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Abstract

This thesis is aimed at numerically investigating the aerodynamics and the starting of a vertical-

axis wind turbine at low Reynolds number using the immersed boundary method. The influence of

the Coriolis effect on dynamic stall is isolated by comparing the rotating airfoil to one undergoing

an equivalent planar motion that is composed of surging and pitching motions that produce an

equivalent speed and angle of attack variation over a cycle. At lower tip-speed ratios, the Coriolis

force leads to the capture of a vortex pair which results in a significant decrease in lift when the

angle of attack of a rotating airfoil begins to decrease in the upwind half cycle. In the absence of

the wake-capturing, the equivalent planar motion is a good approximation to a rotating blade in a

vertical-axis wind turbine.

Analysis on the starting torque shows that when the turbine solidity is lower than about 0.5,

the starting torque distribution can be well-modeled by considering a single blade at different orien-

tations, and starting torque distributions for multi-bladed turbines can be constructed by linearly

combining the torques at the respective positions of the blades. Using this model, optimal configu-

rations to start a multi-bladed low-solidity vertical-axis wind turbine is proposed.

A preliminary study is made to determine an optimal blade pitch for a single-bladed motor-

driven turbine using optimal control theory. When the input power is minimized directly, the

solution seems to converge to only a local minimum due to a lower input power reduction than that

obtained by maximizing the mean tangential force. After a transient, both controls converge to time-

invariant pitch angles of about the same magnitude but with opposite signs. The wake-capturing

phenomenon observed in the uncontrolled case necessitates large input power. Under active control,

the disappearance of wake-capturing and attendant changes in the flow field collectively result in a
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reduction of required input power.
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Chapter 1

Introduction

1.1 Motivation

Over the last decade, the desire to address the issue of climate change and global warming has

made flow energy harvesting an active research topic. Our interest here is in the H-rotor Darrieus

wind turbine, which is also called vertical-axis wind turbines (VAWT). Kirke (1998) and Pawsey

(2002) have summarized the relative strengths and weaknesses of VAWT and horizontal-axis wind

turbines (HAWT). VAWT have several interesting features: their low sound emission (a consequence

of their operation at lower tip speed ratios), their insensitivity to wind direction (because they are

omnidirectional), their high accessibility (because the generator can be placed on the ground), and

their increased power output in skewed flow (Mertens et al., 2003; Ferreira et al., 2006). However,

VAWT suffer disadvantages like a lower-efficiency than comparable HAWT, and they can be difficult

to start (Kirke, 1998). Despite the low efficiency of individual VAWT, Dabiri (2011) and Kinzel et al.

(2012) showed that an array of counter-rotating VAWT can achieve higher power output per unit

land area and a shorter velocity recovery distance than existing wind farms consisting of HAWT.

Araya et al. (2014) developed a low-order model of the mean flow through an array of VAWT

using leaky Rankine bodies. The model correctly predicts the ranking of array performances to

within statistical uncertainty with significantly less computational expense and therefore provides

an efficient tool to find the optimal turbine array configurations. In this thesis, we are interested

in numerically investigating the aerodynamics and the starting of a VAWT in order to improve the
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efficiency and self-starting capability of a VAWT.

In many computational studies of VAWT, simulations of parametric studies and the starting of

a VAWT have been done with steady/unsteady Reynolds-averaged Navier-Stokes (RANS/URANS)

and large-eddy simulation (LES) at Reynolds numbers of O(105 − 106). Reynolds number is scaled

by the chord length of the blade and the freestream velocity. Hansen and Sresen (2001) and Nobile

et al. (2011) investigated flows around a multi-bladed 2D VAWT at Re ∼ O(105) using RANS with

various turbulence models. Duraisamy and Lakshminarayan (2014) and Bremseth and Duraisamy

(2016) numerically analyzed the performance of isolated, pairs, columns, and arrays of VAWT using

RANS at Re = 67000. However, although RANS and URANS are able to solve for flow at such

a high Reynolds number, they suffer from inaccuracies for separated flow and unknown modeling

errors for turbulence (Alfonsi, 2009). LES is a good choice for simulating three-dimensional and

separated flow at such a high Reynolds number. Ferreira et al. (2007) simulated dynamic stall in a

section of a VAWT using LES and detached-eddy simulation (DES) at Re = 50, 000 and validated

the results by comparing the vorticity in the rotor area with particle image velocimetry (PIV) data.

Barsky et al. (2014) investigated the fundamental wake structure of a single VAWT computationally

by LES and experimentally by PIV. However, studies using LES are only with limited parameter

space because of computational expense. In this thesis, flows around a VAWT are simulated using

direct numerical simulation (DNS), which solves the incompressible Navier-Stokes equations directly

without any models. However, in order to explore a comparatively large region of parametric space

in relatively short computational time, flows are restricted to low Reynolds numbers, Re ∼ O(103),

and to a two-dimensional cross section of an otherwise planar turbine geometry. Nevertheless, at

the expense of studying a sub-scale regime, where the physics are thought to be qualitatively similar

to full-scale regime (Choi et al., 2015), the computational expense is relatively inexpensive. As we

will discuss in section 3.5, comparisons with experiments at high Reynolds numbers show qualitative

agreement, but a precise accounting for three-dimensional effects awaits future simulations.

Many researchers have shown that motions of a wing such as pitching, surging, and plunging can

be combined to harvest energy in a flow (Lissaman, 2005; Langelaan, 2009; Zhu and Peng, 2009;
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Zhu, 2011; Peng and Zhu, 2009; Williams et al., 2011). Energy is extracted from the work done by

aerodynamic forces generated by the unsteady flow past around the wing. Since the flow experienced

by the blades of a VAWT is inherently unsteady, we are interested in taking advantage of this un-

steady flow and maximizing the power output of a VAWT through the pitching motion of the blades.

For example, engineers at Brown University inspired by bat’s flight designed a device to generate

power from the tides. The device contains flat, rigid wings which are allowed to pivot and move

along the vertical axis. When water flows over the wings, they oscillate perpendicularly to the flow,

and generate electricity. Furthermore, the device was made more efficient by controlling the pitch

angle of the wing. However, designing the motion of the wing to maximize the power generation is

presently done by a time-consuming and sub-optimal trial-and-error process. Therefore, we propose

to find an optimal motion that maximizes the power output using optimization technique. The

proposed optimization procedure will also provide a mathematically rigorous, systematic approach

to design efficient devices for energy harvesting in the future.

1.2 Aerodynamics of VAWT

The aerodynamics of VAWT are complicated by the inherently unsteady flow produced by the large

variations in both angle of attack and incident velocity magnitude of the blades, which can be

characterized as a function of the tip-speed ratio. Typically, commercial VAWT operate at a tip-

speed ratio around 2 to 5 (Kirke, 1998), which produces an angle of attack variation from 11.5◦ to

30◦ and an incident velocity variation with an amplitude of 21.5% to 49% of its mean. Due to large

variations in the angle of attack, dynamic stall has been found to occur on VAWT blades at low

tip speed ratios (Ferreira et al., 2009). Dynamic stall refers to the delay in the stall of airfoils that

are rapidly pitched beyond the static stall angle, and is associated with a substantially higher lift

than is obtained quasi-statically. Dynamic stall has been an active research topic in fluid dynamics

for more than 60 years, largely because of the helicopter applications (Corke and Thomas, 2015).

Several attempts have been made to model dynamic stall in a VAWT (Paraschivoiu and Allet, 1988;

Paraschivoiu and Beguier, 1998; Allet et al., 1999) and the results have demonstrated success of
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accurately predicting the aerodynamic load of a VAWT.

When dynamic stall in the context of VAWT is investigated using PIV, due to the rotational

nature of the problem and the static field of view in PIV measurement, the experimentally visualized

flow field is always partially obstructed or shadowed as the turbine blades rotate about the axis.

In order to circumvent this issue, Wang et al. (2010) introduced a simplified model of an airfoil

undergoing an equivalent planar motion, which is composed of a surging and pitching motion that

produces an equivalent speed and angle-of-attack variation over the cycle. They further simplified

the equivalent planar motion to a sinusoidal pitching motion to investigate dynamic stall in a 2D

VAWT numerically. The results obtained using URANS matched the experiments done by Lee and

Gerontakos (2004), where flow over an oscillating airfoil was investigated. More recently, Dunne and

McKeon (2014, 2015a,b) experimentally investigated the separated flow over a sinusoidally pitching

and surging airfoil at Re = 105 and proposed a low-order model of dynamic stall using dynamic

mode decomposition. The physics of dynamic stall was successfully captured with the interaction

between the primary and secondary dynamic separation mode identified by the model.

However, the simplified model proposed by Wang et al. lacks the appropriate forces needed to

account for the non-inertial reference frame, which are the forces associated with angular acceler-

ation, the Coriolis force, and the centrifugal force. Forces associated with angular acceleration do

not depend on the fluid velocity and can be ignored by fixing the angular velocity. The centrifugal

force, which is also independent of fluid velocity, only changes the pressure field in the radial direc-

tion. Only the Coriolis force depends on the fluid velocity and can locally affect the dynamic stall.

Therefore, in this thesis, we focus on investigating the effect of the Coriolis force to the dynamic

stall. The differences between the simplified model and VAWT will be discussed in more detail in

Chapter 3.

1.3 Self-starting of a VAWT

The difficulties associated with self starting of a VAWT are well known (Baker, 1983; Kirke, 1998;

Pawsey, 2002; Hill et al., 2009). Kirke (1998) have stated that the self-starting of VAWT is possible
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with a careful selection of blade geometry. Dominy et al. (2007) experimentally showed that a three-

bladed VAWT can self-start even using fixed-geometry, symmetric airfoils, but that two-bladed

designs can only self-start under particular conditions. Hill et al. (2009) experimentally investigated

the starting of VAWT at Re ≈ 5 × 105 and discussed the physics of self-starting through a simple

numerical model. Untaroiu et al. (2011) numerically investigated the self-starting capability of

VAWT using URANS at Re ≈ 5 × 105. The method has been demonstrated to predict terminal

operating speed within 12% of the measured value. However, the turbine performance during the

starting, which is important to the study of self-starting problems, was not accurately captured due

to the lack of near-wall and transitional turbulence models.

Several solutions to the starting issue have been suggested regarding the design of the blade.

Baker (1983) recommended several blade designs for VAWT that are favorable for self-starting.

Beri and Yao (2011a,b) numerically investigated the self-starting of VAWT with cambered airfoils

and airfoils with modified trailing edge. They showed that the VAWT with cambered airfoils has

potential to self-start with reduced coefficient of power and the VAWT with tailing-edge-modified

airfoils has better performance in self-starting at lower tip-speed ratios with normal coefficient of

power. Chen and Kuo (2013) studied the effects of pitch angle and blade camber on the self-starting.

The results show that the maximum root-mean-square moment occurs at a pitch angle equal to 5◦

outward from the tangential direction for all the blades examined. Moreover, blades with appropriate

camber generate a higher root-mean-square moment at all pitch angles.

1.4 Flow control on vertical axis wind turbine

Flow control has been an active research topic in reducing bluff-body form drag and wake fluctuations

by suppressing flow instabilities and preventing flow separation. Choi et al. (2008) reviewed some

of the most important and successful approaches. Usually, flow control strategies are categorized

into passive and active methods. Passive methods, such as splitter plates (Anderson and Szewczyk,

1997) and the deliberate arrangement of fixed rigid bodies (Michael et al., 1994; Strykowski and

Sreenivasan, 1990), do not require an energy input, and active methods, such as body rotation
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(Tokumaru and Dimotakis, 1991), cross-flow body displacement (Siegel et al., 2006), and synthetic

jets, do. Early studies on post-stall flow control focused on open-loop active control (Greenblatt

and Wygnanski, 2000; Glezer and Amitay, 2002; Raju et al., 2008), which does not use feedback

to determine if the desired goal has been achieved. More recently, there has been an increasing

interest in closed-loop active control, which modifies the behavior of actuation based on the real time

information from the flow. The closed-loop active control has the potential to stabilize a system

about an unstable operating condition so that only a small amount of energy input is required after

transients (Pinier et al., 2007; Ahuja and Rowley, 2010; Taira et al., 2010). The feedback control

approach used in this thesis is adjoint-based optimal control, which finds the control that locally

minimizes a cost function over a given time horizon. The fact that adjoint-based optimal control does

not require an a priori knowledge of the physical mechanism that will minimize the cost function (Joe

et al., 2010; Flinois and Colonius, 2015) makes the optimal control useful in discovering unsuspected

but effective control strategies.

Most of the passive control methods on VAWT concern subtle changes to the design of the VAWT,

such as blade profile (e.g., thickness and camber)(Roh and Kang, 2013; Chen and Kuo, 2013), blade

fixed pitch angle (Fiedler and Tullis, 2009; Chen and Kuo, 2013), and blade offset (Fiedler and Tullis,

2009). The improvement in power generation using the passive control methods is usually about

10% to 15%. On the other hand, active control methods are difficult to implement on VAWT but

it can be more effective in enhancing the performance. Hwang et al. (2006) adopted two variable

pitch systems, namely the cycloidal blade system and the individual active blade control system, to

improve the performance of the power generation of a 1kW class VAWT. First, the cycloidal blade

system changes the pitch angle and phase based on the cycloidal motion according to changes in

wind speed and wind direction. The corresponding power generation is improved by about 30%

compared to fixed-pitch VAWT. Second, the individual active blade control system is shown to be

more effective in enhancing performance. This system pitches each blade with a optimal motion

obtained by maximizing the tangential force at the position of that blade. The corresponding

improvement in power generation is 60%.
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Several control strategies were implemented. Paraschivoiu et al. (2009) obtained the optimal

variation of the blades’ pitch angle of a 7kW VAWT using the CARDAAV code. The code is based

on the Double-Multiple Stream tube model and is coupled with a genetic algorithm optimizer. A

gain of almost 30% in the power production was reported. Greenblatt et al. (2013) used pulsed

dielectric barrier discharge plasma actuators in a feed-forward configuration to control the dynamic

stall on a double-bladed VAWT. A net power increase of 10% was achieved and there is a potential

for a even greater improvement with more powerful plasma actuation.

1.5 Outline of this thesis and the resulting publications

This thesis is aimed at numerically investigating the two-dimensional incompressible flow around a

VAWT to provide insight into the aerodynamics of a VAWT, the mechanism of the starting of a

VAWT, and the potential to apply a control to enhance the efficiency of a VAWT.

In Chapter 2, we derive the mathematical formulation, introduce numerical algorithms, and

describe procedures of optimal control that are used in this thesis.

In Chapter 3, we investigate the differences between VAWT and the equivalent planar motion

proposed by Wang et al. (2010). In particular, we investigate the effect of the Coriolis force on

dynamic stall. Airfoils undergoing a sinusoidal pitching motion and a sinusoidal surging-pitching

motion are also computed and compared to the full VAWT and equivalent planar motions. The

effect of solidity on the wake of VAWT has been investigated by collaborators Araya and Dabiri

in Araya (2016). The effect of tip-speed ratio, Reynolds number, and Rossby number on dynamic

stall is discussed in Chapter 3. Moreover, comparisons are made with the water-tunnel experiments

performed by collaborators Dunne and McKeon (2014, 2015a,b) in Dunne et al. (2015) to further

investigate the effect of the rotating frame, Reynolds number, and the Coriolis force. Based on these

works, the following archival papers have been written:

• Tsai, H.-C. and Colonius, T. (2014). Coriolis effect on dynamic stall in a vertical axis wind

turbine at moderate Reynolds number. In 32nd AIAA Applied Aerodynamics Conference,
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Atlanta, GA. AIAA paper 2014-3140

• Tsai, H.-C. and Colonius, T. (2016). Coriolis effect on dynamic stall in a vertical axis wind

turbine. AIAA Journal, 54(1):216-226.

• Dunne, R., Tsai, H.-C., Colonius, T., and McKeon, B. J. (2015). Leading edge vortex devel-

opment on pitching and surging airfoils: A study of vertical axis wind turbines. In Int. Conf.

Wake Jets Separated Flows, Stockholm, Sweden.

In Chapter 4, we investigate the starting capability of a VAWT. A simple quasi-steady model

is proposed to analyze the starting torque of a multi-bladed VAWT. Moreover, the comparisons

between a flow-driven VAWT after self-starting and a motor-driven VAWT are discussed. Moreover,

comparisons of flow-driven and motor-driven VAWT are made with the water-tunnel experiments

performed by collaborators Araya and Dabiri (2015) to validate the load model. These studies are

documented in the following reference paper which will also be submitted to an archival journal in

the near future:

• Tsai, H.-C. and Colonius, T. (2016). Numerical investigation of self-starting capability of

vertical-axis wind turbines at low Reynolds numbers. In 34th AIAA Applied Aerodynamics

Conference, Washington, D.C. (Accepted)

In Chapter 5, we investigate the optimal control of time-dependent blade pitch of a motor-driven

single-bladed VAWT to minimize the input power as a preliminary study to enhance the efficiency

of VAWT.

Finally, we conclude and discuss about future works in Chapter 6.
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Chapter 2

Mathematical formulation and
numerical methods

In this chapter, we derive an alternative form of the incompressible Navier-Stokes equations in the

non-inertial frame, which is used to solve for the flow in the airfoil-fixed frame. The fast immersed

boundary projection method is then introduced to simulate the two-dimensional incompressible flow

around a VAWT. In order to study the flow-structure interaction in the starting of a VAWT, we

introduce a predictor-corrector method to couple the equation of the motion of a VAWT to the

incompressible Navier-Stokes equations. Finally, adjoint equations are derived and procedures for

optimal control are discussed.

2.1 Alternative form of the incompressible Navier-Stokes equa-

tions in the non-inertial frame

Kim and Choi (2006) developed an immersed boundary method in a non-inertial reference frame that

is fixed to the body. The Navier-Stokes equations is formulated in a conservative form such that the

force terms due to the rotation and the translational and rotational accelerations are included in the

nonlinear term. Following the same approach, we derive an alternative form of the incompressible

Navier-Stokes equations in the non-inertial reference frame in this section.

We consider incompressible flows external to a rigid wing (figure 2.1) undergoing arbitrary mo-

tion. In this analysis, the motion of the accelerating wing is simplified to a unsteady translation with
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velocity U(t) and a rotation with angular velocity Ω(t) about a point O. xs are the coordinates of

the points on the surface of the body. The subscripts n and r denote variables or differentiations in

the Newtonian inertial frame and the rotating frame, respectively.

Figure 2.1: Rotating coordinates for accelerating wing.

With the relation of the time differentiation in the Newtonian frame and the rotating frame,

(
d(·)
dt

)
n

=

(
d(·)
dt

)
r

+ Ω(t)× (·) ,

the relations of the position, velocity, and acceleration vectors between two coordinates can be

derived in the following:

xn = xr + R(t) , (2.1)

un = ur + Ω(t)× xr + Un(t) , (2.2)

an = ar +

(
dΩ

dt
(t)

)
r

× xr + 2Ω(t)× ur + Ω(t)× (Ω(t)× xr)

+

(
dUn

dt
(t)

)
r

+ Ω(t)×Un(t) , (2.3)

where Un(t) =
(
dR
dt (t)

)
n

is the velocity of the moving frame relative to the Newtonian frame.

By taking the curl of equation (2.2), we obtain the relation of the vorticity fields between two

coordinates:

ωn = ωr + 2Ω(t) . (2.4)
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Therefore the dimensionless Navier-Stokes equations in the non-inertial frame become

(
∂ur
∂t

)
r

+ (ur · ∇) ur =−∇p+
1

Re
∇2ur −

(
dΩ

dt
(t)

)
r

× xr − 2Ω(t)× ur

−Ω(t)× (Ω(t)× xr)−
(
dUn

dt

)
r

−Ω(t)×Un(t) . (2.5)

The boundary conditions for equation (2.5) are



ur −→ −Un(t)−Ω(t)× xr

ωr −→ −2Ω(t)

p −→ p∞

as |xr| −→ ∞

ur = 0 on the surface of the body, i.e., xr = xs .

(2.6)

Note that Ω(t)×(Ω(t)× xr) = −∇( 1
2 |Ω(t)× xr|2) and Ω(t)×Un(t) = −∇ [(Ω(t)× xr) ·Un(t)].

We apply the following vector calculus identities and the incompressibility condition:

ur · ∇ur = ∇
(

1

2
|ur|2

)
− ur × (∇× ur) = ∇

(
1

2
|ur|2

)
− ur × ωr , (2.7)

∇2ur = ∇ (∇ · ur)−∇× (∇× ur) = −∇× ωr = −∇× ωn . (2.8)

Equation (2.5) becomes

(
∂un
∂t

)
r

= −∇Π + (un − ua(xr, t))× ωn −
1

Re
∇× ωn , (2.9)

where ua(xr, t) is the relative velocity of the point in the non-inertial frame to the inertial (labora-

tory) frame:

ua(xr, t) = uU (t) + uΩ(xr, t) , (2.10)

uU (t) = Un(t) is the relative velocity due to translation, uΩ(xr, t) = Ω(t)×xr is the relative velocity
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due to rotation, and Π is a modified pressure given by

Π = p+
1

2
|un − ua(xr, t)|2 −

1

2
|ua(xr, t)|2 . (2.11)

The boundary conditions become



un −→ 0

ωn −→ 0

Π −→ p∞

as |xr| −→ ∞

un = ua(xs, t) on the surface of the body, i.e., xr = xs .

(2.12)

Note that equations (2.9) and (2.12) are not the standard accelerating-frame form of the variables

and equations, but are computationally convenient because they render the governing equations free

from body forces, and because the dependent variables decay at infinity. The price for this simplicity

is that we must now impose a time-dependent velocity at each point along the immersed surface.

Fortunately, this velocity can be readily imposed in the immersed boundary method. Moreover, we

can easily extend the alternative form of the non-inertial, incompressible Navier-Stokes equations to

two successively rotating frames as illustrated in Appendix A.

2.2 Fast immersed boundary projection method using multi-

domain far-field boundary conditions

In this study, the immersed boundary method introduced by Peskin (1972) is used to simulate two-

dimensional incompressible flow around a rotating body. The alternative form of the incompressible

Navier-Stokes equations in the non-inertial frame, equation (2.9), with the immersed boundary force
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term and the corresponding boundary conditions, equation (2.12), are given by

(
∂un
∂t

)
r

= −∇π + (un − ua(xr, t))× ωn −
1

Re
∇× ωn +

∫
s

fbf (xs(s))δ(xs(s)− xr)ds , (2.13)

∇ · un = 0 , (2.14)∫
xr

un(x, t)δ(x− xs(t))dx = ua(xs, t) . (2.15)

The spatial and temporal discretization of equations (2.13), (2.14), and (2.15) follows from Taira

and Colonius (2007). The discrete equations are first formulated spatially on a formally unbounded

staggered Cartesian grid with equal grid spacing. The temporal discretization uses the implicit

Crank-Nicolson integration for the viscous terms and the explicit second-order Adams-Bashforth

scheme for the convective terms. This produces an algebraic system of equations,


A G −H

D 0 0

E 0 0




qn+1

π

fbf

 =


rn

0

qn+1
a,s

+


bc1

bc2

0

 , (2.16)

where q is the discretized velocity flux, π is the discretized modified pressure vectors, and fbf is the

force that body exerts on the fluid. It has the same magnitude but the opposite direction of the force

that fluid exerts on the body, i.e., ffb = −fbf . Moreover, qa, qU , and qΩi
are the discretized velocity

fluxes of ua(x, t), uU (t), and uΩi(xri , t), respectively. Similarly, qa,s and qΩi,s are the discretized

velocity fluxes of ua(xs, t) and uΩi
(xs, t), respectively.

The discrete velocity can be recovered by un = qn/∆x. Sub-matrices G and D correspond to

the discrete gradient and divergence operators, respectively. It is interesting to note that G = −DT

for the staggered grid formulation. The nullspace or discrete streamfunction technique of Chang

et al. (2002) is used to satisfy the incompressibility constraint. The discretized streamfunction,

sn, is introduced such that qn = Csn, where C is the discrete curl operator. This operator is

constructed with column vectors corresponding to the basis of the nullspace of D. Hence, these



14

operators have the relation, DC ≡ 0, which automatically enforces incompressibility at all time, i.e.,

Dqn = DCsn = 0. This discrete relation is consistent with the continuous version of the vector

identity: ∇ · ∇× ≡ 0. We note that the operator CT is another discrete curl operation, and that

γn = CT qn is a second-order-accurate approximation to the circulation in each dual cell.

The operators resulting from the implicit velocity term is A = 1
∆tI − 1

2L, where L is the discrete

(vector) Laplacian. Providing that Dqn = 0, we construct a symmetric Laplacian such that Lqn =

− 1
Re∆x2CC

T qn = − 1
Re∆x2Cγ

n ≡ −βCγn, where β = 1
Re∆x2 . This identity mimics the continuous

identity ∇2u = ∇(∇ · u) − ∇ × ∇ × u = −∇ × ∇ × u. Therefore, A is symmetric and positive-

definite. The right-hand side of equation (2.16) consists of the inhomogeneous terms from the

boundary conditions, bc1 and bc2, and the explicit terms from the momentum equation, rn, given

by

rn =

[
1

∆t
I +

1

2
L

]
qn +

3

2∆x2
N(qn − qna , γn)− 1

2∆x2
N(qn−1 − qn−1

a , γn) , (2.17)

where N(q, γ) = q × γ is the nonlinear term.

H and E are the regularization and interpolation operator, respectively. These operators are

constructed from the regularized discrete delta function. Among the variety of discrete delta func-

tions available, we choose to use the one by Roma et al. (1999) which is specifically designed for use

on staggered grids. This function has the form

d(z) =



1
6∆z

(
5− 3 |z|∆z −

√
−3
(

1− |z|∆z

)2

+ 1

)
for 0.5∆z ≤ |z| ≤ 1.5∆z ,

1
3∆z

(
1 +

√
−3
(
|z|
∆z

)2

+ 1

)
for |z| ≤ 0.5∆z ,

0 otherwise ,

(2.18)

where ∆z is the cell width of the staggered grid in the z-direction. The interpolation operator can
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be derived by discretizing equation (2.15), yielding

qnaj = ∆x2
∑
i

qnni
d(xri − xnsj )d(yri − ynsj ) = Enj,iq

n
ni
. (2.19)

For the three-dimensional case an extra factor of ∆x d(zri − znsj ) is needed. Thus, the interpolation

operator is given by Enj,i = ∆x2d(xri − xnsj )d(yri − ynsj ). Similarly, the regularization operator is

given by Hn
i,j = ∆s∆xd(xnsj − xri)d(ynsj − yri) = ∆s

∆xE
nT

j,i , where ∆s is the Lagrangian grid spacing.

If we choose ∆s ≈ ∆x, then Hn = En
T

, or Hnfbf = −EnT

ffb.

Considering the frame of reference is rotating together with the body, the body is then stationary

in the rotating frame, i.e., xs is time-independent. Therefore, the interpolation and the regularization

matrices are also time-independent, i,e, En = E and Hn = H. Following the work done by Colonius

and Taira (2008), we pre-multiply the momentum equation in equation (2.16) with CT , and the

pressure gradient term is removed from the formulation since CTGπ = −(DC)Tπ = 0, which results

in the following new algebraic equations:

CTAC CTET

EC 0


sn+1

ffb

 =

CT rn
qn+1
a,s

+

bc1
0

 . (2.20)

The form of equation (2.20) is known as the Karush-Kuhn-Tucker (KKT) system that appears

in constrained optimization problem (Nocedal and Wright, 2006). The left-hand-side matrix is

symmetric but in general indefinite, which makes a direct solution less efficient. However, we can

do it in another way. Applying the same spatial discretization but no temporal discretization on

equations (2.13) and (2.15) and pre-multiplying the spatial discretized momentum equation with

CT :

dγ

dt
(t) =

1

∆x2
CTN (q(t)− qa(t), γ(t))− βCTCγ(t)− CTET ffb , (2.21)

EC(CTC)−1γ(t) = qa,s(t) . (2.22)
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Then the same temporal discretization (the implicit Crank-Nicolson integration for the viscous

terms and the explicit second-order Adams-Bashforth scheme for the convective terms) is applied to

equations (2.21) and (2.22), which results in a algebraic equations that can be rewritten as

 1
∆tI + β

2C
TC CTET

EC(CTC)−1 0


γn+1

ffb

 =

CT rn
qn+1
a,s

+

 bcγ

0

 . (2.23)

It can be shown that with the current choice of the discrete Laplacian, equation (2.23) is equivalent

to equation (2.20). CTC can be transformed into a diagonal matrix, Λ, using the discrete sine

transform, S, i.e., CTC = SΛS, where S−1 = S, and the eigenvalues of Λ are known. By perform-

ing discrete Fourier sine transform, equation (2.23) can be efficiently solved using the projection

(fractional step) approach:

S

(
1

∆t
I +

β

2
Λ

)
Sγ∗ = S

(
1

∆t
I − β

2
Λ

)
Sγn

+
3

2∆x2
CTN(qn − qna , γn)− 1

2∆x2
CTN(qn−1 − qn−1

a , γn) + bcγ , (2.24)

EC

(
SΛ−1

(
1

∆t
I +

β

2
Λ

)−1

S

)
CTET ffb = ECSΛ−1Sγ∗ − qn+1

a,s , (2.25)

γn+1 = γ∗ − S
(

1

∆t
I +

β

2
Λ

)−1

SCT ÊT ffb . (2.26)

Note that equations (2.24) and (2.25) are Poisson-like equations. We first solve equation (2.24).

The solution is called intermediate discrete circulation, γ∗. Equation (2.25) is then solved for the

Lagrange multiplier, ffb. Finially, a projection is done by equation (2.26) to obtain the discrete

circulation, γ.

A multi-domain approach is developed to solve equation (2.24) with simple far-field boundary

conditions, such as equation (2.12), on a progressively coarsifying grids as shown schematically in

figure (2.2). First, the discrete circulation and velocity flux from the last time step are interpolated

or coarsified from the inner mesh onto the outer mesh to obtain corrected right-hand side of equation

(2.24) in each grid level. Equation (2.24) is then solved (with zero boundary conditions) on the outer
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(larger, coarser) domain for the intermediate discrete circulation, which is then interpolated along

the boundary of the inner mesh. Equation (2.24) is solved again, with the “corrected” boundary

value specified, on the inner (smaller, finer) mesh. This technique is applied recursively a number of

times to obtain the intermediate discrete vorticity in each grid level. Detailed formulation is given

by Colonius and Taira (2008):

γ(k)∗ = S

(
1

∆t
I +

β

2
Λ

)−1{
S

[
3

2∆x2
CTN(q(k)n − q(k)n

a , γ(k)n)

− 1

2∆x2
CTN(q(k)n−1 − q(k)n−1

a , γ(k)n−1

)

+
β

2
bcγ

(
[P (k+1)→(k)(γ(k+1)∗)] + [P (k+1)→(k)(γ(k+1)n)]

)]
+

(
1

∆t
I − β

2
Λ

)
Sγ(k)n

}
, (2.27)

where the superscript (k) denotes variables in the kth-level and P (k+1)→(k) is the boundary value

interpolation operator.

Figure 2.2: Multi-domain method to solve equation (2.24). Figure reproduced with permission from
Colonius and Taira (2008).
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2.3 The evolution of the flow coupled with the motion of the

body

The evolution of the flow can be coupled with the motion of the body by a set of equations of motion:

dX

dt
(t) = Ẋ(X, ffb, t) , (2.28)

where X(t) is a state vector which elements are (in general) coordinates and velocity of each body

point, and Ẋ(X, ffb, t) is the driving term, which is time-dependent and depends on the state vector,

X(t), and the Lagrangian forces, ffb. For example, elements in the state vector can be the rotation

angle of the body, θ(t), or the corresponding angular velocity, Ω(t). The inertial velocity in the

rotating frame then depends on the state vector, i.e., ua = ua(X(t),xr). When the evolution of

the flow is coupled with the motion of the body, equation (2.25) cannot be solved directly because

qn+1
a,s is unknown. The coupled evolution of the flow field and the motion of the body is solved using

the predictor-corrector method (PCM). In this method, equations (2.25) and (2.28) are integrated

in time using a second order Runge-Kutta scheme.

First, a prediction of the state vector, X∗ is made using the explicit Euler method:

X∗ = Xn + ∆t Ẋ
(
Xn, fnfb, t

n
)
, (2.29)

which gives us the prediction of the inertial velocity flux, q∗a,s = ua(X∗,xs)∆x. The prediction of

Lagrangian forces, f∗fb, is obtained by solving a modified equation of equation (2.25):

f∗fb =

(
ECSΛ−1

(
1

∆t
I +

β

2
Λ

)−1

SCTET

)−1 (
ECSΛ−1Sγ∗ − q∗a,s

)
. (2.30)

Note that the operator ECSΛ−1
(

1
∆tI + β

2 Λ
)−1

SCTET is a symmetric, Poisson-like operator which

is independent of time. Therefore, equation 2.30 can be solved efficiently using the Cholesky decom-

position.
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Corrections in the state vector and Lagrangian forces are made by taking average of the predic-

tions and the values in the nth-step:

Xn+ 1
2 =

1

2
(Xn + X∗) , (2.31)

f
n+ 1

2

fb =
1

2

(
fnfb + f∗fb

)
, (2.32)

We then update the state vector using the corrected values:

Xn+1 = Xn + ∆t Ẋ
(
Xn+ 1

2 , f
n+ 1

2

fb , tn+ 1
2

)
, (2.33)

which gives the update of the inertial velocity flux, qn+1
a,s = ua(Xn+1,xs)∆x. Since now qn+1

a,s is

known, fn+1
fb can be solved from equation (2.25) using Cholesky decomposition, i.e.,

fn+1
fb =

(
ECSΛ−1

(
1

∆t
I +

β

2
Λ

)−1

SCTET

)−1 (
ECSΛ−1Sγ∗ − qn+1

a,s

)
. (2.34)

2.4 Derivation of adjoint equations and control gradients

In this section, supplementing the constraints used in Joe et al. (2010) and Flinois and Colonius

(2015) with additional equations of motion to account for coupling the motion of the bodies with the

fluid, we rederive the adjoint equations and the corresponding control gradients used by the adjoint-

based optimization following the same approach developed in Joe et al. (2010) and Flinois and

Colonius (2015). In this study, the following PDE-constrained optimization problem is considered:

minimize J (X, ffb,a) ≡
∫ TH

0

F(X(t), ffb,a(t)) dt (2.35)

subject to
dγ

dt
(t) =

1

∆x2
CTN (q(t)− qa(X(t),a), γ(t))− βCTCγ(t)− CTET ffb , (2.36)

EC(CTC)−1γ(t) = qa,s(X(t),a) , (2.37)

and
dX

dt
(t) = Ẋ(X(t), ffb,a, t) , (2.38)
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where J is the cost function, F is the integrand of the cost function, a is a vector formed by the

controlled variables, and TH is the control horizon.

In order to solve this optimization problem, based on earlier works of Joe et al. (2010) and Flinois

and Colonius (2015), an adjoint solvers were developed using the method of Lagrange multiplier.

First, we introduce the Lagrangian, L, corresponding to the optimization problem:

L ≡
∫ TH

0

{
F(X, ffb,a)− γ†T (CTC)−1

[
dγ

dt
− 1

∆x2
CTN (q − qa(X,a), γ)− βCTCγ − CTET ffb

]
−f†

T

fb

[
EC(CTC)−1γ − qa,s(X(t),a)

]
−X†

T

[
dX

dt
− Ẋ(X, ffb,a, t)

]}
dt , (2.39)

where the superscript † denotes the adjoint variables of the corresponding state variables. Note

that Lagrangian uses the inner product of velocity fluxes instead of that of circulations so that

(CTC)−1 is added since γ†
T

(CTC)−1γ = q†
T

q. By collecting terms not involving time-derivative

into a Hamiltonian, H, we obtain

L(X, γ, ffb,a) =

∫ TH

0

{
H(X, γ, ffb,a)− γ†T (CTC)−1 dγ

dt
−X†

T dX

dt

}
dt , (2.40)

where

H(X, γ, ffb,a) =F(X, ffb,a) + γ†
T

(CTC)−1

[
1

∆x2
CTN (q − qa(X,a), γ)− βCTCγ − CTET ffb

]
− f†

T

fb

[
EC(CTC)−1γ − qa,s(X(t),a)

]
+ X†

T

Ẋ(X, ffb,a, t) . (2.41)

Integrating equation (2.40) by parts, we obtain

L =

∫ TH

0

{
H+

dγ†

dt

T

(CTC)−1γ +
dX†

dt

T

X

}
dt

+ γ†(0)T (CTC)−1γ(0)− γ†(TH)T (CTC)−1γ(TH) + X†(0)TX(0)−X†(TH)TX(TH) . (2.42)
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Therefore, the total derivative of the Lagrangian is

dL
da

=

∫ TH

0


[(

∂H
∂γ

)T
+ (CTC)−1 dγ

†

dt

]T
∂γ

∂a
+

(
∂H
∂ffb

)
∂ffb
∂a

+

[(
∂H
∂X

)T
+
dX†

dt

]T
∂X

∂a
+
∂H
∂a

 dt

+ γ†(0)T (CTC)−1 ∂γ(0)

∂a
− γ†(TH)T (CTC)−1 ∂γ(TH)

∂a

+ X†(0)T
∂X(0)

∂a
−X†(TH)T

∂X(TH)

∂a
. (2.43)

Since the initial conditions do not change with controlled variables, i.e. ∂γ(0)
∂a = 0, and ∂X(0)

∂a = 0,

and ∂γ
∂a (t),

∂ffb

∂a , ∂X
∂a (t), ∂γ(TH)

∂a , and ∂X(TH)
∂a are difficult to calculate, if we set

(
∂H
∂γ

)T
+ (CTC)−1 dγ

†

dt
= 0 =⇒ −dγ

†

dt
= (CTC)

(
∂H
∂γ

)T
, (2.44)(

∂H
∂ffb

)T
= 0 , (2.45)(

∂H
∂X

)T
+
dX†

dt
= 0 =⇒ −dX

†

dt
=

(
∂H
∂X

)T
, (2.46)

γ†(TH) = 0 , (2.47)

X†(TH) = 0 , (2.48)

then the Lagrangian becomes

dL
da

=

∫ TH

0

(
∂H
∂a

)
dt . (2.49)

Note that equation (2.44) is the adjoint of the Navier-Stokes equations and equation (2.47) is the

corresponding initial condition. Equation (2.45) is the adjoint of no-slip boundary condition. Equa-

tion (2.46) is the adjoint of the equation of motion and equation (2.48) is the corresponding initial

condition. Therefore, we need to find an optimal control aopt such that dL
da (aopt) = 0 with the

constraints of equations (2.44) to (2.48) .

By substituting the Hamiltonian in equation (2.41) into equations (2.44), (2.45), (2.46), and



22

(2.49), they yield

dγ†

dτ
(τ) =

1

∆x2
CTN†

(
q†(τ), q(τ)− qa(X(τ),a), γ(τ)

)
− CTET f†fb , (2.50)

EC(CTC)−1γ†(τ) = q†a,s(X
†(τ),X(τ), ffb,a) , (2.51)

dX†

dτ
(τ) = Ẋ†(X†(τ),X(τ), ffb,a, τ) , (2.52)

where

τ ≡ TH − t , (2.53)

N†
(
q†, q − qa(X,a), γ

)
≡ CN

(
q†, q − qa(X,a)

)
−N

(
q†, γ

)
, (2.54)

is the adjoint of nonlinear term (detailed derivation in appendix B),

q†a,s(X
†,X, ffb,a) ≡

(
∂F
∂ffb

(X, ffb,a)

)T
+

(
∂Ẋ

∂ffb
(X, ffb,a, t)

)T
X† , (2.55)

is the adjoint velocity flux,

Ẋ†(X†,X, ffb,a, t) ≡
(
∂F
∂X

(X, ffb,a)

)T
− 1

∆x2
q†

T

N

(
∂qa
∂X

(X,a), γ

)

+

(
∂qa,s
∂X

(X,a)

)T
f†fb +

(
∂Ẋ

∂X
(X, ffb,a, t)

)T
X† , (2.56)

is the right-hand side of the adjoint equation of motion, and

∂H
∂a

=

(
∂F
∂a

(X, ffb,a)

)
− 1

∆x2
N

(
∂qa
∂a

(X,a), γ

)T
q†

+ f†
T

fb

(
∂qa,s
∂a

(X,a)

)
+ X†

T

(
∂Ẋ

∂a
(X, ffb,a, t)

)
. (2.57)

We can see that adjoint equations (2.50), (2.51), and (2.52) have the same form as equations (2.36),

(2.37), and (2.38). Therefore, they can be solved backward in time (since τ = TH−t) with zero initial

conditions (equations (2.47) and (2.48)) using the fast immersed boundary method and predictor-
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corrector method introduced in sections 2.2 and 2.3.

The forms of q†a,s(X
†,X, ffb,a), Ẋ†(X†,X, ffb,a, t), and dL

da (a) depends on the choices of F(X, ffb,a),

X(t), Ẋ(X, ffb,a, t), and a(t). In this study, the following sets of Ẋ(X, ffb,a, t), X(t), and a are

considered in this study:

1. : Ẋ = Ωj , X = θj , a = Ωj , (2.58)

2. : Ẋ =
1

Ij
(τfbj + τmj

) , X = Ωj , a = τmj
, (2.59)

where Ij is the moment of inertia of the body about the j−th rotation center. θj and Ωj are the

rotation angle and angular velocity of the j−th rotating frame relative to the (j − 1)−th rotating

frame, respectively. τfbj = Ŝ(xs× ffb) and τmj
are the torque exerted by the fluid on the body and

by the motor about the j−th rotation center, respectively. S̃ is a first-order integration matrix,

S̃ =

1, 1, · · · , 1, 0, 0, · · · , 0

0, 0, · · · , 0, 1, 1, · · · , 1


2×(2nb)

∆x , (2.60)

where nb is the number of points of a body.

We considered three kinds of F(X, ffb,a):

1. squared force difference:
1

2
∆FTQi∆F , where ∆F = B(φ)S̃ffb − Fref , (2.61)

2. power generated by the fluid: QiτfbjΩj , (2.62)

3. power input from the motor: Qi(−τmj
Ωj) , (2.63)

where Qi is the coefficient (matrix). In equation (2.61), ∆F is the difference of the desired forces to

its targeted values, Fref , and B(φ) is the rotation matrix, which for 2D is given by

B(φ) =

cosφ − sinφ

sinφ cosφ

 , (2.64)
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where φ is the rotation angle from the rotating frame to the desired orientation of the integrated

forces, which is a function of θj . For examples, if the freestream is in (+x)−direction in the inertial

(laboratory) frame and x−direction of the grid is aligned with the chord of the body, then B(φ =

α)Ŝffb = (FD,−FL)T , i.e., (Ŝffb)n = B(φ = α)(Ŝffb)r, and B(φ = 0)Ŝffb = (−FT , FN )T , where

FD is the drag, FL is the lift, FT is the force tangent to the chord of the body, and FN is the force

normal to the chord of the body. Moreover, the derivative of the rotation matrix B(φ) has the

properties

dB(φ)

dφ
= B

(
φ+

π

2

)
= B(φ)B

(π
2

)
= B

(π
2

)
B(φ) . (2.65)

The derivatives of F(X, ffb,a) and Ẋ(X, ffb,a, t) with respect to ffb, X, and a are listed in

table 2.1 and 2.2, respectively. Note that in table 2.2, qΩ†j ,s
= (Ω†j × xs)∆x is the velocity flux on

the body induced by the adjoint angular velocity Ω†j .

Table 2.1: Derivatives of F(X, ffb,a) with respect to ffb, X, and a.

F ∂F
∂ffb

∂F
∂θj

∂F
∂Ωj

∂F
∂τmj

QiτfbjΩj QiqΩj
0 Qiτfbj 0

Qiτmj
Ωj 0 0 Qiτmj

QiΩj

1
2∆FTQi∆F ŜTBTQi∆F

dφ
dθj

(
B
(
π
2

)
∆F

)T
Qi∆F 0 0

Table 2.2: Derivatives of Ẋ(X, ffb,a, t) with respect to ffb, X, and a.

Ẋ
(
∂Ẋ
∂ffb

)T
f†fb

(
∂Ẋ
∂θj

)T
X†

(
∂Ẋ
∂Ωj

)T
X†

(
∂Ẋ
∂τmj

)T
X†

Ωj 0 0 θ†j 0

1
Ij

(τfbj + τmj ) 1
Ij
qΩ†j ,s

0 0 1
Ij

Ω†j

For the derivatives of qa(X,a) = qU + qΩ1
+ qΩ2

, since qU is usually independent of θj in the

inertial frame, i.e., d(qU )n
dθj

= 0,

d(qU )r2
dθj

=
d(B(θ1 + θ2)T (qU )n)

dθj
= B

(π
2

)T
B(θ1 + θ2)T (qU )n = B

(π
2

)T
(qU )r2 . (2.66)

Moreover, qΩ1
is independent of θ1 but not θ2 and qΩ2

is independent of both θ1 and θ2 because
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the rotations are successive. Therefore,
∂(qΩ2

)r2

∂θ1
= 0,

∂(qΩ2
)r2

∂θ2
= 0,

∂(qΩ1
)r2

∂θ1
= 0, and

∂(qΩ1
)r2

∂θ2
=

B
(
π
2

)T
qUrel

, where Urel = Ω2 ×R2 is the relative velocity of O2 to O1. Therefore,

∂qa
∂θj

= B
(π

2

)T
(qU + qUrel

δ2j) , (2.67)

∂qa
∂Ωj

= qΩ̂j
, (2.68)

∂qa
∂τmj

= 0 , (2.69)

where qΩ̂j
is the velocity flux of Ω̂j × xrj and δij is the Kronecker delta.

2.5 Procedures of optimal control

Even with the adjoint equations and boundary conditions derived in section 2.4, finding an control

aopt such that dL
da (aopt) = 0 is difficult. Instead, we find an optimal control iteratively. In each

iteration, the procedure contains three steps, which are illustrated as follows:

Step 1: Generally in the p-th step, a control, a[p], is given (the iteration usually starts from the

baseline case, i.e., a[0] = 0). Equations (2.36) to (2.38) are solved forward in time (from 0 to

TH) using the fast immersed boundary projection method (IBPM) and predictor-corrector

method (PCM) introduced in sections 2.2 and 2.3. The solutions, γ[p], q[p], f
[p]
fb , and X[p],

are called forward variables. The total cost function with this control, J (a[p]), is then

evaluated by equation (2.35).

Step 2: With forward variables, equations (2.50) to (2.52) are solved backward in time (from TH to

0) using IBPM and PCM again. The solutions, γ†
[p]

, q†
[p]

, f†
[p]

fb , and X†
[p]

are called adjoint

(backward) variables. The control gradient,
(
∂H
∂a

)[p]
, is computed by equation (2.57).

Step 3: Update the control with the negative of the control gradient multiplied by a distance, dctrl,

a[p+1] = a[p] −
(
∂H
∂a

)[p]

dctrl (2.70)
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Proceed a line search in dctrl such that the total cost function given by equation (2.35) is

minimized.

A flow chart of the procedure is shown in figure 2.3. The procedure described in step 3 is more like

the steepest decent (SD) method. However, the conjugate gradient (CG) method is instead used

for the optimization in our computations because it is proven to converge much faster than the SD

method. Moreover, for our non-convex and nonlinear optimization problem, we choose to use the

CG method called the Polak-Ribiere formula (Polak, 1970), which is known to converge faster than

other conjugate algorithms (Shewchuk, 1994) in this kind of optimization problem.

Start with p = 0
and choose a a[0].

Given a[p], run forward simulation (eqs.
(2.36) to (2.38)) to obtain forward variables,

γ[p], q[p], f
[p]
fb , and X[p] and evaluate J (a[p]).

Run backward simulation (eqs. (2.50) to (2.52))

to obtain forward variables, γ†
[p]

, q†
[p]

, f†
[p]

fb , and

X†
[p]

and compute the control gradient,
(
∂H
∂a

)[p]
.

Update the control with
(
∂H
∂a

)[p]
using either SD

or CG method and proceed line search in the dis-
tance, dctrl, such that J (a[p+1]) is minimized.

Is J (a[p+1])
converged?

Stop

no

yes

Figure 2.3: Flow chart of the iterative procedures.
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Chapter 3

Coriolis effect on the dynamic stall
in a VAWT

As discussed in section 1.2, Wang et al. (2010) introduced a simplified model of an airfoil undergoing

an equivalent planar motion. However, this model does not account for the forces associated with

the non-inertial reference frame. The Coriolis force, in particular, depends on the fluid velocity

and is known to locally affect the dynamic stall. In this chapter, we focus on investigating the

effect of the Coriolis force on dynamic stall by comparing the rotating airfoil to one undergoing

an equivalent planar motion. Simulation results are then compared with PIV data in Ferreira

et al. (2007) and water-tunnel experiments performed by collaborators Dunne and McKeon (2014,

2015a,b) in Dunne et al. (2015). Moreover, airfoils undergoing a sinusoidal pitching motion and a

sinusoidal surging-pitching motion are also computed and compared to the full VAWT and equivalent

planar motions. The coupling of the Coriolis force with the incoming velocity and angle-of-attack

variations in VAWT and equivalent planar motions is also studied. Finally, open-loop control is

applied to control dynamic stall vortices.

3.1 Simulation setup

Figure 3.1 shows a schematic of a single-bladed VAWT with radius R rotating at an angular velocity

Ω with a freestream velocity, U∞, coming from the left. The chord length of the turbine blade is c.

In order to systematically investigate the aerodynamics of a VAWT, five dimensionless parameters
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are introduced:

tip-speed ratio: λ =
ΩR

U∞
, (3.1)

radius-to-chord-length ratio: ` =
R

c
, (3.2)

solidity: σ =
Nbc

2πR
=

Nb
2π`

, (3.3)

Reynolds number: Re =
U∞c
ν

, (3.4)

Rossby number: Ro =
U∞
2Ωc

=
`

2λ
=

1

4k
, (3.5)

where Nb is the number of blades (Nb = 1 in this case), ν is the kinematic viscosity of the fluid,

and k is the reduce frequency, k = Ωc
2U∞

= λ
2` . Rossby number is the ratio of the inertial force to

the Coriolis force, which is used to scale the Coriolis force. In this thesis, we focus on the effect

of tip-speed ratio, Reynolds number, and Rossby number on the dynamic stall in a single-bladed

VAWT. The effect of solidity is discussed in more detail by Araya and Dabiri in Araya (2016), where

a new parameter called the dynamic solidity, which is associated with the tip-speed ratio and the

turbine solidity, is defined to quantitatively relate the dynamics of the VAWT to that of a solid

cylinder.

Figure 3.1: Schematic of a single-bladed VAWT and the computational domain.
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The instantaneous incoming velocity Winst and the angle of attack α can then be characterized

as a function of the tip speed ratio λ and the azimuthal angle θ:

α(λ, θ) = tan−1

(
sin θ

λ+ cos θ

)
, (3.6)

Winst(λ, θ)

U∞
=
√

1 + 2λ cos θ + λ2 . (3.7)

Figure 3.2 shows the angle of attack variation and incoming velocity variation of the VAWT at λ = 2.

From equation (3.6), the maximum angle of attack,

αmax(λ) = tan−1

(
1√

λ2 − 1

)
, (3.8)

occurs at θ = cos−1
(
− 1
λ

)
.

In order to isolate the Coriolis effect on dynamic stall, a moving airfoil experiencing an equivalent

incoming velocity and angle-of-attack variation over a cycle is proposed. This equivalent planar

motion (EPM) is composed of a surging motion with a velocity Wsurge and a pitching motion around

the leading edge with a pitch rate α̇. The airfoil is undergoing the EPM in a freestream velocity

Wavg. Wavg, Wsurge, and α̇ are shown to be

Wavg(λ)

U∞
=

1

2π

∫ 2π

0

Winst(λ, θ)

U∞
dθ =

2(1 + λ)

π
E

(√
4λ

(1 + λ)2

)
, (3.9)

where the function, E(m) =
∫ π/2

0

√
1−m2 sin2 θ dθ, is the complete elliptic integral of the second

kind,

Wsurge(λ, θ) = Winst(λ, θ)−Wavg(λ) , (3.10)

α̇(λ, θ) =
1

2Ro

(
1 + λ cos θ

1 + 2λ cos θ + λ2

)
. (3.11)

The flow around a rotating airfoil in a VAWT is complicated not only by the Coriolis effect but

also because the angle of attack and incoming velocity vary simultaneously. It is interesting to



30

understand whether the Coriolis effect has strong coupling with the angle of attack or incoming

velocity variations. Therefore, we independently examine airfoils undergoing only pitching motion

and only surging motion associated with VAWT and EPM. Moreover, inspired by Wang et al. (2010),

who studied dynamic stall in a VAWT by investigating an airfoil undergoing a simplified sinusoidal

pitching motion, we introduce sinusoidal approximations of the angle of attack and incoming velocity

of VAWT,

αsin(λ, θ) = αmax(λ) sin θ , (3.12)

Winst,sin(λ, θ)

U∞
= λ+ cos θ , (3.13)

which are shown in figure 3.2.
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Figure 3.2: Comparison of angle of attack variation and incoming velocity variation between the
VAWT and the sinusoidal motion at λ = 2.

Although the sinusoidal motion shares the same amplitude, it overestimates the angle of attack

in the upstroke phase, underestimates the incoming velocity in the downstroke phase, and slightly

underestimates the instantaneous velocity over the entire half-cycle. In order to search for the

most appropriate model for a VAWT, we introduce two additional motions: a sinusoidal pitching

motion (SPM) and a sinusoidal surging-pitching motion (SSPM). Airfoils undergoing both the SPM

and SSPM pitch with the sinusoidal angle-of-attack variation described in equation (3.12) in a

freestream velocity Wavg,sin = λU∞. Airfoils undergoing the SSPM also surge with a velocity
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Wsurge,sin = U∞ cos θ. All motions investigated in this chapter are summarized in table 3.1.

Table 3.1: Summary of the VAWT motion and all simplified motions. Symbol × denotes that the
motion is exactly the same as the VAWT motion described in equations (3.6) and (3.7). Symbol ◦
denotes that the motion is the sinusoidal approximation of the VAWT motion described in equations
(3.12) and (3.13).

Motion incoming velocity angle of attack rotation

VAWT × × ×
only surging motion of VAWT × ×
only pitching motion of VAWT × ×

EPM × ×
only surging motion of EPM ×
only pitching motion of EPM ×

SPM ◦
SSPM ◦ ◦

NACA 0018 airfoils are used as blades in the present study in order to compare with experiments

performed by Dunne and McKeon (2014, 2015a). The ratio of the radius of the turbine to the chord

length, `, depends on the choice of the tip-speed ratio, λ, and the Rossby number, Ro. In preliminary

simulations of a three-bladed VAWT, as well as in previous studies (Ferreira et al., 2007), vorticity-

blade interaction is only observed in the downwind-half of a cycle. Since only the flow in the

upwind-half cycle is important to torque generation, we save computational time by modeling a

single-bladed turbine. We compute about five periods of motion, which is equal to 5π/Ro convective

time units, to remove transients associated with the startup of periodic motion. For the largest

Rossby number we examined, the starting vortex propagates far enough into the wake to have an

insignificant effect on the forces on the blades after five periods. An additional five periods of nearly

periodic stationary-state motion were then computed and analyzed below.

IBPM introduced in section 2.2 is used to compute two-dimensional incompressible flows in an

airfoil-fixed reference frame with appropriate forces added to the momentum equation to account for

the non-inertial reference frame as described in section 2.1. Based on the analysis by Colonius and

Taira (2008), IBPM is estimated to have an O(4−Ng ) convergence rate, where Ng is the number of the

grid levels. Six grid levels are used for the present computations in order to have the leading-order
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error dominated by the truncation error arising from the discrete delta functions at the immersed

boundary and the discretization of the Poisson equation. The coarsest grid extends to 96 chord

lengths in both the transverse and streamwise directions of the blade.

In order to show grid convergence, we examine a single-bladed VAWT with ` = 1.5 rotating at

λ = 2. The velocity field in the streamwise direction is compared to one on the finest grid with

∆x = 0.00125 at t = 1. Figure 3.3 shows the spatial convergence in the L2 norm. The rate of

decay for the spatial error is about 1.5, which agrees with Taira and Colonius (2007). All ensuing

computations use a 600× 600 grid, which corresponds to ∆x = 0.005. The time step, ∆t, is chosen

to make Courant-Friedrichs-Lewy (CFL) number less than 0.4.
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Figure 3.3: The L2 norm of the error of the velocity field in the streamwise direction in a single-
bladed VAWT with ` = 1.5 rotating at λ = 2 at t = 1.

3.2 Qualitative flow features in a VAWT

We begin by examining the flow at low tip-speed ratio, λ = 2, Ro = 1.5, and Re = 1500, which

gives a maximum amplitude of 30 degrees in angle of attack variation and a reduced frequency

k = 1/6. Figure 3.4 shows the vorticity field generated by the blade at different azimuthal angles

over a cycle. Negative and positive vorticity are plotted in blue and red contour levels, respectively,

and all vorticity contour plots use the same contour levels.

At the beginning of a cycle (figure 3.4(a)), the airfoils are just returning to zero angle of attack,

and there are still the remnants of earlier vortex shedding in the wake. The flow reattaches by the
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(a) θ = 0◦/360◦, α = 0◦ (b) θ = 15◦, α = 5.0◦ (c) θ = 60◦, α = 19.1◦ (d) θ = 90◦, α = 26.6◦

(e) θ = 120◦, α = 30◦ (f) θ = 135◦, α = 28.7◦ (g) θ = 150◦, α = 23.8◦ (h) θ = 165◦, α = 14.1◦

(i) θ = 180◦, α = 0◦ (j) θ = 195◦, α = −14.1◦ (k) θ = 210◦, α = −23.8◦ (l) θ = 225◦, α = −28.7◦

(m) θ = 240◦, α = −30◦ (n) θ = 270◦, α = −26.6◦ (o) θ = 300◦, α = −19.1◦ (p) θ = 330◦, α = −9.9◦

Figure 3.4: Vorticity field for a (clockwise rotating) VAWT at various azimuthal angles at λ = 2,
Ro = 1.5, and Re = 1500. Negative and positive vorticity are plotted in blue and red contour levels,
respectively, and all vorticity contour plots are using the same contour levels.

time airfoil reaches α = 5◦ (figure 3.4(b)). When the angle of attack increases further, the wake

behind the airfoil starts to oscillate and vortex shedding commences. Dynamic stall then takes

place, and is marked by the growth, pinch-off, and advection of an leading edge vortex (LEV) on

the suction side of the airfoil (figures 3.4(c-e)). The vortices generated will propagate downstream

into the wake of the VAWT or interact with the blades in the downwind half of a cycle.
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When the angle of attack starts to decrease, a trailing edge vortex (TEV) develops (figure 3.4(f)).

Bloor instability (Bloor, 1964) occurs in the trailing-edge shear layer at this Reynolds number, which

resembles the convectively unstable Kelvin-Helmholtz instability observed in plane mixing layers.

This TEV couples with a LEV to form a vortex pair that travels downstream together with the

airfoil (figures 3.4(g-i)). This vortex pair interacts with the airfoil in the downwind half of a cycle

(figures 3.4(j-l)), which was also observed by Ferreira et al. (2007).

When the blade rotates in the downwind half of a cycle, the angle of attack becomes negative.

Vortices are now generated on the other side of the airfoil and shed into the wake of the VAWT

(figures 3.4(j-p)). For a multi-bladed VAWT, when a blade is traveling in the downwind half of a

cycle, it interacts with vortices generated upstream from other blades or from the wake it generated

at an earlier time (figure 3.4(o)).

3.3 Comparison of VAWT and EPM

In this section, we compare flows around an airfoil undergoing the EPM and a single-bladed VAWT

at λ = 2, Ro = 1.5, and Re = 1500. We are interested in the tangential force response of the blade

over a cycle because the power output is proportional to the tangential force acting on the blade

when VAWT operate at a constant tip-speed ratio. The tangential force acting on the blade can be

written as a linear combination of lift and drag,

CT = CL sinα− CD cosα = CL

(
sinα− 1

CL/CD
cosα

)
, (3.14)

where α is the angle of attack of the blade. From preliminary simulations, a three-bladed VAWT

with ` = 4 will be free-spinning with a time-averaged tip-speed ratio λ = 0.95 at Re = 1500, so

that in the flow we are examining the average tangential force is expected to be negative. However,

as the Reynolds number increases to the range where commercial VAWT usually operate, Re ∼

O(105 − 106), drag coefficient drops dramatically while the change in the lift coefficient is small.

This leads to a large increase in the lift-to-drag ratio, CL/CD (Lissaman, 1983). Therefore, the
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contribution of lift to the tangential force dominates at high Reynolds numbers. Moreover, the

power of a VAWT is generated mostly in the upwind half cycle since large vorticity-blade interactions

cancel out the driving torque in the downwind half cycle (Ferreira et al., 2007). Therefore, in this

study we will focus on the lift in the upwind-half of a cycle.

In figure 3.5, the first two columns show the vorticity field at different azimuthal angles for EPM

and VAWT motion. Figure 3.6 shows a comparison of the lift coefficient against dimensionless time

and angle of attack for a single rotation and for the average of both lift coefficients over five cycles.

Although there are still the remnants of earlier vortex shedding in the wake when the airfoil just

returns to zero angle of attack (figure 3.5(a)), the flow reattaches by α = 5◦ (figure 3.5(b)), which

leads to a smoothly increasing lift coefficient at low angle of attack. The differences in the lift

coefficient between the EPM and VAWT are small (figure 3.6). As the angle of attack increases,

dynamic stall commences (figures 3.5(c-e)), which leads to rapidly increasing lift. EPM and VAWT

induced flows are quite similar, with just a small phase difference when the airfoils pitch up. They

result in comparable lift throughout the upstroke phase.

When the downstroke phase starts (figures 3.5(e-f)), the development of a TEV leads to a decrease

in lift. The aforementioned Bloor instability in the shear layer at the trailing edge produces high

frequency fluctuations in the lift coefficient. For EPM, the TEV sheds into the wake and a secondary

vortex (McCroskey et al., 1976) appears as the angle of attack decreases further (figure 3.5(g)), which

results in a sudden increase in the lift coefficient. On the other hand, for VAWT, as described in

section 3.2, this TEV couples with the LEV and forms a vortex pair that travels together with the

airfoil (figures 3.5(g-h)). This generates high pressure on the suction side and further decreases the

lift. This vortex pair is “captured” by the rotating airfoil. By analogy with flow observed in insect

flight by Dickinson et al. (1999), we refer to this phenomenon as the wake-capturing of a vortex

pair in VAWT. The wake-capturing occurs at a slightly different phase in each cycle and leads to

a significant decrease in the average lift in the downstroke phase. In general, the lift of an airfoil

undergoing the EPM is overestimated in the downstroke phase. Moreover, when this vortex pair

travels downstream, it interacts with the airfoil in the downwind half of a cycle. This leads to a lift
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Figure 3.5: Vorticity field for EPM and VAWT and the Coriolis force for VAWT at various azimuthal
angles. Negative and positive vorticity are plotted in blue and red contour levels, respectively, and
all vorticity contour plots are using the same contour levels. In the Coriolis force plots, black arrows
show the direction of velocity, blue arrows point the direction of the Coriolis force, and the color
contour plots the magnitude of the Coriolis force.
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Figure 3.6: Comparing CL,VAWT and CL,EPM at λ = 2, Ro = 1.5, and Re = 1500.

coefficient with large fluctuations and small mean, as was also observed by Ferreira et al. (2007).

We can see from the second and third columns in figure 3.5 that the Coriolis force deflects the

flow around the rotating airfoil in the clockwise direction. The magnitude of the Coriolis force

acting on the background fluid decreases as the azimuthal angle increases. Therefore, the Coriolis

force acting on the fluid around vortices becomes relatively important in the downstroke phase. A

stronger Coriolis force is exerted on the fluid around the vortex pair, which deflects the fluid in such

a way that the vortex pair travels with the airfoil (figures 3.5(f-h)).

3.4 Comparison with an airfoil undergoing a sinusoidal mo-

tion

Flows around an airfoil undergoing SPM and SSPM introduced in section 3.1 are compared with

one undergoing EPM and in a VAWT. A comparison of the lift response at λ = 2 and 4, Ro = 1.5,

and Re = 1000 is shown in figure 3.7.

At lower tip-speed ratio, λ = 2, in the upstroke phase, we can see that only CL,EPM is close to

CL,VAWT at low angle of attack. CL,SPM and CL,SSPM overestimate the lift due to the overestimation

of the pitch rate. In the downstroke phase, none of CL,EPM, CL,SPM, and CL,SSPM match the behavior

of CL,VAWT because of the strong effect on lift of the wake-capturing that occurs in the flows. At

higher tip-speed ratio, λ = 4, CL,SPM and CL,SSPM still overestimate the lift at the beginning of
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the upstroke phase. Nevertheless, as the angle of attack increases, and after vortex shedding starts,

differences between the four lift coefficients are relatively small. In the downstroke phase, behaviors

of CL,EPM, CL,SPM, and CL,SSPM are close to that of CL,VAWT due to the low angle of attack.

We can see that, among all simplified motions, an airfoil undergoing the EPM is the best approx-

imation to a rotating airfoil in a VAWT in the upstroke phase for the sub-scale Reynolds numbers

considered in this study. However, it overestimates the lift coefficients in the downstroke phase due

to its inability to predict the wake-capturing phenomenon.
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Figure 3.7: Lift coefficients of VAWT, EPM, SPM, and SSPM over a cycle at λ = 2 and 4, Ro = 0.75,
and Re = 1000.

3.5 Effect of tip-speed ratio, Rossby number, and Reynolds

number

In this section, the effect of tip-speed ratio, Rossby number, and Reynolds number on the flow in

a VAWT is investigated to understand when wake-capturing occurs. We compare the simulations
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of a rotating wing with a wing undergoing EPM. We examine the flows at tip-speed ratios λ = 2,

3 and 4, and Reynolds numbers Re = 500, 1000, and 1500. The corresponding lift coefficients with

Rossby numbers Ro = 0.75, 1.00, and 1.25 are shown in figure 3.8.
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Figure 3.8: Comparing lift coefficients of VAWT and EPM over a cycle with Ro = 0.75, 1.00, and
1.25 at λ = 2, 3, and 4 and Re = 500, 1000, and 1500.

As the tip-speed ratio increases, the amplitudes of angle of attack variation and the corresponding

lift decrease. Since the maximum angle of attack is slightly above the static stall angle of a NACA

0018 airfoil predicted by Morris and Rusak (2013), the lift coefficients of EPM is close to that

of VAWT at λ = 4 for all Rossby numbers and Reynolds numbers examined. Therefore, EPM

motion is a good approximation of VAWT at larger tip-speed ratios due to the low angle of attack.

However, at lower tip-speed ratios, CL,EPM remains close to CL,VAWT only in the upstroke phase. In
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the downstroke phase, the discrepancy in lift coefficients due to the wake-capturing effect becomes

larger as Rossby number decreases and Reynolds number increases. As the VAWT rotates faster,

on the one hand the wake-capturing effect is strengthened due to the intensifying Coriolis force,

which corresponds to decreasing Rossby number; on the other hand, it is attenuated because of the

decreasing amplitude of the angle of attack variation due to the increasing tip-speed ratio. Therefore,

the growth of the discrepancy depends subtly on the increase of the rotating speed of the VAWT.

3.6 Comparisons with experiments

In this section, the simulation of a rotating airfoil in a VAWT is compared with phase-averaged

PIV data from Ferreira et al. (2007) to probe the existence of wake-capturing at higher Reynolds

numbers. Next, simulation results for VAWT and EPM (described in section 3.3) are compared

with a phase-averaged data set from experiments on an airfoil undergoing the EPM performed by

Dunne and McKeon (2014, 2015a,b) to further investigate the effect of the rotating frame, Reynolds

number, and the Coriolis force.

3.6.1 Comparison with Ferreira et al. (2007)

To probe the existence of wake-capturing at higher Reynolds numbers, the vorticity field in VAWT

(Re = 1500) for a single period is compared with phase-averaged PIV data from Ferreira et al.

(2007)(Re ≈ 105) at λ = 2 and Ro = 1(` = 4) in figure 3.9. The contours in gray are the phase-

averaged vorticity field taken from the experiments. In figures 3.9(a-f), their phase-averaged field

was filtered to plot only the LEV generated around θ = 72◦ and the plot represents a composite of

overlaid fields from various azimuthal angles. Similarly, in figures 3.9(g-i), the contours in the gray

scale show the filtered, phase-averaged TEV evolution. In order to make qualitative comparisons,

our vorticity fields at the corresponding azimuthal angles are overlaid in the color scale on top of

the results from the experiments. Our blue contours correspond to negative vorticity, which should

be compared to the LEV-filtered PIV data in figures 3.9(a-f), while the red contours correspond to

positive vorticity that should be compared to the TEV-filtered PIV data in figures 3.9(g-i).



41

L
E

V
-fi

lt
er

ed
d

at
a

th
e

(a) θ = 72◦ (b) θ = 90◦ (c) θ = 108◦

C
o
m

p
ar

is
on

w
it

h

(d) θ = 133◦ (e) θ = 158◦ (f) θ = 223◦

C
om

p
ar

is
on

w
it

h
th

e
T

E
V

-fi
lt

er
ed

d
at

a

(g) θ = 121◦ (h) θ = 158◦ (i) θ = 218◦

Figure 3.9: The comparison of the vorticity fields of the LEV-filtered (a-f) and TEV-filtered (g-i)
phase-averaged PIV data from Ferreira et al (gray scale), and of the corresponding VAWT simula-
tions (color scale) at λ = 2 and Ro = 1(` = 4) at various azimuthal angles.
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The trajectories of the LEV and TEV from Ferreira et al. seem to be reasonably captured by

the simulation in the upwind half of a cycle. The disagreement in figures 3.9(f) and 3.9(i) may be

due to strong vortex-blade and vortex-vortex interactions in the downwind half of a cycle. A LEV

is generated around θ = 72◦ and wake-capturing occurs around θ = 90◦, which forms a vortex pair

traveling with the blade (figures 3.9(a-c)). The vortex pair then detaches around θ = 133◦ and

propagates downstream (figures 3.9(d-f)). The location of the vortex pair composed of the phase-

averaged LEV and TEV agrees with the current simulation, especially at θ = 158◦ (figures 3.9(e)

and 3.9(h)). The qualitative agreement in the upwind half of a cycle suggests that wake-capturing

may also be occurring in Ferreira et al.’s experiment.

3.6.2 Comparison with Dunne and McKeon (2014, 2015a,b)1

Simulation results on airfoils undergoing VAWT and EPM motions at Re = 1500 described in

section 3.3 are compared with phase-averaged data set from experiments on an airfoil undergoing

the EPM performed by Dunne and McKeon (2014, 2015a,b) in order to explore the effect of Reynolds

number and the rotating frame. The experiments were performed in a water tunnel at Reynolds

numbers near turbine conditions of 105 and the setup of experiments are described in more detail

in Dunne and McKeon (2014, 2015a,b). In order to distinguish between the computational results

and experimental data, Dunne and McKeon introduced the nomenclature EPME and EPMC to

denote EPM from experiment and computation, respectively, and VAWTC to denote VAWT from

computation.

Figure 3.10 reproduced from Dunne et al. (2015) shows the comparison of EPME with EPMC

and VAWTC at various azimuthal angles. α+, α, and α− denote the angles of attack when the pitch

rates are positive, zero, and negative, respectively. As expected, vortices appearing at all angles of

attacks in the simulation are much more coherent because of the low Reynolds number. Furthermore,

since the experimental data is an ensemble average of multiple experiments, the coherent vortex

shedding apparent at α+ = 0◦ is smeared out in experimental results and the vorticity generated

1This work was presented as a collaborative effort between the author with advisor Tim Colonius, and collaborators
Reeve Dunne and Beverley McKeon at the International Conference on Wakes, Jets, and Separated Flows in June,
2015, Stockholm, Sweden, and is published as Dunne et al. (2015)
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Figure 3.10: Vorticity contours of EPME (left), EPMC (middle), and VAWTC (right). Red and
blue contours indicate positive and negative vorticity, repectively, and green area indicates the PIV
laser shadow. Figure reproduced from Dunne et al. (2015).
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from the leading edge is significantly weakened by this phase averaging. Apart from these Reynolds

numbers and experimental differences, the flow evolution is similar between three cases. At α+ = 0◦

the flow is attached and a symmetrical wake corresponding to vortex shedding is seen behind the

airfoil (figure 3.10(a)). At α+ = 19◦ a LEV begins to form, indicated by increased intensity in

experiment and visible as a distinct structure in computation (figure 3.10(b)). At α+ = 27◦ the

LEV grows even stronger in the experiment and the flow has just begun to separate; however, in

both computations the LEV has moved downstream, indicating that flow separation occurs slightly

earlier at low Reynolds number (figure 3.10(c)). At maximum α = 30◦ the flow is fully separated in

both experiment and computation with a shear layer at the leading edge visible in the experiment,

and continuously large scale vortex shedding from the leading and trailing edges in the computation

(figure 3.10(d)). The trajectories of the shed vortices between EPMC and VAWTC are different due

to the Coriolis forces as discussed in section 3.3. Finally at α− = 24◦, while in EPME and EPMC

vortices can be seen to shed from the leading and trailing edges, the aforementiaoned wake-capturing

phenomenon is seen in VAWTC (figure 3.10(e)).

Figure 3.11: Clockwise vorticity contours from EPME (top) and VAWTC (bottom) at θ = 70◦,
90◦, 108◦, and 133◦ respectively from left to right. Figure reproduced from Dunne et al. (2015).
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Figure 3.11, which is also reproduced from Dunne et al. (2015), shows the vortices generated

from the leading edge for EPME and VAWTC at various points in a cycle in the turbine reference

frame. Similar to figure 3.10, vortices are more coherent in the computation due to the lower

Reynolds number. The effect of experimental and turbine reference frame can be seen clearly by

the trajectories of the vortices. The vortices in the computation convect from left to right with

the turbine relative freestream, while the vortices in experiment convect behind the airfoil with the

blade relative freestream. However, agreement is good at the blade level and immediately behind

the blade.

3.7 Decoupling the effect of surging, pitching, and rotation

In order to understand whether the Coriolis effect has strong coupling with the incoming velocity

and angle-of-attack variations, we independently examine airfoils undergoing the decoupled pitching

and surging motion associated with VAWT and EPM.

3.7.1 Airfoil undergoing only surging motion

We examine a surging motion with fixed angles of attack of 15 and 30 degrees at λ = 2, Ro = 1.5

(k = 1/6), and Re = 1500. A rotating airfoil undergoing only the surging motion of a VAWT is

achieved by pitching the airfoil around the leading edge simultaneously as it rotates so that the

angle of attack is fixed with respect to the incoming velocity. For an airfoil surging at an angle of

attack of 15◦, lift coefficients are shown in figure 3.12(a). We can see that dynamic stall is relatively

stable and no wake-capturing phenomenon is observed. Moreover, from the analysis by Choi et al.

(2015), when the reduced frequency is low enough, the flow can be approximated as quasi-steady,

which results in both lift coefficients for VAWT and EPM fluctuating about a slowly increasing

mean value. For the case of α = 30◦, lift coefficients are shown in figure 3.12(b). The flow is well

separated so that there is no stationary vortex shedding. Moreover, no wake-capturing phenomenon

is observed in the flow.
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Figure 3.12: Comparing lift responses of airfoils undergoing only surging motion at λ = 2, Ro = 1.5,
and Re = 1500.

3.7.2 Airfoil undergoing only pitching motion

We consider a pitching motion in a freestream velocity Wavg = λU∞ at λ = 2, Ro = 1.5 and

Re = 1500. A rotating airfoil undergoing only the pitching motion in a VAWT is achieved by ro-

tating an airfoil in a VAWT without the external free stream and simultaneously pitching it around

the leading edge with the exact angle of attack variation. The corresponding lift coefficients are

shown in figure 3.13. We can see dynamic stall in both lift coefficients as angle of attack increases.

However, there is no wake-capturing.
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Figure 3.13: Comparing lift responses of airfoils undergoing only pitching motion at λ = 2, Ro = 1.5,
and Re = 1500.

The wake-capturing effect is therefore only present when pitching, surging, and the Coriolis force

are all present.
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3.8 Open-loop control on the wake-capturing phenomenon

From the discussion in sections 3.3 and 3.5, the wake-capturing of vortex pair leads to a large

decrease in lift. In order to improve the corresponding implied loss in power production, we apply

a open loop control on dynamic stall in a VAWT. Inspired by Greenblatt et al. (2013), an actuator

modeled as a bodyforce introduced by Joe et al. (2011) is placed on the suction surface blowing the

fluid tangent to the surface to control dynamic stall vortices.

Cµ is the momentum coefficient that defines the momentum injection added by the forcing. For

an actuator with the width estimated as the grid spacing, ∆x, which injects a jet with average

velocity, ūjet, the momentum coefficient is

Cµ =
ū2

jet∆x
1
2U

2∞c
. (3.15)

A bodyforce with strength Cµ is placed at different actuation locations to control the baseline

flow with wake-capturing phenomenon at λ = 2, Ro = 1.5, and Re = 1500. The corresponding

lift coefficients are shown in figure 3.14. Cµ and the actuation locations that are examined and the

corresponding percentage changes in the averaged lift over the upwind half of a cycle are summarized

in table 3.2. The actuation location is measured by how far away from the leading edge.

Since the wake-capturing phenomenon only occurs in the downstroke phase, the control initiates

at an azimuthal angle of 90◦and terminates at 180◦. We can see that the best improvement is

obtained with the actuator placed at 30% of the chord length from the leading edge. Based on

these preliminary simulations, with Cµ above a certain threshold, say 0.02 in this case, the control

is able to remove the wake-capturing of vortex pair and increase the lift generation significantly in

the downstroke phase. Figure 3.15 shows the vorticity field of the baseline flow and the controlled

flow with an actuator placing at 30% of the chord length from the leading edge with Cµ = 0.02. We

can see that the actuation successfully removes the wake-capturing of vortex pair in the downstroke

phase.
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Figure 3.14: Open loop control on wake-capturing phenomenon with actuator placing at 10%, 20%,
and 30% of the chord length from the leading edge at λ = 2, Ro = 1.5, and Re = 1500.

Table 3.2: Parameters examined in the open-loop control are summarized. The actuation location
is measured by the ratio of the distance from the leading edge to the chord length.

actuation location Cµ ∆CL (%)

10% c 0.01 17

10% c 0.02 23

10% c 0.04 15

10% c 0.08 10

20% c 0.01 -9

20% c 0.02 -19

20% c 0.04 40

20% c 0.08 33

30% c 0.01 13

30% c 0.02 71

30% c 0.04 82

30% c 0.08 94
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Figure 3.15: Vorticity field of the baseline flow and the controlled flow with an actuator placing at
30% of the chord length from the leading edge with Cµ = 0.02.

3.9 Summary

In simulating the flow around a single-bladed VAWT, we have observed an interesting wake-capturing

phenomenon that occurs during the pitch-down portion of the upstream, lift-generating portion of

the VAWT cycle. This phenomenon leads to a substantial decrease in lift coefficient due to the

presence of a vortex pair traveling together with the rotating airfoil. Our results show that as tip-

speed ratio and Rossby number are reduced and Reynolds number is increased, this flow feature

persists and grows stronger, as it results in a larger decrease in lift coefficient. Therefore, the growth

of this features depends subtly on the increase of the rotating speed of the VAWT, which on the

one hand is strengthened due to the intensifying Coriolis force. On the other hand, it is attenuated

because of the decreasing amplitude of the angle of attack variation. Moreover, although our study is

restricted to two dimensional flow at relatively low Reynolds numbers, the qualitative agreement of

the LEV and TEV evolutions with Ferreira et al.’s experiment suggests that this feature may persist

in real applications. The corresponding decrease in efficiency could be improved by implementing

flow control (e.g. blowing) to remove this flow feature.

An equivalent planar surging-pitching motion was introduced in order to isolate the Coriolis

effect on dynamic stall in a VAWT. We also examined simplified planar motions consisting of si-

nusoidally varying pitch and surge. Except at the beginning of the pitch-up motion, all of the
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simplified motions are good approximations to VAWT motion at sufficiently high tip-speed ratios

since the corresponding maximum angle of attack is close to or lower than the stall angle of the

blade. However, at low tip-speed ratios, while the equivalent planar motion captures the pitch-up

part of the cycle, all the motions show significant differences in forces during the pitch down motion.

The results show that the equivalent motion is a good approximation to a rotating airfoil in a VAWT

in the upstroke phase where the Coriolis force has a relatively small effect on vortices. However, it

overestimates the average lift coefficient in the downstroke phase by eliminating the aforementioned

wake-capturing. Moreover, the computational results of VAWT and EPM a low Reynolds number

of 1500 were compared with the experimental result of EPM at a high Reynolds number of 105 from

the water-tunnel experiments performed by Dunne and McKeon (2014, 2015a,b) in Dunne et al.

(2015). The flow was shown to develop similarly prior to separation, but kinematics of vortices shed

post separation were reference-frame dependent due to the wake-capturing.

We further investigated the flow by decomposing the planar motion into surging- and pitching-

only motions. We only observe wake-capturing when the combination of surging, pitching, and

rotation are present, which suggests this feature is associated with an unique combination of angle

of attack variation, instantaneous velocity variation, and the Coriolis effect.
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Chapter 4

Numerical investigation of the self
starting of a VAWT

In this chapter, we focus on investigating the starting capability of a VAWT. The motion of the

VAWT is coupled with the aerodynamic forces exerted on the blades. A three-bladed VAWT with

NACA0018 blades is started at various Reynolds numbers and density ratios. Comparisons of flow-

driven and motor-driven VAWT are made with the water-tunnel experiments performed by Araya

and Dabiri (2015) to validate the load model. A simple quasi-steady model is proposed to analyze

the starting torque of a three-bladed VAWT. The total torque and blade torque distributions are

compared between VAWT with various number of blades. Based on the torque distributions of a

single-bladed VAWT with various static pitch angles, an optimal pitch distribution is proposed.

4.1 Simulation setup

Figure 4.1 shows the schematic of a VAWT with three NACA0018 airfoils as blades rotating with

an angular velocity, Ω, about point O in a freestream with velocity, U∞, coming from the left. The

azimuthal angle, θ, is defined as the angle between the black blade and the vertical axis as illustrated

and θ0 is the initial value of the azimuthal angle, i.e., θ0 = θ(t∗ = 0).

In order to simulate the starting of a VAWT, two-dimensional incompressible Navies-Stokes
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Figure 4.1: Schematic of a rotating three-bladed VAWT and the computational domain

equations are coupled with the equation of the motion of the VAWT:

NbIO
dΩ

dt
= τfb − τL , (4.1)

where Nb is the number of the blades, IO is the moment of inertia of the blade about the rotation

center of the VAWT, τfb is the moment exerted by the fluid about the rotation center of the VAWT,

and τL is torque generated by a load. The moment of inertia of the blade, IO, is obtained by

computing the second moment of mass with respect to point O,

IO =

∫
V

ρb(x)|x|2 d3x , (4.2)

where V is the volume of the blade, x is the position vector from point O to a point in the blade,

and ρb(x) is the density field of the blade. τfb is determined by the aerodynamic forces exerted by

the fluid on the blade, whose behavior is complicated due to the inherently unsteady flow around

the rotating blades and strong blade-vorticity interaction in the downwind half of a cycle. Finally,

a simple load model is used for the torque:

τL = F Ω , (4.3)
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where F is the friction coefficient of the load.

Besides tip-speed ratio (equation (3.1)), solidity (equation (3.3)), and Reynolds number (equation

(3.4)), another dimensionless parameter is introduced to systematically investigate the self-starting

capability of a VAWT:

density ratio: φρ =
ρe
ρ
, (4.4)

where ρ is the density of the fluid, and ρe is the effective density of the blade, which is defined by

ρe =

∫
V
ρb(x)|x|2 d3x∫
V
|x|2 d3x

=
IO∫

V
|x|2 d3x

. (4.5)

The radius of the VAWT is fixed at R = 1.5 c in the present study in order to compare with

experiments performed by Araya and Dabiri (2015). Therefore, the corresponding solidity is σ =

Nb

3π ≈ 0.106×Nb for VAWT with Nb blades. From equation (4.1), we can see that when investigating

the self-starting of a VAWT, the tip-speed ratio is a function of the other three parameters and the

friction coefficient of the load, i.e.,

λ = λ(Re, φρ, σ, F ) . (4.6)

As in Chapter 3, IBPM introduced in section 2.2 is used to compute two-dimensional incom-

pressible flows in an airfoil-fixed reference frame with appropriate forces added to the momentum

equation to account for the non-inertial reference frame as illustrated in section 2.1. Moreover, equa-

tion (4.1) is coupled with the flow using PCM introduced in section 2.3. All ensuring computations

use six 800 × 800 grids, which corresponds to ∆x = 0.005. The coarsest grid extends to 128 chord

lengths in both the transverse and streamwise directions of the VAWT. The time step, ∆t, is chosen

to make CFL number less than 0.4. Again, VAWT are investigated numerically at low Reynolds

number, Re ∼ O(103), in order to have more understanding of the starting of a VAWT in relatively

short computational time. Although density ratio of the real VAWT is of O(102) (Hill et al., 2009),
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as we will discuss in section 4.2, VAWT with density ratio this high are not able to self-start at low

Reynolds numbers of O(103). Therefore, VAWT with low density ratios, φρ ∼ O(1), are investigated

in order to explore the effect of density ratio on the starting of a VAWT at low Reynolds number.

4.2 Starting of a three-bladed VAWT at various Reynolds

numbers and density ratios

We begin with examining a three-bladed VAWT with φρ = 1 and F = 0 starting from θ0 =

0◦ at various Reynolds numbers. Figure 4.2 shows the tip-speed ratio, which serves as the non-

dimensionalized angular velocity, as a function of Reynolds number and the azimuthal angle history.
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(a) Tip-speed ratio as a function of Reynolds number.
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Figure 4.2: Azimuthal angle history of a VAWT with φρ = 1 and F = 0 starting from θ0 = 0◦ at
various Reynolds number.

First, from figure 4.2(a), there exists a critical Reynolds number between 1300 and 1400 below

which the VAWT does not start itself. Above Re = 1400 the tip-speed ratio slightly increases as

Reynolds number increases. Second, θ0 = 0◦ does not seem to be a favorable orientation for starting.

At the beginning of the simulation, VAWT initially rotates in the opposite direction (clockwise) and

then starts to rotate in the counter-clockwise direction, which is the correct direction given the

orientation of the blades. Most interestingly, indicated by the green dashed lines in figure 4.2(b), we

can see that the onset of counter-clockwise rotation commences when one of the blades is around
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θ = 60◦. On the other hand, VAWT that are unable to self-start oscillate around an equilibrium

orientation with one of the blades about θ = 105◦, which is indicated by the red dashed lines in

figure 4.2(b). Further analysis on these behaviors using the starting torque are shown in section 4.4.

We further investigate the three-bladed VAWT with F = 0 and φρ = 1, 2, 3, and 4 starting from

θ0 = 60◦ at Re = 2000. Figure 4.3 shows the corresponding tip-speed ratio and azimuthal angle

histories. From figure 4.3(b), we can see that when starting from θ0 = 60◦, VAWT that are able to

self-start will rotate in the correct direction from the beginning. From figure 4.3(b), we observe a

critical density ratio between 3 and 4 that VAWT with density ratios higher than the critical value

fail to start at Re = 2000. When VAWT are able to start, those with a lower density ratio reach

a stationary rotation faster but with a larger fluctuation in tip-speed ratio due to lower moment

of inertia. Nevertheless, after they start, the average tip-speed ratio of each VAWT is roughly the

same. This indicates that the averaged properties of the stationary state depend mainly on Reynolds

number but not density ratio.
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Figure 4.3: Histories of angular velocity and azimuthal angle of VAWT with F = 0 and φρ = 1, 2, 3,
and 4 starting from θ0 = 60◦ at Re = 2000.
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4.3 Flow-driven VAWT and the comparison with motor-driven

VAWT

Based on the discussions in section 4.2, the angular velocity of a VAWT driven by the flow, which

can be characterized as a function of Reynolds number and density ratio, is determined by the

aerodynamic forces exerted on the blades as in the field. However, prescribing the motion of a VAWT

within a flow is common among both experimental and numerical investigations. In this section, we

numerically investigate the difference between flow-driven and motor-driven VAWT by comparing

power coefficients of flow-driven and motor-driven three-bladed VAWT. Moment coefficients are

qualitatively compared with the torque of flow/motor-driven VAWT measured from experiments

performed by Araya and Dabiri (2015). The experiments were performed in a water tunnel at

Reynolds numbers of 104 and the setup of experiments are described in more detail in Araya and

Dabiri (2015).

Figure 4.4 shows the comparison of the power coefficients of a motor-driven VAWT at various

tip-speed ratios and flow-driven VAWT with different friction coefficients at Re = 2000. In each

subfigure, we show the motor-driven power coefficient in black with the error bar showing the

corresponding fluctuation in power coefficient at that tip-speed ratio and the power coefficient of a

flow-driven VAWT with F = 0 over three cycles in green. In figures 4.4(b), (c), and (d), the power

curves of flow-driven VAWT with F = 0.1, 0.2, and 1.0 are shown in purple, respectively. The

motor-driven power coefficient curve shows two equilibria at λ ≈ 0.7 and λ ≈ 1.1 where the VAWT

generates zero power. Since the slope of the power coefficient curve is negative at λ ≈ 1, it is a

stable equilibrium. As expected, the flow-driven VAWT with F = 0 generates almost zero power

and is just free-spinning at an averaged tip-speed ratio λavg ≈ 1.08. As F increases, if the VAWT

is able to rotate continuously, it operates at a lower averaged tip-speed ratio and generates a higher

averaged power as shown in figures 4.4(b) and 4.4(c). However, when F is too large, say, F = 1.0,

the VAWT is unable to sustain rotation and the power output goes to zero as the turbine oscillates

about a stable equilibrium with λ ≈ 0 as shown in figure 4.4(d).
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Figure 4.4: Comparisons of power curves of a three-bladed VAWT motor-driven at various tip-speed
ratios and flow-driven with φρ = 1 and various friction coefficients at Re = 2000.



58

Figure 4.5: Measured torque for flow-driven (black) and motor-driven (green) cases. Error bars
represent an estimate of one standard deviation in measurement error. A fourth-order polynomial
is fit to the motor-driven points. Figure reproduced from Araya and Dabiri (2015).
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Figure 4.6: Moment coefficients for flow-driven (black) and motor-driven (green) cases. Error bars
represent one standard deviation. A fourth-order polynomial is fit to the motor-driven points.
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Figure 4.5, reproduced from Araya and Dabiri (2015), presents turbine shaft torque measurements

for a fixed Re = 2.6×104 and λ ranging from approximately 0.9-2.8. There is qualitative agreement

in the trend of the measured torque for similar flow-driven and motor-driven cases. Figure 4.5 also

points out the theoretical limit of tip-speed ratio below which the difference between flow-driven

and motor-driven wakes is minimal (Araya and Dabiri, 2015). Similarly, in figure 4.6, we show the

moment coefficients of flow-driven cases with F = 0, 0.1, and 0.2 and motor-driven cases for λ

ranging from 0.4-2.0 at Re = 2000. The flow-driven and motor-driven moment coefficients in the

computation have good agreement between each other and similar behaviors to the torque for flow-

driven and motor-driven VAWT measured in the experiments. These suggest that our load model

is sufficient to represent the load of a flow-driven VAWT and a motor-driven VAWT can reproduce

the physics of a flow-driven VAWT at Re = 2000 when λ is ranging from 0.4-2.0.

4.4 Analysis on the starting torque of a three-bladed VAWT

The starting torque of a VAWT with various initial orientations are hard to compare directly due to

their different rates of rotational acceleration. Therefore, we propose a simple model to analyze the

starting torque. Consider the limit where the inertia of the VAWT is much larger than the inertia

of the fluid so that the VAWT is barely rotating during starting. We can then treat the starting

torque as the torque acting on a VAWT fixed in the flow.
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Figure 4.7: Torque distribution of a three-bladed VAWT at t∗ = 1 and Re = 2000.
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We first simulate the flow past a three-bladed VAWT fixed at every five degrees. The flows start

impulsively and the early torque distribution at t∗ = 1, which has not been affected by vorticity-

blade interaction, is shown in the red curve in figure 4.7. Only the torques between 0◦ and 120◦ are

shown because of the symmetry. The maximum of averaged torque occurs around θ0 = 60◦, which

explains why θ0 = 60◦ is a favorable orientation to start a three-bladed VAWT. Two equilibria

where the torque is equal to zero are found at θ0 = 15◦ and θ0 = 105◦. The equilibrium at

θ0 = 105◦ is stable because the curve has a negative slope. As the VAWT slowly rotates away from

θ0 = 105◦, the torque becomes stronger and pulls the VAWT back to the stable equilibrium. With

similar arguments, equilibrium at θ0 = 15◦ is unstable, i.e., as the VAWT slowly rotates away from

θ0 = 15◦, the increasing torque pushes the VAWT further away. Therefore, as shown in figure 4.3(b),

VAWT that are not able to self-start oscillate around θ0 = 105◦.

Shown in figure 4.8, we investigate the contributions of the torque from each blade to the starting

torque for a three-bladed VAWT. For example, when VAWT is at θ0 = 30◦, its three blades are at

θ0 = 30◦, θ0 = 150◦, and θ0 = 270◦. We plot the torque from each blade at the corresponding

azimuthal angle in figure 4.7. These torque distributions of the blades are compared with the

starting torque of a single-bladed VAWT. We can see that the torque distribution from each blade

is close to that of a single-bladed VAWT except for a small difference in the downwind region

(180◦ ≤ θ0 ≤ 360◦).
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Figure 4.8: The contributions of the torque from each blade for a three-bladed VAWT at t∗ = 1 at
Re = 2000.
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Due to the similarity of the torque distribution from each blade, the starting torque of a three-

bladed VAWT can be well-reconstructed from the single-bladed torque distribution. The starting

torque at a certain orientation is reconstructed by linearly combining the torques at the respective

position of the blades. For instance, the torque of a three-bladed VAWT at θ0 = 30◦ can be

reconstructed by adding the single-bladed torques at θ0 = 30◦, θ0 = 150◦, and θ0 = 270◦. Figure

4.9 shows the starting torque in figure 4.7 again (red curve) and the reconstruction of the torque

distribution from the single-bladed torque distribution obtained from figure 4.8 (black curve). We

can see that the reconstruction retains all important features of the three-bladed starting torque.

The largest difference occurs at where the VAWT generates largest torque (θ0 = 60◦).
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Figure 4.9: Comparison of the starting torque of a three-bladed VAWT (red curve) and the three-
bladed torque reconstruction from the single-bladed result (black curve) at t∗ = 1 and Re = 2000.

4.5 The starting torque distribution of a multi-bladed VAWT

In order to investigate the effect of solidity on the starting torque, as discussed in section 4.4, we

investigate the torque of a multi-bladed VAWT fixed in the flow at various initial orientations. Again,

we simulate the flow past a multi-bladed VAWT fixed at every five degrees. Figure 4.10 shows the

starting torques of VAWT with two to eight blades at t∗ = 1 and Re = 2000.

The torques of the multi-bladed VAWT with Nb blades are shown only between 0◦ and
(

360
Nb

)◦
due to the symmetry. The range of initial orientations that generate a positive torque increase as the
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Figure 4.10: The starting torque distributions with σ ≈ 0.106 (1 blade), 0.212 (2 blades), 0.318 (3
blades), 0.424 (4 blades), 0.637 (6 blades), and 0.848 (8 blades) at t∗ = 1 at Re = 2000.

number of the blades increases. VAWT with more than three blades generate positive torque at all

initial orientations. Moreover, we can again observe that stable equilibria for two and three-bladed

VAWT exist around θ0 = 115◦ and 105◦, respectively. Two, three, four, five, six, and eight-bladed

VAWT generate the highest torques around θ0 = 55◦, 60◦, 20◦, 30◦, 20◦, and 0◦, respectively, which

indicate the optimal orientations for starting.

Similarly, we also investigate the contributions of the torque from each blade to the starting

torque for multi-bladed VAWT as discussed in section 4.4. These torque distributions of the blades

are compared with the starting torque of a single-bladed VAWT in figure 4.11. When the solidity

is lower than 0.5, the torque distribution from each blade is close to one of a single-bladed VAWT

except for a small difference in the downwind region (180◦ ≤ θ0 ≤ 360◦), highlighting the lack of

vorticity-blade interactions amongst the different blades at early times. The average value of the

torques over a cycle labelled in figure 4.10 increases as the number of the blades increases. However,

when the solidity is larger than 0.5, the torque distribution from each blade is different from one

of a single-bladed VAWT. As the number of the blades increases, the discrepancy in the torque

distribution increases and the average value of the torques over a cycle may decreases.
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Figure 4.11: The contributions of the torque from each blade with σ ≈ 0.106 (1 blade), 0.212 (2
blades), 0.318 (3 blades), 0.424 (4 blades), 0.637 (6 blades), and 0.848 (8 blades) at t∗ = 1 at
Re = 2000.

4.6 Effect of the static pitch angle on the single-bladed torque

distribution

We showed in sections 4.4 and 4.5 that the multi-bladed starting torque can be well reconstructed

from the single-bladed torque distribution when the solidity is lower than 0.5. Here we investigate the

extent to which the static pitch angle can be changed to optimize the starting torque. As illustrated

in figure 4.12, a constant static pitch angle is applied to the blade and the torque distribution changes

correspondingly. The constant static pitch angle, ψ, is zero in the tangential direction, and positive

when the blade is rotated counter-clockwise to the turbine’s center.

ψ
θ0

U∞

Figure 4.12: Schematic of a single-bladed VAWT with a static pitch angle fixed in the flow.
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Figure 4.13(a) shows the single-bladed torque distributions with various constant static pitch

angles at t∗ = 1 and Re = 2000. The black dashed curve is the single-bladed torque distribution

with zero pitch angle. The red and blue curves correspond to positive and negative pitch angles,

respectively. We can see that at any initial azimuthal angle, there exists an optimal static pitch angle

that generates the highest torque. The torque distribution corresponding to these highest (optimal)

torques is the upper envelope of these curves and is shown as the green curve in figure 4.13(a). The

corresponding optimal static pitch angles are shown in figure 4.13(b).
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(a) Torque distributions with various static pitch angles (blue,
black, and red curves) and the optimal torque distribution
(green curve) at t∗ = 1 and Re = 2000.
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Figure 4.13: Torque distributions with various static pitch angles at t∗ = 1 and Re = 2000 and the
corresponding optimal static pitch angle.



65

ψ1 = ψopt(θ0)

ψ2 = ψopt(θ0 + 120◦)

ψ3 = ψopt(θ0 + 240◦)

θ0

U∞

(a) Reconstructing the optimal three-bladed torque dis-
tribution from single-bladed results.
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Figure 4.14: The schematic of a three-bladed VAWT with static pitch angles and the corresponding
reconstruction of the three-bladed torque distribution.

The optimal starting configuration for a multi-bladed VAWT can be determined by pitching the

blades with their own optimal static pitch angles as illustrated in figure 4.14(a). For example, when

a three-bladed VAWT is at θ = 0, its three blades are at θ = 0◦, 120◦, and 240◦. The corresponding

optimal static pitch angles found from figure 4.13(b) are 9◦, −69◦, and 65◦. We then pitch the

blades with their own optimal static pitch angles. The optimal three-bladed torque distribution can

be reconstructed by linearly adding the torques at those azimuthal angles with their own optimal

static pitch angles from figure 4.13(a). The resulting torque distribution is shown in the green curve

in figure 4.14(b) and compared with the three-bladed torque distribution reconstructed from the

single-bladed, zero pitch angles result. We can see that the three-bladed torques with optimal static

pitch angles are positive and much higher than with zero pitch angles at all orientations.

4.7 Summary

The starting capability of a VAWT was numerically investigated by simulating the flow around a

free-to-rotate three-bladed VAWT. The predictor-corrector method was used to couple the motion of

the VAWT with the aerodynamic forces exerted on the blade and shaft torque generated by a load.

A simple load model, which is linearly proportional to turbine angular velocity, is used. Tip-speed
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ratio, which is associated with the angular velocity of the VAWT, is characterized as a function of

Reynolds number and density ratio. Simulations show that there exists a critical Reynolds number

below which the VAWT cannot start itself. Flow at a higher Reynolds number drives the VAWT

to rotate faster. At the same Reynolds number, VAWT with a density ratio lower than the critical

value is capable of self-starting. A smaller density ratio results in a shorter time needed for VAWT

to reach the stationary state but a larger fluctuation in angular velocity due to a smaller moment of

inertia. Moreover, the averaged properties of the stationary state depend mainly on the Reynolds

number but not on the density ratio.

The power outputs and the moment coefficients of motor-driven and flow-driven VAWT were

compared. The flow-driven power coefficients lie within the power fluctuations of a motor-driven

turbine at various tip-speed ratios. With a larger friction coefficient, the VAWT generates a higher

averaged power output but operates at a lower averaged tip-speed ratio until the friction coefficient

is too large for a VAWT to rotate at Reynolds number examined. Moreover, the flow-driven and

motor-driven moment coefficients in the computation have good agreement between each other and

similar trend of the torque for flow-driven and motor-driven VAWT measured in the experiments

performed by collaborators Araya and Dabiri (2015). These suggest that the load of a flow-driven

VAWT can be well-represented by the proposed simple load model and within the range of tip-speed

ratio examined, a motor-driven VAWT can reproduce the physics of a flow-driven VAWT at a low

Reynolds number Re = 2000.

A simple model was proposed in order to analyze the starting torque of VAWT. The inertia of

the blade is assumed to be much larger than the fluid, i.e., φρ � 1, so that the VAWT barely rotates

and can be considered fixed in the flow. Analysis of the starting torque at early time indicates the

two important orientations associated with the starting of a VAWT: orientation corresponding to the

largest torque generation, at which a self-starting turbine always starts, and a stable equilibrium,

where a non-self-starting turbine oscillates. These features agree with the observations from the

simulations of the starting of a VAWT.

The effect of turbine solidity on the starting torque and the contribution to the starting torque
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from each blade for a multi-bladed VAWT were investigated. When solidity is smaller than 0.5, the

averaged starting torque over a cycle increases with solidity due to a growing range in generating

positive starting torque and the multi-bladed torque distribution from each blade is close to the

single-bladed one. Therefore, the total torque distribution reconstructed from the single-bladed

torque distribution retains important features. On the other hand, when solidity is above 0.5, the

discrepancy between single and multi-bladed blade torque distributions grows and the averaged total

torque over a cycle decreases as solidity increases.

Therefore, for a sufficiently low turbine solidity of about 0.5, the starting torque distribution can

be modeled by considering a single blade at different orientations and constructed for multi-bladed

turbines by linearly combining the torques at the respective positions of the blades. The torque

distributions of the single-bladed VAWT with various static pitch angles were then investigated. An

optimal pitch distribution was determined by the pitch angles that maximize the torque generation

at individual orientation. Using this model, we found an optimal starting configuration for a multi-

bladed low-solidity VAWT.
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Chapter 5

Optimal control of time-dependent
blade pitch on a VAWT

In this chapter, we apply optimal control to determine the time-dependent blade pitching angle

that minimizes the input power required to drive a single-bladed VAWT. The influence of the cost

function and the horizon length are studied. The controlled and uncontrolled flows are compared

to draw preliminary conclusions regarding the fluid-mechanical mechanisms behind the input power

reduction.

5.1 Simulation setup

In this chapter, we are interested in determining how the blades of a VAWT could be pitched in

order to maximize power generation using optimal control. As a preliminary step in this direction,

optimal control of time-dependent blade pitch on a single-bladed VAWT is investigated at low

Reynolds number in order to obtain a solution in a relative short computational time. Because of

the similarity in motor-driven and flow-driven cases as discussed in section 4.3, we propose a relevant

model problem in order to further reduce computational time by considering minimizing the input

power required to rotate a VAWT at a constant tip-speed ratio. Figure 5.1 shows the schematic of

a single-bladed motor-driven VAWT with a control of time-dependent blade pitch. The VAWT has

a radius, R, and rotates with an angular velocity, Ω, in a freestream with velocity, U∞. The blade

has a chord length, c, and pitches about its center chord, where the arm of turbine usually connect
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to the blade in commercial VAWT, with an angular velocity, ψ̇. The azimuthal and pitch angles are

θ and ψ, respectively.

R

P

c

ψ

ψ̇

θ

Ω

O

U∞

Figure 5.1: Schematic of a single-bladed motor-driven VAWT with a control of time-dependent blade
pitch.

Again, IBPM is used to compute two-dimensional incompressible flows around the VAWT in

a non-inertial airfoil-fixed frame at a low Reynolds number, Re = 500. In this case, we have two

rotation centers: one is the turbine rotation center and the other is the blade center chord. Therefore,

we use the extension of the non-inertial incompressible Navier-Stokes equations to two successively

rotating frames. The detailed derivation is given in Appendix A. θ, Ω, ψ, and ψ̇ correspond to θ1,

Ω1, θ2, and Ω2 in section 2.4 and Appendix A, respectively. In all simulations, we use 6 nested grids

of progressively increasing size and decreasing resolution. Each grid is composed of 300× 300 cells,

which correspond to ∆x = 0.0133, and the extend of the smallest grid is 4.0 × 4.0 chord lengths.

A NACA0018 airfoil is used as the blade of the VAWT. The VAWT has a radius R = 1.5 c and is

motor-driven at a constant tip-speed ratio λ = 2 so that the period is T = 1.5π ≈ 4.7124 convective

time units. CFL number is made less than 0.4.

Since the VAWT is motor-driven at a constant rotation rate in this case, the input power is

equal to the negative of the power generated by the forces exerted on the blade by the fluid, i.e.,

(Power)input = −Ω τfb. In this thesis, optimal control aims to minimize the integral of the input
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power over a horizon of the length TH ,

JP =

∫ TH

0

(Power)input dt =

∫ TH

0

(−Ω τfb) dt . (5.1)

Inspired by Hwang et al. (2006), we also consider maximizing the mean tangential force, which can

be achieved by minimizing the following quadratic cost function:

JT =

∫ TH

0

1

2
(FT − FT,ref)

2
dt , (5.2)

where FT is the tangential force and FT,ref is its targeted value. We can see that when FT,ref is set

to be a constant much larger than FT , the −FTFT,ref term dominates in equation 5.2. Therefore,

minimizing JT results in maximizing the mean tangential force when FT,ref is large.

A time-dependent control with single degree of freedom, ψ̇(t), is used to minimize the cost

function. The pitch angle of the blade, ψ(t), is obtained by solving the equation dψ
dt (t) = ψ̇(t) using

the second order Runge-Kutta scheme as introduced in section 2.3. The gradient of the cost with

respect to the control is determined by solving the corresponding adjoint equations and the controls

is updated in the direction provided by the control gradient in order to locally and optimally reduce

the cost function. An optimal control is obtained iteratively with the procedures discussed in section

2.5.

Based on the studies of Joe et al. (2010) and Flinois and Colonius (2015), we use the receding-

horizon predictive control in order to obtain optimization results that are longer than one horizon.

An overlap of 2/3 of the optimal control is used to ensure that transients from adjoint simulation

do not affect the retained solution. Therefore, the initial condition for each horizon i is chosen to

be a snapshot of the converged solution of the previous horizon i− 1 such that t∗i (0) ≈ (2/3)THi−1 .

The choice of THi
is discussed in section 5.2. The first control guess is chosen to be zero pitch

rate throughout each new horizon. An initial discontinuity in the optimal control is expected since

ψ̇((2/3)THi−1) 6= 0 in general.
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5.2 Optimization results

All optimizations start from the same initial condition of a flow with ψ = 0◦ and θ = −90◦. The

baseline case refers to the uncontrolled flow, which corresponds to the flow with ψ = 0◦ and ψ̇ = 0

over the horizon. θ = −90◦ is chosen so that when performing the receding-horizon predictive con-

trol, θ = 90◦−270◦ in each rotation, where the aforementioned wake-capturing phenomenon occurs,

is not included in the overlap of horizons. In order to investigate the influence of changing the cost

function and the horizon length, several optimizations are run and summarized in table 5.1. The

performance of the optimizations is quantified by the amount of mean input power reduction, ∆CP ,

and mean tangential force increment, ∆CT , obtained towards the end of the optimized simulations.

Control cost is evaluated by the term
∫ TH

0
1
2 |ψ̇|2 dt.

Table 5.1: Summary of results from the optimizations. TH is the control horizon. To is the correspond
overlaps in control horizon between each optimization. ∆CP and ∆CT are the reduction in mean
input power and the increment in mean tangential force relative to the unforced case, respectively.∫ TH

0
1
2 |ψ̇|2 dt is used to evaluate the control cost.

Run TH To cost function ∆CP (%) ∆CT (%)
∫ TH

0
1
2 |ψ̇|2 dt

1 1× 1T 0 JP 7.60 2.23 0.0007

2 1× 1.5T 0 JP 22.46 13.97 0.0021

3 1× 2T 0 JP 22.04 17.55 0.0024

4 1× 3T 0 JP 21.64 18.18 0.0030

5 1× 4T 0 JP 11.60 12.70 0.0048

6 2.5T (2× 1.5T ) 1× 0.5T JP 23.10 14.30 0.0028

7 3.5T (3× 1.5T ) 2× 0.5T JP 18.14 9.12 0.0047

8 4.5T (4× 1.5T ) 3× 0.5T JP 6.20 -1.04 0.0047

9 5.5T (5× 1.5T ) 4× 0.5T JP 5.42 -3.17 0.0049

10 1× 1.5T 0 JT 40.95 55.77 0.0502

11 2.5T (2× 1.5T ) 1× 0.5T JT 33.45 59.89 0.1518

12 3.5T (3× 1.5T ) 2× 0.5T JT 20.45 44.16 0.1518

13 4.5T (4× 1.5T ) 3× 0.5T JT 7.92 31.43 0.1518

14 5.5T (5× 1.5T ) 4× 0.5T JT 4.71 25.17 0.1518
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Improved results of runs 1 to 5 using JP are obtained by increasing the length of the control

horizon. Although the cost function that has been minimized is JP , the tangential force is also

enhanced. Among all runs using a single horizon, run 2 with TH = 1.5T has the largest ∆CP

of about 22.5%. Moreover, finding a converged solution for the run using a single horizon with a

long length (> 4T ) is difficult. Therefore, when the control horizon is long, the improved result

is obtained using the receding-horizon predictive control discussed in section 5.1. Each horizon in

the receding-horizon predictive control is chosen to be THi
= 1.5T and the corresponding overlap

between two horizons is To = 2
3TH = 0.5T .

In runs 6 to 9, JP is minimized using two to five 1.5T -long horizons, which corresponds to a total

horizon of a length 2.5T to 5.5T . Improved results of runs 2 and 6 to 9 are compared, respectively,

with that of runs 10 to 14, where JT is minimized instead. ∆CP of runs 6 and 7 agree with the trend

of ∆CP of runs 3 to 5. For a horizon longer than 4T , the input power in runs 8 and 9 are reduced

by about 5% and the control costs are roughly the same as run 5 (TH = 4T ). Nevertheless, when

minimizing JP with a long horizon, the reduction in input power does not guarantee an increase

in the tangential force. From the improved results of runs 10 to 14, we can see that minimizing

JT can successfully enhance the averaged tangential force and reduce the input power. In all cases

examined, the power reduction using JT is higher than using JP but with a much greater control

cost (about 30 times), which may indicate that minimizing JP only converges to a local minimum.

5.3 Influence of the cost function

We now focus on runs 9 and 14, which correspond to the improved results obtained using JP and

JT over a horizon of a length 5.5T , respectively. The histories of blade pitch angle, input power,

and tangential force for both runs are shown in figure 5.2 and compared with the uncontrolled flow

(baseline case). From figure 5.2(a), optimal blade pitch angles about 5◦ and −6◦ are found by the

end of the control horizon in run 9 and run 14, respectively. We can also see that the control cost of

run 14 is larger than run 9 because of the larger pitching motion in the first 1.5T of the horizon. As

shown in figures 5.2(b) and 5.2(c), the largest input power reduction and tangential force increment
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in both cases are between 90◦ and 180◦ in most of the cycles. Between 0◦ and 90◦ in each cycle,

both the power generation and the tangential force are damaged by the optimal blade pitch in run 9,

but enhanced in run 14. However, between 180◦ and 360◦ in each cycle, both the power generation

and the tangential force are enhanced by the optimal blade pitch in run 9, but damaged in run 14.
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Figure 5.2: Histories of (a) blade pitch angle, (b) input power, and (c) tangential force of baseline
case (black curve), run 9 (blue curve), and run 14 (red curve).
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5.4 Comparison of the controlled and uncontrolled flows

Figures 5.3, 5.4, and 5.5 show the comparison of the controlled and uncontrolled flows between

θ = 1440◦−1530◦, 1560◦−1650◦, and 1680◦−1770◦, respectively. In each figure, the power coefficient

histories are plotted again in subfigure (a) and the vorticity fields are compared in subfigures (b-e)

with the corresponding phases labelled in subfigure (a).

From figure 5.3, we can see that when θ is between 1440◦ and 1560◦, the angle of attack is

increasing. Run 14 generates a larger power output by pitching counter-clockwise so that the effective

angle of attack is lowered, which avoids a larger flow separation. Similarly, when θ is sbetween 1680◦

and 1800◦ (figure 5.5), run 9 has a lower power input than the unforced flow due to a lower effective

angle of attack.

When θ = 1590◦ − 1650◦ (figure 5.4), the wake-capturing of a vortex pair is observed in the

baseline case. By θ = 1590◦ (figure 5.4 (c)), the blade in run 9 eliminates the TEV and the

corresponding power coefficient increases. However, a new TEV is formed and cuts off the LEV

from the leading edge shear layer by θ = 1620◦ (figure 5.4 (d)). This new TEV and the leading edge

shear layer form a jet impinging the blade surface (figure 5.4 (e)), which results in a drop in power

coefficient. On the other hand, in run 14 the wake-capturing vortex pair still travels with the blade.

However, the blade pitches in a way such that the LEV always travels behind the TEV. Although

there exits a jet formed by the vortex pair impinging the blade at the trailing edge, the LEV and

the leading edge shear layer forms a wide range of low pressure region on the blade surface, which

causes a large input power reduction.
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Figure 5.3: Power coefficient history (a) and vorticity field for baseline, run 9 and run 14 at θ = 1440◦

(b), 1470◦ (c), 1500◦ (d), and 1530◦ (e). Negative and positive vorticity are plotted in blue and red
contour levels, respectively.
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Figure 5.4: Power coefficient history (a) and vorticity field for baseline, run 9 and run 14 at θ = 1560◦

(b), 1590◦ (c), 1620◦ (d), and 1650◦ (e). Negative and positive vorticity are plotted in blue and red
contour levels, respectively.
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Figure 5.5: Power coefficient history (a) and vorticity field for baseline, run 9 and run 14 at θ = 1680◦

(b), 1710◦ (c), 1740◦ (d), and 1770◦ (e). Negative and positive vorticity are plotted in blue and red
contour levels, respectively.
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5.5 Summary

In this chapter, a preliminary study was made to determine an optimal blade pitch as a function of

time for a single-bladed VAWT. With fixed tip-speed ratio, the input power and mean tangential force

were minimized over a specific time horizon by applying optimal control theory. The input power

was reduced by about 10-20% with a single horizon shorter than four periods. With a horizon longer

than four periods, the optimal control was obtained by the receding horizon predictive control, which

leads to a input power reduction of about 6% by the end of the longest control horizon examined.

When the input power is used as a cost function, the solution seems to converge to only a local

minimum because the reduction in the input power is less than that using the mean tangential

force as a cost function. Moreover, although maximizing the averaged tangential force always leads

to a reduction in input power, minimizing the input power does not guarantee an increase in the

tangential force.

By the end of the longest control horizon examined, time-invariant pitch angles of about 5◦ and

−6◦ were obtained when the input power and mean tangential force were used as the cost functions,

respectively. The comparison of the uncontrolled and controlled flows showed that when the angle of

attack is increasing/decreasing in the upwind/downwind half of a cycle, the negative/positive blade

pitch angle reduces input power by lowering the effective angle of attack. When the angle of attack is

decreasing in the upwind half of a cycle, the wake-capturing phenomenon occurs in the uncontrolled

flow. The control with positive time-invariant pitch angle successfully reduces the input power by

eliminating the TEV of the wake-capturing vortex pair. However, a newly formed TEV cuts off

the remaining LEV from the leading edge shear layer and forms a jet with the leading edge shear

layer impinging the blade, which leads to a large decrease in power coefficient. On the other hand,

the wake-capturing vortex pair still travels together with the blade when the control with negative

time-invariant pitch angle is applied. Nevertheless, the TEV always travels behind the LEV with

this control. Although there exits a jet formed by the vortex pair impinging the blade at the trailing

edge, a wide rage of low pressure region formed by the LEV and the leading edge shear layer greatly

reduces the input power.
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Chapter 6

Conclusions and future works

6.1 Conclusions

In this thesis, the immersed boundary method is used to numerically investigate the flow around a

two-dimensional cross section of a rotating VAWT at low Reynolds number in order to have more

understanding of VAWT and explore the parametric space in relative short computational time.

First, the aerodynamics of a single-bladed VAWT is investigated. An interesting wake-capturing

phenomenon that leads to a substantial decrease in lift coefficient is observed. As the VAWT

rotates faster, this features is on one hand strengthened due to the intensifying Coriolis force and

on the other hand attenuated because of the decreasing amplitude of the angle of attack variation.

Further investigation on motion decomposition shows that the wake-capturing is associated with a

unique combination of angle of attack variation, instantaneous velocity variation, and the Coriolis

effect. Moreover, the qualitative agreement with the experiment (Ferreira et al., 2007) suggests

that this feature may persist in real applications. The Coriolis effect on dynamic stall in a VAWT is

investigated by introducing three simplified motions: EPM, SPM, and SSPM. All simplified motions

are good approximations to VAWT motion at sufficiently high tip-speed ratio. However, at low tip-

speed ratio, only EPM is a good approximation in the upstroke phase where the Coriolis effect is

relatively small. In the downstroke phase, EPM overestimates the average lift coefficient due to the

absence of the aforementioned wake-capturing. Moreover, in order to look further into the effect of

the rotating frame, the Coriolis forces, and Reynolds number, the computational results of VAWT
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and EPM were compared with the experimental result of EPM from the experiments performed by

collaborators Dunne and McKeon (2014, 2015a,b) in Dunne et al. (2015). The flow was shown to

develop similarly prior to separation, but kinematics of vortices shed post separation were reference

frame and Reynolds number dependent.

Next, we investigated the starting capability of a multi-bladed VAWT. A simple load model pro-

portional linearly to the angular velocity is used to determine the motion of the VAWT. The angular

velocity is characterized as a function of Reynolds number and density ratio. The power outputs

and moment coefficients of motor-driven and flow-driven VAWT were compared. For a particular

Reynolds number, as the load on the flow-driven turbine is increased, the tip speed is reduced until

the turbine fails to coherently rotate. The flow-driven and motor-driven moment coefficients in the

computation have good agreement between each other and similar trend of the torque for flow-driven

and motor-driven VAWT measured in the experiments performed by collaborators Araya and Dabiri

(2015). These suggest that the load of a flow-driven VAWT can be well-represented by the proposed

simple load model and a motor-driven VAWT can reproduce the physics of a flow-driven VAWT

within the range of tip-speed ratio examined. A simple model was proposed in order to analyze the

starting torque. By assuming that the inertia of the blade is much larger than the fluid, the VAWT

can be considered stationary in the flow. The starting torque distribution of a multi-bladed VAWT

indicates the important orientations corresponding to maximum torque generation, at which a self-

starting turbine always starts, and a stable equilibrium, where a non-self-starting turbine oscillates.

These features agree with the observations from the simulations of the starting of a VAWT. We

modeled the starting torque distribution by considering a single blade at different orientations, and

construct starting torque distributions for multi-bladed turbines by linearly combining the torques

at the respective positions of the blades. We showed that this approximation is valid for a sufficiently

low turbine solidity of about 0.5. Using this model, we found an optimal starting configuration for

a multi-bladed low-solidity VAWT.

Finally, a preliminary study was made to determine an optimal blade pitch as a function of time

for a single-bladed VAWT. With fixed tip-speed ratio, the input power was minimized and the mean
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tangential force was maximized over a specific time horizon by applying optimal control theory. The

receding horizon predictive control was used to obtain an optimal control over a horizon longer than

four periods. Both cases lead to a reduction in the input power but not necessarily an enhancement

in the mean tangential force. When the input power is minimized directly, the solution seems to

converge to only a local minimum due to a lower input power reduction than maximizing the mean

tangential force. By the end of the longest control horizon examined, two controls end up with time-

invariant pitch angles of about the same magnitude but with the opposite signs. When the angle of

attack is increasing/decreasing in the upwind/downwind half of a cycle, the negative/positive blade

pitch angle reduces input power by lowering the effective angle of attack. When the angle of attack is

decreasing in the upwind half of a cycle, the wake-capturing phenomenon occurs in the uncontrolled

flow. Depending on the sign of the time-invariant pitch angle, both controls reduce the input power

initially by either eliminating the TEV entirely or stalling the TEV behind the LEV. The leading

edge shear layer later forms either a high pressure region on the blade with the newly formed TEV,

which leads to a decrease in the power coefficient, or a low pressure region on the blade with the

LEV, which greatly reduces the input power.

6.2 Future works

This thesis provides the basic understanding of the aerodynamics and the starting of a VAWT

and a preliminary study of implementing optimal control on blade pitch angles to enhance turbine

efficiency. However, there are still many interesting topics that have not been investigated. We

comment on the possible continuation of the research presented in this thesis.

First, the interaction of multiple blades in VAWT could be investigated systematically. Although,

blades do not generate much power in the downwind half of a cycle due to a low incoming velocity

(Ferreira et al., 2006), the interaction between shed vortices and downwind blades could induce

fluctuating loading on the turbine structure. In order to design a robust VAWT, it is essential to

understand this blade-vorticity interaction.

Flow around two-counter-rotating VAWT could also be investigated. Shown by Dabiri (2011)
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and Kinzel et al. (2012), two-counter-rotating VAWT have potentially higher power output per unit

land area and a shorter velocity recovery distance than individual VAWT. It would be interesting to

understand the mechanism of this enhancement in power output density in order to design a VAWT

wind farm.

Moreover, the starting capability of VAWT could also improved by applying optimal control on

blade pitch angle. In this thesis, we have shown in Chapter 4 that the highest starting torque can be

generated by pitching blades with their own optimal pitch angles. It would be interesting to apply

optimal control to generate the largest torque over the full starting process.

Finally, investigation on implementing optimal control to reduce the input power of a single-

bladed motor-driven VAWT could be further extended to a multi-bladed motor-driven VAWT in

order to taking account the effect of multiple-blades.
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Appendix A

Extension of the alternative form
of non-inertial Navier-Stokes
equations to two successively
rotating frames

Based on the derivation in section 2.1, we can easily extend the alternative form of the incompressible

Navier-Stokes equations to two successively the rotating frames. Again, we consider incompressible

flows external to a rigid wing (figure A.1) undergoing arbitrary motion, which is now the combination

of one unsteady translation and two successive rotations. One rotation with an angular velocity

Ω1(t) about a point O1. On top of this rotating frame 1, there is the other rotation with a relative

angular velocity Ω2(t) about a point O2. Again, xs are the coordinates of the points on the surface

of the body. The distance between the Newtonian inertial frame and the rotating frame 1 is R1(t)

and the distance between the rotating frame 1 and the rotating frame 2 is R2(t). The subscripts

n, r1 , and r2 denote variables or differentiations in the Newtonian inertial frame, rotating frame 1,

and the rotating frame 2, respectively.

From section 2.1, the relations of the position, velocity, vorticity, and acceleration vectors between
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Figure A.1: Rotating coordinates for accelerating wing with two successive rotating frames.

the inertia frame and the rotating frame 1 are as follow:

xn = xr1 + R1(t) , (A.1)

un = ur1 + Ω1(t)× xr1 + Un(t) , (A.2)

ωn = ωr1 + 2Ω1(t) , (A.3)

an = ar1 +

(
dΩ1

dt
(t)

)
r1

× xr1 + 2Ω1(t)× ur1 + Ω1(t)×Ω1(t)× xr1

+

(
dUn

dt
(t)

)
r1

+ Ω1(t)×Un(t) , (A.4)

where Un(t) =
(
dR1

dt (t)
)
n

again is the velocity of the rotating frame 1 relative to the Newtonian

inertial frame.

Considering the rotations are successive, i.e.,
(
dR2

dt

)
r1

= 0, the relations of the position, velocity,

and acceleration vectors between the rotating frame 1 and the rotating frame 2 are as follow:

xr1 = xr2 + R2(t) , (A.5)

ur1 = ur2 + Ω2(t)× xr2 , (A.6)

ωr1 = ωr2 + 2Ω2(t) , (A.7)

ar1 = ar2 +

(
dΩ2

dt
(t)

)
r2

× xr2 + 2Ω2(t)× ur2 + Ω2(t)×Ω2(t)× xr2 . (A.8)
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Moreover,

(
dUn

dt
(t)

)
r1

=

(
dUn

dt
(t)

)
r2

+ Ω2(t)×Un(t) . (A.9)

From equations (A.1) to (A.9), we can obtain the relation of the position and velocity vectors in

the inertial frame and the rotating frame 2 easily:

xn = xr2 + R1(t) + R2(t) , (A.10)

un = ur2 + (Ω1(t) + Ω2(t))× xr2 + Ω1(t)×R2(t) + Un(t) (A.11)

ωn = ωr2 + 2 (Ω1(t) + Ω2(t)) , (A.12)

an = ar2 +
d

dt
((Ω1(t) + Ω2(t))× xr2 + Un(t) + Ω1(t)×R2(t))r2

+ 2 (Ω1(t) + Ω2(t))× ur2 + (Ω1(t) + Ω2(t))× ((Ω1(t) + Ω2(t))× xr2)

+ (Ω1(t) + Ω2(t))× (Un(t) + Ω1(t)×R2(t)) . (A.13)

Therefore the dimensionless Navier-Stokes equation in the rotating frame 2 becomes

(
∂ur2
∂t

)
r2

+ (ur2 · ∇) ur2 = −∇p+
1

Re
∇2ur2 −

d

dt
((Ω1(t) + Ω2(t))× xr2 + Un(t) + Ω1(t)×R2(t))r2

− 2 (Ω1(t) + Ω2(t))× ur2 − (Ω1(t) + Ω2(t))× ((Ω1(t) + Ω2(t))× xr2)

− (Ω1(t) + Ω2(t))× (Un(t) + Ω1(t)×R2(t)) . (A.14)
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The boundary conditions for equation (A.14) are



ur2 −→ −Un(t)− (Ω1(t) + Ω2(t))× xr2

−Ω1(t)×R2(t)

ωr2 −→ −2 (Ω1(t) + Ω2(t))

p −→ p∞

as |xr2 | −→ ∞

ur2 = 0 on the surface of the body, i.e., xr2 = xs .

(A.15)

Similarly, substituting equations (2.7), (2.8), (A.11), and (A.12) to equations (A.14) and (A.15),

equation (A.14) becomes

(
∂un
∂t

)
r2

= −∇Π + (un − ua(xr2 , t))× ωn −
1

Re
∇× ωn , (A.16)

where ua(xr2 , t) is again the inertial (laboratory) velocity of any given point in the rotating frame

2 given by

ua(xr2 , t) = (Ω1(t) + Ω2(t))× xr2 + Un(t) + Ω1(t)×R2(t)

= Un(t) + Ω1(t)× xr1 + Ω2(t)× xr2

= uU (t) +
∑
i

uΩi
(xri , t) , (A.17)

where uU (t) = Un(t) is the relative velocity due to translation, uΩi(xri , t) = Ωi(t) × xri is the

relative velocity due to the rotation, and Π is a modified pressure given by

Π = p+
1

2
|un − ua(xr2 , t)|2 −

1

2
|ua(xr2 , t)|2 . (A.18)
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The boundary conditions become



un −→ 0

ωn −→ 0

Π −→ p∞

as |xr2 | −→ ∞

un = ua(xs, t) on the surface of the body, i.e., xr2 = xs .

(A.19)

We can see that equations (A.16) and (A.19) have the same form of equations (2.9) and (2.12)

but with different ua(x, t). With an modification in ua(x, t), the alternative form of the non-inertial,

incompressible Navier-Stokes equations can easily be extended to two successive rotating frames.
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Appendix B

Derivation of the adjoint nonlinear
term

In this section, detailed derivation of adjoint nonlinear term is shown. By comparing equations

(2.44) and (2.50),

CTN†
(
q†, q − qa(X,a), γ

)
= (CTC)

[(
∂N (q − qa(X,a), γ)

∂γ

)T
q†
]

= (CTC)

[
q†

T

(
∂N (q − qa(X,a), γ)

∂γ

)]

= (CTC)

[
q†

T

(
N

(
q − qa(X,a),

∂γ

∂γ

)
+N

(
∂q

∂γ
, γ

))]
. (B.1)

Since A · (B×C) = C · (A×B) = B · (C×A),

CTN†
(
q†, q − qa(X,a), γ

)
= (CTC)

[(
∂γ

∂γ

)T
N
(
q†, q − qa(X,a)

)
+

(
∂q

∂γ

)T
N
(
γ, q†

)]
. (B.2)

Moreover, ∂γ
∂γ = I and ∂q

∂γ = C(CTC)−1 so that

CTN†
(
q†, q − qa(X,a), γ

)
= (CTC)N

(
q†, q − qa(X,a)

)
− CTN

(
q†, γ

)
. (B.3)

Therefore,

N†
(
q†, q − qa(X,a), γ

)
≡ CN

(
q†, q − qa(X,a)

)
−N

(
q†, γ

)
. (B.4)
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