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ABSTRACT

Developments in singe-cell analysis techniques allow simultaneous high-resolution
measurements of cellular component copy number and variation within a cell pop-
ulation. These data provide a probability distribution for all possible states of the
cell, as determined by the measured component copy number per cell. We have
developed a highly-flexible, theoretical statistical mechanical framework that uses
single-cell cellular component data to model the evolution of the probability distri-
bution of those components in a cell in response to an external, physical or molec-
ular, perturbation. This framework uses Bayesian inference to compare potential
functional descriptions of how the perturbation couples to the system, and to deter-
mine the uncertainty in the parameter estimations given the data. We have applied
this methodology to study the impact of changes in oxygen partial pressure on the
behavior of glioblastoma multiform cancer cells. We find that oxygen concentra-
tion couples not only to individual proteins, but effects the underlying effective
interactions between the studied proteins as well. The underlying effective interac-
tions were found to couple linearly to the system, indicating a simple proportional
change in the protein network across oxygen concentrations. This description of
the system provides improved predictive capabilities for describing the probability
distribution of the measured cellular components across a wider range of perturba-
tion conditions than previous methods. Additionally, we apply this methodology
to show how it could be used to predict effects in difficult experimental perturba-
tion regimes, identifying undruggable regimes, as well as the result of knocking our
individual or combinations of proteins or protein interactions.
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C h a p t e r 1

INTRODUCTION

1.1 New Directions Using New Data Collection Methods
With advances in quantitative single-cell analysis techniques, we now have the abil-
ity to observe the steady-state probability distribution for copy number of most cel-
lular components (e.g. proteins, mRNAs, metabolites, etc.) under specific condi-
tions. This distribution contains information beyond population averages, describ-
ing the effective interactions between multiple cellular components, however the
challenge is how to extract this information. The steady-state that can be obtained
is defined by nearly constant average concentration of a cellular component over
time after the application of a stimulus and given time to relax in those conditions.
Following a perturbation, such as the addition of a drug or changes in resources
available, cells may come to a different steady-state than before the stimulus was
applied [1]. Novel technologies now exist that can measure simultaneous cellular
component copy numbers to obtain the multi-dimensional steady state probability
distribution over a range of perturbation conditions [2].

Stochasticity in gene expression, due to intrinsic and extrinsic noise [3], gives rise
to fluctuations in protein levels and causes clonal populations of cells to exhibit
phenotypic variation at steady state [1, 4, 5]. The steady-state distribution of cellular
component copy number for an ensemble of genetically identical cells provides the
most probable copy numbers (average), as well as fluctuations in copy number for
cells in the population. The noise in expression levels of cellular components, or
fluctuations in a population, have been associated with drug resistance, variation in
cell-to-cell response to external stress and cell differentiation [4, 6–8]. Therefore,
a clear understanding of the steady-state copy number distribution would help to
predict when and what response may occur due to an external stimuli.

Master equation formulations, which use known parameters for rates of produc-
tion and dilution due to cell division, have been used to predict the steady state
distribution for individual cellular components for a population of cells and then
checked with single cell analysis at one set of experimental conditions [9–11]. An
inverted method can obtain parameters given a steady state distribution under one
external condition, giving insight into the underlying dynamics of the system [10].
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Therefore, understanding how the steady state distribution is coupled to a perturba-
tion will give more information on dynamics of the system in response to that per-
turbation. However, since it is often experimentally intractable to take single-cell
measurements of every possible perturbation condition, we instead obtain “snap-
shots” under specific external conditions. The challenge is to extract from those few
measurements, how the steady-state distribution evolves as a function of a specific
perturbation, such as changing the concentration of a drug or steadily decreasing
cellular resources.

Specifically, we are interested in extracting from the few isolated experimental mea-
surements how the copy number in a cell, that is the probability distribution of the
number density, evolves as a perturbation is increased or decreased. In some fam-
ilies of active matter systems, thermodynamic equilibrium approaches have been
used, taking a number density view of the system [12, 13]. Homogeneous steady
states have been seen in active matter systems to arise from the effective generation
of long-range interactions in the system, even if local density variations are ignored
[14]. We therefore approach the system from a thermal equilibrium perspective,
where the “free energy” of the system is relative to the number density for each cel-
lular component in the cell. We are not concerned with the mechanistic or physical
interactions of the proteins, but instead how the effective interactions and funda-
mental characteristics of the measured proteins, captured in the single cell data,
evolve as a function of the perturbation.

1.2 Overview
We apply an equilibrium statistical mechanical framework to model the evolution of
the probability distribution of cellular components in a cell in response to an exter-
nal perturbation. We use the number density for each cellular component to define
the state of the cell. Each cellular component interacts with every other measured
cellular component with an associated interaction energy, providing an effective
long-range interaction among the components. Additionally, the individual proper-
ties, that is the chemical potentials, for each cellular component determine the total
energetics for the cell. The stable, grand canonical statistical distribution for a pop-
ulation of clonal cells describes the possible states of these cells in the population,
as determined by their volume, temperature and internal properties or interactions,
and contains information on the average and fluctuations of those cellular compo-
nents. We propose simple Hamiltonian forms that describe the functional coupling
of the perturbation to the steady state probability distribution, and from the data ex-
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tract the best available parameterization using Bayesian inference. The functional
coupling can be utilized to predict properties of the effective protein interaction
network as a function of the perturbation.

1.3 Data: Hypoxia Effect in Cancer Cells
We apply our methodology to a data set describing the effect of hypoxia on cancer
cells. In the center of most tumors, particularly in solid organ cancers, hypoxic
conditions with oxygen partial pressures . 3% pO2 arise due to rapid cell growth,
constriction or leaking of blood vessels, increased interstitial pressure, or edema[15,
16]. The cancer cells in these hypoxic micro environments change their metabolism
through HIF and mTOR signaling pathways in order to survive [17]. Tumors with
hypoxic conditions can exhibit increased proliferation, aggression, and even a de-
crease in response to drug therapies[18, 19].

The molecular mechanisms in this system are well known, but the quantitative ef-
fects of oxygen on these signaling networks are less clear. Heath et. al. performed
an experimental study of the mTOR and HIF signaling networks using single-cell
barcode chip (SCBC) techniques [19]. We apply our statistical mechanical frame-
work to their data set to investigate the effect of changes in the oxygen partial pres-
sure on protein signaling networks in glioblastoma multiform (GBM) cancer cells.

The SCBC method is a microfluidics platform that quantifies a panel of proteins
from statistical numbers of single cells [2]. For this experiment, cells are loaded
into chambers on a microchip, about 1 cell/microchamber. The cells on the chip are
incubated at a specific oxygen concentration for 7 hr. The cells are then lysed, and
secreted and intracellular proteins are captured using an antibody mixture with flu-
orescent probes. Copy numbers for each protein are inferred from the fluorescence
intensity of each micro chamber. For this experiment, seven key functional proteins
in the HIF and mTOR signaling pathways were chosen for the panel and single-cell
data was collected at 21%, 3%, 2%, 1.5%, and 1% pO2 . Under each oxygen condi-
tion, ~100 single cells were analyzed, providing protein copy number data per cell
for the seven measured proteins (Fig 1.1)[19].
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Figure 1.1: Measurements of single-cell protein data across tested oxygen concen-
tration range. Each dot represents the copy number measured for that protein in an
individual cell.
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C h a p t e r 2

METHODOLOGY

2.1 Theory
We define a Hamiltonian for an n-component system, which is a function of the
copy number, Ni, of each component, i and the perturbation, λ. We consider the
state of a cell can be fully described by the copy number of its components.

H ({Ni}, λ) = Ho({Ni}) + H1({Ni}, λ) (2.1)

The first term, Ho, is a reference state Hamiltonian that describes the system in
absence of the perturbation, while H1 contains the physics that describes how the
perturbation functionally couples to the system. With no prior knowledge as to the
functional form of H1, this methodology provides a framework in which to extract
this information from the data.

The reference state Hamiltonian for an n-component system is defined as

Ho({Ni}) =

n∑
i,i≥ j

αi j Ni N j −

n∑
i

µi Ni (2.2)

where µi is the chemical potential for component i and αi j is the effective pairwise
interaction between components i and j. Assuming a well mixed solution, such that
the density of each cellular component, ρi, is uniform across the cell with a constant
volume, V ,

Ho({ρi}) =

n∑
i,i≥ j

ai j ρi ρ jV −
n∑
i

µi ρiV (2.3)

where ai j = αi jV , such that ai j has units εV
N2 and µi has units ε

N , and ε is an energy
unit. The effective pairwise interaction parameters, {ai j }, describe the network of
protein interactions, but provide no information on mechanistic or physical inter-
actions. The parameters in Ho describe the fundamental interactions and potentials
for the set of cellular components under the reference state conditions.

The functional coupling of a physical external perturbation to the system, H1, such
as addition of a drug or changes in cellular resources, is defined as

H1({Ni}, λ) =

n∑
i,i≥ j

fi j (λ)
V

Ni N j −

n∑
i

gi (λ)Ni (2.4)
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where the perturbation terms, fi j (λ) and gi (λ), describe how the perturbation changes
the effective pairwise interactions for each pair of components and chemical poten-
tials for each cellular component, respectively. Additionally, fi j (λ) and gi (λ) are
zero at the reference state conditions (λo), so that under the specified external con-
ditions, H ({Ni}, λo) = Ho({Ni}). Due to the form of the Hamiltonian, H , the choice
of reference state conditions is mathematically arbitrary. Any choice of λo provides
identical information on the functional coupling to the perturbation, H1, the only
difference begging that the information on the fundamental interactions and poten-
tials are for that chosen reference state, Ho.

We apply this framework to study the effects of hypoxic conditions on glioblastoma
multiform cancer cells. We choose a set of candidate hamiltonians, {H1}, that de-
scribe possible simple functional couplings of oxygen concentration to the system
(Table 2.1). As the effective coupling of oxygen to these proteins is unknown, we
begin with simple functions commonly seen in biological systems. Additionally,
we include three levels of coupling: individual, pairwise, and a combination of the
two. We define the reference state as normoxic conditions, 21% oxygen concentra-
tion such that the perturbations is zero at p21, according to

gi (pO2 ) = g∗i (pO2 ) − g∗i (p21) (2.5)

fi j (pO2 ) = f ∗i j (pO2 ) − f ∗i j (p21) (2.6)

where g∗i (pO2 ) and f ∗i j (pO2 ) contain the functional coupling of oxygen concentra-
tion to the system, and g∗i (p21) and f ∗i j (p21) have the same functional forms and
parameters as g∗i (pO2 ) and f ∗i j (pO2 ), respectively, but are evaluated at only the ref-
erence oxygen concentration.
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Models: Functional Forms of Oxygen Coupling
# : Name g∗i

(
pO2

)
f ∗i j

(
pO2

)
Parameters : Units

1 : Lin-X ki pO2 None ki : ε
N pO2

2 : Exp-X biexp(ki pO2 ) None ki : 1
pO2

bi : ε
N

3 : Hill-X bi
1+(ki/pO2 )mi None ki : pO2 bi : ε

N mi : −

4 : Logi-X bi
1+exp[−mi (pO2−ki )]

None ki : pO2 bi : ε
N mi : 1

pO2

In
di

vi
du

al

5 : Log-X bilog(pO2 ) None bi : ε
N

6 : Pow-X bi p
mi

O2
None bi : ε

N pmi
O2

mi : −

7 : X-Lin None ki j pO2 ki j : εV
N2pO2

8 : X-Exp None bi jexp(ki j pO2 ) ki j : 1
pO2

bi j : εV
N2

9 : X-Hill None bi j
1+(ki j/pO2 )mi ki j : pO2 bi j : εV

N2 mi j : −

10 : X-Logi None bi j
1+exp[−mi j (pO2−ki j )]

ki j : pO2 bi j : εV
N2 mi j : 1

pO2

Pa
ir

w
is

e

11 : X-Log None bi j log(pO2 ) bi j : εV
N2

12 : X-Pow None bi j p
mi j

O2
bi j : εV

N2pmi
O2

mi j : −

13 : Lin-Lin ki pO2 ki j pO2 see models 1 and 7
14 : Exp-Exp biexp(ki pO2 ) bi jexp(ki j pO2 ) see models 2 and 8

15 : Hill-Hill bi
1+(ki/pO2 )mi

bi j
1+(ki j/pO2 )mi see models 3 and 9

16 : Logi-Logi bi
1+exp[−mi (pO2−ki )]

bi j
1+exp[−mi j (pO2−ki j )]

see models 4 and 10

C
om

bi
na

tio
n

17 : Log-Log bilog(pO2 ) bi j log(pO2 ) see models 5 and 11
18 : Pow-Pow bi p

mi

O2
bi j p

mi j

O2
see models 6 and 12

19 : Log-Lin bilog(pO2 ) ki j pO2 see models 5 and 7

Table 2.1: Proposed functional forms of oxygen coupling.

The grand canonical partition function, Ξ, for an n-component system is defined as

Ξ(β,V, {µi}, {ai j }, {gi (λ)}, { fi j (λ)}) =

∞∑
N1=0

∞∑
N2=0

. . .

∞∑
Nn=0

e−βH (λ,N1,N2,...,Nn ) (2.7)

where β = 1/kBT , and kB is the Boltzmann constant. The discrete partition func-
tion is not analytically solvable, but we can approximate the partition function as a
continuous integral over all possible n-component densities, which is exactly solv-
able (see Appendix A.1 for full derivation of the partition function). The analytic
solution is
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Ξ(β,V, {µi}, {ai j }, {gi (λ)}, { fi j (λ)}) = *
,

V
√

2π
2

+
-

n
e

1
2 (M+G)T(A+F)−1(M+G)

√
|A + F|

(2.8)

where

(M + G)T = βV
(
µ1 + g1(λ) µ2 + g2(λ) . . . µn + gn(λ)

)

A + F = 2βV

*.......
,

a11 + f11(λ) 1
2 (a12 + f12(λ)) . . . 1

2 (a1n + f1n(λ))
1
2 (a21 + f21(λ)) a22 + f22(λ) . . . 1

2 (a2n + f2n(λ))
...

...
. . .

...
1
2 (an1 + fn1(λ)) 1

2 (an2 + fn2(λ)) . . . ann + fnn

+///////
-

such that A + F is a symmetric matrix, for which (A + F)−1 and |A + F| are the
inverse and determinant, respectively.

Importantly, the analytic partition function contains all of the information about
the statistical distribution for cellular component copy numbers. Two observable
thermodynamic properties describing the ensemble behavior, the average, 〈Ni〉, and
fluctuations, 〈(δNi)(δN j )〉, of the cellular component copy number, can be derived
from this partition function. Evaluation of the first and second derivatives of the
partition function, with respect to the conjugate thermodynamic quantity to particle
number, −βµ, provides predictions for the mean and covariance in cellular compo-
nent copy number

〈Ni〉 = V
∑

j

(µ j + gj (λ))(ai j + fi j (λ))−1 (2.9)

〈(δNi)(δN j )〉 = σi j =
V
β

(ai j + fi j (λ))−1 (2.10)

where (ai j + fi j (λ))−1 is an element of the inverse A + F matrix (see Appendix A.2
for the n-component derivation). These equations show directly how the perturba-
tion affects each observable moment of the steady state probability distribution.

Not only do Eq. 2.9 and Eq. 2.10 provide simple relations of the statistical behav-
iors and the perturbation, when no perturbation is applied, at the reference state,
these equations reduce to
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〈Ni〉 = V
∑

j

µ j a−1
i j (2.11)

σi j =
V
β

a−1
i j (2.12)

where a−1
i j is an element in A−1. There is a clear 1-to-1 mapping of experimentally

observed statistics (i.e. 〈Ni〉 to parameter values (i.e. µi). These statistics, average
and covariance in cellular component copy number, can be easily measured with
single cell analysis techniques. Therefore, through inversion of Eq. 2.11 and Eq.
2.12, we derive the unique natural parameter values for the chosen reference state
from experimental data collected under those conditions

µi = β−1
∑

j

〈N j〉σ
−1
i j (2.13)

aii =
V
2β

σ−1
ii (2.14)

ai j =
V
β
σ−1

i j (2.15)

where σ−1
i j is an element of the inverse covariance matrix.

However, to fully understand the perturbation coupling we must obtain the param-
eters in the perturbation coupling terms, gi (λ) and fi j (λ). Due to the additional
parameters present in these terms, the full Hamiltonian system is underdetermined.
There is no unique analytical solutions for the parameters derived directly from ex-
perimental quantities as was conveniently possible with Ho. Therefore, we utilize
Bayesian inference to systematically obtain best fit parameters for each candidate
Hamiltonian form of coupling of the perturbation to the system, and extract from
the data the proper functional coupling of the perturbation to our system.

2.2 Calculations
From an experimental data set, D, containing n-component copy numbers from in-
dividual cells over a range of perturbation conditions, we apply Bayesian inference
to acquire the most probable functional perturbation coupling and parameterization.
The probability of each candidate Hamiltonian (Table 2.1), or model, is evaluated
based on the experimental data. Parallel Tempering Markov Chain Monte Carlo
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(PTMCMC) is used to efficiently sample the high-dimensional parameter sets for
each model.

We use PTMCMC, for each model, Mi, to sample the posterior distribution asso-
ciated with the parameter set, γi, for model i, where γi contains {ai j }, {µi} and
any parameters contained in the coupling terms, { fi j (λ)} and {gi (λ)}. According
to Bayes’ theorem, the posterior distribution for the parameter set, P(γi |D,Mi), is
proportional to the likelihood, P(D |γi,Mi), times the prior probability, P(γi |Mi).
The likelihood, or the probability of the data given Mi, is defined by a Boltzmann
distribution

P(D |γi,Mi) =
1

Ξi (β,V, γi,Mi)
e−βHi (D) (2.16)

where Hi and Ξi are the Hamiltonian and partition function for model i. For the
prior probability, each of the m-parameters in γi is considered independent. We use
an uninformative, uniform prior for each individual parameter over a broad range
of values

P(γi |Mi) =

m∏
j=1

P(γi,j |Mi) =

m∏
j=1

1
γmax

i,j − γ
min
i,j

(2.17)

where γmax
i,j and γmin

i,j define the range allowed for parameter γi,j (see Appendix
B for full ranges of parameter values used for each model). For the sampling,
parameters are initialized within this range, and we use the data from the reference
state conditions and Eqs. 2.13-2.15 to find a reasonable parameter space to initialize
{ai j } and {µi} and any parameters in { fi j (λ)} and {gi (λ)} such that the change in
{ai j } and {µi} is small to keep the values in physically reasonable ranges initially.

The EMCEE package [20, 21] is used to perform the PTMCMC calculations. Each
calculation is run with 20 temperatures, 2,000 walkers for 8,000-10,000 steps until
convergence is reached (see Appendix B for convergence criteria discussion). We
then obtain the most probable values (modes) and 95% credible regions for each
parameter estimate using the marginalized distribution for the lowest temperature
PTMCMC.

By sampling many temperatures, we are able to calculate the odds ratio, Oi j , which
we use to compare models i and j,

Oi j =
P(Mi |D)
P(Mj |D)

=
P(Mi)P(D |Mi)
P(Mj )P(D |Mj )

=

∫
dγi P(γi |Mi)P(D |γi,Mi)∫

dγ j P(γ j |Mj )P(D |γ j ,Mj )
(2.18)

We assume a priori that all models are equally likely, P(Mi) = P(Mj ). This form
of the odds ratio results from a convenient mathematical manipulation [22], where
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for each temperature, B, sampled in the PTMCMC we calculate

Zi (B) =

∫
dγi P(γi |Mi)[P(D |γi,Mi)]B (2.19)

Then we use thermodynamic integration to find

ln P(D |Mi) = ln Zi (1) =

∫ 1

0
dB〈ln[P(D |γi,Mi)]〉B (2.20)

According to Bayes’ theorem, the calculation of the odds ratio allows us to deter-
mine which tested model is most probable given the experimental data. To provide
information on how close to an “ideal” model we are, that is have we tested enough
models, we propose a metric to quantify the amount of perturbation captured by
our perturbation terms, {gi (λ)} and { fi j (λ)}, for each model. For this calculation,
we check if the analytic reference state parameters found by solving Eqs. 2.13-2.15
for Ho are found within the predicted credible regions from Bayesian analysis for
those parameters. We assume that for an ideal model, where all of the perturbation
effects on copy number are captured by the perturbation terms, 100% of the ana-
lytic parameters from Ho will fall into the predicted credible regions. Our entire
workflow to determine the functional form of the perturbation coupling is shown in
Figure 2.1.
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Figure 2.1: Workflow for the application of the proposed statistical mechanical
framework to extract from single cell data the best functional coupling of a pertur-
bation to the system.
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C h a p t e r 3

APPLICATION: HYPOXIA EFFECT ON CANCER CELLS

We utilize our statistical mechanical framework to analyze the effect of changing
oxygen partial pressure on GBM cancer cells. We use this workflow to extract the
functional coupling of oxygen to the steady state distribution of copy number for
seven measured proteins from the single-cell data. This functional coupling can
then be used to make predict copy number distributions under varying conditions.
These predictions have several useful applications, including identification of un-
druggable regimes or potential drug targets in complex protein networks.

3.1 Selection of Perturbation Functional Coupling
To determine the functional coupling of oxygen to the steady state probability dis-
tribution for the seven measured proteins in our data set, we define 19 candidate
Hamiltonians. We are interested in identifying the most simple coupling that can
describe the system, so our first six Hamiltonians only have couplings of oxygen
to individual proteins, i.e. gi (pO2 ) only (Table 2.1 : M1 − M6). Biologically, this
indicates that there are a set of fundamental effective protein interactions, which
remain unchanged due to changes in oxygen. These models have direct connec-
tions to a previous analysis done by Heath et. al using a quantitative Le Chatelier’s
model[19], but contain more information about the functional form of the coupling
to the individual proteins. The next six models contain couplings to the effective
interactions between pairs of proteins ( fi j (pO2 )) only (Table 2.1 : M7 − M12). The
final seven models are a set of Hamiltonians that are combinations of the pairwise
and individual couplings (Table 2.1 : M13−M19). For all models, the reference state
chosen is at 21% pO2 , since this is the concentration most typically used in in-vitro

studies.

The functional forms for these models were chosen for their simplicity or similar-
ity to common functional forms seen in biological systems. We analyze a simple
linear coupling indicating a constant proportional relationship between changes in
oxygen and protein concentration. Additionally we look at three functions, expo-
nential, logarithmic, and a general power function, indicating that the oxygen con-
centration affects the rate of production or decay of the proteins[23]. Finally, we
analyze two threshold or switching functions, a hill and logistic function, that would
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indicate protein production or interactions may change at some threshold oxygen
concentration. To determine the probability of each of these functional couplings,
we analyze the odds ratios (only the odds ratios for the Log-Lin model are shown
in Fig. 3.1a), and what percent of the perturbation is captured by each model using
our afore mentioned metic (Fig. 3.1b).
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Figure 3.1: (a) Positive odds ratios (log shown) for Log-Lin model compared to
all other models indicates is is the most probable model. (b) Percent of analytic Ho

parameters, using 21% oxygen as the reference state, found in the predicted credible
regions for those parameters for each model, indicating that Lin-Lin contains the
greatest amount of the perturbation in the perturbation terms.

Overall, oxygen couplings to individual proteins only, that is with no effect on the
protein interactions or network, have similar, low probabilities (Fig.3.1a) and cap-
ture the least of the perturbation (Fig.3.1b), irrespective of the functional form of the
coupling. This indicates that hypoxic conditions, or oxygen perturbations, affect not
only the average copy number, but the fluctuations as well. Therefore, the effective
protein interaction network is likely altered under varying oxygen conditions.

In general, two functional forms, logarithmic and linear oxygen coupling are su-
perior to the other switching, exponential or power functional couplings. This is
seen both when the coupling occurs in only a pairwise manner or in a combina-
tion of pairwise and individual protein couplings. These functional forms, seen
in the X-Lin, X-Log, Lin-Lin, Log-Log, and Log-Lin models, are not only most
likely overall, but also capture the greatest amount of perturbation compared to all
models, all containing over 50% of the perturbation. Interestingly, at low oxygen
concentrations, the logarithmic functional form has a roughly linearly effect. Since
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much of our data is in this low oxygen range, that is four out of the five experimen-
tal conditions were ≤ 3%pO2 , all five of these models agree that the perturbation
effect is linear in low oxygen regimes.

According to the odds ratio, the Log-Linear (M19) model is most probable given
the fit and complexity of the models tested for this data (Fig.3.1a). The next best
two models are X-Log (M11) and Lin-Lin (M13), but are significantly (> e10) less
probable. However, our metric describing the percent of the perturbation captured
by a model (Fig 3.1b), indicates that the Lin-Lin model captures 91% of the pertur-
bation, while X-Log and Log-Lin only capture 54% and 71% of the perturbation,
respectively. This metric suggests that the Lin-Lin model best describes the intrin-
sic parameter set for the reference state, and may be close to an ideal model, which
is in disagreement with the odds ratio.

Since the odds ratio is an unbiased metric, derived directly from Bayes’ theorem
with no approximations, the Log-Lin model is likely the best model we have tested.
However, the discrepancy that arises from the Lin-Lin model capturing over 20%
more of the perturbation than any other model, begs the question of what makes
the Log-Lin model so much more probable. Therefore, we examine the two com-
ponents that make up the odds ratio, the goodness of fit of the model to the data
and the complexity of the model. The contributions of these two properties can be
estimated using the likelihood ratio and the Occam factor for each pair of models,
giving insight into the ordering of the odds ratios.

To estimates the posterior distribution we approximate the distribution as gaussian
and compare the relative hight and width of the distributions for each model. The
likelihood ratio compares the goodness of fit, or the height of the posterior, between
two models. The likelihood is the probability at the maximum a posteriori (MAP).
Using the most probable parameter set, the likelihood is calculated from our pa-
rameter estimation (P(D |Mi, γ

MAP
i )). The Occam factor penalizes more complex

models, those with more parameters, as well as models with less flexibility, that is
models having less parameter values consistent with a given model. The Occam
factor can be estimated by comparing the ratios of the widths of the priors to the
widths of the posterior distributions [24],

Occam Factor
(

Mi

Mj

)
=

P({γ}|Mj )
∏n

k=1 CR(γk )i

P({γ}|Mi)
∏n

k=1 CR(γk ) j
(3.1)

For both the likelihood ratios and the Occam factor, the Log-Lin model is used as a
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reference since it is the most probable model overall. We only examine the top five
models in this analysis.
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Figure 3.2: Estimated contributions to the odds ratio from (a) log likelihood ratios
and (b) the Occam factor for the top five models, all in reference to the Log-Lin
model (PLog−Lin/PMi ) and calculated using the MAP parameter values.

Investigation into the likelihood ratio indicates that the Lin-Lin model has a much
better fit (> e20) than the Log-Lin model, and that the X-Lin model has a nearly
identical fit to the Log-Lin model. This agrees with the metic determining the per-
cent of perturbation captured, indicating that metric is dependent on the fit of the
model. Lin-Lin being the best fit explains that this model likely has less of the per-
turbation overflow into the intrinsic parameter set for the reference state during the
parameter search, and why it has such a high percent of the perturbation captured
in the proper terms. Additionally, this analysis implies that the models with linear
functional coupling in the pairwise terms best fit this data set, indicating a linear
relation between oxygen concentration and effective protein interactions.

However, the Occam factor analysis illustrates that the Lin-Lin model is penalized
because it is more complex than the X-Lin and X-Log models, having seven more
parameters. Additionally, the Occam factors suggest that the logarithmic functional
form provides greater flexibility in the number of possible parameters that have the
same probability in the model, increasing the overall probability of the model, as
functions with this form have better Occam factors (Fig. 3.2b). It is also clear that
the X-Log model is the second most probable model overall, even though it has a
worse fit than the other top models, because it has fewer parameters (seven less than
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Lin-Lin or Log-Lin) and the increased flexibility due to the logarithmic functional
coupling.

Overall, the logarithmic terms seem to add flexibility, but decrease the fit of the
model. This may be due to there being some leveling off of copy number or fluc-
tuations at higher oxygen concentrations. Even if the lower oxygen concentrations
seem to fit a more linear model, the high oxygen concentration copy numbers could
limit the number of parameters in a linear model that fit the data equally well.
Therefore, the Lin-Lin model, even though it has a high fit for this data set, would
be too inflexible and make poor predictions for further experiments. The greater
range of parameter values allowed by the logarithmic terms in the Log-Lin model
indicate that this model will likely make better predictions over a greater range of
oxygen concentrations.

The relative fit and flexibility of these two models can also be compared visually
(Fig. 3.3). Although we see larger credible regions for the Log-Lin model, indicat-
ing greater flexibility but also an indication of a worse fit. Overall, the two models
are quite similar. Without more data it would be difficult to distinguish if the Lin-
Lin model is overfit for this dataset, or if it actually is a more accurate representation
of natural functional coupling of oxygen to this system of proteins.

Biologically, the functional forms for both the top models, Lin-Lin and Log-Lin,
indicate that the oxygen causes a linear response in the effective protein interaction
network. The results also show that the pairwise interactions changing is likely a
key aspect of the system’s response to a perturbation. Surprisingly, even though
the perturbation is linear in each effective protein pair interaction, the fluctuations
and covariance change can be much more complex due to the many interacting pro-
teins (Fig. 3.3). There is however still some ambiguity about whether the chemical
potentials couple linearly or logarithmically to the oxygen concentration. More ex-
perimentation would be useful to distinguish this coupling, particularly at a few
more oxygen concentrations, perhaps 10% and 80% pO2 to get a full range of be-
haviors. Due to this uncertainty, for the rest of the analysis, both the Lin-Lin and
Log-Lin models will be utilized to make comparisons and predictions.
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3.2 Comparison to Previous Analysis
We compare our framework and models to a previous analysis of this data, which
used a quantitative version of Le Chatelier’s principle[19]. The Le Chatelier’s prin-
ciple model relates the change in average copy number with a change in the chem-
ical potentials due to a change in the external conditions, but does not specify the
form of the change in chemical potentials over oxygen ranges. This model assumes
constant fluctuations (or covariance), which is analogous to our models with only
individual protein couplings (M1 − M7). However, even with these simple models
we have the ability to identify the specific functional form of the perturbation, un-
like the Le Chatelier’s principle model, which means we can predict copy number
averages and covariances, where as the Le Chatelier’s principle can only predict a
change.

To analyze what information is gained by the addition of the functional form we
compare our most probable model from the first six models, Log-X, to Le Chate-
lier’s principle model. Additionally, to see what is lost by assuming the fluctuations
are constant, and how that effects our predictive capabilities, we compare our best
fitting models, Log-Lin and Lin-Lin, to the Le Chatelier’s principle model. Since
the Le Chatelier’s principle model can only predict changes in average copy num-
ber and predicts no changes in covariance, we analyze the error in these predictions
compared to experiment for each model overall (Fig 3.4a-b) and by protein (Fig
3.4c).
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Overall, our top models are significantly more accurate, at least two times more so,
than the previous Le Chatelier’s principle model in predicting the change in average
copy number (Fig. 3.4a). Log-X, like Le Chatelier’s principle, assumes constant
effective protein interactions and therefore has constant covariance, so we see the
same poor prediction in covariance change (Fig.3.4b). However, the Log-X com-
parison shows that just knowing the functional form provides increased predictive
capabilities for change in copy number. The functional form implies that the growth
rates of proteins may be effected by changes in oxygen concentration in a logarith-
mic fashion. We again see that Lin-Lin and Log-Lin are similar, and both are more
accurate at fitting both, average and covariance, than models with no pairwise cou-
pling (Log-X or Le Chatelier’s). However, Log-Lin is actually better at predicting
changes in covariance than Lin-Lin, perhaps another indication of its being the most
probable model, and increasing the evidence that the individual protein growth rates
are affected logarithmically by oxygen change.

In looking at individual protein predictions, we do see that Le Chatelier’s principle
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makes poor predictions for some particular ranges in oxygen, particularly from 3%
to 2% pO2 . Our models however, have more consistent error across all oxygen
changes, overall fitting the data more accurately, and increasing our confidence in
more expansive predictive capabilities of the model. Additionally, by looking over
the individual proteins, some models, including Le Chatelier’s, do better, sometimes
significantly so, for one protein and very poorly for another. This could indicate
that mixed models, where each protein could have a different type of individual or
pairwise functional form may provide even more actuate models.

The poor predictions using Le Chatelier’s principle model between 3% and 2%
pO2 were attributed to the oxygen concentration being a strong perturbation in this
regime, which was considered the cause for the disagreement with the theory[19].
Our model does not support this, and therefore see no reason to assume one concen-
tration is a stronger or weaker perturbation, but instead the effect seen is due to the
functional coupling of the oxygen concentration to the system. Additionally, using
PCA analysis, the previous model indicated that a few proteins became decoupled
from the network. Specifically, VEGF seemed to be unpredictable between 2% and
1.5% pO2 , perhaps decoupling from the rest of the network. There also seemed to
be a loss in mTOR signaling coordination, which lead to p-mTOR becoming unre-
sponsive to some drug treatments[19]. However, they were unable to specifically
say how the coordination shift occurs, or the degree to which this occurs. Using
the changes of the chemical potentials and effective protein interaction network, we
can analyze these two claims in more depth.
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Figure 3.5: Protein networks for p-mTOR and VEGF over a range of oxygen con-
centrations as predicted by the Log-Lin and Lin-Lin models. Widths of connect-
ing lines and circles represent strength of effective interaction, circle fill represents
strength of chemical potential. Dashed and solid lines represent inverse and positive
effective pairwise interactions, respectively.

Both of our best fit models indicate that VEGF does indeed become decoupled, and
then changes sign of interaction with p-ERK, HIF-1α, IL6 and itself, between 1%
and 2% pO2 (Fig. 3.5). Additionally, the chemical potential of VEGF also goes to
zero, though at 2% pO2 in the Lin-Lin model and 1% pO2 in the Log-Lin model.
The chemical potential gives us an indication of the natural flux in copy number,
and therefore, in this range there could be large fluctuations in the particle number
for VEGF, since there is no natural tendency to either increase or decrease, both are
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possible, which is in agreement with what the previous analysis saw for this protein.

However, unlike in the Le Chatelier’s principle model, p-mTOR does not seem to
have a loss in its signaling network between 1.5-2% pO2 . There is a slight weaken-
ing of the interactions from p-mTOR to all other proteins as oxygen concentration
increases. However the protein network only becomes significantly different for
mTOR at high oxygen concentrations (12-20 pO2), which is where in-vitro studies
are conducted. In order to test the validity of these predictions in the protein signal-
ing network, single-cell data at more oxygen concentrations between 21% and 3%
would be useful.

From this analysis, we see that our framework provides a more specific picture
of system’s response to a perturbation. We are able to examine not just a change
in copy number, but also specific network and individual protein characteristics,
providing more insight into the biological response.

3.3 Predictions
Besides gaining information on the functional coupling of the perturbation to the
system, this framework can also make predictions outside of the measured pertur-
bation conditions or related to testable changes to the protein network, such as the
knocking out a protein or an interaction.

Predictions outside of the perturbation regimes measured experimentally could iden-
tify interesting and useful perturbation regimes, where there may be different be-
haviors in average protein copy number or large changes in fluctuations. For the
hypoxic system, predictions can be made for extremely low and very high oxygen
concentration conditions.
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Figure 3.6: Predictions of average and covariance in copy number with the Lin-Lin
and Log-Lin models over low oxygen concentrations.

At low oxygen concentrations, at about 0.6 pO2 , we note a discontinuity in our
predictions for the average copy number and covariance (Fig. 3.6). This can be at-
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tributed to a singularity in the pairwise interaction matrix, A + F, causing the deter-
minate of the pairwise interaction matrix to go to zero. This discontinuity is found
in six (M7,M11,M12,M13,M17 and M19) of the nineteen models. Three of those have
linear pairwise coupling to the oxygen concentration, and the discontinuity arises
between 0.6 and 0.62 pO2 . Two of them are logarithmic in the pairwise coupling
terms and they both have two discontinuities, at about 0.45-0.5 and 0.84-0.87 pO2 .

This behavior could potentially be interesting, showing that the fluctuations in copy
number in this regime are large and indicate a kind of phase transition, as has been
proposed (although for slightly higher oxygen concentrations, about 1.5pO2) by
Heath et. al [19]. However, two checks would need to be made before this con-
clusion could be made. First, although we constrain the system to have bounded
energetics by checking that the Hamiltonian has a minimum at each experimentally
tested oxygen concentration (see full description of the constraint in Appendix B),
we do not apply this constraint to all possible oxygen concentrations, in an attempt
to use minimal constraints. However, these limited constraints may not be enough
to get physically reasonable predictions over all oxygen concentrations. Therefore,
before moving on to additional experimentation, the second check on the validity of
this discontinuity, it is suggested to first apply this constraint in all oxygen regimes.
This could be implemented by checking that the roots of the determinate of the
A + F matrix fall outside of the possible oxygen concentration regimes (0-100%
pO2).

This theoretical framework also provides a way to investigate the effect of chang-
ing or removing interactions between proteins. This could be extremely useful in
determining how a drug that alters a single protein or protein interaction affects the
complex protein network over a range of perturbation conditions. For example, in
looking at the effect of hypoxia on cancer cells, it has been seen that p-mTOR in-
hibitors fail in some oxygen concentration regimes [25]. To look at how a mixture
of drugs may be useful, we can remove one or more effective interactions and see
how the system responds across oxygen concentrations (Fig. 3.7).
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Figure 3.7: Predictions from Log-Lin model showing effects of removing removing
the effective interaction between pmTOR and pERK.

To test this hypothesis we removed the effective interaction between p-mTOR and
p-ERK while keeping the other interactions the same. For simplicity we only show
the effects of this on the average copy number, though this would effect the covari-
ance values as well. Changing even one interaction causes significant changes to the
average copy number for some proteins (p-mTOR, p-ERK, p-S6K). This would be
a helpful tool in identifying if more or other drugs were needed to remove multiple
interactions to cause the effect of interest, or to be sure to keep some interactions
intact (say for some important functions in healthy cells).

Our best fit model also makes useful predictions about the effect of knocking out
certain genes to render a protein dysfunctional [26, 27]. In many biological systems
it can be hard to predict the effect of stopping the production or function of a protein
in a cell since most protein interactions are not well known and likely vary with cell
conditions. However, our tool provides a way to explore the effect of removing one
or more proteins on other proteins copy number (and fluctuations). This can be
done by effectively causing a protein to have an average copy number of zero (Fig.
3.8).
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Figure 3.8: Predictions from Log-Lin model showing effects of knocking out pm-
TOR.

Here we knockout p-mTOR and as expected p-ERK and p-S6K are largely effected
over all oxygen concentration ranges since these are known to be downstream ef-
fectors of p-mTOR. We also see some proteins, IL6 and MMP1, are affected at only
one end of the oxygen concentration range which we would not have been able to
predict without this analysis due to the complex interactions of these proteins. This
reinforces the necessity of understanding the evolution of the steady-state distribu-
tion, since some effects manifest only under certain perturbation conditions, which
would be missed if only one particular steady state was examined.

These predictive capabilities could be extremely useful in understanding how to
effectively drug a protein network in cancer cells. Cancer cells have been shown to
be very plastic, so changes in protein networks are frequent and not always lethal.
Similarly, drug sensitivity is dependent on the conditions that the cell is under, as
some cell states are more susceptible to a therapy than others. Describing how many
cell states respond to the same perturbation could address this therapeutic challenge.
Specifically, our model can describe both how protein interaction networks evolve,
and which conditions have cell states most susceptible to a drug. Our framework
provides a way that would allow multiple knockouts or interactions to be tested,
like a combination drug, and the effects could be analyzed over a large range of
perturbation conditions.



27

C h a p t e r 4

CONCLUSIONS

Summary
We propose a simple theoretical statistical mechanical framework to model the evo-
lution of the probability distribution of cellular components in a cell in response to
an external perturbation. We describe a methodology using Bayesian inference,
to extract the functional coupling of a perturbation to the system of interest from
single-cell experimental data. The flexibility of the framework allows the appli-
cation of this methodology to any system where simultaneous measurements of
single-cell cellular component data can be collected. Any number and type of cel-
lular components can be studied, from proteins, to mRNA, to small molecules, such
as metabolites. Even without describing the mechanistic bimolecular interactions,
the results of this approach extract many fundamental underlying characteristics of
the system. It provides a new way to assess and understand the state of the signal-
ing network and individual proteins under the influence of a physical or molecular
perturbation.

The application of our framework to explore the effect of hypoxia in GBM cancer
cells found that oxygen couples to the effective interactions between proteins, not
just to individual proteins. The most probable coupling to the effective interactions
was found to be linear, and the individual couplings were found to be either logarith-
mic or linear. These results indicate that the state of the protein interaction network
changes linearly with the oxygen concentration, but that this can cause more com-
plex behavior in the fluctuations and average copy number in a cell. We show that
this methodology provides more accurate predictive capabilities than analyses like
the Le Chatelier’s principle method, along with a more detailed description of the
effect of the perturbation.

Future steps
We propose several future experiments that could be done to test the validity of our
approach and also suggest potential systems to investigate.

Further experiments and theoretical analysis can both strengthen and expand the
approach described here. SCBC experiments at other oxygen concentrations, par-
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ticularly useful would be 0.1, 10 and 80 pO2 , could capture a broader range of cell
behaviors by surveying the full spectrum of possible oxygen concentrations. This
additional data could clarify whether the Lin-Lin model is overfitting the current
data, or if the Log-Lin model is actually the best fit model. Also to investigate the
observed discontinuity in fluctuations and average copy number, we could change
the way in which we implement our constraints during parameter searches. If the
discontinuity is still observed, then experiments should be done in this low oxygen
concentration regime to check the validity of this unexpected prediction. Addition-
ally, in the raw data there are several outliers (see Fig. 1.1) and some tests with the
removal of these outliers would be a good robustness check.

To determine the need for a more complex model, we propose trying to add a the-
oretical ‘extra’ protein for a calculation and remove one of the measured proteins
in another. By removing a protein we could investigate if the most probable can-
didate Hamiltonians order changes leading to a new coupling being predicted. If
a subset of proteins are better described by a different functional form, it may not
be appropriate to presume all cell components have the same functional coupling to
the same perturbation. This could indicate that mixed models are perhaps necessary
and should be tested. Adding an ‘extra’ protein would help to identify if the subset
of cellular components experimentally chosen captures enough of the interactions
for this network. For example, it could indicate if some protein had a high influence
on this system, we might find that this influence would then be captured in the extra
protein and would help to direct next experiments to include or find this molecule.

Since this theoretical framework is extremely flexible, it can easily be applied to
new systems. In particular, it would be ideal to find a data set for, or experimentally
test, a system that is fully contained (or as much as is possible in biology). Analo-
gous to new methodologies created to examine electronic structures, testing is done
on a well known, well studied and fully understood model systems. Ideally, finding
a simple biological system in a cell, consisting of two or three cellular components
and having a well known functional coupling to a perturbation would be ideal. Per-
haps finding a simple two state switching system in which the proteins can be “on”
or “off” may be able to provide this. Additionally, using a more simple model or-
ganism as well would be useful, perhaps E.coli where there are fewer factors at play
and the system is more fully studied.

Once more standardized checks have been completed for the framework, larger
systems should also be tested. SCBC methods can now test upwards of 50 cellular



29

components at a time [2]. It would be interesting to investigate what useful infor-
mation can be provided from understanding how a larger system responds to a per-
turbation. Also, a specific system that this might be useful for, is testing the effects
of drug conditions on cancer cells, particularly for finding useful drug concentra-
tions or combinations by using the convenient predictive tools this methodology
provides, such as looking at protein knockouts or interactions removals.
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A p p e n d i x A

DERIVATIONS USING GRAND CANONICAL ENSEMBLE

This appendix shows the derivations for H = Ho for simplicity. However, analo-
gous derivations can be completed for the full Hamiltonian when a perturbation is
present, since the perturbation terms combined with the reference state terms can
simply be thought of as forming ’new’ chemical potentials and effective interactions
at each oxygen concentration.

A.1 Partition Function
1-Component System
Assuming cells are at a constant volume and temperature, but particle number (cel-
lular component count) fluctuates, the grand canonical ensemble can be used. The
grand canonical partition function is given by

Ξo =
∑
N,E

e−βE+βµN (A.1)

A given microstate in the system is completely determined by the protein copy
number (N) and is weighted according to a Boltzmann distribution. The same en-
ergetics of a given microstate (N) obtained from two different volume and inverse
temperature values are given as follows:

βi

V i ai N2 + βiµi N =
β j

V j a j N2 + β j µ j N (A.2)

By setting βi = ξ β j or V i = ξV j , where ξ is an arbitrary scaling factor, and
comparing each term in the above equation shows that the energetics of i and j

microstates are equivalent to one another given appropriately rescaled parameters
(a and µ). Therefore volume and beta are redundant and their values are arbitrary.

The partition function can be written as as sum over all discrete particle numbers
since each state will have a different energy according to the particle number:

Ξo =
∑

N

e−βH (N ) (A.3)

The discrete partition function is not analytically solvable, however, we can ap-
proximate the partition function as a continuous integral over all possible cellular
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component densities

Ξo = V
∫ ∞

0
dρe−βaρ2V+βµρV (A.4)

The exactly solvable Gaussian integral can be evaluated using the following form:

I =

∫ ∞

−∞

e−
1
2 Cx2+Dxdx (A.5)

where we complete the square as

−
1
2

Cx2 + Dx = −
1
2

C(x −
D
C

)2 +
D2

2C
(A.6)

When C = 2a, D = µ and x = ρ, the partition can be solved as

Ξo = V
∫ ∞

0
dρeβV (−a(ρ− µ

2a )2+
µ2
4a ) (A.7)

Ξo = V e
βV µ2

4a

∫ ∞

0
dρe−βV aρ2

(A.8)

Ξo =
V
2

√
π

βV a
e
βV µ2

4a (A.9)

n-Component System
With n cellular components, the partition function can be written by integrating
over the density for each component.

Ξo = V n
∫ ∞

0
dρ1

∫ ∞

0
dρ2 . . .

∫ ∞

0
dρneβV (−

∑
i, i< j ai j ρi ρ j+

∑
i µi ρi) (A.10)

As with the 1-component case, this exponential can be rewritten to complete the
square with the use of matrix form as

Ξo = V n
∫ ∞

0
dρ1

∫ ∞

0
dρ2 . . .

∫ ∞

0
dρne−

1
2 ρ

TAρ+MTρ (A.11)

where ρ =

*.......
,

ρ1

ρ2
...

ρn

+///////
-

, MT = βV
(
µ1 µ2 . . . µn

)
and A= 2βV

*.......
,

a11
1
2 a12 . . . 1

2 a1n
1
2 a21 a22 . . . 1

2 a2n
...

...
. . .

...
1
2 an1

1
2 an2 . . . ann

+///////
-

such that A is a symmetric matrix.
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This equation can be simplified by transforming ρ to another vector q with an
orthogonal matrix S with a determinant of unity:

ρ = Sq (A.12)

The integral is now

Ξo = V n
∫ ∞

0
dq1

∫ ∞

0
dq2 . . .

∫ ∞

0
dqne−

1
2 qTS−1ASq+MTSq (A.13)

The matrix S is a diagonalizing matrix which means that

S−1AS =
*...
,

d1 0 . . .

0 d2 . . .
...

...
. . .

+///
-

= D (A.14)

which transforms as

−
1
2
ρTAρ + MTρ→ −

1
2

qTDq + MTSq (A.15)

The variables can now be separated, which expands to

−
1
2

(d1q2
1 + d2q2

2 + . . . dnq2
n) + MαSα1q1 + MαSα2q2 + . . . MαSαnqn (A.16)

where the summation of terms will be over the index α. The square can be com-
pleted for each qi term.

−
1
2

di (qi −
MαSαi

di
)2 +

(MαSαi)2

2di
(A.17)

Using the completed square the partition function can be evaluated as

Ξo = (
V
2

)n (2π)
n
2

|A|
1
2

e
1
2 MTA−1M (A.18)

where |A | is the determinant of a A .

A.2 Ho Ensemble Statistics
The average, 〈N〉, and fluctuations, 〈(δN )2〉, in cellular component copy number are
calculated from the derivative of the partition function with respect to its conjugate
variable βµ according to the following equations:

〈N〉 =
1
β

∂ lnΞ
∂µ

(A.19)
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〈(δN )2〉 =
1
β

∂〈N〉
∂µ

(A.20)

By choice in our candidate Hamiltonians, we have chosen to only include couplings
to individual and/or pairwise protein interactions. Therefore, the third and all higher
moments in each model are zero by definition. However, the data contains this
information and could be included in a new candidate functional form, in which
case, the third derivative with respect to βµ of the partition function would give the
third moment.

〈(N − 〈N〉)3〉 = 〈N3〉 − 3〈N〉(〈N2〉 − 〈N〉2) − 〈N〉3 =
1
β3

∂

∂µi

∂

∂µ j

∂ lnΞ
∂µk

(A.21)

1-Component
By evaluation of this derivative, the average number of proteins is found to be

〈N〉 =
1
β

∂

∂µ

[
βV µ2

4a
+ ln

(
V
2

√
π

βV a

)]
(A.22)

〈N〉 =
V µ
2a

(A.23)

and the fluctuation in number of proteins is found to be

〈(δN )2〉 =
V

2aβ
(A.24)

2-Components
To begin generalizing we start with a two component system, with components 1
and 2 the average, variance, and covariance would be

〈N1〉 =
V (2µ1a22 − a12µB)

4a11a22 − a2
12

(A.25)

σ2
2 = 〈(δN1)2〉 =

2V a22

β(4a22a11 − a2
12)

(A.26)

σ12 =
−V a12

β(4a22a11 − a2
12)

(A.27)

3-Components
To see full generalizations we show a three component system, with components
1,2, and 3

[
1
2

MTA−1M] =
(βV )2

2|A|
[µ2

1C11+µ2
2C22+µ2

3C33+2µ1µ2C12+2µ1µ3C13+2µ2µ3C23]

(A.28)
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where C is the cofactor matrix of A. This leads to an average, variance (one shown),
and covariance (one shown) of

〈N1〉 =
βV 2[µ1C11 + µ2C12 + µ3C13]

|A|
(A.29)

〈(δN1)2〉 =
V 2C11

|A|
=
β2V 4[4a22a33 − a2

23]
|A|

(A.30)

〈(δN1)(δN2)〉 =
V 2C12

|A|
=
β2V 4[a23a13 − 2a12a33]

|A|
(A.31)

n-Components
To generalize the 1, 2 and 3-component systems, we can multiply by the determi-
nate of the A matrix. This gives

〈Ni〉 =
1
β

∂ lnΞ
∂µi

=
1
β

∂

∂µi
[
1
2

MTA−1M] (A.32)

σi j =
1
β2

∂2 lnΞ
∂µi∂µ j

=
1
β2

∂

∂µi

∂

∂µ j
[
1
2

MTA−1M] (A.33)

which arrive at Eqs. 2.11 and 2.12, respectively.
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A p p e n d i x B

CALCULATION DETAILS

Constraints
In order for a given candidate Hamiltonian to have a guaranteed energy minimum
at some cellular component copy number we apply the second derivative test in
n-variables. Therefore, the determinate of the Hessian of the Hamiltonian must be
positive definite. The Hessian of the Hamiltonian is just the matrix A+F. Therefore
any parameterization of the Hamiltonian must follow this constraint. We enforce
this in our sampling algorithm by checking that for every oxygen concentration
experimentally tested that the A + F matrix is positive definite.

In order to perform parameter estimation for each model, to encode our prior knowl-
edge we use an uninformative uniform prior for each parameter in the model. The
natural parameters for the reference state, {ai j } and {µi}, are very small, much less
than 1, therefore for all models to encode our uncertainty we give an extremely
wide range for these parameters, using a uniform prior from (-500, 500). Ranges
for all other a parameters for each model can be found in Table B.1. Parameter prior
ranges for these other parameters are only limited from the (-500,500) range if the
units would limit the parameter values (ex. M3 has a parameter with units pO2 and
these values can only be from 0 to 100 as it is a percent), or if too wide of range
of parameter values would mean essentially effect gives the same result (ex. with
exponents once they become large, the effect is essentially the same so we cut it off

before 500).
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Models: Parameter (min, max)

M1 ki (−500,500)
M2 ki (−500,500) bi (−500,500)
M3 ki (0,100) bi (−500,500) mi (−150,150)
M4 ki (0,100) bi (−500,500) mi (−500,500)

In
di

vi
du

al
M5 bi (−500,500)
M6 bi (−500,500) mi (−150,150)

M7 ki j (−500,500)
M8 ki j (−500,500) bi j (−500,500)
M9 ki j (0,100) bi j (−500,500) mi j (−150,150)
M10 ki j (0,100) bi j (−500,500) mi j (−500,500)

Pa
ir

w
is

e

M11 bi j (−500,500)
M12 bi j (−500,500) mi j (−150,150)

M13 see M1 and M7

M14 see M2 and M8

M15 see M3 and M9

M16 see M4 and M10

C
om

bi
na

tio
n

M17 see M5 and M11

M18 see M6 and M12

M19 see M5 and M7

Table B.1: Uniform prior ranges used in parameter estimation calculations.

Convergence
In order to test convergence of our PTMCMC simulations, we use three criteria,
two visual and one analytical. First we analyze the log(Z1) error calculated in the
EMCEE package that indicates the error in this value associated with only sampling
20 temperatures; practically this number looks at the error associated with having
half as many samples. Therefore, if there is a small difference with half as many
samples it is an indicator that convergence has been reached. In practice, as long
as the error in the log-evidence is a small fraction, <0.1%, of the log-evidence, we
accept that criteria as converged.

Additionally we check the trajectories of a random sample of walkers in parameter
space for the last 2000 steps, which are the values we use in our calculations of the
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odds ratio and parameter estimations. We plot a subset of these steps and the aver-
age value. An example plot can be seen in Figure B.1. Convergence is indicated If
the average value is unchanging and the walkers are sampling a small space around
the average.
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Figure B.1: Walker trajectories for 200 walkers are shown. The average value is
shown in red. Three of 42 parameters are shown for the Lin-X model.

Finally, we visualize the posterior by plotting the marginalized posterior for all pa-
rameters in the model. Although this does not tell us exactly if convergence is
reached, in general the distributions will reach a more cleanly shaped distribution
(usually gaussian shaped if not bimodal) showing one or two clear peaks once con-
vergence is reached. This also indicates if we might have a multi-modal posterior
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which would make our other convergence checks not work as well. So this final
check is more useful to gain an overall picture of the posterior.
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Figure B.2: Marginalized posterior for each parameter in the Lin-X model.


