ' Y ?é‘( s ( 3335

( )The summation convention is used throughout.
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where Ek are the so-called "physical components" of the vector ¥,
that is the orthogonal projections of the vector Y on the unit vectors
ﬁk of the basic system,

- Finally, between the Cartesian (rectangular) components of
the vector Y, denoted by LlJi, and the components mi in the general
curvilinear system, we have the relationship (Morse and Feshback,
Vol, 1, p. 29),

Vo ) B 6,
Let > and ¢i, the Cartesian components of U, be assumed expressed
in terms of the curvilinear coordinates §k. Then the displacement
field u is, in terms of the curvilinear coordinates and rectangular

components of Y

IR P o ,
k.é — _?\: ~—%z' nL + hJ . LJk 3%3( { ’3% (4-5)
Thus,
n.—_-(‘ﬁfad: \{ l%zw;gga ¥, @3;;

2 2% 2

55 Y Bgl—r% ,a’; Y, %3)}
- 2R3
1= ()2 I AtE RO RRA

) X 23 i
--—("*’.%”ﬁ? %)

_ 2% 4 1+"\’ 2 W%x «Pb‘éx‘ ,\,‘,gxs“)
‘Lks-:(‘—-;>§ga+ -ﬁ—hﬁ—gg,@nag * % ) (>a§ g ng e
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where here again, the bar over the components of u indicates com-

ponents along the basis vectors in the curvilinear system.,

Consider the spherical and cylindrical coordinate systems,

For the first of these

xlzrs"ne ca-s(b L\\—;)—,r:l g‘:r
2
Xzz—. rsng sin® L\ZZL\QZ ] % =6
- 3
X — rcse L\3=A¢=r51n9 £ =¢
' She C‘JK@ rcose 0(5617 ~rsné S;n‘b
J

{fax } = | sine sing rssesng rsne eosd

Q
(S 3
x

ws@ -—Y‘S\.ne 0

And the refore we have

2V I n ; 9 @_>
r i rsin(-){(s ¢ sine 5 + Crsd o 0 25 r\{jl

T (sn\v\dbc;asa% —C%CbSl“e '\Y st% 3:\.}/ 7}

<
&
i

- "o v ——E rsnf\@i(smgmcb '\'FSIY\G’G)V\d '37'3,\‘7
A (s,‘ne Md% —rsiné cisd %y%_ -\-(C—Use%—d—,B,\YzS

- W D ia—\ +
i e T (o B ond 5

. . . L
+(Y‘Ca=..e S“n(‘)%; -Sm9$m¢§-ﬁ>r\"i— (fSW\G% Alone §g\%%

(4-7)
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In the cylindrical system

- 4 _ ' |
905\5 l’\(, ! El © ,éxj Cosp —-fsmc) &

X* = (aSme L‘z.E L\¢=[a -3 =& %_B_g—ii: s pesd o

XE = =z h.s-i: l‘\g:-l g%_:‘z [a) 0 1

and the displacements in cylindrical coordinates become

x|
{
j=d
o
[
‘a)
%
4t
-
7]
5
e
IS
£

:a__tcuscb ’E'\‘J_z__+ {L%}

22 )

= 1L PV A Y Y3
c ,acb""'c"“? gg‘Vs‘“q’ X £

— N Q3
" 2= 57 —\-—(—cj—i( QS|n¢%q+Cas¢:a—¢>'\H -\-(fuscl:%—f—\—s;hq;%wi}
(4-8)

As an application of these relations, the static displacement field

expressed by the potentials (equation (2.5, 5) of the text)
(n+1)

) Z G°
r)=— 5 )

o o9 qatn-\-ﬁ (L)
L > N i
W ()= ETP e 7 §n+) (9 4 y b=h73

appropriate to the primary field from a general volume source is, in

terms of spherical coordinates and components of u,
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APPENDIX 5

SOLUTION COEFFICIENTS FOR EXPANDING
ELLIPSOIDAL RUPTURE MODELS

The form of the solution for the expanding rupture model
(m =1) is given by the equation (3,11, 20) of the text. The multipole

coefficients in this solution are given by (3.11, 21) as (s= £-n)

a (o) o /4 ) 2
é '] m@ Fﬂ ktr)
@gw) Z(Z)Z(’) [llors 1) [ote +1)

J— ) —/D;C_(ka/o,fvhﬂ‘/,-—z& 7,é 2)e’ ”/i/(,é/,/z?q///

P/"é’“/ﬁgfv‘)ﬁ*/ 24744 >/{/2) 6-/'5 /[ZZ'&P/Z)OI/Z (5-1)

The integrals in this expression w111 be evaluated and the coefficients
le and ﬁ.@k expressed in a convenient form, As in section 2.7 one

has from Erdelyi et al. (1954) (I. T.-Vol. 1, p. 328),

f G-2)e MS‘/@);{/"UZ: a L ur)
22y er)

(5-2)
2 [/y,; b, MY MLV AV _7:,244)

provided

/@’Qzﬂ>”/ . fem) -6
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Here B(x,y) denotes the beta function and ZFZ is a hypergeometric

function. Thus, writing the integrals in (5-1) as

f () tapsspori-zigber e / (i )dr

Grp)  CalAe n-7P Y
5¢W~ﬁ%£/o a /Q/”J(&M

and
s 4 |
A’ Y L N ,
a[(/w) c Z{(é}/g)o//z = Of(/{) & 'é’/fj(é;o/y')d/z
D/Q)g /&/%% (5-4)

(1)

then (5-2) may be utilized to evaluate these integrals, Thus setting

the integral in (5-3) equal to 11 and transforming gives

/

n-p- 7_32 Ve /ij’ st fe (’épa”D%
7 - 75 (3) L % T Ge-ande
(5-5)

In this case, comparing the parameters with those in (5-2)

(1)

Interchange of the order of summation and integration in (5-3)
follows from the uniform convergence of the hypergeometric series
over the interval (0, ao).
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/@y/) =0 and L= /047-/7 + 3%

with v =1L + -12 . Thus the first of the conditions on the integral

parameters is satisfied, while the second reduces to the condition
-1 >~(prgrz)

Since £ = n in all cases, while P and q are both non-negative,

then clearly the second of the conditions is satisfied. Thus

= /?—A[‘df‘)m/ov% Aaiﬂa)//jj[/—ﬁ tptgs2, 1)

2[4%/’/:/@3/2)
. . (5-6)
"2/2:-(/7’- /,5+/ﬁ;7+,2 3 579,77‘ BJg/,a,gJ- ‘gé,éo//a)
where s=1 - n and kp=-‘-;—'°- . However, using the identities
5(?5 =)/
[(x+9)
[nep) = AT _[ar)
22n~//7(/ﬂ)
in (5-6) reduces the result to
L prg=riiz T [ltvrer) (L )
L, = L/z'éfdo) a /é F{?/%/ZMZ (5+/97L71‘/?+2
 Cecka) (5-7)

[ +1)
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This series result is convergent for all values of the argument kpao.

Thus finally one has

° RV.IY-E3i -y
X(T) A Grps st -247@@5 /’/ 4, wdr’ =@k a)q Pﬂe
o
E_@_ﬁg Capy gag) M( (zz)épg&)/z

(54p49) D, Tl #2) /~/z+/0ff,dz+2 [ 1)
Z=0
(5-8)

The result is equivalent to a generalized hypergeometric series
(Erdelyi, 1954; H, T. F. - Vol. 1).
Turning to thesecond integral (5-4) and setting it equal to

IZ’ one has after transforming

L% uc(é’,a/()) 4
[(/@) é/ ’ +/(ép/@7<)7/ oy

L~ _z (»é bz -, -
(&) a)x (éﬁ@x);b/ ga/%] (5-9)

N4y
It is easy to verify that the conditions associated with {(5-2) are

satisfied and therefore

F%[@zf//ﬁz 53,2412 5 -2:608,)

- dfz/zr//*/,,?;' 3,24¢2 5—24%/@ )] (5-10)
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This expression may be rearranged to a form suitable for computa-
tion by use of the definitions of the various functions involved. In

particular one has

V454

i) -+ 6o/
=~(/é) //-;Zj/j/ﬂz) 6”2‘)[ ( > 7(?//:‘/)

(5-11)

Replacing the integrals in (5-1) by the series expansion
of {5-8) and (5-11) gives, after minor rearrangement

g p W) 7 Gkod,) zm /‘”,4 [l-fo #1)
(@/gm): PZ;{ ,?Z, K “’) ler ) Tlten

,_>Zf£_éﬁﬁ),[f (7,500 k d)+£/70,4;’/é/(7)] zzz,éed

(l-1+ptg)
(5-12)

where y=£-n+p +q and

)

L urisnR) g &{;z,Lz){/ﬁ(.ga)”*ﬂ%/f?”“

The coefficients are essentially sums of generalized hypergeometric

functions of two variablcs,.
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APPENDIX 6

SOLUTION COEFFICIENTS FOR PROPAGATING
RUPTURE MODELS

The form of the solution coefficients for the propagating

rupture models (m = 2, 3), in the case
m
I fr0 & <, < Ve

are given by the equation (3,12, 38) with

_ 1=
9 "(/—zx;")

and s ={f - n, as

P L-n

d%(w)> / Ank>2 i@ij
(o) BT ] e ()
)

-2) myfn-d { ”“’P*J P
> == ) ] 25?5~ Ved
X /.,(( n—/*’)F(J*'D (/,.29( _((/Z F{Sf/p JJSPJ IJ lyclé )

S+PtS

540 s (A B

L ~{7, éj{% a,+ ’{»/Z NN e Lfplt ;Z (, by /ZQG//Z/ +(24,)5*/? /‘C&é’fpfj s SHPrIH S

20, k@) (_/Z—) 7 ikt Z((@ﬂ)o//z
/z(m) (6-1)

The evaluation of the integrals in this expression is carried out in

the same manner as was the case in Appendix 5. Indeed one has
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immediately from the previous appendix

) /) //”‘)/Hz
fG) gééﬂ (@ /?)Jﬂ/_—('é/’> Z ﬁg':/iﬁ)z)cl*z)[/“%) ]

 CardoR) (6-2)
r[/{H)

The remaining integrals in (6-1) can be put in the form

(m)
h-p=ij- b,
[ (/z F(ﬂpq;sf,wﬁ/'nu/m 44 /z) /2(/@/;)0//2

GePt))

A s A (‘7»)0/’” rg- / £
%omﬁw el f G e

(m)
g~/ 5 /U-M
fw(’ G331 P 5 e ot o 1)

“*”z@mmz Gered)  Cop 9oy

/[ fo(¢+/D+J-li) /—7471"/)

SN RE ™ e
/z(m)

7 s
Grprd) (o7, Ko ) é,*/f Y
Grreged) [, 7 ( /
£ g 7 (51‘//'/0 ﬂq—/l/)M/ 7
NN g (6-4)
(/Z’} ¢ A /17042’
(m) / F
2, £
In both cases the interchange of summation and integration order fol-
lows from the uniform convergence of the power series representing

the hypergeometric functions, The series convergence is uniform

over the entire range of r', (0, ), so that no restriction need be
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R
Denoting the first of these integrals by Il’ and utilizing

placed on the frequency parameters k_ and kpo

(5-2) of the previous Appendix, then

(m)
m e prgtd
/[/Z) KA "é”/(é/z)c//z -_(;Vé/z”) //,(»o) 7
XZM( Qi_éf_/{e(f,._ (6-5)
[@lbns2) \L-72P2G 40042 ) [Ups))

where it is easy to show that the conditions for the application of

(5-2) are sat1sf1ed by 11 Similarly

4-W-/ y
_ o [lden+1)_
Z;-- (/z') c o Z} (é,,/z)dﬂ an [//Z )) [‘Qj:)zuz)

) Zo/ am m V2 S /,Z/_ﬂ?'iQ. leé }
(ﬂ+/\/+2> % B (/Zﬂ(y /"&j,c/”g)(k" 1‘) I"Q/m)

A=zo

Q

Or, upon rearrangement

= — 42 o oy’ /(A /) / (m) /Z,{./Vf?
Z,—a‘ (Zfé,o) /// )/Z:Z'/—V/?'u/“‘z) (/{,LM‘Z) )

. - H+E
ek, ™) (6-6)
[r+e)
Finally, (6-3) and (6-4) become
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”/ n-po-j-/ . 4
f(}?) N Geprs istpedels-ig,d), é/z)cf ZM Vi’ =

_ (5+P+)) (~4'7 ,é /C(M)) 0’9) /*/0"/ 7
(z’é ) — (5+P+7¢(/) //Z(??L /) }

Z TS erss) ok )"
Tl igez) \SH42) [ e s) (6-7)
and /7{’")

(7) (’L——’ﬂ/ f@/*/ 5+/0+«/7‘/,—17 /4(7 a, f% x’)

s

—Lk /T /-2 [7‘ /) & e
¢ & é /(é /Z)O//Z ‘éé) Z(ﬁfﬁ*/*? *Z;(;{—,—/)—Q—g—

F (0 / 7% [(Lrpy1)
F@(‘A/*l) 7M0¢ )//—ZU ) [vediw+2) /71{’-/1/'1‘2 Y

P\ paN+2 | gl /Zm))lfz (6-8)
( L) e

~ with a=£ -n+p +g +j, Therefore introducing these results iato

(6-1), noting that (from 3,12, 30 and 3.12.14)

éym H) R

and rearranging, one has the results given by the equations (3.12.40)

through (3.12.42) of the text,
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APPENDIX 7

STRESS-STRAIN RELATIONS IN ELLIPSOIDAL COORDINATES
AS FUNCTIONS OF THE HARMONIC POTENTIALS ¢ AND )

The curvilinear components of the stress tensor (or strain
tensor) may be expressed in terms of the Cartesian components of

stress as (Love, 19044)
‘ T

where, in the notation of the Appendix 4, Eij denotes the curvilinear

stress components, o, the Cartesian components and

L 1 BCLF
L X% | 3% L 9% (7-2)
oy o= | 2= 2 —_ LI
Lk h* agz_ h’- ggz h3 'agz
L T B, S IR,
L‘: ’3%3 hz ?%5 hg 'ag
T
oy = g

whe ré‘ the hi are the metric elements for an orthogonal curvilinear
system. From these same relations, the strain tensor has the

explicit form

©
l

_ W, 9
= (%) 55 =

RE, DEL (7-3)

z : <faxk YU Xy P
4T ahhy ok & 2f sy
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where summation over the repeated index k is implied,

Adopting Hobson's notation and coordinate relationships for

ellipsoidal coordinates » then (Hobson, 1931)

NN TR (o () VoSl L
b — kh ) 2 h kl- e
(7-4)
Sk ko Ry
< e

where (P,[,V}) replace the previous general curvilinear coordinates
(gl’ gza §3) and

hs/xék
-h <« J £ h

with h and k arbitrary constants such that

k> h

In terms of the semi-axes of the focal ellipsoid
1’12 — 0.7' _ ]oz

k‘Z: Q.z "C’z'

The ellipsoidal system is orthogonal, so the metric elements hj’

j=1,2,3, are
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< [ ) X [ ww] -
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(7-5)
The partial derivatives (axi/agj) are then
Y G o
bk el Yieont ke Vork® Vie-ht
'_&_7_(1?{__: ey plee (Rt —p ek ket (7-6)
kh Wk oo ko Rk

'Bg)

Cp vl ekt oy JEke VR
hk ) e ok k Jim v Vkhe

where the index i is the row index and j the column index.
From these relationships, the ellipsoidal components of

stress may be expressed initerms of Cartesian components of stress,

9

as
13 ’

1 2 )
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T e () @™ it
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e ey o ol s g o e }
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+2 {/‘*v VM he A"";ié‘(os +2 C{/*V\Jk‘ plnd EE’T(:)
(ka\/g»f:z\/’,;iﬁ,” hk\ﬂs kz\/ihz



-321-

b 2l _Lt 7’—)1") k,"— 2) e (0) 1,{0. 6_9:)
61\: (P \n)(e k)bu (z/u] [')n‘{uk'b H +r/1 \'\2061 W) 12
(’/“ te'z_/uL)sz_ \7") L/*I_ SE )
R N o B o/ S X
._.f/“ vz 33 S -+ Ty - =
e+ Wk Vi (ke m\r"
{or EBNER _ € lER 0 e
sl P o o Sl
o e (oo B ek Vi Ve w-w%@(:\
T (o) e e D ()
2 (0 v )
o _ [l ’“X*&”)} [T o ™
v = (e-v*(e? ,v\‘*)(/“L )
e Jemne i
(k“-_/u) {61 )\{——\l‘ ._\T hkF ;;g
[ Wk N e o [l

— ey e (k- ) O3
{ e Vi v /u \{—_—P : }6_(03
TUP e Rk e =
T R | T (T
{ nk oo Ve fRR S T

(7-7)

(05

(0)

The Cartesian stress components o33 will in the present application
denote the initial stress field, which will be taken to be constant, so
that 0'( ), etc,, denote the initial stress field in ellipsoidal coordinates,
The equilibrium displacement field, E*’ appropriate to the
boundary value problem associated with the stress relaxation around

an ellipsoidal rupture boundary is given by harmonic potentials ¢

and w, as
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L= V(btr.w) - 4(-6)w

z R
Vé=0 , Vu=0 , k=1,2,3
The e‘llipsoidal components of the vector displacement field are

obtained from
0, :,L_[_@é. %y 29 _3(1-4 6w, J—fl
he L3 2k, RE, (7-8)

where Gi denotes the curvilinear components of the vector and the
summation convention applies to the repeated index {. The Wy
denote the Cartesian components of the vector potential w.

The ellipsoidal components of the strain (or stress) tensor
can be expressed in terms of the harmonic potentials ¢ and W by

means of {7-8) and (7-3). Thus, for the strain components
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v (W ows  (3-46) P\fe_( )
R e B R
hﬂﬁ?(j

¢ dua
WWe ke ek ?Y
(aﬁ)'z_ Vie—p i 7. Ver-kr W, (3-45) (P >
»]_3’ k M [kmz eIV k\jzi—z (az_kz
(V>w+‘7 Vo=k+ AR __(3-40-)(¢> >
NEX Bae | 2_ye \'\\[F_'"z Y km -
v j‘*) S N . iy g (3-46)
3

— (1—z6‘> + (l—.?,G

&) S )30 T e
e - v’)t\:"rul> mz Wy — (‘ ‘2’6><k\/——~ \/—T&>

Ver-k V-
<gbw\;> —~- ([“«2.0—> “&k - L\z. (kz—vzw

(7-11)

The complete relationship between the equilibrium state of

the medium and the potentials previously defined is given by

1 * | *\)-——O
A —\———-————. ;} o A =
V” | -26 (\7 -
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2 2 (7-12)
with V 4?: 0 , vV w =0
From these relations, one has for the dilatation and rotation
*
. = -2 (\ “S) AVAR S w

In terms of the ellipsoidal coordinates the dilatation

*

B — e(.,c, —\-e/u/u +e’d’u‘

ise*: —.2(1—2,6‘3 [’ .
(9 L

(2) +f Uea hozpl) (0 )y o £ Lk

e 2 2 )2 "'_p)! 'l_\gi
TQT(ZP“‘“'}‘B“'“P. e )

kh (/U.?‘-—\r"> /u,
((kz—’“l}((ﬁ’vz)B w0 (eerr-av) ) w
2oy M kh ; T
(pr-v) M (/“1'“ )

P (hey) Ueaw) (P-) ‘i T

kh N (/u?-__\}"'> 2V —}-(/u Wev >

{(z(’z_kz)\/e—’——lé W+ e((,'z_kz)w s +(k"—-z/uz><f’2* \)'2)
h e : W e P (ﬁz,vz>

W, A a (k2-p) (p- v Ve, 2w
Vi-hr z L/uz-\f‘) h Vie-h oM
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(o el o, v IR 0 2wl
(o) Wl ° (p-v) kel Y

(e Vies ) e Nek | EE-RVETE
Zall R\ k?-h> 37t k V-l e

G R (0 s R ()
(oD e 7 ek ook

e PR o)) B 0w
New () ki (o) "au‘j

(7-14)

From the expressions (7-7) and (7-9) through (7-14) the boundary
conditions expressing the continuity of stress and the vanishing of
the tractions at an ellipsoidal rupture boundary, p = const., may be
set down. These relations are, in terms of the previously expressed

stresses and strains

¥ (0) * (0) * (0)
Sp =%pm > Bvr=%v ) % = Cee

(7-15)
when p = Por P @ constant and equal to the semi-major axis of the

ellipsoidal rupture boundary. Here

¢ * * o & = e*—m/u P:e
Cou=2 ep 5 Sov = Cev » et

where N\ and g are, of course, the elastic moduli and the strains

and dilatation are given by the previous equations.



-328-

APPENDIX 8

ELLIPSOIDAL HARMONICS

Laplace's equation for ¢ (or wk) can be put in the form (Hobson,

1931)

é_iQ—f-—/D z)

(/‘“1—’”;) d5*

J jL (8-1)

where P, p, and v are the ellipsoidal coordinates defined in

Appendix 7 and

C M
£ fﬁ?’”w 7&%3?@;?

(8-2)

jgm-:“"l/r

solutions of (8-1) are (internal harmonics)

Sﬂ(ﬁ/», V)= E(r) Ey&) E(W) (8-3a)

where the functions E all satisfy Lamé equations

2 yaygz =) A7EE) : g2 42) dE&
(= d)e k) ST+ 2 (2274 g cé:‘)

A2 rdP p - ninr) 2*) E(2) =
(8-3b)

The solutions for all three functions may be found from a considera-

tion of Lamé's equation and the solutions for E {fall into four
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distinct classes of the form {Hobsan, 1931)
Kz)= a, 2% +a,2"% + ...,
- = 42 B-/ h-z

L(z)= Uzz_ 47 (C%‘Z +a, z A )
7 Jz%= 4= 2~/ -3 (8-4)

(2)= Jz=y= (a,2"" +a,z ),

S o e - -

/\/(Zj - ZZ‘A«ZUZZ-LZ (@dz'e z—'La,,—Z}z 6’*”,)

The Lamé functions constituting the four different classes of solutions
can be shown to give (2n +1) distinct functions of degree n, that is,
it is possible to choose p in (8-3) in (2n+l) ways so that the result-
ing solutions are single valued, finite and continuous over a sphere

of radius r. The number of functions in each class for a given n
are as follows

!+ Yoz functions if n is even
Kz):

’/z(f?;‘/) functions if n is odd

functions if n is even

L@

% (7-)) functions if n is odd

{ functions if n is even

Y (n- -/) functions if n is odd

)7+/) functions if n is odd

functions if n is even
N(z):
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These functions are related to the tesseral harmonics by

}zzm(dajé) Coszmdg = Z o k%)/([af]
F,:,}H/(Caséj L5 (2w #/) ¢ - 2’ o A(/L}Z»(’I/j
P> (cose) sim am@ = & a V(4 MW

£ (eosa) sin (2ro21) ) = 29( M ) M)

where Lthe a's are constants and where the number of terms in each
sum is the number of functions in each class,
The solution

AR+

Dlep,v= 2, B, Etp) E,(u) E, (2 (8-5)
=/
possesses the same degree of generality as does

Dime, )= 1 12" B (eosa)[ @, cosmp +b, 517 w4 ]

for the internal harmonics in spherical coordinates.,

The coefficients in the polynomials in (8-4) are determined
by substituting the solutions given by (8-4) into the differential
equation (8-3), then equating the coefficients of powers of z to
zero and finally, requiring that there be only a finite number of
non-zero coefficients a. r=0,1,c00., the total number being n,
for K(z), n -1, for L(z) and M(z) and n-2 for N(z). In this
way the acceptable values of the parameters p ane determined in

terms of the parameters h and k. = . L The
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details are treated by Hobson, Chapter XI,

The following summazry gives the Lam¢ functions for
n=20,1,2,3 along with the internal ellipsoidal harmonics which
may be constructed from them. This list is sufficient for the

present study.

(1) n=0

Only K(z) exists and it is a constant. Thus
b, (e p V)= £’0’<(°)E,,’(/U E/(v)= | (8-6)

(2) n=1

kzi=2 ,L(z)=Jzv &  ME)=/Jl=z=

Thus

!

£/ E () E/(v)= fpV
E*(p) £ () E7(0) = Jom b [l Jh0
= E) E Q) E)= JeE T e i [

i

@Il
¢=
(8-7)
(3) n=2
(2) K(z) functions

Following the procedure mentioned for choosing the values of

p for an acceptable set of K functions, one has
Kz)= p>+ 1 (p-4)x

with p having the two values



-332-

F= 202075 6= ) = (5. p)
where
S S A
(b) L, M, N functions
M= 2 [T 27 | L(z)=2J2n =, Nez)= 1% 27 o fF
Thus one has the following set of harmonic functions
0= ENPE () E/w) = ™+ 4 f,—Wf {7y (ﬁ~9‘)°<j7

, X, {vﬂ A (f,'é‘)otj
¢ =

EXNE) Ew) EX(v)= {(7>+)/é<fz—q)o(§ {/A% ’/‘(/"Z’S‘)D(z
X {vrr (pamv)
#: =

£ ) EX = {F/‘”v}ww WEDE
D= Efp 20 B )= {ppflen it [T (1 g®
O = B0 B ES) = e i e [ [
X Ji=9* WEE (8-8)

il

. {4) n=3

(a) K functions

Kz)= 2°+L (p-7)x &

with the two values of p (p1 and pZ) given by
<* (f-’/J(f—‘Z) +éo{s = 0
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{(b) L. functions
Liz)= e P[22+ £ (o)t 547 ]

with the two values of p (p3 and p4) given by
(o(,DZ -4*) (of(f—efj 4> )4—20@ =0
(c) M functions
Mz) = Jb=z* (227'—/—’0—[(,0 o) —5,ZZJ}
with the two values of p (p5 and p6) given by

(xp —ﬁf)("(éf“%/ ~sd*) 208 =0

{(d) N functions

N(z) =2 Hﬁﬂzz—lz

Then
{f + =~ (/p 4)4(}{# + 2P ?Ja//uf{’ﬂ’:' (/"?Jﬁ’zﬁz
<b3 = {e%—a (P Dopd {17 4 G Japd {07 2t
= ST 7 (020 £ [ a1 -s471)
X Ap2+ L[ (p-4)a —sh*] (> e LGpe)e ‘%J)
= PTG (e L 2L nw-sb?] ]
)([./uz-/-/?/;{(ﬂc“‘/)"( —5—"@25] [7)7}/—2‘5(/&‘_?)“—54’2}]
5 = Jd [ ke [0 55 eme-517)]
K [_/“1"';{6&7 $) ot — 5‘,@,"}][2) "#—;;— {(7‘{5—“7‘)0('5»4/2}]
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o T I R [ ek
X | pra L §Cp)u - 5 )7 [’0 G- ﬂiﬂ

Ppv ESyE Mf—/ﬁ W

(8-9)

External harmonics, which vanish as p becomes infinite,
may be generated from Lame functions of the second kind. These
latter functions may be obtained from the previous solutions 'Eff)(p)

by the usual procedures (Ince, 1926 or Hobson, 1931) as

F (ﬂ (2r+/) E (ﬁ]g _[-4(?’}(10)} WW (8-10)

These functions are important for the applications of the present

study. For the cases n = 0,1 the functions are
(1) n=0

= 4
Floe)= e -
, (¢ i I e o (8-11)
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(2) n=1

7= 3 ge S ers

e 2k S:WW )7

Fop)= 3 - df
R e S PR L

and similarly, higher order functions may be constructed from (8-10)

(8-12)

and the previous solutions for E;W)(P)"
Thus, external harmonic functions, analogous to those in
spherical coordinates are

co ANt

=2 2 %7 B £ £)

n=¢ 0z (8-13)
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APPENDIX 9

EXPANSION OF ELLIPSOIDAL HARMONICS IN
TERMS OF SPHERICAL HARMONICS

The relationship of an ellipsoidal harmonic to spherical

harmionics is given by Hobson (1931) in the operational form

g?x, ,z)=2f~ 0 _L___— R ]
» 7 R s Sl (o T (9-1)

for inte rnal harmonics, where

. @)
G g = & 55 5

(9-2)
Cos 7 @

/é//?m/'zjy)g) = /”/fm/('d\s‘@) S/ NP

2 a 7% 2 N2 2
,0 =d ;‘?«2::-2' - b g.__z + 6’25);2
with b/'

97z if o is even

4@=1), if ¢ is odd

and where cos m¢ is used if ¢ is even and sin m¢ if ¢ is odd.
Here a, b, ¢ are the semi-axes of the ellipsoid.

For the external harmonics Hobson's results may be put in the
form

&, oy 2= (Z )1+ L s L R AT
n é”*’[ 220+ 3D 2. 4onaBXan+5) ”//m:/ \
9-3
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where

&)

a _ o)
6” *y,2) = /% ((/é)f,, H) £, v

i}

(9-4)

is an external ellipsoidal harmonic,
In the present application of these relationships the potential

functions of interest have the form

/E/O/l/)//-c /)//; /éz'))L |
r o, W/[_;“ (9-5)

Thus the potential w; is, in spherlcal coordinates, obtained from

the relations

[v]
;/ L 25 .f}L/?é'osg)
24’ 2%

/
7 G = " 2407

2 e 2~ 2 __,/Oéwg)f/’f,@
/;@//674 //;7=%{/",§? faD )Z

W/TZM 4 -2/32”/#2‘_+ Lt S P/%e)wg 6)

2.5 246

The computations may be simplified by performing the differential

(1)

operations in Cartesian coordinates, Thus observing that

(l)Hobson's choice of coordinates, employcd in Appendices 7 and 8
, will be adopted here also. When applied
to the theory of the text the results may be reinterpreted
in terms of the conventional system employed therein.



-338-

/Ta’ r* S70 m@

) Flrose) = X > 6056)(@5"’? (L?)
V4 3 Z

and that these functions satisfy L.aplaces equation so

2// &1715) % C’)QL%@”C) fﬁ/ /X,g}i‘)

for example, then (9-6) can be put in the form
EGap? = 2537~ S £ Ma-cw,]fm —é)"’
2z 2 L
* (@@= C)Jz’—]*""j(/z?

G I s [k 6, 00 ]

25*’0[( "cz)“)“z*@ c)") ] JZ(/Z
0 bl —«2/;[% »[fazwﬁ— NCP |

T
Carrying out the indicated operations, one has finally
el oo o]
L
ra2(a=hha® cz)<“— - W g%#f‘)

raer (- 1212, a2+ ok

(9-7)
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=0 = 26(5) - £ (88| @ )5
(42 2)] Clgefaved (- 252« 42) 26290

Y & 2) z 2 o7 z ¢
(F-EG0 2220 ). 2 (- 42 24 *%#)ﬂ O (72
(9-8)

IR -5t £ 2P )0

(45 2 (&) 1 Jro P25 242 ) o)
/z+ z 22 b .

G- en2) e -5 )]

¢ O(t)

(9-9)

The results have been carried out sufficiently far that all terms
which are likely to be of importance in any practical application,
including the present, are included. It is clear that all the har-
monics of a given order n can be obtained from one of their

number by interchanges of x, y and z, as would be expected.
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APPENDIX 10
STRAIN COEFFICIENTS Pij’ Q

ij
AR f//'?fﬁ 6’053/@ 5/'/7;0—(5/2) SIH O 57 2

= () - si*m 4 (7/4')6'/)4¢§J)/722¢

= Fine sin@ossg - (%2)siAOInEP

Ny B
il
N

© g . .
7B O30 50 P casp - (1) siin 28 casg
2 = (78) 571720 575 2P = (Ya)srn'@ S/2P

.2 . .
/fa = Jsin O LoS O gos’b\f//?y-, g //e)swzef//z §7

;Q(‘Jg : Q/ = QJ[
@R, =& sHBCosD 52 p - /Z?Z;u)/?/z;y)]f/;ﬁs szp

Q.= (adsmesned -] N2 w ]9 -

3A+ )
@2, sl siir /Jaczzs/@ ) f//)é/;{f/()j_f/'/?féﬁbz §7

>
Oza = 537/2(96’0595/9,2@405/W 'DL/?//U/J ‘)7)?2@525?

Q, 7 (58) k2070 2D — (1/2) 548 7 2p

Qp = S/in'® ose Cﬂs?:/)zﬁ —ﬁ/‘;’ﬁy)j E1p.28 X 2
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APPENDIX 11

Definition
Lamé (elastic) constant
Rigidity
Density
Body force, source term
Source boundary
Scaler source potential
Vector source potential
Source coordinates

General (observers) coordinates

Distance from source point to an

arbitrary point
Elastic diaplaccment field
Scaler displacement potential
Vector displacement potential

Compressional (primary) wave
velocity

Shear (secondary) wave velocity
Dilatation

Rotation vector

General scaler potential

Source coordinates

Source time

TABLE OF SYMBOLS AND SPECIAL FUNCTIONS

First Introduced in
Equation or Section

ZO 201

2.2
20 2.4

2.2.4

Zc an
Zo Zo5

20 205

20 2° 8
2. 2,10
2.2.11

2. 2,11



Symbol
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Definition

G(_E,t/_l_'_o, to) Green's Function for the scaler

g(r,t )

ste
T

5(x)

F{}
*{o) =F(x(t)}

'r* T
12

wave equation
Generalized source function

Space-connected source time

(delay time for volume relaxation)

Generalized scaler potential for
the jth layer

Scaler potential of homogeneous
wave equation in the jth laver

Scaler potential for the source field

in the nth (source) layer
"angular frequency"
Wave number components
Special "wave number" notation
involving body wave velocities,
Vj’ in layered earth models

Wave number magnitude

Dirac delta function

8
By(x-y) = 55 8(x-y)
Delta function derivative

Fourier transform operator

Fourier transformed function of
time

Delay times appropriate to com-
pressional and shear type
potentials

kp = w/vp, kS = m/vs,
K=k _ or k
P s

Initial displacement ficld

First Introduced in
Equation or Section

2.2.12

2, 2,11

2.2.11

202,13

2, 2,13

2.2.13
Z2e 2415

2. 2.15

2.2.,15

2, 2,16

2,2,18

2,2.,18

20 2. 22

2.2, 27

24 20 27
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First Introduced in

Symbol Definition Equation or Section
24 Static source function 2.3.2
S(t) Source time function 2.3.1
ei'k- 1 i,j,k even permutation
) of 1, 2, 3
eijk =4 -1 odd permutation 2.3
0 one indice equals another
é\i Dasis vectors, 1i=1,2,3 2.3
(ntl),. . . .
R (10., - 1n) Multipole (integral) moments 2.3.4
; ,
P(n 1)(m) "Multipole magnitude® 2.3.7
g 1)(9 ) Spherical surface harmonic 2.3, 8
n 2 17 fld o o I
Q(kr) "Propagation function" 2. 6.4
F (ajess2_jbec.b_3;x) General hyper-
rosl rl S geometric function 2, 6.4
Sn(6,¢) Spherical surface harmonic 2.7
R Effective source volume radius 2,7
ol ’m l , Ip f;p, n, v) Transformation coeifficient 2.8.2
(n)!!} "Double factorial®;
: 2
(n,)!!=n(n—2),..(1) 2.8
6 Kroeneker delta function
5 - s h#F m
nm 1, n=m 2.8, 4 2.8

Gy (' @), C(J)(r', w)  Multipole coefficients
Lk 1k . .
for potentials in a

translated coordinate system 2,8.4
P;n (€) Associated Legendre function
(Ferrers definition) 2.2
PIHE) Associated Legendre function
n (Hobson's definition) 2.8, 7
P(m)(g) mth derivative of the Legendre
n

polynomial P_(£) 2,8, 7



Szrnbol
Y;(X, v, z)

s, (@)

O'g(.)), u(O)
11 =

0’(.1.), 11(1)
ij’—
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Definition
Solid harmonic

Lommel's function

Initial tectonic prestress field
and associated displacement

Tectonic stress field in the
presence of a rupture and
associated displacement

Surfacc of the rupture

Unit vector normal to B

Energy density released at a point
due to elastic relaxation

The change in the stress equilibrium
value due to creation of a rupture

Displacement change associated
with 0';3

Poisson's ratio
Source time variable
Galerkin vector

Dilatation associated with the
change in stress O':Il‘:].

Rotation vector associated with crig
Harmonic scaler and vector
potentials associated with

an elastic equilibrium field

Biharmonic scaler and vector .
potentials associated with (r;j

Initial strain energy of a pre-
stressed medium

Final strain energy of stressed
medium after creation of a rupture

First Introduced in
Equation or Section

2,9.3

2' 904

30 701

3.7, 2a

3. 7. 2b

3.7.2b

3.7.3

3, 7.4

3.7

3.7.9

3.7.14

3.7.14

3.7.16

3.7.18

3.8.1

3.8.1
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Firest Introduccd in

Symbol Definition Equation or Section
*
oW Change in potential energy of a
stressed medium due ‘io creation
of a ruptute (W(0) - wil) 3,8.1
0 . . .
e(i.),_e(il.) Strains associated with prestress
J J 0'%)) and final stress G1§) 3.8
* *
ij Strain difference associated with Uij 3.8
o Rupture volume 3.8
Vl Volume of the medium or finite
body exterior to the rupture
volume V 3.8
o)
Volume of the prestressed medium 3.8
Fi Total force, tectonic and otherwise,
within the stressed medium 3.8
d‘i.,ei. Total stress and strain within a
U rupture volume, including that
due to plasticity 3.8, 7
E Energy required for phase change
and fracture associated with
rupturing 3.8, 7
*
Y- Shear stress within the rupture
= volume VO 3.8.8
E, Lower bound of energy released as
seismic radiation due to rupture 3,8, 11

u.(r,t/'r) } Dynamical displacement and stress
1 fields associated with incremental
crij (z, t/7) rupture as functions of observer
time t and a source time T 3.9.1

yi(z, t/T) 73 Relative dynamical displacement
and stress associatéd with
Tij(ﬁ’ t/T)

incremental rupture 3.9.1
O(r, t/7) Dilatation and rotation correspond-
Q(z, t/T) ing to the relative displacement
- and stresses vy, Tij ("physical 3.9.4

potentials")
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First Introduced in

Symbol Definition Equation or Section
NG t/T) Displacement potentials associated
Y(r, t/T) with the relative displacement y. 3,9, 6
i
€ (r,T) Initial values for dilatation and
Q*(x, 7) rotation due to incremental
rupture ("relaxation potentials") 3.9
*
,&% (r,7) Initial values for the displacement
W¥(z,T) potentials due to incremental
rupture 3.9
$,x Generalized potentials representing
either the "physical potentials™
or the displacement potentials 3.9
&z, T) Initial values corresponding to the
X {x,7T) generalized potentials describing
incremental rupture radiation 3.9
Tk Particular value of the source time 7 3.9
o Infinitesimal interval of source time 3,9.7
L(r, t) Minimum distance from the rupture
surface to the point at r 3.9.8
de . . .
6d Discontinuous changes in the
Y generalized potentials cor-
J responding to a change in
equilibrium due to incremental
rupture 3.9.12
R{T) Region exterior to the rupture
surface B(T) 3.9.13
6n(t) nth derivative of the Dirac
delta function 3.9.14
611_'I< Discontinuous change in the
displacement corresponding to
a change in equilibrium due to
incremental rupture 3.9
Q Solid angle 3.9.19
R(&2, T) Radial distance to the rupture

Surface 3n 90 19



a,b,cC
o’ o’ o

a(T), b(7T), c(T)

(rll’e", ¢")

anm(ﬂ
ﬁnm('r)
Y(rjl?m('r)
&) (1)
nm

(r',0', ¢")
d(r)

d
o

T_(04")

Ny, (09"
R CIT D

|
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Definition

Generalized potentials for rupture
radiation

Source time at the end of rupture

The step function defining the time
interval of rupturing

Velocity of the rupture front
(Rate of rupture expansion)

Semi-axes of the final rupture
ellipsoid

Semi-axes of an expanding
or propagating rupture
ellipsoid

Spherical coordinates in a system
translating with the rupture

Source time dependent multipole
coefficients fox: the harmonic
initial value ©F

Source time dependent multipole
coefficients fnnthe harmonic
initial value ﬂ;

Spherical coordinates in a system
fixed at the point of initial
rupture

Separation of the origins of the
fixad source coordinates and
that translating with the rupture

Final separation of fixed and moving
coordinate systems after rupture

"Angular delay factor" associated
with the distance function {

Angular delay factors
Nm =1 - (vR/vp)]'."m
i‘,m =1 - (VR/VS)rm

First Introduced in
Equation or Section

3.10. 2

3,10, 2

3.10,2

3.10.3

3,10. 3

3.10.3

3.10. 7

3.10, 7

3,10, 7

3.10. 8

3,10. 8

3.10,11

3.10,12a

3.10,14



~348-

First Introduced in

Symbol Definition Equation or Section
* %
t st Delay times for causality effects
P for p and s type potentials 3.10.14
R(T) Radius of a propagating spherical
rupture 3.10,17
a Form factor for the rupture shape,
ratio of the rupture length at
TO/Z to the final length at To 3.10, 23
%k
@15, (’32 Relaxaiaion potentials, correc sponding
to ©" in the two spatial domains
r'>d(T) and r'<d(T) respectively 3,11, 2
Anm(w) Multipole expansion coefficients
B (o) for the dilatation field due to
nm rupture 3,11, 10
Cgr)n(w) Multipole expansion coefficients
() for the rotation field due to
pY (w) rupture 3.11.10
nm
@(l)(z, w) Fourier transforms of the dilation
~(1) and rotation fields due to rupture
QY (r, w) (source radiation) 3.11,10
A(p) s B(p) Coefficients in the expansion in ('1‘)p 3,11, 15
nm’ “nm
jcr(xl:)n)q’jDrgfxl Coefficients in tl’te) ('I‘)p series for
vO) (1) ana &Y (7) 3.1
{3;} Row matrix: (x vy) 3.11.16
(;{) Column matrix 3.11.16

G‘ﬁk(w)’ B, k(m) Multipole coefficients for the

dilatation field due to rupture 3.11,20
Cé‘lli(w), Qﬂ(i?(w) Multipole coefficients for the

rotation field due to rupture 3.11, 22
kg kp = co/vR 3.11. 23

E?/’(p, yix;by) "Modified hypergeometric
function® 3.11. 25



Symbol
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Definition

Form factor for propagating
ruptures

space partition parameters
- m m
£ = (1-2a 0)/20,0

Space partition parameters

Relaxation potentials corresponding
to Q. in the two spatial domains

r' > ci(‘r) and r' < d4(T)
respectively

Space partition radii for the
propagating rupture source

= - m _ m
d_=(l-a Y/ 20 ")

Space partition radius for the
propagating rupture source)
(el < 1/10)

- m

b = 1/(1 a )

Shock induced rupture radius

Ellipsoidal co@rdinates

External ellipsoidal harmonic

Internal ellipsoidal harmonic

First Introduced in
Equation or Section

3.12, 3
3.12.12
3.12.13

3,12,13

3,12, 21

3.12. 30

3.12,40

3.12, 44
3.12,45
3.13.3

3,14
Appehdix 7

3.14.18 Appendix 8

3.14.18 Appendix 8



Figure 1
Figure 2

Figure 3

Figure 4

Figure 5
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FIGURE CAPTIONS
Source and receiver coordinate relationships.
Partition of space about an observation point P.
Schematic representations of (a) Growing and (b)
Propagating ruptures at source times 7 1 and Z“z,
with Q a source point, P the receiver point and fyz/
the minimum distance from the source point to the
rupture surface B(7 ). (E - rupture envelope).
Basic types of "macroscopic'" and ""microscopic" dis-
locations. (a) An edge diclocation of an elastic body.
slip perpendicular to the dislocation line (Orowan, 1954).
{b) A screw dislocation of an elastic body. Slip parallel
to the dislocation line. (browan, 1954). (c) An edge
dislocation in a crystalline lattice showing the position
of an impurity atom (I). (Mason, 1958). (d) A screw
dislocation in a crystalline lattice {simple cubic
structure). (Mason, 1958).
Frank-Read dislocation source showing various phases
of the motion of a dislocation under a stress field, where
a new loop and a second pinned dislocation are produced.

T3 is the total stress on the dislocation during the

motion. (Mason, 1958).



Figure 6

Figure 7

Figure 8

Figure 9

Figure 11

Figure 12
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Partitioning of the region about the final rupture envelope

for the radiation volume Vl'

Spatial relations for a rupture in a prestrained medium.
Coordinate relationships between the system oll trans-
lating with the rupture and the fixed system o! with
origin at the point of initial rupture. (Unilateral growing
rupture shown). -

Growing or expanding ellipsoidal rupture model. Final

ruptur Xes: a < c < .
pture axe o’ b0 ag ¢, <bo

Model m = 2, propagating spherical rupture with an
ellipsoidal rupture envelope. Axes a_ bo’ b0 ao.

(b) Model m = 3, propagating ellipsoidal rupture with
ellipsoidal rupture envelope. Axes a., b°< a co<< bo.
Regions of anomolous (delayed) relaxation for the three
rupture models at particular stages of rupture. (a)
Expanding ellipsoidal rupture (m = 1). (b) Propagating
spherical rupture (m = 2). (c) Propagating ellipsoidal
rupture (m = 3).

Angular delay factors  /p, (6, #’)  for expanding
and propagating ellipsoidal and spherical ruptures. (a)
/7, for the propagating spherical rupture. (b) 7,

for equilateral expanding ellipsoidal rupture.{c) 2 for
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bilateral expanding ellipsoidal rupture (d, = ao/4).
(d) Z for unilateral expanding ellipsoidal rupture
{bottom) and }73 for unilateral propagating ellipsoidal

rupture (top). All cases have bo/a0= 1/4

Figure 13 Parameters @ s h and g for propagating rupiures
m  m m
as functions of the form factor .O(Om , e oM< )
Figure 14 Space-time partitiening for propagating rupture sources.

(a) Spatial partitioning as a function of the source form
factor @ ™,
o

. . . e’ m
1. Region in which: ( /a_n ) > (ﬁm-i-l)o(o
2. Region in which:

2z r{"
(1-2«M)/aar < (a,) < (for) O,
3. Region in which
/ kA m

0 < (n/GLo) < (/"Z°{om) /40‘0

(b) Source time partition for dom = 1/8, a representative

case. The exact curve is given for comparison.

. o o~
1. Region: j 2;0 “'“ < T < 2‘\2"
2. Region: Z /-°‘m’ n
3. Region: _q—_g_ g <« 24,
%m(\/g ’f‘—ﬂbm(\/&)<f— Vr

4. Region: (p< 77 < 8-,.,\(%:)-}—%”:_ (L\/L';)

5. Region: 24,
g 0¢ T2 =
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Figure 15 General translations of coordinates to the center of the
earth for spontaneous rupture models. (Ii denotes the
rupture direction or major axis of the rupture direction
or major axis of the rupture ellipsoid which is always
taken in the Z direction in the source coordinates).

F‘iéure 16 Coordinate relationships for (a) "Strike slip and (b)
"dip slip" ruptures.

A - surface azimuth
r,6,¢ - source coordinates

P - point of observation
VR - rupture propagation velocity vector
H - depth of source
Figure 17 Amplitude spectrums of the rotational multipole coefficient
()

Cg and the dilatational coefficients A,,, B,, for

1= 2, 3, 4. Cases shown are for equal components of

the initial stress field, & S,,= §,,= 5 ,= .00l. The

13

rupture parameters are

ag = 1.5 km -VR= 1. 656 km/sec
b, = .2 km VP.—. 3.2 km/sec
H = 3 km V_=1.84 km/sec
Rs:’ 3 km

Higher order multipoles become significant at the shorter

periods due to propagation of the rupture.



Figure 18

Figure 19

Figure 20

Figure 21

Figure 22
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Phase of multipole coefficients for spontaneous rupture,
Source parameters as in Figure (17).

Spontaneous rupture radiation patterns (strike slip") for
(a) dilatation ® (b) rotation component {1, (c) rotation
component _O-z (d) rotation component .0.3 . Rupture
parameters as in Figure (17). Scale divisions indicated.
Spontaneous rupture radiation patterns (strike slip") for
(2) dilatation © (b) rotation component {1, (c) rotation
component .QL (d) rotation component “Qs . Rupture para-
meters as in Figure (17). Scale divisions indicated. The
case shown is the same as in Figure (19) except for a
change in the stress orientation.

Spontaneous rupture radiation patterns (''strike slip")

for {(a) dilatation © (b) rotation component -Q. (c)
rotation component .Q.z (d) rotation component -Q-a .
Rupture parameters as in Figure (17). Scale divisions
indicated. The case shown is the same as in Figures
(1'9) and (20) except for a change in the stress orientation.
Spontaneous rupture radiation patterns (''strike slip") for
(a) dilatation © (b) rotation component -O-, (c) rotation
component .Qz_ (d) rotation component Qg. Rupture para-
meters as in Figure (17). Scale divisions indicated.

The case shown is the same as Figure (19) except for



Figure 23

Figure 24

Figure 25

Figure 26
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the longer period of the radiation.

Spontaneous rupture radiation patterns ("'strike slip") for
(a) dilatation & (b) rotation component Q. (c) rotation
component Qz (d) rotation component Qa' Rupture para-
meters as in Figure (17). Scale divisions indicated. The
case shown is the same as Figure (21) except for the
longer period of the radiation.

Spontaneous rupture radiation patterns ("dip slip') for

(a) dilatation e (b) rotation component _Q, {c) rotation
component Qz_ (d) rotation component Da . Rupture
parameters as in Figure (17). Scale divisions indicated.
The case shown is the same as that in Figure (19) except
for the change in the rupture orientation.

Schematic representation of the various zones of non-
linear behavior in the vicinity of an explosive source.
(Not to scale).

R0 - vaporization radius

R, - final cavity radius

R2 - flow zone radius

Curves k = const. plotted with W and R, variable. Other

source and medium parameters hecld constant with values

appropriate to the Ranier nuclear explosion in Tuff.
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Figure 27 Radius of the zone of flow and crushing (RZ) versus
radius of vaporization (RO) for various values of the
internal friction parameter (k). ©Other source and
medium parameters held fixed at values appropriate to
the Ranier nuclear explosion.

Figure 28 Final cavity pressure (P) versus "initial cavity" radius
Ro (radius of vaporization) for various values of the
internal friction coefficient k. Other source and medium
parameters held fixed at values appropriate to the
Ranier nuclear test.

Figure 29 Strain energy release Es versus explosive energy
for various values of the internal friction coefficient k.
Initial stress field 6‘12= 5.38 x 107 dynes/ cmz. R1
fixed, but R allowed to vary with W. Other parameters
held fixed at values appropriate to the Ranier nuclear
explosion.

Figure 30 Strain energy release Es versus explosive energy
for various values of initial strain. Intermnal friction
constant k = .1, and held fixed. Rl fixed, but Ro varies
with W . Other parameters held fixed with values
appropriate to the Ranier explosion. Initial stress
values: O _= 53,8 bars, 26.9 bars, 15.6 bars, 13.45

12

bars.



Figure 31

Figure 32

Figure 33

Figure 34
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Amplitude spectrums for induced rupture. (a) multipole
coefficients normalized by division by Sij the strain
parameters, plotted as a function of period in the range
1-100 sec. (b) Amplitude spectrums of the dilatation and

rotation components at 344 km with © = 60°.

Source parameters:

R_= .3 km Vg = 3.5 km/sec
R, = 1.5 km Vp: 3.2 km/sec
V = 1.84 km/sec

S

Phase of normalized multipole coefficients A, _, B
2m’ T 2m

(Dilatation) and c(J) , D(j) (rotation) for the induced

Zm 2m

rupture. Parameters as in Figure (31).

Shock induced rupture radiation patterns for (a)

Dilatation © (b) Rotation component L), {c¢) Rotation

component {1 , (d) Rotation component _O.s . Rupture

parameters as in Figure (31).

Shock induced rupture radiation patterns for (a)

Dilatation © (b) Rotation component €2, (c) Rotation

component <), (d) Rotation component {1, . Rupture

parameters as in Figure {31). The case shown is the

same as that in Figure 33 except for a change in the

stress orientation.



Figure 35

Figure 36

Figure 37

Figure 38
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Shock induced rupture radiation patterns for (a)
Dilatation © (b) Rotation component Q, (c) Rotation
component D-z (d) Rotation component ﬂa . Rupture
parameters as in Figure (31). The case shown is the
same as that in Figures (33) and (34) except for the
differences in stress.orientation.

Shock induced rupture radiation patterns for (a)

- Dilatation & (b) Rotation component -0-, (c) Rotation

component -QL (d) Rotation component _D.3 . Rupture
parameters as in Figure (31). The case shown is the
same as that in Figure {35) except for a small change in
the prestress.

Partition of space about an observation point and the
surfaces of integrations and S,

Translation of coordinates from O (source) to o)

(arbitrary origin).
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Fig. |
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Fig. 2
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(e)

Fig 5
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Fig. 6
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Fig. 9
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Fig. 10
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Fig. 21
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Fig. 22
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Fig. 23
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Fig. 37
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Fig. 38



