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Abstract

We study the variant of the k-local hamiltonian problem which is a natural generalization of
k-CSPs, in which the hamiltonian terms all commute. More specifically, we consider a hamil-
tonian H = Y ; H; over n qubits, where each H; acts non-trivially on O(logn) qubits and all the
terms H; commute, and show the following -

1. We show that a specific case of O(logn) local commuting hamiltonians over the hyper-
cube is in NP, using the Bravyi-Vyalyi Structure theorem from [Z7].

2. We give a simple proof of a generalized area law for commuting hamiltonians (which
seems to be a folklore result) in all dimensions, and deduce the case for O(logn) local
commuting hamiltonians.

3. We show that traversing the ground space of O(logn) local commuting hamiltonians is
QCMA complete.

The first two behaviours seem to indicate that deciding whether the ground space energy
of O(log n)-local commuting hamiltonians is low or high might be in NP, or possibly QCMA,
though the last behaviour seems to indicate that it may indeed be the case that O(logn)-local
commuting hamiltonians are QMA complete.
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1 Introduction

Since the definition and development of NP completeness in 1971 [8]], various problems and their
hardness have been intensively studied, including the hardness of finding approximate solutions.
Among the vast variety of NP-complete problems studied over time, consider the following prob-
lem called k-constraint satisfaction problem (k-CSP) - Given a set of n variables each taking values
in a finite set S, and given a set of constraints on the values that any specific k tuple of vari-
ables could take, is there an assignment to the variables such that all the constraints are satisfied?
The k-CSP generalized many well-known NP-complete problems, and has been studied exhaus-
tively. Consider a quantum variant of the k-CSP, called the k-local hamiltonian problem (k-LHP),
defined as follows: Given some hamiltonian H = }_ H; acting over n qubits, such that each H;
acts non-trivially on at most k qubits, decide whether the smallest eigenvalue of H is less than

some threshold a or more thanp (where p —a ~ polly B ). The 5-local hamiltonian problem was
proven to be complete for the complexity class QMA by Kitaev in 1999 ([15]), which was akin to the

Cook-Levin theorem in classical complexity theory. Following this result, the k-local hamiltonian
problem was extensively studied, and it was further shown that the 3-local hamiltonian problem
is QMA complete [14], and even the 2-local hamiltonian problem is QMA complete [13]. After this,
attention was put to not only reducing locality, but making the hamiltonians H; geometrically lo-
cal. Along this direction, it was shown in [18], that the 4-local hamiltonian problem, where the
hamiltonians lie on a grid over qubits is QMA complete , and further, it was concluded that the
2-local hamiltonian problem on a line over qudits with dimension 12 is QMA complete [2]. Thus,
the k-local hamiltonian problem has been well classified.

On the other hand, although the k-local hamiltonian problem generalizes k-constraint satis-
faction problemes, it is the case that converting constraints into local hamiltonians always creates
terms H; that are diagonal. This means that for all i and j, the terms H; and H; always commute,
ie. H;H; = H;H;. This observation leads us to a problem that very naturally lies between the
k-CSP and k-LHP, of deciding the ground energy of commuting hamiltonians. More formally, the
k-commuting local hamiltonian problem (k-CLHP) is defined as follows - Given some hamiltonian
H = ) H; acting over n qubits, such that each H; acts non-trivially on at most k qubits, and each
of the terms H; and H; commute, decide whether the smallest eigenvalue of H is less than some
threshold & or more thanf (where g — a ~ ﬁ).

Apart from being a natural generalization of k-CSPs, the k-CLHP seems to naturally arise in
many physical systems, that have only commuting constraints. Moreover, we may suspect that
k-CLHP might be much easier than k-LHP due to the commutativity constraint, since we may
intuitively think that the power of qauntum mechanics arises mainly due to non-commutativity.
Thus, we might intuitively think that k-CLHP lies in NP. But since we have a classic example
of a commuting system with highly entangled ground states, the toric code, it might be the case
that commuting hamiltonians have ground states that are as general as those of non-commuting
hamiltonians, and thus the problem might be hard.

The first result along understanding the complexity of k-CLHPs came in the work of Bravyi
and Vyalyi [7]. In [7], it was shown that the 2-CLHP problem over qudits is in NP. Indeed, [7]
shows something stronger - Not only is deciding the the threshold ground space energy in NP,
but for 2-CLHP, the ground state is a product state, and can be efficiently found given a witness.
The main tool used were techniques from C* algebras that help to prove a structure theorem about
commuting algebras, which is discussed more in section[] Note that on the other hand, the 2-LHP
is known to be QMA complete, and thus this seems to indicate that the k-CLHP is much easier than
k-LHP. Going along these lines, it was shown in [2] that the 3-CLHP over qubits is in NP, which



gives further evidence for the seeming easiness of k-CLHP. However, the techniques of [7] and
[2] which explicitly find a ground state cannot work for k-CLHP for k > 4, since it is known that
the toric code which is a case of 4-CLHP over a grid has highly entangled ground states that do
not have a short straightforward classical description. However, it was shown in [19] that one can
indeed verify the threshold ground space energy without explicitly finding the ground state for
4-CLHP over a grid of qubits in NP. Thus, the highly entangled states of the toric code do not
seem to be a barrier to this. These 3 results are indeed the state of the art regarding the complexity
of k-CLHP.

In this work, we consider the O(log#n)-CLHP. One natural reason for doing this is to find an
explicit hardness result if there is one, i.e., to verify whether O(log n)-CLHP is indeed QMA hard
(since very trivally, n-CLHP is QMA-hard). Although such a result would be desirable, we do not
prove something of the sort. Instead, we further give evidence that it might indeed be hard to
decide whether O(log n)-CLHP is QMA hard, or easy.

Towards a first result showing easiness, we observe that O(log n)-CLHP is indeed in NP if the
hamiltonians are on the vertices of a hypercube and qudits on the edges. Note that the system is
highly symmetric but also geometrically local in this case. This seems to indicate that even the
O(log n)-CLHP might be easy.

Next, we focus our attention towards area laws for commuting hamiltonians. Area laws have
a rich history, and due to a sequence of results in physics - Bekenstein’s result that the entropy of
a black hole is proportional to the surface of its horizon, the entanglement entropy in the ground
(vacuum) states in models in quantum field theories proportional to the surface area (with loga-
rithmic corrections), etc. - a similar conjecture has been state in hamiltonian complexity. The main
conjecture says that given an instance of 2P-LHP over a D dimensional grid (i.e. the hamiltonian
terms act on hypercubes), and given some region A of the hypercube, the entanglement entropy
of a ground state scales O(|0A|), where |0A| is the size of the boundary of A. The first proof for
an area law in 1D came in the work of Hastings [12], and the parameters were further simplified
and improved in [5] and [4]. The case for 2 and more dimensions remains open. But following the
combinatorial proof of the area law in [5]], it was shown in [17] that one can indeed find the ground
state of gapped 1D hamiltonians in (random) polynomial time. This is again the first algorithm
that works for all systems in 1D. Thus, if we had an area law for commuting hamiltonians, would
it be possible to find the ground state, possibly given a witness and using a quantum algorithm?
This was the main motivation to consider the area law for commuting hamiltonians. Area laws are
known to hold for commuting hamiltonians as a forklore result, and we present a simple proof of
a generalized area law (which is shown to be false for not-necesarily commuting hamiltonians [3]).
Given the area law in all dimensions, including for O(log 1) local hamiltonians, it again seems to
indicate that the entanglement entropy of the ground states of commuting hamiltonians indeed
scales as the surface area, and not as the volume of the region, and this seemingly indicates that it
might be possible to find the ground state using further the fact that our hamiltonians commute
and we have results like the Structure Theorem, possibly using a witness and a quantum algo-
rithm. However, the ideas in [17] crucially seem to use the fact that we are working in 1D, and it
does not seem that they can be directly applied. Thus, we only have the evidence of the area law
here.

So far, it seems to indicate to us that O(logn)-CLHP might not indeed be QMA-hard, and
possibly might be in QCMA. We then change our focus yet again, and consider the problem of
traversing the ground space of the local hamiltonians. Consider the following classical problem
- Given 2 satisfiable assignments ¢; and ¢, for a 3-SAT instance, is it possible to move from ¢,
to ¢, by simple operations (say, flipping at most 2 bits), such that all intermediate assignments
satisfy the SAT instance or satisfy most of the constraints? The classical problem was characterized
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in [11], and different cases were shown in which the hardness of the problem was in P, or coNP
or PSPACE (and whether complete for it). The quantum analogue of the problem - traversing
the ground space of hamiltonians was studied in [10]. Once again, the problem is defined as
follows - Given a local hamiltonian H on #n qubits and two unitaries that efficiently prepare the
starting and final states i and ¢ with energy close to the ground space of H, is there a sequence
of poly(n) local unitaries such that the ground states of H can be traversed, i.e., we can move
from 1 to a state close to ¢ while all intermediate states have energy close to the ground space
energy? It was shown in [10], that traversing the ground space of 5-local hamiltonians, (wWhen
the number of intermediate unitaries are polynomial in the number of qubits) is QCMA complete.
This was indeed the first problem shown to be complete for the class QCMA. We consider the
commuting variant of the problem. But unlike the previous two observations, we indeed show
that traversing the ground space of O(logn) local commuting hamiltonians is QCMA complete.
We present a novel construction that helps us use the tools from [10] for the commuting case after
certain modifications. Thus, in this case, it indeed seems the case that traversing the ground space
of O(logn) local commuting hamiltonians is just as hard as traversing the ground space of 5-local
hamiltonians.

Thus, we seem to have indications in both directions about the hardness of the O(log n)-CLHP.
The first two obervations seem to indicate that the problem is easier than QMA, while the last result
seems to indicate that the problem might indeed be QMA-hard. One thing to note is that in case
of the first results, the hamiltonians were geometrically local, while in our ground space traversal
construction, the hamiltonians are highly non-local. Is it the case that for O(log 1) local commuting
hamiltonians, geometrically local hamiltonians are easier than the ones that are not-geometrically
local? Such a fact would indeed be surprising, since it does not hold for the k-LHP. We state other
such problems towards the end.

In section [2} we review certain background definitions and results. In section [3| we give an
exposition of the Structure Theorem as in [7], and some of its applications. In section {4, we give
a proof of a generalized area law for commuting hamiltonians in all dimensions. In section
we show that traversing the ground space of O(logn) local commuting hamiltonians is QCMA
complete. In section|f| we conclude with some open problems.



2 Background

The reader is referred to [21] for a review of relevant linear algebra and to [6] for a review of com-
plexity theory. We give some relevant definitions and lemmas here.

Singular Value Decomposition - Every operator (finite square matrices throughout for us) A can
be written as A = UDV, where U and V are unitaries (UU* = I) and D is a diagonal matrix
containing non-negative reals called the singular values of A. A hermitian operator A is such that
A = A", whose diagonal matrix is real, and V = U*. A positive semidefinite operator is hermitian
and has non-negative values in the diagonal matrix. An orthogonal projection is an operator P
such that P> = P and P = P*.

For any operator A, the operator norm will be represented as ||A|| = maxy—1 [[Ax| which is
the largest singular value of A. We can define the hilbert schmidt inner product between two operators,
(A,B) = Tr(A*B). For any hilbert space A, by £(A) we mean the operators that map vectors in A
to A.

Schmidt Decomposition - Let H = A ® B be a finite dimensional hilbert space. Then every
operator K over H can be written as K = Y; P, ® Q; such that {P;} C £L(A) and {Q;} C L(B),
and for i # j,(P, P]-) = 0 and (Q;, Qj> = 0. Similarly, any vector v € H can be written as v =
Y Aju; ® w; such that {u;} € Aand {w} € B, fori # j, (u;, u;) =0, (w;, w;) =0, and (u;, u;) = 1
and (w;, w;) = 1, and the A;’s are positive and non-increasing.

We will consider only the complex field C. The hilbert space of n qudits will generally be
(C%)®", unless the dimension d is used for other purposes. Any k-local term H; in a hamiltonian
H =) ; H; will act on k out of n qubits, and H; € E(Cdk X Cdk).

An algebra A over a set S of operators, is a set that is closed under taking polynomials (over
C) of elements in S, and is closed under taking complex conjugates of elements. (This would be
C* algebra with the * operation is defined by complex conjugation). The center of an algebra A is
C(A) ={P € A:VD € A,PD = DP}, i.e,, the set of all operators in A that commute with all of
the operators in A.

A hermitian operator H € L£(A) always preserves both a subspace and its complement. One
key lemma is the following, which is easily shown by induction - A set of hermitian operators
{A;i} commute, ie. forall i,j, A;A; = AjA; if and only if there is some U such that for every i,
A; =UD;U*.

Most of the operators that we will look at will be hermitian, unless in certain cases, when we
are looking at the operators appearing in a schmidt decomposition.

Regarding the notation, we may use the following phrases. By ground space energy of a hamil-
tonian H, we mean the smallest eigenvalue of H. By ground state of a hamiltonian H, we mean an
eigenvector in the eigenspace of the smallest eigenvalue of H. We shall generally refer to vectors as
v, ¢,etc., and will use the bra-ket notation only when it helps to differentiate between various nota-
tion. We will use ||¢||> = (¢|¢), and (¢, Hp) = (¢|H|p). Other notation will be clear from context.

A language (subset of all set of strings over some alphabet) L is in the complexity class P if
there is some deterministic machine M that always halts after some fixed polynomial number of
steps on every input, such that

xelL = M(x)

1
x¢L = M(x)=0

A language (subset of all set of strings over some alphabet) L is in the complexity class BPP if



there is some deterministic polynomial time machine M such that

xelL = E
"Upoly ()

L = E
X ¢ H_Upol}l(\x\)

Y]

(M(x,y,7))

W~ WIN

IN

(M(x,y,7))

A language (subset of all set of strings over some alphabet) L is in the complexity class NP if
there is some deterministic polynomial time machine M such that
xe€L = 3y ly| <poly(|x]), M(x,y) =1
x¢ L = Yy ly| < poly(|x]), M(x,y) =0

A language (subset of all set of strings over some alphabet) L is in the complexity class MA if
there is some deterministic polynomial time machine M such that

<
xel = Ty lyl < POIY(|X|)'IE”_Upoly<\xD

<
x gL = Wy lyl < poly(x|) Ereuoy

(M(x,y,1)) >

(M(x,y,7)) <

W= WIN

A language L is in the complexity class QCMA if there is some quantum polynomial time
machine M such that

xel = 3y lyl <poly(|x]), E(M(x,y)) =
xgL = Vyly| <poly(|x]), E(M(x,y)) <

A language L is in the complexity class QMA if there is some quantum polynomial time ma-
chine M such that

Ly«
rel = FoecV! D,]E(M(x,v))

v

Czpolyux\)

x¢L = Yove E(M(x,v))

IN
Wl WIN

The constants 3 and 3 are arbitrary and can be modified /amplified for the probabilistic classes
above to (1 — 2—p01y(n), 2—poly() ). It is straightforward to show: P C NP C MA C QCMA C
QMA. It is conjectured that P = BPP (and similarly NP = MA) and it would be highly unlikely for
them not to hold.



3 Bravyi-Vyalyi Structure Theorem for Commuting Hamiltonians

Consider the problem of determining the ground state energy of local commuting hamiltonians.
More specifically, assume we are given a hamiltonian H = } ;" ; H; acting over n qudits, where
each H; is an orthogonal projection and acts non-trivially on at most k qudits and trivially on the
rest. Further, we have that for all 7, j, H;H; = H;H;, where each H; is considered an operator over
all the n qudits when considering commutativity. For simplicity, we consider the frustration free
case (though the frustrated case follows in this case for commuting hamiltonians). We want to
differentiate between two cases - where Apin (H) = 0 or Amin(H) # 0.

Note that the problem is exactly similar to the k-local hamiltonian problem, except that we
have the extra condition of commutativity. The main question is whether the constraint of com-
mutativity makes the problem any easier. Note that since the hamiltonians all commute, they are
diagonalizable in a common basis, but this does not prevent the eigenvectors from being highly
entangled, as is seen in the toric code. Historically, the problem seems to have been first consid-
ered in [7], where in it was shown that the problem is in NP over qudits for 2-local commuting
hamiltonians. The main tool used in [7] for showing that the 2-local commuting hamiltonian case
is in NP is a Structure Theorem from C* algebras. This is indeed the key tool that is used in [7], [1],
and [19] to show variants of the problem in NP.

In this section, we first present the structure theorem for commuting hamiltonians (abbrievated
BVST) as shown in [7] for completeness. Our presentation shall follow the original paper [7] and
the exposition in [9].

3.1 Key Ildea

The main idea used in [7] is neat and remarkable, and uses a decomposition fact for C* algebras.
Before we present the idea, we state the following fact, and the reader is referred to [16] for a proof.

Fact 1. Given an algebra A over a hilbert space H, it is possible to write H = @ H; where H; = Hj; ® Hjp
such that A = @ L(Hj1) ® I, and the center of A is generated by the orthogonal projections on H;.

We now prove the Structure Theorem in [7]. The main idea is to show that if two operators
commute, then they can be made to commute trivially, i.e., it is possible to split the common hilbert
space on which they act in a manner such that the operators act on different hilbert spaces.

Theorem 2. (Structure Theorem) Let A ® B @ C be some three hilbert spaces, and let H € L(A® B) ® 1
and G € I® LB®C). Let H=Y,P;® Qjand G = Y. Q) ® R;. Let Q be the algebra generated by
{Qi}, and Q' the algebra generated by {Q}}. If HG = GH, then it is possible to write B = @; B; where

B, = Bl.Q 0% Bl.Q/ ® BiQ*, such that H and G act invariantly on each of B;, and restricted to the i’th slice,
H|p, € L(A®BR) ® Iand G|, € I® L(BZ ®C).

Proof. First, we show that if HG = GH then the algebras Q and Q' commute. Note that
HG = Y PoQQi®R;
ij
GH = ) PoQQi®R;
ij
Since the above expressions are equal, we have

HG - GH = ZR‘@ (QiQ; - QiQi)®R; =0
ij
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Note that if any set of operators {Ej, ..., E;} are orthogonal under the hilbert schmidt inner
product, then they are linearly independent, since if E; = ) ;~, ¢;E;, then

0=Tr(E{E;) = ) _c/Tr(EfEj) = ¢ Tr(EfE;)

i>2

which implies ¢; = 0 since Tr(E]*Ej) # 0. Thus, for any (i) # (7,j'), the (P; ® R;) and (Py ® Rj")
are linearly independent (by virtue of the schmidt decomposition), and thus, for all (i, j), QiQ;- =
Q}Qi. Thus, the algebras Q and Q' commute.

Now, let R C L(B) be the algebra of all operators that commute with all the operators in Q
and Q’,iie. R = {K € L(B) : VM € QUQ',KM = MK}. Thus, note that C(Q) C R and
C(Q’') € R. But we can say something stronger - C(Q) C C(R) and C(Q’) € C(R). For some
operator M in C(Q), and for any operator K in R, note that since K commutes with all operators in
Q by definition, and M is in C(Q), K commutes with M. Thus, M commutes with every operator
Kin R. Since M € R, we get that M € C(R). Thus C(Q) C C(R) and C(Q’) € C(R).

Now let us use the above fact with A = R and H = B. This gives us that we can decompose
B = @ B; such that {I1;} the orthogonal projections on B; generate C(R) and we can write B; =
BY @ BI®St such that R = @ L(BY) @ I.

Consider the projector IT; on B;. Since the IT;’s are in C(R), note that for any operator M € Q,
M commutes with I'l; (by definition of elements of R). Thus, note that M preserves the subspace B;,
since if for some v € B;, Mv = uy + up where u; € B, up € B;, then u; = II,Mv = MILjv = u; + us
which implies u, = 0. Thus, the algebras Q and Q' preserve each of the subspaces B;.

Now note that as observed above, since C(Q) C C(R), we have that the algebras Q restricted
to any B; has a trivial center since R restricted to B; has a trivial center. Let Q|; = IL;QIT;, i.e.
the algebra Q restricted to the i’th subspace, and similarly Q’|; and R|;. Note that Q|;, R|; and
Q! commute, since IT; € C(R). Now note that since R|; = £(B?) ® I, since Q|; commutes with
R|;, it must commute with all the operators on BY, and thus, Q|; must act trivially on BY and non-
trivially only on BISt. Similarly for Q'|;. Now let us apply the fact stated above for the space
BfeSt with Q; as the algebra. Note that since the algebra has a trivial center, it simply decomposes
Brest — B @ Brest, such that Q|; = £(B?) ® I. And further, we can decompose B¢St so that
Qli= £(BiQ/) ® I. Thus, we get that each of B; can be decomposed as B; = BY ® Bl.Q ® BiQ/ ® Blrest,

suchthat R|; = L(BY) @ [@ 101, Q=0 L(BY) ®I®Land Qi = I©1® L(BY) & 1.
Thus, the claim follows. O

Thus, as was stated, the lemma above essentially says that if two hamiltonians commute, then
they can be made to commute trivially (as if acting on different hilbert spaces) by slicing the com-
mon hilbert space into orthogonal subspaces, and further decomposing each subspace into smaller
spaces on which the hamiltonians commute trivially. This lemma is extremely useful, can be ap-
plied in a variety of ways. We now present certain applications that use the Structure Theorem
above, with proof sketches of the main ideas.

3.2 Applications of the Structure Lemma
Now we give some applications that use the structure lemma crucially.

Theorem 3. ([7]) Deciding the ground space of 2-local commuting hamiltonians over qudits is in NP.

Proof. Consider the problem of deciding whether the ground energy of 2-local commuting hamil-
tonians over qudits is 0 or not. Let H = ) ; H; be the hamiltonian. Note that since we have only



2-local hamiltonians, any two hamiltonians either interact on one qudit or not at all. This will help
us apply the Structure Theorem stated above.

Consider any qudit q. Using the structure theorem, the hilbert space H; of g can be decom-
posed so that H; = @ G;, and we shall refer to each G; as a “slice”. Further, every hamiltonian
acting on g is invariant over each slice G;, and inside each G;, each of the hamiltonians act on dif-
ferent hilbert spaces. Thus, assume we have divided the space of every qudit into slices. Note that
if there is a vector in the ground space of H, then since each of the H;’s are invariant over every
slice of all the qubits, H itself is invariant over it. And if H is invariant over any spaces A and B,
and there is a vector v € A @ B in the ground space of H, then we can rewrite v = v4 + v such
that both v4 and v are in the ground space of H. Thus, since H is invariant over each of the slices,
if there is a vector in its ground space, there is a vector in one of the slices that is in its ground
space.

This is the proof that we ask the prover to provide, i.e., we ask the prover to give us the
description of the specific G; for every qudit g in which to find a ground space vector. But note that
once we have the specific slice or subspace for each of the qubits, we know that the hamiltonians
acting on g act on different hilbert spaces. Note that since the local dimension d of each of the
qudits is a constant, we can easily find the decomposition of every hamiltonian acting on g inside
the slice of this qudit provided by the prover. Finally, we have a tensor product of hilbert spaces
over all the qudits, such that all the hamiltonians act on different spaces, and we can easily verify
whether it has a vector with eigenvalue 0 or not. Thus, the problem is in NP. O

Apart from the 2-local commuting hamiltonian problem over qudits, [7] also show the problem
of deciding the ground space energy is in NP if all the hamiltonians are tensor products over all n
individual qubits and commute, and we refer the reader to their paper for the proof.

After [7], the theorem above was extended to 3-local commuting hamiltonians, but over qubits
in [1]. The main tool is the Structure Theorem, but now many different structures could arise due
to the hamiltonians acting on 3 qubits instead of graphs with vertices and edges (as in the 2-local
case), that doesnt allow us to apply the Structure Theorem directly. However, it is shown that we
can characterize such structures in a manner that we can apply the structure theorem. We refer
the reader to [1] for complete details.

Theorem 4. ([1]) Deciding the ground space of 3-local commuting hamiltonians over qubits is in NP.

Both the above theorems for the 2 and 3 local cases showed that the ground state is a tensor
product, since an explicit ground state was found in each case. But for the 4-local case, note that
since the toric code has 4-local commuting hamiltonians and has a highly entangled ground state,
the above methods of explicitly finding the ground state should not work. Nevertheless, it was
shown in [19] that whether the ground energy of 4-local commuting hamiltonians over the grid is
nonzero can be decided in NP, which includes the toric code, without finding the explicit ground
state.

Theorem 5. ([19]) Deciding the ground space of 4-local commuting hamiltonians over qubits over a grid
is in NP.

Proof. Given a 4-local commuting hamiltonian H' = ZH{, over qubits over the grid, assume
that all terms in the Hamiltonian are projections onto the ground space of each hamiltonian, i.e.
H =TT H; where H; = I — H]. Thus, assuming H' is frustration free and all H] are projections, we
need to find whether there exists a vector v such that Hv = v.

First, note that over the grid, all the hamiltonians can be grouped into two sets A and B, each
containing alternating terms like a chessboard, so that H = AB, and inside A and B, the ground



state can be found using the structure theorem. Thus, we can ask first the prover to give us the
slices at each of the qubits, so that we can verify if both A and B have a ground state or not. If not,
we can immedjiately reject.

Further, Tr(AB) = 0 if and only if AB = 0 since A and B commute and have a common
eigenbasis. But AB = 0 implies there is no ground space vector. Thus, what we need to verify is
the fact that Tr(AB) = 0 or not. Now if we apply the structure theorem to each of the qubits, in
two different ways so that both A and B slice the hilbert space at each qubit, we would need to
verify Tr(;; AiBj) = ¥;; Tr(A;B;) = 0, where each A, is an orthogonal projection of A to the i"th
slice (which would be a specific slice of every qubit, as before) as is provided by the prover, and
similarly B;. Thus, note that since we are taking the trace of only 2 positive semidefinite operators
Aj; and B; (that do not necessarily commute), the trace of each of the slices is always non-negative,
ie. Tr(A;B;) > 0, and we have that Tr(AB) = 0 only if the trace of each of each the slices is zero,
i.e. Tr(A;B;) = 0. This fact does not hold if we had 3 operators A;, B, Cy, i.e. for any 3 operators
that do not commute but are positive semidefinite, it is not the case that Tr(A;B;Cy) > 0, and thus
this method works only for 2 layers of operators.

Finally, we can ask the prover to tell us about the slice A; and B; such that Tr(A;B j) # 0. Once
the prover tells us the different ways in which to slice the space of each of the qubits, we note that
we can slice the space only into 2 spaces of dimension 1 or not at all. This creates linear structures
over which we would have to evaluate Tr(A;B;), which we can do in polynomial time. Note that
in general, computing Tr(A;B;) = 0 is not easy. The specific details of the resulting structures can
be found in [19]. Thus we get that the problem is in NP. O

Since we will be looking at O(logn) local commuting hamiltonians throughout, we now ob-
serve that a particular case of O(logn) local commuting hamiltonians that is in NP, as an applica-
tion of the Structure Theorem.

Lemma 6. Given a hypercube containing hamiltonians on vertices and qudits on edges such that all the
hamiltonians commute, computing whether its ground space energy is zero is in NP

Proof. Let the number of qudits be n. Note that in a hypercube of dimension d, the number of
edges is 421, which is a solution to E(d) = 2E(d — 1) + 2971, Thus, 297! < n = d29~1 <29, and
d ~ logn. Thus, note that each hamiltonian is O(log n) local. Although the locality is high, we
note that any pair of hamiltonians act only one edge (one qudit).

In the 2 local commuting case where schmidt decomposing a hamiltonian on one qudit gave
us the decomposition on another, and thus gave us the algebras on both the qubits. For the present
case, consider a hamiltonian acting on the qudits g1, 4>, ..., Qogn- We will need to show that after
decomposing H over g1 and gz, ..., g1og n, taking the union of the algebras generated by further de-
composing each of the terms of H over g, are the same as the algebra generated by decomposing
H directly over g, i.e. after a hamiltonian has been decomposed into the subspace of a particu-
lar qudit, we can further decompose it into those of the remaining qudits without changing the
algebra on it.

More formally, let Y ® X ® Z be a hilbert space. Let H = }; A, ® F; = Y;Bi® Q; where

Ai€ L(X)and F; € L(Y® Z),and B; € L(Y) and Q; € L(X® Z). Let F; = }; C]? ® D;:, where
C]i € L(Y) and D; € L(Z). Then the algebras generated by {B;} and {le} are the same. To see

this, let us first write H in 2 ways, first by decomposing it over X and then the decomposed terms
over Y; and by directly decomposing H over Y. Thus, H = Y C} R A ® D} = Y Bx ® Q. Note

that (A; ® D;, Ay ® D;;) = 0, since for i # i’ the A;’s are orthogonal and fori = i and j # j', D}



and D;/ are orthogonal. Let C]l: =Cjjand A; ® D; = R; ;. Note that all the sets of operators except
C;j’s are orthogonal.
Extend the set of operators Q;’s to a basis, and let R;j = }; 2;Q;. Then

H=)Y C,;®R;j=) w;Ci;®0Q; =) (a ZQ,;‘) ®Q = ;Bk ® Qk
ij

i,j ijl l

Now note that since the Q;’s are orthogonal and hence linearly independent, we get that By =
ax 3, Cij. Since the By’s are a linear combination of the C; j’s, we get that the algebra generated by
both are the same.

Now we simply apply the Structure Theorem, and proceed exactly as the 2-local case. Assume
the prover gave us the slice for each qudit in which to look for the ground state. We consider the
way in which each of the hamiltonians acts on the qudit and on which space inside the slice it
acts, which as shown above, we can do since the algebra would be the same irrespective of how
we decompose the hamiltonian, and we can directly decompose the hamiltonian over the qudit of
interest. Since only 2 hamiltonians act on each qudit, we can find the way the hamiltonians act on
each of the slices, and finally find the ground state. Note that since the hamiltonians are O(logn)
local, all operations on them can be done in poly(n) time. Given the description of each of the
slices, we can verify the ground energy and even find a ground state if there is one, and thus, the
problem lies in NP. O
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4 Area Laws

In this section, we change our focus, and consider area laws. We first review the main ideas in the
combinatorial proof of [5] for showing an area law for Hamiltonians on a 1D chain. We then give
a simple proof of a generalized area law for commuting hamiltonians in all dimensions.

4.1 Review of the combinatorial proof of the area law in 1D

The setup in [5] is as follows. We are given a local hamiltonian H = Y} ; H; on n qudits (dimension
d) on a line. The assumptions are as follows:

1. Each H; is 2-local (each H; € (C%)?) and an orthogonal projection, i.e. H> = H; = H}

2. The hamiltonian H is frustration free, i.e. A, (H) =0

3. There is a unique ground state v such that Hv = 0

4. The smallest non-zero eigenvalue of H is at least €

Assumptions 1 and 3 are mild, in the sense that they can be achieved by scaling the hamiltonian
terms appropriately (after assuming 2). Assumption 2 is strong, though in a later work [4], it was
shown that the same ideas can be made to work for frustrated systems. Assumption 4 is strong too,
since it requires € to be at least a constant for the proof to work. The bound on the entanglement
entropy of the ground state across the cut in [4] scales as log(L), and becomes weaker if one
considers € to be inverse polynomial in 7, though it is still stronger than a naive volume law.

We now state some definitions.

Definition 7. (Schmidt Rank) Given a system of n qudits, let S C [1] be some set of qubits. Then
for any vector (state) v, the schmidt rank of v, denoted SRg(v) is the minimum integer D such that
v = Y2 | A\ju; ® w;. For the minimum D, the set {u;} are orthonormal vectors over S and {w;} are
orthonormal vectors over S. Further, the A;’s are in non-decreasing order, and strictly greater than
0. Similarly, given any operator K, the schmidt rank of K, denoted SRs(K) is the minimum integer
D such that K = Y2 | P, ® Q;, where for the minimum D, the {P;} and {Q;} are orthogonal (with
respect to the trace norm) operators acting on the sets of qudits S and S respectively.

We state a few simple properties of schmidt rank that will be useful for us.

Lemma 8. (i) SRs(u + v) < SRs(u) 4+ SRs(v)
(ii) for ¢ > 0, SRg(cu) = SRs(u)
(iii) for any two operators A and B, SRg(AB) < SRs(A)SRs(B)

The proof of the above lemma follows trivially from the definitions.

One main tool used in [4] is the use of Approximate Ground State Projectors (AGSPs), which
we define next.

Definition 9. (AGSP) Let H = }_!' ; H; be a local hamiltonian on a chain as described above, and
let (i,i 4+ 1) be the cut on the chain. An operator K is a (D, 7)-AGSP if,

1. It preserves the ground space, i.e. if Hv = 0, then Kv = v

2. It shrinks (and is invariant over) the space orthogonal to the ground space by a factor 7, i.e.,
for all w orthogonal to the ground space, Kw is orthogonal to the ground space, and ||[Kw|| < A|[w]|

3. It has bond dimension D, i.e., SR<;(K) < D.

Given the definition of AGSPs, the proof in [4] follows 3 main steps.
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1. Show that for any fixed cut (i,i + 1), the existence of a (D, )-AGSP such that Dy < 1
implies the existence of a product state across the cut, y = u ® w with considerable overlap with
1

the ground state, i.e. (v, ) > ek

2. If all conditions and implications of 1 hold, then the entanglement entropy of v, S(v) <

log(1/p)
O(l)lgg(l/,’;) log D

3. Show the existence of a (D, y)-AGSP such that Dy < 1, and logD < O(@)4 (where d is
the local qudit dimension).

Note that 1,2,3 above imply an area law for Hamiltonians on a 1D chain with constant spec-
tral gap. The lemmas 1 and 2 above are purely linear algebraic facts, and they follow from the
definition of AGSPs. The key ingenuity is in showing 3 above, where a (D, )-AGSPs is explicitly
constructed by a neat use of Chebyshev polynomials. The interested reader is referred to [4] or
[20] for an exposition of each of the above.

4.2 Arealaw for commuting hamiltonians

In this section, we give a simple proof of an area law for commuting hamiltonians in all dimen-
sions, which seems to be known though not written formally anywhere. We describe the setup
and state our assumptions first.

Assume we are working over a system of n qudits, each of local dimension at most 4 (thus
forming a hilbert space He (C?)®"). We have a system of m hamiltonians, H = Y™ ; H;, and the
following holds -

1. The H;’s are k local, i.e. each H; acts non-trivially on at most k qudits, and trivially on the rest.
Each H; is an orthogonal projection, i.e. H?> = H; = H;. Importantly, the system is commuting,
i.e. foralli, j, H;H; = H;H;, where each Hi; is considered a hamiltonian over the whole space.

2. The hamiltonian H is frustration free, i.e. A, (H) =0

3. There is a unique ground state v such that Hv = 0

The first condition above is weaker (and hence more general than the condition stated previ-
ously). By condition 2, we assume frustration free hamiltonians, and we leave the frustrated case
for future work. The condition 3 for commuting hamiltonians can easily be enforced by adding
additional terms in the hamiltonian. We do not need to assume condition 4 since for commuting
hamiltonians, the minimum spectral gap is always 1.

Definition 10. (Exact Ground Space Projector) We say that an operator K is a D-EGSP if it is a
(D, 0)-AGSP across the particular cut.

Lemma 11. Let H = Y°| H; be a frustration free hamiltonian, where any pair of terms H; and H;
commute and are orthogonal projections. Then there exists a D-EGSP for H for some D.

Proof. Let K = [T/2;(I — H;). The main idea is that since the H;'s commute, there is a common
basis in which each of them is diagonal. Thus, we can write each H; as H; = UD;U*, where D; is
a diagonal matrix containing only 0’s and 1’s since the H;’s are projections. Let the ground space
of H be W, and spanned by vectors u; to u, for U and the space orthogonal to the ground space
be spanned by v; to v;.

Let w be in the ground space of H. Since H is frustration free, it is in the ground space of each
of H;’s, and thus Kw = w since H;w = 0 for all i. Now let w be orthogonal to the ground space of
H. Let w = ) c;v;. Note that the v;’s are eigenvectors of each of the H;’s. Thus, for each v;, there
is some H; such that Hjv; =1, for if not, then v; lies in the ground space of each of the H;’s, and
thus is in the ground space of H, a contradiction. Thus, when we apply K to w, some term of the
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form (I — H;) will annihilate each of the v;’s, and thus Kw = 0. Thus, K is an exact ground state
projector. O

Now note that bounding the schmidt rank of K will give us simple control over the entangle-
ment entropy of any ground state of H. We do that next.

Lemma 12. (Area Law for commuting hamiltonians) Let H = Y | H; be a frustration free k-local Hamil-
tonian over n qudits (local dimension d) made of commuting terms. Let v be the unique ground state of H.
Let S C [n] be a cut such that |S| < |S|. Let T be the set of Hamiltonians acting across the cut, i.e. H; € T
iff there are qubits a € S and b € S on which H; acts non-trivially. Let t = |T|. Then S(v) < alogd
where « = min{kt,2|S|}.

Proof. Let G = [[per(I — H;) and R = [T,¢7(I — H;). Our EGSP as stated above will be K = GR
. Note that since the hamiltonians in R do not act across the cut, they do not increase the schmidt
rank across the cut. Let v = }; A;ju; ® w; be the schmidt decomposition of v across the cut (S, S).
Note that each A; > 0. Let ¢ = u; ® v;. Since the u;’s and v;’s are orthonormal, we have that
(p,v) = Aq. Let ¢ = A0’ + But, where vt lies in the space orthogonal to ¢/, note that we have
absorbed the phase into v and written it as . Now note that K¢ = A10' +0 = A10’ due to the
lemma above.

SR(v) = SR

[l
“n N
~ X

Il
©n
=

I [
n n
()
)
=

= SR

The second line follows since A1 > 0, the third line since K¢ = A7/, the fifth line follows due
to commutativity, the sixth line follows since R does not act across the cut, and the last line follows
since ¢ is a product state. Thus, we need to bound the schmidt rank of G.

Now let us bound the schmidt rank of G in two ways. Note that since SR(AB) < SR(A)SR(B),
we can write SR(G) < (SR(Hy))! for some H; € T. Since H; is k local, let H; act on a qudits in S

_ : a 32(k—a)
and k — a qudits in S. Thus, we can write H; = E?;T{dz A AiP; ® Q; which is maximized for

a = 5. Thus, SR(H;) < d*. This gives SR(G) < d*.

Now we can count in a different manner. Consider the product G = []'_; P; (where P; =
1 — H;, and we’ve assumed without loss of generality that the hamiltonians H; to H; are in T).
Note that the expansion of each of the terms P; across the cut, and their products will create too
many terms. But note that since all terms will be across the two sets S and S, the maximum number
of terms in the schmidt decomposition of G (or any operator across these two spaces) will be at
most d2/%l. Thus, SR(G) < d?IS! (such a volume law applies for any hamiltonian).

Note that since entropy of any distribution is bounded by the log of its support, and any state
with schmidt rank at most D is supported on D elements, we get that

S(v) <logSR(v) =1log SR(G) < min{kt,2|S|}logd

as required. O
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Remark 13. The key thing to note in the above lemma is that the entanglement entropy is a function
only of the number of hamiltonians acting across the cut. Further, this holds for any configuration
of hamiltonians, not necessary hamiltonians that are geometrically local, which is surprising, since
it was shown in [3] that for general hamiltonians (not necessarily commuting) that are not geo-
metrically local, there exist states with very high entanglement entropy across the cut. The above
lemma is essentially the area law for commuting hamiltonians.

Corollary 14. Consider a L dimensional hypergrid of side length n consisting of n* qudits each of dimen-

siond. Let H = Z?:Ll H; be a system of frustration free commuting 2'-local hamiltonians with a unique
ground state v, where each H; acts over a hypercube of 2F qudits in a natural way. Let A be any contiguous
region of qudits. Then the number of hamiltonians acting from A to A is exactly |0 A| (where |0 A| denotes
the boundary of A). Thus, from the lemma above, S(v) < 2L|0A|logd, which for constant L and d gives
S(v) < O(|0Al). Further, note that if the hamiltonians have locality that is logarithm of the total number
of qubits, then 2L = Llog n, and we would have (assuming d constant),

S(v) < O(Llogn|oA|)
In general for n qudits (constant d) and Hamiltonians with locality O(logn),
S(v) < O(logn|dAl)

which is much stronger than volume law, and is infact an area law for O(logn) local commuting
hamiltonians.

Given the above area law, and tools like the structure theorem, it may be possible to design al-
gorithms for commuting hamiltonians, possibly in QCMA, though that is left as an open problem.
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5 Hardness of Traversing the Ground Space

In this section, we finally consider the problem of traversing the ground space of O(logn) local
commuting hamiltonians. Informally, as stated in the introduction, we want to understand the
hardness of going from one ground state of commuting hamiltonians to another by applying only
2-qubit unitaries a polynomial (in system size) number of times, and be close to the ground space
at each point. Towards this end, we will show that traversing the ground space of O(logn) local
commuting hamiltonians is QCMA complete. The proof that the problem is in QCMA follows
almost verbatim from the proof for general local hamiltonians as in [10], and we will refer the
reader to the paper for a proof. We shall provide a proof of QCMA hardness of traversing the
ground space of O(log 1) local commuting hamiltonians.

Our proof consists of two parts. For the first part, we show shall show that given any instance
of the local hamiltonian problem, we can convert it to another instance such that the instance has
only 2 layers of hamiltonians (where hamiltonians inside any layer commute), and the complete-
ness and soundness parameters are almost the same. Next, we show how to construct an instance
of O(logn) local commuting hamiltonians from a QCMA verifier circuit, such that traversing the
ground space is possible only if the QCMA circuit accepts some state with high probability.

5.1 Definitions and Background

The formal definition of the problem is as follows (adapted from [10]):

Definition 15. GSCON for commuting Hamiltonians - GSCONCH (H, k, [, m, c,s, Uy, Uyp)

Input: Input parameter n, the number of qubits on which the hamiltonian H acts. A k local
hamiltonian H = Y] | H; acting on n qubits, where each H; € Herm((C?)®¥) acts nontrivially
on a subset of at most k qubits (and trivially on the rest). For each i, ||[H;|| < 1. Further, for all
i,j, HiH; = H;H;, where each H; is interpretated as an operator acting on 2" dimensional vector
space. Uy and U, are unitaries that generate the initial and final states |¢) and |¢). Real numbers
¢,s such thats — c € O(—1—).

poly(n)

Output:

1. Yes, if there exists some sequence of I local unitaries U; to Uy, such that |||¢) — Uyy,...Us|P) || <
c,and, forall 1 <i < m, (¢;, Hp;) < ¢, where |ip;) = U;...U1|¢).

2. No, if for any sequence of I local unitaries Uy to Uy, either |||¢p) — Uy,...Up|¢)||2 > s or, for
some i, (;, Hp;) > s.

Note that the two conditions that are checked, are precisely if the movement is indeed through
the ground space, i.e. if every intermediate state is close to the ground state and has low energy,
and the final state is close to the expected state |¢).

For the case of general hamiltonians, it was shown in [10] that the problem is QCMA hard, as
long as m or the number of unitaries is polynomial in n. Our proof shall use many of the tools
that their proof uses. Indeed, our key contribution is a construction that is amenable to most of
the techniques in [10] after simple changes.

5.2 Hardness of 2-layered O(logn) local Hamiltonians

Theorem 16. ([15]) The k local hamiltonian problem for k > 2 is QMA complete, i.e., given a system of
k local hamiltonians H = Y[ | H; where each H; acts on a system of k out of n qubits, it is QMA hard to

decide between the two cases (given c, s such that s — ¢ € O(poljl/ o )):
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1. 3|¢) such that (¢, Hp) < ¢
2.9[), (p, Hp) > s

The reader may consult [15] or [20] for an exposition of the proof.

One key tool used in the proof of QMA hardness of 2-local hamiltonian was the Projection
Lemma in [13]. Although we do not need the full power of the projection lemma, we now state
another lemma that is similar to the projection lemma in spirit. Intuitively, the projection lemma
helps to chop of subspaces without much affecting the ground space. Let W be the subspace (of
the Hilbert Space H) in which we want our ground space vector of some hamiltonian H; to lie.
Then we can create a hamiltonian (projection) Hy, that has eigenvalue 0 over the subspace W, and
gives an enormous penalty | > ||Hj || to the space W+. The projection lemma says that the lowest
eigenvalue of H; + H> is close to the lowest eigenvalue of the operator H; restricted to W. Similar
to the projection lemma, we group all the hamiltonians into one hamiltonian H; after making their
spaces orthogonal to each other, and then create another hamiltonian H; that applies a penalty in
case the ground state tries to annihilate any of the terms in H; by not being in the orthogonal
subspace of any particular term. More specifically,

Theorem 17. (Ground Space Preserving Layers) Let H = Y_I" ; H; be a system of 3 local hamiltonians
acting on a system of n qubits where || H;|| < 1. Let c and s be two reals such that s —c > n=" = m=? (for
some b,V'). Consider a system of n' = n + 2logm qubits. For 1 < i < m, let G; = H; ® |i) (i| where i)
is the 210gm bit representation of i in binary. Let G = Y[*; G;. Let Gpen = m"1 @ (I — |¢)(¢p|) where
lp) = f Y"1 ). Then the following hold:

1. If 3|¢) € C?" such that (y, Hyp) < c, then EI|1,U> e ", such that (', (G pen) " <
2.1FV|p) € C7, (i, Hy) > s, then V|y') € C", (¢/, (G + Gpen)¥') > 5

m
Proof. 1. (Completeness) Let |i) be such that (¢|H|p) < c. Define |¢') = |¢) ® |¢). Then by
straightforward calculation,

3o

mb+1

(¥'|G + Gpen|¥') (Pl @ (@Gly) @ [9) + (P @ (P|Cpen|th) @ |¢)

= Yl ® BIGIP) © [6) + (9] @ (BlGpenl9) ® [0}

i=1

= i<¢rﬂi|¢>r<4>|i>|2 +mT(P[Ip){@(I - |¢)(¢])]9)

'-.
>_\

m

Y (w|H;lp) +

i=1
<

SRR §\+—‘

2. (Soundness) It is worthwhile to note that the term G, has been created to give a high
penalty to the subspace that is orthogonal to the space spanned by the uniform superposition
|p) = ﬁ Y"1 7). We do this since we want the ground space of the new system to span the space
spanned by |¢) in the second register, for if not, then it would be possible to create simple states
that annhilate the hamiltonian G easily.

Notice that Gy, is a projection with only two eigenvalues - 0 and m7, i.e. the smallest nonzero
eigenvalue of Gy, is m?7. Let W be the subspace spanned by |¢). Thus, for all |u) € W, we have
that (y, Gpenpt) = m".

16



We now prove by contradiction. Let [¢') be a vector such that (¢, (G + Gpen)¥') < = —

— m
—- Then we can rewrite |[¢) = cov) @ |¢) + c1]¢p*), where [co|* 4 |c1]> = 1. Note that since
both G and Gy, positive semidefinite, we have that [(¢'|G[¢")| = (¢'|G|¢") and [(¢'|Gpen|’)| =

(W' [Gpen|9')-
Then we have that

¥/|Gpeal ') = (¢ |Gpen(colo) @ [#) +c1|p*)) = [er [P
Further,
WIGI¥) = (|G colo) @ [9) +cilg™))
= [lco2(o] @ (91Glo) @ [9) + cier (o] @ ($IGlp*)
+eoci (91Glo) ®19) + ler 291G L)

> Joll{el ® (BIGI0) © [9)] — [eollenll (o] © (IGIoY)]
Jeolle 119 1Glo) © 1)) — o1 1@ Gl
> loll{e] ® @IGIo) © [9)] — 3ler] |G
2
> 108 o) — 3jerm
> s|C0|2_3|C1‘m

where the 3rd line follows by triangle inequality, the fourth line uses Cauchy-Schwarz inequal-
ity, and the fifth line uses the fact that ||G|| < m.
Now we choose v to get the required bounds. Let v = b + 5.

Thus, we have that
<1/J/‘G + Gpen|lp/> = ’<¢/’G + Gpen|l/)/>|
2
> sleo” 3lc1|m + |ey[Pm”
s
= —(1=laf’) = 3ler|m + |es'm”
s 1.5%°m?
- om omY— 2
s 1.5%m?
- om omY—
S 1
= w2
which is a contradiction since we had assumed that (/|G + Gpen|9') < & — 1.

The expression in the third line is minimized for |c;| = mlimi which gave the expression in the
m

next line. O

Proposition 18. The Hamiltonians G; and G; inside G in the theorem above trivially commute, since they
act on orthogonal spaces in the second register. Further, each G; is O(logm) = O(logn) local. Thus, we
have two layers, G and Gy, the hamiltonians inside each of which commute, and G and Gpey, faithfully
preserve the ground space and the eigenvalue gap of H.
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Proposition 19. The state |¢) acting on O(logn) qubits can be efficiently prepared by a polynomial sized
circuit, since any state on O(logn) qubits can be prepared in poly(n) time, and more specifically, we can
apply a hadamard gate to each of the qubits.

5.3 A Modified Traversal Lemma

Now we discuss one of the main tools used in [10], the traversal lemma. Consider any two states
|) and |¢) with a special property - for any k-local unitary U, (¢, U¢) = 0, i.e., no k-local unitary
can map the state |) to |¢). Such states will be called k-orthogonal states. For example, the states
|000) and |111) are 2-orthogonal.

Now first consider the following simple problem. Assume we have a local hamiltonian H
acting on n qubits, and assume its ground state can be prepared efficiently by applying a unitary
U (made only of universal 2-local quantum gates) to the all zeroes state, in case a ground state
exists. Now consider two registers, one consisting of n qubits and another consisting of 3 qubits
(often referred to as GO qubits). Assume we are given the state |0...0) ® |000) and we want to
reach the state |0...0) ® |111), and always remain in the ground space of the hamiltonian H' =
H ® (I —|000)(000| — |111)(111|). Note that in case H has a ground state |¢) that can be prepared
efficiently, we can move from |0...0) ® |000) to |¢) ® |000), to |i) ® |111), to |0...0) ® |111) using
only a polynomial (in 7) number of 2-qubit unitaries. Further, note that during the first and the
last conversions, we will be in the ground space of H'. Only during the conversion of ) ® |000)
to |) ® |111), we shall be above the ground energy by (¢, Hyp). Thus, if the energy of |¢) is low,
we can always stay in the low energy space of H and go from |0...0) ® |000) to |0...0) ® |111).

But what if H has no ground state that can be prepared efficiently? That is, what if every
efficiently preparable state |i) has energy at least 5?7 Now if we move from |0...0) ® |000) to
|0...0) ® |111), since we would have to go into the +1 eigenspace of (I — |000)(000| — |111)(111])
at some point in going from |000) to |111) in the second register, and at that point, we would have
energy atleast 8 for the state on the first register with respect to H. Thus, intuitively, we may think
that that if every efficiently preparable state |i) has energy at least § for H, if we go from the
2-orthogonal states |0...0) ® |000) to |0...0) ® |111) in m steps by using only 2 local unitaries, there

has to be at least one step in which we make an energy jump of ~ % The traversal lemma in [10]
makes this intuition precise. We will tune the traversal lemma of [10] to suit our needs.

Before we proceed we will need the Gentle Measurement Lemma of Winter, restated here.

Lemma 20. (Gentle Measurement Lemma [22]) Let p be a density operator, and I1 a measurement operator
0 < I1 < I, such that Tr(ITp) > 1 — €. Then ||p — VIIpVII||s < 2V/€.

We now formally state the definition of k-orthogonal subspaces as given in [10]. Intuitively,
two vectors |¢) and |¢) are k-orthogonal if for any k-qudit unitary U, (¢|U|¢) = 0. More formally,

Definition 21. (k-orthogonality) For k > 1, a pair of states |¢),|p)€ (C?)®" is k-orthogonal if for
all k-qudit unitaries U, we have (i, Up) = 0. Further, any two subspaces S,T C (C%)®" are
k-orthogonal if every pair of states |i),|¢) in S and T respectively are k-orthogonal.

We shall now work with 3 registers. The first register contains 1 qubits and the second and the
third registers contain 3 qubits each. Let the following be shorthands -

Py = |000) (000,

P = |111)(111],

[I=1-P—P,

Py = |000)(111],
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Py = [111)(000],
P+ = 1(/000) + [111))({000| + (111]),
= 3(]000) — [111))((000| — (111])

Lemma 22. (Small Projection Lemma) Let S and T be 2-orthogonal subspaces spanned by I ® I ® |000)
and I ® I @ |111) respectively. Let vg = u ® |000) where u spans the first two registers. Let Uy to U,y be
any sequence of 2-local unitaries, and let v; = U;v;_4 for 1 <i < m. Further, assume we have that for every
i, |I®I®ITv;|| <. Then, forevery i, ||(IQ 1 ® Py)v;|| <iyand [|(IRTI® Py)vi|| >1—(i+1)y

Proof. First, note that since each U; is a 2-local unitary, for any vector v, (I @ I @ P))U;(I ® I ®
Py)v=0and (I®[® Py)U;(I ® I ® P;)v = 0. We now inductively show that for every i, || (I ® I ®
Py)v;|| <iv. Itis trivially true for i = 0. Let it be true for i — 1. Then for i,

IR I®P)oil| = |
|

IRI® P
IQI® P
=y =3
I(I®I®II
Y+ (1)
iy

Ujvi1||
U((I®I®P)+(I01@P)+(I®IxI1))v |
U(II@IMviq||+ I I PHU;(I®I® P4
Vil + [(I @ I @ Py)vi |

o~ o~~~ —
—  ~— —

VAN VARVAN

The second line used the fact that [ = (I® I ® Py) + (I® 1 ® P;) + (I ®  ® IT), the third line
follows from triangle inequality and the fact that (I ® I ® P;)U;(I ® I ® Py)v = 0 since U;’s are
2-local and the subspaces 3 orthogonal, the fourth line follows from the fact that ||P|| < 1 for any
orthogonal projection P, and the fifth line uses the given condition and the inductive hypothesis.

Further,

[IT@I@P)vil = [loi—(I®I®P)v; — (I® 1)yl
> ol = [[(I@T&P)o — [(I© @My
> l—iy—v
= 1—(i+1)y
> 1—(m+1)y

Again, the second line uses the triangle inequality, and the third line uses the above proven
claim and the given condition. O

We are now ready to prove a modified version of the Traversal Lemma from [10] that we will
require in the next section.

Lemma 23. (Modified Traversal Lemma) Let I1s = I ® Py ® Py and S be the +1 eigenspace of Ilg, Il =
[® Py @ Pyand T be the +1 eigenspace of I17. Define P = IQII® Py, Q = [® (Py+ P1) @ Py. Letvg € S
andw € T, and ||w — v,|| < e. If Uy, ..., Uy is a sequence of 2-local unitaries that map vg to v,,, with

= U;v;_1 and ||I® [ ®@Tlv;|| < 7y for 1 < i < m, then there exists an i such that || Pv;||* > 1 (1_26)2,

) 2m
m+1) (12_71%5)

provzded V<

Proof. We prove by contradiction. Let 6=1 (15 nfe) . Assume that for all 1 < i < m, |Py;||> < 4.
Define the following sequences as in [10]. For alll <i < m, v, = Qu;, and v = QU;v/ | where
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v] = v]. Note that the vectors v/ and v/ may not necessarily be unit vectors. Also note that we
have for every i, (v;, Pv;) < ¢ (P is a projection).
Using the lemma proven above, we have that || (I ® I ® Py)v;|| > 1 — (m + 1), and thus

I(I® I Po)ol|* = (05, (11 Py)v) > 1=2(m+1)y = p
Thus, we get that
Tr(Q|vi) (vi]) = (vil Qlvi) = (vi|l ® [ ® Polvi) — (vi|Plo;) 2 u—06=1—(1+5—p)

We now use the gentle measurement lemma stated above for the projection Q and the density
matrix [v;)(v;|. Thus we get that for every i,|||v;) (vi| — [0}) (V}|||¢r < 24/1+ 6 — u. We now use
induction to show that |||v;) (vi| — [0} ) (v |||{r < 2iy/1+0 — .

For the base case, note that ||[v1) (v1| — [07) (o) ||ltr = [|]v1) (1] — [9)) (V)| |ler < 24/1+0 —pas
shown above. Now using induction on i, we get that

o3} (il = [0]) (7| 1 1vi) (ol — [07) (il + 07) (@] — 107) (O] [[|x

2¢/146 — p+ [[QUi(Ji-1) (i1 | — [0i_1) (oI NUF Qlltr
2¢/1+6 = p+ [[[vim1) (Vi1 | = [0/20) (01 lr

2146 —u+2i—-1)/1+6—p

2i\/1+06—u

IN

VAN VAN VAR VAN

as required.

The first statement is by triangle inequality, the second by the gentle measurement lemma as
shown above and the definitions, the third follows from the fact that || ABC||tr < || A|lo || Bl tr||Cl 0,
and the fourth follows by the induction hypothesis.

Now note that

< oh) @l = [om) @l ller + lom) (m| — [w) (@] |t
< 2my/146 — p+ 2[[[vm) (On] — [w) (w]]]
<
<

103) (0| = @) (@] [l

2m\/1+6 —p+2e

1

where the first line was the triangle inequality, the second line used the fact that || A||¢ < ||A]],
and the fourth line follows based on our condition on 7.

But note that |v),) always lies in S. This is because inductively, |vg) lies in S, and if [0 ;) lies
in S, then applying any two local unitary U; will not move any component of |v/" ;) to T, and
projecting on the space S U T using Q will just project the rotation onto S. Since |w) lies in T, we
have that (v/)|w) = 0, and

Ho5) (o] = [w)(@l[lgr = 1+ o[l > 1

which is a contradiction. O

5.4 Traversing the ground space of 2 nonlocal Hamiltonians

We now give the main construction that will help us comment on the ground space of 2 nonlocal
hamiltonians as constructed before, by traversing the ground space of another set of commuting
Hamiltonians.
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5.4.1 Construction of commuting local hamiltonians

Let A and B be two hamiltonians, not necessarily local, that act on n qubits, and ||A|| < 1 and
| B|| < 1. Further, we have the following promise - Either there exists v such that (v, (A + B)v) < «,
orforallv, (v, (A+ B)v) > B. We shall now construct commuting Hamiltonians, traversing whose
ground space would help us comment on the ground state energy of A 4 B.

Define the three new Hamiltonians as follows, acting on three registers, first of n qubits and
the remaining two of 3 qubits each:

Hy=A®II®P,
Hy =BRII®P_
G=IQIxII

The initial and final states will be vy = |0) ® |000) ® |000) and w = |0) ® |111) ® |000). The
main idea in defining the hamiltonians as above is that because they are in a superposition on
|000) and |111), the starting state on the third register does not make the energy on the states 0.
Further, since you'll always stay close to the |000) state as shown in lemma A above, Hy4 and Hp
will always have high energy due to the third register, unless it is cancelled by the second or first
register. The reason we need the third register is to make the three hamiltonians above commute.
Note that HyHp = 0, and since the hamiltonian terms on the third register are all orthogonal
projections (hermitian), they commute simply as H4G = GH4 and HpG = GHp. Moreover, we
cannot use less than 3 qubits in the third register, since we do not want any unitary to go from
|000) to |111) in 1 step on the third register, in which case it can traverse the ground space of
H4 + Hp + G without traversing the ground space of A + B.

We now proceed to show that the construction above is both complete and sound.

5.4.2 Completeness

Assume there is some classical v such that (v, (A + B)v) < a, then the following sequence of
unitaries help traverse the ground space of Hy + Hp + G. The starting state is vy = |0) ® |000) ®
|000).

1. Prepare the classical string v in the first register using Pauli X gates

2. Hlip the bits of the second register from 000 to 111, again using Pauli X gates.

3. Unprepare the string v back to the all zeroes string in the first register.

Note that during the first and the third stage, we will remain in the ground state of H4 and Hp
by the virtue of the state in the second register, and in the ground state of G due to the state in the
third register.

During the second step, let second register be in the state |a) = |001) (or |100) or |010)). Note
that the first register is in the state v, and third is in the state |000) and thus we are still in the
ground state of G. Then we have that
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(0l{al(000] (FLs + Hi + G)[0)1a) 000) = (o] (al{000](Hix + Hi)[o)]a} 000)
+{o]{al 000[G o)) 000}
—  (0]{a](000|(A ®T1® P, + B®TI® P_)|v)|a)|000)
+(0](a](000]1 ® I @ T1|v)|a)|000)
= (o]Alo)(a[TT]a) (000]P: |00}
+ (0| B|v){a|TT|a) (000| P_ |000) + 0
= Z(0lAl) + 3 (o[Blo)

(v|A + B|v)

IN

Nl =N =N
=2

Thus, at any stage, the energy of any state is at most 1, and thus we always remain close to
the ground space.

5.4.3 Soundness

To show the soundness, assume that for all classical v, (v, (A + B)v) > B. Assume some sequence
of 2 qubit unitaries maps vy to w and ||v,, — w|| < € for some € that will be set to a constant.
Further, assume that (v;, Gv;) < ’yz, because if not, then the energy will be atleast ,),2. Thus, note
that for every i, we have that ||v;, I ® I ® ITv;|| < 1.

Hence, applying the Modified Traversal Lemma, we would have that there is some 7 for which
(v;, [ @ TTI® Pyv;) > 6. Then we have that

(vi,(Ha+ Hp+ G)v;) > (vi, (Ha + Hp)vi) = (05, (AQII® Py + BOII® P-)v;)
<Z)i,(A+B>®H®PQUi>+E
> BO+E

Now we bound the error term. Rewrite v; = (I ® I ® Py)v;i+ (I QI ® Py)v; + (I ® I @ IT)v;.
Thus,

E = <UZ', (A - B) RIT® P01271'> + <Uz‘, (A — B) RIT® P102)1'> + <Uz', (A + B) RIT® P10i>
= <(I RKI® PQ)Z)Z', (A - B) RIT® P01P1?Ji> + <(I RI® P])Z)Z', (A - B) RIT® P10P0?Ji>
+H((I®I®P)v;, (A+B)@I1I® Pyv;)

Thus, we get that,
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|E|

IN

[((T©T& Ry)vi, (A—B)@IT® PnProj| +[(1©1& Py)v, (A= B) @ 1@ PioPooi)|
+{(I®I1® P)v;, (A+B) @1 ® Pyo;)]

< (@I Povil[[A=BI[[T[I(Te I Pu)l[[[(I& 1@ Prvl| +
I(T® I Pr)vill[[A = B[[[TI[|[[(T© I © Pio) |[|(I© I e Po)vil| +
I(I© T@ Proil[[|A+ BI[TT]|(T @ I Pr)o]

< 4|(Iele b

< diy

< 4my

where we got the first inequality using the Cauchy-Schwarz inequality, the second inequality
used the fact that the norm of a projection is less than 1 and that ||A|| < 1and ||B|| < 1, and the
third inequality used the Small Projection Lemma.

Now we’ll set the number of steps m = 3n, which would be sufficient for completeness. Thus
m = O(n), and we'll treat m and n interchangeably. Now let v = c%' where C is a large constant,
say 1000. Then we have

<Ui, (HA+HB+G)Ui> ,35+E

>
> B6 — dmey
1
P
Also, this also satisfies our condition for y that allows us to use the Modified Traversal Lemma,
ie.

v

P
Cm

1 1/1-2¢)?
1000m 2\ 2m

4(m1+ 1) (12_11126)2

Now note that the energy lower bound for soundness would be

as was required.

min{llB 2y — o(min{ 2, £ 3y = o(n-op?
5B, 7"} = O(min{ 5, —5}) = O(n™"f%)

Thus, if the energy bounds for (A + B) are < a and > B, then the bounds for the (H4 + Hg + G)
system would be < 4 and > n¢B2. Observe that the O(n % — «) gap is inverse polynomial only
if « is exponentially small, and  — « gap is inverse polynomial.

5.5 QCMA hardness of traversing the Ground Space of O(logn) local Commuting
Hamiltonians

In this section, we finally show the QCMA hardness of traversing the ground space of O(logn)
local commuting hamiltonians, using all the machinery that we have seen so far. The containment
in QCMA follows directly from the result of [10] section 5 and we omit the details.
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Theorem 24. Let H = Y] | H; be a local hamiltonian acting on n qubits, where each H; is a hamiltonian
acting on at most Clog n qubits (for any fixed C), and for every i, j, the hamiltonians commute, i.e. H;H; =
H;H;. Then, traversing the ground space of H is QCMA-hard.

Proof. Let V be a QCMA verifier circuit acting on a total of n qubits, and let H = }_[”; H; be the 3-
local hamiltonian obtained from it by the Kempe-Regev construction [14] having || H;|| < 1, where
« and B are the upper and lower bounds on the ground energy of H respectively in the accepting
and rejecting cases. There is a specific reason why we use this particular construction, instead of
the 2-local [[13] or the 5 local [15] construction, which we state next. First, we can do the standard
error reduction on V, and assume that V decides some language L in QCMA, so that

xelL = 3Jy, EV(x,y)>1—¢€
x¢L = Vy EV(x,y)<e

where € < 2—poly(n), Let the circuit V contain the unitaries U, to U;, where r = poly(n). Now the
Kempe-Regev construction [14] guarantees that

x€L = du, (v,Hv) <

x¢L = 3Jou, (v,Hv) >

ﬂw‘,i\:\m

which gives us & < 27 POV and g > poly ok This exponentially small value of « is crucial

for us, since as noted at the end of the previous section, our new bounds as & and B change will
scale inverse polynomially only if « is exponentially small. Let m* = g — &

Now let G; = H; ® |i)(i| forall 1 <i < m, and G’ = ¥.G;, and Gpe, = m" ™1 @ (I — |¢p)(¢])
where |¢p) = \F ZZ 1 7). Then as shown in the Ground Space Preserving Layers theorem, G’ +
a B

e mb — ) hamiltonians, or in other words, it is still a (2—p01y(n),

Gpenisa (5,

—L ) hamiltonian.
poly(n)

Define A = G'/||G' + Gpen|| and B = Gpen/||G’ + Gpen||- Note that since we have merely
scaled both hamiltonians by the same number, and since |G’ + Gpeu|| < poly(n), we still have the
, —i—), and further, || A|| < 1,and ||B| < 1.

poly(n)

Now we construct the system H4 + Hp + G, which satisfies all our constraints. This is essen-
tially creating the following system, if we write H 4, Hg and G in terms of the original hamiltonians

eigenvalue gap of the system A + B as (2—p01y(n)

1<i<m: H®){iII®Py)
(e (I-¢)(¢]) @11e P)
1L(I®IeIxTI)

where the constants c¢; and ¢, are both inverse polynomial in n. Note that the above system
is O(logn) local (mainly due to the second register above), and each term in the above system
commutes with any other. As we had shown the Completeness and the Soundness of the above
system before, we would have that the system Hu + Hp + G has energy gap (3a,n7%8) which is

again (2-Poly(), ) = (2-Poly(m), ). Thus, we get an instance of GSCONCH with

nf’poly( ) poly( n)
the hamiltonian being H4 + Hp + G, the hamiltonian terms commute and are O(logn) local, and
there are atmost O(n) 2 local unitaries which would be required to traverse the ground space.

Further, the initial state is |0,) ® |¢) ® |000) ® |000) and the final state is [0,) ® |¢) ® [111) ®
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|000) which can be easily prepared by polynomial sized circuits since |¢) can be prepared by a

polynomial sized circuit (Proposition i . The completeness parameter is 2-POly(") and soundness
O

parameter is polly ok

Finally, we can conclude,

Theorem 25. The problem of traversing the ground space of commuting O(logn) local Hamiltonians
which have an inverse polynomial gap between the ground and first excited states is QCMA complete.
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6 Conclusions and Open Problems

We have shown that the O(logn)-commuting local hamiltonian problem seems to exhibit be-
haviours that makes it difficult to comment on its hardness. From section [3| we see that a very
symmetric case of O(logn)-CLHP is indeed in NP, and further from section [§} unlike the non-
commuting case, a generalized area law holds for all commuting hamiltonians, which seems to
suggest a certain limit on entanglement of ground states of commuting hamiltonians, possibly
suggesting that the k--CLHP is in QCMA. However, since traversing the hardness of O(log n) local
hamiltonians is as hard as k-local hamiltonians, it might be the case that O(log ) local commuting
hamiltonians (not necessarily geometrically local) are indeed QMA-hard. However, it is difficult
to make any specific comments, and we leave the following as open problems:

Open Problem 1: Is traversing the ground space of k-local commuting hamiltonians QCMA hard
for a constant k?

Open Problem 2: Is O(log n)-CLHP QMA complete?

Open Problem 3: Using the generalized area law, is it possible to given an algorithm in QCMA
for k-CLHP over a D-dimensional grid?
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