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ABSTRACT

How is material behavior at the macro scale influenced by its properties and struc-
ture at the micro and meso-scales? How do heterogeneities influence the properties
and the response of a material? How does nonlinear coupling of electro-thermo-
mechanical properties influence the behavior of a ferroelectric material? How can
design at the micro-scale be exploited to obtain selective response? These questions
have been topics of significant interest in the materials and mechanics community.
Recently, new materials like multifunctional composites and metamaterials have
been developed, targeted at selective applications. These materials find applications
in areas like energy harvesting, damage mitigation, biomedical devices, and vari-
ous aerospace applications. The current thesis explores these questions with two
major thrusts: (i) internal reflects of shocks in composite media and (ii) shocks in
ferroelectric media.

Under the application of high-pressure, high strain rate loading, such as during high
velocity impact, shock waves are generated in the material. They can cause the
material to achieve very high stress states, and if transmitted without mitigation, can
lead to failure of key components. An important question here is ‘Can we design
materials which can successfully mitigate damage due to shocks?’ In a heteroge-
neous material, like a layered composite, the traveling waves undergo scattering
due to internal reflections. In order to understand internal reflections, an ideal-
ized problem that focuses on nonlinear shocks and ignores less important elastic
waves was formulated and studied in detail. The problem is studied by classifying
all possible interactions in the material and then solving corresponding Riemann
problems. Using dynamic programming tools, a new algorithm is designed that
uses these solutions to generate a complete picture of the impact process. Different
laminate designs are explored to study optimal design, by varying individual layer
properties and their arrangement. Phenomena like spallation and delamination are
also investigated.

Upon high strain rate loading, ferroelectric materials like lead zirconate titanate
(PZT) undergo ferroelectric to anti-ferroelectric phase transition leading to large
pulsed current output. These materials have thus found applications as pulsed power
generators. The problem of shock induced depolarization and the associated electro-
thermo-mechanical coupling of ferroelectric materials is studied in this thesis using
theoretical and numerical methods. A large deformation dynamic analysis of such
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materials is conducted to study phase boundary propagation in the medium. The
presence of high electrical fields can lead to formation of charges in the material,
such as surface charge on the phase boundary. Using conservation laws and the
second law of thermodynamics, a set of governing equations are formulated that
dictate the phase boundary propagation in isothermal and adiabatic environments.
Due to the possibility of surface charges on the phase boundary, the curvature of the
phase boundary starts to play a role in the driving force acting on the phase boundary.
The equations of motion and driving force see the contribution of nonlinear electro-
thermomechanical coupling in thematerial. Using the equations derived, a canonical
problem of impact on a ferroelectric material is studied. A new finite-volume,
front-tracking method is developed to solve these equations. Finally, results from
numerical simulations are compared to the experimental results.
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C h a p t e r 1

INTRODUCTION

High velocity impacts are very common in nature as well as day to day life. For
example, in an automobile accident, the structural elements of the vehicle undergo
very rapid loading and large deformations. The impact speed involved, in an
extreme case, is around 60 ms−1 with pressures reaching up to 1 GPa in a time
frame of a few milliseconds. Another very important scenario is that of a bird
strike on an airplane. In this case, the impact happens at speeds of the order of
100 ms−1, and can cause tremendous damage to life and property. Moving towards
military and defense scenarios, the pressure and time scales involved can be orders
of magnitude different. A ballistic impact or a blast loading involve loading speeds
up to 1−5 kms−1 and 6−10 kms−1 with pressure increase ranging from 1−10 GPa
within a few microseconds. The pressure increase and impact speeds typically
increase as the applications move away from earth and into space. Orbital debris
is present at various altitudes, with sizes ranging from 1 − 10cm. The debris can
achieve speeds greater than 10 kms−1. Dealing with orbital debris has proven to be
a major challenge, and many objects of size larger than 5 cm are tracked to avoid
any possible collisions. Impact involving small astronomical objects, such as small
meteorites, can happen at speeds of up to 10 kms−1, while an impact involving larger
astronomical objects can happen at speeds of up to 20 − 50 kms−1.

High velocity impact leads to high pressures and high strain rates, and this in turn can
lead to shock waves. Figure 1.1 shows a schematic of different material responses
over a range of applied pressure and strain rate loading. The loading regime for
shock behavior is circled in red. Under shock loading, the material experiences
extreme environments undergoing large temperature and pressure changes over a
very short period of time. If these waves are left to travel unmitigated, they can
cause significant damage in the material.

Due to such broad applications, understanding material behavior in high strain rate
conditions is very important. Studies pertaining to shock waves in solids started
during the early 1900s, and generated significant interest during the 1940s and 1950s
because of numerous military applications. In order to characterize and predict
material response in highly dynamic situations, many experimental, theoretical
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Figure 1.1: Different material response under different loading regimes. The general
domain for shock waves is shown inside the red circle.

and numerical investigations have been undertaken. Over the years, the focus of
investigation has expanded from metals and metallic alloys to ceramics, polymers,
composites and even soft materials. Further, the focus has also expanded from
studying just wave interactions to understanding shock induced chemical changes,
phase transformations, metallurgical defects and fragmentation.

1.1 Shock waves in heterogeneous materials
Heterogeneous materials cover a broad spectrum of materials such as composites,
polycrystalline materials, polymers, etc. In fact, except for perfect single crystals,
every material is heterogeneous at some length scale. Composite materials are now
widely used due to their superior effective properties over their constitutive materi-
als. For example, concrete - a two phase composite with matrix and inclusions - is
a common structural material with high compression strength and low thermal ex-
pansion coefficient. Kevlar is another such example of a composite which has found
wide applications ranging from armors to durable tires because of its high tensile-
strength-to-weight ratio. Polycrystalline materials like steel have found applications
in automotive and structural industries due to their broad range of yield stress and
elastic modulus depending on different manufacturing processes. The manufactur-
ing processes essentially control themicrostructure such as grain size and orientation
in the material. Sand is another class of heterogeneous materials with many dif-
ferent compositions, granular structures and grain distributions depending upon the
geographical location of occurrence. It is being used in applications ranging from



3

Figure 1.2: Examples of heterogeneous materials. From left to right: concrete core,
polycrystalline steel and sand from Gobi desert

defense to agriculture and construction.

Due to such widespread applications, it is important to understand shock behavior
of heterogeneous materials and the role of heterogeneity in the response. Wave
propagation in heterogeneousmaterials has been a topic of interest in the community
for many decades. Most of the work in the early years had been focused on wave
dispersion of small amplitude waves in linear elastic periodic materials [74], [61].
Experiments conducted by Barker and others [13] on periodic laminates showed
exponential decay of stress waves with distance to achieve a structured steady
profile above a critical stress amplitude. Other experiments [50], [63] on layered
materials show resonance phenomena. In recent years, many shock studies have
been conducted on heterogeneous materials to understand the role of heterogeneity
(see [29], [65], [80], [81], [89] and references therein).

Much less is known regarding the theoretical side of shock wave propagation in
heterogeneous materials. The formation of structured shock waves was studied
extensively in homogeneous metals ([75], [58]) and the primary mechanism was
attributed to viscoelastic and viscoplastic behavior of these materials. These theo-
retical models worked very well in predicting the steady shock width in metals. For
heterogeneous materials, Grady [35] presented scattering of nonlinear waves as an
alternate explanation for structured waves. The complexity of the physics behind
wave propagation in a heterogeneous material can be illustrated by looking at the
interplay between the length scale of heterogeneity and the shock width and the
associated response. The following equation

ρ(x)utt =

(
σ

(
ux,

x
h

))
x
− γ

( x
h

)
uxxxx + ν

( x
h

)
uxxt , (1.1)

represents a one-dimensional augmentedwave equation for a heterogeneousmaterial
[3]. Here ρ, u, γ and ν represent density, displacement, coefficient for strain gradient
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and coefficient of viscosity of the material. It can be seen from the above equation
that there are two length scales in the problem - size of the heterogeneity h and
the width of the wave l =

√
γ/ρ. The asymptotic behavior can be summarized as

follows:

1. l � h: In this case, the wave width is much larger than the size of the
heterogeneity. As such, thewave sees an effective environment as it propagates
through the medium [76].

2. l � h: In this case, the wave width is much smaller than the sixe of the
heterogeneity. Here, as the wave propagates, it sees material interfaces and
different material environments across the interface and reacts accordingly.
Here the motion is dominated by reflections and scattering.

In the first half of this thesis the phenomena of scattering (l � h) of shock waves
is explored. A canonical problem of plate impact on a layered, not necessarily
periodic, material is taken into consideration. The layered material is impacted
upon by a flyer traveling at high speed. The fundamental problems such as wave-
wave interaction and wave-interface interaction are studied to develop an overall
picture of shock wave propagation.

1.2 Shock waves and phase transitions
Under shock loading, the ground state of a material can be driven from one energy
minimum to another, resulting in dynamic crystal reorientation over a short period
of time. The process of shock induced phase transitions in metals has been exten-
sively studied, including nucleation and kinetics (see [56], [28], [8], [33], [43] and
references therein). In case of special materials like ferroelectric and ferromagnetic
materials, characterized by a strong nonlinear electro-magneto-thermomechanical
coupling, shock loading can induce electrical or magnetic phase transitions. This
phase transition is accompanied by large pulse of power under certain electromag-
netic boundary conditions. As such, these materials have found applications as
pulsed power generators [7]. In this thesis the focus will be placed on ferroelectric
materials. It should be noted that, at a continuum level, the analysis for ferromagnetic
materials proceeds in a similar fashion.

Experimental investigations into the dynamic loading behavior of ferroelectric ma-
terials date back to 1959 [14]. Since then many experimental studies have been
conducted ([37], [21], [52], [54], [27], [34], [69] and others) to further understand
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the shock response of these materials under different configurations and boundary
conditions. Plate impact experiments have been a standard method for these exper-
iments due to their ease of setup and control over various parameters. Almost all
studies are conducted on either axially poled, normally poled or unpoled samples.
The poling configuration corresponds to the alignment of polarization direction
with the direction of loading. It has also been found that behavior is different under
short-circuit and open-circuit boundary conditions. Further, experiments have been
conducted for different compositions of Lead Zirconate Titanate (PZT) specimens,
and it has been found that PZT 95/5 doped with 2% Niobium can be depolarized at
low shock speeds.

While there are many experimental studies, relatively less is known about the the-
oretical aspects of shock induced phase transitions and power generation. In this
thesis, the theoretical aspects of shock induced phase transitions in a ferroelectric
material are studied.

1.3 Outline of thesis
This work is organized as follows. Chapter 2 covers the fundamentals of shock
wave propagation. A detailed derivation of governing equations for the motion of
a jump surface (across which quantities like deformation gradient, traction, particle
velocity, etc. are discontinuous) is presented. A brief introduction and description
of the standard plate impact experiment is provided along with the simplification
it brings to the analysis. The idea of Hugoniot curves is introduced next and the
well known linear shock speed - particle speed relationship is discussed. Finally,
a detailed discussion on scattering and the formation of structured shock waves is
presented.

Chapter 3 deals with a canonical problem of a plate impact on a model layered, not
necessarily periodic, material. In order to deal with only Riemann problems, the
Hugoniot is approximated by a piecewise linear stress-strain curve. A maximally
dissipative kinetic relation is introduced to obtain a unique solution. This can also
be seen as an equivalent relation to Lax entropy criteria in shocks. The complex
wave problem is broken down into classes of fundamental interactions and analytical
solutions are obtained for each of these classes. These solutions are then stitched
together to obtain a complete picture of the wave propagation. Next, a broad
parameter study is conducted to study the influence of material interfaces, layer
arrangement, layer properties, target length, flyer length, etc. Finally, comments are
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made on the optimal design of a material for shock attentuation.

In chapter 4, shock wave propagation in a ferroelectric material is studied. Fer-
roelectric materials under shock loading undergo ferroelectric to antiferroelectric
phase transition to produce a large pulsed power output. The nonlinear electro-
thermomechanical coupling of ferroelectric material plays a central role in this
process. A continuum analysis for large deformation dynamic behavior of a fer-
roelectric material is presented. Governing equations as well as an expression for
driving force acting on the phase boundary are derived using conservation laws,
Maxwell equations and the second law of thermodynamics. Next, the canonical
problem of plate impact on a ferroelectric material is studied. Numerical simu-
lations are conducted to study the current output through the resistance R in the
external circuit. Finally current profiles are compared with experiments and the
shock-speed particle-speed Hugoniot of the material is generated for short and open
circuit boundary conditions.
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C h a p t e r 2

FUNDAMENTALS OF SHOCK WAVES

In this chapter, the basic theory behind shock waves will be presented, which will
be useful in subsequent chapters. For detailed derivations and interpretation the
reader is directed to [23] and [10] and the references therein. Ideally, shock waves
are characterized as a moving discontinuity of stresses, strains, density, particle
velocity, temperature, etc.

2.1 Governing equations
In this section, equations and jump conditions that govern the motion of a body
under large dynamic deformation with a propagating phase boundary are derived.
For reference, this derivation can be found in [2].

Consider a deformation map y(x, t) mapping a body B in its reference configuration
to its deformed configuration. The body also contains a propagating regular surface
S0(t) across which different quantities might be discontinuous. This map is assumed
to be continuous everywhere, but first and second derivatives can be discontinuous.
The deformation gradientF and particle velocity are defined asF(x, t) = Grad y(x, t)
and v(x, t) = ∂y(x, t)/∂t, where x refers to the coordinates in the reference frame.
At any given point x in the reference frame, let ρ(x) denote the density, b(x, t) be
the body force per unit mass and σ(x, t) be the nominal stress tensor. The integral
form of conservation of linear and angular momentum in any arbitrary subdomain
D ⊂ B can be written as∫

∂D
σn̂ dA+

∫
D
ρb dV =

d
dt

∫
D
ρv dV, (2.1)∫

∂D
y × σn̂ dA+

∫
D

y × ρb dV =
d
dt

∫
D

y × ρv dV . (2.2)

Further, the conservation of energy for the arbitrary subdomain D can be written as∫
∂D
σn̂·v dA+

∫
D
ρb·v dV+

∫
∂D

q·n̂ dA+
∫

D
ρr dV =

d
dt

∫
D

(
ρε +

1
2
ρv · v

)
dV,

(2.3)
where q(x, t), r (x, t) and ε(x, t) denote the nominal heat flux vector, heat supply
per unit mass and internal energy per unit mass respectively. Absolute temperature
θ(x, t) and entropy per unit mass η(x, t) can be used to calculate the rate of entropy
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production as,

ΓD (t) B
d
dt

∫
D
ρη dV −

∫
∂D

(q · n̂/θ) dA −
∫

D
ρr/θ dV . (2.4)

Here, θ is assumed continuous with piecewise continuous derivatives and η is
piecewise continuous with piecewise continuous derivatives. The Clausius-Duhem
inequality for arbitrary D ⊂ B and for all time t enforces

ΓD (t) ≥ 0. (2.5)

Next, Coleman-Noll type arguments can be implemented to localize the above
equations to get following equations at any point not on S(t).

Divσ + ρb = ρv̇, (2.6)

σFT = FσT, (2.7)

σ · Ḟ + Divq + ρr = ρε̇, (2.8)

Div (q/θ) + ρr/θ ≤ ρη̇. (2.9)

Additionally, at any point on S(t) the following jump equations can be obtained:

~σn̂� + ρVn~v� = 0, (2.10)

~σn̂ · v� + ~ρ(ε + v · v/2)�Vn + ~q · n̂� = 0, (2.11)

~q · n̂/θ� + ~ρη�Vn ≤ 0, (2.12)

where ~·� denotes the jump in quantities across the surface S(t). Further, Vn = V · n̂
is the normal velocity of S(t), conventionally taken to be positive in the direction of
the normal.

In addition to the above equations, certain kinematic compatibility equations are
enforced across S(t) to ensure continuity of y. Let t̂ be the tangent vector at any
point S(t). The compatibility equations are given by

~F�t̂ = 0, (2.13)

~v� + Vn~F�n̂ = 0. (2.14)

2.2 Plate impact
The plate impact experiment is the most common and widely used method to
investigate shock propagation in a material. The experiment involves accelerating a
plate flyer to very high speeds and impacting it onto a plate target. Usually, the plates
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are circular disks of very small thickness compared to their diameter. Measures are
taken to ensure that the plates have smooth surfaces. This ensures that the impact
is uniform and the momentum is transferred evenly to the target surface. Typical
target thickness ranges from 1 mm to 1 inch. A typical setup for the plate impact
experiment is represented in Figure 2.1.

Figure 2.1: Schematic of plate impact experimental setup. Flyer plate is launched
at high speeds through the launch tube. Particle velocity measurements are done on
the right end of the target through laser interferometry.

Plate impact experiments are designed to produce uniaxial loading conditions from
the moment of impact until the release wave from the left end (and typically the
free end) of the flyer. Since shock experiments happen at very short time scales,
there is no time for the system to exchange heat. This makes the plate impact
experiments adiabatic. Further, there are no external volumetric heat sources. This
means q = 0 and r = 0. As such, the jump equations from Section 2.1 reduce to a
set of one-dimensional equations as below:

~σ� + ρ0 Us ~v� = 0, (2.15)

~v� +Us ~ε� = 0, (2.16)

~σv� + ρ0 Us ~ε + v
2/2� = 0, (2.17)

where ρ0, ε , σ and Us denote the reference density, uniaxial strain, uniaxial stress
and the speed of the propagating shock. The schematic for shock transition states is
represented by Figure 2.2. The states S− and S+ represent the state of the material
before and after the shock wave has propagated. Typically the target is at rest in a
stress-free state. Hence, v− = 0, σ− = 0 and ε− = 0. For reference, the energy state
ε− is taken to be zero.
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Figure 2.2: Schematic of shock transition states across a propagating shock.

2.3 Hugoniot curves
Shock jump equations (2.15)-(2.17) are not enough to completely determine the final
states and the speed of the shock. Further, the equations do not contain material
information to distinguish one material from another. If the state S− in Figure 2.2
is kept fixed and stronger shocks are introduced in the system, a locus of states
S+ can be generated. This locus is called a Hugoniot centered around S−. The
Hugoniot, a characteristic curve of a material, contains the minimum amount of
information required to solve the shock propagation problem to obtain the final state
S+. However, the Hugoniot curves do not provide the complete thermodynamical
material description. This is where an equation of state (EOS) is needed. An EOS
is a comprehensive material model that takes various thermodynamic parameters
into account. As such, Hugoniot relations can be obtained from an EOS after
mechanical and thermodynamical analysis. For a detailed review on various EOS
and their analysis, the reader is referred to [23].

Given an initial state, the S+ states σ, ε , v, ε and Us together form 10 pairs of
Hugoniot. In case of zero initial particle velocity and stress free state, the Hugoniot
is called a principal Hugoniot curve. Using an EOS, Hugoniot centered around other
initial states can also be determined. Due to ease of measurement, specific volume
ν is measured instead of strain. Among these, the mostly commonly used Hugoniot
curves are σ − ν, σ − v and Us − v curves. The σ − ν curve provides valuable
thermodynamic information about the material, the σ − v relation provides direct
measurements of stresses given particle velocity profiles obtained from experiments,
and the Us − v relation enables direct measurement of propagating shock speed.

Figure 2.3 shows the σ − ν Hugoniot of Aluminum 2024 alloy. The stress strain
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relation can be obtained from this by using ε = 1− (ν/ν0), where ν0 is the reference
specific volume given by ν0 = 1/ρ0. The line R connecting the states S− and S+

is called the Rayleigh line, the slope of which related to the speed of the shock Us.
This means that a faster shock would lead to steeper R and consequently higher
stress states. Further, using (2.17), it can be shown that the area under the Rayleigh
line in Figure 2.3 denotes the jump in specific internal energy of the material during
the shock.

Figure 2.3: σ−ν Hugoniot for Aluminum 2024 alloy (material constants taken from
[23]). The states S+ and S− are connected by a Rayleigh line R. The slope of the
Rayleigh line can be used to obtain the speed of the shock.

Figure 2.4 shows the σ− v Hugoniot curve for Aluminum 2024 alloy corresponding
to the shock propagating in the +x direction. This curve is becomes very useful
while solving impact problems to directly obtain stress states. One of the most
common observations of plate impact experiments is that the velocity of the shock is
proportional to the particle velocity of the material upon impact. This observation is
consistent with many solids over a wide range of impact speeds. These experiments
are typically conducted at room temperature (∼ 300K) on unstressed sample with
zero initial particle velocity. The linear law is given by

Us = C + S v+, (2.18)

where C and S are material constants computed from the experiments. Typically, C

is found to be close to the bulk sound speed in the material. S is a dimensionless con-
stant which typically ranges from 1-2 for most materials. A list of Hugoniot curves
of various materials and the associated constants is presented in [55]. Plugging
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Figure 2.4: σ − v Hugoniot for Aluminum 2024 alloy.

(2.18) into the jump equations (2.15) and (2.16) with reference initial conditions,
we get

σ+ =
(ρ0C)2(ν0 − ν

+)(
1 − ρ0S(ν0 − ν+)

)2 , (2.19)

σ+ = ρ0(C + Sv+)v+. (2.20)

Figure 2.5 shows theUs−v Hugoniot of Aluminum 2024 alloy, where the y-intercept
corresponds to C. For Aluminum 2024, following values were used [55]

ρ0 = 2785 kgm−3, C = 5328 ms−1, S = 1.338. (2.21)

2.4 Scattering and structured shock waves
Although shock waves are ideally characterized as moving discontinuities, it has
been observed that they have a structure. The stress states, instead of being discon-
tinuous, vary smoothly and sharply over a small region connecting S+ and S−. This
is represented in Figure 2.6a by∆x. Further, the shock wave is preceded by an elastic
precursor traveling at speed Ue. This means the Hugoniot response doesn’t kick in
until a threshold state is achieved. Formally this means that the σ − ν Hugoniot
curve is preceded by a linear relation which is valid up to a certain limit as shown in
Figure 2.6b. This is called the Hugoniot Elastic Limit (HEL) of the material [23].
In case of Aluminum 2024, it was observed by [66] that σHEL was linearly related
to the yield strength of the material.
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Figure 2.5: Us − v Hugoniot for Aluminum 2024 alloy.

The processes behind the formation of a structured shock wave has been a matter
of extensive research. This is because shock attenuation can not only be achieved
by lowering the stress σ+, but also by increasing the rise time of the pulse. The
formation of a structured shock wave has traditionally been attributed to inelastic
processes, such as viscoelasticity [11], viscoplasticity ([9], [41], [75]) and twinning.
Swegle and Grady [75] conducted shock impact studies on eight different materials,
six metals and two insulating solids. They observed a power law scaling between
the peak strain rate in the shock and change in stresses across the shock front,
ε̇ = β(∆σ)hSG , where hSG = 2/m with strain rate sensitivity m = 0.5. Further, they
proposed a viscoplastic material model consistent with these observations. This
was later analyzed in detail by Molinari and Ravichandran [58] using the model
proposed by Clifton [19].

The analysis and the models developed in [58] and [75] work very well under the
assumption of homogeneous materials. However, in a heterogeneous material, the
propagating waves will undergo scattering due to internal reflections, which leads
to energy dissipation. Grady [35] studied the fundamental questions of entropy
production and basis of stress differences between theHugoniot and theRayleigh line
in a structured wave. The phenomenon of scattering in heterogeneous materials was
offered as an alternate explanation to the formation of structuredwaves. The acoustic
scattering of a finite amplitude shock wave was studied by arguing that the energy
was a combination of lattice strain energy and a vibrational energy. The vibrational
energy was used to answer posed questions about entropy production and excess
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(a)

(b)

Figure 2.6: (a) Shock waves are idealized as moving discontinuity. However, a
smooth, structured profile is observed (depicted in bold red) in experiments. The
shock is preceded by an elastic precursor traveling at speed Ue. (b) Modified σ − ε
Hugoniot curve to depict the Hugoniot Elastic Limit (HEL). The response is linear
till σHEL is achieved.

stress. Using a phonon relaxation model inspired by statistical thermodynamics,
anelastic equations were formulated that were consistent with phenomenological
equations for structured waves developed in earlier studies [12]. While the model
readily described the single-shock data for metals, it did not work very well for
two-step shocks.

In order to study strongly heterogeneous materials, plate impact experiments were
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Figure 2.7: Schematic of the experimental setup used by Zhuang [89]. Particle
velocity profiles were captured for different combination of impact speeds, layer
thickness, material, layer arrangement and number of layers.

conducted on periodically layered composites by Zhuang [89]. Figure 2.7 shows the
schematic of the experimental setup. The target composite was made of alternate
layers of hard and soft materials. Particle velocity profiles were captured using a
VISAR setup. It was observed that the shock structure is significantly influenced by
the material heterogeneity. Factors like loading amplitude, impedance mismatch,
number of layers, propagation distance and pulse duration were explored. It was
observed that the shock front steepens with increase in loading amplitude. Figure
2.8a shows the difference in particle velocity profiles upon change of impedance
mismatch between the composite layers. The shock steepens upon decrease in
impedance mismatch indicating better wave transmission. Figure 2.8b shows the
dependence of particle velocity profile on number of interfaces, keeping the total
target thickness constant. The steepening of the shock front with the increase in
number of interfaces was attributed to the increasing nonlinearity of the system.

A scaling law ε̇ = β(∆σ)n was also calculated and it was observed that n ≈ 1.8−2.4
instead of 4, as observed by Swegle and Grady [75]. This was purely the effect of
heterogeneity, as the individual component materials had n ≈ 4. Physically it means
that the shock viscosity increases due to the wave scattering in the presence of
heterogeneities. The fourth power law was further investigated by Grady [36]. It
was shown that invariance of the energy-time product is a more fundamental notion
fromwhich the fourth power law can be recovered in the case of steady shock waves.
A few studies on composites and porous solids were also reported where the fourth
power law does not hold. The underlying mechanism behind the fourth power law
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(a)

(b)

Figure 2.8: (a) Variation of particle velocity profiles with impedance mismatch
in the periodic laminate. The impedance mismatch in PC74/Al37 is lesser than
PC74/SS37, which means that shock is transmitted better in PC74/Al37. As such
the profile is steeper in this case. (b) Variation of particle velocity profiles with
number of interfaces in the laminate. The profile with more interfaces has more
ripples corresponding to more scattering in the system. The profile steepens due to
inherent nonlinearity in the system [89].
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Figure 2.9: Schematic of the experimental setup used by Rauls [65]. A powder
gun accelerates an Aluminum impact to impact a two phase composite specimen.
Measurements were done using PDV at the right end of the target.

and the associated shock viscosity was not addressed, and it still remains an open
problem.

Vogler [79] conducted numerical simulations to study the scaling laws in hetero-
geneous materials for three types of materials - layered composites, particulate
composites and granular materials. In case of layered materials, the simulations
agreed with experimental observations of Zhuang [89] and a second power law scal-
ing was recovered. In case of particulate composites, a scaling power of 2 − 3 was
recovered. It was pointed out that scattering associated with the particulate nature
of the composite played a significant role in the reduction of scaling power. In the
case of granular materials, a linear scaling law was observed. A separate model,
taking into account the pore collapse, was proposed to explain the linear scaling.

Recently, plate impact experiments were conducted by Rauls [65] on two phase
composites. Figure 2.9 shows the schematic of the experimental setup. The target
used was a two phase composite made of PMMA matrix with glass beads as inclu-
sions. Figure 2.10 shows the cross section of the composite sample. The horizontal
markings on the cross section came from polishing the sample for imaging. Par-
ticle velocity profiles were measured using Photon Doppler Velocimetry (PDV) at
three points on the target surface. Experiments were carried out for different sizes
(100 µm, 300 µm, 500 µm, 700 µm and 1000 µm) of glass beads and different bead
volume fractions (30% and 40%).

It was observed that the presence of heterogeneity significantly influences the shock
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Figure 2.10: A cross section of the two phase composite sample used in [65] made
from PMMA matrix and glass beads as inclusions

structure. Figures 2.11a and 2.11b show particle velocity profiles for 100 µm and
100 µm. As themean bead size increasedwith fixed volume fraction, the slope of the
profile reduced, implying lower shock speeds. Additionally, a structure developed
at the leading edge and near the point of maximum particle velocity implying
larger shock width. The presence of overshoot in the profiles, which occurs due to
secondary reflections, was also a consequence of heterogeneity. Since the volume
fraction was kept fixed, increasing the bead size effectively reduced the number of
interfaces. This information was reflected into the decrease of overshoot observed
in the profiles. Shock rise times scaled linearly with bead size for a fixed volume
fraction, with shock width increasing by an order of magnitude between 100 µm and
1000 µm. CTH simulations showed that for larger bead size, due to the decrease in
number of beads and increase in bead spacing, the linear scaling of the shock width
started to break down.

From a theoretical perspective, scattering of elastic waves in a periodic medium
has been studied extensively. In a periodic medium using Bloch-floquet theory,
frequency responses have been studied by Sun [74], Lee and Yang [46] and Nayfeh
[61] among others. Studies have also been conducted for elastic waves in a random
medium by Ryzhik [67] and have showed how scattering results in a diffusive
response. However, very little is known about nonlinear wave propagation in a
heterogeneous medium. Using Bloch-Floquet theory, plate impact response of
periodic laminate was studied by Chen [18]. An approximate solution for the plate
impact problem in the periodic domain was constructed along the lines of the elastic
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(a)

(b)

Figure 2.11: Particle velocity profiles for bead size (a) 100 µm and (b) 1000 µm
for 40% volume fraction. Profiles are measured at three points of the sample to
account for spatial heterogeneity. The profile for 1000 µm beads has less steep
slope with rounded structures towards the leading and trailing edges of the shock.
Additionally, the overshock is greater for the 100 µm bead size due to greater
number of beads, hence greater number of interfaces, leading to contributions from
secondary reflections.

wave solution. An expression for mean stress was derived for moderate shocks and
scattering was accounted for in the form of wave trains. Each wave train had a
contribution to the stress state for a specific time duration. The overall stress was
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then expressed as a combination of mean stress and time dependent contribution
from wave trains.
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C h a p t e r 3

SHOCK WAVE SCATTERING IN LAYERED MATERIALS

[1] VinamraAgrawal andKaushikBhattacharya. “Shockwave propagation through
a model one dimensional heterogeneous medium”. In: International Journal
of Solids and Structures 51.21–22 (2014), pp. 3604–3618. issn: 0020-7683.
doi: http://dx.doi.org/10.1016/j.ijsolstr.2014.06.021.
url: http : / / www . sciencedirect . com / science / article / pii /
S0020768314002534.

In this chapter, the phenomenon of scattering is analyzed in a layered, not necessarily
periodic, medium. Specifically, a one-dimensional systemmade of perfectly bonded
homogeneous layers is considered. An overall picture is developed by studying
individual wave interactions in the system.

3.1 Problem Description
Figure 3.1 shows the schematic of the impact problem on the layered composite. The
layers are assumed homogeneous and perfectly bonded to ensure continuity of dis-
placements across the material interfaces. As explained in Section 2.3, the material
under shock loading follows a Hugoniot curve represented in Figure 2.6b. While the
loading is governed by a Hugoniot curve, the unloading happens along an isentrope
leading to the formation of rarefaction waves. Unlike shock waves, the states across
rarefaction waves are not discontinuous. Rarefaction waves are represented as a
‘wave-fan’ across which states are connected continuously [23]. These waves are
characteristic of the convex super-linear behavior of the Hugoniot beyond the Hugo-
niot elastic limit. Impact, wave-wave interactions and wave-material interactions
lead to a complex system of shock waves and rarefaction waves into the material.
In order to simplify the analysis in this problem, the Hugoniot is approximated by a
piecewise linear stress strain curve as represented in Figure 3.1. In other words, the
rarefaction waves are no longer present in the system as they can be collapsed onto
a single ‘elastic’ wave.

As explained in Section 2.3, shock problems are typically augmented with a linear
Us − v Hugoniot. In this problem, following Knowles [44], the piecewise affine
stress-strain relationship is augmented with a kinetic relation that relates shock
speed with the rate of dissipation at the shock front. The framework was originally
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introduced by Abeyaratne and Knowles [1], [4] to study phase transitions. However,
it has been useful to study shockwave propagation ([44], [62]). Further, the structure
of the shock is neglected in this analysis. This means that the shock is assumed to
be a moving discontinuity. This is because the kinetic relation can be chosen in such
a way that dissipation at the discontinuity and the dissipation due to the structured
shock is equal [4]. Additionally, in a more recent study by Tan [76], it was shown
that sharp front assumption is valid if the length scale of the heterogeneity is much
larger than the inherent shock width.

Figure 3.1: Schematic representation of plate impact

The problem setup (Figure 3.1) shows a layered composite consisting of N layers,
ρi and Li being the density and thickness of the ith layer, being impacted upon by a
linear elastic flyer traveling at speed vimpact . The left edge of the flyer and the right
edge of the layered composite has a traction free boundary condition. For now, the
piecewise affine stress-strain curve is parameterized by three quantities - yield stress
σ1, the modulus E, and the compliant strain εC . Additionally, every layer is assumed
to have the same ρ, σ1 and E. The case with relaxed assumption will be addressed
later. This assumption simplifies the analysis by reducing the heterogeneity to
shock waves and making the composite homogeneous to elastic waves. This will be
addressed in detail in Section 3.2. Finally, the system is assumed isothermal.

3.2 Governing equations
The problem is formulated in Lagrangian setting with X = 0 being on the left
edge of the flyer. The moment of impact is marked as t = 0. The stress, strain
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and particle velocity at any point X at time t is denoted by σ(X, t), ε(X, t) and
v(X, t), respectively. The compressive stresses and strain are taken to be positive
as notation. The system is governed by the set of compatibility and conservation
laws as presented in Section 2.1. Additionally, due to the isothermal assumption,
conservation of energy is not required as it is automatically taken care of by the
kinetic relation and the dissipation inequality. The piecewise affine stress-strain
curve allows the system of equations to reduce to following jump equations:

~σ� + ρṡ~v� = 0, (3.1)

~v� + ṡ~ε� = 0, (3.2)

where ṡ is the speed of the propagating discontinuity.

An elastic wave is described as a moving discontinuity across which the states lie
in the same branch of the stress-strain curve. Further, a shock wave is characterized
by the moving discontinuity across which the states lie on different branches of the
stress-strain curve. This is represented in Figure 3.2a, where states 1-2 and Q-3 are
connected through an elastic wave and states 2-3 are connected by a shock wave.
For an elastic wave, it can be shown that the equations (3.1) and (3.2) hold if and
only if,

ṡ = ±c = ±

√
E
ρ
. (3.3)

The assumption of uniform ρ, E and σ1 allows the same elastic wave speed c

for all layers, thereby making the system homogeneous to elastic waves. The
heterogeneity is only limited to shock waves. The dissipation across the shock front
can be represented as the signed area between the line 2−3 and the stress strain curve
between the points 2 and 3. This means that across the shock front, the dissipation
is given by the difference in area P3Q and P21.

For this analysis, amaximally dissipative kinetic relation [83] is used as the additional
empirical law to complete the set of equations to obtain a unique solution. Physically,
it means that the shock tries to maximize the dissipation [62]. Maximal dissipation
kinetics is thermodynamical equivalent of the Lax entropy criteria [47] widely used
in shock physics. Thus, for a compression shock taking the material from the low-
strain branch to the high-strain branch, the low strain state has to coincide with
point 1 for maximal dissipation kinetics to be satisfied. Along the same lines, the
tensile shock from high-strain branch to low-strain branch can satisfy the maximal
dissipation law only when the high-strain state coincides with point Q in Figure
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Figure 3.2: (a) Illustration of elastic and shock waves in the stress-strain curve. The
difference between the areas P3Q and P21 denotes the dissipation across the shock
front.
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(a)

(b)

Figure 3.3: (a) X − t diagram for the shock interaction problem at the A-B material
interface. The impinging shock UA interacts with the material interface to produce
the elastic waves and a shock UB.

3.2a. A formal expression of the kinetic relation can also be derived using the jump
equations (3.1) and (3.2) as follows:

−~v� =
Uc2εc

c2 −U2 . (3.4)

The expression (3.4) for the kinetic relation is represented in Figure 3.2b. Although
this is not a linear expression, a linear approximation can be made for a large range
of under-driven shocks.

3.3 Shock wave interaction at a material interface
In this section, the fundamental problem of the interaction of a shock wave at
a material interface is considered. Two layers A and B, perfectly bonded at the
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interface, are considered with initial stress-free configuration. A sudden loading
σ0 > σ1 is applied to the left end and the resulting wave problem is studied. Figures
3.3a and 3.3b show the X−t diagramof the problem and the equivalent representation
in the stress-strain space, respectively. The loading produces a combination of an
elastic wave and a shock wave into the material A. Since the system is homogeneous
to elastic waves, the elastic wave propagates unimpeded into the material B. In
order to satisfy the maximal dissipation kinetics, the elastic wave needs to take the
material from unstressed configuration to point 1 in the stress strain curve shown in
Figure 3.3b. The shock UA takes the state of the material A from point 1 to 2, with
σ2 = σ0 as shown in Figure 3.3b. The jump equations across the elastic and shock
waves are given by

σ1 − 0 + ρc(v1 − 0) = 0, (3.5)

σ2 − σ1 + ρUA(v2 − v1) = 0, (3.6)

v2 − v1 +UA(ε2 − ε1) = 0. (3.7)

Since the states σ1, σ2, ε1 and ε2 are known, the above equations can be solved for
v1, v2 and UA to give

v1 = −
σ1
ρc
, (3.8)

UA =

√
σ2 − σ1
ρ(ε2 − ε1)

, (3.9)

v2 = v1 −
√
ρ(σ2 − σ1)(ε2 − ε1). (3.10)

Upon interaction of the shock wave at the A-B material interface, following waves
can potentially form as shown in Figure 3.3a:

1. An elastic wave originating from the point of interaction propagating back
into A taking the state of A from point 2 to 3.

2. An elastic wave propagating into B taking the state of B from point 1 to 4.

3. A shock wave propagating into B taking the state of B from 4 to 5.

From the previous discussion, the maximal dissipation kinetics enforces state 4 to
coincide with 1. More precisely, σ4 = σ1, giving v4 = v1. Physically this means that
the forward propagating elastic wave B will not exist in the system. Additionally,
the layers are perfectly bonded which means that σ3 = σ5 and v3 = v5. As such,
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only state 3 needs to be determined. Writing jump equations across the elastic wave
in A and across the shock wave in B,

σ3 − σ2 − ρc(v3 − v2) = 0, (3.11)

σ2 − σ1 + ρUB (v2 − v1 = 0, (3.12)

v3 − v1 +UB (ε3 − ε1) = 0. (3.13)

Solving these equations give,

σ3 =
EεB

c σ1 − σ
2
1 + (σ2 + ρc(v1 − v2))2

2(σ2 − σ1) + ρc(εB
c c + 2v1 − 2v2)

, (3.14)

v3 =
(EεB

c (σ1 − σ2 + ρcv2)) − (σ1 − σ2 + ρc(−v1 + v2))(σ1 − σ2 + ρc(v1 + v2))
ρc(−2σ1 + 2σ2 + ρc(εB

c c + 2v1 − 2v2))
,

(3.15)

UB =
σ2 − σ1 + ρc(v1 − v2)

σ2 − σ1 + ρc(εB
c c + v1 − v2)

. (3.16)

Simplification of above expressions results in

UB =
rUAc

c + (r − 1)UA
, (3.17)

where r = εA
c /ε

B
c is the compliance ratio between the two materials. It can be seen

from (3.17) that if r < 1, which means that the shock passes from a less compliant
to a more compliant medium, the shock speed decreases. Similarly, if r > 1, the
shock speed increases. A similar expression for σ3, purely in terms of r , cannot
be derived because σ3 can not be eliminated. Second, the forward moving elastic
wave in B is not present in this system, which is a consequence of the kinetic law.
Finally, the receding elastic wave in B eventually brings the entire laminate to the
same stress state σ3.

In the analysis involving a Hugoniot, instead of a piecewise affine relation, the
shock interaction at the material interface depends upon the impedance ration Z =

ρACA/ρBCB, where C is the characteristic speed introduced in (2.18). The case
of Z > 1 results in the formation of two shock waves, one receding in A and one
propagating in B. This case is equivalent to r < 1 presented in this analysis. For
Z < 1, the interaction leads to the formation of a shock wave in B and a rarefaction
wave fan in A. This case is equivalent to r > 1 where a shock wave forms in B and
an unloading elastic wave forms in A.
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3.4 Semi-infinite medium
In order to get one step closer to the problem in Figure 3.1, a laminate with N

segments is chosen. The impactor and the last layer of the laminate are assumed
to be semi-infinite. This assumption removes any possible wave reflections from
the ends of the target or the impactor. Additionally, as pointed out in the earlier
section, the laminate is homogeneous to elastic waves and the interaction of a shock
at material interface does not produce any forward propagating elastic waves. This
implies that the shock never interacts with an elastic wave and the only interaction
is that with a material interface. As such, the problem can be described exactly as
in the previous section. The shock speed in the N th layer can be expressed as

UN =
rNU1c

c + (rN − 1)U1
, (3.18)

where rN = ε
1
c/ε

N
c is the ratio of compliant strain of the first and the last layer.

The expression (3.18) implies that the speed of the shock in the semi-infinitemedium
depends only on the properties of the first and the last layer. The properties and the
arrangement of intermediate layers in this model do not play a role in determining
the final state. Again, the receding elastic waves will eventually bring the entire
system to the common stress state σN .

3.5 Finite heterogeneous medium: Method
In this section, the semi-infinite assumption is removed from the previous section.
This adds a lot more complexity in the system due to the elastic waves reflecting
off the free surface and interacting with the shock. It is important to note that the
solution (v, σ) is piecewise constant due to the nature of the stress-stress curve. This
means that following the waves is enough to generate the solution. The numerical
scheme presented in the next section follows every elastic wave and shock wave as
it nucleates and propagates into the system. As a first step, all possible interactions
between waves and interfaces are cataloged. These interactions are posed locally as
Riemann problems with piecewise constant initial data.

Individual interactions
An advantage of having a piecewise linear stress-strain curve is that the all possible
interactions can be classified into the following classes of Riemann problems.

1. Reflection of an elastic wave from a free edge

2. Interaction of one elastic wave with another
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a) Interaction within a linear elastic material

b) Interaction within a piecewise affine material

i. Interaction resulting in the formation of two elastic waves

ii. Interaction of waves in low-strain branch forming a pair of com-
pression shocks

iii. Interaction of waves in high-strain branch forming a pair of tensile
shocks

c) Interaction at the interface of linear and piecewise affine material

i. Interaction resulting in the formation of two elastic waves

ii. Interaction resulting in the formation of a compression shock in
piecewise affine material

iii. Interaction resulting in the formation of a tensile shock in piecewise
affine material

3. Elastic wave in piecewise affine material crossing material boundary to enter
another layer

4. Elastic wave from a linear elastic material entering a piecewise affine material

a) Interaction forming a compression shock in piecewise affine material

b) Interaction forming a tensile shock in piecewise affine material

c) Low amplitude wave passing through unimpeded

5. Interaction of a compression shock at an interface

a) Interface connects a linear elastic and piecewise affine material

b) Interface connects two piecewise affine materials

6. Interaction of a tensile shock at an interface

a) Interface connects a linear elastic and piecewise affine material

b) Interface connects two piecewise affine materials

7. Interaction of a shock wave with an elastic wave

a) Compression shock and elastic wave traveling in the same direction

b) Compression shock and elastic wave traveling in the opposite direction

c) Tensile shock and elastic wave traveling in the same direction
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d) Tensile shock and elastic wave traveling in the opposite direction

8. Interaction of two shock waves traveling in opposite direction

a) Compression shocks

b) Tensile shocks

Solutions to Riemann problems
Following the procedure listed in Section 3.3, explicit solutions to a few Riemann
problems mentioned above are derived in this section.

Interface interactions

a. Elastic wave from a purely elastic medium entering a piecewise affine medium:
Figures 3.4a and 3.4b show the schematic of such an interaction. As shown in Figure
3.4b, material A is purely elastic while material B is piecewise linear. Depending
upon the states a and b in Figure 3.4a, there are three possible cases.

(a) (b)

Figure 3.4: Schematic diagram of the elastic wave interaction at A-B interface

Case 1: No shock formation: This happens when either σa < σ1, σb ≤ σ1 or
σa > σ1, σb ≥ σ1. Since the layers are elastically homogeneous, in this case the
elastic wave passes through the interface without any interruption.

Case 2: Formation of compression shock: Figure 3.5a shows the case when the
interaction leads to the formation of compression shock. This happens when σa ≤

σ1 and σb > σ1. In case σa = σ1, the state just ahead of the point of interaction
needs to be considered to decide if case 1 is applicable or case 2. The process in
stress-strain space is represented in Figure 3.5b. The maximal dissipation criteria
requires state e in Figure 3.5a to coincide with σ1. Finally, the shock speed U is
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given by
U =

c(−2σ1 + σa + σb + cρ(va − vb))
−2σ1 + σa + σb + cρ(εcc + va − vb)

.

(a) (b)

Figure 3.5: Elastic wave interaction leading to a compression shock

Case 3: Formation of unloading shock: Figure 3.6a shows the formation of an
unloading shock during this interaction. This happens when σa ≥ σ1 and σb < σ1.
Just as in case 2, if σa = σ1, the state ahead of the point of interaction needs to
be considered to decide if case 1 is applicable or case 3. The Riemann problem in
stress-strain space is presented in Figure 3.6b. Finally, the shock speed is given by

U = c −
Eεcc

2σ1 − σa − σb + ρc(εcc − va + vb)
.

It should be noted that state d in Figure 3.6a can be of unloading nature which can
lead to the separation of A-B interface. This enables the study of spallation and
re-compression shocks.

(a) (b)

Figure 3.6: Elastic wave interaction leading to an unloading shock

b. Compression/Unloading shock entering a purely elastic medium: The interac-
tion of a shock wave at an interface of two nonlinear materials was studied in
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Section 3.3. The case of a shock wave interacting with the interface of a nonlinear
and linear material is considered here. Figures 3.7a and 3.7b show the Riemann
problem of a compression shock interacting with the interface of nonlinear and
linear material in X − t and stress-strain space, respectively. The interaction leads
to the formation of two elastic waves. The state d in Figure 3.7a and 3.7b is given
by

σd =
1
2

(
σ1 + σb + ρc(va − vb)

)
,

vd =
1

2ρc
(
σ1 − σb + ρc(va + vb)

)
.

(a) (b)

Figure 3.7: Compression shock wave entering a purely elastic material

The case of unloading shock is represented in Figures 3.8a and 3.8b. The state d in
Figures 3.8a and 3.8b can be calculated from the same expressions above.

(a) (b)

Figure 3.8: Compression shock wave entering a purely elastic material

c. Unloading shock entering another nonlinear material The interaction of an un-
loading shock at the interface of two nonlinear layers leads to the formation of
another unloading shock. The interaction is presented in Figure 3.9a in X − t space
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and in Figure 3.9b in the stress-strain space. The interaction leads to the formation
of two elastic waves and an unloading shock. The process is exactly the same as
in Section 3.3. The maximal dissipation kinetics ensure that the forward moving
elastic wave does not exist. Finally,

UB = c
(

σ1 − σb + ρc(−va + vb)
σ1 − σb + ρc(εB

c c − va + vb)

)
.

(a) (b)

Figure 3.9: Unloading shock wave entering another piecewise affine material

Wave - wave interaction

a. Interaction of elastic wave and shock wave traveling in the same direction: Next,
the interaction of an elastic and a shock wave traveling in same direction is studied.
The interaction is represented by Figure 3.10a in X − t space and by Figure 3.10b in
stress-strain space. The speed of the resulting shock is given by,

U2 = c
(
−σ1 + σ3 + ρc(v1 − v3)

−σ1 + σ3 + ρc(εcc + v1 − v3)

)
.

b. Interaction of elastic wave and shock wave traveling in opposite directions: Next,
the interaction is considered for the case when the elastic wave and the shock wave
are traveling in opposite directions. Figure 3.11 shows the interaction between an
elastic wave and a shock wave (compression shock in this case) leading to two pos-
sible solutions - unloading shock and compression shock. Admissibility criteria for
the solution are governed by the fact that the speed of the shock should be less than
the elastic wave speed. In the case that both solutions are admissible, the dominating
solution is determined by maximal dissipation criteria. The solution to the Riemann
problem involves connecting states 2 and 4 in the stress-strain space. The solution
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(a)
(b)

Figure 3.10: Interaction of elastic wave with compression shock

Figure 3.11: Interaction of elastic wave and compression shock traveling in opposite
directions resulting in two possible solutions - (b) unloading shock wave and (c)
compression shock wave.

involving unloading shock involves reversal of the shock direction. The speeds U1

and U2 are given by

U1 = c −
Ecεc

σ2 + σ4 − 2σ1 + ρc(εcc − v2 + v4)
,

U2 = c −
Ecεc

2σ1 − σ2 − σ4 + ρc(εcc + v2 − v4)
.

Interactions of this kind play an important role in the analysis ahead. The reversal
of the shock direction and change of the nature of the shock marks the ‘reflection’
of the shock wave.

c. Interaction of two elastic waves in a nonlinear layer: Next, the interaction be-
tween two elastic waves in studied is a nonlinear layer. The importance of this
interaction will be seen later on in Section 3.6 when the possibility of spallation will
be discussed. Two elastic waves of unloading nature in the high strain branch of the
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stress strain curve can lead to the formation of a pair of unloading shocks as shown
in Figure 3.12a and 3.12b. The shock speeds U1 and U2 are given by,

U1 = U2 = c
Eεc − [E2ε2

c + (σ3 + σ2 − 2σ1 + ρc(v3 − v2))2]1/2

σ3 + σ2 − 2σ1 + ρc(v3 − v2)
.

(a)
(b)

Figure 3.12: Interaction of two elastic waves forming a pair of unloading shocks

Similarly the interaction of two elastic waves of loading nature can lead to the
formation of a pair of compression shocks. This Riemann problem is represented in
Figure 3.13a in the X − t plane and in Figure 3.13b in the stress-strain space. The
speed of the compression shocks in this case is given by

U1 = U2 = c
−Eεc + [E2ε2

c + (σ3 + σ2 − 2σ1 + ρc(v3 − v2))2]1/2

σ3 + σ2 − 2σ1 + ρc(v3 − v2)
.

(a)
(b)

Figure 3.13: Interaction of two elastic waves forming a pair of compression shocks

d. Interaction of two shock waves traveling in opposite directions: Another possi-
ble interaction is the interaction of two shock waves in a nonlinear material. While
this is a relatively unlikely interaction, it is still important because it causes the shock
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waves to disappear. State 4 in Figures 3.14a and 3.14b can be determined via jump
conditions. Similarly, the interaction between two unloading shock waves leads to
formation of two elastic waves.

(a) (b)

Figure 3.14: Interaction of two compression shock waves forming a pair of elastic
waves

e. Interaction of two elastic waves at the interface of linear and piecewise affine layer:
Although this interaction is very rare, it becomes important when a periodically
layered linear-nonlinear medium is considered. Under certain kinds of conditions,
the interaction can lead to formation of shocks in the nonlinear layer. Figure
3.15a shows the Riemann problem where the interaction leads to the formation
of compression shock in the nonlinear layer. An equivalent representation in the
stress-strain space is shown in Figure 3.15b. The speed of the compression shock
can be expressed as,

U1 = c −
Ecεc

σ2 + σ3 − 2σ1 + ρc(Eεc − v2 + v3)
.

Similarly, Figures 3.16a and 3.16b represent the case of tensile shock formation. An
expression can be obtained for tensile shock speed as follows

U1 = c +
Ecεc

σ2 + σ3 − 2σ1 − ρc(Eεc + v2 − v3)
.

Numerical method
The numerical scheme employed follows every wave in the system. An object
oriented approach is developed where each wave is treated as an object containing
the origin and the endpoint in the X − t plane, the direction, the speed, the material
in which it is propagating, the status of the wave, and the state (σ, ε, v) before and
after the wave. Each wave is assigned a status, either active or passive. An active
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(a) (b)

Figure 3.15: Interaction of two elastic waves forming a compression shock in the
piecewise affine layer

(a) (b)

Figure 3.16: Interaction of two elastic waves forming a compression shock in the
piecewise affine layer

wave can interact with other active waves and the material boundary and lead to
more active waves. The solution for the corresponding Riemann problem is looked
up in the list above. Upon interaction, the status of an active wave is changed to
passive.

It is important to note that due to the absence of any space-time discretization, the
outlined scheme produces an exact solution to the impact problem. The only errors
in the system come from rounding off while calculating the next time of interaction
and the solutions to the Riemann problem.

3.6 Finite heterogeneous medium: Results
Calculations are carried out for ρ = 2700 kg/m3, c = 6000 m/s, σ1 = 200 MPa,
E = ρc2, Vimpact = 1000 m/s and the total length of the target being 1m. The length
of the flyer L0, the number of layers N , and the compliant strain εc profiles are
varied from simulation to simulation. The range of εc is always maintained from
0.2 to 0.6. The chosen range of εc is for demonstrative purposes, and to remain in
the linear regime of the Us − v relation shown in Figure 3.2b. It should be noted
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that the analysis holds true for other values of εc too. For simplicity, each layer is
chosen to have equal length 1/N . This assumption can be relaxed very easily, as the
procedure is not affected by length of individual layers.

Typical Results
Figure 3.17a shows a typical X − t plot for a sample impact problem. In this
calculation, the composite is made of N = 20 layers with εc decreasing linearly
from 0.6 to 0.2 along the length of the target. The region X ∈ [0, 1] denotes the
impactor, while the layered target occupies X ∈ [1, 2]. The vertical black lines
denote layer material interfaces. The ends X = 0 and X = 2 have traction free
boundary conditions, while the flyer-target interface X = 1 is free to separate.
The red lines in the X − t diagram denote elastic waves in the system while the
bold black lines are the shock waves. Upon impact, three waves are generated - a
compressive elastic wave receding back into the flyer, a compressive elastic wave
and a compression shock wave propagating into the first layer of the shock wave.
The moment of impact is marked t = 0, and the simulation starts from there.

As per the stated assumption, the target is assumed to be homogeneous to elastic
waves. Hence the elastic wave propagates unimpeded into the target. The compres-
sion shock interacts with the material interfaces and gives off backward propagation
elastic waves in the target, called scattered elastic waves. The two branches of the
stress strain curve have the same slopes, which by design, restricts the speed of the
shock wave ṡ ≤ c. Since the compliant strain εc is decreasing, the scattered elastic
waves are compressive in nature, thereby further loading the material. The elastic
wave generated in the target upon impact travels faster than the shock, reflects off
the free edge of the target as a tensile wave, and interacts with the shock. This
interaction in turn leads to the formation of two elastic waves (one forward moving
and one backward) and a shock wave. The forward moving wave again travels
unimpeded, reflects off at the target’s end X = 2, and comes back to interact with
the shock. This means that the interaction of type 7(b) happens over and over again
until the shock changes its direction. Similarly the leading elastic wave generated
in the flyer upon impact reflects off the free end X = 0 as a tensile wave. This wave
is called the first release wave and interacts with the backward propagating elastic
wave generated during the scattering process.

One of the most commonly used tools to investigate shock waves in a medium is
to measure particle velocity profiles at the free surface of the target, X = 2 in the
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Figure 3.17: Impact problem for L0 = 1m and εc decreasing linearly. (a) X − t
diagram of the impact problem. The red lines correspond to the elastic waves while
the black line is the propagating shock wave. (b) Particle velocity profiles at X = 0
(left edge of the flyer), X = 1 (flyer-target interface) and X = 2 (right edge of the
target). (c) Stress profile at the flyer-target interface. The sudden drop in stress
denotes the arrival of the release wave from the free edge of the flyer.

present case. Typically, velocity interferometry (VISAR) or Doppler velocimetry
(PDV) is used to generate particle velocity profiles. As explained in Section 2.4,
velocity profiles are useful in interpreting shock rise times, peak stresses, scattering
and shock speeds. Figure 3.17b shows the normalized particle velocity profiles at
X = 0, X = 1 and X = 2. The profile at X = 0 starts at vimpact and drops as soon as
the elastic wave from the impact reaches the free end of the flyer. The corresponding
release wave interacts with every scattered elastic wave coming from the scattering
process, reducing their intensity. The profile at X = 1 shows a drop in particle
velocity as soon as the release wave hits the flyer-target interface.

The profile at X = 2 shows increase in particle velocity with every reflection of an
elastic wave. By design of the problem, the shock does not slope or round towards
the leading and trailing parts of the profile. This is because the rarefaction wave fan
that occurs in a Hugoniot is collapsed on to a single sharp elastic wave front in this
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case. As such the particle velocity profiles are consistently sharp throughout this
analysis.
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Figure 3.18: Impact problem for L0 = 1m and εc increasing linearly. (a) X − t
diagram of the impact problem. (b) Particle velocity profiles at X = 0 (left edge
of the flyer), X = 1 (flyer-target interface) and X = 2 (right edge of the target).
(c) Stress profile at the flyer-target interface. The sudden drop in stress denotes the
arrival of the release wave from the free edge of the flyer.

Similar results are presented in Figures 3.18a, 3.18b and 3.18c for the case when
εc increases linearly from 0.2 to 0.6 along the length of the target. For the same
initial impact speed, the first layer in the composite of Figure 3.18a is less compliant
than the one in Figure 3.17a. As such, the initial stress is higher in this case as
represented in Figure 3.18a. Additionally, the scattered elastic waves in this system
are of unloading nature. These waves upon interaction with the release wave from
the flyer’s free end, further strengthen the unloading nature of the release wave.
Upon interaction of the release wave with the flyer-target interface, the interface
separates creating a free boundary condition. This is evident by the stress drop
at X = 1 at t ≈ 0.33 ms. As the release wave travels further into the target, it
interacts with the scattered elastic waves and produces a pair of tensile shocks at
every interaction. Under certain conditions, the stress state can be tensile in the
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Figure 3.19: Variation of arrival times T with number of layers N for different layer
profiles

region enclosed by this pair of shock waves leading to possible spallation. This will
be covered later.

Effect of reflected waves
Shock arrival times

The arrival time T for a shock is defined as the time taken by the shock to reach the
free edge of the target. By design, the shock wave is always preceded by an elastic
wave which constantly reflects off the free edge of the target, interacts with the shock
and produces more elastic waves. Hence, the shock never actually reaches the free
edge of the target. So in this case, T is taken to be the time compression shock wave
takes to change its direction and becomes a tensile shock. Figure 3.19 shows the
variation of T with number of layers N . Here the length of the impactor is taken
L0 = 5 m, to prevent the release waves from entering into the target and interacting
with the shock wave. The effect of release waves will be studied later.

For comparison, the arrival times are also plotted for a semi-infinite medium. Here
the arrival time is defined as the time taken for the shock to travel 1m length in the
target. It should be noted that the arrival time here is independent of the number
of layers in the medium. Additionally, the arrival time is independent of the profile
of εc. This is because the target is made of layers with identical thickness and the
chosen εc profiles are linear. For a general case, the arrival timewill depend on the εc

profile in the target. A general observation that can be made from Figure 3.19 is that
the reflected waves slow down the shock, thereby increasing T . This is because the
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reflected waves are of unloading nature. Second, the point of interaction becomes
important as the symmetry of the system is broken. This is because the shock speed
reduces as the target becomes progressively compliant. As such, the point where
the reflected wave interacts governs the Riemann solution and subsequent structure.

Alternate nonlinear and linear materials

The effect of reflected waves is highlighted when the contrast between the layers is
increased. In this section, an alternate arrangement of linear and nonlinear material
is considered. Given an even number N , a target of N − 1 layers is constructed
such that the first and last layers are made of nonlinear material. This results in
a total of N/2 nonlinear layers and N/2 − 1 linear layers. The total length of the
laminate is kept at 1 m, and every layer is of equal length. Further, the nonlinear
layers have identical compliant strain, while the linear layers have the same E and
ρ as the nonlinear layers. Figure 3.20a and 3.20b show the variation of normalized
particle velocity profile with N for εc = 0.2 and εc = 0.6, respectively.
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Figure 3.20: Variation of particle velocity profile at the free edge of the target with
N for an alternate linear and nonlinear material. The first layer is chosen to be
nonlinear with (a) ε2 = 0.2 and (b) εc = 0.6.
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In general, the arrival time for εc = 0.6 is larger because the material is more
compliant, and hence has a lower shock speed. This is evident in the profiles in
Figure 3.20a and 3.20b. In this kind of layer arrangement, the reflected elastic wave
can interact with either the shock wave or an elastic wave depending on whether
the interaction happens in a nonlinear layer or a linear layer. This would lead to
different particle velocity profiles. The periodicity of the laminate is marked by the
oscillations in the particle velocity profiles after the peak value is achieved. This
is from the scattering of the shock wave on its way back after reflection. It can be
seen from Figure 3.20a and 3.20b that as N increases the arrival times T decrease.
This means that the effective speed of the shock increases with increasing N . This
is interesting because the total length of the elastic layers remains the same with N .
This is purely a consequence of increasing heterogeneity and number of interfaces
in the material - which affects the interaction of reflected waves with shock waves.

Influence of εc profiles
In this section, the effects of εc profiles will be studied. In order to avoid interaction
with release waves, the impactor length is kept long: L0 = 5m.

Linear εc profiles

Figure 3.21a and 3.21b show the variation of particle velocity profiles with N for a
material with εc varying linearly along the material. The particle velocities overlap
for different N , indicating marginal effect of number of layers on the profile. This
is corroborated by Figure 3.19 showing variation of arrival times T with N .

Power law profiles

The compliant strain εc for a layer i is chosen according to the following power law

εi
c = a + b

(
i − 1
N − 1

)n

, i = 1, . . . , N (3.19)

where a = 0.2, b = 0.4 for εc increasing case and a = 0.6, b = −0.4 for εc

decreasing case. Figure 3.22a and 3.22b show variation of particle velocity profiles
with n for εc decreasing and increasing respectively. The number of layers is taken
to be 20 for these calculations. It is observed from Figure 3.22a that as n increases,
the arrival time increases. This can be explained from the analysis in Section 3.3.
The speed of the shock increases as εc decreases. As the exponent n increases,
the increase in shock speed happens more slowly. This can also be used to explain
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(a)

(b)

Figure 3.21: Variation of particle velocity profiles with N for (a) linearly decreasing
and (b) linearly increasing εc profile. Profiles for constant εc = 0.2, 0.6 are plotted
for comparison.

increase in effective shock speed with n in Figure 3.22b. Here the decrease in
shock speed happens more slowly along the length of the material as the exponent
n increases.

Step εc profiles

Next, a step εc profile along the material is considered. Material of length 1 m is
considered with N = 20 layers. For X ∈ [0, λ), εc takes a constant value (0.2 in
εc increasing case and 0.6 in εc decreasing case), while another constant value for
X ∈ [λ, 1] (0.6 in εc increasing case and 0.2 in εc decreasing case). Figure 3.23a
and 3.23b show the variation of normalized particle velocity profiles with λ for εc

decreasing and increasing respectively. Profiles for constant εc = 0.2 and εc = 0.6
are plotted for comparison. For the decreasing case, the arrival times increase with
increasing λ. This is consistent with the analysis in Section 3.3 where the shock
speed decreases with increasing εc. In both cases, εc = constant profiles bound the
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Figure 3.22: Variation of particle velocity profiles with the exponent n for (a) εc
decreasing and (b) εc increasing profiles.

λ dependent profiles.

Periodically nonlinear material

The role of the εc profile is further explored by considering a periodic layering
of nonlinear materials. Figure 3.24a and 3.24b show the variation of normalized
particle velocity profiles with N for alternate ε = 0.6, 0.2 and εc = 0.2, 0.6 layers
respectively. It is observed that the arrival times are not affected by N or the
arrangement of εc layers. The difference is observed in the subsequent profile
structure. Unlike the case studied in Section 3.6, the arrival times here are almost
identical with N . This is because the reflected elastic waves in thematerial described
in Section 3.6 interact with either an elastic wave (in a linear material) or a shock
wave (in a nonlinear material). In this case, the reflected waves interact with just
shock waves, which has a marginal effect on arrival times. This can also be seen in
Figure 3.19. The subsequent oscillations are a consequence of shock wave scattering
on its way back into the target after reflection near the free edge of the target.
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Figure 3.23: Variation of particle velocity profiles with λ for (a) εc decreasing and
(b) εc increasing profiles.

Effect of release waves
As observed in Figure 3.17a and 3.18a, the elastic wave generated in the flyer upon
impact reflects off the free edge as a tensile wave. This release wave then interacts
with scattered waves and the shock wave as it travels through the flyer and into the
target. As explained in Section 3.6, the unloading nature of the release wave can
be attenuated or amplified by the nature of scattered elastic waves. If the scattered
waves are also of unloading nature, the unloading nature of the release wave is
amplified and it leads to flyer-target interface separation and subsequent pairs of
tensile shocks (Figure 3.17a). Note that in a real Hugoniot, the unloading waves
are replaced by rarefaction wave fans. As such, the interaction of the release wave
becomes quite complicated. In this section, the effect of release waves is considered
by taking the length of the flyer L0 = 0.5m. The short length of the flyer allows the
release wave to catch up with the shock.

Figure 3.25a and 3.25b show the X − t diagram of the impact process with a thin
(L0 = 0.5m) impactor upon a layered target, N = 2 and N = 20 respectively, with
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Figure 3.24: Variation of particle velocity profiles with N for alternate layering of
(a) εc = 0.6 and 0.2 (b) εc = 0.2 and 0.6.

εc increasing linearly along the length. In both cases, the total length of the target
is 1m and the first layer has an εc = 0.6 while the last layer has εc = 0.2. The
difference lies in the gradient of εc along the target. In both cases, the release
wave causes the flyer-target interface separation upon its return. As explained in
Section 3.3, the scattered elastic waves will be of unloading nature. Due to the large
contrast between layers for N = 2, the scattered elastic wave will have a very strong
unloading nature as compared to any scattered wave in the N = 20 case. It can be
seen from Figures 3.25a and 3.25b that the pair of tensile shocks formed in N = 2
have higher speeds, and therefore greater strength, as compared to those in N = 20.
In this case, the state of stress within the zone in the X − t plane enclosed by the
pair of tensile shocks is negative. This leads to the possibility of spallation in the
material, if the tensile stress exceeds the spallation strength.

Spallation is an important failure mechanism caused by tensile waves reflecting off
the free edge of the material. Spallation has been extensively studied (ref. Bushman
[15] and references therein). It has been shown by Erzar et al. [29], Vogler and
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Figure 3.25: X − t diagram for the impact process on a layered target with (a) N = 2
and (b) N = 20, where the εc increases linearly for both cases. A pair of tensile
shocks is observed in both cases, with stronger shocks for N = 2.

Clayton [80] and Wang et al. [81] that the quantities associated with spallation such
as the location of spall plane and the critical stress can be significantly influenced
by internal stress variations. In the case shown in Figure 3.25a, the spallation can
be caused by high contrast between layer properties and the subsequent scattered
waves.

Dissipation
Shock waves are dissipative by nature. The dissipation, as explained in Section 3.2
from Figure 3.2a, is the difference between area ∆3PQ and ∆P21. Since the states
across an elastic wave lie on the same branch of the stress strain curve, these waves
do not cause any dissipation. The maximal dissipation kinetics followed in this
analysis ensures that the stress state ahead of the shock is σ1. Figure 3.26 shows
the variation of total dissipation in the layered material with N for two different
layer arrangements. In order to avoid the effect of release waves, the flyer length is
taken to be L0 = 5m. The total dissipation shows nominal variation with N . This
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Figure 3.26: Variation of total dissipation in the material with N for different εc
arrangement. The flyer length is chosen to be large to avoid the effect of release
waves. The dissipation is higher for the layer arrangement with εc decreasing
linearly along the length.

is consistent with the observations in Figure 3.19, where the arrival times do not
show much dependence on N . The effective shock speed is higher for εc decreasing
case as shown in Figure 3.19. Due to maximal dissipation kinetics, the higher
shock speed implies larger dissipation. Hence, the observations in Figure 3.26 are
consistent with the analysis so far.

3.7 Extensions and relaxing assumptions
In order to make the analysis simple in the previous sections, the material parameters
such as σ1, ρ and E were assumed to be same for all layers. Further, both branches
of the stress-strain curves were assumed to have the same slope E. This allowed only
one elastic wave speed, and hence only one kind of elastic wave, in the system. This
section will focus on the consequences and the associated physical interpretations of
relaxing these assumptions. Relaxing the assumptions increases the complexity of
the system by introducingmore classes of Riemann problems. The analytic solutions
of every class can be obtained by a similar procedure as outlined in Section 3.3.
The remaining challenge is to identify the Riemann problems, tweak the algorithm
to search for those Riemann problems, and introduce new waves according to those
solutions.

An immediate extension lies in changing the slopes of the two branches of the
stress strain curves - E1 and E2. This introduces two kinds of elastic waves into
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(a)
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Figure 3.27: Potential solutions for initial impact on a layered composite with the
modified piecewise affine stress-strain curve. For small impact speeds, the maximal
dissipation kinetics ensures (a), (b) a two wave structure. For high impact speeds
(c), (d) a single shock wave is sufficient for a unique solution.

the system with wave speeds c1 =
√

E1/ρ and c2 =
√

E2/ρ respectively. The stress
states across the wave with speed c1 (c2) lie on the first (second) branch of the stress
strain curve. This extension allows better approximation of the Hugoniot, provided
c2 > c1. The introduction of the second kind of wave speed removes the fundamental
constraint that the shock speed ṡ < c associated with the earlier model. Now, the
shock speed can be greater than c1 though it still needs to be less than c2. Figures
3.27a and 3.27c show the X − t diagram of two potential solutions for the initial
impact Riemann problem. This is a consequence of the compatibility relations and
the maximal dissipation kinetics. For low impact speeds, the maximal dissipation
kinetics ensures a two wave structure - a shock wave preceded by an elastic wave of
speed c1. Figure 3.27b shows this process in the corresponding stress-strain space.
This is similar to the cases dealt with earlier. For high impact speeds, due to the
difference in slopes of the stress-strain branches, a single shock wave is sufficient to
obtain a unique solution. Figures 3.27c and 3.27d show this solution in X − t plane
and σ − ε plane.

It can also be noticed that in this case, the shock is no longer preceded by an
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elastic wave. This may or may not hold as the shock travels through the material
and interacts with layer interfaces. Again, there will be two potential solutions
depending upon the stress states and the material contrast. For example, in the case
where εc decreases along the length, the shock strength will increase and the shock
will produce c2 waves of loading nature as it traverses into the material. The shock
will not be preceded by an elastic wave and it can interact with the free surface to
form a tensile shock. The Riemann problems there can again be solved by similar
methods.

Another important extension is assigning different ρ and c values for different
layers. This corresponds to the impedance difference between the layers in a typical
arrangement. Relaxing this assumption essentially removes the elastic homogeneity
assumption in the analysis. This leads to the addition of a Riemann problem of an
elastic wave scattering at a material interface. This introduces more elastic waves
into the system and more interactions of shock wave with scattered and reflected
elastic waves. Additionally, the σ1 parameter that corresponds to the σHEL can vary
with the layer. This adds a few Riemann problems such as an elastic wave in one
nonlinear layer potentially leading to a shock in another nonlinear layer.

3.8 Conclusions and discussions
In this chapter, the phenomenon of shock wave propagation through a heteroge-
neous medium is explored by studying a simplified problem of impact on a layered
medium. The propagation of shock waves through a homogeneous medium has
been extensively studied. Even though the interaction of a shock wave through
a single interface has been studied [23], open problems pertaining to the overall
effect remain in the case of a heterogeneous medium. In this chapter, the overall
effect of heterogeneity and scattering is explored through multiple interfaces. The
framework introduced by Knowles [44] is followed in the analysis presented. This
is complemented by showing the connection between the Knowles approach and
the conventional approach of specifying a linear relation between shock speed and
particle velocity.

The layered target is assumed to follow a piecewise affine stress strain curve. This
collapses the rarefaction wave fan observed in the Hugoniot into a single moving
discontinuity. This ensures that the states (σ, v, ε) are piecewise constant in the X−t

plane, and thereby ensures that only Riemann problems occur in the system. The
method classifies all possible Riemann problems in the system and analytic solutions
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are obtained for every class of problem. As a consequence, the task reduces to
following waves in the medium. In order to focus on the scattering of shock waves,
the layered target is assumed homogeneous to elastic waves. The algorithm uses
object oriented programming to track existing waves, look for possible interactions,
solve them and introduce new waves into the system. While there are other powerful
numerical methods to study shock wave propagation in one or higher dimensions,
the method presented in this chapter provides insight into each and every interaction.
Additionally, the method provides information into a broad range of phenomena.
The method is independent of spatial and temporal resolutions and reconstructs the
complete picture through exact solutions of individual interactions. As such, it can
be useful to benchmark different numerical studies.

The assumption of elastic homogeneity in the composite restricts the heterogeneous
nature to shock waves. This removes the scattering of elastic waves in the system.
This process can be reintroduced by changing the moduli of the layers, and corre-
spondingly adding more Riemann problems. The scattering of elastic waves will
add structure in the particle velocity profiles at the free end of the target, due to
internal reflections in the last layer. The assumption of same modulus for the two
branches of stress strain curve ensures only one type of elastic wave in the system.
While this simplifies the analysis, the piecewise linear curve can deviate from the
actual Hugoniot beyond a certain strain. The analysis can be extended to allow
different modulus for different branches by introducing more Riemann problems.
The shocked region is compressed and has higher modulus. This ensures that the
analysis remains valid for much larger strain values. This also allows the shock
speed to be greater than the elastic wave speed corresponding to the lower modulus
branch. This is also referred to as an overshocked condition. Similarly, other quan-
tities such as density and yield stress can be chosen differently for different layers
by introducing even more Riemann problems.

The idea of damage mitigation through shock attenuation is explored by studying
a layer arrangement corresponding to decreasing stiffness (or increasing compliant
strain εc). A simplified case of a semi-infinite medium is studied in Section 3.4
where reflections of elastic waves are ignored to focus on the shock wave scattering.
Interestingly, it is observed that the shock speed in the N th layer depends on the
material properties of the first and the N th layer. The effective shock speed (studied
as the arrival time T of the shock), being the harmonic mean of shock speeds in
individual layers, depends on the layer arrangement. The assumption of linear
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profile and equal layer thickness for the semi-infinite case makes the arrival time T

independent of the layer arrangement and εc profiles (Figure 3.19). This is not true
for general cases.

The case of finite medium allows for reflections of elastic waves at the free edges of
the target and the flyer. In order to focus on the effect of reflected waves from the free
surface of the target, the reflections from the flyer free edge are ignored by taking a
long flyer. The reflected waves are of unloading nature, and slow down the shock
upon interaction. Although individual interactions of reflected waves off the free
edge of the target cause nominal changes in the shock speed, repeated interactions
can significantly influence the overall shock propagation (Figure 3.21a and 3.21b).
Different layer arrangements are also explored and their consequence on the particle
velocity profiles are studied. Keeping the overall target length, impact speed and
impactor length the same, it is observed that the profiles can vary depending upon
the heterogeneity of the material.

The release waves (reflected waves from the free edge of the flyer) have significant
influence over the material behavior (Figures 3.25a and 3.25b) . These waves are
of unloading nature and travel through the flyer, enter the target and interact with
the shock. The target layer arrangement plays a crucial role in this analysis. As
the shock propagates into the target, it interacts with the material interfaces and
produces scattered elastic waves which travel backwards into the target. Depending
upon the layer arrangement, the scattered waves can be of unloading nature (Section
3.3) and can increase the unloading nature of release waves upon interaction. This
can lead to the possibility of spallation if the contrast between the layers is large and
sudden, as explained in Section 3.6. As such, the design for shock attenuation, which
involves progressively decreasing layer stiffness, may lead to spall fracture if the
property gradient is large (Figure 3.25a). The overall dissipation is also monitored
in the material. The overall dissipation is higher in a material if the effective shock
speed is larger. This is a direct consequence of the maximal dissipation kinetics
used in the analysis. Further, the dissipation increases with increase in the number
of interfaces and hence, increased scattering.

An important observation to note is the lack of any structure in the shock in the
analysis. The particle profiles presented in this chapter consistently show a series
of elastic precursors (corresponding to the reflected waves off the target free edge)
followed by a sharp spike corresponding to the reflection off the shock wave from
near the free edge. This is consistent with the recent observations made by Rauls
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[65]. It should be noted that if the piecewise affine stress strain curve is replaced by
a Hugoniot, the rarefaction wave fan would result in the formation of a structured
particle velocity profile. The complex interaction between a forward moving shock
and a backward moving rarefaction wave would lead to a formation of a structured
particle velocity profile at the free edge of the target. In case of periodically layered
materials, the analysis presented in this chapter shows oscillations in the particle
velocity profiles, which is consistent with the experimental observations made by
Zhuang [89] and the numerical studies by Chen [18].
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C h a p t e r 4

PULSED POWER GENERATION IN FERROELECTRIC
MEDIUM

[1] Vinamra Agrawal and Kaushik Bhattacharya. “Impact induced depolariza-
tion and electro-thermomechanical coupling of ferroelectric materials”. In:
(2016). (To be submitted).

In this chapter, the nonlinear electro-thermomechanical coupling of a ferroelectric
material is explored. The application in consideration is a pulsed power generator
which uses a ferroelectricmaterial under shock loading to generate a large current (or
voltage) pulse for a short duration of time. The electro-thermomechanical coupling
of the material plays a central role in causing a mechanically induced electrical
phase transition in the material leading to a sudden discharge of bound polarization
in the material.

4.1 Ferroelectric materials and pulsed power generation
Ferroelectric materials are the electric analogs of magnets: they are spontaneously
electrically polarized. Thus ferroelectric materials develop a potential difference
across them when they are kept in an open-loop configuration. The amount of
polarization can change with applied electric field. Figure 4.1 shows a typical
ferroelectric polarization vs. electric field loop. Note that the polarization is non-
zero at zero electric field due to the spontaneous polarization. Note further that these
materials are bistable, i.e., there are at least two states of spontaneous polarization.

All ferroelectric materials undergo a phase transformation at the Curie temperature:
they are ferroelectric below this temperature, but become paraelecric or nonpolar
above this temperature. Some ferroceramic materials also display a ferroelectric-
antiferroelectric phase transformation. In the latter state, the material is polarized
at the microscopic scale, but the polarization alternates at this scale resulting in a
net-zero polarization at the macroscopic scale.

Ferroelectric materials are also a subclass of piezoelectric materials because they ex-
hibit a electromechanical coupling. This means that upon application of mechanical
loading, the material exhibits electrical output. Unlike conventional piezoelectric
materials, the focus for ferroelectric materials lies under large deformations where
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Figure 4.1: Characteristic curve of a ferroelectric material. At zero electric field,
the material exhibits a non-zero polarization (≈ 33 µC/cm2 in this case).

the electromechanical coupling is highly nonlinear. Additionally, these materials
also exhibit electrothermal coupling and hence are a subclass of pyroelectric mate-
rials. Due to the nonlinear electro-thermomechanical coupling, these materials can
undergo electrical phase transition upon application of mechanical loading. Figure
4.2b shows the variation of the characteristic curves (D − E loops) with applied
hydrostatic stress [78]. Here D is electric displacement in the material, typically
measured through charge. It can be seen that beyond a certain threshold stress, the
D − E loop closes. This corresponds to an FE-AFE phase transition in the material.

Ferroelectricity is found in a variety of materials. However, the commonly used fer-
roelectric materials like lead-zirconate-titanate (PZT) and barium-titanate (BaTiO3)
have a perovskite crystal structure. Ferroelectric materials have found a wide range
of applications including as sensors, actuators, capacitors, and optical modulators.
They are often used in their ceramic or polycrystalline form. While PZT most
commonly finds applications as actuators and transducers, BaTiO3 is commonly
used for capacitors and electro-optic modulators (see [22], [42] and [85]). Although
these materials exhibit strong nonlinearities under large loading, typical applications
restrict themselves to the linear range of the ferroelectric response. This is due to the
poor fatigue life of ferroelectric materials under phase transitions and the associated
large electromechanical loading. Focusing on the linear range also avoids hysteresis
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(a)

(b)

Figure 4.2: (a) Experimental setup for loading a PZT sample hydrostatically, and
measuring D − E loops. (b) Variation in the characteristic curve of a ferroelectric
material upon application of hydrostatic pressure (Figures from [78]).

losses and the cyclic degradation of thematerial. In the experiment shown in Figures
4.2a and 4.2b, the material is subjected to large, albeit slow, mechanical loading.
The closing of the loop is reflected in the electrical output, in the form of charge
output, in the external circuit.

Ferroelectric generators (FEGs) employ ferroelectric ceramics to generate large
pulses of electrical power for a short period of time [7]. The process of pulsed power
generation in an FEG involves loading a ferroelectric material with a shock loading
and inducing a phase transition in the material within a very short period. The
shock loading is typically achieved by a high velocity impact or a blast. Figures 4.3a
and 4.3b show the schematic of ferroelectric generators using plate impact and blast
as loading mechanisms. The plate impact method is typically used in experiments
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Figure 4.3: Schematic of ferroelectric generators providing shock loading to the
material through (a) plate impact and (b) blast loading

due to ease of setup, control of loading amplitude and loading pulse. Depending
upon the external circuit (or electrical boundary conditions), a large current (short
circuit) or a large voltage (open circuit) output can be obtained. Under shock
loading, a ferroceramic experiences high stress amplitudes and dynamic loading
conditions. The associated electrical response is a consequence of either FE-AFE
phase transitions or domain reorientation. The most commonly used ferroceramic
used for FEG applications is PZT 95/5 (the ratio of Zirconium and Titanium being
95:5) doped with 2% Niobium, commonly referred to as doped PZT 95/5. The
ferroelectric and antiferroelectric energy wells for a doped PZT 95/5 lie close to
each other at room temperature, thereby allowing easy phase transitions at relatively
low impact speeds. In the process of shock induced phase transitions, the material
loses its remnant polarization. As such these experiments are commonly referred to
as depolarization experiments.
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Investigations on the electromechanical coupling of ferroelectric materials, such as
PZT and BaTiO3, were first carried out by Berlincourt [14]. The nonlinear effects
due to domain reorientation in such materials were studied for high pressures.
Quantities like open circuit voltage, short circuit charge and mechanical strains
were measured under slow and rapid loading up to 400 MPa applied parallel or
perpendicular to the poled direction. It was observed that the open circuit and short
circuit response were significantly different. The charges developed on the electrode
surface in the open circuit configuration prevented further domain reorientation.
Plate impact experiments conducted by Halpin ([37], [38]) on short circuit axially
poled PZT samples, showed an increase in current output with an increase in impact
speeds. Three samples - normally sintered PZT 95/5, hot pressed PZT 95/5 and
PSZT 68/7 were tested with polarization dipoles aligned opposite to the direction
of the impinging shock. It was also observed that the pulse duration decreased
with increasing impact speeds. Additionally, beyond a certain threshold impact
speed, the current output declined. The effects of polarity in axially oriented PZT
65/35 samples were explored by Cutchen [21]. It was observed that the current
output became more sensitive to stress fluctuations when the sample was poled in
the direction opposite to the direction of shock propagation.

The dielectric breakdown of PZT 65/25 was explored by Lysne [52]. It was observed
that a stress of 1 GPa was sufficient to cause dielectric breakdown in the material.
Later, a model for dielectric breakdown was developed to explain experimental re-
sults [53]. In a separate experiment conducted on axially poled doped PZT 95/5 [54],
it was observed that the properties of the unshocked material influenced the electric
field ahead of the shock, which in turn affected the shock wave speed. The question
about contribution from domain reorientation and phase transition into electrical
output was addressed by Fritz [31]. It was observed that domain reorientation domi-
nates for lower stress amplitudes, while at higher stress magnitudes the contribution
is mainly through phase transition. Additionally, experiments conducted by Dick
and Vorthman [27] on normally poled and unpoled PZT 95/5 samples showed the
lack of dependence of point of phase transition and kinetics on the poling state of
the material. These experiments were conducted for the short circuit case and with
finite resistance in the extenal circuit.

Figure 4.4a shows the schematic of the experimental setup used by Furnish et al.
[34]. The target was an axially poled PZT 95/5 with short circuit electrical boundary
conditions. The impact speeds ranged from 65 m/s to 344 m/s corresponding to
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(b)

Figure 4.4: (a) Schematic of the experimental setup used by Furnish et al. [34].
(b) Charge profiles obtained through the external circuit. The numbers on top
of the individual profiles denote different experimental runs. Parameters for each
experimental run are available in [34].

stress amplitudes of 0.9 GPa to 4.6 GPa. A complete depolarization was observed at
65m/s impact speed. This corresponds to experiment number 2729 in Figure 4.4b.
At higher speeds, the current output declined - as evident from the decline in the
slopes of charge profiles. The reason for this decline was attributed to dielectric
breakdown. In many detailed studies by Setchell ([69], [70] and [71]), Hugoniot
profiles for unpoled doped PZT 95/5 were constructed. It was observed that the
Hugoniot curve was sensitive to phase transitions and showed variation at the point
of the phase transition. Further, onset of pore collapse of ferroceramic at higher
impact speeds, was also evident in the Hugoniot curve. Hugoniot profiles were
different for axially poled, normally poled and unpoled samples due to possible
domain reorientation.

In the process of shock induced depolarization, the ferroelectric material undergoes
large deformations in a highly dynamic environment. This requires accounting for
the intertial effects in the material. Further, the process is adiabatic due to the fact
that there is no time for heat exchange under shock loading. As such, the material
enters into the highly nonlinear regime of electro-thermomechanical coupling. De-
spite the highly dynamic (and adiabatic) environment, it can be assumed that the
electromagnetic processes happen at a faster time scale than the intertial processes.
Physically, it means that the wave speeds in the medium are much smaller than the
speed of light in the material. This is referred to as a quasi-static electromagnetic
approximation. An important consequence of large deformations and large electric
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Figure 4.5: Continuum representation of the problem. The material is subjected to
a generalized electromechanical loading in the deformed frame. A phase boundary
propagates causing FE-AFE phase transition.

fields in the system is that the Maxwell stress starts to play a role in the analysis.
Over the years, many studies have been undertaken to understand domain patterns
and switching behavior using the phase field approach on a continuum level ([5],
[6], [16], [39], [45], [48], [49], [60], [82], [86] and [87]) and using the atomistic
approach ([20], [57]).

Despite being widely used, the continuum approach comes with its own limitation.
The continuum phase field models are typically based on the work by Devonshire
([25], [24],[26]) and Toupin [77] where a ferroelectric material is modeled as an
insulator. In reality, these materials are semiconductors with wide band gaps ([59],
[68]). A continuum formulation for ferroelectric materials, as semiconductors, was
presented by Xiao [84]. The formulation introduced dopant density and volumetric
charge density to account for semiconducting behavior. In the next section, a large
deformation dynamic behavior analysis for ferroelectric materials is presented to
study the shock induced phase boundary propagation process.

4.2 Continuum formulation
Preliminaries
We consider a ferroelectric medium occupying a region Ω ⊂ R3 in the Lagrangian
frame as shown in Figure 4.5. The system is subjected to a deformation y : Ω→ R3

under the action of traction t bringing it in contact with electrodes Cv ⊂ R
3 and

Cq ⊂ R
3. The electrode Cv has a fixed potential φ̂ while the electrode Cq has a fixed

charge Q. The deformation gradient is F = ∇xy : Ω → M3×3 where Ma×b is the
space of all a × b matrices and ∇x denotes derivative with respect to the reference
variable x. Further, F is assumed invertible and it is assumed that J = det F > 0
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a.e in Ω. The polarization of the ferroelectric material per unit volume is given
by p : y(Ω) → R3 in deformed configuration. Since the deformation is assumed
invertible, we can define polarization in reference configuration by p0 : Ω → R3.
The two quantities are related as

p0(x) = J p(y(x)). (4.1)

Further, it is assumed that the conductor Cq is fixed in space while Cv deforms with
negligible elastic energy. In practice this assumption works because the electrodes
are usually very thin compared to the ferroelectric medium. A phase boundary
denoted by S0 in reference configuration (S in deformed configuration) propagates
in the ferroelectric with a normal velocity s0

n (sn in deformed configuration). The
deformation is continuous across the phase boundary, but the deformation gradient
and the polarization may suffer jumps across it. Further, the phase boundary may be
charged with a charge density σ, and also experiences a force f per unit deformed
area.

Electric field and Maxwell’s equations
We define the electric potential at any point by φ : y(Ω) → R3. Using Maxwell’s
equations, we can relate the polarization vector and the electric field.

∇y · (−ε0∇yφ + p χ(y(Ω, t)) = 0 in R3\(Cv ∩ Cq),

∇yφ = 0 on Cv ∪ Cq (4.2)

subject to ∫
∂Cq

∂φ

∂n̂
dSy = −

Q
ε0
,

φ = φ̂ on Cv,

φ→ 0 as |y| → ∞, (4.3)

where χ(B) is the standard characteristic function of a set B, n̂ denotes the normal to
the surface Cq and ε0 is the vacuum permittivity. Note that the Maxwell equations
used above correspond to an electrostatic system, ignoring any dynamics. This
is a consequence of the quasistatic electromagnetic assumption that removes any
electromagnetic waves from the analysis. Following [73], we reformulate the above
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system in a weaker form. φ ∈ H1(R3) satisfies

−

∫
R3

(−ε0∇yφ + p χ(y(Ω)) · ∇yψ dy =
∫
∂Cv∪∂Cq

σψ dSy +
∫

S
σψ dSy, (4.4)∫

∂Cq

σ dSy = Q, (4.5)

φ = φ̂ on Cv, (4.6)

for every ψ ∈ H1(R3), where σ : ∂Cv ∪ ∂Cq ∪ S → R is the surface charge density
on the interface defined as

σ = ~−ε0∇yφ + p χ(y(Ω))� · n̂. (4.7)

Comparing with the analysis in [84], notice that there is an additional term in (4.4).
This is the contribution from the surface charges forming on the phase boundary S.

We can similarly derive a weak form of the Maxwell equations for an arbitrary
sub-domain y(B), with B ⊂ Ω, for every function ψ ∈ H1 as follows:

0 =
∫
y(B)

ψ ∇y · (−ε0∇yφ + p) dy

=

∫
y(B)

[
∇y ·

(
ψ(−ε0∇yφ + p)

)
− ∇yψ · (ε0∇yφ + p)

]
dy

=

∫
∂y(B)

ψ(−ε0∇yφ + p) · n̂ dSy −
∫

S∩y(B)
~ψ(−ε0∇yφ + p)� · n̂ dSy

−

∫
y(B)
∇yψ · (−ε0∇yφ + p) dy.

(4.8)

Electrostatic jump conditions
The potential φ is continuous in R3, but the derivatives can be discontinuous. If an
interface separates B ⊂ y(Ω) into B− and B+, then across any such interface the
jump in electric displacement, D = −ε0∇yφ + p, is given by

~D� · n̂ = ~−ε0∇yφ + p� · n̂ = σ (4.9)

where σ is the surface charge density on the interface and n̂ is the normal of the
interface pointing from B− to B+. Here we use the notation ~a� = a+ − a− for
defining a jump in a across the interface. Continuity of φ across the interface gives
~∇yφ� · t̂ = 0 ∀ t̂ · n̂ = 0. From (4.9), we can get

~∇yφ� = −
1
ε0

(σ − ~p · n̂�) n̂. (4.10)
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Across any interface, the continuity equation for φ reduces to

~φ,t� + sn~∇yφ · n̂� = 0, (4.11)

where sn is the interface speed in the deformed configuration. In the case where the
interface is not moving in the reference configuration, the continuity of φ simplifies
to

~φ,t� + ~∇yφ� · v = 0. (4.12)

For future use, the Maxwell stress tensor TM is defined in terms of electric field
E = −∇yφ and electric displacement D as

TM = E ⊗ D −
ε0
2

E · EI. (4.13)

Across an interface, TM can develop discontinuities due to jumps in E and D. We
have,

~TM n̂� = ~(E ⊗ D −
ε0
2

E · EI)n̂�

= 〈E〉~D · n̂� + ~E�(〈D〉 · n̂) − ε0(〈E〉 · ~E�)n̂

= 〈E〉σ + ~E�(〈p〉 · n̂ + ε0〈E〉 · n̂) − ε0(〈E〉 · ~E�)n̂

=

(
E− +

~E�
2

)
σ + ε0~E�(〈E〉 · n̂) + ~E�(〈p · n̂〉)

− ε0(〈E〉 · (~E� · n̂)n̂)n̂

= E−σ +
1
ε0

(
σ

2
+ 〈p · n̂〉

)
(σ − ~p · n̂�)n̂. (4.14)

Here, we have used the identity ~ab� = ~a�〈b〉 + 〈a〉~b� in the second step, (4.9)
in the third step and (4.10) in the fourth step.

Conservation of linear momentum
In the deformed configuration, on an arbitrary subdomain with no discontinuity,
conservation of linear momentum can be writtern as

d
dt

∫
y(B)

ρẏ dy =
∫
∂y(B)

t dSy, (4.15)

where t = Sn̂ for some stress tensor to ensure conservation of angular momentum.
The conservation of momentum in reference configuration can be written as

d
dt

∫
B
ρ0ẏ dx =

∫
∂B

t0 dSx, (4.16)
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where t0 = S0n̂0 and the pullback S0 is the pullback of S defined as S0 = JSF−T .
Localizing (4.16) by applying the divergence theorem gives

ρ0ÿ = ∇x · S0 (4.17)

in the reference frame and ρ0ÿ = ∇y ·S in the deformed frame. In case of a subdomain
containing a part of the phase boundary, the integral form of conservation of linear
momentum in the deformed configuration can be written as

d
dt

∫
y(B)

ρẏ dy =
∫
∂y(B)

t dSy +
∫

S∩y(B)
f dSy, (4.18)

where f is the additional force introduced in the system to take care of any unac-
counted forces due to surface charges. In the reference frame, the conservation of
linear momentum can be written as

d
dt

∫
B
ρ0ẏ dy =

∫
∂B

t0 dSy +
∫

S0∩B
f0 dSx, (4.19)

where f0 is the pullback of f to the reference frame defined as follows:

n̂ dSy = JF−T n̂0 dSx

dSy =
(
n̂ · JF−T n̂0

)
dSx∫

S∩y(B)
f dSy =

∫
S0∩B

f
(
n̂ · JF−T n̂0

)
dSx =

∫
S0∩B

f0 dSx

⇒ f0 =
(
n̂ · JF−T n̂0

)
f. (4.20)

Localization of (4.19) leads to the following equations,

ρ0ÿ = ∇x · S0 (4.21)

,~ρ0ẏ�s0
n + ~S0n̂0� = f0, (4.22)

where s0
n is the normal speed of the phase boundary in the reference frame.

Conservation of energy
For any subdomain y(B) ⊂ y(Ω), the conservation of energy in its rate form can be
written as

dE
dt
= F +

dQ
dt
, (4.23)

where E is the total energy of the subdomain, F is the rate of work done and dQ
dt

is the rate of heat input to the subdomain. The total energy E of y(B) comprises
of four parts: energy stored within the ferroelectric medium, interfacial energy at
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the phase boundary surface due to surface charges, the energy from the electrostatic
field generated by various internal and external sources and the kinetic energy of
the system (see [73] for static case):

E =

∫
B

E0dx +
∫

S∩y(B)
WσdSy +

ε0
2

∫
y(B)
|∇yφ|

2dy +
∫

B

ρ0
2
|ẏ|2dx. (4.24)

Here, E0 is the stored energy density in the ferroelectric medium per unit reference
volume. Wσ is the interfacial energy density per unit deformed area of the phase
boundary surface. In this analysis, we will be dealing with sharp interfaces due to
shocks. The second term in (4.24) is the energy associated with the electric field
in y(B). The electric potential φ can be obtained by solving the Maxwell equations
(4.2) subject to boundary conditions (4.3).

The rate of work done F on y(B) is given by a combination of rate of work done
by external traction and the rate of work done by external fields on the boundary of
the subdomain. This can be written as

F =

∫
∂y(B)

t · v dSy −
∫
∂y(B)

φ
d
dt

(D · n̂) dSy −
∫
∂y(B)

φ (D · n̂) (v · n̂) dSy, (4.25)

where D = p − ε0∇yφ is used for compactness of notation. The second and
third terms in (4.25) correspond to electrostatic work done and additional electrical
work due to convection, respectively. Finally the rate of heat input is given by
a combination of volumetric heat generation and heat flux going out through the
boundary:

dQ
dt
=

∫
B

ṙ dx −
∫
∂y(B)

q · n̂ dSy

=

∫
B

ṙ dx −
∫

B
∇x · JF−1q dx +

∫
S0∩B
~JF−1q · n̂0� dSx . (4.26)

Rate of change of total energy

We are interested in calculating the rate of change of total energy,

dE
dt
=

d
dt

∫
B

E0dx +
d
dt

∫
S∩y(B)

Wσ (σ)dSy +
d
dt

∫
y(B)

ε0
2
|∇yφ|

2dy

+
d
dt

∫
B

ρ0
2
|ẏ|2dx. (4.27)
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Rate of change of stored energy
Looking at the first term in (4.27),

d
dt

∫
B

E0dx =
d
dt

[∫
B+

E0dx +
∫

B−
E0dx

]

=

∫
B

Ė0dx −
∫

S0∩B
~E0�s0

ndSx . (4.28)

The calculation of the rate of electrostatic energy in (4.27) is rather involved. The
steps are similar to [40] and [84] but with modifications and generalizations. The
calculation is split over four parts listed below.

Rate of change of electrostatic energy: Part 1
We start by the weak form of Maxwell equation (4.8) and set ψ = φ. Since ψ is
assumed continuous throughout, we can take out the jump term from (4.8). We use
D = −ε0∇yφ + p for notation, whenever needed. Re-arranging the terms, we get∫

y(B)
ε0∇yφ ·∇yφdy =

∫
y

∇yφ ·pdy+
∫

S∩y(B)
φσdSy−

∫
∂y(B)

φ(D · n̂) dSy . (4.29)

Differentiating with time, we get

d
dt

∫
y(B)

ε0∇yφ · ∇yφ dy =
d
dt

∫
y(B)
∇yφ · pdy +

d
dt

∫
S∩y(B)

φσdSy

−
d
dt

∫
∂y(B)

φ(D · n̂) dSy .

On the phase boundary S ∩ y(B), the time derivative is more involved (see [17]):

d
dt

∫
S
φσ dy =

∫
S

(
˚(φσ) − φσsnκ

)
dSy +

∫
∂S
φσ(v · w) dl,

where κ is the total curvature of S and w is the unit vector on the boundary of S,
tangential to the surface but normal to the curve ∂S ∩ y(B). For simplicity, we
ignore the term corresponding to ∂S. In other words, we are neglecting the line
charge on the boundary ∂(S ∩ y(B)). Also, å denotes the normal time derivative of
a on the surface S. This simplifies to

d
dt

∫
S
φσ dSy =

∫
S
φ̊σ dSy +

∫
S
φσ̊ dSy −

∫
S
φσsnκ dSy . (4.30)
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Finally, the time derivative of (4.29) can be written as

d
dt

[∫
y(B)

ε0 |∇φ|
2dy

]

=
d
dt

∫
y(B)
∇yφ · p dy +

∫
S∩y(B)

(φ̊σ + φσ̊ − φσsnκ) dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy

=
d
dt

∫
B
∇yφ · p0 dx +

∫
S∩y(B)

(φ̊σ + φσ̊ − φσsnκ) dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy

=

∫
B

(
d
dt

(∇yφ) · p0 + ∇yφ · ṗ0

)
dx −

∫
S0∩B
~(∇yφ) · p0�s0

n dSx

+

∫
S∩y(B)

(φ̊σ + φσ̊ − φσsnκ) dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy

=

∫
B

(∇yφ + v(∇y∇yφ)) · p0 dx +
∫

B
∇yφ · ṗ0 dx −

∫
S0∩B
~(∇yφ) · p0�s0

n dSx

+

∫
S∩y(B)

(φ̊σ + φσ̊ − φσsnκ) dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy .

(4.31)

Rate of change of electrostatic energy: Part 2
Next, we put ψ = φ,t in the weak form of Maxwell equation (4.8). This time, since
φ,t can be discontinuous across the phase boundary, we can not take it out of the
jump term:∫
y(B)

ε0∇yφ·∇yφ,t dy =
∫

B
∇yφ,t ·p0 dx−

∫
∂y(B)

φ,tD·n̂ dSy+
∫

S∩y(B)
~φ,t D·n̂� dSy .

(4.32)
Rate of change of electrostatic energy: Part 3
We use the Reynolds’ transport theorem to get

d
dt

[∫
y(B)

ε0
2
|∇yφ|

2dy
]

=

∫
y(B)

∂

∂t

(
ε0
2
|∇yφ|

2
)

dy +
∫
∂y(B)

ε0
2
|∇yφ|

2v · n̂ dSy

−

∫
S∩y(B)

�ε0
2
|∇yφ|

2
�

sn dSy

=

∫
y(B)

ε0∇yφ · ∇yφ,t dy +
∫
∂y(B)

ε0
2
|∇yφ|

2v · n̂ dSy −
∫

S∩y(B)

�ε0
2
|∇yφ|

2
�

sn dSy .

(4.33)
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Plugging (4.32) in (4.33) gives us

d
dt

[
1
2

∫
y(B)

ε0 |∇yφ|
2dy

]
=

∫
B
∇yφ,t · p0 dx −

∫
∂y(B)

φ,t (−ε0∇yφ + p) · n̂ dSy

+

∫
S∩y(B)

~φ,t D · n̂� dSy +
∫
∂y(B)

ε0
2
|∇yφ|

2v · n̂ dSy

−

∫
S∩y(B)

�ε0
2
|∇yφ|

2
�

sn dSy . (4.34)

We simplify the terms in (4.34) associated with S ∩ y(B) by using the continuity
equation (4.11) across S ∩ y(B). Across the surface S ∩ y(B), ~∇yφ� = −

1
ε0

(σ −
~p · n̂�)n̂ and ~φ,t� = 1

ε0
(σ − ~p · n̂�)sn:∫

S∩y(B)
~φ,t ( − ε∇yφ + p)� · n̂ dSy −

∫
S∩y(B)

�ε0
2
|∇yφ|

2
�

sn dSy

=

∫
S∩y(B)

〈φ,t〉~D� · n̂ dSy +
∫

S∩y(B)
~φ,t�〈D〉 · n̂ dSy

−

∫
S∩y(B)

ε0(〈∇yφ〉 · ~∇yφ�)sn dSy

=

∫
S∩y(B)

〈φ,t〉σ dSy +
∫

S∩y(B)
~φ,t�〈−ε0∇yφ + p〉 · n̂ dSy

−

∫
S∩y(B)

ε0(〈∇yφ〉 · ~∇yφ�)sn dSy .

Across S ∩ y(B), 〈φ,t〉 = φ̊ − 〈∇yφ · n̂〉sn. Putting this and the jump terms into the
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above equation, we obtain

=

∫
S∩y(B)

(φ̊ − 〈∇yφ · n̂〉sn)σ dSy +
∫

S∩y(B)

1
ε0

(σ − ~p · n̂�) sn〈D〉 · n̂ dSy

+

∫
S∩y(B)

ε0

(
〈∇yφ〉 ·

1
ε0

(σ − ~p · n̂�) n̂
)

sn dSy

=

∫
S∩y(B)

(φ̊ − 〈∇yφ · n̂〉sn)σ dSy +
∫

S∩y(B)

1
ε0

(σ − ~p · n̂�) sn〈D〉 · n̂ dSy

+

∫
S∩y(B)

〈∇yφ · n̂〉 (σ − ~p · n̂�) sn dSy

=

∫
S∩y(B)

(φ̊ − 〈∇yφ · n̂〉sn)σ dSy +
∫

S∩y(B)

1
ε0

(σ − ~p · n̂�) sn〈p · n̂〉 dSy

=

∫
S∩y(B)

(φ̊ −
(
∇yφ

− +
1
2
~∇yφ�

)
· n̂ sn)σ dSy

+

∫
S∩y(B)

1
ε0

(σ − ~p · n̂�) sn〈p · n̂〉 dSy

=

∫
S∩y(B)

[
snσ

(
−∇yφ

− · n̂
)
+

sn

ε0
(σ − ~p · n̂�)

(
σ

2
+ 〈p · n̂〉

)]
dSy

+

∫
S∩y(B)

φ̊σ dSy .

Using (4.14), this analysis gives us∫
S∩y(B)

[
~φ,t (D · n̂)� −

�ε0
2
|∇yφ|

2
�

sn

]
dSy

=

∫
S∩y(B)

φ̊σ dSy +
∫

S∩y(B)
~n̂ · TM n̂�sn dSy, (4.35)

where ~n̂ · TM n̂� = σ(−∇yφ
− · n̂) + 1

ε0
(σ2 + 〈p · n̂〉)(σ − ~p · n̂�). Next, we deal

with the ∂y(B) terms in (4.34). We write φ,t = φ̇ − ∇yφ · v, and use the definition
of Maxwell stress (4.13) such that,∫
∂y(B)

φ,t (D · n̂) −
ε0
2
|∇yφ|

2v · n̂ dSy =
∫
∂y(B)

dφ
dt

D · n̂ dSy +
∫
∂y(B)

TM n̂ · v dSy .

(4.36)

Plugging (4.35) and (4.36) in (4.34), we get

d
dt

[
1
2

∫
y(B)

ε0 |∇yφ|
2dy

]
=

∫
B
∇yφ,t · p0 dx −

∫
∂y(B)

dφ
dt

D · n̂ dSy

+

∫
S∩y(B)

φ̊σ dSy −
∫
∂y(B)

TM n̂ · v dSy

+

∫
S∩y(B)

~n̂ · TM n̂�sn dSy . (4.37)
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Rate of change of electrostatic energy: Part 4
Finally we subtract (4.37) from (4.31) to get the final expression:

d
dt

∫
y(B)

ε0
2
|∇yφ|

2 dy =
∫
y(B)

(∇y∇yφ)v · p dy +
∫

B
∇yφ · ṗ0 dx

−

∫
S0∩B
~∇yφ · p�s0

n dSx +

∫
∂y(B)

TM n̂ · v dSy

+

∫
∂y(B)

dφ
dt

D · n̂ dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy

−

∫
S∩y(B)

~n̂ · TM n̂�sn dSy +
∫

S∩y(B)
(φσ̊ − κσφsn) dSy .

(4.38)

Rate of change of kinetic energy
Using the typical Reynolds’ transport theorem, we obtain

d
dt

∫
B

ρ0
2
|ẏ|2dx =

∫
B
ρ0ÿ · ẏ dx −

∫
S0∩B

� ρ0
2

ẏ · ẏ
�

s0
n dSx

=

∫
y(B)

ρÿ · ẏ dy −
∫

S0∩B

� ρ0
2

ẏ · ẏ
�

s0
n dSx . (4.39)

Rate of change of interfacial energy
The rate of change of the interfacial energy can be written as (following [17])

d
dt

∫
S∩y(B)

WσdSy =
∫

S∩y(B)
(W̊σ −Wσsnκ)dSy . (4.40)

Here we have ignored the line charges on ∂(S∩ y(B)) so that we do not have to deal
with the contribution from the ∂S curve.

First law of thermodynamics

Finally putting all the expressions together, (4.23) becomes∫
B

[
Ė0 + ∇yφ · ṗ0 − ṙ + ∇x · JF−1q

]
dx +

∫
y(B)

[(
∇y∇yφ

)
v · p + ρÿ · v

]
dy

+

∫
∂y(B)

[TM n̂ · v − t · v] dSy

+

∫
S0∩B

[
−~E0 + ∇yφ · p0�s0

n −
� ρ0

2
ẏ · ẏ
�

s0
n − ~JF−1q · n̂0�

]
dSx

+

∫
S∩y(B)

[
−~n̂ · TM n̂�sn − (Wσ + σφ)κsn − f · ẙ +

(
W̊σ + φσ̊

)]
dSy

+

∫
∂y(B)

[
dφ
dt

D · n̂ + φ
d
dt

(D · n̂) + φ(D · n̂)(v · n̂)
]

dSy −
d
dt

∫
∂y(B)

φD · n̂ dSy

= 0. (4.41)
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Next, we do a few rearragements and simplifications to some terms in (4.41). Note
that, (∇y∇yφ)v · p = (∇y∇yφ)p · v because φ,i j = φ, ji. Looking at (∇y∇yφ)p,

−(∇y∇yφ)p = −φ,i j p j

= −φ,i j (D j + ε0φ, j )

= −(φ,i D j ), j −
(
ε0
2
φ,kφ,kδi j

)
, j

= (Ei D j ), j −
(
ε0
2

Ek Ekδi j

)
, j

= ∇y ·

(
E ⊗ D −

ε0
2

E · EI
)

= ∇y · TM, (4.42)

where the electrostatic Maxwell equation ∇y · D = 0 is used in the third step.
This means that (∇y∇yφ)v · p = −

(
∇y · TM

)
· v. The next step is to simplify

−
∫
y(B)

(
∇y · TM

)
· v dy as

−

∫
y(B)

(
∇y · TM

)
· v dy =

∫
y(B)

[
−∇y ·

(
vTTM

)
+ TM · ∇yv

]
dy

=

∫
y(B)
−

(
T M

i j vi
)
, j
+ T M

i j vi, j dy

= −

∫
∂y(B)

T M
i j vin j dSy +

∫
S∩y(B)

~T M
i j vi�n j dSy

+

∫
y(B)

T M
i j vi, j dy,

(4.43)

where T M
i j denotes the components of the Maxwell stress tensor TM . Rearranging

and pulling back the last two terms to the reference configuration gives

−

∫
y(B)

(
∇y · TM

)
· v dy +

∫
∂y(B)

TM n̂ · v dSy

=

∫
S0∩B

�
JTMF−T n̂0 · v

�
dSx +

∫
B

JTMF−T · Ḟ dx

=

∫
S0∩B

�
T0

M n̂0 · v
�

dSx +

∫
B

T0
M · Ḟ dx, (4.44)
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where T0
M = JTMF−T is the pullback of the Maxwell stress tensor into the reference

frame. Next, we focus on the traction term as follows:∫
∂y(B)

t · v dSy =
∫
∂y(B)

Sn̂ · v dSy =
∫
∂B

JSF−T n̂0 · v dSx =

∫
∂B
S0n̂0 · v dSx

=

∫
B
∇x · (S0v) dx +

∫
S0∩B
~S0n̂0 · v� dSx

=

∫
B

[
(∇x · S0) · v + S0 · Ḟ

]
dx +

∫
S0∩B
~S0n̂0 · v� dSx . (4.45)

We use the following equality (see [40]) to manipulate the terms associated with sn

in (4.41), ∫
S
gsn dSy =

∫
S
g v± · n̂ dSy +

∫
S0

g J±s0
n dSx ,∫

S
~g�sn dSy =

∫
S
~gv · n̂� dSy +

∫
S0

~g J�s0
n dSx .

Starting with the term associated with Maxwell stress and sn in (4.41),∫
S∩y(B)

~n̂ · TM n̂�sn dSy =
∫

S∩y(B)
~v · TM n̂� dSy +

∫
S0∩B
~(n̂ · TM n̂)J�s0

n dSx

=

∫
S∩y(B)

~v · T0
M n̂0� dSy +

∫
S0∩B
~(n̂ · TM n̂)J�s0

n dSx .

(4.46)

Looking at κ term associated with sn in (4.41)∫
S∩y(B)

(Wσ + φσ)κsn dSy

=

∫
S∩y(B)

v± · (Wσ + φσ)κn̂ dSy +
∫

S0∩B
(Wσ + φσ)κs0

n J± dSx

=

∫
S∩y(B)

〈v〉 · (Wσ + φσ)κn̂ dSy +
∫

S0∩B
(Wσ + φσ)κs0

n〈J〉 dSx . (4.47)

Finally, looking at the term corresponding to the jump in kinetic energy,∫
S0∩B

� ρ0
2

ẏ · ẏ
�

s0
n dSx =

∫
S0∩B

s0
n~ρ0ẏ� · 〈v〉 dSx

=

∫
S0∩B

(−~S0n̂0� + f0) · 〈v〉 dSx . (4.48)
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The last two terms in (4.41) cancel out. Finally, putting (4.44), (4.45), (4.46), (4.47)
and (4.48) in (4.41),∫

B

[
Ė0 + ∇yφ · ṗ0 − ṙ + ∇x · q0 − (S0 − T0

M ) · Ḟ + (ρ0ÿ − ∇x · S0) · v
]

dx

+

∫
S0∩B

(
−~E0 + ∇yφ · ṗ0 + (n̂ · TM n̂)J − 〈S0n̂0〉 · (Fn̂0)�

)
s0

n dSx

−

∫
S0∩B

[
(Wσ + φσ)κs0

n − ~q0 · n̂0�
]

dSx

+

∫
S∩y(B)

(
W̊σ + φσ̊

)
dSy

−

∫
S∩y(B)

(
f − (Wσ + φσ)κn̂

)
· 〈v〉 dSy

= 0, (4.49)

where q0 = JF−1q is introduced and f0 is pushed forward to the deformed con-
figuration using (4.20). Using the conservation of momentum equation (4.21), the
coefficient of v in the first term of (4.49) vanishes. Applying arbitrariness of domains
arguments, the equation can be localized to

Ė0 + ∇yφ · ṗ0 − ṙ + ∇x · q0 − (S0 − T0
M ) · Ḟ = 0 , (4.50)(

−~E0 + ∇yφ · ṗ0 + (n̂ · TM n̂)J − 〈S0n̂0〉 · (Fn̂0)� − (Wσ + φσ)κ
)

s0
n

− ~q0 · n̂0� = 0 ,
(4.51)(

W̊σ + φσ̊
)
= 0 , and (4.52)(

f − (Wσ + φσ)κn̂
)
· 〈v〉 = 0. (4.53)

Coleman-Noll arguments can be applied to (4.53) to give,

f − (Wσ + φσ)κn̂ = 0. (4.54)

The force f is an extra self-force that appears because the phase boundary need not
be straight. For a flat phase boundary with surface charge, the force acting on the
phase boundary is given by 〈E〉σ, which is accounted for in the ~TM� as given by
the third step of (4.14). The absence of curvature also means f = 0.
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Second law of thermodynamics

The second law of thermodynamics on the arbitrary volume can be used to get

d
dt

∫
B
η0 dx ≥

∫
B

ṙ
θ

dx −
∫
∂B

q0 · n̂0

θ
dSx,∫

B
η̇0 dx −

∫
S0∩B
~η0� s0

n dSx ≥

∫
B

ṙ
θ

dx −
∫

B
∇x ·

(q0
θ

)
dx

+

∫
S0∩B

�q0 · n̂0

θ

�
dSx,

∫
B

(
η̇0 −

ṙ
θ
+ ∇x ·

(q0
θ

))
dx +

∫
S0∩B

(
−~η0�s0

n −
�q0 · n̂0

θ

�)
dSx ≥ 0.

Using arbitrariness of domain argument, the equations can be localized to get

η̇0 −
ṙ
θ
+ ∇x ·

(q0
θ

)
≥ 0, (4.55)

−~η0�s0
n −
�q0 · n̂0

θ

�
≥ 0. (4.56)

Since the material experiences adiabatic environment under shock conditions, heat
generation and conduction can be ignored, i.e., ṙ = q = 0. Next, the Helmholtz
energy of the material is introduced using the following,

H0 = E0 + θη0. (4.57)

Plugging (4.57) in (4.50) using (4.55) gives,

Ḣ0 + ∇yφ · ṗ0 + ηθ̇ − (S0 − T0
M ) · Ḟ ≥ 0. (4.58)

Constitutive Equations

Following (4.52) and (4.58), the interfacial energy Wσ and Helmholtz energy H0

can be expressed as Wσ = Wσ (σ) and H0 = H0(F, p0, θ). Using Coleman-Noll
arguments, the following equations can be recovered:

∂H0
∂p0
+ F−T∇xφ = 0 in B, (4.59)

∂H0
∂θ
+ η0 = 0 in B, (4.60)

∂H0
∂F
− (S0 − T0

M ) = 0 in B, and (4.61)

dWσ

dσ
+ φ = 0 on S. (4.62)
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Using the above equation, a stress tensor

T0 = S0 − T0
M =

∂H0
∂F

(4.63)

can be introduced in the reference configuration. The equations (4.59), (4.60) and
(4.61) establish a relation between conjugate quantities p and E, η and θ; and F and
T0 through Helmholtz energy. Next, plugging (4.57) in (4.51) using (4.56) gives

d s0
n ≥ 0, (4.64)

where d is the driving force acting on the phase boundary given by

d = ~H0+ 〈η〉θ+∇yφ ·p0−Fn̂0 · 〈S0n̂0〉+ (n̂ · TM n̂) J�+ (Wσ +φσ)κ〈J〉. (4.65)

The expression for driving force (4.65) contains terms corresponding to the electro-
thermomechanical coupling of the material. In a purely mechanical case, the driving
force contains far fewer terms. The third term in the driving force is a product of
conjugate variables: polarization and electric field E = −∇yφ. This term reduces
the total driving force, hence resisting the motion of the phase boundary. The
fourth term is the electromechanical equivalent of the purely mechanical case where
the total stress is now replaced by S0 = T0 + T0

M . The fifth term corresponds to
the volumetric deformation caused by the Maxwell stress. The final term is the
contribution from the surface charges present on the curved phase boundary. For a
straight phase boundary with no curvature κ, this term goes away. The expression
(4.65) is consistent with one derived by James [40] in magnetism under isothermal
environment.

With the expression for the driving force d derived, the analysis can nowbe continued
by choosing a kinetic relation between d and s0

n. Kinetic relations [1] govern the
motion of the phase boundary in an energetically favorable direction. As explained
in Chapter 2, shock wave problems are supplemented by Hugoniot relations and Lax
entropy criteria to obtain a unique solution. However, in the case of ferroelectric
materials, involving electro-thermomechanical coupling, it is difficult to describe
a Hugoniot. Kinetic relation can be interpreted as the thermodynamic equivalent
of specifying a linear law and the Lax entropy criteria to obtain a unique solution.
Further, kinetic relations capture the entire electro-thermomechanical coupling of
the material and hence are physically more relevant to the analysis.

4.3 Simplified one-dimensional analysis
As a first step towards the full fledged material model, a simple uncoupled one-
dimensional analysis is performed in this section. The electrical, thermal and
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mechanical components are completely separated and a simple analysis is performed
to understand the behavior of current generation. A one dimensional material of
length L is chosenwith a phase boundary traveling at some speedV in the Lagrangian
frame. In this analysis, the motion of the phase boundary is not the focus. Rather,
a constant speed is V is enforced to understand direct relation between the phase
boundary motion and current output. At a given instant, the location of the phase
boundary is marked as x = s. The electrical energy of the material is modeled as

H1D
p =




αp

2 p2
0 in anti-ferroelectric phase

αp

2 (p0 − p1)2 in ferroelectric phase.
(4.66)

where p1 is the spontaneous polarization associated with the ferroelectric phase and
αp is related to the relative permittivity of the material. Following 4.59, the electric
field can be expressed as

E1D
p =




αpp0 in anti-ferroelectric phase

αp(p0 − p1) in ferroelectric phase.
(4.67)

To the left of the phase boundary, the material is in anti-ferroelectric phase, and
to the right of the phase boundary the material is in ferroelectric phase. The
quantities like polarization, electric field and electric displacement in the anti-
ferroelectric phase are represented as pL, E1D

L and D1D
L respectively. Similarly,

for the ferroelectric phase, these quantities are represented with pR, E1D
R and D1D

R

respectively. Following (4.67) and (4.9),

pL = E1D
L /αp,

D1D
L = pL + ε0E1D

L = E1D
L /αp + ε0E1D

L =

(
ε0 +

1
αp

)
E1D

L = εE1D
L ,

for the anti-ferroelectric phase where ε = (ε0 + 1/αp) is the relative permittivity of
the material. Similarly for the ferroelectric material,

pR = p1 + E1D
R /αp,

D1D
R = pR + ε0E1D

R = p1 + E1D
R /αp + ε0E1D

R = p1 +

(
ε0 +

1
αp

)
E1D

R = p1 + εE1D
R .

Since the electric displacement should be continuous across the phase boundary,

D1D
L = D1D

R ⇒ εE1D
L = p1 + εE1D

R ⇒ E1D
L =

p1
ε

E1D
R . (4.68)
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The current I1D flowing through the external circuit R can be expressed as

I1D = −
dD1D

R

dt
= −ε

dE1D
R

dt
= −εV

dE1D
R

ds
. (4.69)

The potential across the external resistance can be expressed in terms of electric
field as follows,

V 1D = sE1D
L + (L − s)E1D

R . (4.70)

Using Ohm’s Law V 1D = I1D R and using (4.68) and (4.69),

s
p1
E
+ sE1D

R + (L − s)E1D
R = −εV R

dE1D
R

ds
,

εV R
dE1D

R

ds
+ s

p1
E
+ E1D

R L = 0. (4.71)

Solving the above differential equation for E1D
R gives

E1D
R =

p1V R
L2 −

p1
Lε

s + c′ exp
(
−

L
εV R

s
)
, (4.72)

where the constant c′ can be determined by the initial condition E1D
R (s = 0) = 0

because V 1d (s = 0) = 0. Finally, using (4.69) this leads to

E1D
R = −

p1s
Lε
+

p1V R
L2

(
1 − exp

(
−

L
εV R

s
))

⇒ I1D (s) =
p1V

L

(
1 − exp

(
−

L
εV R

s
))
. (4.73)

The expression (4.73) shows that the current follows an exponential profile achieving
a steady value for large s. Since the maximum value of s can only be L, the highest
current can be achieved only when the entire material has depolarized. The current
also increases with increasing p1 and decreasing sample length L. Finally, increase
in the speed of the phase boundary increases the current magnitude and decreases
the rise time.

4.4 Shock wave propagation in ferroelectric materials
In Section 4.2, governing equations for large deformation, dynamic behavior of
ferroelectric material under generalized electromechanical loading were derived.
In this section, these equations will be used to study a canonical uniaxial plate
impact problem in the field. Following the analysis in Section 4.3, complete electro-
thermomechanical coupling is studied in this section.
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Figure 4.6: Schematic of the canonical uniaxial impact problem. A phase boundary
propagates in a one dimensional system after being impacted by a flyer. The two
ends of the ferroelectric material are connected through a resistor R. Current flowing
through R is tracked.

Problem description
Figure 4.6 shows the schematic of the plate impact problem under consideration.
The geometry of the problem ensures that the problem is uniaxial. A thermoelastic
flyer of length L f traveling at speed vimp hits a ferroelectric target of length L. The
moment of impact is set as time t = 0, while the point of impact is set at x = 0 in
the Lagrangian frame. A phase boundary x = s propagates into the material upon
impact. It is assumed that thin electrodes are placed at x = 0, L. The electrodes
are connected via a resistance R, and the current I flowing through it is tracked. To
further simplify the analysis, small strain conditions are assumed which simplify
the jump equations to

~t� + ṡ~ρv� = 0,

~v� + ṡ~ε� = 0,

~p − ε0φ,x� = σ,

where t, ṡ, ρ, v, ε, p, φ andσ denote the overall traction, speed of the phase boundary,
density of the material, particle speed, strain, polarization, Maxwell potential and
surface charge density on the phase boundary respectively. For simplicity of this
analysis, the surface charge density is ignored. It should be noted that the governing
equations account for the surface charges, and it can be solved for by making an
appropriate choice of the constitutive law for Wσ. The model for the flyer and the
ferroelectric material is explained in the next section. As explained earlier, a kinetic
relation between the driving force d and the speed of the phase boundary is needed
to obtain a unique solution. Conventionally, this is expressed as

ṡ = f (d). (4.74)

Material model description
In this section, the material models for the flyer and the target will be described.
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Ferroelectric material

The Helmholtz energy of the ferroelectric material is chosen as follows:

H0(ε, p0, θ) = Hp(p0) + Hε (ε, θ). (4.75)

In other words, the Helmholtz energy is assumed to be a combination of two terms:
one purely dependent on polarization and the other a combined function of strain and
temperature. Typically, for a ferroelectric material undergoing FE-AFE transition,
strain is considered to be the primary order parameter [30]. As such, Hε is taken to
be a double welled potential in strain with energy wells changing with temperature.
Hp is also taken to be a double welled potential with spontaneous polarization
appearing in the ferroelectric phase. Further, ordinary electrostriction is ignored
because it is an order of magnitude smaller. The shock loading is inducing a phase
transition, and as such AFE phase is referred to as shocked phase while FE phase is
the unshocked phase.

Hp(p0) =



αp

2 p2
0 in shocked phase

α′p
2 (p0 − p1)2 in unshocked phase,

and (4.76)

Hε (ε, θ) =




E
2 ε

2 − αEε(θ − θT ) − c1θ log (θ/θT ) in unshocked phase

E′

2
(
(ε − εT )2 + εT M (θ − θT )

)
− αE′ε(θ − θT ) − c1θ log (θ/θT ) in shocked phase,

(4.77)

where p1 refers to the spontaneous polarization in the ferroelectric phase. E, E′,
α, θT , c1 and εT denote elastic modulus in unshocked phase, elastic modulus in
the shocked phase, coefficient of thermal expansion, transformation temperature,
specific heat capacity and transformation strain, respectively. Further, M is a
material constant that relates the latent heat of the material (∆Hε in the Figure 4.7a).
Following (4.63), the Cauchy stress can be defined as

σc =




E (ε − α(θ − θT )) in unshocked phase

E′ (ε − εT − α(θ − θT )) in shocked phase.
(4.78)

The schematic of Hε landscape and the Cauchy stress is represented in Figures
4.7a and 4.7b. As temperature changes the energy minima ε1(θ) and ε2(θ) change,
keeping the transformation strain, εT , constant. Further, the difference in energy
levels ∆Hε changes as the temperature changes, making one phase more stable than
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(a)

(b)

Figure 4.7: (a) Hε energy landscape of the ferroelectric material. The energy wells
change based on temperature, but εT is unchanged. (b) Schematic of Cauchy stress
σc profile for the ferroelectric material.
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the other beyond certain threshold. Following (4.59), the electrical field can be
expressed as

Ep =




αp(p0 − p1) in unshocked phase

αpp0 in shocked phase.
(4.79)

Similarly, entropy can be expressed as

η0 =



αEε + c1
(
1 + log (θ/θT )

)
in unshocked phase

αE′ε + c1
(
1 + log (θ/θT )

)
− E′εT M in shocked phase.

(4.80)

Impactor material

Amaterial model for the flyer can be chosen along the lines of (4.77). The impactor
is assumed to be purely thermoelastic, not capable of phase transitions. As such,
only one energy well is needed to describe the material.

H f
0 =

E f

2
ε2 − α f E f ε(θ − θT f ) − c1 f θ log(θ/θT f ), (4.81)

where E f , α f , θT f and c1 f represent elastic modulus, coefficient of thermal expan-
sion, reference temperature for thermal expansion and specific heat capacity of the
flyer.

Numerical method
In this section, the numerical method for solving the impact problem is presented.
The method follows the ideas introduced by Zhong [88] and implemented by Purohit
[64]. Due to the electro-thermomechanical coupling and the nonlinear nature of the
problem, slight variations were made to the Gudonov scheme. The main idea is to
track the moving phase boundary throughout the medium, and capture the elastic
waves and other minor waves.

Mesh creation/discretization

For convenience, the calculations are performed in the reference configuration.
Initially, the flyer and the target are descretized into N f and N intervals, respectively,
of equal lengths. This makes the intervals in the flyer and the target of lengths h f

and h, respectively. The technique involves capturing elastic waves by averaging
states within every interval. This introduces some errors into the technique in the
form of numerical dissipation. In order to prevent numerical instabilities due to
averaging, care must be taken to avoid averaging across the two phases of the phase
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boundary [88]. As such, a nodal point should always be present at the points of
large discontinuities such as the phase boundary and material interfaces. Since the
phase boundary keeps moving, the mesh needs to be updated after every time step
to ensure that a nodal point lies on it.

Non-dimensionalization

Analyzing the expressions for the Helmholtz energy for ferroelectric and flyer ma-
terial, it is possible to define following characteristic wave speeds

c =

√
E
ρ
, c′ =

√
E′

ρ
, c f =

√
E f

ρ f
, (4.82)

for the ferroelectric material in unshocked phase, the ferroelectric material in
shocked phase and the flyer, respectively. Here ρ and ρ f denote the density of
the target and the flyer in the reference frame. The characteristic speeds can be used
to introduce the following non-dimensional quantities,

x̃ =
x
L
, t̃ =

tc
L
, ṽ =

v

c
, p̃0 =

p0
p1
, θ̃ =

θ

θT
, c̃′ =

c′

c
, c̃ f =

c f

c
, ρ̃ f =

ρ f

ρ
.

For notational purposes, the non-dimensional quantities are denoted by a tilde
accent. Using the above non-dimensional quantities, it is possible to further non-
dimensionalize energies as follows

H̃0 =
H0
E
=




1
2ε

2 − α̃ε(θ̃ − 1) − c̃1θ̃ log θ̃ + α̃′p
2 (p̃0 − 1)2 in unshocked phase

1
2

Ẽ′
(
(ε − εT )2 + εT M̃ (θ̃ − θ̃T )

)
− α̃′ε(θ̃ − 1)

− c̃1θ̃ log θ̃ +
α̃p

2
p̃2

0 in shocked phase,
(4.83)

H̃ f
0 =

H f
0

E
=

Ẽ f

2
ε2 − α̃ f ε(θ̃ − θ̃T f ) − c̃1 f θ̃ log

(
θ̃

θ̃TF

)
, (4.84)

where Ẽ′ = E′/E, α̃ = αθT , α̃′ = αθT Ẽ′, c̃1 = c1θT/E, α̃p = αpp2
1/E, α̃′p =

α′pp2
1/E and M̃ = MθT are the non-dimensional constants for the ferroelectric

material, while Ẽ f = E f /E, α̃ f = α f E f θt/E, θ̃T f = θT f /θT and c̃1 f = c1 f θT/E

denote the non-dimensional constants for the flyer material. Next, electric field and
entropy can be non-dimensionalized in a consistent way

Ẽp =
∂H̃0
∂ p̃0
=




α̃′p(p̃0 − 1) in unshocked phase

α̃p p̃0 in shocked phase,
(4.85)
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η̃0 = −
∂H̃0

∂θ̃
=




α̃ε + c̃1(1 + log(θ̃)) in unshocked phase

−εT M̃ + α̃′ε + c̃1(1 + log(θ̃)) in shocked phase.
(4.86)

Along the same lines, a non-dimensionalized electric displacement can be con-
sistently defined as D̃p = Dp/p1 = p̃0 + ε̃0Ẽ where ε̃0 = Eε0/p2

1. Using this,
non-dimensional Maxwell stress σ̃M = ẼpD̃p −

ε̃0
2 Ẽ2

p =
σM

E and Cauchy stress
σ̃c =

∂H̃0
∂ε =

σc

E can be defined.

Nucleation and initial conditions

An FE-AFE phase boundary is nucleated at x̃ = h̃t = ht/L at time t̃ = 0. The
ferroelectric phase lies to the right, x̃ ∈ [h̃t, 1], and the anti-ferroelectric phase lies
to the left, x̃ ∈ [0, h̃t], of the phase boundary. Initially, there is no current (hence
no voltage) across the resistor. This ensures a certain initial configuration of the
polarization in the material, calculated by solving the following equations:

p̃L + ε̃0α̃p p̃L = p̃R + ε̃0α̃′p(p̃R − 1)

Ṽ = h̃t ẼL + (1 − h̃t )ẼR = h̃t α̃p p̃L + (1 − h̃t )α̃′p(p̃R − 1) = 0,

where p̃L, p̃R and Ṽ denote the non-dimensional polarization to the left of the phase
boundary, non-dimensional polarization to the right of the phase boundary and the
non-dimensional voltage across the resistor.

Riemann problems and conservation laws

The choice of Helmholtz energy and definition of characteristic speeds enable solv-
ing the phase boundary problem by solving Riemann problems at every node and
time step. Riemann problems are solved to obtain information of the states at the
next time step. The method is as follows: At any node x̃i in the target at time t̃, the
domainωt

i = [a, b]×[t̃, t̃+∆t̃] is considered in the X−t plane, where a = 1
2 ( x̃i+ x̃i−1)

and b = 1
2 ( x̃i + x̃i+1). The first step is to solve the conservation of momentum prob-

lem in the domain ωt
i by keeping the temperature θ̃i constant. Next, the temperature

is updated by solving the conservation of energy equation. Finally the states in the
interval for the next time step are obtained over the interval. The exact procedure
and Riemann problems are explained below.

Ferroelectric material
Quantities like strain εi, polarization p̃i, and particle velocity ṽi, are defined on
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(a)

(b)

Figure 4.8: (a) Riemann problem at the node x̃i other than at a phase boundary or
at either of the ends of the material. The problem is solved keeping the temperature
constant. (b) Temperature update at the node following conservation of energy
equations.

the intervals ( x̃i, x̃i+1) of the target, while the temperature θ̃i is defined at node
x̃i. Since there is no ordinary electrostriction in this analysis, the polarization
is piecewise constant across the phase boundary for every time step. The non-
dimensional polarization to the left and the right of the phase boundary is denoted
by p̃L and p̃R. Figure 4.8a shows the Riemann problem at a node other than the phase
boundary and the physical boundary of the material. For this Riemann problem, the
polarization remains constant. As such the unknown U is just strain and particle
velocity as shown in Figure 4.8a. The following conservation equations are solved
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in the domain ωt
i for ε and ṽ [64]:∫ t̃+∆t̃

t̃

(
d
dt̃

∫ b

a
ṽ dx

)
dt̃ =

∫ t̃+∆t̃

t̃
σ̃ |ba dt̃

⇒

[∫ b

a
ṽ dx

] t̃+∆t̃

t̃
=

∫ t̃+∆t̃

t̃
σ̃ |ba dt̃, (4.87)∫ t̃+∆t̃

t̃
ṽ |ba +

∫ b

a
ε |t̃+∆t̃

t̃ = 0. (4.88)

The Riemann problem at the phase boundary consists of two elastic waves and a
phase boundary as represented by Figure 4.9a. In this problem, polarization is
also important due to spontaneous polarization associated with the phase transition.
Hence, polarization is also updated with every time step. Aside from (4.87) and
(4.88), the following equations are also present across the phase boundary at time
t̃ + ∆t̃:

σ̃(εt̃+∆t̃
xiL , θ̃

t̃, p̃t̃+∆t̃
L ) − σ̃(εt̃+∆t̃

xiR , θ̃
t̃, p̃t̃+∆t̃

R ) + ˜̇s(ṽ t̃+∆t̃
xiL − ṽ t̃+∆t̃

xiR ) = 0,

ṽ t̃+∆t̃
xiL − ṽ t̃+∆t̃

xiR +
˜̇s(ε̃t̃+∆t̃

xiL − ε̃
t̃+∆t̃
xiR ) = 0,

D̃p(p̃t̃+∆t̃
L ) − D̃p(p̃t̃+∆t̃

R ) = 0,

d̃(ε̃t̃+∆t̃
xiL , ε̃

t̃+∆t̃
xiR , p̃t̃+∆t̃

L , p̃t̃+∆t̃
R , θ̃ t̃ ) = f ( ˜̇s),

Ṽ = s̃t̃+∆t̃ Ẽp(p̃t̃+∆t̃
L ) + (1 − s̃t̃+∆t̃ )Ẽp(p̃t̃+∆t̃

R ) = −R̃
dD̃p(p̃t̃+∆t̃

R )
dt̃

.

The first two equations above correspond to the non-dimensionalized stress jump
equation and non-dimensional compatibility equation across the phase boundary.
The third equation corresponds to the continuity of electrical displacement across
the phase boundary. The fourth equation is the non-dimesionalized version of the
kinetic relation, where d̃ = d/E. Finally, Ohm’s law governs the flow of current in
the external circuit. Here s̃ = x̃i is the position of the phase boundary and R̃ =

p2
1cR

EL2

is the non-dimensional equivalent of R. These equations are solved to obtain εt̃+∆t̃
xiL ,

εt̃+∆t̃
xiR , ṽ t̃+∆t̃

xiL , ṽ t̃+∆t̃
xiR , p̃t̃+∆t̃

L , p̃t̃+∆t̃
R and ˜̇s.

The next step is to update the temperature using conservation of energy equations.
Figures 4.8b and 4.9b show the temperature update problem corresponding to the
Riemann problems in Figures 4.8a and 4.9a, respectively. Here Ẽ and F̃ represent
the non-dimensional total energy at a point and the non-dimensional rate of work
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(a)

(b)

Figure 4.9: (a) Riemann problem to be solved at the phase boundary. The speed of
the phase boundary is also unknown. This is where the kinetic relation comes into
equation. (b) Temperature update at the phase boundary.
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done on the domain, given by

Ẽ = Ẽ0 +
1
2
ṽ2 +

1
2
ε̃0Ẽ2

p,

F̃ = σ̃ṽ + φ̃
dD̃
dt̃
.

At time t̃, Ẽ and F̃ are calculated using the temperature θ̃ t̃ . For time step t̃ +∆t̃, the
temperature is taken as θ̃ t̃+∆t̃ , and Ẽ for this time step is calculated using the new
temperature. The general energy balance in the domain is given by∫ t̃+∆t̃

t̃

(
d
dt

∫ b

a
Ẽ dx

)
dt̃ =

∫ t̃+∆t̃

t̃
F̃ ��ba dt̃ + dissipation

⇒

[∫ b

a
Ẽ dx

] t̃+∆t̃

t̃
=

∫ t̃+∆t̃

t̃
F̃ ��ba dt̃ + dissipation. (4.89)

The above equation is solved in the domain ωt
i for θ̃

t̃+∆t̃ . It is important to note that
the dissipation term is absent in the problem in Figure 4.8b because elastic waves do
not cause any dissipation. Further, the electrical components of the energy and the
rate of work done are absent because the polarization is constant. The dissipation
term is present across the phase boundary, and is given by

∫ t̃+∆t̃
t̃ d̃ ˜̇s dt̃. For sim-

plicity, this is approximated as d̃ ˜̇s∆t̃. The driving force and the speed of the phase
boundary are already known after solving the problem in Figure 4.9a. Across the
phase boundary, electrical terms also start to play a role in the energy balance.

Target-flyer interface
Figure 4.10a represents the Riemann problem at the target-flyer interface. The
conservation of momentum problem remains the same as earlier, except that the
stresses for x̃ < 0 are calculated using the material properties of the flyer. Once
again, the polarization is kept constant during this calculation. Since the interface
is always to the left of the phase boundary, the polarization is kept at p̃t̃

L. The
temperature update problem represented in Figure 4.10b is solved along similar
lines. Once again, the electrical terms are not important for this problem. Finally,
since the interface is stationary in the Lagrangian frame, there is no dissipation in
the conservation of energy equation (4.89).

Flyer material
The flyer material is purely thermoelastic with no phase transitions or electrical
coupling. As such, the only Riemann problem that occurs can be represented by
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(a)

(b)

Figure 4.10: (a) Conservation of momentum problem at the flyer target interface.
(b) Temperature update using the conservation of energy equations.

Figure 4.8a with c̃ = c̃ f . Conservation of momentum (4.87) and compatibility
(4.88) are solved to determine ε and ṽ. Finally, temperature is updated (Figure 4.8b)
by solving conservation of energy (4.89) equation with no dissipation.

Averaging and mesh updates

After solving the Riemann problems, the strains and particle velocity at the intervals
for the next time step are obtained by averaging within the intervals. As explained
earlier, it is important to keep a node point on the phase boundary to avoid averaging
over different phases. Since the phase boundary has moved, the mesh needs to be
updated at every time step to ensure that a node point lies on the phase boundary.
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Figure 4.11: Schematic of the mesh update procedure [64]. As the phase boundary
gets closer to a node, the node is removed and the mesh is resized. Once the phase
boundary gets further away, the node is reinserted.

Further, the mesh size h̃ = h/L should be of certain minimum length 2c′∆t̃. This
is evident from the Riemann problem in Figure 4.8a, where the elastic waves can
travel at speeds c′. In order to avoid information ‘leaking’ out of the domain, leading
to numerical instabilities, the length of interval [a, b] should be larger than 2c′∆t̃.
Further, in order to separate the Riemann problem at one node from the Riemann
problem at another node, the nodes must be at least 2c′∆t̃ distance apart. Since the
phase boundary moves, the length of the intervals neighboring the phase boundary
will change. As such themesh needs to be updatedwith nodes added and/or removed
to ensure the minimum critical length.

The procedure is same as the one followed by Purohit [64]. Figure 4.11 shows the
schematic of the process of mesh update used. As the phase boundary moves, the
node (node 3 in the figure) moves to follow the phase boundary. In other words,
node 3 is removed and a new node is defined on the phase boundary. Once the phase
boundary gets close to node 2, the mesh is updated and node 2 is removed. As the
phase boundary moves further away, node 3 is reinserted and the mesh gets updated.
The resizing of the nodes also effects the averaging of states. This introduces some
numerical dissipation, which should be small because the averaging involves elastic
waves.

Results: Parameter study
In this section, a quantitative analysis of the problem is presented. Over the years,
various material properties have been reliably characterized via experiments ([34],
[32], [69], [72], [78]). These values were taken as fixed. Some quantities are only
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Parameters Values
αp, α

′
p 107 PaC−2m4

p1 0.33C/m2

E, E′ 100GPa
ρ 5000 kgm−3

α 10−6 K−1

θT 258 K
c1 106 JK−1/m3

εT −0.005
M −4 × 10−5 K−1

Table 4.1: Choice of ferroelectric material parameters

Parameters Values
ρ f 7800 kgm−3

c f 3200 ms−1

α f 10−6 K−1

θT f 298 K
c1 f 106 JK−1/m3

Table 4.2: Choice of flyer material parameters

Parameters Values
L 1mm

L f 1mm
N 100
N f 150
∆t 10−9 s

vimpact 50 − 125 ms−1

R 10−4 ohm

Table 4.3: Choice of parameters in setting up the problem

known up to an order of magnitude under shock conditions. Consistent values are
chosen for these, listed in Tables 4.1 and 4.2. Due to the lack of information on the
kinetic relations for such materials, two broad classes - linear and stick-slip linear
kinetics - are studied in detail. Different experimental configurations were also
explored, starting from base values presented in Table 4.3.
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Linear Kinetics

In this section, a linear kinetic relation between the driving force and the speed of
the phase boundary is chosen as shown in Figure 4.12a:

d = ds ṡ, (4.90)

where ds is chosen to be 103. Figure 4.12b shows the strain map on the X − t

diagram of the impact problem for an impact speed of 75 ms−1. Upon impact
(t = 0), an elastic precursor travels into the target followed by a phase boundary
marked by a large change in strain. It should be noted that the elastic wave is not
sharp. This is because the computational method involved captures the elastic wave
into the averaging process. To the contrary, the phase boundary is tracked by mesh
updating and hence appears sharp in Figure 4.12b. The elastic precursor travels
into the material, and reflects off the free edge of the target as a tensile wave. This
tensile wave then interacts with the phase boundary. Figure 4.13a shows the current
output through the external circuit for an impact speed of 75 ms−1. The current
output has an exponential profile with a steady current pulse, which is consistent
with experimental observations. The profile is also consistent with the expression
(4.73) derived using a simple one-dimensional uncoupled analysis in Section 4.3.
The sharp decline corresponds to the time the reflected elastic precursor interacts
with the phase boundary in Figure 4.12b. In real experiments, the sample used
is ceramic, which gets damaged by the time the reflected wave comes back. As
such, there is no current output after the sharp decline. Figure 4.13b shows the
temperature map on the X − t diagram of the problem. Initially, both flyer and
target are kept at room temperature of 298 K. It can be seen that the temperature
rise associated with elastic waves is small, and can be barely seen in the flyer. The
temperature increase across the phase boundary is around 5 − 10 K.

The next step is to change the impact velocity of the flyer and study the current
output in the external circuit. Figure 4.14a shows variation of current profiles
with different impact speeds. It can be seen that the profiles are exponential with
increasing current amplitude with impact speeds. This is consistent with various
experimental observations [27], [34], [69]. Further, the rise times associated with
the current profiles decrease with increasing impact speeds. Figure 4.14b shows
the current profiles for different ds values for same impact speed of 75 ms−1. It
can be seen that current decreases as ds increases. This is because the speed of
the phase boundary is directly related to the driving force via a kinetic relation. As
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Figure 4.12: (a) Linear kinetic relation. (b) X − t diagram of the impact problem.
The colors correspond to the strain in the flyer and the ferroelectric target. The
speed of the impact is 75m/s.

ds increases, the speed of the phase boundary decreases. Since the current profile
is directly influenced by the speed of the phase boundary, the current amplitude
decreases.

Figure 4.15a shows the variation of current profiles with target length, impacted
upon by same impactor traveling at speed 75 ms−1. It can be observed that the
peak or steady current magnitude increases with decreasing length. This is because
the fields generated are higher in the smaller sample, resulting in a higher voltage
difference across the two ends. Further, the pulse obtained is shorter for shorter
specimens. This is because the phase boundary travels a shorter distance before
reaching the end of the sample. In other words, there is physically less material
to depolarize. This is again consistent with experimental observations made by
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Figure 4.13: (a) Current profile obtained flowing through the resistor R for an impact
speed of 75 ms−1. (b) X − t diagram of the impact problem. The colors correspond
to the temperature in the flyer and the ferroelectric target.

[27]. Next, the flyer length is changed keeping the target length constant. Figure
4.15b shows the variation of current profiles with different flyer lengths. Here the
profiles for different flyer lengths overlap. This effect is attributed to the interaction
of the unloading release wave from the impactor free end with the moving phase
boundary. For lengths L f = 0.7mm and 1mm, the release wave comes after the
phase boundary has already interacted with the reflected wave from the target free
end. As such, the current drop seen for these profiles are because of the interaction
between the phase boundary and the reflected elastic wave from the target free end.
For L f = 0.1mm and 0.4mm, the interaction between the release wave with the
phase boundary happens before the reflected wave (from target end) comes back.
As such, the current drop is observed much earlier here. Figure 4.16 shows the
variation of current profiles with the resistance R in the external circuit. As R

decreases the magnitude of steady current increases. This is indicative of inverse
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Figure 4.14: (a) Variation of current profile with increasing impact speeds. (b)
Variation of current profiles with changing values of ds for impact speed of 75 m/s.

proportionality with R. Further, the steady current is achieved faster as R decreases.
This indicates the dependence of rise time in current over R.

Stick-slip Linear Kinetics

Next, a combination of stick-slip and linear kinetic relation is explored. A schematic
of the stick-slip linear kinetic relation is shown in Figure 4.17a. In this analysis,
dc = 106, while ds = 103. The strain map of the impact of a flyer traveling at speed
75 ms−1 is presented on the X − t diagram of the problem. The strain map is very
similar to the linear kinetics case presented in Figure 4.12b. Just as in Figure 4.12b,
in this case, the phase boundary is clearly visible by the large change in strains.
The phase boundary is again preceded by an elastic precursor which reflects off
the free edge of the target and interacts with the propagating phase boundary. The
temperature map for this impact process as shown in the X − t diagram is presented
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Figure 4.15: (a) Variation of current profile with increasing impact speeds. (b)
Variation of current profiles with changing values of ds for impact speed of 75 m/s.

Time (ns) →
0 50 100 150 200 250 300 350 400

C
ur

re
nt

 (
A

/c
m

2 ) 
→

0

20

40

60

80

100
R=10-2 Ω

R=10-3
Ω

R=10-4
Ω

R=10-5
Ω

Figure 4.16: Variation of current profiles with R in the external circuit for the same
impact speed 75 ms−1.
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Figure 4.17: (a) Combination of Stick-slip and Linear kinetic relation. (b) X − t
diagram of the impact problem. The colors correspond to the strain in the flyer and
the ferroelectric target. The speed of the impact is 75m/s.

in Figure 4.18b. Again, the temperature rise associated with elastic waves is very
small, while the temperature increase across the phase boundary is around 5K .
A comparison between the current profiles for linear and stick-slip linear kinetics
is presented in Figure 4.18a. The current profile is for this kinetic law is also
exponential, with a smaller steady magnitude and rise time than is the case with
linear kinetics. This is because a portion of the driving force is gone to overcome
the barrier dc. The decrease in the speed of the phase boundary also explains the
decrease in rise time of the current.

Comparison with experiments
In this section, the numerical results are compared to the experimental observations
made by Furnish [34]. Since complete depolarization was observed for the impact
speed of 65 ms−1 in experiments [34], a numerical study will be conducted for
65 ms−1 impact speed. Parameters for experimental setup and material properties
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Figure 4.18: (a) Comparison of current profiles for Linear and Stick-Slip Linear
Kinetic relation. (b) X − t diagram of the impact problem. The colors correspond
to the temperature in the flyer and the ferroelectric target.

presented in [34] are listed in Table 4.4. In order to obtain a close match to the exper-
imental observations, parameters chosen for the material model and experimental
setup are listed in Table 4.5. Further, an stick-exponential slip relation is employed
for the kinetic law between the driving force and the phase boundary speed. The
exact expression is given by

ṡ =



0 when |d | ≤ dc

c
(
1 − exp

(
|d |−dc

τ

))
sign(dc) when |d | > dc,

(4.91)

where c is the characteristic wave speed and dc and τ are parameters for the kinetic
relation. For this analysis, these parameters are chosen to be 106 and 8 × 106

respectively. Physically, this kinetic relation ensures that a critical force is required
to move the phase boundary, and the speed of the phase boundary can never exceed
the characteristic wave speed in the material. The charge profiles are computed for
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Parameters Values
L 4mm

L f 6mm
ρ 7300 kg/m3

c 4163 ms−1

p1 ≈ 0.30 µC/cm2

vimpact 65 ms−1

R 1 ohm

Table 4.4: Setup and material parameters in experiments by Furnish [34]

Parameters Values
αp 6 × 107 PaC−2m4

α′p 2 × 109 PaC−2m4

p1 0.28C/m2

c, c′ 4163 ms−1

ρ 7300 kgm−3

α 10−6 K−1

θT 198 K
c1 107 JK−1/m3

εT −0.008
M 8 × 10−4 K−1

Parameters Values
ρ f 7800 kgm−3

c f 3200 ms−1

α f 10−6 K−1

θT f 298 K
c1 f 106 JK−1/m3

L 5mm
L f 6mm

vimpact 65 ms−1

R 1 ohm

Table 4.5: Choice of material and setup parameters for simulations

the parameters listed in Tables 4.5 and compared to the experimental observations
by Furnish [34], as shown in Figure 4.19b. It can be seen that the numerical
simulations are able to capture experimental observations very closely. The charge
profiles are exponential, and achieve a constant value close to p1 indicating complete
depolarization of the material. Numerical simulations capture the slope of the
charge profiles (or the current) very accurately, with peak currents reaching 37 A/m2.
Finally, the time-scale of the depolarization process is also captured in the simulation.

It is a common practice to specify the Hugoniot of the material in the form of shock
speed and particle velocity. As explained in Section 2.3, experimental investigation
conducted over a broad range of materials point to a linear relationship between
shock speed and particle velocity in the material. This is commonly expressed in
terms of two parameters, C0 and S, as expressed in equation (2.18). Figure 4.20
shows the shock speed vs particle speed Hugoniot over the range of seven orders of
magnitude of resistance R in the external circuit. Most of the material properties
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Figure 4.19: (a) Stick-exponential slip kinetic relation (b) Comparison of charge
profiles from experiments and simulations

were taken from Table 4.5, except for p1 and α′p which were taken to be 0.33 C/m2

and 109 PaC−2m4, respectively. The Hugoniot was generated for six impact speeds
ranging from 55 ms−1 to 55 ms−1 with equal intervals. For a particular impact
speed and R, the shock speed was averaged over a period of steady motion to
remove numerical oscillations. Figure 4.20 shows a linear relationship between the
shock speeds and particle velocity, which is consistent with the widely observed
linear law.

Table 4.6 lists the numerically observed constants C0 and S for the Us − v Hugoniot
(2.18) of the ferroelectric material. The dependence on R can be clearly seen from
Figure 4.20 and Table 4.6. As R increases, the electrical boundary condition for the
material changes from a short-circuit configuration to an open-circuit configuration.
The dependence of material behavior on the electrical boundary conditions has been
observed in experiments [14], [27], [38], [51], [54].
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Figure 4.20: Shock speed vs Particle speed Hugoniot of the ferroelectric material
for different R in the external circuit. The figure shows a clear difference between
short-circuit and open-circuit case.

R C0 S
0.001Ω 3056.18 ms−1 1.28
0.01Ω 3057.88 ms−1 1.31
0.1Ω 3054.85 ms−1 1.50
1Ω 3002.07 ms−1 2.59
10Ω 2838.44 ms−1 5.25

100Ω 2731.17 ms−1 6.69
1000Ω 2711.34 ms−1 7.00

Table 4.6: Variation of Hugoniot parameters of the ferroelectric material for dif-
ferent values of R in the external circuit. The Hugoniot, and hence the material
behavior, shows strong dependence on the external circuit which is consistent with
experimental observations.

4.5 Conclusions
In this chapter, the nonlinear electro-thermomechanical coupling of a ferroelectric
material is explored. The application under consideration is that of a ferroelectric
generator, where the nonlinear coupling between electrical, thermal and mechanical
responses is exploited to generate a large pulse of power through shock loading.
The shock loading induces a ferroelectric to anti-ferroelectric phase transition in the
material. A continuummodel was developed to study the large deformation dynamic
behavior of thematerial under adiabatic conditions. The analysis is carried out under
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the conventional assumption of quasistatic electromagnetic approximation and an
added assumption of a sharpmoving phase boundary. Themotion of the propagating
phase boundary is studied through this analysis. The high amplitude stress loading
due to shock waves generate a high electric field in the material, leading to formation
of surface charges on the propagating phase boundary. Using the conservation laws,
Maxwell equations and the second law of thermodynamics, governing equations for
the process are derived. Further, an expression for the driving force acting on the
phase boundary is derived using the second law.

The expression for the driving force (4.65) contains terms corresponding to electro-
thermomechanical coupling of the material. In a classical continuum analysis, the
driving force is related to the jump in Eshelby tensor. Here, there are more terms
due to the electrical coupling involved. It can be seen that the driving force contains
a contribution from the product of electrical conjugates - polarization and electric
field - which tries to slow down the phase boundary. There is also a contribution
from Maxwell stress introducing volumetric strain into the material. The stress
tensor, which appears in the classic Eshelby tensor, is now modified to include the
contribution of Maxwell stress. This is consistent with classic electromechanical
analysis where the total stress is the combination of Cauchy stress and Maxwell
stress. Finally, an added term containing the curvature κ of the phase boundary
appears due to the presence of surface charges on the phase boundary. It should be
noted that due to the presence of surface charges on the phase boundary, it is difficult
to define the exact definition of traction on an arbitrary subdomain containing the
phase boundary. Conventionally, the traction is defined as the normal projection of a
stress tensor. In a purely thermomechanical analysis, the stress tensor is the Cauchy
stress. In this case, due to the electro-thermomechanical coupling, the stress tensor
is the sum of Cauchy and Maxwell stress tensors.

A standard canonical problem of plate impact on an axially poled ferroelectric
sample is studied. In Section 4.3, a simple uncoupled one-dimensional analysis is
conducted before electro-thermomechanical coupling is introduced into the model.
A one-dimensional ferroelectric material is considered with the two ends connected
by a resistor R. A phase boundary moving at constant speed V is introduced into
the system and the current output in the external circuit is studied. The resulting
expression of current profile shows an exponential growth achieving a steady value
after long time. The analysis sheds light onto different parameters governing the
current profile, such as remnant polarization, V , length of the sample, external
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resistance R and relative permittivity of the material. The expression is useful in
providing qualitative explanations for many experimental observations. A nonlin-
ear electro-thermomechanically coupled model was introduced in Section 4.4. The
Helmholtz energy considered was a combination of two components - two welled
in polarization and two welled in strain with dependence on temperature. Due to
the lack of available kinetic relation data, two classes of kinetic relations were stud-
ied. The results obtained showed the exponential profile of the current, consistent
with experiments. The current magnitude increases with increasing impact speeds,
decreasing sample length, and decreasing R.

Finally, charge profiles obtained by Furnish [34] were recreated through numerical
simulations by choosing parameters consistent with available literature data and an
stick-exponential slip kinetic relation. It can be seen that the model closely matches
the observed charge profiles with correct current output prediction. Shock speed-
particle speedHugoniot relation is also generated by studying different impact speeds
and different R in the external circuit. It is observed that the material exhibits a
linear relationship between shock speeds and particle velocities. Hugoniot data was
generated for seven orders of magnitude of R to study the dependence on boundary
conditions. As R increases, the boundary conditions change from short-circuit
to open-circuit configuration leading to different material behavior. Parameters
characterizing the linear relation are presented in Table 4.6.
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C h a p t e r 5

SUMMARY AND FUTURE DIRECTIONS

In this thesis the phenomenon of shock wave propagation is explored in composites
and ferroelectric materials. In order to understand the process of scattering in
heterogeneous materials, a canonical problem of plate impact on a layered material
was studied in Chapter 3. The piecewise linear approximation to the stress-strain
Hugoniot allowed collapsing of rarefaction wave fans on to a single wave. This
assumption also preserved the nonlinearity of the problem. The choice of piecewise
linear stress strain curves allowed a complex problem to be broken down into classes
of more tractable Riemann problems. In order to obtain a unique solution, added
information was needed to replace linear Us − v Hugoniot and Lax entropy criteria
in this case. It was argued that shocks are dissipative by nature. Hence, a maximally
dissipative kinetic relation was chosen to obtain a unique solution to the jump
equations.

The solution to the Riemann problem corresponding to the interaction of a shock
wave at the interface of two nonlinear layers gives rise to a backward propagating
elastic wave and a forward moving shock wave. The speed of the new shock wave
is determined by contrast between the properties of the two layers. If the compliant
strain of the material ahead of the shock is larger than the neighboring layer, the
resulting shock is slower (or weaker). On the other hand, if the contrast between
the two adjacent layers is too large, the release wave from the flyer can lead to
formation of a spall zone or cause delamination in the material. This has important
implications in a design problemwhere the objective is to achieve shock attenuation.
In this case, the design of the laminate should be such that the layers with lesser
compliant strain should be at the front while the layers with larger compliant strain
should be at the back. However, in order to avoid delamination, the gradient of
properties along the length of the laminate should not be too large. In fact, most
armor designs are based on this general principle. Other laminates can be designed
with periodic layer arrangement designed to capture energy within softer layers.

The analysis presented in this thesis involves many simplifying assumptions for
the material model, such as piecewise linear approximation of the Hugoniot, elas-
tic homogeneity of the constituent layers, and an isothermal environment. These
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assumptions were made to make the problem accessible, while still being able to
capture the complexity of the scattering process. As the next step, extensions can
be made in many directions including different modulus in shocked and unshocked
regions, different layer densities, different layer moduli and different yield stresses.
These extensions can be studied by introducing more classes of Riemann problems
into the system. Further, the temperature plays an important role in the process
of shock propagation. In order to account for temperature, the analysis needs to
modified to a finite-volume shock capturing scheme following the ideas presented in
Chapter 4. Finally, in order to extend the problem from a piecewise linear model to
a Hugoniot material model, the corresponding Riemann problems will be replaced
by Cauchy problems with non-piecewise constant initial conditions. Solutions to
these problems are obtained by solving integral equations instead of jump equations
for Riemann problems. In this case, the interactions happen within a region of the
X − t plane instead of at a point, which further complicates the problem.

The process of shock induced phase transitions and the associated nonlinear electro-
thermomechanical coupling of ferroelectric material is studied in Chapter 4. A
comprehensive continuum model is developed to study large deformation dynamic
behavior of such materials in adiabatic environments. Using conservation laws,
Maxwell equations and the second law of thermodynamics, governing equations
are derived for the motion of the phase boundary in the material under general-
ized electromechanical loading. The continuum analysis conducted resulted in a
constitutive relation for the Helmholtz energy of the material. Additionally, an ex-
pression is derived for the driving force acting on the phase boundary. Aside from
traction terms, the driving force has a contribution from electrical terms including
volumetric change due to Maxwell stresses and product of electrical conjugates -
polarization and electrical field.

A canonical problem of a plate impact on an axially poled ferroelectric material with
a resistance R connecting two ends of the material is studied. A one-dimensional
uncoupled analysis gives an exponential profile of current output with time. This
simple analysis explains the dependence of current on parameters like remnant polar-
ization, speed of the phase boundary, length of the material, external resistance and
dielectric permittivity. Numerical simulations conducted for a nonlinearly coupled
electro-thermomechanical material model show results consistent with experiments.
The Us − v Hugoniot generated through numerical analysis showed different ma-
terial response for open and short-circuit boundary conditions. A broad parameter
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study is conducted which provides valuable information on current pulse shaping.
The peak current magnitude, current rise time and pulse width can be controlled
by changing parameters such as external resistance, impact speeds, flyer and target
lengths. Further, current profiles can be controlled by changing material properties
like dielectric permittivity, remnant polarization and elastic modulus. The material
properties can be changed by changing chemical composition through doping.

The analysis presented in Section 4.4 can be extended in many directions. The
numerical method to solve the canonical problem of a plate impact on a single layer
of ferroelectric material can be extended to study the case of layered materials. This
requires adding more Riemann problems and modifying the mesh-update portion
of the algorithm to account for the case when the phase boundary gets too close
to a material interface. The extension from a homogeneous material to a layered
composite provides valuable information into the role of scattering in pulsed power
generation process. Additionally, by using different materials (ferroelectric and non-
ferroelectric layers) optimal composite design can be explored for pulse modulation.
Understanding the role of heterogeneity is important because the samples used in
experiments are ceramic in nature. The pulsed power generation process is typically
accompanied by pore collapse and the crushing of grains. In order to understand
the role of heterogeneity at the mesoscale, it is important to study the interaction of
domain walls with heterogeneities. This requires a multiscale formulation. The case
of dielectric breakdown also needs to be studied to better understand the decline of
current at very high impact speeds. This requires a model for an energy functional
associated with volumetric and surface charge distribution in the body.
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