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ABSTRACT 
 
 

 Methane seeps are globally distributed geologic features in which reduced fluid from 
below the seafloor is advected upward and meets the oxidized bottom waters of Earth’s oceans. 
This redox gradient fuels chemosynthetic communities anchored by the microbially-mediated 
anaerobic oxidation of methane (AOM). Both today and in Earth’s past, methane seeps have 
supported diverse biological communities extending from microorgansisms to macrofauna and 
adding to the diversity of life on Earth. Simultaneously, the carbon cycling associated with 
methane seeps may have played a significant role in modulating ancient Earth’s climate, 
particularly by acting as a control on methane emissions. 

The AOM metabolism generates alkalinity and dissolved inorganic carbon (DIC) and at a 
2:1 ratio, promoting the abiogenic, or authigenic, precipitation of carbonate minerals. Over time, 
these precipitates can grow into pavements covering hundreds of square meters on the seafloor 
and dominating the volumetric habitat space available in seep ecosystems. Importantly, 
carbonates are incorporated into the geologic record and therefore preserve an inorganic (i.e., 
δ13C) and organic (i.e., lipid biomarker) history of methane seepage. However, the extent to which 
preserved biomarkers represent a snapshot of microorganisms present at the time of primary 
precipitation, a time-integrated history of microbial assemblages across the life cycle of a methane 
seep, or a view of the final microorganisms inhabiting a carbonate prior to incorporation in the 
sedimentary record is unresolved. 

This thesis addresses the ecology of carbonate-associated seep microorganisms. Chapters 
One and Two contextualize the extant microbial diversity on seep carbonates versus within seep 
sediments, as determined through 16S rRNA gene biomarkers. Small, protolithic carbonate 
“nodules” recovered from within seep sediments are observed to be capable of capturing 
surrounding sediment-hosted microbial diversity, but in some cases also diverge from sediments. 
Meanwhile, lithified carbonate blocks recovered from the seafloor host microbial assemblages 
demonstrably distinct from seep sediments (and seep nodules). Microbial 16S rRNA gene 
diversity within carbonate samples is well-differentiated by the extent of contemporary seepage. In 
situ seafloor transplantation experiments further demonstrated the microbial assemblages 
associated with seep carbonates to be sensitive to seep quiescence and activation on short (13-
month) timescales. This was particularly true for organisms whose 16S rRNA genes imply 
physiologies dependent on methane or sulfur oxidation. With an improved understanding of the 
modern ecology of carbonate-associated microorganisms, Chapter Three applies intact polar lipid 
(IPL) and core lipid analyses to begin describing whether, and to what extent, geologically 
relevant biomarkers mimic short-term dynamics observed in 16S rRNA gene profiles versus 
archive a record of historic microbial diversity. Biomarker longevity is determined to increase 
from 16S rRNA genes to IPLs to core lipids, with IPLs preserving microbial diversity history on 
timescales more similar to 16S rRNA genes than core lipids. Ultimately, individual IPL 
biomarkers are identified which may be robust proxies for determining whether the biomarker 
profile recorded in a seep carbonate represents vestiges of active seepage processes, or the profile 
of a microbial community persisting after seep quiescence. 
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“It is not intuitively obvious why a square yard of meadow, say, should not be exactly like the next 
square yard in species-composition, yet it must have been noted many times, and from the earliest 
times, that it rarely or never is so.” 
    — F.W. Preston, Time and Space and the Variation of Species, 1960 
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