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ABSTRACT

This thesis has two areas of focus: the application of the dynamic similarity principle

in microelectromechancial systems (MEMS) and nanoelectromechanical systems

(NEMS) and the study of anomalous phase noise (APN) in MEMS and NEMS. In

the first portion of the thesis, we employ the dynamic similarity principle to predict

the quality factor due to gas damping in MEMS and NEMS. In the second portion of

the thesis, we provide a theoretical framework for sources of phase noise in MEMS

and NEMS and describe the measurements that wemade to quantify the temperature

dependence of anomalous phase noise in silicon doubly clamped beams.
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C h a p t e r 1

INTRODUCTION

This thesis has two areas of focus: the application of the dynamic similarity principle

in microelectromechancial systems (MEMS) and nanoelectromechanical systems

(NEMS) and the study of anomalous phase noise (APN) in MEMS and NEMS.

In the first portion of the thesis, we employ the dynamic similarity principle to

predict the quality factor due to gas damping in MEMS and NEMS. In the second

portion of the thesis, we provide a theoretical framework for sources of phase noise

in MEMS and NEMS and describe the measurements that we made to quantify

the temperature dependence of anomalous phase noise in silicon doubly clamped

beams. In this chapter, we provide an overview of the entire thesis.

In Chapter 2, we describe the application of the dynamic similarity principle to

predict quality factor due to gas damping. We derive the formula used to predict

the quality factor due to gas damping, QGAS in MEMS and NEMS. We describe

the prototype devices used to validate the theory. Specifically, we used rectangular

cantilever with different aspect ratios, for which an analytical expression for QGAS

exists in the rarefied and continuum flow regimes. We also used triangular can-

tilevers and square headed cantilevers, for which an analytical expression for QGAS

exists only in the rarefied gas regime. We describe the pressure vs quality factor

measurements made to validate the theory. We then analyze the data and compare

the data with the results predicted by the dynamic similarity principle and with the

results predicted by the analytical expressions, where appropriate. We demonstrate

that the dynamic similarity principle accurately predicts QGAS for a wide range of

devices.

In Chapter 3, we discuss the applications of MEMS and NEMS as frequency shift
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sensors and as oscillators. We discuss how noise limits the frequency stability in

these devices. We then give an overview of feedback oscillators, before discussing

the metrics used to characterize noise in oscillators: amplitude noise, phase noise,

fractional frequency noise, and Allan deviation. We also discuss the frequency

dependence of various noise sources. We next discuss anomalous phase noise

(APN), a source of phase noise of unknown origin present in awide variety ofMEMS

and NEMS. APN limits the frequency stability of these devices to a stability above

the thermomechanical noise limit. APN currently limits the frequency stability of

NEMS oscillators and the minimum detectable mass of NEMS mass sensors. We

end with a discussion of our current knowledge of APN.

In Chapter 4, we provide a theoretical framework for sources of phase noise in

MEMS and NEMS.We then provide a derivation of many potential sources of phase

noise. We also calculate the expected phase noise for a test device. We address

the following sources of phase noise in a device: direct thermomechanical noise,

amplitude to phase conversion thermomechanical noise, temperature fluctuation

noise, extensional fluctuation noise, charge fluctuation noise, gas interaction noise,

defect motion noise, noise from higher order mode coupling, and noise from defect

reorientation. We end the chapter with two summary tables containing expressions

for phase noise due to these sources and the Allan deviation due to these sources.

In Chapter 5, we describe the experimental setup used to measure anomalous phase

noise in a silicon doubly clamped beam over a range of temperatures. We describe

the optical setup used to actuate and detect the devices, as well as to anneal them,

the vacuum system used for the measurements, and the cryostat and sample holder

used. We end with a description of the fabrication process for the devices.

In Chapter 6, we measure the phase noise of silicon doubly clamped beams over

a range of temperatures. We begin with a description of the oscillator setup used
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for the phase noise measurements, as well as a characterization of the noise in the

measurement setup. We then use the oscillator setup to measure the phase noise of

two silicon doubly clamped beams over a range of temperatures. We then anneal

one of the devices and measure the phase noise post-anneal. We end the chapter

with a summary of the data.

In Chapter 7, we discuss our conclusions and further avenues of study. We consider

furthermeasurements to quantify anomalous phase noise. We also considermethods

to limit anomalous phase noise.
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C h a p t e r 2

DYNAMIC SIMILARITY OF OSCILLATORY FLOWS INDUCED
BY NEMS

2.1 Overview

The dynamic similarity principle offers an alternate method to determine the quality

factor due to gas damping. Unlike numerical simulations, which can require com-

putationally intensive calculations, the dynamic similarity principle allows us to

predict the quality factor of a prototype device through a measurement of the quality

factor on a scaled device. In order to determine the quality factor of a prototype

device at a pressure P0, we measure the quality factor at a pressure P0/n on a device

that has been scaled up by a factor of n.

2.2 Gas Damping in MEMS and NEMS

MEMS and NEMS have a wide range of applications, including AFM[1], gas

sensing[2], and mass spectrometry at both the atomic[3] and molecular scale[4].

An important characteristic of these devices is their quality factor, Q. For AFM

cantilevers, the minimum detectable force is ideally proportional to 1/Q[5]. For

cantilevers used in gas damping, the response time of the cantilever, τ0, is approx-

imately Q/ f0, where f0 is the resonant frequency of the device[6]. The response

time of the cantilever controls how quickly it responds to a change in the gas mixture.

Thus, the quality factor determines the sensitivity of the devices.

The quality factor is an important design parameter. For devices operating at

atmospheric pressure, the quality factor is generally dominated by gas damping.

Devices with a width on the order of tens to hundreds of nanometers operate in the

transition flow regime. In the transition flow regime, the calculation of the quality
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factor due to gas damping requires numerical simulations[7]. These simulations are

complex and time and resource intensive. The dynamic similarity principle offers a

simpler, alternate method to predict the quality factor; a measurement on a scaled

device is used to predict the performance of the prototype device.

The dynamic similarity principle allows us to measure the quality factor of a scaled

device at a scaled pressure and use that measurement to predict the quality factor of

the prototype device. The dynamic similarity principle has been used previously to

successfully predict the aerodynamic properties of aircraft using wind tunnels[8].

In that case, the prototype model is scaled down and the flow conditions are scaled

appropriately to determine the aerodynamic properties of the plane. We apply the

dynamic similarity principle in a novel endeavor: the prediction of fluid flows on

the nanoscale. In order to determine the quality factor of a prototype device at a

pressure P0, we measure the quality factor of a device that has been scaled up by a

factor of n at a pressure P0/n. We then use the measured quality factor to predict

the quality factor of the prototype at P0.

2.3 Theory

In this section, we discuss the governing equations for gas flows and the calculation

of the quality factor due to gas damping. We then then employ the dynamic similarity

principle to derive an expression for the quality factor of a prototype device from a

measurement of the quality factor of a scaled device.

Gas Damping

The theoretical model used to describe gas damping depends upon the Knudsen

number, Kn. The Knudsen number is the ratio of the mean free path of gas, λ, to

the critical length scale of the device, L0 [9].

Kn =
λ

L0
. (2.1)
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The mean free path of a gas is given in Eq. 2.2 [9]:

λ =
1

21/2πd2
0 ρgas

, (2.2)

where d0 is the molecular diameter and ρgas is the gas density. For N2 gas,

d0 = 3.75 × 10−10m [9]. We rewrite Eq. 2.2 in terms of the gas pressure, P, using

the ideal gas law, P = ρgaskBT .

λ =
kBT

21/2πd2
0P
, (2.3)

where kB is Boltzmann’s constant and T is the temperature. For a rectangular

cantilever, the critical dimension is b/2 [10], where b is the width of the cantilever.

We then rewrite the expression for the Knudsen number:

Kn =
1
b

21/2kBT
πd2

0P
. (2.4)

There are four regions of flow [7]. For Kn ≤ 10−2, the fluid surrounding the

device is treated as a continuum and the flow is governed by the Navier-Stokes

equations with the no-slip boundary condition; the velocity tangential to the surface

is zero. For 10−2 < Kn < 0.1, the no-slip boundary condition no longer applies. A

constant-slip velocity value is assumed at the boundary between the fluid and the

surface. The flow is governed by the Navier-Stokes equations, with corrections from

Maxwell’s velocity slip boundary condition and von Smoluchowski’s temperature

jump boundary condition. In the transition flow regime, (0.1 < Kn < 10), higher

order corrections are required for the governing equations for the stress tensor and

heat flux vector of the fluid; the flow is described by the Burnett equations. Deter-

mining the quality factor due to gas damping in this regime requires computational

simulations. In the free molecular flow regime, Kn ≥ 10. Devices operating in

the transition regime are of special interest. We can use the dynamic similarity to

predict the quality factor due to gas damping of these devices, obviating the need

for complex numerical simulations.
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Dynamic Similarity Principle

In order to test the dynamic similarity principle, we formulate a model for Q in

terms of the experimental parameters. Following the derivation given by Sader et

al. [10], we model the cantilever as a linear harmonic oscillator with one degree of

freedom. The damping force on the oscillator is proportional to the velocity of the

oscillator. We define Q as given in Eq. 2.5.

Q ≡ 2π
Estored

Ediss

�����ω=ωR

, (2.5)

where ωR is the radial resonant frequency in gas. Ediss is the energy dissipated

by the oscillator during once cycle of oscillation. For a linear harmonic oscillator,

Estored =
1
2 k A2, where k is the spring constant of the oscillator and A is the amplitude

of the oscillation. For a linear oscillator, the energy dissipated per cycle and the

energy stored per cycle are both proportional to A2. We rewrite Eq. 2.5,

Q = 2π
∂2Estored

∂A2

∂2Ediss

∂A2

�������ω=ωR

. (2.6)

By combining Eq. 2.6 with ∂2Estored

∂A2 = k, we determine a relationship between k

and the energy dissipated:

k = *
,

1
2π

∂2Ediss

∂A2

�����ω=ωR

+
-

Q. (2.7)

We now consider what properties affect the energy dissipation of the cantilever. The

energy dissipation depends upon the square of the oscillation amplitude, A, the gas

density, ρgas, the length scale of the resonator, L0, its radial resonant frequency in

gas, ωR, the fluid shear viscosity, µ, and the Knudsen number, Kn. However, we are

interested in finding 1
2π

∂2Ediss

∂A2

����ω=ωR

, instead of Ediss, because this property does not

depend upon A2, allowing us to reduce the number of variables by one. Thus, we

write the following expression for Ediss:

1
2π

∂2Ediss

∂A2

�����ω=ωR

= f
(
ρgas, L0, ωR, µ,Kn

)
, (2.8)
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where f is an undetermined function. We now use the Buckingham Pi theorem [11]

to reduce the number of variables and to nondimensionalize Eq. 2.8. We begin by

reformulating Equation 2.8:

g *
,

1
2π

∂2Ediss

∂A2

�����ω=ωR

, ρgas, L0, ωR, µ,Kn+
-
= 0, (2.9)

where g is another undetermined function different from f . The Buckingham

Pi theorem states that given a relationship of the form g(x1, x2, ..., xn) = 0, the n

parameters can be rewritten in terms of n−m independent dimensionless parameters.

m is usually the minimum number of dimensions required to specify the dimensions

of the parameters. In this case, the dimensions required are mass, length, and time,

which leads to m = 3 and n − m = 3. We form three independent dimensionless

parameters:

Π =
1

ρgasL3
0ω

2
R

*
,

1
2π

∂2Ediss

∂A2

�����ω=ωR

+
-
, (2.10a)

Re =
ρgasL2

0ωR

η
, (2.10b)

Kn =
λ

L0
. (2.10c)

Re is the Reynolds number. We now rewrite 2.8:

Π = Ω (Re,Kn) , (2.11a)

1
2π

∂2Ediss

∂A2

�����ω=ωR

= ρgasL3
0ω

2
RΩ (Re,Kn) . (2.11b)

We use Eq. 2.7 to rewrite Eq. 2.11b in terms of Q.

k = ρgasL3
0ω

2
RΩ (Re,Kn) Q (2.12)

This equation is close to the desired result; however, there is still size dependence

in k, the stiffness of the oscillator. We eliminate k from the equation. We note that

ρavL3
0ω

2
vac/k, the ratio of the kinetic energy to potential energy, depends upon the
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shape of the oscillator and not its size. ρav is the average density of the device and

ωvac is the resonant frequency in vacuum. We combine these results, yielding

Q =
ρavω

2
vac

ρgasω
2
R

1
Π (Re,Kn)

. (2.13)

We next consider ωvac

ωR
. Sader [12] has shown that for devices with Q� 1, this ratio

is approximately equal to 1. For these types of devices, the frequency shift due to

viscous damping effects is negligible. We rewrite Eq. 2.13,

Q =
ρav

ρgas

1
Π (Re,Kn)

(2.14)

We now have an expression for Q, in terms of Re and Kn.

We next determine the conditions required for the model and prototype flows to be

similar. Following Fox et al. [11], the first condition is that the model and prototype

are geometrically similar. They must be the same shape; all dimensions must be

scaled by a constant scale factor betweenmodel and prototype. The second condition

is that the flowsmust be kinematically similar. The velocities at corresponding points

must have the same direction and only be different by a constant scale factor. The

third and most restrictive condition is that the flows are dynamically similar. In

this case, the force distributions are parallel and scaled by a constant factor at all

points. To ensure dynamic similarity between the model and prototype flows, the

governing dimensionless groups obtained from the Buckingham Pi theorem must

have the same value for both flows.

At this point, it is unclear how many samples of (Kn,Re) pairs are required to

experimentally determine Π (Re,Kn). We consider the product of ReKn:

ReKn = *
,

ρgasL2
0ωR

µ
+
-

(
λ

L0

)
, (2.15a)

ReKn =
(
ρgasλ

µ
L0ωvac

)
ωR

ωvac
. (2.15b)
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ReKn =
(
ρgasλ

µ
L0ωvac

)
(2.15c)

We have used ωR

ωvac
≈ 1 to simplify the equation. ρgasλ is independent of pressure.

ρgasλ = ρgas ×
1

21/2πd2
0 ρgas

=
1

21/2πd2
0

(2.16)

L0ωvac is independent of the oscillator size. Thus, ReKn is a constant, independent

of pressure or the critical dimension of the device. We do not need to explore the

entire 2D phase space; for any given value of Kn, the value of Re is fixed. We

rewrite the expression for Q in terms of Kn:

Q =
ρav

ρgas

1
Π (Kn)

(2.17)

We also remove the dependence on ρav, the density of the device, by rewriting Q in

terms of G(Kn, a dimensionless function inversely proportional to Π (Kn) ρ0/ρav,

where ρ0 is a normalization factor.

Q =
ρ0
ρ

H (Kn) (2.18)

We now have an equation that will predict the quality factor of the model device

based upon measurements on a scaled prototype device.

2.4 Device Fabrication

We fabricated a variety of devices with different shapes and aspect ratios to test

the principle of dynamic similarity. We used 4” silicon wafers coated with either

100 nm, 300 nm, or 500 nm of low stress silicon nitride (SiN) on both sides to

fabricate the devices. We scaled all dimensions of the device with thickness; the

300 nm devices had a length three times longer than the 100 nm devices and a width

three times wider than the 100 nm devices. The 500 nm devices had a length five

times longer than the 100 nm devices and a width five times wider than the 100



11

SiN

SiN
Si

1. Photolithrography to
    define etch window.

SiN

SiN
Si

2.  Dry etch.

SiN

SiN

3.  KOH etch.

Si

4. Photolithography followed
    Cr deposition.

SiN

SiN
Si

5.  Dry release etch followed 
     by Cr removal.

SiN

SiN
Si

SiN

SiN
Si

6.  Deposition of Au/Cr layer.

Figure 2.1: Device Fabrication

nm devices. We used photolithography to define etch windows on the backside

of each wafer, followed by a dry etch to remove the SiN. We then used a KOH

etch to remove the silicon from the selected areas to form SiN membranes on the

front side of the wafer. We used electron beam lithography to define cantilevers

along the edges of the membranes. We deposited either a layer of Cr or a Cr/Au

layer as an etch mask. We dry etched the silicon nitride membranes to define the

cantilevers. We then removed the metal layer(s) with a wet etch. All of the devices

were then coated with a Cr/Au bilayer for reflectivity; the Cr layer served as an

adhesion layer for the Au layer. A thermal evaporator was used for the 100nm

and 500nm devices, while an electron beam evaporator was used for the 300nm

devices. Prior to deposition of the metal layer on the devices, we performed a test

deposition on a SiN coated SOI wafer; the wafer had been patterned with rectangles

using photolithography. After liftoff, we measured the step height of the bilayer

rectangles with an atomic force microscope. We used the step height to calibrate

the subsequent metal deposition on the devices. The 500nm devices had a 3nm
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layer of Cr with a 100-110nm thick layer of Au on top. The 300nm devices had

a 3nm layer of Cr with a 60-66nm layer of Au on top. The 100nm devices had a

3nm layer of Cr with a 20-22nm layer of Au on top. The reflective layer was not

deposited prior to the etch of the SiN membrane because the etch would have also

etched the Au, leaving a layer of unknown thickness. The thickness of the metal

layers must be within 10% of the desired thickness to ensure geometric similarity

between the devices and to ensure that the density of the devices remains constant.

Colorized SEM images of the 100nm set of devices are shown in Figure 2.2. As

shown in Figure 2.2, we fabricated six types of devices. On Die A, we fabricated

three rectangular cantilevers with differing aspect ratios (length:width): 10:1, 5:1,

and 10:3. Each device had a different Knudsen number at the same pressure. On Die

C, we fabricated three cantilevers of various shapes: a square paddle head cantilever,

a triangular cantilever, and a cantilever with legs. The square paddle head cantilever

is often used for torsional sensing applications, such as torsional magnetometry used

for gas sensing [13]. The triangular cantilever shape is used in AFM measurements

that require torsional and lateral stability, such as contact AFM imaging [14]. The

cantilever with legs is often used in gas sensing measurements [2], since the legs

allow piezoresitive detection of the cantilever motion.

2.5 Experimental Setup

An overview of the experimental setup is shown in Figure 2.3. We used optical

interferometry to measure the quality factors of the devices with both a network

analyzer and a spectrum analyzer. For the network analyzer measurements, we used

a piezoelectric shaker to actuate the cantilevers. We placed the devices in a vacuum

chamber and measured the quality factor over a range of pressures, from 3mT to

760T.

A schematic of the optical interferometry setup is shown in Figure 2.4. The simple
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Colorized images of 100 nm devices, with L=10µm. Yellow is gold;
purple is SiN. All images are taken at 7500x magnification. (a)Square paddle head
cantilever. (b)L:w=10:1 cantilever. (c)Triangular cantilever. (d)L:w=5:1 cantilever.
(e)Cantilever with legs. (f)L:w=10:3 cantilever.

interferometer is very similar to the design used by Rugar et al. [15]. The first

component of the detection system is the laser. We used an amplitude stabilized

HeNe laser to minimize fluctuations in the beam intensity. Fluctuations in the
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Figure 2.3: Experimental setup for measurements of device quality factor vs pres-
sure. The cantilever is in a vacuum chamber with a needle valve used to control
the pressure. The cantilever is mounted on a piezoelectric shaker. The optical
interferometery setup has been simplified to the key components: the HeNe laser,
the beam splitter (PBS), and the photodetector (PD) used to detect the motion. The
network analyzer outputs a drive signal on RF out; it measures the signal from the
PD on B. The spectrum analyzer measures the signal from the PD on B as well.
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Figure 2.4: Optical Setup
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intensity of the laser are indistinguishable from fluctuations caused by a change in

the path length; consequently, amplitude stabilization reduces the displacement noise

floor for the measurement. Following the laser is an optical isolator, which prevents

any light reflected from components further along the beam path from entering the

laser; the reflected light could destabilize the laser. The next component is a half

wave plate in a rotation mount; the polarization is adjusted for the maximum amount

of light to enter the interferometer. Following the half wave plate is a neutral density

filter, used to attenuate the beam power. We used a ND=1.5 filter while making

measurement for the 500nm and 300nm devices and a ND=1.0 filter while making

measurements for the 100nm devices. We chose these levels of attenuation to limit

heating of the device under measurement, in order to prevent drift in the resonant

frequency. We determined these power levels by increasing the attenuation from the

neutral density filter and measuring the resonant frequency. The speed of sound,

cs =
√

E/ρ, is temperature dependent, which leads to the temperature dependency

of the resonant frequency. We increased the attenuation until the resonant frequency

no longer shifted with an increase in attenuation. A 20x beam expander follows.

When the beam exits the laser, it has a 1/e2 diameter of 0.7mm. The 20x beam

expander increases the 1/e2 diameter to 14mm; the beam expander is required to

minimize the spot size at the sample. The minimum spot size at the sample, 2w0, is

set by the diffraction limit. The minimum spot size is given in Eq. 2.19 [16]:

2w0 = 1.83
f λ
D
, (2.19)

where f is the focal length of the lens, λ is the wavelength of light, and D is the

diameter of the input beam. Due to constraints on the diameter of the vacuum

chamber, the minimum focal length of the lens is 150mm, which corresponds to a

spot size of 12.4µm at the sample.

The next component in the optical setup is the polarizing beam splitter (PBS) cube.
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The PBS splits the beam into its two orthogonal polarization components. The

PBS also prevents ghost reflections, which would occur with a plate beam splitter.

Following the PBS is a quarter wave plate in a rotation mount; the quarter wave plate

is required to rotate the polarization of the beam by 90◦ so that the beam reflected

from the sample is directed to the photodetector. The light is then focused through

an achromatic lens mounted in a kinematic mirror mount on a motorized XYZ stage.

We have chosen an achromatic lens to reduce aberrations in the beam. The lens is

also chosen to ensure the highest numerical aperture possible. The XYZ stage is

used to move the beam along the device during alignment.

The beam then enters the vacuum chamber through a quartz window with an anti-

reflective coating. A portion of the beam hits the device and is reflected back along

the optical path until it reaches the PBS, where it is directed to the photodetector.

The remainder of the beam is reflected by the piezoshaker underneath the chip

containing the cantilevers. Prior to entering the photodetector, the beam traverses

a lens with a focal length of 100mm, to reduce the beam size, since the diameter

of the active area of the photodetector is 0.8mm. The photodetector used is a New

Focus 1801 photodetector, which has a bandwidth of DC-125MHz and a noise floor

of 3.3 pW/
√

Hz. The photodetector is mounted on an XYZ translation stage for

alignment with the beam. The noise floor is set by the shot noise on the detector

and the device responsivity.

2.6 Measurements

We measured the quality factors of the devices over a range of pressures. We

measured two quantities: the intrinsic quality factor of the devices and the quality

factor due to gas damping. We used the optical setup to detect the motion of

the devices and a piezoshaker to actuate them. We mounted a piezoshaker with

silver paste onto a PCB and then mounted the chip containing the cantilevers to the
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piezoshaker with superglue. We then wire bonded the piezoshaker to the PCB. We

placed the device in a vacuum chamber pumped with a scroll pump with a base

pressure of ≈ 3 mTorr. We varied the pressure in the chamber by adding N2 gas

through a needle valve attached to the chamber; the pump was separated from the

chamber by a valve. We measured the pressure with a MKS 317 Pirani gauge,

accurate to 1% of the indicated decade, with two digits of precision.

We measured the intrinsic Q of each device at a few mTorr with an Agilent 4395A

Network/Spectrum/Impedance Analyzer in network analyzer mode. We drove the

devices with the piezoshaker and measured the photodetector output. We used a

network analyzer to measure the intrinsic Q because measurements of the ther-

momechanical noise spectrum with the 4395A in spectrum analyzer mode had a

variance of about 10%-15% of the measured Q. Such inconsistent measurements

would require several (about 10) measurements to acquire an accurate value for Q.

An accurate value for the quality factor is required to convert from the measured Q

to the Q due to gas damping. The measurements made with the network analyzer

had a variance of less than 1%, leading to significantly faster measurements. We

fitted the resonance peak to the expected response of a simple damped harmonic

oscillator using a non-linear least squares fit in MATLAB.

However, we were unable to use the network analyzer (NA) to make the pressure vs

Q measurements because laser noise and the response of the piezoshaker at higher

pressures altered the shape of the response, rendering it no longer a Lorentzian. The

thermomechanical noise spectrum measured with the spectrum analyzer (SA) was

always Lorentzian, occasionally with peaks from the laser noise present. The laser

noise is present even when the beam splitter is replaced with a mirror to directly

send the beam to the photodetector. The laser has noise peaks at the following

frequencies in kHz: 36.7, 73.3, 110, 147, 183, 220, 257, 293, 330, 367, 403,

440, 477. A fast Fourier transform of a ring down measurement collected with an
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Figure 2.5: Frequency spectrum of laser noise. The peak at 204.6kHz corresponds
to the resonant frequency of the device.

Agilent 54845A oscilloscope for a cantilever with a resonant frequency of 204.6kHz

is shown in Figure 2.5; the laser noise peaks are clearly visible. We could easily

remove the peaks from the laser noise during the fitting of the thermomechanical

noise spectrum. The thermomechanical displacement noise spectral density for a

cantilever is given by Eq. 2.20 [17].

Sth
x (ω) =

ω0

(ω2
0 − ω

2)2 + (ω0ω/Q)2
4kBT

Me f f Q
, (2.20)

where ω0 is the resonant frequency of the cantilever, Q is the quality factor, kB

is Boltzmann’s constant, T is the temperature, and Me f f is the effective mass of

the cantilever. For a cantilever with an aspect ratio (L/b) > 3, Me f f ≈ 0.24M

[18]. Shown in Figure 2.6 is the thermomechanical noise peak for 500nm Die A

Device #1.1 at P=3.7 mTorr. Figure 2.7a shows pressure vs quality factor for a

measurement run. Figure 2.7b shows ωR/ωvac for these devices, where ωvac is the
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Figure 2.6: Thermomechanical noise peak.

resonant frequency measured at the lowest pressure. ωR/ωvac ≈ 1, validating our

earlier assumption.

We fitted the thermomechanical noise peak to Eq. 2.20 using a non-linear least

squares fit in MATLAB. We measured pressure vs Q for each device with the

spectrum analyzer, with three measurements below 10 mTorr. The rest of the

measurements were logarithmically spaced for four measurements each decade,

with the exception of 100 Torr-1000 Torr; the measurement was terminated at 760

Torr. For the 500nm devices, a measurement was made at 150 Torr instead of

170 Torr to enable comparison with the quality factor of the 100nm devices at

760 Torr. For the 300nm devices, an additional measurement was made at 250

Torr for the same reason. We plotted pressure vs measured quality factor for each
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Figure 2.7: Data for measurement run #3.1 on 500 nm 10:1 aspect ratio device. (a)
Pressure vs quality factor. (b) Pressure vs ωR/ωvac.

device in Figures 2.8-2.13. For each thickness and device shape, we performed

the measurement on two devices. We performed each measurement on each device

twice. In the figures, each device is labeled by device thickness (100nm, 300nm,

or 500nm), position on the wafer (#1-#6), and measurement run (#x.1 or #x.2). We

group the measurements by either aspect ratio for the Die A devices or shape for

the Die C devices. For these measurements, the uncertainty in the measurement is

smaller than the markers used to display the data.

2.7 Analysis

Wewish to validate the dynamic similarity by used the measurements on the 300 nm

and 500 nm devices to predict the quality factor of the 100 nm devices at atmosphere,

which corresponds to a pressure of 760 Torr. We rewrite Equation 2.18 in terms

of gas pressure, instead of gas density, and the measured quality factor due to gas

damping, QGAS (Kn), as given by Equation 2.22.

Qscaled (Kn) =
P

760Torr
QGAS (Kn), (2.21)

where P is the pressure.

QGAS (P) =
[

1
Q(P)

−
1

Q0

]−1
, (2.22)
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Figure 2.8: Plot of Pressure vs Q for Die A Cantilevers with Aspect Ratio 10:3
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Figure 2.9: Plot of Pressure vs Q for Die A Cantilevers with Aspect Ratio 5:1
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Figure 2.10: Plot of Pressure vs Q for Die A Cantilevers with Aspect Ratio 10:1
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Figure 2.11: Plot of Pressure vs Q for Die C Cantilevers with Legs
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Figure 2.12: Plot of Pressure vs Q for Die C Square Headed Cantilevers
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Figure 2.13: Plot of Pressure vs Q for Die C Triangular Cantilevers
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where Q is the quality factor measured at P and Q0 is the intrinsic quality factor of

the device. The scaled quality factor, Qscaled provides the predicted quality factor

for the 100 nm devices from the 300 nm and 500 nm devices. We chose a reference

of 760 Torr because we wish to predict the quality factor of the devices at 760 Torr.

We then plotted the data in terms of Kn vs Qscaled , which are shown in Figures

2.14-2.19.

The Die A plots, Figures 2.14-2.16, also show the free molecular flow estimate for

the quality factor due to gas damping, QFMF , as a solid black line and the continuum

theory estimate for the quality factor due to gas damping, QVisc, as a dashed black

line. We used the parameters for one of the 500 nm devices to calculate the estimates

for both flow regimes and plot both estimates in terms of the corresponding scaled

quality factor. We used the parameters of the 500 nm devices to estimate the scaled

quality factor in order to verify the dynamic similarity principle; if the dynamic

similarity principle holds, the data from all of the devices should fall along the

asymptotes for estimate of the scaled quality factor for the 500 nm device.

The quality factor in the free molecular flow regime is given in Eq. 2.23 [19]:

QFMF =
K (ε )ρdevtωvac

P
×

(
2R0T

M0

)1/2
, (2.23)

where R0 is the gas constant, 8314J-(kg-mole-K)−1, T is the temperature in K, M0

is the molar mass of N2 gas in kg/mol, ρdev is the density of the device, and t is the

thickness of the device. K (ε ) =
√
π/(4 + π + [4 − π]ε ), where ε is the coefficient

of specular reflection at the surface of the cantilever. ε = 1 corresponds to specular

reflection and ε = 0 corresponds to diffuse reflection. For the simulation, we use

ε = 0, which provides the best fit to the data. For the continuum flow regime, the

quality factor is given by Eq. 2.24 [12].

QVisc =

4µ
πρgasb2 + Γr (ωR)

Γi (ωR)
, (2.24)



25

where µ is the mass per length of the cantilever, ρgas is the density of the gas

surrounding the cantilever, Γr (ω) is the real part of the hydrodynamic function,

Γi (ω) is the imaginary part of the hydrodynamic function, and ωR is the resonant

frequency of the cantilever in the absence of dissipation. For Q >> 1, ωR ≈ ω0.

For a cantilever with a circular cross-section, the hydrodynamic function has an

exact analytic result [12], given in Eq. 2.25:

Γcirc (ω) = 1 +
4iK1

(
−i
√

iRe
)

√
iReK0

(
−i
√

iRe
) , (2.25)

where Ki are modified Bessel functions of the second kind and Re is the Reynolds

number. For a cantilever of width b and radial resonant frequency ωR, the Reynolds

number is given by Eq. 2.26 [12].

Re =
ρgωRb2

4η
, (2.26)

where η is the viscosity of the gas. For N2, η=16.58µP-s [9]. For Re ∈
[
10−6, 104

]
,

we can approximate the hydrodynamic function for a rectangular cantilever, Γrect (ω),

to within 0.1% using the expressions in Eq. 2.27 [12]:

Γrect (ω) = Ω (ω) Γcirc (ω) , (2.27a)

Ωr (ω) =
(
0.91324 − 0.48274τ + 0.46842τ2 (2.27b)

−0.12886τ3 + 0.044055τ4 − 0.0035117τ5 + 0.00069085τ6
)

×
(
1 − 0.56964τ + 0.48690τ2 − 0.13444τ3

+0.045155τ4 − 0.0035862τ5 + 0.00069085τ6
)−1

Ωi (ω) =
(
−0.024134 − 0.029256τ + 0.016294τ2 (2.27c)

−0.00010961τ3 + 0.000064577τ4 − 0.000044510τ5
)

×
(
1 − 0.59702τ + 0.55182τ2 − 0.18357τ3

+0.079156τ4 − 0.014369τ5 + 0.0028361τ6
)−1

,
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τ = log10 Re. (2.27d)

We now combine Equations 2.24, 2.25, and 2.27 to numerically evaluate the quality

factor due to gas damping for a given rectangular cantilever. We use the expression

in Eq. 2.23 to calculate QFMF for Kn>1 and combine Equations 2.24, 2.25, and

2.27 to calculate QVisc for Kn < 1.

In Figures 2.14-2.16, the data for all devices is in reasonable agreement with the

predicted asymptotes in the free molecular flow regime and in the viscous flow

regime. The majority of the data is within one to two standard deviations of the

predicted value. There is more variation in the data at large Kn values due to

the subtraction process used to calculate Qscaled , as well as the fluctuations in the

measurement of the quality factor made with the spectrum analyzer. For the data

at small Kn values, the error bars on the data are smaller than the markers used to

plot the data. In addition, for each of the devices, the majority of the data is within

one standard deviation of the line defined by Qscaled (Kn) validating the dynamic

similarity principle as applied to NEMS.

We also validate the dynamic similarity by comparing the measured value of Q

for each 100 nm thick device at 760 Torr with the values predicted by the 300 nm

and 500 nm thick devices. These measurements correspond to Knudsen numbers

between 0.1 and 0.01, depending upon the width of the 100nm device. We provide

the measured values for Q at P0=760 Torr for the 100 nmDie A devices in Table 2.1,

in the row labeled 100 nm. We provide the value for Q at P0 for the 100 nm thick

device predicted by the measurement of Q at P0/3 ≈ 250T for the 300 nm thick

device in the row labeled 300nm. We provide the value for Q at P0 for the 100 nm

thick device predicted by the measurement of Q at P0/5 ≈ 150T for the 500 nm thick

device in the row labeled 500 nm. The columns contain the data for each aspect

ratio. The data for each device shape from Die C is similarly presented in Table 2.2.
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Figure 2.14: Plot of Kn vs QSC ALED for Die A Cantilevers with Aspect Ratio 10:3

In each case, the predicted values are roughly within 10% of the measured value.

Die A
Scaling 10:3 5:1 10:1
Thickness Q
100 nm 58 49 36
300 nm 56 50 36
500 nm 60 55 38

Table 2.1: Measured and pre-
dicted quality factors due to gas
damping for Die A devices. Each
column corresponds to a different
aspect ratio.

Die C
Type Cantilever Square Head Triangular
Thickness Q
100 nm 39 36 46
300 nm 41 36 48
500 nm 38 36 50

Table 2.2: Measured and predicted quality fac-
tors due to gas damping for Die C devices. Each
column corresponds a different device shape.

2.8 Conclusion

We demonstrate that the dynamic similarity principle accurately predicts nanoscale

flows, obviating the need for complex and time consuming numerical simulation
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Figure 2.15: Plot of Kn vs QSC ALED for Die A Cantilevers with Aspect Ratio 5:1
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Figure 2.16: Plot of Kn vs QSC ALED for Die A Cantilevers with Aspect Ratio 10:1
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Figure 2.17: Plot of Kn vs QSC ALED for Die C Cantilevers with Legs
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Figure 2.18: Plot of Kn vs QSC ALED for Die C Square Headed Cantilevers
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Figure 2.19: Plot of Kn vs QSC ALED for Die C Triangular Cantilevers

to predict the quality factor of nanoscale devices. We have applied the dynamic

similarity principle to accurately predict the quality factor of 100nm thick devices,

from measurements made on scaled prototype devices, as shown in Tables 2.1 and

2.2. As shown in Figures 2.14-2.16, the quality factors measured agree reasonable

well with the quality factor predicted by the analytical expression for the quality

factor in the free molecular flow regime and the viscous damping regime. Thus,

we have demonstrated that the dynamic similarity principle accurately describes the

variations of the quality factor due to gas damping for a wide range of devices of

various shapes and aspect ratios.
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C h a p t e r 3

PHASE NOISE IN OSCILLATORS

Among their many applications, NEMS and MEMS are employed as frequency

shift sensors and as frequency sources. Specifically, they are used as frequency shift

sensors in applications such as magnetic resonance force microscopy (MRFM) [20],

NEMS gas chromatography [21], and NEMS mass spectrometry [4]. They are also

used as frequency sources in timing applications [22–24] and communications [25].

For frequency shift sensors and for oscillators, the principle figure of merit is the

frequency stability of the device. The theoretical limit to frequency stability is set

by thermomechanical noise, or ultimately, quantum fluctuations for nanomechanical

resonators. However, the frequency stability is currently limited by an unknown

noise source in the mechanical domain, which we refer to as anomalous phase noise

(APN). Anomalous phase noise has been observed by many researchers in a wide

variety of MEMS and NEMS [26–34].

In this chapter, we begin with an overview of oscillators. We discuss the methods

used to characterize noise in oscillators: amplitude noise, phase noise, fractional

frequency noise, and Allan deviation. We compare the two measurement techniques

used to quantify phase noise: open loop measurements and closed loop measure-

ments. We discuss the frequency dependence of various physical noise sources. We

also discuss the power law dependence of various phase noise sources and link them

to noise sources in the oscillator feedback loop and the NEMS or MEMS resonator.

We end with a discussion of the current state of our knowledge of APN.
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3.1 Overview of Oscillators

In this section, we provide an overview of oscillators and the effects of phase

and frequency fluctuations on the oscillator. Following Rubiola [35], an oscillator

delivers a periodic signal. We model the oscillator as a loop composed of a lossy

resonator with a transfer function H ( jω) and an amplifier with gain A, as shown in

Figure 3.1. The resonator has a resonant frequency of Ω0; we choose to operate the

H(jω)

A

out

Figure 3.1: Diagram of a feedback oscillator.

oscillator at Ω0. The feedback conditions required for the resonator to oscillate are

given by the Barkhausen condition:

|AH ( jω) | = 1, (3.1a)

arg AH ( jω) = 0. (3.1b)

In order to determine the effect of noise on the oscillator, we first consider an ideal

oscillator and then add amplitude and phase fluctuations and find the resulting noise.

An ideal oscillator delivers a signal v(t) = V0 cos(Ω0t + φ), where V0 is the peak

amplitude, Ω0 = 2π f0 is the resonant frequency, and φ is the phase shift, as well

as higher order harmonics of Ω0. For an ideal oscillator, we choose φ = 0. A real

oscillator has fluctuations in both the amplitude and the phase of the signal. Figure

3.2 demonstrates the case of either phase noise or amplitude noise in the signal v(t).

We modify our equation for v(t) to include these two noise sources.
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V(t)

t

φ(t)
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Figure 3.2: Comparison of phase and amplitude fluctuations. (a) Amplitude fluctu-
ations in v(t) shown in blue. (b) Phase fluctuations in v(t) shown in purple.

v(t) = V0 [1 + α(t)] cos
[
Ω0t + φ(t)

]
. (3.2)

α(t) is the random fractional amplitude; |α(t) | � 1. φ(t) is the random phase in

radians; |φ(t) | � 1. The phase fluctuations in Equation 3.2 can also be represented

as frequency fluctuations:

v(t) = V0 [1 + α(t)] cos
[
Ω0t +

∫
(∆ω) (t)dt

]
, (3.3)

where (∆ω) (t) = φ̇(t) is the angular frequency fluctuation. We next determine how

to characterize the noise generated by these fluctuations using frequency stability

measurements.

3.2 Frequency Stability Measurements

Frequency stability is characterized through two measurements: measurements of

the amplitude noise and measurements of the phase noise. Phase noise is charac-

terized through direct measurements of the phase noise, and by measurements of

the frequency noise and by Allan deviation. Allan deviation provides a method of

characterizing long term drifts in phase.
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Amplitude Noise

Amplitude noise arises from fluctuations in the amplitude of the signal v(t). Ampli-

tude noise is defined as the spectral density of the fractional amplitude fluctuations,

Sa ( f ) [36].

Sa ( f ) = α2
RMS ( f )

1
BW

, (3.4)

whereαRMS ( f ) is themeasured rootmean square (rms) value of fractional amplitude

fluctuations in a bandwidth of BW containing the frequency f .

We do not consider amplitude noise in the remainder of this thesis. Generally,

feedback oscillators and phase locked loops intentionally include amplitude limiters,

which suppress amplitude noise [37]. As we will discuss in Chapter 5, we employ

an automatic gain control circuit in the implementation of the oscillator. The AGC

circuit provides a constant output over a range of input powers, eliminating amplitude

noise.

Phase Noise

We next consider phase noise, Sφ( f ). Phase noise is the power spectral density of

φ(t).

Sφ( f ) = lim
T→∞

1
T

∫ T

0

∫ T

0
EEE

[
φ∗(t)φ(t])

]
ei2π f (t−t ′)dtdt′. (3.5)

EEE [x] is expected value of x. The phase noise is also described by L ( f ), where

L ( f ) =
1
2

Sφ( f ), (3.6)

and L ( f ) is measured in dBc/Hz. The units for L ( f ) arise from the obsolete

definition of L ( f ) as the ratio of powers:

L ( f ) =
SSB noise power in a 1 Hz bandwidth offset from the carrier by f

Carrier power
,

(3.7)

where the carrier is equal to Ω0. We use Sφ( f ) to describe phase noise throughout;

however, we have included the alternate definition of L ( f ) because it is the mea-
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surement used by manufactures of oscillators and instrumentation. A phase noise

measurement performed using the phase noise application on a signal analyzer such

as the Keysight PXA N9030A yields a measurement of L ( f ), which we must con-

vert to Sφ( f ) in order to compare with the theoretical sources of phase noise; the

conversion is given by Equation 3.6.

Frequency Noise

We next characterize the fluctuations in the oscillator as occurring in the instanta-

neous frequency, ∆ f (t), instead of the phase, φ(t).

S∆ f ( f ) = f 2Sφ( f ). (3.8)

However, the fractional frequency noise, Sy ( f ), is more commonly used, where

y(t) = ∆ f (t)
f0

is the fractional frequency.

Sy ( f ) =
f 2

f 2
0

Sφ( f ). (3.9)

We measure Sφ( f ) instead of S f ( f ) or Sy ( f ) due to the ease of the phase noise

measurement with instruments such as the Keysight PXA 9030A, which has a

dedicated application for phase noise measurement. However, as we will later

demonstrate in Chapter 4, it is often easiest to theoretically determine the fractional

frequency noise and to then use that expression to find the phase noise.

Allan Variance

Allan variance characterizes phase noise in the time domain. Allan variance mea-

sures long term drifts in frequency. However, recent publications in the NEMS

community [34] have used Allan variance or Allan deviation to characterize short

term drifts in frequency. This measurement usage is contrary to the standard char-

acterization of phase noise, which utilizes L ( f ).

Amplitude noise, phase noise, and frequency noise all characterize oscillator noise

in the frequency domain. Allan variance characterizes oscillator noise in the time
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domain. A frequency counter measures f̄ k (τ), the average of the instantaneous

frequency f (t) over a time interval τ, beginning at time kτ.

f̄ k (τ) =
1
τ

∫ (k+1)τ

kτ
f (t)dt. (3.10)

We rewrite f̄ k (τ) in terms of the average fractional frequency, ȳk (τ), where ȳk =

( f̄ k − f0)/ f0 and f0 = Ω0/2π.

ȳk (τ) =
1
τ

∫ (k+1)τ

kτ
y(t)dt, (3.11)

where y(t) = ( f (t) − f0)/ f0. We now find the Allan variance, σ2
A(τ), assuming M

contiguous samples of ȳk (τ).

σ2
A(τ) =

1
2(M − 1)

M∑
k=1

(
ȳk+1 − ȳk

)2 . (3.12)

The Allan deviation σA(τ) is the square root of the Allan variance: σA(τ) =√
σ2

A(τ). The Allan variance is related to the fractional frequency noise, Sy ( f ).

σ2
A(τ) =

∫ ∞

0

sin4(πτ f )
(πτ f )2 Sy ( f )df . (3.13)

3.3 Comparison of Frequency Stability Measurement Techniques

We next consider the implementation of two of the frequency stability measurement

techniques discussed in Section 3.2: Allan deviation and phase noise. Allan de-

viation measurements [34] correspond to an open loop measurement, as shown in

Figure 3.3. The resonator is driven at a constant frequency and a constant ampli-

tude by a frequency source; initially, the driving frequency is equal to the resonant

frequency, Ω0. As time passes, the resonant frequency of the resonator drifts. The

in phase and out of phase components of the amplitude of the resonator are tracked

with a lock-in amplifier; the phase shift and resulting frequency shift are extracted

from the amplitude data. The frequency source is also used to provide a reference

frequency input to the lock-in amplifier. The measurement setup required for Allan
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H(jω)Ω0 Lock-In
Reference

In

Figure 3.3: Allan deviation measurement setup. The frequency source, shown
in pink, drives the resonator, shown in purple, at a constant frequency Ω0 and a
constant drive level; it also provides a reference frequency to the lock-in amplifier.
The lock-in, shown in orange, is used to track the amplitude of the resonator.

deviation has fewer components than the measurement setup for phase noise, po-

tentially eliminating sources of noise from the measurement. However, the Allan

deviation measurement can only access the linear operating points of the resonator;

carefully chosen nonlinear operating points can lead to a reduction in phase noise

[31]. Additionally, Allan deviation has historically been used to measure long

term drift, on the order of hours to days, by the frequency stability and oscillator

community.

Phase noise measurements [31] correspond to a closed loop measurement, as shown

in Figure 3.4. Specifically, for a phase feedback oscillator, the phase noise is

measured at the out port with an instrument such as the Keysight PXA 9030A

Signal Analyzer. The signal from the resonator is split between the out port and

the amplifier. The amplifier used is an automatic gain control (AGC) circuit, which

has a constant output for a range of inputs. The AGC sets the amplitude of the

resonator by setting the amplitude of the signal fed back to the resonator. The output

of the AGC is fed to a phase shifter and then back to the resonator. For the closed

loop measurement, both linear and non-linear operating points are accessible. In

addition, phase noise is the measurement typically used by the frequency stability

and oscillator community to characterize the short term stability of oscillators.

However, the closed measurement contains more electronics, which can contribute

additional sources of noise to the measurement.
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H(jω)

φAGC

Signal
Analyzer

Figure 3.4: Phase noise measurement setup. The resonator, shown in purple, is
placed in a loop with an amplifier and a phase shifter. The amplifier, shown in blue,
is an automatic gain control circuit (AGC). The phase shifter is shown in green. The
output of the resonator is split between the signal analyzer and the amplifier.

3.4 Sources of Frequency Noise

We first consider sources of frequency noise and the frequency dependence of these

noise sources. There are three types of frequency noise: white noise, flicker noise,

and higher order frequency noise. We discuss how these noise sources translate

into phase noise in oscillators in Section 3.5. We conclude with the power law

dependence of phase noise.

White Noise

White noise is frequency independent in the frequency domain.

S∆ f ( f ) = 1. (3.14)

Possible sources of white noise include thermal noise and shot noise in the electrical

domain, and thermomechanical noise in the mechanical domain. Johnson noise in

resistors is an example of thermal noise. The voltage noise power spectral density

in a 1 Hz bandwidth is

Se,n( f ) = 4kBT R, (3.15)
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where R is the resistance of the resistor,T is the temperature, and kB is the Boltzmann

constant. Another source of white noise is shot noise. The current noise power

spectral density in a 1Hz bandwidth is

Si,n( f ) = 2qI, (3.16)

where q is the charge of the electron and I is the mean current. Amplifiers and

photodetectors are both sources of white noise in oscillators. We next consider a

source of white force noise in the mechanical domain, arising from thermodynamic

fluctuations. Mechanical resonators have dissipation due to damping, which leads

to fluctuations through the Fluctuation-Dissipation Theorem[38]. The equivalent

force noise power spectral density in a 1Hz bandwidth is

SF ( f ) = 4kBTγ, (3.17)

where γ is the damping of the resonator.

Flicker Noise

Flicker noise is characterized by its f α with α ≈ 1 frequency dependence.

S∆ f ( f ) =
1
f
. (3.18)

Flicker noise is present in the voltage fluctuations observed across resistors [39–41].

Amplifiers are also sources of flicker noise due to the non-linearity of the gain and

the modulation of the gain, which lead to parametric up conversion of flicker noise.

3.5 Power Law Dependence of Phase Noise

The power law dependence of phase noise characterizes the type of noise and the

physical process underlying the noise. We model Sφ( f ) as a power law function,

Sφ( f ) =
0∑

i=−4
bi f i . (3.19)
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In Table 3.1, we summarize the power law dependence of common phase noise

processes in feedback oscillators. Using Equation 3.13, we map the various noises

in phase noise to the corresponding power laws in Allan deviation. In Table 3.2, we

summarize the corresponding power law dependence for Allan deviation [42]. In

Figure 3.5, we plot the frequency dependence of the various phase noise sources.

In Figure 3.6, we plot the corresponding dependence for Allan deviation. By

considering each power law dependence for phase noise, we will later quantify

which sources are viable candidates for APN.

Law Noise Process
f 0 white phase noise (WPN)
f −1 flicker phase noise (FPN)
f −2 white frequency noise (WFN)
f −3 flicker frequency noise (FFN)
f −4 random walk of frequency noise

(RWF)

Table 3.1: Power Law Dependence of
Selected Phase Noise Processes

Law Noise Process
τ−1 white phase noise
≈ τ−1 flicker phase noise
τ−1/2 white frequency noise
τ0 flicker frequency noise
τ1/2 random walk of frequency

Table 3.2: Power Law Dependence for
Allan Deviation
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Figure 3.5: Power law dependence of
phase noise.
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Figure 3.6: Power law dependence of
Allan deviation.

White Phase Noise

White phase noise is characterized by its frequency independent spectrum. Typi-

cally, white phase noise originates from amplifiers in the oscillator circuit. While the

ideal model for an oscillator shown in Figure 3.1 has only one amplifier, the actual

implementation used for the measurement in Chapter 5 has several. An additional

source of white phase noise is the shot noise from the photodetector used in the

measurement. We will further discuss this noise source in Chapter 5.

Flicker Phase Noise

Flicker phase noise is characterized by its f −1 frequency dependence. Generally,

flicker phase noise arises from amplifiers in the feedback loop. The flicker phase

noise of amplifiers is especially important due to the Leeson effect, by which the
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oscillator up-converts the flicker phase noise into flicker frequency noise.

Leeson Formula

We use the Leeson formula to relate phase noise in the amplifier, ψ(t), to phase

noise in the oscillator, φ(t). We begin by considering an ideal resonator, one with

no phase fluctuations. The resonator has a transfer function H ( jω) and a quality

factor Q, with Q ≥ 10. The corresponding response time of the resonator is

τRes = 2
Q
Ω0

. (3.20)

The resonator is in a feedback loop with an amplifier, as shown in Figure 3.7. The

H(jω)

ejψ(t) A

out

Figure 3.7: Diagram of a feedback oscillator with phase fluctuations.

phase noise in the amplifier is represented by ψ(t), which corresponds to the random

phase fluctuations; the power spectral density of these fluctuations is Sψ ( f ). The

signal produced by this oscillator is v(t) = V0 cos(Ω0t+ψ(t)). We consider both slow

and fast fluctuations in φ(t), the output phase of the oscillator; the corresponding

phase noise is Sφ( f ). Slow fluctuations occur on a frequency scale slower than 1/τ.

Around the resonant frequency, the resonator has the following relationship between

phase and frequency:

∆ f (t) =
f0

2Q
∆φ, (3.21)

where ∆φ is the change in the phase and ∆ f is the corresponding change in the

frequency. For slow fluctuations, the resonator converts the phase shift ψ(t) into a
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frequency shift. The corresponding fluctuation in oscillator frequency is given by

Equation 3.22.

∆ f (t) =
f0

2Q
ψ(t). (3.22)

The corresponding frequency fluctuation spectral density is given by Equation 3.23.

S∆ f
(

f
)
=

(
f0

2Q

)2
Sψ ( f ), (3.23)

where Sψ ( f ) is the power spectral density of phase fluctuations. We use Equation

3.8 to find the corresponding phase noise.

Sφ( f ) =
1
f 2

(
f0

2Q

)2
Sψ ( f ). (3.24)

We then consider fast fluctuations in ψ(t). The resonator does not respond to the

fluctuations; the noise passes through the amplifier to the output. Consequently, the

phase noise at the output of the oscillator is equal to the phase noise of the amplifier.

Sφ( f ) = Sψ ( f ). (3.25)

We combine Equations 3.24 and 3.25, yielding Leeson’s formula.

Sφ( f ) =

1 +

1
f 2

(
ν0
2Q

)2
Sψ ( f ). (3.26)

White Frequency Noise

White frequency noise is characterized by its f −2 frequency dependence. There

are several sources of white frequency noise. The mechanical resonator has several

contributions, which we will discuss greater detail in Chapter 4: direct thermome-

chanical noise, amplitude to phase conversion thermomechanical noise, temperature

fluctuation noise, extensional fluctuation noise, adsorption-desorption noise, and

higher order mode coupling. The resonator also up converts the white phase noise

from the amplifier to white frequency noise through the Leeson effect.
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Flicker Frequency Noise

Flicker frequency noise is characterized by its f −3 frequency dependence. Flicker

noise from the resonator is equivalent to flicker frequency noise in the phase noise

domain. As we will demonstrate in Chapter 4, fluctuations in the Young’s modulus

of the resonator lead to flicker frequency noise in the phase noise domain. Charge

fluctuations in the resonator as generate flicker frequency noise in the phase noise

domain. 1/ f noise from the amplifiers is up-converted into f −3 phase noise by the

resonator.

RandomWalk of Frequency

Random walk of frequency noise is characterized by its f −4 frequency dependence.

The source of random walk frequency noise is the resonator. Possible sources of

random walk of frequency noise in NEMS and MEMS resonators are adsorption-

desorption noise and diffusion noise, which we will demonstrate in Chapter 4. Ran-

dom walk of frequency noise is also associated with long term drift; the frequency

drift has an exponential dependence [43]:

f0(t) ≈ f0eDt ≈ f0(1 + Dt). (3.27)

D is on the order of 10−11 per day for a 10 MHz quartz crystal oscillator.

3.6 Previous Knowledge of Anomalous Phase Noise

As we noted in the introduction to this chapter, anomalous phase noise has been

observed by many researchers in theMEMS and NEMS community [26–33]. In this

section, we discuss the APN observed in two specific applications: nonlinear oscil-

lators and NEMS Mass Spectrometry. We then summarize the current knowledge

of APN.
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APN in Nonlinear Oscillators

The measurements made by Villaneuva et al. [31] during their efforts to reduce

phase noise in an oscillator through use of a nonlinear resonator provide what is

perhaps the most compelling evidence of APN. They observed an excess phase

noise, despite operating the resonator at an optimal point where the susceptibility to

many parameter fluctuations became suppressed.

For their phase noise analysis, they used the following framework:

Sφ(δν) =
1

2π
νc

Q(δν)2

∑
n

InDn, (3.28)

where νc is the carrier frequency,Q is the quality factor of the resonator, and δν is the

offset from the carrier. In is the noise intensity due to a specific source of noise and

Dn is the corresponding susceptibility or “diffusion parameter”, which determines

how the noise source is transformed into the phase noise. They divided the noise

sources into two categories: thermomechanical noise, and parameter fluctuation

noise. As we will discuss in Chapter 4, thermomechanical noise, IT h, is due to

Brownianmotion of the resonator. Thermomechanical noise leads to both amplitude

and phase fluctuations and has two contributions to Sφ(δν): a direct contribution due

to thermomechanical phase noise, which corresponds to Ddirect , and a conversion

of the thermomechanical amplitude noise into phase noise, which corresponds to

Da. They considered the noise due to fluctuations in the following parameters:

∆, the phase delay, s, the saturation level, α, a parameter that characterizes the

nonlinearity of the resonator, γ, a parameter that characterizes the intrinsic damping

of the resonator, and Ω0, the resonant frequency.

For their measurements, Villaneuva et al. employed a doubly clamped aluminum

nitride beam with a resonant frequency of 12.63 MHz and a quality factor of 1600.

They operated their nonlinear resonator at a variety of ∆ and s parameters and

measured the phase noise at an offset of 1kHz. They then measured IT h, Is, and I∆,
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and estimated Iγ and Iα. For most of the parameter space, the measured data agreed

with the noise levels predicted. However, around the amplitude detachment point

(ADP), where amplitude to phase noise conversion was suppressed, they observed

an excess source of phase noise. At the ADP, contributions from Da and D∆ are

minimized. The contribution from Ddirect is minimized by operating the oscillator

at a high amplitude. For their highest saturation level, they observed an excess phase

noise of 10dBc/Hz. Their noise analysis demonstrates that this excess phase noise

is not a product of the electronics used in the feedback loop of the oscillator; the

excess noise observed corresponds to a mechanical domain noise source.

APN in NEMS Mass Spectrometry

The frequency stability caused by APN also limits frequency shift based mass

sensing applications. We consider the simple case of a doubly-clamped beam

resonator, vibrating in its fundamental mode at a resonant frequency Ω0. When

a point mass δM lands on the center of the beam, the resonant frequency of the

device shifts downwards by an amount δΩ. The change in the frequency is directly

proportional to the mass deposited on the device.

δM ≈ −2
Me f f

Ω0
δΩ. (3.29)

Me f f is the effective mass, which depends upon the mode shape. The minimum de-

tectable mass, δMMI N , is directly proportional to the minimum detectable frequency

shift, δΩMI N .

δMMI N ≈ −2
Me f f

Ω0
δΩMI N . (3.30)

The minimum detectable frequency shift, δΩMI N , is set by the thermomechanical

noise limit [17].

δΩMI N ≈
1
Q



kBT
Me f fΩ

2
0〈x

2
c〉



1/2

, (3.31)
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where Q is the quality factor of the device, kB is the Boltzmann constant, T is

the temperature, and 〈xc〉 is the rms amplitude at which the resonator is driven.

Typically, 〈xc〉 is the 1dB compression point [44]; at higher amplitudes, non-linear

effects usually lead to larger noise. When we compare the value for δΩMI N from

the thermomechanical noise limit to experimentally measured values of δΩMI N , we

obtain a value that is generally 10 to 1000 times smaller than the experimentally

measured values [4, 28, 45]. Understanding the source of APN is crucial for MEMS

and NEMS frequency shift sensors and oscillators.

Characteristics of Anomalous Phase Noise

Previousmeasurements of frequency stability across a wide range of devices [26–34,

46] have demonstrated that the frequency stability is limited by a source other than

thermomechanical noise; we refer this unknown source of noise to as anomalous

phase noise (APN). It is unclear for some of these works whether the excess noise is

due to a fundamental noise source or if the noise is due to unoptimized measurement

setups. Excess noise is observed in devices fabricated fromawide range ofmaterials,

including crystalline materials such as single crystal silicon (SCS) [26, 27, 34]

and silicon carbide (SiC) [28], amorphous materials such as highly stressed SiN

[29], multi-stack layers of aluminum nitride-molybdenum [30, 31], and single layer

materials such as graphene [32] and carbon nanotubes [47]. Excess noise is observed

in cantilevers [26], doubly clamped beams [26, 28, 29, 33], and membranes [32].

Excess noise also is observedwith awide variety of detection and actuationmethods.

Hentz [27] compared the Allan deviation measured with capacitive actuation and

either piezoresistive detection or optical interferometric detection; the measured

Allan deviation was independent of detection method. The Allan deviation was also

similar when either a piezoelectric shaker or capacitive drive was used to actuate

the device. No clear dependence on device material, shape, actuation method, or
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detection method is observed for APN.

Temperature and frequency power law dependencies have been observed for APN.

The temperature dependence appears to be Tα with α ≈ 1. Sage [26] observed

a factor of 2.5 decrease in the measured Allan deviation upon cooling the devices

from 300K to 100K, which roughly corresponds to a Tα dependence with α ≈ 1.

Fong et al. [33] observed a Tα dependence with α = 0.94 ± 0.10 from 5K to 296

K, as shown in Figure 3.8. The quantity shown in the figure, S0(T ) is found by

multiplying the fractional frequency noise, Sy ( f ), by the offset from the carrier, f ,

to find a parameter independent of frequency, since they also observed the frequency

dependence of the phase noise to be f β with β ≈ −3.

T (K)
101 102

S
0
(T

) 
(H

z2
)

10-5

10-4

10-3

Figure 3.8: Temperature versus S0(T ) = Sy ( f ) f .

Hentz [27] and Sage [26] both observe an Allan deviation roughly independent of

integration time, which corresponds to phase noise with a frequency dependence

of f β with β ≈ −3. Gavartin et al. [29] also observe an Allan deviation roughly

independent of integration time. Villanueva et al. [30] also measure phase noise

with a roughly 1/ f 3 frequency dependence. Zhang et al. [47] observe a frequency

noise with a f −1/2 dependence, which corresponds to a 1/ f 5/2 phase noise. Their

phase noise dependence is different than that of other works. However, the rest
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of the references dealt with bulk materials at temperature greater than 4K; this

measurement employed a carbon nanotube with a measurement temperature of 1K.

3.7 Summary

In summary, APN has a frequency dependence of f β with β ≈ −3 and a temperature

dependence of Tα with α ≈ 1. APN does not appear to have a material or mode

shape dependency. Understanding the source ofAPN and suppressing it is crucial for

attaining the ultimate limits of performance for applications of NEMS and MEMS.
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C h a p t e r 4

SOURCES OF PHASE NOISE IN MEMS AND NEMS

As shown in Chapter 3, anomalous phase noise (APN) limits the performance of

MEMS and NEMS. In this chapter, we provide a theoretical framework for sources

of phase noise in oscillators using high-Q weakly nonlinear resonators, as formu-

lated by Kenig et al. in [31, 48, 49]. Specifically, we divide the sources of phase

noise into two categories: thermomechanical noise and parameter noise. Thermo-

mechanical noise is a result of the finite Q of the mechanical resonator; the resonator

dissipates energy, which leads to noise through the Fluctuation-Dissipation theorem.

Thermomechanical noise has two contributions to phase noise: a direct contribution

and a contribution from amplitude to phase (A − φ) conversion. Parameter noise

encompasses phase noise caused by fluctuations in the parameters that control the

operating point of the oscillator, such as the quality factor of the resonator, the

nonlinear coefficient of the spring constant, the phase of the feedback, the saturation

level of the amplifier used to sustain the oscillator, and fluctuations in the resonant

frequency Ω0. We consider the following sources of fluctuations in the resonant

frequency: temperature fluctuations, extensional fluctuations, charge fluctuations,

mass fluctuations of the device due to adsorption-desorption or diffusion, fluctua-

tions from higher order mode coupling, and fluctuations in Young’s modulus due

to defect reorientation. We provide expressions for both the phase noise and Allan

deviation for each source. We calculate the phase noise from each noise source for

a prototype device, similar to the device used for measurements in Chapter 6 and

plot the phase noise. We then assess each noise source as a potential candidate for

APN. We end the chapter with a summary table containing formulae for the phase

noise and Allan deviation due to each source.
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4.1 Noise Analysis of a Phase Feedback Oscillator

Following Kenig et al. [31, 48, 49], we consider the phase noise in an oscillator

containing a high-Q weakly nonlinear resonator. We begin by finding the dynamics

of the resonator. We then add noise to the system and determine how the noise

generates phase noise in the oscillator. We consider two types of noise: noise from

thermomechanical motion and noise from fluctuations in the parameters that control

the operating point of the oscillator. Figure 4.1 contains a diagram of the oscillator

components and the parameters associated with each component.

H(jω)

s Δ

α, γ, Ω0 

φAGC

out

Figure 4.1: Diagram of a phase feedback oscillator with operating parameters. s is
the saturation level of the automatic gain control (AGC). ∆ is the phase shift induced
by the phase shifter. α, γ, and Ω0 are all parameters associated with the weakly
nonlinear resonator with transfer function H ( jω). α characterizes the nonlinearity
of the resonator. γ characterizes the intrinsic damping of the resonator, which
is proportional to the quality factor of the resonator. Ω0 is the frequency of the
resonator.

We begin the analysis by finding the time evolution of A(T ) = a(T )eiφ(T ), the

complex amplitude of the resonator, where T = εΩ0t is a dimensionless time scale.

ε is an small expansion factor that will be chosen later in the analysis. Ω0 is the

resonant frequency of the oscillator. a(T ) is the magnitude of the amplitude and

φ(T ) is the phase of the amplitude. We are interested in the case of a phase feedback

oscillator [50, 51], which employs an element such as automatic gain control (AGC)

to maintain a constant drive level to the resonator, independent of the output of the

resonator. The dimensionless equation of motion for A(T ) for a phase feedback
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oscillator is given in Equation 4.1:

dA
dT
= −

γ

2
A + i

3
8
α |A|2 A − i

s
2

eiφei∆, (4.1)

where s is the saturation level. The saturation level of the amplifier controls the

magnitude of the power fed back to the resonator. γ characterizes the linear damping

of the resonator.

γ =
1

Qε
, (4.2)

where ε is a scale factor. α characterizes the nonlinearity of the resonator through

the nonlinear spring coefficient α̃, where the spring constant is defined as k =

Me f fΩ
2
0 + α̃x2, and Me f f is the effective mass of the resonator. Me f f is a mode

dependent parameter.

α =
α̃x2

0

Me f fΩ
2
0ε
, (4.3)

where x2
0 is a scale factor. We choose the following scale factors:

x2
0 =

Me f fΩ
2
0

α̃Q
, (4.4a)

ε = Q−1. (4.4b)

This scaling leads to a consistent perturbation theory because γ and α are O (1).

We separate Equation 4.1 into equations for the time evolution of the amplitude and

the phase.

da
dT
= −

γ

2
a +

s
2

sin∆ ≡ fa, (4.5)

dφ
dT
=

3
8
αa2 −

s
2

cos∆
a
≡ fφ. (4.6)

We now consider steady state oscillations. For that case,

da
dT
= 0, and (4.7a)

dφ
dT
= Ω = Q

ω

Ω0
, (4.7b)
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where ω is the frequency offset from the carrier frequency Ω0. Ω is the scaled,

dimensionless frequency offset from the carrier frequency. We solve Equations 4.5

and 4.6 for the oscillation amplitude and frequency offset.

a =
s
γ

sin(∆), (4.8)

Ω =
3
8
αa2 −

s
2

cos(∆)
a

. (4.9)

The oscillation amplitude, a, depends upon both the saturation level, s, and the

phase shift, ∆. We next determine how noise generates phase noise in the feedback-

sustained oscillator. We model the noise by adding the stochastic term va,nΞn(T ) to

Equation 4.5 and the stochastic term vφ,nΞn(T ) to Equation 4.6. va,n and vφ,n provide

the strength of the noise vector in the amplitude and phase quadrature, respectively,

for a specific noise source n. Ξn(T ) characterizes the noise from noise source n. We

now find the variance of the phase deviation. We neglect da/dT when calculating

the amplitude fluctuations for small frequency offsets compared to the resonator

linewidth. In addition, fa and fφ are independent of φ, as shown by Equations

4.5-4.6. The long time phase diffusion is[
δφ(T + τ) − δφ(T )

]2
= *

,

∑
n

DnIn+
-
τ. (4.10)

The diffusion susceptibility Dn is

Dn =

(
vφ,n −

∂ fφ/∂a
∂ fa/∂a

va,n

)2
. (4.11)

The noise intensity In is

〈Ξn(T )Ξn(T ′)〉 = Inδ
(
T − T ′

)
. (4.12)

The first component of Dn corresponds to the direct contribution of a noise source to

the phase noise. The second contribution corresponds to the conversion of amplitude

noise into phase noise. The phase noise is

Sφ(ω) =
1

2πQ

∑
n InDnΩ0(∑

n InDnΩ0
2Q

)2
+ ω2

. (4.13)
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For |ω | � |
∑

n InDn |
Ω0
2Q , Equation 4.13 simplifies to

Sφ(ω) =
1

2πQ
Ω0

ω2

∑
n

InDn (4.14)

We now have a method for finding the phase noise due to thermomechanical noise

and parameter fluctuations.

We next find the phase noise due to the various noise sources in the oscillator. The

first source of noise, thermomechanical noise, arises from a stochastic driving term

that is added to the governing equation for the oscillator. Additional stochastic

driving terms depend upon the experimental setup used to measure the phase noise;

shot noise from a photodetector used for optical detection is another stochastic

driving term. For clarity, we will only consider the stochastic driving term that

arises from thermomechanical motion. The second source of noise, parameter

noise, arises from fluctuations in the parameters that control the operating point of

the oscillator: ∆, s, α, and γ.

From the fluctuation-dissipation theorem, mechanical resonators with finite Q dis-

sipate energy and, consequently, experience force fluctuations [6, 17, 52]. Thermo-

mechanical noise affects both the amplitude and the phase of the oscillator. The

contribution to phase noise from thermomechanical noise is always present; we refer

to this contribution as the direct thermomechanical noise. The corresponding noise

vector is (va,direct, vφ,direct ) = (0, 1/a); the noise is only in the phase component.

The corresponding diffusion coefficient, Ddirect , is

Ddirect =
1
a2 . (4.15)

The thermomechanical noise contribution to amplitude noise contributes to the

phase noise through amplitude to phase conversion. The corresponding noise vec-

tor is (va,a, vφ,a) = (1, 0); the noise is only in the amplitude component. The
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corresponding diffusion coefficient, Da, is

Da =

(
∂ fφ
∂a

/
∂ fa

∂a

)
≡

(
3
2

a +
1
a2 cos(∆)

)2
. (4.16)

We set γ = α = 1, the value previously chosen for both variables for the given

scalings. We next find IT h.

IT h =
kBTQα̃0

Me f fΩ
2
0

(4.17)

The total contribution from thermomechanical noise is given by Equation 4.18,

where DT h = Ddirect + Da.

Sφ(ω) =
1

2πQ
IT hDT hΩ0(

IT hDT hΩ0
2Q

)2
+ ω2

. (4.18)

We have not assumed |ω | � |
∑

n InDn |
Ω0
2Q ; we are interested in Sφ(ω) close to the

carrier in Chapter 6. We defer calculation of Sφ(ω) for a test device until Section

4.3.

The second category of noise corresponds to fluctuations in the parameters that

determine the operation point of the oscillator: ∆, s, α, γ, and Ω0. We now find Dn

for each of these parameters; we will not consider values of In for ∆, s, α, and γ until

Chapter 6, where we experimentally determine their values. Noise fluctuations in a

parameter pi have the following noise vector: (va, vφ) = (∂ fa/∂pi, ∂ fφ/∂pi). We

employ the stationary amplitude approximation fa = 0 when calculating the noise

vectors, which leads to the simplification of Equation 4.11.

Dn =

(
dfφ
dpi

)2
. (4.19)

We begin by rewriting Equation 4.6.

fφ =
3
8
αs2

γ2 sin2(∆) −
γ

2
cot(∆). (4.20)

We first consider fluctuations in ∆.

dfφ
d∆
=

3
4
αs2

γ2 sin(∆) cos(∆) +
γ

2
sec2(∆). (4.21)
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We rewrite Equation 4.21 in terms of a and use Equation 4.19 to find D∆.

D∆ =
(

3
4

a2 cot(∆) +
1
2

csc2(∆)
)2
. (4.22)

We next consider fluctuations in s.

dfφ
ds
=

3
4
αs
γ2 sin2(∆). (4.23)

We rewrite Equation 4.23 in terms of a and use Equation 4.19 to find Ds.

Ds =

(
3
4

a sin(∆)
)2
. (4.24)

We next consider fluctuations in α.

dfφ
dα
=

3
8

a2, (4.25)

Dα =

(
3
8

a2
)2
. (4.26)

We consider fluctuations in γ.

dfφ
dα
= −

3
4
αs2

γ3 sin2(∆) −
1
2

cot(∆). (4.27)

We rewrite Equation 4.27 in terms of a and use Equation 4.19 to find Dγ.

Dγ =

(
3
4

a2 +
1
2

cot(∆)
)2
. (4.28)

We finally consider fluctuations in the resonant frequency.

DΩ0 =
1
4
. (4.29)

We summarize diffusion coefficients in Table 4.1.

In the remainder of this chapter, we calculate the phase noise for a prototype device

described in Section 4.2. We choose an operating point at 300 K of (a = 0.85,∆ =

π/2), which corresponds to an average of the operating parameters for the two

devices measured in Chapter 6 at 297 K. In the interest of clarity, we assume the
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usage of an ideal AGC and an ideal phase shifter; consequently, I∆ = Is = 0.

In Chapter 6, we measure I∆ and estimate Is; in that case, both are significantly

smaller than IT h. For the chosen operating point, Da > Ddirect > Ds > D∆. Thus,

the contributions from direct and A − φ thermomechanical noise dominate. We

also assume that neither the quality factor of the resonator nor the nonlinear spring

constant fluctuates; Iα = Iγ = 0. Thus, we only consider phase noise from the

following sources: direct thermomechanical noise, amplitude to phase conversion

thermomechanical noise, and fluctuations in the resonant frequency,Ω0. In Chapter

6, we measure the fluctuations in s and ∆ and include them in the analysis of the

measured phase noise.

Table 4.1: Diffusion Coefficients

Type of noise Diffusion coefficient Noise intensity

Thermomechanical direct Ddirect =
1
a2 IT h

Thermomechanical-A-φ conversion Da =
(

3
2 a + 1

a2 cos(∆)
)2

IT h

Parameter Noise-∆ D∆ =
(

3
4 a2 cot(∆) + 1

2 csc2(∆)
)2

I∆

Parameter Noise-s Ds =
(

3
4 a sin(∆)

)2
Is

Parameter Noise-α Dα =
(

3
8 a2

)2
Iα

Parameter Noise-γ Dγ =
(

3
4 a2 + 1

2 cot(∆)
)2

Iγ

Parameter Noise-Ω0 DΩ0 =
1
4 IΩ0

4.2 Prototype Device

In order to determine whether each source of phase noise is a potential candidate for

APN, we compute the phase noise due to each source for a prototype device, similar

to the device used for measurements in Chapter 6. The prototype device is a silicon

doubly clamped beam. We provide the properties of the prototype device in Table

4.2 and the material properties used for all calculations in Table 4.3; all properties

are provided at 300 K. Figure 4.2 contains an SEM image of a Si doubly clamped
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This is a SEM image 
of a silcon doubly
clamped beam.

Figure 4.2: Colorized image of a Si doubly clamped beam. The beam dimensions
are [insert numbers after imaging].

beam with dimensions similar to that of the prototype.

Table 4.2: Prototype Device Properties

Property Symbol Value
Length L 50 µm
Width w 5 µm
Thickness t 285 nm
Effective Mass Me f f 64.7 pg
Resonant Frequency Ω0/(2π) 1 MHz
Quality Factor Q 23000

Table 4.3: Material Properties

Property Symbol Value
Young’s Modulus [53] E〈110〉 169 MPa
Poisson’s ratio [53] νxz 0.364
Density of Si [54] ρ 2329 kg/m3

Linear Coefficient of Thermal Expansion [54] α 2.6 × 10−6 1/K
Heat Capacity at Constant Pressure [54] CP 702 J/(kg·K)
Temperature T0 300 K
Thermal Conductivity [54] κ 124 W/(m·K)

Fractional Temperature Dependence of Speed of Sound [55]
1
cs

∂cs

∂T
-5×10−5/K

We use the following nomenclature throughout the discussion of the various noise

sources. When referring to the resonant frequency of the device, we use Ω0. When

referring to the offset from carrier in fractional frequency noise, phase noise, or

frequency fluctuations, we use ω. We label all noise sources with subscripts for

clarity.
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4.3 Thermomechanical Noise

From the fluctuation-dissipation theorem, mechanical resonators with finite Q dis-

sipate energy and consequently are subject to force fluctuations [6, 17, 52]. As

discussed in Section 4.1, the thermomechanical noise engenders two contributions

to phase noise: a direct contribution and a contribution from amplitude to phase

(A− φ) conversion. We previously found the phase noise due to these two contribu-

tions. Before finding the phase noise, we first find λ1,1 = α̃/(Me f fΩ2
0). Following

Matheny et al. [56], the square of the total frequency shift due to nonlinear mode

coupling is Ω2
p,mod .

Ω
2
p,mod = Ω

2
p

(
1 + 2λp,p A2

p + 2λp,q A2
q

)
, (4.30)

where λp,p corresponds to the nonlinear spring coefficient for mode p, and λp,q

corresponds to nonlinear mode coupling from mode q to mode p. We treat the

contribution from λp,q in Section 4.4. Both λp,p and λp,q are defined by Equation

4.31.

λp,q =
(
2 − δpq

) χp

8

(
XppXqq

2
+ X2

pq

)
. (4.31)

δpq is the Kronecker delta function. χp and ηp are defined in Equation 4.32.

χp =
ηp

1 + ηpXpp
τL2

E

, (4.32a)

ηp =
tw

I
∫ 1

0 Φp(ξ)Φ(IV )
p (ξ)dξ

. (4.32b)

τ is the tension and I is the areal moment of inertia. Φp(ξ) is the mode amplitude;

the length scale has been normalized such that ξ = 1 at L. Φp(ξ) has the following

normalization:
∫ 1

0 Φp(ξ)Φq(ξ)dξ ≡ δpq. Xpq =
∫ 1

0 Φ
′

p(ξ)Φ
′

q(ξ)dξ. Φ(IV ) (ξ) is

the 4th spatial derivative. Thus, given a device, we can calculate the nonlinear

coefficients.
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Before finding the fractional frequency noise, we find Φ1(ξ). Φn(ξ), the nth mode

of a doubly clamped beam, has the mode shape given in Equation 4.34 [57].

Φn(ξ) = Cn

[
cosh(knξ) − cos(knξ)

+
cosh(knξ) − cos(knξ)

sinh(kn) − sin(kn)
(
sin(knξ) − sinh(knξ)

)]
, (4.33)

(4.34)

where Cn is defined such that
∫ 1

0 Φp(ξ)Φq(ξ)dξ = 1. kn is defined by the following

boundary condition: cos(kn) cosh(kn) = 1. We list the value for C1 and k1 for the

first mode of a doubly clamped beam in Table 4.4.

Mode Number Cn kn
1 1 4.730

Table 4.4: Mode Shape Parameters

Using these parameters and the properties of the prototype device, we find λ1,1 =

8.38 × 1012 m−2. However, for the calculations we use the measured value from

Chapter 6 of (−3.6 ± 0.2) × 1012 m−2.

In order to calculate the phase noise, we chose an operating point for the oscillator.

We choose a = 0.85, which is the approximate operating point for the measure-

ments performed on two oscillators at 297 K in Chapter 6. We next calculate

IT hDT hΩ0/(2Q) = 9.5 × 10−8. We find that IT hDT hΩ0/(2Q) � ω in the region of

interest; we use Equation 4.14 to calculate the phase noise.

Sφ(ω) = Sφ,direct (ω) + Sφ,A−φ(ω) (4.35a)

Sφ,direct (ω) =
1

2π
Ω0

ω2
1
a2

kBT α̃0(
Me f fΩ

2
0

)2 (4.35b)

Sφ,A−φ(ω) =
1

2π
Ω0

ω2

(
3
2

a +
1
a2 cos(∆)

)2 kBT α̃0(
Me f fΩ

2
0

)2 (4.35c)
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We next plot the phase noise due to each contribution.

Offset (Hz)
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Figure 4.3: Comparison of phase noise from direct thermomechanical noise and
amplitude to phase conversion thermomechanical noise for a =

√
2/3 and ∆ = π/2.

We also consider the phase noise for different values of a: 0.5,
√

2/3, 1, and

2, as shown in Figure 4.4. a =
√

2/3 corresponds to the amplitude for which

the contributions from direct thermomechanical noise and A-φ thermomechanical

noise are equal, for ∆ = π/2. For a <
√

2/3, direct thermomechanical noise

dominates. For a =
√

2/3, the two contributions are equal. For a >
√

2/3, A-φ

thermomechanical noise dominates.

We next find the Allan deviation due to each contribution. For a phase noise of the

form Sφ(ω) = C
(
Ω0
ω

)2
[52], the corresponding Allan deviation is

σA(τA) =

√
πC
τA
. (4.36)

The Allan deviation due to direct thermomechanical noise is

σA,direct (τA) =

√√ 1
2τA

1
a2

kBT α̃0(
Me f fΩ

2
0

)2 . (4.37)
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Figure 4.4: Comparison of phase noise from direct thermomechanical noise and
amplitude to phase conversion thermomechanical noise for a = 0.5,

√
2/3, 1, 2 and

∆ = π/2.

The Allan deviation due to A−φ conversion thermomechanical noise is

σA,A−φ(τA) =

√√√√ 1
2τA

(
3
2

a +
1
a2 cos(∆)

)2 kBT α̃0(
Me f fΩ

2
0

)2 . (4.38)

Neither component of thermomechanical noise, direct and A-φ conversion, is a

candidate for anomalous phase noise. The magnitude of the phase noise is too small

for APN. In addition, the frequency dependence of both is 1/ f 2, while the frequency

dependence of APN is 1/ f 3.

4.4 Parameter Fluctuations: Ω0

We now consider contributions to phase noise due to fluctuations inΩ0. We consider

contributions from several sources: temperature fluctuations, extensional fluctua-

tions, charge fluctuations, gas interactions, higher order mode coupling, and defect

motion. Temperature fluctuation noise arises from the finite heat capacity and fi-

nite thermal conductivity of the device. Extensional fluctuations noise arises from
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fluctuations in the length of the device. Charge fluctuations lead to a fluctuating

electrostatic spring softening. Gas adsorbing and desorbing from the surface of

the device and gas diffusing along the surface of the device lead to fluctuations in

the mass of the device. Thermomechanical noise in the amplitude quadrature from

higher order modes leads to frequency fluctuations through nonlinear mode cou-

pling. Stochastic defect reorientation leads to fluctuations in the Young’s modulus.

Temperature Fluctuation Noise

The device has a finite thermal conductance and a finite heat capacity that together

lead to temperature fluctuations in the device when coupled to an external reservoir.

The resonant frequency has multiple parameters with temperature dependence:

Young’s modulus, density, length, thickness, and stress. Fluctuations in temperature

thus lead to fluctuations in these parameters and consequently frequencyfluctuations.

We begin by finding the spectral density of the temperature fluctuations. The heat

capacity and thermal conductance of the device are distributed in space. Following

Cleland and Roukes [52], we divide the device into chunks of length `, where ` is

the mean free phonon path of Si, and cross-section A = w× t. At room temperature,

` ≈ 50 nm. Each chunk has a heat capacity, ci = CV A`, and a thermal conductance,

gi = κA/`. The thermal model for the beam is shown in Figure 4.5.

thermal time constant 3T"c/g . The energy Ec will however

fluctuate, as the fluctuation–dissipation theorem applies to

finite thermal conductances in a manner similar to the

dissipation-induced mechanical noise.23 The thermal circuit

therefore includes a power noise source p with spectral den-

sity Sp(4)"2kBT
2g/* !see Fig. 5". The instantaneous en-

ergy of the heat capacitance can then be written Ec(t)"cT

$+E(t), where the spectral density of the energy fluctua-
tions +E(t) can be derived from the thermal circuit,

SE!4""
2

*

kBT
2c2/g

1$423T
2
. !51"

We can interpret the energy fluctuations as temperature fluc-

tuations +Tc(t), if we define the temperature as Tc"Ec /c .

The corresponding spectral density of the temperature fluc-

tuations is given by

ST!4""
2

*

kBT
2/g

1$423T
2
. !52"

At low frequencies 4 , below that of the thermal frequency

1/3T , the temperature fluctuations +T follow those driven by
the noise source p, while at higher frequencies the nonzero

heat capacitance acts as a filter.

For a resonator with the geometry shown in Fig. 1, there

is no clear separation of the structure into a distinct heat

capacitance and thermal conductance. Instead, we divide the

resonator into slices of length 5x and cross-sectional area
A"w%t , so that the nth slice has heat capacity cn
"CvA5x , where Cv is the specific heat per unit volume.

The (n#1)th and nth slices are connected to one another by
the thermal conductance gn"/A/5x , with thermal conduc-
tivity / given by the classical formula, /"(1/3)CVcsl (l is

the phonon mean-free path and cs the sound speed". The
thermal conductances gn are associated with noise power

sources pn , with spectral density Spn
(4)"2kBT

2gn /* . Fi-
nally, the temperatures at the ends of the beam, where the

beam is mechanically clamped, are assumed to be given by

the reservoir temperature T; see Fig. 6.

In this model, energy fluctuations in the slices n#1 and
n are anticorrelated through the shared conductance gn : An

energy +E driven into the nth slice by pn corresponds to the
same energy taken from the (n#1)th slice. These energy
fluctuations then relax through conductance into adjacent

slices, and so on through the beam length, so that there is

some correlation between the fluctuations in all slices, al-

though the correlations get weak for distant slices.

One might expect that the most accurate model would

use slices with differential lengths 5x"dx→0. However,

once the slices become shorter than the phonon mean-free

path l , the temperature in a slice is no longer well defined.
We therefore choose slices with a length 5x"l "50 nm, so
that each element has a volume V"50%50%50 nm3. The
corresponding heat capacity is c"CVV"2%10#16 J/K, and

the thermal links have g"/l "7.4%10#6 W/K. The ther-

mal time constant is 3T"30 ps, corresponding to thermal
frequencies %35 GHz, well outside the range of frequencies
of interest for resonator phase fluctuations, (1 /Q&4
&(1 . For the purposes of this calculation, therefore, we can

treat the thermal fluctuations in the low-frequency limit.

Consider only the nth power source of the conductance

pn . If we take the frequency component at 4 , the (n#1)th
and nth slices have temperature variations Tn#1(4) and
Tn(4) given by

!2$i43"Tn#1"#
pn

g
$Tn#2$Tn

!53"

!2$i43"Tn"
pn

g
$Tn#1$Tn$1 .

The corresponding equation for the (n$m)th slice is given

by

!2$i43T"Tn$m"Tn$m#1$Tn$m$1 . !54"

Taking the limit 43T&1, we find that the power source
pn(4) driving the nth slice generates a temperature variation
T(4)"pn(4)/2g uniformly across the beam. The corre-

sponding anticorrelated source #pn(4) driving the (n#1)th
slice generates an equal but opposite temperature variation.

Hence, in the limit 43T&1, the fluctuations driven by con-
ductances within the beam have no net effect.

The other source of temperature fluctuations comes from

the conductances at the beam ends, g1 and gN$1 . These also

drive the beam uniformly, but as the energy that appears in

the first and last elements does not have an adjacent anticor-

related source, there is now a net effect. The final result from

this model is that the temperature of all the elements in the

beam fluctuate uniformly, with spectral density ST(4) given
by the incoherent sum of the two end sources,

ST!4""
4

*

kBT
2/g

1$423T
2

!43T&1 ". !55"

FIG. 5. Thermal circuit with a finite thermal conductance g and a finite heat

capacitance c, including a power noise source p.

FIG. 6. Thermal model for doubly clamped beam, consisting of a series

connection of heat capacitances cn and thermal conductances gn , each as-

sociated with a cross-sectional slice of the beam of length 5x . Each thermal
conductance is associated with a power noise source pn . The ends are

assumed clamped at the reservoir temperature T. There are a total of N

"L/5x elements.
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Figure 4.5: Thermal model for a doubly clamped beam. Figure taken from [52].

The temperature fluctuation of the nth chunk is ST,n(ω):

ST,n(ω) =
2
π

kBT2/gn

1 + ω2τ2
T,n

, (4.39)



64

where τT,n = cn/gn. As we will show later in this section, τT,n = 43 ps at 300 K with

` = 50 nm for the prototype device. Thus, ωτT,n � 1 for ω < 109, which is much

higher than the offset frequencies considered. For ωτT,n � 1, which applies for

the prototype in the offset frequencies considered, the temperature fluctuations from

the thermal conductance in the beam cancel each other out. However, the thermal

conductances at the ends of the beam do cause temperature fluctuations. The sum

of the two contributions is

ST (ω) =
4
π

kBT2/g

1 + ω2τ2
T

for ωτT � 1, (4.40)

where τT = c/g.

We now find STF (ω) by determining the temperature dependence of the resonant

frequency, Ω(T ). The relationship between the spectral density of temperature

fluctuations and fractional frequency noise is

Sy,TF (ω) =
(

1
Ω

∂Ω

∂T

)2
ST (ω), (4.41)

where Ω is the resonant frequency of the device. Changes in temperature lead to

changes in the speed of sound in the material, cs =
√

E/ρ. Changes in temperature

also cause changes in the device length through thermal expansion. For doubly

clamped beams, this change in device length leads to stress. We rewrite Ω in terms

of cs:

Ω =
β2t
L2

√
cs

12
, (4.42)

where β is a constant that depends upon the mode number and whether the device

is a cantilever or a doubly clamped beam. We take the partial derivative of Ω with

respect to T and only consider the contribution from cs.

∂Ω

∂T
=
∂Ω

∂cs

∂cs

∂T
=

1
2
Ω

cs

∂cs

∂T
(4.43)
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Rearranging Equation 4.43 yields:

1
Ω

∂Ω

∂T
=

1
2

1
cs

∂cs

∂T
. (4.44)

Next, we consider the effect of thermal expansion on the resonant frequency directly,

through changes in t and L.

∂Ω

∂T
=
∂Ω

∂L
∂L
∂T
+
∂Ω

∂t
∂t
∂T
= −2

Ω

L
∂L
∂T
+
Ω

t
∂t
∂T

(4.45)

We can simplify Equation 4.45 by using the definition of the coefficient of thermal

expansion: αT =
1
L
∂L
∂T =

1
t
∂t
∂T .

1
Ω

∂Ω

∂T
= −αT (4.46)

Finally, we consider the contribution from stress for doubly clamped beams. A

change in temperature dT causes a change in device length. The change in device

length induces a longitudinal extensional stress τ = −EαT dT . The stress leads to a

change in resonant frequency Ω(τ).

Ω
2(τ) = Ω2(τ = 0) +

τ

ρ

(
β

L

)2
(4.47)

Taking the square root of Equation 4.47 yields:

Ω(τ) =

√
Ω2(τ = 0) +

τ

ρ

(
β

L

)2
. (4.48)

We now take the derivative with respect to T .

∂Ω

∂T
=
∂Ω

∂τ

∂τ

∂T
= −

1
2

E
ρ

β2

L2
1
Ω
αT (4.49)

Dividing both sides of Equation 4.49 by Ω yields:

1
Ω

∂Ω

∂T
= −

1
2

E
ρ

(
β

ΩL

)2
αT . (4.50)

We combine Equations 4.44, 4.46, and 4.50 to find the total dependence on change

in frequency due to change in temperature.

1
Ω

∂Ω

∂T
=

1
2

1
cs

∂cs

∂T
− αT −

1
2

E
ρ

(
β

ΩL

)2
αT (4.51)
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We combine Equations 4.40, 4.41, and 4.51:

Sy,TF (ω) =
(

1
Ω

∂Ω

∂T

)2
ST (ω)

=



1
2

1
cs

∂cs

∂T
− αT −

1
2

E
ρ

(
β

ΩL

)2
αT



2
4
π

kBT2/g

1 + ω2τ2
T

. (4.52)

We now find the phase noise due to temperature fluctuations, Sφ,TF (ω).

Sφ,TF (ω) =
(
Ω

ω

)2 

1
2

1
cs

∂cs

∂T
− αT −

1
2

E
ρ

(
β

ΩL

)2
αT



2
4
π

kBT2/g

1 + ω2τ2
T

(4.53)

We find the Allan deviation.

σA,TF (τA) =
������

1
2

1
cs

∂cs

∂T
− αT −

1
2

E
ρ

(
β

ΩL

)2
αT

������

√
4
π

kBT2

gτA
for τA � τT (4.54)

In order to accurately model temperature fluctuations in MEMS and NEMS, we

must also consider how the properties of bulk Si change as the device layer be-

comes thinner. For silicon with a thickness of 300nm, the thermal conductivity

is 90W/(m·K) [58] at room temperature, which is about 75% of the bulk value.

Thinner layers have lower values of thermal conductivity. Using the lower thermal

conductivity for thinner Si, we plot the phase noise due to thermomechanical motion

and temperature fluctuation in Figure 4.6.
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Figure 4.6: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, and temperature fluctuations.

Temperature fluctuation noise has a smaller magnitude than both contributions to

thermomechanical noise, as well as a f −2 dependence, ruling it out as a candidate

for APN.

Extensional Fluctuation Noise

Fluctuations in the geometry of the resonator due to finite temperature1 are another

possible source of frequency fluctuations. We find the fluctuations in thewidth of the

device, which lead to fluctuations in the length of the device through Poisson’s ratio.

For a doubly clamped beam, we assume perfect clamping at the ends, which excludes

extensional modes. However, we note that for a cantilever, the extensional modes

would contribute. We begin by finding the mode shape and resonant frequencies of

the extensional modes along the width of the doubly clamped beam. The governing
1unpublished work from J. Sader
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equation [59] for the nth extensional mode is

ES
∂2u
∂y2 − µ

∂2u
∂t2 = 0, (4.55)

where E is the Young’s modulus, S = t × L is the cross-sectional area, and µ =

M/w = ρS is the mass per unit length. The nth extensional mode has the following

mode shape and resonant frequency:

un(y) = An cos(πny/w) (4.56a)

Ωe,n =

√
E
ρ

πn
w
. (4.56b)

We next find the frequency fluctuations due to fluctuations in the length of the nth

extensional mode, SAn (ω). SAn (ω) has units of m2/Hz. We follow a procedure

similar to that used by Cleland and Roukes [52] to find the frequency fluctuations

due to thermomechanical motion noise. From the Equipartition of Energy Theorem,

the potential energy in the nth extensional mode is equal to 1
2 kBT .

〈PEn〉 =
1
2

kBT =
ES
2

∫ ∞

0

∫ w

0

(
dvn

dy

)2
SAn (ω)dxdω, (4.57)

where vn(y) = cos(πny/w). We first integrate over y.

1
2

kBT = (nπ)2 ES
4w

∫ ∞

0
SAn (ω)dω (4.58)

We assume that the extensional fluctuations of each mode are driven by a force noise

with a spectral density of SFn (ω); we also assume that this noise is white. We use

the simple harmonic oscillator approximation for the motion. SAn (ω) is then equal

to the product of the SHO transfer function and the force noise.

SAn (ω) =
1

(Ω2
e,n − ω2)2 +

(
Ω2

e,n/Qe,n
)2

SFn (ω)
M2

e f f ,e

(4.59)

Qe,n is the quality factor of the nth extensional mode and Me f f ,e is the effective mass

of the nth extensional mode. Me f f ,e =
1
2 M for all modes. We rewrite Equation
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4.58.

1
2

kBT = (nπ)2 ES
w

SFn

M2
e f f ,e

∫ ∞

0

1

(Ω2
e,n − ω2)2 +

(
Ω2

e,n/Qe,n
)2 dω (4.60)

We integrate over ω to determine SFn .

1
2

kBT ≈ (nπ)2 ES
w

SFn

M2
e f f ,e

π

2
Qe,n

Ω3
e,n

(4.61)

For Qe,n > 10, the error due to the approximation is less than one percent. The

approximation becomes exact in the limit of infinite Qe,n. We find SFn (ω).

SFn (ω) =
kBTwM2

e f f ,eΩ
3
n,e

π3n2ESQe,n
(4.62)

We combine Equations 4.59 and 4.62.

SAn (ω) =
1

(Ω2
e,n − ω2)2 +

(
Ω2

e,n/Qe,n
)2

4kBTΩe,n

πMQe,n
(4.63)

We next determine how the fluctuations in the width of the device lead to fluctuations

in the frequency of the device. Since the ends of the beam are perfectly clamped,

the change in width of the device leads to tension along the width of the device.

The relationship between the strain along the width and the induced stress (tension)

along the length of the beam is given by Equation 4.64 [53].

τ = σxx = cxxyyε yy, (4.64)

where cxxyy =35.7 GPa. We previously determined the relationship between tension

and Ω0 during the discussion of temperature fluctuation noise.

Ω(τ) =

√
Ω2(τ = 0) +

τ

ρ

(
β

L

)
. (4.65)

We find the change in resonant frequency due to fluctuations in the width of the

device.
1
Ω

∂Ω

∂y
=
∂Ω

∂τ

∂τ

∂y
=

1
2

cxxyy

E
1
w

(4.66)
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We find the fractional frequency noise and phase noise due to these extensional

fluctuations.

Sy,EF (ω) =
∞∑

n=1

(
1
Ω0

∂Ω0
∂w

)2
SA,n(ω) (4.67)

The fractional frequency noise is

Sy,EF (ω) =
∞∑

n=1

1

(Ω2
e,n − ω2)2 +

(
Ω2

e,n/Qe,n
)2

16kBTΩe,nc2
xxyy

πMQe,nw2E2 . (4.68)

We use Equation 4.68 to find the phase noise, Sφ,EF (ω) =
Ω2

0
ω2 Sy,EF (ω).

Sφ,EF (ω) =
16kBTΩ2

0c2
xxyy

πMw2ω2E2

∞∑
n=1

Ωe,n

Qe,n

1

(Ω2
e,n − ω2)2 +

(
Ω2

e,n/Qe,n
)2 (4.69)

No simple closed form expression exists for Sφ,EF (ω). We consider two variables

to determine a suitable approximation for Sφ,EF (ω): the number of terms to include

in the sum and the value for Qe,n. We assume that all modes have the same quality

factor, Qe,n = Qe. In Figure 4.7, we consider three different values of Qe,n: 15, 100,

and 1000. From Figure 4.7, we determine that the largest noise occurs with smallest

Q. Also, the first three terms of the sum are sufficient to approximate Sφ,EF (ω).

Thus, we choose Qe = 15 and limit the sum to the first three terms of Sφ,EF (ω).

Figure 4.8 compares the phase noise due to thermomechanical motion, temperature

fluctuations, and extensional fluctuations.

We now find the Allan deviation due to extensional fluctuations. We choose to

approximate the sum for Sφ,e(ω) with just the first term of the sum.

Sφ,EF (ω) =
16kBTΩ2

0c2
xxyy

πMw2ω2E2
Ωe,1

Qe,1

1

(Ω2
e,1 − ω

2)2 +
(
Ω2

e,1/Qe,1
)2 (4.70)

We further approximate Sφ,e(ω) to simplify the calculation.

Sφ,EF (ω) ≈
16kBTc2

xxyy

πQe,1Mw2Ω3
e,1E2

(
Ω0
ω

)2
for ω � Ωe,1 (4.71)

We then find the Allan deviation.

σA,EF (τA) =

√√
16kBTc2

xxyy

Qe,1Mw2Ω3
e,1E2τA

(4.72)
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Sφ,EF (ω) has some of the qualities required for a candidate forAPN. It is proportional

to kBT and the noise is correlated between modes. However, it lacks the 1/ f

dependence required. Also, it is significantly smaller than the phase noise due to

thermomechanical motion, ruling it out as a candidate for APN.
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Figure 4.8: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, temperature fluctuations, and
extensional fluctuations.

Charge Fluctuation Noise

Fluctuations in charges trapped in the device lead to frequency fluctuations through

the electrostatic spring softening. We first find the electrostatic spring softening

due to the trapped charges. Figure 4.9 shows the device geometry for the spring

softening calculation.
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(b) Sφ,EF (ω) for Qe,n = 100
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(c) Sφ,EF (ω) for Qe,n = 1000

Figure 4.7: Comparison of Qe,n values.
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dSiOx

Si

Si

L

Figure 4.9: Silicon DCB of dimensions L × w × t separated by a distance d from
the silicon substrate.

Charges are trapped in the silicon-silicon oxide interface [60]. To determine the

capacitance between the beam and the substrate, we model it as a parallel plate

capacitor with a bias voltage VBI AS applied.

C = ε0
wL
d
, (4.73)

where ε0 is the permittivity of free space. The total voltage V across the plate is

the sum of the bias voltage, VBI AS, and the voltage due to the trapped charges, VTC .

The energy Ue stored in the capacitor is 1
2CV 2. The electrostatic spring constant

softening, ke, is equal to ∂2Ue

∂x2 .

ke = ε0
wL
2d3 V 2 (4.74)

We now find the frequency shift due to the trapped charges.

Ω
′
0 = Ω0

(
1 −

ke

ke f f

)1/2
(4.75)

We perform the Taylor series expansion of Equation 4.75:

Ω
′
0 = Ω0

(
1 −

ke

2ke f f

)
= Ω0

(
1 − V 2 ε0LW

4ke f f d3

)
= Ω0

(
1 − ξV 2

)
, (4.76)

with ξ = ε0Lw
4ke f f d3 .

We find the fractional frequency noise due to trapped charges using the Wiener-

Khinchin theorem [38]; the Fourier transform of the autocorrelation of fluctuations
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in the fractional frequency is equal to the spectral density of fractional frequency

fluctuations. We first find the fractional frequency.

∂Ω′0
∂V
= −2Ω′0ξV (4.77)

δΩ′0
Ω′0
= −2ξVδV (4.78)

We then find the autocorrelation function.

GCF (τ) = 4ξ2 〈V (t)δV (t)V (t + τ)δV (t + τ)〉 (4.79)

We assume that the bias voltage applied is constant and that VBI AS � VTC . VTC is

determined by sweeping VBI AS and measuring the resulting frequency shift. The

vertex of the resulting parabola corresponds to VTC . For native oxide, 〈VTC〉 ≈ −1.8

mV [60]. We rewrite G(τ):

GCF (τ) =
〈
δΩ′0(t)δΩ′0(t + τ)(

Ω′0

)2

〉
= 4ξ2VBI AS 〈δVTC (t)δVTC (t + τ)〉 (4.80)

GCF (τ) = 4ξ2VBI AS H (τ) (4.81)

where H (τ) is the autocorrelation function of 〈δVTC (t)δVTC (t + τ)〉. We then take

the Fourier transform to determine the fractional frequency noise.

Sy,CF (ω) = 4ξ2V 2
BI AS

∫ ∞

−∞

H (τ)e−iωτdτ (4.82)

We then find the phase noise.

Sφ,CF (ω) = 4ξ2V 2
BI AS

(
Ω0
ω

)2 ∫ ∞

−∞

H (τ)e−iωτdτ (4.83)

Up to this point, we have made no assumptions about H (τ). We now assume that the

noise has a 1/ f dependence. We also assume that there is no bias voltage applied;

only the built in voltage is present, which corresponds to the actuation and detection

methods used in Chapter 6. We also assume that the magnitude of the fluctuation is

equal to the mean built in voltage; this represents a worst case scenario.

Sφ,CF (ω) = 4ξ2V 4
TC

Ω2
0

ω3 (4.84)
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We then find the Allan deviation.

σA,CF (τA) =
√

8ξ2V 4
TC ln(2) (4.85)

We plot Sφ,CF (ω) for the test device in Figure 4.10. While Sφ,CF (ω) does have the

1/ f dependence of APN, the magnitude is not large enough. Also, APN should

be proportional to V 2
BI AS for devices driven electrostatically; however, the measured

Allan deviation is independent of VBI AS [26].
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Figure 4.10: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, temperature fluctuations, ex-
tensional fluctuations, and charge fluctuations.

Gas Interaction Noise

Gas adsorbing or desorbing from the device surface and gas diffusing along the

device surface both lead to frequency fluctuations by changing the instantaneous

mass of the device. These processes occur simultaneously. However, we model

them as two separate processes.
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Adsorption Desorption Noise

Following Yong and Vig [61] and Cleland and Roukes [52], we treat the adsorption-

desorption process as a two state Markov chain. The surface of the resonator has

NAD sites available for adsorption. We find the fractional frequency change due

to adsorption desorption at one site and then extrapolate to the whole device. We

assume that each site contributes equally to the phase noise. We begin by finding the

adsorption rate, rA, and desorption rate, rD. We assume only one species of atom

or molecule is producing the noise. The species has a binding energy εB, a mass

m, and a pressure p. For this calculation, we assume that the primary species of

gas in the vacuum chamber is H2, because we baked out the chamber, as described

in Chapter 5. We assume a pressure of 10−9 Torr. The surface involved in both

adsorption-desorption and diffusion noise is native oxide on Si. We assume an εB of

1 eV [62], which corresponds to chemisorption, and νD = 1013 Hz. The molecular

diameter of H2 is 0.274 nm [9]. The molecular weight of H2 is m =2.016 amu [9].

The adsorption rate [63] is

rA = sI
AD

NAD
, (4.86)

where s is the sticking coefficient, I is the flux of molecules impinging on the device,

and AD = L × w is the area of the device exposed to the gas. We rewrite Equation

4.86 in terms of the flux, I = p/
√

2πmkBT .

rA = s
AD

NAD

p

(2πmkBT )1/2 (4.87)

For this calculation, we assume a worst case scenario of s = 1. NAD =
AD

AAD
, where

AAD is the area occupied by an adsorbed gas molecule. The desorption rate is

rD = νDe
*
,
−
εB

kBT
+
-, (4.88)
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where νD is the attempt frequency. For the given parameters, rA = 1.1 × 10−3 Hz

and rD = 1.6 × 10−4 Hz. The probability that a site is occupied is pocc.

pocc =
rA

(rA + rD)
(4.89)

The variance in the occupation probability is σ2
occ.

σ2
occ =

rArD

(rA + rD)2 (4.90)

The autocorrelation for a two state Markov chain is

GAD,site(τ) = σ2
occe−|τ |/τr, (4.91)

where τR = (rA + rD)−1 = 810 s. The fractional frequency noise at one site is equal

to the Fourier transform of Equation 4.91.

SAD,site(ω) =
2σ2

occτR

1 + (ωτR)2 (4.92)

We determine the fractional frequency noise for the device by multiplying SAD,site

by the number of sites NAD and the fractional change in frequency induced by a

molecule, δω/Ω0 = −(m/2Me f f ).

Sy,AD (ω) =
2NADσ

2
occτR

1 + (ωτR)2

(
m

2Me f f

)2
(4.93)

We now find the phase noise due to adsorption-desorption noise.

Sφ,AD (ω) =
2NADσ

2
occτR

1 + (ωτR)2

(
m

2Me f f

)2 (
Ω0
ω

)2
(4.94)

We note that since ωτR � 1, Sφ,AD (ω) ∝ ω−4. The Allan deviation due to

adsorption-desorption has two asymptotes.

σA,AD (τA) =
1
2
σocc

√
NAD

( m
M

) (
τR

τA

) 1
2

for τA � τR (4.95a)

σA,AD (τA) =
1

2
√

3
σocc

√
NAD

( m
M

) (
τA

τR

) 1
2

for τA � τR (4.95b)
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We plot the phase noise due to adsorption-desorption in Figure 4.11. We conclude

that noise due to adsorption-desorption is not a valid candidate for APN. The

magnitude is smaller than that of thermomechanical motion. In addition, it has the

wrong power-law dependence in frequency.
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Figure 4.11: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, temperature fluctuations, ex-
tensional fluctuations, charge fluctuations, and adsorption-desorption.

Diffusion Noise

Following Yang et al. [64], we find the phase noise due to atoms diffusing along the

surface of the resonator. We first determine how the diffusion of atoms along the

surface of the device changes the fractional frequency, y(t).

y(t) =
δ f (t)

f0
= −

1
2

m
Me f f

∫ L/2
−L/2 [u(x)]2 δC(x, t)dx

1
L

∫ L/2
−L/2 [u(x)]2 dx

, (4.96)

where u(x) is the mode shape and δC(x, t) is the concentration fluctuation due to

diffusion. δC(x, t) is governed by the one-dimensional diffusion equation.

∂δC(x, t)
∂t

= D
∂2δC(x, t)

∂x2 , (4.97)
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where D is the diffusion constant. From Zangwill [62], D = D0e−εm/kBT , where

D0 is on the order of 10−3 cm2/s and εm ranges between 5% and 20% of εB for

chemisorption. We choose Em = 0.1 eV. We then find the autocorrelation of y(t).

GDF (τ) =
aN
√

2π

(
m

2Me f f

)2 1
√

1 + τ/τDF
(4.98)

where a = 4.428, N is the average number of atoms diffusing across the device,

and τDF = L2/(2a2D) =0.031 s is the diffusion time.2 a is a numerical constant

that comes from approximating the mode shape as a Gaussian to simplify the

calculations. We use the Wiener-Khinchin Theorem to find the fractional frequency

noise by taking the Fourier transform of Equation 4.98.

Sy,DF (ω) =
aN
2

(
m

Me f f

)2
τDFψ(ωτDF ) (4.99)

ψ(x) =
g(
√

x)
√

x
(4.100)

g(
√

x) = cos(x) + sin(x) − 2C1(
√

X ) cos(x) − 2S1(
√

x) sin(x) (4.101)

C1(x) =

√
2
π

∫ x

0
cos

(
u2

)
du (4.102)

S1(x) =

√
2
π

∫ x

0
sin

(
u2

)
du (4.103)

C1(x) and S1(x) are Fresnel integrals. ψ(x) has two asymptotes:

ψ(x) ≈




1
√

x
for x � 1,

1
√

2π
1
x2 for x � 1.

(4.104)

Figure 4.12 shows ψ(x) and its asymptotes.
2τDF is usually referred to as τD in the literature. We have chosen to use τDF instead in order

to reserve τD for defect reorientation time, as will be discussed in Section 4.4.
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Figure 4.12: Asymptotes of ψ(x).

We now consider the two asymptotes for Sy,DF (ω).

Sy,DF (ω) =




aN
2

(
m

Me f f

)2 √
τDF

ω
for ω � 1/τDF

aN

2
√

2π

(
m

Me f f

)2 1
ω2τDF

for ω � 1/τDF

(4.105)

The phase noise for diffusion noise has the following two asymptotes:

Sφ,DF (ω) =




aN
2

(
m

Me f f

)2 (
Ω0
ω

)2 √
τDF

ω
, for ω � 1/τDF

aN

2
√

2π

(
m

Me f f

)2 Ω2
0

ω4τDF
for ω � 1/τDF .

(4.106)

The Allan deviation for diffusion noise has the following two asymptotes:

σA,DF (τA) ≈




0.83
√

N
( m

M

) (
τDF

τA

) 1
4

for τA � τDF ,

0.26N
( m

M

)2 (
τA

τDF

)
for τA � τDF .

(4.107)

We plot the phase noise due to diffusion in Figure 4.13. We conclude that diffusion

noise is not a valid candidate for APN. It is not larger than thermomechanical motion

noise. It also lacks the f −3 frequency dependence in phase noise expected for a

candidate for APN.
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Figure 4.13: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, temperature fluctuations, ex-
tensional fluctuations, charge fluctuations, adsorption-desorption, and diffusion.

Noise from Higher Order Mode Coupling

In Section 4.3, we described the phase noise due to the nonlinear spring constant,

λ1,1. In this section, we describe the phase noise due to thermomechanical amplitude

noise from higher modes. The thermomechanical amplitude noise couples into the

first mode through the nonlinear coupling coefficient, λ1,q. We are interested in the

noise from the second mode. We begin by finding Φ1(ξ) and Φ2(ξ). Φn(ξ), the nth

mode of a doubly clamped beam, has the following mode shape [57]:

Φn(ξ) = Cn

[
cosh(knξ) − cos(knξ) +

cosh(knξ) − cos(knξ)
sinh(kn) − sin(kn)

(
sin(knξ) − sinh(knξ)

)]
.

(4.108)

Cn is defined such that
∫ 1

0 Φp(ξ)Φq(ξ)dξ = 1. kn is defined by the following

boundary condition: cos(kn) cosh(kn) = 1. We list the values for Cn and qn for the

first two modes of a doubly clamped beam in Table 4.5. Using these parameters, we

find λ1,2 = 2.09 × 1013 m−2.
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Mode Number Cn kn
1 1 4.730
2 1 7.853

Table 4.5: Mode Shape Parameters

We now find the fractional frequency noise. The fractional frequency is

y(t) =
∆Ω(t)
Ω0

= λ1,2 A2
2(t), (4.109)

where A2
2(t) is the amplitude squared for the second mode. We find the autocorre-

lation function.

GMC (τ) = 〈y(t)y(t + τ)〉

= λ2
1,2〈A

2
2(t)A2

2(t + τ)〉 (4.110)

We use theWiener-Khinchin theorem to find the fractional frequency noise by taking

the Fourier transform of Equation 4.110.

Sy,MC (ω) = λ2
1,2

∫ ∞

−∞

〈A2
2(t) A2

2(t + τ)〉e−iωτdτ (4.111)

We assume that the motion in the second mode is driven by thermomechanical

noise. For the experiments performed in Chapter 6, this is a reasonable assumption.

However, for mass spectrometry measurements employing multi-mode imaging [4,

65, 66], the amplitudes in the higher order modes are often large; the amplitudes

should be measured and an autocorrelation performed. We rewrite Equation 4.111,

using the expression for Sth
x (ω) from Equation 2.20.

Sy,MC (ω) = *
,

4kBTQλ1,2

Me f f ,2Ω
3
2

+
-

2

(4.112)

Ω2/(2π) = 2.756 MHz is the resonant frequency of the second mode. Me f f ,2 =

0.439M is the effective mass of the second mode. We then find the phase noise.

Sφ,MC (ω) =
(
Ω0
ω

)2
*
,

4kBTQλ1,2

Me f f ,2Ω
3
2

+
-

2

(4.113)
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We plot the phase noise in Figure 4.14.
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Figure 4.14: Comparison of phase noise from direct thermomechanical noise, am-
plitude to phase conversion thermomechanical noise, temperature fluctuations, ex-
tensional fluctuations, charge fluctuations, adsorption-desorption, diffusion, and
non-linear mode coupling.

Non-linear mode coupling is not a viable candidate for APN for several reasons. It

has a magnitude much smaller than that of thermomechanical noise. It also lacks

the correct temperature and frequency dependencies.

Defect Motion Noise

The reorientation of point defects leads to fluctuations in the local Young’s modulus

and, consequently, fluctuations in the frequency. Cleland and Roukes [52] provided

an initial model for noise from point defects. They treated the defects as elastic

dipoles, as first discussed by Nowick and Berry [67]. Cleland and Roukes mod-

eled the dipoles with a single activation energy, εD3. We summarize their results

in Section 4.4 and then expand their model to include a range of activation ener-
3We have chosen use ε to denote energy avoid confusion with the Young’s modulus, E
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gies in Section 4.4. We first discuss elastic dipoles before considering how their

reorientation leads to phase noise.

Elastic Dipoles

Following Nowick and Berry [67], a point defect causes local distortions in the

strain field. The change in strain field due to an elastic dipole is

εd
i j − ε

0
i j =

nd∑
p=1

λ
(p)
i j CP. (4.114)

εd
i j is the strain tensor for a crystal with defects and ε0

i j is the strain tensor for a

crystal without defects. nd is the number of equivalent orientations for a defect; nd

depends upon both the defect type and the crystal symmetry. λ (p)
i j characterizes the

elastic dipole; the definition of λ (p)
i j is given in Equation 4.115. Defects can have

equivalent orientations; p labels which equivalent orientation of nd that the defect

occupies. Cp denotes the mole fraction of defects with orientation p.

λ
(p)
i j ≡

∂ε i j

∂Cp
(4.115)

Defect Motion Noise with One Activation Energy

Roukes and Cleland treat point defects as elastic dipoles with one activation energy,

εD. The defects are randomly oriented in the crystal. Thermal motion induces

reorientation of the defects, with a reorientation time of τD.

τD = τ0exp(εD/kBT ), (4.116)

where τ0 is the attempt time, and εD is energy required for reorientation. For silicon,

τ0 is on the order of 10−12 s and εD ranges from 0.1 − 0.4 eV [68]. Roukes and

Cleland limit the defect to two orientations, + and -, which both have the same

reorientation energy. The probability that a defect is in either orientation is 1
2 ; the

mean reorientation time is τD.
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Roukes and Cleland next determine the effect of the point defects on the bulk

Young’s modulus. When the defect is in the + orientation, the local Young’s

modulus is Es + E+, where Es is the defect free modulus. The Young’s modulus

corresponding to the − orientation is Es +E−. They assume that a total mole faction

C0 of identical defects exist in the device. The average Young’s modulus is 〈E〉 ≈

Es +
1
2C0 (E− + E+). The variance is σ2

E ≈
1
4C0 (E+ − E−)2. The corresponding

variance in frequency is σ2
Ω
= 1

8C0 (Ω+ −Ω−)2, where Ω± is calculated using

E = Es + C0E±. The fractional frequency noise is

Sy,RC (ω) =
2
π

σ2
Ω

〈Ω〉2
τD

1 + ω2τ2
D

. (4.117)

The corresponding phase noise is

Sφ,RC (ω) =
(
Ω0
ω

)2 2
π

σ2
Ω

〈Ω〉2
τD

1 + ω2τ2
D

. (4.118)

In order to find the Allan deviation, they assume that τD � τA.

σA(τA) =

√
2σ2
Ω

〈Ω〉2

√
τD

τA
for τA � τD (4.119)

The model for defect motion postulated by Roukes and Cleland does not produce

a noise source consistent with APN. However, their model is not realistic because

defects have a range of activation energies. We consider a model for defect motion

that incorporates a range of activation energies in the next section.

Defect Motion with a Range of Activation Energies

We modify Roukes and Cleland’s model to include a range of reorientation times

through the Dutta-Dimon-Horn model [39, 40]. Following Scofield et al. [69],

we treat defect reorientation as a superposition of thermally activated processes.

We begin by modeling the fluctuation in the local Young’s modulus due to the

reorientation of one elastic dipole, δẼ. We use Ẽ to refer to the local Young’s
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modulus for one defect. We reserve E for the Young’s modulus for the entire

sample. We find the autocorrelation of δẼ, GẼ (t).

GẼ (t) = 〈δẼ(0)δẼ(t)〉 = 〈δẼ2〉e−|t |/τD, (4.120)

where τD is the is the relaxation time and 〈δẼ2〉 is the variance. We use the

Wiener-Khinchin Theorem to find the power spectral density, SẼ (ω).

SẼ (ω) = 〈δẼ2〉
2τD

1 + ω2τ2
D

(4.121)

We now find the fluctuations due to linear superposition of all of the defects.

SE (ω) =
∑

j

〈δẼ2
j 〉

2τD, j

1 + ω2τ2
D, j

(4.122)

〈δẼ2
j 〉 is the variance of the jth elastic dipole and τD, j is the relaxation time of that

dipole. The fractional frequency dependence due to changes in E is

1
Ω0

∂Ω0
∂E
=

1
2

1
E
. (4.123)

The fractional frequency noise is Sy,E (ω) =
(

1
Ω0

∂Ω0
∂E

)2
SE (ω).

Sy,E (ω) =
1
4

1
E2

∑
j

〈δẼ2
j 〉

2τD, j

1 + ω2τ2
D, j

(4.124)

We use Equation 4.124 to find the phase noise, Sφ,E (ω) =
Ω2

0
ω2 Sy,E (ω).

Sφ,E (ω) =
1
4

1
E2

Ω2
0

ω2

∑
j

〈δẼ2
j 〉

2τD, j

1 + ω2τ2
D, j

(4.125)

Up to this point, we have made no assumptions about the distribution of τD, j . We

first consider the temperature dependence of SE (ω) through τD, j and 〈δẼ2
j 〉. The

temperature dependence of τD, j (T ) is

τD, j (T ) = τ0, jeεD, j/kBT . (4.126)
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Scofield et al. choose to factor out the temperature dependence of 〈δẼ2
j 〉, by writing

〈δẼ2
j 〉 as the product of the temperature dependent variance of Young’s modulus,

〈δE2(T )〉 and the dimensionless variance of the jth fluctuator, 〈δs2
j 〉.

〈δẼ2
j 〉 = 〈δE2(T )〉〈δs2

j 〉, (4.127)

By factoring out the temperature dependence of 〈δẼ2
j 〉, we focus on the temperature

dependence due to the thermally activated process. We normalize SE (ω) to remove

the dependence on 〈δẼ2
j 〉.

The normalized spectrum is SE,n(ω).

SE,n(ω) =
∑

j

〈δs2
j 〉

2τD, j

1 + ω2τ2
D, j

(4.128)

We next define a temperature dependent distribution of relaxation times, F (τ,T ), in

order to remove the sum over 〈δs2
j 〉 from Equation 4.128.

F (τ,T ) =
∑

j

〈δs2
j 〉δ

(
τ − τj (T )

)
(4.129)

We rewrite SE,n(ω) in terms of F (τ,T ).

SE,n(ω,T ) =
∫ ∞

0
F (τ,T )

2τ(
1 + ω2τ2) dτ (4.130)

F (τ,T ) arises fromadistribution of activation energies, D(ε ), where ε = kBT ln
(
τ
τ0

)
.

D(ε ) =
∑

j

〈δs2
j 〉δ

(
ε − ε j (T )

)
(4.131)

We rewrite F (τ,T ) in terms of D(ε ).

F (τ,T ) =
kBT D(ε )

τ
, (4.132)

where τ = τ0eε/kBT . We limit the distribution by allowing one activation time,

τ0, and a range of activation energies. Given a distribution of energies and an

attempt time, we can calculate SE,n(ω). Before finding the phase noise due to defect
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reorientation, we consider the inverse problem: extracting D(ε ) and τ0 from a phase

noise spectrum.

We find D(ε ) and τ0 by determining F (τ,T ) from the measured phase noise, Sφ(ω).

Following Scofield et al. [69], we first convert Sφ(ω) into a fractional frequency

noise spectrum and normalize it, which yields SE,n(ω). We find F (τ,T ) by inverting

Equation 4.130.

F (τ,T ) = −
1
πτ2 Im

[
SE,n

(
i
τ

)]
(4.133)

At this point, we assume that SE,n(ω) has the form ω−α, with α ≈ 1.

ω

π
SE,n(ω) ≈ τF (τ,T ) , (4.134)

with τ = 1/ω. This approximation is valid when the product of ω and SE,n(ω)

varies by less than 50% per decade; the error introduced is less than 50%. Thus,

for a given Sφ(ω), it is possible to determine SE,norm(ω), F (τ,T ), and D(ε ). D(ε )

could then be compared with the known defects in Si and determine if the spectrum

represents defect motion.

To model Sφ,E (ω) for comparison with the other sources of phase noise, we choose

a defect with a reorientation energy of 0.056eV, a reorientation time of 1 × 10−13s,

a concentration of 0.001, and E± = ±0.0001E. The reorientation time and reori-

entation energy correspond to the divacancy in Si[70]. The defect concentration

is a guess based upon material choice of single crystal silicon; the total number of

defects should be relatively low. The change in the Young’s modulus is an edu-

cated guess. The defect concentration and value for E± do not change the shape

of Sφ,E (ω); they only change the magnitude. We model D(ε ) as a Gaussian with

a standard deviation of 0.05eV. The resulting phase noise is shown in Figure 4.15.

The magnitude of Sφ,E (ω) is significantly less than the other sources of phase noise

and does not show up on the plot. A defect with a longer reorientation time, on the

order of a few microseconds, does produce phase noise on the order of the other
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Figure 4.15: Comparison of phase noise fromdirect thermomechanical noise, ampli-
tude to phase conversion thermomechanical noise, temperature fluctuations, exten-
sional fluctuations, charge fluctuations, adsorption-desorption, diffusion, non-linear
mode coupling, and defect reorientation noise.

noise sources. Due to the complicated nature of Sφ,E (ω), we do not calculate the

Allan deviation; however, in regions where Sφ,E (ω) ∝ ω−3, the Allan deviation is

independent of the integration time, τA. Defect reorientation noise is a potential

candidate for anomalous phase noise, with the caveat that both the magnitude and

frequency of defect reorientation noise are highly dependent upon the parameters

chosen.

4.5 Summary of Phase Noise Sources

In summary, we have considered several sources of phase noise in NEMS res-

onators in this chapter. Table 4.6 contains equations for the phase noise for the

various sources. Table 4.7 contains equations for the Allan deviation for the various

sources. The majority of the sources of phase noise considered in this chapter are

not viable candidates for APN. Direct thermomechanical and amplitude to phase

(A−φ) thermomechanical noise are intrinsic noise sources. Temperature fluctuation
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noise lacks the expected frequency dependence; it is also smaller than direct thermo-

mechanical noise over the region of interest. Length fluctuation lacks the expected

frequency dependence; it is smaller than direct thermomechanical noise as well.

While charge fluctuation noise does have the expected frequency dependence, it is

significantly smaller than direct thermomechanical noise. Neither gas interaction

noise source has the expected frequency dependence; both are smaller than direct

thermomechanical noise over the majority of the region of interest. Mode coupling

noise lacks the expected frequency dependence; its magnitude is also significantly

smaller than that of direct thermomechanical noise. Defect reorientation noise is a

potential candidate for anomalous phase noise due to its temperature dependence

(Sφ,E (T ) ∝ T) and its frequency dependence (Sφ,E (ω) ∝ ω−3).
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C h a p t e r 5

EXPERIMENTAL SETUP

In this chapter, we describe the setup used in Chapter 6 to measure the temperature

dependence of anomalous phase noise in silicon doubly clamped beams, as well as

the fabrication of those devices. The experimental setup consists of five parts: the

optics used to detect the motion of the device, the optics used to actuate the motion

of the device, the optics used to anneal the device, the vacuum system containing the

cryostat and the device, and the cryostat and sample holder used to cool the device.

We begin the chapter with a brief overview of the entire optical setup. We then

discuss concepts from optics relevant to the design and operation of the optical

setup. We next describe each subsystem of the optical setup in detail. We end with

a description of the procedure used to fabricate the devices.

5.1 Overview of Optical Setup

The optical setup consists of three subsystems: the detection system, the actuation

system, and the annealing system. The detection system uses a simple interferometer

to detect themotion of the device. The actuation systemuses an amplitudemodulated

laser beam to thermoelastically actuate the device. The annealing system uses a laser

to anneal the device. All three subsystems and their associated optics are mounted

on a 4’x8’x1’ RS4000 Newport optical table, supported by a set of I-2000 isolator

legs. The optical setup is shown in Figure 5.1.

5.2 Optical System Design

Before discussing the optical setup in greater detail, we provide a brief overview

of topics relevant to the system. First, we discuss Gaussian laser beams and spot
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size; the spot size at the device is directly correlated to the responsivity of the

simple interferometer. We discuss optical aberrations and how the choice of lens

used to focus the beam on the device affects the minimum spot size, as well as the

requirements on the flatness of the dichroic mirror. We then discuss polarization

optics.

Gaussian Laser Beams

AGaussian laser beam is defined by its Gaussian intensity profile, given in Equation

5.1 [71]:

I (r) = Ioe−2r2/w2
, (5.1)

where w is the beam radius at which I = I0e−2. The laser beam diverges; the beam

waist w(z) depends upon the distance from the exit of the laser, as given in Equation

5.2 [71]:

w(z) = w0


1 + *

,

λz
πw2

0

+
-

2

1/2

, (5.2)

where w0 is the beam radius at the exit of the laser, λ is the wavelength of the beam,

and z is the distance from the exit of the laser.

Spot Size

The spot size of the laser at the device is of great interest, for both optical detection

and optical actuation. The responsivity of the detection system, the ratio of the

voltage measured at the photodetector to the amplitude of the motion of the device,

is directly proportional to the spot size for the detection beam. For a constant spot

size, the responsivity of the optical system decreases as the device width decreases.

Wewish for the spot size at the device to be as small as possible, to ensure that a large

portion of the beam reflects off of the device, which leads to the best responsivity.

As we will show in Section 5.4, the amount of power required for optical actuation

depends upon the spot size of the laser.
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We first consider the simple case of a circular beam traveling through an ideal lens

and then consider the more complicated cases of Gaussian beams and of a lens with

aberrations. The circular beam has a diameter D and uniform intensity distribution

and passes through a lens with a focal length f . The lens is ideal with no aberrations.

In this case, the minimum spot size is set by the diffraction limit. The minimum

spot size is given by the diameter of the Airy disk:

s = 2.44
λ f
D
, (5.3)

where λ is the wavelength of light [71]. For the detection beam, the distance between

the exit of the laser and the input to the beam expander is approximately 16′′. Using

Equation 5.2, the 1/e2 beam radius at the input to the beam expander is 0.42mm.

The beam radius at the exit is 8.4mm; the beam diameter is 16.8mm. The spot size

predicted by Equation 5.3 is 13.8µm, assuming a uniformly illuminated beam of

diameter 16.8mm and an ideal lens with a focal length of 150mm. However, the

beams used in these experiments have a Gaussian intensity profile. In addition, the

beams are clipped; for 100% of the incident power to be passed by any element in

the optical system, such as the mirrors or polarizing beam splitter, would require

that the element be infinite. A simple criterion for apertures in the system is that

they are circular with a diameter of 3w, where w is the 1/e2 beam radius [72]. This

condition leads to 98.9% of the incident power being passed through the aperture.

Using the 3w criterion, the optics in the system should have a diameter of at least

25.2mm, which is a little less than 1”. Next, we define the truncation ratio T = w/b,

where b is the radius of the aperture. For these calculations, we use an aperture of

diameter 22.6mm, the clear aperture of the quarter wave plate (QWP). Following

Urey [73], the spot size s for a truncated Gaussian beam is

s = K
λ f
2b

with (5.4a)

K = 1.654 −
0.105

T
+

0.28
T2 . (5.4b)
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K is defined such that diffraction spot diameter contains 1/e2 of the beam intensity.

For the given beam 1/e2 diameter of 16.8mm and aperture of 22.6mm, the predicted

spot size is 8.5 µm. The measured spot size is (9.7 ± 0.1)µm.

We measured the spot size with the knife edge technique [74]. We used a computer

controlled stage to move a razor blade across the beam, with the razor blade per-

pendicular to the beam, and measured the transmitted power with a photodetector.

The coordinate system used is shown in Figure 5.2. The knife edge measurement is

shown in Figure 5.3. We rewrite the equation for the intensity of a Gaussian laser

x

y
z

Figure 5.2: The focal plane is the x-y
plane. The laser beam travels along
the z-axis.

x

y
z

XK

Figure 5.3: The razor blade moves
along the x-axis.

beam in terms of x and y instead of r .

I (x, y) = I0e
−2



*
,

x − x0
wx

+
-

2

+
*.
,

y − y0
wy

+/
-

2, (5.5)

where I0 is the intensity, wx is the beam width in the x direction, wy is the beam

width in the y direction, and (x0, y0) is the location of the center of the beam. The

power, P(xK ), measured at a given knife edge position, xK , is given by Equation

5.6.

P(xK ) =
∫ xK

−∞



∫ ∞

−∞

I0e
−2

[( x−x0
wx

)2
+

(
y−y0
wy

)2]

dy


dx (5.6)

We integrate over y, yielding the following equation:

P(xK ) =
π

4
wxwy I0


erf *

,

√
2(x − xK )

wx
+
-
+ 1


, (5.7)
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where erf(x) is the Gaussian error function. We use Equation 5.7 to fit P(xK ) and

thus determine wx . We took scans along the focal length, x and z or y and z to

determine wx and wy. The data and fit used to determine wx and wy are shown in

Figures 5.4 and 5.5.

X Position (mm)
18.59 18.595 18.6 18.605 18.61 18.615

P
ho

to
de

te
ct

or
 S

ig
na

l (
V

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fit with
w

x
 = (4.84±0.04) µm

data

Figure 5.4: Data fromknife edgemea-
surement of wx .

Y Position (mm)
14.315 14.32 14.325 14.33 14.335

P
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or
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ig
na

l (
V

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fit with
w

y
 = (4.85±0.07) µm

data2

Figure 5.5: Data fromknife edgemea-
surement of wy.

A second parameter of interest is the depth of focus, ∆z, the distance over which the

image can be moved before an accepted level of blur is produced [75]. Specifically,

the depth of focus sets the range over which the device is in best focus and sets the

focal length step size used when performing alignment scans to determine the best

position for the lens relative to the device. We chose a Strehl ratio of 0.8 as the

criterion used to calculate the depth of focus; the ratio is the ratio of the maximum

intensity in the observation plane to the maximum intensity at the focal plane. A

Strehl ratio of 0.8 corresponds to a peak-valley optical path difference of λ/4, the

Rayleigh criterion. The optical path difference (OPD) is the difference between the

real wavefront and an ideal spherical reference wavefront due to aberration [16].

The Rayleigh criterion [75] specifies that if the OPD is less than or equal to λ/4,

the performance of the system will be almost ideal. Following Urey [73],

∆z = K2λ

[
f

2b

]2
with (5.8a)

K2 = 2.05 +
0.12

T
−

0.28
T2 +

0.22
T3 . (5.8b)



99

For the previous parameters, K2 = 2.24 and the depth of focus is ∆z = 62 µ m.

Aberrations

We next consider the various aberrations present in an optical system. In order to

generate the smallest spot size possible, we want the system to be diffraction limited;

the blur due to diffraction should be much larger than the blur due to geometrical

aberrations [16]. Specifically, we wish for the system to meet the Rayleigh criterion

discussed in the previous section; the peak-valley optical path difference (OPD)

should be less than λ/4. The majority of the components in the system introduce

a wavefront error of less than λ/4; the OPD is specified for each part as a design

parameter. However, two sources of aberration exist in the system: the lens used

to focus the HeNe laser and 690nm laser onto the device, as well as the aberration

from the dichroic mirror.

There are two types of aberrations [71]: chromatic aberrations and monochromatic

aberrations. The chromatic aberrations arise from the wavelength dependence of the

index of refraction of the materials used in the lens. The monochromatic aberrations

correspond to higher order corrections to the paraxial approximation. The paraxial

approximation uses the small angle approximation, sin(φ) ≈ φ, to simplify the

calculation for ray tracing. We consider only the third order corrections to the

paraxial approximation, also known as the Seidel aberrations: spherical aberration,

coma, astigmatism, Petzval field curvature, and distortion. We do not consider

Petvzal field curvature and distortion in the discussion of aberrations; both lead to

deformation of the image off of the optical axis and we are primarily interested in

the image close to the optical axis. Before considering these aberrations, we show a

ray tracing for an ideal lens in Figure 5.6. All of the rays focus at the paraxial focus;

the focal position is independent of the aperture at which the rays enter the lens.
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Paraxial
Focus

Optical
Axis

Aperture

Figure 5.6: A ray trace showing an ideal lens.

Spherical aberration causes the focal length for a ray to depend the aperture, the

height above the optical axis at which it enters the lens. A ray trace for a lens with

spherical aberration is shown in Figure 5.7.

Paraxial
Focus

Optical
Axis

ΣLC

Aperture

LSA

TSA

Figure 5.7: A ray trace showing spherical aberration. The optical axis is the blue
line. The circle of least confusion, ΣLC , is marked by the red line.

The circle of least confusion is the location of the minimum blur. Spherical aber-

ration is characterized by the longitudinal spherical aberration (LSA) and the trans-

verse spherical aberration (TSA). The longitudinal spherical aberration corresponds

to the distance between where the ray crosses the optical axis and the paraxial focus.

The transverse spherical aberrations corresponds to height of the ray above the op-
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tical axis at the paraxial focus. We wish to minimize spherical aberration because it

increases the spot size; we want the system to be diffraction limited.

The next monochromatic aberration is coma, which affects object points off of the

optical axis. We are concerned with coma for the 690nm actuation beam, because

we move the beam by changing the angle at which it hits the focusing lens; the beam

is not parallel to the optical axis of the focusing lens, unlike the HeNe beam. The

position above the optical axis at which the ray enters the lens changes the effective

focus length, which leads to coma. An example of coma is shown in Figure 5.8.

Figure 5.8: A ray tracing showing coma.

Astigmatism corresponds to the a focal length difference between the meridional

plane and the sagittal plane for object points off of the optical axis. The meridional

plane is the plane we have considered previously in the lens diagrams; it contains the

optical axis and the ray that passes through the center of the aperture. The sagittal

plane is perpendicular to this plane. The circle of least confusion corresponds to the

smallest spot size; it is between the focus in the meridional plane and the focus in

the sagittal plane. The 690nm actual beam has intrinsic astigmatism from the laser

diode; we wish to limit the astigmatism added by the focusing lens.
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Chromatic aberration arises from the wavelength dependence of the index of refrac-

tion. We are interested in the chromatic aberration of the lens used to focus both the

690nm and 633nm beams onto the device. We want the distance between the two

focal points to be small. We use an achromatic doublet1 to minimize the chromatic

aberration. In addition, the achromatic doublet minimizes both spherical aberration

and coma.

The other primary source of aberration in the optical system is the dichroic mirror.

We used a custom dichroic mirror coated by Spectral Products with a flatness of λ/8

to ensure that the Rayleigh criterion was met. We had previously used a dichroic

mirror that did not meet the Rayleigh criterion, which led to problems with both

optical actuation and optical detection. We previously had to use higher beam

powers for the 690nm beam due to the increased spot size. We also had a lower

responsivity due to the increased spot size of the 633nm beam.

Polarization

The polarized light is used in both the detection system and the annealing system.

In the detection system, the polarization of light is used control the amount of light

passed into each path from the polarized beam splitter. In the annealing system,

the annealing beam impinges upon the sample at Brewster’s angle to maximize the

amount of power adsorbed by the device.

Three orientations exist for the polarization of light: linear, circular, and elliptical

[71]. For linearly polarized light, the electric field is oriented along a single direction

in the plane perpendicular to the direction of propagation. One example of a linearly

polarized electric field of amplitude E0 propagating along the z axis in vacuum with

wavelength λ is

E(z, t) = x̂E0 cos(kL z − ωLt), (5.9)
1Thorlabs AC508-150-A-ML
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Laser

Beam 
Splitter

Photodetector

d(t)

Device Surface

Figure 5.9: Simple interferometer. The interferometer measures d(t), the distance
between the device and the surface underneath the device.

where kL = 2π/λ is the propagation number and ωL = 2πc/λ is the frequency of

the light. For circularly polarized light, both components have equal amplitudes and

a −π/2 phase difference.

E = E0[x̂ cos(kz − ωt) + ŷ sin(kz − ωt)]. (5.10)

For elliptically polarized light, the two components have different amplitudes and

an arbitrary phase difference.

E = [Ex x̂ cos(kz − ωt) + Eyŷ sin(kz − ωt + φ)]. (5.11)

5.3 Detection System

We detect the motion of the device using a simple interferometer. The simple

interferometer measures the path difference, d(t) = d0 + A cos(ωDt), between

the device and the surface underneath the device, where d0 is the initial distance

between the device and surface, A is the amplitude of the motion, and ωD is the

frequency of the motion. A simplified diagram of the interferometer showing the

key components is shown in Figure 5.9. The light from the laser passes through

the beam splitter before entering the vacuum chamber through the front window,

which is not shown in the figure. The light is then reflected from the device and

travels to the photodetector. The reflectance of the front window is ≈ 0.5%; the
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front window is composed of quartz with a broadband anti-reflective coating2. Due

to the low reflectance, we treat the interference as a two component process, where

E1 is the electric field reflected from the device and E2 is the electric field reflected

from the surface underneath the device. Assuming that the two electric fields are

linearly polarized with parallel polarization, they have the following form at z = z0,

the location of the device:

E1(z0, t) = E01ei(kL z0−ωLt), (5.12a)

E2(z0, t) = E02ei(kL (z0+2d)−ωLt) . (5.12b)

kL = 2π/λ is the wavevector and ωL = 2πc/λ is the frequency of the light. We are

interested in the interference of these two fields.

E = E1 + E2 (5.13a)

E2 = E · E (5.13b)

E(t)2 = E2
1 + E2

2 + 2(E01 · E02) cos
(

4πd(t)
λ

)
(5.13c)

We rewrite the interference in terms of the intensity, the quantity measured by the

photodetector.

I (t) = I1 + I2 + 2
√

I1I2 cos
(

4πd(t)
λ

)
. (5.14)

In Figure 5.10, we plot the interference pattern for λ =632.8nm, the wavelength

of the HeNe beam. We assume that I1 = I2 =
1
4 I0. The highest responsivity

occurs when d = (2n + 1)λ/8, where n is an integer. We use a photodetector to

measure this intensity. The time varying intensity measured with the photodetector

is proportional to sin(4πd(t)/λ), assuming that we are operating at the point with

highest responsivity. We use the small angle approximation to linearize the voltage.

V (t) ∝
4πd(t)
λ

(5.15)

This approximation is valid for d < 5 nm.
2The window is model number VPZL-450DUC2 purchased from Lesker.
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Figure 5.10: Interference pattern for λ = 632.8nm.

Experimental Setup

A simple interferometer is used to measure the motion of the cantilever. The simple

interferometer is very similar to the design used by Rugar et al. [15]. The optical

setup is shown in Figure 5.1. The first component of the detection system is the

laser. We used an amplitude stabilized HeNe laser to minimize fluctuations in the

beam intensity. Fluctuations in the intensity of the laser are indistinguishable from

fluctuations caused by a change in the path length; consequently, the amplitude

stabilization reduces the noise. The laser is mounted with a cylindrical laser mount

on two rack and pinion posts, to enable precise adjustments in the height, pitch, and

yaw of the laser.

Following the laser is an optical isolator, which prevents any light reflected from

components further along the beam path from entering the laser; the reflected light

could destabilize the laser. The next component is a half wave plate (HWP) in a

rotation mount; the half wave plate is used to rotate the polarization of the beam

such that the maximum amount of light travels to the device. Following the half

wave plate is a neutral density filter, used to attenuate the beam power. The beam
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Figure 5.11: Detection beam power vs ∆ f .

power is attenuated to ensure that heating from the HeNe laser does not lead to a

drift in the resonant frequency of the device. For the experiments in Chapter 6, we

use a neutral density filter with an optical density of 3.0, which corresponds to 3 µW

at the device. We chose this power level by determining the frequency shift due

to heating from the HeNe beam. We measured the thermomechanical noise of the

device at various intensity levels and determined the corresponding shift in resonant

frequency, as shown in Figure 5.11. We measured the thermomechanical noise to

avoid measuring the heating from the 690nm actuation laser.

A 20x beam expander follows, mounted in an ultra stable kinematic mount to

enable easy alignment of the beam. The next component is the cube polarizing

beam splitter (PBS). The PBS splits the beam into its two orthogonal polarization

components. The PBS is mounted on a prismmount with pitch, yaw, and roll control

for beam alignment. The PBS also prevent ghost reflections, which would occur

with a plate beam splitter. Following the PBS is a mirror to direct the beam to the

dichroic mirror. The dichroic mirror combines the actuation beam at 690nm and

the detection beam at 633nm. The dichroic mirror is chosen such that 99% of the
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light at 633nm is reflected, while > 85% of the light at the actuation wavelength,

690nm, is transmitted. Following the dichroic mirror is a quarter wave plate in a

rotation mount; the quarter wave plate (QWP) is required to rotate the polarization

of the beam by 90◦ so that the beam reflected from the sample is directed to the

photodetector, instead of back towards the laser. After the QWP, the light is focused

through an achromatic doublet lens, with f = 150 mm, mounted in a kinematic

mirror mount on an XYZ stage. We have chosen an achromatic lens to reduce

aberrations in the beam. The lens is also chosen to ensure the highest numerical

aperture possible. The XYZ stage is a Thorlabs PT3-Z8 motorized stage, with 1”

of travel in each direction. Each motor is controlled by a Thorlabs TDC001 T-Cube

servo driver; the three drivers are controlled by Labview.

The beam then enters the vacuum chamber through a quartz window with an anti-

reflective coating. The beam hits the device and is reflected back along the optical

path until it reaches the PBS, where it is directed to the photodetector. Prior to

entering the photodetector, the beam traverses a lens with a focal length of 100 mm,

to reduce the beam size, since the diameter of the active area of the photodetector

is 1 mm. We place a filter between the lens and the photodetector to remove the

portion of the 690nm transmitted by the dichroic mirror. The filter3 has an optical

density of 6 for wavelengths between 642.3nm and 696.1nm; it will attenuate the

beam at 690nm by a factor of 1 million. The transmission at 633nm is ≥ 90%.

The photodetector, a Thorlabs APD130A2, is a temperature compensated, UV

enhanced, silicon avalanche photodetector. We utilize a different photodetector for

the experiments in Chapter 6 than in Chapter 2 due to the lower optical power used

for the experiments. This photodetector has a higher responsivity, 24 A/W at 633

nm, and a higher transimpedance gain, 50 kV/A, than the New Focus 1801. The

total gain is 1.2 × 106 V/W. The saturation power is lower at 1.5 µW. The output
3The filter is Edmund Optics part number NT68-943.
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bandwidth of the photodetector is DC-50MHz. The minimum noise equivalent

power is ≈ 0.2 pW/
√

Hz.

Characterization

The optical detection setup is characterized by three parameters: the spot size of

the beam at the device, the responsivity of the system, and the noise floor of the

system. We previously discussed the spot size in Section 5.2. The measured spot

size is (9.7 ± 0.1) µm.

The responsivity of the system, R, is ratio of the signal measured in Volts at the

photodetector to the amplitude of the motion of the device in nm.

R =
Sth

V (ω0)

Sth
x (ω0)

, (5.16)

where Sth
V (ω0) is the measured thermomechanical voltage noise spectral density

and Sth
x (ω0) is the corresponding thermomechanical displacement noise spectral

density. We measure the thermomechanical noise spectrum of the device using a

Keysight PXA 9030A in spectrum analyzer mode, as shown in Figure 5.12.

Vacuum 
Chamber

Si DCB

PD

HeNe laserPBS

Spectrum
Analyzer

Sample Holder
on Cryostat

690nm laser
Dichroic
Mirror

Figure 5.12: Setup for measuring thermomechanical noise. The 690 nm actuation
laser was left on during the measurement, but the amplitude was not modulated.
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A thermomechanical voltage noise spectral density for Device #3 at T=297 K is

shown in Figure 5.13; we fabricated the devices in arrays of 4 device. We number

the devices from left to right. Also shown in the figure is the nonlinear least squares

fit to a Lorentzian, used to determine Sth
V (ω0).
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Figure 5.13: Thermomechanical noise spectrum of device #3 at 297K. Sth
V (ω0) =

(1.15 ± 0.01) × 10−10V2/Hz.

The thermomechanical displacement noise spectral density for a device is given by

Equation 5.17 [17]:

Sth
x (ω) =

ω0

(ω2
0 − ω

2)2 + (ω0ω/Q)2
4kBT

Me f f Q
, (5.17)

where ω0 is the resonant frequency of the device, Q is the quality factor, kB is

Boltzmann constant, T is the temperature, and Me f f is the effective mass of the

device. For a doubly clamped beam, Me f f = 0.39Ltwρ [76], where ρ is the device

density. For device dimensions of [L,w,t]= 56 µm, 5 µm, 285 nm, Sth
x (ω0) =

(35.0±0.9) pm2/Hz. The corresponding responsivity is R = (1.81±0.01) mV/nm.

The thermal noise measurement is limited by the shot noise of the photodetector.

In Figure 5.14, we show a fit of the thermomechanical noise on a larger bandwidth,
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Figure 5.14: Thermomechanical noise spectrum of device #3 at 297K, with a
measurement bandwidth of 4 kHz. The amplitude is plotted using a logarithmic
scale. The background noise is (4.4 ± 0.9) × 10−13 V2/Hz.

∆ f = 4 kHz. For the responsivity previously calculated, the displacement noise

floor is 0.4 pm.

5.4 Actuation System

For the phase noisemeasurements, the devices are driven bymodulating the intensity

of a 690nm 30mW diode laser.4 The choice of wavelength is driven by the speci-

fications of the dichroic mirror used to combine the detection and actuation beams

before the focusing lens. We wished to maximize reflection at 632.8nm. The laser

diode is placed in a mount with temperature control and frequency modulation. The

temperature control is required because the laser power, wavelength, and threshold

current depend upon the diode temperature; we operate the laser diode at 25◦C. The

laser diode mount and control unit together provide DC-100MHz modulation of the

laser diode.
4The laser consists of a HL6738MG laser diode mounted in a Thorlabs temperature controlled

laser diode mount (TCLDM9).
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Figure 5.15: Angular emission of a semiconductor laser. θ⊥ is the full width at half
maximum (FWHM) beam divergence angle perpendicular to the junction. θ‖ is the
FWHM beam divergence angle parallel to the junction. ∆z is the difference between
the parallel source point, Q‖ , and the perpendicular source point, Q⊥.

As shown in Figure 5.15, the light emitted by the laser has a large divergence angle

perpendicular to the laser junction, θ⊥, and a small divergence angle parallel to the

laser junction, θ‖ [74]. The resulting beam is elliptical. Gain guided semiconductor

lasers also have intrinsic astigmatism. The parallel and perpendicular components of

the beamhave different source points; for the semiconductor laser used, HL6738MG,

∆z, the distance between source points, is 4-6µmdepending upon the output power.5

The collimation optics for the semiconductor laser consist of two parts: an aspheric

singlet to collimate the divergent beam and an anamorphic prism pair to circularize

the elliptical beam [75]. The desired beam shape and size is a circular beam with a

diameter of 14mm; the beam size is set by the beam steeringmirror used to adjust the

position of the actuation spot relative to the detection spot. The mirror in the beam

steering mirror has a clear aperture of 25.4 mm. The beam steering mirror is at a 45◦

angle, as shown in Figure 5.1, which reduced the clear aperture in the x-direction to

18.0 mm. As discussed previously, the laser diode produces an elliptical beam. The

maximum beam divergence perpendicular to the junction is 23◦, with the typical
5The data sheet for HL6738MG is available from http://www.thorlabs.us.
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beam divergence being 19◦. The width of the laser beam d after the collimating

lens is set by the focal length f of the collimating lens, with d = f tan(θ⊥). A lens

with a focal length f = 3.30 mm6 produces an elliptical beam with a major axis of

1.40mm. Using the value for the maximum beam divergence parallel to the junction,

θ‖ = 8.5◦, the width of the minor axis of the elliptical beam is 0.49mm. We use an

aspheric singlet to collimate the laser beam because it does not add any spherical

aberration to the beam. Following the diode laser is an anamorphic prism pair7 that

transforms the elliptical beam into an approximately circular shape by magnifying

the minor axis by a factor of 3. Next is a 10x beam expander in a kinematic mount

to ensure easy alignment of the beam; the spot size at the device is 14µm. The next

element is the beam steering mirror, which controls the position of the actuation

beam relative to the detection beam on the sample. We use a piezo actuated mirror

mount for fine angular control of the beam position. To move the beam in 1µm

increments, over a range of 260µm, requires an angular resolution of 8 microradians

with a range of 17 milliradians. This angular resolution and range limited the choice

of mirror mount to a Newport Motorized Stability Mount. Following the piezo

actuator mirror is the dichroic mirror, which combines the two beams. The beam

then enters the achromatic lens and then the chamber.

The amplitude of the actuation laser is modulated by adding an RF component to

the DC current.

ID (t) = IDC + IMOD sin(ωt) (5.18)

For the measurements in Chapter 6, we use IDC=48 mA, which corresponds to

a laser power of 0.90 mW. The RF component the laser beam leads to localized

heating of the beam, which leads to thermal expansion and thermoelastic actuation

of the beam [77, 78].
6Thorlabs A414TM-B
7Thorlabs PS879-B
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5.5 Annealing System

The annealing system is comprised of a diode laser and the optics used to align and

focus the beam onto the device. The annealing laser is a 640nmCoherent Cube laser,

with a power of 100mW. A heat sink is required for the laser to ensure that it does

not overheat. Following the laser is an optical isolator to prevent any light reflected

from optics further along the beam line from entering the laser. The next component

is a half wave plate to precisely adjust the polarization angle and a quarter wave

plate to remove any circular polarization. A polarizing beam splitting cube is the

next element; it ensures that the beam is p-polarized, which corresponds to light

polarized parallel to the plane of reflection. The polarization of the beam is critical

to maximize the power transferred to the devices; the laser beam impinges upon the

device at Brewster’s angle for silicon, 75◦. All light that is polarized parallel to the

plane of incidence will be transmitted to the device.

Following the polarization plates is a 2-5x beam expander, and then an achromatic

lens with a focal length, f = 200mm. The lens is mounted on a motorized XYZ

stage. For a magnification of 2x and a focal length of 200mm, the minimum spot

size is 78µm. For a magnification of 5x and a focal length of 200mm, the minimum

spot size is 31µm.

5.6 Vacuum System

The vacuum system contain two sections: a load lock and a main chamber. A photo

of the system is shown in Figure 5.16.
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Figure 5.16: Photograph of vacuum setup. The turbomolecular pump is mounted
on the back flange of the chamber and is not visible in the photograph.

The main chamber is a custom vacuum chamber fabricated by MDC Vacuum Prod-

ucts. It has an Stanford Research Systems 200 residual gas analyzer (RGA) on the

front of the chamber. There are two pressure gauges on the tee on the right side of

the chamber: a MKS 422 cathode gauge and a MKS 317 convection Pirani gauge.

There is a view port on the front, where the detection beam (633nm HeNe) and the

actuation beam (690nm diode laser) enter the system. There is a second optical port

that makes a 75◦ angle with the sample holder, through which the annealing beam

enters the chamber. On the back flange of the chamber is a HiPace 80 turbomolecu-

lar pump. The turbomolecular pump is backed by an Agilent SH-110 scroll pump.

On the left side of the chamber is a gate valve that connects to the load lock. A gas

inlet for nitrogen gas is connected to the bottom of the load lock for venting of the

chamber.

The initial base pressure of the chamber with the gate valve closed was 2.5 × 10−8
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H2: 1.4 x 10 -7 Torr

H2O : 2.5 x 10-8 Torr 

N2: 3.2 x 10 -8 Torr
CO2: 2.4 x 10 -9 Torr

Figure 5.17: RGA spectrum taken before bake out. The partial pressure and species
is listed for each peak.

Torr at room temperature. After a low temperature bake out for 36 hours, the

chamber reached a base pressure of 2.5×10−9 Torr at room temperature. The RGA

spectrum taken before the bake out is shown in Figure 5.17; the spectrum after the

bake out was below the sensitivity of the RGA.

5.7 Cryostat and Sample Holder

The cryostat is an Advanced Research Systems LT3-B helium flow cryostat. This

cryostat was chosen to limit vibrations from the helium flow at the sample. A

photograph of the sample holder mounted on the cryostat is shown in Figure 5.18.

Both the fixed sample holder (FSH) and mobile sample holder (MSH) are machined

from oxygen free copper and electroplated with gold. The mobile sample holder

is attached to the fixed sample holder via a stainless steel screw. The sample is

attached to the mobile sample holder via beryllium copper springs.

5.8 Sample Fabrication

We used a top down fabrication process to fabricate the devices used in these

experiments. An illustration of the process flow is shown in Figure 5.19. We began

the sample fabrication with an 8” silicon on oxide wafer from SOITEC. The silicon

device layer was 300 nm thick. The buried oxide layer was 400 nm thick. We then
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Figure 5.18: Photograph of sample holder mounted on cryostat.

had thewafers oxidized byRogueValleyMicrodevices to thin the silicon device layer

to 285 nm. We chose a device layer thickness of 285 nm to maximize reflectivity

at 632.8 nm. 285 nm is equal to 7
4
λ

nSi
, which leads to constructive interference and

higher reflectivity [79, 80]. Rogue Valley Microdevices then deposited 100nm of

low stress silicon nitride (SiN) on top of the oxide grown on both sides of the wafer

via low pressure chemical vapor deposition. The original process flow involved

membrane based devices; the silicon nitride was deposited as an etch mask for the

potassium hydroxide etch used to fabricate the membranes. We then stripped the

SiN layer using a reactive ion etch. We used buffered hydrofluoric acid (BHF) to

remove the silicon oxide (SiO2) layer before spinning ZEP 520A onto the wafers;

ZEP 520A is a positive electron beam resist. We then used electron beam lithography

to define the devices. We developed the resist with ZED 50. We used reactive ion

etching to define the silicon devices. We then used a 49% hydrofluoric acid solution

to release the devices; we used a 49% hydrofluoric acid solution instead of buffer
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hydrofluoric acid (BHF) due to the non-negligible etching of the device layer by

BHF due to the long etch times (30-40 minutes) for BHF.We then used critical point

drying to prevent the devices from collapsing. We fabricated the beams in groups of

four devices. We used scanning electron microscopy (SEM) to determine the beam

dimensions. The two devices measured in Chapter 6 are shown in Figure 5.20; we

also include an image of the four devices.

5.9 Summary

In this chapter, we describe the experimental setup used to measure the temperature

dependence of anomalous phase noise in Chapter 6. We describe the fabrication

process for the silicon doubly clamped beams used in the experiment. We also

describe the optical system used to actuate, detect, and anneal the devices, as well

as the vacuum system and cryostat used in the measurements.
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Figure 5.19: Process flow for fabrication of silicon doubly clamped beams for phase
noise measurements.

This is a SEM image 
of a silcon doubly
clamped beam.

Figure 5.20: Colorized image of a Si doubly clamped beam. The beam dimensions
are [insert numbers after imaging].
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C h a p t e r 6

CHARACTERIZATION OF ANOMALOUS PHASE NOISE

In this chapter, we discuss the measurements made to quantify the temperature

dependence of phase noise. We begin with a discussion of the process used to

determine the temperature of the device. We then describe the oscillator setup used

to make the measurement. We next discuss the data from the measurements and

perform an analysis of the temperature dependence of anomalous phase noise.

6.1 Temperature Calibration

Using the setup described in Chapter 5, we measure the phase noise of two silicon

doubly clamped beams over a range of temperatures. Before making the phase noise

measurement, we first determine the temperature of the sample. The thermometer

on the cryostat is not directlymounted on the sample holder; it provides an inaccurate

estimate of the temperature of the sample at temperatures below room temperature.

To obtain a more accurate value, we measure thermomechanical noise, which is

proportional to the absolute temperature of the device. However, to employ this

method, several calibrations are required. We measure the backbone curve in order

to determine the 1 dB compression point in VRMS. We use this information along

with the calculated 1 dB compression in nmRMS to determine the responsivity. We

then use the measured thermomechanical noise to determine the temperature. We

verify the calculation by determining the sample temperature at room temperature,

where the sample is in thermal equilibrium with the sample holder. We begin

by measuring the backbone curve for Device #3. A diagram of the measurement

setup is shown in Figure 6.1. We use optical detection and optical actuation, along

with an Agilent 4395a Network/Spectrum/Impedance analyzer in network analyzer
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Figure 6.1: Measurement setup for temperature calibration. We use the network
analyzer to measure the backbone curve and the spectrum analyzer to measure the
thermomechanical noise.

mode to measure the backbone curve. An example backbone curve for device #3

at T=297K is shown in Figure 6.2. We observe a softening Duffing instability

instead of the expected stiffening instability for both beams. We observed a small

amount of buckling in SEM images of devices with similar dimensions fabricated

using the same fabrication procedure, which would lead to the softening observed.

From the backbone curve, we determine that the 1dB compression point occurs at

VRMS=6.78 mVRMS. The 1dB compression point corresponds to the amplitude at

which the signal is 1dB smaller than expected for a linear transfer function. The

1dB compression is defined as xc = 0.745ac [44], where ac is the critical amplitude,

which corresponds to the onset of non-linearity [6].

〈xc〉 ≈ t
[

2
0.528Q(1 − νxz)2

]1/2
, (6.1)

where νxz is Poisson’s ratio and t is the thickness of the device. Using Equation 6.1

and Q=14000, we find that xC =3.75 nmRMS. The corresponding responsivity is

(1810±90) µV/nm. We next measure the thermomechanical noise using a Keysight

PXA 9030A in spectrum analyzer mode, as described previously in Section 5.3.

The thermomechanical noise spectrum is shown in Figure 6.3. In order to find the
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Figure 6.2: Backbone curve for Device #3 at 297K. We used ND=3.0 on the HeNe
laser and ND=2.6 with ID=48 mA on the 690 nm laser.
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Figure 6.3: Thermomechanical noise spectrum of device #2 at 297K. Sth
V (ω0) =

(1.15 ± 0.01) × 10−10V2/Hz.
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Figure 6.4: Diagram of oscillator setup. The signal from the DCB is measured with
the photodetector. The RF portion of the signal is amplified, attenuated, and split
between the PXA 9030A and the AGC; there is a low pass filter before the AGC.
After the AGC is a phase shifter followed by variable attenuation before the signal
is fed to the 690nm laser diode, in order to modulate the intensity.

temperature, we invert the equation for responsivity.

T =
Sth
v

R2

Me f fω
3
0

4kBQ
(6.2)

Using the measured responsivity and the measured values of Sth
V , Me f f , Ω0, and

Q, we find T = (298 ± 19) K, which agrees with the temperature measured by the

temperature controller of 297 K.

6.2 Oscillator Setup

We used the silicon doubly clamped beams described in Chapter 5 as the res-

onator in the oscillator. A diagram of the oscillator setup is shown in Figure 6.4.

The signal from the silicon doubly clamped beam is detected with the photode-

tector, as described in Chapter 5. Following the photodetector is a Mini-Circuits

ZFBT-4R2GW+ bias-tee, which splits the signal into a DC component and an RF

component composed of frequencies greater than 100kHz. We measure the DC

component with a multimeter. The signal level allows us to monitor the optical
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alignment during measurements; shifts in the measured voltage correspond to a

shift in alignment and a lower responsivity. After the bias-tee is a Mini-Circuits

ZFL-1000LN+ low noise amplifier, with a gain of 23.4 dB around 715 kHz, the

resonant frequency of the device. Following the amplifier is a variable attenuator to

prevent overload of the PXA 9030A and the automatic gain control circuit. After the

variable attenuator is a Mini-Circuits ZFSC-2-4-S+ 0◦ power splitter. On one side

of the splitter is a Keysight PXA 9030A signal analyzer with a phase noise mea-

surement application. On the other side of the splitter is a Mini-Circuits BLP-1.9

low pass filter, which has a 3 dB bandwidth of 1.9 MHz. After the low pass filter

is the AGC circuit, which employs an Analog Devices AD8368 on its associated

evaluation board. For an input range of -30 dBm to -10 dBm, the AGC provides

a constant output of -10 dBm. The response time of the AGC to a change in the

input signal level is on the order of hundreds of microseconds. The response time

of the measurement is limited by the response time of the AGC. After the AGC is a

Mini-Circuits JCPHS-2.5+ variable voltage phase shifter. After the phase shifter is

a variable attenuator to ensure the proper drive level is used to modulate the 690nm

actuation beam.

6.3 Temperature Dependence of Anomalous Phase Noise

Wemeasured the temperature dependence of anomalous phase noise over a range of

temperatures for two devices. Before discussing the data from these measurements,

we consider the temperature dependence of relevant properties of the device, such

as quality factor, resonant frequency, and actuation efficiency. For all of the mea-

surements, the detection laser was attenuated by a neutral density filter of ND=3.0.

For all of the measurements, the actuation laser was driven with a DC current ID=48

mA. For the measurement on Device #2 at 297 K, the actuation beamwas attenuated

with a neutral density filter of ND=4.0. For the rest of the measurements, a neutral



124

density filter of ND=2.6 was used. We compare the measured resonant frequency

and quality factors of the two devices in Tables 6.1 and 6.2. As expected, both

Device #2
Temperature (K) Q f0 (Hz)

21 ± 2 39100 ± 400 730704.2 ± 0.2
52 ± 5 20500 ± 300 728836.6 ± 0.2
297 16500 ± 300 710667.0 ± 0.3

Table 6.1: Temperature Dependent Properties of Device #2

Device #3
Temperature (K) Q f0 (Hz)

25 ± 2 38000 ± 600 729963.5 ± 0.1
45 ± 4 25000 ± 500 725153.2 ± 0.2
297 14000 ± 200 707158.2 ± 0.4

Table 6.2: Temperature Dependent Properties of Device #3

the quality factor and the resonant frequency increased as temperature decreased.

To assess drive efficiencies for the devices at different temperatures, we compare

the depth of modulation required to reach an amplitude of 1.0 nm for Device #2

and an amplitude of 1.4 nm for Device #3; 1.4 nm is less than half of the 1 dB

compression point for all temperatures. An amplitude of 1.4 nm corresponds to a

∼ 3 dB higher modulation depth. The modulation depth for Device #2 is given in

Table 6.3 and the modulation depth for Device #3 is given in Table 6.4. For Device

#2, the depth of modulation increased as the temperature decreased, despite the

use of a larger neutral density filter at 297 K. For Device #3, a higher modulation

depth was required to reach an amplitude of 1.5 nm at 45 K than at 25 K. However,

the actuation efficiency is highly dependent upon the alignment of the actuation

beam to the device. The measurement at 45 K most likely corresponded to a poorer

alignment of the actuation beam.

We measured λ11 for both devices at 297 K. We measured resonant frequency,

f0, versus the amplitude of the motion of the device for several drive levels. For
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Device #2
Temperature (K) Amplitude (nm) Drive (dBm)

21 ± 2 1.0 -23
52 ± 5 1.0 -29
297 1.0 -34

Table 6.3: Comparison of Actuation Efficiency vs Temperature for Device #2

Device #3
Temperature (K) Amplitude (nm) Drive (dB)

25 ± 2 1.4 -28
45 ± 4 1.5 -24
297 1.4 -49

Table 6.4: Comparison of Actuation Efficiency vs Temperature for Device #3

measurements where the device was in the nonlinear operating regime, we used the

frequency at the highest amplitude as the resonant frequency. At each drive level,

we measured the resonant frequency at a low drive amplitude and then measured the

resonant frequency at the desired drive amplitude in order to account for drifts in the

resonant frequency. We used the responsivity calculated from the thermomechanical

noise peak to determine the device amplitude in nm. We used a linear fit to determine

λ11 for both devices. The data and fits are shown in Figures 6.5-6.6.
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Figure 6.5: Fit of amplitude squared versus fractional frequency shift for Device # 2
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Figure 6.6: Fit of amplitude squared versus fractional frequency shift for Device # 3

Device #3

Temperature (K) a ∆

25 ± 2 0.69 ± 0.04 π
2

45 ± 4 0.78 ± 0.04 π
2

297 0.75 ± 0.04 π
2

Table 6.5: Table of Operation Points for Device #3

We next consider the temperature dependence of anomalous phase noise in Device

#3. We provide the operating points for themeasurements in Table 6.5. We calculate

the amplitude, a, using the value measured for the nonlinear spring coefficient, λ11,

at room temperature. Ideally, λ11 should be measured at each temperature, because

λ11 depends upon several temperature dependent quantities: the Young’s modulus

of silicon, the dimensions of the beam, and the tension in the beam. However, we

did not measure λ11 while measuring the phase noise, so we use the value from 297

K as an estimate for all temperatures. The operating points are almost within one

standard deviation of each other. The temperature dependence of anomalous phase

noise for these operating points is shown in Figure 6.7; we have subtracted off the
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Figure 6.7: Phase Noise of Device #3 vs Temperature

constant background due to shot noise from the photodetector.

During these measurements, we did not alter ∆. The majority of the operating

points corresponded to the regime where direct thermomechanical noise is greater

than or equal to amplitude to phase conversion thermomechanical noise (a < 0.82);

in this case, changing ∆ would not have changed the total thermomechanical noise.

If the operating points had been in the regime where amplitude to phase conversion

thermomechanical noise dominated, then increasing ∆ to values greater than π
2

would have decreased the contribution from Da, lowering the total contribution

from thermomechanical noise.

We now compare the phase noise measured at ≈ 23 K, ≈ 55 K, and 297 K for the

two devices. The operating points (a,∆) for both devices at each temperature are

given in Table 6.6. The operating points differed between temperatures; however,

the operating points were consistent at each temperature. We show the phase noise

of the two devices at ≈ 23 K in Figure 6.8, ≈ 55 K in Figure 6.9, and 297 K in

Figure 6.10. The phase noise measured at similar operating points and similar

temperatures is consistent between the two devices, with the exception of large offset
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Device #2

Temperature (K) a ∆

21 ± 2 0.65 ± 0.03 π
2

52 ± 5 0.42 ± 0.02 π
2

297 0.85 ± 0.04 π
2

Device #3

Temperature (K) a ∆

25 ± 2 0.69 ± 0.04 π
2

45 ± 4 0.39 ± 0.02 π
2

297 0.75 ± 0.04 π
2

297 0.99 ± 0.04 π
2

Table 6.6: Table of Operation Points
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Figure 6.10: Comparison of Phase Noise at 297 K

frequencies, where the noise is dominated by shot noise. At low offset frequencies,

the measurement is limited by the upper measurement limit of the PXA, ≈ −10

dBc/Hz, which leads to a roll off in the measured phase noise. For ≈ 23 K and

≈ 55 K, the operating points are within one standard deviation of each other. For

the data taken at 297 K, the amplitude of Device # 2 is between the two measured

values for Device #3; the gray trace representing Device # 2 is covered by the traces

corresponding to Device #3.

We also plot the phase noise at a 10 Hz offset for each device versus temperature

in Figure 6.11 for the operating points listed Table 6.6. We observed a temperature
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Figure 6.11: Comparison of Phase Noise at 10 Hz Offset vs Temperature

dependence of roughly T1.5. Data at more temperatures and consistent operating

points would be required to accurately assess the temperature dependence of anoma-

lous phase noise. However, our measurements demonstrate that anomalous phase

noise decreases with temperature.

6.4 Frequency Dependence of Anomalous Phase Noise

We next assess the frequency dependence of anomalous phase noise. We fit the

three measurements shown in Figure 6.7. We use the offset frequencies where the

measurement is not limited by the roll off from PXA at low offset frequencies and

by shot noise from the photodetector at high offset frequencies. We employ a linear

fit of the logarithm base 10 of the offset frequency and the measured phase noise

to determine the frequency dependence of anomalous phase noise. For T=25 K,

we fit the phase noise for the following offset frequencies: 1.8 Hz to 100 Hz. For

T=45 K, we fit the phase noise for the following offset frequencies: 3.1 Hz to 212

Hz. For T=297 K, we fit the phase noise for the following offset frequencies: 8.1

Hz to 603 Hz. The data and fits are shown in Figures 6.12-6.14. We observed a f α

dependence with α ≈ −3.
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Figure 6.12: Frequency Dependence of Phase Noise at T=25 K
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Figure 6.13: Frequency Dependence of Phase Noise at T=45 K

6.5 Mode Dependence of Anomalous Phase Noise

In addition to measuring the temperature dependence of anomalous phase noise,

we also measured the phase noise of both the first and second mode of Device #3

at 297 K. The phase noise measurement for the second mode, as well as the data

from the first mode ( f1 = 707 kHz) referenced to the frequency of the second mode

( f2 = 1.867 MHz), is shown in Figure 6.15. The phase noise measured for the
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Figure 6.14: Frequency Dependence of Phase Noise at T=297 K
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Figure 6.15: Comparison of phase noise measured in first and second mode of
Device #3.

second mode had a 1/ f 3 frequency dependence, as expected for anomalous phase

noise.
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6.6 Back Action

There are several sources of noise in the measurement system that could potentially

lead to noise with a 1/ f 3 frequency dependence. In this section, we consider the

effects of heating from both the actuation laser and the detection laser. In the

following section, we consider noise due to amplifiers and parameter fluctuations

using the framework developed in Chapter 4.

We begin by assessing the heating from the actuation laser at 297 K. Ideally, we

would determine the back action at all measurement temperatures, but we only have

data for 297K. In addition, a definitive measurement of back action would require

increasing the heating from the actuation laser until an increase in phase noise was

observed. However, the instrumentation used tomeasure phase noise broke. Instead,

we compare the measurement of phase noise at 297K, where we accidentally used

two different neutral density filters for the measurements on Device #2 and Device

#3. For reference, we repeat the data previously shown in Figure 6.10. The data for

Device #2 was taken with a neutral density filter with ND=4.0, a modulation depth

of ≈ −22 dBm, and ID = 48 mA. Before the neutral density filter, the maximum
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power is ≈ 1.7 mW. After the neutral density filter1, the maximum power is ≈ 0.93

µW. The data for Device #3 with an operating point of (a = 0.99 ± 0.04) was taken

with a neutral density filter with ND=2.6, a modulation depth of ≈ −45 dBm, and

ID = 48 mA. Before the neutral density filter, the maximum power is ≈ 0.96 mW.

After the neutral density filter, the maximum power is ≈ 7.3 µW. Decreasing the

maximum drive power by almost a factor of 10 did not lead to a decrease in phase

noise, which suggests that the measurement was not limited by heating due to the

actuation laser at 297 K.

Ideally, we would assess heating due to the detection laser by measuring the phase

noise while increasing the power from the detection laser. However, as previously

noted, the instrumentation used to measure phase noise broke. In Chapter 5, we

measured the shift in resonant frequency versus optical detection power. The power

level chosen for the measurements (3 µW) corresponded to a minimum in the

frequency shift, which should lead to the minimum amount of heating. Further

measurements are required to determine if the detection beam caused heating in the

device and additional noise in the measurement.

6.7 Noise Analysis

We now consider the phase noise in the system using the framework introduced in

Section 4.1. In the analysis, we ignore fluctuations in both α and γ; we assume

that the nonlinearity of the resonator and the intrinsic damping remain constant.

Following the noise analysis performed by Villanueva et al. [31], we begin our

analysis by measuring the phase noise of every component in the system with a

test signal. We used a Keysight N5181A signal generator to apply a signal with a

frequency of 715 kHz and a magnitude on the order of the signal at the component

under test in the oscillator loop for a typical measurement. We then measured the
1690nm is at the edge of the design wavelength for the neutral density filters and the filters allow

more than the quoted light through.



135

phase noise at the output of the component under test. We did not observe phase

noise on a level comparable to the phase noise previously measured in this chapter

from any component. We compare the phase noise of the test signal with two drive

levels in Figure 6.17. These two drive levels were used to attain the correct signal

level input at different components under test. We next compare the phase noise
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Figure 6.17: Comparison of phase noise from N518A at two different drive levels

from the components under test in Figure 6.18. The gray trace corresponds to the

phase noise from the signal generator with a drive level of -45 dBm. The test signal

was fed into the low noise amplifier (LNA), a MiniCircuits ZFL-1000LN+, which

was followed by an attenuator of 5 dB and a Mini-Circuits ZFSC-2-4-S+ 0◦ power

splitter. The dark purple trace corresponds to the phase noise measured at the output

of the power splitter; it has the samemagnitude as the phase noise measured from the

signal generator with a drive level of -45 dBm. We next fed the test signal from the

signal generator with a drive level of -25 dBm into aMini-Circuits BLP-1.9 low pass

filter, whose output was then fed into the AGC. The light purple trace corresponds to

the phase noise measured at the output of the AGC; the measured phase noise is on

the order of the phase noise of the drive signal. We then applied the test signal with
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Figure 6.18: Comparison of phase noise from components under test

a drive level of -13 dBm to the Mini-Circuits JCPHS-2.5+ variable voltage phase

shifter. The phase noise measured at the output of the phase shifter, shown in blue,

is on the order of the phase noise of the test signal from the signal generator. All of

the components tested contributed minimal phase noise to the measurement.

We also consider 1/ f noise from the electronics used in the feedback loop that is

converted to 1/ f 3 noise by the resonator via the Leeson effect. Assuming a quality

factor of 15000 and an offset frequency of 10 Hz, the resonator would increase the

magnitude of a 1/ f noise source by 23 dBm at a 10 Hz frequency offset. None

of the components under test generated 1/ f noise with a magnitude of -30 dBc/Hz

at a 10 Hz offset, which is the level required to generate the phase noise measured

earlier in the chapter. Thus, the previously measured phase noise is not caused by

1/ f noise from the electronics.

From the phase noise measurements on the components in the oscillator loop, we

determined that the largest source of phase noise in the oscillator loop, other than

the resonator, was the photodetector. We now perform the noise analysis for Device

#3 at T=297K, with an operating point (a = 0.75, ∆ = π/2). We first consider phase
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noise due to thermomechanical motion, both the direct component and the amplitude

to phase conversion component. Using the measured parameters, IT h =
kBTQ0α̃0
M2

e f f
Ω4

0
=

2.2 × 10−4, Ddirect =
1
a2 = 1.80, and Da =

(
3
2 a + 1

a2 cos(∆)
)2
= 2.25a2 = 1.25.

We plot the phase noise due to thermomechanical motion and compare it with the

measured phase noise in Figure 6.19We next consider phase noise from fluctuations

in ∆. The shot noise from the photodetector is fed back to the device; it is a signal

with a well defined amplitude, but a poorly defined phase, which corresponds to

fluctuations in ∆. In the oscillator loop, the gain chain is highly saturated due

to the AGC. For a highly saturated gain chain, the noise from fluctuations in ∆

is the ratio of noise from the photodetector and 3
2 of the product of a and s:

I∆ =
2Sa
3a·s . From large bandwidth measurements of thermomechanical noise, we

determine a responsivity between Sa and IT h. In Chapter 5, we found a background

noise of 4.4 × 10−13 V2/Hz and Sth
v (Ω0) = 1.15 × 10−10 V2/Hz, which leads to a

responsivity R∆ = 3.8× 10−3. This background noise and thermomechanical noise

were measured on Device #3 during the calibration measurements prior to the phase

noise measurement at T=297 K; these value correspond to typical values during the

measurement. Thus, we obtain:

I∆ =
2R∆IT h

3a · s
. (6.3)

For the operating parameters, D∆ = 1/4 and s = a. Ideally, we would have

confirmed the estimate of noise due to fluctuations in ∆ by adding an additional

white noise source between the photodetector and the LNA and then measuring the

change in phase noise. We end our analysis by considering fluctuations in s. Ideally,

we would have measured the phase noise at the output of the AGC while applying

a signal with a small amplitude modulation on the order of the response time of the

AGC, between 1-10 kHz, in order to simulation fluctuations in s. However, due to

broken instrumentation, we were unable to perform this test. We instead assume

that Is = IT h, since IT h was previously the largest source of noise in the system;
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Ds = ( 3
4 a)2 = 0.32 for this operating point. We plot the comparison of phase

noise in Figure 6.19. The largest source of phase noise is direct thermomechanical

noise; however, the phase noise due to direct thermomechanical noise has a smaller

magnitude and different frequency dependence than themeasured phase noise. None

of the sources of phase noise considered would generate the phase noise measured.
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Figure 6.19: Comparison of measured phase noise and estimated phase noise due
to thermomechanical fluctuations, fluctuations in ∆, and fluctuations in s.

6.8 Summary

We measured the phase noise of two silicon double clamped beams over a range of

temperatures in order to characterize the temperature dependence and the frequency

dependence of anomalous phase noise. We observed a 1/ f 3 frequency dependence

and aTα withα ≈ 1.5 dependence for the beams. We also observed anomalous phase

noise in the secondmode of one of the beams. We assessed sources of back action and

noise in the system and determined that none of them could generate the measured

phase noise. In conclusion, our measurements confirm that anomalous phase noise

decreases with temperature; we can decrease the contribution from anomalous phase
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noise in future frequency shift based sensors by performing measurements at low

temperatures in a dilution refrigerator.
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C h a p t e r 7

CONCLUSION

In this thesis, we focused on two areas of interest in MEMS and NEMS: predicting

the quality factor due to gas damping without numerical simulations and character-

izing anomalous phase noise. We determined that the dynamic similarity principle

provides an alternate method for predicting the quality factor due to gas damp-

ing. We also further characterized anomalous phase noise and ruled out several

potential sources of anomalous phase noise. From our measurements, we conclude

that anomalous phase noise is temperature dependent and it can be reduced by

performing measurements at low temperatures in a dilution refrigerator.

The source of anomalous phase noise remains unclear. Further measurements

should be made on silicon doubly clamped beams with different orientations with

respect to the crystal axis in order to determine if changing the Young’s modulus

affects anomalous phase noise. Measurements should also be performed on silicon

doubly clamped beams with differing volumes in order to determine the volume

dependence of anomalous phase noise. These measurements should provide the

information required to determine techniques to reduce anomalous phase noise

through device engineering. Additional measurements should also be made to

further quantify the relationship between temperature and anomalous phase noise.

In addition, annealing experiments should be performed on devices to determine if

heating the device, and consequently, lowering the number of defects, leads to lower

anomalous phase noise.
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