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Abstract

This thesis is divided into two parts:

In the first part, we consider Rota-Baxter algebras of meromorphic forms with poles along a (sin-

gular) hypersurface in a smooth projective variety and the associated Birkhoff factorization for

algebra homomorphisms from a commutative Hopf algebra. In the case of a normal crossings divi-

sor, the Rota-Baxter structure simplifies considerably and the factorization becomes a simple pole

subtraction. We apply this formalism to the unrenormalized momentum space Feynman ampli-

tudes, viewed as (divergent) integrals in the complement of the determinant hypersurface. We lift

the integral to the Kausz compactification of the general linear group, whose boundary divisor is

normal crossings. We show that the Kausz compactification is a Tate motive and the boundary

divisor is a mixed Tate configuration. The regularization of the integrals that we obtain differs from

the usual renormalization of physical Feynman amplitudes, and in particular it gives mixed Tate

periods in cases that have non-mixed Tate contributions in the usual form. This part is based on

joint work with Matilde Marcolli (see (80)).

In the second part, we consider the notions of the replicators, including the duplicator and triplica-

tor, of a binary operad. We show that taking replicators is in Koszul dual to taking successors in (9)

for binary quadratic operads and is equivalent to taking the white product with certain operads such

as Perm. We also relate the replicators to the actions of average operators. After the completion

of this work (in 2012; see (85)), we realized that the closely related notions di-Var-algebra and tri-

Var-algebra have been introduced independently in (48) (in 2011; see also (63; 64)) by Kolesnikov

and his coauthors. In fact their notions also apply to not necessarily binary operads (64). In this

regard, the second part of this thesis provides an alternative and more detailed treatment of these

notations for binary operads. This part is based on joint work with Chengming Bai, Li Guo, and

Jun Pei (see (85)).
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Chapter 1

Introduction

1.1 Rota-Baxter algebras

A Rota–Baxter algebra of weight λ is a unital commutative algebraR together with a linear operator

T : R → R satisfying the Rota–Baxter identity

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy). (1.1.1)

For example, Laurent polynomials R = C[z, z−1] with T the projection onto the polar part are a

Rota–Baxter algebra of weight −1.

The Rota–Baxter operator T of a Rota–Baxter algebra of weight −1, satisfying

T (x)T (y) + T (xy) = T (xT (y)) + T (T (x)y), (1.1.2)

determines a splitting of R into R+ = (1 − T )R and R−, the unitization of TR, where both R±
are algebras. For an introduction to Rota–Baxter algebras we refer the reader to (49).

1.2 Singular hypersurfaces and renormalization on Kausz

compactifications

In the first part of this thesis, we consider the problem of extracting periods of algebraic varieties

from a class of divergent integrals arising in quantum field theory. The method we present here
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provides a regularization and extraction of finite values that differs from the usual (renormalized)

physical Feynman amplitudes, but whose mathematical interest lies in the fact that it always gives

a period of a mixed Tate motive, for all graphs satisfying a simple combinatorial relation that

ensures the amplitude can be computed using (global) forms with logarithmic poles. For more

general graphs, one also obtains a period, where the nature of the motive involved depends on how

a certain hyperplane arrangement intersects the big cell in a compactification of the general linear

group. More precisely, the motive considered here is provided by the Kausz compactification of the

general linear group and by a hyperplane arrangement that contains the boundary of the chain of

integration. The regularization procedure we propose is modeled on the algebraic renormalization

method, based on Hopf algebras of graphs and Rota–Baxter algebras, as originally developed by

Connes and Kreimer (26) and by Ebrahmi-Fard, Guo, and Kreimer (38). The main difference in

our approach is that we apply the formalism to a Rota–Baxter algebra of (even) meromorphic

differential forms instead of applying it to a regularization of the integral. The procedure becomes

especially simple in cases where the deRham cohomology of the singular hypersurface complement

is all realized by forms with logarithmic poles, in which case we replace the divergent integral with a

family of convergent integrals obtained by a pole subtraction on the form and by (iterated) Poincaré

residues. In (24) a similar approach was developed for integrals in configuration spaces.

In Section 2.1 we introduce Rota–Baxter algebras of even meromorphic forms, along the lines of (24),

and we formulate a general setting for extraction of finite values (regularization and renormalization)

of divergent integrals modeled on algebraic renormalization applied to these Rota–Baxter algebras

of differential forms.

In Section 2.2 we discuss the Rota–Baxter algebras of even meromorphic forms in the case of a

smooth hypersurface Y ⊂ X. We show that, when restricted to forms with logarithmic poles, the

Rota–Baxter operator becomes simply a derivation, and the Birkhoff factorization collapses to a

simple pole subtraction, as in the case of log divergent graphs. We show that this simple pole

subtraction can lead to too much loss of information about the unrenormalized integrand and we

propose considering the additional information of the Poincaré residue and an additional integral

associated to the residue.

In Section 2.3 we consider the case of singular hypersurfaces Y ⊂ X given by a simple normal

crossings divisor. We show that, in this case, the Rota–Baxter operator satisfies a simplified form

of the Rota–Baxter identity, which is not just a derivation, however. We show that this modified
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identity still suffices to have a simple pole subtraction φ+(X) = (1 − T )φ(X) in the Birkhoff

factorization, even though the negative piece φ−(X) becomes more complicated. Again, to avoid

too much loss of information in passing from φ(X) to φ+(X), we consider, in addition to the

renormalized integral
∫
σ
φ+(X), the collection of integrals of the form

∫
σ∩YI ResYI (φ(X)), where

ResYI is the iterated Poincaré residue ((4), (3)), along the intersection YI = ∩j∈IYj of components

of Y . These integrals are all periods of mixed Tate motives if {YI} is a mixed Tate configuration,

in the sense of (44). We discuss the question of further generalizations to more general types of

singularities, beyond the normal crossings case, via Saito’s theory of forms with logarithmic poles

(90), by showing that one can also define a Rota–Baxter structure on the Saito complex of forms

with logarithmic poles.

In Section 2.4 we present our main application, which is a regularization (different from the physical

one) of the Feynman amplitudes in momentum space, computed on the complement of the determi-

nant hypersurface as in (6). Since the determinant hypersurface has worse singularities than what

we need, we pull back the integral computation to the Kausz compactification (60) of the general

linear group, where the boundary divisor that replaces the determinant hypersurface is a simple

normal crossings divisor. We show that the motive of the Kausz compactification is Tate, and that

the components of the boundary divisor form a mixed Tate configuration. We discuss how one can

replace the form ηΓ of the Feynman amplitude with a form with logarithmic poles. In general it is

defined on the big cell of the Kausz compactification. We also discuss the nature of the periods.

This part is based on joint work with Matilde Marcolli (see (80)).

1.3 Replicating of binary operads, Koszul duality, Manin

products and average operators

Motivated by the study of the periodicity in algebraic K-theory, J.-L. Loday (69) introduced the

concept of a Leibniz algebra twenty years ago as a non-skew-symmetric generalization of the Lie

algebra. He then defined the diassociative algebra (70) as the enveloping algebra of the Leibniz

algebra in analogue to the associative algebra as the enveloping algebra of the Lie algebra. The

dendriform algebra was introduced as the Koszul dual of the diassociative algebra. These structures

were studied systematically in the next few years in connection with operads (74), homology (41; 42),

Hopf algebras (2; 57; 75; 88), arithmetic (71), combinatorics (40; 76), quantum field theory (40)
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and Rota-Baxter algebra (1).

The diassociative and dendriform algebras extend the associative algebra in two directions. While

the diassociative algebra “doubles” the associative algebra in the sense that it has two associative

operations with certain compatible conditions, the dendriform algebra “splits” the associative al-

gebra in the sense that it has two binary operations with relations between them so that the sum

of the two operations is associative.

Into this century, more algebraic structures with multiple binary operations emerged, beginning

with the triassociative algebra that “triples” the associative algebra and the tridendriform algebra

that gives a three way splitting of the associative algebra (75). Since then, quite a few dendriform re-

lated structures, such as the quadri-algebra (2), the ennea-algebra, the NS-algebra, the dendriform-

Nijenhuis algebra, the octo-algebra (65–67), and eventually a whole class of algebras (36; 74) were

introduced. All these dendriform type structures have a common property of “splitting” the as-

sociativity into multiple pieces. Furthermore, analogues of the dendriform algebra, quadri-algebra

and octo-algebra for the Lie algebra, commutative algebra, Jordan algebra, alternative algebra, and

Poisson algebra have been obtained (1; 10; 55; 68; 73; 84), such as the pre-Lie and Zinbiel algebras.

More recently, these constructions can be put into the framework of operad products (Manin black

square and black dot products) (35; 72; 93).

In (9), the notions of “successors” were introduced to give the precise meaning of two-way and three-

way splitting of a binary operad and thus put the previous constructions in a uniform framework.

This notion is also related to the Manin black products that had only been dealt with in special

cases before, as indicated above. It is also shown to be related to the action of the Rota-Baxter

operator, completing a long series of studies starting from the beginning of the century (1).

In this paper, we take a similar approach to the other class of structures starting from the diassocia-

tive (resp. triassociative) algebra. That is, we seek to understand the phenomena of “replicating”

the operations in an operad. After the completion of this work (in 2012; see (85)), we realized that

the closely related notions di-Var-algebra and tri-Var-algebra have been introduced independently

in (48) (in 2011; see also (63; 64)) by Kolesnikov and his coauthors. In fact, their notions also apply

to not necessarily binary operads (64). In this regard, the second part of this thesis provides an

alternative and more detailed treatment of these notations for binary operads.

In Section 3.1 we set up a general framework to make precise the notion of “replicating” any

binary algebraic operad. This provides a general framework to study the previously well-known
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di-type (resp. tri-type) algebras which are analogues of the diassociative (resp. triassociative)

algebra associated to the associative algebra, including the Leibniz algebra for the Lie algebra

and the permutative algebra for the commutative algebra, as well as the recently defined pre-Lie

dialgebra (39). In general, it gives a “rule” to construct new di-type (resp. tri-type) algebraic

structures associated to any other binary operads. This notion is simpler in formulation but turns

out to be equivalent to the notion of di-Var-algebra in (48) for binary operads with nontrivial

relations.

We show in Section 3.2 that taking the replicator of a binary quadratic operad is in Koszul dual

with taking the successor of the dual operad. A direct application of this duality (Theorem 3.2.3

and 3.2.4) is to explicitly compute the Koszul dual of the operads of existing algebras, for example

the Koszul dual of the commutative tridendriform algebra of Loday (73). We also relate replicating

to the Manin white product in the case of binary quadratic operads. In fact taking the duplicator

(resp. triplicator) of such an operad with nontrivial relations is isomorphic to taking the white

product of the operad Perm (resp. ComTriass) with this operad, as in the case of taking di-Var-

algebras and tri-Var-algebras (48), thus showing that the notations of duplicator and triplicator are

equivalent to those of di-Var-algebras and tri-Var-algebras.

Finally, in Section 3.3, we relate the replicating process to the action of average operators on

binary quadratic operads. Aguiar (1) showed that the action of the two-sided average operator on a

commutative associative algebra (resp. associative algebra) gives a perm algebra (resp. associative

dialgebra). In (92), Uchino extended the classical derived bracket construction to any algebra over a

binary quadratic operad, showing that the derived bracket construction can be given by the Manin

white product with the operad Perm.

Thus there is a relationship among the three operations applied to a binary operad P: take its

duplicator (resp. triplicator), and take its Manin white product with Perm (resp. ComTriass),

when the operad is quadratic, and apply a di-average operator (resp. tri-average operator) to it, as



6

summarized in the following diagram.

 Duplicator

Triplicator
77

ww

ee

%%

Manin white

product with

 Perm

ComTriass

oo //

 di-

tri-

 average

operators

Combining the replicators with the successors introduced in (9) allows us to put the splitting and

replicating processes together, as exemplified in the following commutative diagram of operads.

The arrows should be reversed on the level of categories.

PreLie
− // Dend // Zinb

Bsu

KS

Du

��

Lie

+

OO

−
// Ass //

+

OO

Comm

+

OO

Leib

OO

−
// Dias //

OO

Perm

OO

Here the vertical arrows in the upper half of the diagram are addition of the two operations given in

(9, Proposition 2.31.(a)) while those in the lower half of the diagram are given in Proposition 3.1.19

(a). The horizontal arrows in the left half of the diagram are anti-symmetrization of the binary

operations while those in the right half of the diagram are induced by the identity maps on the

binary operations. In the diagram, the Koszul dual of an operad is the reflection across the center.

A similar commutative diagram holds for the trisuccessors and triplicators.

This part is based on joint work with Chengming Bai, Li Guo, and Jun Pei (see (85)).
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Chapter 2

Singular hypersurfaces and
renormalization on Kausz
compactifications

2.1 Rota–Baxter algebras of meromorphic forms

We generalize the algebraic renormalization formalism to a setting based on Rota–Baxter algebras

of algebraic differential forms on a smooth projective variety with poles along a hypersurface.

2.1.1 Rota–Baxter algebras of even meromorphic forms

Let Y be a hypersurface in a projective variety X, with defining equation Y = {f = 0}. We

denote by M?
X the sheaf of meromorphic differential forms on X, and by M?

X,Y the subsheaf of

meromorphic forms on with poles (of arbitrary order) along Y . It is a graded-commulative algebra

over the field of definition of the varieties X and Y . We can write forms ω ∈ M?
X,Y as sums

ω =
∑
p≥0 αp/f

p, where the αp are holomorphic forms.

In particular, we consider forms of even degrees, so thatMeven
X,Y is a commutative algebra under the

wedge product.

Lemma 2.1.1. The commutative algebra Meven
X,Y , together with the linear operator T : Meven

X,Y →

Meven
X,Y defined as the polar part

T (ω) =
∑
p≥1

αp/f
p, (2.1.1)
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is a Rota–Baxter algebra of weight −1.

Proof. For ω1 =
∑
p≥0 αp/f

p and ω2 =
∑
q≥0 βq/f

q, we have

T (ω1 ∧ ω2) =
∑

p≥0,q≥1

αp ∧ βq
fp+q

+
∑

p≥1,q≥0

αp ∧ βq
fp+q

−
∑

p≥1,q≥1

αp ∧ βq
fp+q

,

T (T (ω1) ∧ ω2) =
∑

p≥1,q≥0

αp ∧ βq
fp+q

,

T (ω1 ∧ T (ω2)) =
∑

p≥0,q≥1

αp ∧ βq
fp+q

,

T (ω1) ∧ T (ω2) =
∑

p≥1,q≥1

αp ∧ βq
fp+q

,

so that (1.1.2) is satisfied.

Equivalently, we have the following description of the Rota–Baxter operator.

Corollary 2.1.2. The linear operator

T (ω) = α ∧ ξ, for ω = α ∧ ξ + η, (2.1.2)

acting on forms ω = α ∧ ξ + η, with α a meromorphic form on X with poles on Y and ξ and η

holomorphic forms on X, is a Rota–Baxter operator of weight −1.

Proof. For ωi = αi ∧ ξi + ηi, with i = 1, 2, we have

T (ω1 ∧ ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + α1 ∧ ξ1 ∧ η2 + (−1)|η1| |α2|α2 ∧ η1 ∧ ξ2

while

T (T (ω1) ∧ ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + α1 ∧ ξ1 ∧ η2

T (ω1 ∧ T (ω2)) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2 + (−1)|η1| |α2|α2 ∧ η1 ∧ ξ2

and

T (ω1) ∧ T (ω2) = (−1)|α2| |ξ1|α1 ∧ α2 ∧ ξ1 ∧ ξ2,
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where all signs are positive if the forms are of even degree. Thus, the operator T satisfies (1.1.2).

The following statement is proved exactly as in Theorem 6.4 of (24) and we omit the proof here.

Lemma 2.1.3. Let (X`, Y`) for ` ≥ 1 be a collection of smooth projective varieties X` with hyper-

surfaces Y`, all defined over the same field of definition. Then the commutative algebra
∧
`Meven

X`,Y`

is a Rota–Baxter algebra of weight −1 with the polar projection operator T determined by the T` on

each Meven
X`,Y`

.

2.1.2 Renormalization via Rota–Baxter algebras

In (26), the BPHZ renormalization procedure of perturbative quantum field theory was reinterpreted

as a Birkhoff factorization of loops in the pro-unipotent group of characters of a commutative Hopf

algebra of Feynman graphs. This procedure of algebraic renormalization was reformulated in more

general and abstract terms in (38), using Hopf algebras and Rota–Baxter algebras.

We summarize here quickly the basic setup of algebraic renormalization. We refer the reader to

(26), (27), (38), and (79) for more details.

The Connes–Kreimer Hopf algebra of Feynman graphs H is the free commutative algebra with

generators 1PI Feynman graphs Γ of the theory, with grading by loop number (or better by number

of internal edges)

deg(Γ1 · · ·Γn) =
∑
i

deg(Γi), deg(1) = 0

and with coproduct

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V(Γ)

γ ⊗ Γ/γ, (2.1.3)

where the class V(Γ) consists of all (possibly multiconnected) divergent subgraphs γ such that the

quotient graph (identifying each component of γ to a vertex) is still a 1PI Feynman graph of the

theory. The antipode is constructed inductively as

S(X) = −X −
∑

S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗X +
∑
X ′ ⊗X ′′, with the terms X ′, X ′′ of lower degrees.
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An algebraic Feynman rule φ : H → R is a homomorphism of commutative algebras from the Hopf

algebra H of Feynman graphs to a Rota–Baxter algebra R of weight −1,

φ ∈ HomAlg(H,R).

The morphism φ by itself does not know about the coalgebra structure of H and the Rota–Baxter

structure of R. These enter in the factorization of φ into divergent and finite part.

The Birkhoff factorization of an algebraic Feynman rule consists of a pair of commutative algebra

homomorphisms

φ± ∈ HomAlg(H,R±),

where R± is the splitting of R induced by the Rota–Baxter operator T , with R+ = (1− T )R and

R− the unitization of TR, satisfying

φ = (φ− ◦ S) ? φ+,

where the product ? is dual to the coproduct in the Hopf algebra, φ1 ? φ2(X) = 〈φ1 ⊗ φ2,∆(X)〉.

As shown in (26), there is an inductive formula for the Birkhoff factorization of an algebraic Feynman

rule, of the form

φ−(X) = −T (φ(X) +
∑

φ−(X ′)φ(X ′′)) and φ+(X) = (1− T )(φ(X) +
∑

φ−(X ′)φ(X ′′)),

(2.1.4)

where ∆(X) = 1⊗X +X ⊗ 1 +
∑
X ′ ⊗X ′′.

In the original Connes–Kreimer formulation, this approach is applied to the unrenormalized Feyn-

man amplitudes regularized by dimensional regularization, with the Rota–Baxter algebra consisting

of germs of meromorphic functions at the origin, with the operator of projection onto the polar

part of the Laurent series.

In the following, we consider the following variant on the Hopf algebra of Feynman graphs.

Definition 2.1.4. As an algebra, Heven is the commutative algebra generated by Feynman graphs

of a given scalar quantum field theory that have an even number of internal edges, #E(Γ) ∈ 2N.

The coproduct (2.1.3) on Heven is similarly defined with the sum over divergent subgraphs γ with
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even #E(γ), with 1PI quotient.

Notice that in dimension D ∈ 4N all log divergent subgraphs γ ⊂ Γ have an even number of edges,

since Db1(γ) = 2#E(γ) in this case.

2.1.3 Rota–Baxter algebras and Atkinson factorization

In the following we will discuss some interesting properties of algebraic Birkhoff decomposition

when the Rota-Baxter operator satisfies the identity T (T (x)y) = T (x)y.

Let e : H → A be the unit of Hom(H,A) (under the convolution product) defined by e(1H) = 1A

and e(X) = 0 on ⊕n>0Hn.

The main observation can be summarized as follows:

(a) If the Rota-Baxter operator T on A also satisfy the identity T (T (x)y) = T (x)y, then on

ker(e) = ⊕n>0Hn, the negative part of the Birkhoff factorization ϕ− takes the following form:

φ− = −T (φ(X))−
∑

T (φ(X ′))φ(X ′′), for ∆(X) = 1⊗X +X ⊗ 1 +
∑

X ′ ⊗X ′′.

(b) If T also satisfies T (xT (y)) = xT (y), ∀x, y ∈ A, then the positive part is given by φ+ =

(1− T )(φ(X)), ∀X ∈ kere = ⊕n>0Hn.

This follows from the properties of the Atkinson Factorization in Rota–Baxter algebras, which we

recall below.

Proposition 2.1.5. (Atkinson Factorization, (50)) Let (A, T ) be a Rota-Baxter algebra of weight

λ 6= 0. Let T̃ = −λid − T and let a ∈ A. Assume that bl and br are a solution of the fixed point

equations

bl = 1 + T (bla), br = 1 + T̃ (abr). (2.1.5)

Then

bl(1 + λa)br = 1.

Thus

1 + λa = b−1
l b−1

r (2.1.6)

if bl and br are invertible.
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A Rota-Baxter algebra (A, T ) is called complete if there are algebras An ⊆ A,n ≥ 0, such that

(A,An) is a complete algebra and T (An) ⊆ An.

Proposition 2.1.6. (Existence and uniqueness of the Atkinson Factorization, (50)) Let (A, T,An)

be a complete Rota-Baxter algebra of weight λ 6= 0. Let T̃ = −λid− T and let a ∈ A1.

(a) Equations (2.1.5) have unique solutions bl and br. Furthermore, bl and br are invertible. Thus

Atkinson Factorization (2.1.6) exists.

(b) If λ 6= 0 and T 2 = −λT (in particular if T 2 = −λT on A), then there are unique cl ∈ 1+T (A)

and cr ∈ 1 + T̃ (A) such that

1 + λa = clcr.

Define

(Ta)[n+1] := T ((Ta)[n]a) and (Ta){n+1} = T (a(Ta){n})

with the convention that (Ta)[1] = T (a) = (Ta){1} and (Ta)[0] = 1 = (Ta){0}.

Proposition 2.1.7. Let (A,An, T ) be a complete filtered Rota-Baxter algebra of weight −1 such

that T 2 = T . Let a ∈ A1. If T also satisfies the following identity

T (T (x)y) = T (x)y, ∀x, y ∈ A, (2.1.7)

then the equation

bl = 1 + T (bla). (2.1.8)

has a unique solution

1 + T (a)(1− a)−1.

Proof. First, we have (Ta)[n+1] = T (a)an for n ≥ 0. In fact, the case when n = 0 just follows

from the definition. Suppose it is true up to n, then (Ta)[n+2] = T ((Ta)[n+1]a) = T ((T (a)an)a) =

T (T (a)an+1) = T (a)an+1. Arguing as in ((37)), bl =
∑∞
n=0(Ta)[n] = 1 + T (a) + T (T (a)a) + · · ·+
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(Ta)[n] + · · · is the unique solution of (2.1.8). So

bl = 1 + T (a) + T (a)a+ T (a)a2 + · · ·

= 1 + T (a)(1 + a+ a2 + · · ·)

= 1 + T (a)(1− a)−1.

A bialgebra H is called a connected, filtered cograded bialgebra if there are subspaces Hn of H such

that (a) HpHq ⊆
∑
k≤p+qHk; (b) ∆(Hn) ⊆ ⊕p+q=nHp⊕Hq; (c) H0 = imu(= C), where u : C→ H

is the unit of H.

Proposition 2.1.8. Let H be a connected filtered cograded bialgebra (hence a Hopf algebra) and

let (A, T ) be a (not necessarily commutative) Rota-Baxter algebra of weight λ = −1 with T 2 = T .

Suppose that T also satisfies (2.1.7). Let φ : H → A be a character, i.e. an algebra homomorphism.

Then there are unique maps φ− : H → T (A) and φ+ : H → T̃ (A), where T̃ = 1− T , such that

φ = φ
∗(−1)
− ∗ φ+,

where φ∗(−1) = φ ◦ S, with S the antipode. φ− takes the following form on kere = ⊕n>0Hn:

φ−(X) = −T (φ(X))−
∞∑
n=1

(−1)n
∑

T (φ(X(1)))φ(X(2))φ(X(3)) · · · φ(X(n+1))

= −T (φ(X))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(X).

Here we use the notation ∆̃n−1(X) =
∑
X(1) ⊗ · · · ⊗X(n), and ∆̃(X) := ∆(X)−X ⊗ 1− 1⊗X

(which is coassociative), and ∗̃ is the convolution product defined by ∆̃. Furthermore, if T satisfies

T (xT (y)) = xT (y), ∀x, y ∈ A, (2.1.9)

then φ+ takes the form on kere = ⊕n>0Hn:

φ+ = (1− T )(φ(X)).
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Proof. Define R := Hom(H,A) and

P : R→ R, P (f)(X) = T (f(X)), f ∈ Hom(H,A), X ∈ H.

Then by (50), R is a complete algebra with filtration Rn = {f ∈ Hom(H,A)|f(H(n−1)) = 0}, n ≥ 0,

and P is a Rota-Baxter operator of weight −1 and P 2 = P . Moreover, since T satisfies (2.1.7), it

is easy to check that P (P (f)g) = P (f)g for any f, g ∈ Hom(H,A). Let φ : H → A be a character.

Then (e− φ)(1H) = e(1H)− φ(1H) = 1A − 1A = 0. So e− φ ∈ A1. Set a = e− φ, by Proposition

2.1.6, we know that there are unique cl ∈ T (A) and cr ∈ (1− T )(A) such that φ = clcr. Moreover,

by Proposition 2.1.7 we have φ− = bl = c−1
l = e + T (a)(e − a)−1 = e + T (e − φ)

∑∞
n=0(e − φ)n.

We also have
∑∞
n=0(e − φ)n(1H) = 1A and for any X ∈ ker e = ⊕n>0Hn, we have (e − φ)0(X) =

e(X) = 0; (e − φ)1(X) = −φ(X); (e − φ)2(X) =
∑

(e − φ)(X ′)(e − φ)(X ′′) =
∑
φ(X ′)φ(X ′′).

More generally, we have (e − φ)n(X) = (−1)n
∑
φ(X(1))φ(X(2)) · · · φ(X(n)) = (−1)nφ∗̃

n

(X). So

for X ∈ ker e = ⊕n>0Hn,

φ−(X) = (T (e− φ)

∞∑
n=0

(e− φ)n)(X)

= T (e− φ)(1H)

∞∑
n=0

(e− φ)n(X) + T (e− φ)(X)

∞∑
n=0

(e− φ)n(1H)

+
∑

T ((e− φ)(X ′))

∞∑
n=1

(e− φ)n(X ′′)

= −T (φ(X))−
∑

T (φ(X ′))

∞∑
n=1

(−1)n
∑

φ((X ′′)(1))φ((X ′′)(2)) · · · φ((X ′′)(n))

= −T (φ(X))−
∞∑
n=1

(−1)n
∑

T (φ(X(1)))φ(X(2))φ(X(3)) · · · φ(X(n+1))

= −T (φ(X))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(X).

Suppose that T also satisfies Equation (2.1.9), then for any a, b ∈ A, we have (1−T )(a)(1−T )(b) =

ab−T (a)b− aT (b) +T (a)T (b) = ab−T (T (a)b)−T (aT (b)) +T (a)T (b) = ab−T (ab) = (1−T )(ab),

as T is a Rota-Baxter operator of weight −1. As shown in ((26)) and ((37)), φ+ = (1− T )(φ(X) +∑
φ−(X ′)φ(X ′′)). So φ+ = (1 − T )(φ(X)) +

∑
(1 − T )(φ−(X ′))(1 − T )(φ(X ′′)) by the previous

computation. But φ− is in the image of T and T 2 = T , so we must have (1 − T )(φ−(X ′)) = 0,
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which shows that φ+ = (1− T )(φ(X)).

2.1.4 A variant of algebraic renormalization

We consider now a setting inspired by the formalism of the Connes–Kreimer renormalization recalled

above. The setting generalizes the one considered in (24) for configuration space integrals and our

main application will be to extend the approach of (24) to momentum space integrals.

The main difference with respect to the Connes–Kreimer renormalization is that, instead of renor-

malizing the Feynman amplitude (regularized so that it gives a meromorphic function), we propose

to renormalize the differential form, before integration, and then integrate the renormalized form

to obtain a period.

The result obtains by this method differs from the physical renormalization, as we will see in explicit

examples in Section 2.4.11 below. Whenever non-trivial, the convergent integral obtained by the

method described here will be a mixed Tate period even in cases where the physical renormalization

is not.

The main steps required for our setup are the following.

• For each ` ≥ 1, we construct a pair (X`, Y`) of a smooth projective variety X` (defined over Q)

whose motive m(X`) is mixed Tate (over Z), together with a (singular) hypersurface Y` ⊂ X`.

• We describe the Feynman integrand as a morphism of commutative algebras

φ : Heven →
∧
`

Meven
X`,Y`

, φ(Γ) = ηΓ,

with ηΓ an algebraic differential form on X` with polar locus Y`, for ` = b1(Γ), and with the

Rota–Baxter structure of Lemma 2.1.3 on the target algebra.

• We express the (unrenormalized) Feynman integrals as a (generally divergent) integral
∫
σ
ηΓ,

over a chain σ in X`.

• We construct a divisor, Σ` ⊂ X`, that contains the boundary ∂σ, whose motive m(Σ`) is

mixed Tate (over Z) for all ` ≥ 1.

• We perform the Birkhoff decomposition φ± obtained inductively using the coproduct on H

and the Rota–Baxter operator T (polar part) on M∗X`,Y` .
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• This gives a holomorphic form φ+(Γ) on X`. The divergent Feynman integral is then replaced

by the integral ∫
Υ(σ)

φ+(Γ),

which is a period of the mixed Tate motive m(X`,Σ`).

• In addition to the integral of φ+(Γ) onX` we consider integrals on the strata of the complement

X`rY` of the polar part φ−(Γ), which under suitable conditions will be interpreted as Poincaré

residues.

If convergent, the Feynman integral
∫
σ
ηΓ would be a period of m(X` r Y`,Σ` r (Σ` ∩ Y`)). The

renormalization procedure described above replaces it with a (convergent) integral that is a period

of the simpler motive m(X`,Σ`). By our assumptions on X` and Σ`, the motive m(X`,Σ`) is mixed

Tate for all `.

Thus, this strategy eliminates the difficulty of analyzing the motive m(X` r Y`,Σ` r (Σ` ∩ Y`))

encountered for instance in (6). The form of renormalization proposed here always produces a

mixed Tate period, but at the cost of incurring in a considerable loss of information with respect

to the original Feynman integral.

Indeed, a difficulty in the procedure described above is ensuring that the resulting regularized form

φ+(Γ) = (1− T )(φ(Γ) +
∑
γ⊂Γ

φ−(γ) ∧ φ(Γ/γ))

is nontrivial. This condition may be difficult to control in explicit cases, although we will discuss

below an especially simple situation, when one can reduce the problem to forms with logarithmic

poles, where using the pole subtraction together with Poicaré residues one can obtain nontrivial

periods (although the result one obtains is not equivalent to the physical renormalization of the

Feynman amplitude).

An additional difficulty that can cause loss of information with respect to the Feynman integral

is coming from the combinatorial conditions on the graph given in (6) that we will use for the

embedding into the complement of the determinant hypersurface; see Section 2.4.11.
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2.2 Rota–Baxter algebras and forms with logarithmic poles

We now focus on the case of meromorphic forms with logarithmic poles, where the Rota–Baxter

structure and the renormalization procedure described above drastically simplify.

Lemma 2.2.1. Let X be a smooth projective variety and Y ⊂ X a smooth hypersurface with defining

equation Y = {f = 0}. Let Ω?X(log(Y )) be the sheaf of algebraic differential forms on X with

logarithmic poles along Y . The Rota–Baxter operator T of Lemma 2.1.1 preserves Ωeven
X (log(Y ))

and the pair (Ωeven
X (log(Y )), T ) is a graded Rota–Baxter algebra of degree −1 with the property that,

for all ω1, ω2 ∈ Ωeven
X (log(Y )), the wedge product T (ω1) ∧ T (ω2) = 0.

Proof. Forms ω ∈ Ω?X(log(Y )) can be written in canonical form

ω =
df

f
∧ ξ + η,

with ξ and η holomorphic, so that T (ω) = df
f ∧ ξ. We then have (1.1.2) as in Corollary 2.1.2 above,

with T (ω1)∧T (ω2) = (−1)|ξ1|+1α∧α∧ξ1∧ξ2 where α is the 1-form α = df/f so that α∧α = 0.

Lemma 2.2.1 shows that, when restricted to Ω?X(log(Y )), the operator T satisfies the simpler identity

T (xy) = T (T (x)y) + T (xT (y)). (2.2.1)

This property greatly simplifies the decomposition of the algebra induced by the Rota–Baxter

operator. In particular, we get a simplified form of the general result of Proposition 2.1.8, when

taking into account the vanishing T (x)T (y) = 0, as shown in Lemma 2.2.1.

Lemma 2.2.2. Let R be a commutative algebra and T : R → R a linear operator that satisfies the

identity (2.2.1) and such that, for all x, y ∈ R the product T (x)T (y) = 0. Let R+ = Range(1− T ).

Then the following properties hold.

(a) R+ ⊂ R is a subalgebra.

(b) Both T and 1− T are idempotent, T 2 = T and (1− T )2 = 1− T .

Proof. (1) The product of elements in R+ can be written as (1−T )(x) · (1−T )(y) = xy−T (x)y−

xT (y) = xy − T (x)y − xT (y)− (T (xy)− T (T (x)y)− T (xT (y))) = (1− T )(xy − T (x)y − xT (y)).
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(2) The identity (2.2.1) gives T (1) = 0, since taking x = y = 1 one obtains T (1) = 2T 2(1) while

taking x = T (1) and y = 1 gives T 2(1) = T 3(1). Then (2.2.1) with y = 1 gives T (x) = T (xT (1)) +

T (T (x)1) = T 2(x) for all x ∈ R. For 1−T we then have (1−T )2(x) = x−2T (x)+T 2(x) = (1−T )(x),

for all x ∈ R.

Lemma 2.2.3. Let R be a commutative algebra and T : R → R a linear operator that satisfies the

identity (2.2.1) and such that, for all x, y ∈ R the product T (x)T (y) = 0. If, for all x, y ∈ R, the

identity T (x)y + xT (y) = T (T (x)y) + T (xT (y)) holds, then the operator (1 − T ) : R → R+ is an

algebra homomorphism and the operator T is a derivation on R.

Proof. We have (1 − T )(xy) = xy − T (T (x)y) − T (xT (y)) while (1 − T )(x) · (1 − T )(y) = xy −

T (x)y − xT (y). Assuming that, for all x, y ∈ R, we have T (T (x)y) + T (xT (y)) = T (x)y + xT (y)

gives (1 − T )(xy) = (1 − T )(x) · (1 − T )(y). Moreover, the identity (2.2.1) can be rewritten as

T (xy) = T (x)y + xT (y), and hence T is just a derivation on R.

Consider then again the case of a smooth hypersurface Y in Pn. We have the following properties.

Proposition 2.2.4. Let Y ⊂ X be a smooth hypersurface in a smooth projective variety. The

Rota–Baxter operator T : Meven
Pn,Y → Meven

X,Y of weight −1 on meromorphic forms on X with poles

along Y restricts to a derivation on the graded algebra Ωeven
X (log(Y )) of forms with logarithmic

poles. Moreover, the operator 1− T is a morphism of commutative algebras from Ωeven
X (log(Y )) to

the algebra of holomorphic forms Ωeven
X .

Proof. It suffices to check that the polar part operator T : Ωeven
X (log(Y ))→ Ωeven

X (log(Y )) satisfies

the hypotheses of Lemma 2.2.3. We have seen that, for all ω1, ω2 ∈ Ωeven
X (log(Y )), the product

T (ω1) ∧ T (ω2) = 0. Moreover, for ωi = d log(f) ∧ ξi + ηi, we have T (ω1) ∧ ω2 = d log(f) ∧ ξ1 ∧ η2

and ω1 ∧ T (ω2) = (−1)|η1|d log(f) ∧ η1 ∧ ξ2, where the ξi and ηi are holomorphic, so that we have

T (T (ω1) ∧ ω2) = T (ω1) ∧ ω2 and T (ω1 ∧ T (ω2)) = ω1 ∧ T (ω2). Thus, the hypotheses of Lemma

2.2.3 are satisfied.

2.2.1 Birkhoff factorization and forms with logarithmic poles

In cases where the pair (X,Y ) has the property that the deRham cohomology H∗dR(X r Y ) can

always be realized by algebraic differential forms with logarithmic poles, the construction above



19

simplifies significantly. Indeed, the Birkhoff factorization becomes essentially trivial, because of

Proposition 2.2.4. In other words, all graphs behave “as if they were log divergent”. This can be

stated more precisely as follows.

Proposition 2.2.5. Let Y ⊂ X be a smooth hypersurface inside a smooth projective variety and let

Ωeven
X (log(Y )) denote the commutative algebra of algebraic differential forms on X of even degree

with logarithmic poles on Y . Let φ : H → Ωeven
X (log(Y )) be a morphism of commutative algebras

from a commutative Hopf algebra H to Ωeven
X (log(Y )) with the operator T of pole subtraction. Then

for every X ∈ H one has

φ+(X) = (1− T )φ(X),

while the negative part of the Birkhoff factorization takes the form

φ−(X) = −T (φ(X))−
∑

φ−(X ′)φ(X ′′),

where ∆(X) = X ⊗ 1 + 1⊗X +
∑
X ′ ⊗X ′′. Moreover, φ− takes the following nonrecursive form

on ker e = ⊕n>0Hn:

φ−(X) = −T (φ(X))−
∞∑
n=1

(−1)n
∑

T (φ(X(1)))φ(X(2))φ(X(3)) · · · φ(X(n+1))

= −T (φ(X))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(X).

Proof. The operator T of pole subtraction is a derivation on Ωeven
X (log(Y )). By (2.1.4) we have

φ+(X) = (1 − T )(φ(X) +
∑
φ−(X ′)φ(X ′′)). By Proposition 2.2.4 we know that, in the case of

forms with logarithmic poles along a smooth hypersurface, 1 − T is an algebra homomorphism,

hence φ+(X) = (1− T )(φ(X)) +
∑

(1− T )(φ−(X ′))(1− T )(φ(X ′′))), but φ−(X ′) is in the range of

T and, again by Proposition 2.2.4, we have T 2 = T , so that the terms in the sum all vanish, since

(1 − T )(φ−(X ′)) = 0. By (2.1.4) we have φ−(X) = −T (φ(X) +
∑
φ−(X ′)φ(X ′′)) = −Tφ(X) −∑

T (φ−(X ′))φ(X ′′) −
∑
φ−(X ′)T (φ(X ′′)), because by Proposition 2.2.4 T is a derivation. The

last sum vanishes because φ−(X ′) is in the range of T and we have T (η) ∧ T (ξ) = 0 for all

η, ξ ∈ Ω∗X`(log(Y`)). Thus, we are left with φ−(X) = −Tφ(X)−
∑
T (φ−(X ′))φ(X ′′) = −Tφ(X)−∑

φ−(X ′)φ(X ′′). The last part follows from Proposition 2.1.8, since T (T (η) ∧ ξ) = T (η) ∧ ξ.
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Notice that this is compatible with the property that φ(X) = (φ− ◦S ?φ+)(X) (with the ?-product

dual to the Hopf algebra coproduct). In fact, this identity is equivalent to φ+ = φ− ? φ, which

means that φ+(X) = 〈φ− ⊗ φ,∆(X)〉 = φ−(X) + φ(X) +
∑
φ−(X ′)φ(X ′′) = (1 − T )φ̃(X) as

above. Equivalently, all the nontrivial terms φ−(X ′)φ(X ′′) in φ̃(X) satisfy T (φ−(X ′)φ(X ′′)) =

φ−(X ′)φ(X ′′), because of the simplified form (2.3.3) of the Rota–Baxter identity.

Corollary 2.2.6. If one has a construction of a character φ : H → Ωeven
X (log(Y )), of the Hopf

algebra of Feynman graphs, where X = X` and Y = Y` independently of the number of loops ` ≥ 1,

then the negative part of the Birkhoff factorization of Proposition 2.2.5 would take on the simple

form

φ−(Γ) = −dh
h
∧

ξΓ +
∑
N≥1

(−1)N
∑

γN⊂···⊂γ1⊂γ0=Γ

ξγN ∧
N∧
j=1

ηγj−1/γj

 , (2.2.2)

where φ(Γ) = dh
h ∧ ξΓ + ηΓ, and Y = {h = 0}.

Proof. The result follows from the expression

φ−(Γ) = −T (φ(Γ))−
∑
γ⊂Γ

φ−(γ)φ(Γ/γ),

obtained in Proposition 2.2.5, where φ(Γ) = ωΓ = dh
h ∧ ξΓ + ηΓ, so that T (φ(Γ)) = dh

h ∧ ξΓ and

φ(Γ/γ) = dh
h ∧ ξΓ/γ + ηΓ/γ . The wedge product of φ−(γ) = −T (φ(γ))−

∑
γ2⊂γ φ−(γ2)φ(γ/γ2) with

φ(Γ/γ) will give a term dh
h ∧ ξγ ∧ ηΓ/γ and additional terms φ−(γ2)φ(γ/γ2) ∧ ηΓ/γ . Proceeding

inductively on these terms, one obtains (2.2.2).

In the more general case, where X` and Y` depend on the loop number ` ≥ 1, the form of the

negative piece φ−(Γ) is more complicated, as it will contain forms on the products X`(γ) ×X`(Γ/γ)

with logarithmic poles along Y`(γ) ×X`(Γ/γ) ∪X`(γ) × Y`(Γ/γ).

2.2.2 Polar subtraction and the residue

We have seen that, in the case of a smooth hypersurface Y ⊂ X, the Birkhoff factorization in the

algebra of forms with logarithmic poles reduces to a simple pole subtraction, φ+(X) = (1−T )φ(X).

If the unrenormalized φ(X) is a form written as α+ df
f ∧β, with α and β holomorphic, then φ+(X)
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vanishes identically whenever α = 0. In that case, all information about φ(X) is lost in the process

of pole substraction. Suppose that
∫
σ
φ(X) is the original unrenormalized integral. To maintain

some additional information, it is preferable to consider, in addition to the integral
∫
σ
φ+(X), also

an integral of the form ∫
σ∩Y

ResY (η),

where ResY (η) = β is the Poincaré residue of η = α + df
f ∧ β along Y . It is dual to the Leray

coboundary, in the sense that

∫
σ∩Y

ResY (η) =
1

2πi

∫
L(σ∩Y )

η,

where the Leray coboundary L(σ ∩ Y ) is a circle bundle over σ ∩ Y . In this way, even when α = 0,

one can still retain the nontrivial information coming from the Poincaré residue, which is also

expressed as a period.

2.3 Singular hypersurfaces and meromorphic forms

In our main application, we will need to work with pairs (X,Y ) where X is smooth projective,

but the hypersurface Y is singular. Thus, we now discuss extensions of the results above to more

general situations where Y ⊂ X is a singular hypersurface in a smooth projective variety X.

Again we denote by M∗X,Y the sheaf of meromorphic differential forms on X with poles along

Y , of arbitrary order, and by Ω∗X(log(Y )) the sub-sheaf of forms with logarithmic poles along Y .

Let h be a local determination of Y , so that Y = {h = 0}. We can then locally represent forms

ω ∈ M∗X,Y as finite sums ω =
∑
p≥0 ωp/h

p, with the ωp holomorphic. The polar part operator

T :Meven
X,Y →Meven

X,Y can then be defined as in (2.1.1).

In the case we considered above, with Y ⊂ X as a smooth hypersurface, forms with logarithmic

poles can be represented in the form

ω =
dh

h
∧ ξ + η, (2.3.1)

with ξ and η holomorphic. The Leray residue is given by Res(ω) = ξ. It is well defined, as the

restriction of ξ to Y is independent of the choice of a local equation for Y .

In the next subsection we discuss how this case generalizes to a normal crossings divisor Y ⊂ X
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inside a smooth projective variety X. The complex of forms with logarithmic poles extend to the

normal crossings divisor case as in (29). For more general singular hypersurfaces, an appropriate

notion of forms with logarithmic poles was introduced by Saito in (90). The construction of the

residue was also generalized to the case where Y is a normal crossings divisor in (29) and for more

general singular hypersurfaces in (90).

2.3.1 Normal crossings divisors

The main case of singular hypersurfaces that we focus on for our applications will be simple normal

crossings divisors. In fact, while our formulation of the Feynman amplitude in momentum space

is based on the formulation of (6), where the unrenormalized Feynman integral lives on the com-

plement of the determinant hypersurface, which has worse singularities, we will reformulate the

integral on the Kausz compactification of GLn where the boundary divisor of the compactification

is normal crossings.

If Y ⊂ X is a simple normal crossings divisor in a smooth projective variety, with Yj the components

of Y , with local equations Yj = {fj = 0}, the complex of forms with logarithmic poles Ω∗X(log(Y ))

spanned by the forms
dfj
fj

and by the holomorphic forms on X.

As in Theorem 6.3 of (24), we obtain that the Rota–Baxter operator of polar projection T :Meven
X,Y →

Meven
X,Y restricts to a Rota–Baxter operator T : Ωeven

X (log(Y ))→ Ωeven
X (log(Y )) given by

T : η 7→ T (η) =
∑
j

dfj
fj
∧ ResYj (η), (2.3.2)

where the holomorphic form ResYj (η) is the Poincaré residue of η restricted to Yj .

Unlike the case of a single smooth hypersurface, for a simple normal crossings divisor the Rota–

Baxter operator operator T does not satisfy T (x)T (y) ≡ 0, since we now have terms like
dfj
fj
∧ dfkfk 6= 0,

for j 6= k, so the Rota–Baxter identity for T does not reduce to a derivation, but some of the

properties that simplify the Birkhoff factorization in the case of a smooth hypersurface still hold in

this case.

Proposition 2.3.1. The Rota–Baxter operator T of (2.3.2) satisfies T 2 = T and the Rota–Baxter
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identity simplifies to the form

T (η ∧ ξ) = T (η) ∧ ξ + η ∧ T (ξ)− T (η) ∧ T (ξ). (2.3.3)

The operator (1 − T ) : R → R+ is an algebra homomorphism, with R = Ωeven
X (log(Y )) and

R+ = (1− T )R. The Birkhoff factorization of a commutative algebra homomorphism φ : H → R,

with H a commutative Hopf algebra is given by

φ+(X) = (1− T )φ(X)

φ−(X) = −T (φ(X) +
∑
φ−(X ′)φ(X ′′)).

(2.3.4)

Moreover, φ− takes the following form on ker e = ⊕n>0Hn:

φ−(X) = −T (φ(X))−
∞∑
n=1

(−1)n
∑

T (φ(X(1)))φ(X(2))φ(X(3)) · · · φ(X(n+1))

= −T (φ(X))−
∞∑
n=1

(−1)n((Tφ)∗̃φ∗̃
n

)(X).

Proof. The argument is the same as in the proof of Theorem 6.3 in (24). It is clear by construction

that T is idempotent and the simplified form (2.3.3) of the Rota–Baxter identity follows by observing

that T (T (η)∧ξ) = T (η)∧ξ and T (η∧T (ξ)) = η∧T (ξ) as in Theorem 6.3 in (24). Then one sees that

(1−T )(η)∧(1−T )(ξ) = η∧ξ−T (η)∧ξ−η∧T (ξ)+T (η)∧T (ξ) = η∧ξ−T (η∧ξ) by (2.3.3). Consider

then the Birkhoff factorization. We write φ̃(X) := φ(X)+
∑
φ−(X ′)φ(X ′′). The fact that (1−T ) is

an algebra homomorphism then gives φ+(X) = (1−T )(φ̃(X)) = (1−T )(φ(X)+
∑
φ−(X ′)φ(X ′′)) =

(1−T )(φ(X))+
∑

(1−T )(φ−(X ′))(1−T )(φ(X ′′))), with (1−T )(φ−(X ′)) = −(1−T )T (φ̃−(X ′)) = 0,

because T is idempotent. The last statement again follows from Proposition 2.1.8, since we have

T (T (η) ∧ ξ) = T (η) ∧ ξ.

2.3.2 Multidimensional residues

In the case of a simple normal crossings divisor Y ⊂ X, we can proceed as discussed in Section 2.2.2

for the case of a smooth hypersurface. Indeed, as we have seen in Proposition 2.3.1, we also have in

this case a simple pole subtraction φ+(X) = (1−T )φ(X), even though the negative term φ−(X) of
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the Birkhoff factorization can now be more complicated than in the case of a smooth hypersurface.

The unrenormalized φ(X) is a form η = α +
∑
j
dfj
fj
∧ βj , with α and βj holomorphic and Yj =

{fj = 0} the components of Y . Again, if α = 0 we lose all information about φ(X) in our

renormalization of the logarithmic form. To avoid this problem, we can again consider, instead of

the single renormalized integral
∫
σ
φ+(X), an additional family of integrals

∫
σ∩YI

ResYI (η),

where YI = ∩j∈IYj is an intersection of components of the divisor Y and ResYI (η) is the iterated

(or multidimensional, or higher) Poincaré residue of η, in the sense of (4), (3). These are dual to

the iterated Leray coboundaries,

∫
σ∩YI

ResYI (η) =
1

(2πi)n

∫
LI(σ∩YI)

η,

where LI = Lji ◦ · · · ◦ Ljn for YI = Yj1 ∩ · · · ∩ Yjn .

If arbitrary intersections YI of components of Y are all mixed Tate motives, then all these integrals

are also periods of mixed Tate motives.

2.3.3 Saito’s logarithmic forms

Given a singular reduced hypersurface Y ⊂ X, a differential form ω with logarithmic poles along

Y , in the sense of Saito (90), can always be written in the form ((90), (1.1))

f ω =
dh

h
∧ ξ + η, (2.3.5)

where f ∈ OX defines a hypersurface V = {f = 0} with dim(Y ∩V ) ≤ dim(X)− 2, and with ξ and

η holomorphic forms.

In the following, we use the notation SΩ?X(log(Y )) to denote the forms with logarithmic poles along

Y in the sense of Saito, to distinguish it from the more restrictive notion of forms with logarithmic

poles Ω?X(log(Y )) considered above for the normal crossings case.

Following (3), we say that a (reduced) hypersurface Y ⊂ X has Saito singularities if the modules

of logarithmic differential forms and vector fields along Y are free. The condition that Y ⊂ X has
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Saito singularities is equivalent to the condition that SΩnX(log(Y )) =
∧n SΩ1

X(log(Y )), (90).

Let MY denote the sheaf of germs of meromorphic functions on Y . Then setting

Res(ω) =
1

f
ξ |Y (2.3.6)

defines the residue as a morphism of OX -modules, for all q ≥ 1,

Res : SΩqX(log(Y ))→MY ⊗OY Ωq−1
Y . (2.3.7)

A refinement of (2.3.7) is given by the following result, (3). For Y ⊂ X a reduced hypersurface,

and for all q ≥ 1, there is an exact sequence of OX -modules

0→ Ωq+1
X → SΩq+1

X (log(Y ))
Res−→ ωqY → 0. (2.3.8)

Unlike the case of normal crossings divisors, the Saito residue of forms with logarithmic poles is not

a holomorphic form, but a meromorphic form on Y .

It is natural to ask whether the extraction of polar part from forms with logarithmic poles that we

considered here for the case of smooth hypersurfaces and normal crossings divisors extends to more

general singular hypersurfaces using Saito’s formulation.

Question 2.3.2. For more general singular hypersurfaces Y ⊂ X with Saito singularities, is the

Rota–Baxter operator T on even meromorphic forms expressible in terms of Saito residues in the

case of forms with logarithmic poles?

We describe here a possible approach to this question. We introduce an analog of the Rota–Baxter

operator considered above, given by the extraction of the polar part. The “polar part” operator,

in this more general case, does not maps Ωeven
X (log(Y )) to itself, but we show below that it gives

a well defined Rota-Baxter operator of weight −1 on the space of Saito forms SΩeven
X (log(Y )), and

that this operator is a derivation.

Lemma 2.3.3. The set SY := {f : dim({f = 0} ∩ Y ) ≤ dim(X) − 2} is a multiplicative set.

Localization of the Saito forms with logarithmic poles gives S−1
Y

SΩX(log(Y )) = SΩX(log(Y )).
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Proof. We have V12 = {f1f2 = 0} = {f1 = 0} ∪ {f2 = 0} and dim(Y ∩ V12) = dim((Y ∩ {f1 =

0}) ∪ (Y ∩ {f2 = 0})) ≤ dim(X) − 2, since dim(Y ∩ {fi = 0}) ≤ dim(X) − 2 for i = 1, 2.

Thus, for any f1, f2 ∈ SY , we have f1f2 ∈ SY . Moreover, we have 1 ∈ SY , and hence SY is a

multiplicative set. The localization of SΩ?X(log(Y )) at SY is just SΩ?X(log(Y )) itself: in fact, for

f̃−1ω ∈ S−1
Y

SΩ?X(log(Y )), with f̃ ∈ SY and ω ∈ SΩ?X(log(Y )), expressed as in (2.3.5), we have

ff̃(f̃−1ω) = fω =
dh

h
∧ ξ + η,

where ff̃ ∈ SY , hence f̃−1ω ∈ SΩX(log(Y )).

Given a form ω ∈ SΩ?X(log(Y )), which we can write as in (2.3.5), the residue (2.3.6) is the image

under the restriction map S−1
Y Ω?X → S−1

Y Ω?Y of the form f−1ξ ∈ S−1
Y Ω?X . Moreover, we have an

inclusion Ω?X ↪→ SΩ?X(log(Y )), which induces a corresponding map of the localizations S−1
Y Ω?X ↪→

S−1
Y

SΩ?X(log(Y )) = SΩ?X(log(Y )). We can then define a linear operator

T : SΩ?X(log(Y ))→ SΩ?X(log(Y )) ∧ S−1
Y Ω?X ↪→ SΩ?X(log(Y )) ∧ S−1

Y
SΩ?X(log(Y )) = SΩ?X(log(Y ))

given by

T (ω) =
dh

h
∧ ξ

f
, for f ω =

dh

h
∧ ξ + η. (2.3.9)

Lemma 2.3.4. The operator T of (2.3.9) is a Rota–Baxter operator of weight −1 on SΩeven
X (log(Y )),

which is just given by a derivation, satisfying the Leibnitz rule T (ω1∧ω2) = T (ω1)∧ω2 +ω1∧T (ω2).

Proof. Let

f1 ω1 =
dh

h
∧ ξ1 + η1 f2 ω2 =

dh

h
∧ ξ2 + η2.

Then

f1 f2 ω1 ∧ ω2 = (
dh

h
∧ ξ1 + η1) ∧ (

dh

h
∧ ξ2 + η2) =

dh

h
∧ (ξ1 ∧ η2 + (−1)pη1 ∧ ξ2) + η1 ∧ η2,

where η1 ∈ Ωp(X). By Lemma 2.3.3, we know that f1f2 ∈ SY . We have

T (ω1 ∧ ω2) =
dh

h
∧ (

ξ1
f1
∧ η2

f2
+ (−1)p

η1

f1
∧ ξ2
f2

).
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Since

T (ω1) =
dh

h
∧ ξ1
f1
, and T (ω2) =

dh

h
∧ ξ2
f2
,

we obtain

T (ω1) ∧ T (ω2) =
dh

h
∧ ξ1
f1
∧ dh
h
∧ ξ2
f2

= 0.

Moreover, we have

T (ω1) ∧ ω2 = (
dh

h
∧ ξ1
f1

) ∧ dh
h
∧ ξ2
f2

+
dh

h
∧ ξ1
f1
∧ η2

f2
=
dh

h
∧ ξ1
f1
∧ η2

f2
,

with

f1f2(T (ω1) ∧ ω2) =
dh

h
∧ ξ1 ∧ η2,

and similarly,

ω1 ∧ T (ω2) = (−1)p
dh

h
∧ η1

f1
∧ ξ2
f2
,

and hence T satisfies the Leibnitz rule. The operator T also satisfies T (T (ω1) ∧ ω2) = T (ω1) ∧ ω2,

and T (ω1 ∧ T (ω2)) = ω1 ∧ T (ω2), hence the condition that T is a derivation is equivalent to the

condition that it is a Rota-Baxter operator of weight −1.

Correspondingly, we have

(1− T )ω = ω − dh

h
∧ ξ

f
=
η

f
∈ S−1

Y Ωeven
X .

Under the restriction map S−1
Y Ωeven

X → S−1
Y Ωeven

Y we obtain a form (1 − T )(ω)|Y . It follows that

we can define a “subtraction of divergences” operation on φ : H → SΩeven
X (log(Y )) by taking

φ+ : H → Reven
X (log(Y )) given by φ+(a) = (1 − T )φ(a)|Y , for a ∈ H, which maps φ(a) = ω to

(1−T )ω|Y = f−1η|Y , where f ω = dh
h ∧ ξ+η. While this has subtracted the logarithmic pole along

Y , it has also created a new pole along V = {f = 0}. Thus, it results again in a meromorphic form.

If we consider the restriction to Y of φ+(a) = f−1 η|Y , we obtain a meromorphic form with first

order poles along a subvariety V ∩Y , which is by hypothesis of codimension at least one in Y . Thus,

we can conceive of a more complicated renormalization method that progressively subtracts poles

on subvarieties of increasing codimension, inside the polar locus of the previous pole subtraction,

by iterating this procedure.
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2.4 Compactifications of GLn and momentum space Feyn-

man integrals

In this section, we restrict our attention to the case of compactifications of PGL` and of GL` and

we use a formulation of the parametric Feynman integrals of perturbative quantum field theory in

terms of (possibly divergent) integrals on a cycle in the complement of the determinant hypersurface

(6), to obtain a new method of regularization and renormalization, which always gives rise to

a renormalized integral that is a period of a mixed Tate motive, even though a certain loss of

information can occur with respect to the physical Feynman integral.

2.4.1 The determinant hypersurface

In the following we use the notation D̂` and D`, respectively, for the affine and the projective

determinant hypersurfaces. Namely, we consider in the affine space A`2 , identified with the space

of all `× `-matrices, with coordinates (xij)i,j=1,...,`, the hypersurface

D̂` = {det(X) = 0 |X = (xij)} ⊂ A`
2

.

Since det(X) = 0 is a homogeneous polynomial in the variables (xij), we can also consider the

projective hypersurface D` ⊂ P`2−1.

The complement A`2 r D̂` is identified with the space of invertible `× `-matrices, namely with GL`.

2.4.2 The Kausz compactification of GLn

We recall here some basic facts about the Kausz compactification KGLn of GLn, following (60)

and the exposition in §11 of (81).

We first recall the Vainsencher compactification (94) of PGL`. Let X0 = P`2−1 be the projectiviza-

tion of the space A`2 of square `× `-matrices. Let Yi be the locus of matrices of rank i and consider

the iterated blowups Xi = BlȲi(Xi−1), with Ȳi the closure of Yi in Xi−1. It is shown in Theorem 1

and (2.4) of (94) that the Xi are smooth, and that X`−1 is a wonderful compactification of PGL`,

in the sense of (28). Moreover, the Yi are PGLi-bundles over a product of Grassmannians. One

denotes by PGL` the wonderful compactification of PGL` obtained in this way. We also refer the
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reader to §12 of (81) for a quick overview of the main properties of the Vainsencher compactification.

The Kausz compactification (60) of GL` is similar. One regards A`2 as the big cell in X0 = P`2 . The

iterated sequence of blowups is given in this case by setting Xi = BlȲi−1∪H̄i(Xi−1), where Yi ⊂ A`2

are the matrices of rank i and Hi are the matrices at infinity (that is, in P`2−1 = P`2 r A`2) of

rank i. It is shown in Theorem 9.1 of (60) that the Xi are smooth and that the blowup loci are

disjoint unions of loci that are, respectively, a PGLi-bundle and a KGLi-bundle over a product of

Grassmannians. An overview of these properties and of the relation between the Vainsencher and

the Kausz compactifications is given in §12 of (81).

As observed in (81), the Kausz compactification is then the closure of GL` inside the wonderful

compactification of PGL`+1, see also (54), Chapter 3, §1.3. The compactification KGL` is smooth

and projective over SpecZ (Corollary 4.2 (60)).

The other property of the Kausz compactification that we will be using in the following is the

fact that the complement of the dense open set GL` inside the compactification KGL` is a normal

crossing divisor (Corollary 4.2 (60)).

2.4.3 The virtual motive of the Kausz compactification

We can use the description recalled above of the Kausz compactification, together with the blowup

formula, to check that the virtual motive (class in the Grothendieck ring) of the Kausz compactifi-

cation is Tate.

Proposition 2.4.1. Let K0(V) be the Grothendieck ring of varieties (defined over Q or over Z)

and let Z[L] ⊂ K0(V) be the Tate subring generated by the Lefschetz motive L = [A1]. For all ` ≥ 1

the class [KGL`] is in Z[L]. Moreover, let Z` be the normal crossings divisor Z` = KGL` r GL`.

Then all the unions and intersections of components of Z` have Grothendieck classes in Z[L].

Proof. We use the blowup formula for classes in the Grothendieck ring: if X̃ = BlY(X ), where Y is

of codimension m+ 1 in X , then the classes satisfy

[X̃ ] = [X ] +

m∑
k=1

[Y]Lk. (2.4.1)

The Kausz compactification is obtained as an iterated blowup, starting with a projective space

whose class is in Z[L] and blowing up at each step a smooth locus that is a bundle over a product
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of Grassmannians with fiber either a KGLi or a PGLi for some i < `. The Grothendieck class of a

bundle is the product of the class of the base and the class of the fiber. Classes of Grassmannians

(and products of Grassmannians) are in Z[L]. The classes of the wonderful compactifications PGLi

of PGLi are also in Z[L], since it is known that the motive of these wonderful compactifications

is mixed Tate (see for instance (52)). Thus, it suffices to assume, inductively, that the classes

[KGLi] ∈ Z[L] for all i < `, and conclude via the blowup formula that [KGL`] ∈ Z[L].

Consider then the boundary divisor Z` = KGL` r GL`. The geometry of the normal crossings

divisor Z` is described explicitly in Theorems 9.1 and 9.3 of (60). It has components Yi and Zi,

for 0 ≤ i ≤ `, that correspond to the blowup loci described above. The multiple intersections

∩i∈IYi ∩∩j∈JZj of these components of Z` are described in turn in terms of bundles over products

of flag varieties with fibers that are lower dimensional compactifications KGLi and PGLi and

products. Again, flag varieties have cell decompositions, and hence their Grothendieck classes are

in Z[L] and the rest of the argument proceeds as in the previous case. If arbitrary intersections of

the components of Z` have classes in Z[L] then arbitrary unions and unions of intersections also do

by inclusion-exclusion in K0(V).

2.4.4 The numerical motive of the Kausz compactification

Knowing that the Grothendieck class [KGL`] is in the Tate subring Z[L] ⊂ K0(V) determines the

motive in the category of pure motives with the numerical equivalence. More precisely, we have the

following.

Proposition 2.4.2. Let hnum(KGL`) denote the motive of the Kausz compactification KGL` in the

category of pure motives over Q, with the numerical equivalence relation. Then hnum(KGL`) is in

the subcategory generated by the Tate object. The same is true for arbitrary unions and intersections

of the components of the boundary divisor Z` of the compactification.

Proof. The same argument used in Proposition 2.4.1 can be upgraded at the level of numerical

motives. We replace the blowup formula (2.4.1) for Grothendieck classes with the corresponding

formula for motives, which follows (already at the level of Chow motives) from Manin’s identity

principle, (78):

h(X̃) = h(X)⊕
m⊕
r=1

h(Y )⊗ L⊗r, (2.4.2)



31

with X̃ = BlY (X) the blowup of a smooth subvariety Y ⊂ X of codimension m + 1 in a smooth

projective variety X, and with L = h2(P1) is the Lefschetz motive. Moreover, we use the fact that,

for numerical motives, the motive of a locally trivial fibration X → S with fiber Y is given by the

product

hnum(X) = hnum(Y )⊗ hnum(S). (2.4.3)

See Exercise 13.2.2.2 of (7). The decomposition (2.4.3) allows us to describe the numerical motives

of the blowup loci of the iterated blowup construction of KGL` as products of numerical motives

of Grassmannians and of lower dimensional compactifications KGLi and PGLi. The motive of

a Grassmannian can be computed explicitly as in (62), already at the level of Chow motives. If

G(d, n) denotes the Grassmannian of d-planes in kn, the Chow motive h(G(d, n)) is given by

h(G(d, n)) =
⊕
λ∈Wd

L⊗|λ|, (2.4.4)

where

W d = {λ = (λ1, . . . , λd) ∈ Nd |n− d ≥ λ1 ≥ · · · ≥ λd ≥ 0}

and |λ| =
∑
i λi; see Theorem 2.1 and Lemma 3.1 of (62). The same decomposition into pow-

ers of the Lefschetz motive holds at the numerical level. Moreover, we know (also already for

Chow motives) that the motives h(PGLi) of the wonderful compactifications are Tate (see (52)),

and we conclude the argument as in Proposition 2.4.1 by assuming inductively that the motives

hnum(KGLi) are Tate, for i < `. The argument for the loci ∩i∈IYi∩∩j∈JZj in Z` is analogous.

Remark 2.4.3. Proposition 2.4.2 also follows from Proposition 2.4.1 using the general fact that two

numerical motives that have the same class in K0(Num(k)Q) are isomorphic as objects in Num(k)Q,

because of the semi-simplicity of the category of numerical motives, together with the existence,

for char(k) = 0, of a unique ring homorphism (the motivic Euler characteristic) χmot : K0(Vk) →

K0(Num(k)Q). This is such that, for a smooth projective variety X, χmot([X]) = [hnum(X)], where

hnum(X) is the motive of X in Num(k)Q; see Corollary 13.2.2.1 of (7).
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2.4.5 The Chow motive of the Kausz compactification

Manin’s blowup formula (2.4.2) and the computation of the motive of Grassmannians and of the

wonderful compactifications PGLi already hold at the level of Chow motives. However, if we want

to extend the argument of Proposition 2.4.2 to Chow motives, we run into the additional difficulty

that one no longer necessarily has the decomposition (2.4.3) for the motive of a locally trivial

fibration. Under some hypotheses on the existence of a cellular structure, one can still obtain a

decomposition for motives of bundles, and more generally locally trivial fibrations, the fibers of

which have cell decompositions with suitable properties, see (59), and also (51), (52), (58), and

(86). We obtain an unconditional result on the Chow motive of the Kausz compactification, by

analyzing its cellular structure.

Recall that, for G a connected reductive algebraic group and B a Borel subgroup, a spherical variety

is is a normal algebraic variety on which G acts with a dense orbit of B, (16). Spherical varieties

can be regarded as a generalization of toric varieties: when G is a torus, one recovers the usual

notion of toric variety.

Proposition 2.4.4. The Chow motive h(KGL`) of the Kausz compactification is a Tate motive.

Proof. The result follows by showing that KGL` has a cellular structure for all ` ≥ 1, which allows

us to extend the decomposition of the motive used in Proposition 2.4.2 from the numerical to the

Chow case.

As shown in §3.1 of (16), it follows from the work of Bialynicki–Birula (13) that any complete,

smooth, and spherical variety X has a cellular decomposition. This is determined by the decompo-

sition of the spherical variety into B-orbits and is obtained by considering a one-parameter subgroup

λ : Gm ↪→ X in general position, with Xλ the finite set of fixed points, with cells given by

X(λ, x) = {z ∈ X | lim
t→0

λ(t)z = x}, for x ∈ Xλ. (2.4.5)

The Kausz compactification KGL` is a smooth toroidal equivariant compactification of GL`; see

Proposition 1.15 of §3 of (54) and also Proposition 9.1 and Proposition 12.1 of (81). In particular,

it is a spherical variety (see Proposition 9.1 of (81)), and hence it has a cellular structure as above.

A relative cellular variety, in the sense of (59), is a smooth and proper variety with a decomposition

into affine fibrations over proper varieties. The blowup loci of the Kausz compactification KGL`



33

are relative cellular varieties in this sense, since they are bundles over products of Grassmannians,

with fiber a lower dimensional compactification KGLi, with i < `. Using the cell decomposition of

the fibers KGLi, we obtain a decomposition of these blowup loci as relative cellular varieties, with

pieces of the decomposition being fibrations over a product of Grassmannians, with fibers the cells

of the cellular structure of KGLi.

There is an embedding of the category of pure Chow motives in the category of mixed motives

(with some subtleties involved in passing from the cohomological formulation of pure motives to

the homological formulation of mixed motives); see (7). By viewing the Chow motives of these

blowup loci as elements in the Voevodsky category of mixed motives, Corollary 6.11 of (59) shows

that they are direct sums of motives of products of Grassmannians (which are Tate motives), with

twists and shifts which depend on the dimensions of the cells of KGLi. We conclude from this

that all the blowup loci are Tate motives. We can then repeatedly applying the blowup formula for

Chow motives to conclude (unconditionally) that the Chow motive of KGL` is itself a Tate motive.

Note that the blowup formula also holds in the Voevodsky category, Proposition 3.5.3 of (95), in

the form

m(BlY (X)) = m(X)⊕
codimX(Y )−1⊕

r=1

m(Y )(r)[2r],

which corresponds to the usual formula of (78) in the case of pure motives, after viewing them as

objects in the category of mixed motives. The result can also be obtained, in a similar way, using

Theorem 2.10 of (52) instead of Corollary 6.11 of (59).

Remark 2.4.5. Given the existence of a cellular decomposition of KGL`, as above, it is possible

to give a quicker proof that the Chow motive is Tate, by using distinguished triangles in the

Voevodsky category associated to the inclusions of unions of cells, showing that m(KGL`) is mixed

Tate, then using the inclusion of pure motives in the mixed motives to conclude h(KGL`) is Tate.

In Proposition 2.4.4 above we chose to maintain the structure of the argument more similar to the

cases of the virtual and the numerical motive, for better direct comparison.

Remark 2.4.6. Notice that a conditional result about the Chow motive would follow directly from

Proposition 2.4.2 or Remark 2.4.3, if one assumes the Kimura–O’Sullivan conjecture (or Voevodsky’s

nilpotence conjecture, which implies it). For the precise statement and implications of the Kimura–

O’Sullivan conjecture, and its relation to Voevodsky’s nilpotence, we refer the reader to the survey
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(8). By arguing as in Lemma 13.2.1.1 of (7), that would extend the result of Proposition 2.4.2 to

the Chow motive. At the level of Grothendieck classes, the conjecture in fact implies that the K0

of Chow motives and the K0 of numerical motives coincide, and hence one can argue as in Remark

2.4.3 and conclude that, in order to know that the Chow motive is mixed Tate, it suffices to know

that the Grothendieck class is mixed Tate.

2.4.6 Feynman integrals in momentum space and non-mixed-Tate exam-

ples

It was shown in (14) that the parametric form of Feynman integrals in perturbative quantum field

theory can be formulated as a (possibly divergent) period integral on the complement of a hyper-

surface defined by the vanishing of a combinatorial polynomial associated to the Feynman graphs.

Namely, one writes the (unrenormalized) Feynman amplitudes for a massless scalar quantum field

theory as integrals

U(Γ) =
Γ(n−D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn
ΨΓ(t)−n+D(`+1)/2

, (2.4.6)

where n = #EΓ is the number of internal edges, ` = b1(Γ) is the number of loops, and D is the

spacetime dimension. Here we consider the “unregularized” Feynman integral, where D is just

the integer valued dimension, without performing the procedure of dimensional regularization that

analytically continues D to a complex number. The domain of integration is a simplex σn = {t ∈

Rn+|
∑
i ti = 1}. In the integration form, ωn is the volume form, and PΓ and ΨΓ are polynomials

defined as follows. The graph polynomial is defined as

ΨΓ(t) =
∑
T

∏
e/∈T

te,

where the summation is over spanning trees (assuming the graph Γ is connected). The polynomial

PΓ is given by

PΓ(p, t) =
∑
C⊂Γ

sC
∏
e∈C

te

with the sum over cut-sets C (complements of a spanning tree plus one edge) and with variables

sC depending on the external momenta of the graph, sC = (
∑
v∈V (Γ1) Pv)

2, where Γ1 is one of

the connected components after the cut (it does not matter which). The variables Pv are given by



35

combinations of external momenta, Pv =
∑
e∈Eext(Γ),t(e)=v pe, where

∑
e∈Eext(Γ) pe = 0.

In the range −n + D`/2 ≥ 0, which includes the log divergent case n = D`/2, the Feynman

amplitude is therefore the integral of an algebraic differential form defined on the complement of

the graph hypersurface X̂Γ = {t ∈ An |ΨΓ(t) = 0}. Divergences occur due to the intersections

of the domain of integration σn with the hypersurface. Some regularization and renormalization

procedure is required to separate the chain of integration from the divergence locus. We refer the

reader to (14) (or to (79) for an introductory exposition).

It was originally conjectured by Kontsevich that the graph hypersurfaces X̂Γ would always be

mixed Tate motives, which would have explained the pervasive occurrence of multiple zeta values in

Feynman integral computations observed in (18). A general result of (12) disproved the conjecture,

while more recent results of (20), (21), and (33) showed explicit examples of Feynman graphs that

give rise to non-mixed-Tate periods.

2.4.7 Determinant hypersurface and parametric Feynman integrals

In (6) the computation of parametric Feynman integrals was reformulated by replacing the graph

hypersurface complement by the complement of the determinant hypersurface.

More precisely, the (affine) graph hypersurface X̂Γ is defined by the vanishing of the graph polyno-

mial ΨΓ, which can be written as a determinant

ΨΓ(t) = detMΓ(t) =
∑
T

∏
e/∈T

te

with

(MΓ)kr(t) =

n∑
i=1

tiηikηir, (2.4.7)

where the matrix η is given by

ηik =


±1 edge ± ei ∈ loop `k

0 otherwise.

This definition of the matrix η involves the choice of a basis {`k} of the first homology H1(Γ;Z)

and the choice of an orientation of the edges of the graph, with ±e denoting the matching/reverse
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orientation on the edge e. The resulting determinant ΨΓ(t) is independent of both choices.

One considers then the map

Υ : An → A`
2

, Υ(t)kr =
∑
i

tiηikηir

that realizes the graph hypersurface as the preimage

X̂Γ = Υ−1(D̂`)

of the determinant hypersurface D̂` = {det(xij) = 0}.

It is shown in (6) that the map

Υ : An r X̂Γ ↪→ A`
2

r D̂` (2.4.8)

is an embedding whenever the graph Γ is 3-edge-connected with a closed 2-cell embedding of face

width ≥ 3.

As discussed in §3 of (6), the 3-edge-connected condition on graphs can be viewed as a strengthening

of the usual 1PI (one-particle-irreducible) condition assumed in physics, since the 1PI condition

corresponds to 2-edge-connectivity. In perturbative quantum field theory, one considers 1PI graphs

when computing the asymptotic expansion of the effective action. Similarly, one can consider the

2PI effective action (which is related to non-equilibrium phenomena in quantum field theory, see

§10.5.1 of (87)) and restrict to 3-edge-connected graphs. The condition of having a closed 2-cell

embedding of face width ≥ 3, on the other hand, is a strengthening of the analogous property with

face width ≥ 2, which conjecturally is satisfied for all 2-vertex-connected graphs (strong orientable

embedding conjecture; see Conjecture 5.5.16 of (82)). 2-vertex-connectivity is again a natural

strengthening of the 1PI condition.

A detailed discussion of equivalent formulations and implications of these combinatorial conditions,

as well as specific examples of graphs that fail to satisfy them, are given in §3 of (6).

When the map Υ is an embedding, one can, without loss of information, rewrite the parametric

Feynman integral as

U(Γ) =

∫
Υ(σn)

PΓ(x, p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2
. (2.4.9)
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Here ωΓ(x) is a form on A`2 satisfying

ωΓ(x) ∧ 〈ξΓ, dx〉 = ω`2 ,

where the right hand side is the standard volume form on A`2 and ξΓ is the (`2−n)-frame associated

to the linear space Υ(An), see Lemma 2.3 of (6).

The question on the nature of periods is then reformulated in (6) by considering a normal crossings

divisor Σ̂Γ in A`2 with Υ(∂σn) ⊂ Σ̂Γ and considering the motive

m(A`
2

r D̂`, Σ̂Γ r (Σ̂Γ ∩ D̂`)). (2.4.10)

The motive m(A`2 r D̂`) of the determinant hypersurface complement belongs to the category of

mixed Tate motives (see Theorem 4.1 of (6)), with Grothendieck class

[A`
2

r D̂`] = L(`2)
∏̀
i=1

(Li − 1).

However, as shown in (6), the nature of the motive (2.4.10) is much more difficult to discern,

because of the nature of the intersection between the divisor Σ̂Γ and the determinant hypersurface.

It is shown in Proposition 5.1 of (6), assuming the previous conditions on the graph, that one can

consider a divisor Σ̂`,g that only depends on ` = b1(Γ) and on the minimal genus g of the surface

Sg realizing the closed 2-cell embedding of Γ,

Σ̂`,g = L1 ∪ · · · ∪ L(f2)
, (2.4.11)

where f = `− 2g + 1 and the irreducible components L1, . . . , L(f2)
are linear subspaces defined by

the equations 
xij = 0 1 ≤ i < j ≤ f − 1

xi1 + · · ·+ xi,f−1 = 0 1 ≤ i ≤ f − 1.

It is also shown in (6) that the motives (2.4.10) are mixed Tate if the varieties of frames

F(V1, . . . , V`) := {(v1, . . . , v`) ∈ A`
2

r D̂` | vk ∈ Vk}
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are mixed Tate. This question is closely related to the geometry of intersections of unions of

Schubert cells in flag varieties and Kazhdan–Lusztig theory.

In this paper we will follow a different approach, which uses the same reformulation of parametric

Feynman integrals in momentum space in terms of determinant hypersurfaces, as in (6), but instead

of computing the integral in the determinant hypersurface complement, pulls it back to the Kausz

compactification of GL`, following the model of computations of Feynman integrals in configuration

space described in (24).

2.4.8 Cohomology and forms with logarithmic poles

Let X be a smooth projective variety and Z ⊂ X a divisor. Let M?
Z,X denote, as before, the

complex of meromorphic differential forms on X with poles (of arbitrary order) along Z, and let

Ω?X (log(Z)) be the complex of forms with logarithmic poles along Z. Let U = XrZ and j : U ↪→ X

be the inclusion.

Grothendieck’s Comparison Theorem, (47), shows that the natural morphism (de Rham morphism)

M?
Z,X → Rj∗CU

is a quasi-isomorphism, and hence de Rham cohomology H?
dR(U) is computed by the hypercohomol-

ogy of the meromorphic de Rham complex. In particular, for U affine, the hypercohomology is not

necessary and all classes are represented by closed global differential forms, with hypercohomology

replaced by the cohomology of the complex of global sections.

The Logarithmic Comparison Theorem consists of the statement that, for certain classes of divisors

Z, the natural morphism

Ω?X (log(Z))→M?
Z,X

is also a quasi-isomorphism. This is known to hold for simple normal crossings divisors by (29), and

for strongly quasihomogeneous free divisors by (23), and for a larger class of locally quasihomoge-

neous divisors in (53). For our purposes, we will focus only on the case of simple normal crossings

divisors.

In combination with Grothendieck’s Comparison Theorem, the Logarithmic Comparison Theorem

of (29) for a simple normal crossings divisor implies that the de Rham cohomology of the divisor
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complement is computed by the hypercohomology of the logarithmic de Rham complex,

H?
dR(U) ' H?(X ,Ω?X (logZ)). (2.4.12)

Remark 2.4.7. Even under the assumption that the complement U is affine, the hypercohomology

on the right hand side of (2.4.12) cannot always be replaced by global sections and cohomology.

For example, if X is a smooth projective curve of genus g, and U is the complement of n points in

X , then H1
dR(U) has dimension 2g+ n− 1, but the dimension of the space of global sections of the

sheaf of logarithmic differentials is only g + n− 1 by Riemann-Roch.

Some direct comparisons between de Rham cohomology H?
dR(U) and the cohomology of the loga-

rithmic de Rham complex are known. We discuss in the coming subsections how these apply to

our specific case. Our purpose is to replace the meromorphic form that arises in the Feynman inte-

gral computation with a cohomologous form with logarithmic poles along the divisor of the Kausz

compactification. In doing so, we need to maintain explicit control of the motive of the variety

over which cohomology is taken, and also maintain the algebraic nature of all the differential forms

involved.

2.4.9 Pullback to the Kausz compactification, forms with logarithmic

poles, and renormalization

For fixed D, ` ∈ N (respectively the integer spacetime dimension and the loop number) and for

assigned external momenta p ∈ QD, we now consider the algebraic differential form

ηΓ,D,`,p(x) :=
PΓ(x, p)−n+D`/2ωΓ(x)

det(x)−n+(`+1)D/2
. (2.4.13)

For simplicity, we write the above as ηΓ(x). This is defined on the complement of the determinant

hypersurface, A`2 r D̂` = GL`. Thus, by pulling back to the Kausz compactification, we can regard

it as an algebraic differential form on

KGL` r Z` = GL`,

where Z` is the normal crossings divisor at the boundary of the Kausz compactification.
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2.4.9.1 Cellular decomposition approach

We consider a special case of a simple normal crossings divisor Z in a smooth projective variety

X , under the additional assumption that X has a cell decomposition. We denote by {Xα,i} the

finite collection of cells of dimension i, and in particular we simply write Xα = Xα,dimX for the top

dimensional cells.

Proposition 2.4.8. Let Z ⊂ X be a pair as above, with {Xα} the top dimensional cells of the

cellular decomposition. Given a meromorphic form η ∈ Mm
X ,Z , there exist forms β(α) on Xα with

logarithmic poles along the normal crossings divisor Z, such that

[β(α)] = [η|Xα ] ∈ H∗dR(Xα r Z). (2.4.14)

Proof. Lemma 2.5 of (23) shows that the Logarithmic Comparison Theorem is equivalent to the

statement that, for all Stein open sets V ⊂ X , there are isomorphisms H?(Γ(V,Ω?X (logZ))) '

H?
dR(V r Z). Namely, the hypercohomology in the Logarithmic Comparison Theorem can be

replaced by cohomology of the complex of sections, when restricted to Stein open sets.

Remark 2.4.9. The forms β(α) do not match consistently on the closures of the cells Xα, because

of nontrivial Čech cocycles, and hence they are not restrictions of a unique form with logarithmic

poles β defined on all of X . In particular, the forms β(α) obtained in this way depend on the cellular

decomposition used.

Lemma 2.4.10. Let Z ⊂ X and {Xα} be as above, and suppose given a meromorphic form

η ∈ MN
X ,Z , with N = dimX , and an N -chain σ ⊂ X with ∂σ ⊂ Σ, for a divisor Σ in X . After

performing a pole subtraction on the logaritmic forms on each cell Xα one can replace the integral∫
Σ
η with a renormalized version

∫
σ

β+ :=
∑
α

∫
Xα∩σ

β(α),+, (2.4.15)

where β(α),+ is a simple pole subtraction on β(α). The integral (2.4.15) is a sum of periods of

motives m(Xα, Xα ∩Σ). The information contained in the subtracted polar part is recovered by the
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Poincaré residues ∫
σ∩ZI

ResZI (β) :=
∑
α

∫
σ∩ZI∩Xα

ResZI (β
(α)) (2.4.16)

along the intersections of components ZI = Zi1 ∩ · · · ∩Zik , I = {i1, . . . , ik} of the divisor Z. These

are sums of periods of the motives m(ZI ∩Xα).

Proof. Given the cell decomposition as above, we can write the integral as

∫
σ

η =
∑
α

∫
Xα∩σ

η|Xα =
∑
α

∫
Xα∩σ

β(α). (2.4.17)

where each η|Xα is replaced by the cohomologous β(α) with logarithmic poles. After performing a

pole subtraction on each β(α) we obtain holomorphic forms β(α),+, and hence the resulting integral

is a period of m(Xα, Xα∩Σ). For the relation between polar subtraction and the Poincaré residues,

see the discussion in §2.2.2 and §2.3.2 above.

In both (2.4.15) and (2.4.16), we use the notation on the left-hand-side, with a global integral and

a global form β, purely as a formal shorthand notation for the sum of the integrals on the cells of

the β(α), since the latter are not restrictions of a global form β.

Remark 2.4.11. Notice that the resulting integral (2.4.15) obtained in this way can be identified

with a period of m(X ,Σ) only in the case where the forms β(α),+ are restrictions β(α),+ = β+|Xα of

a single holomorphic form β+ on X . More generally, the resulting (2.4.15) is only a sum of periods

of the motives m(Xα, Xα ∩ Σ).

Remark 2.4.12. If the cellular decomposition of X has a single top dimensional cell X, then a

unique form with logarithmic poles β ∈ Ω?X(logZ), satisfying [η|X ] = [β] ∈ H?
dR(X r Z), suffices

to regularize the integral
∫
σ
η, with regularized value

∫
σ∩X β

+.

As we discussed in Proposition 2.4.4, the Kausz compactification is a spherical variety (Proposition

1.15 of §3 of (54) and also Proposition 9.1 and Proposition 12.1 of (81)), and hence it has a

cellular decomposition (§3.1 of (16)) into cells X(λ, x) as in (2.4.5). Thus, we can apply the

procedure described above, to regularize the integral
∫

Υ(σ)
ηΓ. While this regularization procedure

depends on the choice of the cell decomposition, the construction of (16) for spherical varieties

provides a cellular structure that is intrinsically defined by the orbit structure of KGL` and is quite
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naturally reflecting its geometry. We can then perform a renormalization procedure based on the

pole subtraction procedure for forms with logarithmic poles described above.

Corollary 2.4.13. The cell decomposition {X(λ, x)} of KGL` has a single big cell X. Given

ηΓ = ηΓ,D,`,p as in (2.4.13), there is a form βΓ = βΓ,D,`,p on the big cell X, with logarithmic poles

along Z`, such that [ηΓ|X ] = [βΓ] ∈ H?
dR(X r Z). Applying the Birkhoff factorization for forms

with logarithmic poles to βΓ, we obtain a renormalized integral of the form

R(Γ) =

∫
Υ̃(σn)∩X

β+
Γ,D,`,p, (2.4.18)

where β+
Γ is a simple pole subtraction on βΓ.

Proof. As mentioned in Proposition 2.4.4, the spherical variety KGL` is a smooth toroidal equivari-

ant compactification of GL` (Proposition 1.15 of §3 of (54) and Propositions 9.1 and 12.1 of (81)).

By §2.3 of (17) and Proposition 9.1 of (81), it then follows that there is just one big cell X. We

can then write the integral as ∫
Υ̃(σn)

ηΓ =

∫
X∩Υ̃(σn)

ηΓ|X , (2.4.19)

where Υ̃(σn) is the pullback to KGL` of the domain of integration Υ(σn).

Let H be the Hopf algebra of Feynman graphs. The morphism φ : H → M∗X,Z`∩X assigns to a

Feynman graph Γ a meromorphic differential form βΓ = βΓ,D,`,p with logarithmic poles along Z`
satisfying [ηΓ|X ] = [βΓ] ∈ H?

dR(X r Z).

We then perform the Birkhoff factorization, and we denote by β+
Γ the regular differential form on

X ⊂ KGL` given by φ+(Γ) = β+
Γ . Since we only have logarithmic poles, by Proposition 2.3.1 the

operation becomes a simple pole subtraction and we have β+
Γ = (1− T )βΓ.

If we assume that the external momenta p in the polynomial PΓ(x, p) are rational, then the form

ηΓ = ηΓ,D,`,p(x) is an algebraic differential form defined over Q, and hence we can also assume that

the form with logarithmic poles βΓ is also defined over Q.

In addition to the integral (2.4.18), one also has the collection of the iterated Poincaré residues

along the intersections of components of the divisor Z`. Namely, for any ZI,` = ∩j∈IZj,`, with Zj,`
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the components of Z`, we have the additional integrals

R(Γ)I =

∫
Υ̃(σn)∩ZI,`∩X

ResZI (βΓ). (2.4.20)

2.4.9.2 Griffiths-Schmid approach

A global replacement of ηΓ by a single form βΓ,D,`,p on KGL` with logarithmic poles along Z` can

be obtained if we use the C∞-logarithmic de Rham complex instead of the algebraic or analytic one.

Proposition 2.4.14. There is a C∞-form β∞Γ on KGL` with logarithmic poles along Z` such that

[β∞Γ ] = [ηΓ] ∈ H∗dR(KGL` r Z`;C) = H∗dR(GL`;C). (2.4.21)

Applying the Birkhoff factorization yields a renormalized integral

R∞(Γ) =

∫
Υ̃(σn)

β∞,+Γ,D,`,p, (2.4.22)

where β∞,+Γ is a simple pole subtraction on β∞Γ , and iterated residues

R∞(Γ)I =

∫
Υ̃(σn)∩ZI,`

ResZI (β
∞
Γ ). (2.4.23)

Proof. For X is a complex smooth projective variety and Z a simple normal crossings divisor, let

ΩC∞(X )(logZ) be the C∞-logarithmic de Rham complex. The Griffiths-Schmid theorem (Proposi-

tion 5.14 of (46)) shows that there is an isomorphism H∗dR(U) = H∗(ΩC∞(X )(logZ)).

Remark 2.4.15. With the Griffiths-Schmid theorem one loses the algebraicity of differential forms.

Namely, the forms β∞Γ and β∞,+Γ are only smooth and not algebraic or analytic differential forms.

Even if the resulting form β∞,+Γ , after pole subtraction, can then be replaced by an algebraic de

Rham form in the same cohomology class in H∗dR(KGL`), it will remain, in general, only a form with

C-coefficients and not one defined over Q. Thus, following this approach one obtains a consistent

renormalization procedure, but one can lose control on the description of the resulting integrals as

periods of motives defined over a number field.
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2.4.9.3 The Hodge filtration approach

There is another case in which a form can be replaced globally by a cohomologous one with logarith-

mic poles on the complement of a normal crossings divisor, while only using algebraic or analytic

forms. Indeed, there is a particular piece of the de Rham cohomology that is always realized by

global sections of the (algebraic) logarithmic de Rham complex. This is the piece FnHn
dR(U) of the

Hodge filtration of Deligne’s mixed Hodge structure, with n = dimX . This Hodge filtration on U

is given by

F pHk
dR(U) = Im(Hk(X ,Ω≥pX (logZ))→ Hk(X ,Ω?X (logZ))).

Proposition 2.4.16. Let X be a smooth projective variety with N = dimX , and let Z be a simple

normal crossings divisor with affine complement U = X rZ. Then, for n ≤ N , the Hodge filtration

satisfies

FnHn
dR(U) = H0(X ,ΩnX (logZ)). (2.4.24)

Proof. The Hodge filtration F pHk
dR(U) is induced by the naive filtration on Ω?X (logZ). Recall that

(see Theorem 8.21 and Proposition 8.25 of (96)) the spectral sequence of a filtration F on a complex

K? that comes from a double complex Kp,q, with

F pKn = ⊕r≥p,r+s=nKr,s

has terms

Ep,q0 = GrFpK
p+q = F pKp+q/F p+1Kp+q = Kp,q

Ep,q1 = Hp+q(GrFpK
?) = Hq(Kp,?)

Ep,q∞ = GrFp H
p+q(K?).

Thus, the Frölicher spectral sequence associated to the Hodge filtration F pHk
dR(U) has

Ep,q1 = Hq(X ,ΩpX (logZ))

Ep,q∞ = F pHp+q
dR (U)/F p+1Hp+q

dR (U).

In particular, En,01 = H0(X ,ΩnX (logZ)) and En,0∞ = FnHn
dR(U).
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Deligne proved in (29) (see also the formulation of the result given in Theorem 8.35 of (96)) that,

in the case where Z is a normal crossings divisor, the spectral sequence of the Hodge filtration

degenerates at the E1 term. Thus, in particular, we obtain (2.4.24).

Corollary 2.4.17. Given a meromorphic form η with [η] ∈ FnHn
dR(GL`), with n ≤ `2 = dimKGL`,

there is a form β on KGL` with logarithmic poles along the normal crossings divisor Z`, such that

[β] = [η] ∈ Hn
dR(KGL` r Z`) = Hn

dR(GL`). (2.4.25)

Then after pole subtraction one obtains

∫
Υ̃(σn)

β+, (2.4.26)

which is a period of m(KGL`,Σ`,g).

In this case also, in addition to the integral (2.4.26), we also have the iterated residues (which in

this case exist globally), ∫
Υ̃(σn)∩ZI,`

ResZI (β). (2.4.27)

In general, it is difficult to estimate where the form ηΓ lies in the Hodge filtration. One can give

an estimate, based on the relation between the filtration by order of pole and the Hodge filtration,

but it need not be accurate because exact forms can cancel higher order poles. The same issue was

discussed, in the original formulation in the graph hypersurface complement, in §9.2 and Proposition

9.8 of (15).

Let X be a smooth projective variety and Z ⊂ X a simple normal crossings divisor. As before, let

M?
Z,X denote the complex of meromorphic differential forms on X with poles (of arbitrary order)

along Z. This complex has a filtration P ?M?
Z,X by order of poles (polar filtration), where P kMm

Z,X

consists of the m-forms with pole of order at most m − k + 1, if m − k ≥ 0 and zero otherwise.

Deligne showed in §II.3, Proposition 3.13 of (30) and Proposition 3.1.11 of (29), that the filtration

induced on the subcomplex Ω?X (logZ) by the polar filtration onM?
Z,X is the naive filtration (that

is, the Hodge filtration), and that the natural morphism

(Ω?X (logZ), F ?)→ (M?
Z,X , P

?)
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is a filtered quasi-isomorphism. In particular (Theorem 2 of (31)) the image of H?(X , P kM?
X ,Z)

inside H?
dR(U) contains F kH?

dR(U). This means that we can use the order of pole of obtain at least

an estimate of the position of [ηΓ] in the Hodge filtration. We need to compute the order of pole of

the pullback of the form ηΓ along the blowups in the construction of the compactification KGL`.

Proposition 2.4.18. For a graph Γ with n = #EΓ and ` = b1(Γ), such that n ≥ ` − 2, and with

spacetime dimension D ∈ N, the position of [ηΓ] in the Hodge filtration F kHn
dR(GL`) is estimated

by k ≥ n− (`− 1)(−n+ (`+ 1)D/2) + (`− 1)2 − 1.

Proof. At the first step in the construction of the compactification KGL` we blow up the locus of

matrices of rank one. We need to compare the order of vanishing of det(x)−n+(`+1)D/2 along this

locus, with the order of zero acquired by the form ωΓ along the exceptional divisor of this blowup.

The determinant vanishes at order `−1 on that stratum. The form ωΓ, on the other hand, acquires

a zero of order c − 1 where c is the codimension of the blowup locus. This can be seen in a local

model: when blowing up a locus L = {z1 = · · · = zc = 0} in CN , the local coordinates wi in

the blowup can be taken as wiwc = zi for i < c and wi = zi for i ≥ c, with E = {wc = 0} the

exceptional divisor. Then for n ≥ c, and a form dz1 ∧ · · · ∧ dzn, the pullback satisfies

π∗(dz1 ∧ · · · ∧ dzn) = d(wcw1) ∧ · · · ∧ d(wcwc−1) ∧ d(wc) ∧ · · · ∧ d(wn) = wc−1
c dw1 ∧ · · · ∧ dwn.

The codimension of the locus of rank one matrices is c = (` − 1)2. Thus, when performing the

first blowup in the construction of KGL`, the pullback of the form ηΓ acquires a pole of order

(` − 1)(−n + (` + 1)D/2) − (` − 1)2 + 1 along the exceptional divisor. Further blowups do not

alter this pole order, and hence we can estimate that the pullback of the n-form ηΓ to the Kausz

compactification is in the term P k of the polar filtration, with n − k + 1 = (` − 1)(−n + (` +

1)D/2)− (`− 1)2 + 1. Taking into account the possibility of reductions of the order of pole, due to

cancellations coming from exact forms, we obtain an estimate for the position in the polar and in

the Hodge filtration, with k ≥ n− (`− 1)(−n+ (`+ 1)D/2) + (`− 1)2 − 1.

2.4.10 Nature of the period

We then discuss the nature of the period obtained by the evaluation of (2.4.26). We need a

preliminary result.
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Definition 2.4.19. Let X be a smooth projective variety over a number field and Y ⊂ X with

irreducible components {Yi}Ni=1. Let CY = {YI = Yi1 ∩ · · · ∩ Yik | I = (i1, . . . , ik), k ≤ N}. Then Y

is a mixed Tate configuration if all unions YI1 ∪ · · · ∪ YIr of elements of the set CY have motives

m(YI1 ∪ · · · ∪ YIr ) contained in the Voevodsky derived category of mixed Tate motives.

Let Σ`,g be the proper transform of the divisor given by the projective version of Σ̂`,g described in

(2.4.11), defined by the same equations.

Lemma 2.4.20. The divisor Σ`,g is a mixed Tate configuration.

Proof. By (2.4.11), Σ`,g and any arbitrary union of components are hyperplane arrangements. It

is known from (11) that motives of hyperplane arrangements are mixed Tate, see also §1.7.1–1.7.2

and §3.1.1 of (34), where the computation of the motive in the Voevodsky category can be obtained

in terms of Orlik–Solomon models. Using a characterization of the mixed Tate condition in terms

of eigenvalues of Frobenius, the mixed Tate nature of hyperplane arrangements was also proved

in Proposition 3.1.1 of (61). The mixed Tate property can be seen very explicitly at the level of

the virtual motive. In fact, the Grothendieck class of an arrangement A in Pn is explicitly given

(Theorem 1.1. of (5)) by

[A] = [Pn]−
χÂ(L)

L− 1
,

where χÂ(t) is the characteristic polynomial of the associated central arrangement Â in An+1. It

then follows by inclusion-exclusion in the Grothendieck ring that all unions and intersections of

components of A are mixed Tate.

We then have the following conclusion:

Proposition 2.4.21. When the form βΓ,D,`,p on the big cell extends to a logarithmic form in

Ω?KGL`
(logZ`), the integral R(Γ) =

∫
Υ̃(σn)

β+
Γ,D,`,p is a period of a mixed Tate motive.

Proof. In the globally defined case, this is an integral of an algebraic differential form defined on

the compactification KGL`, and hence a genuine period, in the sense of algebraic geometry, of

KGL`. By Proposition 2.4.4, we know that the Chow motive h(KGL`) is Tate. We also know from

Lemma 2.4.20 that the motive m(Σ`,g) is mixed Tate. Under the embedding of pure motives into

mixed motives we obtain objects m(KGL`) and m(Σ`,g) in the subcategory of mixed Tate motives

MTM(Q) inside the Voevodsky triangulated category of mixed motives DM(Q). It then follows
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that the relative motive m(KGL`,Σ`,g) is also mixed Tate, as it sits in a distinguished triangles in

the Voevodsky triangulated category, where the other two terms are mixed Tate.

Proposition 2.4.22. In the case where one only has the form with logarithmic poles βΓ,D,`,p on

the top cells X of the cellular decomposition of KGL`, if the motive m(Σ`,g ∩ X) is mixed Tate,

then the integral R(Γ) =
∫

Υ̃(σn)
β+

Γ,D,`,p is a period of a mixed Tate motive.

Proof. Using distinguished triangles in the Voevodsky category, we see that, if the motive m(Σ`,g ∩

X) is mixed Tate, then the motive m(X,Σ`,g ∩X) also is, since the big cell has m(X) = L`2 . The

result then follows, since the integral is by construction a period of the motive m(X,Σ`,g ∩X).

Remark 2.4.23. The central difficulty in the approach of (6), which was to analyze the nature of

the motive of m(Σ`,g ∩D`), is here replaced by the problem of identifying the nature of the motive

m(Σ`,g ∩X), where X is the big cell of KGL`.

Remark 2.4.24. It may seem at first that we have simply substituted the problem of understanding

for which range of (`, g) the intersection of the divisor Σ`,g with GL` remains mixed Tate, with

the very similar problem of when the intersection of Σ`,g with the big cell X of KGL` remains

mixed Tate. However, this reformulation makes it possible to use the explicit description of the

cells X(λ, x) of spherical varieties in terms of limits as in (2.4.5), to analyze this question.

One defines the category MTM(Z) of mixed Tate motives over Z as mixed Tate motives in

MTM(Q) that are unramified over Z. An object ofMTM(Q) is unramified over Z if and only if,

for any prime `, its `-adic realization is unramified outside of `, see Proposition 1.8 of (32).

Proposition 2.4.25. The motives m(KGL`) are unramified over Z.

Proof. This question can be approached in a way analogous to our previous discussion of the Chow

motive, namely using the description of KGL` as an iterated blowup and the properties of the

divisor of the compactification. The argument is similar to the one used in Theorem 4.1 and

Proposition 4.3 of (45) to prove the analogous statement for the moduli spaces M0,n of rational

curved with marked points. There, it is shown thatM0,n is unramified over Z by showing that the

combinatorics of the normal crossings divisor of the compactification is not altered by reductions

mod p, see Definition 4.2 of (45). In our case, note that the description of the Kausz compactification
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and of the strata of its boundary divisor given in Theorems 9.1 and 9.3 of (60) hold over an arbitrary

field, hence the same argument of Proposition 4.3 of (45) applies.

Remark 2.4.26. Given that the unramified condition holds, one can conclude from Brown’s the-

orem (19) and the previous Proposition 2.4.21 (and Proposition 2.4.22, when m(Σ`,g ∩X) is mixed

Tate) that the integral (2.4.26) is a Q[2πi]-linear combination of multiple zeta values.

2.4.11 Comparison with Feynman integrals

The result obtained in this way clearly differs from the usual computation of Feynman integrals,

where non-mixed-Tate periods are known to occur, (20), (21). There are several reasons behind

this difference, which we now discuss briefly.

There is loss of information in mapping the computation of the Feynman integral from the com-

plement of the graph hypersurface (as in (14), (20), (21)) to the complement of the determinant

hypersurface (as in (6)), when the combinatorial conditions on the graph recalled in §2.4.7 are not

satisfied. Explicit examples of graphs that violate those conditions are given in §3 of (6). In such

cases the map (2.4.8) need not be an embedding, hence part of the information contained in the

Feynman integral calculation (2.4.6) will be lost in passing to (2.4.9).

However, this type of loss of information does not affect some of the cases where non-mixed Tate

motives are known to appear in the momentum space Feynman amplitude.

Example 2.4.27. Let Γ be the graph with 14 edges that gives a counterexample to the Kontsevich

polynomial countability conjecture, in Section 1 of (33). The map Υ : An → A`2 of (2.4.8) has

n = #E(Γ) = 14 and ` = b1(Γ) = 7. Let Υi denote the composition of the map Υ with the

projection onto the i-th row of the matrix MΓ of (2.4.7). In order to check if the embedding

condition for Υ is satisfied, we know from Lemma 3.1 of (6) that it suffices to check that Υi is

injective for i ranging over a set of loops such that every edge of Γ is part of a loop in that set.

This can then be checked by computer verification for the matrix MΓ of this particular graph.

Remark 2.4.28. The example above is a log divergent graph in dimension four. It is known to

give a non-mixed Tate contribution with the usual method of computation of the Feynman integral;

see (33) and (20).
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The same verification method can be applied to the other currently known explicit counterexamples

in (33), (20), (91), and (21).

Even for integrals where the map (2.4.8) is an embedding, it is clear that the regularization and

renormalization procedure described here, using the Kausz compactification and subtraction of

residues for forms with logarithmic poles, is not equivalent to the usual renormalization procedures

of the regularized integrals. For instance, our regularized form (and hence our regularized integral)

can be trivial in cases where the usual regularization and renormalization would give a non-trivial

result. This may occur if the form β with logarithmic poles happens to have a nontrivial residue,

but a trivial holomorphic part β+.

In such cases, part of the information loss coming from pole subtraction on the differential form is

compensated by keeping track of the residues. However, in our setting these also deliver only mixed

Tate periods, so that even when this information is included, one still loses the richer structure

of the periods arising from other methods of regularization and renormalization, adopted in the

physics literature.
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Chapter 3

Replicating of binary operads,
Koszul duality, Manin products
and average operators

3.1 The replicators of a binary operad

In this section, we first introduce the concepts of the replicators, namely the duplicator and trip-

licator, of a labeled planar binary tree, following the framework in (9) and in close resemblance

with the concepts of the di-Var-algebra tri-Var-algebra in (48). These concepts are then applied to

define similar concepts for a nonsymmetric operad and a (symmetric) operad. A list of examples is

provided, followed by a study of the relationship among an operad, its duplicator and its triplicator.

3.1.1 The replicators of a planar binary tree

We first recall notions on operads represented by trees. For more details see (9; 77).

3.1.1.1 Labeled trees

Definition 3.1.1. (a) Let T denote the set of planar binary reduced rooted trees together with

the trivial tree . If t ∈ T has n leaves, we call t an n-tree. The trivial tree has one leaf.

(b) Let Ω be a set. By a decorated tree we mean a tree t of T together with a decoration on the

vertices of t by elements of Ω and a decoration on the leaves of t by distinct positive integers.
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Let t(Ω) denote the set of decorated trees for t and denote

T(Ω) :=
∐
t∈T

t(Ω).

If τ ∈ t(Ω) for an n-tree t, we call τ a labeled n-tree.

(c) For τ ∈ T(Ω), we let Vin(τ) (resp. Lin(τ)) denote the set (resp. ordered set) of labels of the

vertices (resp. leaves) of τ .

(d) Let τ ∈ T(Ω) with |Lin(τ)| > 1 be a labeled tree from t ∈ T. Then t can be written uniquely

as the grafting t` ∨ tr of t` and tr. Correspondingly, let τ = τ` ∨ω τr denote the unique

decomposition of τ as a grafting of τ` and τr in T(Ω) along ω ∈ Ω.

Let V be a vector space, regarded as an arity graded vector space concentrated in arity 2: V = V2.

Recall (77, Section 5.8.5) that the free nonsymmetric operad Tns(V ) on V is given by the vector

space

Tns(V ) :=
⊕
t∈T

t[V ] ,

where t[V ] is the treewise tensor module associated to t, explicitly given by

t[V ] :=
⊗

v∈Vin(t)

V|In(v)| .

Here |In(v)| denotes the number of incoming edges of v. A basis V of V induces a basis t(V) of

t[V ] and a basis T(V) of Tns(V ). Consequently any element of t[V ] can be represented as a linear

combination of elements in t(V).

3.1.1.2 Duplicators

Definition 3.1.2. Let V be a vector space with a basis V.

(a) Define a vector space

Du(V ) = V ⊗ (k a ⊕ k `) , (3.1.1)

where we denote (ω⊗ a) (resp. (ω⊗ `)) by
ω
a


(

resp.
ω
`


)

for ω ∈ V. Then
⋃
ω∈V

{ω
a

,
ω
`


}

is a basis of Du(V ).
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(b) For a labeled n-tree τ in T(V), define a subset Du(τ) of Tns(Du(V)) by

• Du( ) =
{ }

,

• when n ≥ 2, Du(τ) is obtained by replacing each decoration ω ∈ Vin(τ) by

ω
†

 :=

{ω
a

,
ω
`


}
.

Thus Du(τ) is a set of labeled trees.

Definition 3.1.3. Let V be a vector space with a basis V. Let τ be a labeled n-tree in T(V). The

duplicator Dux(τ) of τ with respect to a leaf x ∈ Lin(τ) is the subset of Tns(Du(V)) defined by

induction on |Lin(τ)| as follows:

• Dux( ) = { } ;

• assume that Dux(τ) have been defined for τ with |Lin(τ)| ≤ k for a k ≥ 1. Then, for a labeled

(k + 1)-tree τ ∈ T(V) with decomposition τ = τ` ∨ω τr, we define

Dux(τ) = Dux(τ` ∨ω τr) =


Dux(τ`) ∨ω

a

 Du(τr), x ∈ Lin(τ`),

Du(τ`) ∨ω
`

 Dux(τr), x ∈ Lin(τr).

For labeled n-trees τi, 1 ≤ i ≤ r, with the same set of leaf decorations and ci ∈ k, 1 ≤ i ≤ r, define

Dux

(
r∑
i=1

ciτi

)
:=

r∑
i=1

ciDux(τi). (3.1.2)

Here and in the rest of the paper we use the notation

r∑
i=1

ciWi :=

{
r∑
i=1

ciwi

∣∣∣wi ∈Wi, 1 ≤ i ≤ r

}
, (3.1.3)

for nonempty subsets Wi, 1 ≤ i ≤ r, of a k-module.

The next explicit description of the duplicator follows from an induction on |Lin(τ)|.
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Proposition 3.1.4. Let V be a vector space with a basis V, τ be in T(V) and x be in Lin(τ). The

duplicator Dux(τ) is obtained by relabeling a vertex ω of Vin(τ) by



ω
a

 , the path from the root of τ to x turns left at ω ;
ω
`

 , the path from the root of τ to x turns right at ω ;
ω
†

 :=

{ω
a

,
ω
`


}
, the path from the root of τ to x does not pass ω .

Example 3.1.1. Dux2


x1 x2 x3 x4

ω 1 ω 3

ω 2

 =

x1 x2 x3 x4ω 1

`


== ω 3

†



ω 2

a



cc

OO

=



x1 x2 x3 x4ω 1

`

 ω 3

a



ω 2

a


,

x1 x2 x3 x4ω 1

`

 ω 3

`



ω 2

a




3.1.1.3 Triplicators

Definition 3.1.5. Let V be a vector space with a basis V.

(a) Define a vector space

Tri(V ) = V ⊗ (k a ⊕ k ` ⊕ k ⊥) , (3.1.4)

where we denote (ω⊗ a) (resp. (ω⊗ `), resp. (ω⊗ ⊥)) by
ω
a


(

resp.
ω
`

, resp.
ω
⊥


)

for

ω ∈ V. Then
⋃
ω ∈V

{ω
a

,
ω
`

,
ω
⊥


}

is a basis of Tri(V ).

(b) Let τ be a labeled n-tree in T(V) and let J be a subset of Lin(τ). The triplicator TriJ(τ)

of τ with respect to J is a subset of Tns(Tri(V)) defined by induction on |Lin(τ)| as follows:

• TriJ( ) =
{ }

;

• assume that TriJ(τ) have been defined for τ with |Lin(τ)| ≤ k for a k ≥ 1. Then, for a
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labeled (k + 1)-tree τ ∈ T(V) with decomposition τ = τ` ∨ω τr, we define

TriJ(τ) = TriJ(τ` ∨ω τr) = TriJ∩Lin(τ`) ∨ ω

(τ, J)

 TriJ∩Lin(τr),

where

(τ, J) =



a, J ∩ Lin(τ`) 6= ∅, J ∩ Lin(τr) = ∅, that is, J ⊆ Lin(τr),

`, J ∩ Lin(τ`) = ∅, J ∩ Lin(τr) 6= ∅, that is, J ⊆ Lin(τ`),

† := {a,`,⊥}, J ∩ Lin(τ`) = ∅, J ∩ Lin(τr) = ∅, that is, J = ∅,

⊥, J ∩ Lin(τ`) 6= ∅, J ∩ Lin(τr) 6= ∅, that is, none of the above.

Equivalently,

TriJ(τ) =



TriJ(τ`) ∨ω
a

 Tri∅(τr), J ⊆ Lin(τ`),

Tri∅(τ`) ∨ω
`

 TriJ(τr), J ⊆ Lin(τr),

Tri∅(τ`) ∨ω
†

 Tri∅(τr), J = ∅,

TriJ∩Lin(τ`)(τ`) ∨ω
⊥

 TriJ∩Lin(τr)(τr), otherwise.

We have the following explicit description of the triplicator that follows from an induction on

|Lin(τ)|.

Proposition 3.1.6. Let V be a vector space with a basis V, let τ be in T(V) and let J be a nonempty

subset of Lin(τ). The triplicator TriJ(τ) is obtained by relabeling each vertex ω of Vin(τ) by the

following rules:

(a) Suppose ω is on the paths from the root of τ to some (possibly multiple) x in J . Then

(i) replace ω by
ω
a

 if all of such paths turn left at ω ;

(ii) replace ω by
ω
`

 if all of such paths turn right at ω ;

(iii) replace ω by
ω
⊥

 if some of such paths turn left at ω and some of such paths turn right

at ω .
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(b) Suppose ω is not on the path from the root of τ to any x ∈ J . Then replace ω by
ω
†

 :={ω
a

,
ω
`

,
ω
⊥


}

;

Example 3.1.2. Tri{1,2}


1 2 3 4

ω 1 ω 3

ω 2

 =

1 2 3 4
ω 1

⊥


`` >> ω 3

†



ω 2

a



bb

OO

=



1 2 3 4
ω 1

⊥

 ω 3

a



ω 2

a


,

1 2 3 4
ω 1

⊥

 ω 3

`



ω 2

a


,

1 2 3 4
ω 1

⊥

 ω 3

⊥



ω 2

a




3.1.2 The replicators of a binary nonsymmetric operad

Definition 3.1.7. Let V be a vector space with a basis V.

(a) An element

r :=

r∑
i=1

ciτi, ci ∈ k, τi ∈ T(V),

in Tns(V ) is called homogeneous if Lin(τi) are the same for 1 ≤ i ≤ r. Then denote

Lin(r) = Lin(τi) for any 1 ≤ i ≤ r.

(b) A collection of elements

rs :=

r∑
i=1

cs,iτs,i, cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s ≤ k, k ≥ 1,

in Tns(V ) is called locally homogenous if each element rs, 1 ≤ s ≤ k, is homogeneous.

Definition 3.1.8. Let P = Tns(V )/(R) be a binary nonsymmetric operad where V is a vector space

with a basis V regarded as an arity graded vector space concentrated in arity two: V = V2 and R
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is a set consisting of locally homogeneous elements:

rs =
∑
i

cs,iτs,i ∈ Tns(V ) , cs,i ∈ k, τs,i ∈ T(V), 1 ≤ s ≤ k.

(a) The duplicator of P is defined to be the binary nonsymmetric operad

Du(P) := Tns(Du(V ))/(Du(R)).

Here Du(V ) = V ⊗ (k a ⊕k `) is regarded as an arity graded vector space concentrated in

arity two and

Du(R) :=

k⋃
s=1

 ⋃
x∈Lin(ts)

Dux(rs)

 , where Dux(rs) :=
∑
i

cs,iDux(τs,i)),

with the notation in Eq. (3.1.3).

(b) The triplicator of P is defined to be the binary nonsymmetric operad

Tri(P) := Tns(Tri(V ))/(Tri(R)).

Here Tri(V ) = V ⊗(k a ⊕k ` ⊕k ⊥) is regarded as an arity graded vector space concentrated

in arity two and

Tri(R) :=

k⋃
s=1

 ⋃
∅ 6=J⊆Lin(rs)

TriJ(rs)

 , where TriJ(rs) :=
∑
i

cs,iTriJ(τs,i).

Proposition 3.1.9. The duplicator (resp. triplicator) of a binary nonsymmetric operad P =

Tns(V )/(R) does not depend on the choice of a basis V of V .

Proof. It is straightforward to check from the linearity of the duplicator (resp. triplicator) and from

the treewise tensor module structure on Tns(V ).

We give some examples of duplicators and triplicators of nonsymmetric operads.

Example 3.1.3. Let Ass be the nonsymmetric operad of the associative algebra with product ·.
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Using the abbreviations a:=
 ·
a

 and `:=
 ·
`

, we have

Duy((x · y) · z − x · (y · z)) = {(x ` y) a z − x ` (y a z)},

Dux((x · y) · z − x · (y · z)) = {(x a y) a z − x a (y a z), (x a y) a z − x a (y ` z)},

Duz((x · y) · z − x · (y · z)) = {(x a y) ` z − x ` (y ` z), (x ` y) ` z − x ` (y ` z)},

giving the five relations of the diassociative algebra of Loday (70). Therefore the duplicator of

Ass is Diass.

Example 3.1.4. A similar computation shows that the triplicator of Ass is the operad Trias of

the triassociative algebra of Loday and Ronco (75). For example,

Tri{x}((xy)z − x(yz)) = {(x a y) a z − x a (y a z), (x a y) a z − x a (y ` z), (x a y) a z − x a (y ⊥ z)},

Tri{x,y}((xy)z − x(yz)) = {(x ⊥ y) a z − x ⊥ (y a z)},

Tri{x,y,z}((xy)z − x(yz)) = {(x ⊥ y) ⊥ z − x ⊥ (y ⊥ z)}.

3.1.3 The replicators of a binary operad

When V = V (2) is an S-module concentrated in arity two with a linear basis V. For any finite set

X of cardinal n, define the coinvariant space

V (X ) :=

 ⊕
f :n→X

V (n)


Sn

,

where the sum is over all the bijections from n := {1, . . . , n} to X and where the symmetric group

acts diagonally.

Let T denote the set of isomorphism classes of reduced binary trees (77, Appendix C). For t ∈ T,

define the treewise tensor S-module associated to t, explicitly given by

t[V ] :=
⊗

v∈Vin(t)

V (In(v))

(see (77, Section 5.5.1)). Then the free operad T (V ) on an S-module V = V (2) is given by the
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S-module

T (V ) :=
⊕
t∈T

t[V ] .

Each tree t in T can be represented by a planar tree t in T by choosing a total order on the set of

inputs of each vertex of t. Further, t[V ] ∼= t[V ] (56, Section 2.8). Fixing such a choice t for each

t ∈ T gives a subset R ⊆ T with a bijection T ∼= R. Then we have

T (V ) ∼=
⊕
t∈R

t[V ] ,

allowing us to use the notations in Section 3.1.2.

Definition 3.1.10. Let P = T (V )/(R) be a binary operad where the S-module V is concentrated

in arity 2: V = V (2) with an S2-basis V and the space of relations is generated, as an S-module,

by a set R of locally homogeneous elements

rs :=
∑
i

cs,iτs,i, cs,i ∈ k, τs,i ∈
⋃
t∈R

t(V), 1 ≤ s ≤ k. (3.1.5)

(a) The duplicator of P is defined to be the binary operad

Du(P) = T (Du(V ))/(Du(R)),

where the S2-action on Du(V ) = V ⊗ (k a ⊕k `) is given by

ω
a

(12)
:=

ω (12)

`

 ,
ω
`

(12)
:=

ω (12)

a

 , ω ∈ V,

and the space of relations is generated, as an S-module, by

Du(R) :=

k⋃
s=1

 ⋃
x∈Lin(rs)

Dux(rs)

 with Dux(rs) :=
∑
i

cs,iDux(τs,i). (3.1.6)

(b) The triplicator of P is defined to be the binary operad

Tri(P) = T (Tri(V ))/(Tri(R)),
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where the S2-action on Tri(V ) = V ⊗ (k a ⊕k ` ⊕k ⊥) is given by

ω
a

(12)
:=

ω (12)

`

 ,
ω
`

(12)
:=

ω (12)

a

 ,
ω
⊥

(12)
:=

ω (12)

⊥

 , ω ∈ V,

and the space of relations is generated, as an S-module, by

Tri(R) :=

k⋃
s=1

 ⋃
∅ 6=J⊆Lin(rs)

TriJ(rs)

 with TriJ(rs) :=
∑
i

cs,iTriJ(τs,i).

See(48) for the closely related notions of the di-Var-algebra and tri-Var-algebra, and (64) for these

notions for not necessarily binary operads. For later reference, we also recall the definitions of

bisuccessors (9).

Definition 3.1.11. The bisuccessor (9) of a binary operad P = T (V )/(R) is defined to be the

binary operad Su(P) = T (Ṽ )/(Su(R)) where the S2-action on Ṽ is given by

ω
≺

(12)
:=

ω (12)

�

 ,
ω
�

(12)
:=

ω (12)

≺

 , ω ∈ V,

and the space of relations is generated, as an S-module, by

Su(R) :=

{
Sux(rs) :=

∑
i

cs,iSux(ts,i)
∣∣∣ x ∈ Lin(rs), 1 ≤ s ≤ k

}
. (3.1.7)

Here for τ ∈ T (V ) and a leaf x ∈ Lin(τ), Sux(τ) is defined by relabeling a vertex ω of Vin(τ) by



ω
≺

 , the path from the root of τ to x turns left at ω;
ω
�

 , the path from the root of τ to x turns right at ω;
ω
?

 , ω is not on the path from the root of τ to x,

where
ω
?

 :=

{ω
≺

 +
ω
�


}

.

There is a similar notion of a trisuccessor splitting an operation into three pieces (9).

With an argument similar to the proof of Proposition 2.20 in (9), we see that the duplicator and

triplicator of a binary algebraic operad P = T (V )/(R) depends neither on the linear basis V of V



61

nor on the set R.

3.1.4 Examples of duplicators and triplicators

We give some examples of duplicators and triplicators of binary operads.

Let V be an S-module concentrated in arity two. Then we have

T (V )(3) = (V ⊗S2 (V ⊗ k⊕ k⊗ V ))⊗S2 k[S3],

which can be identify with 3 copies of V ⊗ V , denoted by V ◦I V, V ◦II V , and V ◦III V , following

the convention in (93). Then, as an abelian group, T (V )(3) is generated by elements of the form

ω ◦I ν (↔ (x ν y)ω z), ω ◦II ν (↔ (y ν z)ω x), ω ◦III ν (↔ (z ν x)ω y),∀ω , ν ∈ V. (3.1.8)

For an operad where the space of generators V is equal to k[S2] = µ.k⊕ µ′.k with µ.(12) = µ′, we

will adopt the convention in (93, p. 129) and denote the 12 elements of T (V )(3) by vi, 1 ≤ i ≤ 12,

in the following table.

v1 µ ◦I µ↔ (xy)z v5 µ ◦III µ↔ (zx)y v9 µ ◦II µ↔ (yz)x

v2 µ′ ◦II µ↔ x(yz) v6 µ′ ◦I µ↔ z(xy) v10 µ′ ◦III µ↔ y(zx)

v3 µ′ ◦II µ′ ↔ x(zy) v7 µ′ ◦I µ′ ↔ z(yx) v11 µ′ ◦III µ′ ↔ y(xz)

v4 µ ◦III µ′ ↔ (xz)y v8 µ ◦II µ′ ↔ (zy)x v12 µ ◦I µ′ ↔ (yx)z

3.1.4.1 Examples of duplicators

Recall that a (left) Leibniz algebra (70) is defined by a bilinear operation {, } and a relation

{x, {y, z}} = {{x, y}, z}+ {y, {x, z}}.

Proposition 3.1.12. The operad Leib of the Leibniz algebra is the duplicator of Lie, the operad of

the Lie algebra.

Proof. Let µ denote the operation of the operad Lie. The space of relations of Lie is generated as
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an S3-module by

v1 + v5 + v9 = µ ◦I µ+ µ ◦II µ+ µ ◦III µ = (xµy)µz + (zµx)µy + (yµz)µx. (3.1.9)

Use the abbreviations a:=
µ
a

 and `:=
µ
`

. Then from
µ
a

(12)
=

µ(12)
`

 = −
µ
`

, we have a(12)=

− `. Then we have

Duz(v1 + v5 + v9) = {(x ` y) ` z + (y ` z) a x+ (z a x) a y, (x a y) ` z + (y ` z) a x+ (z a x) a y}

= {(x ` y) ` z − x ` (y ` z) + y ` (x ` z), y ` (x ` z)− (y ` x) ` z − x ` (y ` z)},

with similar computations for Dux and Duy. Replacing the operation ` by {, }, we see that the underlined

relation is precisely the relation of the Leibniz algebra while the other relations are obtained from this

relation by a permutation of the variables. Therefore Du(Lie) = Leib.

Also recall that a (left) permutative algebra (25) (also called commutative diassociative algebra)

is defined by one bilinear operation · and the relations

x · (y · z) = (x · y) · z = (y · x) · z.

Proposition 3.1.13. The operad Perm of the permutative algebra is the duplicator of Comm, the

operad of the commutative associative algebra.

Proof. Let ω denote the operation of the operad Comm. Setting a:=
ω
a

 and `:=
ω
`

, then from
ω
`

(12)
=

ω (12)

`

 =
ω
`

 we have a(12)=`. The space of relations of Comm is generated as an

S3-module by

v1 − v9 = ω ◦I ω − ω ◦II ω = (xω y)ω z − (y ω z)ω x.

Then we have

Duz(v1 − v9) = {(x a y) ` z − (y ` z) a x, (x ` y) ` z − (y ` z) a x}

= {(y ` x) ` z − x ` (y ` z), (x ` y) ` z − x ` (y ` z)},

with similar computations for Dux and Duy. Replacing the operation ` by · and following the same

proof as in Proposition 3.1.12, we get Du(Comm) = Perm.
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A (left) Poisson algebra is defined to be a k-vectors space with two bilinear operations {, } and

◦ such that {, } is the Lie bracket and ◦ is the product of commutative associative algebra, and

they are compatible in the sense that

{x, y ◦ z} = {x, y} ◦ z + y ◦ {x, z}.

A dual (left) pre-Poisson algebra (1) is defined to be a k-vector space with two bilinear opera-

tions { , } and ◦ such that { , } is a Leibniz bracket and ◦ is a product of permutative algebra, and

they are compatible in the sense that

{x, y ◦ z} = {x, y} ◦ z + y ◦ {x, z}, {x ◦ y, z} = x ◦ {y, z}+ y ◦ {x, z}, {x, y} ◦ z = −{y, x} ◦ z.

By a similar argument as in Proposition 3.1.12, we obtain

Proposition 3.1.14. The duplicator of Pois, the operad of the Poisson algebra, is DualPrePois,

the operad of the dual pre-Poisson algebra.

We next consider the duplicator of the the operad preLie of (left) pre-Lie algebra (also called

left-symmetric algebra). A pre-Lie algebra is defined by a bilinear operation { , } that satisfies

RpreLie := {{x, y}, z} − {x, {y, z}} − {{y, x}, z}+ {y, {x, z}} = 0.

By Definition 3.1.10 and the abbreviations a:=
ω
a

,`:=
ω
`

, we have

Du(RpreLie) =
{
x a (y a z)− x a (y ` z), y a (x a z)− y a (x ` z),

(x ` y) ` z − (x a y) ` z, (y ` x) ` z − (y a x) ` z,

x a (y a z)− (x a y) a z − y ` (x a z) + (y ` x) a z,

x ` (y a z)− (x ` y) a z − y a (x a z) + (y a x) a z,

x ` (y ` z)− (x ` y) ` z − y ` (x ` z) + (y ` x) ` z
}
.

These underline relations coincide with the axioms of preLie dialgebra (left-symmetric dialgebra)

defined in (39), and the other relations are obtained from this relation by a permutation of the

variables. Then we have
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Proposition 3.1.15. The duplicator of preLie, the operad of the pre-Lie algebra, is DipreLie, the

operad of the pre-Lie dialgebra.

3.1.4.2 Examples of triplicators

We similarly have the following examples of triplicators of operads.

A commutative trialgebra (75) is a vector space A equipped with a product ? and a commutative

product • satisfying the following equations:

(x ? y) ? z = ?(y ? z), x ? (y ? z) = x ? (y • z), x • (y ? z) = (x • y) ? z, (x • y) • z = x • (y • z).

Proposition 3.1.16. The operad ComTrias of the commutative trialgebra is the triplicator of

Comm.

Proof. Let ω be the operation of the operad Comm. Set a:=
ω
a

, `:=
ω
`

 and ⊥:=
ω
⊥

. Since
ω
a

(12)
=

ω (12)

`

 =
ω
`

 and
ω
⊥

(12)
=

ω (12)

⊥

 =
ω
⊥

, we have a(12)=` and ⊥(12)= ⊥.The space

of relations of Comm is generated as an S3-module by

v1 − v9 = ω ◦I ω − ω ◦II ω = (xω y)ω z − (y ω z)ω x.

Then we have, for example,

Trix(v1 − v9) = {(x a y) a z − (y a z) ` x, (x a y) a z − (y ` z) ` x, (x a y) a z − (y ⊥ z) ` x}

= {(x a y) a z − x a (y a z), (x a y) a z − x a (z a y), (x a y) a z − x a (y ⊥ z)};

Tri{x,y}(v1 − v9) = {(x ⊥ y) a z − (y a z) ⊥ x};

Tri{x,y,z}(v1 − v9) = {(x ⊥ y) ⊥ z − (y ⊥ z) ⊥ x} = {(x ⊥ y) ⊥ z − x ⊥ (y ⊥ z)}.

Replacing the operation a by ? and ⊥ by •, we see that the underlined relations are equivalent

to the relations of the commutative trialgebra. The other relations can be obtained from these

relations by a permutation of the variables and the commutativity of ⊥. Thus we get Tri(Comm) =

ComTrias.

We next consider the triplicator of Lie. Let µ be the operation of the operad Lie. Set a:=
µ
a

,
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`:=
µ
`

 and ⊥:=
µ
⊥

. Since
µ
a

(12)
=

µ(12)
`

 = −
µ
`

 and
µ
⊥

(12)
=

µ(12)
⊥

 = −
µ
⊥

, we have

a(12)= − ` and ⊥(12)= − ⊥. The space of relations of Lie is generated as an S3-module by

v1 + v5 + v9 = µ ◦I µ+ µ ◦II µ+ µ ◦III µ = (xµy)µz + (zµx)µy + (yµz)µx.

Then we compute

Tri{x}(v1 + v5 + v9) = {(x a y) a z + (z ` x) a y + (y a z) ` x, (x a y) a z + (z ` x) a y

+(y ` z) ` x, (x a y) a z + (z ` x) a y + (y ⊥ z) ` x}

= {(x a y) a z − (x a z) a y − x a (y a z), (x a y) a z − (x a z) a y

+x a (z a y), (x a y) a z − (x a z) a y − x a (y ⊥ z)};

Tri{x,y}(v1 + v5 + v9) = {(x ⊥ y) a z + (z ` x) ⊥ y + (y a z) ⊥ x};

Tri{x,y,z}(v1 + v5 + v9) = {(x ⊥ y) ⊥ z + (z ⊥ x) ⊥ y + (y ⊥ z) ⊥ x},

and other computations yield the same relations up to permutations.

Replacing the operation a by � and ⊥ by [, ], then [ , ] is skew-symmetric and the underlined relations

are

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

x � [y, z] = x � (y � z),

[x, y] � z = [x � z, y] + [x, y � z], (3.1.10)

(x � y) � z = x � (y � z) + (x � z) � y.

Then in particular (A, �) is a right Leibniz algebra. Since the duplicator of Lie is Leib, the operad

of the Leibniz algebra, we tentatively call the new algebra triLeibniz algebra. In summary, we

obtain

Proposition 3.1.17. The triplicator of Lie is TriLeib, the operad of the triLeibniz algebra.

As we will see in Section 3.2.1, TriLeib is precisely the Koszul dual of the operad CTD =

ComTriDend of the commutative tridendriform algebra, namely the Dual CTD algebra in (97).
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We next show that TriLeib plays the same role for the triassociative algebra as the role of the

Leibniz algebra for the diassociative algebra (42; 75).

Proposition 3.1.18. Let (A,a,`,⊥) be an associative trialgebra. Define new binary operations by

x � y := x a y − y ` x, [x, y] := x ⊥ y − y ⊥ x.

Then (A, �, [, ]) becomes a Leibniz trialgebra.

Proof. By definition, for any x, y, z ∈ A, we have

[x, y] � z = [x, y] a z − z ` [x, y] = (x ⊥ y − y ⊥ x) a z − z ` (x ⊥ y − y ⊥ x)

and

[x � z, y] + [x, y � z]

= [x a z − z ` x, y] + [x, y a z − z ` y]

= (x a z − z ` x) ⊥ y − y ⊥ (x a z − z ` x) + x ⊥ (y a z − z ` y)− (y a z − z ` y) ⊥ x.

Since

(x ⊥ y) a z = x ⊥ (y a z), (y ⊥ x) a z = y ⊥ (x a z), z ` (x ⊥ y) = (z ` x) ⊥ y,

z ` (y ⊥ x) = (z ` y) ⊥ x, (x a z) ⊥ y = x ⊥ (z ` y), y ⊥ (z ` x) = (y a z) ⊥ x

in a triassociative algebra, we have [x, y] � z = [x � z, y] + [x, y � z]. The other defining equations of

the triLeibniz algebra can be proved in the same way.

Moreover, we have the following commuting diagram:

Leib

�→(�,0)

��

Diass
−oo

(`,a)→(`,a,0)

��
TriLeib Triass

−oo

It would be interesting to consider the left adjoint of the functor defined in the bottom line of the
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above diagram, which could be called the universal envelope algebra of a triLeibniz algebra

just as in (70).

3.1.5 Operads, their duplicators and triplicators

In this section, we study the relationship among a binary operad, its duplicator, and its triplicator.

3.1.5.1 Operads and their duplicators and triplicators

For a given S-module V concentrated in ariry 2: V = V (2). Let iV : V → T (V ) denote the

natural embedding to the free operad T (V ). Let P := T (V )/(R) be a binary operad and let

jV : V → P be pV ◦ iV , where pV : T (V ) → P is the operad projection. Similarly define the

maps iDu(V ) : Du(V ) → T (Du(V )) and operad morphism pDu(V ) : T (Du(V )) → Du(P) and

jDu(V ) := pDu(V ) ◦ iDu(V ), as well as the corresponding map and operad morphisms for Tri(V ).

Proposition 3.1.19. Let P = T (V )/(R) be a binary operad.

(a) The linear map

η : Du(V )→ V,
ω
u

 7−→ ω for all
ω
u

 ∈ Du(V ), u ∈ {a,`} (3.1.11)

induces a unique operad morphism

η̃ : Du(P)→ P

such that η̃ ◦ jDu(V ) = jV ◦ η.

(b) The linear map

ζ : Tri(V )→ V,
ω
u

 7−→ ω for all
ω
u

 ∈ Tri(V ), u ∈ {a,`,⊥} (3.1.12)

induces a unique operad morphism

ζ̃ : Tri(P)→ P

such that ζ̃ ◦ jTri(V ) = jV ◦ ζ.
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(c) There is a morphism ρ : Tri(P) → P of operads that extends the linear map from Tri(V ) to

V defined by ω
⊥

 7−→ ω,
ω
u

 7−→ 0, where u ∈ {a,`}. (3.1.13)

Proof. Let R be the set of locally homogeneous elements

rs :=
∑
i

cs,iτs,i, cs,i ∈ k, τs,i ∈
⋃
t∈R

t(V), 1 ≤ s ≤ k,

as given in Eq.(3.1.5).

(a) By the universal property of the free operad T (Du(V )) on the S-module Du(V ), the S-module

morphism iV ◦ η : Du(V )→ T (V ) induces a unique operad morphism η̄ : T (Du(V ))→ T (V ) such

that iDu(V ) ◦ η̄ = iV ◦ η.

For any x ∈ Lin(rs) and 1 ≤ s ≤ k, by the description of Dux(τs,i)) in Proposition 3.1.4 and the

definition of η in Eq. (3.1.11), the element η(Du(τs,i)) is obtained by replacing each decoration
ω
u


of the vertices of Du(τs,i) by ω , where ω ∈ V and u ∈ {a,`}. Thus η̄(Du(τs,i)) = τs,i. Then we

have

f̄

(∑
i

cs,iDux(τs,i)

)
=
∑
i

cs,iτs,i ≡ 0 mod (R).

By Eq. (3.1.6), we see that (Du(R)) ⊆ ker(η). Thus there is a unique operad morphism η̃ :

Du(P) := T (Du(V ))/(Du(R)) → P := T (V )/(R) such that η̃ ◦ pDu(V ) = pV ◦ η̄. We then have

η̃ ◦ jDu(V ) = jV ◦ η. In summary, we have the following diagram in which each square commutes.

Du(V )

η

��

iDu(V ) // T (Du(V ))

η̄

��

pDu(V ) // Du(P)

η̃

��
V

iV // T (V )
pV // P

Suppose η̃′ : Du(P) → P be another operad morphism such that η̃′ ◦ jDu(V ) = jV ◦ η. Then we

have η̃′ ◦ jDu(V ) = η̃′ ◦ pDu(V ) ◦ iDu(V ) and jV ◦ η = pV ◦ jV ◦ η = pV ◦ η̄ ◦ iDu(V ). By the universal

property of the free operad T (Du(V )), we obtain η̃′ ◦ pDu(V ) = pV ◦ η̄ = η̃ ◦ pDu(V ). Since pDu(V ) is

surjective, we obtain η̃′ = η̃. This proves the uniqueness of η̃.

(b) The proof is similar to the proof of Item (a).
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(c) By the description of Tri{x}(τs,i) in Proposition 3.1.6, ρ(Tri{x}(τs,i)) is obtained by replacingω
u

 by ρ(
ω
u

). Since ρ(
ω
a

) = 0, ρ(
ω
`

) = 0 and ρ(
ω
⊥

) = ω, it is easy to see that if J 6= Lin(τ),

then ρ(
∑
i cs,iTriJ(τs,i)) =

∑
i cs,iτs,i = 0, and, if J = Lin(τ), then ρ(

∑
i cs,iTriLin(τ)(τs,i)) =∑

i cs,iτs,i ≡ 0 mod (R). Thus ρ(Tri(R)) ⊆ R and ρ induces the desired operad morphism.

3.1.5.2 Relationship between duplicators and triplicators of a binary operad

The following result relates the duplicator and the triplicator of a binary algebraic operad.

Proposition 3.1.20. Let P = T (V )/(R) be a binary algebraic operad. There is a morphism of

operads from Tri(P) to Du(P) that extends the linear map defined by

ω
a

→
ω
a

,
ω
`

→
ω
`

,
ω
⊥

→ 0, ω ∈ V. (3.1.14)

Proof. The linear map φ : Tri(V ) → Du(V ) defined by Eq.(3.1.14) is S2-equivariant. Thus it

induces a morphism of the free operads φ : T (Tri(V ))→ T (Du(V )) which, by composing with the

quotient map, induces the morphism of operads

φ : T (Tri(V ))→ Du(P) = T (Du(V ))/(Du(R)).

Let TriJ(r) ∈ Tri(R) be one of the generators of (Tri(R)) with r =
∑
i ciτi ∈ R in Eq. (3.1.5) and

∅ 6= J ⊆ Lin(r). If J is the singleton {x} for some x ∈ Lin(r), then by the description of Tri{x}(τi)

in Proposition 3.1.6, φ(Tri{x}(τ)) is obtained by keeping all the
ω
a

 and
ω
`

, and by replacing allω
⊥

, ω ∈ V by zero. Thus in Case (b) of Proposition 3.1.6 we have φ(Tri{x}(τi)) = Dux(τi). Also

Case (a)(iii) cannot occur for the singleton {x}. Thus in Case (a) of Proposition 3.1.6, we also have

φ(Tri{x}(τi)) = Dux(τi). Thus φ(Tri{x}(r)) = Dux(r) and hence is in Du(R).

If J contains more than one element, then at least one of the vertices of TriJ(τi) is
ω
⊥

 and hence

the corresponding vertex of φ(TSuJ(τi)) is zero. Thus we have φ(TriJ(τi)) = 0, φ(TriJ(r)) = 0 and

hence φ(TriJ(R)) = 0. Thus, for any J 6= ∅ and r ∈ R, we have φ(TriJ(r)) ∈ Du(R) and hence

φ(Tri(R)) is a subset of Du(R).

In summary, we have φ((Tri(R)) ⊆ Du(R). Thus the morphism φ : T (Tri(V ))→ Du(P) induces a

morphism φ : Tri(P)→ Du(P).
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If we take P to be the operad of the associative algebra, then we obtain the following result of

Loday and Ronco (75):

Corollary 3.1.5. Let (A,a,`) be an associative dialgebra. Then (A,a,`, 0) is an associative

trialgebra, where 0 denotes the trivial product.

3.2 Duality of replicators with successors and Manin prod-

ucts

The similarity between the definitions of the replicators and successors (9) suggests that there is

a close relationship between the two constructions. We show that this is indeed the case. More

precisely, taking the replicator of a binary quadratic operad is in Koszul dual with taking the

successor of the dual operad. This in particular allows us to identify the duplicator (resp. triplicator)

of a binary quadratic operad P with the Manin white product of Perm (resp. ComTrias) with P,

providing an easy way to compute these white products. Since it is shown in (48) that taking di-Var

and tri-Var is also isomorphic to taking these Manin products, taking duplicator (resp. triplicator)

is isomorphic to taking di-Var (resp. tri-Var) other than the case of free operads.

3.2.1 The duality of replicators with successors

Let P = T (V )/(R) be a binary quadratic operad. Then with the notations in Section 3.1.4, we

have T (V )(3) = 3V ⊗ V =
⊕

u∈{I,II,III} V ◦u V .

Proposition 3.2.1. Let k be an infinite field. Let W be a nonzero S-submodule of 3V ⊗ V . Then

there is a basis {e1, · · · , en} of V such that the restriction to W of the coordinate projections

pi,j,u : 3V ⊗ V =
⊕

1≤k,`≤n,v∈{I,II,III}

k ek ◦v e` → k ei ◦u ej ,

are nonzero and hence surjective for all 1 ≤ i, j ≤ n and u ∈ {I, II, III}.

Proof. Fix a 0 6= w ∈ W and write w = wI + wII + wIII with wu ∈ V ◦u V, u ∈ {I, II, III}. Then at

least one of the three terms is nonzero. Since W is an S-module and (wu)(123) = wu+I (where III+I
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is taken to be I), we might assume that w ∈ W is chosen so that wI 6= 0. Fix a basis {v1, · · · , vn}

of V . Then there are cij ∈ k, 1 ≤ i, j ≤ n, that are not all zero such that wI =
∑

1≤i,j≤n cijui ◦I uj .

Consider the set of polynomials

fk`(xrs) := fk`({xrs}) :=
∑

1≤i,j≤n

cijxikxj` ∈ k[xrs | 1 ≤ r, s ≤ n], 1 ≤ k, ` ≤ n.

Then the polynomial
∏

1≤k,`≤n fk`(xrs) is nonzero since at least one of cij is nonzero, giving a

monomial
∏

1≤r,s≤n cijxirxjs in the product with nonzero coefficient. Thus the product

f(xrs) := det(xrs)
∏

1≤k,`≤n

fk`(xrs)

is nonzero since det(xrs) :=
∏
σ∈Sn x1σ(1) · · ·xnσ(n) is also a nonzero polynomial. Thus, by our

assumption that k is an infinite field, there are drs ∈ k, 1 ≤ r, s ≤ n, such that f(drs) 6= 0. Thus

D := (drs) ∈Mn×n(k) is invertible and fk`(drs) 6= 0, 1 ≤ k, ` ≤ n.

Fix such a matrix D = (drs) and define

(e1, · · · , en)T := D−1(v1, · · · , vn)T .

Then {e1, · · · , en} is a basis of V and vi =
∑n
k=1 dikek. Further

wI =
∑

1≤i,j≤n

cijvi ◦I vj =
∑

1≤i,j≤n

cij

 ∑
1≤k,`n

dikdj`ek ◦I e`

 =
∑

1≤k,`≤n

 ∑
1≤i,j≤n

cijdikdj`

 ek ◦I e`.

The coefficients are fk`(drs) and are nonzero by the choice of D. Thus pi,j,I(w) = pi,j,I(wI) is

nonzero and hence pi,j,I(W ) is onto for all 1 ≤ i, j ≤ n.

Since W is an S-module, we have w(123) ∈ W and (w(123))II = (wI)
(123). Thus pi,j,II(w

(123)) =

pi,j,II((wI)
(123)) is nonzero and hence pi,j,II(W ) is onto for all 1 ≤ i, j ≤ n. By the same argument,

pi,j,III(W ) is onto for all 1 ≤ i, j ≤ n, completing the proof.

Lemma 3.2.1. Let W be a nonzero S-submodule of 3V ⊗ V and let {e1, · · · , en} be a basis as
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chosen in Proposition 3.2.1. Let {r1, · · · , rm} be a basis of U and write

rk =
∑

1≤i,j≤n

c`ijuei ◦u ej , ckiju ∈ k, 1 ≤ i, j ≤ n, u ∈ {I, II, III}, 1 ≤ k ≤ m.

Then for each 1 ≤ i, j ≤ n and u ∈ {I, II, III}, there is 1 ≤ k ≤ m, such that c`iju is not zero.

Proof. Suppose there is 1 ≤ i, j ≤ n and u ∈ {I, II, III} such that ckiju = 0 for all 1 ≤ k ≤ m. Then

piju(rk) = 0 and hence piju(W ) = 0. This contradicts Proposition 3.2.1.

Let P = T (V )/(R) be a binary quadratic operad. Fix a k-basis {e1, e2, · · · , en} for (R). The space

T (V )(3) is spanned by the basis {ei ◦u ej | 1 ≤ i, j ≤ n, u ∈ {I, II, III}}. Thus if f ∈ T (V )(3), we

have

f =
∑
i,j

ai,jei ◦I ej +
∑
i,j

bi,jei ◦II ej +
∑
i,j

ci,jei ◦III ej .

Then we can take the relation space (R) ⊂ T (V )(3) to be generated by m linearly independent

relations

R =

fk =
∑
i,j

aki,jei ◦I ej +
∑
i,j

bki,jei ◦II ej +
∑
i,j

cki,jei ◦III ej
∣∣∣ 1 ≤ k ≤ m

 . (3.2.1)

We state the following easy fact for later applications.

Lemma 3.2.2. Let fi, 1 ≤ i ≤ m, be a basis of (R). Then {BSux(fi) |x ∈ Lin(fi), 1 ≤ i ≤ m} is a

linear spanning set of (BSu(R)) and {Dux(fi) |x ∈ Lin(fi), 1 ≤ i ≤ m} is a linear spanning set of

(Du(R)).

Proof. Let L be the linear span of {BSux(fi) |x ∈ Lin(fi), 1 ≤ i ≤ m}. Then from BSux(fi) ∈

(BSu(R)) we obtain L ⊆ (BSu(R)). On the other hand, by (9, Lemma 2.6), L is already an

S-submodule. Thus from BSu(R) ⊆ L we obtain (BSu(R))S ⊆ L. The proof for (Du(R)) is the

same.

For the finite dimensional S2-module V , we define its Czech dual V ∨ = V ∗ ⊗ sgn2. There is a

natural pairing with respect to this duality given by:

〈, 〉 : T (V ∨)(3)⊗ T (V )(3) −→ k,
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〈e∨i ◦u e∨j , ek ◦v e`〉 = δ(i,k)δ(j,`)δ(u,v) ∈ k.

We denote by R⊥ the annihilator of R with respect to this pairing. Given relations as in Eq. (3.2.1),

we can express a basis of (R⊥) as

R⊥ =

g` =
∑
i,j

α`i,je
∨
i ◦I e∨j +

∑
i,j

β`i,je
∨
i ◦II e∨j +

∑
i,j

γ`i,je
∨
i ◦III e∨j | 1 ≤ ` ≤ 3n2 −m

 , (3.2.2)

where, for all k and `, we have

∑
i,j

aki,jα
`
i,j +

∑
i,j

bki,jβ
`
i,j +

∑
i,j

cki,jγ
`
i,j = 0. (3.2.3)

Further for any (xi,j , yi,j , zi,j) ∈ k3, 1 ≤ i, j ≤ n, if

∑
i,j

aki,jxi,j +
∑
i,j

bki,jyi,j +
∑
i,j

cki,jzi,j = 0 for all 1 ≤ k ≤ m,

then
∑
i,j xi,je

∨
i ◦I e∨j +

∑
i,j yi,je

∨
i ◦II e∨j +

∑
i,j zi,je

∨
i ◦III e∨j is in R⊥ and hence is of the form

3n2−m∑̀
=1

d`g` for some d` ∈ k. Thus

(xi,j , yi,j , zi,j) =

3n2−m∑
`=1

d`
(
α`i,j , β

`
i,j , γ

`
i,j

)
. (3.2.4)

By Proposition 3.1.4, we have

Dux(ei ◦I ej) =

{ei
a

 ◦I
ej
a


}
,Dux(ei ◦II ej) =

{ei
`

 ◦II
ej
†


}
,Dux(ei ◦III ej) =

{ei
a

 ◦III
ej
`


}
,

Duy(ei ◦I ej) =

{ei
a

 ◦I
ej
`


}
,Duy(ei ◦II ej) =

{ei
a

 ◦II
ej
a


}
,Duy(ei ◦III ej) =

{ei
`

 ◦III
ej
†


}
,(3.2.5)

Duz(ei ◦I ej) =

{ei
`

 ◦I
ej
†


}
,Duz(ei ◦II ej) =

{ei
a

 ◦II
ej
`


}
,Duz(ei ◦III ej) =

{ei
a

 ◦III
ej
a


}
,

where
ei
`

 ◦u
ej
†

 :=

{ei
`

 ◦u
ej
`

,
ei
`

 ◦u
ej
a


}
, u ∈ {I, II, III}.

Let BSu(P !) be the bisuccessor of the dual operad P ! recalled in Definition 3.1.11. Then we also
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have

BSux(e
∨
i ◦I e∨j ) =

{e∨i
≺

 ◦I
e∨j
≺


}
,BSux(e

∨
i ◦II e∨j ) =

{e∨i
�

 ◦II
e∨j
?


}
,BSux(e

∨
i ◦III e∨j ) =

{e∨i
≺

 ◦III
e∨j
�


}
,

BSuy(e
∨
i ◦I e∨j ) =

{e∨i
≺

 ◦I
e∨j
�


}
,BSuy(e

∨
i ◦II e∨j ) =

{e∨i
≺

 ◦II
e∨j
≺


}
,BSuy(e

∨
i ◦III e∨j ) =

{e∨i
�

 ◦III
e∨j
?


}
,(3.2.6)

BSuz(e
∨
i ◦I e∨j ) =

{e∨i
�

 ◦I
e∨j
?


}
,BSuz(e

∨
i ◦II e∨j ) =

{e∨i
≺

 ◦II
e∨j
�


}
,BSuz(e

∨
i ◦III e∨j ) =

{e∨i
≺

 ◦III
e∨j
≺


}
,

where ? =≺ + � .

Theorem 3.2.3. Let k be an infinite field. Let P = T (V )/(R) be a binary quadratic operad. Then

Du(P)! = BSu(P !)

if and only if R 6= 0.

Proof. For the if part, let P = T (V )/(R) be a binary quadratic operad with R 6= 0. Take W = (R)

in Proposition 3.2.1 and fix a k-basis {e1, e2, · · · , en} of V as in the proposition. Let fk, 1 ≤ k ≤ m,

be the basis of (R) as defined in Eq. (3.2.1).

By Eq. (3.2.5), we have

Dux(fk) =

∑
i,j

aki,j
ei
a

 ◦I
ej
a

 +
∑
i,j

bki,j
ei
`

 ◦II
ej
†

 +
∑
i,j

cki,j
ei
a

 ◦III
ej
`


 ,

Duy(fk) =

∑
i,j

aki,j
ei
a

 ◦I
ej
`

 +
∑
i,j

bki,j
ei
a

 ◦II
ej
a

 +
∑
i,j

cki,j
ei
`

 ◦III
ej
†


 ,

Duz(fk) =

∑
i,j

aki,j
ei
`

 ◦I
ej
†

 +
∑
i,j

bki,j
ei
a

 ◦II
ej
`

 +
∑
i,j

cki,j
ei
a

 ◦III
ej
a


 .

From Eq. (3.2.6), we similarly obtain

BSux(g`) =

∑
i,j

α`i,j
e∨i
≺

 ◦I
e∨j
≺

 +
∑
i,j

β`i,j
e∨i
�

 ◦II
e∨j
?

 +
∑
i,j

γ`i,j
e∨i
≺

 ◦III
e∨j
�


 ,
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BSuy(g`) =

∑
i,j

α`i,j
e∨i
≺

 ◦I
e∨j
�

 +
∑
i,j

β`i,j
e∨i
≺

 ◦II
e∨j
≺

 +
∑
i,j

γ`i,j
e∨i
�

 ◦III
e∨j
?


 ,

BSuz(g`) =

∑
i,j

α`i,j
e∨i
�

 ◦I
e∨j
?

 +
∑
i,j

β`i,j
e∨i
≺

 ◦II
e∨j
�

 +
∑
i,j

γ`i,j
e∨i
≺

 ◦III
e∨j
≺


 .

By Lemma 3.2.2, we have

(Du(R)) =

m∑
k=1

kDu(fk) =
∑
k

(kDux(fk) + kDuy(fk) + kDuz(fk)) ,

BSu(R⊥) =

3n2−m∑
`=1

kBSu(g`) =

3n2−m∑
`=1

(k(BSux(g`) + kBSuy(g`) + kBSuz(g`)) .

To reach our conclusion, it suffices to show the equality (Du(R)⊥) = (BSu(R⊥)) of S-modules under

the condition R 6= 0. For all 1 ≤ k ≤ m and 1 ≤ ` ≤ 3n2 −m, by Eq. (3.2.3), we have

〈BSup(g`),Duq(fk)〉 = 0, where p, q ∈ {x, y, z}.

Thus 〈BSu(g`),Du(fk)〉 = 0 and hence BSu(R⊥) ⊂ Du(R)⊥, implying that (BSu(R⊥)) ⊆ (Du(R)⊥).

On the other hand, if

h =
∑
i,j,u,v

xi,j,u,v
e∨i
u

 ◦I
e∨j
v

 +
∑
i,j,u,v

yi,j,u,v
e∨i
u

 ◦II
e∨j
v

 +
∑
i,j,u,v

zi,j,u,v
e∨i
u

 ◦III
e∨j
v



is in Du(R)⊥, where u, v ∈ {≺,�}. Then for all 1 ≤ k ≤ m, we have

〈h,Dux(fk)〉 = 0, 〈h,Duy(fk)〉 = 0, 〈h,Duz(fk)〉 = 0.

Since R 6= 0, by Proposition 3.2.1, for any fixed i0, j0 ∈ {1, 2, · · · , n}, there exists 1 ≤ k0 ≤ m, such
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that bk0i0,j0 6= 0. Then, for any k, by the definition of Dux we see that the relations

F1 :=
∑
i,j

aki,j
ei
a

 ◦I
ej
a

 + bki0,j0

ei
`

 ◦II
ej
a

 +
∑

i 6=i0,j 6=j0

bki,j
ei
`

 ◦II
ej
a

 +
∑
i,j

cki,j
ei
a

 ◦III
ej
`

,

F2 :=
∑
i,j

aki,j
ei
a

 ◦I
ej
a

 + bki0,j0

ei
`

 ◦II
ej
`

 +
∑

i 6=i0,j 6=j0

bki,j
ei
`

 ◦II
ej
a

 +
∑
i,j

cki,j
ei
a

 ◦III
ej
`

,

are in Dux(fk). Thus, for 1 ≤ k ≤ m, we obtain

∑
i,j

aki,jxi,j,≺,≺ + bki0,j0yi0,j0,�,≺ +
∑

i 6=i0,j 6=j0

bki,jyi,j,�,≺ +
∑
i,j

cki,jzi,j,≺,� = 〈h, F1〉 = 0,

∑
i,j

aki,jxi,j,≺,≺ + bki0,j0yi0,j0,�,� +
∑

i 6=i0,j 6=j0

bki,jyi,j,�,≺ +
∑
i,j

cki,jzi,j,≺,� = 〈h, F2〉 = 0.

Comparing the two equations and applying bk0i0,j0 6= 0, we obtain yi0,j0,�,� = yi0,j0,�,≺ for all

1 ≤ i0, j0 ≤ n. From the second equation and Eq. (3.2.4), we also have

(xi,j,≺,≺, yi,j,�,≺, zi,j,≺,�) =

3n2−m∑
`=1

d`(α
`
i,j , β

`
i,j , γ

`
i,j),

for some d` ∈ k. Thus we obtain

hx :=
∑
i,j

xi,j,≺,≺
e∨i
≺

 ◦I
e∨j
≺

 +
∑
i,j

yi,j,�,≺
e∨i
�

 ◦II
e∨j
v

 +
∑
i,j

yi,j,�,�
e∨i
�

 ◦II
e∨j
v

 +
∑
i,j

zi,j
e∨i
≺

 ◦III
e∨j
�



=
∑
i,j

xi,j,≺,≺
e∨i
≺

 ◦I
e∨j
≺

 +
∑
i,j

yi,j,�,≺

(e∨i
�

 ◦II
e∨j
v

 +
e∨i
�

 ◦II
e∨j
v


)

+
∑
i,j

zi,j
e∨i
≺

 ◦III
e∨j
�



=

3n2−m∑
`=1

d`

∑
i,j

α`i,j
e∨i
≺

 ◦I
e∨j
≺

 +
∑
i,j

β`i,j

(e∨i
�

 ◦II
e∨j
≺

 +
e∨i
�

 ◦II
e∨j
�


)

+
∑
i,j

γ`i,j
e∨i
≺

 ◦III
e∨j
�


 .

This is in
3n2−m∑̀

=1

kBSux(g`). By the same argument, we find that

hy :=
∑
i,j

xi,j,≺,�
e∨i
≺

◦I
e∨j
�

+
∑
i,j

yi,j,≺,≺
e∨i
≺

◦II
e∨j
≺

+
∑
i,j,v

zi,j,�,≺
e∨i
�

◦III
e∨j
≺

+
∑

i,j,�,�
zi,j,�,�

e∨i
�

◦III
e∨j
�


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is in
3n2−m∑̀

=1

kBSuy(g`) and

hz :=
∑

i,j,�,≺
xi,j,�,v

e∨i
�

◦I
e∨j
≺

+
∑

i,j,�,�
xi,j,�,�

e∨i
�

◦I
e∨j
�

+
∑
i,j

yi,j,≺,�
e∨i
≺

◦II
e∨j
�

+
∑
i,j

zi,j,≺,≺
e∨i
≺

◦III
e∨j
≺



is in
3n2−m∑̀

=1

kBSuz(g`). Note that h = hx + hy + hz. Thus in summary, we find that h is in

∑
`

kBSux(g`) +
∑
`

kBSuy(g`) +
∑
`

kBSuz(g`)

and hence is in the S-module generated by BSu(R⊥). Thus we have the equality (Du(R)⊥) =

(BSu(R⊥)) of S-modules. Therefore

Du(P)! = BSu(P !) and Du(P) = BSu(P !)!.

To prove the “only if” part, suppose R = 0. Then we have Du(R) = 0 ⊆ T (Du(V )) and hence

Du(R)⊥ = T (BSu(V ∨))(3). On the other hand, R⊥ = T (V ∨)(3) which has a basis e∨i ◦u e∨j , 1 ≤

i, j ≤ n, u ∈ {I, II, III}. Then a linear spanning set of BSu(T (V ∨)(3)) is given by BSuv(e
∨
i ◦ue∨j ), 1 ≤

i, j ≤ n, v ∈ {x, y, z}, u ∈ {I, II, III} in Eq. (3.2.6). Thus the dimension of BSu(T (V ∨)(3)) is at

most 9n2, while the dimension of T (BSu(V ∨))(3) is

3 dim(BSu(V ∨)⊗2) = 3(2n)2 = 12n2.

Thus BSu(T (V ∨)(3)) is a proper subspace of T (BSu(V ∨))(3) and thus Du(P)! 6= BSu(P !).

Theorem 3.2.4. Let k be an infinite field. Let P = T (V )/(R) be a binary quadratic operad. Then

Tri(P)! = TSu(P !)

if and only if R 6= 0.

Proof. The proof is similar to Theorem 3.2.3.

Taking P to be the operad of associative algebra in Theorem 3.2.4, we get the result of Loday and

Ronco (75, theorem 3.1) that the triassociative algebra and the tridendriform algebra are in Koszul
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dual to each other.

More generally, Theorem 3.2.3 and Theorem 3.2.4 make it straightforward to compute the generating

and relation spaces of the Koszul duals of the operads of some existing algebras. We give the

following examples as illustrations.

(a) The operad DualCTD (97) is defined to be the Koszul dual of the operad CTD of the

commutative tridendriform algebra. Since the latter operad is TSu(Comm) (9), we have

DualCTD = TSu(Comm)! = Tri(Comm !) = Tri(Lie),

which is precise is TriLeib, the operad of the triLeibniz algebra in Proposition 3.1.17. Thus

we easily obtain the relations of DualCTD. See Eq. (3.1.10)

(b) The operad of the commutative quadri-algebra is the Kozul dual of BSu(Zinb) and hence is

Du(Leib). Thus its relations can be easily computed.

(c) The Kozul dual of BSu(PreLie), the operad of the L-dendriform algebra, is Du(Perm) and

hence can be easily computed.

(d) The operad L-quad (10) of the L-quadri-algebra is shown to be BSu(L-dend) = BSu(BSu(Lie))

in (9). Thus the dual of L-quad is Du(Du(Perm)) and can be easily computed.

3.2.2 Replicators and Manin white products

As a preparation for later discussions, we recall concepts and notations on Manin white product,

most following (93).

Ginzburg and Kapranov defined in (43) a morphism of operads Φ : T (V ⊗W ) � T (V ) ⊗ T (W ).

Let P = T (V )/(R) and Q = T (W )/(S) be two binary quadratic operads with finite-dimensional

generating spaces. Consider the composition of morphisms of operads

T (V ⊗W )
Φ // T (V )⊗ T (W )

πP⊗πQ // P ⊗Q,

where πP : T (V ) → P and πQ : T (W ) → Q are the natural projections. Its kernel is (Φ−1(R ⊗

T (W ) + T (V )⊗ S)), the ideal generated by Φ−1(R⊗ T (W ) + T (V )⊗ S).
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Definition 3.2.2. ((43; 93)) Let P = T (V )/(R) and Q = T (W )/(S) be two binary quadratic

operads with finite-dimensional generating spaces. The Manin white product of P and Q is

defined by

P ©Q := T (V ⊗W )/(Φ−1(R⊗ T (W ) + T (V )⊗ S)).

In general, the white Manin product difficult to compute when the operads are given in terms of

generators and relations. Theorem 3.2.5 provides a convenient way to compute the white Manin

product of a binary quadratic operad with the operad Perm or ComTrias by relating them to the

duplicator and triplicator.

Theorem 3.2.5. Let P = T (V )/(R) be a binary quadratic operad with R 6= 0. We have the

isomorphism of operads

Du(P) ∼= Perm©P, Tri(P) ∼= ComTrias ©P.

Proof. By (9), we have the isomorphisms of operads

BSu(P !) ∼= PreLie • P !, TSu(P !) ∼= PostLie • P !.

Since PreLie ! ∼= Perm, PostLie ! = ComTrias and (P • Q)! ∼= P !©Q!, we obtain

Du(P) ∼= (BSu(P !))! ∼= (PreLie • P !)! ∼= Perm©P.

Similarly Tri(P) ∼= ComTrias ©P.

By taking replicators of suitable operads P, we immediately get

Corollary 3.2.6. (a) ((93)) Perm© Lie = Leib and Perm©Ass = Diass.

(b) ((92)) Perm© Pois = DualPrePois.

(c) ComTriass ©Ass = Triass.

By a similar argument as for Theorem 3.2.5 we obtain
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Proposition 3.2.3. Let P = Tns(V )/(R) be a binary quadratic nonsymmetric operad with R 6= 0.

There is an isomorphism of nonsymmetric operads

Du(P) ∼= Dias � P , Tri(P) ∼= Trias � P ,

where � denotes the white square product (93) while Dias and Trias denote the nonsymmetric

operads for the diassociative and triassociative algebras.

3.3 Replicators and average operators on operads

In this section we establish the relationship between the duplicator and triplicator of an operad on

one hand and the actions of the di-average and tri-average operators on the operad on the other

hand. We will work with symmetric operads, but all the results also hold for nonsymmetric operads.

3.3.1 Duplicators and di-average operators

Averaging operators have been studied for associative algebras since 1960 by Rota and for other

algebraic structures more recently (1; 22; 89; 92).

Definition 3.3.1. Let (A, ·) be a k-module A with a binary operation ·.

(a) A di-average operator on A is a k-linear map P : A −→ A such that

P (x · P (y)) = P (x) · P (y) = P (P (x) · y), for all x, y ∈ A. (3.3.1)

(b) Let λ ∈ k. A tri-average operator of weight λ on A is a k-linear map P : A −→ A such that

Eq. (3.3.1) holds and

P (x) · P (y) = λP (xy), for all x, y ∈ A. (3.3.2)

We note that a tri-average operator of weight zero is not a di-average operator. So we cannot give

a uniform definition of the average operators as in the case of Rota-Baxter algebras of weight λ.

We next consider the operation of average operators on the level of operads.
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Definition 3.3.2. Let V = V (2) be an S-module concentrated in arity 2.

(a) Let VP denote the S-module concentrated in arity 1 and arity 2 with VP (2) = V and VP (1) =

kP , where P is a symbol. Let T (VP ) be the free operad generated by binary operations V

and an unary operation P 6= id.

(b) Define Du(V ) = V ⊗ (k a ⊕k `) as in Eq. (3.1.1), regarded as an S-module concentrated

in arity 2. Define a linear map of graded vector spaces from Du(V ) to VP by the following

correspondence:

ξ :
ω
a

 7→ ω ◦ (id⊗ P ),
ω
`

 7→ ω ◦ (P ⊗ id), for all ω ∈ V,

where ◦ is the operadic composition. By the universality of the free operad, ξ induces a

homomorphism of operads that we still denote by ξ:

ξ : T (Du(V ))→ T (VP ).

(c) Let P = T (V )/(RP) be a binary operad defined by generating operations V and relations

RP . Let

DAP := {ω ◦ (P ⊗ P )− P ◦ ω ◦ (P ⊗ id), ω ◦ (P ⊗ P )− P ◦ ω ◦ (id⊗ P ) | ω ∈ V }.

Define the operad of di-average P-algebras by

DA(P) := T (VP )/(RP ,DAP).

Let p1 : T (VP )→ DA(P) denote the operadic projection.

Theorem 3.3.1. (a) Let P be a binary operad. There is a morphism of operads

Du(P) −→ DA(P),

which extends the map ξ given in Definition 3.3.2.

(b) Let A be a P-algebra. Let P : A→ A be a di-average operator. Then the following operations
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make A into a Du(P)-algebra:

x aj y := x ◦j P (y), x `j y := P (x) ◦j y, ∀◦j ∈ P(2), for all x, y ∈ A.

The proof is parallel to the case of triplicators in Theorem 3.3.4 for which we will prove in full

detail.

When we take P be the operad of the associative algebra, Lie algebra, or Poisson algebra, we obtain

the following results of Aguiar (1).

Corollary 3.3.2. (a) Let (A, ·) be an associative algebra and P : A −→ A be a di-averaging

operator. Define two new operations on A by x ` y = P (x) · y and x a y = x · P (y). Then

(A,`,a) is an associative dialgebra.

(b) Let (A, [, ]) be a Lie algebra and P : A −→ A be a di-averaging operator. Define a new

operation on A by {x, y} = [P (x), y]. Then (A, {, }) is a left Leibniz algebra.

(c) Let (A, ·, [, ]) be a Poisson algebra and let P : A → A be a di-averaging operator. Define two

new products on A by x ◦ y := P (x) · y, and {x, y} := [P (x), y]. Then (A, ◦, {, }) is a dual left

prePoisson algebra.

Combining Theorem 3.3.1 with Theorem 3.2.5, we obtain the following relation between the Manin

white product and the action of the di-average operator. It can be regarded as the interpretation

of (92, Theorem 3.2) at the level of operads.

Proposition 3.3.3. For any binary quadratic operad P = T (V )/(R), there is a morphism of

operads

Perm©P −→ DA(P),

defined by the following map:

Perm(2)©P(2) −→ DA(P),

µ⊗ ω 7−→ ω ◦ (id⊗ P ),

µ′ ⊗ ω 7−→ ω ◦ (P ⊗ id), ω ∈ P(2),

where µ denotes the generating operation of the operad Perm.



83

3.3.2 Triplicators and tri-average operators

In this section, we establish the relationship between the triplicator of an operad and the action of

the tri-average operator with a nonzero weight on the operad. For simplicity, we assume that the

weight of the tri-average operator is one.

Definition 3.3.4. Let V = V (2), VP and T (VP ) as defined in Definition 3.3.2.

(a) Let Tri(V ) = V ⊗ (k a ⊕k ` ⊕k ⊥) in Eq. (3.1.4), seen as an S-module concentrated in arity

2. Define a linear map of graded vector spaces from Tri(V ) to VP by the correspondence

η :
ω
a

 7→ ω ◦ (id⊗ P ),
ω
`

 7→ ω ◦ (P ⊗ id),
ω
·

 7→ ω ,

where ◦ is the operadic composition. By the universality of the free operad, η induces a

homomorphism of operads:

η : T (Tri(V ))→ T (VP ).

(b) Let P = T (V )/(RP) be a binary operad defined by generating operations V and relations

RP . Let

TAP := {ω ◦ (P ⊗ P )− P ◦ ω ◦ (P ⊗ id), ω ◦ (P ⊗ P )− P ◦ ω ◦ (id⊗ P ),

ω ◦ (P ⊗ P )− P ◦ ω | ω ∈ V }.

Define the operad of tri-average P-algebras of weight one by

TA(P) := T (VP )/(RP ,TAP).

Let p1 : T (VP )→ TA(P) denote the operadic projection.

We first prove a lemma relating triplicators and tri-average operators.

Lemma 3.3.3. Let P = T (V )/(RP) be a binary operad and let τ ∈ T(V ) with Lin(τ).

(a) For each τ̄ ∈ Tri(τ), we have

P ◦ η( τ̄ ) ≡ τ ◦ P⊗n mod (RP ,TAP). (3.3.3)
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(b) For ∅ 6= J ⊆ Lin(τ), let P⊗n,J denote the n-th tensor power of P but with the component

from J replaced by the identity map. So, for example, for the two inputs x1 and x2 of P⊗2,

we have P⊗2,{x1} = P ⊗ id and P⊗2,{x1,x2} = id⊗ id. Then for each τ̄J ∈ TriJ(τ), we have

η(τ̄J) ≡ τ ◦ (P⊗n,J) mod (RP ,TAP) . (3.3.4)

Proof. (a). We prove by induction on |Lin(τ)| ≥ 1. When |Lin(τ)| = 1, τ is the tree with one leaf

standing for the identity map. Then we have η( Tri(τ) ) = τ , P ◦ η( Tri(τ) ) = P = τ ◦ P . Assume

the claim has been proved for τ with |Lin(τ)| = k and consider a τ with |Lin(τ)| = k + 1. Then

from the decomposition τ = τ` ∨ω τr, we have Tri(τ) = Tri(τ`) ∨ω
†

 Tri(τr). Recall that Tri(τ) is

a set of labeled trees. For each τ̄ ∈ Tri(τ), there exist τ̄` ∈ Tri(τ)` and τ̄r ∈ Tri(τr) such that

τ̄ ∈

τ̄` ∨ω
`

 τ̄r, τ̄` ∨ω
a

 τ̄r, τ̄` ∨ω
·

 τ̄r
 .

If τ̄ = τ̄` ∨ω
`

 τ̄r, then we have

P ◦ η(τ̄) = P ◦ η(τ̄` ∨ω
`

 τ̄r)

= P ◦ ω ◦ ((P ◦ η(τ̄`))⊗ η(τ̄r))

≡ ω ◦ ((P ◦ η(τ̄`))⊗ (P ◦ η(τ̄r))) mod (RP ,TAP)

= ω ◦ ((τ̄` ◦ P⊗|Lin(τ`)|)⊗ (τ̄r ◦ P⊗|Lin(τr)|)) (by induction hypothesis)

= ω ◦ (τ̄` ⊗ τ̄r) ◦ P⊗(k+1)

= (τ̄` ∨ω
`

 τ̄r) ◦ P
⊗(k+1)

= τ̄ ◦ P⊗(k+1).
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Similarly, we have

P ◦ η( τ̄` ∨ω
a

 τ̄r ) ≡ τ̄ ◦ P⊗(k+1) mod (RP ,TAP),

P ◦ η( τ̄` ∨ω
·

 τ̄r ) ≡ τ̄ ◦ P⊗(k+1) mod (RP ,TAP).

(b). We again prove by induction on |Lin(τ)|. When |Lin(τ)| = 1, then x is the only leaf label of

τ and |Trix(τ)| = 1. Thus we have

η(τ̄x) = η(x) = x = τ ◦ (P⊗1,x).

Assume that the claim has been proved for all τ with |Lin(τ)| = k and consider τ with |Lin(τ)| =

k + 1. Write τ = τ` ∨ω τr. Let J be a nonempty subset of Lin(τ). If J ⊆ Lin(τ`), then by the

definition of TriJ(τ), for each τ̄J ∈ TriJ(τ), there exist τ̄J,` ∈ TriJτ` and τ̄J,r ∈ Tri∅τr such that

τ̄J = τ̄J,` ∨ω
a

 τ̄J,r. Then we have

η(τ̄J) = η(τ̄J,` ∨ω
a

 τ̄J,r)

= ω ◦ (η(τ̄J,` ⊗ P ◦ η(τ̄J,r))

≡ ω ◦
(

(τ` ◦ P⊗|Lin(τ`)|,J)⊗ (τr ◦ P⊗|Lin(τr)|)
)

mod (RP ,TAP)

(by induction hypothesis and Item (a))

= τ ◦ P⊗(k+1),J .

When J ⊆ Lin(τr), the proof is the same. When J 6⊆ Lin(τ`) and J 6⊆ Lin(τr), for each τ̄J ∈

TriJ(τ), there exist τ̄J,` ∈ TriJ∩Lin(τ`)τ` and τ̄J,r ∈ TriJ∩Lin(τr)τr such that τ̄J = τ̄J,` ∨ω
·

 τ̄J,r.
Then by the same argument we have

η(τ̄J) ≡ ω ◦
(

(τ` ◦ P⊗|Lin(τ`)|,J∩Lin(τ`))⊗ (τr ◦ P⊗|Lin(τr)|,J∩Lin(τr))
)

mod (RP ,TAP)

= τ ◦ P⊗(k+1),J .

This completes the induction.
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Theorem 3.3.4. Let P be a binary operad.

(a) There is a morphism of operads

Tri(P) −→ TA(P),

which extends the map η given in Definition 3.3.4.

(b) Let A be a P-algebra. Let P : A −→ A be a tri-average operator of weight one. Then the

following operations make A into a Tri(P)-algebra:

x aj y = x ◦j P (y), x `j y = P (x) ◦j y, x ·j y = x ◦j y, for all ◦j ∈ P(2).

Proof. The second statement is just the interpretation of the first statement on the level of algebras.

So we just need to prove the first statement. Let RTri(P) be the relation space of Tri(P). By

definition, the relations of Tri(P) are generated by TriJ(r) for locally homogeneous r =
∑
i ciτi ∈

RP , where ∅ 6= J ⊆ Lin(τi). By Eqs.(3.3.3) and (3.3.4), we have

η

(∑
i

ci ¯(τi)J

)
=
∑
i

ciη( ¯(τi)J) ≡
∑
i

ciτi ◦ P⊗n,J ≡

(∑
i

ciτi

)
◦ P⊗n,J mod (RP ,TAP).

Thus η(RTri(P)) ⊆ (RP ,TAP) and η induces a morphism of operads

η̄ : Tri(P) −→ TA(P).

This proves the first statement.

Corollary 3.3.5. (a) Let A be an associative algebra and let P : A −→ A be a tri-average oper-

ator on A. Then the new operations defined in Theorem 3.3.4(b) makes it into an associative

trialgebra.

(b) Let L be a Lie algebra and let P : L −→ L be a tri-average operator on L. Then the operations

defined in Theorem 3.3.4(b) make it into a triLeibniz algebra.
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Éc. Norm. Sup., Vol.38 (2005) 1–56.

[33] D. Doryn, On one example and one counterexample in counting rational points on graph hy-

persurfaces, Lett. Math. Phys. 97 (2011), no. 3, 303–315.

[34] C. Dupont, Periods of hyperplane arrangements and motivic coprod-
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