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ABSTRACT 

Our evolutionary history has endowed us with biological systems for identifying those 

elements of the environment that contribute to our biological fitness and for modifying our 

behaviors to allow us to acquire them.  

Theoretical propositions suggest that the ability to detect changes in the statistics 

underlying in the environment may be useful for rapidly adapting our behaviors. 

However, little is known about the neural representation of the quantity representing the 

evidence for a change point: unexpected uncertainty. In Chapter 2, I describe a study in 

which humans interact with an unstable reward environment while undergoing fMRI. 

Representations of unexpected uncertainty were found in multiple cortical areas, as well 

as the noradrenergic brainstem nucleus locus coeruleus. Other unique cortical regions 

were found to encode estimation uncertainty, or the uncertainty in one’s estimates of the 

reward contingencies, and risk, or one’s estimate of the stochasticity of the environment. 

Collectively, these findings support theoretical models in which uncertainty computations 

determine the speed of learning. 

Although learning from direct experience in this way is vital to our survival, humans are 

also particularly adept at learning from conspecifics. However, it is not known whether 

differing computational strategies thought to support experiential learning, model-based 

and model-free learning, also support learning by observation. Chapter	
   3	
   describes	
   a	
  

study	
   in	
   which	
   human	
   participants	
   played	
   a	
   multi-­‐armed	
   bandit	
   task	
   that	
  

encouraged	
  them	
  to	
  employ	
  both	
  experiential	
  and	
  observational	
  learning	
  while	
  they	
  

underwent	
  fMRI.	
  Model-­‐based	
  learning	
  signals	
  are	
  found	
  during	
  both	
  observational	
  

and	
  experiential	
  learning	
  in	
  the	
  intraparietal	
  sulcus.	
  However,	
  unlike	
  in	
  experiential	
  

learning,	
   model-­‐free	
   learning	
   signals	
   in	
   the	
   ventral	
   striatum	
   were	
   not	
   detectable	
  

during	
  observational	
  learning.	
  These	
  results	
  provide	
  insight	
  into	
  the	
  flexibilty	
  of	
  the	
  

model-­‐based	
   learning	
   system,	
   and	
   further	
   suggest	
   that	
   the	
   model-­‐free	
   learning	
  

system	
  may	
  be	
  less	
  flexible	
  with	
  regard	
  to	
  its	
  involvement	
  in	
  observational	
  learning.	
   



 v 
While Chapters 2 and 3 are concerned with modifying reward-seeking behavior in 

reponse to changes in the external environment, Chapter 4 examines a modification of 

reward-seeking behavior in response to changes in the internal hormonal environment. 

Specifically, it describes how the behavior of human males in a simple economic game 

was influenced by the administration of testosterone. Although a popular view on the role 

of testosterone in human social behaviour proposes that it increases aggression, a recent 

theory states that it instead promotes behaviors that enhance social status. In a double-

blind, placebo-controlled between-subjects design, administration of testosterone 

increased punishment of players who treat the participants unfairly but also increased 

reward of those who treat them generously. Our findings are inconsistent with the view 

that testosterone simply increases aggression and provides causal evidence for the social-

status hypothesis in men. 

 

In Chapter 5, I describe an investigation of the phenomenon of ‘choking under pressure’, in 

which reward-seeking behavior is compromised by the promise of high reward for 

successful performance. A novel approach to attenuating such ‘choking under pressure’ 

using cognitive reappraisal of the incentive is described and tested. When participants 

performed a demanding motor task under reappraisal, choking was indeed significantly 

reduced, with the magnitude of this reduction being predicted by the striatal BOLD 

response to incentive magnitude. In addition, application of the reappraisal strategy was 

associated with reduced sympathetic arousal during trials on which performance failed at 

high levels of incentive. These results suggest that reappraisal of the incentive is indeed a 

promising intervention for attenuating choking under pressure. 
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1 
C h a p t e r  1  

INTRODUCTION 

The idea that the information processing mechanisms underlying our behavior are 

instantiated in biological systems and are shaped predominantly by natural selection over 

evolutionary time has profound consequences for our understanding of ourselves 

(Dawkins, 1989; Ramachandran and Ramachandran, 2003). Not only does this conviction 

imply a commonality of origin and purpose with all living organisms, it informs our efforts 

to produce organizing principles for behaviour that are reliable, have predictive power, and 

expose the deep common structure underlying seemingly disparate superficial phenomena. 

Specifically, such hypotheses should be constrained and informed by our knowledge of 

biological and physical reality. 

 

By virtue of our survival, we possess nervous and endocrine systems that direct our 

interactions towards aspects of our environment that perpetuate our genetic makeup, such 

as nourishment, shelter, and reproduction. This suggests that one of the fundamental 

functions of our nervous system involves learning to predict, based on current sensory 

input, the upcoming state of the environment and also learning to express behaviors that 

result in reward in those states. Therefore, a key question is how are human reward learning 

systems organized and what precisely do they learn? Recent advances in machine learning 

(Sutton and Barto, 1998) have given rise to sophisticated mathematical models that 

crystallize our intuitions for the computations underlying such learning, and provide 

specific testable algorithms that may implement this learning (Marr et al., 2010). 

Furthermore, we now have the ability to compare the predictions of these models against 

not just behavior but also, with the advent of functional neuroimaging techniques, the 

operation of the brain in vivo.  

In order to direct behaviour appropriately, learning and decision-making systems require an 

underlying representation of what outcomes should be regarded as rewarding. Intuitively, 

we would expect that this representation should be sufficiently flexible to allow for 



 

 

2 
changing physiological and behavioral demands throughout the lifespan. For biologically 

relevant outcomes that require the coordination of behavioral and physiological responses, 

one possibility is that their varying incentive value may be mediated by fluctuation in the 

levels of circulating hormones (Ketterson and Nolan Jr, 1992), an intuition that can be 

tested with the use of appropriately controlled hormonal manipulations. 

 

Finally, these systems for identifying reward in the environment and facilitating behavior 

that obtains it, while sufficiently adapted to their environment to allow our ancestors to 

reproduce, are imperfect and can give rise to arguably suboptimal behaviors. An exciting 

challenge for our understanding such behaviors is to recognize the underlying neural 

systems involved and furthermore to develop interventions capable of rescuing such 

performance. 

 

Reward Learning 

For many ‘unconditioned’ stimuli in the environment, the body has inherited programs of 

behavioral and physiological responses that are automatically elicited when we encounter 

them. This can range from simple responses such as knee flexion when the patellar tendon 

is struck (Twitmyer, 1905) to more elaborate responses such as navigating toward a food 

source (Hershberger, 1986). In the case of stimuli for which the adaptive behavior is 

relatively stable across generations, then ‘hardwiring’ of such reflexes may represent an 

efficient way to guide an organism.  

However, relying exclusively on inherited responses would be extremely limiting, and so 

animals have developed multiple learning systems that shape a response to a stimulus 

within the lifetime of the animal. A fundamental form is Pavlovian learning, in which a 

stimulus that initially elicits no behavioural response comes to elicit reflexive behaviors 

after repeated associations with an unconditioned stimulus; the textbook illustration of this 

phenomenon being the acquisition by Pavlov’s dogs of a conditioned salivation response to 

a bell that predicted food (Pavlov, 1927). 

Such conditioned responses are often of biological benefit to the organism, enabling it to 

interact with the predicted stimulus more advantageously. However, these reflexive 



 

 

3 
responses can also be problematic. For example, a hungry chick will rapidly learn to 

approach a bowl that contains food when it is presented. However, consider an artificial 

environment where approaching the bowl causes it to move further away (Hershberger, 

1986). The purely Pavlovian chick, whose approach response to the bowl has been stamped 

in by evolution, will continue to approach the bowl and will never obtain the food, because 

it cannot modify its behavioral response according to its consequences. The ability to 

modify the behavioral response to a stimulus according to its past consequences is a form 

of instrumental learning. Such an ability is adaptive in the sense that it allows an animal to 

acquire novel behavioral responses that its evolutionary history had not prepared for it, if in 

the past they have been followed by a “satisfying state of affairs” (Thorndike, 1911). 

However, an instrumental response acquired in this way also has its limitations, insofar as it 

is not forward-looking but ‘habitual’, operating without sensitivity to the outcome that it 

produces. In contrast, ‘goal-directed’ actions allow an animal to withhold responses that it 

knows will lead to consequences that it no longer desires. This requires the animal to 

represent the consequences of its actions separately from the value of those consequences 

(Tolman, 1932, 1959). There is compelling evidence to suggest that instrumental 

behavioural can be both habitual and goal-directed (Adams and Dickinson, 1981). Adams 

and Dickinson (1981) showed that, after rats learned to press a lever that delivered food 

pellets, rendering the food pellets undesirable by associating them with nausea caused a 

reduction in lever pressing. Importantly, this drop in lever pressing occurred without the rat 

having to press the lever and receive the now undesirable food pellet. This elegant 

experiment demonstrates that the behavior executed by an animal in response to a stimulus 

can indeed be goal directed, in that it is not necessarily the behavior that has been 

reinforced most frequently in the past. Instead, animals have the capacity to represent the 

learned outcome of an action and can flexibly integrate this knowledge with their 

subjective value for that outcome to guide an appropriate behavioural response. 

Interestingly it was also found (Adams, 1982) that, if rats are extensively trained with the 

lever prior to devaluation, they may continue to press the lever to obtain food pellets after 

they have been rendered undesirable, indicating that they have become insensitive to the 

consequence of their action. Thus, the rats’ behaviour reflects a combination of habitual 
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responses that appear to be triggered by antecedent stimuli as well as goal-directed 

responses that are sensitive to their subsequent consequences. 

 

The observation that instrumental behavior can under habitual or goal-directed control is 

not unique to non-human animals. In Valentin et al. (2007), human participants chose 

between two actions, which, they learned, resulted in the delivery of different food rewards. 

When the reward associated with one those actions was devalued by feeding the participant 

that food until they were fully satiated, the participants’ tendency to choose that action 

decreased, indicating that they were indeed sensitive to the value of the outcome. Perhaps 

more surprisingly, human behaviour has also been shown to become habitual with 

overtraining. In Tricomi et al. (2009), participants were either moderately or extensively 

trained to perform distinct actions when confronted with two stimuli in order to obtain 

differing food rewards. Following devaluation of one of the food rewards, those who 

received moderate training stopped executing the action that resulted in the delivery of the 

now devalued food, while those who had been extensively trained continued to respond as 

frequently to the action whose outcome had been devalued as to the alternative action 

whose outcome remained valuable.  

 

Goal-directed and habitual behaviour have also been shown to rely on distinct components 

of the corticostriatal circuit. Studies in rats have demonstrated that lesions to prelimbic 

prefrontal cortex or dorsomedial striatum abolish goal-directed behaviour (Balleine and 

Dickinson, 1998; Corbit and Balleine, 2003; Ostlund and Balleine, 2005; Yin et al., 2005); 

that is, the behaviour of rats following surgery is not sensitive to changes in the value of its 

consequences. In contrast, lesions to dorsolateral striatum (Yin et al., 2004, 2006) render 

rats impervious to habitization, even after extensive training. 

 

Learning models 

Arguably one of the most influential models of reward learning to date has been the 

Rescorla-Wagner (Rescorla and Wagner, 1972) model of classical conditioning. It asserts 
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that, on a single conditioning trial, the associative strength between a conditioned stimulus 

(CS) and an unconditioned stimulus (US) changes according to:  

𝑉 𝐶𝑆! ← 𝑉(𝐶𝑆!)+ 𝜂 𝜆!" − 𝑉 𝐶𝑆!
!

. 

Here, 𝜂 is a learning rate parameter that can depend on the salience of the CS and the 

capacity of the US to support learning, 𝜆!" represents the asymptotic level of associative 

strength the US will support, and 𝑉(𝐶𝑆!)!  represents the summed associative strengths of 

all conditioned stimuli present on the trial. This error correcting rule makes two important 

assumptions; the first, that learning is driven by the unpredictability of events, rather than 

their temporal contiguity, and the second that the predictability of an event depends upon 

the summed predictions of all conditioned stimuli present. These features famously allow it 

to account for the phenomenon of blocking (Kamin, 1969), in which the conditioning of an 

association between a CS and an US is prevented when the CS is presented along with a 

second CS that has previously been successfully associated with the US. According to the 

Rescorla-Wagner model, this effect occurs because the summed associative strengths of the 

conditioned stimuli fully accounts for the US and so no change in the associative strength 

of the first CS occurs. Despite its power and elegance, the Rescorla-Wagner model suffers 

from two prominent shortcomings. Firstly, because it treats the CS and US as categorically 

different objects, it does not allow for higher-order conditioning, the phenomenon in which 

a CS successfully associated with a US can be subsequently used to condition an 

association with another CS. This is an important failing because the many of the most 

important predictors in our environment, such as money, are associated only via other 

predictive stimuli, with biologically significant unconditioned stimuli, such as warmth or 

food. A second shortcoming of the Rescorla-Wagner model is that it allows a CS to predict 

the valence but not the timing of a US. This insensitivity to the temporal relationship 

between a CS and US, as well as the capacity for higher-order conditioning are addressed 

by the temporal difference (TD) learning rule (Sutton and Barto, 1990), drawn from the 

field of machine learning known as reinforcement learning. 
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𝑉 𝐶𝑆!,! ← 𝑉 𝐶𝑆!,! + 𝜂 𝑟! + 𝛾 𝑉(𝐶𝑆!,!!!)
!

− 𝑉 𝐶𝑆!,!
!

 

Here 𝑟! refers to the reward obtained by the agent at time step 𝑡 within a trial. Note that this 

is conceptually similar to the Rescorla-Wagner model, in that it is updated according to a 

prediction error, which here represents the difference between the expected and attained 

reward. However, unlike the Rescorla-Wagner model, it uses this quantity to iteratively 

refine estimates of total cumulative reward to be expected beginning from the given state, 

as distinct from the reward associated with the presentation of the US. This allows the TD 

rule to naturally incorporate higher-order conditioning, because the value of a CS is 

influenced to different degrees by the value of all conditioned and unconditioned stimuli 

that succeed it. Furthermore, neurophysiological evidence has supported the maintenance 

by the TD rule of distinct values estimates for the time steps within a conditioning trial 

(Mirenowicz and Schultz, 1994; Schultz et al., 1997; Hollerman and Schultz, 1998). 

Schultz and colleagues noted a striking similarity between the time course of the reward 

prediction error of a TD learner and the phasic firing of dopaminergic neurons of the 

ventral tegmental area (VTA) and substantia nigra in primates who were undergoing 

classical conditioning. Specifically, it was found that the firing of these neurons initially 

increased when a US in the form of a novel juice reward was unexpectedly delivered to the 

monkey, and this response to the US diminished as the monkey learned that a visual CS 

predicted the delivery of the juice reward. Furthermore, once the monkey had learned that 

the CS signaled juice reward, these neurons decreased their firing when the expected juice 

reward US was not delivered. Crucially, while a Rescorla-Wagner model would predict 

prediction errors in response to the US only, it was found that, as learning progressed, 

firing to the predictive CS increased. However, this response to an unpredicted CS that is 

associated with reward is one of the distinguishing hallmarks of a TD reward prediction 

error signal. 

 

This finding triggered a surge in interest in the application of reinforcement learning 

methods to neural data that dovetailed with the advent of non-invasive techniques for 
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recording of neural activity in humans, in particular functional magnetic resonance 

imaging (fMRI).  It was demonstrated (Bandettini et al., 1992; Kwong et al., 1992; Ogawa 

et al., 1992) that fortuitous variations in magnetic susceptibility caused by deoxhemoglobin 

(Pauling and Coryell, 1936) could be exploited to construct in-vivo images of the brain, 

whose intensity was blood oxygenation level dependent (BOLD). Neural activity in a 

region, principally neuronal input and local processing (Logothetis and Wandell, 2004), 

provokes a reliable, albeit delayed, increase in local blood oxygenation. Thus, by 

comparing elicited BOLD with the convolution of the predicted neural activity with an 

approximation of this hemodynamic response, we obtain a technique for determining 

effects of stimulus presentation on neural activity simultaneously across the brain that has 

excellent spatial and reasonable temporal resolution.  This development has been 

accompanied by developments in the analysis of neuroimaging data (Basser et al., 1994), in 

particular, “model-based analysis” (O’Doherty et al., 2007), in which the internal variables 

of a mathematical algorithm describing a cognitive process of interest are regressed against 

the BOLD. This allows the experimenter to simultaneously gain insight into how and 

where a cognitive process is implemented and provides us with the ability to compare 

models that make indistinguishable behavioral predictions with differing algorithmic 

implementations based on their capacity to fit neural data. This technique has been applied 

successfully to human neuroimaging data to test for the signature of reward prediction 

errors in BOLD during Pavlovian conditioning, and have reported their presence in 

substantia nigra and VTA (O’Doherty et al., 2002; Pauli et al., 2015) as well as ventral 

striatum (O’Doherty et al., 2003, 2004; Cooper et al., 2012) one of the prominent targets 

areas of dopaminergic midbrain neurons (Oades and Halliday, 1987). 

 

Model-free and model-based reinforcement learning 

Similar reward prediction error updating mechanisms can be used by RL algorithms, such 

as the Actor-Critic (Sutton, 1984), Q-learning (Watkins, 1989), and SARSA (Rummery 

and Niranjan, 1994) that have the capacity to take actions in the world with the goal of 

maximizing total future reward, thus resembling instrumental behavior. In these algorithms, 

estimates of reward are learned not simply for their own sake, but are used to improve 
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behavioral policies, or mappings that describe the actions as a function of the state of the 

world. These too have been applied to model-based analyses of BOLD data, and, in 

contrast to Pavlovian learning, both dorsal and ventral aspects of striatum have been 

reported to encode reward prediction errors during instrumental learning (O’Doherty et al., 

2004; Gläscher et al., 2009; Cooper et al., 2012) in humans. One important limitation of 

these value-updating RL agents is that they are ‘model-free’, in the sense that they simply 

maintain values for how rewarding actions taken in each state have been in the past. They 

have no representation of the dynamics of the environment and thus no knowledge of how 

their actions influence what state is likely to occur next. An animal behaving according to 

such an algorithm would produce behaviour that is habitual. That is, such an RL agent will 

press the lever that when pressed in the past always yielded rewarding food, even if that 

food has been discovered to be unpalatable. This is because, for that agent, the value of 

lever pressing is determined entirely by the history of reward from lever pressing and so it 

is blind to the current value of the consequences that it gives rise to.  

 

Thus, although model-free algorithms are extremely efficient and powerful, matching and 

even surpassing the performance of human players in Atari video games and backgammon 

(Tesauro, 1995; Mnih et al., 2015), they provide an incomplete description of instrumental 

behaviour, accounting for behaviour that is habitual but failing to account for goal-directed 

behaviour that humans also demonstrate (Valentin et al., 2007; Gläscher et al., 2010). To 

resolve this impasse, it has been proposed (Daw et al., 2005) that instrumental behaviour is 

under the dual control of both model-free RL and model-based RL. A model-based RL 

agent acquires a probabilistic representation its environment, which describes how its 

actions move it from one state of the environment to the next. This allows it to display 

behavior that is goal-directed because, unlike a model-free learner, it can predict changes to 

the likely consequences of its actions without having to experience them first. Thus, a 

model-based learner will not pull a lever that has been rewarding in the past, if it now 

produces a food pellet that it no longer desires. In contrast to a model-free agent, which 

updates its value estimates according to errors in its prediction of reward, a model-based 

RL agent can update its model of the environment according to errors in its prediction of 
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the state. Representations of such state prediction error signals have been reported in 

BOLD in a network of lateral prefrontal and intraparietal cortical regions (Gläscher et al., 

2010; Liljeholm et al., 2013). 

 

Although it is clear that humans, and indeed non-human animals, acquire such mental 

models of their environment, one important question is, how sophisticated are these 

representations? Such representations may not be limited to simple point estimates of the 

probabilities of environmental contingencies; participants may also represent how uncertain 

they are about their estimates, or how unpredictable the outcomes of their actions are. 

These quantities are known to influence decision-making (Ellsberg, 1961; Rabin, 2000) and 

can be used to guiding active exploration of the environment (Badre et al., 2012; Payzan-

LeNestour and Bossaerts, 2012; Schwartenbeck et al., 2013; Donoso et al., 2014) and 

learning (Behrens et al., 2007; Payzan-LeNestour and Bossaerts, 2011). For example, 

Behrens et al. (2007) describe a task in which human participants chose between two 

abstract stimuli, each associated with a hidden probability of rewarding the participant and 

a reward magnitude that was explicitly advertised to the participant. Importantly, while the 

reward magnitude varied across trials and was unpredictable, the reward probability 

associated with each stimulus was relatively stable across trials and could therefore be 

learned. Such an environment emphasizes model-based performance because a typical 

model-free learner, which chooses the action to take based on how rewarding it has been in 

the past, is unlikely to perform well given that effective performance on the task requires 

the participant to flexibly integrate the reward probability and magnitude information 

afresh on every trial to determine the appropriate choice. (Behrens et al. (2007) probe the 

sophistication of the participants’ representation by programming changes to the reward 

probability to the reward probability and find that the participants’ behaviour is sensitive to 

the frequency of these changes in a manner that is consistent with more sophisticated 

model-based learning; when this environmental volatility is increased, participants’ 

behavior was more influenced by recent data than when the environment was stable. In 

addition, humans may bring prior learned beliefs about task structure to bear on novel 

stimuli; Collins and Frank (2013, 2016) demonstrate that in a simple sequential decision-
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making tasks humans hierarchical organize the components of the task according to the 

similarity of their action-outcome contingencies. This latent learning is revealed when 

participants are exposed to novel contexts to which they generalize this structure, even in 

cases when such generalization is not beneficial to them.  

 

A natural framework for representing and updating both prior beliefs and uncertainty is 

Bayesian inference (Tenenbaum et al., 2006), in which a distribution of belief over 

hypotheses about the world is iteratively updated with incoming evidence in accordance 

with Bayes’ rule. Bayesian inference provides a method for combining prior beliefs with 

new evidence that makes statistically optimal use of both by appropriately weighting each 

according to their variability. In Chapter 2, I describe a model-based fMRI study in which 

human participants performed demanding reward-learning task, where the reward 

contingencies were subject to sudden, unsignalled changes. In such an environment, data 

points sampled before the occurrence of a change point are no longer reflective of the 

current data generating process, and should be disregarded. We show that a Bayesian 

learner that detects these change points and modifies its estimates of the outcome 

probabilities accordingly provides a better fit to participants’ behaviour than a conventional 

RL agent that is insensitive to this type of structure. We test for the presence in BOLD data 

of an internal model variable, ‘unexpected uncertainty’, that reflects the Bayesian agent’s 

belief that the statistics underlying the environment have changed and has been proposed to 

be signaled by the noradrenergic system (Yu and Dayan, 2005). We confirm that 

unexpected uncertainty is represented during learning in the noradrenergic brainstem locus 

coeruleus as well as a network of cortical areas.  We also report neural representations of 

participants’ certainty in their own estimates of the current outcome probabilities, as well as 

the unpredictability of the outcome – quantities that are naturally expressed by a Bayesian 

agent.  

 

 

 

Observational learning of reward 
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Thus far we have considered an organism that relies on its own experience to revise the 

behaviours it emits. While this ability is vital to the survival of any animal, learning solely 

from personal experience can be time-consuming and dangerous, and so the capacity to 

modify behavior in response to cues from the social environment would be tremendously 

beneficial. After examining the time taken for hungry cats to learn to escape from cages 

and gain access to food, Thorndike (1898) concluded that rather than emerging from 

sudden insight, animal behavior was learned through gradual trial and error. Furthermore, 

he also found that animals of many species, cats included, did not learn to escape their cage 

more quickly by observing a conspecific demonstrate the solution, and thereby also 

concluded that animals lack the ability to learn by imitation. Further research, indicates that 

Thorndike was mistaken on both counts, and in fact many species have developed the 

ability to learn from social sources of information (Galef and Laland, 2005); honeybees can 

determine the location of distant food sources from the dances of successful foragers 

returning to the hive (Grüter and Farina, 2009), young rats can avoid potential poisoning by 

preferentially consuming the foods they see their elders eat (Galef and Clark, 1971) and 

chimpanzees can learn to use tools to extricate food from difficult-to-reach places by 

observing adept peers (Tomasello et al., 1987; Whiten et al., 2005). Identifying the precise 

mechanism by which such behavior is acquired is challenging however. For example, 

observation of another chimpanzee skilfully wielding a tool to obtain food might 

precipitate the transmission of that skill to a conspecific directly, by causing imitation of 

the physical actions of the demonstrator, or more indirectly by encouraging handling of the 

tool by the student or by drawing the attention of the student toward the food (Whiten et al., 

2009). 

Our own species exhibits substantially greater proclivity for social imitation than other 

primates (Whiten et al., 2009, 2009), with much of our adaptive success potentially 

stemming from the ability this gives us to transmit skills and cultural norms efficiently 

(Tomasello, 1999). Despite its importance, the neural and computational bases of 

instrumental learning through observation have received comparatively little attention 

(Burke et al., 2010; Cooper et al., 2012; Suzuki et al., 2012) relative to experiential 

learning. While the studies that have been carried out do report model-free RPE responses 
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in BOLD, there is a degree of inconsistency in the location and direction of these results, 

with two reporting activtion of vmPFC (Burke et al., 2010; Suzuki et al., 2012), one 

reporting positive activaton of dorsal striatum (Cooper et al., 2012) and the other reporting 

negative response in ventral stiratum (Burke et al., 2010). In addition, like the study of 

social learning in animals, some ambiguity surrounds the mechanisms by which this 

observational learning occured. In particular, in previous studies of observational learning, 

the observee made choices between responses which were then reinforced. Because of this, 

it is not known whether the learning, and the associated neural signatures, reported in these 

studies reflects learning of the value of the responses through observation or simple 

mimicry of the observee’s actions. In addition, although neural responses associated with 

model-based state prediciton error signals have been reported during experiential learning, 

no study to date has determined whether such signals are present during observational 

learning.  

In Chapter 2, I describe an fMRI study addressing these questions in which participants 

learned, by  observation of another player and by direct experience, to choose between slot 

machines that, when played, delivered monetary reward. I show that human subjects have 

the ability to learn such a task through observation in the absence of mimicry, although 

their performance is reduced relative to experiential learning. While during experiential 

learning we observe model-free RPE signalling in ventral striatal BOLD, no such response 

occurs during observational learning in striatum, or elsewhere in the brain. In addition, I 

describe encoding of model-based state prediction error signals during both observational 

and experiential learning in a network of frontoparietal regions.  

 

Hormonal modulation of reward value of social status 

As discussed above, instrumental learning involves the modification of behaviour in 

response to reward. Irrespective of whether this instrumental reward learning is achieved 

using a model-based or model-free approach, it relies on a central specification of what 

stimuli should be considered rewarding, or what outcomes should act as reinforcers of 

behavior. While secondary reinforcers, such as money, gain their rewarding properties 

through association with primary reinforcers, for primary reinforcers, such as nourishment, 
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shelter, and reproduction, this specification is by definition not learned but innate. 

Although the value of certain primary reinforcers may be fixed across the lifespan, others 

clearly vary with factors such as developmental stage or changes in motivational state – for 

example, feeding an individual to satiety abolishes a goal-directed action that yields that 

food. Thus a fundamental question for understanding reward seeking behavior lies in 

identifying what biological systems influence the innate reward value of outcomes. Here, I 

consider how the rewarding properties of the broad collection of responses associated with 

facilitating mating and paternal behavior in males may be biologically instantiated.  

 

In mammals, males and females differ significantly in how reproductive effort is allocated. 

While males do not endure menstruation, gestation, childbirth, or lactation, they instead 

must allocate resources to mate attraction and paternal care (Magrath and Komdeur, 2003). 

These demands require differing behavioral and physiological responses from males that 

vary across the lifespan and according to constraints placed by health, energy and personal 

resources. Due to its central role in coordinating aspects of development, metabolism, and 

reproduction, the endocrine system has been suggested to be an important mediator of such 

life history trade-offs (Ketterson and Nolan Jr, 1992). For males, it is specifically suggested 

that the steroid hormone testosterone mediates the trade-off between mate attraction and 

parental care (Alvergne et al., 2009). 

 

A crucial requirement for this theory to hold is that testosterone must influence the 

allocation of resources by males to courtship and parenting. Testosterone’s allocation of 

metabolic resources to skeletal muscle at the cost of adipose tissue by stimulating muscular 

anabolism and metabolic rate both in vivo and in vitro (Welle et al., 1992; Bhasin et al., 

1996; Tsai and Sapolsky, 1996) is thought to reflect a physiological investment in 

reproductive effort (Bribiescas, 1997, 2001). This may come at the cost of energy storage 

in adipose tissue (Welle et al., 1992) and the triggering of a potential immunosuppressive 

effect of high testosterone, reflected in males exhibiting greater susceptibility to disease, in 

terms of both prevalence and intensity of infection, and testosterone inhibiting lymphocyte 
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proliferation, cytokine production, and macrophage activity in vitro (Schuurs and 

Verheul, 1990; Muehlenbein and Bribiescas, 2005).  

 

Testosterone’s effects on allocation of behavioral resources are seen most clearly in birds, 

in whom testosterone levels rise at the start of the breeding season and decreases, in species 

who display male parental care, with the arrival of offspring (Wingfield et al., 2000).  The 

surge in testosterone facilitates aggression in the context of territory formation, dominance 

contests, and mate-guarding (Wingfield et al., 1990). Administration of testosterone to 

males of a variety of bird species has been demonstrated to induce polygyny in normally 

monogamous species, increase courtship behaviors and male-male competitive encounters, 

while reducing time spent on paternal behavior, such as feeding of nestlings, resulting in 

increased offspring mortality (Wingfield, 1984; Hegner and Wingfield, 1987; de Ridder et 

al., 2000; Peters, 2002). This testosterone-induced shift in reproductive strategy is also 

associated with costs to the individual including increased energetic costs and loss of body 

fat, delayed molting, and increased mortality due to injury (Wingfield et al., 1990; 

Ketterson et al., 1991; Nolan et al., 1992). The relationship between male-male competition 

and testosterone has also been noted among nonhuman primates including ring-tailed 

lemurs, rhesus macaques and chimpanzees (Mehlman et al., 1997; Cavigelli and Pereira, 

2000; Muller and Wrangham, 2004). For example, in our closest living relatives, 

chimpanzees, testosterone increases in the presence of attractive, and not unattractive 

ovulating females, and is associated with increased aggressive male-male competition 

(Muller and Wrangham, 2004). Like the peacock’s tail, it appears that the development of 

the secondary male sexual characteristics of male-male competition, increased skeletal 

muscle may function as a form of signaling of biological fitness to females that is costly to 

the male (Folstad and Karter, 1992). This could be regarded as an instance of the handicap 

principle (Zahavi, 1977), which suggests that a sexually selected trait is a reliable signal of 

biological fitness if it is costly to the signaler, because low fitness individuals could not 

bear the cost of emitting it. 
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In humans, there is also evidence for a relationship between testosterone and male 

reproductive strategy. Cross-sectional studies indicate that men in relationships have lower 

testosterone levels than those who are single (Gray et al., 2002; Burnham et al., 2003; van 

Anders and Watson, 2007) and that fathers have lower testosterone levels than non-fathers 

(Gray et al., 2006, 2007). Furthermore men with higher testosterone have more sexual 

partners (van Anders and Watson, 2007; van Anders et al., 2007). A compelling 

longitudinal study by Gettler et al. (2011) of 624 Filipino men indicates that testosterone 

levels precede these behaviours, rather than vice versa. They showed that not only were 

those men with high testosterone at the beginning of the study more likely to become 

partnered fathers, fatherhood was followed by large decreases in testosterone, with those 

fathers who were involved in childcare having lower testosterone than those who didn’t 

(Gettler et al., 2011). High testosterone does also appear to play a role in competitive 

human interactions, with a large literature reporting rises in anticipation of sporting 

encounters (Salvador, 2005). Nevertheless, determining the precise behavioral 

consequences of high testosterone in humans is a topic of ongoing research. Although 

correlative studies report a relationship between testosterone and male aggression in 

institutional settings (Dabbs Jr et al., 1991, 1995a), causal evidence for such a link remains 

weak (Eisenegger et al., 2011a).  

 

In Chapter 4, I describe the behavioral effects in human males of a double-blind placebo-

controlled injection of testosterone. This study tests recent proposals that, in humans, rather 

than promoting aggression, testosterone may support behaviors intended to increase social 

status (Mazur and Booth, 1998; Josephs et al., 2003). Participants played the responder in a 

version of the Ultimatum Game, modified so that participants had the opportunity to punish 

or reward the proposer at a monetary cost to themselves. Testosterone administration 

produced an increase in both punishment of low offers and reward of large offers in a 

manner that is consistent with increased concern for status. Participants’ beliefs also had a 

significant effect on behaviour leading to increased rejections of unfair offers, consistent 

with a folk belief associating testosterone and aggression.  

 



 

 

16 
Compromised reward-seeking behavior 

Despite its longstanding central role in the fields of psychology and cognitive neuroscience, 

it remains difficult to fully specify what the word ‘reward’ refers to. An intuitive definition 

might be something that is sought out for its ability to cause a pleasurable conscious 

experience. However, although we often seek out stimuli that provide us hedonic pleasure, 

the phenomenological experience of pleasure derived from a stimulus is argued to be 

experimentally separable from its reinforcing effect (Berridge, 2007; Berridge et al., 2009). 

For example, trpm5 knockout mice, who lack the biological capacity to transduce sweet 

taste, retain the ability to develop conditioned preference for sweet-tasting sucrose over 

water based on its caloric content alone (de Araujo et al., 2008), suggesting that a stimulus 

can act as an reinforcer without causing hedonic pleasure. Even a more functional 

definition of rewards based on their ability to motivate action such as “the environmental 

incentives we tend to return to after having previously contacted them” (Wise, 2002), faces 

difficulty in accounting for certain behavioral phenomena. 

 

One corollary of such a definition might be an expectation that increasing the incentive for 

performing an action should have a monotonically increasing on the effort provided to 

obtain it. In a pertinent study, Camerer et al. (1997) examined the daily labor supply of 

New York City cab drivers, who are free to choose the number of hours they work in a 

given day. One might expect, and neoclassical models of labor supply predict, that as the 

hourly wage increases, the opportunity cost of choosing leisure over work increases, and 

workers will substitute into the provision of labor, working longer hours to take advantage 

of the higher wages. However, among these cab drivers this was empirically not the case 

(Camerer et al., 1997). Inexperienced drivers instead appeared to work until they reached a 

daily income target, quitting early on days when their hourly earnings were high, and 

working long hours on slow days. Thus, in this case, increasing the magnitude of an 

incentive elicited neither greater effort nor increased performance.  

 

Incentive can also have deleterious effect on the physical performance of an instrumental 

action by strengthening incompatible behavioral responses, with the result that performance 
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appears insensitive to incentive. Keller and Marian Breland (Breland and Breland, 1961), 

the pioneering animal trainers and former graduate students of B.F. Skinner, famously 

cataloged an array of instances in which their attempts to sculpt an animal’s behavior with 

reinforcement were frustrated, declaring that they “have fought a running battle with the 

seditious notion of instinct”. For example, when training a raccoon to pick up coins and 

deposit them in a money box in return for food, the Brelands found that training, while 

initially successful, was subverted by an increasing tendency on the part of the raccoon to 

refuse to drop the coins, which the raccoon instead rubbed together “in a most miserly 

fashion” (Breland and Breland, 1961), despite the fact that this behavior was never 

reinforced. One explanation of this phenomenon is that repeated pairings of the coin and 

food caused the raccoon to gradually develop a conditioned approach response to the coin, 

paradoxically preventing it from dropping the coin to obtain the food reward. Being 

progressively overwhelmed by an apparent Pavlovian response is not the only way in 

which instrumental action can be disrupted by reinforcement. As discussed previously, 

extensive reinforcement of an instrumental action in an animal can render it ‘habitual’ 

(Adams and Dickinson, 1981; Adams, 1982; Tricomi et al., 2009), or insensitive to the 

value of the outcomes it produces. This is despite that fact that it can be demonstrated that 

the animal is aware of the value of the outcome, and that the animal is in principle capable 

of awareness that pulling the lever produces the outcome, as demonstrated by the 

suppressing lever-pressing when the outcome becomes undesirable in moderately trained 

animals (Adams and Dickinson, 1981; Adams, 1982). Thus, habitual control of behaviour 

too can interfere with otherwise goal-directed performance of instrumental actions and the 

attainment of reward. These examples show that through its stimulation of rival behavioral 

control systems, reward can disrupt its own attainment. 

 

Chapter 5 describes a study involving the phenomenon of ‘choking under pressure’ 

(Baumeister, 1984), which refers to the drop in performance of skilled action that can occur 

when the incentive for optimal performance is greatest. An example of this phenomenon 

can be seen in the free-throw shooting performance of professional Australian basketball 

players (Dandy et al., 2001), which was shown to be worse during games than during 
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training. Choking under pressure resembles the preceding examples; like the first, 

performance varies with incentive in a manner that may be surprising, but like the latter 

examples it occurs despite the individual desiring the incentive. In Chapter 5 I describe an 

intervention intended to reduce the performance decrements under high incentive that 

characterize choking. This intervention is the application of a simple cognitive reappraisal 

strategy and is successful in reducing choking, operationalized as the difference between 

performance at its peak and performance at maximal incentive. Choking is associated with 

exaggerated sympathetic arousal in response to the incentive, an effect that is also 

abolished by the reappraisal strategy. Furthermore, individual differences in the effect of 

the reappraisal strategy are predicted by encoding of the incentive in ventral striatal BOLD 

before the execution of the motor task. 
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C h a p t e r  2  

THE	
  NEURAL	
  REPRESENTATION	
  OF	
  UNEXPECTED	
  UNCERTAINTY	
  

Uncertainty	
   is	
   an	
   inherent	
   property	
   of	
   the	
   environment	
   and	
   a	
   central	
   feature	
   of	
  

models	
  of	
  decision-­‐making	
  and	
  learning.	
  Theoretical	
  propositions	
  suggest	
  that	
  one	
  

form,	
   unexpected	
   uncertainty,	
   may	
   be	
   used	
   to	
   rapidly	
   adapt	
   to	
   changes	
   in	
   the	
  

environment,	
   while	
   being	
   influenced	
   by	
   two	
   other	
   forms:	
   risk	
   and	
   estimation	
  

uncertainty.	
   While	
   previous	
   studies	
   have	
   reported	
   neural	
   representations	
   of	
  

estimation	
   uncertainty	
   and	
   risk,	
   relatively	
   little	
   is	
   known	
   about	
   unexpected	
  

uncertainty.	
  Here,	
  participants	
  performed	
  a	
  decision-­‐making	
  task	
  while	
  undergoing	
  

functional	
   magnetic	
   resonance	
   imaging	
   (fMRI),	
   which,	
   in	
   combination	
   with	
   a	
  

Bayesian	
  model-­‐based	
  analysis,	
   enabled	
  each	
   form	
  of	
  uncertainty	
   to	
  be	
   separately	
  

measured.	
  We	
  found	
  representations	
  of	
  unexpected	
  uncertainty	
  in	
  multiple	
  cortical	
  

areas,	
  as	
  well	
  as	
  the	
  noradrenergic	
  brainstem	
  nucleus	
  locus	
  coeruleus.	
  Other	
  unique	
  

cortical	
   regions	
   were	
   found	
   to	
   encode	
   risk,	
   estimation	
   uncertainty,	
   and	
   learning	
  

rate.	
   Collectively,	
   these	
   findings	
   support	
   theoretical	
   models	
   in	
   which	
   several	
  

formally	
  separable	
  uncertainty	
  computations	
  determine	
  the	
  speed	
  of	
  learning.	
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Introduction 

Both in our physical and social environment, we regularly encounter situations in which 

performance depends on maintaining accurate internal representations of the statistics of an 

unstable external environment. This is a complex task because samples from such an 

environment may vary in their relevance for predicting future outcomes. For example, if 

the statistics underlying the environment have changed, then recently acquired samples are 

more representative of the new environment, and should be weighted accordingly. It has 

been emphasized (Yu and Dayan, 2005; Behrens et al., 2007) that uncertainty may be used 

to the advantage of learners, allowing them to optimally weigh new data against old when 

updating their beliefs. One approach, which could be regarded as a form of novelty 

detection, suggests that learners quantify at each time point the likelihood that the 

environment has just changed based on the current sample (Yu and Dayan, 2005; Nassar et 

al., 2010; Payzan-LeNestour and Bossaerts, 2011). This quantity, termed unexpected 

uncertainty, can be used to flexibly modulate the weight given to new data as evidence for 

a change in the underlying structure of the environment varies. The computation of 

unexpected uncertainty is non-trivial, because improbable data samples may be attributed 

to a change in the statistics underlying the environment, or alternatively to the known 

unreliability of predictive relationships, dubbed expected uncertainty (Yu and Dayan, 

2005). Importantly, the definition of unexpected uncertainty does not imply that the agent 

is unaware that his environment is subject to change. Instead, a data sample with high 

unexpected uncertainty indicates that it is surprising given the cue-outcome association 

acquired through sampling, even when expected uncertainty, or the known, learned 

unreliability of this association, is accounted for. 

One form of expected uncertainty is risk, or the inherent stochasticity of the environment 

that remains even when the contingencies are fully known. For example, when sampling in 

an environment in which a reward is delivered on 50% of occasions versus one in which 

reward is delivered 95% of the time, risk is higher for the former. The perceptions of risk 

and unexpected uncertainty are antagonistic (Yu and Dayan, 2005) in the sense that when 
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risk is high, as in the former case, changes in the environment are hard to detect, and 

hence unexpected uncertainty is low, whereas when risk remains low, as in the latter 

example, changes in the environment lead to strong increases in unexpected uncertainty.   

Unexpected uncertainty is also influenced by estimation uncertainty or the imprecision of 

the learner’s current beliefs about the environment (Yoshida and Ishii, 2006; Frank et al., 

2009; Payzan-LeNestour and Bossaerts, 2011; Prévost et al., 2011; Chumbley et al., 2012), 

which is also referred to as second-order uncertainty (Bach et al., 2011). If beliefs are 

acquired through learning as opposed to instruction, this quantity decreases with sampling. 

When estimation uncertainty is high, improbable samples may be partially attributed to the 

agent’s inaccurate beliefs about the structure of the environment, rather than to a change in 

that structure itself.  

Recent behavioural work suggests that subjects’ choices may indeed reflect a learning 

scheme that makes use of unexpected uncertainty (Nassar et al., 2010; Payzan-LeNestour 

and Bossaerts, 2011). In addition, recent studies tracking pupil size dynamics (Preuschoff 

et al., 2011; Nassar et al., 2012) demonstrated a correlation of unexpected uncertainty with 

phasic changes in pupil diameter. Although it has been noted (Yu, 2012) that the action of 

the cholinergic system also influences pupil size, this modulatory effect was attributed 

(Nassar et al., 2012) to the activity of the locus coeruleus (LC), a nucleus in dorsorostral 

pons whose neurons represent the sole source of noradrenaline to the cerebral cortices, 

cerebellum and hippocampus (Moore and Bloom, 1979; Aston-Jones and Cohen, 2005). 

Transient shifts in the activity of LC during contingency changes in a target reversal task 

with non-human primates (Aston-Jones et al., 1997) have also been noted, specifically a 

transition from the phasic mode, characterized by both relatively low baseline firing rate 

and high phasic responsiveness to task-relevant stimuli, to the tonic mode, characterized by 

both relatively high baseline firing rate and diminished phasic responsiveness to task-

relevant stimuli. Finally, pharmacological activation of the noradrenergic system in rats has 

been found to speed behavioral adaptation to change in environmental contingencies 

(Devauges and Sara, 1990) while noradrenergic, and not cholinergic, deafferentation of rat 
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medial frontal cortex has been found to impair it (McGaughy et al., 2008). These 

findings are consistent with the theoretical claim that signaling of unexpected uncertainty is 

mediated by the action of the noradrenergic modulatory system (Yu and Dayan, 2005). 

Despite this accumulating behavioral and psychophysical evidence for unexpected 

uncertainty, to our knowledge, no study to date has directly investigated the neural 

substrates of unexpected uncertainty in human subjects. To that end, we present results 

from a study in which participants underwent functional magnetic resonance imaging 

(fMRI) while they played a six-armed restless bandit decision task, in which the payoff 

probabilities of the bandit arms changed without notice, and hence, unexpected uncertainty 

fluctuated constantly. To properly distinguish between changes in unexpected uncertainty 

and changes in the probability of a jump, or volatility (Behrens et al., 2007; Bland and 

Schaefer, 2012), we kept the latter constant. We applied a model-based Bayesian learning 

algorithm (Payzan-LeNestour and Bossaerts, 2011) to track subjects’ estimates of the 

outcome probabilities on each arm. This algorithm provides a principled way to measure 

unexpected uncertainty, as well as estimation uncertainty and risk, while prescribing how 

they should influence the rate of learning. Given the complex interrelations between the 

different components of uncertainty, we included each of the uncertainty signals in our 

fMRI analysis to minimize potential confounds. We also controlled for changes in the 

learning rate, because its strong dependence on unexpected uncertainty would otherwise 

mean that neural activity superficially correlating with unexpected uncertainty could 

merely reflect generic changes in the learning rate. 

We hypothesized that we would observe separately identifiable neural effects of 

unexpected uncertainty, estimation uncertainty and risk. We predicted that unexpected 

uncertainty would be encoded at the time of outcome along with the learning rate, as these 

signals are needed for the purpose of updating values to guide choice on the subsequent 

trial (Figure 1c). In particular, we aimed to test for activity pertaining to unexpected 

uncertainty within the noradrenergic brainstem nucleus locus coeruleus. Several studies 

from the neuroeconomics literature have reported neural correlates of risk during choice in 
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insular cortex/IFG (Huettel et al., 2005b; Preuschoff et al., 2008; d’Acremont et al., 

2009), but also anterior cingulate (Christopoulos et al., 2009), striatum (Hsu et al., 2005) 

and intraparietal sulcus (Huettel et al., 2005b). Moreover, other studies have reported 

activation correlating with the degree of ambiguity present in a decision-gamble (Hsu et al., 

2005) or the degree of estimation uncertainty in a learning task (Behrens et al., 2007; Bach 

et al., 2011; Prévost et al., 2011; Chumbley et al., 2012). However, such studies have 

typically used discrete variations in risk and estimation uncertainty, or have limited their 

attention to specific brain regions, while the present task design permits full parametric 

variation of these signals in a naturalistic learning environment.  

We were also interested in the role played by the limited set of cortical regions that have 

been shown to project directly to locus coeruleus in rats and nonhuman primates; those 

areas being anterior cingulate cortex, dorsomedial and dorsolateral prefrontal cortex and 

orbitofrontal cortex (Arnsten and Goldman-Rakic, 1984; Jodo et al., 1998; Aston-Jones et 

al., 2002). It has been suggested (Aston-Jones and Cohen, 2005) that descending 

projections from these prefrontal regions mediate the influence of important task-related 

information on the activity of locus coeruleus. We hypothesized that estimation 

uncertainty, which interacts with unexpected uncertainty to drive learning, might also be 

encoded in these prefrontal areas, giving it the potential to influence the computations 

there. Alternatively, unexpected uncertainty signals may be computed in these prefrontal 

regions and subsequently relayed to locus coeruleus. Given the broad distribution of our 

regions of interest, a whole brain imaging approach was used to test for regions yielding 

correlations with our uncertainty signals. 
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Results 

Behavioral 

Consistent with prior findings (Payzan-LeNestour and Bossaerts, 2011), the Bayesian 

learning model fit choices better than the benchmark reinforcement learning model for the 

majority (89%) of participants (Figure 1b). A one-tailed paired t-test on the differences of 

the goodness-of-fits (BIC) found the fit of the Bayesian model to be significantly better 

(p=0.0012; N=18). As a consistency check, we fitted the parameters across subjects by 

minimizing the negative log-likelihoods of the choice data pooled over all the participants. 

The results obtained were consistent with those reported here.  

 

Neuroimaging 

We did not observe a significant BOLD response at our significance threshold of pFWE < 

0.05 to two of our regressors of interest, namely estimation uncertainty at phasic outcome 

and learning rate at tonic outcome (see Table S1 in supplemental materials for coordinates 

of all significant activations).  

Unexpected uncertainty at outcome 

Tonic activity at outcome correlated significantly (pFWE < 0.05) and negatively with 

unexpected uncertainty in posterior cingulate cortex, bilateral post-central gyrus, left 

middle temporal gyrus (MTG), left hippocampus (Hi), and left posterior insula (Ins). See 

Figure 2. In separate analyses we included unexpected uncertainty as a modulator of (i) 

phasic activity at outcome presentation and (ii) the 1.5 second period while the outcome 

was onscreen. The BOLD responses we found overlapped with those illustrated in Figure 

2, but were weaker and less extensive (See Figure S3 in the supplemental materials).  
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In order to test for the effect of unexpected uncertainty at locus coeruleus, we employed 

a preprocessing and analysis procedure optimized for this location (see Methods). We 

applied a small volume correction to the results of this analysis using an anatomical mask 

of human locus coeruleus in MNI space, generated by Keren et al. (2009) from high 

resolution T1-weighted MR imaging of the brainstem. This mask served the dual purpose 

of correcting the activations for multiple comparisons and delineating the locus coeruleus - 

a nucleus that is difficult to discriminate on standard T1-weighted images. Following 

correction, we observed a significant (pFWE < 0.05, SVC) negative response in left locus 

coeruleus (LC) to unexpected uncertainty. See Figure 3. The activity in this cluster does not 

extend significantly into surrounding pontine structures, and the peak of this cluster before 

masking matches that of the masked cluster at a strict (pUNC < 0.0002) uncorrected 

threshold. (See Figure S2 in the supplemental materials for axial slices illustrating 

activation in pons.)  

Estimation uncertainty at cue 

Phasic activation correlated significantly and positively (pFWE < 0.05) with estimation 

uncertainty of the chosen option in intraparietal sulcus (IPS), bilateral middle occipital 

gyrus (MOG) with activation extending bilaterally into parahippocampal gyrus, striatum 

(St), bilateral middle frontal gyrus (MFG), and anterior cingulate (AC). With the exception 

of a cluster at right MFG [x,y,z=30,-4,64], activation increased linearly in estimation 

uncertainty at all regions. See Figure 4.  

Areas correlating with unexpected and estimation uncertainty are also shown overlayed on 

the same figure in Figure 5 in order to illustrate more clearly the differential neural patterns 

associated with each. 

Risk at cue 

Phasic activation correlated significantly and positively (pFWE < 0.05) with the risk of the 

chosen option at cue presentation in right inferior frontal gyrus (IFG) and bilateral lingual 
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gyrus (LG). These activations were found to increase linearly in risk. See Figure 6. A 

subsequent analysis did not find a modulation by risk of activity in the period between cue 

and outcome presentation. 

Learning rate at outcome 

The learning rate at outcome correlated significantly (pFWE < 0.05) with phasic BOLD 

activity in cuneus. See Figure 7. We also tested whether subjects’ BOLD activity in this 

cluster was a better predictor of learning than the model-derived Bayesian learning rate, by 

extracting an averaged and normalized BOLD time course from the cuneal cluster and 

substituting it for the Bayesian learning rate in our model. The goodness of fit (log-

likelihood) of this modified model was poorer than that of our original Bayesian learning 

model. This remained the case when the BOLD time course was high-pass filtered before 

inclusion in the learning model and when free parameters were included to scale and offset 

the BOLD time course.  

Expected value at cue 

In order to confirm that our model was also capturing neural correlates of expected value as 

shown in many previous studies (Hampton et al., 2006; Plassmann et al., 2007; FitzGerald 

et al., 2009) we tested for areas correlating with the expected value of the chosen option at 

cue presentation. Although we did not find significant effects at our whole brain threshold, 

for this analysis we could motivate a focused region of interest analysis because such 

signals are consistently reported in the ventromedial prefrontal cortex (vmPFC) in previous 

studies. We therefore corrected for small volume with a sphere of 5mm centered on 

average coordinates of vmPFC activations from previous studies of decision-making 

reported by Valentin et al. (2007). Consistent with these prior studies we found significant 

correlations (pFWE < 0.05) in the vmPFC with the expected value of the chosen option. 
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Outcome value 

Finally, we tested for regions encoding the value of the outcome. While the phasic effect of 

outcome value was not strong enough to survive a whole brain threshold, there is a large 

body of literature reporting activation of the ventral striatum in response to appetitive and 

aversive outcomes (Delgado et al., 2000, 2008; Elliott et al., 2000; O’Doherty et al., 2004). 

We therefore applied a small volume correction bilaterally at the ventral striatum using 

coordinates taken from Di Martino et al. (2008) and found significant effects (pFWE < 0.05) 

of outcome value at both left and right ventral striatum. 

Prediction error modeling  

In order to account for variance attributable to prediction error signaling (Montague et al., 

1996; Schultz et al., 1997; O’Doherty et al., 2004) we ran an additional GLM which 

included expected value as a phasic modulator of activity at the time of cue onset and 

prediction error, derived from a fitted delta learning rule, as a phasic modulator at the time 

of outcome presentation. Using this model the results presented above remained significant 

at our whole-brain corrected threshold. In addition, we ran a separate analysis testing for 

the presence of an unsigned prediction error signal at the time of outcome presentation, but 

did not observe a response that survived our significance threshold. 
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Discussion 

Uncertainty is an inherent feature of real-world interactions with the environment. While 

previous studies have revealed neural correlates of uncertainty, such studies have to date 

not determined the neural correlates of unexpected uncertainty in the brain, a metric that 

may mediate rapid adaptation to changes in the environment. Here, we localized brain 

activation correlating with unexpected uncertainty, carefully separating it from neural 

activity associated with risk and estimation uncertainty. We further separated this from 

activation arising from changes in the learning rate. By including all three uncertainty 

signals and learning rate in one model, we have ensured that experimental variance is 

appropriately assigned, thereby enabling the unique neural substrates of each to be 

identified. 

We observed significant negative encoding of unexpected uncertainty in several brain 

regions at the time of outcome feedback: the posterior cingulate cortex, a region of post-

central gyrus, a region of posterior insular cortex, left middle temporal gyrus and the left 

hippocampus. The presence of a specific unexpected uncertainty signal in a separate 

network of brain regions from that engaged by other forms of uncertainty provides direct 

experimental evidence in support of theoretical claims that this specific type of uncertainty 

is distinct from other forms of uncertainty such as risk and estimation uncertainty (Yu and 

Dayan, 2005; Payzan-LeNestour and Bossaerts, 2011). It is also important to note that a 

number of other studies have reported engagement of one or more of these brain areas in 

functions that may relate to or involve unexpected uncertainty, although this variable has 

not been explicitly measured in those past studies. For instance, unexpected uncertainty 

arguably relates to novelty detection, and the hippocampus has previously been found to 

play a role in classifying observations into categories of familiarity and novelty 

(Rutishauser et al., 2006). A recent experimental study of behavioral adaptation in 

humans (Collins and Koechlin, 2012) suggests that sometimes after a contextual change, 

humans retrieve from their memory similar contexts experienced in the past, and select the 

behavioral strategy that they previously learned to be optimal in that context. The 
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unexpected uncertainty signalling we observe is unlikely to reflect the deployment of 

such a strategy because the unsignalled changes in our paradigm typically led to genuinely 

new situations.  

We also observed a significant negative response to unexpected uncertainty in the 

noradrenergic brainstem nucleus locus coeruleus. This response was localized to locus 

coeruleus using an MR template of the human locus coeruleus (Keren et al., 2009), despite 

the decreased signal to noise ratio in the brainstem, resulting from the effects of cardiac 

pulsation and respiratory movement. The response is unlikely to be an artifact of motion 

attributable to increased physiological arousal as the BOLD effect observed is decreasing 

with increasing uncertainty. While previous studies have demonstrated sensitivity of 

neuronal responses in locus coeruleus to unexpected changes in reward contingencies in 

rats and nonhuman primates (Aston-Jones et al., 1997; Bouret and Sara, 2004) and have 

attributed phasic changes in pupil diameter in human subjects correlating with unexpected 

uncertainty to the action of locus coeruleus (Preuschoff et al., 2011; Nassar et al., 2012), 

this finding represents the first neural evidence in humans for the claim that brain regions 

containing noradrenergic neurons are involved in the representation of unexpected 

uncertainty (Yu and Dayan, 2005). The neurophysiological literature (Aston-Jones et al., 

1999; Bouret and Sara, 2005) has noted a distinction between the phasic and tonic modes 

of LC activity. While the phasic mode has been associated with enhanced task engagement 

and performance, the tonic mode has been associated with increased distractibility, the 

shifting of attention, and exploratory behavior (Rajkowski et al., 1992; Aston-Jones et al., 

1994; Aston-Jones and Cohen, 2005). In addition, shifts from phasic to tonic LC mode 

have been noted during contingency changes in a target reversal task with non-human 

primates (Aston-Jones et al., 1997). In our paradigm however, a contingency change may 

not precipitate the shifting of attention to previously irrelevant task stimuli or engagement 

in exploratory behavior, as may be the case in a target-reversal paradigm; rather it is 

possible that the contingency change signaled by high unexpected uncertainty brings about 

increased engagement with the outcome stimuli for the purpose of learning, and thus 

recruitment of phasic LC mode, characterized by both relatively low baseline firing rate 
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and high phasic responsiveness to task-relevant stimuli. Given that our BOLD signal 

appears to be more sensitive to baseline activity as opposed to phasic responsiveness, this 

effect could potentially manifest in the sustained decrease in BOLD signal that we observe 

under conditions of high unexpected uncertainty. Further investigation is required, 

however, to fully characterize how switching of LC mode relates to task demands and how 

it may influence the BOLD signal. Another key question for future research lies in 

determining which, if any, of the cortical representations of unexpected uncertainty 

observed here are dependent on efferent projection from locus coeruleus. It also remains to 

be seen whether unexpected uncertainty is computed in locus coeruleus or is projected to 

locus coeruleus from an upstream region; although it should be noted that in the current 

study we do not find evidence of unexpected uncertainty signaling in any of the prefrontal 

cortical regions suggested to project directly to locus coeruleus. 

Estimation uncertainty at the time of cue presentation, as distinct from unexpected 

uncertainty and risk, correlated with activity in several brain structures, most notably in the 

anterior cingulate cortex, extending into posterior dorsomedial prefrontal cortex. The area 

of cingulate cortex found here overlaps with that described by Behrens et al. (2007) as 

correlating with volatility (i.e., the unconditional probability of a jump), as well as with 

estimation uncertainty. This may reflect the correlation between estimation uncertainty and 

volatility, as both are affected by the frequency at which the environment changes. 

However the two are conceptually distinct. In particular, one distinctive role of estimation 

uncertainty is to influence the trial-by-trial assessment of unexpected uncertainty (Payzan-

LeNestour and Bossaerts, 2011). 

In addition to responses at anterior cingulate and posterior dorsomedial prefrontal cortices, 

we observed encoding of estimation uncertainty bilaterally in dorsolateral prefrontal cortex. 

It should be noted that these regions, along with orbitofrontal cortex, comprise the limited 

set of cortical regions known to send strong direct projections to locus coeruleus in 

nonhuman primates (Arnsten and Goldman-Rakic, 1984; Jodo et al., 1998; Aston-Jones et 

al., 2002), although importantly, evidence for projections from posterior dorsomedial is 
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weaker than that for other regions (Aston-Jones and Cohen, 2005). In the light of 

theoretical claims and empirical evidence that locus coeruleus may signal unexpected 

uncertainty through its noradrenergic efferents, allowing it to modulate the rate of learning 

(Yu and Dayan, 2005; Preuschoff et al., 2011; Nassar et al., 2012), our finding thus 

suggests a modulatory pathway through which representations of estimation uncertainty 

may influence unexpected uncertainty signaling. However, further research is required to 

directly test this hypothesis. 

The presence of an estimation uncertainty signal in parts of the dorsomedial and 

dorsolateral frontal cortex is consistent with recent proposals that the prefrontal cortex 

provides estimation uncertainty signals that are used in directed exploration schemes 

(Frank et al., 2009; Badre et al., 2012; Cavanagh et al., 2012). In previous work (Payzan-

LeNestour and Bossaerts, 2012), participants tended to direct exploration towards bandit 

arms with minimal level of estimation uncertainty as well as towards the options with 

maximal level of unexpected uncertainty. In the current learning task we did not find 

evidence of this directed exploration, which may be attributable to the task design; at most 

only two bandit arms were available for choice on each trial in the current task, versus six 

in the task of Payzan-LeNestour and Bossaerts (2012). Thus, although the neural 

representations of uncertainty we report may support such guided exploration, we could not 

directly examine this in the current study. 

A region of inferior prefrontal lobule was also found to track estimation uncertainty. Such a 

finding relates to previous studies that have assessed neural correlates of ambiguity during 

economic decision-making (Huettel et al., 2006; Bach et al., 2011). In those studies, 

subjects were provided with partial information regarding the probabilities associated with 

obtaining a reward outcome and cannot improve their estimate of those probabilities 

through sampling. In contrast, in our case, estimation uncertainty reduces over trials as the 

number of samples of an option increases, provided there is no jump in the outcome 

probabilities. By showing that ambiguity and estimation uncertainty do appear to engage at 

least partly overlapping activations, and although findings of neural overlap must be treated 
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with caution, our finding suggests that ambiguity and estimation uncertainty may engage 

similar underlying computational processes. 

Now turning to risk, we found significant correlations with this variable in inferior frontal 

gyrus as well as a region of lingual gyrus bilaterally. Often in studies assessing risk 

perception, reward probabilities are presented explicitly in a descriptive fashion as opposed 

to being learned from trial-and-error experience (Huettel et al., 2005a; Preuschoff et al., 

2008; Christopoulos et al., 2009), but see d’ Acremont et al., 2009). In our task, neural 

representations of risk are acquired through direct sampling from a distribution of rewards 

as opposed to being constructed on the basis of descriptive information. In previous studies 

describing neural representations of risk, activity has been reported in the inferior frontal 

gyrus in some cases (Huettel et al., 2005a), and the adjacent anterior insula (Huettel et al., 

2005a; Preuschoff et al., 2008). Other studies have reported activations in additional brain 

regions not found at our whole brain-corrected threshold, including the anterior cingulate 

cortex (Christopoulos et al., 2009) and the intraparietal sulcus. Furthermore, we found 

activity in the lingual gyrus, an area typically not found to correlate with risk per se, 

although Callan et al. (2009) found that lingual gyrus is involved in tracking resolution of 

uncertainty, and Bruguier et al. (2010) reported enhanced lingual gyrus activation when 

insider trading risk increased in a financial markets context. One potential account for the 

differences in activation patterns found here is that because we are modeling other 

uncertainty components at the same time and therefore accounting for confounding 

variance, this confers a greater sensitivity to uncover signals specifically pertaining to risk 

on the present study, as opposed to those confounding variables. Furthermore, given that 

risk needs to be learned in our task, putative differences between neural systems involved 

in descriptive versus experiential learning may account partially for involvement of distinct 

brain areas to those found in studies on risk representations emerging from descriptive 

tasks.  

Finally, we observed activity in cuneus correlating with the learning rate. Previous studies 

on the neurobiological bases of choice under uncertainty also reported cuneus activation 
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(Volz et al., 2003; Huettel et al., 2005b; Schlund and Ortu, 2010),  but the activation was 

not linked to parametric changes in the level of uncertainty or to changes in the learning 

rate induced by changes in uncertainty. One study by (Haruno et al., 2004) using an index 

of changes in behavior following reinforcement that could reflect in part learning rate 

found activation correlating with cuneus activity. More generally, the cuneus has been 

identified in numerous studies as playing a role in visual attention and in orienting to 

stimuli in the environment (Carter et al., 1995; Corbetta, 1998; Le et al., 1998; Hahn et al., 

2006; Talsma et al., 2010). Our finding may therefore reflect the modulation of visual 

attention in line with the rate of learning toward a particular stimulus. While the present 

study involved the presentation of stimuli exclusively in the visual domain, in future it 

would be informative to use cue stimuli in other modalities, such as the auditory domain, in 

order to ascertain whether brain systems involved in auditory attention are involved in 

setting the learning rate.  

In conclusion, the present study goes substantially beyond previous studies on uncertainty 

representations by using a model-based fMRI procedure in combination with a Bayesian 

computational model to establish that each of three unique forms of uncertainty is encoded 

in the brain and depends on unique neural substrates. More specifically, we have identified, 

for the first time, specific regions that are involved in implementing unexpected uncertainty 

in the brain, centered on posterior cingulate, parietal cortex and the hippocampus, as well 

as the noradrenergic brainstem nucleus, locus coeruleus. This provides support for the 

theoretical proposal that unexpected uncertainty drives learning in unstable reward 

environments. We have also observed estimation uncertainty signals in prefrontal regions 

known to project directly to locus coeruleus, suggesting a neural pathway by which 

estimation uncertainty may modulate the noradrenergic representation of unexpected 

uncertainty, as required by our Bayesian learning algorithm. Our findings therefore 

demonstrate that the human brain has the capacity to disentangle uncertainty into its 

various components, here, risk, estimation uncertainty, or unexpected uncertainty. The 

resulting signals affect the learning rate differentially and optimally, in line with Bayesian 

learning. 
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Experimental Procedures 

Procedures 

Eighteen healthy young adults (mean age 22.5 years, standard deviation 2.81 years; 9 

males) participated in our neuroimaging study. The imaging data from one female subject 

was discarded due to distortions. All participants provided written informed consent. The 

study was approved by the Research Ethics Committee of the School of Psychology at 

Trinity College Dublin.   

Participants were directed to watch online instructions for the task before the  experimental 

session1. These instructions told participants that they would be performing a demanding 

decision task, described the task and stated that the experiment did not involve deception. 

Upon arrival in the lab, participants again watched the online instructions, after which they 

completed a multiple-choice questionnaire that checked their understanding of the task. 

Participants were also briefed on the payment procedure, including the fact that payment 

would be sensitive to task performance. Participants were told that they would complete 

four sessions of the task; one training session outside the MRI scanner and three 

experimental sessions inside the scanner. All participants acknowledged their 

understanding and acceptance of these procedures. Subsequently, participants completed 

the training session of the task outside the scanner, comprising 158 trials and lasting fifteen 

minutes. After a ten-minute break, participants performed the three in-scanner sessions of 

the task, each lasting approximately seventeen minutes. On average, participants completed 

188 trials during the scanning runs. Participants received the accumulated outcomes from 

the four runs of the task minus an amount that was fixed before the session, but revealed to 

the subject only after the task was completed. This was intended to prevent well-

established wealth effects from occurring during the task. 

 

                                                
1 The online instructions of the task are available at: http://www.elisepayzan.com/research/experiments/research/. 



 

 

35 
Task and Stimuli 

The task (see Figure 1a) was an adaptation of a restless bandit task introduced in (Payzan-

LeNestour and Bossaerts, 2011) and was presented using JAVA. Arm pairs were drawn 

from a selection of three yellow and three blue arms of differing shapes. On free-choice 

trials participants could choose between two displayed arms. On randomly interleaved 

forced-choice trials, only one arm was displayed for choice. Free choice trials comprised 

95% of trials in the training session outside the scanner and 75% of trials in the scanner. 

This design was chosen to minimize potential confounding factors in our analysis of the 

neuroimaging data, because it allowed us to control for activations specific to the 

evaluation of non-chosen alternatives. Participants had 2s to indicate their choice and were 

penalized by €1 for each late or incorrect response. Four seconds after choice, the chosen 

arm probabilistically delivered a monetary gain (+€1), a monetary loss (-€1), or nothing. 

This outcome was displayed for 1.5s. Participants were not informed of the outcome 

probabilities of each arm. An inter-trial interval with a duration drawn from a uniform 

distribution with a minimum of 0.5s and a maximum of 14.5s followed each trial. 

The outcome probabilities of the arms jumped (changed) regularly, without notice. 

Participants were informed that this would occur because previous work (Payzan-

LeNestour and Bossaerts, 2011) suggests that without providing this information, subjects 

do not report detecting changes in contingencies. Participants were told that yellow arms 

had a higher jump probability than the blue but were not told the jump probabilities, which 

were 1/4 and 1/16, respectively. Participants were also informed that if the outcome 

probabilities had jumped for one arm, then they had jumped for all arms of the same color.  

The yellow and blue groups each contained a high, a medium and a low risk arm, where 

risk refers to the entropy of the outcome probabilities of a arm. High-risk arms always had 

probability distributions with maximal entropy (1), meaning that the probabilities of its 

three outcome were equal. The low-risk, low entropy (0.5) arms had a single high 

probability outcome but the identity of this outcome changed with each jump in the 

probabilities. The medium-risk arm had entropy of 0.75. Participants were not told the risk 
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levels of the arms but were told that the arms’ risk levels were fixed across the task. 

Thus, when a jump occurred, the three outcome probabilities simply permuted within each 

arm. 

 

Imaging Procedures    

Magnetic resonance imaging was carried out with a Philips Achieva 3T scanner with an 

eight-channel SENSE (sensitivity encoding) head coil. T2*-weighted echo-planar volumes 

with BOLD (blood oxygen level dependent) contrast were acquired at a 30 degree angle to 

the anterior commissure-posterior commissure line, to attenuate signal dropout at the 

orbitofrontal cortex (Deichmann et al., 2003). Thirty-nine ascending slices were acquired in 

each volume, with an in-plane resolution of 3.5✕3.5mm, and slice thickness of 3.85mm 

[TR: 2000ms; TE: 30ms; FOV: 224✕224✕150.15mm; matrix 64✕64]. Data was acquired in 

three sessions, each comprising 520 volumes. Whole-brain high-resolution T1-weighted 

structural scans (voxel size: 0.9✕0.9✕0.9mm) were also acquired for each subject. To 

account for physiological fluctuations, subjects’ cardiac and respiratory signals were 

recorded with a pulse oximeter and a pressure sensor placed on the umbilical region. Due 

to a technical problem, cardiac, and respiratory information could not be collected from 

two subjects. 

 

Behavioral Modeling  

Choice was modeled using the softmax choice rule, which has been shown to capture 

exploration in restless multi-armed bandits (Daw et al., 2006). As inputs, the softmax 

choice rule uses differences in the estimated values of the available arms on each trial. We 

assume that these values are learned with a model-based Bayesian updating scheme. The 

Bayesian model used in this study is described in detail in (Payzan-LeNestour and 
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Bossaerts, 2011) and for brevity is not reproduced here2. According to this model, the 

decision maker uses the structure of our restless multi-armed bandit task to predict trial-by-

trial outcomes for all options. Specifically, the decision maker adjusted the learning rate as 

a function of the strength of evidence in favor of a jump in a trial (the unexpected 

uncertainty). Our model-based Bayesian approach has the advantage of producing an 

explicit learning rate, unlike alternative Bayesian procedures. It has also been shown to fit 

choices well in our earlier study (Payzan-LeNestour and Bossaerts, 2011) where 

participants had access to all six arms on every trial. 

In order to check the goodness of fit of our Bayesian learning scheme, we benchmarked it 

against the fit of a simple reinforcement-learning (RL) model, using a Rescorla-Wagner 

update rule (Rescorla and Wagner, 1972). In the benchmark RL model, the estimated value 

of the chosen bandit was updated based on the reward prediction error (difference between 

outcome and predicted outcome values) and a constant learning rate. While the learning 

rate remained constant for a given arm, we allowed for differences across yellow (more 

volatile) and blue (less volatile) arms, in accordance with recent evidence that humans set 

different learning rates depending on jump frequency or volatility (Behrens et al., 2007). 

We also tried a learning approach whereby the learning rate changes proportionally with 

the size of the reward prediction error (Pearce and Hall, 1980) but this model performed 

more poorly and was discarded.  

Both the Bayesian and benchmark RL models were fitted to participants’ choices in the 

three runs in the scanner (141 free-choice trials) using maximum likelihood estimation. 

Estimated parameters were allowed to vary across participants. Only one parameter was 

needed to fit the Bayesian learning model, namely, the exploration intensity (temperature) 

of the softmax choice rule. In the case of the benchmark RL rule, two learning rates (one 

for each arm color group) were estimated, as well as the exploration intensity of the 

softmax choice rule. For each model we report the Bayesian Information Criterion (BIC), a 

                                                
2 Details of the Bayesian learning algorithm are available at dx.doi.org/doi:10.1371/journal.pcbi.1001048 
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model evaluation criterion that corrects the negative log-likelihoods for the number of 

free parameters.  

 

fMRI Preprocessing 

All image processing and analysis was performed using SPM5 (Wellcome Department of 

Imaging Neuroscience, Institute of Neurology, London, UK; available at 

http://www.fil.ion.ucl.ac.uk/spm). EPI images were slice-time corrected to TR/2 and 

realigned to the first volume. Each participant's T1-weighted structural image was co-

registered with their mean EPI image and normalized to a standard T1 MNI template. The 

EPI images were then normalized using the same transformation, resampled to a voxel size 

of 2mm isotropic, smoothed with a Gaussian kernel (FWHM: 8mm) and high-pass filtered 

(128s). 

In order to test for task-related BOLD signal at locus coeruleus, we adopted a specialized 

preprocessing and analysis procedure designed to mitigate difficulties arising from the size 

and position of locus coeruleus. Only results reported in LC were obtained using this 

procedure. The conventional normalization procedure in SPM5 seeks an optimal whole-

brain deformation using a limited number of degrees of freedom. However, achieving a 

global optimum can come at the cost of regional accuracy, and as a consequence BOLD 

effects in small structures such as locus coeruleus may be underestimated or misattributed 

to neighboring regions, particularly if extensive Gaussian blurring is applied to the data. 

We therefore employed a two-stage normalization procedure designed to maximize 

intersubject registration, which followed the slice-timing and realignment steps described 

above. The first stage of this procedure comprised a whole-brain diffeomorphic 

normalization of the functional and anatomical data into MNI space using the DARTEL 

algorithm (Ashburner, 2007), which is not limited by a small number of degrees of freedom 

and is thus better at estimating local deformations than both conventional normalization in 

SPM, and regional weighting techniques (Yassa and Stark, 2009). This procedure 
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resampled the functional data to a voxel size of 2mm isotropic and incorporated 

smoothing with a 1mm FWHM kernel. This minimal smoothing was employed in order to 

avoid aliasing of data. The second stage of the procedure was an ROI alignment (ROI-AL) 

(Yassa and Stark, 2009) procedure using a diffeomorphic implementation (Vercauteren et 

al., 2007) of Thirion’s (Thirion, 1998) demons alignment algorithm in the MedINRIA 

software package (Version 1.9.0, ASCLEPIOS Research Team, France). Firstly, each 

subject’s brainstem was manually delineated on his/her DARTEL-normalized anatomical 

scan. The ventral boundary of this ROI was set at the last axial slice on which the nodulus 

of the cerebellum was visible in the fourth ventricle, while the dorsal boundary was set on 

the most superior slice on which the crural cistern was visible. Our brainstem ROIs were 

then registered with the brainstem ROI of a single subject. The resulting registered 

brainstem ROIs were then averaged in SPM5 with ImCalc to create a first model. 

Subsequently, the original brainstem ROIs were registered with this model and the newly 

registered brainstem ROIs were averaged to create a second model. We repeated these two 

steps three more times to generate a more accurate model. The individual displacement 

fields resulting from the last iteration of this process were then applied to each subject’s 

DARTEL-normalized functional and anatomical scans. The functional data was high-pass 

filtered (128s) before entering the statistical analysis. 

 

fMRI Statistical Analysis 

We analyzed the BOLD data using a parametric GLM. This GLM included parametric 

regressors constructed from trial-by-trial estimates of the learning rate and the three 

uncertainty signals obtained from the Bayesian learning model (see Figure S1 in 

supplemental materials for illustrations of the temporal dynamics of these signals). In our 

behavioral model, unexpected uncertainty measures the likelihood that a jump has 

occurred, given the current observation.. Risk was measured as the entropy of the mean 

posterior outcome probabilities. Estimation uncertainty was measured as the entropy of the 

posterior distribution of the outcome probabilities. 
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The subject-specific design matrices used in the GLM comprised four onset regressors 

(see Figure 1c for a summary): a stick function at the time of cue presentation (“Phasic 

Cue”) modulated by three parametric regressors encoding the risk and estimation 

uncertainty of the chosen machine, and the trial type (free choice vs. forced choice); a 

boxcar regressor extending from the time of cue presentation to the time of outcome 

presentation (“Tonic Cue”) modulated by a parametric regressor encoding the model-

derived expected value of the chosen machine; a stick function at the time of outcome 

presentation (“Phasic Outcome”) modulated by four parametric regressors encoding the 

value of the outcome displayed, the learning rate, the estimation uncertainty of the chosen 

machine and the trial type; and a boxcar regressor extending from the time of outcome 

presentation to the time of cue presentation on the following trial (“Tonic Outcome”) 

modulated by two parametric regressors encoding the learning rate and the unexpected 

uncertainty value of the chosen machine. Each of our regressors was convolved with a 

canonical haemodynamic response function after being entered into SPM5 to generate a 

design matrix. Motion parameters estimated during the realignment procedure were also 

included as regressors of no interest.  

Task-related BOLD response in pontine structures may be attenuated by periodic 

physiologic noise arising from respiratory motion and cardiac pulsatility. In our analysis of 

LC activity, we therefore included 13 additional regressors of no interest in our GLM to 

account for physiological fluctuations (four related to heart rate, nine related to respiration) 

which were estimated using the Retrospective Image Correction (RETROICOR) method 

(Glover et al., 2000) with data recorded during the fMRI sequences. 

In order to test for a BOLD response specific to unexpected and estimation uncertainty at 

outcome presentation, we orthogonalized these uncertainty regressors with respect to the 

learning rate regressor, with which they may be correlated. Thus the learning rate regressor 

captured all of the common variance between learning rate and the uncertainty signals, 

thereby ensuring that any variance loading on the uncertainty regressors could not be 

accounted for as reflecting an effect of learning rate per se. It should be noted that there is a 
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functional relationship between the current level of unexpected uncertainty and 

the change of the learning rate, rather than the current level of the learning rate. This 

change in learning rate is a deterministic function of the estimated level of unexpected 

uncertainty, and updates of the latter depend on the level of risk and of estimation 

uncertainty. 

Maps of the voxel-wise parameter estimates for the parametric regressors indicate how the 

BOLD activity scales with the computational signals. These subject-level linear contrasts 

were used in a between-subjects random effects analysis testing the effect of each regressor 

across the group. Each participant’s model fit (log-likelihood) value was adjusted for the 

number of choice trials they completed and included as a covariate of no interest. Unless 

otherwise stated, we report statistics from whole-brain analyses corrected for multiple 

comparisons to pFWE < 0.05, with a cluster spatial extent threshold of 186 voxels. This 

threshold was calculated using a Monte Carlo simulation of activation assuming the null 

hypothesis, implemented using 3DFWHMX and AlphaSim (AFNI, Cox, 1996). In our 

analysis of LC activity we used an anatomical mask of human locus coeruleus in MNI 

space created by Keren et al. (2009) to verify that BOLD effects fall within the space of the 

LC. 

For each of the areas where activation was found to covary significantly with a 

computational signal, we further analyzed whether the BOLD signal increased linearly in 

the computational signal. We reasoned that only a linear effect of an uncertainty measure 

on the BOLD signal would be evidence that the area encodes the uncertainty measure, and 

therefore plotted the average BOLD estimates (corrected for the effect of other regressors) 

across subjects on trials in which the uncertainty metric was low, medium, or high (Figures 

2-5, 7). These plots were generated using the rfxplot toolbox for SPM5 (Gläscher, 2009). 

To avoid bias because of re-use of the same data, we used a leave-one-out cross-validation 

procedure: the group-level random effects model was re-estimated 17 times, omitting a 

different subject each time. For each subject, the trials were sorted into one of three bins 

(bins defined at 33rd, 66th, and 100th percentile) according to the value of the uncertainty 
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signal. We extracted BOLD signals at the coordinates of the local maximum on the 

group-level from which the subject was omitted that were nearest to the coordinates of the 

full-group maximum. The plots illustrate the average parameter estimates across subjects. 
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Figures 

 

 

Figure 1 | (a) Illustration of task. On free choice trials participants chose one of two cue 

stimuli within 2s of cue onset. The chosen cue probabilistically delivered an  outcome of 

+€1, -€1 or no change after a 4s delay. Each trial was followed by a variable length ITI. 

Forced choice trials were also included, on which only a single cue was available for play. 

(b) Bayesian Information Criterion (BIC) values of the benchmark RL model relative to the 

Bayesian model. Each point represents a single participant, with a point above the line 

indicating greater evidence for the Bayesian model. (c) Schematic of GLM used in analysis 

of BOLD data; columns denote onset regressors, white boxes denote parameteric 

modulators.  
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Figure 2 | (a, c) SPM showing negative effects of unexpected uncertainty at time of 

outcome at left middle temporal gyrus [MTG; peak at x,y,z = -44,-78,26], bilateral 

postcentral gyrus [PCG; peaks at x,y,z = -58,-28,46; x,y,z = 54,-24,20], left hippocampus 

[Hi; peak at x,y,z = -28,-36,-10], posterior cingulate [PCG; peak at x,y,z = -8,-34,44], and 

left posterior insula [Ins; peak at x,y,z = -42,-6,2]; pFWE < 0.05 after extent thresholding. (b) 

Bar plot shows average effect of low, medium, and high unexpected uncertainty at left 

middle temporal gyrus. To generate this, trials were sorted according to their unexpected 

uncertainty value into one of three equal-sized bins, which were then fitted to the BOLD 

signal. Error bars indicate SEM.   
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Figure 3 | SPM showing negative effect of unexpected uncertainty (magenta) at locus 

coeruleus [LC; peak at x,y,z, = -2,-37,-17; pUNC < 0.001], and anatomical ROI (blue) of 

human locus coeruleus taken from Keren et al. (2009). 
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Figure 4 | (a, c) SPM showing effects of estimation uncertainty at time of cue at 

intraparietal sulcus [IPS; peak at x,y,z = -42,-40,52],  bilateral middle occipital gyrus 

[MOG; peak at x,y,z = 38,-88,6], striatum [St; peak at x,y,z = 8,-2,12], bilateral middle 

frontal gyrus [MFG; peaks at x,y,z = -34,58,10; x,y,z=-52,10,38; x,y,z = 48,36,24; x,y,z = 

30,-4,64], anterior cingulate [AC; peak at x,y,z = 0,10,54], and inferior frontal gyrus [x,y,z 

= 48,18,-4]; pFWE < 0.05 after extent thresholding. Activation increased linearly in 

estimation uncertainty at all regions, with the exception of a cluster at right MFG [x,y,z = 

30,-4,64]. (b) Bar plot shows the average effect of low, medium, and high estimation 

uncertainty at anterior cingulate. To generate these plots, trials were sorted according to 

their estimation uncertainty value into one of three equal-sized bins, which were then fitted 

to the BOLD signal. Error bars indicate SEM.   

 



 

 

47 

 

Figure 5 | SPMs showing effects of esimation uncertainty at time of cue (green) and 

negative effect of unexpected uncertainty at outcome (red); pFWE < 0.05. 
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Figure 6 | (a) SPM showing effects of risk at time of cue at right inferior frontal gyrus 

[IFG; peak at x,y,z =  56,16,-6] and bilateral lingual gyrus [LG; peaks at x,y,z = 18,-52,-2; 

x,y,z = -26,-56,-16]; shown at pFWE < 0.05 after extent thresholding. (b) Bar plot shows the 

average effect of low, medium and high risk at inferior frontal gyrus. To generate this, trials 

were sorted according to their risk value into one of three equal-sized bins, which were then 

fitted to the BOLD signal. Error bars indicate SEM. 
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Figure 7 | Effect of learning rate at time of outcome at cuneus [CUN; peak at x,y,z = -2,-

86,22]; pFWE < 0.05 after extent thresholding. 
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Figure S1 | Dynamics of Unexpected Uncertainty, Risk, Estimation Uncertainty, and 

Learning Rate, related to Figure 1. (a) Trial-by-trial evolution of the level of unexpected 

uncertainty of chosen options, measured (inversely) as the probability that no jump has 

occurred, in one instance of the task. The values displayed are inferred from the choices of 

one of the participants in our experiment. (b) Evolution of the level of risk (entropy of 

outcome probabilities) of chosen options. (c) Evolution of the level of estimation 

uncertainty (entropy of mean posterior outcome probabilities) of chosen options. (d) 

Evolution of the Bayesian learning rate for the chosen option at outcome delivery in one 

instance of the task. The learning rate is defined as the inverse of the effective number of 

data used by the Bayesian learner in the inference of outcome probability. The values 

displayed are inferred from the choices of a single participant. 
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Contrast  MNI coordinates 

Region Laterality  x  y  z  

Risk*         

Lingual Gyrus R  18  -52  -2  

Precuneus R  6  -74  48  

Posterior Cingulate R  14  -66  12  

Declive L  -26  -56  -16  

Cuneus L  -14  -70  8  

Posterior Cingulate L  -22  -64  4  

Inferior Frontal Gyrus R  56  16  -6  

Inferior Frontal Gyrus R  42  22  -16  
Estimation Uncertainty*         

Middle Occipital Gyrus R  38  -88  6  

Middle Temporal Gyrus R  38  -84  14  

Declive R  28  -52  -20  

Anterior Cingulate Cortex -  0  10  54  

Cingulate Gyrus -  0  4  34  

Cingulate Gyrus -  0  22  38  

Caudate R  8  -2  12  

Caudate L  -10  4  10  

Thalamus L  -10  -4  12  

Intraparietal Sulcus L  -42  -40  52  

Superior Parietal Lobule L  -24  -66  50  

Precuneus L  -26  -80  38  

Middle Frontal Gyrus L  -34  58  10  

Middle Frontal Gyrus L  -38  50  18  

Superior Frontal Gyrus L  -20  66  8  

Middle Frontal Gyrus L  -52  10  38  

Middle Frontal Gyrus L  -44  24  38  

Inferior Frontal Gyrus L  -48  28  20  

Middle Frontal Gyrus R  48  36  24  

Middle Frontal Gyrus R  54  14  34  

Middle Frontal Gyrus R  42  28  38  

Middle Frontal Gyrus♯ R  30  -4  64  

Middle Frontal Gyrus R  30  -2  56  

Inferior Frontal Gyrus R  48  18  -4  



 

 

52 
Insula R  38  22  4  

Inferior Frontal Gyrus R  34  24  -6  

Insula L  -30  22  6  

Inferior Frontal Gyrus L  -40  18  -2  

Superior Temporal Gyrus L  -46  14  -8  

Unexpected Uncertainty*^         

Middle Temporal Gyrus L  -44  -78  26  

Middle Temporal Gyrus L  -54  -68  18  

Middle Temporal Gyrus L  -50  -62  24  

Insula L  -42  -6  2  

Hippocampus L  -28  -36  -10  

Postcentral Gyrus L  -58  -28  46  

Inferior Parietal Lobule L  -56  -28  34  

Postcentral Gyrus L  -28  -48  64  

Cingulate Gyrus L  -8  -34  44  

Cingulate Gyrus L  -4  -4  38  

Posterior Cingulate L  -2  -62  12  

Postcentral Gyrus R  54  -24  20  

Postcentral Gyrus R  64  -28  20  

Postcentral Gyrus R  56  -14  16  

Locus Coeruleus** L  -2  -37  -17  

Learning Rate*         

Cuneus L  -2  -86  22  

Cuneus L  -6  -88  12  

Cuneus L  -12  -76  12  

Expected Value**         

Ventromedial prefrontal cortex R  4  44  -10  

  
Table S1 | Peak co-ordinates of all significantly activated clusters, related to Figures 2, 3, 

5, and 6; *p < 0.05, after extent thresholding; **p < 0.05, after small volume correction; 

^activation increasing in probability of no jump; ♯non-linear effect.  
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Figure S2 | One standard deviation map of the position of locus coeruleus (blue) take from 

Keren et al. (2009) along with an SPM showing the negative effect of unexpected 

uncertainty at tonic outcome in the LC (magenta) at pUNC  < 0.001 (top row) overlaid on 

axial brainstem sections, related to Figure 3. This cluster extends 1mm beyond the dorsal 

threshold of the LC mask. Applying a small volume correction using the LC mask of Keren 

et al. (2009) reveals a significant (pFWE  < 0.05, SVC) cluster lying within locus coeruleus 

[peak at x,y,z= -2,-37,-17]. If a more stringent threshold of pUNC  < 0.0002 (bottom row) is 

applied, the cluster lying within the LC is completely localized to within the pons, centered 

on the LC. The peak of this cluster matches that of the masked cluster [peak at x,y,z= -2,-

37,-17]. 
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Figure S3 | Negative effect of unexpected uncertainty at time of outcome presentation 

(pUNC < 0.005; y=-28) when it is modeled as having 0 second duration (left), 1.5 second 

duration (middle) and when it is modeled as extending from outcome to the following cue 

(right), related to Figure 2. 
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C h a p t e r  3  

REPRESENTATION	
  OF	
  MODEL-­‐BASED	
  BUT	
  NOT	
  MODEL-­‐FREE	
  
LEARNING	
  SIGNALS	
  DURING	
  OBSERVATIONAL	
  LEARNING	
  	
  

A	
   major	
   open	
   question	
   is	
   whether	
   computational	
   strategies	
   thought	
   to	
   be	
   used	
  

during	
   experiential	
   learning,	
   specifically	
   model-­‐based	
   and	
   model-­‐free	
  

reinforcement-­‐learning,	
   also	
   support	
   observational	
   learning.	
   Furthermore,	
   the	
  

question	
  of	
  how	
  observational	
  learning	
  occurs	
  when	
  observers	
  must	
  learn	
  about	
  the	
  

value	
   of	
   options	
   from	
   observing	
   outcomes	
   in	
   the	
   absence	
   of	
   choice	
   has	
   not	
   been	
  

addressed.	
  In	
  the	
  present	
  study	
  we	
  used	
  a	
  multi-­‐armed	
  bandit	
  task	
  that	
  encouraged	
  

human	
   participants	
   to	
   employ	
   both	
   experiential	
   and	
   observational	
   learning	
  while	
  

they	
  underwent	
  functional	
  magnetic	
  resonance	
  imaging	
  (fMRI).	
  We	
  found	
  evidence	
  

for	
   the	
   presence	
   of	
   model-­‐based	
   learning	
   signals	
   during	
   both	
   observational	
   and	
  

experiential	
   learning	
   in	
   the	
   intraparietal	
   sulcus.	
   However,	
   unlike	
   in	
   experiential	
  

learning,	
   model-­‐free	
   learning	
   signals	
   in	
   the	
   ventral	
   striatum	
   were	
   not	
   detectable	
  

during	
   this	
   form	
   of	
   observational	
   learning.	
   These	
   results	
   provide	
   insight	
   into	
   the	
  

flexibilty	
   of	
   the	
  model-­‐based	
   learning	
   system,	
   implicating	
   this	
   system	
   in	
   learning	
  

during	
  observation	
  as	
  well	
  as	
   from	
  direct	
  experience,	
  and	
   further	
  suggest	
   that	
   the	
  

model-­‐free	
   reinforcement-­‐learning	
   system	
  may	
   be	
   less	
   flexible	
   with	
   regard	
   to	
   its	
  

involvement	
  in	
  observational	
  learning.	
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Introduction 

The ability to modify a behavior after experiencing its consequences is vital to the survival 

of any animal (Rescorla and Wagner, 1972; Sutton and Barto, 1998). However, learning 

solely by experiential trial and error can be time-consuming and dangerous and many 

species have developed the ability to learn from other sources of information (Tomasello et 

al., 1987; Galef and Laland, 2005; Whiten et al., 2005; Grüter and Farina, 2009). Humans 

are particularly adept at such non-experiential learning, in particular that achieved by 

observing others take actions and receive their consequences, or observational learning 

(Berger, 1962; Bandura, 1977).  

While a handful of studies have been conducted to examine the neural computations 

underlying observational learning (Burke et al., 2010; Cooper et al., 2012; Suzuki et al., 

2012), this form of learning remains relatively unexplored compared to its experiential 

counterpart. In particular, studies investigating observational learning have focused on the 

situation where observers learn from the consequences of actions freely chosen by an 

observed person (Burke et al., 2010; Cooper et al., 2012; Suzuki et al., 2012). In that 

situation, there are multiple learning strategies that an agent could use to guide their choice. 

One strategy, akin to belief learning in economic games (Camerer and Ho, 1999; Hampton 

et al., 2008), is to learn predictions for which action the observee is likely to choose based 

on the observee’s past choices, and to use that information to simply mimic the observee’s 

behavior. Another strategy is to learn the value of the outcome associated with each option 

as the observer experiences them, and to use that value information to guide one’s own 

choices. While there is some evidence to suggest that individuals are capable of learning 

predictions about others’ actions in either observational learning or strategic interactions 

(Hampton et al., 2008; Burke et al., 2010; Suzuki et al., 2012), much less is known about 

the brain’s ability to learn the value of different decision options through observation in the 

absence of free-choice in the actions being observed.  

 



 

 

57 
The goal of the present study was to address whether the human brain can learn about the 

value of stimuli through observation, in the absence of choice behavior in the observee that 

could be used to drive action-based learning. In the experiential domain, it has been 

proposed that learning about the value of decision options can occur via two distinct 

computational mechanisms: a model-free reinforcement learning mechanism, in which 

options are evaluated  according to a “cached” history of their reinforcement and a model-

based learning mechanism, which acquires a model of the decision problem that it uses to 

compute the values of different decision options (Daw et al., 2005; Balleine et al., 2008). 

Although computationally simple, a model-free mechanism has limited flexibility. For 

example, a model-free agent will persist in choosing a option, even if its contingent 

outcome suddenly becomes no longer valuable. This is because, lacking a model of the 

environment, it has no representation of the current value of the outcome and relies solely 

on how rewarding the option has been in the past. In contrast, a model-based learning 

mechanism can adapt immediately to such a change, but it is more computationally 

complex for it to evaluate different available options because because, rather than relying a 

cached value for an action, it needs to consider all possible future implications of choosing 

that option.  

Recent evidence suggests that both of these mechanisms may be present during experiential 

learning in humans. Model-free learning algorithms iteratively update the value of an 

action using reward prediction errors (RPE), which represent whether the outcome of 

taking that action was more or less rewarding than expected. Such RPE signals have been 

extensively reported within striatum during experiential learning in human neuroimaging 

studies (McClure et al., 2003; O’Doherty et al., 2003; Gläscher et al., 2010). This literature 

suggests that the ventral aspects of striatum may be involved in encoding RPEs when 

learning about the value of stimuli as opposed to actions (O’Doherty et al., 2004; Cooper et 

al., 2012; Chase et al., 2015). In addition, there is growing evidence for the encoding of 

model-based state-prediction errors (SPEs) by a network of frontoparietal regions 

(Gläscher et al., 2010; Liljeholm et al., 2013; Lee et al., 2014). These update signals reflect 

how surprising the outcome of a given action is, irrespective of its reward value, and can be 
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used to update the probabilistic model of contingencies linking actions and the identity of 

their outcomes that is maintained by a model-based learning algorithm.  

On the basis of evidence for the existence of both model-based and model-free learning 

signals in the experiential domain, a key objective of the present study was to establish 

whether learning about the value of different options through observation would involve a 

model-free mechanism, a model-based mechanism or both.  

To address these questions, we recruited human participants to play a multi-armed bandit 

task (see Figure 8) while they underwent functional magnetic resonance imaging (fMRI). 

In the task, participants watched an observee play different colored slot machines. 

Importantly, because the observee only had a single slot machine to choose from on each 

trial, participants could not learn about the value of the slot machines from the observee’s 

actions; they could only learn by observing the payouts experienced by the observee. In 

order to assess whether the participants had learned from observation, they occasionally 

made choices between the slot machines they had watched the observee play. The chosen 

slot machine’s payout on these trials was added to the participants earnings but was hidden 

from them, which allowed us to incentivise learning from observation while preventing 

participants from learning about the machines experientially. In order to enable a direct 

comparison of the neural mechanisms underlying observational and experiential learning, 

we also included an experiential learning condition, which used a different set of slot 

machines. This condition was identical to the observational one, except that the participants 

themselves played and experienced the payouts. We then fitted model-free and model-

based learning algorithms to participants’ choices in this task, and derived from these fitted 

models both reward prediction error and state prediction error regressors for use in our 

analysis of the participants’ fMRI data. While in this task the estimated values of the slot 

machines generated by the model-free and model-based algorithms coincide, their 

respective update signals do not, allowing us to distinguish their neural representations. 

Although the observational condition differs from the experiential condition in that the 

observational choice trials are more valuable than the observational learning trials, our 
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effects of interest occur only on the learning trials in both conditions. Therefore, these 

differences would not be a confounding factor in our analysis.  

We predicted that experiential and observational learning about the value of the different 

slot machines would share similar neural substrates, Specifically, we hypothesized that a 

frontoparietal network would encode state prediction errors during both experiential and 

observational learning, while the ventral aspect of striatum would be involved in encoding 

reward prediction errors during both experiential and observational learning. 
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Materials and Methods 

Procedures 

Seventeen healthy young adults (mean age 23.3 years, SD 3.62 years, 8 males) participated 

in our neuroimaging study. All participants provided written informed consent. The study 

was approved by the Research Ethics Committee of the School of Psychology at Trinity 

College Dublin.   

Each participant attended Trinity College Institute of Neuroscience where they received 

instruction in the task (See Figure 8 and below). The participant was then introduced to a 

confederate (the observee), who they would subsequently watch playing a subset of the 

trials of the bandit task. Immediately before the task began, participants saw the 

experimenter supposedly test the video connection to the observee. The participant then 

completed the bandit task while undergoing MR imaging. In a post-scan debriefing, all 

participants reported having believed the video of the observee shown during the bandit 

task to have been a live feed. In reality, this video was recorded before the experiment.  

 

Bandit Task 

Participants faced slot machines that, when played, delivered a positive monetary payoff 

(€0.20) or nothing, with differing reward probabilities that changed independently and 

continuously over the course of the task. Each machine’s reward probability time-course 

was a sine curve that drifted between 0 and 100% plus a small amount of Gaussian noise on 

each trial (M = 0, SD = 6), with a random starting point and half-period randomly set 

between 0.87 and 1.67 times the number of trials per condition. The reward probabilities 

were constrained to be correlated with each other at no greater than r  = 0.02. The reward 

probability time-courses assigned to each condition were counterbalanced across 

participants. These slot machines were uniquely identifiable by their color. Three slot 

machines were assigned to an experiential learning condition and the remaining three to an 
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observational learning condition. This separation of slot machines by condition allowed 

us to be confident that any neural effects of learning were solely attributable to experiential 

or observational learning. In each condition, one ‘neutral’ slot machine always paid €0.00 

with 100% probability. These neutral slot machines were intended to control for 

visuomotor effects, but were not ultimately utilized in the analysis, because our use of 

parametric regressors implicitly controls for such effects. In both conditions, participants 

faced a mixture of forced-choice trials, on which they could learn about the probability of 

payoff associated with each slot machine, and free-choice trials, on which they could use 

this knowledge to maximize their earnings. The use of forced-choice trials allowed us to 

exclude the possibility that in the observational condition participants were mimicking the 

choices of the observer rather than learning the value of each slot machine. Free-choice 

trials were included to allow us to assess whether participants were learning from the 

forced-choice trials. The task was blocked by condition, with 28 trials presented in each 

block. Free-choice trials made up one quarter of all trials, and were randomly interleaved 

among the forced-choice trials. The task was presented in four runs of 3 blocks or 

approximately 17 minutes each.  

On forced-choice trials, a single slot machine appeared on the left or right side of the 

screen. The player had a maximum of two seconds to play the machine by indicating the 

side of the screen it was on, using a keypad. The slot machine lever was pulled and its reel 

spun for four seconds. The slot machine then disappeared and was replaced by either an 

image of a coin, indicating to the participant that they had earned €0.20, or an image of a 

scrambled or crossed-out coin indicating to the player that they had earned nothing. After 

two seconds the payoff image disappeared and the trial was followed by an inter-trial 

interval (ITI) with a duration drawn from a uniform distribution (minimum = 1 seconds, 

maximum = 7 seconds), during which a white crosshairs was displayed on a black 

background. On forced-choice trials in the experiential condition, the participant played the 

slot machine and earned the payoff it delivered, while on forced-choice trials in the 

observational condition the participant watched video of the slot machine being played by 

the observee. The observee was shown seated on the left side of the screen with their back 



 

 

62 
to the camera in front of a monitor, which displayed the task. On these trials, the 

participant observed and did not earn the payoffs delivered by the slot machine. However, 

it remained in the interest of participants to attend to these observed trials because they 

would make choices between the slot machines shown on these trials on subsequent free-

choice trials.  

On free-choice trials, the two slot machines with a non-zero probability of reward from the 

current condition appeared on screen. Participants had a maximum of two seconds to 

choose to play one of the machines. The lever of the selected slot machine was pulled and 

its reel spun for four seconds. The inter-trial interval began immediately after the reel had 

finished spinning. As in forced-choice trials, the slot machines paid out according to their 

associated reward probability. The payoff was not displayed to the participant on free-

choice trials in order to confine their learning to the forced-choice trials. This also had the 

benefit of preventing potential indirect effects of receipt of reinforcement, such as 

increased attention, from influencing participants learning through observation. The payoff 

earned on a free-choice trial was however added to the participant’s earnings thus 

incentivising them to choose the machine they believed most likely to pay out.  

If participants failed to respond to a trial within two seconds or responded incorrectly to a 

forced-choice trial in the experiential condition, the slot machine cues disappeared and 

were replaced by text stating ‘Invalid or late choice’. This remained onscreen for the 

remainder of the trial. 

 

Imaging Procedures    

Magnetic resonance imaging was carried out with a Philips Achieva 3T scanner with an 

eight-channel SENSE (sensitivity encoding) head coil. T2*-weighted echo-planar volumes 

with BOLD (blood oxygen level dependent) contrast were acquired at a 30 degree angle to 

the anterior commissure-posterior commissure line, to attenuate signal dropout at the 
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orbitofrontal cortex (Deichmann et al., 2003). Thirty-nine ascending slices were acquired 

in each volume, with an in-plane resolution of 3✕3mm, and slice thickness of 3.55mm [TR: 

2000ms; TE: 30ms; FOV: 240✕240✕138.45mm; matrix 80✕80]. Data was acquired in four 

sessions, each comprising 516 volumes. Whole-brain high-resolution T1-weighted 

structural scans (voxel size: 0.9✕0.9✕0.9mm) were also acquired for each participant.  

 

Computational Modeling  

Participants’ choices were modeled using both model-free and model-based learning 

algorithms. The model-free algorithm used was a variation on the SARSA reinforcement 

learning algorithm (Sutton and Barto, 1998) together with a softmax decision rule. This 

algorithm iteratively updates a ‘cached’ value for taking an action in a particular context. 

The values of slot machines played by the participant and those played by the observee 

were updated in the same manner. Specifically, all slot machines began with an initial value 

of 0. If a given slot machine did not display a payoff on a particular trial, its value remained 

unchanged. If a slot machine 𝑖 displayed a payoff on trial 𝑡, its value 𝑉 was updated 

according to the rule:  

𝑇 𝑖, 𝑠 !!! = 𝑇 𝑖, 𝑠 ! + 𝜂𝛿!,!"#!  

𝛿!,!"#! = 1− 𝑇 𝑖, 𝑠 !  

 

where 𝜂 and  𝛿!"#   refer to the learning rate and state prediction error respectively. The 

estimated transition probability for the outcome state not arrived in was reduced according 

to 𝑇 𝑖, 𝑠′ !!! = 𝑇 𝑖, 𝑠! ! 1− 𝜂  to ensure 𝑇 𝑖, 𝑠 !!!
! = 1. The reward function over 

outcome states was defined as 𝑟 𝑠 = 1 if 𝑠 is the reward outcome state, otherwise 

𝑟 𝑠 = 0. The estimated transition probabilities were integrated with the reward function to 

compute the expected reward from playing a slot machine, i.e. 
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𝑉!! = 𝑇 𝑖, 𝑠 !

!
𝑟 𝑠  

For both model-based and model-free learning algorithms, the predicted choice 

probabilities were obtained by passing the values of the slot machines available for choice 

to a softmax choice rule with temperature parameter 𝜃. Due to the simple structure of the 

bandit task, the model-free and model-based algorithms make identical behavioral 

predictions and the state prediction errors of the model-based algorithm were equivalent to 

the absolute value of the reward prediction errors from the model-free algorithm. 

Importantly, such unsigned prediction errors cannot be used to update the cached values 

maintained by a model-free learning algorithm because they do not reflect the reinforcing 

value of the outcome of an action. Separate learning rate and temperature parameters were 

fit to the pooled participants’ choices by maximizing the product of the model-predicted 

probabilities of the participants’ choices (maximum likelihood estimation) using 

fminsearch in MATLAB. The same parameter estimates were used for the model-free and 

model-based learning algorithms. We used the Bayesian Information Criterion (BIC) to 

evaluate the learning algorithms according to their goodness of fit and complexity. Using 

this procedure, we selected a model with a single learning rate (BIC = 1428.6, learning rate 

= 0.14, 𝜃 = 6.18) that outperformed alternative models which allowed for different learning 

rates to be associated with the observed and experienced payoffs (BIC = 1434.7), or 

allowed different softmax temperatures to be associated with free-choice trials in the 

observed and experienced conditions (BIC = 1463.9). Prediction error values were derived 

from this fitted model and used in our analysis of the BOLD data. In order to assess the 

sensitivity of any neural effects to the fitted parameter values we also carried out analyses 

of the BOLD data with prediction error regressors generated using learning rates that 

deviated from the fitted values (0.05, 0.25).  

fMRI Preprocessing 

All image preprocessing and analysis was performed using SPM8 (Wellcome Department 

of Imaging Neuroscience, Institute of Neurology, London, UK; available at 
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http://www.fil.ion.ucl.ac.uk/spm). All functional volumes were corrected for differences 

in acquisition time between slices (to the middle slice), realigned to the first volume, and 

coregistered with the high-resolution structural image. The coregistered high-resolution 

structural image was segmented and normalised to Montreal Neurological Institute (MNI) 

space using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra 

(DARTEL). The resulting transformation was applied to the functional volumes. The 

functional volumes were spatially smoothed with a Gaussian kernel (full-width at half-

maximum = 8 mm) and high-pass temporally filtered (60s). 

 

fMRI Statistical Analysis 

We analyzed the BOLD data using a GLM with participant-specific design matrices. 

Forced-choice trials were modeled with a regressor indicating the onset times of the slot 

machine cue and another indicating the onset times of the payout cue. Forced-choice trials 

containing slot machines that deterministically paid out €0.00 were modeled with separate 

cue and payout onset regressors. A parametric regressor representing the trial-by-trial 

prediction error estimates obtained from the behavioral model modulated the payout onset 

regressor. Another regressor modeled the cue onset on free-choice trials. The experiential 

and observational conditions were modeled with separate sets of onset and parametric 

regressors, allowing us to control for any average differences in the BOLD data between 

the conditions that may be due to visual, social or motor factors. Each regressor was 

convolved with a canonical haemodynamic response function after being entered into 

SPM8 to generate a design matrix. In order to be confident in our estimates of the effects of 

our regressors on BOLD, we tested for the presence of multicollinearity by measuring the 

Variance Inflation Factor (VIF) associated with each convolved regressor for each 

participant. This was obtained by performing OLS regression of each regressor on all other 

regressors. The VIF is then defined as 1/(1-R^2), where R^2 is the coefficient of 

determination from this regression. The VIF values for all regressors of all participants 

were less than 2.5, substantially less than conventional cutoff values of 10, 20, or 40 
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(O’Brien 2007), indicating that multicollinearity was not present. We do not include 

regressors representing the times of decision in each condition because a VIF analysis 

indicated that these would introduce a high degree of multicollinearity into the design 

matrix (VIF_OBS = 10.13, VIF_EXP = 23.56; averaged across participants). This is 

attributable to the small temporal separation between the appearance of the cue and the 

time of decision leading to extremely high correlations between their regressors in both the 

observational and experiential learning conditions (R_OBS = 0.94, R_EXP = 0.97; 

averaged across participants). The presence of such multicollinearity would prevent us 

from accurately distinguishing the effects of cue onset and decision onset. Motion 

parameters estimated during the realignment procedure were also included as regressors of 

no interest.   

Maps of the voxel-wise parameter estimates for the regressors of interest were entered in 

between-subjects random effects analyses testing the effect of the regressors across the 

group. Unless otherwise stated, we report statistics with an uncorrected threshold of pUNC 

< 0.005, after correction for multiple comparisons across the whole brain (WBC) to pFWE 

< 0.05 using 3dFWHMx to estimate the smoothness of the residual images of each contrast 

and AlphaSim to calculate extent thresholds (AFNI, Cox 1996). A substantial number of 

studies have reported reward prediction error encoding in ventral striatum (Pagnoni et al. 

2002; O’Doherty et al. 2004; Pessiglione et al. 2006). Therefore, we also carried out small-

volume corrections (SVCs) on ventral striatum using an independent anatomical mask 

composed of two spherical ROIs of radius 5mm centered on the bilateral MNI coordinates 

of ventral striatum reported by a previous study of functional connectivity (Di Martino et 

al. 2008). 
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Results 

Behavioral results 

We began by confirming that all participants chose the slot machine with the higher reward 

probability significantly more often than an agent choosing at random (p=0.5), as 

determined by a one-tailed binomial test. We then tested for a performance difference 

between the experiential and observational learning condition using a paired t-test (see 

Figure 9A). Again, performance was defined as the proportion of choice trials on which the 

slot machine with the higher win probability was chosen. We found significantly higher 

performance in the experiential learning condition relative to the observational learning 

condition (t(16)=2.26, p<0.04, two-tailed). Participants’ performance in the first half of the 

task (M = 0.84, SD = 0.11) in the experiential condition was significantly (t(16) = 2.54, p = 

0.02, two-tailed) better in the second half (M = 0.72, SD = 0.15). Participants’ performance 

in the observational condition did not differ between the first (M = 0.73, SD = 0.18) and 

second half (M = 0.69, SD = 0.15) of the task. We found a significant effect of task 

difficulty, defined as the difference in the reward probabilities of the slot machines 

available for choice, on trial-by-trial performance in 9/17 participants in the experiential 

condition, and in 8/17 participants in the observational condition, after probit regressions. 

Levene’s tests did not indicate inhomogeneity of variance between their performance on 

the experiential and observational condition (F=0.004, p=0.95). Participants’ reaction times 

on observational free-choice trials (M = 827ms, SD = 115ms) were also significantly 

slower (t(16)=-2.59, p<0.02, two-tailed) than those on experiential free-choice trials (M = 

776ms, SD = 123ms). 
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Neuroimaging results 

Model-free learning signals 

We tested for the presence of a relationship between BOLD activity and the model-derived 

RPEs, signals used by model-free learning algorithms to update the cached value of 

performing an action in a particular context (see Figure 10 and Table 1). 

We found a significant effect of RPE in the experiential condition (RPEEXP) on BOLD in 

ventral striatum [𝑝!"# < 0.05, SVC; x,y,z = 10,10,-6], as well as posterior cingulate 

[𝑝!"# < 0.05, WBC; x,y,z = 0,-38,32] and dorsomedial prefrontal cortex [𝑝!"# < 0.05, 

WBC; x,y,z = -4,62,6]. With the exception of the activation in dorsomedial prefrontal 

cortex, these effects were robust to deviations in the value of the learning rate parameter 

from the fitted value (see Table 1), consistent with a previous report (Wilson and Niv, 

2015). The RPEEXP effects in the first and second halves of the task did not differ 

significantly nor did their difference covary with performance differences in the 

experiential condition between the first and second halves. In contrast to our findings for 

RPEEXP, we found no positive or negative effect on BOLD of the RPE associated with the 

observed outcomes in the observational condition (RPEOBS) in our ventral striatum ROI 

after small-volume correction, or elsewhere at our whole-brain threshold. We do not 

believe this finding is attributable to imprecise fitting of the behavioral model parameters 

because this absence of RPEOBS encoding was robust to deviations in the learning rate 

parameter from the fitted value. 

We then performed a formal two-tailed t-test on the differences between the effect of the 

RPE signal in the experiential and observational conditions (RPEOBS > RPEEXP, RPEEXP > 

RPEOBS). Of the areas we had found to be sensitive to RPEEXP, only ventral striatum 

[𝑝!"# < 0.05, two-tailed; SVC; x,y,z = -6,10,-4] responded more strongly to RPEEXP than 

to RPEOBS. BOLD in a region of right middle occipital gyrus [𝑝!"# < 0.05, two-tailed, 

WBC; x,y,z = 22,-84,10] was not significantly related to either RPEEXP or RPEOBS but 

showed a significantly more positive effect of RPEOBS than RPEEXP. 
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In order to determine whether these differences between experiential and observational 

learning in the neural encoding of RPE were associated with differences in task 

performance between the conditions, we repeated this two-tailed t-test, including a 

covariate representing the difference between the conditions in the proportion of choices 

for the slot machine with the greater probability of reward for each participant. Following 

this test, RPEEXP signaling in ventral striatum remained significantly greater than that of 

RPEOBS [𝑝!"# < 0.05, two-tailed; SVC; x,y,z = -6,10,-4], indicating that this difference is 

not attributable to performance differences between experiential and observational learning. 

In contrast, the cluster in right middle occipital gyrus that showed a significantly more 

positive effect of RPEOBS than RPEEXP did not survive the inclusion of this covariate. 

 

Model-based learning signals 

Next we tested for the neural representation of SPEs, error signals used by model-based 

learning algorithms to update probabilistic representations of environmental contingencies 

linking actions to subsequent states 

We found (see Figure 11 and Table 1) a significant effect of the SPE associated with the 

earned outcomes in the experiential condition (SPEEXP) in left intraparietal sulcus 

[𝑝!"# < 0.05, WBC; x,y,z = -48,-68,28] and right dorsomedial prefrontal cortex 

[𝑝!"# < 0.05, WBC; x,y,z = 4,34,42]. We found significant effects of BOLD to SPEOBS in 

left intraparietal sulcus/inferior parietal lobule [𝑝!"# < 0.05, WBC; x,y,z = -44,-62,42] as 

well as left precuneus [𝑝!"# < 0.05, WBC; x,y,z = 4, -62, 40]. In contrast to the model-

free RPE activations, these model-based SPE effects were highly sensitive to deviations in 

the value of the learning rate parameter from the fitted value, with none remaining 

significant at both alternative values (see Table 1). The effects of SPEEXP on BOLD in the 

first and second halves of the task also did not differ significantly nor did their difference 

covary with performance differences in the experiential condition between the first and 

second halves. 
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After performing a two-tailed t-test on the difference between the effects of SPEEXP and 

SPEOBS, we found that BOLD in none of the areas that responded positively to either 

SPEEXP or SPEOBS exhibited an effects of SPEEXP that was significantly different from the 

effect of SPEOBS. A single region of right middle temporal gyrus showed a significantly 

more positive effect of SPEOBS than of SPEEXP [𝑝!"# < 0.05, WBC; x,y,z = 40,-72,12], 

but because this area did not respond significantly to SPEOBS in its own right, we do not 

consider it further. Given the similarity of the neural effects of SPEEXP and SPEOBS, we 

merged the regressors into a single SPE regressor in order to provide a test with greater 

statistical power. However, this analysis did not reveal any additional regions that were 

uniquely sensitive to this merged SPE regressor (see Table 1). 

 

No effects of task performance on BOLD 

We did not find any effects of task performance on BOLD response to the cue on free- or 

forced-choice trials, to the outcome on forced-choice trials, or to the prediction error 

regressors in either the observational or experiential condition. 
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Discussion 

In this study, we examined the neural correlates of computations underlying learning from 

the outcomes of actions we observe others take in the absence of choice.  

We found that this form of observational learning differs significantly from its experiential 

analog in the neural representation of the RPE, a signal that can be used to update ‘cached’ 

model-free action values (Daw et al., 2005). BOLD activity correlated with model-free 

RPE during experiential learning in ventral striatum, replicating previous findings (Pagnoni 

et al., 2002; O’Doherty et al., 2003; Pessiglione et al., 2006) as well as dmPFC, which has 

also previously been associated with both social and non-social prediction error signals 

(Behrens et al., 2009, 2009; Yau and McNally, 2015). However, activity in ventral striatum 

differed significantly during observational learning, with no evidence of an analogous 

observational RPE signal in ventral striatum at our testing threshold.  

It is unlikely that this difference is attributable to gross differences in the visual, social, or 

motor properties of the conditions, which were controlled for by the use of condition-

specific event onset regressors. The absence of model-free signaling in the observational 

learning condition is also unlikely to reflect reduced salience of this condition because we 

successfully detect other, model-based, signals during observational learning. This selective 

encoding of RPE during experiential learning provides new insight into the computational 

role of ventral striatum, indicating that it may not be recruited for the acquisition of model-

free associations when we learn from the consequences of actions we observe others take. 

Our experiential and observational learning conditions necessarily differ in multiple 

respects that may have influenced what type of learning mechanism is engaged; most 

prominently, the presence of the observee and the receipt of reinforcement by the 

participant. An important goal for future research should be to identify what elements of 

observational learning give rise to this absence of RPE signaling in ventral striatum. It may 

be that the lack of experienced reward during observational learning prevents engagement 

of a model-free learning mechanism that relies on the receipt of reinforcement. 
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Alternatively, the presence of the observee may suppress the use of model-free learning 

in favor of model-based updating strategies. 

While in the current study participants could only observe the outcomes received by the 

observee and could not be influenced by their choice of action, in previous studies 

participants watched the observee make explicit choices between actions and receive the 

resulting outcomes (Burke et al., 2010; Suzuki et al., 2011; Cooper et al., 2012). From these 

studies, there is evidence to suggest that the differential sensitivity of ventral striatum to 

RPE encoding we find may not be limited to learning from the outcomes of actions taken in 

the absence of choice, although these studies did not explicitly test for differences between 

observational and experiential learning signals. Our finding that experiential but not 

observational learning is associated with RPE signaling in ventral striatum is consistent 

with that of (Cooper et al., 2012), who reported sensitivity of BOLD in ventral striatum to 

RPE when participants learned from the outcomes of their choices in a multi-armed bandit 

task but find no such RPE effect when participants learned by observing another player 

perform the same task. Suzuki et al. (2012) also find RPE encoding in ventral striatum 

when participants chose between stimuli associated with probabilistic monetary 

reinforcement, but this BOLD effect in striatum is absent when participants learn to predict 

the choices of others by observing them perform the task. Interestingly, Burke et al. (2010) 

report a negative effect of RPE in ventral striatum associated with the outcomes of 

observed choices as well as positive RPE encoding during experiential learning. They also 

suggested, however, that this result could potentially be attributable to a social comparison 

effect, by which observing rewards being denied to another person may itself be rewarding 

(Delgado et al., 2005; Fliessbach et al., 2007). Taken together, these results suggest that 

ventral striatum may not possess the computational flexibility required to allow the 

outcomes of actions we observe other social agents take to update stored values in the 

manner that experienced outcomes do. Alternatively, we cannot exclude the possibility that 

ventral striatum may only engage in this form of updating in particularly evocative social 

contexts that have not yet been explored experimentally. This would be consistent with 

reports of modulation of ventral striatal BOLD responsiveness to reward received by others 
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by interpersonal factors such as their perceived similarity to the participant (Mobbs et al., 

2009b) or whether they are cooperating or in competition with the participant (de Bruijn et 

al., 2009).  

Previous studies have reported RPE effects accompanying observed outcomes in BOLD in 

dorsal striatum (Cooper et al., 2012) and vmPFC (Burke et al., 2010; Suzuki et al., 2012). 

When these results are taken together with the absence of RPE effects during observational 

learning in the current study, one possibility is that these neural circuits are more engaged 

during the processing of outcomes of observed actions that are freely chosen. This would 

echo accumulated evidence from studies of experiential learning indicating that dorsal 

striatum in particular is engaged selectively for model-free updating when actions can be 

freely chosen (O’Doherty et al., 2004; Gläscher et al., 2009; Cooper et al., 2012). 

Despite the absence of model-free RPE signaling, participants’ choices clearly indicated 

that they used the observed outcomes to learn values for the bandits, potentially by relying 

instead on model-based learning. We found neural representations of SPE signals used by 

such an algorithm to update the probabilistic contingencies linking environmental states in 

response to both experienced and observed outcomes in our task in left intraparietal sulcus 

– a region that has been associated with SPE signals in previous studies (Gläscher et al., 

2010; Liljeholm et al., 2013; Lee et al., 2014). Our findings represent the first time such 

signals have been tested for and observed during observational learning.  

Interestingly, although model-based learning is frequently associated with greater 

computational flexibility, our observational learning condition demands no more 

computational flexibility than the experiential learning condition; the conditions do not 

differ in their task structure, or the reward information available to the participant. Thus, 

the fact that we find only model-based update signals during observational learning is 

unexpected, and demonstrates that model-based learning signals occur across a broader 

range of domains than model-free learning, even when the greater computational flexibility 

of model-based learning is not required. 
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It should be noted that the observational SPE signal we discuss here differs, both 

computationally and in terms of its neural substrates, from other error signals reported 

during observational learning (Behrens et al., 2008; Burke et al., 2010; Suzuki et al., 2012) 

that reflected violations of predictions about the actions an observee will choose to take. 

These were used to improve those predictions (Suzuki et al., 2012), to learn about the 

observee’s intentions (Behrens et al., 2008), or to bias ones own choices towards 

advantageous actions (Burke et al., 2010). In contrast, in our task the observee did not 

make choices between actions and the SPE signal instead reflected violations of the 

predicted consequences of the observee’s actions. In addition, while we found BOLD 

correlates of the observational SPE in left intraparietal sulcus and left precuneus, action 

prediction errors have been reported in dmPFC (Behrens et al., 2008; Suzuki et al., 2012) 

and dlPFC (Burke et al., 2010; Suzuki et al., 2012), suggesting that learning to predict the 

outcomes of others actions by observation is implemented by neural circuits that are 

distinct from those used to learn to predict the actions themselves (Dunne and O’Doherty, 

2013).  

In addition to learning by observing the consequences of others actions, humans can exploit 

other forms of non-experiential learning. For example, we can also learn from the 

consequences of actions we could have but did not take, or by fictive learning. This can be 

seen in the investor who, having bought shares in a public company, can learn about the 

shrewdness of his choice from the changing share price of not only the company he 

invested in, but other companies he chose not to invest in. This phenomenon has been 

explored from a model-free standpoint (Daw et al., 2005; Lohrenz et al., 2007; Li and Daw, 

2011) but it remains to be seen whether fictive learning may also be supported by the 

strengthening of model-based associations. 

In summary, we demonstrate that when learning by observing the experiences of others in 

the absence of free-choice, state prediction errors signals associated with model-based 

learning are present in the frontoparietal network, while reward prediction error signals 

associated with model-free reinforcement learning are not evident. These results illustrate 
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the adaptability of the model-based learning system, and suggest that its apparent ability 

to incorporate information gleaned from both the observation of the consequences of 

others’ actions and the experience of the outcomes of our own actions may be fundamental 

to our ability to efficiently assimilate diverse forms of information. 
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Figures 

 

Figure 8. Task Schematic. Participants completed a multi-armed bandit task, with an 

experiential and an observational learning condition. Individual slot machines were played 

on forced-choice trials and participants made choices between pairs of slot machines on 

free-choice trials. Each slot machine paid out a reward (€0.20) or nothing, with a reward 

probability that changed independently across machines and continuously throughout the 

task. On experiential forced-choice trials, the participant played the slot machine and 

earned the amount paid out, while on observational forced-choice trials they watched video 

of an observee playing the slot machine and earning the amount paid out. On all trials, a 

slot machine was selected for play within 2 seconds of the onset of a trial, after which the 

reels of that slot machine spun for 4 seconds. On forced-choice trials, the amount paid out 

was displayed for 2 seconds. On free-choice trials, the amount paid out was not displayed 

to the participant but was added to the participant’s earnings. All trials were followed by an 

ITI whose duration was drawn randomly from a discrete uniform distribution (min=1s, 

max=7s). 
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Figure 9. Behavioral performance. Box plot of participants’ performance, defined as the 

proportion of free-choice trials on which the slot machine with the highest probability of 

paying out was chosen, in the experiential and observational conditions. Horizontal bar 

represents median performance, box represents interquartile range, and whisker ends 

represent maximum and minimum performance values. Average performance was higher 

in the experiential learning condition (mean = 0.77) than in the observational learning 

condition (mean = 0.71). 
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Figure 10. Effect of reward prediction error in ventral striatum. We found that BOLD 

activity in ventral striatum was sensitive to RPEs associated with outcomes that were 

earned (A), but found no RPE representation in ventral striatum associated with outcomes 

that were observed (B). The differences between the effects of experiential and 
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observational RPEs were significant in ventral striatum (C). SPMs of the effects (left) are 

overlaid on the group mean normalized anatomical image and thresholded at 𝑝!"# <

0.005 and 𝑝!"# < 0.001 for the purpose of illustration. Histograms (right) represent the 

frequency of voxel-wise t-statistics in our bilateral ventral striatum ROI. For the contrast of 

negative effect of RPEOBS, no voxels in our ROI survive an uncorrected threshold of 

𝑝!"# < 0.005. 
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Figure 11. Effects of state prediction error. We found effects of SPEEXP on BOLD 

(𝑝!"# < 0.05,𝑊𝐵𝐶) in left intraparietal sulcus and right dorsomedial prefrontal cortex, 

and effects of SPEOBS in left intraparietal sulcus/inferior parietal lobule and left precuneus. 

A two-tailed t-test indicated that none of these clusters showed a significantly different 

effect of SPEEXP than of SPEOBS. SPMs are overlaid on the group mean normalized 

anatomical image and thresholded at 𝑝!"# < 0.005 and 𝑝!"# < 0.001 for the purpose of 

illustration.  
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Contrast Region x y z 
Cluster 

size 

z-score 

RPEEXP  Posterior cingulate1,3,4 0 -38 32 1244 4.27 

 

Dorsomedial prefrontal 

cortex1,4 
-4 62 6 296 3.63 

 
Right ventral striatum2,3,4 10 10 -6 15 3.07 

RPEOBS > RPEEXP 
Right middle occipital 

gyrus1,2 
22 -84 10 468 3.59 

RPEEXP > RPEOBS Left ventral striatum2 -6 10 -4 5 3.19 

SPEOBS Left precuneus1,3 -4 -64 40 96 3.35 

 

Left intraparietal 

sulcus/inferior parietal 

lobule1 

-44 -62 42 205 3.84 

SPEEXP Left intraparietal sulcus1 -48 -66 28 178 3.67 

 

Right dorsomedial prefrontal 

cortex1 
4 34 42 343 3.76 

SPEOBS > SPEEXP 
Right middle temporal 

gyrus1,4 
40 -72 12 556 5.50 

SPEMERGED Left precuneus1 -4 -64 42 338 3.76 

 Left intraparietal sulcus1 -38 -58 42 306 3.62 
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Table 1 | Peak co-ordinates of all significantly activated clusters, related to Figures 9, 10, 

and 11; 1𝑝!"# < 0.05 at cluster-level after whole-brain correction and a height threshold 

of 𝑝!"# < 0.005; 2𝑝!"# < 0.05 at peak-level after small volume correction and a height 

threshold of 𝑝!"# < 0.005; 3Survives correction for multiple comparisons with a learning 

rate of 0.05; 4Survives correction for multiple comparisons with a learning rate of 0.25. 
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C h a p t e r  4  

TESTOSTERONE	
  CAUSES	
  BOTH	
  PROSOCIAL	
  AND	
  ANTISOCIAL	
  
STATUS-­‐ENHANCING	
  BEHAVIORS	
  IN	
  HUMAN	
  MALES	
  

 
Although a popular view on the role of testosterone on human social behaviour proposes 

that it increases aggression, a recent theory states that it promotes behaviors that enhance 

social status. Yet causal evidence distinguishing these theories is lacking in human males. 

Here we discriminated between these hypotheses in men injected with testosterone or 

with a placebo in a double-blind, between-subjects, randomized design. Participants 

played a modified Ultimatum Game, which included the opportunity to punish or to 

reward proposers at a proportionate cost to themselves. Administration of testosterone 

increased punishment of the proposer but also increased reward of larger offers. Our 

findings are inconsistent with the view that testosterone simply increases aggression and 

provide causal evidence for the social-status hypothesis in men.  
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Introduction  

The gonadal steroid hormone testosterone has long been known to play a fundamental role 

in the development and maintenance of physical masculinization (Wilson et al., 1981; Goy, 

1988). Yet precisely determining its behavioral effects in human males has proven more 

challenging. Early animal research and contemporary mainstream views emphasise its 

association with aggression and antisocial behavior (Allee et al., 1939; Mitchell, 2008; 

Antonakis, 2014). In humans, one influential line of supporting evidence for this 

association comes from studies that showed that male prisoners with high testosterone 

levels are more likely to have committed violent crimes and broken prison rules than those 

with low testosterone levels (Rada et al., 1976; Dabbs Jr et al., 1987, 1991, 1995b). A small 

number of experimental studies that manipulated testosterone levels of males performing 

multiplayer economic games (Kouri et al., 1995; Zak et al., 2009) also found that 

administration of testosterone caused participants to be less generous to other players (Zak 

et al., 2009) and to be more likely to punish those who stole from them (Kouri et al., 1995). 

These studies have however been criticized for methodological problems (Eisenegger et al., 

2011b) and the causal evidence for an association between testosterone and aggression in 

human males remains weak (Albert et al., 1993; Eisenegger et al., 2011a). 

In humans, it has been suggested that endogenous increases in testosterone facilitate 

aggression in competitive contexts with the function of maintaining social dominance and 

establishing access to mating opportunities (Archer, 2006). This proposition originates 

from the literature on the role of testosterone in species of birds and primates (Wingfield et 

al., 1990; Muller and Wrangham, 2004). It is supported by evidence of an association 

between testosterone levels and social rank in non-human primates (Sapolsky, 1991; 

Beehner et al., 2006) and observations that administration of testosterone to lambs and 

tropical birds selectively increases aggressive dominance behaviors when the status 

hierarchy is unstable (Ruiz-de-la-Torre and Manteca, 1999; Collias et al., 2002).  

While increased aggression may be critical in achieving social rank among other animal 

species, human social interactions are arguably more complex and status may be obtained 
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by non-aggressive, even prosocial, means, such as generosity (Harbaugh, 1998; 

Anderson and Kilduff, 2009; Nichols, 2010). Although human generosity often occurs 

without an expectation of material benefit (Fehr and Fischbacher, 2003), experimental 

research has shown that generosity to others can also have a social signalling function; for 

example it is increased when donations will be made public (Hardy and Vugt, 2006; Izuma 

et al., 2009; Izuma, 2012), and male generosity specifically is increased in the presence of 

female observers (Iredale et al., 2008). This generosity has been repeatedly shown to 

increase ratings of the giver’s social status (Hardy and Vugt, 2006; Anderson and Kilduff, 

2009; Willer, 2009), leading to greater influence in group decision-making (Willer, 2009) 

and election to leadership positions (Milinski et al., 2002) as well as reciprocal generosity 

(Milinski et al., 2002; Hardy and Vugt, 2006). 

In line with this observation, an alternative theory of testosterone’s effect on male behavior 

proposes that, instead of promoting only aggressive behaviors, testosterone promotes 

behaviors intended to achieve and maintain social status or dominance (Mazur and Booth, 

1998; Josephs et al., 2003). This theory predicts that while in social contexts where status is 

threatened by perceived provocation this motivation may indeed lead to increased 

aggression, in others, non-aggressive behaviors such as generosity will be more appropriate 

for advancing social status and will therefore be promoted by testosterone.  

There is some evidence that rather than giving rise to indiscriminate aggression, 

testosterone may indeed be associated with aggressive responses to perceived provocation, 

so called reactive aggression, as the status theory predicts (Josephs et al., 2011; Ronay and 

Galinsky, 2011). A number of findings also link testosterone with non-aggressive status-

seeking; Ehrenkranz et al. (1974) found that the testosterone levels of dominant but non-

violent were indistinguishable from those of their violent peers, and that the testosterone 

levels of both groups were significantly higher than those of their non-dominant peers, and 

Josephs et al. (2003) found that making a task relevant to status increased performance in a 

test of mathematical ability in high testosterone males specifically. However, without a 

direct experimental manipulation of testosterone, it is not possible to rule out the possibility 



 

 

86 
that another variable correlated with testosterone may be driving these non-aggressive 

behaviors. 

The correlational nature of the supporting literature means that the distinguishing 

predictions of the status theory of testosterone for male behavior remain untested. Firstly, it 

has not been demonstrated that, rather than promoting indiscriminate aggression, 

testosterone selectively causes male reactive aggression in circumstances in which an 

individual’s status is threatened. Secondly, it has not been shown that testosterone may 

cause non-aggressive, even prosocial, behaviors in males, if those behaviors are consistent 

with increasing status.  

To address these questions, we injected testosterone or placebo in a double-blind 

randomised procedure to a group of young males who then played a modified version of 

the Ultimatum Game (UG). The classic UG is an economic game in which two players 

must decided how to split a sum of money between them. In each round, the first player, 

the proposer, presents a proposal to the second player, or responder, which describes how 

this money should be divided. The responder may accept this proposal, in which case the 

split is implemented, or reject it, resulting in both players winning nothing. Our participants 

played the role of the responder in a UG that was modified so that, having accepted or 

rejected a proposed split, they had the option to reward or punish the proposer at a 

proportional cost to themselves (Andreoni et al., 2003).  

According to testosterone’s proposed role in driving status-enhancing behaviors, the effect 

of testosterone administration on participants’ choices would depend on the social context. 

Offers of small amounts of money would be perceived as unfair (Güth et al., 1982; 

Forsythe et al., 1994) and would be punished more strongly by those administered 

testosterone, but reward of generous offers would not be decreased by treatment. In 

contrast, if testosterone simply increases indiscriminate aggression, we would expect to see 

both greater punishment of unfair offers and reduced reward of generous offers. 

Additionally, the status theory of testosterone predicts that offers of large amounts of 

money would be expected to facilitate status-enhancing displays of generosity, and 
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therefore that when men injected with testosterone were offered large amounts they 

would reward the proposer more than those administered placebo. Alternatively, if 

testosterone causes status-enhancing reactive aggression but does not cause non-aggressive 

status-enhancing behaviors we would expect to see no increase in reward of generous 

offers. 

Concern has been raised (Eisenegger et al., 2012) that ostensibly emotional behaviors in 

economic games among participants administered testosterone may in fact be driven by 

rational concerns. If testosterone administration influences participants’ beliefs about the 

likely strategy of their opponents, any difference in behavior associated with such a 

manipulation may simply be a strategic earnings-maximising response to these changed 

beliefs. Uniquely, our design excludes this interpretation because participants were aware 

that their opponents’ behavior had been recorded beforehand and opponents had no 

opportunity to respond to the participants’ own behavior. Participants therefore could not 

use rejection, punishment, or reward as instruments to influence the proposers’ offers, nor 

did they need to anticipate the proposers’ responses to their behavior. In fact, a player who 

wished to maximise his earnings on our task should simply accept all offers, and never 

choose to punish or reward the other player. 
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Materials and Methods 

Participants 

Forty-seven participants were recruited by advertisements posted at Trinity College Dublin 

and St. James’s Hospital, Dublin. The study was approved by two local ethics committee 

(Trinity College Dublin and St James’s Hospital) in accordance with the declaration of 

Helsinki and written informed consent was obtained from all participants. Four participants 

were excluded following clinical screening, while three participants who passed screening 

subsequently withdrew from the study before completion. Forty right-handed healthy men 

(ages from 18-30 years, M = 21.25, SD = 2.97) completed the study.  Participants’ self-

reported sexual orientations were heterosexual (N = 37), bisexual (N = 1), or not indicated 

(N = 2).  

 

Overview 

Participants who completed the study attended a total of five appointments, detailed below, 

at which they provided their consent to participate, were screened medically by a clinician, 

received injections of testosterone or placebo in a double blind procedure, completed 

behavioral testing, and attended the clinician for a final check-up.  

 

Appointment 1: Consent and Questionnaires 

At the first appointment all participants provided written informed consent and completed a 

battery of questionnaires, namely the Sexual Arousal and Desire Inventory (SADI, 

(Toledano and Pfaus, 2006), Beck Depression Inventory (Beck et al., 1961), Profile of 

Mood Status (McNair et al., 1971), International Personality Item Pool (Goldberg, 1999), 

MACH-IV inventory (Christie et al., 1970), Eysenck Personality Questionnaire Revised 

(Eysenck et al., 1985), Beck Anxiety Inventory (Beck et al., 1988), Barratt Impulsiveness 
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Scale (Barratt, 1959). Measurements of probability weighting were obtained by eliciting 

participants’ certainty equivalents for gambles €20,𝑝, 0  for all 

𝑝 ∈ 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 1.00 ,   using an iterative bisection procedure 

(Fox and Poldrack, 2009). Participants were paid the outcome of a randomly selected trial 

or €15, whichever was greater. 

 

Appointment 2: Medical Screening 

At the second appointment, participants were screened by a endocrinologist. Exclusion 

criteria were active medical disease; history of stroke, epilepsy/seizure disorder, heart 

attack, blackouts and episodes of unexplained loss of consciousness, head injury if they had 

experienced posttraumatic amnesia greater than 24 hours, loss of consciousness for more 

than one hour, significant posttraumatic sequelae or any evidence of cerebral damage on 

the computed tomography, clinically significant abnormalities on ECG, including but not 

limited to conduction abnormalities, heart rate less than 55 beats per minute as judged by 

the investigator, major psychiatric illness, current intake of psychotropic medications, 

benzodiazepines or corticosteroids, current alcohol abuse/dependency, scoring above cut-

offs (8) on the Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983), any 

contraindication to taking testosterone as specified in the Summary of Products 

Characteristics, participants who were or had been taking leuprolide acetate, finasteride, 

spironolactone or cimetidine, reproductive dysfunction, participants with previous or 

current prostate cancer, elevated PSA levels, abnormal renal or hepatic function tests, sleep 

apnea, previous testosterone or other androgen replacement. Three participants were 

excluded due to high scores on the Hospital Anxiety and Depression Scale and were 

advised to attend their GP. Another participant was excluded due to low testosterone 

concentrations. He was fully evaluated in regards to his hormonal status, his repeat 

testosterone concentration was within normal range, and we arranged to see him again in 

the Metabolic Research Unit in 6 months for further follow up. Participants provided blood 

samples for the measurement of serum testosterone concentrations. Samples for all 
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participants were obtained between 8 and 9am. If candidates agreed to participate after 

being found eligible, they were randomly assigned to the treatment (N=21) or placebo 

(N=19) group in a double-blind procedure using an online randomization program 

(www.randomizer.org).  

 

Appointment 3: Injection 

At the third appointment, participants received a single intramuscular injection. Participants 

in the treatment group were administered a 1ml dose of testosterone enanthnate 250mg 

(Androtardyl/Testoviron Depot), while participants in the placebo group were administered 

1ml of saline. Intramuscular testosterone enanthnate is a long-acting esther of testosterone. 

The pharmacokinetics of testosterone enanthate yield supraphysiological testosterone levels 

in serum as early as 2 hours following injection, reaching peak levels 4 to 5 times above 

basal between 8 and 24 hours after injection (Snyder and Lawrence, 1980; Schürmeyer and 

Nieschlag, 1984). 

 

Appointment 4: Testing 

At the fourth appointment, which took place on the following day, blood samples were 

collected for the measurement of serum testosterone concentrations. This was done 17.5-20 

hours after the injection of testosterone or placebo. All participants were then given oral 

and written instructions for both the modified Ultimatum Game task (see Figure 12, 

detailed below) and a gambling task not presented here. Participants rated the proposers for 

trustworthiness, dominance, frustration, angriness, friendliness, happiness, and 

attractiveness and played a short practice session before undergoing magnetic resonance 

imaging (MRI). The scanning lasted approximately 80 minutes (15 minutes of anatomical 

imaging, 65 minutes of functional imaging) during which participants completed both the 

modified Ultimatum Game task and the gambling task. After scanning, participants again 
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rated the proposers for trustworthiness, dominance, frustration, angriness, friendliness, 

happiness, and attractiveness  and completed the SADI, BDI, POMS, IPIP, MACH-IV, 

EPQ-R, BAI and the certainty equivalents task. Participants also reported whether they 

believed they had received testosterone, and described the effects they would expect 

testosterone administration to have on themselves and on others. Participants were paid 

their summed earnings from the Ultimatum Game task, the gambling task and the outcome 

of a randomly selected trial from the certainty equivalents task or €80, whichever was 

greater. 

 

Appointment 5: Medical Follow-up 

Finally, participants attended the endocronologist again four to six weeks after the 

injection. A physical examination was carried out and blood samples were collected and 

analysed for haematocrit, lipid profile, PSA, liver, renal profile, and hormonal status to 

assess any potential changes following testosterone administration. Paired sample t-tests 

were used to compare the parameters at baseline and follow-up. There were no significant 

changes in haemoglobin, haematocrit, total cholesterol and its fractions, and PSA 

concentrations following either of the injections. Two men enrolled in the study reported 

pain at the injection sites which fully resolved after two days. Participants were paid €50 

for attending this appointment. 

 

Modified Ultimatum Game 

Participants played a modified version of the Ultimatum Game, a simple economic game in 

which two players, the proposer and the responder, are given the opportunity to split a sum 

of money (see Figure 12). Here, participants always assumed the role of the responder and 

played with one of four proposers on each trial. Participants were endowed with €10, which 

they could use during the game. Participants were explicitly instructed that the proposers’ 
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offers were pre-recorded, and were therefore independent of the choices of the 

participant. The sum of money to be divided was fixed at €12 on all trials. The first 

proposer always offered €2, €3, or €4, the second €5, €6, or €7, and the third €8, €9, or €10. 

A fourth proposer was associated with a control condition in which the participant was 

instructed in the responses they should make. A small number (3/40) of participants played 

the task without these control trials. 

Every trial began with the presentation of the image of a proposer along with their offer to 

split the sum of money, shown both in text form and using a colored horizontal bar where 

the proportion colored yellow indicated the proportion of the sum being offered to the 

responder. The responder chose one of two responses: accept or reject. If they chose to 

accept, the sum of money was divided according to the offer, whereas if they chose to 

reject, the sum of money was returned to the experimenter. After a variable duration ISI 

[~U(2, 5)] and irrespective of whether they had chosen to accept or reject the offer, 

responders were then given the opportunity to punish or reward the proposer by increasing 

or decreasing the proposers payout for the trial. Participants could also choose to ‘do 

nothing’ and leave the proposer’s earnings unchanged. If they chose to punish or reward, 

they specified its magnitude (€2, €4, €6, or €8) at the following screen. The cost of 

punishment/reward to the participant was set at 1/5 of its magnitude. Finally, participants 

were shown their net winnings for the trial for 3 seconds. Each trial was followed by a 

variable duration interval ITI [~U(2, 5)]. No maximum response times were enforced. 

Participants who played the task with control trials completed 108 trials, while those 

without completed 90 trials. Due to technical problems, two participants completed 60 and 

72 trials, respectively. After completing the task, participants received their €10 

endowment plus the summed earnings/losses from three randomly selected trials. 
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Laboratory Measurements 

Using blood samples obtained at Appointments 2 and 4, we determined serum 

concentrations of total testosterone by electrochemiluminescence immunoassay (ECLIA) 

kit on a cobase analyser. Serum concentrations of sex hormone-binding globulin (SHBG) 

were measured by electrochemiluminescence immunoassay (ECLIA) kit on a cobas e 

analyser. Serum albumin was measured by colorimetric assay (ALB2, cobas e analyser, 

Roche Diagnostic Systems). Apparent concentrations of free testosterone were calculated 

from values of total testosterone, SHBG, and albumin using the method described and 

validated by Vermeulen et al. (1999). Estrodiol was measured by ECLIA (cobas e 

analyzer). 

Blood samples were not obtained from two participants at Appointment 2 and one 

participant at Appointment 4 due to experimenter error. Those participants are omitted 

from figures and analyses involving measurements of testosterone at the respective time 

points.  

 

Behavioral Data Analysis 

Participants’ choices in the modified Ultimatum Game task were analyzed using mixed-

effects regression analyses in R 3.0.3 (R Core Team, 2014) with participant identity 

modeled as a random intercept effect. Our first set of analyses modelled the following as 

fixed effects: offer amount (centered to the mean [€6]), participants’ treatment group 

(Testosterone = 1, Placebo = 0), the treatment group they believed they had been assigned 

to (Testosterone = 1, Placebo = 0) and the interactions of the two previous variables with 

offer amount. Our second set of analyses modelled the following as fixed effects: offer 

amount (centered to the mean [€6]), participants’ levels of total testosterone and estradiol at 

the time of testing, their baseline levels of total testosterone measured at screening 

(Appointment 2), the treatment group they believed they had been assigned to, and the 
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interactions of the previous four regressors with offer amount. Our third set of analyses 

used the same model as the second, but was restricted to participants in the placebo group. 

Participants’ accept/reject responses to each offer were modeled with mixed-effects probit 

regression in the lme4 package (Bates et al., 2014), their subsequent choices to punish, to 

do nothing, or to reward their proposer were modeled with mixed-effects ordered probit 

regression in the ordinal package (Christensen, 2013) and with mixed effects probit 

regression in lme4, and their final choices of punishment or reward amount were modeled 

with mixed-effects linear regression in lme4. The Satterthwaite approximation 

implemented by the lmerTest package (Kuznetsova et al., 2013) was used to obtain p-

values after mixed-effects linear regression in lme4. 

We carried out a mixed design MANOVA on participants’ pre- and post-task ratings of the 

Ultimatum Game proposers’ trustworthiness, dominance, frustration, angriness, 

friendliness, happiness and attractiveness for with factors treatment, time (pre- or post-task) 

and proposer identity. 

We conducted mixed design ANOVAs on participants’ scores on questionnaires (SADI, 

BDI, POMS, IPI, IPIP, MACH-IV, EPQ-R, BAI, BIS) administered at Appointment 1 

(pre-injection) and Appointment 4 (post-injection) to test for the effects of treatment group 

and time. 

 

 

 

 

 

 



 

 

95 
Results 

Hormone Levels 

As illustrated in Figure 13a, baseline serum concentration levels of total (TT) and free (FT) 

testosterone in the treatment (MTT = 21.06 nmol/l, SDTT = 5.66; MFT = 0.48 nmol/l, SDFT = 

0.12) and the placebo groups (MTT = 20.46 nmol/l, SDTT = 5.88; MFT = 0.49 nmol/l, SDFT = 

0.16) did not differ significantly (TT: Mann-Whitney U = 162, p = 0.64, two-tailed; FT: 

Mann-Whitney U = 169, p = 0.79, two-tailed). In contrast, the post-injection testosterone 

levels of the treatment group (MTT = 66.08 nmol/l, SDTT = 29.60, MFT = 1.92 nmol/l, SDFT 

= 0.97) were elevated relative to those of the placebo group (MTT = 20.44nmol/l, SDTT = 

4.10; MFT = 0.45 nmol/l, SDFT = 0.08). These differences were statistically significant (TT: 

Mann-Whitney U = 4, p = 9.32e-8, 1-sided; FT: Mann-Whitney U = 0, p = 5.04e-8), 

confirming the efficacy of treatment.  

Our administration of testosterone was successful in producing a clear increase in the 

serum testosterone levels of the treatment group. However, we also found a concomitant 

increase in the estradiol levels of participants in our testosterone group (M = 185.38 pmol/l, 

SD = 39.55) relative to those in our placebo group (M = 101.58 pmol/l, SD =  31.05). This 

difference was statistically significant (Mann-Whitney U = 373, p = 1e-7, 1-sided).  

 

Effects of Treatment on Ultimatum Game Behavior 

We first analyzed participants’ choices to accept or reject proposers’ offers to divide the 

endowment (see Figure 13b and Table 2). We found a significant positive effect of the 

amount offered to the participant on the probability of acceptance, but no effect of 

treatment group, or of the interaction of treatment group and amount offered.  

On the subsequent choice at which participants decided whether to punish, do nothing to, 

or reward the proposer (see Figure 13c and Table 3), we again found a significant positive 
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effect of the amount offered as well as a significant positive effect of the interaction of 

treatment group and offer amount. This ordered probit regression indicates that participants 

administered testosterone were more likely to punish proposers who offered below-average 

amounts, while for offers of above-average amounts they were more likely to reward the 

proposer. 

We carried out further analyses to determine whether these effects of treatment were 

attributable to a difference between the groups in their propensity to punish only, or by a 

difference in their propensity to reward only. We performed two binary probit regressions 

of their choices on treatment group, amount offered and their interaction; the first 

regression, coding choices to punish as 1 and choices to do nothing or punish as 0, and the 

second coding choices to reward as 1 and choices to do nothing or reward as 0 (see Table 

3). Null effects of treatment group in one or both of these analyses would indicate that 

testosterone administration did not influence rates of both punishment and reward. In both 

cases, however, we observed effects of treatment group. We found a positive main effect of 

treatment group as well as a positive interaction of treatment group with offer amount on 

punishment rate, such that those in the testosterone group were more likely to punish offers 

greater than €2.14. We also found a positive effect of the interaction between treatment 

group and amount offered on reward rate, such that those in the treatment group were more 

likely to reward higher offers than those in the control group. Taken together, these results 

indicate that treatment with testosterone influenced rates of both punishment and reward.  

When participants indicated they wished to reward or punish their proposer, they 

subsequently chose the magnitude of that punishment or reward. Our regression analyses of 

these choices revealed a significant effect of the interaction of treatment group and the 

amount offered to the participant on the amount they rewarded the proposer (see Figure 

13d and Table 4). Specifically, increasing the amount offered to the participant was 

associated with a greater increase in reward magnitude among those administered 

testosterone than among those in the placebo group. We found no significant main or 

interaction effects of treatment group on punishment magnitude. 
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Beliefs About Treatment Do Not Explain Effects of Treatment 

In order to determine whether participants were truly blind to their treatment group 

assignation, we examined their self-reported beliefs regarding whether they had received 

testosterone or placebo. Only six of the forty participants reported believing they had 

received T, of whom two actually received T. Participants beliefs were not significantly 

correlated with the treatment they had actually received (r = -0.16, p = 0.32), therefore we 

conclude that participants were indeed blind to their treatment. 

Although participants did not have insight into which substance they had received, even 

erroneous beliefs about treatment can influence task responses (Colagiuri, 2010). This is 

particularly relevant in the case of testosterone, for which there exists a strong folk belief 

linking it to aggression and violence (Eisenegger et al., 2010). Importantly, all effects of 

testosterone treatment we found in our previous analysis survive the inclusion of regressors 

representing treatment belief and its interaction with offer amount. The inclusion of these 

regressors also revealed several distinct effects of treatment belief on participants’ behavior 

(see Figure 14). 

We found that those who believed they had received testosterone were more likely to reject 

low offers, with a negative main effect of treatment belief and a positive interaction with 

offer amount (see Table 2). In addition, participants’ beliefs about treatment influenced 

their choices of reward, with a negative interaction between treatment belief and offer 

amount on reward amounts (see Table 4). Thus when those who believed they had received 

testosterone chose to reward high offers they did so with rewards of lesser magnitude than 

those who had believed they had received placebo.  
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Effects of Treatment Are Attributable to Testosterone and Estradiol 

Our administration of testosterone was successful in producing a clear increase in the 

serum testosterone levels of the experimental group. However, testosterone is converted to 

the estrogen estradiol by the enzyme aromatase, a relationship that is reflected in a 

concomitant rise in the estradiol levels of participants in our testosterone group relative to 

those in our placebo group. The relationship between testosterone estradiol has led to 

suggestions in the literature that certain physiological effects previously attributed to 

testosterone may in fact be mediated by estradiol (Nathan et al., 2001).  

In order to assess whether the behavioral effects of our manipulation should be attributed to 

increases in the testosterone levels of those in the treatment group or to their raised 

estradiol levels or both, we reanalyzed participants’ choices. We included variables 

representing their levels of testosterone and estradiol measured immediately before they 

performed the task, as well as their levels of testosterone measured during their medical 

screening to account for any effects of baseline testosterone. According to testosterone’s 

proposed role in driving status-enhancing behaviors, we would expect to find that 

increasing testosterone levels would be associated with increasing punishment of low offers 

and reward of high offers, after accounting for the effects of other hormonal measurements. 

We indeed found that when choosing whether to punish or reward their proposer, those 

with high levels of testosterone were more sensitive to the amount offered by the proposer, 

such that they were more likely to punish below-average offers and more likely to reward 

above-average offers (see Table 3). This effect of the interaction between offer amount and 

testosterone level was present whether choices to punish or reward the proposer were 

modeled using a single ordered probit model or separate binary probit models.  

We also found that those with high testosterone levels were more sensitive to the amount 

offered when choosing the magnitude of punishment and reward, responding to low offers 

with punishments of greater magnitude and high offers with rewards of greater magnitude 

(see Table 4).  
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In contrast, the effects of participants’ estradiol levels we found were antagonistic to 

those of testosterone, reducing the effect of the amount offered on both the rates and 

magnitudes of punishment and reward (see Tables 3 and 4). Those with high levels of 

estradiol were less likely to punish and reward low and high offers respectively, and when 

they did they chose punishment and reward amounts of lesser magnitude. 

 

Endogenous Testosterone Predicts Effects 

While these results indicate that increasing males’ testosterone levels was associated with 

both increased punishment of unfairs offers and reward of high offers, our manipulation 

raised testosterone to supraphysiological levels. It is possible that testosterone only 

influences these behaviors when it reaches levels not typically seen in young males. To 

assess whether this association is present among those with typical hormonal levels, we 

repeated our analyses of punishment and reward behavior, including only participants from 

the placebo group.  

We found that those in the placebo group with high levels of testosterone were more likely 

both to punish and to reward their proposer than those with low levels of testosterone (see 

Figure 15 and Table 3). This indicates that, even among those with typical endogenous 

levels, high testosterone is associated with increased rates of both retaliation and 

generosity. We did not find an effect of testosterone within the placebo group on the 

magnitudes of punishment or reward chosen by participants (see Table 4). The effects of 

estradiol in the placebo group were similar to those found in previous analyses, with 

estradiol levels reducing the effect of the amount offered on the rates of punishment and 

reward (see Table 3), and the magnitude of reward chosen (see Table 4). Estradiol levels in 

the placebo group did not influence choices of punishment magnitude (see Table 4). 
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Questionnaire Measures 

In order to determine whether the effects of treatment on participants’ choices were driven 

by testosterone-induced biasing of the participants judgements of the proposers, we 

analysed participants ratings of the proposers faces. We found no main or interaction 

effects of treatment on participants’ ratings of the proposers’ trustworthiness, dominance, 

frustration, angriness, friendliness, happiness, and attractiveness made immediately before 

and after performing the Ultimatum game task. None of the mood measures obtained from 

the questionnaires participants completed (SADI, BDI, POMS, IPI, IPIP, MACH-IV, EPQ-

R, BAI, BIS) differed between the day of screening and the day of scanning in either the 

experimental or placebo groups.  
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Discussion 

In this study we sought to expand on what is known about the influence of testosterone on 

male social behavior. While empirical research and popular opinion centres on its role in 

driving aggressive and antisocial behaviors, direct causal evidence for this link is weak in 

men (Albert et al., 1993; Eisenegger et al., 2011a, 2011b). Some have suggested (Mazur 

and Booth, 1998; Josephs et al., 2003; Eisenegger et al., 2011a) that testosterone instead 

promotes both aggressive and non-aggressive behaviors that enhance and maintain social 

status. Here, we experimentally manipulated the testosterone levels of young males and 

tested the fundamental predictions of these theories against behavior in a two-player 

economic bargaining game. 

We found that administration of testosterone caused participants to punish their opponents 

more frequently than those administered placebo, and that higher testosterone levels were 

specifically associated with increased punishment of opponents who made unfair offers. 

Importantly, this punishment was costly to the participant and could not be used as an 

instrument to influence their opponents’ future offers because those offers were known by 

participants to be predetermined. Thus, unlike previous studies, we can conclude that 

testosterone can indeed cause male aggression (Archer, 2006) and that this aggression was 

not mediated by an increased motivation to maximise task earnings or by altered beliefs 

about the strategic influence of their actions on others (Eisenegger et al., 2012).  

Testosterone has been suggested to selectively potentiate aggression that is reactive, or in 

response to provocation (Josephs et al., 2011; Ronay and Galinsky, 2011). Our results 

support such an interpretation, showing that in the absence of provocation, as when they 

received large offers, participants in the treatment group were not less likely to reward 

these offers than those in the control group. Rather than giving rise to indiscriminate 

aggression, testosterone appeared to intensify aggression in social contexts where social 

status may be under threat. This is consistent with the idea that testosterone-induced 

aggression may be a tool to achieve social dominance and garner reproductive 

opportunities (Archer, 2006). 
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However, our results indicate that testosterone’s influence on male social behavior is 

not limited to reactive aggression. Participants who received testosterone were in fact more 

likely to reward proposers who offered them increasing amounts of money. Furthermore, 

they chose rewards of greater magnitude than those administered placebo. We think that 

this represents the first demonstration that testosterone can cause male behavior that is 

prosocial, or beneficial to others. In addition, this satisfies a distinguishing prediction of the 

status theory of testosterone (Mazur and Booth, 1998), namely that testosterone should 

stimulate non-aggressive behaviors in males if, like generosity, those behaviors are status-

enhancing.  

The increase we observe in both punishment of small offers and reward of large offers may 

raise the concern as to whether administration of testosterone caused participants to simply 

become more impulsive. However, we found that our treatment had no effect on the 

immediate decision of whether to reject the offer, which they made before deciding 

whether to punish or reward the proposer. This is despite the fact that alcohol intoxication, 

which reduces impulse control, has been shown to increase offer rejection in the ultimatum 

game (Morewedge et al., 2014). This suggests that testosterone does not simply enhance 

general emotional responsiveness but has a more restricted effect that is consistent with 

increasing status-enhancing aggressive and non-aggressive behaviors. 

Although the double-blind placebo-controlled treatment procedure is a vital tool for 

determining whether hormones exert a causal influence on human behavior (Mazur and 

Booth, 1998), it is not without potential limitations. We performed a number of 

precautionary analyses not previously used in the literature to confirm the robustness of our 

results.  

Firstly, testosterone is known to be converted to the estrogen estradiol by aromatase, which 

has led to suggestions that some effects of testosterone administration may be mediated by 

raised estradiol levels, and not by testosterone per se (Nathan et al., 2001; Trainor and 

Marler, 2002). We found that, in addition to raising their levels of testosterone, 

administering testosterone to our participants indeed caused a concomitant rise in their 
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estradiol levels. However, by including participants’ hormone levels as covariates in our 

behavioral analyses, we confirmed that greater punishment of unfair offers and reward of 

generous ones are both attributable to participants’ testosterone levels and not their levels 

of estradiol. In fact, the effects of estradiol were antagonistic to those of testosterone, with 

increased estradiol levels associated with a reduction in the rate and magnitude of both 

punishment of unfair offers and reward of generous offers.  

Secondly, our manipulation increased the testosterone of those in the experimental group to 

supraphysiological levels, raising a concern that the behavioral effects we observe may not 

be generalizable to the male population as a whole. To address this point, we restricted our 

analyses to the placebo group, in which testosterone levels vary naturally within the 

physiological range. Once again however, we found that higher endogenous levels of 

testosterone were associated with higher rates of both punishment of proposers who made 

low offers and greater generosity towards those who made fair proposals, indicating that 

the applicability of our results is not limited by the size of our treatment dose.  

Although the current study is one of the only placebo-controlled pharmacological studies 

focusing on the role of testosterone in male behaviour, the effects of testosterone on 

women’s behavior has received considerably more experimental attention (Zethraeus et al., 

2009; Eisenegger et al., 2011a; van Honk et al., 2012; Boksem et al., 2013). It has been 

argued that testosterone may also promote status concerns in women (Eisenegger et al., 

2010, 2012; Boksem et al., 2013) and a number of studies have shown that testosterone’s 

effects in women are not limited to promoting aggression (Eisenegger et al., 2010; van 

Honk et al., 2012; Boksem et al., 2013). In fact, our study extends to men recent findings 

suggesting that testosterone has important prosocial effects by increasing cooperation in the 

public goods game (van Honk et al., 2012) and increased generosity when repaying trust 

(Boksem et al., 2013).  There is some evidence, however, that there may be sex differences 

in the effects of testosterone. While in males, testosterone has been associated with 

decreased ultimatum game offers (Zak et al., 2009), administering testosterone to women 

causes increased (Boksem et al., 2013) or unchanged (Zethraeus et al., 2009) ultimatum 
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game offers. In addition, sex differences have been observed in the responsiveness of 

testosterone levels to social stimuli (Salvador, 2005). These findings may reflect 

fundamental differences in the function of testosterone in men and women, or differences 

between the genders in the behaviors that are considered to increase status (van Anders et 

al., 2015). Alternatively, we suggest that in light of our results, some of the sex variability 

in the effects of testosterone may be attributable to typically unmeasured effects of 

estradiol. 

Our findings flatly contradict a simple causal link between testosterone and male 

aggression, a theory that would have predicted increased rejection and punishment of unfair 

offers and reduced reward of generous offers in those who had received testosterone. 

Instead, we find that testosterone’s causal effect on male behavior depended on the social 

context, and we demonstrate in a single experiment that testosterone can both enhance 

reactive aggression and generosity. This pattern of behavior cannot be explained by altered 

strategic beliefs (Eisenegger et al., 2012) and is consistent with testosterone’s proposed role 

in promoting male behaviors that will increase social status (Newman et al., 2005; Mehta 

and Josephs, 2006), providing the first causal evidence for this  theory. 
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Figures  

 

Figure 12. Illustration of trial from modified Ultimatum Game task. Participants accepted 

or rejected a prerecorded offer from a pictured proposer to split a sum of €12. After a 

variable duration ISI [~U(2, 5)], participants chose to punish or reward the proposer, or do 

nothing. If they chose to punish or reward, they specified the magnitude on the following 

screen. The cost of punishment/reward to the participant was 1/5 of its magnitude. The 

final screen showed the participant their net winnings for the trial. Each trial was followed 

by a variable duration ITI [~U(2, 5)]. 
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Figure 13. Physiological and Behavioral Effects of Treatment. (a) Box plot summarizing 

serum concentrations of total testosterone at screening (pre-injection) and at the time of 

MR scanning (post-injection) in the placebo (pale green) and testosterone (dark green) 

groups. Box centers correspond to median values, box bottom and top correspond to the 

first and third quartiles respectively, and whiskers represent the maximum and minimum 

concentrations. (b) Bar plot of participants’ average acceptance rates as a function of offer 

amount for the placebo (pale green) and testosterone (strong green) groups. (c) Bar plot of 

participants’ proportion of choices to reward (blue) and punish (red) the proposer as a 

function of offer amount for the placebo (pale) and testosterone (dark) groups. (d) Bar plot 

of the average magnitudes of reward (blue) and punishment (red) that participants chose 
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payoffs as a function of offer amount for the placebo and testosterone groups. All error 

bars represent SEM. 
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Figure 14. Effects of Participants’ Beliefs. (a) Bar plot of participants’ average acceptance 

rates as a function of offer amount for participants who believed they had received placebo 

(pale green) and testosterone (strong green). Participants who believed they had received 

testosterone (N=6) were more likely to reject low offers than those who believed they had 

received placebo (N=34). (b) Bar plot of the average magnitudes of reward (blue) and 

punishment (red) that participants chose payoffs as a function of offer amount for 

participants who believed they had received placebo (pale) and testosterone (dark). 

Participants who believed they had received testosterone reciprocated generous offers with 

rewards of lesser magnitude than those who believed they had received placebo. The effect 
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of participants’ treatment beliefs on punishment magnitude was not significant. All 

error bars represent SEM. 
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Figure 15. High Testosterone Levels in Placebo Group Are Associated With Greater 

Punishment and Reward. Bar plot of the proportion of choices to reward (blue) and punish 

(red) the proposer as a function of offer amount for participants in the placebo group with 

high and low testosterone, as determined by a median split. Rates of punishment of low 

offers and reward of high offers increased significantly with testosterone. 
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 Accept Offer = 1, Reject Offer = 0 
 Binary Probit 

 Group  Hormone 
Intercept 3.21*** 

(0.43) 
 4.56** 

(1.41) 
Offer Amount1 0.93*** 

(0.07) 
 0.75** 

(0.24) 
Treatment Group2 -0.24 

(0.56)  
  

Treatment Group × Offer 
Amount 

-0.09 
(0.08) 

  

Belief3  -0.49 
(0.77) 

 -0.33 
(0.85) 

Belief × Offer Amount 0.31* 
(0.13) 

 0.62** 
(0.19) 

T4   1.42 
(1.34) 

T × Offer Amount   -0.18 
(0.19)  

E5   -0.79 
(0.74) 

E × Offer Amount   0.04 
(0.10) 

TBaseline
6   -4.88 

(5.04) 
TBaseline × Offer Amount   0.72 

(0.82) 
1Centered at mean (€6), 2Testosterone=1, Placebo=0, 3Believed 
testosterone=1, Believed placebo=0, 4Total testosterone (nmol/L x 100) at 
Appointment 4, 5Estradiol (pmol/L x 100) at Appointment 4, 6Total 
testosterone (nmol/L x 100) at Appointment 2, *p < 0.05; **p < 0.01; ***p < 
0.001. 
Table 2. Regressions of Choices to Accept/Reject Proposers’ Offers. Beta coefficients 

(SEs) from mixed effects probit models with random participant-level intercept. Models 

Group (N = 40) and Hormone (N = 37) include participants from both the placebo and 

testosterone groups. 
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Table 3. Regressions of Choices to Punish, Do Nothing or Reward the Proposer. Beta 

coefficients (SEs) from mixed effects ordered probit and binary probit models with random 

participant-level intercept. Models Group (N = 40) and Horm (N = 37) include participants 

from both the placebo and testosterone groups, while model Plac (N = 17) includes only 

participants from the placebo group. 

 

 Punish, Do Nothing, Reward  
Reward = 1, Do Nothing = 0, 

Punish = 0  
Punish = 1, Do Nothing = 0, 

Reward = 0 

 Ordered Probit  Binary Probit  Binary Probit 

 Group Horm Plac  Group Horm Plac  Group Horm Plac 

Intercept     -2.02*** 
(0.36) 

-2.86** 
(1.11) 

-7.34*** 
(1.68) 

 -2.11*** 
(0.25) 

-3.10*** 
(0.82) 

-2.98* 
(1.39) 

Offer Amount1 0.38*** 
(0.02) 

0.27*** 
(0.04) 

-0.01 
(0.07) 

 0.41*** 
(0.03) 

0.61*** 
(0.11) 

1.35*** 
(0.21) 

  
 

-0.71*** 
(0.11) 

-0.13 
(0.23) 

Group2 -0.06 
(0.14) 

   -0.21 
(0.47) 

   0.70* 
(0.32) 

  

Group × Offer 
Amount 

0.05** 
(0.02) 

   0.12** 
(0.04) 

   0.18*** 
(0.04) 

  

Belief3 0.16 
(0.19) 

0.16 
(0.51) 

0.17 
(0.66) 

 -0.01 
(0.66) 

0.03 
(0.70) 

-0.25 
(0.79) 

 -0.43 
(0.46)  

-0.56 
(0.54) 

0.06 
(0.71) 

Belief × Offer 
Amount 

0.0  
(0.02) 

0.02 
(0.03) 

-0.06 
(0.03) 

 0.01 
(0.05) 

-0.01 
(0.06) 

0.01 
(0.09) 

 -0.13 
(0.07) 

-0.20* 
(0.09) 

0.12 
(0.13) 

T4  0.81 
(0.79) 

2.13 
(9.24) 

  1.07 
(1.06) 

32.02** 
(11.72) 

  -0.50 
(0.78) 

26.10** 
(9.41) 

T × Offer 
Amount 

 0.41*** 
(0.04) 

3.87*** 
(0.50) 

  0.64*** 
(0.12) 

-0.63 
(1.83) 

  -0.40 
(0.10)**
* 

2.82 
(1.57) 

E5  -0.55 
(0.44) 

-0.74 
(1.14) 

  -0.37 
(0.61) 

-1.38 
(1.42) 

  0.68 
(0.44) 

-2.59* 
(1.12) 

E × Offer 
Amount 

 -
0.16*** 
(0.02) 

-
0.33*** 
(0.06) 

  -0.35*** 
(0.05) 

-0.69** 
(0.26) 

  0.22*** 
(0.05) 

-0.68*** 
(0.17) 

TBaseline
6  0.85 

(3.00) 
1.49 

(4.83) 
  3.82 

(4.06) 
-0.50 
(5.86) 

  2.67 
(3.03) 

-9.94* 
(5.05) 

TBaseline × Offer 
Amount 

 0.78*** 
(0.16) 

-0.19 
(0.25) 

  0.41 
(0.36) 

0.05 
(0.72) 

  0.27 
(0.39) 

-2.05* 
(0.90) 

1Centered at mean (€6), 2Testosterone=1, Placebo=0, 3Believed testosterone=1, Believed placebo=0, 4Total testosterone 
(nmol/L x 100) at Appointment 4, 5Estradiol (pmol/L x 100) at Appointment 4, 6Total testosterone (nmol/L x 100) at 
Appointment 2, *p < 0.05; **p < 0.01; ***p < 0.001. 
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 Reward Amount  Punishment Amount 

 Linear Regresssion  Linear Regression 

 
Group  Horm Plac   Group Horm Plac 

Intercept 2.11*** 
(0.30) 

0.21 
(1.03) 

-0.55 
(1.80) 

 -1.92*** 
(0.52) 

0.19 
(1.70) 

-2.83 
(3.50) 

Offer Amount1 0.41*** 
(0.05) 

0.82*** 
(0.20) 

1.56*** 
(0.33) 

 0.96*** 
(0.11 

1.19*** 
(0.35 

0.85 
(0.72) 

Group2  0.11 
(0.39) 

   -0.84 
(0.64) 

  

Group × Offer Amount 0.15* 
(0.07) 

   0.01 
(0.13) 

  

Belief3 -0.16 
(0.55) 

0.01 
(0.62) 

0.22 
(0.80) 

 0.87 
(0.97) 

0.29 
(1.12) 

1.18 
(2.01) 

Belief × Offer Amount -0.18* 
(0.08) 

-0.17 
(0.10) 

-0.30* 
(0.14) 

 -0.20 
(0.21) 

-0.46 
(0.25) 

-0.32 
(0.51) 

T4  -0.46 
(0.85) 

4.29 
(12.66) 

  4.00** 
(1.47) 

-13.59 
(22.06) 

T × Offer Amount  0.46** 
(0.16 

-1.34 
(2.78) 

  0.85** 
(0.26) 

-4.30 
(4.88) 

E5  0.83 
(0.58) 

1.45 
(1.49) 

  -2.29** 
(0.82) 

1.27 
(2.85) 

E × Offer Amount  -0.33** 
(0.13) 

-0.80* 
(0.34) 

  -0.33* 
(0.14) 

0.65 
(0.76) 

TBaseline
6  4.51 

(3.43) 
-0.99 

(6.03) 
  -4.31 

(6.33) 
11.12 

(12.22) 

TBaseline × Offer 
Amount 

 -0.22 
(0.63) 

0.56 
(1.22) 

  -0.34 
(1.30) 

1.58 
(2.70) 

1Centered at mean (€6), 2Testosterone=1, Placebo=0, 3Believed testosterone=1, Believed placebo=0, 
4Total testosterone (nmol/L x 100) at Appointment 4, 5Estradiol (pmol/L x 100) at Appointment 4, 6Total 
testosterone (nmol/L x 100) at Appointment 2, *p < 0.05; **p < 0.01; ***p < 0.001. 

Table 4. Regressions of Choices of Punishment Amount and Reward Amount. Beta 

coefficients (SEs) from mixed effects linear models with random participant-level 

intercept. Models Group (N = 40) and Horm (N = 37) include participants from both the 

placebo and testosterone groups, while model Plac (N = 17) includes only participants 

from the placebo group. 
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C h a p t e r  5  

ELIMINATING	
  CHOKING	
  THROUGH	
  COGNITIVE	
  REAPPRAISAL	
  OF	
  
THE	
  INCENTIVE	
  

The failure of task performance when reward for optimal performance are highest has 

been noted across diverse task domains. Here we investigate a novel approach to 

attenuating such ‘choking under pressure’ using cognitive reappraisal of the incentive. 

Participants were briefly instructed to imagine the monetary incentive for performing a 

demanding motor task as being a potential monetary gain or potential monetary loss. This 

internal manipulation was reflected in behavioural, neural, and physiological effects. 

When participants performed the task imagining the incentive as a monetary loss, 

choking was significantly reduced relative to when the incentive was interpreted as a 

monetary gain. Before performing the motor task, BOLD activity in an extensive 

frontoparietal cluster encompassing lateral prefrontal cortex, supplementary motor area, 

motor cortex, and parietal cortex, as well as ventral striatum correlated with the 

magnitude of the incentive. This representation was weakened when participant 

reappraised the incentive as a potential monetary loss in a number of regions, including 

ventral striatum. Importantly, only in ventral striatum did individual differences in this 

attenuation of the response to incentive predict the effectiveness of the reappraisal 

strategy in reducing choking. During performance of the motor task participants’ skin 

conductance response was proportional to the magnitude of the incentive being played 

for. In the control condition, participants’ skin conductance response when their 

performance failed at high incentive was stronger than when they played for high 

incentives and succeeded. However, during reappraisal, there was no difference in the 

skin conductance response to high incentive between successful and unsuccessful 

performance. To our knowledge, this represents the first experimental association of 

sympathetic arousal and choking, a phenomenon that was been frequently framed as a 

hyperarousal problem. These results suggest that reappraisal of the incentive is indeed a 

promising intervention for attenuating choking under pressure. 
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Introduction 

Many important moments in life, such as academic examinations, athletic competitions, or 

public speaking, require the demonstration of a skill with the promise of huge financial, 

social, professional, or academic reward for successful performance. Frustratingly, 

although moderate incentives may facilitate successful performance (Prendergast, 1999), 

sufficiently high incentives can have deleterious effects on performance (Baumeister, 

1984). This paradoxical reduction in performance when incentives are high is referred to as 

‘choking under pressure’ and has been observed in laboratory settings across diverse task 

domains such as sports performance (Beilock and Carr, 2001; Oudejans and Pijpers, 2010), 

mathematical and general reasoning (Beilock et al., 2004; Beilock and Carr, 2005; Gimmig 

et al., 2006), as well as more abstract domains such as stimulus categorization tasks 

(Markman et al., 2006; DeCaro et al., 2011) and motor tasks (Mobbs et al., 2009a; Chib et 

al., 2012, 2014; Lee and Grafton, 2015). It is also seen outside the laboratory, (Dandy et al., 

2001; Pope and Schweitzer, 2011) where for example, the free throw performance of 

professional Australian basketball players is better during training than in games, when 

stakes are higher.  

It has been noted (Ariely et al., 2009; Balk et al., 2013) that the improvement of 

performance with increasing incentive up to a point and the subsequent decrement with 

incentive is consistent with the “Yerkes-Dodson law” (Yerkes and Dodson, 1908), which 

posits a bell-shaped relationship between performance and arousal. Two cognitive 

mechanisms by which such incentive-induced arousal may lead to performance decrements 

have achieved prominence. The first, the distraction hypothesis (Wine, 1971), suggests that 

high incentives occupy working memory capacity that would otherwise be available for 

task execution. Accordingly, performance on tasks that require significant working 

memory resources should be particularly afflicted by performance decrements at high 

levels of incentive.(Beilock et al., 2004; Beilock and Carr, 2005; Beilock and DeCaro, 

2007), rule-based versus implicit categorization (Markman et al., 2006), and intellectual 

reasoning (Gimmig et al., 2006). The second theory of choking, the explicit monitoring 
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hypothesis (Baumeister, 1984; Lewis and Linder, 1997), instead suggests that high 

incentives increase the degree of attention that is paid to the task, paradoxically disrupting 

smooth proceduralized execution and giving rise to poor performance. Thus, tasks that rely 

on highly stereotyped, automatic responses that are generated without conscious attention 

would be expected to suffer under this hypothesis. Indeed, this mechanism finds support 

among highly practiced sensorimotor tasks such as golfing (Lewis and Linder, 1997; 

Beilock and Carr, 2001) and baseball (Gray, 2004), where drawing attention to the 

component actions causes performance to suffer. Thus, the literature suggests that the 

nature of the task heavily determines what psychological mechanism leads to choking; 

tasks that require manipulation of information in working memory, such as mathematical 

reasoning, are likely to be disrupted by distraction, while heavily-practiced skilled motor 

actions are more likely to be suffer under the scrutiny of explicit monitoring (Beilock and 

Carr, 2001; Markman et al., 2006; Gucciardi and Dimmock, 2008; DeCaro et al., 2011). 

These findings have been leveraged to construct effective interventions to attenuate 

choking, by reducing the working memory load induced by high incentives (Ramirez and 

Beilock, 2011; Balk et al., 2013) or habituating participants to explicit scrutiny of their 

performance (Beilock and Carr, 2001).  

These studies tailor the intervention to target the psychological mechanisms thought to give 

rise to choking in that task. However, previous research from this group suggests an 

alternative manipulation that targets the representation of the incentive itself, rather than the 

psychological mechanism by which high incentive diminishes performance. Chib et al.  

(2012, 2014) demonstrate that the performance of a highly skilled motor task varied 

depending on how the incentive is framed to the participant, in a manner that interacted 

with the participant’s level of loss aversion, which quantifies how much they dislike losses 

relative to how much they like equal-magnitude gains (Kahneman and Tversky, 1979). 

Specifically, they (Chib et al., 2012, 2014) found that when participants were playing to 

win money, those who were highly loss averse choked when that monetary incentive was 

extremely high. However, when participants were playing to avoid monetary losses, the 

performance of these participants did not suffer when playing for high incentives. This 
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pattern of behavior was reversed for participants with low levels of loss aversion, who 

choked at high incentives when they played to avoid monetary losses but not when they 

played to obtain monetary gains (Chib et al., 2014).  

These results suggest that customizing the incentive structure an individual faces may avert 

performance decrements at high incentives. However, in many real-world situations, it is 

not feasible to tailor the incentive structure to the individual; for example, a professional 

athlete is unlikely to agree to find the prospect of avoiding monetary losses an attractive 

incentive to play. Thus, an applicable technique for overcoming choking that is based on 

these findings should not require the manipulation of the external incentive structure. One 

possibility would be to apply a cognitive strategy called reappraisal, a form of emotional 

regulation that has received significant experimental attention in psychology (Webb et al., 

2012). Reappraisal attempts to intentionally alter the trajectory of the emotional response 

elicited by a stimulus by reinterpreting the meaning of that stimulus. This strategy is 

typically used to attenuate negative emotional responses to disgusting or disturbing images, 

and could take the form of convincing oneself the stimulus is fictional or viewing the image 

as if one were a detached observer. In contexts such as this, reappraisal is consistently 

reported to reduce the expression of emotional behaviors as well as self-reported emotional 

experience (Gross, 2002; Webb et al., 2012). 

To test the efficacy of such an approach, we instructed participants to implement a form of 

reappraisal while they performed a demanding motor task. At the beginning of each trial, 

the participant was notified of the amount of money they were playing for. If they were 

successful on that trial they received that money and if they failed they received nothing. In 

the control condition, participants were instructed to regard the incentive in this way, as a 

potential monetary gain. However, when playing under the reappraisal condition, 

participants were instead asked to reinterpret the incentive as the avoidance of a monetary 

loss. That is, they were asked to imagine that if they failed the task they would have to 

relinquish the amount of money indicated to the experimenter, while if they were 

successful they would be allowed to keep that money. In both conditions, participants were 
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instructed to visualize physically obtaining or surrendering the money and to reflect on 

the emotional experience this would provoke. To avoid misunderstanding, the fact that they 

were playing on all trials for a positive monetary incentive was repeatedly stressed to the 

participant. Based upon the work of Chib et al. (2012, 2014), we predicted that the effects 

of reappraisal would interact with participant’s level of loss aversion; those high in loss 

aversion would choke at high levels of incentive when playing for a monetary gain, but not 

when reappraising the incentive as the avoidance of a potential monetary loss. In contrast, 

those with low loss aversion were expected to show the reverse effect.    

In addition to testing whether reappraisal of the incentive is a sufficiently powerful 

technique to reduce the deleterious effects of incentive seen in Chib et al. (2012, 2014), the 

present paradigm extends our understanding of reappraisal strategies on two fronts. Firstly, 

previous work has focused on the reappraisal of stimuli that give rise to negative emotions 

(Sokol-Hessner et al., 2009; Webb et al., 2012). In our case, participants will be asked to 

reinterpret a positively valenced stimulus, a potential monetary gain, as a negatively 

valenced one, a potential monetary loss. This may prove more difficult than the reappraisal 

of a negative stimulus because it involves the deliberate provocation of a negative 

emotional response, an ability that is not commonly deployed in everyday life (Gross et al., 

2006). Secondly, the intended effects of our reappraisal strategy are unknown to the 

participant. This is in contrast to previous studies, in which the intended effects of 

reappraisal on processing of a negative image – a reduction in negative facial expressions 

and a decrease in self-reported ratings of negative emotional experience – are very likely to 

be apparent to the participant. This makes it difficult to determine whether the effects 

obtained are consequences of successful reappraisal or are induced by experimenter 

demand (Zizzo, 2010). Thus, this paradigm represents an opportunity to test the 

effectiveness of a reappraisal strategy in the absence of such concerns. 

 

While they performed the motor task, participants’ underwent functional magnetic 

resonance imaging (fMRI) and their skin conductance levels were recorded, in order to 
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allow us to identify the neural and physiological mechanisms by which reappraisal 

influences choking. Although heightened arousal has been associated with choking under 

pressure (Ariely et al., 2009; Balk et al., 2013), this hypothesis has not been tested using a 

physiological measure of arousal, such as skin conductance. A number of neuroimaging 

studies have been carried out to examine the neural systems recruited during reappraisal 

(Goldin et al., 2008; Kanske et al., 2011; McRae et al., 2008; Wager et al., 2008; Ochsner 

et al., 2002, 2004; van Reekum et al., 2007). These tasks, in which participants applied a 

reappraisal technique stimuli chosen to provoke negative emotional response, have 

repeatedly implicated multiple prefrontal cortical areas in supporting reappraisal (Ochsner 

and Gross, 2008). Given this literature, we predicted that prefrontal cortex would be 

engaged when participants reappraise the potential monetary gain as a potential monetary 

loss. Previous neuroimaging studies of this paradigm found encoding in ventral striatum of 

the magnitude of the monetary incentive, with high BOLD sensitivity to incentive in this 

region predicting poor performance at high incentives (Chib et al., 2012, 2014). We 

therefore predicted that BOLD in ventral striatum would be sensitive to the magnitude of 

the incentive in both the control and reappraisal conditions. The use of fMRI potentially 

allows us to distinguish psychological mechanisms that may underlie any behavioral effect 

of reappraisal. Specifically, if the behavioral effects of reappraisal truly derive from an 

internal manipulation of the incentive, we would expect to find differential neural encoding 

of the incentive during reappraisal. Alternatively, if the reappraisal strategy acts by simply 

distracting the participant from the task we would expect that this would be accompanied 

by diminished average BOLD activity during reappraisal. 

 

 

 

Materials and methods 
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Participants 

All participants were right handed and were prescreened to exclude those with a previous 

history of neurological or psychiatric illness. The California Institute of Technology 

Institutional Review Board approved this study, and all participants gave informed consent. 

Forty-two participants (mean age 27 years, age range 18-49 years, 16 females) took part in 

the experiment. Of these, four participants did not complete the experiment due to 

scheduling conflicts (2) and illness (2). 

 

Procedure 

Each participant attended the experiment on two separate days. On the first day, 

participants began by completing the prospect theory gambling task, which was used to 

measure their level of loss aversion. Participants were then introduced to the motor task, in 

which they controlled a virtual spring-mass system. This dynamic system was completely 

novel to the participants, which allowed us to evaluate their performance uncorrupted by 

previous experiences or expertise. On that day, participants learned to perform the motor 

task (training phase), after which we determined participants’ rates of success at various 

target sizes (thresholding phase). Both the training and thresholding phases took place in a 

mock MRI scanner to replicate the posture necessary for the scanning environment. On the 

second day, participants completed the revised Life Orientation Test (LOT-R), a 

questionnaire that assesses optimism (Scheier et al., 1994). After this, participants received 

instruction in the cognitive reappraisal strategy they would implement during the motor 

task. They then performed the motor task for money (see Figure 16) while they underwent 

MR imaging and had their skin conductance recorded (testing phase). Following the scan, 

participants completed a debriefing in which they indicated the level of performance they 

believed they had achieved at each incentive level under the control and reappraisal 

conditions, and how successful they believe they had been in applying the reappraisal 
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strategy. Participants were paid a fee of $35 plus their earnings from the gambling task 

and the outcome of a single randomly-selected trial from the testing phase of the motor 

task.  

 

Prospect theory task 

Participants received an initial endowment of $25 in cash (this amount was separate from 

their show-up fee and earnings from the testing phase) and were told that, at the end of the 

task, one trial would be selected at random from the prospect theory task and a payment 

made according to their decision in that trial. Participants earned the $25 endowment 

adjusted for any monetary win or loss incurred on the randomly selected trial. 

During the experiment, participants made choices between 140 pairs of monetary 

prospects. Each pair contained one option with a guaranteed payout and another risky 

option involving a monetary gain and a monetary loss that occurred with equal 

probabilities. Participants had 4 seconds to make each choice, and were penalized $1 for 

every trial on which they did not respond in time. Further specifics of the gambles used can 

be found in previous studies (Sokol-Hessner et al., 2009; Frydman et al., 2010). Estimates 

of participants’ loss aversion were obtained from their choices, as in previous studies (Chib 

et al., 2014). 

 

Motor task 

Each trial began with a prompt instructing participants to ‘Get Ready’, which remained 

onscreen for 1 second. This was followed by the appearance of an ‘x’ at the bottom of the 

screen, and a white circular cursor whose position on the screen reflected the position of 

their finger in space. When the participant held this finger cursor over the ‘x’ for a variable 

amount of time (2-5 seconds), this triggered the appearance of a target square at the top of 
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the screen and a yellow circular cursor beside their white finger cursor. This yellow 

cursor moved as if it were a mass that was attached by a spring to the white finger cursor. 

For a more detailed description of the mechanics underlying the virtual spring-mass 

system, see the studies by Chib et al. (2012, 2014). The participants’ task was to move their 

finger cursor so that both the finger and mass cursors were inside the target square after 2 

seconds had passed since the appearance of the target square. After these 2 seconds had 

elapsed, both cursors turned green if this condition had been met or red otherwise. This 

remained onscreen for 1 second, and was followed by an intertrial interval (ITI), 

represented by a white crosshairs at the center of the screen (jittered duration 1-7 seconds). 

 

The training phase comprised 500 such trials, with a target size of 502mm. The 

thresholding phase comprised 200 trials, with target sizes ranging from 102 to 552mm in 

increments of 52 mm. Each target size was presented randomly 20 times. From this data, 

we obtained a psychometric curve that represented participants’ performance over a range 

of target sizes. The target size that coincided with a 60% success rate was selected for use 

in the testing phase. 

Before the testing phase, participants were instructed in the reappraisal strategy (described 

further below) and told that one trial would be selected randomly at the end of the 

experiment and they would be paid according to their performance on that trial. This 

payout mechanism was used to encourage participants to evaluate each trial independently. 

Participants performed trials for a range of incentives ($0, $25, $50, $75, $100). Each 

incentive level was presented randomly 30 times for a total of 300 trials. The monetary 

incentive for each trial in the testing phase was displayed when the starting ‘x’ appeared 

and disappeared when the target box appeared. Trials were presented in blocks of ten, with 

each block associated with either the control or reappraisal strategy. This was indicated to 

the participant by the appearance at the beginning of each block of the word ‘Gain’ or 

‘Loss’ respectively (duration 5 seconds). The control and reappraisal blocks were otherwise 

identical. 
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During the motor task, a motion capture system (VICON; Oxford Metrics Limited, 

Oxford, United Kingdom) was used to track and record the position of an infrared-

reflective marker attached to the participant’s right index finger and to map the position of 

that finger in 3D space to the 2D coronal plane of their body. Real-time visual feedback of 

this position was presented to the participant during the task. Stimulus presentation and 

behavioral data acquisition were implemented using MATLAB (MathWorks) and 

Psychtoolbox (http://psychtoolbox.org/). Visual feedback was presented via a projector 

positioned at the back of the room. Participants viewed a reflection of the projector image 

in a mirror affixed to the MRI head coil. Participants’ did not have direct views of their 

arms because they were positioned in the MR scanner head-first, supine, with the display 

mirror blocking their view.  

 

MRI protocol 

Magnetic resonance imaging was carried out with a 3T Siemens Trio scanner and radio 

frequency coil. High-resolution structural images were collected using a standard 

MPRAGE pulse sequence, providing full brain coverage at a resolution of 1x1x1 mm. 

Functional images were collected at an angle of 30° from the anterior commissure–

posterior commissure axis, to attenuate signal dropout in orbitofrontal cortex (Deichmann 

et al., 2003). Forty-five ascending slices were acquired at a resolution of 3 x 3 x 3 mm, 

providing whole-brain coverage. A one-shot echo-planar imaging pulse sequence was used 

(TR, 2800 ms; TE, 30 ms; FOV, 100 mm; flip angle, 80°). 

 

Behavioral Analysis 

In order to measure the degree to which participants’ choked, we calculated for each 

condition (control and reappraisal) the difference between their peak performance and their 

performance at the highest level of incentive ($100). This quantity took a value of zero if 
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performance peaked at the highest level of incentive ($100), while when performance 

peaked at lower levels of incentive this metric is necessarily greater than or equal to zero. 

High values on this metric indicate that participant’s performance at the highest level of 

incentive was substantially worse than that at its peak.  

This choking metric is continuously distributed over a range of values but takes one focal 

value, zero, with positive probability. The application of ordinary least squares regression 

to such a variable is known to yield inconsistent parameter estimates (Amemiya, 1973). 

Therefore, Tobit regression (Tobin, 1958), which accommodates such data, was used to 

regress the choking metric on appraisal strategy (control=0, reappraisal=1) and mean-

corrected loss aversion, with a random participant-level intercept, and was implemented 

using the AER package (Kleiber and Zeileis, 2008) in R (R Core Team, 2015). The Tobit 

describes the relationship between an observable dependent variable 𝑦, independent 

variables  and an intervening unobservable latent variable 𝑦∗ as taking the following form: 

𝑦! =
𝑦!∗
0
            

𝑖𝑓  𝑦!∗ > 0
𝑖𝑓  𝑦!∗ ≤ 0 

where 𝑦!∗ = 𝛽!𝑥!,!! + 𝑢! , 𝑢!   ~  𝑁(0,𝜎!). We calculated the partial effect of reappraisal 

on choking as the difference in the expected magnitude of choking between the control and 

reappraisal strategies for an individual of mean loss aversion, 

where  𝐸 𝑦 𝑥 = Φ !!!!!

!
𝑥!𝛽!! + 𝜎𝜙 !!!!!

!
, (Wooldridge, 2010).  

 

MRI Preprocessing  

Two participants were excluded from the MR imaging analysis due excessive head motion 

(>3mm in any direction) during imaging, leaving n=36. All image preprocessing and 

analysis was performed using SPM12 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London, UK; available at http://www.fil.ion.ucl.ac.uk/spm). All 
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functional volumes were corrected for differences in acquisition time between slices (to 

the middle slice), realigned to the first volume, and coregistered with the high-resolution 

structural image. The coregistered high-resolution structural image was segmented and 

normalised to Montreal Neurological Institute (MNI) space using Diffeomorphic 

Anatomical Registration Through Exponentiated Lie algebra (DARTEL). The resulting 

transformation was applied to the functional volumes. The functional volumes were 

spatially smoothed with a Gaussian kernel (full-width at half-maximum = 6 mm) and high-

pass temporally filtered (128s). 

 

fMRI Statistical Analysis 

We analyzed the BOLD data using a general linear model (GLM) with participant-specific 

design matrices. These design matrices included separate sets of regressors representing the 

control and reappraisal conditions. For each condition, we included three onset regressors, 

representing incentive presentation and the performance of the motor task. The first 

modeled the periods in each trial when the incentive information was displayed and 

participants were holding the finger cursor over the starting position (duration 2-5 seconds). 

The second and third onset regressors modeled the periods beginning with the appearance 

of the yellow mass cursor and ending with the termination of the motor task (duration 2 

seconds) on trials on which the participant was successful and unsuccessful, respectively. 

For each onset regressor, we included a parametric regressor representing the incentive 

offered on each trial represented by that onset regressor. This design ensured that any 

effects of incentive magnitude would not be confounded by those of task success or failure. 

All onset and parametric regressors were convolved with the standard hemodynamic 

response function in SPM. Head motion parameters estimated during the realignment 

procedure were also included in the design matrix as regressors of no interest. Maps of the 

voxel-wise parameter estimates for the regressors of interest were entered in between-

subjects random effects analyses testing the effect of the regressors across the group. We 

report statistics with an uncorrected threshold of pUNC < 0.005, after correction for multiple 
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comparisons across the whole brain (WBC) to pFWE < 0.05 using 3dFWHMx to 

estimate the smoothness of the residual images of each group-level contrast and AlphaSim 

to calculate extent thresholds (AFNI, Cox, 1996). 

 

fMRI Region of Interest Analysis 

Previous studies from this group have reported an association between the ventral striatal 

BOLD response to monetary incentives and performance in this task (Chib et al., 2012, 

2014), and so this region was an a priori region of interest (ROI). We therefore employed 

an anatomically-defined mask encompassing nucleus accumbens and ventral putamen, 

using WFU Pick Atlas (Lancaster et al., 2000; Maldjian et al., 2003). For each participant, 

the mean BOLD time course of all voxels within this mask was regressed on our design 

matrix using the MarsBaR toolbox (http://marsbar.sourceforge.net). For each regressor, we 

tested for effects across the group by subjecting participants’ parameter estimates to a t-test. 

Only a single regression is performed, and therefore no correction for multiple comparisons 

is required. 

 

Loss Aversion Estimation 

To estimate participants’ loss aversion, we used a parametric analysis of their choices. We 

express participants’ utility function 𝑢 for monetary values as 

𝑢 𝑥 = 𝑥!
𝜆𝑥!

𝑥 ≥ 0
𝑥 < 0 

In this formulation, 𝜌 represents the curvature of the utility function and 𝜆 represents the 

relative weighting of losses to gains with 𝜆 > 1  indicating that losses loom larger than 

equal-magnitude gains. Assuming that participants combine probabilities and utilities 

linearly, the expected utility of a mixed gamble from our prospect theory task can then be 
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written as 𝑈 𝐺, 𝐿 = 0.5𝑢 𝐺 + 0.5𝑢 𝐿 , where 𝐺 and 𝐿 are the respective gain and 

loss of the presented risky option. The expected utility of taking the certain option S is 

given by 𝑈 𝑆 = 𝑢 𝑠 . The probability that a participant chooses to make a gamble is 

given by the following softmax function: 

𝑃 𝐺, 𝐿 =
1

1+ exp  (−𝜏(𝑈 𝐺, 𝐿 − 𝑈(𝑆)) 

 

Here, is a temperature parameter representing the stochasticity of the participant’s choice. 

We fit parameters separately for each participant to their choices on the 140 trials of the 

prospect theory task using constrained maximum likelihood estimation with optim in R (R 

Core Team, 2015). Two participants with fitted 𝜆 parameters occurring at the boundary 

(0,10) were excluded from further analyses involving loss aversion. Mean parameter 

estimates of the remaining participants (n = 36) were 𝜌 = 1.19 (IQR = 0.28), 𝜆 = 1.68 

(IQR = 0.82) and 𝜏 = 1.79 (IQR = 1.02). 

 

Skin Conductance Analysis 

Skin conductance was recorded on the thenar/hypothenar surface of the left hand using 

Ag/AgCl radio-translucent electrodes (EL509; Biopac), 0.5%-NaCl electrode paste 

(GEL101; Biopac) and MR-compatible leads (LEAD108C). The signal was acquired with 

a Biopac data acquisition system (modules EDA100C-MRI and MP150) connected to the 

stimulus presentation computer. A model-based analysis of the skin conductance data was 

conducted using the PsPM toolbox (Bach and Friston, 2013) for MATLAB. This approach 

permits the inference of effects of experimental events on sympathetic nerve firing by 

inverting an informed generative model of skin conductance, and has been demonstrated to 

have favorable predictive validity relative to alternative analysis techniques, such as peak-

scoring (Bach, 2014). The data was filtered with a unidirectional Butterworth band pass 
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filter with cut-off frequencies of 0.05 and 5 Hz, and downsampled from the acquisition 

frequency of 100Hz to 5 Hz. For each participant, this data was modeled using a general 

linear convolutional model with participant-specific design matrices. We created three 

boxcar onset regressors representing the periods of incentive presentation (2-5 seconds), 

motor task (2 seconds), and inter-trial interval (1-7 seconds), parametric regressors at the 

time of incentive presentation and motor task representing task performance (success=1, 

failure=0), condition (reappraisal=1, control=0), and incentive magnitude, as well as 

regressors representing the two- and three-way interactions of these variables. These 

regressors were convolved with a canonical skin conductance response function and its first 

temporal derivative (Bach et al., 2010) and included in the design matrix. Group effects 

were determined by entering the parameter estimates for each convolved regressor in 

between-subjects two-tailed t-tests. 

 

Reappraisal Strategy 

Participants were instructed to interpret the monetary incentives presented during the motor 

task differently based on the prompt that appeared before each block of trials. In the control 

condition participants were instructed to interpret the incentive as a potential monetary 

gain, while in the reappraisal condition participants were asked to imagine the incentive as 

a potential monetary loss. These instructions cued participants to explicitly imagine the 

financial and emotional consequences of their success or failure under each condition. The 

instructions provided to participants read as follows: 

“During the session you will see the word Loss and the word Gain appear onscreen. We 

would like you to think about the monetary incentives in different ways when you see these 

words.  

When the word Loss appears on screen (see image below), you should regard the monetary 

incentives shown at the beginning of each round as "your" money. Imagine the amount, in 
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cash, sitting in your pocket as you complete the round. Imagine that, if you are 

successful on the round, you will get to keep your money, but if you are unsuccessful, you 

will have to give this money to the experimenter. Imagine how it would feel to lose this 

money. You should continue to think about the incentives in this way throughout each 

round until you see the word Gain appear on screen. 

When the word Gain appears on screen (see image below), you should imagine that you 

begin each round with no money in your pocket. Regard the monetary incentive as an 

amount of money that you have the opportunity to win. Imagine that if you are successful 

on the round, the experimenter will give you this money, in cash, but if you are 

unsuccessful you will end the round as you began - with nothing.  Imagine how it would 

feel to gain this money. You should continue to think about the incentives in this way 

throughout each round until you see the word Loss appear on screen.  

Please do your best to think of the incentives in these ways throughout the session.” 

Participants were explicitly instructed that although they should interpret the incentive 

differently in the control and reappraisal conditions, in reality the incentives on all trials 

would be treated as potential monetary gains. That is, successful performance in the 

randomly selected trials would result in a monetary gain for the participant, while failure 

would result in no change in their earnings from the task. After completing the task, 

participants reported their success at applying the appraisal strategies on a 1-10 rating scale. 
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Results 

 

Behavioral evidence of choking 

We predicted that participants’ performance would be influenced by the magnitude of the 

incentive, the appraisal strategy, and their individual level of loss aversion, such that at high 

incentive, the performance of highly loss averse participants would deteriorate when they 

interpreted the incentive as a gain but not when it was reappraised as a loss, and the reverse 

for participants with low level of loss aversion. To test this, we began by repeating the 

analysis procedure of Chib et al. (2012, 2014). The group was split at the median into low 

and high loss aversion subgroups, and their performance in each framing condition (gain 

and loss) at each binned level of incentive (low=$0, medium=$25/$50/$75, high=$100) 

was inspected (see Fig. 17A). A three-way ANOVA revealed an effect of incentive on 

performance (F[2,204] = 4.31, p = 0.01), but we did not find any effect of the  interaction 

of incentive, frame, and loss aversion. 

However, because the incentive at which performance peaks varies across participants, 

averaging performance at each level of incentive across participants is likely to mask any 

effect of choking. We therefore operationalized choking as the difference between a 

participant’s peak level of performance across incentives and their level of performance at 

the highest level of incentive, calculated separately for the control and reappraisal 

conditions (see Fig. 17B). A participant whose performance peaked at $100 would 

necessarily have a choking value of 0 according to this metric, while a participant whose 

performance peaked at a lower level of incentive would have a positive value on this 

metric. 

To determine whether participants’ cognitive reappraisal of the incentive influenced their 

likelihood of choking, we regressed this metric on appraisal condition (control = 0, 

reappraisal = 1), participant’s level of loss aversion, and their interaction (see Fig. 17B). 
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We found that choking in the control condition was significantly greater than zero 

𝛽 𝑆𝐸 = 9.50 1.87 , 𝑝 < 1𝑒 − 6 .. Thus, for a participant of average loss aversion, the 

fitted model indicated that their performance at $100 in the control condition was 10.7% 

below its peak. This drop in performance was significantly attenuated when participants 

applied the reappraisal strategy (𝛽 𝑆𝐸 = −6.26 2.67 , 𝑝 = 0.02). We predicted that the 

appraisal strategy and loss aversion would interact to effect choking. Unexpectedly, the 

Tobit regression revealed no such interaction of loss aversion and appraisal strategy. The 

effect of loss aversion on choking in the control condition was not statistically significant 

(𝛽 𝑆𝐸 = 1.51 1.78 , 𝑝 = 0.40), nor was the effect of loss aversion during reappraisal 

significantly different from observed that in the control condition (𝛽 𝑆𝐸 = 2.17 2.56 ,

𝑝 = 0.40). By reversing the coding of the indicator variable for appraisal condition 

(control = 1, reappraisal = 0), we find that the level of choking during reappraisal is 

statistically indistinguishable from zero (𝛽 𝑆𝐸 = 3.45 1.95 , 𝑝 = 0.40). The effect of 

loss aversion in the reappraisal condition reaches statistical significance 𝛽 𝑆𝐸 =

3.68 1.84 , 𝑝 = 0.046 , but is not robust to the exclusion of either of two participants 

with the levels of loss aversion that are greater than 2.5 standard deviations from the mean 

(𝜆 = 4.33, 5.28). Although inconsistent with our predicted effects, application of the 

reappraisal strategy was nevertheless successful in substantially influencing participants’ 

task performance; for a participant with average loss aversion, the expected difference 

between performance at its peak and performance at the highest level of incentive when the 

incentive was regarded as a monetary gain was 10.7%, while reappraisal of the incentive as 

a monetary loss reduced this to 6.17% - a 42.3% reduction in choking. 

 

Neural effects of incentive 

We examined participants’ neural responses to incentives during the task (see Table 5).  

We found that when participants interpreted the incentive as a monetary gain, BOLD 

activity during the time of incentive presentation in ventral striatum and an extensive 

frontoparietal cluster encompassing lateral prefrontal cortex, supplementary motor area, 
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motor cortex, and parietal cortex increased with the magnitude of the incentive (see 

Figure 18A). This positive relationship between incentive magnitude and BOLD activity 

was also evident in these regions when participants framed the incentive as a loss. This 

mirrors the results of Chib et al. (2012, 2014), who find that encoding of both real gains 

and real losses resulted in positive activation of ventral striatum and a network of 

frontoparietal areas. However, these cortical and subcortical representations of incentive 

magnitude were weakened when participants reappraised the incentive as a potential 

monetary loss, with significant differences emerging in ventral striatum and bilateral 

inferior frontal gyrus.   

During the time of the motor task, the incentive magnitude was also represented in the 

BOLD signal, however the sign of this relationship was reversed in ventral striatum, with 

increasing incentive being associated with decreasing BOLD activity, again replicating the 

findings of Chib et al. (2012, 2014). We found no difference between the control and 

reappraisal conditions in the BOLD response to incentive magnitude during the period of 

motor task performance (see Figure 18B for effect of incentive combined contrasts).  

 

Analysis of BOLD in ventral striatum  

Previous work from this group demonstrated that the encoding of the monetary incentive in 

ventral striatal BOLD signal was predictive of behaviour in the motor task, thus this region 

was an a priori region of interest (ROI) in the current study. We regressed the average 

BOLD time course from this ROI (see Fig. 19A) on the same design matrix used in the 

voxel-wise analysis of the BOLD signal across the whole brain. This analysis confirmed 

that BOLD in ventral striatum at the time of initial incentive presentation (t(35)=5.57, p < 

1e-6, one-sided) increased with increasing incentive magnitude and this effect was stronger 

in the control condition, in which participants choked, than in the reappraisal condition 

(t(35) = 2.28, p = 0.03, two-sided, see Fig. 19B). At the time of the motor task, the BOLD 
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signal decreased with increasing incentive magnitude (t(35)=-1.75, p < 0.05); however 

there was no difference between the conditions in the strength of this effect. 

In order to further interrogate this difference between the conditions in incentive coding 

during the time of incentive presentation, we regressed this difference on the behavioral 

differences between the conditions in their degree of choking. We found that this difference 

in neural sensitivity to incentive magnitude in ventral striatum was indeed predictive of the 

difference in choking between the conditions, such that greater sensitivity to incentive in a 

condition was associated with greater choking in that condition (t(35) = -2.4572, p = 0.02, 

see Fig. 19C).  

 

Representation of incentive in sympathetic arousal 

We also analyzed participants’ skin conductance as they performed the task, using a 

general linear convolutional model, akin to those used in the analysis of fMRI data (Bach 

and Friston, 2013). This showed that skin conductance was responsive to task events such 

as the initial presentation of the incentive at the beginning of each trial, and the period 

during which participants executed the motor task (see Table 6). The magnitude of each of 

these responses was modulated by the magnitude of the incentive available on that trial, 

mirroring the findings of the analysis of the BOLD signal. However, unlike the BOLD, the 

average effect of incentive magnitude on skin conductance did not differ between the 

control and reappraisal conditions during the period of incentive presentation. Instead, we 

observed an effect during the performance of the motor task of the interaction of the 

magnitude of the incentive, participant’s performance (success or failure) and the 

condition, such that on failed trials, the effect of the incentive on skin conductance was 

significantly stronger in the control condition, in which participants choked, than in the 

reappraisal condition (see Figure 20). 
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We conducted a follow-up analysis to determine whether this interaction effect was a 

result of a significant increase in skin conductance in response to high incentives on failed 

trials, a significant decrease for low incentives, or both. We did this by creating separate 

indicator variables for trials from each combination of appraisal condition, performance 

and incentive level (High=$100, Low=$0/$25/$50/$75). Comparisons of the resulting 

parameter estimates demonstrated that skin conductance on failed, high incentive trials  in 

the control condition was significantly greater than on successful, high incentive control 

trials (t(37)=2.60, p=0.01) and significantly greater than failed high incentive reappraisal 

trials (t(37)=3.32, p=0.002). The response to low incentive failed trials in the control and 

reappraisal conditions did not significantly differ (t(37)=-0.73, p=0.47). We obtain the 

same qualitative results when high incentive trials were defined as those on which the 

participant played for $75 or $100. Thus, we conclude that sympathetic arousal was indeed 

selectively increased when participants’ performance failed at high incentives when 

participants interpreted the incentive as a potential monetary gain, the condition which was 

specifically associated with choking. 
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Discussion 

In this study we investigate the behavioural, neural, and physiological effects of a novel 

intervention for choking under pressure, which targets the representation of the incentive 

with a cognitive reappraisal strategy. We confirmed that when participants interpreted the 

incentive as a potential monetary gain they choked under pressure; that is, their 

performance at the highest level of incentive was significantly worse than their 

performance at its peak. However, when they reappraised the incentive as a potential 

monetary loss, this choking effect was substantially reduced. In fact, when participants 

applied the reappraisal strategy, the difference between performance at its peak and 

performance at the highest level of incentive was statistically indistinguishable from 

performance at its peak. In addition, unlike previous applications of reappraisal strategies, 

which measured effects of their application on self-reported emotional experience and 

emotional behaviours, the expected effects of the reappraisal strategy in this experiment 

were unknown to the participant, and so were unlikely to be attributable to experimenter 

demand.  

We had predicted that reinterpretation of the positive monetary incentive for successful 

performance as a potential monetary loss would rescue highly loss averse participants from 

choking under pressure, while those low on loss aversion would only choke during 

reappraisal, reflecting previous findings with real potential gains and losses (Chib et al., 

2012, 2014). Unexpectedly, we found that loss aversion did not reliably influence task 

performance. One potential explanation for this is that in both conditions of the present 

study, and unlike in Chib et al. (2012, 2014), participants were explicitly instructed to 

reflect on the consequences of winning and not winning the incentive presented on each 

trial. This effortful processing may have functioned as a distraction that prevented 

participants from attending to the incentive and to the task as fully as they might otherwise 

have. This in turn may have added noise to their behavior and masked underlying effects of 

loss aversion. This explanation would also be consistent with the fact that choking in the 

control condition was not as apparent as that seen in the gain condition of Chib et al. (2012, 
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2014), given that distraction is known to prevent choking in sensorimotor tasks such as 

this one by preventing the individual from disrupting automatic task execution with 

controlled top-down processing (Beilock and Carr, 2001; Markman et al., 2006; Gucciardi 

and Dimmock, 2008; DeCaro et al., 2011). 

By temporally separating the presentation of the monetary incentive from the performance 

of the motor task, the task design allowed us to isolate distinct components of neural and 

physiological processing that were modulated by the reappraisal strategy. We hypothesized 

that if the behavioural effects of the reappraisal strategy truly derive from internal 

reframing of the incentive, we would expect to find modulation of the BOLD 

representation of incentive magnitude during reappraisal, while if the reappraisal strategy 

was instead associated with greater distraction this would be reflected in nonspecific 

attenuation of the BOLD response during task execution. Our analyses are consistent with 

the former prediction, with reappraisal of the monetary incentive as a potential monetary 

loss causing diminished neural encoding of the magnitude of the incentive in ventral 

striatum and bilateral inferior frontal gyrus during the period of initial incentive 

presentation. Furthermore, we show that individual differences in the magnitude of this 

weakening in ventral striatum predicted individual differences in choking between the 

reappraisal and control conditions, such that those with greater decreases in BOLD 

sensitivity to incentive had greater reductions in choking. These results reaffirm the role of 

ventral striatum in responding to incentives (Knutson et al., 2001a, 2001b; Seymour et al., 

2007; Chib et al., 2012, 2014) but extends our understanding of this region by 

demonstrating that this representation is sensitive to modulation by a cognitive reappraisal 

strategy.  

In contrast to previous neuroimaging studies (Ochsner et al., 2002, 2004; van Reekum et 

al., 2007; Ochsner and Gross, 2008; Wager et al., 2008), reappraisal in the current study 

was not associated with greater activation of prefrontal cortex or reduced amygdala 

activity. The recruitment of prefrontal cortical regions during reappraisal is frequently 

interpreted as reflecting the exertion of cognitive control over subcortical emotional centers 
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(Ochsner and Gross, 2008), an assertion that has been supporting by a finding that 

subcortical structures activated during reappraisal mediate the influence of lateral prefrontal 

regions on reappraisal (Wager et al., 2008). This divergence from the existing literature 

may potentially be attributable to differences in the regulatory strategy applied by 

participants in this study. Here, participants were instructed in the form of reappraisal they 

should apply, but were unaware of the intended behavioral consequences of the reappraisal 

strategy. This differs from previous studies of reappraisal, where the nature of the stimulus 

and the instructions communicate to the participant those behaviors that are expected by the 

experimenter to be modulated by the intervention. The neural and behavioral effects 

obtained from such manipulations may therefore reflect a combination of both the 

consequences of cognitive reappraisal of the stimulus, and intentional inhibition of the 

behavioural and emotional indices of the stimulus, which are known to recruit prefrontal 

cortex (Konishi et al., 1999; Aron et al., 2004; Goldin et al., 2008). 

As we have discussed, in the control condition participants were instructed to reflect on the 

consequences of winning and not winning the incentive as a monetary gain. This might be 

considered a form of emotional regulation, insofar as the participant is asked to attend to 

features of the incentive that they otherwise might not have, had they been allowed to 

interpret the incentive naturally. It might therefore be argued that the reason that we do not 

find greater prefrontal activation during reappraisal is because neural mechanisms in 

prefrontal cortex that support emotional regulation are recruited in both conditions, and are 

therefore not apparent when the conditions are contrasted.  

However, it should be noted that the reappraisal condition is a demanding form of 

reappraisal, in the sense that it requires the participant to deceive themselves as to the 

nature of the incentive, reappraising incentive, which in reality was always a potential 

monetary gain, as a potential monetary loss. This is likely to be a more challenging task 

than that faced by participants in previous reappraisal paradigms, in which participants 

were typically prompted to psychologically distance themselves from an emotional 

stimulus, or to focus their attention on different aspects of a stimulus. In addition, everyday 
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emotional regulation is typically aimed at reducing emotional responses to negative 

emotional stimuli (Gross et al., 2006), while in this task we ask participants to create 

negative response to positive monetary incentive, which may increase the difficulty of the 

task. Given this substantial difference between the control and reappraisal conditions in the 

degree of emotional regulation expected of the participant, we would expect to be able to 

detect an underlying difference in the BOLD response in prefrontal cortical areas were it 

associated with reappraisal in the current task. Furthermore, we successfully detect other 

extensive neural differences between the control and reappraisal conditions, suggesting the 

absence of prefrontal activity is not due to lack of statistical power.  

The model-based analysis of skin conductance revealed that the intervention may have its 

effect by moderating sympathetic arousal. Firstly, skin conductance rose significantly 

during the execution of the motor task, with an amplitude that was proportional to the size 

of the incentive the participant was playing for on the trial. In the control condition, in 

which participants showed exhibited choking at high levels of incentive, we found that 

when participants’ performance failed, the effect of incentive on skin conductance was 

heightened. Post hoc analyses confirmed that this effect was driven by greater skin 

conductance during performance when playing for high monetary incentive, rather than 

reduced skin conductance when playing for low incentive. Taken together, the sympathetic 

response to incentive was lowest when participants played for low incentive, was greater 

when participants played for high incentive and succeeded, and greatest when participants 

when participants played for high incentive and failed. This pattern is reminiscent of the 

relationship between performance and arousal described by the Yerkes-Dodson law 

(Yerkes and Dodson, 1908). Although widely referenced in literature on sensorimotor task 

performance, the model has been heavily criticized for lacking supporting evidence for a 

causal influence of arousal on performance, and for ignoring the mediating influence of 

cognitive and emotional state (Neiss, 1988; Jones, 1995; Arent and Landers, 2003). 

Nevertheless, this finding is, to our knowledge, the first report of heightened sympathetic 

arousal during choking. Furthermore, this sympathetic hyperarousal was abolished by 

reappraisal of the incentive; that is, failures of performance under high incentive during 



 

 

139 
reappraisal were indistinguishable from successes under high incentive. This suggests 

that the heightened sympathetic response during failed performance for large incentives in 

the control condition is indeed specifically associated with choking, given that both 

choking and this effect on skin conductance are absent during reappraisal. 

In summary, we validate a novel intervention that successfully abolishes performance 

decrements under high incentives in a skilled motor task, and identify its underlying neural 

and physiological substrates. Although further testing is required to determine the 

generality of this intervention to other types of task, by targeting the representation of the 

incentive, reappraisal may prove to be a highly flexible intervention for choking under 

pressure.  
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Figure 16. Task schematic. Participants played alternating blocks of Gain and Loss trials, 

with the block type indicated at the beginning of each block. Each trial began with the 

presentation of the monetary incentive the participant was playing for ($0, $25, $50, $75, 

$100). To begin the motor task, participants held a white cursor that represented the 

position of their finger in space over the starting position (‘x’) for a randomly varying 

duration (2-5 seconds). When the target square appeared, participants had two seconds to 

bring the white finger cursor and a yellow cursor, which moved as if it were a mass 

attached to the white cursor by a spring, to rest inside the square. At the end of the trial 

participants saw whether they had been successful (green cursors) or unsuccessful (red 

cursors). Trials were followed by an intertrial interval (1-7 seconds).  
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Figure 17. Participant behaviour. (A) Average performance increased with incentive. Stars 

indicate significantly (p<0.05) different performance from that at the middle level of 

incentive. Error bars denote SEM. (B) Choking, operationalized as the difference between 

peak performance and performance at the highest level of incentive ($100), plotted against 

loss aversion (left), and averaged across the group (right). Lines represent expected choking 

derived from fitted Tobit model. Errors bars represent SEM. 
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Figure 18. Whole brain effects of incentive magnitude on BOLD. (A) Ventral striatum, and 

a number of cortical areas responded to the incentive magnitude during the period of 

incentive presentation. This response was significantly stronger in cortical and subcortical 

areas when participants imagined the incentive as a loss. In contrast, during the time of the 

motor task (B), the BOLD response decreased with increasing incentive magnitude in 

ventral striatum. The strength of this response did not differ between the conditions.  
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Figure 19. Effects of incentive magnitude in ventral striatum ROI. (A) Illustration of 

ventral striatum ROI encompassing bilateral putamen and nucleus accumbens. (B) 

Encoding of incentive in ventral striatum in the gain frame was significantly stronger in 

gain condition, in which participants choked, than in the loss condition. (C) The difference 

in the effect of incentive magnitude between the two frames predicted differences between 

the conditions in the degree of choking.  
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Figure 20. Effects of incentive magnitude on sympathetic arousal. Adjusted skin 

conductance aligned to the onset of the motor task. Skin conductance reflected the 

magnitude of the incentive with conductance increasing with increasing incentive. In 

addition, task failure in the gain condition was accompanied by stronger encoding of high 

incentive relative to the loss condition during the time of the motor task. In order to 

illustrate the effect of incentive at the time of motor task, each participant’s filtered and 

down-sampled skin conductance data was adjusted for the estimated effects of all 

regressors in the design matrix, excluding those representing the main and interaction 

effects of incentive at the time of the motor task. The high and low incentive data is taken 

from $100 and $0 trials, respectively. Line represents mean and shadow represents SEM. 
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Contrast  
  Region 

Condition 
Control/ 

Reappraisal 

Sign x y z Cluster 
size  

t-score 

Incentive at presentation  C       
  Left SMA1  + -4 2 50 60996 9.24 
  Left putamen2  + -16 8 -6 433 8.77 
  Right putamen2  + 16 8 -8 570 8.22 
Incentive at presentation         
  Right SMA1 R + 8 6 50 16500 7.65 
  Left thalamus1  + -2 -26 0 1640 5.20 
  Right putamen2   + 20 10 -10 164 4.70 
  Left putamen2   + -20 14 -10 125 4.60 
Incentive at presentation        
  Left IFG1 C-R + -42 12 20 1093 5.04 
  Right IFG1  + 48 20 8 722 4.16 
  Right putamen2  + 30 -8 -8 86 4.01 
(Choking covariate)        
  Left anterior STS C-R + -54 -8 -18 540 4.49 
Incentive at presentation        
  Left precentral gyrus1 C+R + -38 -16 48 582420 11.19 
  Right putamen2  + 20 4 -12 508 7.42 
  Left putamen2  + -16 8 -8 391 7.17 
Incentive at motor task  C       
  Left middle occipital 
gyrus1 

 + -32 -60 8 957 5.95 

  Left MFG1  - -48 24 32 4699 6.32 
  Right MFG1  - 28 24 50 897 5.38 
  Left angular gyrus1  - -52 -66 38 978 5.29 
  Left MTG1  - -64 -32 -6 686 4.45 
Incentive at motor task R       
  Left hippocampus1 
 

 + -32 -28 -4 524 4.73 

  Left putamen2  - -24 8 -4 54 3.91 
Incentive at motor task C+R       
  Right postcentral   
gyrus1 

 - 54 -16 46 505 5.93 

  Left MFG1  - -34 28 42 2373 5.45 
  Left angular gyrus1  - -52 -64 42 969 4.69 
  Left putamen1  - -24 2 10 879 4.33 
  Left putamen2  - -24 4 -6 134 4.27 
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Table 5 | Peak co-ordinates of all significantly activated clusters. 1𝑝!"# < 0.05 at 

cluster-level after whole-brain correction and a height threshold of 𝑝!"# < 0.005; 
2𝑝!"# < 0.05 at peak-level after small volume correction for ventral striatum and a height 

threshold of 𝑝!"# < 0.005. 
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Onset regressor 
   Parametric modulator 

Mean SEM t-score p 

Incentive Presentation1, BF12 -5.54e-4 9.76e-5 -5.60 2.16e-6 
Incentive Presentation, BF23 1.69e-2 4.01e-3 4.15 1.85e-4 
   Performance4, BF1 1.03e-4 5.10e-5 2.00 0.05 
   Performance, BF2 -8.73e-5 2.07e-3 -0.04 0.97 
   Frame5, BF1 4.33e-5 3.87e-5 1.10 0.28 
   Frame, BF2 2.35e-3 2.43e-3 0.95 0.35 
   Incentive Magnitude, BF1 -8.48e-7 9.99e-7 -0.84 0.41 
   Incentive Magnitude, BF2 1.98e-4 6.16e-5 3.17 3e-3 
   Incentive Magnitude × Frame, BF1 -1.73e-7 9.99e-7 -0.17 0.87 
   Incentive Magnitude × Frame, BF2 4.74e-5 6.20e-5 0.75 0.46 
   Incentive Magnitude × Performance, BF1 -1.31e-7 8.37e-7 -0.15 0.88 
   Incentive Magnitude × Performance, BF2 6.70e-5 6.14e-5 1.08 0.29 
   Performance × Frame, BF1 6.82e-5 6.28e-5 1.07 0.29 
   Performance × Frame, BF2 -1.53e-3 4.79e-3 -0.32 0.75 
   Incentive Magnitude × Frame × 
Performance, BF1 

2.20e-6 2.18e-6 1.00 0.33 

   Incentive Magnitude × Frame × 
Performance, BF2 

-1.75e-6 9.88e-5 -0.02 0.99 

Motor Task6, BF1 4.33e-3 7.80e-4 5.48 3.22e-6 
Motor Task, BF2 5.87e-2 1.48e-2 3.93 3.59e-4 
   Performance, BF1 -2.02e-4 2.48e-4 -0.80 0.43 
   Performance, BF2 -3.74e-3 4.72e-3 -0.78 0.44 
   Frame, BF1 1.96e-4 1.81e-4 1.07 0.29 
   Frame, BF2 4.54e-3 4.82e-3 0.93 0.36 
   Incentive Magnitude, BF1 4.11e-5 6.74e-6 6.02 5.90e-7 
   Incentive Magnitude, BF2 6.58e-4 1.56e-4 4.17 1.75e-4 
   Incentive Magnitude × Frame, BF1 5.17e-6 3.21e-6 1.59 0.12 
   Incentive Magnitude × Frame, BF2 4.27e-5 6.58e-5 0.64 0.52 
   Incentive Magnitude × Performance, BF1 -2.26e-6 3.65e-6 -0.61 0.55 
   Incentive Magnitude × Performance, BF2 -4.96e-5 8.83e-5 -0.55 0.58 
   Performance × Frame, BF1 -2.11e-4 1.71e-4 -1.22 0.23 
   Performance × Frame, BF2 2.83e-3 6.22e-3 0.45 0.66 
   Incentive Magnitude × Frame × 
Performance, BF1 

-1.50e-5 5.84e-6 -2.54 0.02 

   Incentive Magnitude × Frame × 
Performance, BF2 

-3.21e-4 1.61e-4 -1.97 0.06 

ITI7, BF1 5.03e-5 1.23e-4 0.41 0.69 
ITI, BF2 9.60e-4 3.10e-3 0.30 0.77 
Intercept (Session 1) 4.97e-5 1.03e-5 4.74 3.13e-5 
Intercept (Session 2) 7.01e-5 2.22e-5 3.11 3.56e-3 
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Table 6: Results of model-based analysis of skin conductance. 1Boxcar regressor 

covering hold time (2-5 second duration); 2Basis function 1, canonical skin conductance 

response function; 3Basis function 2, temporal derivative; 4Success=1, Failure=0; 
5Control=1, Reappraisal=0; 6Boxcar regressor covering motor task (2 second duration); 
7Boxcar regressor covering inter-trial interval (1-7 second duration) 
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C h a p t e r  6  

CONCLUSIONS 

The studies described in this thesis address several open questions in the area of reward 

seeking behavior: how do we learn from our own experience, and that of those around us, 

to obtain rewards in our environment, what determines those behaviors that are 

rewarding, and how can reward seeking behaviors break down? 

 

In Chapter 2, we show that humans are capable of learning the reward value of stimuli in 

their environment by observing a conspecific interact with them, even when such 

learning cannot reflect simply mimicry of the actions of the observee. Perhaps more 

surprisingly, by regressing concurrently acquired BOLD data on the model update signals 

derived from reinforcement learning algorithms fitted to participants’ behavior 

(O’Doherty et al., 2007) we found that this form of observational learning and its 

experiential learning analogue may be supported by both dissociable and common neural 

computations. Specifically, we replicate previous findings (O’Doherty et al., 2004; 

Cooper et al., 2012) that during experiential learning ventral striatum encodes a reward 

prediction error signal, used by model-free reinforcement learning algorithms to update 

‘cached’ values for actions (Sutton and Barto, 1998). However, when participants learned 

the same contingencies through observation, we found no significant reward prediction 

error response in ventral striatum, or elsewhere in the brain. While previous studies did 

not formally confirm that RPE encoding differed between observational and experiential 

learning, ventral striatal RPE encoding is also notably by its absence in studies when 

participants could learn from the choices of others (Cooper et al., 2012) or are explicitly 

tasked with mimicking the choices of another person (Suzuki et al., 2012), suggesting 

that this result is not particular to this form of observational learning. The finding that 

observational and experiential reward learning differ in their neural signatures is, in 

another sense, surprising given that our observational and experiential learning conditions 

do not differ in their task structure, or the reward information available to the participant. 



 

 

150 
However, it suggests that a model-free updating mechanism in ventral striatum may 

not possess the computational flexibility to allow rewards observed in this context to 

update cached values in the manner experienced rewards are thought to. 

We also tested for the presence in the BOLD of state prediction error signals, used by 

model-based reinforcement learning algorithms to update probabilistic model of the 

contingencies linking states of the environment. This revealed encoding of SPE during 

experiential learning in a network of frontoparietal regions, including intraparietal sulcus, 

replicating previous findings (Gläscher et al., 2010; Liljeholm et al., 2013). For the first 

time, we demonstrate that such signals are also present during observational learning, and 

that the regions involved do not differ from those encoding SPE during experiential 

learning.  

One interesting prediction arising from these findings is that this form of observational 

learning may differ from experiential learning in its susceptibility to habitisation, or the 

persistence of the learned behaviour when the desirability of its outcome is diminished or 

the contingency linking the behaviour and its outcome is degraded (Adams and 

Dickinson, 1981; Dickinson, 1985). Habitual control of behaviour is proposed to arise 

when ‘cached’ values linking stimuli and responses learned by model-free learning 

algorithms, prevail over action values derived from model-based probabilistic models of 

environmental contingencies and reward value underlying states (Daw et al., 2005; 

Gläscher et al., 2010; Lee et al., 2014). According to this account, the absence of RPE 

signaling suggests that the acquisition of model-free associations may be diminished in 

this form of observational learning and that it may therefore be less susceptible to the 

emergence of habitual control of behaviour than its experiential counterpart.  

An important outstanding question will be to determine whether state prediction error 

signals identified in BOLD truly support updating of an internal model of the 

environment or instead reflect correlated processes like surprise and attentional 

reorienting (O’Reilly et al., 2013). One approach to this question has been to attempt to 

mathematically disentangle the correlated timeseries of such processes (O’Reilly et al., 

2013), relying on information theoretic arguments. Alternatively, one can disrupt the 

neural activity in areas thought to underpin model-based learning. Smittenaar et al. 
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(2013) use this approach to demonstrate that transcranial magnetic stimulation (TMS) 

of dlPFC reduces model-based behavior; although it is unclear whether this effect was 

achieved by disrupting model-based learning per se, or by disrupting the reasoning 

process required to arrive at a model-based response given intact model-based learning. 

 

An alternative approach to investigating the neural correlates of model-based learning is 

to identify not only the quantities used to update representations, but also the 

representations themselves. This was the approach taken in Chapter 3, in which we 

considered a Bayesian learner that adapted to the occurrence of discrete change points in 

the statistics underling the reward environment by modifying its learning rate. Despite 

having fewer fitted parameters, this Bayesian learner provided a better approximation to 

participants’ behavior than conventional RL algorithms, including the Pearce-Hall 

algorithm (Pearce and Hall, 1980), which also features an adaptive learning rate. 

Consistent with predictions of the involvement of the noradrenergic system (Yu and 

Dayan, 2003), we found that activity in the noradrenergic brainstem nucleus, locus 

coeruleus, correlated with unexpected uncertainty, or the Bayesian evidence for a change 

point. We also found cortical representation of unexpected uncertainty, as well as the 

uncertainty of the model estimates of the probability, and the riskiness of the current 

option, both quantities that a Bayesian model of the environment naturally furnishes.  

These findings illustrate the sophistication of the representations that humans may use 

during reward learning and are consistent with a neural implementation of Bayesian 

learning. However, caution must be exercised in this interpretation. While the Bayesian 

framework has great appeal due to its natural capacity for representing uncertainty and 

prior beliefs as well as the promise of optimality, its use as a model of cognitive 

processing has prompted a number of criticisms (Jones and Love, 2011; Bowers and 

Davis, 2012). For example, although we compared the performance of our Bayesian 

learner to that of other popular models of reward learning, we cannot exclude the 

possibility that a non-Bayesian algorithm with a sufficiently flexible learning rate and 

representations of different forms of uncertainty (Preuschoff and Bossaerts, 2007; Li et 

al., 2011) could also account for our findings.  
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More generally, critics (Jones and Love, 2011; Bowers and Davis, 2012) caution that 

Bayesian models are only optimal with respect to the experimenter’s choice of prior and 

likelihood function, which, if fitted to the data, trivializes claims of optimality and 

renders the class of models unfalsifiable (Bowers and Davis, 2012). However, studies in 

the field of visual perception and motor control (Geisler et al., 2001; Körding and 

Wolpert, 2004; Wei and Stocker, 2015) illustrate how these choices can be constrained by 

the computational problem, the external environment, and constraints on information 

processing to generate more convincing tests. For example, (Wei and Stocker, 2015) 

introduce a Bayesian decoder of visual stimulus orientation whose prior and likelihood 

function are constrained by the stimulus distribution of the natural environment as well as 

an assumption of efficient coding. This gives rise to unusual “anti-Bayesian” predictions 

that the stimulus percept will be biased away from the peak of the prior and that stimulus 

and sensory noise differently affecting this perceptual bias.  

While in the perceptual domain it may be feasible to fix priors to the statistics of the 

natural environment, constraining a prior over associations in the reward environment 

may be more challenging. However, one clue that associative learning may be influenced 

by inherited priors comes from the phenomenon of stimulus relevance in conditioned 

taste aversion (Garcia and Koelling, 1966; Domjan, 1983; Rescorla, 2008). In a classic 

study, Garcia and Koelling (1966) designed an experiment in which each time rats licked 

a drinking tube filled with flavored water they heard a click and saw a flash of light. After 

this taste and audiovisual compound stimulus, the rat was than either made to feel 

nauseous or given a brief electric shock. After this training, when the rats were tested for 

how much they would drink, it was found that those who had experienced nausea reduced 

their licking to a greater extent when given the flavored water than when given 

unflavored water in the presence of the audiovisual stimulus. In contrast, those who had 

experienced electric shock reduced their licking to a greater extent when presented with 

the audiovisual stimulus than when presented with the flavored water. Thus, it seems that 

rats are biased towards attributing nausea to an ingested stimulus and pain to an 

audiovisual stimulus. This effect, which occurs even in 1-day old rats (Gemberling and 
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Domjan, 1982), is regarded as an inherited adaptation to the statistics of the natural 

environment, where rats are likely to suffer pain after being chased and bitten, and likely 

to feel nauseous after consuming a poisonous food. It is possible that observations such 

as this might be used to inform principled priors, giving rise to increasingly sophisticated 

tests of optimal Bayesian inference in reward learning. 

 

While Chapters 2 and 3 are concerned with the neural and computational systems that 

allow humans to change their reward-seeking behavior in response to changing external 

environments, Chapter 4 describes an example of how reward-seeking behavior is 

changed in response to changing internal motivations. In this case, we investigate the 

influence that administration of testosterone has on male social behavior in a simple 

economic game. Participants played the role of the responder in a version of the 

Ultimatum Game, modified so that having accepted or rejected an offer from the 

proposer, the participant had the additional option of punishing or rewarding the proposer 

at a proportional cost to themselves. The proposers’ offers could not be influenced by the 

participants choices to accept, reject, punish, or reward because all offers were 

preprogrammed, and thus purely monetary concerns would predict that a player should 

accept all offers and never punish or reward the proposer. Nevertheless, participants who 

were administered testosterone were more likely to both punish low offers and to reward 

generous offers. This behaviour is not fully accounted for by the hypothesis, arising from 

the literature on nonhuman animals (Wingfield et al., 1990; Archer, 2006), that 

testosterone promotes only male aggression, but is consistent with proposals that 

testosterone causes both aggressive and non-aggressive behaviors that enhance social 

status (Mazur and Booth, 1998; Josephs et al., 2003). 

 

This research raises a deeper question of why the prosocial behaviors, such as the indirect 

reciprocity seen in our participants, are regarded as status-enhancing in humans (Hardy 

and Vugt, 2006; Anderson and Kilduff, 2009; Willer, 2009), while in other animals, 

increased aggression is used to increase social status (Allee et al., 1939; Wingfield et al., 

1990; Muller and Wrangham, 2004). One possible answer relates to our capacity as a 
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species for complex coordination, facilitated by our uniquely developed cognitive 

faculties of language and theory of mind (Smith, 2010). Despite this capacity and the 

benefits to all members of group cooperation, the maintenance of cooperation is difficult 

to understand, because in many collective action problems the individual can “free ride” 

or benefit from the common good without contributing to its maintenance. Lab 

experiments and evolutionary game theory (Nowak and Sigmund, 1998; Nowak, 2006) 

show that reciprocation of contributors is an effective mechanisms for preventing free 

riding (Andreoni et al., 2003; Sefton et al., 2007; Rand et al., 2009). However, it is also 

costly for an individual to reward those who don’t contribute to the group, thus giving 

rise to the ‘second-order free rider problem’. However, it is suggested by evolutionary 

game theorists (Smith and Bird, 2000; Gintis et al., 2001) that behaviors that are costly to 

the individual but beneficial to the group might emerge as an evolutionary stable strategy 

if they constitute an honest signal of biological fitness to others in the group that causes 

other benefits to accrue to the individual. Therefore, in the present case, I suggest that the 

increased tendency of participants administered testosterone to reward generous 

proposers may be understood as a signal of biological fitness that although costly, 

increases the chances of attracting a potential mate and reproducing, and benefits the 

group by maintaining cooperation. 

 

Indirect evidence for the idea that testosterone may implement a trade-off between 

reproductive success and survival comes from the findings that testosterone levels are 

decreased after illness and injury (Spratt et al., 1993; Cernak et al., 1997; Spratt, 2001) and 

that the levels of males in industrialized societies, where parasite loads are low, lifestyles 

are sedentary and food is available almost ad libitum, are consistently found to be higher 

than those of males in developing countries (Bribiescas, 2001). However, experimental 

manipulation of the relative costs of reproduction and survival to human males is 

required to answer this question. 

 

While in Chapters 2, 3, and 4, the physical action of obtain reward was trivially easy and 

the magnitude of the reward was relatively modest, in Chapter 5 participants performed a 
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challenging motor task to obtain rewards as large as $100. It is at these extremes of 

task complexity and incentive that the phenomenon of choking can be observed. We find 

that a reappraisal strategy, in which participants reinterpret the positive monetary 

incentive as a potential monetary loss, was successful in abolishing choking in this 

context. Furthermore, we find that reappraisal weakened the neural representation of 

BOLD in a ventral striatal cluster including nucleus accumbens and posterior putamen, 

with the attenuation of participants’ ventral striatal BOLD response to the magnitude of 

the incentive before they perform the motor task predicting individual differences in the 

reduction of choking. This relationship between poor performance and heightened ventral 

striatal response to incentive was also found in previous applications of this paradigm 

(Chib et al., 2012, 2014), although that correlation occurred during the time of motor 

performance.  

 

Our finding that the ventral striatal response to incentive can be modulated by the 

application of a simple reappraisal strategy complements previous observations that 

contextual factors such as perceived social similarity and empathy for others can 

modulate striatal response to reward (Singer et al., 2006; Mobbs et al., 2009b). However, 

it contrasts with the findings of Chapter 3, in which I show that observational learning, 

unlike experiential learning, does not recruit model-free RPE signaling in ventral 

striatum. One possibility may be that circuitry facilitating associative learning within 

ventral striatum is distinct and less computationally flexible from those implementing 

motivational and hedonic processes, such as the representation of incentive and reward. 

 

BOLD activity in this region of striatum has been implicated in the acquisition of 

complex motor skills, with activity in putamen increasing during early acquisition 

(Grafton et al., 1995; Jueptner et al., 1997; Rauch et al., 1997), but perhaps decreasing as 

the motor skill becomes ‘automatic’, or resistant to dual task interference (Poldrack et al., 

2005). Activity also increases during motor skill learning in the homologous region of 

dorsolateral striatum (DLS) in monkeys (Miyachi et al., 2002) and rats (Yin et al., 2009), 

with temporary inactivation of DLS disrupting the execution of previously acquire motor 
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skills but not interfering with the learning of new motor sequences (Miyachi et al., 

1997). In addition, as I have previously discussed, lesions to DLS prevent the transition 

to habitual control of behavior (Yin et al., 2004). In the context of this association with 

well-learned, automatic and habitual behaviors and its position in the motor cortico-basal 

ganglia-thalamocortical circuit (Krack et al., 2010), our finding that ventral striatal 

activity is uniquely predictive of the relief of choking may be consistent with a broader 

role for dorsomedial striatum in the acquisition and reflexive execution of highly 

practiced motor behaviors, without the interference of higher-order cognitive processing 

(Ashby et al., 2010).  
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