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ABSTRACT

In this thesis, we study the l-adic cohomology of the dual Lubin-Tate tower by using
the exterior power of a πL-divisible OL-module to relate it to the cohomology of
the Lubin-Tate tower. By using a result of Harris-Taylor on the cohomology of
the Lubin-Tate tower, we show that the supercuspidal part of the cohomology of
the dual Lubin-Tate tower realizes the local Langlands and the Jacquet-Langlands
correspondences, up to certain twists.
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C h a p t e r 1

INTRODUCTION

Generalizing earlier work of Lubin-Tate ([LT66]) and Drinfeld ([Dri74]), Rapoport-
Zink ([RZ96]) constructed moduli spaces of deformations of p-divisible groups for
data of type EL and PEL. These spaces, which are now known as Rapoport-Zink
spaces, are local models of Shimura varieties. Kottwitz (cf. [Rap95]) conjectured
that the l-adic cohomology of basic Rapoport-Zink spaces should partly realize the
local Langlands and the Jacquet-Langlands correspondences.

A particularly well-known example of a Rapoport-Zink space is the Lubin-Tate
tower. Let p be an odd prime, L be a finite extension of Qp with uniformizer πL

and residue field kL = Fq, and let G1,h−1 be the isoclinic πL-divisible OL-module
over Fp of dimension 1 and height h ≥ 2. Rapoport-Zink ([RZ96]) showed that,
in this special case, the functor of deformations of G1,h−1 with a quasi-isogeny
is representable by a formal scheme LTh, which is non-canonically isomorphic to∐

i∈Z Spf OL̆[[t1, . . . , th−1]], where OL̆ is the ring of integers of L̆ = L · Q̂nr
p . We get

a tower of étale covers over the rigid analytic generic fiber of LTh by trivializing the
Tatemodule of the universal πL-divisibleOL-module. Let LTn

h be the étale cover that
trivializes the Tate module of the universal πL-divisible OL-module mod Γn, where
Γn is the subgroup of GLh(OL) consisting of matrices congruent to Ih mod πn

L. The
projective system LT∞h = {LTn

h }n is known as the Lubin-Tate tower.

Let C be the completion of an algebraic closure of L̆. After base change to C,
the Lubin-Tate tower has actions by the three groups GLh(L), D× (where D =

End(G1,h−1) ⊗Zp Qp is the central division algebra over L of invariant 1/h) and
WL (the Weil group of L). By using global methods involving Shimura varieties,
Harris-Taylor ([HT01]) showed that the supercuspidal part of the cohomology of
the Lubin-Tate tower realizes the local Langlands correspondence for GLh and
the Jacquet-Langlands correspondence for D×, up to some twists, thus verifying
Kottwitz’s conjecture in this particular case.

If, in the above moduli problem, we replace G1,h−1 by Gh−1,1, the isoclinic πL-
divisible OL-module Gh−1,1 of dimension h − 1 and height h, we obtain another
projective system of rigid analytic spaces {Mn

h }n, and we call this the dual Lubin-
Tate tower. Again, after base change toC, the dual Lubin-Tate tower M∞h has actions
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by the groups GLh(L), E× (where E = End(Gh−1,1) ⊗Zp Qp) and WL.

The aim of this paper is to understand the cohomology of the dual Lubin-Tate tower
M∞h by relating it to the cohomology of the Lubin-Tate tower LT∞h . Wewill show that
the cohomology of the dual Lubin-Tate tower also realizes the Jacquet-Langlands
and the local Langlands correspondences, up to certain twists.

For the rest of the introduction, we will slightly abuse notation, and not distinguish
between the Lubin-Tate tower LT∞h , which is defined over L̆, and its base change to
C. We will also do the same for the dual Lubin-Tate tower M∞h . Although some
of the statements still hold even without base change, for simplicity, the reader may
assume (for the rest of the introduction) that we are always working with the base
change to C.

As usual, let l be an odd prime different from p. We consider the functor

H i
c(M∞h ) : Rep E× → Rep(GLh(L) ×WL)

ρ 7→ HomE× (H i
c(M∞h ,Ql ), ρ).

The following are the main results:

Theorem A. For π ∈ Cusp(GLh(L)),

Hh−1
c (M∞h )cusp(JL−1(π)) = π ⊗ rec(π∨ ⊗ ( χπ ◦ det) ⊗ (| · | ◦ det)

h−1
2 )(h − 1),

where χπ is the central character of π, Hh−1
c (M∞h )cusp is the supercuspidal part

of Hh−1
c (M∞h ), rec is the local Langlands correspondence and JL is the Jacquet-

Langlands correspondence.

Theorem A is a consequence of the following Theorem which expresses the co-
homology of the dual Lubin-Tate tower M∞h in terms of the cohomology of the
Lubin-Tate tower LT∞h . For convenience, we will fix certain embeddings of the divi-
sion algebras D× and E× into GLh(Lh) (see Section 4.1), where Lh is the unramified
extension of degree h over L.

Theorem B. Define

θ : D× → E× ψ : GLh(L) → GLh(L)

φ 7→ (det φ)(φ−1)T, g 7→ (det g)(g−1)T .
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Let θ∗H i
c(LT∞h ,Ql ) be the pushforward of the representation H i

c(LT∞h ,Ql ) under
the map

θ : D× � θ(D×).

Then for all i ≥ 0,

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h ,Ql )

)
� IndE×

θ(D×) θ∗
*
,

H i
c(LT∞h ,Ql )

K
+
-

as E× × GLh(L) ×WL representations, where K = ker(θ).

To prove Theorem B, we first define a map from LT∞h to M∞h .

Since the dual of G1,h−1 is Gh−1,1, the Serre dual of a πL-divisible OL-module can
be used to define a map

∨ : LT∞h → M∞h .

However, this map is notWL-equivariant. For example, the Tate module of the Serre
dual of (L/OL)h is Oh

L (1), and not Oh
L. As such, while the duality map ∨ could be

used to study the cohomology of M∞h as a E× × GLh(L)-representation, the action
of WL appears to be difficult to understand.

Instead, we will use the exterior power
∧r , which was introduced by Pink and

studied by Hedayatzadeh in [Hed10], [Hed13] and [Hed14] for certain πL-divisible
OL-modules. The idea of using the exterior power has previously been explored by
Chen in [Che13] where she used the top exterior power to define a determinant map
from Rapoport-Zink spaces to a tower of dimension 0 rigid analytic spaces. In this
thesis, however, we will consider the h − 1 exterior power, and not the top exterior
power. As

∧h−1 G1,h−1 ≈ Gh−1,1, using the h − 1 exterior power, we can define a
map

h−1∧
: LT∞h → M∞h .

Unlike the duality map ∨, the map
∧h−1 is WL-equivariant, and the other group

actions can be understood as well. Under the map
∧h−1, the action of φ ∈ D× on

LT∞h corresponds to the action of θ(φ) on M∞h , and the action of g ∈ GLh(L) on
LT∞h corresponds to the action of ψ(g) on M∞h .

Before proving Theorem B, it is useful to first look at the level 0 case. Using
Grothendieck-Messing theory and the fact that at level 0, the duality map ∨ induces
an isomorphism on the connected components, we can show that the same is true for
the map

∧h−1. Let (LTn
h )m be the subspace of LTn

h corresponding to quasi-isogenies
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of height m, and define (Mn
h )m similarly. By the above, we can identify (LT0

h )0 with
(M0

h )0 using the exterior power map
∧h−1.

For simplicity, we will first specialize to the case where h−1 is coprime to p(q−1).
Under this condition, we can check that K = ker(θ) is trivial, the map θ gives a
bijection from O×D to O×E , and θ maps a uniformizer of D× to an element of E×

with normalized valuation h − 1. The fact that θ gives a bijection from O×D to O×E
shows that

∧h−1 induces a bijection from the connected components of (LTn
h )0 to

the connected components of (Mn
h )0. Using this, and the fact that (LTn

h )0 and (Mn
h )0

are both étale covers of (LT0
h )0 of the same degree, we deduce that

∧h−1 induces
an isomorphism from (LTn

h )0 to (Mn
h )0. By considering the group actions, it is

then clear that
∧h−1 induces an isomorphism from (LTn

h )m to (Mn
h )(h−1)m. With

the above knowledge of the geometry of
∧h−1 : LT∞h → M∞h , we can then prove

Theorem B in this special case.

Now, let us look at the general case. Unlike in the previous case where h − 1 is
coprime to p(q−1), the map

∧h−1 no longer induces a bijection from the connected
components of (LTn

h )0 to the connected components of (Mn
h )0. However, it is still

true that each connected component of LTn
h is mapped isomorphically onto some

connected component of Mn
h . Let d = (h − 1, q − 1) and e = vp(h − 1). We will

separately consider the cases where

(i) d , 1 and e = 0,

(ii) d = 1 and e , 0.

It should then be clear how to handle the general case.

First, we recall that (LTn
h )0 has qn−1(q − 1) connected components and a result of

Strauch ([Str06]) tells us that the action of φ ∈ O×D on the connected components
depends on det(φ) mod (1 + πn

LOL). We would like to understand the map on
the connected components induced by

∧h−1. To do so, we study the map θ0,n :
(OL/π

n
LOL)× → (OL/π

n
LOL)× induced by θ : O×D → O

×
E under the det mod (1 +

πn
LOL) map. In fact, θ0,n is simply the map x 7→ xh−1.

In case (i), the kernel K of the map θ : O×D → O
×
E is cyclic of order d and this maps

isomorphically to ker(θ0,n) under the det mod (1 + πn
LOL) map. Hence, if we write

Yn for the image of the map
∧h−1 : LTn

h → Mn
h , then we have

ψ∗H i
c(Yn,Ql ) � θ∗ *

,

H i
c(LTn

h ,Ql )

K
+
-
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as θ(D×) × GLh(L) ×WL representations.

Let Eθ be the subgroup of E× generated by Im(θ) and O×Lh
, and let Xn be the

subspace
∐

m∈Z(Mn
h )(h−1)m of Mn

h . It is easy to check that, in fact, Eθ = {ϕ ∈ E× :
(h − 1) | val(ϕ)}. Using that Eθ/ Im(θ) is a finite abelian group, and that Xn is equal
to the disjoint union

Xn =
∐

ϕ∈Eθ/ Im(θ)

ϕ(Yn),

we can show that H i
c(Xn,Ql ) � IndEθ

θ(D×) (H i
c(Yn,Ql )). Similarly, E×/Eθ is finite

abelian (in fact cyclic of order d), and

Mn
h =

∐
ϕ∈E×/Eθ

ϕ(Xn),

so we have H i
c(Mn

h ,Ql ) � IndE×
Eθ (H i

c(Xn,Ql )). Putting these together gives us
Theorem B for case (i).

We now look at case (ii). In this case, the kernel of the map θ : D× → E× is
K = µpe (L), the group of pe roots of unity in L. Unlike in the previous case, K

does not surject onto ker(θ0,n) under the det mod (1 + πn
LOL) map. But if we let

Kn = 1 + πn−eeL
L OL ≤ D×, then the det mod (1 + πn

LOL) map gives a surjection of
K × Kn onto ker(θ0,n), and we can show that

ψ∗H i
c(Yn,Ql ) � θ∗ *

,

H i
c(LTn

h ,Ql )

K × Kn
+
-
.

Now, by following the argument in case (i), we have

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(Mn

h ,Ql )
)
� IndEθ

θ(D×) θ∗
*
,

H i
c(LTn

h ,Ql )

K × Kn
+
-
.

The map H i
c(LTn−eeL

h ,Ql ) → H i
c(LTn

h ,Ql ) factors through H i
c (LTn

h
,Ql )

Kn
since Kn =

1 + πn−eeL
L OL acts trivially on LTn−eeL

h , so we have

lim
−−→

n

H i
c(LTn

h ,Ql )

Kn
= H i

c(LT∞h ,Ql ).

Piecing together the above, we obtain Theorem B for case (ii).

It is not hard to see that the methods used to deal with cases (i) and (ii) can be
combined to give a proof of Theorem B in the general case.
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Using Theorem B, and applying Frobenius reciprocity, we see that the following
diagram commutes:

Rep E×
ρ7→θ∗

(
ResE×

θ (D×) ρ
)

//

H i
c (M∞

h
)

��

Rep D×

H i
c (LT∞

h
)

��
Rep(GLh(L) ×WL)

π⊗r 7→ψ∗
(
ResGLh (L)

ψ(GLh (L)) π
)
⊗r

// Rep(GLh(L) ×WL)

Although the above diagramonly gives us H i
c(M∞h )[ρ] as aψ(GLh(L))-representation,

we can use the duality map to understand the GLh(L)-action. Alternatively, in the
special case where p(q−1) is coprime to h−1, the groupGLh(L) is generated by the
subgroup ψ(GLh(L)) and the element πL ∈ GLh(L), so we just need to understand
the action of πL, but the action of πL Ih ∈ GLh(L) on M∞h corresponds to the action
of π−1

L ∈ E×.

Finally, we observe that θ∗
(
ResE×

θ(D×) ρ
)
and ψ∗

(
ResGLh (L)

ψ(GLh (L)) π
)
can be written as

twists of ρ and π respectively by their central characters. This is useful since both the
local Langlands and the Jacquet-Langlands correspondences are compatible with
twists. Using the theorem of Harris-Taylor on the cohomology of the Lubin-Tate
tower, we can then prove Theorem A.

We start by introducing some background material on πL-divisible OL-modules in
Chapter 2. In particular, we recall the Serre dual of a πL-divisible OL-module and
introduce the exterior power for πL-divisible OL-modules of dimension 1, whose
existence has been proven in [Hed10].

In Chapter 3, we introducemoduli spaces of certain πL-divisibleOL-modules, which
includes, as special cases, the Lubin-Tate and the dual Lubin-Tate towers. We also
state the well known result of Harris-Taylor on the cohomology of the Lubin-Tate
tower.

We collect some useful results on the endomorphism algebras and on representation
theory in Chapter 4. We will describe in this chapter embeddings of D× and E× into
GLh(Lh), and study properties of the maps θ and ψ.

In Chapter 5, we use the exterior power introduced in Chapter 2 to define a map
from the Lubin-Tate tower LT∞h to the dual Lubin-Tate tower M∞h . We also study
how the group actions behave under this map.



7

And finally, in Chapter 6, we study the geometry of the dual Lubin-Tate tower, and
then derive results on its cohomology, including Theorems A and B.
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Notation
p: odd prime
l: odd prime different from p

L: finite extension of Qp

πL: uniformizer of L

q: order of kL, the residue field of L

nL: degree of L over Qp

eL: ramification degree of L over Qp

k: perfect field of characteristic p containing kL = Fq

WL: Weil group of L

WOL
(k): ramified Witt vectors of k

D(G): Dieudonné OL-module of the πL-divisible OL-module G

Gm,n: isoclinic πL-divisible OL-module over Fp of dim m and height m + n

Dm,n: endomorphism algebra of Gm,n

G∨: Serre dual of the πL-divisible OL-module G∧r G: r-th exterior power of the πL-divisible OL-module G

D: endomorphism algebra of G1,h−1

E: endomorphism algebra of Gh−1,1

LTh: Lubin-Tate space, moduli space of deformations ofG1,h−1 with a quasi-isogeny
LTn

h : étale cover over the generic fiber of LTh parameterizing level n structure
LT∞h : Lubin-Tate tower, the projective system {LTn

h }n∈N

Mh: dual Lubin-Tate space, moduli space of deformations of Gh−1,1 with a quasi-
isogeny
Mn

h : étale cover over the generic fiber of Mh parameterizing level n structure
M∞h : dual Lubin-Tate tower, the projective system {Mn

h }n∈N

Nrd: reduced norm of a division algebra
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C h a p t e r 2

BACKGROUND ON πL-DIVISIBLE OL-MODULES

2.1 Ramified Witt vectors, Dieudonné OL-modules and OL-displays
Let p be an odd prime, L be a finite extension ofQp with uniformizer πL and residue
field kL = Fq. For an OL algebra R, the ring of ramified Witt vectors WOL

(R) (cf.
[Haz80]) is WOL

(R) = RN with the unique OL-algebra structure such that

1. the Witt polynomials

wn : WOL
(R) → R

(x0, x1, x2, . . .) 7→ xqn

0 + πL xqn−1

1 + · · · + πn
L xn

are OL algebra homomorphisms for all n ≥ 0,

2. OL-algebra homomorphisms R → S induce OL-algebra homomorphisms
WOL

(R) → WOL
(S).

There is an endomorphism of WOL
(R), defined by wn(σ(x)) = wn+1(x), called the

Frobenius endomorphism. In fact, σ is a homomorphism of OL-algebras.

Let k ⊇ kL be a perfect field of characteristic p. Then WOL
(k) � OL ⊗̂W (kL )W (k),

whereW (k) = WZp (k) is the usual ring ofWitt vectors of k. It is a complete discrete
valuation ring with residue field k and uniformizer πL. In particular, WOL

(Fp) is
isomorphic to the ring of integers OL̆ of L̆, where L̆ = L · Q̂nr

p is the completion of
the maximal unramified extension of L.

We now introduce Dieudonné OL-modules and OL-displays. A Dieudonné OL-
module over k is a free WOL

(k)-module of finite rank, together with two maps F

and V such that F is σ-linear, and V is σ−1-linear, and FV = πL = V F. There
is an equivalence of categories between the category of πL-divisible formal OL-
modules over k and the category of Dieudonné OL-modules over k such that V is
topologically nilpotent in the πL-adic topology (cf. [Ahs11], Proposition 2.2.3 and
Theorem 5.3.8).

For a πL-divisibleOL-moduleG, wewill denote its covariant DieudonnéOL-module
by D(G). Under this equivalence of categories,

ht(G) = rankWOL (k) D(G), dim(G) = dimk
D(G)

V D(G)
.
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Generalizing earlier work of Zink ([Zin02]) andLau ([Lau08]), Ahsendorf ([Ahs11])
introduced the notion of an OL-display. An OL-display over an OL-algebra R is
a quadruple P = (P,Q, F,V−1) with P a finitely generated projective WOL

(R)-
module, Q ⊂ P a submodule and F : P → P and V−1 : Q → P Frobenius linear
maps, which satisfy some additional conditions.

If πL is nilpotent in R, then there is an equivalence of categories between the category
of nilpotent OL-displays over R and the category of formal πL-divisible OL-modules
over R (cf. [Ahs11], Theorem 5.3.8).

2.2 Isoclinic πL-divisible OL-modules and their endomorphism algebras
We now introduce certain isoclinic πL-divisible OL-modules which will be useful
later. Suppose m, n are coprime non-negative integers. We shall write Gm,n for
the πL-divisible OL-module over Fp with covariant Dieudonné OL-module D(Gm,n)
having basis {b0, b1, . . . , bm+n−1} such that

Fbi = bi+n, V bi = bi+m and b(m+n)+i = πLbi .

Gm,n is an isoclinic πL-divisible OL-module of dimension m and height m + n.

In particular, D(G1,h−1) has a basis {e0, . . . , eh−1} such that

V ei = ei+1 (0 ≤ i ≤ h − 2), V eh−1 = πLe0,

and D(Gh−1,1) has a basis { f0, . . . , fh−1} such that

F fi = fi−1 (1 ≤ i ≤ h − 1), F f0 = πL fh−1.

Let ODm,n = End(Gm,n) be the endomorphism ring of Gm,n and let Dm,n = ODm,n ⊗Zp

Qp = End(Gm,n) ⊗Zp Qp be the endomorphism algebra of Gm,n. The following
description of the endomorphism ring ODm,n is a straightforward generalization of
[JO99, Lemma 5.4]. We include a proof here for lack of a suitable reference.

Lemma 2.2.1. Let a, b ∈ Z be such that am + bn = 1, and let OLm+n = WOL
(Fm+n)

be the ring of integers of Lm+n, the unramified extension of degree m + n over L.
Then

ODm,n = End(Gm,n) � OLm+n[πm,n],

where λ · πm,n = πm,n · σ
b−a (λ) for λ ∈ OLm+n , and σ is the Frobenius map.

λ ∈ OLm+n acts on b0 via multiplication by λ, and πm,n is a uniformizer of the
discrete valuation ring End(Gm,n).
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Proof. Using the above basis {b0, b1, . . . , bm+n−1} of D(Gm,n), we easily check that

πm,n(bi) = bi+1 (0 ≤ i ≤ h − 2), πm,n(bh−1) = πLb0,

is an element of End(Gm,n).

Suppose φ ∈ End(Gm,n) is such that φ(b0) = λb0 for some λ ∈ OL̆. Note that
(FbV a)i (b0) = bi, so

φ(bi) = φ((FbV a)ib0) = (FbV a)iφ(b0) = (FbV a)i (λb0) = σ(b−a)i (λ)bi .

In particular,

λb0 = φ(b0) = φ(π−1
L bm+n) = σ(b−a)(m+n) (λ)π−1

L bm+n = σ
(b−a)(m+n) (λ)b0,

which shows that σ(b−a)(m+n) (λ) = λ. If we let a′ = a + n and b′ = b − m, then
a′m + b′n = 1, so similarly, we have σ(b′−a′)(m+n) (λ) = λ. But (b − a, b′ − a′) = 1
since (n + a)(b − a) − a(b′ − a′) = am + bn = 1, so σm+n(λ) = λ and λ ∈ OLm+n .
The fact that such an element does indeed lie in End(Gm,n) is again easy to check.
We shall denote this element of End(Gm+n) by λ.

Now, let φ be an arbitrary element of End(Gm,n). Then φ(b0) =
∑m+n−1

i=0 αibi

for some αi ∈ OL̆. A similar argument to that above shows, in fact, that αi ∈

OLm+n . Clearly, φ(b0) −
∑m+n−1

i=0 αiπ
i
m,n(b0) = 0, from which it follows that φ =∑m+n−1

i=0 αiπ
i
m,n. This proves that End(Gm,n) � OLm+n[πm,n].

To show that OLm+n[πm,n] is a discrete valuation ring with uniformizer πm,n, we first
note that OLm+n[πm,n] is a subring of the division ring Lm+n(πm,n). Now, define a
map v : Lm+n(πm,n) → Z ∪ {∞} by

α0 + α1πm,n + · · · + αm+n−1π
m+n−1
m,n 7→ min

{
(m + n)vLm+n (αi) + i : 0 ≤ i < m + n

}
.

It is easy to check that v is a valuation on Lm+n(πm,n). Since

OLm+n[πm,n] = {φ ∈ Lm+n(πm,n) : v(φ) ≥ 0},

and v(πm,n) = 1, we have shown that End(Gm,n) = OLm+n[πm,n] is a discrete valuation
ring with uniformizer πm,n.

Corollary 2.2.2. Dm,n is the central division algebra over L with invariant n/(m+n).
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Let us introduce some notation for the cases (m, n) = (1, h−1) and (m, n) = (h−1, 1).
We write

OD = OD1,h−1 = End(G1,h−1), D = D1,h−1 = End(G1,h−1) ⊗Zp Qp,

OE = ODh−1,1 = End(Gh−1,1), E = Dh−1,1 = End(Gh−1,1) ⊗Zp Qp.

Also let$ (respectively$′) be the uniformizer ofOD (respectivelyOE) as in Lemma
2.2.1.

2.3 Serre dual and exterior powers of πL-divisible OL-modules
Let G be a πL-divisible OL-module over a scheme S. The dual πL-divisible OL-
module G∨ is

0→ (G[πL])∨ → (G[π2
L])∨ → (G[π3

L])∨ → · · ·

where (G[πi
L])∨ = HomS (G[πi

L],Gm) is the Cartier dual of G[πi
L]. We have

ht(G) = dim(G) + dim(G∨) = ht(G∨).

If S = Spec k for some perfect field k of characteristic p, then G∨ has Dieudonné
OL-module

D(G∨) � D(G)∨ = HomWOL (k) (D(G),WOL
(k))

with (Fl)(v) = σ(l (Vv)), (Vl)(v) = σ−1(l (Fv)), for v ∈ D(G), l ∈ D(G)∨.

We will now look at the exterior power of πL-divisible OL-modules, which has been
shown to exist by Hedayatzadeh in [Hed10] in certain situations. For G and H

πL-divisible OL-modules over a base scheme S, we will write AltOL

S (Gr, H) for the
group of alternating OL-multilinear morphisms from Gr to H .

Definition 2.3.1. [Hed10, Definition 5.3.3] Let G, G′ be πL-divisible OL-modules
over a scheme S, with an alternating OL-multilinear morphism λ : Gr → G′ such
that for all πL-divisible OL-modules H over S, the induced morphism

λ∗ : HomS (G′, H) → AltOL

S (Gr, H)

ψ 7→ ψ ◦ λ

is an isomorphism. Then G′ (or, more precisely, λ : Gr → G′) is called the r-th
exterior power of G, and we denote it by

∧r G.
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Theorem 2.3.2. [Hed10, Theorem 9.2.36] Let S be a locally Noetherian OL-scheme
and G be a πL-divisible OL-module of height h and dimension at most 1. Then there
exists a πL-divisible OL-module

∧r G over S of height
(

h
r

)
, and an alternating

morphism λ : Gr →
∧r G such that for every morphism f : S′ → S and every

πL-divisible OL-module H over S′, the homomorphism

HomOL

S′ ( f ∗
r∧

G, H) → AltOL

S′ (( f ∗G)r, H)

induced by f ∗λ is an isomorphism. In other words,
∧r G is the r-th exterior power

of G over S, and taking the exterior power commutes with arbitrary base change.
Moreover, the dimension of

∧r G is a locally constant function

dim : S →
{

0,
(
h − 1
r − 1

)}

s 7→



0 if Gs is étale,(
h−1
r−1

)
otherwise.

In the cases that S is the spectrum of a perfect field of char p > 2, or the spectrum
of a local Artin OL-algebra with residue char p > 2, we can write down the exterior
power in terms of its Dieudonné OL-module or its OL-display.

Theorem 2.3.3. [Hed10, Construction 6.3.1, Lemma 6.3.2, Proposition 6.3.3, Sec-
tion 9.1] Let P = (P,Q, F,V−1) be an OL-display of height h with tangent module
of rank one. Fix a normal decomposition

P = L ⊕ T, Q = L ⊕ IRT .

Then
r∧
P = *

,

r∧
P,

r∧
Q,

r−1∧
V−1 ∧ F,

r∧
V−1+

-
is an OL-display of height

(
h
r

)
and rank

(
h−1
r−1

)
. The map

λ : Pr →

r∧
P

(x1, . . . , xr ) 7→ x1 ∧ · · · ∧ xr

is an alternating morphism of OL-displays and satisfies the universal property that
the map

Hom(
r∧
P,P′) → Alt(Pr,P′)

induced by λ is an isomorphism.
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Theorem 2.3.4. [Hed10, Proposition 9.2.24] Let R be a local ArtinOL-algebra, and
G a πL-divisibleOL-module over Rwith special fiber that is a connected πL-divisible
OL-module of dim 1. Let P be the OL-display of the πL-divisible OL-module G.
Then the OL-display of

∧r G is
∧r P.

As an immediate corollary, for G a πL-divisible OL-module of dimension 1 over a
perfect field of characteristic p, the Dieudonné OL-module of

∧r G is just
∧r D(G),

where F and V are as in Theorem 2.3.3.

So using the above description of D(G1,h−1), we see that the Dieudonné OL-module
of

∧h−1 G1,h−1 has a basis ẽ0, . . . , ẽh−1, where

ẽi = (−1)ie0 ∧ e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eh−1,

and

Fẽi = (−1)h−1ẽi−1 (1 ≤ i ≤ h − 1), Fẽ0 = (−1)h−1πL ẽh−1,

V ẽi = (−1)h−1πL ẽi+1 (0 ≤ i ≤ h − 2), V ẽh−1 = (−1)h−1ẽ0.

Comparing this with the above description of D(Gh−1,1), we see that
∧h−1 G1,h−1 is

isomorphic to Gh−1,1.
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C h a p t e r 3

MODULI SPACES OF πL-DIVISIBLE OL-MODULES

3.1 Basic Rapoport-Zink spaces
Let C be the category of schemes S over SpecOL̆ such that p is locally nilpotent on
S. Let S̄ be the closed subscheme of S defined by the ideal sheaf pOS.

We consider a special case of the moduli spaces constructed by Rapoport-Zink in
[RZ96].

Theorem 3.1.1. [RZ96, Theorem 3.25 and Proposition 3.79] Let h, d ∈ Z+ coprime,
and G be an isoclinic πL-divisible OL-module over Fp of height h and dim d. Let F

be the functor

C −→ Set

S 7−→



(X, β) :
X is a connected πL-divisible OL-module/S

and β : GS̄ → XS̄ a quasi-isogeny




/
∼ .

Then F is representable by a formal scheme M d
h
, which is formally locally of finite

type over Spf OL̆. For d = 1, the formal schemeM 1
h
is (non-canonically) isomorphic

to
∐

i∈Z Spf OL̆[[t1, . . . , th−1]].

LetM0
d
h

be the rigid analytic generic fiber of M d
h
. We consider a special case of

the tower of rigid-analytic coverings ofM0
d
h

introduced in [RZ96, 5.34]. We write
G for the universal πL-divisible OL-module on M d

h
, and TπLG for its Tate module.

Let Γn be the subgroup of GLh(OL) consisting of matrices congruent to Ih mod πn
L.

Then we have a finite étale coverMn
d
h

ofM0
d
h

that parameterizes trivializations

αn : Oh
L

�
−→ TπLG mod Γn.

DefineM∞
d
h

to be the projective system (Mn
d
h

)n∈N with maps

fmn :Mn
d
h

→Mm
d
h

(m ≤ n)

(X, β, αn) 7→ (X, β, αn mod Γm).
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Recall from Section 2.2 that Gd,h−d is an isoclinic πL-divisible OL-module of height
h and dim d. Any two πL-divisible OL-modules with the same Newton polygon are
isogenous, so in the definition ofMn

d
h

above, we might as well take G = Gd,h−d .

The groups Dd,h−d = End(Gd,h−d) ⊗Zp Qp and GLh(L) act onM∞
d
h

. Let C be the

completion of an algebraic closure of L̆. We also have an action of the Weil group
WL onM∞

d
h

after base change to C. We describe the actions here.

1. Action of Dd,h−d: γ ∈ Dd,h−d acts onMn
d
h

by

(X, β, αn) 7→ (X, β ◦ γ−1, αn).

2. Action of GLh(L): Any element g′ ∈ GLh(L) can be written as g′ = πk
Lg

with k ∈ Z and g ∈ GLh(L) ∩Math(OL). Hence it is sufficient to describe
the action of such elements.

So let g ∈ GLh(L) ∩Math(OL) and S → M d
h
be a formal scheme. We have

an isomorphism αrig : (L/OL)h �
−→ X rig. Let ker(g) be the kernel of the map

g : (L/OL)h → (L/OL)h, and Y rig be the πL-divisible OL-module X rig

αrig(ker(g))

over Srig. In other words,

ker(g) αrig

�
//

� _

��

αrig(ker(g))� _

��
(L/OL)h αrig

�
//

g
����

X rig

qrig

��

(L/OL)h αrig

�
// Y rig = X rig

αrig(ker(g))

Then g acts onM∞
d
h

by

(X, β, α) 7→ (Y, q ◦ β, α)

where

• Y is a πL-divisible OL-module over some admissible blow-up of S with
rigid analytic generic fiber Y rig,

• q is the special fiber of the quotient map X → Y which has generic fiber
X rig → X rig

αrig(ker(g)) = Y rig,
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• α : Oh
L

�
−→ TπLY has generic fiber αrig : Oh

L
�
−→ TπLY rig which corre-

sponds to αrig : (L/OL)h �
−→ Y rig.

3. Action of WL: Suppose w ∈ WL 7→ σn ∈ Gal(kL/kL) = Gal(Fp/Fq) ⊆
Gal(Fp/Fp) under the reduction map, where σ = {x 7→ xp} ∈ Gal(Fp/Fp) is
the arithmetic Frobenius. Then the action of w onM∞

d
h

×L̆ C is

w : (X, β, α) 7→ (Xw, βw ◦ Fn
G/Fp

, αw)

where

• Xw = X ×S Sw, G(pn) = X ×Fp,σn Fp,

• βw : G(pn)
S̄
→ Xw

S̄
is induced by β : GS̄ → XS̄,

• αw is the map
Oh

L = (Oh
L)w

αw

−−−−−−−→
�

TπL Xw .

Let us introduce some notation for the cases d = 1 and d = h − 1. For d = 1, we
will write LTn

h forMn
1
h

and LT∞h for the Lubin-Tate towerM∞
1
h

.

And for d = h− 1, we write Mn
h forMn

h−1
h

, M∞h for the dual Lubin-Tate towerM∞
h−1
h

.

3.2 Results on the Lubin-Tate tower
Awell known result ofHarris-Taylor tells us that the l-adic cohomology (cf. [Ber93])
of LT∞h ×L̆C realizes the local Langlands and the Jacquet-Langlands correspondence.
To be precise, let us consider the functor

H i
c(LT∞h ) : Rep D× → Rep(GLh(L) ×WL)

ρ 7→ HomD× (H i
c(LT∞h ×L̆ C,Ql ), ρ),

and let [Hc(LT∞h )(ρ)] denote the virtual representation (−1)h−1 ∑h−1
i=0 (−1)i[H i

c(LT∞h )(ρ)].

Theorem 3.2.1. [HT01, Theorem VII.1.3] Let π be an irreducible supercuspidal
representation of GLh(L). Then

[Hc(LT∞h )(JL−1(π))] = [π ⊗ rec(π∨ ⊗ ( | · | ◦ det)
h−1

2 )(h − 1)]

in the Grothendieck group, where rec is the local Langlands correspondence and
JL is the Jacquet-Langlands correspondence.
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Theorem 3.2.2. [Fal02, Section 6] For i , h − 1,

H i
c(LT∞h )cusp(ρ) = 0

for any ρ ∈ Rep D×, where H i
c(LT∞h )cusp is the supercuspidal part of H i

c(LT∞h ).

An immediate corollary of Theorems 3.2.1 and 3.2.2 is:

Corollary 3.2.3. Let π be an irreducible supercuspidal representation of GLh(L).
Then

Hh−1
c (LT∞h )cusp(JL−1(π)) = π ⊗ rec(π∨ ⊗ ( | · | ◦ det)

h−1
2 )(h − 1).

Let (LTn
h )m be the subspace of LTn

h corresponding to quasi-isogenies of height
m. The following result of Strauch describes the action of O×D × GLh(OL) on the
connected components of (LTn

h )0 ×L̆ C.

Theorem 3.2.4. [Str06, Theorem 4.4(i)] There exists a bijection

π0
(
(LTn

h )0 ×L̆ C
)
→ (OL/π

n
LOL)×

which is O×D × GLh(OL)-equivariant if we let (φ, g) ∈ O×D × GLh(OL) act on
(OL/π

n
LOL)× by Nrd(φ) det(g)−1 mod (1 + πn

LOL), where Nrd is the reduced norm.
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C h a p t e r 4

THE ENDOMORPHISM ALGEBRAS, GLH AND
REPRESENTATION THEORY

4.1 The endomorphism algebras and GLh

Recall from Lemma 2.2.1 that

ODm,n = End(Gm,n) � OLm+n[πm,n],

where πm,n is a uniformizer of the discrete valuation ring ODm,n .

Using the basis {e0, e1, . . . , eh−1} of D(G1,h−1) introduced in Section 2.2, the proof
of Lemma 2.2.1 shows that we get the following embedding of D× � Lh($)\{0}
into GLh(Lh):

ιD : D× ↪→ GLh(Lh)

λ 7→

*.......
,

λ

σ−1(λ)
. . .

σ−(h−1) (λ)

+///////
-

$ 7→

*..........
,

0 0 . . . 0 πL

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

+//////////
-

.

Similarly, using the basis { f0, f1, . . . , fh−1} of D(Gh−1,1) in Section 2.2, we get the
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embedding

ιE : E× ↪→ GLh(Lh)

λ 7→

*.......
,

λ

σ−1(λ)
. . .

σ−(h−1) (λ)

+///////
-

$′ 7→

*..........
,

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
πL 0 0 . . . 0

+//////////
-

of E× � Lh($′)\{0} into GLh(Lh).

Lemma 4.1.1. (a) For any φ ∈ D×,

Nrd(φ) = det(ιD (φ))

where Nrd is the reduced norm of the central division algebra D over L. In
particular, we have det(ιD (φ)) ∈ L×. Furthermore,

val(φ) = vL (det(ιD (φ)))

where val is the normalized valuation on the division algebra D, and vL is the
usual normalized πL-adic valuation on L.

(b) The result in (a) holds with D replaced by E, and ιD replaced by ιE .

Proof. We shall prove (a). The proof of (b) is almost identical. The map

D × Lh → Mh(Lh)

(φ, µ) 7→ µ · ιD (φ)

is L-bilinear, so we have an L-linear map

f : D ⊗L Lh → Mh(Lh)

φ ⊗ µ 7→ µ · ιD (φ).

It is clear that this map respects multiplication, so it is in fact a ring homomorphism.



21

Let us show that f is injective. Suppose f (φ ⊗ µ) = Ih. Then µ · ιD (φ) = Ih, so
ιD (φ) = µ−1Ih. But the only scalar matrices in Im(ιD) are of the form µIh where
µ ∈ L. Hence, φ ⊗ µ = µ−1 ⊗ µ = 1, proving injectivity.

Since the dimensions of D ⊗ Lh and Mh(Lh) over Lh are both equal to h2, f is an
isomorphism. Hence

Nrd(φ) = det( f (φ ⊗ 1)) = det(ιD (φ)),

proving the first assertion.

The second part follows immediately since val(φ) = vL (Nrd(φ)).

We shall view D× and E× as subgroups of GLh(Lh) using the embeddings ιD and
ιE . Define the maps

θ : D× → E× ψ : GLh(L) → GLh(L)

φ 7→ (det φ)(φ−1)T, g 7→ (det g)(g−1)T .

Lemma 4.1.2. Let d = (h − 1, q − 1) and e = vp(h − 1). The map

θ0 : O×D → O
×
E

φ 7→ (det φ)(φ−1)T

(a) has kernel

ker(θ0) = µh−1(OL) = µpcd (OL) = {ζ ∈ OL : ζ pcd = 1}

of order pcd, where c is the maximum integer ≤ e such that OL contains the pc

roots of unity. If L is unramified over Qp, then c = 0 and ker(θ0) = µd (OL) has
order d.

(b) image
Im(θ0) = {ϕ ∈ O×E : det(ϕ) ∈ (O×L )h−1}

which is a normal subgroup of O×E .

Proof.

(a) Let φ ∈ ker(θ0). Since

1 = det(θ0(φ)) = (det φ)h−1,
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det φ must be a (h − 1) root of unity in OL. By Hensel’s lemma, any root of
x

h−1
pe − 1 = 0 in Fq lifts uniquely to a root in OL. Since F×q is cyclic of order

q − 1, and (h − 1, q − 1) = d, the map x 7→ x
h−1
ped is an automorphism of F×q , so

µ h−1
pe

(Fp) = µd (Fp), which shows that µh−1(OL) = µped (OL) = µpcd (OL). So

φ ∈ ker(θ0) ⇒ det φ ∈ µpcd (OL) ⇒ (φ−1)T ∈ µpcd (OL) ⇒ φ ∈ µpcd (OL).

If L is unramified over Qp, then L does not contain any non-trivial p-th roots of
unity, so c = 0 and µh−1(OL) = µd (OL).

(b) Since det(θ0(φ)) = (det φ)h−1, and det φ ∈ O×L , the inclusion

Im(θ0) ⊆ {ϕ ∈ O×E : det(ϕ) ∈ (O×L )h−1}

is clear. To show the reverse inclusion, we need to show that any ϕ satisfying
det(ϕ) ∈ (O×L )h−1 lies in Im(θ0). Let γ ∈ O×L be a (h − 1) root of det(ϕ). Then

θ(γ(ϕT )−1) = det(γ(ϕT )−1)γ−1ϕ = γh−1(det ϕ)−1ϕ = ϕ.

This proves the reverse inclusion.

Proposition 4.1.3. Let c, d, e be as in Lemma 4.1.2. The map

θ : D× → E×

φ 7→ (det φ)(φ−1)T

has

(a) kernel
ker(θ) = µpcd (OL) = {ζ ∈ OL : ζ pcd = 1}

of order pcd, and

(b) image
Im(θ) = {ϕ ∈ E× : (h − 1) | val(ϕ), det(ϕ) ∈ (L×)h−1}.

Let Eθ be the subgroup of E× generated by the subgroups O×Lh
and Im(θ), i.e.

Eθ = 〈O×Lh
, Im(θ)〉. Then

(c) Eθ = {ϕ ∈ E× : (h − 1) | val(ϕ)},



23

(d) the cokernel

coker(θ) =
E×

Im(θ)
�

Eθ

Im(θ)
×

E×

Eθ

with
Eθ

Im(θ)
�
O×E

Im(θ0)
and

E×

Eθ
�

Z

(h − 1)Z
.

Proof. Parts (a) and (b) follow almost immediately from Lemma 4.1.2.

(c) It is clear that Eθ ⊆ {ϕ ∈ E× : (h − 1) | val(ϕ)} since

det(θ(φ)) = (det φ)h−1

and O×Lh
⊆ O×E .

Let us prove the reverse inclusion. It suffices to show that O×E ⊆ Eθ . An
arbitrary element of O×E is of the form

ϕ = a0 + a1$
′ + a2($′)2 + · · · + ah−1($′)h−1,

with a0 ∈ O
×
Lh

and ai ∈ OLh
for all i.

We observe that the determinant map on D×, when restricted to the subgroup
O×Lh

≤ D×, is equal to the norm map NLh/L : O×Lh
→ O×L . Since Lh is an

unramified extension of L, the map NLh/L : O×Lh
→ O×L is surjective.

Now, given any ϕ ∈ O×E , since det ϕ ∈ L× by Lemma 4.1.1, we must have
det ϕ ∈ O×L . By surjectivity of the map NLh/L : O×Lh

→ O×L , we can find
u ∈ O×Lh

≤ D× such that det(u) = det(ϕ). Then

θ(u(ϕT )−1) = det(u(ϕT )−1)u−1ϕ = u−1ϕ,

so u−1ϕ ∈ Eθ and hence ϕ ∈ Eθ . This proves the reverse inclusion.

(d) Define

E×

Im(θ)
→

Eθ

Im(θ)
×

E×

Eθ

ϕ Im(θ) 7→ (ϕ$−b Im(θ), $bEθ )

where b is any integer congruent to val(ϕ) mod (h− 1). Since$h−1 ∈ Im(θ) ⊆
Eθ , it is clear that this is well defined and is an homomorphism. By (iii),
Eθ = {ϕ ∈ E× : (h − 1) | val(ϕ)}, so the valuation map gives an isomorphism

E×

Eθ
�

Z

(h − 1)Z
,



24

from which surjectivity of the above map follows easily. For injectivity, we note
that

$b ∈ Eθ = {ϕ ∈ E× : (h − 1) | val(ϕ)} ⇒ (h − 1) |b⇒ $b ∈ Im(θ).

Hence

ϕ$−b ∈ Im(θ) and $b ∈ Eθ ⇒ ϕ$−b ∈ Im(θ) and $b ∈ Im(θ)

⇒ ϕ ∈ Im(θ).

Now we consider the map

Eθ �
O×E

Im(θ0)

ϕ 7→ ϕ$− val(ϕ) Im(θ0)

Then

ϕ ∈ Eθ lies in the kernel

⇔ ϕ$− val(ϕ) ∈ Im(θ0)

⇔ det(ϕ$− val(ϕ)) ∈ (O×L )h−1 (since (h − 1) | val(ϕ) ⇒ det($− val(ϕ)) ∈ (L×)h−1)

⇔ det(ϕ) ∈ (L×)h−1

⇔ ϕ ∈ Im(θ),

so
Eθ

Im(θ)
�
O×E

Im(θ0)
.

Proposition 4.1.4. Let c, d, e be as in Lemma 4.1.2, and let eL be the ramification
degree of L over Qp. θ0 : O×D → O×E induces a map θ0,n : (OL/π

n
LOL)× →

(OL/π
n
LOL)× making the following diagram

O×D

θ0

��

det // O×L

��

// //
(
OL

πnLOL

)×
θ0,n
��

O×E det
// O×L

// //
(
OL

πnLOL

)×
commute. θ0,n is the map

θ0,n : (OL/π
n
LOL)× → (OL/π

n
LOL)×

x 7→ xh−1.

For n > 2eeL,
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(a) Im(θ0) is the preimage of Im(θ0,n) under the det mod (1 + πn
LOL) map,

(b) the det mod (1 + πn
LOL) map induces an isomorphism

coker(θ0) =
O×E

Im(θ0)
�
−→

(OL/π
n
LOL)×

Im(θ0,n)
= coker(θ0,n),

(c) ker(θ0,n) can be written as a direct product ker(θ0,n) = K′n,1 × K′n,2, where
K′n,2 = (1 + πn−eeL

L OL)/(1 + πn
LOL), and the det mod (1 + πn

LOL) map restricts
to an isomorphism

ker(θ0)
det mod (1+πnLOL )
−−−−−−−−−−−−−−→

�
K′n,1.

In particular, if e = 0, then the det mod (1 + πn
LOL) map restricts to an isomor-

phism from ker(θ0) to ker(θ0,n).

Proof. To show that θ0 : O×D → O
×
E induces a map

θ0,n :
(
OL/π

n
LOL

)×
→

(
OL/π

n
LOL

)×
making the above diagram commute, we need to check that if φ ∈ O×D satisfies

det φ ≡ 1 mod (1 + πn
LOL),

then
det θ0(φ) ≡ 1 mod (1 + πn

LOL).

But this is clear since det(θ0(φ)) = (det φ)h−1. The fact that θ0,n is the (h−1) power
map is also immediate from this.

For n1 ≥ n2, consider the map

coker(θ0,n1 ) =

(
OL/π

n1
L OL

)×(
(OL/π

n1
L OL)×

)h−1 �

(
OL/π

n2
L OL

)×(
(OL/π

n2
L OL)×

)h−1 = coker(θ0,n2 ).

Suppose a ∈ O×L is a (h − 1) power mod πn2
L . By Hensel’s lemma, for n2 > 2eeL, a

is also a (h − 1) power mod πn1
L , so the above map is a bijection for all n1 ≥ n2 >

2eeL. So, for all n1, n2 > 2eeL, we have ��coker(θ0,n1 )�� = ��coker(θ0,n2 )��, and hence
��ker(θ0,n1 )�� = ��ker(θ0,n2 )��.

Now, let us assume that n > 2eeL. Since n > 2eeL ⇔ 2(n − eeL) > n, it is clear
that

ker(θ0,n) ⊇ (1 + πn−eeL
L OL)/(1 + πn

LOL) = K′n,2.
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We note that

��ker(θ0,n′)�� = ��ker(θ0,n)�� for all n′ ≥ n

⇒

������

ker(θ0,n′)

1 + πn′−eeL
L OL

������
=

������

ker(θ0,n)
1 + πn−eeL

L OL

������
for all n′ ≥ n.

Hence for any a0+ · · ·+ an−eeL−1π
n−eeL−1
L ∈ ker(θ0,n), there exists a unique an−eeL ∈

OL/πL such that a0+ · · ·+an−eeL−1π
n−eeL−1
L +an−eeLπ

n−eeL
L ∈ ker(θ0,n+1). Therefore,

the set of elements a0 + · · · + an−eeL−1π
n−eeL−1
L ∈ ker(θ0,n) are given precisely by

truncations of elements in ker(θ0). Let K′n,1 = ker(θ0)/(1+ πn
LOL) ≤ ker(θ0,n). We

have shown that ker(θ0,n) = K′n,1K′n,2. As K′n,1 ∩ K′n,2 = {1}, this is a direct product,
proving (c).

To prove (b), we first show that

coker(θ0)
det
−−→
�

O×L

(O×L )h−1 .

Consider the commutative diagram

1 // K // Im(θ0) det //
� _

��

(O×L )h−1 //
� _

��

1

1 // K // O×E
det // O×L

// 1

with exact rows, where K = {ϕ ∈ O×E : det ϕ = 1}. By the snake lemma,

coker(θ0) =
O×E

Im θ0

det
−−→
�

O×L

(O×L )h−1 .

We have an isomorphism

O×L � µq−1 × µpa × Z
nL
p

where nL = [L : Qp] and a is such that the group of p-power roots of unity in O×L is
µpa . So

coker(θ0) �
O×L

(O×L )h−1 �
µq−1

(µq−1)h−1 ×
µpa

(µpa )h−1 ×

(
Zp

(h − 1)Zp

)nL

�
µq−1

(µq−1)d ×
µpa

(µpa )pe ×

(
Z

peZ

)nL

.
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Clearly, the kernel of the map

O×L

mod (1+πnLOL )
−−−−−−−−−−−→

(
OL/π

n
LOL

)×(
(OL/π

n
LOL)×

)h−1 = coker(θ0,n)

contains (O×L )h−1, hence is equal to (O×L )h−1 for n > 2eeL, since

�����
O×L

(O×L )h−1

�����
= penL+cd = ��ker(θ0,n)�� = ��coker(θ0,n)�� .

Therefore
coker(θ0)

det
−−→
�

(O×L )

(O×L )h−1

mod (1+πnLOL )
−−−−−−−−−−−→

�
coker(θ0,n).

(a) then follows immediately from this.

Results analogous to those in Lemma 4.1.2 and Propositions 4.1.3, 4.1.4 also hold
for the maps

ψ0 : GLh(OL) → GLh(OL) ψ : GLh(L) → GLh(L)

g 7→ (det g)(g−1)T, g 7→ (det g)(g−1)T .

4.2 Representation theory
We start this section with a useful result that expresses the cohomology of certain
rigid analytic spaces in terms of the cohomology of a subspace.

Proposition 4.2.1. Let X be a rigid analytic space with an action of the group G,
and let Y be a subspace of X on which the subgroup H of G acts. Suppose

(i) H is normal in G,

(ii) G
H is a finite abelian group,

(iii) X is the disjoint union
X =

∐
g∈G

H

g(Y ).

Then
H i

c(X,Ql ) � IndG
H H i

c(Y,Ql )

as G-representations.
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Proof. We first prove the result in the case that G
H is cyclic of order m, generated by

g0 ∈ G. In this case, (iii) becomes

X = Y t g0(Y ) t · · · t gm−1
0 (Y ).

So we have

H i
c(X,Ql ) �

m−1⊕
j=0

H i
c(Y,Ql )

asQl-vector spaces. Let xk be the element of
⊕m−1

j=0 H i
c(Y,Ql ) with k-th coordinate

equal to x and which is 0 everywhere else. We pick the above isomorphism so that

g0 · xk = xk+1, 0 ≤ k < m − 1.

Define

f : IndG
H H i

c(Y,Ql ) → H i
c(X,Ql ) �

m−1⊕
j=0

H i
c(Y,Ql )

gk
o x 7→ xk .

We will show that this is an isomorphism of representations.

Let g ∈ G. Then we can write

g = hgl
0 with h ∈ H, 0 ≤ l ≤ m − 1.

So it suffices to show that f is compatible with both the actions of h ∈ H and of g0.

For 0 ≤ k < m − 1,

g0 · (gk
0 x) = gk+1

0 x
f
7−→ xk+1 = g0 · xk = g0 · f (gk

0 x)

and since gm
0 ∈ H ,

g0 · (gm−1
0 x) = g0

0 (gm
0 x)

f
7−→ (gm

0 · x)0 = gm
0 · x0 = g0 · xm−1 = g0 · f (gm−1

0 x).

And for h ∈ H , we have hgk
0 = gk

0 h′ for some h′ ∈ H since H is normal in G, so

h·(gk
0 x) = gk

0 (h′·x)
f
7−→ (h′·x)k = gk

0 ·(h′·x)0 = (gk
0 h′)·x0 = (hgk

0 )·x0 = h·xk = h· f (gk
0 x).

So f is an isomorphism of G-representations.

Now, for the general case where G
H is finite abelian, we can write G

H as a direct
product G

H =
G1
H ×

G2
H ×· · ·×

Gn

H , where each G j is a subgroup of G containing H and
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each G j

H is finite cyclic. Let H j = G1 · · ·G j . Since G
H is abelian, g j1G j2 = G j2g j1 for

all g j1 ∈ G j1 , 1 ≤ j1, j2 ≤ n, so H j is a subgroup of G and H j−1 is normal in H j .
Furthermore, we have Hn = G and Hj

Hj−1
=

G1···G j

G1···G j−1
�

G j

(G1···G j−1)∩G j
=

G j

H . Define X j

recursively by X0 = Y and

X j =
∐

gj∈
Hj

Hj−1

g j (X j−1).

(iii) implies that the above is indeed a disjoint union for all 1 ≤ j ≤ n, and that
X = Xn. Applying the previous case repeatedly shows that

H i
c(X,Ql ) � IndHn

Hn−1
IndHn−1

Hn−2
· · · IndH1

H0
H i

c(Y,Ql ) � IndG
H H i

c(Y,Ql ).

Next, we include a result that will be needed later in Section 6.3 to show that the
supercuspidal part of the cohomology of the dual Lubin-Tate tower realizes the local
Langlands and the Jacquet-Langlands correspondences. This result is useful as local
Langlands and Jacquet-Langlands both behave well with respect to twists.

Lemma 4.2.2. (a) Let (ρ,V ) be an irreducible representation of E×, and let ι :
D× → E× be the isomorphism

D× ι
�

//� _

��

E×� _

��
GLh(Lh)

φ 7→(φT )−1
// GLh(Lh).

Then θ∗
(
ResE×

θ(D×) ρ
)
� ι∗ρ⊗ ( χι∗ρ ◦Nrd)∨, where χι∗ρ is the central character

of ι∗ρ, and Nrd : D → L is the reduced norm map of the division algebra D.

(b) Let π be an irreducible representation of GLh(L), and let j be the isomorphism

j : GLh(L)
�
−→ GLh(L)

g 7→ (gT )−1.

Then ψ∗
(
ResGLh (L)

ψ(GLh (L)) π
)
� j∗π ⊗ ( χ j∗π ◦ det)∨, where χ j∗π is the central

character of j∗π.

Proof. We will prove (a). The proof of (b) is almost identical.
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First, note that, by Lemma 4.1.1, for our embedding of D× into GLh(Lh), the
determinant map on GLh(Lh), when restricted to D×, has image in L, and is in fact
the reduced norm map Nrd : D× → L. In other words, the diagram

D× Nrd //� _

��

L� _

��
GLh(Lh)

det
// Lh

commutes.

For φ ∈ D×, v ∈ V ,

((θ∗ Res ρ)(φ))(v) = (ρ((det φ)(φT )−1))(v) = (ι∗ρ((det φ)−1φ))(v).

Let ι∗ρ ⊗ ( χι∗ρ ◦Nrd)∨ act on the vector space V ⊗Ql HomQl (Ql,Ql ). Consider the
isomorphism

V → V ⊗Ql HomQl (Ql,Ql )

αv 7→ v ⊗ fα (where fα : c 7→ αc).

For φ ∈ D×,

((( χι∗ρ ◦ Nrd)∨(φ))( fα))(c) = fα (( χι∗ρ ◦ Nrd)(φ−1)(c))

= fα (ι∗ρ(det φ−1)(c))

= α(ι∗ρ(det φ−1))(c),

so (( χι∗ρ ◦ Nrd)∨(φ))( fα) = fα(ι∗ρ(det φ−1)), and

(ι∗ρ(φ))(v) ⊗ (( χι∗ρ ◦ Nrd)∨(φ))( f1) = (ι∗ρ(φ))(v) ⊗ f ι∗ρ(det φ−1)

7→ (ι∗ρ((det φ)−1φ))(v),

as required.
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C h a p t e r 5

THE DUALITY MAP AND THE EXTERIOR POWER MAP ON
MODULI SPACES

5.1 Definitions of the duality map and the exterior power map
In this section, we will use the Serre dual and the exterior power of a πL-divisible
OL-module to define maps from LT∞h to M∞h .

We start with the Serre dual. Note that G∨m,n � Gm,n, so G∨1,h−1 � Gh−1,1 has
dimension h − 1 and height h. Let us fix such an isomorphism. The dual of a πL-
divisible OL-module X has Tate module (TπL X )∨(1). In particular, the Tate module
of the dual of (OL/π

n
LOL)h is equal to Oh

L (1). Over L̆(ζp∞ ), we have Oh
L (1) � Oh

L

since L̆(ζp∞ ) contains the p∞ roots of unity.

Definition 5.1.1. Define ∨ : LT∞h ×L̆ L̆(ζp∞ ) → M∞h ×L̆ L̆(ζp∞ ) by

(X, β, α) 7→ (X∨, (β∨)−1, (α∨ζpn )−1)

where α∨ζpn is given by the composition

TπL X∨
�

−−−−−−→ (TπL X )∨(1)
�

−−−−−−→ Oh
L (1)

�
−−−−−−→ Oh

L .

Let us now look at the exterior power. Recall that
∧h−1 G1,h−1 � Gh−1,1. We will

fix such an isomorphism.

Definition 5.1.2. Define ∧h−1 : LT∞h → M∞h by

(X, β, α) 7→ *
,

h−1∧
X,

h−1∧
β,

h−1∧
α+

-
.

In the above, by a slight abuse of notation,
∧h−1 α is the level structure on

∧h−1 X

given by

Oh
L

φ
−−−−−−→

�

h−1∧
Oh

L

∧h−1 α
−−−−−−→

�

h−1∧
TpX −−−−−−→

�
Tp *

,

h−1∧
X+

-
,

where φ is the isomorphism

vi 7→ (−1)iv1 ∧ v2 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vh,

v1, . . . , vh being the standard basis vectors for Oh
L.
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5.2 Properties of the exterior power map and group actions
In order to study the cohomology of the dual Lubin-Tate tower using the exterior
power map

∧h−1, it is necessary to first understand how the group actions behave
with respect to

∧h−1.

Recall from Section 4.1 that we have embeddings of D× and E× in GLh(Lh). We
shall view D× and E× as subgroups of GLh(Lh) using these embeddings. We also
recall the maps

θ : D× → E× ψ : GLh(L) → GLh(L)

φ 7→ (det φ)(φ−1)T, g 7→ (det g)(g−1)T .

Proposition 5.2.1. The map ∧h−1 : LT∞h → M∞h is

(a) D×-equivariant if we let D× act on M∞h via θ,

(b) GLh(L)-equivariant if we let GLh(L) act on M∞h via ψ,

(c) WL-equivariant.

Proof.

(a) Suppose φ ∈ D× is given by

φei =

h−1∑
j=0

α jie j .

Then

*
,

h−1∧
φ+

-
ẽi = (−1)iφe0 ∧ φe1 ∧ · · · ∧ φei−1 ∧ φei+1 ∧ · · · ∧ φeh−1

= (−1)i
h−1∑
j=0

α j0e j ∧ · · · ∧

h−1∑
j=0

α j,i−1e j ∧

h−1∑
j=0

α j,i+1e j ∧ · · · ∧

h−1∑
j=0

α j,h−1e j

=

h−1∑
k=0

βk (e0 ∧ e1 ∧ · · · ∧ ek−1 ∧ ek+1 ∧ · · · ∧ eh−1)

for some βk ∈ Lh. To write down an expression for βk , it is helpful to first
introduce the order-preserving bijections

bl : {0, 1, . . . , l − 1, l + 1, . . . , h − 1} → {1, 2, . . . , h − 1}

j 7→



j + 1 if j < l,

j if j > l .
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For τ ∈ Sh−1, let τik = b−1
k ◦ τ ◦ bi. Then

βk = (−1)i
∑
τ∈Sh−1

sgn(τ)ατik (0),0 · · · ατik (i−1),i−1ατik (i+1),i+1 · · · ατik (h−1),h−1.

So the coefficient of ẽk in
(∧h−1 φ

)
ẽi is given by

(−1)i+k det(φ with row and column containing αk,i deleted)

= Ck,i, the cofactor of the element ak,i of φ.

So

h−1∧
φ =

*.......
,

C0,0 C0,1 · · · C0,h−1

C1,0 C1,1 · · · C1,h−1
...

...
. . .

...

Ch−1,0 Ch−1,1 · · · Ch−1,h−1

+///////
-

= (det φ)(φ−1)T .

(b) It suffices to prove the proposition for g ∈ GLh(L) ∩Math(OL). For such g, it
acts on LT∞h by

(X, β, α) 7→ (Y, q ◦ β, α)

where Y, q, α are as defined in Section 3.1. Recall that Y rig, qrig and αrig (which
corresponds to αrig : Oh

L
�
−→ TπLY rig) satisfy the commutative diagram

(L/OL)h αrig

�
//

g

��

X rig

qrig

��

(L/OL)h αrig

�
// Y rig = X rig

αrig(ker(g)) .

Applying the functor
∧h−1 to the above diagram gives

∧h−1(L/OL)h
∧h−1 αrig

�
//

∧h−1 g

��

∧h−1 X rig

∧h−1 qrig

��∧h−1(L/OL)h
∧h−1 αrig

�
//∧h−1 Y rig.

By an argument similar to that in (a), the following diagram commutes:

Oh
L

ψ(g)=(det g)(g−1)T

��

� //∧h−1 Oh
L

∧h−1 g

��

Oh
L �

//∧h−1 Oh
L .
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Since
∧h−1 αrig corresponds to (

∧h−1 α)rig, using the above 2 diagrams, we get
the commutative diagram

Oh
L

∧h−1 α

�
//

ψ(g)

��

Tp
(∧h−1 X

)
∧h−1 q

��

Oh
L

∧h−1 α

�
// Tp

(∧h−1 Y
)
.

Hence ψ(g) acts on M∞h by

*
,

h−1∧
X,

h−1∧
β,

h−1∧
α+

-
7→ *

,

h−1∧
Y,

h−1∧
q ◦

h−1∧
β,

h−1∧
α+

-
,

as required.

(c) Let w ∈ WL. By the universal property of the exterior power, we have

F(
∧h−1 G1,h−1)/Fp

=

h−1∧
FG1,h−1/Fp

,

and

Tp *
,

h−1∧
X+

-
=

h−1∧
TpX .

The first equality shows that (
∧h−1 β)w =

∧h−1 βw, and the second gives
(
∧h−1 α)w =

∧h−1 αw, so the map
∧h−1 : LT∞h → M∞h is WL-equivariant.

Proposition 5.2.1 tells us that the exterior powermap
∧h−1 isWL-equivariant. Unlike∧h−1 however, the duality map∨ is notWL-equivariant, one of the reasons being that

the Tatemodule of the dual of (L/OL)h isOh
L (1). As such, it is difficult to understand

the WL-action on M∞h by considering the duality map. However, the duality map ∨
can still be used to study the cohomology of M∞h as a E× ×GLh(L)-representation,
and hence can be used to show that the supercuspidal part of the cohomology of M∞h
in the middle degree realizes the Jacquet-Langlands correspondence up to certain
twists.
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C h a p t e r 6

THE GEOMETRY AND COHOMOLOGY OF THE DUAL
LUBIN-TATE TOWER

6.1 Geometry of the dual Lubin-Tate tower
Before looking at the tower, it is helpful to first understand the level 0 situation. Let
us write LTh for the formal scheme M 1

h
, and Mh forM h−1

h
.

Proposition 6.1.1. The map ∧h−1 : LTh → Mh induces an isomorphism

h−1∧
: (LTh)0 → (Mh)0.

Proof. By Theorem 3.1.1, we have a non-canonical isomorphism

(LTh)0 ≈ Spf OL̆[[t1, . . . , th−1]],

which shows, by considering the duality map ∨, that

(Mh)0 ≈ Spf OL̆[[T1, . . . ,Th−1]].

Let P = (P,Q, F,V−1) be the OL-display corresponding to the πL-divisible OL-
module G1,h−1, so that P = D(G1,h−1) and Q = V D(G1,h−1) with F and V−1 as
given in the definition of D(Gm,n). Let S ∈ C, and let Spec A ⊆ S be an open
affine subset of S. By Grothendieck-Messing theory (cf. [Mes72]), πL-divisible
OL-modules over A lifting G1,h−1 correspond to s.e.s.

0 −→ M −→ P ⊗OL̆
A −→ N −→ 0

of A-modules lifting the Hodge filtration

0 −→
Q
πL P

−→
P
πL P

−→
P
Q
−→ 0.

Since
Q
πL P

=
V D(G1,h−1)
πL D(G1,h−1)

=
〈V e0, . . . ,V eh−1〉

〈πLe0, . . . , πLeh−1〉
=
〈πLe0, e1, . . . , eh−1〉

〈πLe0, . . . , πLeh−1〉
,

the above condition is equivalent to

M
mAM

=
Q
πL P

=
〈e1, . . . , eh−1〉

〈πLe1, . . . , πLeh−1〉
.
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Applying Nakayama’s lemma, we see that M must be of the form

〈e1 + t1πLe0, . . . , eh−1 + th−1πLe0〉

for some t1, . . . , th−1 ∈ A.

Applying
∧h−1 to the s.e.s.

0 −→ 〈e1 + t1πLe0, . . . , eh−1 + th−1πLe0〉 −→ 〈e0, . . . , eh−1〉 −→ 〈e0〉 −→ 0, (6.1)

we get the s.e.s.

0 −→ 〈(e1+t1πLe0)∧· · ·∧(eh−1+th−1πLe0)〉 −→ 〈ẽ0, . . . , ẽh−1〉 −→ 〈ẽ1, . . . , ẽh−1〉 −→ 0

where

(e1 + t1πLe0) ∧ · · · ∧ (eh−1 + th−1πLe0) = ẽ0 − t1πL ẽ1 − t2πL ẽ2 − · · · − th−1πL ẽh−1.

Let us rewrite (6.1) as follows:

0 −→ 〈 f1, . . . , fh−1〉
ρ
−→ 〈e0, . . . , eh−1〉

τ
−→ 〈g0〉 −→ 0

fi 7→ ei + tiπLe0

e0 7→ g0

ei 7→ −tiπLgi, i , 0.

Applying ∨, we get the s.e.s.

0 −→ 〈g∨0 〉
τ∨

−−→ 〈e∨0 , . . . , e
∨
h−1〉

ρ∨

−−→ 〈 f ∨1 , . . . , f ∨h−1〉 → 0

where

(τ∨g∨0 )(ei) = g∨0 (τei) =



g∨0 (g0) = 1, if i = 0,

g∨0 (−tiπLg0) = −tiπL, if i , 0,

(ρ∨e∨i )( f j ) = e∨i (ρ f j ) = e∨i (e j + t jπLe0) =



1, if i = j,

0, if i , j .

So the above s.e.s. is the same as

0 −→ 〈e∨0 − t1πLe∨1 − · · ·− th−1πLe∨h−1〉 −→ 〈e
∨
0 , . . . , e

∨
h−1〉 −→ 〈e

∨
1 , . . . , e

∨
h−1〉 −→ 0.
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Therefore we have a commuting diagram

(Mh)0 ≈ Spf OL̆[[T1, . . . ,Th−1]]

(LTh)0 ≈ Spf OL̆[[t1, . . . , th−1]]

∧h−1 22

∨

� ,,
(Mh)0 ≈ Spf OL̆[[S1, . . . , Sh−1]]

�

Ti7→

Si

OO

which shows that
∧h−1 induces an isomorphism from (LTh)0 to (Mh)0 since the

duality map ∨ : LTh → Mh clearly does.

Corollary 6.1.2. The map ∧h−1 : LTh → Mh induces an isomorphism

h−1∧
: (LTh)m → (Mh)(h−1)m

for any m ∈ Z.

Proof. We recall the definition of the map θ : D× → E×. Using the above embed-
dings of D× and E× into GLh(Lh), we have θ(φ) = (det φ)(φ−1)T .

Let m ∈ Z. Fix some φ ∈ D× with val(φ) = m, then

val(θ(φ)) = vL (det(θ(φ))) = vL
(
det

(
(det φ)(φ−1)T

))
= vL ((det φ)h−1) = (h − 1)vL (det φ) = (h − 1)m.

So the action of φ induces an isomorphism from (LT0
h )0 to (LT0

h )m, and the action
of θ(φ) induces an isomorphism from (M0

h )0 to (M0
h )(h−1)m.

By Proposition 5.2.1, we have the following commutative diagram:

(LT0
h )0

∧h−1

�
//

�φ
��

(M0
h )0

θ(φ)�
��

(LT0
h )m ∧h−1

// (M0
h )(h−1)m

where the top map is an isomorphism by Proposition 6.1.1. Hence
∧h−1 induces an

isomorphism from (LT0
h )m to (M0

h )(h−1)m, as desired.

Proposition 6.1.3. For any n ≥ 0, m, n ∈ Z, each connected component of (LTn
h )m

is mapped isomorphically onto some connected component of (Mn
h )(h−1)m under the

map
∧h−1 : LT∞h → M∞h .
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Proof. By Proposition 6.1.1,
∧h−1 induces an isomorphism on the formal schemes∧h−1 : (LTh)0 → (Mh)0, hence an isomorphism on their generic fibers.

By considering the action of O×D on the connected components of (LTn
h )0, we see

that each connected component of (LTn
h )0 is finite étale over (LT0

h ) of the same
degree. Using duality, we see that each connected component of (Mn

h )0 is also finite
étale over (M0

h )0 of the same degree. Since

(LTn
h )0

∧h−1
//

finite étale
��

(Mn
h )0

finite étale
��

(LT0
h )0

�∧h−1
// (M0

h )0

commutes, this shows that
∧h−1 induces an isomorphism from each connected

component of (LTn
h )0 to some connected component of (Mn

h )0.

Now, by considering the action of the groups D× and E×, we see that, for any m ∈ Z,
the map

∧h−1 induces an isomorphism from each connected component of (LTn
h )m

to some connected component of (Mn
h )(h−1)m.

Corollary 6.1.4. Suppose (p(q − 1), h − 1) = 1. Then
∧h−1 : LT∞h → M∞h induces

an isomorphism
(LTn

h )m → (Mn
h )(h−1)m

for any n ≥ 0, m, n ∈ Z.

Proof. We first consider the case m = 0. Since (p(q−1), h−1) = 1, by Proposition
4.1.4, the map θ0,n is bijective. By Theorem 3.2.4, this means that the map induced
by

∧h−1 on the connected components is a bijection. Together with Proposition
6.1.3, this shows that

∧h−1 induces an isomorphism from (LTn
h )0 to (Mn

h )0. The
result then follows for all m ∈ Z by considering the action of the groups D× and
E×.

6.2 Cohomology of the dual Lubin-Tate tower
In this section, we will reinterpret the results of the previous section in terms of
the cohomology of the dual Lubin-Tate tower. In order to avoid unnecessarily
cumbersome notation, from here on, all cohomology is understood to mean l-adic
cohomology withQl coefficients, where l , p is an odd prime. We will also slightly
abuse notation, and whenever the Lubin-Tate tower or the dual Lubin-Tate tower
appears, we actually mean its change base from L̆ to C.
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Lemma 6.2.1. The kernel ker(θ) acts trivially on LT0
h , so the action of D× on LT0

h

induces an action of θ(D×) = Im(θ) ≤ E× on LT0
h . This action can be extended to

an action of Eθ = 〈O×Lh
, Im(θ)〉 by letting O×Lh

act trivially on LT0
h .

Proof. Suppose k ∈ ker(θ). The action of k on LT0
h is given by

(X, β) 7→ (X, β ◦ k−1).

But k ∈ ker(θ) = µh−1(OL) ⊂ O×L and X has multiplication by O×Lh
, so (X, β) =

(X, β ◦ k−1). So k acts trivially on LT0
h , and we get an action of Im(θ) on LT0

h

induced by the action of D×.

To see that we can extend the above action of Im(θ) to an action of Eθ = 〈O×Lh
, Im(θ)〉

whereO×Lh
acts trivially, we just need to check thatO×Lh

∩Im(θ) ⊆ Im(θ) acts trivially
on LT0

h , but this is clear.

Proposition 6.2.2. Let Eθ ≤ E× act on LT0
h as in Lemma 6.2.1. Then for all i ≥ 0,

H i
c(M0

h ) � IndE×
Eθ H i

c(LT0
h )

as E× ×WL representations.

Proof. The proposition is clear for i > 0 since H i
c(LT0

h ) = 0 = H i
c(M0

h ) for i > 0.
Consider i = 0. Let Y0 be the image of

h−1∧
: LT0

h → M0
h .

By Proposition 5.2.1, and the fact that O×Lh
acts trivially on M0

h , we have

H0
c (Y0) � H0

c (LT0
h )

as Eθ×WL-representations, where the action of Eθ on LT0
h is as described in Lemma

6.2.1.

By Proposition 4.1.3, Eθ = {ϕ ∈ E× : (h−1) | val(ϕ)} and a full set of representatives
for E×/Eθ is given by ($′)k for k ∈ {0, 1, . . . , h − 2}. It is clear that

M0
h = Y0 t$

′(Y0) t · · · t$′h−2(Y0).

So by Proposition 4.2.1,

H i
c(M0

h ) � IndE×
Eθ H i

c(LT0
h )

as E× ×WL representations, as desired.
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We now prove an analogous result for H i
c(M∞h ).

Theorem 6.2.3. Let d = (q− 1, h− 1), e = vp(h− 1) and c be the maximum integer
≤ e such that OL contains the pc roots of unity. Let θ∗H i

c(LT∞h ) be the pushforward
of the representation H i

c(LT∞h ) under the map

θ : D× � θ(D×).

Then for all i ≥ 0,

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )

)
� IndE×

θ(D×) θ∗H
i
c(LT∞h ) � IndE×

θ(D×) θ∗
*
,

H i
c(LT∞h )

K
+
-

� IndE×
θ(D×) θ∗H

i
c(LT∞h )K

as E× × GLh(L) × WL representations, where K = ker(θ0) = µpcd (OL) and
H i

c(LT∞h )K is the subrepresentation of H i
c(LT∞h ) fixed by K .

Proof. Let Yn be the image of

h−1∧
: LTn

h → Mn
h .

By Lemma 4.1.2 (a) and Proposition 4.1.4 (c), for n > 2eeL, the kernel of θ0,n can
be written as a direct product

ker(θ0,n) = K′n,1 × K′n,2,

and the det mod (1 + πn
LOL) map gives an isomorphism

K = ker(θ0) = µpcd (OL)
det mod (1+πnLOL )
−−−−−−−−−−−−−−→

�
K′n,1.

Let Kn = 1 + πn−eeL
L OL ≤ D×. Proposition 4.1.4 (c) tells us that we have an exact

sequence

1 −→ 1 + πn
LOL −→ Kn

det mod (1+πnLOL )
−−−−−−−−−−−−−−→ K′n,2 −→ 1.

Recall from Proposition 6.1.3 that
∧h−1 maps each connected component of (LTn

h )m

isomorphically onto some connected component of (Mn
h )(h−1)m. Since

K × Kn
det mod (1+πnLOL )
−−−−−−−−−−−−−−−−� K′n,1 × K′n,2 = ker(θ0,n),

by Theorem 3.2.4, two connected components of LTn
h will each be mapped isomor-

phically to the same connected component of Mn
h under the

∧h−1 map if and only
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if they are in the same orbit of K × Kn . Furthermore, 1 + πn
LOL ≤ D× acts trivially

on LTn
h , so

ψ∗H i
c(Yn) � θ∗ *

,

H i
c(LTn

h )

K × Kn
+
-

as θ(D×) × GLh(L) ×WL-representations.

Claim:
H i

c(Mn
h ) � IndE×

Eθ IndEθ
θ(D×) H i

c(Yn) � IndE×
θ(D×) H i

c(Yn).

Proof of claim: Let Xn be given by

Xn =
∐
m∈Z

(Mn
h )(h−1)m.

Note that Xn contains Yn as a subspace. By Propositions 4.1.3 (d) and 4.1.4 (b),

Eθ

Im θ
� coker θ0 =

O×E

Im θ0

det mod (1+πnLOL )
−−−−−−−−−−−−−−→

�

(OL/π
n
LOL)×

Im θ0,n
= coker θ0,n

is a finite abelian group.

D× acts transitively on the connected components of LTn
h , so for any ϕ < Im(θ),

ϕ(Yn) will be disjoint from Yn. Furthermore, the orbit of Yn under O×E is Xn since O×E
acts transitively on the connected components of (Mn

h )(h−1)m for any m ∈ Z. This
shows that

Xn =
∐

ϕ∈ Eθ

Im(θ)

ϕ(Yn).

By Proposition 4.2.1, we have

H i
c(Xn) � IndEθ

θ(D×) H i
c(Yn).

Recall from Proposition 4.1.3 (d) that the valuation map gives an isomorphism

E×

Eθ
�

Z

(h − 1)Z
.

So a full set of representatives for E×
Eθ is {1, $′, $′2, . . . , $′h−2

}, and it is clear that

Mn
h = Xn t$

′(Xn) t · · · t$′h−2(Xn).

So, again, by Proposition 4.2.1,

H i
c(Mn

h ) � IndE×
Eθ H i

c(Xn).
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This proves the claim.

The map
H i

c(LTn−eeL
h ) → H i

c(LTn
h )

factors through H i
c (LTn

h
)

Kn
since Kn = 1 + πn−eeL

L OL acts trivially on LTn−eeL
h . So

lim
−−→n

H i
c (LTn

h
)

Kn
= H i

c(LT∞h ), and

lim
−−→

n

H i
c(LTn

h )

K × Kn
=

H i
c(LT∞h )

K
.

It remains to show that H i
c (LT∞

h
)

K � H i
c(LT∞h )K . For m sufficiently large, the determi-

nant of the elements of K are distinct mod (1 + πm
L OL), so the orbits of the induced

action of K on the connected components of LT m
h each have size d. We define a

subspace Zm of LT m
h by taking one connected component from each orbit. Let k be

a generator of K . Then LT m
h is the disjoint union

LT m
h = Zm t k (Zm) t · · · t kd−1(Zm),

so we have an identification

H i
c(LT m

h ) �
d−1⊕
j=0

H i
c(Zm)

of Ql-vector spaces such that the action of K on
⊕d−1

j=0 H i
c(Zm) is given by k ·

(z0, z1, . . . , zd−1) = (zd−1, z0, . . . , zd−2). Define an isomorphism of vector spaces

H i
c(LT m

h )

K
�
−−→ H i

c(LT m
h )K

[(z0, . . . , zd−1)] 7−→ (z, . . . , z),

where z = 1
d
∑d−1

j=0 z j . Using the fact that K is in the center of D×, an easy
computation shows that the above is also an isomorphism of representations.

Putting these together, we have

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(Mn

h )
)
� IndE×

θ(D×) ψ
∗H i

c(Yn) � IndE×
θ(D×) θ∗

*
,

H i
c(LTn

h )

K × Kn
+
-
,

and

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )

)
� IndE×

θ(D×) θ∗
*
,
lim
−−→

n

H i
c(LTn

h )

K × Kn
+
-
� IndE×

θ(D×) θ∗
*
,

H i
c(LT∞h )

K
+
-

� IndE×
θ(D×) θ∗H

i
c(LT∞h )K,

as desired.
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Corollary 6.2.4. Suppose (q − 1, h − 1) = 1. There is an action of θ(D×) ⊂ E× on
H i

c(LT∞h ) induced from the action of D×. Then for all i ≥ 0,

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )

)
� IndE×

θ(D×) H i
c(LT∞h )

as E× × GLh(L) ×WL representations.

Just like for LT∞h , we will consider the functor

H i
c(M∞h ) : Rep E× → Rep(GLh(L) ×WL)

ρ 7→ HomE× (H i
c(M∞h ), ρ).

The following is an easy corollary of Theorem 6.2.3.

Corollary 6.2.5. For all i ≥ 0,

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )[ρ]

)
= H i

c(LT∞h )
[
θ∗

(
ResE×

θ(D×) ρ
)]
.

Proof. By Theorem 6.2.3 and Frobenius reciprocity,

ψ∗
(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )[ρ]

)
= HomE×

(
ψ∗

(
ResGLh (L)

ψ(GLh (L)) H i
c(M∞h )

)
, ρ

)
= HomE× *

,
IndE×

θ(D×) θ∗
*
,

H i
c(LT∞h )

K
+
-
, ρ+

-

= Homθ(D×) *
,
θ∗ *

,

H i
c(LT∞h )

K
+
-
, ResE×

θ(D×) ρ
+
-

= HomD× *
,

H i
c(LT∞h )

K
, θ∗

(
ResE×

θ(D×) ρ
)+

-
.

Since K acts trivially on θ∗
(
ResE×

θ(D×) ρ
)
, the above is equal to

HomD×
(
H i

c(LT∞h ), θ∗
(
ResE×

θ(D×) ρ
))
= H i

c(LT∞h )
[
θ∗

(
ResE×

θ(D×) ρ
)]
.

6.3 Geometric realization of local correspondences and vanishing results
In this section, we will use Corollary 6.2.5 and results on the cohomology of the
Lubin-Tate tower to deduce results for the cohomology of the dual Lubin-Tate tower.
In particular, we will show that the supercuspidal part of the cohomology of the
dual Lubin-Tate tower in the middle degree realizes the local Langlands and the
Jacquet-Langlands correspondences (up to appropriate twists).
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Theorem 6.3.1. For π ∈ Cusp(GLh(L)),

Hh−1
c (M∞h )cusp(JL−1(π)) = π ⊗ rec(π∨ ⊗ ( χπ ◦ det) ⊗ (| · | ◦ det)

h−1
2 )(h − 1),

where χπ is the central character of π and Hh−1
c (M∞h )cusp is the supercuspidal part

of Hh−1
c (M∞h ).

Proof. By Corollary 6.2.5, we have the commutative diagram

Irr′ E×
ρ7→θ∗

(
ResE×

θ (D×) ρ
)

//

H i
c (M∞

h
)cusp

��

Irr′ D×

H i
c (LT∞

h
)cusp

��
Cusp(GLh(L)) × Irr(WL)

π⊗r 7→ψ∗
(
ResGLh (L)

ψ(GLh (L)) π
)
⊗r

// Cusp(GLh(L)) × Irr(WL)

where Irr′ D× ⊂ Irr D× is the subset consisting of representations of the form
JL−1(π) for some π ∈ Cusp(GLh(L)) (similarly for Irr′ E×).

Note that

• θ∗
(
ResE×

θ(D×) ρ
)
∈ Irr′ D× since

ρ = JL−1(π) with π ∈ Cusp(GLh(L))

⇒ ρ ⊗ ( χπ ◦ Nrd)∨ = JL−1(π ⊗ ( χπ ◦ det)∨),

• π ∈ Cusp(GLh(L)) since

ψ∗
(
ResGLh (L)

ψ(GLh (L)) π
)
= π ⊗ ( χπ ◦ det)∨ ∈ Cusp(GLh(L)).

The commutative diagram only gives us H i
c(M∞h )cusp[ρ] as a ψ(GLh(L)) × WL-

representation. But by considering the duality map ∨ : LT∞h → M∞h , we know
that H i

c(M∞h )cusp realizes the Jacquet-Langlands correspondence, so we already
understand H i

c(M∞h )cusp[ρ] as a GLh(L) representation.

Let us define

F : Irr′ E× → Cusp(GLh(L)) × Irr(WL)

JL−1(π) 7→ π ⊗ rec(π∨ ⊗ ( χπ ◦ det) ⊗ (| · | ◦ det)
h−1

2 )(h − 1).
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By the above, it will suffice to check that F makes the diagram commute. Applying
Theorem 3.2.1, and using the fact that JL and rec are compatible with twists, we see
that Hh−1

c (LT∞h )cusp
[
ρ ⊗ ( χρ ◦ Nrd)∨

]
and ψ∗

(
ResGLh (L)

ψ(GLh (L)) F (ρ)
)
are both equal

to

(JL(ρ) ⊗ ( χJL(ρ) ◦ det)∨) ⊗ rec(JL(ρ)∨ ⊗ ( χJL(ρ) ◦ det) ⊗ (| · | ◦ det)
h−1

2 )(h − 1),

as desired.

We can also use Theorem 3.2.2 to deduce that

Theorem 6.3.2. For i , h − 1, ρ ∈ Rep E×,

H i
c(M∞h )cusp(ρ) = 0.

Proof. This is immediate from Theorem 3.2.2 and the commutative diagram

Rep E×
ρ7→θ∗

(
ResE×

θ (D×) ρ
)

//

H i
c (M∞

h
)cusp

��

Rep D×

H i
c (LT∞

h
)cusp

��
Rep(GLh(L) ×WL)

π⊗r 7→ψ∗
(
ResGLh (L)

ψ(GLh (L)) π
)
⊗r

// Rep(GLh(L) ×WL).
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