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Abstract 
 

 

Novel Parylene Filters for Biomedical 

Applications 
 

Thesis by 

Yang Liu 

Doctor of Philosophy in Electrical Engineering 

California Institute of Technology 

 

 

Medical engineering plays a more and more important role in driving the 

fundamental biology research moving forward.  The work presented in this thesis targets 

at engineer smart parylene filters for various biomedical applications.  Three smart 

parylene membranes are discussed. The first device is parylene magnesium-embedded 

filter for circulating tumor cells isolation. Circulating tumor cells (CTCs) are cells that 

slough off the edges of a primary tumor and are swept away by the bloodstream or 

lymphatic system into the vasculature. They constitute seeds for subsequent growth of 

additional tumors in vital distant organs, triggering a mechanism that is responsible for 

the vast majority of cancer-related deaths. Thus CTCs in peripheral blood have been 

investigated as a valuable biomarker for patients with various types of cancers. However, 

CTCs are difficult targets to probe owing to their extremely low concentration in 

peripheral blood. Although rare, CTCs represent a potential approach for the detection, 
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characterization and monitoring of non-haematologic cancers. Therefore, CTCs capture 

from whole blood has been identified to be an unmet need for cancer research and 

effective cell separation methods are required to facilitate the study of CTCs. In this 

study, we developed a novel design applying a buried sacrificial Magnesium (Mg) layer 

underneath the original microfilter. After filtration, the filter was immersed in DMEM. 

When the thin-film Mg was dissolved, the cells were released and thus were ready for 

further biology analysis. 

The second device is parylene based microelectrode filter for single-islet 

electroisletogram. Other than direct insulin injection, one promising treatment for Type I 

diabetes is islet transplantation. However, one of the key lacking technologies of islet 

transplantation is high-throughput islet screening since each transplantation requires 

about one million islets.  Islets, which are heterogeneous by nature, are currently screened 

as whole populations containing a range of functioning and dysfunctional characteristics. 

This work represents the first attempt to develop a MEMS technology for the screening 

of every single islet so as to guarantee no bad islet at all, which should improve results of 

islet transplant therapy. Here we report the first MEMS device designed for in vitro 

measuring of electroisletogram (EIG) of individual rat islets. Strong EIG signals in 

millivolt range are obtained.  This work proves the feasibility of using MEMS and EIG 

for high-throughput screening, in contrast to patch-clamp measurements, of islets for 

transplantation to treat diabetes.  

The third device is parylene-on-PDMS membrane for vaccine production. A 

parylene-on-PDMS design is proposed to supply oxygen to CV-1 cells for vaccine 

production. Because the cells are seeded and attached right onto the surface of the device, 
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extra oxygen is provided through permeation from the PDMS and thin parylene layers. 

The permeation is studied and cell growth experiments are performed to demonstrate the 

feasibility of the device. Compared to commercialized bioreactors, this novel design 

could have large cell density because oxygen is supplied locally and shear force is not a 

limiting factor any more. 

Besides the three devices, parylene properties are also studied and a novel origami 

design is proposed, which can potentially increase the surface areas of the membranes by 

fold the 2D flat film into 3D structures. Details are discussed in the following chapters. 
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1 INTRODUCTION 

 

 

This chapter focuses on the introduction of parylene. First of all, the parylene 

family and the common members are discussed, followed by advantages of parylene as a 

biocompatible material. Next, the chemical vapor deposition (CVD) processing 

technology is presented to illustrate how does parylene dimers becomes a uniform 

coating on substrates. The state-of-art research on parylene in bio-MEMS applications are 

investigated to demonstrated that parylene is indeed a promising material candidate, 

drawing more and more attentions from researchers in the relative fields. Parylene 

membrane applications are also presented as a case in bio-MEMS applications. Parylene 

membrane normally indicates a sheet of parylene with a wide range of microstructures, 

such as holes, microchannels, crease patterns etc. for different applications. After the 

review of parylene, micro-mechanical-electrical-system (MEMS) is introduced for the 

reason that all the parylene micro-machining techniques are within the processing 

knowledge of MEMS. Three most common and fundamental technologies are presented, 

which are lithography, bulk machining, and thin-film process. Lithography is the process 

that creates patterns on certain photoresists for the purpose of future structure 

constructions. Bulk machining mainly refers to etching techniques to create trenches, 
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 3

material. Besides biocompatibility, it also has good mechanical properties, such as 

Young’s modulus and elongation to break. The optical transparency is also a favorable 

property for practical experiments [2]. It is also a highly inert material that can stand 

severe chemical corrosion. Last but not least, parylene-processing technique is totally 

compatible with traditional MEMS fabrication methods. The thin-film of parylene can be 

deposited on to any substrate, including both solid and liquid, with precisely controlled 

thickness. The machining of the parylene thin film can be done with MEMS processes, 

for instance, the etching of parylene film can be accomplished through oxygen plasma, 

and both chemicals and different plasmas can change the surface properties. Therefore 

for all the reasons mentioned above, parylene-C is a perfect choice for substrate of 

devices in the bioMEMS field. 

In our research, due to the application requirements and the advantages of 

parylene-D, parylene-D is also applied and studied together with parylene-C, which will 

be introduced in the following chapters. 

. 

1.1.2 Processing Technologies 

Figure 1-2 shows the low-pressure chemical vapor deposition process (LPCVD) of 

parylene. The parylene dimer (Specialty Coating System) is weighted in an aluminum 

boat and put into the vaporizer for heating up. The vaporizer temperature is set up to 150 

degree C and the parylene dimer becomes gas phase. Then the parylene vapor flows 

through the tube into the pyrolysis furnace, where it is heated up to 690 degree C. Of 

course the whole space is under vacuum because of continuous pumping of mechanical 

pump. In the pyrolysis tube, the dimer of parylene breaks up into monomer due to the 
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high temperature. Monomer gas then flow into the coating chamber which is under the 

room temperature. The monomer forms polymer by crosslinking. It will coat everywhere 

in the chamber where the sample or product is placed beforehand. Because of uniform 

coating, a glass slide is always put in for the purpose of thickness measurement later on. 

The rest of monomer gas flows into the cold probe afterwards and get trapped because of 

the low temperature. Last but not least, a mechanical pump is connected to the whole 

system to bring the pressure down during the coating process. 

The previous paragraph has briefly introduced the deposition process of parylene 

film. After deposition, it is also important to perform the micromachining of the parylene 

layer, normally on the surface of silicon wafer. To do that, lithography as well as dry 

etching techniques are involved. Lithography is used to pattern a mask layer on top of 

parylene, which will be introduced in the “MEMS technology” section in this chapter. 

Here, dry etching will be introduced in advance. Oxygen is used as the primary gas for 

the plasma etching. To generate the plasma, RIE (reactive ion etching) or DRIE is used. 

The plasma is generated by high frequency magnetic field under low pressure. Frequency 

is set to 13.56 Megahertz. 400-Watt power, 200-mTorr pressure recipe is optimized as the 

standard parylene etching method. An etching rate of 0.2-micron/ minute can be achieved. 
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done a tremendous amount of research [5]. Besides all mentioned above, packaging 

techniques using parylene is a big area as well. For instance parylene on silicone oil 

packaging for intraocular pressure senor [6]. 

 

1.2 Parylene Membrane Applications 
 

In this section we focuses on research targeting to parylene membrane. Besides all 

the research mentioned above, parylene membrane applications specifically refer to 

MEMS devices build on a sheet of parylene. The parylene membrane acts as the flexible 

substrate and the devices fabricated on top of that may contain other layers of thin films 

or different structures like microchannels regarding different applications. Under some 

circumstances the surface of parylene also needs selectively special treatments, for 

instance, for cell culturing on selective areas. Because of the advantages on flexibility, 

optical transparency and biocompatibility, parylene membrane is a perfect substrate for 

devices that involve biology experiments. The following chapters will discuss several 

parylene membrane applications for different purposes. 

 

 

1.3 MEMS Technologies 
 

MEMS is short for micro-electro-mechanical-system. It refers to technologies that 

build micron scale integrated devices including both electrical and mechanical 

components. It emerges because of the development of semiconductor and IC design and 

fabrication industries [7]. The famous commercialized MEMS industry products include 
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1.3.1 Photolithography 

 

Photolithography is one of the most important techniques in the MEMS 

fabrication field. It is a process that transfers whatever pattern on the chrome-glass mask 

to the photoresist layer on the wafer. This step is crucial because it needs to provide the 

resolution high enough to get the device with the most accuracy and the smallest feature 

size. Photoresist is sensitive to light under certain wavelengths. Different photoresists 

have different spectrum but the most widely used ones are most sensitive to UV light. 

There are 2 different kinds of photoresists, which are positive photoresists and negative 

photoresists. They are different from the fact that for positive photoresists, the pattern on 

the chrome-glass mask will be totally transmitted to the photoresists in the same way. By 

saying that, the part on the mask where there is chrome corresponds to the part where 

photoresist stays on the wafer; while the part on the mask where there is only glass 

corresponds to the part where the photoresist will be gone after developing in photoresist 

developer, in our case, AZ 340. For the negative photoresist, things work oppositely. The 

transparent parts on the mask corresponds to the parts where photoresist remains after 

developing process while the parts with chrome result to the parts that photoresist will be 

gone. This whole argument is clearly seen in Figure 1-4. 
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Figure 1-6: Relationship of AZ4620 photoresist remaining weight over time 

 

 Once soft baking is done, the wafer is ready for UV exposure. The alignment 

must be perfect (less than 2 micron error) in order to get the same resolution of 2 micron. 

Besides that, a successful exposure also need right power and time. If both are low, the 

photoresist cannot be exposed through. If both are high, the exposed area will be bigger 

than the area on the mask because the light is not 100% straight down. 

 Once exposure step is finished, the wafer will be put into developer, which is 

commonly based. Time and rotation are important factors to control in order to get 

perfect patterns on the wafer. DI water is used to rinse off the remaining developer. Spin-

dry is applied afterwards to get rid of water. Hard baking is followed if necessary. 
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 As discussed above, photoresist lithography process is extremely important for 

MEMS fabrication processes. For industry and high-level research labs, this process has 

been automated for many years but it is still important to gain hands-on experience and 

the knowledge of the basics. 

 

 

1.3.2 Bulk Micromachining 

Bulk micromachining refers to the fabrication process where the bulk material 

needs to be partially removed. In MEMS technology, it commonly refers to etching 

techniques. The etching techniques can be divided into two parts: wet etching and dry 

etching. Wet etching method is applied by using corrosive etchants. On the other hand, 

dry etching refers to plasma etching such as RIE (reactive ion etching) and DRIE (deep 

reactive ion etching). 

The etching methods can also be divided into isotropic and anisotropic. For the 

isotropic etching, the etching rate of the substrate is same at all directions. It indicates 

that the chemicals will etch the materials under the etching mask. This phenomenon is 

called undercut. Figure 1-7 shows the undercut problem of isotropic etching. 
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biodegradability. Detailed magnesium fabrication process and characterization will be 

discussed in the following chapters. 

 

1.4 Layout of the Dissertation 
 

Chapter 2 focuses on parylene characterization, including both mechanical tests 

and research on parylene surface modifications. Characterization of parylene material 

properties is the fundamental stuff to perform before design and build devices for the 

reason that understanding and having the ability to modify the material will help solve 

problems of device performance. 

Parylene smart filter devices are introduced chapter by chapter. Chapter 3 focuses 

on the topic “parylene magnesium-embedded filter for circulating tumor cells isolation”, 

in which a parylene based filter is designed, fabricated and tested for the capture and 

release of circulating tumor cells. Chapter 4 discussed the topic “parylene based 

microelectrode filter for single-islet electroisletogram”. A novel design of parylene based 

filter for electroisletogram recording and analysis is presented. Chapter 5 introduced 

parylene membrane for vaccine production. Ultra-thin parylene, which is oxygen 

permutable, is used for cell culturing. The last chapter is on parylene origami structure. It 

focuses on a novel design of folding 2D parylene film into 3D structure, which opens 

many doors for new applications on parylene membranes. 

 

1.5 Summary 
 

In this chapter, the parylene materials as well as state-of-art applications are 
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introduced. Research on parylene membrane devices is also reported to show that 

parylene based devices are becoming more and more attractive in bioMEMS research. 

MEMS technologies are discussed afterwards. Important techniques are introduced, such 

as lithography process, bulk micromachining, and thin film processes. The background 

introduction will lay the foundation of the discussion on the devices in the following 

chapters. 

 

1.6 Reference 
 

[1] SCS parylene properties. Available: http://scscoatings.com/what-is-
parylene/parylene-properties 

[2] Parylene - Wikipedia, the free encyclopedia. Available: 
https://en.wikipedia.org/wiki/Parylene 

[3] J. Chang, Y. Liu, and Y.C. Tai, Reliable packaging for parylene-based flexible 
retinal implant, Solid-State Sensors, Actuators and Microsystems 
(TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors 
XXVII: The 17th International Conference on. pp. 2612-2615, Jun 2013 

[4] A.C. Johnson, A robust batch-fabricated high-density cochlear electrode array, 
Micro electro mechanical system (MEMS), 2010 International conference on.   
pp. 1007 - 1010, Jan 2010 

 
[5] B. Lu, S. Zheng, B. Quach, and Y.C. Tai, A study of the autofluorescence of 

parylene materials for μTAS applications, Lab Chip, vol.10, pp. 1826-1834, 2010 
 
[6] A. Aubrey, Y. Liu, and Y.C. Tai, Parylene-on-oil packaging for implantable 

pressure sensors, Micro electro mechanical system (MEMS), 2016 International 
conference on.   pp. 403-406, Jan 2016 

 
[7] MEMS - Wikipedia, the free encyclopedia. Available: 

https://en.wikipedia.org/wiki/Microelectromechanical_systems 
 
[8] Thin Film - Wikipedia, the free encyclopedia. Available: 

https://en.wikipedia.org/wiki/Thin_film 
 



 18

[9] Y. Liu, J. Park, J. Chang, and Y.C. Tai, Thin-film magnesium as a sacrificial and 
biodegradable material, Micro electro mechanical system (MEMS), 2014 
International conference on.   pp. 656-659, Jan 2014 

 
 
 



 19

2 PARYLENE CHARACTERIZATION 

 
 

 

 

2.1 Introduction 
 

Parylene-C is the most widely used material within the parylene family, especially 

for the bioengineering applications. It is the Class VI certified biocompatible material by 

U.S. Pharmacopeia. Besides biocompatibility, it also has good mechanical properties, 

such as Young’s modulus and elongation to break. The optical transparency is also a 

favorable property for practical experiments. It is also a highly inert material that can 

stand severe chemical corrosion. Last but not least, parylene-processing technique is 

totally compatible with traditional MEMS fabrication methods. The thin-film of parylene 

can be deposited on to any substrate, including both solid and liquid, with precisely 

controlled thickness. The machining of the parylene thin film can be done with MEMS 

processes, for instance, the etching of parylene film can be accomplished through oxygen 

plasma, and both chemicals and different plasmas can change the surface properties. 

Therefore for all the reasons mentioned above, parylene-C is a perfect choice for 

substrate of devices in the bioMEMS field. 
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In our research, due to the application requirements and the advantages of parylene-

D, parylene-D is also applied and studied together with parylene-C, which will be 

introduced in the following sub-chapters. 

 

2.2 Mechanical Properties 
 

The mechanical properties of the parylene-C film were studied using TA 

Instruments DMA Q800. Among many mechanical properties, Young’s modulus, tensile 

strength, elongation, glass transition temperature, and Rheological Properties are 

primarily concerning in terms of implantation applications. Therefore they were 

considered in this chapter. Mechanical properties can be known by many ways. For 

example, Young’s modulus and residual stress can be obtained simultaneously by the 

load-deflection approach [10]. In our study, mechanical properties were obtained by 

uniaxial tensile test due to its simplicity and popularity. 

2.2.1 Dynamic Mechanical Analysis (DMA) 

We applied dynamic mechanical analysis technique to study and characterize the 

viscoelastic behavior of polymers. Complex modulus is obtained by applying the 

sinusoidal stress first and the resulting strain is measured. A diagram of this process is 

shown in Figure 2-1. 
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parylene treatments are studied, which are as-deposited, 100°C, 150°C, and 200°C 

annealed for 30 minutes. 

The tensile test is performed under 37°C because the real surgical situation needs 

to be simulated where the parylene based medical device is implanted. Procedures are 

described as follows. First, raise the environment temperature to 37°C; maintain 

isothermal for 30 minutes; finally ramp the strain at 0.5%/minute up to 250% (PA-C 

samples break before reaching 250% elongation). Figure 2-2 shows the nominal 

stress/strain curves of PA-C films annealed at different temperatures (as-deposited, 

100°C, 150°C and 200°C) for 30 minutes. The sample annealed at 100°C shows 76.3% 

elongation, while 150°C and 200°C show 10.1% and 2.5%, respectively. Considering 

stretching and bending in practical surgery process, 100 °C annealing is appropriate. In 

addition, since the time constant of PA-C crystallization is shorter than 1 minute [10], so 

a 30-minute thermal annealing is sufficient.  
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Figure 2-2. Tensile test at 37 °C to choose annealing temperature: 100, 150, 200 °C 

annealed samples (for 30 minutes) show 76.3%, 10.1%, 2.5% elongation respectively. 

 

 

Figure 2-3. DMA setup for tensile test of PA-C film. Shown in the figure is a 200°C pre-

annealed sample but broken after the tensile test. 

 

2.2.3 Glass Transition Temperature (Tg) Test 

Because parylene is viscoelastic material, studying the glass transition 

temperature is valuable. The material behaves differently below and above the glass 

transition region: below is glassy region and above is rubbery region. As shown in Figure 

2-4, the left region is the glassy region. The material has relatively higher elastic modulus 

and the polymer behaves like an elastic material. In the glass transition region, as the 

temperature goes up, the elastic modulus decreases gradually due to the higher polymer 

chain mobility [10]. Therefore, as the temperature goes over a critical temperature, i.e., 

glass transition (or second transition) temperature, Tg, the free volume increases to be 

higher than 2.5 Vol.-%, permitting different kinds of chain movements as well as moving 
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material mechanical properties for implantable biomedical devices because that it doesn’t 

have a glass transition temperature that is way higher than the body temperature. Also, 

another concern for parylene-C is that since MEMS fabrication processes will introduce 

high temperature, parylene-C is very likely to be annealed at some value above the Tg, 

which indicates the final parylene-C will not behave the same as the as-deposited one in 

terms of mechanical properties. Parylene-D is a very good candidate to replace parylene-

C if the mechanical properties are crucial in reality because of much higher Tg. A good 

example to show this point is presented in the parylene-on-oil packaging for intraocular 

pressure sensor, where the parylene-C will cause severe sensitivity degradation while 

parylene-D won’t [6]. 

 

 

2.3 Study on Parylene Surface Modification 
 

Surface modification is important in the sense that the surface energy plays a 

crucial role in determine the cell and protein compatibility with the parylene surface. 

Research has been done on surface modification to either make the surface hydrophobic 

or hydrophilic [13, 14]. The contact angle of as-deposited parylene is around 80 degrees, 

which is slightly hydrophobic. Generally speaking there are 3 ways to make modification 

of the surface. The first one is by chemical or biological coatings on parylene surface. For 

examples, gelatin and fibronectin coating can significantly enhance the cell adherence to 

the surface. The second way is to design and fabricate new surface strucutures, such as 

dense pillars and a lotus leaf – like structure, to achieve super hydrophobicity. The third 
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way is plasma treatment, which creates functional groups on the parylene surfaces, thus 

change the surface energy. Here we will focus on the plasma treatments. 

 

2.3.1 Motivation 

The motivation to study the surface modification is that we need to come up with 

a biocompatible material that the CV-1 cells can attach and grow for the production of 

virus. Parylene is a good candidate; however, due to its hydrophobicity, the cells won’t 

attach to it. Plasma treatments are demonstrated to solve this cell attachment problem. In 

the following section, different plasma surface treatments will be discussed. 

 

2.3.2 Plasma Treatments 

Here we tested two gas sources, the oxygen and ammonia gas, and their 

combinations. Table 1 summarizes all different recipes. 7-micron parylene-C was firstly 

coated on 4-inch wafers and plasma was applied for each wafer. 

 

Table 2-1. Plasma treatment receipes for parylene-C 

A 50 Watt 200 mTorr 3 min O2 

B 

 

50 W 200mT 3 min O2, then 

50 W 200mT 3 min NH3 

C 50 W 200mT 3 min NH3 

D 

 

50 W 200mT 3 min NH3, then 

50 W 200mT 3 min O2 
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Then the ammonia gas can further binding to the roughened surface, while in other 

recipes, oxygen is competing with ammonia gas in binding to the surface, and the data 

reveals that CV-1 cells don’t attach to parylene without plasma treatment (F). 

 

2.4 Summary 
 

Properties of parylene are studied and discussed in this chapter. Characterizations 

are important because the behaviors of parylene could potentially have a large impact on 

the total functionality of the whole device. Both mechanical properties and surface 

properties are presented. For the mechanical properties, DMA methods are applied to 

demonstrate the tensile tests and glass transition temperature tests for various parylene 

samples under different conditions. The conclusion is that parylene-C has good 

mechanical properties in general. However, temperature history needs to be documented 

and considered if mechanical properties of parylene are crucial. Parylene-D is a good 

replacement of parylene-C because it has a much higher glass transition temperature. For 

surface properties, plasma treatments are discussed and the application in cell culture is 

presented. Oxygen plasma combined ammonia gas plasma can treat the surface good 

enough for CV-1 cells to attach and grow at a speed even faster than ordinary culture dish, 

whose surface has also been treated. Through of discussion of the parylene 

characterizations, better understanding of the material is gained which can greatly benefit 

the fabrication of parylene devices. Details of these devices will be presented in the 

following chapters. 
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3 PARYLENE MAGNESIUM-EMBEDDED 

FILTER FOR CIRCULATING TUMOR CELLS 

ISOLATION 

 

 

 

 

3.1 Introduction 
 

Cancer has been a huge threat for human lives so that cancer detection has been an 

important research fields for both scientists and engineers in related areas. Cancer is not a 

single disease. It is a group of diseases that have a common characteristic, which is 

extremely fast cell growth without control. There is a possibility that the cells may spread 

to other parts of the body. The spreading process then involves circulating tumor cells 

(CTCs) so it is important to study the capturing of CTCs as well as isolation. In this 

chapter, a novel device, Parylene magnesium-embedded filter will be introduced and 

discussed, including material selection, device design and fabrication, results, and 

discussion. 
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3.2 State-of-art CTC Detection Methods 
 

Circulating tumor cells (CTCs) are cells that slough off the edges of a primary 

tumor and are swept away by the bloodstream or lymphatic system into the vasculature 

[16]. They constitute seeds for subsequent growth of additional tumors in vital distant 

organs, triggering a mechanism that is responsible for the vast majority of cancer-related 

deaths. Thus CTCs in peripheral blood have been investigated as a valuable biomarker 

for patients with various types of cancers [17-20]. However, CTCs are difficult targets to 

probe owing to their extremely low concentration in peripheral blood (usually around 100 

cells/mL of blood) [21]. Although rare, CTCs represent a potential approach for the 

detection, characterization, and monitoring of non-haematologic cancers. Therefore,  

CTCs capture from whole blood has been identified to be an unmet need for cancer 

research and effective cell separation methods are required to facilitate the study of 

CTCs.  

State of art CTC isolation techniques can be divided into two categories. One is 

depended on antibodies against epithelial cell-adhesion molecule (EpCAM) [22, 23], a 

protein that sticks out of the outer surface of CTCs, but not healthy blood cells. S. 

Nagrath etc. [22] have successfully identified CTCs in the peripheral blood of patients 

with metastatic lung, prostate, pancreatic, breast, and colon cancer in 115 of 116 (99%) 

samples with a range of 5–1,281 CTCs per ml and approximately 50% purity. However, 

this method relies on immunomagnetic binding of cell surface EpCAM, an expensive 

approach that is limited to EpCAM-expressing tumors [24]. The binding of antibodies to 

EpCAM may induce cytotoxicity, thus altering the original state of CTCs and reducing 

the reliability of further biological research [25]. Furthermore, the EpCAM-antibody 
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capture method will require some biochemical ways to break lose the CTCs and a safe 

method that doesn’t harm the CTCs is yet to be proven.  

The other methods are antibody-independent [25-28], such as size-based MEMS 

filters [28, 29]. Because CTCs are generally larger than white blood cells (WBCs), a size-

based filter can divide the cell types. Our previous paper described a parylene-C 

microfilter platform driven by constant low pressure to capture live CTCs from prostate 

cancer patient blood [28]. We showed that the captured cells could be lysed for 

telomerase activity detection assays as few as 25 cells added into 7.5 ml blood and the 

captured cells could proliferate either on or off the filter [28]. Moreover, we successfully 

integrated this device into a Phase III multi-center clinical trial and showed that in 

patients with more than 5 CTCs, telomerase activity assayed from microfilter-enriched 

cells was prognostic of overall survival [30].  

 

3.3 Motivation 
 

Despite its success, the microfilter platform has been limited by the persistence of 

contaminating peripheral WBCs attached to the filter. These residual background cells 

are of particular concern when attempting to analyze CTC RNA expression. In order to 

recover totally pure CTCs (no WBC background), we next adopted a motorized 

micromanipulator pipette to pick a single cell from the microfilter, but we observed that 

the cells captured on the filter could not be released easily.   

To address this challenge, we thought of magnesium (Mg) etching: thin-Mg film 

is proved highly biocompatible and can be etched in salt-contained mediums such as 

Dulbecco’s Modified Eagle Medium (DMEM) [31].  In this study, we developed a novel 
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design applying a buried sacrificial Mg layer underneath the original microfilter. After 

filtration, the filter was immersed in DMEM. When the thin-film Mg was dissolved, the 

cells were released. This technique does not require any additional chemical, which might 

damage or change the cells and disrupt further analysis. The detailed design, fabrication, 

and testing results will be given in the following sections. 

 

3.4 Magnesium: A Sacrificial and Biodegradable Material 
 

Magnesium (Mg) element has lots of desirable properties for biomedical device 

applications, especially mechanical and electrochemical characteristics. More specifically, 

the most important advantages of Magnesium as a temporary biomaterial are: first of all, 

magnesium’s density is 1.74 g/cm3, which is a great lightweight metal. It is much less 

than that of Ti alloy (4.4–4.5 g/cm3). More importantly, this value is very close to that of 

the bone (1.8– 2.1 g/cm3) [32]. Secondly, from the mechanics point of view, the Young’s 

modulus of magnesium is 41–45 GPa, which is close to the value of the bone; therefore 

the application of magnesium can potentially avoids the stress shielding issues [33]. The 

third point is that magnesium is very important to metabolism. Also it is the fourth most 

abundant element inside human body. Meanwhile magnesium is an important part for lots 

of enzymes, as well as RNA and DNA. The last but also the most crucial point is that the 

electro potential of magnesium is -2.37 V and magnesium demonstrates very low 

corrosion resistance in Cl- containing liquid environment. All in all, magnesium has a 

strong potential to be developed as a biomaterial, particularly for the applications where 

fast dissolving speed is preferred. 
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On the other hand, magnesium can potential be totally compatible with traditional 

MEMS fabrication technologies and acting as a sacrificial metal layer for various 

different kinds of BioMEMS devices. This means that magnesium could be an interesting 

dual “sacrificial and biodegradable MEMS material”. It also can have a great potential to 

be applied to many parylene-based devices for implant applications. There are several 

advantages of magnesium over traditional photoresist as a material for sacrificial layer. 

For instance the thickness can be much more precisely controlled due to different 

fabrication processes, and the biodegradability that the sacrificial layer can be dissolved 

in any Cl- contained liquids, such as PBS, cell culture medium, and saline, etc. with a 

relatively fast dissolving speed. Detailed fabrication processes will be discussed 

thoroughly in the following subsection: Magnesium processing technologies. 

 

3.4.1 Magnesium Processing Technologies 

Traditional Magnesium processing technologies in MEMS field mainly includes 

three ways of preparation of thick-film, which is thicker than 10μm includes laser cutting 

(Laminates magnesium foil onto glass substrate first and laser cut out of patterns 

followed by residue removal), electrochemical etching (of commercial magnesium foil), 

and electrodeposition (of magnesium). Nevertheless, all the three techniques mentioned 

above are targeting at magnesium film that are thick and there’s few reported work on 

thin-film (submicron) magnesium for MEMS applications. Therefore, we explored the 

process of Ebeam-deposited “thin-film” magnesium. 

Ebeam deposition belongs to Physical vapor deposition (PVD), which happens in 

vacuum and produces a thin film on substrates (in our application, the substrate is silicon 
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or parylene) by depositing thin layers of metals. Electrical field focuses the electrons on 

the metal, which is inside a crucible. The crucible is made of high temperature standing 

materials. The electron hits the metal surface, transforming its energy into heat. Metal 

will melt in the crucible and evaporate afterwards. A thin-film metal will be deposited on 

the substrate, which is on the top of the vacuum chamber. A rotating system is designed 

for better thin film uniformity. Sub-micron thick film can be achieved. For different 

metals, because of their difference in melting points, the power required is also different. 

Also the deposition speed given certain power is also different. 

Like other sacrificial metal layers such as Al and Ni, Mg thin films can be 

prepared by Ebeam evaporation and deposition because of its low melting temperature 

(~650°C). High-purity Mg pellets are also readily available. In this work, 0.06, 0.3, and 

1.0-μm-thick Mg films are deposited on 4-inch silicon wafers. 

 

Table 3-1: Comparison of preparation methods, etchants, and etching rates of Mg, Al, 
and Ni. 
 
 

 Preparation methods Etchants Etching rates 

Mg 
Evaporation 
(30% power, 2.5 Å/sec) 

hydrogen chloride 3700 Å/sec·M 

Saline 4.7 Å/sec 

Al 
Evaporation 
(47% power, 
4.5 Å/sec) 

Al etchant Type A 
(Transene©) 

100 Å/sec at 
50°C 

Ni 
Evaporation 
(45% power, 
4.0 Å/sec) 

Ni etchant TFB 
(Transene©) 

30 Å/sec at 
25°C 
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The comparisons of deposition methods of magnesium over other commonly used 

metals are listed in Table 3-1. In brief, it compares the typical deposition rates, etching 

rates, and etchants of Mg, Al, and Ni. It shows the deposition rates are similar among the 

popular sacrificial metals but Mg has a much higher etching rate. Etching properties will 

be discussed in the following subsections. 

 

3.4.2 Parylene Microchannels with Magnesium Sacrificial layer 

To study the etching properties of magnesium, both vertical etching sample 

(Figure 3-1) and channel undercut [34] sample (Figure 3-2) are designed. In vertical 

etching method, etching chemicals can be sufficiently supplied to the etching front so it’s 

for the measurement of reaction-limited etching rates. Therefore, the etching time can be 

calculated using just the reaction-limited etching rate. However, if the etching length is 

long such as in channel etching, reactive chemicals at the etching front may be depleted. 

The etching rate then is dominated by diffusion mechanism. As a result, a good model 

has to include both chemical reaction and diffusion.  In addition, such a model should 

also be applicable to a wide range of concentrations. A model that satisfies all these 

criteria will thereafter be a universal model. Here we have tested etchants including 

diluted HCl, saline, and culture medium. Although a lot more work needs to be done, the 

initial results do show that thin-film Mg indeed is a promising dual sacrificial and 

biodegradable material. 

 The vertical etching samples (Figure 3-1) are then prepared with exposed etching 

windows in a 5-µm-thick photoresist. In this case, etching chemicals can be sufficiently 

supplied to the etching front so it’s for the measurement of reaction-limited etching rates.  
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We have also obtained the first diffusion-limited etching data of Mg using the 

channel-undercut method. Sacrificial Mg strips are designed to be 10 m wide. 5-µm-

thick photoresist is then spin-coated and patterned (Figure 3-2a&b). In this case, diffusion 

is an important factor to slow down the etching. All experiments are conducted at room 

temperature.   

 

 

 
 

Figure 3-1. Schematic view of magnesium vertical etching samples 
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Figure 3-2. (a) Cross-section view of microchannel etching samples; (b) Schematic of 

etching sacrificial magnesium to form microchannel. 
 

 

3.4.3 Study of Thin-film Magnesium Etching Properties 

3.4.3.1 Vertical etching results 

Figure 3-3a shows the etched Mg thickness versus time with various HCl 

concentrations in the reaction-rate-limited condition. The dependence of magnesium 

etching rates on HCl concentrations are plotted in Figure 3-3b and a rate of 0.37m/sM 

is obtained. 

 

(a) 
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(b) 
 

Figure 3-3. (a) Magnesium thickness versus time of etching in different hydrogen 
chloride concentrations (b) Magnesium etching rate versus hydrogen chloride 

concentration. 
 

3.4.3.2 Etching model of sacrificial Mg channel  

Figure 3-2b shows the schematic of etching sacrificial magnesium to form 

microchannel. In order to study the model, firstly we need to make following 

assumptions: the diffusion coefficient is constant, the heat generation during reaction is 

negligible, convection is negligible, and the etching process is one-dimensional. Table 3-

2 shows all variables and coefficients in the model. 

 

Table 3-2. Coefficients in the etching model. 

Symbol Expression 

C Concentration of reaction chemical 
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Cb Bulk reaction chemical concentration 

Cs Etching front chemical concentration 

u Flow velocity 

x Etching length 

D Diffusion coefficient 

J Diffusive flux 

t Time 

M Molar mass 

ρ Density 

k1, k2 Constants 

a, b, e, f Intermediate variables 

 
 
Using the coordinates defined in Figure 3-2b, the continuity equation is, 
 

2

2

C C C
u D

t x x

  
 

                                    (1) 
 

Neglecting convection, (1) becomes, 
 

2

2

C C
D

t x

 


                                        (2) 
 

According to Fick’s first law, 
 

C
J D

x


 

                                         (3) 
 

Assume the chemical reaction is 
 

Mg + 2HCl ⇌ MgCl2 + H2    
 

In a stoichiometric reaction, 
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   1

2
J Mg J HCl

                                     (4) 
 

The etching rate is proportional to  J Mg at the etching front, 
 

[ ]
[ ]

[ ]dx M Mg
J Mg

d gt M


                                   (5) 
 

From (4) and (5),  
1 [ ]

[ ]
]2 [

dx M Mg
J HCl

d gt M


                                (6) 
 

The other boundary conditions are, 
 

(0, ) bC t C                                              (7) 
( ( ), ) sC x t t C                                           (8) 

  
In the combined First-and-Second model, the HCl concentration distribution is linear (9), 
and the reaction rate includes both a first and second order term (10), 
 

( )
[ ] b sD C C

J HCl
x




                                 (9) 
2

1 2[ ] s sJ HCl k C k C                                   (10) 
 
Solving (9) and (10), we have, 
 

2
1 2

2

1
[ ] ( ) [1 ( 2 )( )]

2 b

D x
J HCl a k C k

k x D
   

       (11) 
 
in which, 

21
1 21 ( ) 2( 2 )( )b

k x x
a k C k

D D
   

                 (12) 
 

Substitute Eq. (11) into (6), one has, 
 

2
1 2( ) [1 ( 2 )( )]b

dx D x
b a k C k

dt x D
   

               (13) 
 

in which, 

24

[ ]

[ ]k

M M
b

g

g

M


                                         (14) 
 

By integrating (13) from time 0 to t, we have t=F(x), 
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          (15) 

where 
2

1 1 22 b

x
e k k k C

D
  

                              (16) 
1 2 bf k k C                                           (17) 

 
k1, k2, and D are determined by experiments of sacrificial Mg channel etching. 
 

3.4.3.3 Sacrificial Mg channel etching results 

 Figure 3-4 shows the etched channel length versus time for different HCl 

concentrations. The initial etching rates derived from Figure 3-4 further verify the data 

from Figure 3-3. For instance, the etching rate for 0.04 mol/L HCl is 1.77E-2 µm/s 

(Figure 3-3b) while the initial etching rate from Figure 3-4 is 1.51E-2 µm/s. Coefficients 

k1, k2 and D can be determined experimentally. Nonlinear least squares fitting (NLSF) 

method, which is based on the Levenberg-Marquardt (LM) algorithm is used to fit Eq. 

(15) to experimental data, and results are shown in Figure 3-4. This model fits all data 

using k1 = 9.33E-3 cm/sec, k2 = 275.71E3 cm4/mole·sec and D = 3.86E-6 cm2/sec. 
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Figure 3-4. 1-µm-thick Mg Etched microchannel length versus time for different 

hydrogen chloride concentrations. 
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Figure 3-5. Mg etching rate dependence on concentration Cs. Solid line represents the 

combined first-and-second order model. Dotted line represents first or second order only. 

 

Figure 3-6. Concentrations of reactant at the etching front. Bulk concentration is the 

value of Cs when depth equals 0. Higher bulk concentration drops faster. 

 

Figure 3-7 then shows the thickness effects using three different thicknesses (i.e., 

0.06, 0.3 and 1.0 μm) of Mg in 0.04M HCl. The results show that the undercut rates for 

the thicker channels are bigger than the thinner ones. The result is consistent with [34]. 



 47

 

Figure 3-7. Microchannel etching length over time for three different thicknesses of 

magnesium in 0.04M HCl. 

 

The hypothesis is that the etching chemical (i.e., Cl-) interacts with the inner 

photoresist surface so the overall effective diffusion constant is reduced. In the future, 

one should consider the thickness effects if Mg is thinner than 0.06μm or thicker than 

1μm.  

Figure 3-8 shows the etching of 1-µm-thick Mg microchannels to form in 0.04 

mol/L hydrogen chloride at different time intervals. 
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Figure 3-10 then shows the open-surface Mg etching rates in saline and 

Dulbecco’s modified Eagle medium (DMEM, a cell culture medium) mixed with FBS 

and PBS. The chloride ion concentrations are 0.15M in saline and 0.11M in DMEM, and 

the resulting etching rates are 1.7 and 1.27μm/hr respectively. The results show that the 

Mg biodegradation depends mainly on chloride ion concentration and has a converged 

rate of ~11.4μm/hr·M. Note that this rate is much faster than other widely-used 

biodegradable polymer materials such as PLA. For instance, the degradation time for 

PLA/PLGA (50:50) is only about 0.2μm/hr (i.e., 10 weeks of biodegradation time for 

microspheres of 100μm in diameter). 

 

Figure 3-10. Thickness change over time in 0.9% saline and DMEM. 

μ
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3.4.3.5 Conclusions 

This work reports the first etching tests of thin-film Mg in diluted hydrochloric 

acid (HCl), saline, and culture medium. Both vertical etching and sacrificial Mg 

microchannel etching methods are applied to study the etching properties. Data of 

sacrificial Mg microchannel etching are fitted by the combined first-and-second order 

model. The initial results do show that thin-film Mg is a promising dual sacrificial and 

biodegradable material in MEMS application. 

 

3.5 Parylene Magnesium-embedded Filter 
 

3.5.1 Introduction 

Circulating Tumor Cells (CTCs) are rare cancer cells that are shed by tumors into 

the bloodstream and can be valuable biomarkers for various types of cancers. However, 

CTCs captured on the filter could not be released easily using the existing CTC analysis 

platforms based on size. To address this limitation, we have developed a novel 

Magnesium-embedded cell filter for capture, release, and isolation of Circulating Tumor 

Cells (CTCs). The CTC-filter consists of a thin Ebeam-deposited Magnesium (Mg) layer 

embedded between two parylene-C (PA-C) layers with designed slots for filtration and 

CTC capture. Thin Mg film is proved highly biocompatible and can be etched in saline, 

PBS and Dulbecco’s Modified Eagle Medium (DMEM) etc., properties that are of great 

benefit to help dissociate the filter and thus release the cells. Finite element method 

(FEM) analysis was performed on the Mg etching process in DMEM for the structure 

design. After filtration process, the filter was submerged in DMEM to facilitate Mg 
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etching. The top PA-C filter pieces break apart from the bottom after Mg completely 

dissolves, enabling captured CTC cells to detach. The released CTC can be easily 

aspirated into a micropipette for further analysis. Thus, the Magnesium-embedded cell 

filter provides a new and effective approach for CTCs isolation from filter, making this a 

promising new strategy for cancer detection.    

 

Figure 3-11. Schematics of Mg-embedded CTC filter filtration, Mg dissolving as well as 

CTC release. A, The CTC gets captured during filtration, B, The CTC deforms and gets 

stuck in the filter slot, C, The Mg sacrificial layer is going through undercut etching in 

DMEM, D, The filter pieces separate and the CTC cell is released. 

 

3.5.2 Design 

In this section, the design of the whole device, as well as the experiments, is 

discussed in detail, including structural design and analysis. 

3.5.2.1 Structure design 

T. Xu etc. have discussed the optimization of the CTC filter slot size in [28]. Here 

in this work, we followed the optimized design proposed. The top PA-C slot width is 6 

µm while the top PA-C slot length is 40 µm. The bottom parylene thickness is 10 µm and 
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the top is 5 µm. The total filter size is 6 mm by 6 mm, same as in [28]. Figure 1A shows 

the cross-sectional view of single Mg-embedded filter slot while Figure 3-12 illustrates 

the top view of the whole filter membrane. 

 
 
 

Figure 3-12. Schematic of Mg-embedded filter membrane (top view) with all the 

structure dimensions shown on the upper-left corner. 

3.5.2.2 FEM Analysis 

As indicated in the schematic of Figure 3-11, Mg sacrificial layer was sandwiched 

between top and bottom parylene. Thus the undercut etching happened on both open ends 

towards the inside (Figure 3-11C). The undercut etching is a complicated process that 

combines not only chemical reaction, but also diffusion of reactants from the bulk liquid 

to the etching fronts [34]. Therefore it is not straightforward to calculate the dissolving 

time of any given Mg etching length, which is “L” in Figure 3-11B. To have a reasonable 

Mg dissolving time in DMEM after CTC capture, for instance 2.5 hours, FEM analysis 

was performed to find out the structure design parameters, especially the value of “L”. In 
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order to run FEM analysis, the etching reactants as well as chemical reaction principle 

were studied beforehand. 

 

Figure 3-13. Etching rate dependence on pH value. Experimental data in saline and 

DMEM are much bigger than the pH value model predicted, and thus Mg corrosion is the 

dominating process for salt-containing medium. 

Figure 3-13 shows the Mg etching rate (in µm/s) in relationship with the pH value 

of the solutions. The blue circle and the black square are experimental data of etching in 

saline and DMEM respectively, while the red line is the etching rate predicted only by pH 

value, following the equation:  

Etching rate (μm/sec) = 0.37 (μm/sec·M) · concentration of [H+] (M)                        

(1), where 0.37 μm/sec·M were experimentally discovered in [10] with pH value ranging 

from 0 to 2, where the dominating chemical reaction is as simple as: 

Mg + 2H+ → Mg2+ + H2   
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Therefore, assume etching rate is y and pH value is x, equation (1) becomes Y = 

0.37 * 10-X, which was plotted as the red line.  

Interestingly, the practical etching rates in saline (4.72E-4 μm/sec) and DMEM 

((3.52E-4 μm/sec) are much faster than what the red line predicts (1.17E-6 μm/sec and 

3.70E-8 μm/sec respectively). It indicates that pH is no longer the dominating factor for 

biodegradable etching study. Here we purpose that corrosion accelerates the etching 

speed as an electrochemical Process. The oxidizing Mg supplies electrons and the 

electrons can move through the sodium cation to the oxygen that dissolved in the 

solution. In this case redox reaction happens between Mg and the oxygen. This etching 

process is likely to be dominated by corrosion principle, other than pH value. Therefore 

oxygen dissolved in water should be treated as the reactant. 

Figure 3-14 shows the region of embedded Mg to etch is sandwiched between top 

and bottom PA-C, the geometry of which is set to be 1 µm (thickness) by 6 µm (width) 

by 40 µm (length). As shown in Figure 3-11C, side etching happens at both ends of the 

channel. The case has been simulated in 2D on the cross-section of 1 µm by 6 µm, with 

the following parameters: 

Table 3-3: Coefficients for simulation 
 
 

Parameters Values 

Initial oxygen concentration 0.26 mol/m3 

Oxygen diffusion coefficient 2.1E-9 m2/s 

Mg density 1740 kg/m3 

Mg Molar mass 0.02345 kg/mol 
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Initial reaction rate 3.52E-10 m/s 

 

The Moving mesh (ALE) method was applied to simulate the deformation of Mg 

boundary over time. Automatic Remeshing was turned on to remesh after each step of 

combined etching and diffusion process. The dynamic simulation results of embedded 

Mg etching front are presented in Figure 3-14.  The etching process ends after 8523 

seconds in simulation, which is 2.36 hours. It is a reasonable number for the Mg to totally 

dissolve. The bars indicate the concentration of oxygen, ranging from 0.25 mol/m3 to 

0.26 mol/m3. There is little change in the concentration of oxygen between the etching 

front and the bulk solution, which implies 6-µm etching length is short enough so that 

diffusion doesn’t limit the etching rate much. Since the FEM simulated etching time is 

neither too short nor too long, 6 µm was set to be the etching length for the design of the 

Mg-embedded filter. 
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The Mg-embedded CTC filter was fabricated by microelectromechanical systems 

(MEMS) process. It mainly includes film deposition (PA-C, Al, Mg), photoresist-spray-

coating-based liftoff process, reactive ion etching (RIE), and wet-chemical anisotropic 

etching. The fabrication process steps are shown in Figure 3-15A and detailed as follows. 

1) A 4-inch silicon wafer was prepared for fabrication through piranha plus 

buffered hydrofluoric acid (BHF) cleaning, and then 3-minutes hexamethyldisilazane 

(HMDS) treatment, respectively. The HMDS treatment facilitated peeling off of PA-C 

from silicon wafer at the last step. 10-µm-thick PA-C film was then deposited over the 

wafer. After that, 0.1-µm-thick aluminum (Al) layer was thermally evaporated over the 

PA-C and the photoresist (PR) AZ1518 was spin-coated, exposed, and developed to 

pattern Al as a oxygen plasma-etching mask for PA-C. 

2) Oxygen plasma (400W, 300mT) in RIE was used to etch through the openings 

on PA-C film all the way down to silicon surface. Then Al layer was etched away in Al 

etchant from Transene Company, Inc. at 60 ◦C, followed by Deionized water (DI water) 

rinsing. 

3) Next, 1-µm-thick Mg was evaporated on the 4-inch wafer over the PA-C using 

E-beam following the recipe reported in Table 3-1. 

4) 10-µm-thick photoresist (PR) AZ4620 was then spin-coated and patterned 

through lithography as a sacrificial layer. Another run of oxygen plasma (50W, 200mT, 1 

minute) in RIE was applied to roughen the surface of PA-C, followed by a 30-second 

BHF cleaning to make the surface hydrophobic. 

5) The final 5-µm-thick PA-C layer was deposited over the device. 
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Figure 3-15. A, Fabrication process of the filter: a) Al deposition/patterning on Si as PA-

C etching mask, b) Oxygen plasma etching of PA-C, c) Mg deposition, d) Photoresist 

spin-coating/patterning, e) PA-C deposition, f) Al deposition/patterning, g) PA-C etching, 

h) Photoresist dissolving and peeling off device from Si substrate. B, SEM photo of 

Magnesium-embedded CTC filter. 

 

3.5.4 Setup Design and Assembly 

Figure 3-16A shows the schematic of the CTC medium filtration system. Pressure 

from a nitrogen tank was reduced to <1 psi by a two-stage regulator and further down-

regulated accurately by adjusting a needle valve to around 0.13 psi. The filter was 

sandwiched between two pieces of PDMS with wells. Two wells formed a chamber 

where they were tightened. The PDMS films were coated onto two acrylic pieces for 

mechanical support. The Mg-embedded filter after medium filtration is shown in Figure 

6B, while Figure 6C is fluorescence photo of captured CTCs. 
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Figure 3-16. A, Constant-pressure fluid delivery system for the process of filtration that 

consists of the nitrogen tank as pressure source, as well as regulator, needle valve, and 

pressure gauge to control and read the pressure. B, Micrograph of Mg-embedded filter 

under bright field. C, Fluorescence photo of captured CTCs after filtration process. 

 

3.5.5 Experiments 

Green fluorescent protein labeled MDA-MB-231 breast cancer cells (~16 µm in 

diameter) were used to test the new design of the Mg-embedded CTC filter. 29 MDA-

MB-231 cells were spiked into 0.4 mL PBS with the filtration done in 5 minutes. 26 cells 

were successfully recovered. Capture efficiency was 89.7%. This efficiency is 

comparable to what T. Xu claimed in [28], which is around 90%. 

As shown in Figure 3-17A, the Mg coats remained un-etched 1 minute after 

filtration, keeping the filter intact. When the filter was incubated with DMEM for 150 

min, the top PA-C slots were detached, due to the underneath Mg sacrificial layer total 

dissolving (Figure 3-17B). As a result, the captured cancer cells were released from the 

filter. To pick up the isolated cells, we have set up the system that consists a 

micromanipulator, a micropipette with 20-µm inner diameter (ID), a syringe, and a 

syringe pump.  The micropipette was controlled by the micromanipulator, and it was 

connected to the syringe pump, which was to create the suction force for aspirating 

released cells (Figure 3-17C). 
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3.6 Results and Discussion 
 

Two-dimensional finite element method (FEM) analysis was performed on the Mg 

etching process in DMEM for the structure design. The results were then applied to the 

fabrication of a novel Magnesium-embedded cell filter, which could potentially be used 

for capture of rare CTCs followed by recovery of CTCs with high purity (no WBC 

background) that is essential for RNA expression profiling to guide cancer management. 

This new design with a thin-film Mg sacrificial layer allows us to release captured CTCs 

without adding any additional chemicals. The feasibility of this novel Mg-embedded 

CTC filter has been successfully demonstrated.  

 Although this novel Mg-embedded filter is a promising method to capture and 

release CTC with high purity without any additional chemical, blood tests from cancer 

patients need to be performed and statistical biology data need to be collected to further 

compare this new approach with others. 
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4 PARYLENE BASED MICROELECTRODE 

FILTER FOR SINGLE-ISLET 

ELECTROISLETOGRAM 

 

 

 

4.1 Introduction 
 

This chapter introduces the parylene based microelectrode filter for single-islet 

electroisletogram. Background and motivation will be discussed first, followed by design, 

fabrication, and testing. Periodic electroisletogram has been achieved from islets, which 

has demonstrated the feasibility of this design and potential application for islet screening 

process. Details will be presented in the following sections. 

 

4.2 Diabetes 
 

Diabetes, which is also known as diabetes mellitus (DM), is a group of metabolic 

diseases in which there are high blood sugar levels over a prolonged period. Symptoms of 

high blood sugar include frequent urination, increased thirst, and increased hunger. If left 

untreated, diabetes can cause many complications. Acute complications include diabetic 

ketoacidosis and nonketotic hyperosmolar coma. Serious long-term complications 
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include cardiovascular disease, stroke, chronic kidney failure, foot ulcers, and damage to 

the eyes. [35] 

Diabetes is due to either the pancreas not producing enough insulin or the cells of 

the body not responding properly to the insulin produced. [36] There are three main types 

of diabetes mellitus: 

Type 1 DM results from the pancreas's failure to produce enough insulin. This 

form was previously referred to as "insulin-dependent diabetes mellitus" (IDDM) or 

"juvenile diabetes". The cause is unknown. [37] 

Type 2 DM begins with insulin resistance, a condition in which cells fail to 

respond to insulin properly. [37] As the disease progresses a lack of insulin may also 

develop. [38] This form was previously referred to as "non insulin-dependent diabetes 

mellitus" (NIDDM) or "adult-onset diabetes". The primary cause is excessive body 

weight and not enough exercise. [37] 

Gestational diabetes, is the third main form and occurs when pregnant women 

without a previous history of diabetes develop high blood-sugar levels. [37] 

 

4.2.1 State-of-art Research on Islets Transplantation 

Worldwide, more than 750 individuals with type 1 diabetes mellitus (T1DM) have 

received allogeneic islet transplants since 1974, in an effort to cure their chronic 

condition. [38] Though this is still a small number (especially when compared with the 

estimated 1 million afflicted with T1DM and an additional 17 million with type 2 

diabetes in the US, not to mention the estimated 140 million with diabetes worldwide), 

much has been learned. The initial enthusiasm over the observation that islet 
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transplantation can restore insulin-independent euglycemia to patients with long-standing 

T1DM has been dampened by complications associated with the procedure itself and the 

immunosuppression necessary to prevent rejection of the transplanted islets, as well as by 

the gradual loss of islet function and other problems arising from the placement of 

allogeneic islets in the liver [39, 40]. 

Nevertheless, the field of islet transplantation has evolved significantly from the 

breakthrough of the Edmonton Protocol in 2000, since significant advances in islet 

isolation and engraftment, together with improved immunosuppressive strategies, have 

been reported. The main limitations, however, remain the insufficient supply of human 

tissue and the need for lifelong immunosuppression therapy. [41] Great effort is then 

invested in finding innovative sources of insulin-producing β cells. At the same time, 

researchers have been studying the screening of islets to improve the efficiency of 

implantation. 

 

4.2.2 Motivation of Detecting Single-islet Electroisletogram 

As discussed in section 4.2.1, other than direct insulin injection, one promising 

treatment for Type I diabetes is islet transplantation [42]. In islet transplantation, 

pancreatic islets from a donor are injected into the liver of another person and recent 

results showed that 58% of the transplanted patients were insulin independent for more 

than one year. However, one of the key lacking technologies of islet transplantation is 

high-throughput islet screening since each transplantation requires about one million 

islets.  Islets, which are heterogeneous by nature, are currently screened as whole 

populations containing a range of functioning and dysfunctional characteristics [43]. 
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Currently, processed islets are only screened in bundles of 1,000+ islets, so many “bad” 

islets are not removed. This work represents the first attempt to develop a MEMS 

technology for the screening of every single islet so as to guarantee no bad islet at all, 

which should improve results of islet transplant therapy [44]. The ultimate goal 

motivating this work is to improve the yield and quality of functioning human islets from 

donor cadaver pancreases for islet transplant therapy for diabetes patients. 

The first MEMS feasibility study of targeting islet membrane potential for fast 

screening and the results are very promising. It is interesting because the release of 

insulin by beta cells is triggered by glucose through the depolarization of the beta cell 

membrane. Theoretically, all the beta cells would synchronize their depolarization and 

provide a constructive depolarization potential. Therefore, monitoring EIG could 

potentially be very useful for screening healthy islets. 

 

4.3 Design 
 

Here we report the first MEMS device designed for in vitro measuring of 

electroisletogram (EIG) of individual rat islets.  Using vacuum to hold an islet in 

proximity to a microelectrode, strong EIG signals in millivolt range are obtained, while 

the noise is about 100μV pk-pk.  

4.3.1 Concept of System Level Design 

The platform for single-islet EIG consists of 3 modules: 1, a dam that holds 

culture medium; 2, the microelectrodes that connect to the Printed Circuit board (PCB); 

and 3, tubes that connect holes on the PCB to a vacuum pump, which creates suction at 

one microelectrode. Figure 4-1 is an illustration of the islet screening apparatus, where 
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one electrode has suction to achieve proximity with an islet, and another electrode acts as 

ground. Through-holes are drilled in a PCB and the device is peeled from the wafer, 

taped to the PCB, and shorted to the PCB with silver paint. 

 

 

Figure 4-1. Schematic diagram of the islet screening apparatus. The right electrode 

deflects due to suction from a vacuum pump. Surface tension prevents culture medium 

from leaking into the left tube. 

 

4.3.2 Parylene Based Microelectrodes Filter Design 

Parylene-C is a good candidate as the material for substrate of multielectrode 

arrays (MEAs), due to its high biocompatibility, good mechanical strength and 

machinability. It has been widely used in bio-MEMS applications, including recent work 

on intraocular implant and cell filtration [38]. Parylene has been widely studied [45-47] 

and used in various industries because of its many excellent properties, such as superior 

barrier property used to protect the electronic devices against damages from moisture and 

corrosive etchants [48-50]. 
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4.3.2.1 First Generation of Design (round electrodes) 

The design and micro-fabrication process of MEAs on parylene-C film is detailed 

in Figure 4-2. First, a 4-inch wafer was prepared for fabrication after piranha plus 

buffered hydrofluoric acid (BHF) cleaning, followed by the hexamethyldisilazane 

(HMDS) treatment. Enough time was given for enough amount of HMDS to form 

multilayers on parylene-C film, which enabled easy-peeling of the whole device at the 

end of fabrication. A 10-µm-thick PA-C film was then deposited over the wafer (Figure 

4-2a). When Chemical vapor deposition (CVD) process of PA-C finished, the coated 

silicon wafer was moved to oxygen plasma chamber and went through the “descum” 

process. 50W, 200mT, and 2 minutes recipe was used to roughen the PA-C surface, as 

well as create oxygen related functional groups for better Ti/PA-C adhesion. Next, 

Electron beam physical vapor deposition (EBPVD) is performed on Titanium/Gold 

(Ti/Au). A 200Å-thick Ti layer and 3000Å-thick Au layer were then deposited on PA-C. 

2µm-thick photoresist (PR) AZ1518 was then spin-coated and patterned as the etching 

mask for Ti/Au. Wet-etching was performed and Ti/Au is patterned (Figure 4-2b). After 

that, another 5µm-thick PA-C layer was deposited on top (Figure 4-2c). In order to 

expose the surface of microelectrodes and connecting pads, 10µm-thick PR AZ4620 was 

patterned as etching mask for top PA-C layer. Oxygen plasma (400W, 300mT) is used to 

etch through the openings (Figure 4-2d). The top PA-C film is to reduce parasitic 

capacitance between the positive electrode and the culture medium. Then, 20µm-thick PR 

AZ4620 layer was spin-coated and patterned differently to create suction holes. The 

bottom PA-C film is etched by oxygen plasma all the way down to the silicon surface 
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Figure 4-4. Fishnet test design. Top left: 60μm diameter, 20μm street. Top right: Same as 

top left showing islet is too small. Bottom left and right: 60μm diameter, 40μm street, 

before and after back pressure. Islet could not be removed in this case. 

 

Table 4-1: Summary of different hole and street sizes on capturing islets. 
 

Street width
 

Hole diameter 

20 µm 40 µm 

20 µm Islets captured. Can 
be released with 

back pressure 

(presumed streets too wide) 

40 µm Islets captured. Can 
be released with 

Streets too wide. Islet sticks even 
with backpressure 
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Figure 4-9.  Extended recording of EIG of islet in 11.1 mM glucose culture medium.  

Packets of action potentials separated by several minutes are as expected from healthy 

islets at this concentration of glucose. 
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Figure 4-10. Close up of action potentials from Figure 4-9 shows an achieved SNR=106. 

The EIG signal shape is expected and EIG magnitude is satisfactory compared to patch 

clamp due to sufficient coupling capacitance between the electrode and islet membrane 

and minimal parasitic capacitance between the electrode and culture medium. 

 
4.6 Summary 
 

This work has successfully demonstrated the MEMS device designed for in vitro 

measuring of EIG of individual rat islets. Strong EIG signals in millivolt range are 

obtained. With this success, the next work will be to build MEMS EIG arrays including 

microfluidics for the screening of a large number of islets. 
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5 PARYLENE-ON-PDMS MEMBRANE FOR 

VACCINE PRODUCTION 

 

 

 

5.1 Introduction 
 

First of all, an overview on state-of-art vaccine production will be given and 

places to improve will be discussed, together with motivation (section 5.2). In section 5.3, 

a novel parylene-on-PDMS membrane design for vaccine production will be proposed. 

Section 5.4 will focus on the fabrication process. Oxygen permeation and modeling will 

be discussed in section 5.5. A series of experiments have been done to demonstrate its 

feasibility (section 5.6). 

Approximately, every second man and every third woman is affected by cancer at 

some point in their life. Conventional cancer therapies, like surgery, chemo-, and 

radiotherapy, are not always effective enough alone to defeat cancer, and often they have 

severe side effects. New therapy options are desperately needed for treating cancer, and 

hence the design of efficient cancer treatments is one of the major challenges of medical 

science. A combination of traditional and novel cancer treatments may improve the 
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patient’s prognosis, or even cure the patient if the cancer is detected early enough. Gene 

therapy and oncolytic viruses hold great promise for the development of novel cancer 

therapies. Oncolytic vaccinia virus (VV) has emerged as a promising candidate for gene 

therapy agent. [51] Amgen’s Imlygic (talimogene laherparepvec), the first FDA-approved 

oncolytic virus therapy, will be available within weeks at $65,000/patient.  

Vaccinia Viral (VV) Forms are briefly introduced here. There are 4 kinds of 

forms in total:  

1. Intracellular Mature Virion (IMV) – is the most abundant form of virus and is 

retained in cells until lysis; it is a robust, stable virion and is well suited to transmit 

infection between hosts. [52]  

2. Intracellular Enveloped Virion (IEV) – is formed by wrapping of IMV with 

intracellular membranes, and is an intermediate between IMV and CEV/EEV that enables 

efficient virus dissemination to the cell surface on microtubules. [52] 

3. Cell-associated Enveloped Virion (CEV) – induces the formation of actin tails 

that drive CEV particles away from the cell and is important for cell-to-cell spread. [52] 

4. Extracellular Enveloped Virion (EEV) - mediates the long-range dissemination 

of virus in cell culture and, probably, in vivo. [52] 

 The morphogenesis of VV is shown in Figure 5-1. IMV are made in a virus 

factory and move on microtubules (MT) to the wrapping membranes derived from the 

tran-Golgi network (TGN) or early endosomes. A double membrane to form IEV that 

move to the cell surface on MT wraps IMV. The IEV membrane fuses with the plasma 

membrane to form CEV that induce actin tail formation to drive the virion away from the 

cell. CEV also be possibly released to form EEV. [52] 
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Figure 5-5. Permeability coefficient of CO2 as a function of parylene thickness [55] 

 

However, one practical problem, which is not trivial, is that ultra-thin parylene is 

very hard to handle. It always breaks accidentally because it is so thin. Therefore, we 

come up with the ultra-thin parylene-on-PDMS structure. PDMS is porous so it won’t be 

the major barrier, which is proved in the following section. We choose to apply the 

biocompatible silicone MED4-4210. After fully cured and leached, it won’t release 

harmful chemical that strong enough to affect cell growth, which is also proved by 

experiments. The details on structure design are presented in the next section. 

 

5.3.2     Structure design 

Figure 5-6 shows the concept of single layer cross-sectional structure design. 

PDMS chamber is fabricated first and ultrathin parylene is coated. Gas flows through the 

chamber and permeates out. Figure 5-7 shows the 3D concept with gas flow and cell 

attachment. PDMS pillars are designed for mechanical support to prevent the whole 

device from bulging when pressure is applied. 
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The part A and part B of the PDMS MED 4-4210 are mixed with a 10 to 1 ratio in 

weight. After mixing them well, 20 minutes degasing process is followed to take out 

bubbles trapped inside. Then the uncured PDMS is poured on to the mold. After half 

curing, the film is peeled off from the mold and the top and bottom pieces are bonded 

together (Figure 5-8, 5-9, 5-10).  

 

Figure 5-8. PDMS device after assembly and gluing top and bottom pieces together. 

 

2	mm 
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Figure 5-9. Overview of PDMS device. 

 

Figure 5-10. Cross-sectional structure of the PDMS device. 

 

The PDMS bag is then fully baked at 150 degree C for 2 days, followed by 

leaching in acetone at 90 degree C for 3 days. These two steps are crucial for the PDMS 

not releasing too much harmful chemicals to the cells. After the PDMS bag is ready, 

connections are made to it by inserting two tubing into the hallow space, and sealed with 

also PDMS (Figure 5-11). Then the devices, together with the tubing, are coated with thin 

 

120um
 120um

 120um
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parylene.  

 

Figure 5-11. 310um PEEK Tubing Inserted. 

 

After thin-parylene is coated, Oxygen followed by ammonia plasma is used to 

treat the surface of parylene, as discussed before.  

Finally, resazurin dye is applied to test the oxygen permeation after the device is 

connected to oxygen supply, as shown in Figure 5-12. Red color change is clearly seen 

on the membrane of the device, which indicates that the oxygen does perfuse out. 

Detailed study on the permeation of oxygen will be discussed in the following sections. 

 

Figure 5-12. resazurin dye study to verify oxygen permeation. 
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5.5     Oxygen permeation study 
 

Oxygen permeation is studied quantitatively in this section. The device is at the 

bottom of the dish and covered with 5mm water in depth. Oxygen gage pressure is 

maintained at 1 psi at the inlet port and 100% oxygen continues flow during the test. 

Oxygen sensing probe touches the device surface in order to be as accurate as possible 

(Figure 5-13). Figure 5-14 illustrates the structure of the model and Figure 5-15 shows 

the calculation of oxygen concentration on the parylene surface. Because the parylene 

penetrates into the porous PDMS, therefore it is hard to preciously predict the exact 

structure. Here in Figure 5-15, three assumptions on the permeability of the 0.6um are 

made and the corresponding oxygen concentrations are calculated. If the permeability of 

thin parylene is treated the same as bulk parylene, 84% is achieved. If it is treated as 3 

times permeability of bulk or porous, 93% or 99.95% can be achieved. The experimental 

result is shown in Figure 5-17. The oxygen level saturates at around 90% so the 

calculation of oxygen concentration is pretty accurate. 

 

Figure 5-13. Setup of oxygen permeation test 
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Figure 5-17. Experimental oxygen permeation test  

 

5.6     Results and discussion  
 

5.6.1 1st experiment 

Oxygen free environment was created for the 1st experiment, from which we want 

to test the extremely worst case, where no oxygen is supplied from the environment, and 

the only gas source is supplied from the device. In order to create this oxygen free 

environment, the device was kept inside the O-ring sealed contained with oxygen 

absorbers inside to consume oxygen. The oxygen probe went inside of the container 

through the lid to measure the oxygen level decay (Figure 5-18). The result does show 

that the oxygen-free container can be kept at very low oxygen level. 
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Figure 5-19. After 3 hours all Conditions (Normoxic, Anoxic) begin attaching 

 

 

Figure 5-20. CV-1 cells attached and spread confluently on both parylene-on-PDMS 

devices (normoxic) 
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Figure 5-21. CV-1 cells detached and lysed after 24 hours for sample C (anoxic) 

 

 On Day 1, both A and B were moved into oxygen free environment. A was still 

connected with gas supply while B wasn’t. After one day (Day 2), the cells on B detached 

from the parylene surface and started to die (Figure 5-22), while cells on A survived 

(Figure 5-23). This 1st experiment proves that the parylene-on-PDMS device with mixed 

gas supply can provide enough gas to sustain the cells even in the extreme oxygen free 

environment. This is the extreme worst case in terms of oxygen supply and the feasibility 

of the device is proved. 

 

Figure 5-22. CV-1 cells detached and started to die on B without mixed gas supply in the 

oxygen free environment (anoxic) after 1 day 
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Figure 5-23. CV-1 cells survived on A with the mixed gas supply (anoxic + perfusion O2) 

 

5.6.2 2nd experiment 

 In the 2nd experiment, 3E5 CV-1 cells are seeded onto 3 samples: A, parylene-on-

PDMS device with mixed oxygen and carbon dioxide gas supply; B, parylene-on-PDMS 

device without gas supply; and C, regular 10 cm cell culture dish. The starting cell 

density was 3820-cells/cm2 Counting cells measured cell growth two days later. The 

resulting cell densities were: A, 7523 cells/cm2; B, 7200 cells/cm2 and C, 7130 cells/cm2. 

The result is plotted in Figure 5-24. Considering the error during cell counting, there is no 

statistically significant difference among theses 3 conditions. This result indicates that 

under normal incubator environment, the oxygen and CO2 supply is abundant. Therefore, 

more oxygen supply from the devices won’t increase the cell growth rate. On the other 

hand, combining these two experiments, we can conclude that the device with oxygen 
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6 PARYLENE ORIGAMI STRUCTURE 

 

 

 

6.1 Introduction 
 

This chapter introduces a novel design to fold a 2D parylene membrane into 3D 

structures. With pre-designed folding crease patterns, the final shape after folding can be 

controlled. This technique will be useful under the specific circumstances where certain 

shape is required for the parylene based device to match the curvature of objects, like the 

curvature of organs (in this chapter the human eyeball curvature as a perfect example), 

and where the surface area per volume of parylene needs to be increased, for instance, the 

vaccine productions project from chapter 5, where we would like to push the cell density 

to the limit, in order to increase the vaccine production outcome. And last but not least, 

we are able to apply this technique to create interesting thing, like the “micro-origami US 

map” presented in this chapter. 

Origami, the Japanese art of paper-folding, is normally thought of as primarily a 

decorative art. However, the techniques of origami can be applied to improve various 

technological problems. One that regularly arises is the need to fabricate a structure using 
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conventional planar fabrication processes, but then transform a planar sheet into a more 

complex three-dimensional form with origami technique. Theoretical algorithms for 

origami design may be used to effect this transformation. One such opportunity arises in 

the field of retinal implants. Here, a thin-film microelectronic circuit comprising an 

artificial retina may be formed from a biocompatible polymer (e.g., parylene) using 

planar thin-film processing. When implanted, though, the electrode array must be formed 

into a shape compatible with the approximately spherical curvature of the back of the 

eyeball so that the electrode can be in close contact (typically a few tens of microns) with 

the retinal surface. The origami design problem, then, becomes one of finding a folding 

pattern that transforms a thin planar surface into a shape conformal to a spherical surface. 

The general approach for designing such a folding pattern is well known in the 

field of origami. In fact, it is possible create origami versions of an arbitrary surface of 

rotation. Of course, it is not possible to achieve perfect conformation to a surface with net 

Gaussian curvature; a planar film has zero curvature, and any shape folded from same 

must have zero Gaussian curvature except along a finite set of points and lines. However, 

it is possible to come arbitrarily close to a smoothly curved surface with a finite 

polyhedral folded form, and all that is necessary is that the folded shape fall within the 

mechanical tolerance required by the retina. 

Here, we present the novel method of folding a fully-released 2D micro-fabricated 

parylene-C device with a designed folding crease patterns to a 3D spherical origami 

structure to achieve an origami retinal implant fitting the original curvature inside the 

eyeball [57]. Therefore, the origami implant design enables the possibility of first making 

an extended device in 2D format and, after a possible minimal surgical cut and insertion, 
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then folding it into a 3D device inside the eye for necessary geometric matching with host 

tissues. Prosthetic retinal implants have been modelled in FEA simulations before [58]. 

The use of a creased thin-film substrate, however, presents a unique challenge. Woo et al 

[59, 60] have modelled creases as a kink in undamaged film using 2D shell elements and 

also using 2D solid continuum elements to obtain a crease cross-section. Neither 

approach is suitable in our case as we need the full 3D shape and the film thickness and 

crease radii are on the same order as the desired implant-retina separation distance. We 

developed an FEA model to investigate how these effects alter the implant’s convex 

surface. 

In this work, parylene-C is chosen to be the material for the origami structure. 

Due to its high biocompatibility, good mechanical strength, and machinability, parylene-

C has become a good candidate as the material for implantable devices. Recently, studies 

of parylene-C based retinal implantable devices have been reported for the treatment of 

age-related macular degeneration. This paper then reports the first 3D spherical PA-C 

origami folded from a 2D film with pre-designed folding crease patterns. 

 

6.2 Motivation 
 

Geometric matching is crucial for electrical stimulation applications, especially 

retinal prosthesis. The implant is meant to partially restore vision to people who have lost 

their vision due to retinitis pigmentosa or macular degeneration et cetera. Among 3 types 

of retinal implants currently in clinical trials (epiretinal, subretinal, suprachoroidal), 

epiretinal implants (on the retina) are able to provide the recipient with images by 

electrically stimulating surviving retinal cells for light perception and object recognition. 
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Figure 6-1. Top, Origami device for intraocular implant: curvature needed to closely 

appose device to the retina. Bottom, SEM image of parylene-C origami structure 

 

Here, we have designed and developed a micro-origami implantable device for 

retina prosthesis (Figure 6-1), and demonstrated it with a micro-scaled 3-dimensional (3D) 

United State (US) map. The origami device is a way to construct a 3D spherical structure 

from a micro-fabricated-2D parylene-C (PA-C) in order to implant the intraocular 

epiretinal device, which requires a curved electrode array to fit the curvature of the 

macula. The US map in 2D was patterned with Ti/Au on PA-C film and assembled to 

spherical structure after folding. Crease-lines for sphere are mathematically designed and 

patterned, and then thin silicone oil is used as a temporary glue to hold the folded 

structures through surface tension. The temporary origami is then thermally set into 

permanent 3D shapes at 100◦C for 30 minutes in vacuum utilizing the viscoelastic 

properties of PA-C. The reported origami technique enables the possibility of first 

making an extended device in 2D format and, after a possible minimal surgical cut and 

insertion, then folding it into a 3D device inside the eye for necessary geometric 

matching with host tissues. 

 
6.3 Design 
 

As shown in Figure 6-2, the crease patterns consist of curved lines. Once folded 

along the curved lines with the right sequence, the designed 2D film can turn into a 

spherical structure. These crease lines are designed by mathematics and computer 

simulation. The simulation is run within a multi-objective optimization loop, which 
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Both approaches have been described; the second has the advantage that it distributes the 

excess material more evenly, and so it is the approach that we will adopt going forward.  

We note that for a truly spherical surface, the sheet could assume a smoothly 

curved form in one direction, but because the sheet is a developable surface, its Gaussian 

curvature must be zero; there must be some direction along which the sheet is straight in 

3D (that is, it must be a ruled surface). Nevertheless, we can approximate any curved 

surface to arbitrary precision by creating a polygonal approximation to the surface. We 

will assume an m-fold rotational symmetry in the axial direction, and then an arbitrary 

order-n quantization in the vertical direction. 

If one were allowed to cut the paper, we could imagine wrap- ping a sphere by 

creating a series of polygonal “gores”, like the segments of a beach ball, each of which 

subtended a fixed angle about a vertical axis of symmetry, as illustrated in Figure 6-3. 

Now, in order to create this structure from a single sheet, we must somehow gather 

the paper that lies between the gores so that it (a) brings the edges of the gores together, 

and (b) remains a developable surface. The second condition implies specifically that 

isometry exists between the flat (unfolded) and 3D (folded) surfaces. 

A simple way of gathering the excess paper is to simply fold the surface halfway 

between consecutive gores and along one side of each gore, resulting in a series of 

flanges pointing ax- ially around the surface, flanges whose width is zero at the equator 

of the sphere and increases monotonically toward top and bottom, as illustrated in Figure 

6-4. 
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6.4 Fabrication of Parylene Membrane 
 

Figure 6-7 shows the fabrication process of the origami film. A 4-inch wafer is 

prepared for fabrication after piranha plus buffered hydrofluoric acid (BHF) cleaning, and 

then hexamethyldisilazane (HMDS) treatment respectively. A 17-µm-thick PA-C film is 

then deposited over the wafer (Figure 6-7a). Next, a 0.1µm-thick aluminum (Al) is 

thermally evaporated over the PA-C and the photoresist to pattern Al as a plasma etching 

mask is exposed and developed (Figure 6-7b). Oxygen plasma (400W, 300mT) is used to 

etch through the openings on PA-C film all the way down to silicon surface (Figure 6-

7c). The openings on the PA-C film define the crease lines. After removing Al etching 

mask in Al etchant (Figure 6-7d), another run of oxygen plasma (50W, 200mT, 1 minute) 

is used to roughen the surface of PA-C, followed by a 30-second BHF cleaning to make 

the surface hydrophobic. A final 3-µm-thick layer of PA-C is deposited over the device 

(Figure 6-7e). Finally, a dicing saw is used to cut the origami wafer into dies and the PA-

C origami films are peeled off from silicon in DI water. 

 

6.5 Folding Method and Process 
 

The method and process of the parylene origami folding is presented here. The 

PA-C film is peeled off from the wafer and attached on a stainless steel ball (20 mm in 

diameter). To enable the attachment and the following folding, the ball surface is first 

covered with silicone oil. This silicone oil serves as a temporary glue to provide surface 

tension to allow the PA-C film to stick to the ball through meniscus force. Then a one-

dimensional “tent” (with the apex to be a convex fold) is picked up from the film (Figure 



 

6

co

ea

si

un

af

w

w

F

fo

th

 

6
 

th

tr

-9a). The se

onvex fold 

asily, while 

ide to finish 

ntil the who

fter folding.

without creas

while (B) can

 

igure 6-9. T

orm a tent by

he squeezed 

6.6 Therm

After 

hen use ther

ransition tem

gment on th

is finished. 

the right se

the concave

le origami fi

. In Figure 

se patterns fo

nnot. Wrinkl

The folding 

y pushing th

tent to left o

mal Fixatio

folding, the

rmal anneal

mperature (T

he left of the 

Because of 

gment rema

e fold on the 

ilm is folded

6-8b, spheri

olded onto a

es and bad c

process: a) 

he left part to

on the ball su

on of the F

e silicone oil

ling to achi

g) for as-dep

114

tent is then 

f the silicone

ains unmove

ball surface

d. Figure 6-8

ical origami

a ball (B). (A

contacts with

start a segm

o the right w

urface 

Folded Or

l can only h

ieve the fixa

posited PA-

pushed inw

e oil, the le

d. Then, the

e (Figure 6-9

8a shows the

i device (A)

A) can fit th

h the ball sur

ment with a 

while the rig

rigami 

hold the fold

ation of the

C is 50°C an

ward as in Fig

ft part can b

e closed tent

9c). The proc

e origami stru

) is compar

he surface cu

rface can be 

convex fold

ght part stays

ded origami 

e folded ori

and viscoelas

gure 6-9b an

be pushed i

t is tilt to th

cess repeats 

ucture befor

ed to PA-C

urvature prec

observed on

d on the righ

s unmoved; 

temporarily

igami. The 

sticity happe

nd the 

inside 

he left 

itself 

re and 

C film 

cisely 

n (B). 

 

ht; b) 

c) tilt 

y. We 

glass 

ens to 



 115

fix the shape when T > Tg. However, high temperature annealing larger than 100°C in air 

makes PA-C brittle. Thus tensile tests of parylene-C stripes after various annealing 

conditions have been done to determine the suitable temperature of thermal annealing. 

DMA (dynamic mechanical analysis) Q 800 from TA Instruments is used for the tensile 

tests. Procedures are described as follows. First, raise the environment temperature to 

37°C; maintain isothermal for 30 minutes; finally ramp the strain at 0.5%/minute up to 

250% (PA-C samples break before reaching 250% elongation). The sample annealed at 

100°C shows 76.3% elongation, while 150°C and 200°C show 10.1% and 2.5%, 

respectively. Therefore, PA-C films annealed at 150°C and 200°C become too brittle. 

Considering stretching and bending in practical surgery process, 100 °C annealing is 

appropriate. In addition, since the time constant of PA-C crystallization is shorter than 1 

minute, so a 30 minutes thermal annealing is sufficient. Therefore, all our folded origami 

devices are annealed at 100 °C for 30 minutes in vacuum. There is no damage to the 

silicone oil we used and it can be easily removed using organic solvents such as acetone. 

 

6.7 Potential Applications 
 

6.7.1 Design for Pattern of US-map. 

We pattern US map from W125◦ to W65◦ and N25◦ to N50◦ at the PA-C sheet 

with crease line formed by the Mercator cylindrical projection method [64]. Map is 

divided into nine pieces along with geographical latitude, as illustrated in Figure 6-10A. 

The extended 2D film is a 20µm-thick PA-C film with 3µm-thick crease region, as 

illustrated in Figure 6-10B. Since we need both convex fold and concave fold, the width 

of the right crease region is set to be 30µm for concave fold, while the width of the left 
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includes design, folding, and fixation to complete final origami devices. A lot of 

researches have been conducted taking advantage of the origami concept in different 

fields [65-81]. Here, the reported origami technique enables the possibility of first 

making an extended device in 2D format and then folding it into a 3D device. In our case, 

this new origami technique is intended for retinal implant application that requires a 

curved electrode array. This technique, however, can also be applied to other 

applications. 
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7 CONCLUSION 

 

 

This work presents parylene based novel filters for biomedical applications.  

Three medical devices have been proposed, together with the parylene characterization 

and parylene origami structure design. In chapter 1, first of all the parylene is introduced. 

Parylene has been selected as the bioMEMS material because of a variety of favorable 

properties, including biocompatibility, good machinability, and so on. After that, the 

detailed parylene processing technology (low pressure chemical vapor deposition) is 

discussed.  Parylene membrane applications in the bio and medical device field are 

reviewed, and several state-of-art researches are listed and discussed as examples. The 

second part of the chapter 1 focuses on the MEMS technology, including the history, 

overview, and state-of-art techniques. Among all the techniques, photolithography, bulk 

micromachining, and thin film process are particularly discussed in details. 

The topic of chapter 2 is the parylene properties. Here, the mechanical properties 

and the surface properties are studied. For the mechanical properties, the dynamic 

mechanical analysis method is used to perform the uniaxial tensile test and the glass 

transition temperature test. For the surface properties, plasma treatment methods are 

applied to change the surface properties of parylene membranes. Stable hydrophilic 

surfaces are achieved for the cell attachment and growth study. 
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 Chapter 3 focuses on the parylene magnesium embedded filter for circulating 

tumors cells isolation. State-of-art CTC detection techniques are reviewed and the 

motivation of this novel design is to help release the circulating tumor cells once captured 

by the slot filter. To achieve this goal, magnesium is applied as the biodegradable 

sacrificial layer on the new design. The properties of magnesium, including the 

processing technology and the etching properties together with the modeling, are studied. 

Both the material design and structural design of the parylene based magnesium filter are 

introduced, together with the fabrication methods, setup design and assembly. 

 Chapter 4 presented a novel parylene based microelectrode filter for single islet 

electroisletogram. Islets transplantation has become a promising way to treat the type I 

diabetes. The goal for this device is to screen the every individual islet based on the EIG 

to increase the quality of implanted islets. In the design section, both system level design 

and the microelectrodes filter design are studied. After the assembly and integration, the 

results are presented and discussed. 

 In chapter 5, parylene-on-PDMS membrane is investigated for vaccine 

production. The main target for the parylene-on-PDMS device is to increase the cell 

density for cell and virus culture. The oxygen permeation study has been performed 

before the cell growth experiments. The result indicates the device to be promising for 

largely increasing the cell numbers per volume. 

 The last chapter is on parylene origami structure. By folding the parylene 

membrane, 3D structures can be created from 2D. This origami technique includes 

design, folding, and fixation to complete the final origami devices.  
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 In conclusion, the applications of parylene membranes are explored. Given 

different goals and different requirements, extra functionalities, modifications, and 

designs have been added to the parylene filters to make them “smart”. Further 

improvements and optimizations are definitely needed for all the three devices. For 

instance, stacks of parylene-on-PDMS membranes need to be investigated to truly 

improve the cell culture. Still, however, the initial results do give us the confidence that 

smart parylene filter devices can be useful for the practical biomedical applications, and 

there will be more and more useful and interesting parylene filters invented in the future. 

 

 

 


